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1. Introduction

The impact of distributed energy resources in the operation of power and energy systems is
nowadays unquestionable at the distribution level but also at the whole power system management
level. Increased flexibility is required to accommodate intermittent distributed generation and electric
vehicle charging. Demand response has already been proven to have great potential to contribute to
increased system efficiency while bringing additional benefits, especially to consumers. Distributed
storage is also promising, particularly when used jointly with photovoltaic (PV) panels.

This Special Issue addresses the management of distributed energy resources, which is
increasingly important to ensure sustainable and efficient power and energy systems. The issue
focuses on methods and techniques to achieve optimized operation, aggregate the resources by means
of virtual power players, and remunerate them. The integration of distributed resources in electricity
markets is also addressed as a main path for the efficient use of resources.

The topics of this Special Issue include the following:

• Demand response
• Distributed energy resources
• Distributed generation
• Electric vehicles
• Energy resource optimization
• Energy storage
• Intelligent resource management
• Renewable energy sources
• Smart grids

Thirteen research papers have been published in this Special Issue. The following statistics apply:

• Submissions: 23; published: 13; rejected: 10
• Average article processing time: 58.76 days
• Authors’ geographical distribution:

- Spain (3), Portugal (3), China (3)
- Korea (2), Denmark (2)
- Italy (1), USA (1), Japan (1), India (1), Brazil (1)

2. Contributions

This paper provides a summary of the Energies Special Issue covering the published articles [1–13],
which address several topics related to distributed energy resources management. Table 1 identifies
the most relevant topics in each publication; most of them cover three or more topics.

Energies 2019, 12, 550; doi:10.3390/en12030550 www.mdpi.com/journal/energies1
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Table 1. Topics covered in each publication.

Topic
References

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]

Demand response x x x x x x x x
Distributed generation x x x x x x x x
Operation and control x x x x x x x

Electricity markets and aggregation x x x x x
Energy storage x x x x

Intelligent resource management x x x x x x x
Renewable energy sources x x x x x

Laboratory simulation x x

Total 3 4 4 4 4 5 4 3 4 2 1 3 4

One can see that, regarding the type of resources, most of the publications focus on demand
response and distributed generation. Energy storage is also included in four papers. Looking at the
proposed methods and/or addressed problems, most of the papers are dedicated to operation and
control aspects and intelligent resource management. Electricity markets and resource aggregation are
addressed in five papers. Specific challenges of integrating renewable energy sources are addressed in
five papers. Finally, two papers make relevant contributions regarding laboratory simulation with
some hardware for emulating power system components.

Reference [1] proposed a coordinated distributed control strategy for a hybrid AC/DC microgrid,
taking into consideration several resource characteristics. A two-level control structure was developed,
with local controllers linked to a central controller and a central controller that performs the
energy management.

With a deep focus on demand response and aggregation, the authors of [2] developed a method
of producing optimal bidding curves for an aggregator participating in day-ahead and intraday
markets, with the objective of minimizing the costs of purchasing energy. The three-step approach
involves optimal bidding to the day-ahead market, after the day-ahead market clearing when
rescheduling is fulfilled, and new optimal bidding to the intraday market, taking advantage of
the lower marginal prices.

Another perspective on energy trading and pricing is provided in [3], which formulates
a hierarchical game between the energy provider as the leader and consumers as the followers.
The uncertainty of the energy supply is also considered.

As seen in Table 1, one relevant topic for this Special Issue is simulation, which was addressed
in [1,4]. Reference [4] presented a platform with real-time simulation skills adequate for demand
response and distributed generation. The integration of centralized and distributed control approaches
is discussed and validated through the emulation of power system components for a more realistic
simulation of the microgrid and the validation of the computational models. A virtual power player
manages the resources, aiming at minimizing operational costs.

A microgrid operation methodology was proposed in [5]. The economic operation strategy is
devoted to both normal and emergency operation modes. Without a central controller, the proposed
methodology is able to minimize the global operation cost. Looking more specifically at combined
heat and power (CHP) generation, the microgrid operation costs were minimized in [6] by using the
Lyapunov approach. Fault location detection is addressed in [11].

A multiagent-based approach is used in [9], supporting a decentralized method for microgrid
restoration. In the proposed approach, local controllers are assigned to specific agents. The available
information on generation and consumption is used to establish the best sequence for the restoration.

In [7], a predictive dispatch model was used for home energy management, and the uncertainty of
PV generation is modeled by the InterStoch hybrid method. In the first stage of the method, day-ahead
energy management is performed. The second stage runs in real time.
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From a different perspective, the discomfort costs associated with demand response and the
generation costs are minimized in [10]. The discomfort costs are formulated based on Fanger
thermal comfort.

Moving to large-size consumption and generation, reference [8] applied the cat swarm
optimization technique to a demand–response-based unit commitment, including a real-time-based
demand response program that is used during peak hours. The developed approach makes it possible
to maximize the profit of both generation companies and demand response providers.

A case study of the Nordic electricity market was presented in [12]. It includes a strengths,
weaknesses, opportunities, and threats (SWOT) analysis of four business models devoted to building
participation in demand response programs. There is also a focus on aggregation aspects.

Finally, reference [13] presented a methodology addressing the rescheduling of resources in
a sequence of the definition of a new aggregation and remuneration process. A representative tariff for
each group of distributed energy resources is obtained.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: This paper proposes a distributed control strategy that considers several source
characteristics to achieve reliable and efficient operation of a hybrid ac/dc microgrid. The proposed
control strategy has a two-level structure. The primary control layer is based on an adaptive droop
method, which allows local controllers to operate autonomously and flexibly during disturbances
such as fault, load variation, and environmental changes. For efficient distribution of power, a higher
control layer adjusts voltage reference points based on optimized energy scheduling decisions.
The proposed hybrid ac/dc microgrid is composed of converters and distributed generation units
that include renewable energy sources (RESs) and energy storage systems (ESSs). The proposed
control strategy is verified in various scenarios experimentally and by simulation.

Keywords: ac/dc hybrid microgrid; adaptive droop control; autonomous operation; distributed
generation; energy management system

1. Introduction

To reduce carbon emissions, increased penetration of renewable energy sources (RESs) in power
systems is desirable. This adoption of distributed energy resources can enhance energy security for
local regions [1,2]. However, the effective utilization of intermittent RES generation and the integration
of multiple distributed energy resources remain significant challenges. Furthermore, power quality
and system reliability requirements are also increasing. Therefore, microgrids are attracting interest as
alternative systems that could enable an intelligent power grid in the future, owing to the capability of
microgrids to strengthen grid resilience and to enable the integration of distributed energy resources
such as RESs, diesel generation, and energy storage systems (ESSs) [2–5].

A microgrid is a localized small grid that can operate in both grid-connected and off-grid modes
to enhance energy security. Depending on the type of bus voltage, microgrids are categorized into
ac, dc, and hybrid systems [6–9]. Comparing ac and dc systems, dc microgrid systems feature
improved efficiency, requiring fewer conversion stages for RESs than ac systems. In addition, dc
systems substantially reduce the impacts of synchronization and harmonic distortion, resulting in
improved power quality compared to ac systems. However, low-voltage dc distribution systems
require consideration of technical issues such as protection and grounding, as well as practical issues
such as the limited number of commercially available dc components [10–12]. For these reasons,
hybrid ac/dc microgrid systems are often investigated as alternative distribution networks. In hybrid
ac/dc systems, there are separate ac and dc voltage buses for ac and dc loads, respectively, and the
buses are interfaced through power electronics devices [7,13].

A microgrid contains multiple power electronics blocks connected to the system in parallel
operation. These converters must be controlled to satisfy several essential microgrid requirements,

Energies 2017, 10, 373; doi:10.3390/en10030373 www.mdpi.com/journal/energies4
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including reliability, voltage regulation, and power sharing [14–17]. To address the aforementioned
challenges, a number of control approaches have been proposed in microgrid applications.
The control approaches can be divided into two classes based on their architectures: centralized
and decentralized [17–22]. The centralized strategy increases efficient energy management through
high-level communications, but is inadequate for microgrids requiring high reliability and scalability.
The decentralized strategy, which is usually based on a droop scheme in a local controller, has improved
reliability and facilitated power sharing without the need for communication between the components,
although mode transition flexibility and optimized energy management are restricted [8,23–26].

This paper proposes a distributed control strategy for autonomous operation of a hybrid ac/dc
microgrid. A hybrid ac/dc microgrid is considered in which distributed generation units and ESSs
are connected to the dc bus as shown in Figure 1. The overall control structure is formulated
with low-speed communication between two layers of controllers: the primary decentralized local
controllers and the higher central controller. This hybrid control strategy enables autonomous
operating mode transitions including in a fault situation; a supervised controller is not required
because operating modes are based on events and bus voltage levels. The central controller executes
an energy management system (EMS) to optimize the energy utilization of the system. Optimal energy
scheduling is derived based on a dynamic programming method, using the information measured by
the local controllers. To minimize energy costs, both the state of charge (SOC) and energy fluctuation
trends are considered, and the optimal power dispatch is performed by adjusting the offset voltage
level. The control architectures of the converters are discussed in more detail in Sections 2 and 3.

Figure 1. System diagram of hybrid ac/dc microgrid with communication links.

The local controllers are operated following the droop control method and are designed to
inspect the operation conditions of each power electronics block: (1) the grid-interfaced converter (GC)
manages islanding and reconnection to the grid; (2) the storage converter (SC) is used to implement
the energy management strategy for energy optimization; and (3) the RES converter (RC) maximizes
the RES output power.

The paper is organized as follows. In Section 2, the overall system structure of the proposed
hybrid ac/dc microgrid is described, and the fundamental control philosophy of the proposed strategy
is introduced, with descriptions of the converters’ operation modes. In Section 3, the design method
of the central control is discussed, with a mathematical formulation of the EMS strategy and its brief
results. Section 4 presents primary control designs for different power sources with different control
objectives. In Section 5, the proposed control strategy is experimentally verified in various scenarios.
Finally, Section 6 presents the conclusions.
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2. Configuration and Control Strategy of a Hybrid AC/DC Microgrid

2.1. System Description

Figure 1 diagrams the entire system, including the electric network and communication network.
The proposed microgrid consists of a photovoltaic (PV) RES, ESS, and utility grid, all of which are
coupled to the bus using converters. Ac and dc loads are connected to each bus. The loads are either a
resistive load or a constant power load. Connection of the distributed generation units to the dc bus
improves the system efficiency by reducing the number of conversion stages if the combined generated
power is consumed in the dc network. Moreover, connection to the dc bus eliminates the control
issues associated with synchronization and reactive power. The static transfer switch can connect
and disconnect to the utility grid by fault signals or by a supervisory control strategy. The dc bus is
interfaced to the ac bus through an ac/dc converter. The GC located between the ac bus and the dc bus
works as a rectifier to regulate dc bus voltage during grid-connected operation, and as an inverter to
form the ac bus and feed the ac load during off-grid operation. The topology of the GC is a single-phase
voltage-source converter with an LCL filter. A lithium-ion battery set as an ESS is connected through a
bidirectional synchronous buck converter. The PV source is the RES and is connected to the dc bus
through a boost converter. The RC performs the maximum power point tracking (MPPT).

The local controllers of each converter share a single communication bus. Each local controller
measures local voltage and current, and controls the dedicated converter and the switch of the nearby
source. The specific designs of these controllers will be detailed in the Sections 3 and 4.

2.2. Control Strategy

The overall control structure is formulated with two layers. To retain reliability, primary local
control is based on an adaptive droop method. Considering the source characteristics and operating
mode, local controllers regulate bus voltage or perform MPPT. Because bus voltage is shared, each
local controller can realize seamless mode transitions. To operate the microgrid efficiently, a central
controller optimizes the EMS using a dynamic programming algorithm to optimize the battery usage
schedule. The resulting commands are implemented by a droop curve compensator in the SC’s outer
controller. In this manner, in which the droop-based local controllers are coordinated with the central
controller, the system reliability and efficiency are greatly enhanced. The objectives of the proposed
control design are listed as follows.

• Reliable and Autonomous Control

To avoid a single point of failure due to device or communication malfunction, the converters
are controlled in a decentralized manner using a droop-based method. In addition, the operating
modes of converters transition autonomously during unpredictable situations to improve the power
system’s resilience.

• DC Bus Voltage Regulation

Regulation of the dc bus voltage (e.g., at 380 V), is one of the power quality criteria required of a
dc microgrid. To overcome the poor voltage regulation of the typical droop method, the GC adjusts dc
voltage offset.

• Energy Optimization

Energy optimization is performed to maximize the benefits of RESs and the ESS. An EMS module
in the central controller obtains energy scheduling for optimization solutions and communicates the
derived scheduling to the SC.

Based on the operation requirements above, Table 1 classifies the operating modes of the
converters, including failure cases. In this classification, states of the entire system are characterized
by combining the states of each converter. For example, State 121 represents the operating condition

6
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in which GC regulates Vdc under grid-connected conditions, SC regulates PESS for the EMS, and RC
performs MPPT.

The shaded cells in Table 1 can be implemented using the adaptive droop-based method.
The droop curves of each converter are shown in Figure 2, in which Figure 2a–c show the GC,
SC, and RC curves, respectively. The GC curve shifts vertically to compensate for the dc voltage
deviation. The SC curve can be expanded within the shaded region to achieve the required power
control and SOC compensation. The RC performs an autonomous mode transition between MPPT
and off-MPPT without any curve manipulation. According to the grid condition, the GC performs
a seamless transition from the grid-connected mode to the off-grid mode, in which case, from the
perspective of the dc bus, only the SC and RC regulate the dc bus voltage in droop control, while the
GC appears as a load.

(a) (b) (c) 

Figure 2. Droop characteristics in V–I curves of (a) grid-interfaced converter (GC); (b) storage converter
(SC); and (c) renewable energy source (RES) converter (RC).

Table 1. Operating modes of converters.

State Grid-Interfaced Converter (GC) Storage Converter (SC) RES Converter (RC)

1 Grid-connected: Vdc Idle: Vdc MPPT: PPV
2 Off-grid: Vac EMS: PESS Off-MPPT: Vdc
3 Fail Fail Fail

2.3. Operation Description

Figure 2 shows the V–I curves of the converters, where iG, vG, iS, vS, iR, and vR represent the
currents and voltages of the GC, SC, and RC, respectively. From these curves, in the ideal case,
the steady-state operating points of the dc bus under the droop control are determined by

vdc = vG = vS = vR (1)

iL = iG + iS + iR (2)

in which vdc is the dc bus voltage, and iL is the total dc load current. In this subsection, several
examples of system operation will be described to highlight the features of the proposed control
scheme. This series of examples shows operational transitions, in which IG, IS, and IR are the
steady-state currents of the GC, SC, and RC, respectively, and vdc is the steady-state dc bus voltage.
In the following examples, shown in Figure 3, the steady-state value vdc1 moves to vdc2 after the
relevant transitions, and the other values shift accordingly. Assuming constant load consumption,
the following relationship is satisfied.

IL = IG1 + IS1 + IR1 = IG2 + IS2 + IR2 (3)

• DC Bus Voltage Compensation at State 111

7



Energies 2017, 10, 373

According to Table 1, this state represents the condition in which the GC and SC regulate the dc
bus voltage and the RC performs MPPT of the PV RES. Because the dc bus voltage vdc1 is less than the
nominal voltage of 380 V, an additional outer loop of the GC compensates for the voltage deviation,
as shown in Figure 3a. Consequently, the GC curve shifts upward until the steady-state voltage vdc2 is
regulated to 380 V. The operating points of the other converters also change: the RC remains in MPPT,
and the SC’s output power returns to zero in steady-state.

• EMS at State 121

State 121 is identical to State 111, except that the SC operates in the EMS mode. The objective of
the SC’s local controller is to regulate the output power to the reference given by the central controller.
Before the transition, the reference from the central module is IS1. When the reference increases to IS2,
the SC curve shifts upward until the output current reaches the reference as shown in Figure 3b.

• Reliability under Failure from State 311 to State 332

At State 311, the GC is not involved in the droop control of the dc bus. At least one of two
sources, the SC and/or RC, should operate in the dc bus voltage regulation mode. After a transition
in which the SC fails, the RC may regulate the dc bus’s voltage level. If total load power is less than
the maximum PV power, the dc bus voltage is regulated by the RC as shown in Figure 3c. Even if
the irradiation changes, the RC tracks the new maximum power point while maintaining the dc bus
voltage as in Figure 3d.

(a) 

(b) 

(c) 

(d) 

Figure 3. V–I curves of the converters for various operation examples. (a) Voltage reference change of
GC after relevant transition; (b) voltage reference change of SC by energy management system (EMS);
(c) failure of GC; and (d) change of photovoltaic (PV) generating power.
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3. Control Design: Central Controller

As shown in Figure 1, the central controller shares the communication bus with the local
controllers. Table 2 shows the information that the central controller processes for each local controller.
In this section, the EMS feature of the central controller is highlighted. Inputs from the local controllers
for this energy scheduling optimization stage include the source and load power information and
the SOC of the battery; additional inputs include meteorological and pricing information from a
higher-level operator, such as a distribution system operator as shown in Figure 4. The EMS scheme is
implemented using a dynamic programming method. After an optimal solution is derived by the EMS
module, the central controller dispatches the EMS power reference and operation mode to the SC.

Table 2. Communication of the central controller. SOC: state of charge.

Target Transmit Receive

GC Protection Measurements, Vdc restoration
SC Protection, EMS, Mode selection Measurements, SOC, Vocv
RC Protection Measurements

 

Figure 4. V–I curves and the operating points at State 111.

3.1. EMS Optimization

Determining the optimal energy dispatch solution for the battery’s charge and discharge profile is
accomplished by a shortest-path problem in which the path length represents the operator-defined cost.
Using the previous and estimated RES generation profile and the load consumption profile, an optimal
energy scheduling solution is derived to minimize the objective function under a set of constraints
associated with the problem.

The EMS optimization is solved by a dynamic programming method. With hourly profiles of the
RES and load power, the cost of the objective function is calculated for every hour t. Scheduling 1 day
ahead, the path with the lowest cost from 1 h to 24 h is determined.

(1) Objective Function

The objective function is defined as in (4), where T is the total time of a day. J1[t] is the grid
electricity consumption, which is computed by multiplying the grid power Pgrid and the unit electricity
cost Cgrid. Pgrid is the net energy consumed by the utility during 1 h. Electricity cost is based on
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time-of-use pricing, which is set for a specific time period in advance of the calculation. J2[t] is the
equivalent cost of battery usage at time t, where α is a weighting factor and Ah[t] is the state variable.
The weighting factor is calculated to reflect the battery’s cost and life cycle. J2[t] is proportional to
energy transferred to and from the battery, which includes both charging and discharging energy;
therefore, this term can restrict indiscriminate battery usage.

J =
T
∑

t=1
(J1[t] + J2[t])

where
J1[t] = Pgrid[t] · Cgrid[t]
J2[t] = α · ΔAh[t]

(4)

(2) State Variable

The state variable is defined as the energy flow of the ESS, as determined by the integration of the
battery current over time, following (5).

Ah[t] =
t

∑
k=t−1

ibat[k] (5)

(3) Input

Estimated PV generation PPV, load consumption Pload, and electricity pricing information Cgrid
are given from the distribution system operator.

(4) Constraint 1

Power processed by the GC is calculated as:

PG[t] = Pload[t]− PS[t]− PR[t] (6)

where PG[t], PS[t], and PR[t] are the power delivered to the dc bus by GC, SC, and RC, respectively;
Pload[t] is given as an input. Using ηG, ηS, and ηR as the conversion efficiencies of the GC, SC, and RC,
respectively, PS[t] is computed as

PS[t] =

{
1
ηS

· ibat[t] · vbat[t], (charge : ibat[t] ≤ 0)
ηS · ibat[t] · vbat[t], (discharge : ibat[t] > 0)

(7)

where ibat and vbat are the current and voltage of the battery terminal, and the conversion efficiency is
applied according to the direction of power flow. PR[t] is obtained as:

PR[t] = ηR · PPV [t] (8)

and the inflow grid power Pgrid is:

Pgrid[t] =

{
1
ηG

· PG[t], (import : PG[t] ≥ 0)
ηG · PG[t], (export : PG[t] < 0)

(9)

Estimated PV generation PPV, load consumption Pload, and electricity pricing information Cgrid
are given from the distribution system operator.

(5) Constraint 2

10
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To maintain a constant SOC level of the battery at the beginning and the end of EMS cycle, the net
stored energy during a day is maintained at zero:

Ah[t = T] = Ah[t = 0] = 0 (10)

3.2. Energy Scheduling Results

Figure 5 shows the simulated results of the EMS formulated above where PS, PR, and Pload are one
day’s SC, RC, and load consumption power profiles, respectively. Figure 5a,b show the optimization
results of the proposed EMS with fixed pricing. It is seen that the SC tends to charge the battery during
the day when the PV generation is larger than the peak load. Figure 5c,d show the optimized profiles
with variable pricing. Because the price during the night is lower than during the day, the SC charges
the battery during the night and during the peak generation time, and discharges the stored energy
during the peak load at early morning and late evening. In both cases, the net stored energy at the
beginning and the end of the day is zero to satisfy the constraint. Figure 5e shows the optimization
result of scheduling 6 days ahead. The calculated results are dispatched to the local controller. Even in
the case of a communication failure, the dc bus voltage can be maintained by adopting the adaptive
droop method; thus, the proposed method does not require high-bandwidth communication.

(a) (b)

(c) (d)

(e)

Figure 5. EMS optimization results with various conditions. (a) Power profile with fixed price;
(b) energy profile with fixed price; (c) power profile with variable price; (d) energy profile with variable
price; and (e) optimization result of a calculation executed 6 days ahead of time, with variable price.

4. Control Design: Local Controllers

4.1. GC Local Controller

Figure 6 shows a block diagram of the GC’s local controller. The measurement variables are
idc, vdc, iac, and vac, which are the currents and voltages at the dc and ac terminals, respectively.

11
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As described in Table 1, the GC is controlled in two different modes: the grid-connected mode and
the off-grid mode. For both modes, the single-phase d-q current-loop is used to effect seamless mode
transition. The current references, iq,ref and id,ref, are selected according to the operation mode. In the
grid-connected mode, the voltage-loop is composed of two sub-blocks. The voltage reference, vref[k], is
computed using two additional terms:

vre f [k] = Vdc,re f − vd,re f [k] + vo,re f [k] (11)

where Vdc,ref is the nominal dc bus voltage (i.e., 380 V), and vd,ref[k] is the droop voltage given as

vd,re f [k] = Kd · LPF(idc[k]) (12)

where Kd is the droop gain, and LPF(·) is a low-pass filtering function. vo,ref[k] is the offset for the dc
bus voltage restoration, which is given as

vo,re f (z) = Ho(z)εo(z)
where εo(z) = Vdc,re f − N(z)vdc(z)

(13)

Ho(z) is a low-band-width PI-controller for the offset loop, and N(z) is a 120 Hz notch filter
to eliminate the 120 Hz ripple in the vdc. The error between the nominal reference and vdc[k]
is compensated by a slow PI controller to restore the deviation induced by the droop control.
The relationship of the terms in (11) is shown in Figure 7. At a certain operating point, vd,ref[k]
is determined by the droop gain and the output current, and then the error, εo[k], is computed to restore
the voltage to the nominal level (i.e., 380 V). The voltage restoration information vo,ref[k] is transmitted
to the central controller. vd,ref[k] and vo,ref[k] in (11) are processed through two limiters, both of which
are designed to consider the droop gain and the maximum current rating of the converter, as in:

vmax
d,re f = Vdc,re f + Kd Imax

vmin
d,re f = Vdc,re f − Kd Imax

(14)

 

Figure 6. Control diagram of GC local controller.
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Figure 7. Voltage-loop reference on V–I curve of GC local controller.

4.2. SC Local Controller

The block diagram of the SC’s local controller is shown in Figure 8. Although the converter is
controlled by a two-loop controller, the detailed diagrams of the current- and voltage-loops are not
depicted. The voltage reference is given as:

vre f [k] =

{
Vdc,re f − vd,re f [k] + vSOC,re f [k], (Mode = 1)
Vdc,re f − vd,re f [k] + vSOC,re f [k] + vEMS,re f [k], (Mode = 2)

, (15)

where vd,ref is the droop voltage, and vSOC,ref is the droop offset to reflect the SOC of battery, computed as:

vSOC,re f [k] = (SOC[k]− 0.5) · KSOC (16)

where KSOC is a weighting factor. vSOC,ref[k] is zero when SOC[k] is 0.5. When SOC[k] is less than
0.5, vSOC,ref[k] becomes positive, and the converter will tend to lower the output of the battery. When
SOC[k] is greater than 0.5, vSOC,ref[k] becomes negative, and the converter will tend to increase the
output of the battery. When the mode of the controller is switched to Mode 2 by the signal from the
central controller, the additional term vEMS,ref[k] becomes effective, which is given as:

vEMS,re f (z) = HEMS(z)εEMS(z)
where εEMS(z) = Z{iEMS[k]− iL[k]} (17)

where iL[k] is the inductor current, and iEMS[k] is the current reference delivered from the central controller.

 

Figure 8. Control diagram of SC local controller.

4.3. RC Local Controller

The RC’s local controller performs MPPT under normal conditions, and performs droop control
of the dc voltage if off-MPPT is unavoidable. In Figure 9, the voltage-loops for both modes are
operating continuously, and the current-loop references are generated. As seen in the V–I curve in
Figure 2c, the reference with the lower value is selected, which is expressed by min block in the
diagram. The voltage-loop compensators for the two modes are designed based on two different
models in which the control objectives are the regulation of vdc and vPV, respectively.
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Figure 9. Control diagram of RC local controller.

5. Experimental Results

To validate the proposed control strategy, a hybrid ac/dc microgrid was constructed in the
laboratory as shown in Figure 10. Table 3 shows the specifications for this experimental setup, following
the electric diagram shown in Figure 1. The ac and PV sources were replaced by a 1 kVA grid simulator
and 1.8 kW PV simulator, respectively. The central controller was designed using Matlab/Simulink
(MathWorks, Natick, MA, USA), and microcontrollers were used for the local controllers. The power
dispatch command is transferred through controller area network (CAN) communication at 100 bps.
In the following figures, vdc is the dc bus voltage, iload is the load current, and iG, iR, and iS are the
output currents of GC, RC, and SC, respectively.

 

Figure 10. Experimental setup.

Table 3. Specifications of experiment set-up.

Component Rating

AC source Grid simulator 1 kVA
PV source OCV 150 V/SCC 14 A/MPP 1800 W

Battery 4.2–2.7 V/31 Ah/Li-polymer cell/56S1P

Grid converter 1 kW/18 kHz
Storage converter 2 kW/50 kHz

RES converter 2 kW/50 kHz

DC load Electric load/1 kW
AC load Resistive load/108 Ω

Central controller Matlab/Simulink

Local controller Texas Instruments TMS320F28335 (Dallas, TX, USA)

5.1. Single-Mode Operation

Figure 11a,b shows experimental results of load step change on State 111 with its operational
description in Figure 3b. GC, SC, and RC are in the grid-connected mode, idle mode, and MPPT mode,
respectively. During the load step changes from 400 W to 1 kW and from 1 kW to 600 W, with the
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RC output power remaining constant by performing MPPT. After each transition, the dc bus voltage
fluctuates and then restores to the nominal voltage, 380 V. The dc bus voltage restoration is achieved
by the slow PI controller in the GC’s local controller. It is seen that the SC’s output power remains
zero, except for the transient period required to buffer the GC’s slow voltage regulation characteristic.

Figure 12 shows the experimental results of load step changes in State 211, in which the GC, SC,
and RC are operated in the off-grid, idle, and MPPT modes, respectively. The dc load is changed from
0.4 kW to 1 kW, and from 1 kW to 0.6 kW, and the ac load is maintained at 450 W. In the absence
of the grid power, the GC regulates the ac bus to the nominal voltage 220 Vrms, feeding the ac load.
During the transitions, the dc bus voltage is regulated within 374–378 V because the dc bus voltage is
not restored by the GC. The RC consistently performs MPPT, while the power balance condition is
satisfied by the SC. Figure 12c,d show the detailed waveforms of the transition.

 
(a)                                           (b) 

Figure 11. Experimental waveforms of load step change on State 111 (0.4 kW to 1 kW to 0.6 kW).
(a) Load current and dc bus voltage; and (b) output current.

     
(a)                                          (b) 

    
(c)                                         (d) 

Figure 12. Experimental waveforms of load step change on State 211. (a) Bus voltage and current;
(b) output current; (c) zoomed-in waveform of (a); and (d) zoomed-in waveform of (b).
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5.2. EMS Dispatch

Figure 13 depicts the reference dispatch of the EMS module in the central controller in fixed load
consumption and PV generation. The system is operated in State 121, described in Figure 3c, in which
the GC, SC, and RC are in the grid-connected, EMS, and MPPT modes, respectively. The central controller
dispatches the power reference to SC, 300 W of charge, 300 W of discharge, and 0 W of output power.
While the RC is in the MPPT mode, the SC regulates its output power to the given references.

 

Figure 13. Experimental waveforms of EMS dispatch on State 121.

5.3. Mode Transitions

Figure 14 shows the experimentally determined waveforms for the mode transitions in the
proposed control scheme. The GC’s state transitions according to the grid condition are shown, where
vutil and iutil are the voltage and current of the utility grid power, respectively. When the grid voltage
is interrupted, the GC’s mode is changed from the grid-connected mode to the off-grid mode. The GC
feeds the ac loads with a sinusoidal ac voltage of 220 Vrms. After a few seconds, the grid voltage is
restored, and the GC returns to the grid-connected mode.

 
(a) 

     
(b)                                             (c) 

Figure 14. State transition of GC according to the grid condition. (a) Transition of GC; (b) zoomed-in
waveforms during transition of grid-connected to off-grid; and (c) zoomed-in waveforms during
transition of off-grid to grid-connected.
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In Figure 15, the SC’s operating mode switches from the idle mode to the EMS mode, and,
accordingly, the state of the system is changed from State 111 to State 121. Before the transition, the SC
participates in the droop control, with 0 W of steady-state output power. After the transition, the SC
actively controls the output power of the ESS and charges the battery at the power reference, 500 W of
charge, delivered from the central controller.

 

Figure 15. State transition of SC between idle mode and EMS mode.

In Figure 16, the waveforms of the converters’ output currents and the dc voltage are depicted
in the cases of failure of a unit. Figure 16a describes a GC failure event, and it is shown that the bus
condition is maintained by the SC and RC. Whereas before the fault, the excessive power of the RC
is exported to the grid through the GC, after the fault, the power charges the battery through the SC.
The steady-state value of the dc voltage is increased because the dc voltage is not restored when the
GC fails. In Figure 16b, whereas before the RC fault, the RC performs MPPT to supply a large portion
of the total load, after the fault, the output power of the RC decreases to zero, and consequently, the GC
and SC autonomously feed the loads without disrupting the operation of the system.

    
(a)                                             (b) 

Figure 16. Failure modes of (a) GC; and (b) RC.

These experimental results verify that the proposed control strategy satisfies the control objectives
discussed previously. The system maintains its bus quality under various fault conditions. The dc
voltage is maintained within a limited range with the voltage restoration implemented through the GC.
Moreover, efficient energy utilization is achieved through the low-speed communication. Furthermore,
other control features, including the RC’s autonomous transition between MPPT and off-MPPT and
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the SC’s charge/discharge current limitation, are performed, although these results are not delivered
in this paper.

6. Conclusions

This paper proposes a coordinated distributed control strategy for a hybrid ac/dc microgrid,
considering several source characteristics. To achieve reliable operation and efficient management
of energy, a two-level control structure is developed. Local controllers for the various sources are
designed based on the droop method to optimally utilize the sources with high reliability. In the
proposed scheme, the local controllers are linked to a central controller through a low-bandwidth
communication device. The central controller executes EMS to optimally utilize the energy produced
in the system. The proposed distributed control strategy is experimentally verified to demonstrate
enhanced reliability and efficient operation.
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Abstract: This paper proposes a probabilistic optimization method that produces optimal bidding
curves to be submitted by an aggregator to the day-ahead electricity market and the intraday
market, considering the flexible demand of his customers (based in time dependent resources such as
batteries and shiftable demand) and taking into account the possible imbalance costs as well as the
uncertainty of forecasts (market prices, demand, and renewable energy sources (RES) generation).
The optimization strategy aims to minimize the total cost of the traded energy over a whole day,
taking into account the intertemporal constraints. The proposed formulation leads to the solution
of different linear optimization problems, following the natural temporal sequence of electricity
spot markets. Intertemporal constraints regarding time dependent resources are fulfilled through a
scheduling process performed after the day-ahead market clearing. Each of the different problems is
of moderate dimension and requires short computation times. The benefits of the proposed strategy
are assessed comparing the payments done by an aggregator over a sample period of one year
following different deterministic and probabilistic strategies. Results show that probabilistic strategy
reports better benefits for aggregators participating in power markets.

Keywords: aggregator; optimal bidding; electricity markets; probabilistic programming

1. Introduction

The smart grid will be the future standard at the distribution level, after generalization of active
demand and distributed generation, mainly from renewable energy sources. The spread of automation
and control is currently a major challenge for regulators and grid operators and it also opens a large
field of opportunities to make a better use of all of the available resources in the grid, in order to
achieve a safer, cheaper, and more sustainable electric supply [1]. In this context and from the demand
side, a new player emerges: the aggregator, which could encompass the role of a retailer, a flexibility
manager, and a balanced responsible party or market agent [2–5]. The participation of the aggregator
in the power markets is relatively new since it exploits the flexibility of customers, as well as the
optimal management of distributed generation resources. The aggregator needs to solve optimal
scheduling and bidding problems to manage their prosumers’ resources and participate in the power
markets in an efficient way. However, the approach from the aggregator point of view is new and
different from traditional producers and retailers regarding the supply-demand balance, the bounds
of the possible imbalance incurred by the aggregator, and the uncertainties involved in the problem.
Considering these differences, the optimal participation of an aggregator in sequential electricity spot
markets (only day-ahead and intraday markets are considered), with the objective of minimizing the
cost of the traded energy is addressed in this paper.
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Optimal scheduling problem is addressed in the literature in different ways, for instance the
objectives functions including maximization of profits, social welfare, utility for the demands and
minimization of energy capacity, and cost of imbalances and operational costs are considered in
References [6–10]. The focus on the optimal bidding problem involves different objectives, some of
which are the minimization of negative returns and the cost related to emissions in [11], evaluation of
different prosumer risk tolerance in [12], as well as jointly minimizing the risk and maximizing profits
in [13–15]. The bids to submit to the electricity market depends on the energy market rules and many
solutions of the bidding problem result in one optimal price-energy pair [16] for a certain time period,
but a more realistic bid consists of a curve composed of multiple price-energy pairs, as that presented in
references [17,18]. There are few documents in the literature concerning both scheduling and bidding
problems; for instance, in [19], a two-stage stochastic mixed integer linear program where the bidding
decision is made in the first stage and the scheduling in the second is solved for aggregators that sell
electricity to prosumers and buy back surplus electricity in the spot market.

In practice, the aggregator must face some difficulties, mainly related to the uncertainties of the
intermittent and non-dispatchable nature of renewable energy sources (RES) generation, but also
because the demand and the energy prices cannot be accurately predicted in advance. Moreover, the
forecast errors derive unpredictable imbalances between the real-time production/consumption and
the energy previously scheduled in the electricity market. Imbalance penalties also depend on the
energy market rules. Some works in the literature such as [20] envisage the likely imbalances leading
to unpredicted imbalance costs. In [7], penalties for failure to supply the market and customers are
considered. Penalties due to over-production or under-production status are penalized with different
values of a weight coefficient introduced into the model [12]. In [19], since they penalize imbalances
heavily, the case becomes not realistic because avoiding imbalance is forced. In this formulation, it
is assumed that market prices, loads, and generation are known with certainty before the optimal
schedule is decided, and they then run a deterministic optimization for the scheduling process, but
only market results are revealed. In our work, realistic imbalance prices and day-ahead market
results are considered. The penalties due to deviations of a wind power producer are formulated in
references [17,21], but in our case we are considering an aggregator, and then the problem is different.
In [22], the formulation of deviations and its penalizations is like our proposal, but they assume that
only unidirectional bids are allowed for the aggregator in the electricity market, i.e., it can only buy
energy but cannot sell excessive energy back to the wholesale energy market.

Participating in intraday markets is a way for any market participant to reduce the forecast error
costs, updating previous day-ahead scheduling as in [23]. The cost of the purchased energy can also be
reduced in this market as in [24]. In addition, the flexibility offered by shiftable demand and battery
storage also contributes to an increase of the expected benefit of the aggregator as shown in [25]. This
flexibility allows the aggregator to shift the consumption from peak hours to valley hours, buying
energy at low-cost hours, selling it at high-cost hours, and reducing the energy imbalance caused by
bid deviation.

The optimal bidding in the day-ahead market taking into account all subsequent markets as
intraday or balancing markets is assessed commonly in the literature. However, profit comparisons of
taking into account or not the intraday markets when preparing the bidding for the day-ahead market
(coordinated or separate bidding) are questioned in previous works, such as [26,27]. Additionally,
several optimization techniques are widely used to solve the optimal bidding problem under
uncertainty, such as modified particle swarm, stochastic, robust, fuzzy, model predictive control
in [7,9,28,29] and other metaheuristic techniques, whose effectiveness and efficiencies considering
different initial solution algorithms are compared in [30]. In [31,32], a comparison between the
stochastic and robust optimization with the perfect information case is carried out and the results show
that stochastic programming provides better solutions. However, new optimization techniques and
improvements over the existent techniques are still under research.
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The proposed approach solves separate probabilistic optimization problems, which considers
the uncertainty of market prices (day-ahead and intraday), RES generation and fixed demand, and
takes into account the possible imbalance costs the aggregator may incur. We assume a neutral risk
aggregator, because reducing risk through changing operating decisions can be costly compared to
financial operations [33]. The imbalances are regulated by a dual pricing mechanism that implies
penalizations for those incurring energy deviations against the system [34]. The proposed probabilistic
approach is based on the formulation presented in [35] and the work presented in this paper extends
the method presented in [36] by considering the intraday market, and improves the mathematical
formulation of the problem.

Our approach differs from other works in the literature and the main difference with related
previous works is that we consider an independent bidding strategy in each electricity spot market,
which allows taking advantage of both the gain in certainty of forecasts and the knowledge of previous
market results. We also take into consideration time dependent constraints. The optimization problems
proposed here are set for a whole day aggregator’s portfolio that includes shiftable demand, RES
generation, and batteries. A simple modelling of shiftable demand is used with the purpose of testing
the method. A thorough modelling of this demand is out of the scope of the paper. Furthermore,
the method of aggregating and coordinating the flexibility of customers is out of the scope of this
paper, since it requires much information on customers’ behavior and preferences that is not available.
The intended contributions of this paper are listed as follows:

(1) To propose a simple and effective optimization model that provides hourly optimal bidding
curves for an aggregator who manages fixed and shiftable demand, RES generation, and storage
devices when participating in the electricity markets (daily and intraday markets), aiming to
minimize the daily energy cost.

(2) To include in the optimization model in (1) the different uncertainties faced by the aggregator,
namely fixed demand, RES generation and market prices, and the possible imbalance costs in
which the aggregator may incur.

(3) To assess the benefits of the optimization model in (1) over a whole year comparing the yearly
payments performed by the aggregator under different strategies using realistic data taken from
publicly available sources; case studies based on a whole year with realistic data are not widely
assessed in the literature.

The paper continues with some previous considerations regarding the market framework and the
uncertainty of the random variables involved in Section 2. Then, the main assumptions and constraints
are described in Section 3. The formulation of each decision-making problem follows in Section 4.
Next, Section 5 describes the case study and in Section 6, the participation of an aggregator in the
Spanish electricity market is simulated over a year, considering different strategies in order to assess
the benefits of the proposed approach. Conclusions and future work are given at the end of the paper.

2. Previous Considerations

Consider an aggregator that represents a cluster of prosumers with RES generators (wind and
photovoltaic) and storage devices (batteries). If this aggregator wants to participate in the electricity
markets (day-ahead and intraday markets), he has to solve different decision-making problems
that involve uncertainties (demand, RES generation, and market energy prices), with the aim of
minimizing the cost of the daily traded energy. The aggregator is considered as a price taker, because
its participation does not affect the resulting market prices. The participation in the reserves market is
not considered. The approach for the aggregator decision-making process follows the sequence of the
markets considered and therefore optimization problems may be solved independently, deriving the
optimal bidding curves to be submitted first to the day-ahead market and next to the intraday markets.
The market framework is based in the Iberian electricity market [37] because it has a more liquid
intraday market compared with other European intraday markets (most of them with continuous
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trading implementing a pay-as-bid matching algorithm). According to [38], the Spanish intraday
market has effectively contributed to RES generation balancing and, intermittent energy sources have
more flexibility to bid in this market aimed at the maximization of their economic profits.

The optimization problems solved by the aggregator and their mathematical formulations are
detailed in Sections 3 and 4.

2.1. Market Framework

The energy traded in the Iberian electricity spot market is managed by OMIE (the Spanish
division of the Iberian Energy Market Operator), which is in charge of collecting orders, clearing
the markets, and publishing results, available in [39,40]. Most of the energy is negotiated in the
day-ahead market (or daily market) where purchase and sale bids for day D must be sent to OMIE
before the gate closure at 12 a.m. of day D-1. Once the daily market has ended, and until 12:45 p.m.
of the following day, six sessions of the intraday market are held, which allow participants to adjust
their generation and consumption schedules to their best forecasts for their real-time needs. The
agents who have participated in the day-ahead market have there an opportunity to change their
energy bids to reduce their imbalances. A review of different European market designs and the
importance of sufficient liquidity in intraday markets can be found in [41], which concludes that
the Spanish mechanism auctions is considered the most attractive market design for systems with
a high share of non-dispatchable generation. Finally, the Transmission System Operator (TSO) is
in charge of ensuring a balanced and secure system operation. The net energy system imbalance
between generation and demand is corrected through the balancing services, whose costs are covered
by those incurring imbalances. In the Iberian market, a dual imbalance pricing mechanism is followed,
where the imbalance prices depend on the sign of the net system imbalance. Thus, if an aggregator
incurs a positive imbalance (higher production or lower consumption than scheduled) in any period
of time, then the energy surplus is paid at the sell imbalance price (π+

t ), lower than or equal to the
day-ahead market price (πd

t ). On the contrary, if the imbalance is negative (lower production or higher
consumption than scheduled) at any time, the energy deficit must be bought at the buy imbalance
price (π−

t ), higher than or equal to the day-ahead market price. The relation between the imbalance
prices and the market price at any time period t may be written as follows:

r+t =
π+

t

πd
t
≤ 1 (1)

r−t =
π−

t

πd
t
≥ 1 (2)

2.2. Predictions and Uncertainties

In the decision-making problem faced by the aggregator, there are three main sources of
uncertainty: demand, RES production, and market prices. This uncertainty increases with the horizon
of the forecast; thus, it is greater in the day-ahead market than in the intraday market. The uncertainty
can be obtained by some prediction programs [42] and the aggregator can use this information to
produce optimal bids to the market. However in this work, given that no prediction programs
were available, the uncertainty is modelled through scenarios, i.e., we try to reproduce the results of
prediction programs by creating scenarios from a given time series.

Scenarios are created in two steps:

(1) First, the basic trajectories of forecasts are generated from historical data or synthesized
production series.

(2) From the basic trajectory and using an autoregressive time series AR(1) for modelling the forecast
error, the desired number of equiprobable scenarios for each time period t are created.
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Note that uncertainty characterization or scenario generation is not a goal of this work because
the uncertainty quantification would come, in reality, from advanced forecasting tools, as said before.
A brief description of the random variables considered in this work is given. An example of basic
trajectories and scenarios generated is given in Section 5.2.

2.2.1. Demand

Demand is divided into two kinds, namely fixed and shiftable demand. Fixed demand is
supplied to the user at any time without restrictions (within the limit of the contracted power),
but its value is not known beforehand, and the aggregator must forecast it. It might correspond to
certain manually operated appliances or systems such as lighting, computers, etc. Shiftable demand
can be shifted along a given time period but it is assumed that the daily amount of the energy
required by this shiftable demand is known and previously agreed on between the aggregator and his
customers through a contract, which reflects the will of the aggregator’s customers in shifting their
consumption along the day. It could correspond to electric vehicles, or noncritical devices such as
washing machines, dishwashers, etc. Thus, only fixed demand uncertainty is considered in this paper
through scenario generation.

2.2.2. RES Generation

Only renewable energy (solar and wind generation) is considered in the study. Hence, the
aggregator must forecast the power supplied by RES generators for the considered time interval.
For the basic pattern of solar production, a site is chosen in order to fit real conditions, and the basic
trajectory is obtained as in [43]. For the wind production, wind speed scenarios are generated from a
basic trajectory of wind speed. Once the wind speed scenarios are generated, they are transformed
into power scenarios through the power curve associated to the turbine model of the wind farm.

2.2.3. Fixed Demand Minus RES Generation

Once scenarios of RES generation (photovoltaic and wind production) and fixed demand are
obtained, a new random variable (Ps

rnd,t) can be defined as the fixed demand minus photovoltaic and
wind productions, for any period of time t and scenario s.

Ps
rnd,t = Ps

f ix,t − Ps
pv,t − Ps

w,t, ∀t, ∀s (3)

These random variables are not independent, but their predictions errors are.

2.2.4. Energy and Imbalance Prices

The aggregator must also perform forecasts of energy prices. Day-ahead market price scenarios
and intraday market price scenarios can be created from historic prices of a given period. Imbalance
prices are modelled in a simpler way: since they are extremely volatile, an hourly constant ratio
between the imbalance price and the daily energy price is taken, as in [20]. Thus, the uncertainty of
imbalance prices is not modelled directly.

2.2.5. Global Uncertainty

Thus, the uncertainty characterizing the aggregator bidding problem in day-ahead/intraday
market is modeled through a symmetric scenario tree that is specifically built as follows:

(1) Generate Ndp/Nip price scenarios for the day-ahead/intraday market.

(2) From the basic trajectory and using an autoregressive time series AR(1) for modelling the forecast
error, the desired number of equiprobable scenarios for each time period t is created. For each
realization of the day-ahead/intraday market prices, generate Ndr/Nir wind power realizations,
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Ndr/Nir photovoltaic power realizations, and Ndr/Nir fix demand realizations, and calculate the
Ndr/Nir realizations of the new variable fix demand minus RES generation with (3).

Hence, the total number of scenarios composing the tree is Nw = Ndp·Ndr for the day-ahead market
and Niw = Nip·Nir for the intraday market.

3. Optimization Problem Assumptions and Modelling Details

This section presents an overview of the optimization process as well as the constraints that
should be considered. The mathematical formulation of the problem is given in the next section.

The aggregator participates in the day-ahead market in order to purchase the net energy for his
customers’ portfolio. With this purpose, the aggregator solves a probabilistic optimization problem
resulting in the optimal quantity of energy to be purchased (or sold) in each period of time, depending
on the market price. Once the day-ahead market is cleared, and the scheduled energy for each period
of time is known, it may happen that the constraints related to the flexible demand (shiftable demand
and batteries) are not fulfilled, and the aggregator performs an adjustment process of scheduling in
order to ensure the fulfillment of constraints within the time horizon. For the intraday market, the
aggregator can update his previous market position aimed at minimizing the total cost of the energy,
using fresh and more accurate predictions and the knowledge on day-ahead market prices and flexible
demand schedule. The complete process of the aggregator’s participation in sequential electricity
markets is illustrated in Figure 1. Note that the day-ahead (DA) and intraday (ID) market clearing
processes are performed by the Market Operator (MO), and thus they are external to the aggregator.
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Figure 1. Aggregator participation in the day-ahead and intraday markets.
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In the problem formulation, it has been assumed that:

(1) The energy prices in the market are not affected by the aggregator bids, because the market is
large enough.

(2) The aggregator buys and purchases energy at the same price, i.e., grid access tariffs have not been
included. Losses are included, according to the Spanish regulation, as a fixed percentage of the
demand, added to the forecasted consumption.

The aggregator must solve two different decision-making problems involving uncertainties,
one for the day-ahead market and another for the intraday market. Furthermore, the aggregator
must solve two additional optimization problems in order to schedule the flexible demand after the
day-ahead market clearing. When solving those problems, the aggregator has to take into account
several constraints related to shiftable demand, batteries, RES generation, and energy imbalances, as
described next. In the following subsections, all the decision variables are denoted with a superscript s
representing a generic scenario s.

3.1. Shiftable Demand

This demand can be shifted over a given period of time but the amount of the daily energy to be
consumed is known and previously agreed upon between the aggregator and his consumers through
a contract. It could correspond to electric vehicles, or noncritical devices such as washing machines,
dishwashers, etc. The optimization process will tend to shift this demand to lower price hours.
Regarding this type of demand, (4) defines the total energy consumed by the shiftable demand, for a
certain scenario s over a planning horizon of Nh periods of time. This equation could be reformulated
if the periods of time for consumption are limited to a given set (e.g., tariff charging of electric vehicles
during the night). Equation (5) models the bounds of the hourly shiftable demand for any period of
time t and scenario s.

Nh

∑
t=1

Ps
shi f t,t.dt = Eshi f t, ∀s (4)

0 ≤ Ps
shi f t,t ≤ Pmax

shi f t, ∀t, ∀s (5)

3.2. Batteries

Batteries are modelled in a simple way (rated power, maximum/minimum capacity) as in [24],
but in this paper losses are also included, which are considered as constant. The following constraints
must be satisfied for any period of time t and any scenario s:

0 ≤ P+s
B,t ≤ ys

t P+max
B ; 0 ≤ P−s

B,t ≤ (1 − ys
t)P−max

B , ∀t, ∀s (6)

Emin
B ≤ Es

B,t ≤ Emax
B ; Es

B,Nh
= Es

B,1, ∀t, ∀s (7)

Es
B,t = Es

B,t−1 −
(

1
η+

)
P+s

B,t dt + η−P−s
B,t dt − ΔE, ∀t, ∀s (8)

The constraint (6) set the bounds of the rated power. The binary variable ys
t avoids battery charge

and discharge at the same time step; it is equal to 1 if batteries are discharging in period t and 0
otherwise. Constraint (7) set the limits of the storage energy, respectively. Here, the level of battery
storage at the end of the scheduling horizon is equal to its initial energy level. It is assumed that
Es

B,1 > Emin
B to exploit the flexibility of the batteries during the first periods of time of the horizon.

Constraint (8) represents the energy balance in the batteries. Note that no battery degradation costs are
considered in this work because we have compared the results from the participation of the aggregator
in the power markets for the next day or few hours before the energy delivery time.
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3.3. Energy Imbalances

The imbalance which the aggregator could incur is defined as the gap between the energy traded
in the electricity market (day-ahead or intraday) and the actual consumption/production. If the actual
energy of the aggregator is greater than the scheduled energy in the market, the aggregator’s imbalance
is positive, otherwise it is negative. Note that this is different from the point of view of a producer.

As the aggregator’s imbalance makes the problem nonlinear, in order to keep the linearity,
Equation (9) decomposes the energy imbalance into positive and negative imbalances, as in [35,44].
Constraint (10) set the limits of the imbalances, which could reach the sum of the contracted power
(maximum buying bid) and the installed generating power (maximum selling offer) in both senses, for
any period of time t and scenario s.

Δs
t = Δ+s

t − Δ−s
t , ∀t, ∀s (9)

0 ≤ Δ+s
t ≤ Lim·dt; 0 ≤ Δ−s

t ≤ Lim·dt,
(

Lim = ∑ Pgen + ∑ Pcont
)
, ∀t, ∀s (10)

4. Problem Formulation

In this section the probabilistic formulations of the proposed method are presented.

4.1. Day-Ahead Market

The aim of the aggregator is to buy energy in the day-ahead market at the minimum cost, taking
into account the likely imbalance cost. This problem is formulated as a mixed integer linear probabilistic
programming of one stage. The number of scenarios considered is Nw = Ndp·Ndr, with Ndp being the
number of day-ahead market prices scenarios, each one with a probability of occurrence pdp, and
Ndr as the number of fixed demand minus RES production scenarios, each one with a probability of
occurrence pdr. It is assumed that both random variables are independent because the size of the
aggregator is small compared to the market. Thus, the probability of occurrence of scenario w is
pw = pdp · pdr. Then the optimization problem may be formulated as follows:

Min
Pdp

n,t ,∀t; Δ+w
t , ∀t,∀w; Δ−w

t ,∀t,∀w

Nh

∑
t=1

⎡
⎣ Ndp

∑
dp=1

pdp
(

π
dp
t Pdp

n,t

)
· dt +

Nw

∑
w=1

pw(πw
t r−est

t Δ−w
t − πw

t r+est
t Δ+w

t
)⎤⎦ (11)

subject to constraints (3)–(10),

Δw
t =

[
Pw

n,t −
(

Pw
rnd,t + Pw

shi f t,t − P+w
B,t + P−w

B,t

)]
· dt, ∀t, ∀w (12)

Pdp
n,t − Pdp′

n,t ≤ 0 : π
dp
t ≥ π

dp′
t , ∀t, ∀dp (13)

− ∑ Pgen ≤ Pdp
n,t ≤ ∑ Pcont, ∀t, ∀dp (14)

The objective function in (11) is the expected cost of the energy traded by the aggregator in the
day-ahead market considering the possible imbalance cost. The first term corresponds to the cost from
the purchase of energy and the second term to the cost due to the imbalance. It must be remarked that
only one direction of the net system imbalance is possible at a given period of time. The first term in (11)
is affected by the daily price probability pdp because it depends only on the scenarios of energy prices
at this market whereas the second term is affected by the global probability pw. Constraints (3)–(10)
have already been explained in Section 3. Equation (12) defines the deviation of the aggregator in each
period of time t and scenario w of the day-ahead market. Constraint (13) forces the bidding curves
to be monotonically decreasing, which is a requirement in most markets. Constraint (14) limits the
amount of power that can be sold or purchased in the day-ahead market in any period of time t and
scenario dp.
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The optimization problems (3)–(14) derive the Nh bidding curves, one for each period of time
t of the time horizon, with Ndp pairs of possible values of energy-price, which correspond to the
scenarios of the energy prices. It must be remarked that constraints related to shiftable demand (4)
and batteries (6) and (7) are fulfilled for every scenario, but it may happens that after the market
clearing, the committed energy for each period of time corresponds to different scenarios, and thus,
those constraints will not be satisfied. A possible solution is to perform an adjustment process for
rescheduling the flexible power, as explained below, but other solutions could be followed.

4.2. Flexible Power Scheduling

Once the day-ahead market is cleared and the daily prices and the committed energy are already
known, the flexible power, i.e., the power from/to batteries and the shiftable demand, must be
scheduled to ensure the satisfaction of constraints (4), (6), and (7). This flexible power is optimized
along the time horizon according to the daily market price πd

t . The batteries are adjusted with the
objective function (15) and constraints (6)–(8), whereas the shiftable demand is optimized with the
objective function (16) and constraints (4) and (5), in which market results are used. It should be
remarked that only one scenario is considered in this process.

Min
P+

B,t , ∀t; P+
B,t , ∀t

Nh

∑
t=1

πd
t ·

(
−P+

B,t + P−
B,t

)
· dt (15)

Min
Pshi f t,t , ∀t

Nh

∑
t=1

πd
t · Pshi f t,t · dt, (16)

4.3. Intraday Market

The aggregator participates in the intraday market in order to correct the previous position taken
in the day-ahead market, and it is assumed that the aggregator corrects the position only once for each
period of time, participating in the ID market session closer to that period.

At this market level, daily market prices are already known, the flexible power (power from/to
batteries and shiftable power) has been scheduled and new forecasts of intraday energy prices, fixed
demand, and RES production are available, thus the global uncertainty decreases. The number of
scenarios considered in this problem is Niw = Nip·Nir, with Nip being the number of intraday market
price scenarios, each one with a probability of occurrence pip, and Nir as the number of fixed demand
minus RES production scenarios, each one with a probability of occurrence pir. Again, it is assumed
that both random variables are independent and therefore the probability of occurrence of scenario iw
is piw = pip · pir. The optimization problem in the intraday market may be formulated as follows:

Min
Pip

n,t ,∀t,∀ip; Δ+iw
t ,∀t,∀iw; Δ−iw

t ,∀t,∀iw

Nh
∑

t=1

[
Nip

∑
ip=1

pip
(

π
ip
t Pip

n,t

)
· dt +

Niw
∑

iw=1
piw

(
πd

t r−est
t Δ−iw

t − πd
t r+est

t Δ+iw
t

)]
(17)

subject to constraints (3), (9), and (10),

Δiw
t =

[
Piw

n,t + Pd
n,t −

(
Piw

rnd,t + Pd
shi f t,t − P+d

B,t + P−d
B,t

)]
· dt, ∀t, ∀iw (18)

Pip
n,t − Pip′

n,t ≤ 0 : π
ip
t ≥ π

ip′
t , ∀t, ∀ip (19)

− ∑ Pgen ≤ Pip
n,t + Pd

n,t ≤ ∑ Pcont, ∀t, ∀ip (20)

the objective function (17) is the expected cost of the traded energy by the aggregator in this
market, envisaging the likely imbalance cost. The first term in (17) corresponds to the cost from
the purchase/sale of the energy in the intraday market and it is affected by the intraday energy price
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probability pip, since this term only depends on the intraday market price scenarios. The second term
in (17) represents the final imbalance cost which the aggregator can incur and it is affected by the
global probability piw. The intraday market bids can be positive (purchase of energy) or negative
(sale of energy) and this has an effect over the total traded energy and the final imbalance at the
end of both markets, defined in (18), where the terms with an upper index d correspond to results
from the day-ahead market or the scheduling process for the flexible demand carried out after the
day-ahead market clearing. Equation (19) forces the bidding curves to be monotonically decreasing
and constraint (20) set the limits of the total offered power in both markets.

The optimization problem (3), (9)–(11), and (17)–(20) derive Nh bidding curves, one for each period
of time t of the time horizon, with Nip pairs of possible values of energy-price, which correspond to the
scenarios of intraday market energy prices.

5. Case Study

The performance of the proposed method has been assessed through a case study where the
aggregator participates in the Spanish electricity market [45] over a period of one year. Following the
rules of this market, the schedule for updating bids in the intraday market for day D is depicted in
Table 1. For example, the bids for hourly periods 1 to 4 of day D are updated in the second ID market
session. In this way, the lead time for the six existing intraday markets spread throughout the day
varies from 3 to 4 h until 5 to 8 h.

Table 1. Rules for updating energy bids for day D in intraday markets.

Hourly time period of day D 1–4 5–7 8–11 12–15 16–21 22–24

ID market session for updating bids 2 3 4 5 6 1 (D + 1)

Input data used in this realistic example is explained below. The entire problem was modelled in
Matlab R2015a (version 8.5.0.197613, The Mathworks, Inc., Natick, MA, USA).

5.1. Grid Data

The data of consumers and generators are taken from the Conseil International des Grands
Réseaux Électriques (CIGRE) medium voltage European benchmark grid [46]. Dispatchable units have
not been included because they do not add uncertainty to the problem. The total installed generating
power capacity considered is 1710 kW, with 1500 kW of wind power and 210 kW of photovoltaic power.
The total load is 5291.6 kW, with 3843.6 kW and 1448 kW of fixed and shiftable demand, respectively.
The storage consists of two batteries of 600 kW and 200 kW with 90% charge and discharge efficiency.
The total capacity is 1600 kWh and the initial/final capacity in the batteries is taken as 80 kWh.

5.2. Forecast Data Scenarios

The set of scenarios for the probabilistic problems was created from available real data from the
year 2013. Energy prices were taken from the web of the Spanish Market Operator [39]. Twenty-four
ratios r+t and r−t for the imbalance prices were estimated for each hour of the day as an hourly average
of the 365 values of each hour of the year 2013. The average energy prices analyzed with their standard
deviation during the whole year are shown in Table 2.
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Table 2. Real data of energy prices for the whole year analyzed.

Energy Prices Average (c€/kWh) Standard Deviation (c€/kWh)

Day-ahead 4.43 2.07
Intraday 4.3 2.13

Buy Imbalance 5.2 2.06
Sell Imbalance 3.63 2.23

Scenarios of photovoltaic power were created from a synthesized production pattern of a solar
plant located in Girona, Spain. The wind power scenarios were produced from data of a real wind farm
that was used as a basic trajectory. A typical demand profile for residential customers from the Spanish
System Operator Red Eléctrica de España (REE) [47] was used to create the probabilistic scenarios
of demand. An example of the basic trajectories of demand and RES generation for a winter day in
January is depicted in Figure 2.

 

Figure 2. Basic trajectories of fixed demand, photovoltaics (PV), and wind power.

The number of total scenarios created for each one of the probabilistic optimization problems
(day-ahead and intraday markets) was 106, 1000 for energy prices and 1000 for fixed demand minus RES
production. Given the large number of scenarios created, a backward scenario reduction algorithm [48]
was used to decrease the computational complexity and time, while preserving the most representative
scenarios. Thus, the final number of scenarios was 200 (10 for energy prices and 20 for fixed demand
minus RES production). From the basic trajectories shown in Figure 2, the reduced scenarios for the
random variable Ps

rnd,t for the day-ahead and intraday markets are depicted in Figure 3.
The normalized mean squared errors (NMSE) for each set of forecasts are shown in Table 3. Note

that the forecast error for fixed demand is adequate, taking into account that the level of aggregation is
low (the more aggregation, the lower forecast error); a NMSE of 13.6% corresponds to a maximum
root mean squared error of 98 kW. The reduction of the PV forecast error from 24% to 15% has been
considered analogous to the improvement of the new statistical learning methods over the numerical
weather prediction model output, which is 10–15% [49]. We have considered that this reduction of the
error is reasonable and it is enough for the purposes of the paper.
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(a) (b) 

Figure 3. Reduced scenarios of fixed demand minus renewable energy sources (RES) generation to
participate in (a) Day-ahead market and (b) Intraday markets.

Table 3. Normalized mean squared errors of random variables.

Random Variables
Forecast Errors (%)

Day-Ahead Intraday

Photovoltaic Power 24.0 15.0
Wind Power 9.8 3.7

Fixed Demand 13.6 3.1
Energy Prices 0.2 0.08

5.3. Assessment of the Possible Aggregator Strategies

Different strategies are compared to assess the benefits of the proposed method along a year
(8760 periods of one hour). These strategies refer to the participation or not in the intraday market
and the application of the proposed probabilistic optimization compared to a more conventional
deterministic one, as in [36]. The comparison among them is based on the annual payment performed
by the aggregator, calculated with (21), where the first summation represents the payment in day-ahead
and intraday markets for the purchase of energy over the period, and the second one is the payment
due to the true real-time energy imbalances. If the aggregator only participates in the day-ahead
market, the second term of the first brackets is null.

Payment =
8760

∑
t=1

(
πd

t Pd
n,t + πid

t Pid
n,t

)
· dt +

8760

∑
t=1

(
πd

t r−true
t Δ−true

t − πd
t r+true

t Δ+true
t

)
(21)

6. Results

Given the uncertainty involved, the results of each market optimization problem are the bidding
curves that would minimize the cost of the traded energy in the corresponding market. Each curve
consists of 10 pairs of values of energy and price (one for each price scenario considered). Figure 4
shows the day-ahead optimal bidding curves for some hours of a sample day. For instance, the bidding
curve for t = 9 h means that the aggregator would buy 4082 kWh if the market price is less than
6.37 c€/kWh at this hour, but he would buy 3717 kWh if the price were higher.

Figure 5 shows the optimal bidding curves for different hours and different intraday market
sessions. Some curves change from positive (buy) to negative energy values (sell), reflecting the
aggregator’s opportunity of submitting buying or selling bids for each hour aiming to update the
committed energy at the day-ahead market framework.
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Figure 4. Optimal bidding curves to buy energy in the day-ahead market.

 
Figure 5. Optimal bidding curves to buy energy in the intraday market.

6.1. Benefit Comparisons

6.1.1. Case 1: Participation Only in the Day-Ahead Market

In this case, the aggregator decides to only participate in the day-ahead (DA) market representing
a cluster of RES generators, batteries, and fixed and shiftable demand. In Table 4, the annual payment
made by the aggregator following a deterministic and a probabilistic strategy are shown. This payment
has been disaggregated in both terms of (21). The deterministic strategy does not consider the
uncertainty and the likely imbalances, and is formulated as in [36]. The results show a reduction
in the payment made with a probabilistic strategy over a deterministic one of 1.7%. Note that the
probabilistic strategy leads to a higher purchase of energy in the DA market. In Table 4, the negative
sign of the payment for the probabilistic net imbalance means that the imbalance term represents an
income, i.e., there were more hours in which the consumption scheduled in the day-ahead market was
greater than the actual consumption of the aggregator’s customers, and this energy difference was
paid at the positive imbalance price.
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Table 4. Aggregator annual payment from the participation only in the Day-ahead (DA) market.

Payment (k€) Deterministic Probabilistic

Day-ahead market (k€) 999 1308
Net Imbalance (k€) 22 −304

Total (k€) 1021 1004
Gain (%) - 1.7

6.1.2. Case 2: Participation in the Day-Ahead and Intraday Markets

If the aggregator also decides to participate in the intraday (ID) markets, several strategies could
be followed, depending on the type of the optimization problem followed in each market (probabilistic
(Prob) or deterministic (Det)); the strategies considered in this work are depicted in Table 5. The
annual payments derived from each strategy are compared in Table 6. As in Table 4, the payment is
disaggregated in payments in the markets and payments due to the imbalances; the last row shows
the gain in payment obtained by following the different strategies over the pure deterministic one
(strategy S1). It may be thought that, given the high uncertainty at the time of the day-ahead market
regarding RES generation random variables, strategy S2 could be good enough (a gain of 2.84% over
strategy S1 is achieved), but the results show a better performance of the strategy S3 proposed in this
work, which leads to a benefit of 4.06% over strategy S1.

Table 5. Possible aggregator strategies to participate in the DA plus intraday (ID) markets.

Market Strategy S1 Strategy S2 Strategy S3

DA + ID Det + Det Det + Prob Prob + Prob

Table 6. Aggregator annual payment from the participation in the DA plus ID markets.

Payment (k€) Strategy S1 Strategy S2 Strategy S3

DA + ID markets (k€) 977 1108 1111
Net Imbalance (k€) 8 −151 −166

Total (k€) 985 957 945
Gain (%) - 2.84 4.06

From Table 6, it is seen that payments done in the markets increase from strategies S1 to S2 and S3,
but the total payments decrease. This is due to the behavior of the imbalance term. With strategy S1,
the aggregator pays 8 k€ because of the deviations, but with strategies S2 and S3, the aggregator is
paid because of the deviations (negative payment), meaning that positive deviations have been more
frequent than negative deviations.

An in-depth analysis of each type of payment in Table 6 is performed next. First, the comparison
between the energy traded in each market for the best and worse strategies (i.e., strategies S3 and S1,
respectively) is shown in Table 7, distinguishing buying and selling energy. Second, the comparison
between the total energy deviations incurred by the aggregator after the participation in the markets is
included in Table 8.

From Table 7, it is derived that the consideration of the uncertainties leads to a greater quantity of
energy traded in the markets (with the probabilistic strategy S3, the aggregator trades more energy
than with the deterministic one S1), and thus the net payment in the markets is also higher, as shown
in Table 6. As the net position in the ID market is selling energy, the aggregator tends to purchase
an excess of energy in the DA market with both strategies, but this effect is more accentuated with
the strategy S3. The reason may be that strategy S3 takes into account the possible payments due to
imbalances, and while sell imbalance prices are limited (0 ≤ π+

t ≤ πd
t ), buy imbalance prices could

reach very high values. Then, it is seen that the aggregator tends to trade more energy in the markets
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with a knowledge improvement. From Table 8, it can be said that: energy deviations are reduced with
the participation in the ID market, as expected; and the probabilistic strategy leads to higher energy
deviations than the deterministic one.

Table 7. Energy traded in DA and ID markets.

Strategy Annual Quantity DA Market ID Market Total Traded/Paid

S3 Probabilistic
Energy (MWh)

Total buying 30,402 4122 34,524
Total selling 0 6586 6586

Net (buying) 30,402 −2464 27,938

S1 Deterministic
Energy (MWh)

Total buying 21,867 2941 24,808
Total selling 73 3197 3270

Net (buying) 21,794 −256 21,538

Table 8. Total energy deviation.

Term Strategy DA Market ID Market

Total Energy Deviation
(MWh)

S3 Probabilistic 9013 6529

S1 Deterministic 406 144

For a better understanding of the payments made due to energy deviations (Net Imbalance term
in Table 6), approximate probability density functions (PDF) of the annual energy deviations and the
payment/revenue derived from the deviations are shown in Figures 6 and 7 for strategies S3 and
S1. Figure 6 shows the results after the participation only in the DA market, whereas Figure 7 shows
the results after the participation in the ID market (having participated in the DA market). After the
participation in the DA market, it can be remarked in Figure 6a that the energy deviations derived from
the deterministic strategy S1 are symmetrically distributed with a slightly displacement to the negative
side. By contrast, energy deviations derived from the probabilistic strategy S3 have a right-skewed
bi-modal distribution, showing higher positive imbalances (i.e., real-time demand of energy lower
than scheduled in the DA market), both in number and value, although most of the imbalances are
associated with the left mode. If the aggregator participates in the ID market after the DA market,
the PDFs of final energy deviations are shown in Figure 7a. In this case, the imbalances from the
deterministic strategy S1 do not present any significant variation but most of the imbalances from the
probabilistic strategy S3 are now located around the mean. Also, the tails are longer than in Figure 6a,
which means that there are few values of deviated energy higher than in the DA market.

  
(a) (b) 

Figure 6. (a) Approximate probability density functions (PDF) of the energy deviation after the
day-ahead market; (b) PDF of the payment/revenue due to deviation after the day-ahead market.
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(a) (b) 

Figure 7. (a) PDF of the energy deviation after the intraday market; (b) PDF of the payment/revenue
due to deviation after the intraday market.

Regarding the payment/revenue derived from the energy deviations, it can be seen in
Figures 6b and 7b that:

• Using the deterministic strategy S1, its variability after the ID market decreases compared to
the variability after the DA market, but with the probabilistic strategy S3, the payment/revenue
variability increases after the ID market.

• With the probabilistic strategy S3, the PDFs present a right-skewed distribution compared to
the deterministic S1, which means that the probability of the aggregator to be remunerated for a
positive imbalance is higher with S3 than with S1.

Thus, the probabilistic approach tends to maximize the revenue due to positive deviations and
minimize the payment due to the negative deviations. The deterministic strategy does not consider
this, leading to a higher payment. The probabilistic strategy may also benefit from arbitrage between
the ID markets and the imbalance prices, selling or buying in the ID market, when the expected
imbalance price is, respectively, lower or higher than the forecasted intraday market price. Of course,
this strategy might lead to occasional losses, but the overall results are favorable. Risk-averse strategies
to limit these losses are less profitable in the long term [20].

Overall, the proposed method has a good performance and the computation time is reduced
(the computation time of both problems (day-ahead plus intraday) for a planning period of 24 h is
around 15 s).

7. Conclusions and Future Work

A method for producing optimal bidding curves for an aggregator participating in day-ahead
and intraday markets has been presented. The objective is minimizing the payment done by the
aggregator for the energy purchase for his customers. The method consists of different optimization
problems which considers flexible consumption through shiftable demand and the use of batteries, and
takes into account the uncertainty of the forecasts (RES generation, market prices, and fixed demand)
and the likely imbalance costs. The overall process is performed in three steps: First, the optimal
bidding curves are produced and submitted to the day-ahead market; Second, after the day-ahead
market clearing, intertemporal constraints related to the flexible consumption are fulfilled through
a rescheduling process; and finally, new optimal bidding curves are produced and submitted to the
intraday market, trying to take advantage of the lower lead time and the knowledge gained with the
day-ahead market clearing about marginal prices. The payment done by an aggregator participating
in the Iberian market, over a whole year, has been calculated and compared with the payments
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done using different strategies, yielding better results. A thorough analysis is performed comparing
the probabilistic strategy proposed in this paper with a more conventional one. Results show that
although the deviations in the proposed strategy are higher than in the deterministic one, the overall
payments are lower because the probabilistic method tends to produce positive imbalances. This work
demonstrates that simple and independent probabilistic optimization problems report meaningful
benefits for aggregators participating in power markets.

In the future, we will extend the proposed method to obtain an optimal bidding and scheduling
to real cases of urban and semirural grids of small size represented by the aggregator and including
electric vehicles, and heating and cooling loads. Moreover, we will perform the assessment of likely
scheduling for future scenarios of resources available in these grids.
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Notations

The main notations used throughout the paper is reproduced below for quick reference. Other symbols are
defined as required.

Indices and Numbers
dp, ip Indices of day-ahead/intraday market prices scenarios running from 1 to Ndp/Nip.

dr, ir
Indices of day-ahead/intraday scenarios of fixed demand minus renewable energy sources
(RES) production running from 1 to Ndr/Nir.

t Index of time periods running from 1 to Nh.

w, iw
Indices of day-ahead/intraday market scenarios of the global random variables running
from 1 to Nw/Niw.

s Index of generic scenarios (dp, ip, w, and iw).
Continuous Variables
Es

B,t Energy stored in the batteries in time period t and scenario s [kWh].
P+s

B,t , P−s
B,t Power from/to the batteries in time period t and scenario s [kW].

Ps
shi f t,t Shiftable demand in time period t and scenario s [kW].

Ps
n,t Net power offered to the market in time period t and scenario s [kW].

Δs
t

Energy deviation incurred by the aggregator with respect to the schedule in time period t
and scenario s [kWh].

Δ+s
t , Δ−s

t
Deficit of energy (positive deviation)/Excess of energy (negative deviation) incurred by
the aggregator with respect to the schedule in time period t and scenario s [kWh].

Random Variables
Ps

f ix,t Fixed demand in time period t and scenario s [kW].
Ps

pv,t Photovoltaic generation in time period t and scenario s [kW].
Ps

rnd,t Fixed demand minus RES production in time period t and scenario s [kW].
Ps

w,t Wind generation in time period t and scenario s [kW].
πs

t Market price in time period t and scenario s [c€/kWh].
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Constants and Data
ps Probability of occurrence of scenario s.
dt Duration of the time period t (in hours).
Emax

B , Emin
B Maximum/minimum energy in the storage system [kWh].

Eshi f t Daily limit of total shiftable energy [kWh].

P+d
B,t , P−d

B,t
Scheduled power from/to the batteries for time period t after the flexible demand
scheduling process [kW].

P+max
B , P−max

B Maximum power from/to the batteries [kW].

Pgen, Pcont
Total installed capacity and contracted power of the aggregator’s customers
(prosumers) [kW].

Pd
n,t, Pid

n,t Scheduled net power in day-ahead/intraday market for time period t [kW].

Pd
shi f t,t

Scheduled shiftable demand for time period t after the flexible demand scheduling
process [kW].

Pmax
shi f t Maximum shiftable demand [kW].

r+t , r−t
Ratios between positive/negative imbalance price and day-ahead market price in time
period t. A superscript est or true is added to indicate the estimated or true values.

η+, η− Efficiencies of giving back/storing energy of the batteries.
ΔE Energy losses in the storage system [kWh].
πd

t , πid
t Actual day-ahead/intraday market price in time period t [c€/kWh].

Δ+true
t , Δ−true

t
Actual deficit of energy (positive deviation)/excess of energy (negative deviation) incurred
by the aggregator with respect to the schedule in time period t [kWh].
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Abstract: This paper studies an energy trading and pricing problem for microgrids with uncertain
energy supply. The energy provider with the renewable energy (RE) generation (wind power)
determines the energy purchase from the electricity markets and the pricing strategy for consumers
to maximize its profit, and then the consumers determine their energy demands to maximize their
payoffs. The hierarchical game is established between the energy provider and the consumers.
The energy provider is the leader and the consumers are the followers in the hierarchical game.
We consider two types of consumers according to their response to the price, i.e., the price-taking
consumers and the price-anticipating consumers. We derive the equilibrium point of the hierarchical
game through the backward induction method. Comparing the two types of consumers, we study
the influence of the types of consumers on the equilibrium point. In particular, the uncertainty of
the energy supply from the energy provider is considered. Simulation results show that the energy
provider can obtain more profit using the proposed decision-making scheme.

Keywords: microgrid; uncertainty; hierarchical game; non-cooperative game (NCG); energy trading;
pricing strategy

1. Introduction

In the microgrid, energy trading is an important segment [1,2]. The energy provider determines
the energy purchase to meet the consumer demands. Meanwhile, in order to increase its profit,
the energy provider faces a problem of pricing decision. With the development of renewable energy
(RE), it is reasonable for the energy provider to use the renewable energy as supply [3,4]. Due to
the introduction of the renewable energy, the energy provider has to predict the generating capacity
of the renewable energy system, and then decides how much energy it needs to purchase from the
electricity markets. The energy provider’s prediction can have a deviation from the actual generation,
which leads to the uncertainty (UC) of the energy supply [5–7].

There are some works in literature related to the interactions among the consumers.
A non-cooperative game (NCG) was formulated among the consumers in [8–14]. In [9],
the price-taking consumers and the price-anticipating consumers were considered. The price-taking
consumers assume that their energy consumption cannot affect the electricity price, whereas the
price-anticipating consumers believe that their energy consumption can change the electricity price.
Recently, the Stackelberg game (SG) is formulated between the energy provider and the consumers
in [15–20]. In addition, the authors in [20,21] took into account a two-stage Stackelberg game between
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the power station and the consumers. In order to reduce the cost of the energy purchased from
the electricity markets, the renewable energy was taken into account in [22]. Most of these works
mainly focus on the price-taking consumers, and they seldom take into account the renewable energy
generation, thereby the uncertainty of the energy supply is not involved. The differences of the
proposed work with the above literature are shown in Table 1.

Table 1. Differences of the proposed work with the literature.

Indexes RE UC NCG SG

[3,4]
√ × × ×

[5–7] × √ × ×
[8–14] × × √ ×

[15–21] × × × √
This work

√ √ √ √

In this paper, we consider the uncertainty of the energy supply caused by the wind power
generation. Furthermore, we both consider the price-taking consumers and the price-anticipating
consumers. We model the interactions between the energy provider and the consumers as a three-stage
hierarchical game. The energy provider, which is the hierarchical game’s leader, determines the price
and the energy purchase to maximize its profit. Finally, we obtain the equilibrium of the hierarchical
game through the backward induction method [23,24].

The rest of the paper is organized as follows. Section 2 introduces the problem formulation.
Section 3 shows the backward induction method of the three-stage hierarchical game for the energy
provider and the price-taking consumers. In Section 4, the backward induction method of the
three-stage game for the energy provider and the price-anticipating consumers is described. Section 5
gives the simulation and comparison results. Finally, the conclusions are summarized in Section 6.

2. Problem Formulation

We consider the energy trading and pricing problem in the microgrid consisting of one energy
provider and a set N = {1, ..., N} of consumers. The energy provider and the consumers are integrated
into a microgrid with renewable energy generation. The energy provider purchases energy from
the electricity markets when the renewable energy supply is not enough. In that case, the energy
supply includes the energy generated from the renewable energy source and the energy purchased
from the electricity markets. In the microgrid, the system structure of the energy trading is given in
Figure 1. Because of the uncertainty of the energy generated from renewable energy sources, the energy
purchased from the electricity markets is uncertain. According to the interaction between the energy
provider and the consumers, we establish a hierarchical game as below.

• Leader: the energy provider determines the energy purchase and the pricing strategy to maximize
its profit.

• Followers: the consumers determine the energy demands to maximize their payoffs.

According to the types of the consumers, we consider two scenarios in this paper. In scenario A,
there is no competition among the price-taking consumers, i.e., the consumers’ energy consumption
cannot affect the price announced by the energy provider. In scenario B, the interactions among the
price-anticipating consumers are formulated into a non-cooperative game, i.e., the consumers’ energy
consumption can change the price announced by the energy provider [9].
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Figure 1. The system structure of energy trading.

3. Wind Power Generation Model

There exists a large body of literature on wind power forecasting, and the day-ahead wind
forecast based on numerical weather prediction (NWP) models can enable relatively accurate wind
forecasts [25,26]. Because the operating time moves closer to the near term, the computation
complexity often renders NWP models intractable at a high spatial resolution [26]. An adaptive
wavelet neural network was proposed for mapping the NWP’s wind speed and wind direction
forecasts to wind power forecasts in [27]. The authors in [28] proposed a novel statistical wind power
forecast framework, which leverages the spatio-temporal correlation in wind speed and direction data
among geographically dispersed wind farms. In [29], the author developed a feed-forward neural
network approach for wind power generation forecasting to improve the wind forecasting accuracy.
However, the wind power forecast is relatively complex, and the forecast errors cannot be avoided.
Generally, the wind speed can be approximated as the Gamma distribution [30], inverse Gaussian [31],
log-normal [32], and Weibull [33–36]. Alternatively, copula theory has recently been applied to wind
speed and wind power as a way of modeling nonlinear dependence structures [37]. According to the
wind speed, we establish the wind power generation model adopting the mixed copula function in
this paper. Firstly, we introduce the copula theory.

The copula theory was proposed by Sklar in 1959 [38]. Supposing that F(x1, x2, · · · , xN) is a
joint distribution function whose marginal distributions are F1(x1), F2(x2), · · · , FN(xN), then there is a
copula function C satisfies [39]:

F(x1, x2, · · · , xN) = C(F1(x1), F2(x2), · · · , FN(xN)). (1)

Defining that F−1
1 (u1), F−1

2 (u2), · · · , F−1
N (uN) are the pseudo inverse functions of

F1(x1), F2(x2), · · · , FN(xN), respectively. Therefore, the copula function C can be obtained as
the following:

C(u1, u2, · · · , uN) = F(F−1
1 (u1), F−1

2 (u2), · · · , F−1
N (uN)), (2)

where the marginal distributions of C(u1, u2, · · · , uN) follow uniform distribution in [0, 1] [40].
When N = 2, the copula function C is a binary function. H(x1, x2) is a joint distribution

function whose marginal distributions are F(x1) and W(x2), and F−1(u) and W−1(v) are the pseudo
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inverse function of F(x1) and W(x2), respectively. Therefore, the copula function C is expressed as
the following:

C(u, v) = H(F−1(u), W−1(v)). (3)

The mixed copula function was further proposed in [41,42]:

CM(u, v) = λ1C1(u, v, γ1) + λ2C2(u, v, γ2) + λ3C3(u, v, γ3), (4)

where CM(u, v) is the mixed copula function that is composed of C1(u, v, γ1), C2(u, v, γ2),
and C3(u, v, γ3). λ1, λ2, and λ3 are weight coefficients of C1(u, v, γ1), C2(u, v, γ2), and C3(u, v, γ3),
respectively, and satisfy λ1 + λ2 + λ3 = 1. γ1, γ2, and γ3 are correlation coefficients and can measure
the correlation degree of variables.

The results of [41] showed that the relevant structures of the mixed copula function are more
flexible than a single copula function. The wind power generation model is established by the mixed
copula function (see details in [38]).

4. Scenario A: The Three-Stage Game for Price-Taking Consumers

In this section, we prove the existence and uniqueness of the hierarchical equilibrium by using the
backward induction method. First, we analyze the consumers’ demands given the energy provider’s
pricing strategy and energy purchase. Then, we study the energy provider’s pricing strategy given the
consumers’ energy demands and the energy purchase. Finally, we analyze the energy purchased from
the electricity markets in the case of uncertain renewable generation, and then obtain the maximum
profit of the energy provider.

4.1. Consumer’s Energy Demands in Stage III

In Stage I, the energy provider needs to determine the energy purchased from the electricity
markets. In Stage II, the energy provider announces the price to the consumers. In Stage III,
the consumers determine their energy demands given the unit price p announced by the energy
provider in Stage II. The payoff of consumer i is defined as the difference between the satisfaction level
and the payment for energy purchase, i.e.,

ui(p, ci) = −h(ci − c
′
i)

2 − pci, (5)

where h is the consumers’ cost coefficient, ci is the actual energy demand of the consumer i,
and c

′
i is the energy demand of the consumer i to maintain normal operation of appliances.

The consumers determine their demands to maximize their payoffs. p is a fixed price announced by
the energy provider.

The first derivative of ui(p, ci) with respect to ci is:

∂ui(p, ci)

∂ci
= −2h(ci − c

′
i)− p. (6)

Letting ∂ui(p, ci)/∂ci = 0, we obtain:

−2h(ci − c
′
i)− p = 0, ∀i ∈ N. (7)

From Equation (7), we can obtain the energy demands of the consumer i:

ci(p) = c
′
i −

p
2h

. (8)
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Adding Equation (8) from 1 to N, we obtain the total energy consumption of all consumers:

∑
i∈N

c∗i (p) = ∑
i∈N

c
′
i −

pN
2h

. (9)

We assume that Q = ∑i∈N c
′
i for convenience. When all consumers’ total demands are ∑i∈N c∗i (p),

the payoffs of the consumers are at a maximum. Next, we consider how the energy provider makes
the purchase strategy and pricing strategy in Stages I and II based on the total energy demands,
respectively. In particular, we show that the energy provider can determine a price in Stage II such
that the total energy demands (as a function of price) cannot exceed the total energy supply.

4.2. Optimal Pricing Strategy in Stage II

In Stage II, the energy provider determines the pricing strategy according to the consumers’
energy demands, given the energy purchase in Stage I. The profit of the energy provider is denoted by:

W(ps, β) = min(p ∑
i∈N

c∗i (p), p(β + β0)ps)− μβ0 ps − pwβps, (10)

which is the difference between the revenue and the total cost. We assume that ps is the summation of
the energy generated from the renewable energy source and the energy purchased from the electricity
markets. β0 ps indicates the energy purchase, β is the uncertainty factor of the renewable energy
source, βps is the wind power generation, and μ is the energy provider’s cost coefficient. In this paper,
the energy provider’s cost comes from the energy purchase and the wind power generation. pw is
the cost coefficient and pwβps is the wind power generating cost. Equation (10) denotes the fact that
the revenue of the energy provider is determined by the consumers’ demands subject to its available
supply. In Stage II, the objective is to find the optimal price p that maximizes the energy provider’s
profit, i.e.,

WII(ps, β) = max
p≥0

W(ps, β), (11)

where WII(ps, β) denotes the maximum profit of the energy provider in Stage II. Since the energy
supply ps from the energy provider is given in this stage, the total cost μβ0 ps is already fixed.
Therefore, the maximum revenue can be achieved by optimizing the price:

max
p≥0

min(p ∑
i∈N

c∗i (p), p(β + β0)ps). (12)

Let us define the consumers’ energy demands D(p) = p ∑i∈N c∗i and the energy supply
S(p) = pβps. Then, we have:

D(p) = −Np2

2h
+ Qp, (13)

S(p) = p(β + β0)ps. (14)

From the above equations, we observe that D(p) is a quadratic function, and S(p) is a linear
function. Thus, we can obtain the maximum point of D(p) at pd = Qh/N. The relationships between
S(p) and D(p) are described in Figure 2.
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Figure 2. The relationships between S(p) and D(p).

• S1(p) (excessive supply): S1(p) doesn’t intersect with D(p), p∗ = pd;
• S2(p) (excessive supply): S2(p) has one intersection with D(p), where D(p) has a

non-negative slope, p∗ = pd;
• S3(p) (conservative supply): S3(p) has one intersection with D(p), where D(p) has a

negative slope, p∗ = ph, where ph is the intersection point of D(p) and S(p) and p∗ is the
optimal price announced by the energy provider.

Letting D(p) = S(p), we obtain a quadratic function with respect to p and make it equal to zero:

−Np2

2h
+ (Q − (β + β0)ps)p = 0. (15)

Solving the above Equation (15), we obtain the intersection point of D(p) and S(p):

ph =
2h(Q − (β + β0)ps)

N
. (16)

In the excessive supply regime, the maximum profit of the energy provider is at p = pd:

WES
II =

hQ2

2N
− μβ0 ps − pwβps. (17)

In the conservative supply regime, the maximum profit of the energy provider is at p = ph:

WCS
II =

2h(Q − (β + β0)ps)

N
(β + β0)ps − μβ0 ps − pwβps. (18)

The optimal pricing decision and the corresponding optimal profit at Stage II are given in Table 2

Table 2. Optimal pricing decision and profit in Stage II in scenario A.

Total Energy Obtained Optimal Price Optimal Profit

in Stages I and II p*(ps,β) W II(ps,β)

Excessive Supply Regime: ps ≥ Q
2 pES = pd WES

II (ps, β) in Equation (17)

Conservative Supply Regime: ps <
Q
2 pCS = ph WCS

II (ps, β) in Equation (18)
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4.3. Energy Supply Strategy in Stage I

In Stage I, the energy provider determines the energy purchase to maximize its profit by taking
into account the uncertainty factor of the energy supply β [15]. The profit of the energy provider in the
Stage I is given as follows:

WI = max
ps≥0

WII(ps, β), (19)

where WII(ps, β) is the energy provider’s profit functions with respect to ps and the uncertain factor β

obtained in Stage II.
We assume that the wind power generation P = βps, and the minimum power and maximum

power of the wind power generation are Pmin and Pmax, respectively. The probability density function
of the wind power fWP(P) can be obtained in [38]. From Figure 2, we can obtain that the maximum
consumers’ demands ∑i∈N c∗i (p) is Q/2 when the price p is Qh/N. Thus, we consider the following
two intervals:

(1) Interval I: ps ∈ [0, Q
2 ]. In this interval, the energy provider’s profit function is:

W1
I I(ps) = EP∈[Pmin,Pmax][W

CS
II (P)]

=
∫ Pmax

Pmin

WCS
II (P) fWP(P)dP. (20)

(2) Interval II: ps ∈ [Q
2 , ∞]. The energy provider’s profit function is:

W2
I I(ps) =EP∈[Pmin, Q

2 ]
[WCS

II (P)] + EP∈[ Q
2 ,Pmax]

[WES
II (P)]

=
∫ Q

2

Pmin

WCS
II (P) fWP(P)dP +

∫ Pmax

Q
2

WES
II (P) fWP(P)dP.

(21)

By comparing Interval I with Interval II, we can obtain the maximum profit of the energy provider
and the optimal energy purchase in scenario A.

5. Scenario B: The Three-Stage Game for Price-Anticipating Consumers

Since the price is set by the energy provider based on the total energy consumption, the consumers
are interactive with each other. Thus, we formulate a non-cooperative game among the consumers.
The non-cooperative game has a unique Nash equilibrium if p(c) is a linear rotational symmetric
function, and p(c) is formulated as follows [8]:

p(c) = ω ∑
i∈N

ci + p0, (22)

where ω is a positive parameter to implement the elastic pricing, ci is the actual energy demands of
the consumer i, and p0 is a basic price.

5.1. Consumer’s Energy Demands in Stage III

In Stage I and Stage II, the energy provider determines the energy purchased from the electricity
markets and the pricing strategy for the consumers, respectively. In Stage III, similar to Equation (5),
we formulate the payoff of price-anticipating consumer i given the unit price p(c) announced by the
energy provider as follows:

ui(p(c), ci) = −(h(ci − c
′
i)

2 + bi)− p(c)ci, (23)
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where h and c
′
i were defined in Equation (5), and bi is a base value of the satisfaction level of consumer

i and is different for each consumer, which reflects the flexibility of the consumers. The first derivative
of ui(c) with respect to ci is:

∂ui(c)
∂ci

= −2h(ci − c
′
i)− ωci − ω ∑

i∈N
ci − p0. (24)

Letting ∂ui(c)/∂ci = 0, we obtain:

−2h(ci − c
′
i)− ωci − ω ∑

i∈N
ci − p0 = 0, ∀i ∈ N. (25)

Adding Equation (25) from 1 to N, we have:

−2h ∑
i∈N

ci + 2h ∑
i∈N

c
′
i − ω ∑

i∈N
ci − ωN ∑

i∈N
ci − ∑

i∈N
p0 = 0, (26)

from which we obtain the total energy consumption of all consumers:

∑
i∈N

c∗i (ω) =
2h ∑i∈N c

′
i − Np0

2h + ω(N + 1)
. (27)

To simplify the calculation process, we make:

2h ∑
i∈N

c
′
i − ∑

i∈N
p0 = G, (28)

and then we have:

∑
i∈N

c∗i (ω) =
G

2h + ω(N + 1)
. (29)

5.2. Optimal Pricing Strategy in Stage II

In Stage II, the energy provider determines the pricing strategy according to the consumers’
energy demands, given the energy purchase in Stage I. The profit of the energy provider is:

W(ps, β) = min(p(c) ∑
i∈N

c∗i (ω), p(c)(β + β0)ps)− μβ0 ps − pwβps, (30)

and the maximum profit of the energy provider is:

WII(ps, β) = max
ω≥0

W(ps, β), (31)

where WII(ps, β) denotes the maximum profit of the energy provider in Stage II. We can maximize the
revenue of the energy provider by optimizing the price:

max
ω≥0

min(p(c) ∑
i∈N

c∗i (ω), p(c)(β + β0)ps). (32)

Let us define the consumers’ total energy demands D(ω) = p(c)∑i∈N c∗i and the energy supply
S(ω) = p(c)(β + β0)ps. Then,

D(ω) =
ωG2

[2h + ω(N + 1)]2
+

p0G
2h + ω(N + 1)

, (33)

and the intersection point of D(ω), and the y-axis is p0G/2h.

47



Energies 2017, 10, 670

The first derivative of D(ω) with respect to ω is:

∂D(ω)

∂ω
=

G2

(2h + ω(N + 1))2 − 2ω(N + 1)G2

(2h + ω(N + 1))3 − p0(N + 1)G
(2h + ω(N + 1))2

=
2hG2 − ω(N + 1)G2 − 2hp0(N + 1)G − p0ω(N + 1)2G

(2h + ω(N + 1))3 .
(34)

When

ω <
2h(G − p0(N + 1))

G(N + 1) + p0(N + 1)2 , (35)

∂D(ω)
∂ω > 0, so D(ω)is an increasing function. When

ω >
2h(G − p0(N + 1))

G(N + 1) + p0(N + 1)2 , (36)

∂D(ω)
∂ω < 0, so D(ω) is an decreasing function.

Letting ∂D(ω)/∂ω = 0, we obtain:

ω0 =
2h(G − p0(N + 1))

G(N + 1) + p0(N + 1)2 (37)

and

S(ω) =
ωG(β + β0)ps

2h + ω(N + 1)
+ p0(β + β0)ps, (38)

and the intersection point of S(ω), and the y-axis is p0(β + β0)ps.
The first derivative of S(ω) with respect to ω is:

∂S(ω)

∂ω
=

G(β + β0)ps

2h + ω(N + 1)
− ωG(β + β0)ps(N + 1)

(2h + ω(N + 1))2

=
2hG(β + β0)ps

(2h + ω(N + 1))2 .
(39)

Since ∑i∈N c∗i > 0 and ∂S(ω)/∂ω > 0, S(ω) is an increasing function. The relationships between
S(ω) and D(ω) are described in Figure 3.

(a) (b) (c)

Figure 3. The relationships between S(ω) and D(ω) under the different conditions.

(a) When G − p0(N + 1) < 0, we can obtain the following conclusions from Figure 3a:

• S1(ω) (excessive supply): p0(β + β0)ps ≥ p0G/2h, ω∗ = 0,
• S2(ω) (conservative supply): p0(β + β0)ps < p0G/2h, ω∗ = ωp,
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where ωp is the intersection point of D(ω) and S(ω), and ω∗ is the optimal parameter of the
elastic price.

Because p(c) is a linear rotational symmetric function, the case with ω∗ = 0 is neglected.

(b) When G − p0(N + 1) ≥ 0 and p0(β + β0)ps ≥ p0G/2h, we have the conclusions by analyzing
Figure 3b:

• S3(ω) (excessive supply): S3(ω) has one intersection with D(ω), where D(ω) has a
non-negative slope, ω∗ = ω0,

• S4(ω) (conservative supply): S4(ω) has three intersections with D(ω), ω∗ = ωp,
• S5(ω) (conservative supply): S5(ω) has one intersection with D(ω), where D(ω) has a

negative slope, ω∗ = ωp.

(c) When G − p0(N + 1) ≥ 0 and p0(β + β0)ps < p0G/2h, we can get the conclusions from
Figure 3c:

• S6(ω) (excessive supply): S6(ω) doesn’t intersect with D(ω), ω∗ = ω0,
• S7(ω) (excessive supply): S7(ω) has one or two intersections with D(ω), where both intersections

are located in the increasing interval of D(ω), ω∗ = ω0,
• S8(ω) (conservative supply): S8(ω) has two intersections with D(ω), where both intersections are

located in the both sides of ω0, respectively, ω∗ = ωp.

Letting D(ω) = S(ω), we obtain a quadratic function with respect to ω and make it equal to zero:

(G(N + 1) + p0(N + 1)2)(β + β0)psω2 + [(4hp0(N + 1) + 2hG)(β + β0)ps

− (Gp0(N + 1) + G2)]ω + 4h2 p0(β + β0)ps − 2hp0G = 0.
(40)

For convenience, we define:

A = G(N + 1) + p0(N + 1)2,

B = 4hp0(N + 1) + 2hG,

C = Gp0(N + 1) + G2,

D = 4h2 p0,

E = 2hp0G,

Δ =
√
(B(β + β0)ps − C)2 − 4A(β + β0)ps(D(β + β0)ps − E).

Solving the above Equation (40), we obtain the intersection point of D(ω) and S(ω):

ωp =
−(B(β + β0)ps − C) + Δ

2A(β + β0)ps
. (41)

In the excessive supply regime, the maximum profit of the energy provider is at ω = ω0:

WES
II =

[G + p0(N + 1)]2

8h(N + 1)
− μβ0 ps − pwβps. (42)

In the conservative supply regime, the maximum profit of the energy provider is at ω = ωp:

WCS
II =

(C − B(β + β0)ps + Δ)G(β + β0)ps

4Ah(β + β0)ps + (C − B(β + β0)ps + Δ)(N + 1)
+ p0(β + β0)ps − μβ0 ps − pwβps. (43)
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The optimal pricing decision and the corresponding optimal profit in Stage II are given in Table 3.

Table 3. Optimal pricing decision and profit in Stage II in scenario B.

Total Energy Obtained Optimal Parameter Optimal Profit

in Stages I and II p*(ps,β) W II(ps,β)

Excessive Supply Regime: ps ≥ A
4h(N+1) ωES = ω0 WES

II (ps, β) in Equation (42)

Conservative Supply Regime: ps <
A

4h(N+1) ωCS = ωp WCS
II (ps, β) in Equation (43)

5.3. Energy Supply Strategy in Stage I

In Stage I, the energy provider also determines the energy purchase to maximize its profit by
taking into account the uncertainty of the energy supply. The profit of the energy provider in the
Stage I is given by:

WI = max
ps≥0

WII(ps, β), (44)

where WII(ps, β) is the energy provider’s profit function with respect to ps and the uncertain factor β

obtained in Stage II.
We assume that the wind power generation P = βps, and the minimum power and maximum

power of the wind power generation are Pmin and Pmax, respectively. The probability density function
of the wind power fWP(P) can be obtained in [38]. From Figure 3, we can obtain that the maximum
consumers’ demands ∑i∈N c∗i (ω) is A/4h(N + 1) when ω = ω0. For convenience, we assume that
L = A/4h(N + 1) and consider the following two intervals:

(1) Interval I: ps ∈ [0, A
4h(N+1) ]. In this interval, the energy provider’s profit function is:

W1′
I I (ps) = EP∈[Pmin,Pmax][W

CS
II (P)]

=
∫ Pmax

Pmin

WCS
II (P) fWP(P)dP.

(45)

(2) Interval II: ps ∈ [ A
4h(N+1) , ∞]. The energy provider’s profit function is:

W2′
I I (ps) = EP∈[Pmin, A

4h(N+1) ]
[WCS

II (P)] + EP∈[ A
4h(N+1) ,Pmax]

[WES
II (P)]

=
∫ A

4h(N+1)

Pmin

WCS
II (P) fWP(P)dP +

∫ Pmax

A
4h(N+1)

WES
II (P) fWP(P)dP.

(46)

Similar to scenario A, we can obtain the maximum profit of the energy provider and the optimal
amount of energy purchased from the electricity markets.

6. Simulation Results

This section presents simulation studies of the proposed scheme using MATLAB 7.11.0
(MathWorks, Natick, MA, USA). In the simulations, we assume that the wind power generation
follows a uniform distribution in [Pmin, Pmax], and we select that h = 0.04, p0 = 0.1, N = 100,
and μ = 10. For the parameter c

′
i, we select a set of stochastic values. Then, we can obtain the profit of

the energy provider under different β0 for two scenarios as shown in Figures 4 and 5, respectively.
From Figures 4 and 5, we observe that the optimal energy supply decreases with the increase of

the β0 and the maximum profit is changed from Interval II to Interval I. In general, the wind power
generation cost is less than the cost of purchasing energy. From the profit function of the energy
provider, when β0 increases, only by decreasing ps can the profit of the energy provider be maximized.
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Thus, it is verified that the proposed method is effective, and the simulation values of Figures 4 and 5
are shown in Table 4.

Figure 4. Scenario A: the profit of the energy provider under different β0.

Figure 5. Scenario B: the profit of the energy provider under different β0.

Table 4. Simulation values of the two scenarios.

Scenario A Scenario B
β0 ps Profit ps Profit

0.1 349 33.79 399.6 31.52
0.3 246 34.61 288.6 33.27
0.6 186 35.2 209 35.13

Taking β0 = 0.1 as an example, the comparisons between the two scenarios are shown in Figure 6.
From Figure 6 and Table 4, we observe that the energy provider can obtain more profit in scenario A.
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Figure 6. Comparisons between Scenario A with Scenario B.

To explain the effect of the uncertainty, taking β0 = 0.6 under scenario A as an example, we
show the profit of the energy provider under the certain and uncertain energy supply in Figure 7.
It is observed that the energy provider can achieve the higher profit under the certain energy supply.
In reality, the uncertainty of the energy supply is necessary because the energy generated from the
renewable energy sources is uncertain.

Figure 7. The effect of the uncertainty of the energy supply.

7. Conclusions

In this paper, we establish a model for energy trading and pricing in the microgrid. We formulate
a hierarchical game between the energy provider with the renewable energy generation and
the consumers, e.g., the price-taking consumers and the price-anticipating consumers. In the
hierarchical game, the energy provider acts as the leader and the consumers act as the followers.
The equilibrium point of the hierarchical game is obtained through the backward induction
method. Furthermore, we also consider the uncertainty of the energy supply in the problem
formulation. The simulation results show that the optimal energy supply can be obtained based
on the reasonable pricing strategy and purchase strategy. Comparing the price-taking consumers with
the price-anticipating consumers, we can obtain that the energy provider obtains more profit from the
price-taking consumers. From the simulation results, we also can obtain that the energy provider’s
profit reduces because of the uncertainty of the energy supply.

However, we do not consider that the consumers can sell the energy to the energy provider when
the consumers have photovoltaic (PV) panels and a storage system. In that case, the energy demands
of the consumers will be uncertain, and the payoff of the consumer includes two additional parts: one
part is the PV generation cost, and the other part is the uncertainty of the energy demands. In order to
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compute the payoff of the consumer, we need to know the distribution that the PV generation follows.
Then, we can get the average payoff of the consumer by expectation, and the optimal energy demands
are obtained by the derivation method. Simultaneously, the profit of the energy provider needs to
introduce two additional parts that denote buying the energy from the consumers and selling the
energy to the electricity markets, which will be considered in the future.
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Abstract: Demand response and distributed generation are key components of power systems.
Several challenges are raised at both technical and business model levels for integration of those
resources in smart grids and microgrids. The implementation of a distribution network as a test bed
can be difficult and not cost-effective; using computational modeling is not sufficient for producing
realistic results. Real-time simulation allows us to validate the business model’s impact at the technical
level. This paper comprises a platform supporting the real-time simulation of a microgrid connected
to a larger distribution network. The implemented platform allows us to use both centralized and
distributed energy resource management. Using an optimization model for the energy resource
operation, a virtual power player manages all the available resources. Then, the simulation platform
allows us to technically validate the actual implementation of the requested demand reduction in the
scope of demand response programs. The case study has 33 buses, 220 consumers, and 68 distributed
generators. It demonstrates the impact of demand response events, also performing resource
management in the presence of an energy shortage.

Keywords: demand response; distributed generation; microgrid; real-time simulation

1. Introduction

The increment on the penetration of the distributed generation (DG) resources encounters the
current power grid with management and reliability challenges [1]. For overcoming these issues,
the entire power network can be distributed into several small power grids, which are the sub set
of the main power network. This solution is attainable via the concepts defined in smart grids, such
as microgrids [2]. The microgrid refers to a group of DG units, renewable energy resources (RERs),
and the local loads that can rely upon the main distribution network [3]. Basically, the RERs consist of
photovoltaic (PV) systems and wind turbines [4].

The real-time measurements of different nodes of a microgrid are an essential issue for managing
and controlling the grid through both the centralized and distributed methods. This can be released
by phasor measurement units (PMU). The PMU are synchronized time based instruments, which
collects highly precise phasor data of the power system [5]. The PMU plays a key role in the real-time
monitoring of the smartgrids and microgrids that utilizes the global positioning system (GPS) to
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provide the concurrent measurements [6]. Typical PMU devices are able to provide 30 samples per
second [7]. This enables the grid operator to be informed from the synchronized time based voltage
and current phasor measurements in different nodes of the grid, in order to control and manage the
power stability and delivery [8].

Additionally, if the DG resources are integrated with demand response (DR) programs, the
microgrid conceptions can be fully addressed. DR programs are defined as altering the electricity
consumption profiles based on the incentives payment provided by the network operator due to
technical reasons or economic purposes. Incentive-based and price-based are two major classifications
of DR programs [9]. In this context, virtual power players (VPPs) play a key role for aggregating the
DG and DR small size resources, in order to be used in electricity markets as a large scale resource [10].

In order to control and manage the resources available in the microgrid, two main methods can
be proposed: centralized and distributed control. In the centralized control method, a powerful central
controller unit is responsible to manage and control the microgrid, where communication between this
unit and each single component of the network is required [11]. However, in the distributed control
method, the decisions take place locally and are based on the real-time information exchanged by the
network components [12]. Both methods have several advantages and disadvantages. For example, the
centralized control requires high initial cost and needs a widespread scheming; however, it provides
better efficiency. In the meantime, the centralized network can be implemented step by step from the
bottom levels to the top levels [13].

This paper presents the development and implementation of a real-time microgrid simulation
platform managed by centralized and distributed controlling decision support. In this platform it
is attempted to provide a realistic microgrid implementation using real and laboratorial hardware
equipment. The microgrid players included in this platform consist of two renewable DG units
(PV and wind turbine), and a low and a medium consumer load (laboratorial equipment), which are
connected to each other as well as the main power grid through four power lines. The local demand
of the microgrid can be supplied from the energy provided by the DG and the grid as well. For the
centralized control method, a real-time simulator model has been employed in order to manage the
system, and for the distributed control manner, a local controller is associated for each player in order
to perform the decision making locally and achieve the microgrid goals.

There are several related research works, which implemented and surveyed the microgrid models
based on centralized or distributed decision support. In [13], the authors examined two implemented
microgrid topologies, one centralized and one distributed model, which combine solar panels and
batteries for 20 residential houses. In [14], the authors provided an optimal solution for dispatching of
the local resources in the medium voltage (MV) microgrids that temporary or permanently operate
in islanded mode. In the optimization problem, they considered that all the power produced by
renewable generators (PV and wind) is used, in order to minimize the microgrid operation costs
as well as the pollutant emissions of the programmable generators. In [15], a new distributed
controlling method was proposed for secondary frequency and voltage control and stability in a
microgrid while it is operating in islanded mode. In this method, the authors utilized localized data
as well as nearest-neighbor communication to implement the secondary control operations while
there is no necessity of information about the loads and microgrid methodology. In [16], a unified
controlling method is addressed for the cooperation of distributed energy resources (DERs) and the
DR to support the voltage and frequency of an islanded microgrid in which it minimized the overall
operation costs of the grid through an optimization problem. In the proposed algorithm, the frequency
deviation was considered as a new state variable in the model. In this way, the model enables us to
calculate the required set points for the DERs and the amount of power that should be curtailed by the
controllable loads available in the grid. In [17], a simulation based analysis of dynamical behavior of a
residential DC microgrid laboratory setup in distributed and centralized voltage control configurations
is presented. In [18], the authors described the control algorithm of a utility connected microgrid, based
on independent control of active and reactive power and operating in centralized and distributed
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operation mode. In addition to these works, a significant number of published works have been
focused on the multi-agent based and distributed control models for the energy management of the
microgrids [19–21].

There are a lot of laboratories and test beds implemented for development and validation of
the capabilities of smartgrids and microgrids by utilizing the real-time simulation facilities [22].
Austrian Institute of Technology (AIT), Vienna, Austria, includes three configurable three-phase
low-voltage grids and the real-time simulation with hardware-in-the-loop (HIL) setups in order
to experiment with the real-time simulation platform for advanced power-HIL and controller-HIL
analysis, and the validation of energy management systems and distribution supervisory control and
data acquisition (SCADA). OFFIS—Institute for Information Technology, Oldenburg, Germany has
an automation laboratory, which includes OPAL-RT simulator for executing a highly detailed and
dynamic power grid. The OFFIS utilizes this laboratory for centralized and decentralized controlling
methods and parallel simulation. Laboratoire de Genie Electrique de Grenoble, Grenoble, France,
includes a real-time power-HIL simulation laboratory equipped with two real-time multiprocessors
digital simulators. This enables them to focus on power system protection relays, testing different
types of equipment, namely wind turbine emulator and hydro turbine, and testing the industrial
converters for PV systems. Commissariat A L’energie Atomique et AUX Energies Alternatives, France,
has a microgrid platform including several renewable and conventional generators, energy storage
systems, controllable loads, and electrical vehicles. The main core of this platform is a HIL simulator,
which enabled the facility to validate and examine the microgrid operation and protection, voltage
and frequency control, energy storage systems management etc. Distribution Network and Protection
Laboratory, Glasgow, UK, consists of a three-phase power grid including several multiple controllable
voltage supplies, flexible and controllable loads. There are several real-time simulators in this
laboratory, which are utilized for surveying protection concepts, automation equipment, and new
solutions for distributed power system control.

The main objective of the present paper is to develop and implement a real-time microgrid
simulation platform using several real and laboratorial hardware equipment. Such a platform
supports real-time simulation skills and HIL means in order to address the validation of demand
response and distributed generation optimization. A microgrid accommodates such resources and is
managed by a VPP that aims at minimizing the operation costs, using both distributed and centralized
control methods. An upstream network is modeled in MATLAB/Simulink, using mathematical
and non-physical models. The use of real-time simulation and HIL scenarios brings the ability
of controlling and managing the real resources from the simulation environment with non-real
management scenarios, such as optimization models.

The problem statement is related to how a microgrid business model can be examined and
validated in terms of management and control, before massive implementation. Implementing a
completely realistic microgrid model only for testing and validating, would not be a cost-effective
solution. Furthermore, it would not be available for everyone, since only a limited number of
companies or research institutes could be equipped with that type of test bed. The microgrid platform
designed in this paper is flexible in terms of controlling methods and is up to the operator to choose.

In this way, namely when comparing with [23], the contribution of the present paper relies on the
presented approach that integrates all the above referred aspects of the work, namely with improved
aspects as the optimization of resource use.

In both centralized and distributed control methods, the different nodes of the microgrid
(accommodating consumers and generators) will be measured through the several energy meters
mounted on the various locations of the grid. The sampling period of these energy meters are
one sample per second, which have enough accuracy for optimization problems and DR program
applications, and the high precision measurement devices, such as PMUs, may not be required for these
kinds of applications. This microgrid is also able to be configured in islanded or grid-connected mode.
Since the energy transaction between the microgrid and the main grid is considered, the autonomous
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mode is out of the focus of the paper. Another topic out of the present work focus is the market
congestion in the connection of the microgrid with the upstream network. It is not included on the
economic model since the main focus is given to minimize microgrid operation costs. The considered
VPP is selling electricity in the market and the network has enough capacity for the energy transactions.

This paper is structured as follows: after this introductory section, the development and
implementation of the proposed microgrid simulation platform is described on Section 2. Then,
a case study is defined and executed with the presented model in Section 3 and its results are described
in Section 4. Finally, Section 5 clarifies the main conclusions of the work.

2. Real-Time Microgrid Simulation Platform

This section describes the real-time implementation of a microgrid simulation platform based on
two controlling methods: centralized and distributed. This system has been implemented in GECAD
laboratory [24]. In this model, several laboratorial hardware resources have been employed in order
to simulate a realistic microgrid. The present model is designed and implemented in a way that the
controlling methods can be selected by the user/operator. This enables the operator to choose the
centralized or distributed control method, depending on its application.

Since the proposed system employs the real-time simulator as well as several real hardware
equipment, it enables the systems or platforms that include network simulation models to use the
real data in their simulation models. Therefore, the present microgrid model will be used as a
part of a network simulation model used by DR program simulation platform developed in [25],
called SPIDER—simulation platform for the integration of demand response. This platform has
been designed to widely support the decision-making for different types of network players, which
are involved in the DR programs. As a general description of SPIDER, it surveys and specifies the
data-mining methods, which are appropriate for the consumers who intend to participate in DR
programs. Data-mining algorithms are applied in the module “model optimization” (with orange
highlights in Figure 1). In fact, this module includes several types of algorithms for DR implementation,
such as the energy resource optimization, data-mining for aggregation of resources, forecasting online
tools, etc. For example, if data-mining is applied, whenever a new scenario is computed in the
simulation, the system automatically includes the scheduling of resource results as input to the
aggregation of the resources. After the data-mining is computed, the simulation proceeds to step
“4” (as can be seen in Figure 1). A data-mining algorithm used for energy resource aggregation and
remuneration can be found in [26].

SPIDER is an essential instrument for validating and analyzing the business and economic aspects
of the DR programs, and surveying their influence in the electricity network. For this purpose, SPIDER
uses MATLAB/Simulink [27] tools in order to simulate the basis platform for the grid simulation.
Figure 1 illustrates the overall view of the SPIDER simulation platform with the proposed microgrid
simulation configuration using the centralized control method. In this system, several softwares have
been employed in order to exchange data between different sections.

The platform starts the process from network simulation in Simulink; afterward, JAVA application
programming interface (API) is used in order to transmit the information of the network simulation
to the optimization block. Then, TOMLAB [28] tool is used for the optimization in the SPIDER, and
its optimization results transfer to the network simulation block using JAVA API as well. Full details
about the SPIDER and its infrastructures can be found in [25].

The microgrid model proposed in this paper has been demonstrated in the top of the Figure 1, as
depicted by green color. The model includes four nodes; two nodes dedicated for the consumers, and
the other two devoted to renewable DG units. This microgrid has the capability of supplying the local
loads by its own DG units, and transacts energy with the main grid in order to feed the loads in the
moments that there is not enough generation from the energy resources. In addition, it can inject the
excess of the produced power to the main gird.
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Figure 1. Proposed microgrid configuration for the simulation platform for the integration of demand
response (SPIDER) simulation platform implementation.

As can be seen in the top of Figure 1, there are four switches; one for each player, which enables
the microgrid operator to select the controlling method. If the centralized controlling method is
selected, the central controller unit is responsible for managing the network players and controlling
the consumption and generation of the resources. For this purpose, the central controller transmits the
controlling commands to each player by using independent communication channels line. However, if
distributed control method is selected, the central control unit is eliminated and the local controllers
manage the network by transmitting and sharing information between each other. It should be noted
that the status of all switches should be equal (all centralized or all distributed). The following sub
sections describe how the microgrid is controlled by the centralized and the distributed methods.

2.1. Centralized Control Model

In this section, the central controller unit, network players, and the controlling methods, will be
explained. The microgrid model proposed in this section is an improved and reformed version of the
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model proposed in [23]. In the previous work, there were low and medium consumer units playing the
role of residential and small commerce facility consumers, and a wind turbine emulator playing the
role of a home-scale wind turbine. However, in this paper, a 7.5 kW PV system and four power lines
have been added to the system in order to implement a comprehensive laboratorial microgrid model.

Figure 2 presents the centralized microgrid control model proposed in this paper. As can be
seen, the central controller unit is located at the top of the model and the other network players are
connected to this unit. This unit is OP5600, the real-time simulator machine [29], a powerful instrument
to produce real-time simulations even with a high complexity degree while enabling HIL. OP5600 is
based on the MATLAB/Simulink and indeed it runs the Simulink models in real-time. Additionally,
there are several Digital/Analog I/O slots embedded on the OP5600, which enable the user to control
real hardware devices from Simulink models and also receive feedback. This is how HIL integrates the
real data with the Simulink models.

Figure 2. Centralized microgrid model architecture.

The other network players consist of a 4 kVA and a 30 kW load playing the role of low and
medium consumer units, and a 1.2 kW wind turbine emulator and a 7.5 kW PV system as DG units
in the microgrid. All of these network players were not operating automatically in their factory
configuration. However, several automation projects have been implemented on them, in order to
control and manage them remotely and automatically [23,30]. For concentrating on the innovative
perspectives of the model, only the most related sections of the system are described here.

As shown in Figure 2, the first DG unit is referred to the 1.2 kW wind turbine emulator.
This emulator consists of an inductive three-phase generator coupled with a three phase asynchronous
motor with variable speed. The speed controller unit allows the variation of the wind speed and
consequently the speed variation of the wind turbine rotor. This emulator is controlled through the
analog outputs of the OP5600 (Simulink).

The second DG unit is a 7.5 kW PV system, which is already installed on the GECAD laboratory
and currently is producing energy. For acquiring and monitoring the real-time generation data in
OP5600 and Simulink model, Modbus/TCP (transmission control protocol) protocol has been used.

The third node is related to the 4 kVA load, the low consumer player of the microgrid, which plays
the role of a domestic consumer in the microgrid. This load includes three independent sections of
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resistive, inductive, and capacitive. The automation process was focused on the resistive part. In the
factory setting, it had a steering connected to a gauge in the resistive section, which enables the user to
increase or decrease the consumption of the load. Currently, a programmable logic controller (PLC)
connected to a 12 V DC motor controls the resistive gauge. This enables the 4 kVA load to receive the
desired amount of consumption from OP5600 through Modbus/TCP communication protocol, and to
adjust its consumption based on the received value.

The last node is connected to the 30 kW load, the medium consumer player of the microgrid that
represents the consumption of a small commerce. By default, it had an integral control panel equipped
with several selector switches, which enables the user to control the consumption. However, in order
to control this unit automatically, four relays have been mounted on the load and are connected to the
digital output of the OP5600. Therefore, the central controller unit is able to control the consumption
of this resource through the Simulink model.

The power lines is the section that is not included in the previous microgrid model, and is
proposed in this paper. As can be seen in Figure 2, there are four power lines that connects each node
of the microgrid to the main power network. In each line, there is a circuit breaker and an energy
meter. The circuit breakers are connected via digital output channels of the OP5600, and it enables the
user to interrupt the line and disconnect the resource from the main grid through the Simulink model.
Furthermore, the energy meters measure the power flow in the lines and transmit the real-time active
power data to the Simulink model using Modbus/TCP protocol.

The existing platform can be improved in order to accommodate transient and stability studies
which would require the use of PMUs instead of energy meters. In fact, the existing meters in
the platform provide acceptable accuracy and sampling per second; however, it doesn’t allow the
synchronizing of measurements by GPS.

2.2. Distributed Control Fashion

As it was shown in Figure 1, there are four switches for the microgrid players where the user can
choose how the microgrid be controlled. Figure 3 illustrates the microgrid distributed control method.
In this condition, the central controller unit (OP5600) will be excluded from the microgrid point of
view, and the local controllers manage the network.

 

Figure 3. The distributed control based microgrid model.
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In distributed control, there are five main players: a residential player, using a 4 kVA controllable
load; a commercial player, using a 30 kW controllable load; a line operator player, that controls
the power lines; a PV DG player; and wind DG player. A PLC is dedicated for each player.
This enables the microgrid to accomplish decision making locally and communicate with other
microgrid players, through TCP/IP (internet protocol) communication protocol, to achieve the
microgrid’s goals. The players are responsible for constantly exchanging messages in order to report
their latest status in the network.

The microgrid players have dedicated PLCs with several Digital/Analog I/O slots used for
their control and management. Residential player uses digital output slot to control the load motor.
The commercial player is equipped with digital output slot in order to control the relays, and wind
DG player employs an analog output slot for controlling the speed variation of the wind turbine
rotor, and finally the line operator player uses the digital output slot to control the status of the circuit
breakers of the lines.

The main task of the residential and commercial players are to control and adjust their
consumption based on the overall system’s goals. Furthermore, the PV DG player contains the data
regarding the PV production and is accountable for informing the other agents with the latest value of
the PV generation. Meanwhile, the wind DG player undertakes requesting the wind speed data from
an external resource, such as a local weather station, and generates power depending on the received
wind speed value. Finally, there are two main objectives for the line operator player since it contains all
of the energy meters and the circuit breakers employed in the power lines. As mentioned, the first goal
of the line operator player is to supervise the circuit breakers in the power lines. The second purpose
is to request the real-time amount of the active power measured by the energy meter of each power
line and transmit them to the other players. In this way, the other players, namely residential player,
commercial player, and wind DG player, will be aware of their real-time amount of consumption
or generation.

In the distributed control method, adaptability of the system is improved compared with the
centralized control, since the response time to any changes is reduced. Furthermore, the distributed
control method brings reconfigurability and flexibility features to the overall microgrid. Suppose that,
in a simple way, the PV DG player transmits a signal to the other players saying that its instant amount
of generation changed to 4500 W. The wind DG player also broadcasts a message saying that there is
wind generating energy. Therefore, the line operator player responds to the wind DG player that their
current output generation is supposedly 500 W. In the meantime, the residential and commercial player
reply that they are consuming energy with a certain value, and the line operator player broadcasts
their total amount of consumption, which is, supposedly 9500 W. Therefore, the microgrid supplies
the rest of the required power from the power grid; hence, there is not enough energy production by
DG units.

3. Case Study

In this section, a case study is presented and implemented by the microgrid model provided in
this paper in order to test and validate the system capabilities. In this case study, it is considered that
the user intends to use the centralized microgrid control model.

Figure 4 represents a 33 bus distribution network, including 220 consumers and 68 DG units.
The distribution network was implemented MATLAB/Simulink, being compatible with OP5600.
The microgrid model is a node connected to bus #10 of this network. Furthermore, the Simulink model
developed in OP5600 for real-time controlling of the microgrid players is shown in Figure 4.

In this case study, we consider that a VPP owns the microgrid and its resources containing the
consumers (with or without DR programs), and the energy generators. Therefore, the VPP aggregates
the DG and DR resources since in the proposed microgrid they are considered as small size resources.
Additionally, the VPP is capable to transact energy to the main grid, which means it can absorb energy
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while it has high demand and low generation, or inject power to the grid while it has more generation
than consumption. This enables the VPP to have active participation in the electricity markets.

Figure 4. The microgrid model used in the 33 bus network.

VPP also can define several DR programs for the microgrid consumers in order to reduce or shift
the consumption to one or more specific periods based on incentives and/or the prices offered to them.
Technical or economic reasons can also be the motivation for the VPP to define DR programs. While
the DR programs defined reduction or shifting, the VPP can use an optimization for the generation and
demand resources in order to economically make a decision and execute the load shifting scenarios.
The number of DR programs that VPP executed is a fundamental matter, which should be taken
into account.

The shifting periods in this model are the amount of power that can be shifted from a period to
other periods. Additionally, the number of periods that the shifted consumption will be entered, and
also the amount of load reduction, which will not be shifted, should be considered.

The optimization problem used in this paper for the VPP has been adapted from [31], and only
the most applicable information has been mentioned in this part. The objective function of this
optimization is to minimize the operation costs of the VPP, considering the generation and shifting
costs in each period t for all periods in the defined time horizon T. Equation (1) demonstrates the
objective function of the optimization problem. The constraints of the model include:

• Balance equation containing the DR balance in each period of t, the energy production, and the
consumption demand, which contains the shifted load from period t to period i, and the incoming
consumption in period t shifted from period i. This is represented in Equation (2);

• The maximum DR capacity considering the consumption reduction executed in period t, which
can be shifted to period i after or before t, presented in Equation (3).

• The maximum generation capacity limit in each period t, performed by Equation (4).
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Minimize

OC =
T
∑

t=1

[
PDG(t) × CDG(t) +

i≤t+I
∑

t−I≤i
PDR(t,i) × CDR(t,i)

]
(1)

Load(b,t) −
i≤t+I

∑
t−I≤i

PDR(b,t,i) +
i≤t+I

∑
t−I≤i

PDR(b,i,t) − PDG(b,t) =

B
∑

j=1
V(b,t) · V(j,t) ·

[
G(b,j) · cos

(
θ(b,t) − θ(j,t)

)
+ G(b,j) · sin

(
θ(b,t) − θ(j,t)

)]
∀1 ≤ t ≤ T, ∀1 ≤ b ≤ B

(2)

PDR(b,t,i) ≤ Pmax
DR(b,t,i); ∀1 ≤ t ≤ T, ∀ − I ≤ i ≤ I, ∀1 ≤ b ≤ B (3)

PDG(b,t) ≤ Pmax
DG(b,t); ∀1 ≤ t ≤ T, ∀1 ≤ b ≤ B (4)

Vmin
(b,t) ≤ V(b,t) ≤ Vmax

(b,t) ; ∀1 ≤ t ≤ T, ∀1 ≤ b ≤ B (5)

θmin
(b,t) ≤ θ(b,t) ≤ θmax

(b,t); ∀1 ≤ t ≤ T, ∀1 ≤ b ≤ B (6)

TOMLAB, which is based on MATLAB, are used in order to solve the proposed optimization
problem. Therefore, the optimized results can be easily provided to the microgrid central controller
unit (OP5600) as inputs, and consequently, it controls the real hardware equipment in real-time based
on these inputs. The output of the economic energy resource scheduling optimization model is a
requested amount of power for each consumer to reduce its demand in a certain period. However, the
actual implementation of this demand reduction request in a real load will depend on the electrical grid
conditions. This is in fact one of the advantages of using real-time simulation (in this paper OP5600)
and laboratorial equipment for consumption modeling. In this way, we validate the actual demand
reduction in order to be included in the simulation results, namely for remuneration purposes.

4. Results

In this section, the results of the proposed methodology will be executed using the microgrid
model and its results illustrated. We consider that the case study consists of 10 periods with a one
minute time interval. The consumption and generation profiles of the microgrid aggregated by the
VPP during this 10 min is shown in Figure 5. As can be seen, the blue area is the total power aggregated
by the VPP during the 10 periods, and the red line indicates the total consumption. The aggregated
power supply includes the PV generation, wind production, and the incoming power from the main
network to the microgrid.

Figure 5. The microgrid model used in the 33 bus network.

The data used in the case study is for the day 13 January 2017 (Friday), between 11:30 AM to
11:40 AM. The PV curve is the real-time generation profile adopted from GECAD database. The wind
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generation is the simulated profile by the wind turbine emulator based on the real-time wind speed
data, acquired from [32], and the consumption curve is also the real-time consumption of the GECAD
building, emulated by the 4 kVA and 30 kW load.

As Figure 5 demonstrates, the microgrid meets a drop on generation in the periods 3 and 4.
The reason for this lack of generation is considered to be a fault or any other cause in the main grid.
Therefore, this is an opportunity for the VPP to start the optimization problem in order to optimally
schedule the consumption shifting of the resources. The results of the optimization problem is depicted
in Figure 6. The shifted periods have been scheduled in order to minimize the operation costs of
the VPP.

 

Figure 6. The optimization results for the consumption resources.

Figure 6a illustrates the load reduction and shifting that have occurred during the periods 3 and
4, where the VPP faced a lack of generation and shifted to the periods after period 4. The red area
is the reduced consumption by the consumers, and the green area is the shifted consumption to the
other periods. Also, as can be seen in Figure 6b, the incoming consumption in the periods of 8 and 9
are much higher compared with the other periods. This can be because of the DR programs and the
economic advantages.

While TOMLAB outputted the results of optimization, they will be provided to the OP5600
real-time simulator as inputs. Consequently, the real-time simulator starts to control and manage the
HIL equipment in order to implement the optimization results in real-time. Figures 7–9 show the
final results of the real-time simulation during 10 min. All of the results illustrated in these figures are
adapted from OP5600 and MATLAB/Simulink.

Figure 7. Real-time simulation of the consumption profile using the consumers of the microgrid.
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Figure 8. The separated consumption curve of each player of the microgrid.

Figure 9. Real-time simulation of wind production curve.

As Figure 7 illustrates, the total amount of consumption of the microgrid has been reduced and
shifted to other periods based on the optimization results, which occurred between the second of
120 to 240 (periods 3 and 4). Also, the denotative consumption profiles of the microgrid have been
illustrated in Figure 8. It is obvious that the residential player shifted its consumption; however,
the commercial player reduced consumption based on the data received from the OP5600 real-time
simulator. Furthermore, Figure 9 represents the wind production simulated by the wind DG player.
This generation curve has been simulated based on the real-time wind speed data provided to the
emulator from the OP5600 real-time simulator.

5. Conclusions

Microgrids are a particular case of distribution networks, namely in the context of smartgrids.
Demand response and distributed generation are very relevant resources in the scope of microgrids
and smartgrids. As discussed in the present paper, the realistic simulation of the impact of these
resources is very important in order to validate the technical and business model’s impact in
smartgrids management.

In this paper, important improvements have been added to SPIDER, a simulation platform that
accommodates real-time simulation skills adequate for demand response and distributed generation.
The innovative content provides details on the integration of both centralized and distributed control
approaches, and also includes the emulation of generation and load components which allowed us to
more realistically simulate the microgrid and validate the computational models.

The case study presented here has briefly demonstrated the platform skills in order to validate a
business model for optimal resource scheduling in the microgrid, and its connection to the upstream
distribution network. A VPP managed the resources aiming at minimizing the operation costs. It has
been shown that the results obtained by the scheduling algorithm benefit with the integration in the
real-time simulation platform in order to check the actual simulated consumption and generation
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values which include the variability of these resources. Moreover, the presented results are the ones
actually measured in the load, and generation emulation devices which are shown to have relevant
information that was not given by the electrical network simulation model. The main one is that when
the load schedule is changed, the actual consumption devices take some time in order to reach the
desired consumption.
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Abstract: In distributed operation, each unit is operated by its local controller instead of using a
centralized controller, which allows the action to be based on local information rather than global
information. Most of the distributed solutions have implemented the consensus method, however,
convergence time of the consensus method is quite long, while diffusion strategy includes a stochastic
gradient term and can reach convergence much faster compared with consensus method. Therefore,
in this paper, a diffusion strategy-based distributed operation of microgrids (MGs) is proposed
using multiagent system for both normal and emergency operation modes. In normal operation,
the MG system is operated by a central controller instead of the distributed controller to minimize
the operation cost. If any event (fault) occurs in the system, MG system can be divided into two parts
to isolate the faulty region. In this case, the MG system is changed to emergency operation mode.
The normal part is rescheduled by the central controller while the isolated part schedules its resources
in a distributed manner. The isolated part carries out distributed communication using diffusion
between neighboring agents for optimal operation of this part. The proposed method enables
peer-to-peer communication among the agents without the necessity of a centralized controller,
and simultaneously performs resource optimization. Simulation results show that the system can be
operated in an economic way in both normal operation and emergency operation modes.

Keywords: consensus algorithm; diffusion strategy; distributed system; energy management system;
microgrid operation; optimal operation

1. Introduction

Microgrid (MG) system is a small-scale electrical distribution system integrating multiple loads
and multiple distributed sources of generation, such as controllable distributed generators (CDGs),
renewable distributed generators (RDGs), and energy storage systems (ESSs) [1]. An MG system
can operate efficiently and safely in both grid-connected and islanded modes [2]. In grid-connected
mode, the MG system can either buy electric power from the utility grid, or sell electric power to the
utility grid. The power balance can be maintained by the utility grid in each time interval. However,
in islanded mode, MG system is operated without the utility grid. The balancing between supply and
demand is maintained by MG’s resources and by performing load shedding in some peak intervals.
The major considerations of an MG system are minimizing operation cost, preserving customer privacy,
and enhancing the system reliability. Energy management system (EMS) is used to optimally schedule
the power resources, such as CDGs, ESSs, and the amount of trading with the power grid to fulfill the
load demands [3].

There are two fundamentally different approaches for the design of such an energy management
system, which are centralized and decentralized approaches. The centralized EMS is to assign the
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responsible for coordinating CDGs, ESSs, loads and the utility grid connection to a central entity [4,5].
The centralized method requires all components to communicate with an MG energy management
system (MG-EMS), and an optimization problem is solved at the central location. Then optimal
solutions are sent to the individual components. A centralized control for optimizing MG system
operation has been proposed considering two market policies for demand-side bidding options by [5].
A centralized EMS has been developed for optimal operation of an isolated MG system using the
model predictive control technique [6]. The authors in [7] have introduced an optimization method for
a cooperative multi-microgrids (MMGs) with sequentially coordinated operations.

Another approach is based on multi-agent systems (MAS) in which the decisions are made in a
decentralized/distributed way [8,9]. The decentralized approaches do not need a central controller
and each unit is controlled by its local controller, which allows the control actions to be simply based
on local information. A fundamental problem in distributed control systems is the need for all the
nodes to reach a consensus. The consensus problem has been widely applied in several areas, such as
social science and computer science [10]. Consensus algorithms and their applications have been
extensively studied in the MG system and control area [11]. A dynamic consensus algorithm based
distributed optimization method has been proposed to improve the system efficiency and offer higher
expandability and flexibility [12]. A fully distributed control strategy based on the consensus algorithm
has been proposed for the optimal resource management in an islanded MG system [13]. A distributed
energy management approach based on the consensus + innovations method has been presented in [14]
to coordinate local generations, demands, and storage devices within the MG system. An analysis on
convergence of the incremental cost consensus algorithm has been analyzed for a smart grid under
different communication network topologies [15].

Each of the EMS architecture has its own merits and demerits. MG systems can reduce operation
cost (global optimization), utilize efficient components of MG system, and reduce the amount of
external trading by applying centralized methods [16]. However, once failure of the central controller
occurs, the MG systems may fail, which decreases the reliability of the system. Alternatively,
decentralized methods do not need a central controller and each unit is controlled by its local control
system, which allows the control action to be simply based on local information rather than global
information. However, the method can increase operation cost, unawareness of the system level
resources, and excessive power trading with the utility grid in grid-connected mode [16].

In the literature, either only centralized or only distributed EMS architectures are considered.
In the case of distributed EMSs, the distributed information sharing between neighboring agents is
established through consensus [12–15]. Therefore, the authors in [17] have proposed a new method for
optimal MG control scheme using a fully distributed diffusion strategy. The diffusion strategy includes
a stochastic gradient term to expedite the process and reach convergence much faster compared with
consensus. Additionally, by including the gradient of the cost function in the formulation, diffusion
strategy can reach the economic dispatch point through distributed optimization.

To take the advantages of both EMS architectures, this paper proposes a new operation strategy
for improving the system reliability using diffusion strategy for both normal and emergency operation
mode. In normal operation, the MG system is operated by an MG-EMS. If any fault occurs in the
MG system, which lead the system could be divided into two parts: normal and isolated parts.
The normal part is still operated by the MG-EMS. In conventional operation, the isolated part is
isolated from the main system. In many cases this part is out of service and waits to reclose, which
reduces the system reliability. By applying the proposed strategy, this part is considered as a distributed
system and is operated normally with new schedules by using diffusion strategy. The distributed
communication is applied in this part by using diffusion between neighboring agents for optimal
operation of isolated part. The proposed method enables peer-to-peer communication among the
agents without the necessity of a centralized controller, and simultaneously performs resource
optimization. The isolated part is updated every interval with new faulty/recovered equipment.
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By using the proposed algorithm, the rescheduling is converged faster than consensus algorithm by
implementing an additional gradient term.

The rest of this paper is organized as follows. In Section 2, the MG configuration and the proposed
algorithm for the MG operation are presented using diffusion strategy. Communications in the MG
system and diffusion strategy are introduced in detail in the subsections of Section 2. The mathematical
model for both operation modes of MG system is introduced in Section 3. The performance of the
proposed method is evaluated and the simulation results are analyzed and discussed in Section 4.
Section 5 concludes this paper.

2. System Model

2.1. Microgrid System Configuration

In this paper, an MG system is considered as a portion of electric network including diesel
generators (DGs), battery energy storage system (BESS), renewable energy generators (RDGs),
and loads, as shown in Figure 1. In normal operation, the MG system is operated by a centralized
controller (MG-EMS). In this mode, each component informs its information to MG-EMS and receives
its optimal schedule from the MG-EMS. The output power of DG units and charging/discharging
amount of BESS are decided by the MG-EMS. The amount of power exchange between MG system
and the utility grid is also determined by the MG-EMS to minimize the total operation cost and
fulfill shortage power in the system. On the other hand, when an event occurs in the MG system,
such as short circuit, over current of power electronic interfaces [18,19], the corresponding circuit
breaker (CB) is opened to isolate the fault, thus some parts are disconnected from main system.
MG system is divided into two parts: normal and isolated parts. In the worst case (losing both
electrical connection and communication), the MG system has two separate parts and MG-EMS cannot
control all components in the system. Therefore, the operation mode of MG is changed to emergency
mode. In this mode, the normal part is still rescheduled by the MG-EMS while the isolated part could
be out of service. Because the occurrence time of fault is not known, the operation problem is becoming
a real-time problem and the convergence time is important for survival of the isolated part. Thus,
all components in the isolated part could be rescheduled to another operation point as soon as possible
without MG-EMS. By applying the proposed strategy, components (agents) in isolated system can
communicate with each other to share their information and determine a new operation point in a
short time. The system information is updated every time with the new faulty/recovered equipment.
Whenever the system information is changed, the isolated part can reschedule without the MG-EMS.

Figure 1. An illustration of a typical microgrid system.
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2.2. Algorithm for Microgrid System Operation

The step-by-step procedure for performing one round of optimization is shown in Figure 2.
In normal operation, agents inform their information to a centralized EMS (MG-EMS), such as buying
and selling prices (hourly day-ahead market price signals), generation capabilities of DGs, RDGs,
and BESS along with load profiles of MG system, which are taken as input data. After receiving all
information, MG-EMS performs optimization and informs to participating agents with optimal results.
The output power of each DG unit is decided by the comparison among the market price signals
and its generation cost to minimize the operation cost of the MG system. The amount of exchanging
power with the utility grid is decided to maintain the power balance in the system and maximize the
profit. In peak intervals, the shortage power is fulfilled by importing electric power from the utility
grid while the surplus power from cheap resources is sold to the utility grid in off-peak intervals.
BESS is used to shift the surplus power from off-peak intervals to peak interval. The BESS is charged
with cheap resources and discharged at expensive intervals for reducing the operation cost. If any
event occurs in the MG system, faulty part is isolated from the system. The isolated part is considered
as a distributed system, which is operated without MG-EMS. Thus, the MG system is changed to
emergency operation mode.
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Figure 2. Flowchart for operation of the microgrid system.
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In emergency operation mode, there are three possible disconnection scenarios:

1. Losing the communication with the MG-EMS but maintaining the electrical connection with the
normal part of MG.

2. Maintaining the communication with the MG-EMS but losing the electrical connection with
the MG.

3. Losing both communication with the MG-EMS and the electrical connection with the normal part
of MG.

In this paper, isolated/islanded refers to failure in both electrical and communication system.
Power failure refers to failure in only electrical system and communication failure refers to failure in
only communication system.

The normal part is rescheduled from the occurrence time of event by MG-EMS while the operation
of the other part is rescheduled based on failure scenario, as explained above. In the case of Scenario 2,
the MG-EMS can control all components in the MG system, so the two separated parts of the MG
system are operated by MG-EMS without sharing power between two parts. In the case of Scenario 1
and Scenario 3, the MG-EMS cannot communicate with all components of faulty part and agents
cannot receive the operation information from the MG-EMS. Therefore, each component (agent) shares
its information with its neighbor agents and performs distributed optimization by using the proposed
algorithm. The distributed optimization method for isolated part is explained in detail in Algorithm 1.
The system information is updated every time with the new faulty/recovered equipment. Whenever
the system information is changed or a new time interval is started, the MG system is rescheduled by
applying the proposed algorithm.

2.3. Diffusion Strategy for Distributed Optimization

The proposed diffusion framework for an agent j is shown in Figure 3. In this figure, the agent
j is only required to interact with the neighboring agents Nj (highlighted in Figure 3). In the case
of fault, a corresponding circuit breaker (CB) should be opened to isolate the fault. It can lead to a
situation where an agent and its neighboring agents are not electrically connected and are part of
two separated sections. To prevent the diffusion of information between these neighboring agents,
the agent checks the status of the corresponding CB and decides the neighboring agents for sharing
its information based on the location of fault point. In this way, all the interactions are done in the
network. The method is able to cope with different network topologies, and does not require the global
information or relying on the central manager. The system topology is represented by an adjacent
matrix A by using Metropolis rule [17,20], as given by Equation (1).

aij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
max(ni ,nj)

i ∈ Nj{j}
1 − ∑

i∈Nj{j}
aij i = j

0 otherwise

(1)

where ni, nj are the number of neighboring agents of agent i and j, and aij = 0 when agent i and j is
not connect.
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Figure 3. Neighborhood agents of agent j (the highlighted area).

To minimize the operation cost in the distributed system, global cost objective function of the
system is defined by Equation (2), where Ji is the cost function of agent i. The real-valued vector
of arguments w∈Rn, representing the output power of each dispatchable agent (diesel generator).
Therefore, the objective function (3) minimizes the global cost Jglob, and it is obtained by summing all
individual cost functions. Each dispatchable agent has its own cost function. Therefore, each agent
could have different objective functions in the case for the MG system. All Ji need to be differentiable,
convex, and at least one Ji needs to be strong convex for reaching only one global minimum
solution [21,22]. In this paper, the operation cost of each diesel generator (DG) unit is represented by a
quadratic cost function and are all strong convex, as shown in Equation (4), where a, b, and c are the
quadratic coefficients. Thus, Jglob is also strong convex and can reach optimization point. From the
generation cost functions, the derivative of the cost function is given in Equation (5), which is also
known as the marginal cost function. This equation is used for optimization diffusion algorithm to
reach economic dispatch. The detailed mechanisms for performing distributed optimization has been
explained more detail in the Algorithm 1.

Jglob(w) =
n

∑
i=1

Ji(w) (2)

min
w

Jglob(w) (3)

CDG
g

(
PDG

g, t

)
= a + b·PDG

g, t + c·
(

PDG
g, t

)2
(4)

∂CDG
g

(
PDG

g

)
∂PDG

g
= b + 2·c·PDG

g (5)

In the proposed algorithm, each agent follows two steps: (1) information sharing diffusion
for sharing the shortage amount; and (2) optimization diffusion for minimizing the operation cost.
In Step 1, Combine-Then-Adapt (CTA) diffusion strategy is implemented to share information in
the distributed system, as given in first two equations of Algorithm 1. At each iteration, the agent i
updates its current state (xk−1,i) to a new state (xk,i) using the local stochastic gradient at this iteration.
The local stochastic gradient available can be calculated from the difference of intermediate state φ at
this iteration [17]. After finishing Step 1, the shortage amount in the system is known in the distributed
system. In Step 2, namely decentralized optimization, similar to Step 1, CTA diffusion strategy is used
for distributed optimization, as shown in last three equations of Algorithm 1. However, in this step,
the gradient of the cost function is used instead of the stochastic gradient (∇Ji

(
PG

k,i

)
= ∇Ci

(
PG

k,i

)
).
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Algorithm 1 Diffusion strategy for distributed optimization 

1: Initial values  

2: Updated adjacent matrix A (Equation (1)) 

3: Step 1: Determine shortage power in system 

4: while error < available value do 

5: for all i < N do 

6: 
  

1, , 1, j
i

k i i j k
j N
a xφ − −

∈

=  

7: 
  

( ), 1, 1, 2,− − −= − −k i k i k i k ix φ μ φ φ  

8: end 

9: end while 

10: Determine demand in whole system: NP  

11: Step 2: Decentralized optimization  

12: while error < available value do 

13: for all i < N do 

14: 
  

1, , 1, j
i

G
k i i j k

j N
a Pφ − −

∈

=  

15: 
  

( ), 1, 1,− −= − ∇G
k i k i i k iP Jφ μ φ  

16: end 

17: Update based on condition: 

18: 
 ,

1=

=
N

G
k i N

i
P P  

19: Update error 

20: end while 

2.4. Interaction among Agents in the Microgrid System

In the normal operation, all agents communicate with the MG-EMS agent by using agent
communications language (ACL) messages. The interaction among agents of the proposed strategy is
illustrated in Figure 4. Firstly, a message is sent by MG-EMS agent to market agent to inquire about
the market price signals. The market agent sends the day-ahead buying and selling prices for each
hour of the day to MG-EMS agent. The MG-EMS agent will inform its local resources about the market
price signals along with call for proposal (cfp) messages. The local elements of MG system propose
their proposals for operation scheduling. Based on the proposals received from its local elements,
the MG-EMS agent decides to accept/reject the proposals from its local agents. After receiving the
acceptance/rejection of their proposals, each local agents implement its operation scheduling and
informs the MG-EMS. Finally, the MG-EMS decides the amount of buying/selling power with the
utility grid based on the amount of shortage/surplus power in the MG system. Communication
between all the agents is realized through ACL by using a modified contract net protocol (MCNP) [23].
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Figure 4. Agents communication in normal operation.

In the emergency operation, isolated agents cannot communicate to the MG-EMS agent.
The operation of normal agents is rescheduled by MG-EMS agent, similar to normal mode. On the
other hands, each isolated agent communicates to its neighbor agents for sharing its information and
performing distributed optimization based on its receiving information. The state diagram of each
agent in the isolated part is shown in Figure 5. Firstly, each agent receives information from all its
neighbor agents and updates the information of the amount of shortage power in the isolated part.
The updated information will be sent to the neighbor agents. After the shortage power information of
all agents has reached convergence, the amount of shortage power in the system is determined. Then,
the economic dispatch is started by using the optimization diffusion. Each agent shares its information
to its neighbor agents and updates its generation output to fulfill the amount of shortage power in the
isolated part. When the information sharing converges once again, the generation amount of each DG
unit is determined for isolated part.
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Figure 5. State diagram of each agent in isolated part.
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2.5. Scheduling Horizons

The two possible operation modes of the proposed microgrid are normal mode and emergency
mode. Each of the operation modes has a different scheduling horizon as depicted in Figure 6.
The scheduling horizon for normal mode is 24 h (T) and operation is based on the day-ahead model.
If any event occurs at time h, the MG-EMS will switch its operation mode to emergency mode.
The scheduling horizon of the emergency mode is from t = h to the end of the day (T). If any event
occurs, the MG system is divided into two parts: normal part and isolated part. In normal part,
the operation of all components is rescheduled by the MG-EMS while the isolated part is considered as
a distributed system. To reschedule the operation of all components in isolated part, each component
(agent) will communicate to its neighbor agents and perform distributed optimization to make new
operation point. At each time interval, the number of normal/isolated equipment (agents) is updated
in the MG system. The scheduling for all components is determined by using the MG-EMS (normal
part) and diffusion strategy (isolated part). Finally, if the event is fully cleared, the MG-EMS will
switch back to normal operation mode depending on its input values. Generally, a scheduling horizon
of one day is considered for scheduling of microgrids [24,25]. Therefore, in this study, simulations
are conducted for one day. However, the formulated mathematical models can be used to extend the
simulations for longer durations by iterating the scheduling window.
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in emergency operation (T-h)
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Figure 6. Scheduling horizons of different operation modes of the proposed microgrid.

3. Problem Formulation

A hierarchical control structure has three levels based on the required time frame: primary,
secondary, and tertiary controls [26,27].

• Primary control is designed to preserve voltage, frequency stability and plug and play capability
of distributed energy resources (DERs).

• Secondary control is designed to compensate the voltage and frequency deviation caused by
primary control.

• Tertiary control is designed for optimal operation of MGs and/or deciding the amount of power
sharing with the utility grid (in grid-connected mode).

In this paper, we focus on the tertiary control and set long-term set points based on the status
of the distributed energy resource units, market price signals, and other system requirements. It is
responsible for managing MG system in an economical way. Therefore, the constraints related to the
primary control and secondary control are assumed to be fulfilled, and out of the scope for this paper.

In the following section, the day-ahead operation planning of an MG system is determined by
solving an optimization problem for both normal and emergency operation mode. The proposed
model is formulated for 24 h with any uniform interval of time t. However, in the proposed day-ahead
scheduling model, t has been assumed to be one hour.
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3.1. Normal Mode

3.1.1. Objective Function

The objective of the normal operation is to minimize the operation cost of the MG system,
as shown in Equation (6). The first term of the objective function contains generation cost, start-up
cost, and shut-down cost of DGs. The second term contains profit gained by trading electricity with
the utility grid:

min
T
∑

t=1

G
∑

g=1

(
CDG

g

(
PDG

g, t

)
+ yg,t·CSU

g + zg,t·CSD
g

)

+
T
∑

t=1
PRBuy

t ·PBuy
t − T

∑
t=1

PRSell
t ·PSell

t

(6)

In this paper, the operation cost of each DG unit is represented by a quadratic cost function,
as shown in Equation (4).

3.1.2. Constraints for Operation of MG System

Power generated by RDGs, DG units, discharged amount, and buying amount from the utility
grid should be balanced with load, charging amounts, and selling amount from the utility grid at each
interval, as shown by (7):

R

∑
r

PRDG
r, t +

G

∑
g

PDG
g, t + PBD

t − PBC
t + PBuy

t − PSell
t =

L

∑
l

PLoad
l, t (7)

Equations (8)–(11) show the constraints for each diesel generator units. Equation (8) represents
the operation bounds of DG unit g at time t. The on-off mode of DG is determined by Equation (9).
The start-up and shutdown status is determined based on the on-off mode of each DG unit, as shown
in Equations (10) and (11). Equations (12) and (13) depicts the ramp-up and ram-down constraints for
gth DG unit:

ug,t· PDG
g, min ≤ PDG

g, t ≤ ug,t·PDG
g, max (8)

where

ug,t =

{
1 DG is on
0 DG is off

(9)

yg,t = max
{(

ug,t − ug,t−1
)
, 0

}
(10)

zg,t = max
{(

ug,t−1 − ug,t
)
, 0

}
(11)

PDG
g, t − PDG

g, t−1 ≤ RUg·
(
1 − yg,t

)
+ PDG

g, min ·yg,t (12)

PDG
g,t−1 − PDG

g, t ≤ RDg·
(
1 − zg,t

)
+ PDG

g, min ·zg,t (13)

The BESS model in MG system can be represented by using Equations (14)–(17). The bounds of
charging/discharging amount is given by Equations (14) and (15). Each interval, the state of charge
(SOC) of BESS is updated according to the charging/discharging amount and previous interval’s SOC,
as given by (16). The SOC of the BESS at any time interval t is constrained by Equation (17):

0 ≤ PBC
t ≤ PB

cap·
(

1 − SOCB
t−1

)
· 1
1 − PBC

loss
(14)

0 ≤ PBD
t ≤ PB

cap·SOCB
t−1·

(
1 − PBD

loss

)
(15)

SOCB
t = SOCB

t−1 −
1

PB
cap

·
(

1
1 − PBD

loss
·PBD

t −
(

1 − PBC
loss

)
·PBC

t

)
(16)
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SOCB
min ≤ SOCB

t ≤ SOCB
max (17)

3.2. Emergency Mode

The scheduling horizon of emergency operation is from the event occurrence time (at interval h)
to the end of the day (at interval T). In this mode, the MG-EMS will reschedule for all components
in the normal part. The components in isolated part perform distributed optimization by using
diffusion strategy.

3.2.1. Objective Function

Whenever a fault occurs, the corresponding circuit breaker (CB) is opened to isolate the fault.
By using the information of fault location, which is sent from the corresponding CB, each single
agent is able to know that it is electrically islanded or not from the MG. Therefore, the number of
agents is determined in each part. In normal part, all components are rescheduled by EMS. In isolated
part, each agent determines its new operation point by using diffusion strategy. The cost objective
function of the MG system in emergency operation is given by Equation (18). The first term of Equation
(18) represents the operation cost, start-up cost, and shut-down cost of DG units in the normal part.
The second term of Equation (18) shows profit of exchanging electric power between the utility grid.
The total operation cost of isolated part is presented by Equation (19), which includes the operation
cost, start-up cost, shut-down cost of DG units, and the penalty of load shedding in this system.
The output power of DGs and load shedding amount are determined by using diffusion strategy.

min
T

∑
t=h

G1

∑
g1=1

(
CDG

g1

(
PDG

g1, t

)
+ yg1,t·CSU
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g1

)

+ vt·
(

T

∑
t=h

PRBuy
t ·PBuy
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T

∑
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PRSell
t ·PSell

t

) (18)

where vt =

{
1 in grid − connected mode
0 in islanded mode

OCIsolated part =
T

∑
t=h

G2

∑
g2=1

(
CDG

g2

(
PDG

g2,t

)
+ yg2,t·

∣∣∣CSU
g2

+ zg2,t·CSD
g2

)
+

T

∑
t=h

CPen
t ·PSh

t (19)

3.2.2. Constraints for Operation of MG System

Equation (20) shows that the power generated by RDGs, DGs, BESS discharging amount,
and power bought from the utility grid should be balanced with charging amount, load amount,
and the amount of power sold to the utility grid. Similarly, the power balancing between supplies
and loads is given by Equation (22) for isolated part considering the load shedding in peak intervals.
In addition to Equations (20)–(22), Equation (18) is also constrained to Equations (8)–(17).
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∑
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∑
l1

PLoad
l1, t (20)

where

kt =

{
1 BESS in normal part
0 BESS in isolated part

(21)
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∑
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4. Numerical Simulations

In this study, the test MG system considered for simulations is similar to Figure 1. Firstly,
the normal operation mode is considered and the MG system is operated based on day-ahead
scheduling. A fault is considered at interval 10, the fault occurs during a very short time. It is
isolated as soon as possible by opening the corresponding circuit breakers. In this way, some parts of
the MG could be isolated from main system and could not communicate with the MG-EMS. Therefore,
the MG system is changed to emergency mode operation. The proposed strategy operation is used to
operate the MG system in an economical way for both normal and isolated parts after isolating the fault.
The isolated part is operated by using diffusion strategy while normal part is operated by MG-EMS.
At interval 15, one part is recovered from the event. The number of agents in normal/isolated part is
updated and the normal part is rescheduled by MG-EMS while the isolated part is rescheduled by
using diffusion strategy. Finally, at interval 20, the event is fully cleared and the entire MG system
is rescheduled by MG-EMS to the end of day (t = 24). The proposed model has been implemented
on a computer with an Intel(R) Core i5(TM) 2500 CPU @ 3.30 GHz and 8 GB of RAM memory using
Java (Oracle Corporation, Redwood City, CA, USA), JADE (Oracle Corporation, Redwood City, CA,
USA) with integration of IBM ILOG CPLEX (International Business Machines Corporation, Armonk,
NY, USA).

4.1. Input Parameters

Figure 7 shows the hourly generation amount of RDGs, the hourly electric loads of the MG
system, and the market price signals, which are taken as input data. The maximum value and the
initial value of BESS are 200 kWh and 50 kWh, respectively. The charging/discharging loss of BESS is
5%. The parameters related to DG units of the MG system are also shown in Table 1.
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Figure 7. Input data: (a) renewable generations; (b) load amount; and (c) market price signals.

Table 1. Parameters related to DG units and BESS of the microgrid system.

Parameters DG 1 DG 2 DG 3 DG 4 DG 5 DG 6 DG 7

Min. 0 0 0 0 0 0 0
Max. 150 150 100 200 200 150 100

a 561 310 300 561 310 300 570
b 7.92 7.88 7.9 7.92 7.85 7.9 7.98
c 0.00125 0.00194 0.00198 0.00125 0.002 0.0025 0.0014
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4.2. Piecewise Method Linearization

The cost objective functions (6) and (18) are nonlinear, therefore piecewise linearization method
has been used to transform them into linear counterparts. As shown in Figure 8, the cost function of
generator is approximated by using a set of piecewise blocks. The analytic representation of this linear
approximation is [28,29]:
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=
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where
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)
PDG
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g, i−1

is considered as constant cost in segment i

0 ≤ λ1(t) ≤ P1 − Pmin (24)

0 ≤ λ2(t) ≤ P2 − P1 (25)

0 ≤ λn(t) ≤ Pmax − Pn (26)

PDG
g,t = λ1(t) + λ1(t) + . . . + λn(t) (27)

The generation cost is approximated by Equation (23), where the generation amount is divided
into many segments between PDG

min , PDG
max . The per unit generation cost is consedered as a constant

value in each segment, which is calculated as the slope of the approximated generation cost cuver in
each segment. The approximated generation cost is shown in Figure 8 (red curve). Equations (24)–(26)
represent the generation amount of gth DG at interval t in each segment. Finally, the total output
power of the DG is calculated by Equation (27).
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Figure 8. Piecewise linear generation cost of DG units.

4.3. Normal Operation Mode

In normal operation mode, the entire MG system is operated by MG-EMS based on day-ahead
scheduling for minimizing the total operation cost. The simulated scenario for evaluating the
performance of proposed strategy is shown in Figure 9. It can be observed from Figure 9a that
the generation amount of DGs is determined by the comparison between generation cost of DG units
and market price signals. The DG units having lower generation costs (DG1–DG4, and DG7) are
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always set to maximum. During off-peak price intervals (intervals 1–6), the DG units having higher
generation costs (DG5 and DG6) are set to minimum and the shortage amount is fulfilled by buying
electricity from the utility grid in order to minimize the MG’s operation cost. In peak price intervals
(intervals 8–10), DGs are set to maximum and surplus is sold to the utility grid to increase the profit.
The amount of exchanged power with the utility grid is depicted in Figure 9b. Electricity is bought
from the utility grid for fulfilling the shortage power and avoiding the use of expensive resources.
Similarly, electricity is sold to the utility grid to increase the profit by selling electric power from the
cheap resources. BESS are charged during the off-peak intervals (intervals 5 and 6) and are discharged
during the peak price intervals (intervals 12–14) as shown in Figure 9c. The BESS is used either to
fulfill the local demand of MG system or to trade power with the utility grid.
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Figure 9. Operation results of normal case: (a) output power of DG units; (b) the amount of exchanging
power; and (c) the charging/discharging amount and the SOC of BESS.

4.4. Emergency Operation Mode

In emergency mode, two cases are simulated. In the first case, an event is considered at interval 10,
point N1, which divides the MG system into two parts: normal part and isolated part, (Figure 10).
In the second case, at interval 15, one part is recovered from the event (Figure 14).

Figure 10. Case 1: Simulated scenario for evaluating proposed strategy during emergency
mode operation.
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4.4.1. Case 1: Event at Interval 10 at N1

According to the proposed algorithm, the normal part (outside the red area) in MG system is
rescheduled by MG-EMS from interval 10 to 24. The output power of DG units (DG3, and DG5–DG7) is
rescheduled from interval 10 to 24, as shown in Figure 11a. Figure 11b shows the amount of exchanging
power with the utility grid. Due to the isolation of DG units (DG1, DG2, and DG4), the generated
amount from these DG units cannot supply to the demand of normal part in the MG system. Therefore,
the amount of buying power is increased to fulfill the shortage power in the MG system while the
amount of selling power is decreased to zero. BESS is rescheduled with the new initial value of SOC,
which is taken at occurrence time of the event, i.e., SOCinitial = SOC(10). In this case, the amount of
shortage in the system is high. Therefore, the BESS is only discharged to reduce the amount of buying
power from the utility grid.
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Figure 11. Operation results of normal part: (a) output power of DG units; (b) the amount of exchanging
power; and (c) the charging/discharging amount and the SOC of BESS.

The faulty part (in the red area) is considered as a distributed system. The output power of DG
units (DG1, DG2, and DG4) should fulfill the load amount in this area considering three different
failure scenarios, as mentioned in Section 2.2. In Scenario 2, the faulty part (power failure part) is also
rescheduled by MG-EMS without power sharing between the two areas. The output power of DG units
is shown in Figure 12a for minimizing the operation cost of the entire system. To maintain the power
balance in this area, in some peak intervals (15–17, and 19), load shedding should be implemented.
The amount of load shedding is shown in Figure 12b for maintaining the power balance.
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Figure 12. Operation results of power failure part for remaining intervals (rescheduling by MG-EMS):
(a) output power of DG units; and (b) load shedding amount.
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To reschedule for this area with Scenarios 1 and 3, each agent shares its information with its
neighbor agents to get the shortage amount in the system. By applying Algorithm 1, the shortage
power and the new operation point of these DG units are determined for interval 10 (at occurrence
time of the event), as shown in Figure 13. The shortage power information of all agents converges to
the value 66.833 kW, which is the average of the shortage amount requirement. The shortage power
(PN) is equal to the difference between total loads (load 1 and load 2) and the output power of RDG2.
Based on the information of the shortage amount in the distributed system, the output power of DG
units is determined to maintain the power balance and to minimize the operation cost. At interval
10, the output power of DG1, DG2 and DG4 is 148 kW, 105 kW and 148 kW, respectively. The output
power of each DG depends on the operation cost of that DG.
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Figure 13. Operation results of isolated part at interval 10: (a) information sharing (shortage amount);
and (b) distributed optimization.

Similarly, the output power of these DG units is rescheduled by applying the proposed algorithm
for remaining intervals (from interval 10 to 24), as shown in Figure 14a. The output power of DG
units is determined by sharing information among agents to minimize the total operation cost and
maintain the balance of supply and demand. In off-peak intervals, generation amount can fulfill the
load amount. However, in peak intervals (intervals 14–17, and 19), although all DG units are set to
their maximum values, they cannot fulfill all loads. To maintain the power balance in the distributed
system, load shedding should be implemented. The amount of load shedding is shown in Figure 14b.
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Figure 14. Operation results of isolated part for remaining intervals: (a) output power of DG units;
and (b) load shedding amount.

4.4.2. Case 2: Recovered One Part from the Event at Interval 15

In this case, we assume that some equipment (DG4 and load 2) are recovered from the event at
interval 15 as shown in Figure 15. According to the proposed algorithm, the normal part is updated
with new recovered equipment and rescheduled by MG-EMS from interval 15 to 24. The amount of DG
units is set based on the optimal values from MG-EMS, as shown in Figure 16a. Due to the reconnection
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of cheap resource (DG4), the output power of expensive resource (DG6) has been decreased to minimize
the operation cost in off-peak intervals (intervals 22 and 23). The shortage power is fulfilled by buying
electric power from the utility gird while the surplus power is sold for getting profit in some off-peak
intervals. The amount of exchanging power with the utility grid is depicted in Figure 16b. At interval
15, BESS is fully discharged (SOC(15) = 0) while the price for charging is high. Therefore, the SOC of
BESS is set to zero for reaming intervals.

Figure 15. Case 2: Simulated scenario for evaluating proposed strategy during emergency
mode operation.
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Figure 16. Operation results of normal part: (a) output power of DG units; and (b) the amount of
exchanging power.

In the distributed system, the number of agents is updated considering the number of recovered
equipment (agents). Similarly, in Scenario 2, the MG-EMS reschedules to minimize total operation
cost for both normal and power failure areas. The output power of DG units for remaining intervals
is illustrated by Figure 17d. The DG (DG1) having low operation cost is always set to the maximum
value before using the DG (DG2) having higher operation cost. In Scenarios 1 and 3, each agent shares
its information with its neighbor agents to get the information of shortage amount in the system.
At interval 15, the amount of shortage power came out to be PN that is equal to the difference between
load 3 and the output power of RDG2, as shown in Figure 17a. After determining the shortage amount,
the proposed distributed optimization method is used to determine the output power of DG units
(DG1 and DG2). The output power of DG1 and DG2 is decided to maintain the power balance in
the isolated part and to minimize the operation cost, as given in Figure 17b. Similarly, the DG units
are rescheduled for all remaining intervals (intervals 15–24) as shown in Figure 17c. In this case,
the generated amount can fulfill the load amount in all remaining intervals. Therefore, the amount of
load shedding is reduced to zero.
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Figure 17. Operation results of isolated part at interval 15: (a) information sharing (shortage amount);
(b) distributed optimization; (c) the output power of DG units for remaining intervals; and (d) the
output power of DG units for remaining intervals (rescheduling by MG-EMS).

4.5. Fault Recovery at Interval 20

At interval 20, all isolated part is recovered from the event. The schedules of all components
are also recovered, similar to normal operation. The MG system is operated by MG-EMS based
on day-ahead scheduling. Therefore, the operation of DG units, the amount of exchanging power,
the amount of BESS charging/discharging, and the SOC of BESS are similar to Figure 9a–c from
interval 20 to the end of day.

4.6. Comparison between Consensus Algorithm and Diffusion Strategy

In this section, the comparison between consensus algorithm and diffusion strategy is presented
to show the advantage of the proposed algorithm. In the isolated part, the DG units are rescheduled
by using the proposed algorithm based on the diffusion strategy for each case of emergency operation
mode, which are shown in Figures 12 and 16. Figure 18a,b shows the output power of DG units by
using the consensus algorithm in the isolated part for interval 10 (Case 1) and interval 15 (Case 2).
By comparing the results of the consensus algorithm and the proposed diffusion strategy, it can be
conclude that the proposed strategy has converged faster than the consensus algorithm.
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Figure 18. Operation results of isolated part using consensus algorithm: (a) Case 1; and (b) Case 2.
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Table 2 shows the summary of the results of both the consensus algorithm and the diffusion
strategy for first interval operation of distributed system. In the Case 1, the number of agents in
distributed system is 6. The reductions of iteration and calculation time are 97.4% and 31.25%,
respectively, compared with the consensus algorithm. In Case 2, due to the recovered equipment,
the number of agents is reduced to 4. The reductions of iteration and calculation time are 97.6% and
28.6%, respectively, compared with the consensus algorithm. Therefore, it can be conclude that the
diffusion strategy is better when the size of the distributed system is increasing.

Table 2. The comparison for applying consensus algorithm and diffusion strategy.

Parameters

Case 1 Case 2

Consensus
Algorithm

Diffusion
Strategy

Consensus
Algorithm

Diffusion
Strategy

The number of agents 6 6 4 4
The number of iterations 1900 49 1250 30

Calculation time (s) 0.16 0.11 0.14 0.1
Reduction of iteration (%) 0 97.4 0 97.6

Reduction of calculation time (%) 0 31.25 0 28.6

It can be observed in Table 2 that, in a small distributed system, the calculation time of both
diffusion and consensus approaches are very fast. However, when the size of distributed system is
increased, consensus algorithm can lead to drastic increase in number of iterations while the numbers
of iterations are gradually increasing for the diffusion strategy. Therefore, in the case of a large system,
the impact of the proposed method is more significant compared with the consensus algorithm [17].

5. Conclusions

A novel operation strategy for enhancing the reliability of microgrids is proposed using diffusion
strategy. The MG system can operate in an economic way in both normal and emergency operation
modes. In normal operation mode, the MG system is operated by MG-EMS for minimization of
operation cost. In emergency operation mode, the MG system is divided into normal and isolated
parts. Normal part is still operated by MG-EMS while the isolated part is considered as a distributed
system. The proposed strategy maintains this part, which is also operated in an economic way by using
diffusion strategy for minimizing global cost without a central controller. The numerical results have
shown that a multiagent system based on the diffusion strategy has a desirable performance compared
with consensus method and can be easily applied for microgrid optimization. During emergency
operation, in isolated part, the number of iterations and the calculation time was reduced by 97%
and 28.6%, respectively, as compared with the consensus algorithm. The proposed operation strategy
is suitable to apply for a distributed system. By applying the proposed strategy, the system can be
operated in an economical way without an energy management system.

Another application of the proposed method is in large-scale microgrids, where, after the
occurrence of a fault, the isolated part could be out of service. It leads to a large amount of load
to be interrupted, thus, the proposed strategy can be used to solve this problem by using diffusion
strategy. In this way, each agent can communicate with neighboring agents to determine a new
operation point.
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Abbreviations

t Index of time, running from 1 to T
g, g1, g2 Index for total, normal part, and isolated part DGs, respectively (g ∈ g1, g2)

l, l1, l2 Index for total, normal part, and isolated part loads, respectively (l ∈ l1, l2)
r, r1, r2 Index for total, normal part, and isolated part DRGs, respectively (r ∈ r1, r2)

ug,t, yg,t, zg,t Commitment, startup, and shutdown status identifier of gth DG at t

CDG
g

(
PDG

g, t

)
Generation cost of DG unit g at t

CSU
g , CSD

g Start-up and shutdown cost of DG unit g at t
PRBuy

t , PRSell
t Price for buying and selling power to/from the utility grid at t

PDG
g, t Amount of power generated by DG g at t

PBuy
t , PSell

t Total amount of power bought from and sold to the utility grid at t
PLoad

l,t Electric load l of microgrid at t
PRDG

r,t Amount of power generated by RDG unit r at t
PDG

g, min , PDG
g, max Minimum and maximum generation amount of gth DG unit

RUg, RDg Ramp-up and Ramp-down time of gth DG unit
PBC

t , PBD
t Amount of electrical energy charged/discharged to/from BESS at t

PBC
loss, PBD

loss Charging and discharging losses of BESS unit
PB

cap, SOCB
t Capacity and SOC of BESS unit

SOCB
min, SOCB

max Lower and upper limits for SOC of BESS unit
PSh

t , CPen Total amount of shed load and penalty cost for load shedding at t
λi(t) The generation amount of DG in segment i at t
Pi, Pi−1 The value to determine the segment i from Pi to Pi−1
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Abstract: This paper studies an energy management problem for a typical grid-connected microgrid
system that consists of renewable energy sources, Combined Heat and Power (CHP) co-generation,
and energy storages to satisfy electricity and heat demand simultaneously. We formulate this
problem into a stochastic non-convex optimization programming to achieve the minimum microgrid’s
operating cost, which is difficult to solve due to its non-convexity and coupling feature of constraints.
Existing approaches such as dynamic programming (DP) assume that all the system dynamics are
known, which results in a high computational complexity and thus are not feasible in practice.
The focus of this paper is on the design of a real-time energy management strategy for the
optimal operation of microgrids with low computational complexity. Specifically, derived from
a modified Lyapunov optimization technique, an online algorithm with random inputs (e.g.,
the charging/discharging of energy storage devices, power from the CHP system, the electricity
from external power grid, and the renewables generation, etc.), which requires no statistic system
information, is proposed. We provide an implementation of the proposed energy management
algorithm and prove its optimality theoretically. Based on real-world data traces, extensive empirical
evaluations are presented to verify the performance of our algorithm.

Keywords: microgrids; renewable energy; storage; scheduling; co-generation

1. Introduction

Microgrids stand a good chance of becoming a future power grid paradigm that uses centralized
power grids as well as local generated energy [1]. They can be operated with or without a grid
connection. Microgrids usually consist of distributed renewable energy, decentralized energy storage
devices (e.g., PHEVs), a local CHP System (e.g., gas-fired generators), and flexible loads.

With environmental concerns growing, a future power grid is expected to integrate more
renewable energy (e.g., solar or wind) to reduce the discharge of greenhouse gas. For instance,
the European Commission intends to include 20% renewables into the EU energy profile by 2020 [2],
and California aims to get 33% of retail sales from renewables by 2020 [3]. As we know, the generation
of renewable energy is intermittent and non-dispatchable. If we simply integrate large amounts of
renewable energy, the system will encounter some reliability problems. Besides, renewable energy
supply is a stochastic process, which brings a new dimension of uncertainty to energy management.
Therefore, how to integrate the generation of renewables efficiently and ensure the reliability of our
system simultaneously is of great importance for microgrids.

Energies 2017, 10, 1288; doi:10.3390/en10091288 www.mdpi.com/journal/energies91
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Energy storage devices are utilized to smooth energy fluctuations and reduce the system cost in
a more environmentally friendly way by intelligent charging/discharging, which plays an important
role in microgrids [4–7]. Apart from its power management capability, energy storage devices can act
as a backup in microgrids when the external grid breaks down, which will reduce the negative effects
with a quick response [8,9]. The distributed storage plays a significant role in the design and evolution
of a power grid, and particularly increases additional design choices for reducing the operating
cost of microgrids [10–12]. The hybird energy storage system is considered for primary frequency
control using a dynamic droop method in an isolated microgrid power system [13]. Online energy
management algorithms are developed to investigate the operating cost reduction for microgrids with
an energy storage system [14].

Apart from renewables generation and energy storage devices, CHP systems are becoming
very popular in the microgrids industry [15,16]. CHP systems can generate both electricity and
thermal energy simultaneously, which can achieve a much higher energy efficiency than generating
electricity and heat separately [17]. The characteristics of local generations and local consumptions
of micrigrid make it more flexible in the utilization of renewable energy and CHP generation, which
extends the adaptability of a traditional centralized grid. The power management strategy between
different elements should be considered in order to design feasible control algorithms for microgrid
systems [18]. Furthermore, with the augmentation of CHP generation technology, microgrids can often
be much more economical than the traditional grid by using centralized grid supply and separate heat
supply [19,20]. The integration analysis of hybrid energy storage system and novel CHP systems in
residential scenarios are also investigated [21].

In this paper, we consider the grid connected microgrid. We aim to propose an intelligent
scheduling action (e.g., charging/discharging of energy storage device, power drawn from centralized
grid, power obtained from local generator, etc.) to achieve the operating minimum cost of microgrids
while considering all the random inputs of the system. We first formulate the problem of achieving
the minimum operating cost in microgrids as a stochastic non-convex programming. Considering that
the dependence between power level of the battery pack and heat level of the water tank leads to this
problem’s non-convexity, we study the relationship between them and convert it into stochastic convex
optimization programming. Then we adopt the Lyapunov optimization [22] approach to design an
online algorithm of some random system inputs (e.g., the charging/discharging of the energy storage
devices, power from the local generator, the electricity from the power grid, and the renewable energy
generation from different sources, etc.), which requires no statistic information of our system.

The contributions of this paper are summarized as follows:

1. We formulate a stochastic non-convex programming for the online scheduling problem to
minimize the microgrid’s cost, which captures the randomness in stochastic renewables,
power and heat demands, charge level of energy storage, co-generation and physical constraints
as well.

2. To solve this stochastic non-convex optimization problem, we convert it into the subproblem with
convex property. Then we design an online algorithm to reduce the operating cost of microgrids
by using the Lyapunov optimization approach which relies on no future knowledge about
the system inputs with stochastic distribution. In this way, we can get the optimal average cost.

3. Through our evaluations by using practical data traces, we can see that by the proposed algorithm,
we can achieve an approving empirical optimality ratio.

2. System Model and Problem Statement

The following components are typically included in our designed system: centralized power grid
(supply power to the electricity load and charge the battery in an on-site way), large capacity battery
(power energy storage), local co-generator (generate both heat and power energy simultaneously),
external gas station (supply heat demand), thermal storage device (heat energy storage), and
renewables generation (e.g., wind or solar). The system model is shown in Figure 1. For convenience
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of analysis, we assume that the system operates in discrete time with time slot t ∈ {0, 1, 2, · · · }. We
then divide the time slots into frames of size T. Figure 2 gives the time structure of slots and frames.
Let Tm denote the set of time slots in time frame m, i.e., Tm � {mT, · · · , (m + 1)T − 1}. This structure
of time slot and time frame is defined to illustrate the time scales of the system operation for easy
theoretical analysis. Therefore, we have two time scales in the system.

Renewables

Power

Grid

Battery

CHP

(Co-generator)

Thermal 

Storage

Gas

Station

Le(t) 

R(t) 

[Le(t)]
+
 

Gl(t) 

Gs(t) 

Rc(t) 

r(t)ηcePc(t) 

D(t) 

(1-r(t))ηcePc(t) 

W(t) 

(1-u(t))ηchPc(t) (1-v(t))ηahPa(t) 

u(t)ηchPc(t) v(t)ηahPa(t) 

Lw(t) 

Figure 1. Illustration of the System Model.

Figure 2. Illustration of time slot and time frame.

2.1. System Model

(1) Local co-generation (CHP): We assume that electricity and heat energy can be generated
simultaneously by our local generator. Here we use an idealized model, we will investigate a more
practical CHP model in our future work. ηce and ηch are the conversion efficiencies from fuel to
the electricity and thermal energy, respectively. At each time slot t, the co-generator generates electricity
and thermal energy, whose amounts are denoted as ηcePc(t) and ηchPc(t), respectively. The generated
electricity can be used for power supply to directly satisfy the net power demand (1 − r(t))ηcePc(t) or
be charged into the battery r(t)ηcePc(t). Similarly, the generated thermal energy ηchPc(t) can be used
for direct heat supply for users’ heat demand (1 − u(t))ηchPc(t) or be charged into the thermal tank
u(t)ηchPc(t), respectively. y(mt) represents the on/off decision of the generator: y(mt) = 1 represents
switching on and y(mt) = 0 denotes switching off in frame mt, which mt = [t/T] + 1 is defined as
the number of slots in a frame.

(2) Centralized power grid: We assume that the power grid and microgrid are connected.
The power can be acquired from the centralized power grid in an on-demand manner to meet
electricity demands. The system obtains power in the amount of Gl(t) for satisfying demands directly
and the power in the amount of Gs(t) for charging the battery, respectively. Gl,max are defined as
the upper bound of direct power supply from external power grid and Gs,max denotes the upper
bound of charging power for the battery from the external power grid, respectively. Then we have
0 ≤ Gl(t) + Gs(t) ≤ Gmax and 0 ≤ Gl(t) ≤ Gl,max, 0 ≤ Gs(t) ≤ Gs,max. Supposing that the power
demand can be satisfied by power grid alone, we assume that Le,max ≤ Gmax holds at any time slot,
where Le,max is the upper bound of Le(t).
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(3) External gas station: The heat energy from the external gas station, ηahPa(t), can be used
for direct heat supply and energy charging of the thermal tank. Using v(t) to denote the fraction
for charging, we denote the amount for heat supply and heat charging as (1 − v(t))ηahPa(t) and
v(t)ηahPa(t), respectively. Under the online control algorithm that we will propose later, the heat
demand can be satisfied with the energy from the co-generation and gas station while the total cost
can be minimized in an intelligent way which schedules the energy properly.

(4) Renewable energy: Let R(t) denote the renewable energy harvested at time t. In our model,
the renewable energy is used as electricity supply for users first because it is free. If we have excess
renewable energy when the power demand has been satisfied, we use this part of energy, which is
called Rc(t) to charge into the battery. In addition, the amount of renewable energy harvested in a
time slot is bounded, and thus we have 0 ≤ R(t) ≤ Rmax, ∀t ∈ T. The excess renewable power that
is charged to the battery cannot exceed the total amount of harvested renewable energy. Therefore,
we have 0 ≤ Rc(t) ≤ [−Le(t)]+, where [−Le(t)]+ = max{R(t)− Le(t), 0}. Note that, although the
system model we consider in this paper only involves the electricity renewable energy, heat renewable
energy is applicable as well.

(5) Power and heat demands: In our microgrid system, the total demand includes the demand for
power and heat. Le(t) represents power demand at time slot t, which must be satisfied once requested.
The net power demand [Le(t)]+, which is the excess of power demand over renewable energy at
time slot t, equals the subtraction of power demand and renewable energy, and can be expressed as
[Le(t)]+ = max{Le(t)− R(t), 0}. Let Le,max denote the maximum net power demand in a time slot,
then we have 0 ≤ [Le(t)]+ ≤ Le,max. The power can be acquired from power grid, local co-generator
as well as the battery, denoted as Gl(t), (1 − r(t))ηcePc(t) and D(t) respectively, to balance [Le(t)]+.
It can be presented as follows:

[Le(t)]+ = Gl(t) + D(t) + (1 − r(t))ηcePc(t)y(mt) (1)

Similarly, the heat can be acquired from external natural gas station, co-generation as well as
the thermal tank, denoted as (1 − v(t))ηahPa(t), (1 − u(t))ηchPc(t) and W(t) (more details about W(t)
can be found in the thermal tank model) respectively, to balance the heat demand. Thus, at every time
slot, we have:

Lw(t) ≤ (1 − v(t))ηahPa(t) + (1 − u(t))ηchPc(t)y(mt) + W(t) (2)

Let Lw,max denote the maximum heat demand in a time slot. An additional constraint
Lw, max ≤ ηahPa, max has to be added to assure the balance of heat demand and supply at any time
slot, where Pa, max is the maximum heat output of the external gas station. Here ηah are defined as
the conversion efficiencies from gas to the thermal energy. Let parameter r(t) denote the fraction of
co-generated power that is used for charging. Then (1 − r(t)) denotes the fraction of co-generated
power that is used for direct power supply. u(t) is defined as the dispatch ratio from CHP to thermal
tank, v(t) denotes the dispatch ratio from thermal source to thermal tank. It should be noted that any
stochastic information of the net power demands and heat demands is not required in our proposed
algorithm. Here we use “≤” instead of “=” to insure mathematical rigorous. Actually, it could be “=” for
both Equations (1) and (2) in our optimization problem. However, in the operation of the optimization
problem, it should be consider the feasibility of the mathematical solution. In the algorithm design
point of view, there is no difference for “=” and “≤” for Equation (2). We pointed out that if we change
“≤” to “=” in Equation (2), the solution is the same. In fact, we can also change Equation (1) into
“≤” and Equation (2) into “=” in the problem formulation. It has equivalent solutions for the two
optimization problem.
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2.2. Battery Model and Thermal Tank Model

(1) Battery model: The dynamics of battery’s state of charge (SOC) level B(t) is given as follows:

B(t + 1) = B(t)− ηdD(t) + ηc[Rc(t) + Gs(t) + r(t)ηcePc(t)y(mt)] (3)

where ηd stands for discharging efficiency of battery and ηc denotes the charging efficiency of it.
We can find that the battery must satisfy constraints of capacity and charge/discharge in any slot t.

0 ≤ B(t) ≤ Bmax, 0 ≤ D(t) ≤ Dmax, B(t) · D(t) = 0 (4)

0 ≤ Gs(t) + r(t)ηcePc(t)y(mt) + Rc(t) ≤ TCchar (5)

where Bmax is the capacity of the battery and Dmax is the maximum discharging power of the battery
in each time slot and TCchar is the maximum charging power of the battery in each frame.

(2) Thermal tank model: We utilize a thermal tank to store the excess heat for later use.
With the charging and discharging of tank at each time slot, the heat state evolves over time:

T(t + 1) = T(t)− ηβW(t) + ηα[u(t)ηchPc(t)y(mt) + v(t)ηahPa(t)] (6)

where T(t) is the thermal tank’s heat energy state at time slot t. Because heat energy stored in
the thermal tank can not exceed the capacity of thermal tank, we have:

0 ≤ T(t) ≤ Tmax, 0 ≤ W(t) ≤ Wmax, T(t) · W(t) = 0 (7)

0 ≤ v(t)ηahPa(t) + u(t)ηchPc(t)y(mt) ≤ Thchar · T (8)

Similarly, Tmax is the upper bound of the thermal tank and Wmax represents the discharging rate
constraint of the thermal tank.

2.3. Problem Statement

System State and Constraint: According to the components described in our system, we define
the system state as a state vector Qt:

Qt � [Le(t), Lw(t), R(t), C(t), B(t), T(t)] (9)

We assume that Qt is an i.i.d. process over time. Although some of the elements in Qt can be
arbitrarily correlated, the control decisions at each time slot only depends on current system state Qt

without any future system information.
Through jointly scheduling the power and heat energy storage, centralized power grid,

the renewables, and co-generation, our system can realize the goal of minimizing the long-term
time-averaged operating cost. In particular, the control vector at time slot t isdefined by:

Ut � [Gl(t), Gs(t), Pc(t), Pa(t), Rc(t), r(t), u(t), v(t)] (10)

The total cost of our system includes the cost of power acquired from external power grid, the fuel
consumption of the co-generation, and natural gas for generating heat, switching and sunk cost:

f (t) = C(t)[Gl(t) + Gs(t)] + CfPc(t)y(mt) + CgPa(t) + Cmy(mt) (11)

We denote the real-time electricity price of power grid as C(t), which is bounded by Cmin and
Cmax. Cmin and Cmax is the minimum and maximum electricity price. So we have Cmin ≤ C(t) ≤ Cmax.
It should be noticed that although C(t) can also be a stochastic process, the statistics will not be
depended in our algorithm. In this paper, we set the fuel price Cf and the price of natural gas Cg to be
constants at each time slot. Actually, our algorithm is also available in the case that the fuel price and
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natural gas price are not fixed since our algorithm is based on the current system state which can be
known at each time slot.

So far we can formulate our first optimization problem as follows:

P1: min lim
T→∞

1
T

T−1

∑
i=0

E{ f (t)} (12)

subject to

[Le(t)]+ = Gl(t) + D(t) + (1 − r(t))ηcePc(t)y(mt) (13)

Lw(t) ≤ (1 − v(t))ηahPa(t) + (1 − u(t))ηchPc(t)y(mt) + W(t) (14)

B(t + 1) = B(t)− ηdD(t) + ηc[Rc(t) + Gs(t) + r(t)ηcePc(t)y(mt)] (15)

T(t + 1) = T(t)− ηfiW(t) + ηff[u(t)ηchPc(t)y(mt) + v(t)ηahPa(t)] (16)

0 ≤ B(t) ≤ Bmax, 0 ≤ T(t) ≤ Tmax (17)

0 ≤ Gs(t) + r(t)ηcePc(t)y(mt) + Rc(t) ≤ Cchar (18)

0 ≤ v(t)ηahPa(t) + u(t)ηchPc(t)y(mt) ≤ Thchar (19)

0 ≤ u(t) ≤ 1, 0 ≤ v(t) ≤ 1 (20)

0 ≤ D(t) ≤ Dmax, 0 ≤ W(t) ≤ Wmax (21)

Gl(t), Gs(t), Pc(t), Pa(t), Rc(t), r(t), u(t), v(t) ≥ 0 (22)

At the beginning of each frame, the local generator make a decision on choosing the on/off
statement by solving a mixed-integer stochastic optimization program with constraints. We then
jointly decide other components (Gl(t), Gs(t), Pc(t), Pa(t), Rc(t), r(t), u(t), v(t)) in each time slot.

Solving P1 is challenging. In this paper, we aim to develop an online algorithm which requires no
system statistics and is easy to implement.

3. The Co-Generation System Scheduling Algorithm

From the above, we know that P1 is a challenge to solve by the current algorithm due to
the non-convex optimization. However, we have found a feasible method to work out a convex
optimization problem already. Therefore, in this section, we will change P1 into a convex optimization
problem. It is a real-time algorithm derived from the two-timescale Lyapunov optimization
techniques [23].

3.1. Problem Relaxation

Stochastic optimization framework guarantees the balance of average energy consumption and
average energy generation in the long term; however, it can not provide their hard bounds in any time
slot. Thus, the problem above cannot be settled directly through stochastic optimization framework
under those circumstances (17). To solve the problem, we try to take expectation on both sides of (15)
and (16), which leads to P2 as follows:

P2: min
Ut

lim
T→∞

1
T

T−1

∑
i=0

E{ f (t)} (23)

s.t. D(t) = ηc[Rc(t) + Gs(t) + ηcer(t)Pc(t)y(mt)] (24)

W(t) = ηα[ηchu(t)Pc(t)y(mt) + ηahv(t)Pa(t)] (25)

(13), (14), (18), (19), (20), (21), (22).

After those operations, we finally obtain P2, which fits the stochastic optimization framework.
P2 extends the limitation of Battery and Thermal tank storage. It no longer restricts the value of B(t)
and T(t) in each time slot instead of restricting them in the whole process. Under the condition that
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the solutions must satisfy constraint (17) at each time slot, the framework is feasible to P1. As long as
we define these two constants suitably, solutions to P2 can also be feasible solutions to P1.

3.2. Online Algorithm

To simplify the following discussion, the virtual queues E(t) and X(t) are respectively defined
for the battery and thermal tank as follows:

E(t) = B(t)− θ (26)

X(t) = T(t)− ε (27)

where θ and ε are two perturbation parameters, which are time-independent constants and will be
specified later.

Then the queueing dynamics (15) and (16) can be transformed into:

E(t + 1) = E(t)− ηdD(t) + ηc[Rc(t) + Gs(t) + ηcer(t)Pc(t)y(mt)] (28)

X(t + 1) = X(t)− ηβW(t) + ηα[ηahv(t)Pa(t) + ηchu(t)Pc(t)y(mt)] (29)

In addition, the Lyapunov function is defined to be: Q(t) = 1
2 [E(t)]

2 + 1
2 [X(t)]2. Then the T-slot

conditional Lyapunov drift can be defined as follows:

Δ(t) = E{Q(t + T)− Q(t)|(E(t), X(t))} (30)

Consider any τ ∈ [t, ..., t + T − 1], squaring both sides of (28) and (29). Considering the result in
one time slot after carrying out sub calculations, we can obtain:

Q(t + 1)− Q(t) = 0.5max{η2
dD2

max, η2
c [Rc,max + Gs,max + ηcePc,maxy(mt)]

2}
− E(t){ηdD(t)− ηc[Rc(t) + Gs(t) + r(t)ηcePc(t)y(mt)]}

+ 0.5max{η2
βW2

max, η2
α[ηchPc,maxy(mt) + ηahPa,max]

2]}
− X(t){ηβW(t)− ηα[u(t)ηchPc(t)y(mt) + v(t)ηahPa(t)]}

(31)

In each time slot, the CHP consume the fuel while the thermal source consumes the gas.
The maximum amount of them are Pc,max and Pa,max separately. Similarly, Rc,max and Gs,max

denote the maximum charging power from the renewable energy resource and the external power
grid, respectively. We define B as: B = 0.5max{η2

dD2
max, η2

c [Rc,max + Gs,max + ηcePc,maxy(mt)]2} +

0.5max{η2
βW2

max, η2
α[ηchPc,maxy(mt) + ηahPa,max]2]}.

Summing (31) over τ ∈ [t, ..., t + T − 1] and taking the expectation conditional on E(t) and
X(t) yields:

Δ(t) ≤ BT −E{
t+T−1

∑
τ=t

E(τ)[ηdD(τ)− ηc(Rc(τ) + Gs(τ) + r(τ)ηcePc(τ)y(mτ))]}

+E{
t+T−1

∑
τ=t

X(τ)[ηβW(τ)− ηα[ηchu(τ)Pc(τ)y(mτ)− ηahv(t)Pa(τ)]}
(32)

For the purpose of keeping E(t) and X(t) stable under the stochastic optimization framework,
we should minimize the right-hand side of (32). Beyond that, the goal of our control algorithm is to
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minimize the system energy cost. Accordingly, we set parameter V to denote the tradeoff between
energy storage and consumption and the drift-plus-penalty function is defined as follows:

Δ(t) + VE{ f (t)} ≤ BT −E{
t+T−1

∑
τ=t

E(τ)[ηdD(τ)− ηc(Rc(τ) + Gs(τ) + r(τ)ηcePc(τ)y(mτ))]}

+E{
t+T−1

∑
τ=t

X(τ)[ηβW(τ)− ηα[ηchu(τ)Pc(τ)y(mτ)− ηahv(t)Pa(τ)]}

+ VE{C(t)[Gl(t) + Gs(t) + CgPa(t)] + CfPc(t)y(mt) + Cmy(mt)}

(33)

Replacing Gl(t) in (33) use Gl(t) = [Le(t)]+ − D(t)− (1− r(t))ηcePc(t)y(mt). In order to facilitate
the algorithm, we conduct some manipulation and get the formula:

Δ(t) + VE{ f (t)} ≤ BT + VE{C(t)[Le(t)]+|E(t)}+ VE{Cmy(mt)}
+E{E(t)ηcRc(t)|E(t)} −E{D(t)[E(t)ηd + VC(t)]|E(t)} −E{ηβW(t)X(t)|X(t)}

+E{Gs(t)[ηcE(t) + VC(t)]|E(t)}
+E{Pc(t)y(mt)[r(t)ηceηcE(t) + ηαηchu(t)X(t)− (1 − r(t))ηceVC(t)− ηceVC(t) + VCf]}

+E{Pa(t)[ηαηahv(t)X(t) + VCg]|X(t)}

(34)

The main concept of our control algorithm is minimizing the right-hand side of (34). In other
words, by observing the system inputs, i.e., C(t), E(t), X(t), Le(t) and Lw(t) at each time slot in a
frame, then the values of Gl(t), Gs(t), r(t), Pc(t), Pa(t), Rc(t), D(t) can be determined.

Derived from the analysis above, an online algorithm can be developed by solving P3:

P3: min Gs(t)Hs(t) + Pc(t)Hc(t) + Pa(t)Ha(t)− D(t)Hd(t)− W(t)Hw(t) + Rc(t)E(t) (35)

s.t. Gl(t) + D(t) + (1 − r(t))ηcePc(t)y(mt) = [Le(t)]+ (36)

0 ≤ Gs(t) + r(t)ηcePc(t)y(mt) + Rc(t) ≤ Cchar (37)

0 ≤ D(t) ≤ Dmax, 0 ≤ W(t) ≤ Wmax (38)

(1 − v(t))ηahPa(t) + W(t) + (1 − u(t))ηchPc(t)y(mt) ≥ Lw(t) (39)

0 ≤ u(t)ηchPc(t)y(mt) + v(t)ηahPa(t) ≤ Thchar (40)

0 ≤ r(t) ≤ 1, Pc(t), Gl(t), Gs(t), Pa(t) ≥ 0 (41)

Here

HRc(t) = ηcE(t), Hs(t) = ηcE(t) + VC(t) (42)

Hc(t) = r(t)Hr(t) + u(t)Hu(t) + Hb(t) (43)

Hr(t) = ηcηceE(t)y(mt) + ηceVC(t)y(mt) (44)

Hu(t) = ηchηαX(t)y(mt), Hv(t) = ηαηahX(t) (45)

Hb(t) = VCf − ηceVC(t)y(mt), Hw(t) = ηβX(t) (46)

Ha(t) = Hv(t)v(t) + VCg, Hd(t) = ηdE(t) + VC(t) (47)

Observing P3, we can find the problem function includes the term Pc(t)Hc(t) and Pa(t)Ha(t)
with r(t) and u(t) in Hc(t) and v(t) in Ha(t). It follows that the Hessian matrix of the function is not
positive semi-definite, which makes P3 a non-convex optimization problem and challenging to solve.
However, with a further investigation of P3, D(t) and W(t) can be decoupled from Hd(t) and Hw(t).

At first, we take the terms D(t)Hd(t) and W(t)Hw(t) into account. If Hd(t) < 0, it is clear that
D(t) = 0; otherwise, it can be easily obtained that D(t) = min{Dmax, Le(t)}. Similarly, if Hw(t) < 0,
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we have W(t) = 0; otherwise, W(t) = Wmax. Consequently, we can only concentrate on the key part
of (36) which is listed as follows:

min Gs(t)Hs(t) + Pc(t)Hc(t) + Pa(t)Ha(t) + Rc(t)E(t) (48)

s.t. (37), (38) and (40)

We discuss the solutions to minimize P3 when the local generator is on or off, respectively.
We discuss the question under the circumstance that y(mt) = 1 first.

First, we assume that both (37) and (40) are inactive. Analyzing those equations we can easily
see the linear relationship between Ha(t) and v(t). Therefore, we can set v(t) to be 0 or 1 to minimize
Ha(t). Similarly, r(t) and u(t) can also be decided to be 0 or 1 in order to minimize Hc(t).

Secondly, supposing (37) to be active while (40) to be inactive, we have:

Gs(t) = Cchar − r(t)ηcePc(t)− Rc(t) (49)

Replacing Gs(t) using (49) in (48), now the problem change into:

min Rc(t)[E(t)− Hs(t)] + Hs(t)Cchar + Pc(t)Hu(t)u(t) + Pc(t)Hb(t) (50)

Then the minimum of the above equation can be achieved by setting u(t) to be 0 or 1.
Thirdly, supposing (37) to be inactive while (40) to be active, we have:

Pa(t) =
Thchar − u(t)ηchPc(t)

ηahv(t)
(51)

and we replace Pa(t) using (51) in (48), then we have:

min
VCg[Thchar − u(t)ηchPc(t)]

ηahv(t)
+ Gs(t)Hs(t) + Pc(t)r(t)Hr(t) + Pc(t)Hb(t) + Rc(t)E(t) (52)

Since Thchar − u(t)ηchPc(t) ≥ 0, we can set both u(t) and v(t) to 1 to minimize (52).
Finally, supposing (37) and (40) to be active, we can transform the problem into:

min
VCg[Thchar − u(t)ηchPc(t)]

ηahv(t)
+ Pc(t)Hb(t) + ThcharX(t)ηα + Rc(t)E(t) (53)

s.t. (37), (40), (41)

Since Tchar − ηchu(t)Pc(t) ≥ 0, to minimize (53) we can set v(t) = u(t) = 1.
Then we discuss the circumstance that y(mt) = 0.
Because Pc(t) is related to y(mt), so when y(mt) = 0, Pc(t) = 0. The problem is reduced to

the equation as follows:

min Gs(t)Hs(t) + Pa(t)Ha(t) + Rc(t)E(t) (54)

Replacing Rc(t) use (37). Setting v(t) = 0 or 1 can get the minimum value of Ha(t). So the equation
is more concise:

min Gs(t)[Hs(t)− E(t)] + CcharE(t) (55)

From this, what we need to discuss is the value of Gs(t). If (ηc − 1)E(t) + VC(t) ≥ 0,
to minimize (55), Gs(t) should be set to 0; If (ηc − 1)E(t) + VC(t) < 0, we have Gs(t) = Gs,max.

The above analysis display the minimization is four different circumstances.
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4. Performance Analysis

Theorem 1. Define θ and ε to be:

θ =
Vmax{Ce,max, Cf}

ηc
+ T min{ηdDmax, Le,max} (56)

ε =
VCg

ηαηah
+ TLw,max (57)

Then concluding from the process of minimizing P3 we can obtain the result:

0 ≤ B(t) ≤ θ + TCchar, ∀t ∈ T (58)

0 ≤ T(t) ≤ ε + Thchar · T, ∀t ∈ T (59)

Proof. Using induction method, the upper and lower bounds of B(t) and T(t) can be proved under
(56) and (57).

1. Firstly, we show the upper bounds. The main idea is to prove that the battery and thermal tank
will not charging when there level exceed θ and ε, respectively.

• Suppose B(t) ≤ θ. Since the electricity charged in a time slot will not be more than TCchar.
Then B(t + 1) ≤ θ + TCchar holds, obviously.

• Suppose B(t) > θ, i.e., E(t) > 0. From (42), (44) and (47), it can be obtained that Hs(t) > 0,
Hr(t) > 0, Hd(t) > 0 and HRc(t) > 0. According to P3, we must set Rc(t) = 0, Gs(t) = 0,
r(t) = 0, D(t) = min{ηdDmax, Le(t)} to minimize the problem function, i.e., the battery will
not charge when its level rises over θ. Accordingly, B(t + 1) ≤ B(t) holds when B(t) > θ.
With the conclusion when B(t) ≤ θ, we can know that B(t) ≤ θ + TCchar, ∀t ∈ T.

• Suppose T(t) ≤ ε. Similar to the battery, the heat charged in a time slot will not exceed
TCchar · T. Hence, T(t + 1) ≤ ε + Thchar · T holds then.

• Suppose T(t) > ε, i.e., X(t) > 0. From (45) to (47), it can be obtained that Hu(t) > 0,
Hv(t) > 0, Hw(t) > 0 and Ha(t) > 0. According to P3, we must set Pa(t) = 0, v(t) = 0 and
W(t) = min{ηβWmax, Lw(t)} to minimize the problem function, i.e., the thermal tank will
not charge when its level rises over ε. Accordingly, T(t + 1) ≤ T(t) holds when T(t) > ε.
With the conclusion when T(t) ≤ ε, we know that T(t) ≤ ε + Thchar · T, ∀t ∈ T .

The above proof presents the upper bounds of B(t) and T(t), i.e., the capacities of battery and
thermal tank, respectively. To simplify the future investigation, we denote the capacities as Bmax

and Tmax, respectively. Since the capacities are functions of V, the value of V can be changed to
make a tradeoff between energy storage and cost. In contrast, the value of V can be obtained
with a given battery pack or thermal tank capacity.

2. Secondly, we show the lower bounds using (56) and (57). To keep B(t) and T(t) from being
negative, we only need to prevent the battery and thermal tank from discharging when they can
not afford, i.e., when B(t) < T min{ηdDmax, Le,max} and T(t) < TLw,max

• Suppose B(t) ≥ T min{ηdDmax, Le,max}. Certainly, it follows that B(t + 1) > 0.
• Suppose 0 ≤ B(t) < T min{ηdDmax, Le,max} . From (42), (47) and (56) , it can be obtained

that Hd(t) < 0, Hs(t) < 0. According to P3, we have to set D(t) = 0, Gs(t) ≥ 0,
i.e., the battery will not discharge. Accordingly, B(t) ≤ B(t + 1) holds then. Consequently,
we can conclude that 0 ≤ B(t), ∀t ∈ T.
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• Suppose T(t) ≥ TLw,max. Then T(t + 1) > 0 follows apparently.
• Suppose 0 ≤ T(t) < Lw,max. From (46) and (57), it can be obtained that Hw(t) < 0.According

to P3, we have to set W(t) = 0, i.e., the thermal tank will not discharge. Accordingly,
T(t) ≤ T(t + 1) holds then. Finally, we can conclude that 0 ≤ T(t), ∀t ∈ T.

Theorem 1 shows that the battery and thermal tank both have finite capacities under the proposed
algorithm, which means solutions of P3 are feasible solutions to P1 as well.

Theorem 2. The gap between the optimal cost of P1 and the expected cost obtained by solving P3 is no more
than TB

V , i.e.,

lim
T→∞

1
T

T−1

∑
i=0

E{ f
′
(t)} ≤ P∗

1 +
TB
V

, (60)

where f
′
(t) is the energy cost at time slot t under the proposed algorithm, and P∗

1 is the optimal
solution to the original problem P1.

5. Numerical Simulations

In this section, we use Matlab to evaluate the performance of the proposed algorithms by
numerical simulations. We consider a hotel with battery and thermal tank as well as the CHP
system. In our simulation, each time slot represents 15 min and each frame consists of 4 time slots
(i.e., one hour). The parameter settings are partly listed in Table 1 and detailed in Section 5.1.

Table 1. Parameter settings in numerical simulations.

Parameter Value Unit

ηah 0.8
ηc 0.9
ηd 1.1
ηα 0.9
ηβ 1.1
cf 0.0035 $/kBtu
cm 0.1 $/h

Dmax 30 kWh/h
Cchar 20 kWh/h
Gl,max 32 kWh/h
Gs,max 32 kWh/h
Wmax 30 kBtu/h
Pc,max 50 kBtu/h
Pa,max 32 kBtu/h

5.1. Simulation Setup

Centralized Power Grid: We obtain the electricity price data of power grid from [24]. The data
trace is shown in Figure 3. The maximal supply power Gl,max and charging power Gs,max obtained
from power grid are both set to be 32 kWh/h.

External Gas Station: We assume that the natural gas price cg varies across time and has a uniform
distribution between (0.004, 0.010)$/kBtu. The maximal thermal output is set as Pa,max = 32 kBtu/h.
The efficiency is set as ηah = 0.8.
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Figure 3. Data trace of electricity market prices.

CHP System: The maximal thermal output of CHP system is set as Pc,max = 50 kBtu/h.
The overall CHP efficiency is assumed to be 80%, and the electricity conversion efficiency is in
the range of 30–40%. The fuel cost of CHP is set as cf = 0.0035 $/kBtu. We set the minimal on/off
period of CHP to be 1 h, i.e., 4 time slots. The sunk cost for maintaining the system in its active state is
set as cm = 0.1 $/h.

Harvested Wind Power: The harvested wind power data is obtained from [25]. The data path is
shown in Figure 4.

Battery and Thermal Tank Model: We set the maximal charging and discharging rates of
the battery as Cchar = 20 kWh/h and Dmax = 30 kWh/h, while the charging and discharging efficiency
is set as ηc = 0.9 and ηd = 1.1, respectively. Similarly, the heat storing and releasing efficiency of
the thermal tank is also set as ηff = 0.9 and ηfi = 1.1. The maximal heat output is set as 30 kBtu/h.

Electricity and Heat Demand: We use the real demand data provided by California Commercial
End-Use Survey (CEUS) [26] in our simulation. The data traces in 50 h (i.e., 200 time slots) are shown
in Figure 5.
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Figure 4. Data traces of harvested wind power.
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Figure 5. Demand data traces in 50 h (i.e., 200 time slots). (a) Electricity demand; (b) Heat demand.

5.2. Results of the Simulation

With the parameters above, we simulate for 200 time slots and each time slot stands for 15 min.
We let V = 5.

Figure 6 shows the process where the CHP system adaptively makes on/off decisions in 200 time
slots. We can see that the decisions are made every 4 time slots.
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Figure 6. A sample path of on/off decisions in 200 time slots under V = 5.

The sample paths in Figure 7 depict electricity and heat supplies in the first 24 h (i.e., 96 time
slots). Both the electricity and heat demands can be satisfied with hybrid sources.
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Figure 7. Sample paths of power supplies in the first 24 h (i.e., 96 time slots) under V = 5. (a) Electricity
supply; (b) Heat supply.

Figure 8 specifies the charging/discharging behavior of the battery and thermal tank. As shown
in Figures 4 and 5a, the electricity demand is larger than the harvested wind power at every time
slot, there is no excessive renewable energy (wind power) left to charge into the battery. As a result,
there is no wind power illustrated in Figure 7a. Actually, in our optimization problem and simulations,
if there exists excessive wind power, it can be charged into the battery for future use under our
designed algorithm.

Figure 9 shows the corresponding changes of battery level and thermal tank level in all the 200 time
slots under V = 5. We can see that the tank level remains almost stationary due to the uniform
distribution of the gas price, while the battery level fluctuates in reaction to the electricity price.
However, the capacities of both battery and thermal tank are bounded.
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Figure 8. Behavior of charging and discharging in the first 24 h (i.e., 96 time slots) under V = 5.
(a) Amount of electricity charged(discharged) into(from) battery; (b) Amount of heat stored (released)
into (from) thermal tank.
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Figure 9. Sample paths of battery level and thermal tank power level under V = 5.

5.3. Performance vs. V and Charging/Discharging Efficiency

With further simulations under different values of ηα, ηβ, ηc, ηd and V, we observe the impacts of
the weight V and efficiency of charging/discharging.
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As shown in Figure 10, the cost drops when charging and discharging get more efficient. Figure 11
shows that the capacity of battery and thermal tank is linear with V, which is also indicated in
Theorem 1. The total cost curve shown in Figure 12, on the other hand, converges to the minimum
with increasing V. Furthermore, by comparing with the situations where CHP is permanently on and
off, the effectiveness of our adaptive on/off decision policy can be verified.
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Figure 10. Impacts of the efficiency of charging and discharging. (a) Total cost vs. ηc and ηd; (b) Total
cost vs. ηα and ηβ.
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6. Conclusions

In this paper, we studied the operating cost minimization problem for microgrids with CHP
generation, energy storages, and renewable energy resources by using the Lyapunov approach.
We designed an algorithm LYP that can achieve near-optimal performance by adjusting the value of V.
According to a large amount of empirical evaluations, the microgrid operating cost can be reduced
significantly through such an integration of centralized grid, renewable energy, power storage device,
and co-generation.
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Abstract: This paper proposes a predictive dispatch model to manage energy flexibility in the
domestic energy system. Electric Vehicles (EV), batteries and shiftable loads are devices that provide
energy flexibility in the proposed system. The proposed energy management problem consists of two
stages: day-ahead and real time. A hybrid method is defined for the first time in this paper to model
the uncertainty of the PV power generation based on its power prediction. In the day-ahead stage, the
uncertainty is modeled by interval bands. On the other hand, the uncertainty of PV power generation
is modeled through a stochastic scenario-based method in the real-time stage. The performance of the
proposed hybrid Interval-Stochastic (InterStoch) method is compared with the Modified Stochastic
Predicted Band (MSPB) method. Moreover, the impacts of energy flexibility and the demand response
program on the expected profit and transacted electrical energy of the system are assessed in the case
study presented in this paper.

Keywords: decision-making under uncertainty; domestic energy management system; energy
flexibility; interval optimization; stochastic programming

1. Introduction

1.1. Aims and Motivation

In the last decade, power systems have faced new challenges due to the increment of the
distributed renewable energy resources. Renewable energy resources decrease the greenhouse gas
emissions and costs related to electricity production [1]. However, the integration of these intermittent
energy resources leads to energy management problems based on the scale of the energy system [2].
At a smaller scale, Domestic Energy Management Systems (DEMSs) enable the residential customers
to manage their loads in order to minimize the electricity cost. Generally, there are two approaches for
energy management of the DEMSs. These approaches consist of centralized and decentralized systems.
Based on the approach of the system, different structures of the controlling and communicating systems
are required [3].
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1.2. Literature Review

Various research has been presented for optimal energy scheduling at the scale of the smart
homes and smart grids that can be classified based on their goals, strategies, utilized technologies
and software. In [4,5], the authors discussed the necessities of using computational intelligence in
the DEMSs and a review of energy management systems based on multi-agent systems, respectively.
On the other hand, in [6], the present and future perspectives regarding EVs and their operation
modes in smart grids and smart homes have been discussed. In [7], the authors proposed a method to
schedule the local energy resources optimally. Minimizing the loss of energy and purchasing electricity
cost were the main goals of the authors. In [8], the authors defined the DEM problem in connection
with local energy nodes. Furthermore, in [8], homes have a two-way communication with the market
and can manage energy locally. In [9], a domestic demand response has been implemented in a
distribution grid. The real-time price is the main goal of the demand response program based on the
direct load control in [9]. Furthermore, the uncertainty of the price and load has been considered in [9].
Price prediction has been used instead of communication between homes in the distribution network.

In [10], a DEMS has been developed for day-ahead energy scheduling considering hourly pricing
and the peak power constraint based on the demand response programs. The authors of [11] proposed
a method to manage the energy of EV and energy storage systems according to the dynamic pricing,
peak power limitation and demand response programs. The proposed Domestic Energy Management
(DEM) problem has been modeled by mixed-integer linear programming. In [12], the authors propose a
decentralize strategy for optimal energy scheduling under the large penetration of EVs. This interaction
has been considered between consumers and the aggregator in [12]. This way, end-users send their
optimum demand decisions and reschedule their demands based on the signals of the aggregator.
In [13], a rescheduling DEMS has been presented to make the optimum decisions through the day and
avoid the negative impact of price uncertainty.

The authors of [14] presented a multi-time scale DEM problem that includes EV and different
types of electrical loads. Furthermore, the authors introduced the improved optimization algorithm
to solve the DEM problem. In [15], a chance constraint model has been presented to optimize the
performance of the domestic devices. The improved particle swarm optimization method has been
used to optimize the problem based on the proposed demand response program. In [16], the authors
introduced the Stackelberg game-based method to maximize the profits of the costumers and retailers
simultaneously. In the proposed home model of [16], electrical loads of customers are elastic based
on EVs. Furthermore, the price-based DR has been implemented in [16]. In [17], the DEM problem
has been solved by stochastic dynamic programming considering EV. The authors proved that the
EV is one source of uncertainty in the system due to the EV’s plug-in time, plug-out time and charge
demand for mobility. Hence, the plug-state of the EV has been modeled through a Markov chain in [17].
In [18], a DEMS has been presented as part of an organization-based multi-agent system. Besides,
the uncertainty of distributed energy resources has been considered through an Modified Stochastic
Predicted Band (MSPB) method used to model the DEM problem.

1.3. Contributions

In the literature, several relevant advances have been accomplished in the DEMS domain.
These mostly refer to the study and analysis of the several resources’ impact on the management
process, namely flexible loads, EVs, batteries and generation. The interaction with the electricity
market and the participation in demand response programs has also been explored, and this research
is leading to promising outcomes, but modeling the electricity market at the local level has not been of
interest to the authors in the previous works. However, the local electricity market has been introduced
in [18], but the impact of the flexibility has not been evaluated in [18]. The research dealing with the
uncertainty associated with the several resources is, however, still at an initial stage. Although some
relevant works can be found in the literature, there are still many loose ends due to the difficulty in
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correctly identifying, measuring, modeling and representing the different sources of uncertainty, so
that these can be correctly considered by DEMS scheduling, dispatch and management models.

In order to overcome the limitations in the field, this paper proposes a two-stage predictive
dispatch model to manage energy flexibility in the domestic energy system. EV, battery and shiftable
loads are in charge of providing the energy flexibility. A novel hybrid (InterStoch) method is defined for
the first time in this paper to model the uncertainty of the PV power generation. In the first stage, the
day-ahead stage, the uncertainty is modeled by interval bands. However, a stochastic scenario-based
method is used to consider the uncertainty of PV power generation in the second stage, the real-time
stage. Finally, the performance of the proposed hybrid Interval-Stochastic (InterStoch) method is
compared with the MSPB method that was introduced in [18,19].

The rest of this paper is organized as follows. Section 2 introduces the proposed hybrid
interval-stochastic method. Then, the domestic energy management problem is described in Section 3.
Section 4 provides the simulation results. Finally, Section 5 summarizes the conclusions.

2. Interval-Stochastic Method

2.1. Data

In this paper, the predicted data from [18] have been used. For simplicity, only the uncertainty
of PV power generation is considered. As shown in Table 1, the predicted data in each time step
consist of the central forecasting and up/down deviation. Hence, the predicted data are limited to
the upper/lower band based on the central forecasting and up/down deviation. It is noticeable that
this paper concentrates only on modeling the uncertainty due to PV power prediction in the system.
Hence, the forecasting system is not explained in this paper. The presented data of Table 1 are the
inputs of the energy management system. Therefore, the energy management system makes optimum
decisions through the InterStoch method.

Table 1. Predicted data of uncertain variables [18].

t Ppred
pvt (kW) σdown

pv (kW) σ
up
pv (kW) θ

pred
outt

(◦C) Lpred
mrst (kW)

1 0 0.00 0.00 5.5 0.005

2 0 0.00 0.00 5.5 0.005

3 0 0.00 0.00 5.2 0.005

4 0 0.00 0.00 5.2 0.005

5 0 0.00 0.00 4.8 0.005

6 0 0.00 0.00 5.5 0.005

7 0.10 0.01 0.02 6.5 0.005

8 0.20 0.02 0.04 7.5 0.005

9 0.42 0.03 0.07 9.8 0.005

10 0.76 0.08 0.26 10 0.005

11 1.1 0.12 0.23 11 0.005

12 1.32 0.13 0.26 12 0.005

13 1.91 0.10 0.19 12 0.005

14 0.85 0.02 0.04 12 0.005

15 0.29 0.02 0.04 11 0.005

16 0.31 0.02 0.03 10 0.005

17 0.06 0.01 0.01 9 0.005

18 0 0.00 0.00 8.5 0.005

19 0 0.00 0.00 8 0.005

20 0 0.00 0.00 7.5 1.218

21 0 0.00 0.00 7 0.262

22 0 0.00 0.00 6.5 0.14

23 0 0.00 0.00 6.2 0.127

24 0 0.00 0.00 6 0.005
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2.2. Interval Model

In the day-ahead stage, PV system power generation is limited between bands according to the
forecasting deviations. The minimum band represents the deviation below the central forecasting, and
the maximum band represents the deviation above the central forecasting. Pda

pvt intends to converge to
the maximum/minimum band in the best/worst case. Therefore, Equation (1) can be divided into
Equations (2) and (3) in the best and worst cases, respectively. This way, an auxiliary parameter is
added in these equations as a slack parameter for the decision-maker. This parameter is denoted
as the Optimistic Coefficient (OC), α, which is between zero and one, and had been defined for
the first time in [19]. Hence, Pda

pvt converges to the best/worst case when the decision-maker has
the pessimistic/conservative perspective by adding α to Equations (2) and (3) and summing over
them, as seen in Equation (4). Then, Equations (4) and (5) are obtained through simplification of
Equations (1)–(3).

[H]Ppred
pvt − σdown

pvt ≤ Pda
pvt ≤ Ppred

pvt + σ
up
pvt (1)

Ppred
pvt ≤ Pda

pvt ≤ Ppred
pvt + σ

up
pvt : OC = 1 (2)

Ppred
pvt − σdown

pvt ≤ Pda
pvt ≤ Ppred

pvt : OC = 0 (3)

Ppred
pvt αpv − (Ppred

pvt − σdown
pvt )(1 − αpv) ≤ Pda

pvt (4)

≤ (Ppred
pvt + σ

up
pvt)αpv + Ppred

pvt (1 − αpv)

Ppred
pvt − σdown

pvt (1 − αpv) ≤ Pda
pvt ≤ Ppred

pvt + σ
up
pvt αpv (5)

2.3. Stochastic Model

In the real-time stage, stochastic programming is used to model the uncertainty of the PV power.
Therefore, scenarios with their corresponding probabilities are defined in this section. This way, the
prediction mean and deviation are defined as metric parameters by Equations (6) and (7), respectively.
These are used to generate the scenarios of the PV power in the real-time stage. In this step, three
scenarios are defined to model the uncertainty of the PV system’s power generation. The first scenario,
the up scenario, describes data that have a deviation above the central forecasting. The second scenario,
the down scenario, represents data that have a deviation below the central forecasting. Then, the
third scenario describes the central forecasting data. The amounts of these scenarios are determined
through Equations (8)–(10). Moreover, the corresponding probabilities are obtained according to
Equations (11)–(13).

Pmean
pvt = Ppred

pvt +
σ

up
pvt − σdown

pvt

2
(6)

Δpvt =
σ

up
pvt + σdown

pvt

2
(7)

Prt
pvt(ω = ω1) = Ppred

pvt + σ
up
pvt (8)

Prt
pvt(ω = ω2) = Ppred

pvt − σdown
pvt (9)

Prt
pvt(ω = ω3) = Ppred

pvt (10)

π(ω = ω1) = Prob(Ppred
pvt + σ

up
pvt > Pmean

pvt + Δpvt) (11)

π(ω = ω2) = Prob(Ppred
pvt − σdown

pvt < Pmean
pvt − Δpvt) (12)

π(ω = ω3) = 1 − π(ω = ω1)− π(ω = ω2) (13)
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3. Domestic Energy Management Problem

We consider that each smart home can participate in two different types of Local Electricity
Market (LEM), not the wholesale market [18]. These LEMs are called day-ahead and real-time markets.
In practice, the proposed LEMs can be operated by distribution system operator or retailers. Hence,
the distribution system operator or retailers are responsible for providing the local electricity market
framework for their agents that are in their region or have contracts to transact energy with them.
Besides, it is considered that smart homes are price-takers in the LEM, and they can buy electricity from
the local electricity market based on the Time of Use (ToU) tariff. Furthermore, it is assumed that the
sold/bought electricity prices to/from the local electricity market are different. The domestic energy
management problem is modeled as a two-stage problem. The first stage is called the day-ahead stage,
and the second stage is called the real-time stage. Here, the Expected Profit (EP) is defined by an
Objective Function (OF) to maximize the profit of energy services. In Equation (14), EP is the sum
of the day-ahead EP, EPda, and the real-time EP, EPrt, which are OFs of the day-ahead and real-time
stages, respectively.

EP = EPda + EPrt (14)

3.1. Day-Ahead Stage

The objective function of the domestic energy management system in the day-ahead local
electricity market is defined in the Day-Ahead (DA) stage. The purpose is to make the best decisions
in each of the time periods during the day d. However, the DA stage obtains optimum decisions for
the system in day d-1. Hence, the objective function for the DA stage is represented in (15):

EPda =
Nt

∑
t=1

(λ
′
tP

da
pv,outt + ∑

k
γkλ

′
tP

da
dis,outt

(k)− λtPda
nett) (15)

EPda consists of three parts. The first and second parts represent the revenue of selling the
electrical energy produced by PV and Energy Storage Systems (ESSs) to the local market. The third
part states the costs of buying the electrical energy from the local market. It should be mentioned that
participation factor, γk, is a binary parameter that is defined for the first time in this paper in order
to consider the participation of the ESSs in the DA stage. If the participation factor is equal to zero,
ESSs are used to trade energy only in the real-time LEM. In other words, homes can utilize the full
capacity of the ESSs in the day-ahead market if the participation factor equals one. The constraints of
the DA stage are:

Pda
nett + Pda

pv,int
+ ∑

k
γkPda

dis,int
(k) =

Nj

∑
j=1

Lda
jt + γkPda

cht
(k) (16)

− Smax ≤ Pda
nett − Pda

pv,outt − ∑
k

γkPda
dis,outt

(k) ≤ Smax (17)

Equation (16) establishes the power balance equation due to the power outputs of the PV,
Pda

pv,int
, and ESSs, Pda

dis,int
(k), injected into the home, the grid power input, Pda

nett
, electrical loads, Lda

jt ,

and the charged power of ESSs, Pda
cht

(k). In this paper, power loss is not considered for simplicity.
Equation (17) represents the power flow limitation through the distribution line, which ends at the
building. Smax expresses the maximum power capacity of the distribution line that links the smart
home with the distribution power network. Besides, there are some limitations corresponding to all
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appliances. Only the maximum and minimum limitations of the energy produced/consumed are
defined in each device at this stage because the uncertainty is not considered in the DA stage.

Pda
pvt = Pda

pv,int
+ Pda

pv,outt (18)

Ppred
pvt − σdown

pvt (1 − αpv) ≤ Pda
pvt ≤ Ppred

pvt + σ
up
pvt αpv (19)

Lda
jt = Lpred

jt
(20)

Nj

∑
j=1

Lda
jt = Lda

sht
+ Lda

swht
+ Lda

ppt + Lda
mrst (21)

The total power generation of the PV is stated in (18). Equation (19) represents the power output
limitations of the PV system. Besides, Equation (20) represents the total electrical power consumed.

Energy Storage Systems

ESSs can be utilized economically based on the charge and discharge strategies in the DEM
problem. Mobility patterns and storage characteristics of the ESSs are different factors that should be
considered in modeling the ESSs. However, the mobility pattern is only related to the EVs.

Cda
t (k) = Cda

t−1(k) + Pda
cht

(k)ηB2V − Pda
dist

(ω)/ηV2B, t ≥ 2 (22)

Cda
t (ω) = Ci, t = 1

Pmin
ev ≤ Cda

t (k) ≤ Pmax
ev (23)

− wmin ≤ Cda
t (k)− Cda

t−1(k) ≤ wmax, t ≥ 2 (24)

− wmin ≤ Cda
t (k)− Ci(k) ≤ wmax, t = 1

0 ≤ Pda
dist

(k) ≤ wmaxuda
t (25)

0 ≤ Pda
cht

(k) ≤ wmin(1 − uda
t ) (26)

Pda
dist

(k) = Pda
dis,int

(k) + Pda
dis,outt

(k) (27)

3.2. Real-Time Stage

In this stage, the objective function of the home due to participating in the RTLEM is defined.
In addition, the uncertainties of decision-making variables are considered through a stochastic
scenario-based method. These variables are determined based on the outputs of the first stage and
the prediction engine. It is noticeable that the traded energy of the homes in the real-time market
is different from their traded energy in the day-ahead market because of the PV power generation
uncertainty. In other words, the traded energy of smart homes in real time can be positive or negative
due to the prediction error of the PV power generation. The expected profit of the real-time stage, EPrt,
is represented as:

EPrt = ∑Nt
t=1 ∑NΩ

ω=1 π(ω)(λt(Prt
pv,outt

(ω)− Pda
pv,outt

)

+∑k(λt(Prt
dis,outt

(k, ω)− γkPda
dis,outt

(k))− λt(Prt
cht

(ω)− γkPda
cht

(k)))

−∑
Nj
j=1 VOLLjLshed

jt (ω)− Vs
pvSpvt(ω))

(28)

EPrt consisting of five parts. The first part represents the revenue for selling energy produced by
PV to the real-time local electricity market. The total cost of electrical energy that is bought from the
BLEMis represented in the second part. The third part expresses the profit due to selling the stored
electrical energy of ESSs to the local market. The Value of Loss Load (VOLL) cost, VOLLj, is stated
in the fourth part. Finally, the spillage cost of the PV system is represented in the last part. As seen
in (28), it is proposed that if the PV power generation in the real-time stage, Prt

pv,outt
(ω), is more than
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the PV power generation in the DA stage, the DEMS can only sell its extra power at the net price,
λ, that is less than the price that is established for the purchase of the power generated by the PV on
the day-ahead local market, λ

′
. Hence, the DEMS can increase its expected revenue if it has better

day-ahead prediction accuracy of its PV power generation.

Prt
nett(ω) + Prt

pv,int
(ω) + ∑

k
Prt

dis,int
(k, ω) =

Nj

∑
j=1

(Lrt
jt (ω)− Lshed

jt (ω))

+ ∑
k

Prt
cht

(k, ω)

(29)

− Smax ≤ Prt
nett(ω)− (Prt

pv,outt(ω) + ∑
k

Prt
dis,outt

(k, ω)) ≤ Smax (30)

In the balancing stage, Equation (29) is the power balance equation, and (30) shows the power
flow limitation in a distribution line. Besides, there are specific definitions for all appliances in the
building energy system whose uncertainties are considered in the balancing stage.

3.2.1. PV System

The power output of PV in the real-time stage, Prt
pvt , is obtained based on (31).

Prt
pvt(ω) = Prt

pv,pt(ω)− Spvt(ω) (31)

Prt
pvt(ω) = Prt

pv,int
(ω) + Prt

pv,outt(ω) (32)

0 ≤ Spvt(ω) ≤ Prt
pv,pt(ω) (33)

Here, Prt
pv,pt(ω) is the potential power generation of PV in real time, and Spvt(ω) is the spillage

power of the PV system. Equation (32) represents that the total power output of PV equals its power
output consumed in the home, Prt

pv,int
(ω), and the amount of power generation that is sold to the

real-time local market, Prt
pv,outt

(ω). The PV spillage is the amount of power that is spilled in period
t. This amount is positive or equal to zero and is limited to the actual power generation of PV as
represented in (33).

3.2.2. Energy Storage Systems

ESSs can be utilized economically based on the charge and discharge strategies in the domestic
energy management problem.

Crt
t (k, ω) = Crt

t−1(k, ω) + Prt
cht

(k, ω)ηB2V − Prt
dist

(k, ω)/ηV2B, t ≥ 2 (34)

Crt
t (k, ω) = Ci, t = 1

Pmin
ev ≤ Crt

t (k, ω) ≤ Pmax
ev (35)

− wmin ≤ Crt
t (k, ω)− Crt

t−1(k, ω) ≤ wmax, t ≥ 2 (36)

− wmin ≤ Crt
t (k, ω)− Ci ≤ wmax, t = 1

0 ≤ Prt
dist

(k, ω) ≤ wmaxurt
t (37)

0 ≤ Prt
cht

(k, ω) ≤ wmin(1 − urt
t ) (38)

Prt
dist

(k, ω) = Prt
dis,int

(k, ω) + Prt
dis,outt

(k, ω) (39)

The power generation of ESSs, Prt
dist

(ω), is expressed in (39). Equation (34) represents the state
of charge balance equation in an ESS, where Ci is the initial state of charge in the ESS. Maximum and
minimum limitations of the ESSs’ state of charge are represented in Equation (35). Ramping constraints
of ESSs are represented in Equation (36). Moreover, Equations (37) and (38) express the constraints of
ESS in the discharge and charge states, respectively.
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3.3. Electrical Loads

Electrical loads include loads that can be controllable and/or shiftable. In this paper, three types
of loads are modeled: the space heater, Lsht , which is a controllable load, the storage water heater, Lswht ,
which is a shiftable load, and the must-run services, Lmrst , which are non-controllable-shiftable loads.
Equations (40) and (41) define total electrical load and total load shedding, respectively. These loads
are described in the following.

Nj

∑
j=1

Lrt
jt (ω) = Lrt

sht
(ω) + Lrt

swht
(ω) + Lrt

ppt(ω) + Lrt
mrst(ω) (40)

Nj

∑
j=1

Lshed
jt (ω) = Lshed

sht
(ω) + Lshed

swht
(ω) + Lshed

ppt (ω) + Lshed
mrst(ω) (41)

3.3.1. Space Heater

The space heater provides the indoor temperature at the desired temperature. Equation (42)
represents the relation between the indoor temperature and its power consumption. In Equation (42),
θ0 is the initial indoor temperature, which is assumed to be equal to the desired temperature.
Equation (43) expresses that indoor temperature is limited to 1 ◦C more or less than the desired
temperature. Furthermore, the maximum and minimum bands of the space heater load are represented
in (44). In addition, the load shedding constraint of the space heater is represented in (45).

θint+1(ω) = θint(ω)e−1/RC + Lrt
sht
(ω)R(1 − e−1/RC) (42)

+ θ
pred
outt

(1 − e−1/RC), t ≥ 2

θrt
int
(ω) = θ0 = θdes, t = 1

− 1 ≤ θrt
int
(ω)− θdes ≤ 1 (43)

Lmin
sh ≤ Lrt

sht
(ω) ≤ Lmax

sh (44)

0 ≤ Lshed
sht

(ω) ≤ Lrt
sht
(ω) (45)

3.3.2. Storage Water Heater

The storage water heater stores the heat in the water tank. The maximum and minimum
limitations of the storage water heater’s load and energy consumption are represented in (46) and (47),
respectively. The load shedding constraint of the storage water heater is expressed in (48).

Lmin
swh ≤ Lrt

swht
(ω) ≤ Lmax

swh (46)
Nt

∑
t=1

Lrt
swht

(ω) = Uswh (47)

0 ≤ Lshed
swht

(ω) ≤ Lrt
swht

(ω) (48)

3.3.3. Pool Pump

The maximum running hours of the pool pump equal Ton hours per day. Equation (49) represents
the limitations of the pool pump power consumption in each hour. Equation (50) represents the
maximum hour constraint that that pool pump can be turned on. Moreover, the load-shedding
constraint related to the pool pump is represented in (51).
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Lmin
pp zt(ω) ≤ Lrt

pp(ω) ≤ Lmax
ppt zt(ω) (49)

Nt

∑
t=1

zt(ω) ≤ Ton (50)

0 ≤ Lshed
ppt (ω) ≤ Lrt

ppt(ω) (51)

3.3.4. Must-Run Services

Must-run services are defined as loads that should be provided quickly. In this paper, it is assumed
that there is no uncertainty due to the prediction of must-run services as represented in Equation (52).
Furthermore, the load shedding constraint is represented by (53).

Lrt
mrst(ω) = Lpred

mrst (52)

0 ≤ Lshed
mrst(ω) ≤ Lrt

mrst(ω) (53)

4. Simulation Results

4.1. Case Study

To evaluate the performance of the proposed DEMS, the modified test system from [19] is used for
which the wind micro-turbine has been omitted from the test system in this paper. The maximum power
produced by the PV system is 2 kW. The battery can store between 0.48 and 2.4 kWh, and the maximum
charging/discharging rates are 400 W. Besides, the charging and discharging efficiencies are 90%.
The maximum heating power of the Space Heater (SH) equals 2 kW to maintain the temperature of the
house within ±1 of the desired temperature (23 ◦C). The thermal resistance of the building shell equals
18 ◦C/kW, and Cequals 0.525 kWh/◦C . The energy capacity of the Storage Water Heater (SWH) is
10.46 kWh, which has a 2-kW heating element. The rated power of the Pool Pump (PP) is 1.1 kW, and it
can run for a maximum of 6 h during the day. The program implemented is solved in GAMS 23.7 [20].
Table 2 gives the price data of the system. Moreover, VOLL and the spillage costs of PV-battery power
generation are shown in Table 3.

Table 2. ToU Price data of the system.

Time (hour)
Price ($/MW)

λi λnet

23–7 2.2 0.0814

8–14 2.2 0.1408

15–20 2.2 0.3564

21–22 2.2 0.1408

Table 3. Value of Loss Load (VOLL) and spillage costs. SH, Space Heater; SWH, Storage Water Heater;
PP, Pool Pump.

Time (hour)
VOLL ($/MW) Spillage Cost ($/MW)

SH SWH PP MRS PV

22–7 1 1 −0.5 2.2 4

8–21 1 1 0.25 2.2 4

4.2. Impact of Energy Flexibility

In this section, the energy flexibility of the proposed DEMS is assessed. Hence, four scenarios are
defined to analyze the performance of the system. In Scenario 1, neither the battery nor the EV are
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defined in the day-ahead stage of the energy management problem (γbattery = γEV = 0). In Scenario 2,
only the battery is considered in the day-ahead stage (γbattery = 1, γEV = 0). However, only the EV is
considered in the day-ahead stage in Scenario 3 (γbattery = 0, γEV = 1). In Scenario 4, both (battery
and EV) are modeled in the day-ahead stage (γbattery = γEV = 1).

The impact of ESSs on the total, day-ahead and real-time expected profits of the system is shown in
Figure 1. Furthermore, the influence of the optimistic coefficient, α, is evaluated in Figure 1. From this
figure, it is clear that an increment of α increases the total and day-ahead expected profits because α can
directly affect the power produced by the PV system through interval bands in the day-ahead stage.
Hence, α increases the power generated from the PV panels in the day-ahead stage and the day-ahead
expected profit. However, α has a negative impact on the amounts of the real-time expected profit.
Moreover, the expected profit of the system is maximum in Scenario 4. In other words, increasing the
energy flexibility of the system increases the total, day-ahead and real-time expected profits of the
system. Hence, the maximum and minimum amounts of the expected profit are in Scenarios 4 and
1, respectively. Furthermore, the expected profit in Scenario 3 is more than Scenario 2 because the
ramping rate of the EV is more than the battery. Therefore, the EV can provide more energy flexibility
than the battery in this proposed system.

Figure 1. Impact of energy flexibility on the amounts of total, day-ahead and real-time expected profits.

4.3. Impact of Prediction Accuracy

The prediction accuracy due to the PV power generation and its influence on the total expected
profit is analyzed in this section. It is noticeable that the prediction accuracy of the outdoor temperature
of the home and must-run services is considered to be 100% in this paper in order to simplify the
model. Besides, it is considered that the battery and EV are modeled in the day-ahead stage in this
case. As mentioned before, α increases the amount of total expected profit of the system.

According to Figure 2, the impact of the prediction accuracy on the total expected profit is
evaluated based on the optimistic coefficient. Furthermore, an increase in the prediction accuracy has a
smooth negative effect on the expected profit. In other words, an increment in the prediction accuracy
causes a decrease of the managed power of the PV in the proposed DEMS. Hence, this decreases
the expected profit of the system. According to this assessment, the maximum amount of the total
expected profit of the system is where α and the prediction accuracy equal one and zero, respectively.
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Figure 2. Impact of prediction accuracy on the total expected profit of the system. OC, Optimistic
Coefficient.

4.4. Impact of Demand Response

In this section, the effect of the Demand Response Program (DRP) on the EPs and the home’s
electrical energy that is sold/bought to/from the local electricity market is assessed in four scenarios:
with DRP, with only flexible VOLL, with only the ToU price and without DRP. Here, DRP consists of
the flexible VOLL and ToU price.

As seen in Table 4, DRP causes a positive effect on the amount of total expected profit of the
DEMS. In other words, while EPda is increased when DRP is not considered in the system, EPrt

is decreased because electrical loads are not flexible when DRP is not considered in the DEMS.
Furthermore, The sold/bought electrical energy of the DEMS considering DRP is more/less than
without considering DRP because it makes DEMS able to shift the electrical load in the time horizon of
the energy management problem and reduce the loads under some conditions. However, the impact
of the flexible VOLL and ToU price are not the same. Although both of them increase the sold electrical
energy, the total expected profit considering only flexible VOLL is more than considering only the ToU
price. This is because of the positive effect of the flexible VOLL program in the real-time stage of the
DEM problem.

Table 4. Impact of demand response program on the amount of expected profit of the system and
sold/bought electrical energy to/from the local electricity market. DRP, Demand Response Program.

Demand Response Scenarios
α = 1

EPtotal EPda EPrt Esold Ebought

With DRP (Flexible VOLL + ToU) 47.571 40.003 7.568 18.605 43.033

With Only Flexible VOLL 47.775 42.409 5.365 14.406 37.995

With Only ToU Price 42.071 40.003 2.068 15.236 49.432

Without DRP 42.275 40.409 −0.135 13.847 47.842

4.5. Impact of Uncertainty Modeling

In this section, the modeling of uncertainty is evaluated through a comparison of the InterStoch
method and MSPB. Although the InterStoch method has been defined in this paper, MSPB has been
defined in [18,19]. For simplicity, only the battery has been considered, and γbattery is equal to zero in
this section. The amounts of total, day-ahead and real-time expected profits are compared in optimistic
and conservative cases based on the InterStoch and MSPB methods. As seen in Table 5, the optimistic
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case of both methods is where α equals one. However, the pessimistic case based on the InterStoch and
MSPB methods is where α equals zero and 0.4, respectively, as seen in Table 6. Tables 5 and 6 show that
the difference between the amounts of the expected profits in the optimistic and conservative cases
based on the InterStoch method is less than the MSPB method. Besides, Figure 3 shows the impact
of α on the total expected profit in both methods. Figure 3 also illustrates that the worst case of the
DEMS based on the InterStoch method is where α equals zero, and there is a linear pattern between the
increment of the optimistic coefficient and the total expected profit when uncertainty is modeled by
the InterStoch method. This point makes the system easier to analyze and more reliable, as it is able to
further mitigate the uncertainty, dealing with it in away that its impact on the expected results is highly
reduced. Moreover, the amount of the total expected profit in the worst case of the InterStoch is less
than its amount in the worst case of the MSPB method. Hence, the InterStoch method is more robust
than the MSPB method to model uncertainty in the proposed domestic energy management problem.

Figure 3. Impact of uncertainty modeling on the total expected profit of the system.

Table 5. Impact of uncertainty modeling on day-ahead, real time and total expected profits under the
optimistic case. InterStoch, Interval-Stochastic; MSPB, Modified Stochastic Predicted Band.

Expected Profit ($)
InterStoch (α = 1) MSPB (α = 1)

With Uncertainty Without Uncertainty With Uncertainty Without Uncertainty

EPtotal 12.798 10.549 51.707 51.618

EPda 7.234 4.836 49.232 49.232

EPrt 5.564 5.713 2.475 2.386

Table 6. Impact of uncertainty modeling on day-ahead, real time and total expected profits under the
conservative case.

Expected Profit ($)
InterStoch (α = 0) MSPB (α = 0.4)

With Uncertainty Without Uncertainty With Uncertainty Without Uncertainty

EPtotal 10.569 10.549 11.449 51.618

EPda 4.836 4.836 4.836 49.232

EPrt 5.733 5.713 6.613 2.386
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5. Conclusions

In this paper, the energy flexibility management of the home electricity system based on the
predictive dispatch model has been introduced. Furthermore, the InterStoch hybrid method to
model the uncertainty of the PV power generation has been defined for the first time in this paper.
The proposed method consists of two stages. In the first stage, the day-ahead domestic energy
management problem has been modeled by an interval method to consider the uncertainty due to
the prediction error of PV power generation. However, a real-time problem has been represented
based on the stochastic method to consider the uncertainty. The performance of the proposed domestic
energy management problem has been evaluated based on a comparison between the proposed hybrid
(InterStoch) and MSPB methods. Furthermore, the impact of the proposed energy flexibility model,
prediction accuracy and demand response program on the expected profit and transacted electrical
energy of the system and the reliability of the results has been assessed. From the simulation, it is
concluded that:

• Increasing the energy flexibility increases the total, day-ahead and real-time expected profits of
the system.

• The EV can provide more energy flexibility than the battery in the proposed system.
• The increment of α increases the PV power produced in the day-ahead stage and day-ahead

expected profit. However, α has a negative impact on the amounts of the real-time expected profit.
• The increment of the prediction accuracy has a smooth negative impact on the expected profit.
• For the considered case study, the demand response program has a positive effect on the amount

of the DEMS’s total expected profit. Furthermore, the demand response program decreases the
domestic electrical energy load.

• The amount of the total expected profit in the worst case of InterStoch is less than its amount in
the worst case of the MSPB method. Hence, the InterStoch method is more robust than the MSPB
method to model uncertainty in the proposed domestic energy management problem.

Finally, it should be mentioned that the uncertainty of electrical load, the EV mobility pattern
and market prices have not been modeled in our proposed DEMS. Our future work will consist of
modeling the uncertainty related to the EV and must-run services and to evaluate their impacts on the
transacted energy of the homes for the local electricity market.
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Nomenclature

Indices

t Index of time periods
j Index of electrical loads
k Index of energy storage systems
ω Index of PV power scenarios
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Variables

EP Expected profit
EPda Day-ahead expected profit
EPrt Real-time expected profit
Pda

pvt
Day-ahead total power generation for the PV system in period t

Pda
pv,outt

Day-ahead power generation for the PV system that is injected to the power grid in period t
Pda

pv,int
Day-ahead power generation for the PV system that is injected to the home in period t

Pda
dist

(k) Day-ahead total discharged power for energy storage system k in period t

Pda
dis,outt

(k)
Day-ahead discharged power for energy storage system k that is injected to the power grid in
period t

Pda
dis,int

(k)
Day-ahead discharged power for energy storage system k that is injected to the home in
period t

Pda
cht

(k) Day-ahead charged power for energy storage system k that is injected to the home in period t
Pda

nett
Day-ahead power generation that is bought from the local electricity market in period t

Lda
jt Day-ahead electrical load j in period t

Lda
sht

Day-ahead electrical load of the space heater in period t
Lda

swht
Day-ahead electrical load of the storage water heater in period t

Lda
ppt

Day-ahead electrical load of the pool pump in period t
Lda

mrst
Day-ahead electrical load of the must-run services in period t

Cda
t (k) Day-ahead state of charge for energy storage system k in period t

uda
t Day-ahead discharging commitment binary variable for energy storage system k in period t

Prt
pvt

(ω) Real-time total power generation for the PV system in period t and in scenario ω

Prt
pv,outt

(ω)
Real-time power generation for the PV system that is injected to the power grid in period t
and in scenario ω

Prt
pv,int

(ω)
Real-time power generation for the PV system that is injected to the home in period t and in
scenario ω

Prt
dist

(k, ω) Real-time total discharged power for energy storage system k in period t and in scenario ω

Prt
dis,outt

(k, ω)
Real-time discharged power for energy storage system k that is injected to the power grid in
period t and in scenario ω

Prt
dis,int

(k, ω)
Real-time discharged power for energy storage system k that is injected to the home in
period t and in scenario ω

Prt
cht

(k, ω)
Real-time charged power for energy storage system k that is injected to the home in period
t and in scenario ω

Prt
nett

(ω)
Real-time power generation that is bought from local electricity market in period t and
in scenario ω

Lrt
jt Real-time electrical load j in period t and in scenario ω

Lshed
jt (ω) Load shedding for load j in period t and in scenario ω

Spvt (ω) Spillage amount for PV in period t and in scenario ω

Prt
pv,pt

(ω) Potential power generation for PV in real time in period t and in scenario ω

Lrt
sht

(ω) Real-time electrical load of the space heater in period t and in scenario ω

Lrt
swht

(ω) Real-time electrical load of the storage water heater in period t and in scenario ω

Lrt
ppt

(ω) Real-time electrical load of the pool pump in period t and in scenario ω

Lrt
mrst

(ω) Real-time electrical load of the must-run services in period t and in scenario ω

Crt
t (k, ω) Real-time state of charge for energy storage system k in period t and in scenario ω

urt
t (ω)

Real-time discharging commitment binary variable for energy storage system k in period t
and in scenario ω

Lshed
sht

(ω) Load shedding for the space heater in period t and in scenario ω

Lshed
swht

(ω) Load shedding for the storage water heater in period t and in scenario ω

Lshed
ppt

(ω) Load shedding for the pool pump in period t and in scenario ω

Lshed
mrst

(ω) Load shedding for the must-run services in period t and in scenario ω

θint (ω) Indoor temperature in period t and in scenario ω

zt(ω) Commitment binary variable for the pool pump k in period t and in scenario ω
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Parameters

Ppred
pvt Central forecasting of the PV power generation in period t

σdown
pvt

Down deviation of the PV power prediction in period t
σ

up
pvt Up deviation of the PV power prediction in period t

αpv Optimistic coefficient related to the PV power prediction
Pmean

pvt
Mean of the PV power prediction in period t

Δpvt Mean deviation of the PV power prediction in period t
π(ω) Probability of the PV power generation in scenario ω

λ
′
t Sold electricity price to the local electricity market in period t

λnett Bought electricity price from the local electricity market in period t
γk Participation factor for energy storage system k
Smax Maximum power capacity for the line

Lpred
jt

Predicted electrical load j in period t
ηB2V Charging efficiency for energy storage systems j
ηV2B Discharging efficiency for energy storage systems j
Ci Initial state of charge for energy storage systems
wmax Maximum charging/discharging for energy storage systems
wmin Minimum charging/discharging for energy storage systems
VOLLj Value of loss load for electrical load j
Vs

pv Spillage cost for the PV system
θ0 Initial indoor temperature
θdes Desired indoor temperature

θ
pred
outt

Predicted outdoor temperature
Lmax

sh Maximum electrical consumption for the space heater
Lmin

sh Minimum electrical consumption for the space heater
R Thermal resistance of the building shell
Lmax

swh Maximum electrical consumption for the storage water heater
Lmin

swh Minimum electrical consumption for the storage water heater
Uswh Energy consumption for the storage water heater
Lmax

pp Maximum electrical consumption for the pool pump
Lmin

pp Minimum electrical consumption for the pool pump
Ton Maximum running hours for the pool pump

Lpred
mrst Predicted electrical load of the must-run services in period t
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Abstract: Over the recent years there has been an immense growth in load consumption due to
which, Load Management (LM) has become more significant. Energy providers around the world
apply different load management concepts and techniques to improve the load profile. In order to
reduce the stress over the load management, Demand Response Unit Commitment (DRUC), a new
concept, has been implemented in this paper. The main feature of this concept is that both the energy
providers and consumers must participate in order to get mutual benefits hence maximizing each
of their profits. In this paper we discuss the time-based Demand Response Program since there
is no penalty observed in this program. When the Demand Response was combined with Unit
Commitment and compiled it was observed that a satisfactory solution resulted, which is proved
to be mutually beneficial for both Generating Companies (GENCOs) and their customers. Here,
we have used a Cat Swarm Optimization (CSO) technique to find the solution for the DRUC problem.
The results are obtained using CSO technique for UC problem with and without DR program. This is
compared with the results obtained using other conventional methods. The test system considered
for the study is IEEE39 bus system.

Keywords: Unit Commitment (UC); Demand Response (DR); Demand Response Unit Commitment
(DRUC); Cat Swarm Optimization (CSO)

1. Introduction

With the improvements in the power sector field over the decades, there has also been a vast
increase in load consumption due to heavy demand. Sometimes the load required is very high due to
multiple consumers requiring power at the same time [1]. Due to this issue, GENCOs are sometimes not
able to meet the customer demands, hence making them unsatisfied or prompting them to terminate
their contracts. Some of the growing issues associated with power system operation include limited
supply of system resources that in turn forces the operators to operate their systems at their maximum
capacity, resulting in regular price hikes in the electricity market [2]. All the aforementioned limitations
motivate us to search for and explore novel ways to increase the efficiency of resource utilization in
power operations. As one of these new ways, Demand Response (DR) has recently become a major
concept in power system operation. The use of Demand Response management in power systems
enables the operators to efficiently utilize their resources as well as the power system operation. The
use of Demand Response Programs (DRPs) in power system operation increases the profit of customers
as well as the operators. It also encourages customers’ participation in the Demand Response Program
(DRP) by rewarding them with incentives, if they agree to reduce their load demands during the peak
hours of the day [3].
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As per the Federal Energy Regulatory Commission (FERC), Demand Response can be defined as
“Changes in electric usage by end-use customers from their normal consumption patterns in response
to changes in the price of electricity over time, or to incentive payments designed to induce lower
electricity use at times of high wholesale market prices or when system reliability is jeopardized” [4].
This is quite a different concept from energy efficiency that involves using less power for the same task.
Demand response is also a component of smart energy demand that includes energy efficiency, home
and building energy management, distributed renewable resources and electric vehicle charging [5].
The implementation of DRP in power system operation reduces the load stress on the equipment, hence
ensuring a maximum efficiency and power. According to the Federal Energy Regulatory Commissions
(FERC) report on demand response programs implemented in the US electricity markets from 2006 [6,7]
DRP is broadly divided into two major categories:

(a) Time-Based Rate Programs (TBRP):

Time-Based Rate Programs (TBRPs) are programs that involve changes in the forecasted price that
varies with the time of day, so the consumer can change or reduce their load usage for the respective
hours accordingly. TBRPs are subcategorized into three programs, namely time of use, critical peak
pricing and real time pricing programs. In time of use programs the main aim is to reduce the demand
(peak periods) by increasing the prices at the high demand hour causing customers to shift or reduce
their loads and lowering the prices where load management (off peak) use is possible. This attracts
and encourages the customers to use load during off-peak hours. It is a basic type, where the rates of
load per unit consumption vary in different time blocks. The rates during peaks are high and during
off-peak periods are low [8]. Critical peak pricing rates consist of a pre-specified high load usage price
imposed on Time of Use rates. These rates are applied for a short period of days or hours of a year. In
real time pricing programs, the consumers are faced with hourly varying prices that reflect the real
price of load in the market at that time. Customers under this program are informed in advanced
about the prices on a day before or an hour before [9].

(b) Incentive-Based Programs (IBP):

IBPs are all based on paying or receiving a small amount in the form of penalties/incentives.
IBPs are sub categorized into (i) Direct Load Control (ii) Emergency DR Program (iii) Demand
Bidding/Buyback program (iv) Ancillary Services Program (v) Interruptible/Curtailable Service
and (vi) Capacity Market program.

Direct Load Control involves programs where the loads are remotely controlled by the GENCOs,
so they can be remotely committed or decommitted during peak hours in order to reduce the load
stress. Some of the remotely controlled loads may include air conditioners, pumps and water heaters.
Emergency DR Programs (EDR) require customers to curtail their loads during system emergencies [10].
The customers are in turn rewarded with incentives for curtailing their loads. In both Direct Load
Control (DLC) and EDR programs, the customers are not penalized, if they fail to achieve the objectives,
because they are involved in voluntary programs. In Demand Bidding/Buyback programs, the
customers are encouraged to curtail load at a rate by which they are satisfied or how much load they
are willing to curtail at the given price. In Ancillary Services Programs customers are made to bid and
challenge their load curtailment values in markets as operating reserves [11].

Interruptible/Curtailable Service programs are the programs where the enrolled customers are
asked to curtail their loads during the peak demand hours of a day in order to reduce load stress. They
are in turn paid certain incentives to do so. If they fail to curtail the desired amount of load, they are
penalized. In Capacity Market Programs, the customers are willing to perform pre-informed load
curtailments for certain incentive rewards. Failing to do so will cause a penalization. Implementation
of DR along UC not only reduces the load stress during peak hours, but it also increases the profits of
GENCOs and makes the system more reliable. DR helps UC by shaving off loads during peak hours
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using various methods and thus causing an increase in profits and making systems more reliable and
robust [12,13].

In order to implement demand response in smart grids, we should be able to coordinate large
number of distributed resources using sensors, communication protocols and actuators. In addition,
the increased presence of different renewable generation drives a much larger need for officials to
procure more ancillary services in order to balance the grid [14,15]. Demand response is also provided
by industrial customers. Industrial manufacturing plants’ magnitude of power consumption is very
large compared to commercial and residential loads [16]. Demand response implementation was
imposed in the United States by FERC Order No. 745 in March 2011 [4]. Reduction of loads during
peak hours decreases the need for installing new units. According to the demand response smart grid
coalition, around 10–20% of electricity costs are due to peak demand in the United States [17]. It was
found in the California electricity crisis in 2000–2001 that lowering the demand by mere 5% would
have resulted in a 50% of price reduction during peak hours [18]. A suit was filed regarding legality of
order 745 by many affected parties, including the State of California [19]. From December 2009, the UK
national grid has contracted to provide DR of 839 MW (35%) [20]. The mathematical formulation of
the Market Clearing Model based on DRP was implemented in Singapore to improve the wholesale
market profit [21]. The analysis on various power sectors of Germany was improved with wind power
prediction [22].

The impact of UC and DRUC problems was studied by a dynamic approach on an IEEE 10 unit
system [23]. Zhang et al. proposed how renewable energy resources can play a vital role in the future
power system. How it can be used along with DR and electric vehicles in a UC problem to utilize wind
power efficiently by using fuzzy chance constraints has also been studied [24]. The wind uncertainty
can be overcome using ancillary services from Pumped Hydro Energy System (PHES) and DR and
simultaneous scheduling of PHES and DR along with wind uncertainties has been attempted by
solving an LR-based probabilistic UC [25].

The IBP based multi-objective energy management system is proposed in order to optimize micro
grids by PSO [26]. Kwag et al. discussed virtual generation and the various costs reduction by using
DR [27].The growing load factors in the Spanish electric energy system causing higher loads and
increased cost and its reduction by demand shifting and curtailment were examined in [28]. The UC
model is presented for accessing the reserve requirements resulting from large scale integration of
renewable energy sources and deferrable demand in power systems and the alternative DR paradigms
are discussed for accessing the benefits of demand flexibility in [29]. A robust optimization technique
with wind power to derive an optimal UC was developed in [30]. Based on the explosion of fireworks
in the sky, a unit commitment problem in a deregulated environment was modeled and the GENCOs’
profits were maximized [31]. An economic model of responsive loads is derived based upon price
elasticity of demand and customers benefit function in [7]. Govardhan proposed a linear load economic
model for solving the demand response unit commitment problem by using an Artificial Bee Colony
algorithm [32]. The critical kick-back effect has been applied to a DR program for maximizing the
profit in peak hours in a day in [33].

2. Demand Response Unit Commitment Problem Formulation

Traditional Unit Commitment (TUC) is the process of scheduling power generation, without
violating the systems or units operational constraints. The traditional unit commitment problem
objective function focuses on minimization of generation cost along with fuel costs and startup
costs [32,34–37]. In this paper, the demand response based unit commitment problem is modeled and
the main objective of the demand response unit commitment problem is used to maximize the profits
of the GENCO using a Time-Based Demand Response Program (TBDRP) [38,39].

The objective function is as follows:

Max PR = [TRV − TOCOST] (1)
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where, PR—is the total profit of the GENCOs and Demand Response Service Provider (DRSP)
combined, TRV—is the total revenue calculated from the GENCOs and DRSP, TOCOST—is the total
operating cost of the GENCOs and DRSP combined:
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[
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∑
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∑
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2.1. Mathematical Modelling of DRUC

The main objective of GENCOs in a deregulated environment is to maximize their profits, their
objective being minimizing the cost of energy supplied to the consumers. Hence the traditional unit
commitment is modeled with demand response program. The market clearing price in the demand
response program is calculated from the DRSP supply curve coefficients and based on customer’s
willingness to participate in a Demand Response Program. The demand response market clearing
price is formulated by the following equation:

DRprice = θdiDRdi
gen + δdi

(
1 − μdi

)
; (di = 1 · · · dN) (5)

Here, μdi is the customer’s willingness to participate in a DR program. Its value is between 0 and
1, and the higher the willingness of customers, the less is the DR cost. θdi and δdi are DRSP coefficients
for all customers [40]. Rewriting the above equation as:

DRprice = θdiDRdi
gen + Δδdi (6)

where:
Δδdi = δdi

(
1 − μdi

)
(7)

Rearranging the above equation, we get:

DRdi
gen =

DRprice − Δδdi

θdi , i = 1 · · · dN (8)

Equality must be maintained between the sold and purchased value of DR, and using this
constraint the following equation is modeled:

DRreq =
dN

∑
di=1

DRdi
gen =

dN

∑
di=1

DRprice − Δδdi

θdi (9)

DRprice =

DRreq +
dN
∑

di=1

Δδdi

θdi

dN
∑

di=1

1
θdi

(10)

The higher the willingness of customers to participate in DPR, the less will be the value of Δδdi.
Similarly, the value of Δδdi increases as customer willingness decreases. The profit maximization
equation for DRSPs is defined as:

PDRdi
f = DRpriceDRdi

gen − DROdi
cost ; di = 1 · · · dN (11)
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Substituting DR di
gen and DRO di

cost in Equation (11), we get:

PDRdi
f = DRprice ×

(
DRprice−Δδdi

θdi

)
−

[
θmdi ×

(
DRprice−Δδdi

θdi

)2
+ δmdi ×

(
DRprice−Δδdi

θdi

)
+ φmdi

]
; di = 1 . . . dN (12)

where, the coefficients θmdi, δmdi and φmdi are referred to the customers’ supply curve cost coefficients.
θdi is always considered equal to θmi. Taking derivation of the profit function with respect to Δδdi

we get:
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⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

Δδm1(k)
Δδm2(k)

...
ΔδmdN(k)

DRreq

⎤
⎥⎥⎥⎥⎥⎥⎦

and:

DRprice =
[

1
θ1K

1
θ2K · · · 1

θdN K

]
⎡
⎢⎢⎢⎢⎣

Δδ1(k)
Δδ2(k)

...
ΔδdN(k)

⎤
⎥⎥⎥⎥⎦+

(
1
K
× DRreq

)
(13)

Equating Equations (10) and (13) we get:

DRprice =

DRreq + Δδdi

θdi +
dN
∑

di =dj

Δδdj

θdj

dN
∑

di=1

1
θdi

(14)

Rearranging the above equation, we get:

Δδdi =
dN
∑

di =dj

(
θdi

θdj × 1
(θdi)

2
K−1

× Δδdj
)
+

(
θdi

(θdi)
2

K−1
× DRreq

)
+

(
θdi K

θdi K−1
× δmdi

)
(15)

where:

K =
dN

∑
di=1

1
θdi

2.2. Traditional Unit Commitment Constraints

2.2.1. Equality Constraint

N

∑
i=1

(
Pi,t

gen Ui,t
stat

)
= Pt

dem ; (t = 1 · · · T) (16)

2.2.2. Inequality Constraint

Pi,min
gen ≤ Pi,t

gen ≤ Pi,max
gen ; (i = 1 · · · N) (17)

2.2.3. Ramp up Rate

Pi,t max
gen = min

(
Pi max

gen , Pi(t−1)
gen + ψRi

up

)
(18)
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2.2.4. Ramp down Rate

Pi,t min
gen = max

(
Pi min

gen , Pi(t−1)
gen − ψRi

down

)
(19)

2.2.5. Minimum up Time

ONi ≥ Mi
up (20)

2.2.6. Minimum down Time

OFFi ≥ Mi
down (21)

2.2.7. Reserve Constraints

0 ≤ Ri,t
gen ≤

(
Pi,max

gen Pi,min
gen

)
(22)

Pi,min
gen ≤

(
Pi,t

gen + Ri,t
gen

)
Ui,t

stat ≤ Pi,max
gen (23)

N

∑
i=1

Ri,t
gen Ui,t

stat ≤ Ri,t max
gen (24)

2.2.8. Spinning Reserve

Si
res =

N

∑
i=1

(
Pi max

gen − Pi
gen

)
(25)

2.2.9. Startup Cost of Units

SUi
cos t =

{
Hi

cos t
Ci

cos t

, if Mi
down ≤ OFFi ≤ CSi

time
, if OFFi ≥ CSi

time
(26)

CSi
time = CSi

Hour + Mi
down (27)

2.3. Demand Response Unit Commitment Constraints

2.3.1. Equality Constraint

N

∑
i=1

(
Pi,t

gen Ui,t
stat

)
+

dN

∑
di=1

(
Pdi,t

gen Udi,t
stat

)
= Pt

dem ; (t = 1 · · · T) (28)

2.3.2. Minimum up Time

ONdi ≥ Mdi
up (29)

2.3.3. Minimum down Time

OFFdi ≥ Mdi
down (30)
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2.3.4. Ramp up Rate

Pdi,t max
gen = min

(
Pdi max

gen , Pdi(t−1)
gen + ψRdi

up

)
(31)

2.3.5. Ramp down Rate

Pdi,t min
gen = max

(
Pdi min

gen , Pdi(t−1)
gen − ψRdi

down

)
(32)

3. Cat Swarm Optimization (CSO)

CSO optimization overcomes the limitations of PSO and DE that they are influenced by parameters
and stagnation problem [41]. CSO is a meta-heuristic evolutionary optimization technique that
intimates the natural behavior of felines. Cats have a strong curiosity towards objects that move.
The cat group has superior hunting skills. Although it may be seen as always being at rest and
they may seem to move slowly, they are always alert and aware of their surroundings [42]. Upon
sensing the presence of prey, they chase it very quickly thereby spending a large amount of energy.
These mentioned two characteristics, that is, the slow movement resting and sudden chase with high
speed are described as seeking and tracking modes [43,44]. Each of these modes can be separately
modeled mathematically.

3.1. Seeking Mode

There are four essential factors used in seeking, these factors are described as:

(a) Seeking Memory Pool (SMP): number of copies of a cat produced.
(b) Seeking Range of selected Dimension (SRD): difference between the new and old in the dimension

selected for mutation.
(c) Counts of Dimensions to Change (CDC): number of dimensions to be mutated.
(d) Mixture Ratio (MR): to state that most of the time spent by the cats is resting and observing.

Steps executed in seeking mode:

(1) Randomly select MR fraction of population as seeking cats: rest of them as tracing cats.
(2) SMP copies of the ith seeking cat is created.
(3) Update the position of each copy based on CDC by randomly adding or subtracting SRD fraction.
(4) Evaluate error fitness values of copies.
(5) Best candidate is picked from all copies and placed at ith seeking cat.
(6) Repeat Step 2 until all seeking cats are involved.

3.2. Tracing Mode

This mode corresponds to the local search technique of an optimization problem. This method
involves the cats tracing a target while spending a huge amount of energy. The rapid chase of cats is
mathematically modeled as follows:

Define the position and velocity of ith cat in the D-dimensional space as:

Xi = (Xi
1, Xi

2, . . . . . . , Xi
D) (33)

and:
Vi = (Vi

1, Vi
2, . . . . . . , Vi

D) (34)

The global best position of a cat is represented as:

Gbest =
(

G1
best, G2

best, . . . . . . , GD
best

)
(35)
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Updated equations are:

Vi
D = w × Vi

D + C × r
(

GD
best − Xi

D

)
(36)

and:
Xi

D = Xi
D + Vi

D (37)

The proposed method algorithm is given by the following steps:

Step 1: Create N number of population.
Step 2: Initialize time t = 0 and i = 0.
Step 3: Find the overall cost and revenue for TUC and DRSP from the data provided using

iterations and store the values and evaluate the profit for TUC and DRSP using the formula
Pf = Rv − Tcost.

Step 4: Check if all units are over and whether the cat is in seeking mode based on MR value
Step 5: If yes, Seeking Mode.

Create SMP copies and update position based on CDC, then take best value from SMP copies.
Step 6: If no, then Tracing mode.

Update position and velocity by using the equations:

Vi
D = w × Vi

D + C × r
(

GD
best − Xi

D

)

Xi
D = Xi

D + Vi
D

And save the highest profit unit.
Step 7: Check if all cats are updated, if yes, then proceed or else go back to Step 4.
Step 8: Check if maximum iteration is over, if yes, then stop and display the result, else go back to

Step 2.

4. Result and Discussion

In this paper, we have used IEEE 39 bus system with conventional 10-units for a scheduling
period of 24 h. The data for the load demand curve of the 10 unit systems is listed in Table 1. The
operator data are listed in Table 2. The load data for the 10 unit 39 bus system is shown in Table 3.
The forecasted price values for 24 h in a 10 bus system are shown in Table 4 and plotted in Figure 1.
Six separate DRSPs are considered here, each generating load at a capacity of 50 MW. The load data
curve value for these DRSPs is given in Table 5. The curve for forecasted price along with load demand
variation for 24 h is plotted in Figure 2. Here it is noted that the price value during peak hours is high
compared to the non-peak hours.

Table 1. Load curve data for the 10 unit IEEE 39 bus system.

Unit No. ai bi ci

U-1 1000 16.19 0.00048
U-2 970 17.26 0.00031
U-3 700 16.6 0.002
U-4 680 16.5 0.00211
U-5 450 19.7 0.00398
U-6 370 22.26 0.00712
U-7 480 27.74 0.00079
U-8 660 25.92 0.00413
U-9 665 27.27 0.0022
U-10 670 27.799 0.00173
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Table 2. Operator data for the 10 unit IEEE 39 bus system.

Unit No.
Pmax

gen

(MW)
Pmin

gen

(MW)
Mi

up

(h)
Mi

down
(h)

Ci
cost

($)
Hi

cost
($)

CSi
time

(h)
Ui

stat
(h)

U-1 455 150 8 8 4500 9000 5 8
U-2 455 150 8 8 5000 10,000 5 8
U-3 130 20 5 5 550 1100 4 −5
U-4 130 20 5 5 560 1120 4 −5
U-5 162 25 6 6 900 1800 4 −6
U-6 80 20 3 3 170 340 2 −3
U-7 85 25 3 3 260 520 2 −3
U-8 55 10 1 1 30 60 0 −1
U-9 55 10 1 1 30 60 0 −1
U-10 55 10 1 1 30 60 0 −1

Table 3. Load demand for 24 h.

Time (h) 1 2 3 4 5 6 7 8 9 10 11 12

Load Demand (MW) 700 750 850 950 1000 1100 1150 1200 1300 1400 1450 1500

Time (h) 13 14 15 16 17 18 19 20 21 22 23 24

Load Demand (MW) 1400 1300 1200 1050 1000 1100 1200 1400 1300 1100 900 800

Table 4. Forecasted price values for 24 h.

Time (h) 1 2 3 4 5 6 7 8 9 10 11 12

Price ($) 22.15 22 23.1 22.65 23.25 22.95 22.5 22.15 22.8 29.35 30.15 31.65

Time (h) 13 14 15 16 17 18 19 20 21 22 23 24

Price ($) 24.6 24.5 22.5 22.3 22.25 22.05 22.2 22.65 23.1 22.95 22.75 22.55

Figure 1. Forecasted price curve for 24 h.

Table 5. Load curve data for DRSP’s.

- θdi δdi ϕdi

DRSP1 0.07 70 240
DRSP2 0.095 100 200
DRSP3 0.09 85 220
DRSP4 0.09 110 200
DRSP5 0.08 105 220
DRSP6 0.075 120 190
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Figure 2. Valley, off peak and peak load unit operating system.

5. Simulation Results

The CSO formulation and solution methodology was implemented in MATLAB (2015,
The MathWorks, Natick, MA, USA) and executed on a core i5 (2.6 GHz) personal computer equipped
with 4 GB RAM. The proposed methodology that has been tested on a 10 unit generating system to
solve TUC and DRUC problem is shown in Tables 6–8. The parameters assumed here are as follows;
population size = 50, max iterations cycles = 100, SMP = 5, CDC = 0.6, SRD = 2, MR = 0.1, inertia weight
w = 0.4 and acceleration constant C = 1.5 [41].

Table 6. Output data for base case using Traditional Unit Commitment (TUC).

Hour 1 2 3 4 5 6 7 8 9 10
Reserve
(MW)

Fcost ($) SC ($) TOcost ($) Rv ($) PR ($)

1 455 245 0 0 0 0 0 0 0 0 210 13,683.13 0 13,683.13 15,505 1821.87
2 455 295 0 0 0 0 0 0 0 0 160 14,554.50 0 14,554.50 16,500 1945.50
3 455 370 0 0 25 0 0 0 0 0 222 16,809.45 900 17,709.45 19,635 1925.55
4 455 455 0 0 40 0 0 0 0 0 122 18,597.67 0 18,597.67 21,517.5 2919.83
5 455 390 0 130 25 0 0 0 0 0 202 20,020.02 560 20,580.02 23,250 2669.98
6 455 360 130 130 25 0 0 0 0 0 232 22,387.04 1100 23,487.04 25,245 1757.96
7 455 410 130 130 25 0 0 0 0 0 182 23,261.98 0 23,261.98 25,875 2613.02
8 455 455 130 130 30 0 0 0 0 0 132 24,150.34 0 24,150.34 26,580 2429.66
9 455 455 130 130 85 20 25 0 0 0 197 27,251.06 860 28,111.06 29,640 1528.94

10 455 455 130 130 162 33 25 10 0 0 152 30,057.55 60 30,117.55 41,090 10,972.45
11 455 455 130 130 162 73 25 10 10 0 157 31,916.06 60 31,976.06 43,717.5 11,741.44
12 455 455 130 130 162 80 25 43 10 10 162 33,890.16 60 33,950.16 47,475 13,524.84
13 455 455 130 130 162 33 25 10 0 0 152 30,057.55 0 30,057.55 34,440 4382.45
14 455 455 130 130 85 20 25 0 0 0 197 27,251.06 0 27,251.06 31,850 4598.94
15 455 455 130 130 30 0 0 0 0 0 132 24,150.34 0 24,150.34 27,000 2849.66
16 455 310 130 130 25 0 0 0 0 0 282 21,513.66 0 21,513.66 23,415 1901.34
17 455 260 130 130 25 0 0 0 0 0 332 20,641.82 0 20,641.82 22,250 1608.18
18 455 360 130 130 25 0 0 0 0 0 232 22,387.04 0 22,387.04 24,255 1867.96
19 455 455 130 130 30 0 0 0 0 0 132 24,150.34 0 24,150.34 26,640 2489.66
20 455 455 130 130 162 33 25 10 0 0 152 30,057.55 490 30,547.55 31,710 1162.45
21 455 455 130 130 85 20 25 0 0 0 197 27,251.06 0 27,251.06 30,030 2778.94
22 455 455 0 0 145 20 25 0 0 0 137 22,735.52 0 22,735.52 25,245 2509.48
23 455 425 0 0 0 20 0 0 0 0 90 17,645.36 0 17,645.36 20,475 2829.64
24 455 345 0 0 0 0 0 0 0 0 110 15,427.42 0 15,427.42 18,040 2612.58

TOTAL COST ($) 55,9847.7 4090 563,937.7 651,380 87,442.31

Two cases are considered for solving unit commitment problem.

5.1. Case 1: Base Case

In this case, TUC is formulated using CSO programming for the 10 unit generating system
considering the initial loads. The output obtained for this is shown in Table 6. Here the total revenue
generated is $651,380 and the total operating cost calculated is $563,937.7. The profit obtained with
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this TUC is $87,442.31, which is 13.42% as shown in Table 9. In Table 9 the average TUC profit of the
proposed CSO method gives better results compared to the LR [45], BCGA, ICGA [46], BFA [47] and
ICA [48] methods.

5.2. Case 2: Base Case Established Using DR

In this case, we have used a real time-based demand response program to reduce load during the
peak hours of the day. The peak hours can be seen in Figure 2 where the various valleys, off peak and
peak load hours are plotted. 20% of load is reduced only in those particular hours and a TUC problem
is executed and the output is shown in Table 7. The total revenue generated is $593,389.50 and the total
operating cost calculated is $507,954.30. The profit obtained here is $85,435.21 as shown in Table 9. In
the output Table 7, it is seen that the generators 8, 9 and 10 are not committed thereby reducing the
total operating cost. The various generator running hours are depicted in Figure 3. From Figure 3, it is
observed that the TUC methodology uses the entire generators in its distribution hence causing rise in
cost. Whereas in DRUC the last three units are idle and don’t take part in generation hence reducing
the overall cost.

Table 7. Output data for base case established with Demand Response (DR) using Demand Response
Unit Commitment (DRUC).

Hour 1 2 3 4 5 6 7 8 9 10
Reserve
(MW)

Fcost ($) SC ($) TOcost ($) Rv ($) PR ($)

1 455 245 0 0 0 0 0 0 0 0 210 13,683.13 0 13,683.13 15,505 1821.87
2 455 295 0 0 0 0 0 0 0 0 160 14,554.49 0 14,554.5 16,500 1945.5
3 455 370 0 0 25 0 0 0 0 0 222 16,809.45 900 17,709.45 19,635 1925.55
4 455 455 0 0 40 0 0 0 0 0 122 18,597.67 0 18,597.67 21,517.5 2919.83
5 455 390 0 130 25 0 0 0 0 0 202 20,020.02 560 20,580.02 23,250 2669.98
6 455 360 130 130 25 0 0 0 0 0 232 22,387.04 1100 23,487.04 25,245 1757.95
7 455 410 130 130 25 0 0 0 0 0 182 23,261.98 0 23,261.98 25,875 2613.02
8 455 455 130 130 30 0 0 0 0 0 132 24,150.34 0 24,150.34 26,580 2429.66
9 405 360 130 120 25 0 0 0 0 0 292 21,386.63 0 21,386.63 23,712 2325.37

10 455 380 130 130 25 0 0 0 0 0 212 22,736.83 0 22,736.83 32,872 10,135.17
11 455 395 130 130 25 0 25 0 0 0 257 24,173.33 520 24,693.33 34,974 10,280.67
12 455 435 130 130 25 0 25 0 0 0 217 24,874.02 0 24,874.02 37,980 13,105.98
13 455 355 130 130 25 0 25 0 0 0 297 23,473.63 0 23,473.63 27,552 4078.37
14 410 355 130 120 25 0 0 0 0 0 292 21,382.13 0 21,382.13 25,480 4097.87
15 455 435 130 130 50 0 0 0 0 0 132 24,199.99 0 24,199.99 27,000 2800.01
16 415 350 130 130 25 0 0 0 0 0 282 21,547.94 0 21,547.94 23,415 1867.06
17 455 260 130 130 25 0 0 0 0 0 332 20,641.82 0 20,641.82 22,250 1608.18
18 455 350 130 130 35 0 0 0 0 0 232 22,411.63 0 22,411.63 24,255 1843.37
19 455 445 130 130 40 0 0 0 0 0 132 24,174.74 0 24,174.74 26,640 2465.26
20 455 380 130 130 25 0 0 0 0 0 212 22,736.83 0 22,736.83 25,368 2631.17
21 415 360 110 110 25 20 0 0 0 0 372 21,859.06 340 22,199.06 24,024 1824.94
22 455 445 0 120 35 45 0 0 0 0 182 22,398.79 0 22,398.79 25,245 2846.21
23 455 425 0 0 0 20 0 0 0 0 90 17,645.36 0 17,645.36 20,475 2829.64
24 455 345 0 0 0 0 0 0 0 0 110 15,427.42 0 15,427.42 18,040 2612.58

TOTAL COST ($) 504,534.29 3420 507,954.3 593,389.5 85,435.21

Figure 3. Operating hours of generating units in TUC and DRUC.
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Along with this TUC programming, the six separate DRSPs that were installed are now used for
generation. These generators generate the 20% load that was reduced from the initial case for their
corresponding hours, respectively. The output of these generators are shown in Table 8. The same
forecasted price given in table 4 is used to calculate the revenue. The revenue generated for these
hours is $57,990.5, and the total operating cost is $40,512.5 for DRSP. The total revenue obtained when
combined with the DRUC and DRSP is $651,380. This is same as that of our base case hence proving
the same value of price is considered in our proposed case too as shown in Table 9. The total operating
cost is $548,466.80. This is lower than our base case hence increasing the profit to $102,913.20 (15.8%),
thus giving a profit rise of 2.37% shown in Table 9. Even an amount as low as a dollar saved per day
will sum up to be much greater amount at the end of a year, although upon comparison, the amount
doesn’t seem to be much higher, but considering long term generation, it will make a huge difference.

Table 8. Output data of DRSP’s during peak hours.

Hour DRSP 1 DRSP 2 DRSP 3 DRSP 4 DRSP 5 DRSP 6
Reserve
(MW)

Fdcost ($) Rv ($) PDRdi
f ($)

9 50 50 50 50 50 10 40 4810 5928 1118
10 50 50 50 50 50 30 20 5110 8218 3108
11 50 50 50 50 50 40 10 5282.5 8743.5 3461
12 50 50 50 50 50 50 0 5470 9495 4025
13 50 50 50 50 50 30 20 5110 6888 1778
14 50 50 50 50 50 10 40 4810 6370 1560
20 50 50 50 50 50 30 20 5110 6342 1232
21 50 50 50 50 50 10 40 4810 6006 1196

TOTAL COST ($) 40,512.5 57,990.5 17,478

Table 9. Various data comparisons.

- Fcost ($) SC ($) TOcost ($) Rv ($) PR ($) % Rise

TUC (LR) [45] - - 565,825 651,380 85,555 13.13
TUC (BCGA) [46] - - 567,367 651,380 84,013 12.89
TUC (ICGA) [46] - - 566,404 651,380 84,976 13.05
TUC (BFA) [47] - - 565,872 651,380 85,508 13.13
TUC (ICA) [48] - - 563,938 651,380 87,442 13.42

TUC (CSO) 559,847.7 4090 563,937.7 651,380 87,442.31 13.42
DRUC 504,534.3 3420 507,954.3 593,389.5 85,435.21 14.40
DRSP - - 40,512.5 57,990.5 17,478 30.14

DRUC + DRSP - - 548,466.8 651,380 102,913.2 15.80

% Difference Total cost variation = 2.74% Total profit variation = 2.37%

The cost comparison for the base case and the base case with DR and DRSPs is shown in Figure 4.
The base case is observed to have the maximum cost while the base case with DR has less due to the
reduced load during the peak hours. The final case being the total cost combined of base case with DR
and DRSPs. It is noticed that the profit is maximum when DRUC is scheduled rather than TUC. The
various running data for the separate DGs installed is shown in Figure 5. It is observed that all the
units are committed for peak hours and generating 50 MW each, except for the last unit, that is varied
throughout peak hours in order to equalize the demand power.

The load demand versus time curve is depicted in Figure 6. The peak time load has been reduced
using DRUC when compared with TUC. The reduced load value is generated by the DRSP’s which is
shown in Figure 5. The profit calculated for base case, base with DR and DRSPs are shown in Figure 7.
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Figure 4. Cost comparison for TUC, TUC using DR and DRUC.

Figure 5. Unit running data for DRSP switched on during peak hours.

Figure 6. Load demand vs. time curve for TUC and DRUC.
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Figure 7. Profit for TUC, TUC using DR and DRUC.

It is noted that the profit is more using DRUC when compared with TUC. Also the curve when
only the base case with DR excluding DRSPs is plotted and depicted. The various revenues calculated
in TUC and DRUC are shown in Figure 8.

Figure 8. Revenue calculated in TUC, TUC using DR and DRUC.

It can be seen that the revenue when DR is established is reduced. This reduced revenue is
calculated for DRSPs using the same spot price values. It should be noted that the revenue for both
cases are one and the same. The total operating cost for the base case, base case using DR without
DRSPs and base case using DR with DRSPs are shown in Figure 9. It is observed that the overall cost is
reduced in DRUC when compared with TUC.
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Figure 9. Operating cost for TUC, TUC using DR and DRUC.

6. Conclusions

In this paper, a demand response-based unit commitment model is solved using the Cat Swarm
Optimization technique. A real time-based demand response program is used here to reduce load
stress during peak hours and reduce the overall cost of the generation system. Also, six Demand
Response Service Providers are used to compensate for the reduced load values. It is observed that
using demand response unit commitment maximizes the profit for both GENCOs and the Demand
Response Service Providers. Even though the load is reduced during peak periods the GENCOs gain
higher percentage of profit. The consumer gains profit by installing DRSPs that supply the shaved-off
loads during peak hours thereby decreasing the overall cost and maximizing the profit. From the
simulation studies, although the revenue remains the same in TUC as in DRUC, it is observed that
by implementing DRUC in generation systems, there is an overall decrease of around 2.74% in total
cost and an increased profit gain of around 2.37%. Also it is proved that using DRSP the profit of the
consumer is increased by reduction in the fuel cost. The proposed algorithm gives better results when
compared to other optimization methods.
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Nomenclature

Constants

N Total number of units
Ψ Unit commitment time step (60 min)
T Dispatch period in hours
dN Total number of DRSP units
Θdi, δdi, ϕdi Supply curve coefficients of DRSP generating units
θmdi, δmdi, ϕmdi Customer’s supply curve cost coefficients
ai, bi, ci Supply curve coefficients of IEEE 10 generating units
μdi Customer willingness coefficient
Ri

up Ramp up rate of unit i
Ri

down Ramp down rate of unit i
Mi

up Minimum up time limit of unit i
Mi

down Minimum down time limit of unit i
Hi

cos t Hot start cost of unit i
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Ci
cost Cold start cost of unit i

CSi
time Cold start hour of unit i

Variables

i Index of generator unit
di Index of DRSP generator unit
PR Total profit of the GENCO’s and DRSP combined
TRV Total revenue calculated from GENCO’s and DRSP
TOcost Total operating cost of GENCO’s and DRSP combined
Fi

cost Fuel cost of generator unit
Fdi

cost Fuel cost of DRSP generating unit
DRprice Demand response clearing price
DRdi

gen DRSP generator output per hour
PDRdi

f Total profit of DRSP

DRreq Required power output from DRSP generating units
Pi,t

gen Power generator output of ith unit at tth hour
Pdi,t

gen DRSP output of dith unit at tth hour
Ui,t

stat Unit status of ith unit at tth hour
Pt

dem Total power demand at hour t
Pi,min

gen Minimum generation output power of ith unit
Pi,t min

gen Minimum generation output power of ith unit at tth hour
Pi,max

gen Maximum generation output power of ith unit
Pi,t max

gen Maximum generation output power of ith unit at tth hour

Pi(t−1)
gen Power generated in the previous hour

ONi Number of hours the unit was committed
OFFi Number of hours the unit was not committed
Ri,t

gen Reserve generation of unit i at tth hour
Si

res Spinning reserve of unit i
Si

price Forecasted spot price of unit i
Sdi

price Forecasted spot price of DRSP generating units di
SUi

cos t Startup cost of unit i
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Abstract: Although a well-organized power system is less subject to blackouts, the existence of
a proper restoration plan is nevertheless still essential. The goal of a restoration plan is to bring
the power system back to its normal operating conditions in the shortest time after a blackout
occurs and to minimize the impact of the blackout on society. This paper presents a decentralized
multi-agent system (MAS)-based restoration method for a low voltage (LV) microgrid (MG). In the
proposed method, the MG local controllers are assigned to the specific agents who interact with each
other to achieve a common decision in the restoration procedure. The evaluation of the proposed
decentralized technique using a benchmark low-voltage MG network demonstrates the effectiveness
of the proposed restoration plan.

Keywords: average consensus algorithm (ACA); black start; local controller; microgrid (MG);
multi-agent system (MAS); power system restoration (PSR)

1. Introduction

1.1. Motivations

Nowadays, the limited operating margins of the power systems have increased the risk of power
blackouts and system collapse. In recent years, several major blackouts have occurred around the
world. For instance, the blackout that occurred on 14 August 2003 in North America, caused an
immense loss and the power system restoration (PSR) lasted nearly two weeks [1]. Also, a European
power outage affected 15 million people on 4 November 2006, and it lasted up to 2 h. The blackout
that occurred on 31 July 2012, in north India deenergized 50 GW of loads and affected 670 million
people. The 2009 Brazil and Paraguay blackout was a power outage that occurred in many sections
of Brazil and for a short time affected the entirety of Paraguay. The Fukushima nuclear power plant
was faced with a series of equipment failures after the earthquake and tsunami on 11 March 2011,
and a significant amount of radioactive materials were also released into ground and ocean waters [2].
When a blackout occurs, the main priority is to restore the power system in a proper manner so
that the maximum load is restored as soon as possible considering the operating conditions and the
system security.
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During the past years, various aspects of the PSR problem have been studied, and its theories and
methods are largely mature [3–7]. In conventional power systems, the restoration process begins from
the transmission system by starting up those power plants which provide the black start capability in
the shortest time. This allows the supply of a large part of the consumers near the power plants and
to energize the transmission network [4]. The start of the restoration process from the transmission
system causes many consumers in the distribution system to be supplied in the final stages of the
restoration process, so the reliability of the system is decreased.

With the restructuring of the power grids toward smart grids which are based on the smart energy
infrastructure consisting of microgrids (MGs) and distributed energy resources, the possibility of
restoration of a large part of the loads at the distribution level along with restoration of the power
plants and transmission network is provided. Therefore, the combination of the distributed energy
resources and the flexible demands in the form of MGs can facilitate the implementation of local
self-healing methods and accelerate the restoration process. In this sense, the PSR process can be
carried out using a top-down procedure starting from the high voltage (HV) transmission system
along with a bottom-up approach starting from the low voltage (LV) distribution system by using the
capabilities of the LV MGs. The LV MGs and the HV transmission system will be synchronized and
connect together at the medium voltage (MV) distribution level [8–11].

The motivation of this paper was to design and develop a decentralized multi-agent-based
approach for restoration of a MG after a general blackout. The proposed decentralized approach
provides an adequate restoration sequence to maximize the amount of restored loads.

1.2. Literature Review

The aims of restoration are to enable the power system to return to its normal conditions rapidly
and securely, to minimize the losses and the restoration time, and to alleviate the adverse effects
on the society after an outage. Many methods and technologies are employed for preparing the
restoration schemes to address the abovementioned goals. Although the nature of the outages is
unique, certain common guidelines exist to help operators restore and rebuild a stable power system
after an outage [12]. The PSR can be categorized based on several different criteria as follows:

(a) Different parts of the power system: PSR needs to be carried out in different types of power
systems and at different levels. In [13], the restoration of the transmission system with the goal
of finding an appropriate sequence of actions to minimize the size of the blackout over time
is presented. To solve the restoration ordering problem (ROP), the DC model and the linear
programming approximation of AC (LPAC) power flow are used, and it is shown that the DC
model is not sufficiently accurate to solve the ROP. In contrast, the LPAC power flow model is
sufficiently accurate to obtain the restoration plans. In [14], the PSR is stated as a multi-objective,
multi-variable, and multi-constrained nonlinear optimization problem and a multi-objective
model based on the combination of the multi-agent technology and Tabu search method (TSM)
is proposed for the restoration of the transmission system. Some of the studies investigate the
restoration of the distribution system. In [15], by using the genetic algorithm (GA), the switching
operation is minimized during the restoration process. It also reduces the required calculations
time. The capabilities of the distributed generations (DGs) in distribution systems are used in [16]
to minimize the restoration time and maximize the amount of restored loads.

(b) Outage range: Some researchers focus on the condition in which only a small part of the power
system is deenergized [13] while other researchers focus on the restoration procedure after a total
blackout [17].

(c) Sub problems: Much researchers have focused on the different sub problems in PSR such as
generator start-up sequence [18], standing voltage phase angles [19], and selecting suitable islands
to restart [20].
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(d) Modeling: There is a trade-off between speed and accuracy of PSR analysis; capturing the
behavior of the real system reduces the computation time and the implementation complexity.
Both static power flow calculations [17] and dynamic electromechanical models [8,21,22] are used.

Many recent reports focus on the using the capabilities of the MGs as the new effective solution
for PSR at the distribution system level. In [8], the feasibility of MG restoration after a blackout is
investigated using dynamic modeling. The microgrid central controller (MGCC) is responsible for
making the restoration decisions such as starting-up the black start units, energizing the feeders, and
restoring the loads and non-black start units. Using the information received periodically from the local
controllers about generation and consumption levels, the centralized control system of the MG makes
the restoration decisions. Such dynamic studies for MG restoration with the centralized approach are
widely used in the literature. In [22], the restoration of the distribution system is investigated in the
presence of multi-MGCC. Similar to [8], it is supposed that the sequence of the restoration actions is
determined by the centralized control system. In [23] and [11], the dynamic studies of the centralized
restoration process are performed for the MGs implemented in the northern region of Launceston in
Tasmania, and Illinois Institute of Technology (IIT), respectively.

The centralized control schemes are low cost and easy to design, however, they suffer from
single-point-failure. Furthermore, they are not adaptive to the changes of the power network structure.
For instance, when new loads or generators are installed, the centralized control schemes may need to
be redesigned. To avoid these shortcomings, the decentralized control scheme is introduced. One of
the most popular decentralized control solutions is the multi-agent system (MAS). The MAS has the
advantage of surviving single-point-failure, and it can do the decentralized data processing which, in
turn, leads to task distribution and faster decision-making process [24].

MASs need to share the information process among the agents. The problem of communication
of the agents can be solved by the average consensus algorithm (ACA). ACA shares the information
among the agents in a distributed way to achieve an agreement on a common decision. This algorithm
is widely employed in different areas including the collective behavior of swarms [25], random
networks [26,27], formation flight control of multi-unmanned aerial vehicle (UAV) system [28],
cooperative control of satellites [29], networks of cameras [30], and coordination and control of
mobile robots [31].

1.3. Contributions

This paper introduces a decentralized multi-agent-based approach for restoration of an LV MG.
In the proposed scheme, the MG local controllers are assigned to specific agents. The agents only know
their own local information and communicate with their neighboring agents to access the required
global information. The communication among the agents for sharing the local information and
accessing to the global information is based on ACA. After completing the sharing information process,
all agents take a common decision based on the discovered information to determine which load or
generation unit should be chosen and connected for maximizing the amount of the restored load in the
shortest possible time.

The centralized restoration scheme uses the information about the last generation-consumption
scenarios of the MG to determine the sequence of restoration actions. The information is periodically
sent by the MG local controllers to the MGCC. After a blackout, the MGCC performs service restoration
based on the latest updated information stored in a database and determines all restoration actions.
Since the database information is gathered during a certain period of time before the blackout, in the
case of changing in the load or generation scenario or lack of preparedness for the restoration of a
generation unit or load during the restoration process, the restoration scheme will be in trouble [8,22].
Thus, there is a need for a decentralized restoration approach that uses the online information of the
generation/consumption of the MG and determines a proper sequence of restoration actions to restore
the maximum possible amount of loads in the shortest possible time. The proposed decentralized
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multi-agent based restoration approach uses the online information of the generation/consumption of
the MG during the restoration process and determines a proper sequence of restoration actions.

1.4. Paper Organization

The rest of the paper is organized as follows: in Section 2, the centralized control structure for
the black start of the MG is briefly explained. Section 3 gives the dynamic modeling of an LV MG.
The employed dynamical models are compatible with the type of study. In Section 4, the proposed
decentralized multi-agent based approach for the restoration of an LV MG is explained. The proposed
scheme is simulated in MATLAB-Simulink (R2013b (8.2.0.701)), The MathWorks, Inc., Natick, MA,
USA) environment, and the study results are presented in Section 5. Finally, Section 6 provides
the conclusions.

2. Microgrid Control Structure for Black Start

Figure 1 shows the structure of an inverter-based LV MG. The presence of a synchronous generator
in an inverter-based LV MG is not common [8]. Generally, an LV MG includes the loads, microsources
(photovoltaic (PV), wind energy conversion system (WECS), fuel cell, and microturbine), and storage
devices (battery energy storage systems (BESSs) and flywheels).

Figure 1. Typical low voltage (LV) microgrid (MG). MGCC: microgrid central controller; MC:
microsource controller; LC: load controller; WECS: wind energy conversion system; PV: photovoltaic.

The safe, economic and stable operation of an MG in both grid connected and islanded mode
depends on the existence of a proper control system [11,32–34]. An LV MG can be controlled centrally
by the MGCC installed at the LV side of MV/LV substation. The load controller (LC) and microsource
controller (MC) are local controllers that control the loads and microsources, respectively, and exchange
the required information (such as set-points and load/consumption situations) with the MGCC through
a narrow-band communication link. LC controls the loads using the local load shedding schemes in
emergency conditions while MC controls the active and reactive power of microsources [35].

Under normal operation, the MG is connected to the MV network. However, in order to deal
with the islanded mode and black start of the MG following a blackout, an emergency operation mode
should be provided. If a blackout occurs, the restoration process time needs to be reduced as much as
possible. The restoration plan is defined step by step. The main steps are building the LV network,
connecting the microsources, connecting the controllable loads, controlling the voltage and frequency,
and synchronizing the MG with the MV network, when it is available [8,22].

In the centralized restoration scheme, the MG black start is guided by the MGCC. The information
about generation-consumption scenarios of the MG is periodically sent by the MCs and LCs to MGCC
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using the communication links and they will be stored in a database. After the blackout occurrence,
based on the information available in the database, the MGCC determines a sequence of restoration
actions and send the proper control commands to the local controllers [8,22].

To implement such a centralized restoration approach, all of the MCs and LCs must have a
direct communication with the MGCC. In the case of communication failure for each local controller,
the centralized restoration scheme faces with some problems. That’s why it is said that the centralized
control schemes easily suffer from single point failure. Moreover, the centralized restoration scheme
uses the information available in its database to determine the sequence of restoration actions. Since the
database information is gathered during a certain period of time before the blackout, in the case
of changing in the load or generation scenario or lack of preparedness for the restoration of a
generation unit or load during the restoration process, the restoration scheme will be in trouble.
Thus, there is a need for a decentralized restoration approach that uses the online information of the
generation/consumption of the MG and determines a proper sequence of restoration actions to restore
the maximum possible amount of loads in the shortest possible time.

This paper proposes a decentralized multi-agent based approach for the MG restoration in which
the online data related to the generation and consumption are used to determine a proper sequence of
restoration actions. In the following sections, first, the MG components will be dynamically modeled.
Then, according to the mathematical discussion on the distributed averaging problem, the proposed
multi-agent based method will be presented.

3. Modeling of the Microgrid Components

Generally, MGs include some components such as microsources, storage devices, and loads.
In order to study the dynamic behavior of the MG during the restoration process, it is essential to
provide a proper dynamic model for each component that is compatible with the type of the study [36].
In the following subsections, various components of the MG are modeled.

3.1. Microsource Modeling

There are several dynamic models for microsources in the literature. To model the PV cell, this
paper uses the single-diode model or five-parameter model [13]. This model provides an adequate
trade-off between simplicity and accuracy. A PV system is commercially available in the form of
modules in which there is a number of series cells. The modules are connected in series to make a
string with an appropriate voltage level. While, to increase the current rating, the strings are connected
in parallel and form an array. In [37], the model of the PV array based on the five parameter model is
found. In this paper, it is assumed that the PV arrays work at the maximum power point.

The WESS model used in this study is based on the constant speed wind turbine that is available
in [38]. Likewise, regarding the period of study, only the average value of the wind speed is considered
(i.e., the wind speed is constant).

To model the dynamic behavior of the microturbine, the gas turbine (GAST) model [39] is used.
There are two types of the microturbine including single-shaft microturbine (high-speed) and split-shaft
microturbine (low-speed). In the single-shaft microturbine, the turbine speed range is from 50,000 to
120,000 rpm. So, this type of microturbine requires an AC/DC/AC converter for connecting to the grid.
The split-shaft microturbine uses a power turbine that is rotated at 3600 rpm and can be connected to a
conventional induction generator using a gearbox [39].

Reference [40] provides a basic dynamic model for a solid-oxide fuel cell (SOFC) that is used in
this paper. This model has some assumption to achieve an integrated dynamic model for using in the
power systems simulations.

3.2. Converter Modeling

There are two kinds of control mode for operating the converters: (1) grid-forming mode and
(2) grid-following mode [41]. The grid-forming converters emulate the behavior of a synchronous
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generator and provide the voltage and frequency references for the MG. The grid-forming converter
acts as a voltage source and controls its output voltage and frequency using the droop control. When the
MG works in the islanded mode, at least one converter must operate as a grid-forming converter.

DGs must meet two requirements to have the black start capability: (i) equipped with storage
devices (batteries or super-capacitors) in the DC link of their inverter and (ii) operation of their inverter
in the grid-forming control mode. These DGs are capable of restarting without any external power
source, energize the network, supply a part of loads, and provide remote cranking power for the other
DGs with the grid-following inverter control system [42]. Figure 2 shows the control structure of a
droop-based grid-forming converter.

U
I

P

Q

P

Q

P

ω

Q

U
2 sin( )refU U tω=

ω

U

Figure 2. Structure of a grid-forming converter control system. PWM: Pulse width modulation.

The grid-following converters are mainly designed to deliver a pre-determined power to
an energized grid. If there is no synchronous generator or grid-forming converter in the MG,
the grid-following converter cannot operate. Figure 3 shows the control structure of a grid-following
converter [43].
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Figure 3. Structure of a grid-following converter control system.

4. Proposed Decentralized Approach

4.1. Mathematical Background

The consensus problem is a prevalent problem in distributed control. In the following two
subsections, the ACA is explained.
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4.1.1. Distributed Averaging

Let g = (N, E) be a graph with N nodes and E edges. In node set N = {1, 2, . . . , n}, consider
each edge {i, j} ∈ E is an unordered pair of distinct nodes. Let c0

i be a real number associated to node
i at time t = 0. The average consensus problem calculates iteratively the average (1/n)∑n

i=1 c0
i in a

distributed way at every node (see Figure 4). The following iterative law, known as ACA, is proposed
in the literature to solve this averaging problem [44]:

ck+1
i = ck

i + ∑
j∈Ni

wij(ck
j − ck

i ), (1)

where i = 1, 2, . . . , n; n is the number of nodes; ck
i , ck+1

i are the values of node i at iteration k and k + 1,
respectively, and wij is the weight coefficient that enables communication between neighboring nodes
i and j. If nodes i and j are connected together, 0 < wij < 1, otherwise, wij = 0. Ni is the index of nodes
connected to node i.

Figure 4. Principle of distributed averaging.

By considering Ck = [ck
1, . . . , ck

i , . . . , ck
n]

T
, Equation (1) can be expressed in matrix form as follows:

Ck+1
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i +ACk
i = (I + A)Ck

i → Ck+1
i = DCk

i , (2)

where I is the identity matrix, and:

D =

⎡
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j∈Nn

wnj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n×n

. (3)

The square matrix D is said to be doubly stochastic if its elements are non-negative and sums of
each row and each column are equal to ones, i.e., with l1×n = [1, 1, . . . , 1], l× D = l and l× DT= l [45].
Based on the Gerschgorin’s Disks theorem, the eigenvalues of D are lower than or equal to one.
According to the Perron Frobenius Lemma [46], one can write:

lim
k→∞

Dk =
lT ∗ l

n
, (4)
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where n is the dimension of matrix D. Combination of (2) and (4) leads to:

lim
k→∞

Ck
i =

lT ∗ l

n
C0

i . (5)

From Equation (5), one can see that the system reaches to consensus when k approaches infinity.
The speed of convergence depends on the design of D. In practice, the exact equilibrium is not required,
and the number of required steps for converging is approximately equal to:

k =
−1

loge(
1

λ2
)

, (6)

where e is the error tolerance and λ2 is the second biggest eigenvalue of D [44]. Equation (6) shows that
λ2 determines the number of required steps to converge or equivalently the speed of the algorithm.
To achieve the maximum speed and the optimal solution, the weight coefficients in matrix D must be
determined in such a way to minimize λ2.

4.1.2. Coefficient Setting

The employed method for setting the weight coefficients depends on the type of application, i.e.,
offline or online applications. If the system is exposed to changes of configuration, the optimization
problem must be solved again at every change. Because of the multiple variables and constraints
in this optimization problem and the required time to achieve the information of the new system
configuration, the optimization is time consuming and is, therefore, suitable for offline applications.
For online application, there is a requirement for a proper algorithm to adjust the weight coefficients
near their optimum values. Normally, in online applications, the weight coefficients are determined by
using a simple rule named Uniform method [44]. This method proposes the fixed coefficients that are
calculated as follows:

wij =

⎧⎪⎪⎨
⎪⎪⎩

1/n, j ∈ Ni
1 − ∑

j∈Ni

1/n, i = j

0, otherwise.

(7)

In above equations, n is the number of nodes. To achieve a higher convergence speed, another
method named Metropolis is introduced in [47] that makes λ2 near to its minimum value using an
adaptive weight updating law. The updating rule is:

wij =

⎧⎪⎪⎨
⎪⎪⎩

1/(Max(ni, nj) + 1), j ∈ Ni
1 − ∑

j∈Ni

1/(Max(ni, nj) + 1), i = j

0, otherwise,

(8)

where ni and nj are the number of nodes in the neighborhood of the node i and j, respectively. It is
easy to show that these two methods guarantee the two required conditions for applying the Perron
Frobenius Lemma to D (i.e., the sums of each column and row of the D are ones, and all its eigenvalues
are equal or lower than one). To make a comparison between the speeds of the ACA with various
coefficient setting rules, let consider the graph depicted in Figure 5. Now, let us define the initial values
assigned to each node as follows: c0

1 = 100, c0
2 = 100, c0

3 = −50, c0
4 = −100, c0

5 = −50.
By using Equation (2), the equilibrium point for unlimited iterations will be:

c∞
1 = c∞

2 = c∞
3 = c∞

4 = c∞
5 =

1
5

5

∑
i=1

c0
i = 0. (9)

It means that after using the consensus algorithm (Equation (1)), the number ‘0’ exists in each
node. Figure 6 shows the value in each node for 60 iterations. Considering an error tolerance equal to
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0.01, the nodes have reached the consensus with 31 and 25 iterations for the uniform and metropolis
methods, respectively.

Figure 5. A typical studied graph.

 

Figure 6. Comparison of converging speed of different methods: (a) uniform; (b) metropolis.

4.2. General Assumptions

The goal of this paper is to develop a decentralized multi-agent-based approach to restore
the MG loads and generations with a proper sequence of actions after a total blackout. The local
controllers (MCs and LCs) and the MG communication infrastructure are so important for the successful
implementation of the decentralized restoration scheme.

Based on the abovementioned distributed averaging algorithm, it is assumed that each node of the
graph can be considered as an agent. The edges of the graph can be considered as the communication
links among the agents. It is assumed that each local controller is assigned to a specific agent. Thus,
there are two kinds of agents: (i) MC agents and (ii) LC agents. Figure 7 shows the conceptual
decentralized multi-agent based model for MG restoration. In this model, each MC agent has some
local information such as the amount of the generation capacity of the corresponding microsource,
connection situation of the corresponding microsource (connected or disconnected), its availability
and preparedness for the restoration, and pre-defined priority for the restoration.

- generation capacity
- connection situation 
- preparedness for restoration
- pre-defined priority

Local information:

MC agent

LC agent

MC agent

LC agent

MC agent
LC agent

- amount of the load
- connection situation 
- preparedness for restoration
- pre-defined priority

Local information:

 

Figure 7. Conceptual decentralized multi-agent based model for MG restoration.
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The LC agents have similar local information of their corresponding loads. The agents don’t
have any direct access to the global information of the system. An agent is only able to communicate
with its neighbors. By using the ACA based communication law, the agents are able to share the local
information, to access the global information, and accordingly to take a common decision for restoring
the loads or generation units.

4.3. Information Sharing Process

The local initial information of each agent is placed within an initial matrix. The initial matrices
just have the local information of the agents. Agent i is initialized with a n × 4 matrix Mi where n is
the number of agents. In Mi, up to four non-zero elements may exist. These three non-zero elements
are Mi(i, 1), Mi(i, 2), Mi(i, 3), and Mi(i, 4). Mi(i, 1) can be either 0 or i to show whether the generation
unit or the load assigned to agent i is connected or not. Each agent can realize which generation units
or loads are disconnected by checking the position of the zeros. Mi(i, 2) can be 0 or i to show that the
disconnected load or generation unit is ready for restoration or not. In the case of MC agents, Mi(i, 3)
shows the amount of the power that the generation unit can produce while in the case of LC agents,
it represents the amount of the load power that agent i will consume. Mi(i, 4) can be 0, 1, 2, 3 that
shows a pre-defined priority of the agents for restoration action. If Mi(i, 4) = 0, the agent i has no
pre-defined priority.

For example, let consider the initial matrices Mi, Mj, Mn for agent i, j, n, respectively, as follows:

Mi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
...

...
...

...
0 i PGi 0
...

...
...

...
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

n×4

, Mj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
...

...
...

...
0 j −PLj 1
...

...
...

...
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

n×4

, Mn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
n 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

n×4

. (10)

The above initial matrices present the following information. MC-agent i is disconnected; it is
ready for restoration; if it is connected, it can produce power equal to PGi ; and it has no pre-defined
priority. Similarly, the LC-agent j is disconnected; it is ready for restoration; if it is connected, it
consumes PLj ; and it has the highest priority to be connected. The agent n is connected, and there is no
need for the restoration. Each agent has a similar principle to make the initial information matrix. By
using the ACA (Equation (1)), all initial matrices will converge to the same matrix that is available for
each agent. A typical final converged matrix can be:

Mconv. =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

...
...

0
n

i
n

PGi

n
0
n

...
...

...
...

0
n

j
n

−PLj

n
1
n

...
n
n

...
0
n

...
0
n

...
0
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n×4

. (11)

Each element of the final converged matrix is equal to the average summation of the corresponding
elements existed in the initial matrices. The actual amount of each element can be obtained by
multiplying the element by n. According to the discovered global information (Mconv.), the amount
of disconnected loads and generations are available and after reaching the consensus, all agents take
a common decision for restoring the loads or generation units. The following subsection is devoted
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to implementing the proposed method in which the function of agents and decision making process
are described.

4.4. Implementation of the Proposed Multi-Agent Based Approach for MG Restoration

The function modules of the agent i is illustrated in Figure 8. Each agent has four main modules:
(1) initialization; (2) information update; (3) information keep; and (4) exchange and decision making.
The required steps for operation of the agents can be designated as follows:

Step 1: Initialization: in this step, the local initial information matrix of each agent (M0
i ) is formed.

Step 2: Information sharing: in this step, each agent receives the information of its neighboring agents
through a communication link and updates its information by using the ACA. After reaching
the consensus, the common decision will be made.

Step 3: Decision making: when the agents reach the consensus in the sharing information process,
a proper decision will be made. Decision making is one of the crucial parts of the agents’
function blocks. This block must be designed to meet the initial restoration steps such as
setting up the generation units with black start capability and energizing the restoration path.
Moreover, in the next steps, this block must determine a proper sequence for connection of
disconnected loads and generation units by providing the maximum amount of the restored
loads in the shortest possible time.

 

Figure 8. Function of agent i for MG restoration.

Decision Making Process

MG restoration process begins by setting up a generation unit with black start capability. In an
inverter-based MG, the inverter with grid-forming control mode has the black start capability. It is
assumed that in the MG, one inverter is in grid-forming control mode and the other ones operate
in grid following mode. The output real power of the grid-following inverters is a constant value.
However, the output real power of the grid-forming inverter varies based on the MG frequency (droop
control). During the restoration process, the connection of a load or a generation unit changes the
output power of the grid-forming inverter. The capacity and the instantaneous power of grid-forming
inverter play a key role in determining a proper sequence of connecting the loads and generation units
with a grid-following inverter.
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To help better understand this, consider the flowchart of the decision making process shown in
Figure 9. When the algorithm is run for the first time, the microsource with grid forming inverter
is chosen and connected to energize the MG feeder. Then, a pre-defined interruption is required for
damping of the frequency fluctuations. The interruption time depends on the inertia and damping
factor of the MG. In the next run of the algorithm, after reaching the consensus, the information related
to the output power of the grid-forming inverter Pform that is a small value (only for energizing the
MG feeder) as well as the disconnected load units and available power of the generation units with
grid-following inverter are available for all agents. The capacity of the grid-forming inverter Pcap

form is
also specified. In this step, based on the discovered information, the largest possible amount of the
load is chosen to be connected. This amount of the connected load makes the grid-forming inverter
to work in the capacity limits, so in the next step, a generation unit with the grid-following inverter
is chosen to releases the capacity of the grid-forming inverter by providing a fixed amount of power.
This procedure will continue until all of the generation units and the maximum possible amount of the
loads are connected.

 

Figure 9. Flowchart of the decision making process.

5. Simulation Results and Discussion

In order to evaluate the dynamic behavior of an MG during restoration procedure, a benchmark
LV MG network presented in Figure 10 is implemented in the simulation platform. The electrical data
for this LV test system can be found in [48]. It is supposed that the MG is subjected to a total blackout.
The studied MG includes nine local controllers, and each one is assigned to a specific agent. Figure 11
shows the two topologies for connection of the agents.

From (6), it can be observed that the speed of ACA is independent of the initial information matrix
and it depends on how the agents are connected and how the weight coefficients are determined.
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To verify the convergence speed of the ACA for the topologies of Figure 11, let define the initial values
assigned to each agent as follows:

c0
1 = 1, c0

2 = −1, c0
3 = 1, c0

4 = −1, c0
5 = 1, c0

6 = −1, c0
7 = 1, c0

8 = −1, c0
9 = 0. (12)

20  kV

0.4 kV

M

BUS 1

Microturbine : 30 kW

 4 Apartment buildings : 40 kW 

Group of 4 residence : 20 kW

Wind turbine : 20 kW 

Photovoltaics : 10 kW 

BUS 2

BUS 3
Motor load : 5 kW 

BUS 4

BUS 6

BUS 7

BUS 8BUS 9

BUS 5

Fuel cell : 15 kW

Single residential 
consumer : 4.8 kW

2 Apartment buildings : 20 kW 

Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

Agent 6

Agent 7
Agent 8

Agent 9

Figure 10. Benchmark LV MG network.

Agent 1
Agent 2

Agent 3

Agent 4

Agent 9

Agent 8

Agent 7

Agent 6 Agent 5

 Agent 1
Agent 2

Agent 3

Agent 4

Agent 9

Agent 8

Agent 7

Agent 6 Agent 5
 

(a) (b) 

Figure 11. Different topologies for connection of the local controller agents: (a) topology a;
(b) topology b.

By using Equation (2), the equilibrium point for unlimited iterations will be:

c∞
1 = c∞

2 = c∞
3 = c∞

4 = c∞
5 = c∞

6 = c∞
7 = c∞

8 = c∞
9 =

1
9

9

∑
i=1

c0
i = 0. (13)
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It means that after using the consensus algorithm (Equation (1)), the number ‘0’ exists in each
agent. The metropolis method is used for determining the weight coefficient. Figure 12 shows the
value in each agent for 40 iterations. Considering an error tolerance equal to 0.01, the agents have
reached the consensus with 19 and 17 iterations for the topology (a) and (b), respectively.

(a) (b) 

0 5 10 15 20 25 30 35 40
Number of iterations

-1

-0.5

0

0.5

1

agent 1
agent 2
agent 3
agent 4
agent 5
agent 6
agent 7
agent 8
agent 9

0 5 10 15 20 25 30 35 40
Number of iterations

-1

-0.5

0

0.5

1

agent 1
agent 2
agent 3
agent 4
agent 5
agent 6
agent 7
agent 8
agent 9

Figure 12. The convergence speed of the different topologies of Figure 11: (a) topology a; (b) topology b.

The time delay to reach the consensus can be estimated by:

T =
Niteration × NM × Nb

C
, (14)

where Niteration is the number of required iterations to reach the consensus, NM is the size of the
information matrix, Nb is the number of required bits to represent each element of the information
matrix, and C is the communication link speed. For the topology (a) and (b), the system requires 19
and 17 iterations to converge, respectively. There are nine agents, NM = 9 × 4, and if 16 bits are used
for representing each element of the information matrix, for a network with 5 Mbit/s, time delay for
reaching the consensus for the topology (a), (b) are 0.002189 s and 0.001958 s, respectively. This time
delay is very small compared with the pre-defined interruption time used in the decision making
process. In the simulations, the interruption time is considered equal to 4 s. Therefore, the time delay
for reaching the consensus can be neglected.

In order to provide the black start capability for the studied MG, the microturbine is equipped
with the battery storage in the DC link, and its inverter operates in the grid-forming control mode.
The inverters of the fuel cell and PVs systems operate in the grid following control mode. The wind
turbine is connected directly to the grid through an induction generator. It should be noted that the
secondary control is carried out locally by using a PI controller at microturbine control system aiming
to restore the frequency and voltage to the nominal value after any restoration action. The restoration
process is started with forming the initial information matrices of the agents. The initial information
matrices are as follows:
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M1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 −5 2
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 2 −40 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 3 30 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 4 20 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 5 10 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 6 −20 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 7 −4.8 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 8 −20 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M9 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 9 15 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

By using ACA for the topology (a), after 0.002189 s, the agents share the initial information and
reach the consensus. The final converged matrix that is available for all agents is as follows:

Mconv. =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0

1
9

2
9

3
9

4
9

5
9

6
9

7
9

8
9

9
9

−5
9

−40
9

30
9

20
9

10
9

−20
9

−4.8
9

−20
9

15
9

2
9

1
9 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

By checking the first and the second columns of Mconv. (or second row of MT
conv.), it can be

found that all of the loads and generations are disconnected, and they are ready to be restored.
Column 3 shows that the MC-agents have no predefined priority and they will be chosen based on
their production capacity. Among the LC-agents, the LC-agent 2 (correspond to the apartment building
disconnected from bus 4) has the highest priority to be connected. LC-agent 1 (correspond to the
motor load) has the next priority, and the other LC-agents have no pre-defined priority for restoration.
The first common decision of the agents in this step is to connect the MC-agent 3 (correspond to the
microturbine) for energizing the MG feeder.

After connecting the microturbine and passing the interruption time (4 s), the initial information
matrices are again formed. All of the initial matrices are same as the previous step except the initial
matrix corresponds to the MC-agent 3. In this step, the final converged matrix is as follows:

Mconv. =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0 0 0
1
9

2
9

0
4
9

5
9

6
9

7
9

8
9

9
9

−5
9

−40
9

30
9

20
9

10
9

−20
9

−4.8
9

−20
9

15
9

2
9

1
9

0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

From the above matrix, it can be seen that the microturbine has 30 kW capacity for supplying the
loads. By considering the priority of the loads, the LC-agent 2 connects three apartment buildings
and the microturbine will reach its capacity limit. After passing the interruption time, the initial
information matrices are again formed, and the final converged matrix is expressed as follows:
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Mconv. =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0 0 0

1
9

2
9

0
4
9

5
9

6
9

7
9

8
9

9
9

−5
9

−10
9

0
20
9

10
9

−20
9

−4.8
9

−20
9

15
9

2
9

1
9

0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

The above matrix shows that the microturbine has reached its capacity limit and there is a need
for connection of another MC-agent to release the capacity of the microturbine. In this step, among the
MC-agents, the MC-agent 4 (correspond to the wind turbine) that has a higher production capacity is
chosen to be connected. In the next step, the final converged matrix is as follows:

Mconv. =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 0 0 0 0 0

1
9

2
9

0 0
5
9

6
9

7
9

8
9

9
9

−5
9

−10
9

20
9

0
10
9

−20
9

−4.8
9

−20
9

15
9

2
9

1
9

0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

In this step, the microturbine has 20 kW free capacity. The remaining load of LC-agent 2 along
with the LC-agent 1 and one of the residence groups correspond to the LC-agent 6 are connected.
This process will continue until all of the MC-agents are connected, and the microturbine operates
in its capacity limits. The remaining disconnected loads will be supplied when the MG is connected
to the upstream network. Table 1 shows the sequence of restoration actions carried out based on the
proposed decentralized multi-agent based scheme.

Table 1. Sequence of restoration actions.

Steps Actions time

Step 1 Connection of microturbine t = 1 s

Step 2 Connection of three apartment buildings at bus 4 t = 5 s

Step 3 Connection of wind turbine t = 9 s

Step 4

Connection of one apartment building at bus 4

t = 13 sConnection of motor load

Connection of one of the residence groups at bus 6

Step 5 Connection of fuel cell t = 17 s

Step 6 Connection of three remaining residences at bus 6 t = 21 s

Step 7 Connection of PVs t = 25 s

Step 8 Connection of one apartment building at bus 9 t = 29 s

After step 8, the final converged matrix is expressed as follows:

Mconv. =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 0 0 1

0 0 0 0 0 0
7
9

8
9

0

0 0 0 0 0 0
−4.8

9
−10

9
0

0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T
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By checking the first column of Mconv., it can be found that all of the generation units and loads
are connected, except the load at bus 8 and a part of the load at bus 9. The microturbine also has
reached its capacity limits, so the remaining loads will be supplied when the upstream network is
available. At this point, the work of the proposed decentralized multi-agent based restoration scheme
has been completed.

It should be noted that during the restoration procedure, if the produced (consumed) power of
the generation units (loads) changes or they are not ready to be restored, the restoration decisions
may be changed by providing a proper local initial information matrix. That’s why it is emphasized
that the proposed method uses online information of the system to determine the sequence of the
restoration actions.

Dynamic simulations are carried out in the Matlab-Simulink environment. Figure 13 shows
the microturbine real power during the restoration process. Each time that the loads are connected,
the microturbine reaches to its capacity limit, and with the connection of generation units, its capacity
is released. Figure 14 shows the frequency of the MG during the restoration process. The real power of
the microsources is shown in Figure 15. The results show that for successful implementation of the
proposed scheme, the generation unit with grid-forming inverter plays a key role and the proper time
interval among the restoration actions is required.
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Figure 13. Microturbine real power during the restoration process.
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Figure 14. Frequency of the MG during the restoration process.
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Figure 15. Real power of the microsources.

6. Conclusions

This paper proposed a decentralized multi-agent-based approach for MG restoration. In the
proposed scheme, the MG local controllers were assigned to specific agents. The communication rule
for sharing the local information of the agents and getting access to the global information was based
on ACA. A proper restoration decisions strategy based on the discovered global information was
developed. Compared to the centralized restoration schemes, the proposed method had the capability
of surviving the single-point failure. Moreover, the online information of the generation/consumption
of the MG was used to determine the proper sequence of restoration actions. The effectiveness of the
proposed strategy is verified using a benchmark LV MG network.
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Abstract: Demand-side energy management is used for regulating the consumers’ energy usage
in smart grid. With the guidance of the grid’s price policy, the consumers can change their energy
consumption in response. The objective of this study is jointly optimizing the load status and electric
supply, in order to make a tradeoff between the electric cost and the thermal comfort. The problem
is formulated into a nonconvex optimization model. The multiplier method is used to solve the
constrained optimization, and the objective function is transformed to the augmented Lagrangian
function without constraints. Hence, the Powell direction acceleration method with advance and
retreat is applied to solve the unconstrained optimization. Numerical results show that the proposed
algorithm can achieve the balance between the electric supply and demand, and the optimization
variables converge to the optimum.

Keywords: demand-side energy management; multiplier method; Powell direction acceleration
method; advance and retreat method; thermal comfort

1. Introduction

The power system includes generators, transformers, transmission, and distribution lines that
deliver electricity power to terminal users. Smart grid enables real-time control and monitoring to
provide distributed generation and storage. It can make grid operating reliably, economically and
efficiently [1,2]. In smart grid, the energy providers can monitor the operating states of the loads in
real time and control power supply directly. Demand-side energy management has been a hot topic
in recent years [3,4]. Reasonable energy management can effectively promote the development of
clean energy, save resources and reduce generation costs. In the process of the energy management,
the consumers are encouraged to adjust the electricity purchase, optimize the load curve and improve
the electricity efficiency [5–7]. Demand-side energy management is a mechanism which requires the
consumers’ response to pricing strategy [8–10]. The real-time price is an effective strategy to achieve
demand-side response [11–13].

In [14], an energy management service for the smart building has been proposed to measure and
predict the patterns of both energy generation and power load. Taking into account overall costs,
climatic comfort level and timeliness, a mixed integer linear programming model and a heuristic
algorithm were proposed to make consumers change the consumption profile during certain time
interval [15]. In [16], an automatic rule creation based on the knowledge extraction of a smart
building was proposed to optimize the consumers’ electricity usage. In [17], the Lagrangian dual
algorithm was employed to solve the nonconvex problem, and it came up with efficient demand
response scheduling schemes. In [18], a complex telecommunication infrastructure was designed

Energies 2017, 10, 1538; doi:10.3390/en10101538 www.mdpi.com/journal/energies163
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to manage the data exchange among the energy management system, generators, loads, and field
sensors/actuators. In [19–21], the cost minimization of interactive consumers was studied based
on the noncooperative game theory. The interaction between the consumers and energy provider
was modeled with Stackelberg game theory [22–24]. Recently, convex optimization has been used
for decreasing the consumers’ total cost. In [25], distributed primal-dual algorithms were used to
adjust the energy consumption and the price. And the primal-dual algorithm was used to analyze the
volatility of electricity markets when considering the uncertainty in the consumer’s value function [26].
In [27], an optimal and automatic residential energy consumption scheduling framework was proposed
to provide the real-time price schedule to the consumers. In [28], the model of price response was
established for the consumers with stochastic charging behaviors. In [29], a fully distributed control
algorithm was proposed based on the saddle point dynamics and consensus protocols. In [30],
the relationship between the operating states and energy consumption of the loads under forecast
error was considered in an energy management problem. In the above studies, the cost functions of the
consumers are assumed to be known in advance. However, the cost cannot be directly modeled when
considering the comfort of the consumers and the operating state of the loads, such as the thermal
comfort and the temperature settings of the heating, ventilation, and air conditioning (HVAC) systems.

In this study, we model energy management as a constrained optimization problem with
non-convex objective function. And the Fanger thermal comfort cost which is unknown is included.
The objective is to minimize the discomfort costs of the consumers and the generation costs of the
providers. Meanwhile, it should keep balance between the consumers’ total power consumption and
the total generation. Each consumer’s load operating state should be limited in upper and lower limits.
Hence we propose an iterative algorithm to solve the optimization problem and study the influence of
the tradeoff factor and the air conditioning’s energy efficient ratio on the energy management scheme.

The rest of the paper is organized as follows. The energy management problem is formulated
in Section 2. The algorithm is proposed in Section 3. Section 4 applies the algorithm to the
energy management of HVAC systems. The simulation results and analysis are given in Section 5,
and conclusions are summarized in Section 6.

2. Problem Formulation

In the process of the demand-side management, we consider an power system consisting of m
consumers that are served by an utility company, as shown in Figure 1. The utility company announces
the retail price through forecasting the consumers’ power consumption. According to the announced
price, the consumers can schedule the loads’ operations to reduce the costs.

We suppose that an power grid with m loads and n buses. The operating states of consumer i’s load
(i ∈ M = {1, · · · , m}) is xi, and the generation on bus i (i ∈ N = {1, · · · , n}) is qi. The function ci(xi)

denotes the consumer i’s discomfort cost caused by the load changes, and wi(qi) denotes the generating
cost. And the function fi(xi) denotes the relationship between the energy consumption and the
operating state. We suppose the lower limit and upper limit of the operating state of consumer i’s load
is xmin

i and xmax
i . The energy management can be formulated as the following optimization problem:

max − τ
m

∑
i=1

ci(xi)− (1 − τ)
n

∑
i=1

wi(qi)

s.t.
m

∑
i=1

fi(xi) =
n

∑
i=1

qi

xmin
i ≤ xi ≤ xmax

i , i = 1, 2, · · · , m

where τ ∈ [0, 1] is the parameter to achieve the tradeoff between the consumers’ discomfort costs and
the generating costs. The energy management problem is to minimize the costs of consumers and
providers subject to the energy balance constraints and the operating state limits.
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Figure 1. Demand-side management system.

3. Iterative Algorithms

In this section, an iterative algorithm is proposed to solve the above optimization problem.
The algorithm, which includes multiplier method, Powell direction acceleration method, advance and
retreat method and golden section method, is described in Figure 2.

Figure 2. The flowchart of the iterative algorithm.
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This iterative algorithm can solve the unknown and nonconvex optimization problem, and the
specific algorithms are introduced as the following 4 parts.

Part 1: Multiplier Method

As a general constrained optimization problem, the constraints can be transformed to the objective.
For the multiplier method, the constrained augmented Lagrange function can be established as:

M(x, q, μ, ν, λ, σ) =τ
m

∑
i=1

ci(xi) + (1 − τ)
n

∑
i=1

{[max(0, μi − σ(xi − xmin
i ))]2 − μ2

i }+
1

2σ

m

∑
i=1

{[max(0,

νi − σ(xmax
i − xi))]

2 − ν2
i } − λ[

m

∑
i=1

fi(xi)−
n

∑
i=1

qi] +
σ

2
[

m

∑
i=1

fi(xi)−
n

∑
i=1

qi]
2

where λ, μi and νi are Lagrange multipliers, especially λ is denoted as the retail price. The multipliers
are updated by

λk+1 = λk − σ(
m

∑
i=1

fi(xk)−
n

∑
i=1

qki) (1)

(μk+1)i = max[0, (λk)i − σ(xk − xmin
k )i], i = 1, · · · , m (2)

(νk+1)i = max[0, (λk)i − σ(xmax
k − xk)i], i = 1, · · · , m (3)

The termination criterions are ϕk1 ≤ ε and ϕk2 ≤ ε, where ε > 0 is the termination error. And ϕk1
and ϕk2 are given by

ϕk1 = {[
m

∑
i=1

fi(xk)−
n

∑
i=1

qki] +
m

∑
i=1

[min((xk − xmin
k )i,

(μk)i
σ

)]2}0.5 (4)

ϕk2 = {[
m

∑
i=1

fi(xk)−
n

∑
i=1

qki] +
m

∑
i=1

[min((xmax
k − xk)i,

(νk)i
σ

)]2}0.5 (5)

The multiplier method includes 4 steps, as shown in Algorithm 1.

Algorithm 1 The multiplier algorithm.

Initialization:

The set of the initial points: x0 and q0;

The set of the initial multiplier vectors: λ0, μ0, and ν0;

The set of the initial penalty factor: σ1;

Amplification coefficient c > 0 and constant θ ∈ (0, 1). k = 1.
Iteration:

The optimal solutions: xk and qk.
1: The initial points are xk−1 and qk−1, then solve the unconstrained optimization problem:

min M(x, q, μ, ν, λ, σ)

we can obtain the optimal points xk and qk.
2: Calculate ϕk1 and ϕk2 according to Equations (4) and (5). If ϕk1 < ε and ϕk2 < ε, the optimal

solutions are xk and qk, and the iteration terminates; else goto 3.
3: When ϕk1

ϕk1−1
≤ θ and ϕk2

ϕk2−1
≤ θ, goto 4; else set σk+1 = cσk and goto 4.

4: Update multiplier vectors according to Equations (1)–(3), set k = k + 1 and goto 1.
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Part 2: Powell Direction Acceleration Method

In this paper, the explicit comfort function is hard to formulate, and it’s impossible to take the
derivative of an unknown objective function. Therefore, we consider a data-driven algorithm to solve
the unconstrained optimization problem directly. The Powell direction acceleration method is one of
the most effective data-driven methods. The basic idea of Powell method is to build the conjugated
search direction in the next iteration by calculations from the previous iterations.

In the original Powell method, the new search direction will take place of the first component in
the old direction vector. However, these new vectors could be linear dependent, and the optimum
cannot be obtained. Hence we use the modified Powell method. The modified Powell method can
judge whether the new search direction could be applied in the next iteration. If it cannot be applied,
judge which direction in the original searching has the lowest objective value. Then let the new search
direction replace the old one. In this way, the conjugated direction can be obtained.

In the ith iteration, set f1 = f (x(i)n ), f2 = f (x(i)n ), f3 = f (2x(i)n − x(i)0 ), and Δ(i)
m = max{ f (i)k−1 − f (i)k ,

k = 1, 2, · · · , n}. Let p(i)m be the search direction: p(i) = x(i)n − x(i)0 . If f3 < f1 and ( f1 − 2 f2 + f3)( f1 −
f2 − Δ(i)

m )2 < 0.5Δ(i)
m ( f1 − f3)

2, replace p(i)m with p(i). Else keep the original directions. The specific
algorithm is given in Algorithm 2.

Algorithm 2 The Powell direction acceleration algorithm.

Initialization:

The set of the initial points: X0 = (x0, q0)
T ;

The control error is given as ε > 0;

e1, e2, · · · , en are unit vectors on the coordinate axis, and k = 1.
Iteration:

The optimal points: X∗ = Xn.
1: Calculate M0 = M(X0, μk, νk, λ, σk), let pi = ei, i = 1, 2, · · · , n.
2: One-dimensional search:

M(Xk−1 + αk−1 pk, μk, νk, λk, σk) = min M(Xk−1 + αpk, μk, νk, λk, σk)

Let Xk = Xk−1 + αk−1 pk, Mk = M(Xk, μk, νk, λk, σk).
3: If k = n, goto 4; If k < n, make k = k + 1 and goto 2.
4: If ‖Xn − X0‖ ≤ ε, X∗ = Xn, stop; Else goto 5.
5: Set Δ = max(Mk − Mk−1) = Mm − Mm+1, M∗ = M(2Xn − X0, μk, νk, λk, σk).
6: If M∗ ≥ M0 or (M0 − 2Mn + M∗)(M0 − Mn − Δ)2 > 0.5(M0 − M∗)2Δ, the search directions do

not change. Let M0 = M(Xn, μk, νk, λk, σk), X0 = Xn, k = 1, goto 2; Else goto 7.
7: Set pk = pk, k = 1, 2, · · · , m; pk = pk+1, k = m + 1, · · · , n − 1, and pn = (Xn − X0)/‖Xn − X0‖.
8: One-dimensional search:

M(Xn + αpn) = minM(Xn + αpn, μk, νk, λk, σk)

Set X0 = Xn + αpn, M0 = M(X0, μk, νk, λk, σk), k = 1. goto 2.

Part 3: Advance and Retreat Method

Since the objective function is a multimodal and non-convex function, we should segment an
unimodal interval before one-dimensional searching based on the specific advance and retreat algorithm,
as shown in Algorithm 3.
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Algorithm 3 The advance and retreat algorithm.

Initialization:

The set of the initial points: X0 = (x0, q0)
T ;

The initial step length is Δx(> 0), and t0 = 0.
Iteration:

The search interval.
1: Calculate M0 = M(X0).
2: X1 = X0 + Δx · pk. Calculate M1 = M(X1). t1 = t0 + Δx. If M1 ≤ M0, goto 3. Else goto 6.
3: Let t2 = t1 + Δx, X2 = X0 + t2 · pk. Calculate M2 = M(X2).
4: If M1 ≤ M2, [t0, t2] is the search interval; Else goto 5.
5: t0 = t1, t1 = t2, M1 = M2, ΔX = 2ΔX, t2 = t1 + Δx, X2 = X0 + t2 · pk. Calculate M2 = M(X2),

then goto 4.
6: Δx = −Δx, t = t0, t0 = t1, t1 = t, M = M0, M1 = M, t2 = t1 + Δx, X2 = X0 + t2 · pk.

Calculate M2 = M(X2).
7: If M1 ≤ M2, [t0, t2] is the search interval; Else goto 8.
8: t0 = t1, t1 = t2, M1 = M2, Δx = 2Δx, X2 = X0 + t2 · pk. Calculate M2 = M(X2), goto 7.

Part 4: Golden Section Method

After segmented the interval, the optimal step length is calculated by Golden Section method, as
shown in Algorithm 4.

Algorithm 4 The golden section algorithm.

Initialization:

The search interval: [a, b]; ε > 0.
Iteration:

The optimal stepsize: a+b
2 .

1: Let a2 = a + 0.618(b − a), X2 = X0 + a2 · pk, M2 = M(X2).
2: Let a1 = a + 0.382(b − a), X1 = X0 + a1 · pk, M1 = M(X1).
3: If | b−a

b | > ε and |M2−M1
M2

| > ε, goto 4. Else the optimal result is a+b
2 .

4: If M1 < M2, then b = a2, a2 = a1, M2 = M1, a1 = a + 0.382(b − a), X1 = X0 + a1 · pk.

Calculate M1 = M(X1), goto 3; Else goto 5.
5: a = a1, a1 = a2, M1 = M2, a2 = a + 0.618(b − a), X2 = X0 + a2 · pk. Calculate M2 = M(X2),

goto 3.

Remark 1. The convergence of the algorithm has been proved in [31]. In the optimization problem with
multi-dimensional variable, a global optimal point in each dimension can be obtained during the iterations.
However, we cannot guarantee that the optimal points of all variables can be searched simultaneously in the same
iteration, and the solution should be a sub-optimal solution in the calculation.

4. Application to Energy Management of HVAC Systems

In this section, we apply the iterative algorithms to the energy management of HVAC systems.
The discomfort of consumers are characterized by the Fanger thermal comfort model. In the research of
professor P. O. Fanger from Denmark, the predicted mean vote (PMV) and the predicted percentage of
dissatisfied (PPD) were proposed to describe the human body’s comfort and satisfaction of the thermal
environment, respectively. The Fanger thermal comfort model considers the thermal resistance of
clothing, degree of human activities, the air temperature, the air velocity, the mean radiant temperature,
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and the moisture in the atmosphere. The PMV denotes the human body’s hot and cold sensation,
including seven grades: hot, warm, little warm, moderate, little cool, cool, cold. The corresponding
values are: +3,+2,+1, 0,−1,−2,−3. In practice, different people could have different feelings in the
same thermal environment. To describe this relationship, the PPD target was proposed in [32–34].

The mathematical expression of PMV is denoted as:

PMV =[0.303exp(−0.036M) + 0.028]{M − W − 3.05 × 10−3[5.733 − 6.99(M − W)]− Pa−
0.42[(M − W)− 58.15]− 1.7 × 10−5M(5867 − Pa)− 0.0014M(34 − ta)− 3.96 × 10−8 fcl×
[(tcl + 273)4 − (tr + 273)4]− fclhc(tcl − ta)},

(6)

where

fcl =

{
1.00 + 1.290Icl Icl ≤ 0.078,

1.05 + 0.645Icl Icl > 0.078

and

hc =

{
2.38 × (tcl − ta)0.25 2.38(tcl − ta)0.25 > 12.1

√
Var

12.1 ×√
Var 2.38(tcl − ta)0.25 < 12.1

√
Var

where tcl = 35.7 − 0.028(M − W)− Icl{3.96 × 10−8 fcl [(tcl + 273)4 − (tr + 273)4] + fclhc(tcl − ta)}.
The PPD target represents a percentage of the human’s dissatisfaction of the environment, and the

mathematical expression is given as:

PPD = 100 − 95 × exp[−(0.03353 × PMV4 + 0.2179 × PMV2)] (7)

The explanation of the parameters is shown in Table 1, and the relationship between PPD and
PMV is shown in Figure 3.

Table 1. The specific explanation of the parameters.

Parameters Explanation

M Human body’s energy metabolic rate (W/m2)
W Human body’s mechanical work (W/m2)
Pa Vapour pressure around body (Pa)
ta Air temperature (◦C)
fcl Area coefficient of clothing
tcl Ttemperature of clothes (◦C)
tr Indoor’s mean radiant temperature (◦C)
hc Convective heat transfer coefficient (W/(m2·K))
Icl Heat resistance of clothes ((m2·K)/W)
Var Air velocity (m/s)

Figure 3. The relationship between PPD and PMV.
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We can build the following function to describe the consumers’ discomfort costs:

c(Ti) = γi × PPD (8)

where γi is a constant coefficient that transforms the PPD to the discomfort cost. The generating cost
of the provider is given as [35]:

w(q) = ρ1q2 + ρ2q + ρ3 (9)

where ρ1, ρ2, and ρ3 are cost coefficients, which are determined by the power generation.
In the HVAC system, the relationship between the energy consumption and temperature is

complicated. It could be influenced by many factors. For example, the cooling load includes the
transmission load, the infiltration load, the solar load, and the internal load. The transmission load
is the temperature transfer from outdoor to indoor through the components. The infiltration load is
caused from the inflow of the air. The solar load is caused from the solar radiation. And the internal
load is from the heat release of light, people and other electrical equipments [36], as shown in Figure 4.

Figure 4. The cooling load system.

The transmission load is denoted as:

Qtl
i (Ti) = αSi(To − Ti) (10)

where Qtl
i (Ti) is the transmission load, T0 is outdoor temperature, α is the transfer constant in

W/(m2·◦C), and Si is the transmission area.
The infiltration load is calculated as:

Qil
i (Ti) = βζφi(To − Ti) (11)

where Qil
i (Ti) is the infiltration load, β is specific heat of air, ζ is the air density, and φi is the volumetric

air velocity and satisfies:
φi = Ai(I0 + Hi I1|T0 − Ti|) (12)

where Ai is the effective infiltration area. I0 and I1 are determined by the wind speed and outdoor
temperature. Hi is the hight of the building.

The solar load and internal load are independent of the actual temperature settings and can be
denoted as Qsil .

The total cooling load can be obtained:

Qcl
i (Ti) = Qtl

i (Ti) + Qil
i (Ti) + Qsil (13)
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In the HVAC system, the relationship between the cooling load and energy consumption is:

fi(Ti) = θQcl
i (Ti) (14)

where θ is the coefficient determined by the transformation from the cooling load to the
energy consumption.

The relationship between temperature settings and energy consumption can be formulated as:

fi(Ti) = b1(T0 − Ti)
2 + b2(T0 − Ti) + b3 (15)

where b1 = θβζ Ai Hi I1, b2 = θαSi + ψζAi I0, and b3 = θQsil .
Above all, the energy management model for the HVAC systems can be described as following

optimization problem:

max − τ
m

∑
i=1

ci(Ti)− (1 − τ)
n

∑
i=1

wi(qi)

s.t.
m

∑
i=1

fi(Ti) =
n

∑
i=1

qi

Tmin
i ≤ Ti ≤ Tmax

i , i = 1, 2, · · · , m

where Ti is the indoor temperature. Each consumer’s temperature setting is limited by Tmin
i ≤ Ti

≤ Tmax
i , where Tmin

i and Tmax
i are the minimal and maximal temperature settings, respectively.

5. Simulation Results

We consider two types of power systems that are installed with HVAC systems, e.g., the IEEE 9-bus
system and IEEE 14-bus system shown in Figures 5 and 6, respectively. The equality constraints in the

IEEE 9-bus system and IEEE 14-bus system are
3
∑

i=1
fi(Ti) =

9
∑

i=1
qi and

11
∑

i=1
fi(Ti) =

14
∑

i=1
qi, respectively.

The parameter settings are shown in Table 2 [36], and the lower limit and the upper limit of the
temperature setting for each consumer are 23 ◦C and 28 ◦C, respectively.

An important parameter of the HVAC system is energy efficiency ratio (EER). EER is the ratio
of the actual cooling capacity to the actual input power during the cooling operation of the HVAC
system, and the more efficient and power-saving HVAC has the higher EER. The EER is defined as
Qcl

i (Ti)

fi(Ti)
, which is the reciprocal of θ in Equation (14).

Figure 5. IEEE 9-bus system: 9 buses, 3 generators, and 3 loads (n = 9, m = 3).
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Figure 6. IEEE 14-bus system: 14 buses, 5 generators, and 11 loads (n = 14, m = 11).

Table 2. Parameter Settings.

Parameters Values

Outdoor temperature (◦C) To = 30
Transmission area (m2) Si ∈ [30, 60]

Heat transfer constant (W/m2) α = 15
Specific heat of air (J/kg·◦C) β = 1.006

Air density (kg/m3) ζ = 1.1839
Wind speed coefficient I0 = 0.343

Outdoor heat coefficient I1 = 1.12
Effective infiltration area (m2) Ai ∈ [15, 45]

Building height (m) Hi ∈ [8, 15]
Solar and internal load (W) Qsil

i ∈ [300, 4500]

Taking the IEEE 9-bus system as an example, we discuss the impact of the tradeoff factor τ on the
discomfort costs and power supply costs as well as the total costs. The results are given in Figure 7,
from which, we can observe that the discomfort costs decrease with τ, and the generation costs increase
with τ. When τ = 0.6, we can obtain the minimum total costs. The parameter τ can achieve the
tradeoff between consumers’ discomfort costs and providers’ generation costs. We can get minimum
total costs through changing τ. The data of costs are shown in Table 3.

Table 3. The cost data.

τ Discomfort Cost ($) Generation Cost ($) Total Costs ($)

0.1 8.1279 11.5264 19.6543
0.2 7.0753 11.6035 18.6788
0.3 6.7075 11.7344 18.4419
0.4 4.7092 12.5458 17.2550
0.5 5.0396 12.4054 17.4450
0.6 4.3398 12.8159 17.1557
0.7 3.3431 14.3050 17.6481
0.8 3.0488 15.4414 18.4902
0.9 3.0605 15.3121 18.3726
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Figure 7. The impact of tradeoff factor.

Next, we assume τ = 0.6 and evaluate the temperature settings, the power supply, and the retail
price. The convergence of the temperature settings, the power supply, and the retail price are shown in
Figures 8–10, respectively.

According to Figures 8–10, we can observe that all the optimization variables tend to be stable
with the iterations and finally converge to the optimum.

It is observed from Tables 4 and 5 that the temperature settings satisfy the requirements for
upper limits and lower limits. And the total Power consumption is equal to the power supply.
Moreover, the retail price λ is 0.2147 $/kWh, and the multipliers μ and ν are both zero. It means that
the penalty terms are inactive at the optimum.

Figure 8. The convergence of the temperature settings.

Figure 9. The convergence of the power supply.
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Figure 10. The convergence of the retail price.

Table 4. The temperature settings and energy consumption in IEEE 9-bus system.

Consumer i Temperature (◦C) Power Consumption (kW)

1 25.4534 0.6986
2 25.0573 1.6701
3 24.5559 3.6015

1–3 / 5.9702

Table 5. The power supply on each bus in IEEE 9-bus system.

Buses i Power Supply (W)

1 663.3679
2 663.3646
3 663.3654
4 663.3676
5 663.3669
6 663.3692
7 663.3686
8 663.3693
9 663.3683

1–9 59702

Next, we apply the energy management algorithm to the IEEE 14-bus system. It is observed from
Figures 11–13 that the temperature settings, the power supply and the retail price can converge to
the optimum in the IEEE 14-bus system. Comparing with the convergence results in the IEEE 9-bus
system, more iterations are needed. Furthermore, the power supply on each bus is more than IEEE
9-bus system, as shown in Tables 6 and 7.

Table 6. The temperature settings and energy consumption in IEEE 14-bus system.

Consumer i Temperature (◦C) Power Consumption (kW)

1 25.7925 0.3526
2 25.5883 0.6228
3 25.3969 0.9958
4 25.7143 0.7118
5 25.7578 0.7356
6 25.7708 0.7896
7 25.5143 1.2350
8 25.7187 1.0332
9 25.0050 2.2812
10 25.5317 1.5131
11 25.6491 1.4117

1–11 / 11.6825
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Table 7. The power supply on each bus in IEEE 14-bus system.

Buses i Power Supply (W)

1 834.4625
2 834.4609
3 834.4616
4 834.4629
5 834.4693
6 834.4612
7 834.4625
8 834.4650
9 834.4621
10 834.4595
11 834.4648
12 834.4673
13 834.4591
14 834.4637

1–14 11682

Figure 11. The convergence of the temperature settings.

Figure 12. The convergence of the power supply.
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Figure 13. The convergence of the retail price.

Next, we will discuss the effect of EER on the energy management system. We take three different
energy efficiency grades (EEGs) of the HVAC systems: EEG 1, EEG 2, and EEG 3. The corresponding
EERs are 3.5, 3.3, and 3.1, respectively. From Figure 14, we can observe that the higher EEG can cause
lower retail price. Figure 15 shows that the lower EEG is effective in saving power consumption
and the cost. It shows that the energy management algorithm motivates the consumers to use more
energy-efficient HVAC.

Figure 14. The retail prices under different EEGs.

Figure 15. The power supply under different EEGs.
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6. Conclusions

This work studies a demand-side energy management problem based on the nonconvex
optimization algorithm. The objective is to minimize the discomfort costs and the generation costs by
changing the operating states of the loads and the power supply. Specially, the discomfort costs are
formulated based on the Fanger thermal comfort. The nonconvex algorithm includes the multiplier
method, the Powell method, the advance and retreat method, and the golden section method. One of
the major advantages of this algorithm is that it can be applied in solving the unknown objective
function caused by the thermal comfort model. In the simulation, we analyze the influence of the
tradeoff factor τ and the EER on the energy management. It is observed that the minimum costs
can be achieved by changing the value of τ, and different EERs can cause different retail prices and
power consumption using the proposed energy management algorithm. The simulation results also
demonstrate the convergence of the iterative algorithm and the balance between the power supply
and power consumption.
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Abstract: One of the major problems in transmission lines is the occurrence of failures that affect
the quality of the electric power supplied, as the exact localization of the fault must be known for
correction. In order to streamline the work of maintenance teams and standardize services, this
paper proposes a method of locating faults in power transmission lines by analyzing the voltage
oscillographic signals extracted at the line monitoring terminals. The developed method relates time
series models obtained specifically for each failure pattern. The parameters of the autoregressive
integrated moving average (ARIMA) model are estimated in order to adjust the voltage curves
and calculate the distance from the initial fault localization to the terminals. Simulations of the
failures are performed through the ATPDraw R© (5.5) software and the analyses were completed using
the RStudio R© (1.0.143) software. The results obtained with respect to the failures, which did not
involve earth return, were satisfactory when compared with widely used techniques in the literature,
particularly when the fault distance became larger in relation to the beginning of the transmission line.

Keywords: transmission line; fault localization; time series; ARIMA; discrete wavelet transformer

1. Introduction

The behavior of the electricity sector is directly related to economic factors such as Gross Domestic
Product (GDP). In this manner, the demand for electricity can be seen as a “thermometer” of the
market. As such, growth of the economy as well as increases in purchasing power and quality of life
must be accompanied by improvements in the power system, with the objective being compliance
with current and future situations. The transportation of electric energy is carried out by means of
transmission lines (TLs) which, because they span long distances and are present in great quantity,
make the electric power system (EPS) more susceptible to perturbations which are caused mainly by
natural phenomena, in particular atmospheric discharges. In the EPS , faults may occur in various
components, among which TLs may be the most susceptible elements, especially considering their
physical dimensions, functional complexity and the environment they are in, thus presenting greater
difficulties in terms of maintenance and monitoring [1].

Keeping in mind the importance of having an electrical system where continuity, compliance,
flexibility, and maintainability are observed and guaranteed, we have sought to improve and innovate
with respect to techniques used in the protection and supervision equipment of the EPS, while also
providing for the expansion of the electric sector and maintenance of system operation quality [2].
The development and improvement of algorithms that allow the analysis and diagnosis of failures in
power systems can have an important economic impact, both for power utilities and consumers, as
they enable the continuity and reliability of the electric sector. Intelligent, autonomous, online systems
have been developed and applied to a significant degree to deal with this type of problem, since they
enable fast and accurate diagnosis without the need for human intervention.

Energies 2017, 10, 1596; doi:10.3390/en10101596 www.mdpi.com/journal/energies180
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The transient voltage and current components are based on the charge of the capacitances of
the faultless phases and the discharges of the fault phases. Transients can be detected in almost all
occurrences of failures that require the functioning of the circuit breaker. The characteristics of transient
phenomenon can be used in relay protection systems and in the location of faults. This technique is
satisfactory when compared to techniques already used, such as the theory of traveling wave [3,4],
and techniques that use the calculation of fault impedance [5–7]. The comparison is accomplished
through the application of these two methods to several transient signals of various situations of
simulated faults in a computational environment. The discrete wavelet transform (DWT) is used to
decouple sinusoidal signals from the network and transient signals from faults. The technique is
widely used for this purpose and has been demonstrated in the literature, with proven efficacy. For
the decoupling of Fourier series, signals can be used very simply, although better results are obtained
with more sophisticated methods such as DWT [8,9]. Unlike the Fourier analysis, which provides a
global representation of the signal, the wavelet transform provides a local representation (in time and
frequency) of a particular signal. This "location" in time allows disturbances in signals to be detected
as soon as they begin [10].

The objective of this study is, through time series techniques, to model fault voltage data and
thereby locate faults in transmission lines. The coefficients of autoregressive integrated moving
average (ARIMA) models have different values depending on where the faults occur on the lines.
When traveling waves are used, the main problem is to find the second reverse traveler wave from
different disturbance signals [11]. Thus, with a database with different simulated situations, it is
possible to adjust curves according to models and calculate fault distances for various situations.

2. Simulated Transmission Line

An EPS consists of power plants (hydroelectric, thermoelectric, thermonuclear, alternative sources,
and small power plants), TLs (composed of towers, cables, and lifting and lowering substations), and
end transmission lines (consisting of transformers, poles and cables and consumption measures).
This complex system can involve hundreds or even thousands of kilometers, as is the case of Brazil,
for example. Table 1 shows the statistical data in percentages for fault occurrences in the EPS
components. Approximately 50% of absences occur in overhead lines [12]. In the Brazilian electricity
system, the transmission lines represent 68% of the absences in the network [13].

Table 1. Percentage of absences for equipment in the electric power system (EPS).

Type of Equipment Percentage Total

Aerial lines 50
Underground cables 9

Transformers and reactors 10
Power generators 7
Circuit breakers 12

Control equipment and transformers for instruments 12

The numbers shown in the Table 1 show the importance of more closely monitoring the TLs
of an EPS, emphasizing the importance of this study. Therefore, the JMARTI [14] model is used to
implement a transmission line in ATPDraw R© (5.5) software. The simulated line has an extension of
200 km, nominal voltage of 500 kV, and fundamental frequency of 60 Hz, with distributed parameters
dependent on the frequency and perfectly transposed in their totality [15].

Figure 1a shows a diagram where the position of the short circuit with respect to the generating
terminal can be varied along the line. The monitoring of the voltage signal is performed at the same
terminal. The distance d is the variable of interest in this study.
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Figure 1. Simulated line topology in the ATP R© software. Fault situations for a three-phase system.

All fault settings for a three-phase system are also shown. Situations of single-phase faults:
Figure 1b–d. Situations of biphasic faults: Figure 1e–g. Situations of grounded biphasic faults:
Figure 1h–j. Situation of three-phase fault: Figure 1k. Situations of grounded three-phase fault:
Figure 1l. Settings of phase resistors Rph and ground resistance RG: Figure 1m.

Table 2 shows all situations of simulated faults with variations of the fault type (elements involved
are phases A, B, C and ground G), signal sampling, line fault position, fault resistance, and incident
angle of the disturbance.
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Table 2. Situations of simulated faults.

Fault
Data Sampling Location

Failure Resistance (Ω) Angle of Incidence θ (◦)
Fault

(kHz) d (km) Situations

A − G 200 10; 45; 84; 155 20; 50; 80; 120; 150; 180; 200; 240 0; 45; 90; 135; 180; 225; 270; 315 256
B − G 200 10; 45; 84; 155 20; 50; 80; 120; 150; 180; 200; 240 0; 45; 90; 135; 180; 225; 270; 315 256
C − G 200 10; 45; 84; 155 20; 50; 80; 120; 150; 180; 200; 240 0; 45; 90; 135; 180; 225; 270; 315 256
A − B 200 10; 45; 84; 155 20; 50; 80; 120; 150; 180; 200; 240 0; 45; 90; 135; 180; 225; 270; 315 256
A − C 200 10; 45; 84; 155 20; 50; 80; 120; 150; 180; 200; 240 0; 45; 90; 135; 180; 225; 270; 315 256
B − C 200 10; 45; 84; 155 20; 50; 80; 120; 150; 180; 200; 240 0; 45; 90; 135; 180; 225; 270; 315 256

A − B − G 200 10; 45; 84; 155 20; 50; 80; 120; 150; 180; 200; 240 0; 45; 90; 135; 180; 225; 270; 315 256
A − C − G 200 10; 45; 84; 155 20; 50; 80; 120; 150; 180; 200; 240 0; 45; 90; 135; 180; 225; 270; 315 256
B − C − G 200 10; 45; 84; 155 20; 50; 80; 120; 150; 180; 200; 240 0; 45; 90; 135; 180; 225; 270; 315 256
A − B − C 200 10; 45; 84; 155 20; 50; 80; 120; 150; 180; 200; 240 0; 45; 90; 135; 180; 225; 270; 315 256

3. Theory of Traveling Waves

Disturbances occur in the transmission line of electric power, and are caused by a variety of
electromagnetic phenomena such as atmospheric discharges. Sudden changes occur in the conditions
of the electrical circuits that make up the transmission system, causing a redistribution of energy with
the purpose of finding a new break-even point. Thus, traveling waves refer to the propagation of
energy over a system. This energy is distributed by the system in its circuit elements, capacitors and
inductors [16].

The propagation of traveling waves always occurs in the direction of all the terminals of the
transmission line and causes the electrical transients perceived by the protection relays and other
automation and control devices located in the operating centers of the system [16]. If any variation
occurs on one terminal of a power transmission line, the other terminal will only feel the variation
occurring when the wave travels the entire length of the line [17].

The remote terminal of the transmission line cannot influence the decisions about the system until
the wave has traveled from the source of the local terminal to the remote terminal where, through
its interaction with the transmission line, a response is produced that travels from back to the local
source. In this way, electrical signals tend to propagate back and forth, like traveling waves, usually
dissipating energy with losses in the material [17].

The traveling wave theory allows for definition of the reflection and refraction coefficients of
the traveling wave in discontinuities as well as the wave propagation velocity and the transmission
line surge impedance. It is noteworthy that during propagation along the line, traveling waves are
attenuated mainly by resistive and leakage losses and may still suffer distortions in their waveform [18].

In order for the transient behavior of an electromagnetic wave on a transmission line to be
adequately represented, it is necessary that the line parameters be evenly distributed over its length,
since only this representation allows the theory of the traveling waves to be used to analyze the
propagation of these electromagnetic phenomena in it [19].

It is important to note that transmission line models in which the parameters are constant are not
adequate for simulation of the transmission line response over a large range of frequencies that are
present in the signals during transient conditions [14]. Despite this, in practice, constant frequency
distributed line models provide satisfactory results and are used in several transient studies in power
systems, according to the Alternative Transient Program Rule Book [16].

The reflections and refractions of the waves that travel on the transmission lines are the result
of discontinuities in the course of the wave. These discontinuities can not be caused by terminal
impedances, short circuits, or circuit breakers.

In order to monitor the propagation time of the generated wave fronts, only the peaks of these
waves are followed. This restriction to only a few points greatly facilitates the monitoring of this
data. The lattice diagram shown in Figure 2 is a summary of the above because it focuses only on the
propagation times between the point of origin of the fault and the terminals of the line.

183



Energies 2017, 10, 1596

Figure 2. Peak propagation time. A: Monitoring terminal; B opposite terminal; d: fault distance; lT : line
length; t1 and t2: propagation times of wave fronts; t3: refracted wave propagation time. (a) Ground
fault; (b) Fault without ground [15].

The propagation time of a wave peak between its origin and the monitoring terminal depends on
the line length to be traveled by the wave and the propagation speed of this wave. Its propagation
speed is dependent on the inductance and capacitance of the line with v = 1√

LC
. However, this value is

sufficiently near the rate of light propagation in the vacuum, and can be considered as v = 3 × 105 km
s .

In Figure 2a for example, the distance d can be calculated as shown in Equation (1). In Figure 2b
one must take into account the refracted wave of the other part of the transmission line. Thus, the
calculation is performed according to Equation (2).

d =
(t2 − t1)v

2
(1)

d = lT − (t3 − t1)v
2

(2)

where lT is the line length in kilometers; and d is the length between the fault point and the terminal.

4. Wavelet Transform

The wavelet transform is a linear operation that decomposes a signal into different scales with
different levels of resolution. The wavelet transform of the signal f (t) CWT is defined by [10]:

CWTΨ
f (a, b) =

∫ ∞

−∞
f (t) ∗ Ψa,b(t)dt (3)

where Ψa,b(t) is a daughter wavelet, defined as [20]:

Ψa,b (t) =
1√
a

ψ

(
t − b

a

)
; a ε R+e b ∈ R (4)

In turn, Ψ(t) is the chosen mother wavelet, a is the scaling factor, and b is the shift factor.
For computational use of CWT it is necessary to have discrete parameters of a and b. In the

discrete case, the scaling and shift factors are represented as Equations (5) and (6) [21]:
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a = am
0 (5)

b = nb0am
0 (6)

m, n ∈ Z; a0 ≥ 1; b0 = 0

Although the result of Equation (3) is a finite set of coefficients, it is still a continuous representation
of the wavelet transform. When the function to be analyzed is given by discrete values f (k), then we
must use the discrete wavelet transform DWT defined by [10]:

DWTΨ
f m, n = a0

− m
2 ∑

k
x [k]Ψ

[
a0

−mk − nb0
]

(7)

a0 > 1; b0 = 0

5. Time Series Models

A time series is any set of observations ordered in time, where each value has attached to itself
an indicator of the time in which this value occurred or was observed [22]. According to [23], a time
series is constructed when one an interest in:

• Investigating the generating mechanism of the time series;
• Making forecasts of future values of the series;
• Describing only the behavior of the series;
• Searching for relevant periodicities in the data.

A stochastic model that can be extremely useful in representing certain practically occurring
series is the autoregressive model. In this model, the current value of the process is expressed as a
finite linear aggregate of previous process values and the random shock at. Let us say the values of a
process with moments by equally spaced times are (t, t − 1, t − 2, · · · ) by (Zt, Zt−1, Zt−2, · · · ). Also,
let Z̄t = Zt − μ be the series of muf deviations. Then, Equation (9) is called an autoregressive (AR(p))
process of order p.

Z̄t = φ1Zt−1 + φ2Zt−2 + · · ·+ φpZt−p + at (8)

Z̄ = φ1Z̄1 + φ2Z̄2 + · · ·+ φpZ̄p + a

Through the autoregressive operator B given by φ(B) = 1 − φ1B − φ2B2 − · · · − φpBp, the
autorregressive model in Equation (9) may be written economically as

φ(B)Z̄t = at (9)

Another kind of model, of great practical importance in the representation of observed time series
is the finite moving average (MA) process, where z̄t is linearly dependent on the finite number q of
previous a’s. Thus, Equation (10) is called a moving average MA (q).

Z̄t = at − θ1at−1 − θ2at−2 − · · · − θqat−q (10)

In the same way, we have a moving average operator defined by θ(B) = 1 − θ1B − θ2B2 − · · · −
θqBq. The moving average model may be written as Equation (11).

Z̄t = θ(B)at (11)

The union of the autoregressive model of order p with the moving average model of order q can
sometimes benefit the assembly of the time series. This leads to the mixed autoregressive-moving
average ARMA (p, q) model:

Z̄t = φ1Z̄t−1 + · · ·+ φpZ̄t−p + at − θ1at−1 − · · · − θqat−q (12)
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Equation (12) can be written with the B operator.

φ(B)Z̄t = θ(B)at (13)

In some cases, it is necessary to make a distinction between the terms of the series to exclude
trends, in accordance with Equation (14). The result is an ARIMA (p, d, q) model, where the term I
expresses a differentiation of order d.

φ(B)Wd
t = θ(B)at (14)

where Wd
t are differentiations on the terms of series Z shown in Equation (15).

Wt = ΔZ̄t = Z̄t − Z̄t−1 (15)

Wd
t = ΔdZ̄t

When Wt presents deterministic seasonal behavior of period s, a model that can be used is shown
in Equation (16).

φ(B)Φ(Bs)(Δs)
D(Δ)dZt = θ(B)Θ(Bs)at (16)

where Φ(Bs) = 1 − Φ1Bs − · · · − ΦPBsP is the seasonal autoregressive operator of P order;
Θ(Bs) = 1 − Θ1Bs − · · · − ΘQBsQ is the seasonal moving-averages operator of Q order;
φ(B) = 1 − φ1B − · · · − φpBp is the autoregressive operator of p order; θ(B) = 1 − θ1B − · · · − θqBq;
is the moving-averages operator of q order; and Δs = (1 − Bs) is the seasonal difference operator.
In ΔD

s = (1 − Bs)D, D indicates the number of seasonal differences. The Equation (16) is denoted by
seasonal autoregressive integrated moving average (SARIMA) (p, d, q)(P, D, Q)s

Model Evaluation Criteria

For the process ARMA (k, l), the Bayesian information criterion (BIC) is given by Equation (17) [24].

BIC(k, l) = lnσ2
k,l + (k + l)

lnN
N

(17)

where σ2
k,l is a maximum likelihood estimate of the residual variance of the model with N observations.

It seeks to minimize BIC through the adjustments of k and l.
For the estimation of the error, Equation (18) is used, where the absolute error module committed

in the extermination of the fault location is divided by the total length of the line.

Error(%) = 100
∣∣∣∣Rt − Ct

Tt

∣∣∣∣ (18)

where R is the actual distance value of the fault, C is the value calculated for this distance, and T is the
total length of the line. This calculation is performed for all calculated fault distances.

6. Results

The proposed method, illustrated by Figure 3, consists of using a discrete wavelet transform DWT
in order to decouple the transient signal from the sinusoidal signal characteristic of the transmission
line. These decoupled signals are used in ARIMA models to establish mathematical relationships
between fault distances and calculated coefficients. The RStudio R© (1.0.143) software is used for the
computational implementation of DWT [25] and ARIMA models.
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Figure 3. Schematic diagram for fault location with the proposed model. ARIMA: autoregressive
integrated moving average; DWT: discrete wavelet transform.

Figure 4 illustrates a fault situation showing the behavior of the disturbance in the three phases
that make up the system. Although the fault does not involve phase C, it is affected because there is a
coupling between the three phases. However, the highest voltage values in the involved phases are
evident. The figure further illustrates the decoupled disturbance signal of the characteristic sinusoidal
signal of the transmission line.

Figure 4. (a) Voltage signals with incident angle of 90◦ and fault resistance of 240 Ω at a distance of
10 km from the monitoring terminal; (b) Disconnected disturbance signal.

As mentioned, the objective of this work is to relate the distances of occurrences of faults with the
curves of ARIMA models. The Table 3 shows some results obtained, showing the distance–coefficient
relationship. All cases are two-phase faults with an incidence angle of 90◦.

It can be seen from Table 3 that the coefficients of the obtained SARIMA models are equal
for the same fault distances. For example, for faults occurring at 10 km, the obtained models are
SARIMA(2, 0, 2)(2, 0, 4)19 where φ1 = 1.283, φ2 = −0.349, θ1 = −0.344, θ2 = 0.028, Φ19 = −1.460,
Φ38 = −0.918, Θ19 = −1.333, Θ38 = −0.736, Θ57 = 0.044, and Θ76 = 0.073 in all faults whose angle of
incidence is 90◦, regardless of the fault resistance values

In Table 4 it should be noted that the traveler wave method presents a smaller error than the other
methods when it is at the beginning of the line. According to [26], when traveling waves are used, the
main problem is to find the second reverse traveler wave from different disturbance signals. In this
case, the proposed model presented a satisfactory result, because as the distance of the fault increases,
the relative error becomes smaller than for the other methods. Fault resistances do not influence the
behavior of the model, and therefore results are shown for only two resistance values. Figure 5 shows
a example of the a fault situation.
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Table 3. Some examples of models obtained.

Term
10 km 45 km 84 km 155 km

20 Ω 240 Ω 20 Ω 240 Ω 20 Ω 240 Ω 20 Ω 240 Ω

φ1 1.2830 1.5420 1.58880 1.4780
φ2 −0.3496 −0.5945 −0.6358 −0.5263
φ3 0.0000 0.0000 0.0000 0.0000
θ1 −0.3440 −0.1750 −0.3322 −0.6510
θ2 0.0283 0.0000 0.0000 0.0000
Φ1 −1.4600 0.0000 0.0000 0.0000
Φ2 −0.9181 0.0000 0.0000 0.0000
Θ1 −1.3330 0.0000 0.0000 0.0000
Θ2 −0.7397 0.0000 0.0000 0.0000
Θ3 0.0437 0.0000 0.0000 0.0000
Θ4 0.0730 0.0000 0.0000 0.0000

Constant 17.9800 14.48 10.6400 14.65
Bayesian information criterion (BIC) 15,369.26 13,025.38 7984.45 4889.99

Table 4. Comparison between models through the Error value (Equation (18)).

Model 5–10 km 20–45 km 70–84 km 155 km

Time series 0.13 0.37 0.13 0.86
Stockwell transformer [26] 0.07 0.10 0.65 –

Neural networks [15] – 0.75 – –
Independent components [11] – 1.90 – –

Figure 5. Missing data with distance of 10 km and with missing resistance of 240 Ω.

The auto.arima function of RStudio R© (1.0.143) software uses a variation of the Hyndman and
Khandakar algorithm presented by [27] that combines unit root tests and minimization of BIC to
obtain a model ARIMA.

7. Discussion and Conclusions

The proposed method is effective in detecting simulated data changes from different fault locations
on the line. However, it is also sensitive to variations in the angles of incidence of the onset of
disturbances in sine-wave AC signals. This is particularly true when the fault distance becomes larger
in relation to the beginning of the transmission line. With improvements in the algorithm it may be
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possible, in addition to identifying positioning of short circuits in the line, to also identify the angle of
said angle of incidence in order to improve the sensitivity of relays used for this type of monitoring.

The algorithm is insensitive to changes in the value of fault resistance. This is in fact an important
factor for the adopted methodology, since the fault resistance is highly random and variable, depending
on environmental conditions and type and location of the fault. The fault resistance influences the
transient signal damping behavior (vertical variations in the Cartesian plane of the signal), but the
location of the source of the disturbance is related to the signal oscillation frequency (horizontal
variations in the Cartesian plane of the signal).

Another important factor refers to the type of fault in relation to the number of elements involved,
whether they are single-phase, two-phase, two-phase ground or three-phase. Another important factor
refers to the type of fault in relation to the number of elements involved, that are either single-phase,
two-phase, or three-phase. Failure data involving the ground component present greater volatility,
since these types of transient waves, besides suffering successive reactions between the point of origin
and the line terminals, also undergo refractions. Some of the signals reflected from the terminals
exceed the point of origin of the disturbance to the opposite terminal, causing the data to become
interlaced. For future works, we suggest evaluating models more sensitive to the heteroscedastic
series. A possible alternative to eliminate the data coming from the opposite terminal would be the
encapsulation of signal filters in the DWT used for the separation.
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Abstract: Buildings as prosumers have an important role in the energy aggregation market due
to their potential flexible energy consumption and distributed energy resources. However, energy
flexibility provided by buildings can be very complex and depend on many factors. The immaturity
of the current aggregation market with unclear incentives is still a challenge for buildings to
participate in the aggregation market. However, few studies have investigated business models
for building participation in the aggregation market. Therefore, this paper develops four business
models for buildings to participate in the energy aggregation market: (1) buildings participate
in the implicit Demand Response (DR) program via retailers; (2) buildings with small energy
consumption participate in the explicit DR via aggregators; (3) buildings directly access the explicit DR
program; (4) buildings access energy market via Virtual Power Plant (VPP) aggregators by providing
Distributed Energy Resources (DER)s. This paper also determines that it is essential to understand
building owners’ needs, comforts, and behaviours to develop feasible market access strategies for
different types of buildings. Meanwhile, the incentive programs, national regulations and energy
market structures strongly influence buildings’ participation in the aggregation market. Under the
current Nordic market regulation, business model one is the most feasible one, and business model
two faces more challenges due to regulation barriers and limited monetary incentives.

Keywords: demand response; virtual power plant; energy flexibility potential; aggregators; business
model; building energy flexibility

1. Introduction

Energy stability and flexibility are essential for the entire power system [1]. Flexibility is the ability
of electricity systems to maintain the balance between energy supply and demand [2]. Flexibility
addresses generation-load imbalance, reduces peak load, power outage, electricity cost, and improves
grid reliability [3].

Energy aggregation provides an efficient solution for providing flexibility in power systems.
Two models have been discussed broadly that can provide aggregation potentials in the electricity
system: Demand Response (DR) and Virtual Power Plants (VPPs). Various stakeholders in
the electricity market can participate in the energy aggregation market with new roles or new
presence. For instance, consumers convert to prosumers, and new market players such as service
aggregators appear.

Buildings as prosumers have an important role in the energy aggregation market due to their
potential flexible energy consumption and distributed energy resources [4]. However, energy flexibility
provided by buildings can be very complex, and depends on many factors. Meanwhile, different
types of buildings can provide different energy flexibilities [5]. Energy flexibility programs that
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buildings can participate in are defined by regulations and policies. The immaturity of the current
aggregation market with unclear incentives is still a challenge for buildings (especially with small
energy consumption) to participate in the aggregation market. Various energy flexibility programs
also impede buildings’ motivation. So far, only a few studies have investigated business models for
buildings’ participation in the aggregation market.

To fill this gap, this paper aims to (1) understand two existing business models in the energy
aggregation market (DR and VPPs) including market players and their relationships; (2) evaluate
building energy aggregation potentials; and (3) develop business models for different types of buildings
to participate in the energy aggregation market.

This paper is organized as: Section 2 discusses two aggregation models (DR and VPPs),
stakeholders and their relationships in DR and VPPs. Section 3 presents three types of buildings
and their energy flexibility resources. Section 4 introduces methods applied in this paper including
a business model canvas, an evaluation tool for business model analysis, Strengths, Weaknesses,
Opportunities, and Threats (SWOT) analysis, and TOWS analysis (a derivative of SWOT analysis).
Section 5 presents four business models for buildings to participate in the energy aggregation market.
Section 6 use the Nordic electricity market as a case study to discuss potentials and challenges that
affect buildings’ participation in the four business models, and provide suggestions. Section 7 provides
conclusion and further research.

2. Aggregation Models

Two aggregation models broadly discussed in practice that can provide flexibility in the electricity
system are Demand Response (DR) and Virtual Power Plants (VPPs).

2.1. Demand Response (DR)

DR is defined by the European Commission as “voluntary changes by end-consumers of their
usual electricity use patterns—in response to market signals” [6]. It is a shift of electricity usage in
response to price signals or certain requests [7]. DR reduces peak load, electricity cost, and improves
system reliability [8]. Electricity consumers can participate in energy-load balance through DR [9].
Controllable appliances in buildings that contribute to DR include commercial buildings like (heating,
ventilation and air-conditioning) HVAC systems, home appliances (e.g., dishwashers, dryers, and
freezers) [10], energy storage (e.g., batteries of electric vehicles, heat pumps, and refrigeration) [11],
and industrial processes (e.g., roller press) [12].

DR Programs

There are two types of DR programs: explicit and implicit demand response. The two types of
DR programs are activated at different times and serve different purposes in markets. Consumers can
participate in both programs. Consumers typically receive a lower bill by participating in a dynamic
pricing program (implicit DR), and receive a direct payment for participating in an explicit demand
response program [13].

Explicit DR (also called incentive-based DR program) is divided into traditional-based (e.g., direct
load control, interruptible pricing) and market-based (e.g., emergency demand response programs,
capacity market programs, demand bidding programs, and ancillary services market programs) [14].

In explicit DR, demand competes directly with supply in wholesale, balancing, and ancillary
services markets through services by aggregators or as single large consumers. Load requirements
(size of energy consumption) need to comply to participate in DR programs [15]. Therefore, small
consumers only can participate by contracting with DR service providers. DR service providers can
either be third-party aggregators or customer retailers. Through incentive-based programs, consumers
receive direct payments to change their electricity consumption upon request (e.g., to consume more
or less) [15].
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Explicit DR is more flexible in terms of helping DR service providers acquire DR resources [16].
Direct load control enables DR service providers to control appliances within a short notice [15].
Explicit DR provides a valuable and reliable operational tool for system operators to adjust load to
resolve operational issues [13].

On the other hand, implicit DR (sometimes called price-based DR program) refers to the voluntary
program in which consumers are exposed to time-varying electricity prices or time-varying network
tariffs (such as a day/night tariff) [15]. Compared to explicit DR with direct load control, implicit
DR provides less flexibility from the perspective of energy suppliers [16]. Price-based programs
depend on the cost of electricity production at different times, and on consumers’ own preferences and
constraints [15]. In some Nordic countries, customers have opportunities to participate in priced-based
programs (e.g., time-of-use (TOU), critical peak pricing, and real-time pricing) [15]. For instance, in
real-time pricing, consumers reduce electricity usage at peak periods or shift their usage to off-peak
periods [9]. These prices are always part of their supply contract [13].

Market players in DR markets can include producers, grid operators (Transmission System
Operators (TSOs), Distribution System Operations (DSOs)), retailers, aggregators, Balance Response
Parties (BRPs), policymakers, and consumers (building owners and occupants). New actors (e.g.,
aggregators) and new roles (e.g., retailers’ aggregation service) appear in the energy market. The main
relationships between actors in the DR market are shown Table 1.

Table 1. Actors in demand response.

Actors Offers To

Aggregator

Pay for BRPs’ energy loss BRP

Market access
ConsumerDR incentives

Ancillary services Transmission System Operator (TSO)
Tariff

Network balancing services Distribution System Operation (DSO)
Tariff

Supplier/retailer Incentives and contract package for
the implicit DR program Consumers

Regulator
DR incentives

All actorsDR regulations
DR awareness

Consumer
Demand profile Aggregator

Direct control Supplier/retailer

Large consumers can directly provide
energy flexibility to the DR market Demand Response (DR) market

2.2. Virtual Power Plants

Virtual Power Plants (VPPs) aggregate DER units and offer them to the energy market [17].
The aggregated DERs maintain reliability of renewable energy resources [18] and address grid
congestion [19]. VPPs can be managed by third-party aggregators, BRPs, or suppliers [20,21]. VPPs
provide a variety of services to power plant operators, industries, public services, energy suppliers, and
grid operators. VPPs create new business opportunities for aggregators and suppliers [21]. In Denmark,
DONG Energy implements VPPs known as the Power Hub that integrates DR with large industrial
companies to balance the power systems [22].

VPPs are aggregated DERs forming a Local Virtual Plant (LVPP). Then the aggregated LVPPs
form a Regional Virtual Plant (RVPP) [22]. LVPPs provide various opportunities to stakeholders, such
as energy trade, network services, and balancing services [21,22]. VPPs focus on the physical aspect of
DERs and their impact on the electrical system [20]. Meanwhile, VPP units at different locations [19]
are coordinated using networking infrastructure [23].
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2.2.1. Components of VPPs

A VPP is comprised of generation units [24], energy storage, and Information Communication
Technology (ICT) [21]. Generation technology in VPPs consists of DER portfolios (supply-side and
demand response) [24]. Supply-side in DER portfolios are Distributed Generation (DG) units [24],
such as Combined Heat and Power (CHP), biomass and biogas, small power plants, solar, and wind
generation [21]. DR in DER portfolios consists of flexible loads and energy storage [24]. Flexible loads
refer to loads or consumption patterns shifted in response to price signals (e.g., heating, cooling, and
charging of electrical vehicles) [18]. VPPs require energy storage to store energy such as Hydraulic
Pumped Energy Storage (HPES), Compressed Air Energy Storage (CAES), Flywheel Energy Storage
(FES), Superconducting Magnetic Energy Storage (SMES), Battery Energy Storage System (BESS), and
electric vehicles [18]. VPPs are coordinated through ICT systems that help to reduce transmission
system losses, relieve congestions, and provide grid stability [25]. This ICT infrastructure includes
Energy Management Systems (EMS), and Supervisory Control and Data Acquisition (SCADA) systems.
VPPs can monitor energy flows of DERs, storage facilities, and controllable loads [10].

2.2.2. Systems-of-Interests in Virtual Power Plants

The operation of VPP systems serves trade, balancing, and network support according to the
Systems-of-Interests (SoI):

(1) Virtual Power Plants for Trade

VPP systems provide energy trade opportunities to VPP owners. VVPs optimize and aggregate
DERs’ capacity (DG units and DR) and provide DERs with visibility and market access [18,21].
VPP owners submit bids and optimize DERs’ revenue in the wholesale market [26].

The DER owners can receive more benefits by collectively participating in wholesale energy
markets compared to participating individually. Moreover, volume threshold for power producers
may prevent small DER owners to trade their energy individually [22]. Practically, both DER owners
and participants in demand side response are represented by RVPP operators as a single entity in the
wholesale market [22].

(2) Virtual Power Plants for Balancing

VPPs can participate in the energy balancing market by employing available DER units,
storage devices, and controllable loads [22]. The balancing market is the regulating market in the
Nord Pool market structure. BRPs might be particularly interested in this VPP operation, due to
imbalance responsibilities.

VPPs can contribute short, medium, and long term balancing of energy flow by the operations
of virtual synchronous generators and demand side management. The duration of primary control
is presented in seconds, and VPPs can contribute with fast power response obtained from rotating
(synchronous) generators, super capacitors, and fast batteries [22]. VPPs can also contribute to
secondary control by (1) increasing the generation of reserve DER units (e.g., micro-CHP) for a period
of minutes; and (2) decreasing the demand through employment of controllable loads for a few hours
until top-down power supply is recovered [22].

(3) Virtual Power Plants for Network Services

Due to the increase of load or generation, network operators need to either expand network
capacity or prevent overload or congestion [22]. VPPs can provide grid services to TSOs/DSOs to
support load and congestion management and improve power quality [24]. VPPs can also provide
services to DSOs’ local system management [21]. In addition, VPPs provide system services (e.g., black
start, voltage control) to TSOs [24].
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2.2.3. The VPP Stakeholders

The main actors in VPPs are VPP aggregators. Third-party aggregators manage VPPs [20],
aggregate DERs, storages and adjustable loads [15] and offer them to different market participants
(e.g., TSOs, BRPs) [27]. There are large and small (e.g., DERs, prosumers) energy producers.
DERs are small energy generators located in low-voltage grid expecting high return of investment [22].
Energy consumers can provide adjustable loads, DERs, or storages to VPP aggregators based on their
energy flexibility resources. BRPs can also play a role of an aggregator. For example, NEAS Energy,
an independent BRP, acts as an aggregator by aggregating various generation units (e.g., CHP, wind,
hydro, solar) in Denmark [28]. The main relationship between actors in the VPP aggregation market is
shown Table 2.

Table 2. Actors in Virtual Power Plants (VPPs).

Actor Offers To

VPP aggregator

Market access DER owners
Ancillary services TSO
Balancing services BRP

Buy and sell electricity Wholesale Market
Network services DSO

DER owner
Produce electricity VPP aggregator

Direct control VPP aggregator

BRP
Settle the imbalance Market

Accurate forecast of supply and demand VPP aggregator
Bilateral contracts [29] VPP aggregator

Policy maker Energy rules All actors

3. Buildings and Energy Flexibility

Buildings are responsible for a large percentage of the global energy consumption (e.g., about
45% energy consumption in Denmark is from buildings, shown in Figure 1) and are therefore good
candidates for providing energy aggregation potentials to the grid. Buildings can participate in the
energy aggregation market via different channels. Meanwhile, energy consumption may vary between
residential, commercial, and industrial buildings due to differences in building features.

Figure 1. Danish energy consumption by sector in 2012 [30].

Residential buildings are defined as small electricity consumers due to their numerosity [31].
In Europe, residential buildings constitute 75% of the total number of buildings and 16% are high-rise
buildings constructed within the period of 1960–1980 [32]. A majority of residential buildings consist of
standard building technologies such as heating, hot water, cooling, ventilation, and lighting. However,
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residential building appliances’ differ between each other. Common, potentially controllable appliances
in residential buildings are dishwashers, washing machines, clothes dryers, freezers and refrigerators,
heat pumps, and electric vehicles. The consumptions of appliances are different. For instance,
statistics (shown in Figure 2) show the energy consumption by appliances in residential buildings in
North America.

Residential buildings can provide energy flexibility. Flexibility potentials by home appliances vary.
For instance, freezers and refrigerators provide less flexibility because more than 30 min interruption
to freezer or refrigerator operation may cause spoilage [33]. Compared to other appliances, heating
and ventilation provide more flexibility by shifting the temperature, especially during the day when
households are empty [31].

 

Figure 2. Residential primary energy end-use in the USA 2005 [34].

Commercial buildings include hospitals, hotels, stores, and offices. An example of the energy
consumption by appliances in commercial building is shown in Figure 3. Some commercial buildings
are more reluctant to participate to DR (e.g., reschedule their usage of power) due to the effect on their
business routines and profits [35]. For instance, hotels and hospitals operate 24/7, and are reluctant to
shift their usage of power due to consideration of their profits or occupants’ comfort. Small or medium
size commercial buildings (e.g., stores, offices) might participate in direct load control programs, while
hospitals, hotels, and other large commercial buildings can participate in more interruptible programs.

 
Figure 3. Commercial primary energy end-use in the USA 2005 [36].
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Industries are usually large energy consumers. There are different types of industries engaging
in different processes (e.g., steel, textile, food industries) and technologies [12]. Industrial buildings
are often equipped with wind turbines or CHP to generate their own electricity. The energy flexibility
potentials differ from one industry to another (e.g., Table 3 shows potentials for load flexibility of
different processes in agriculture and industry in Denmark). For instance, refrigeration companies have
particularly high load shift potentials with duration of several hours, and there are several approaches
to obtain energy flexibility from refrigerators/freezers [37]. As with some commercial buildings that
have large energy consumption rates, industrial buildings usually are reluctant to reschedule their
usage of power considering their big profits [35].

Table 3. Potential for load flexibility of different processes in agriculture and industry [37].

Industry
Electricity Consumption,

GWh/Year (2001)
Flexibility Potential, MW

Eastern
Denmark

Western
Denmark

Total East West Total

Agriculture 405 2150 2555 13 69 82
Food and beverage 518 1738 2526 13 43 56

Textile 14 194 208 0 4 4
Wood industry 123 281 404 2 6 8

Paper and printing industry 228 527 755 5 11 16
Chemical industry 1116 1079 2195 17 16 33

Stone, clay, and glass industry 211 719 930 4 15 20
Iron and steel mills 528 117 645 26 6 32

Foundries - 196 196 0 10 10
Iron and metal 447 1304 1751 20 59 79
Trade & Service 1507 2206 3173 54 79 134

4. Methods

This paper applies three analysis methods to review and evaluate aggregation potentials for
buildings. The method of ‘business model canvas’ is adopted to describe potential scenarios that
buildings can participate in energy aggregation markets with different values and channels. SWOT
and TOWS analyses aim to evaluate feasibility and barriers of different business models in the current
situation and in future trends of energy systems.

4.1. Business Model Canvas

Buildings can provide aggregation potentials to energy market via different channels with
different values. Meanwhile, there are different involved market players, structures of revenue and
cost, and dependencies among scenarios. Therefore, this paper adopts the ‘business model’ concept to
discuss different scenarios for buildings to participate in the energy aggregation markets.

The term ‘business model’ has been massively applied and discussed in recent years. A business
model is “a system of resources and activities which create a value that is useful to the customer and
the sale of this value makes money for the company” [38]. It is part of a company’s business strategy
that describes how a company creates, delivers, and captures value within economic, social, cultural or
other contexts [39].

So far, several business model generation methods have been developed. For example, Mullins
and Komisar’s five-pillar model [40] (including revenue model, gross margin model, operating model,
working capital model, investment model). However, this model has barriers to be applied for complex
analysis, due to little attention to the value offered to customers. The business model developed by
Afuah [41] divides the model into six components (shown in Figure 4). However, this model also does
not describe the value offered to customers.
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Figure 4. Business model by Afuah.

This paper adopts the ‘business model canvas’ by Osterwalder and Pigneur [42] which divides
the business model into nine components: customer segments, customer relationships, distribution
channels, value proposition, key resources, key activities, partners, cost structure and revenue streams
(shown in Figure 5). Compared to other methods, the business model canvas is a more powerful
visualized and flexible tool that is popularly adopted by both industry and academia.

 
Figure 5. Business model canvas by Osterwalder and Pigneur.

4.2. Evaluation Tool for Business Model Analysis

To evaluate the value of potential business models, this paper modifies the evaluation tool
developed by [43]. The tool is an organized and transparent system that facilities the work of the
evaluators of potential business models [43]. This tool includes all factors that affect the business
models and can be adapted to specific needs/strategies. This evaluation tool is originally intended for
smart cities business models, and this paper modifies it for evaluating business models of buildings’
participation in the aggregation market. The modified evaluation tool can be applied to general
business model analysis, and the decision-making (value criteria) can be specific for different scenarios
(shown in Table 4).

The value of the business model (VBM) in this paper is calculated as follows:

Value of business model = value proposition × customer segment × (partners

+ resources + revenue streams − cost + customer relationship + channels + activities)
(1)

Table 4. TOWS analysis and strategy options.

Elements from Business
Model Canvas

Value Criteria

Value Proposition

1: if provide significant more benefits to customers compared to existing solutions
(product/service)
0.5: if provide around half more benefits to customers compared to existing solutions
0.1: if not provide visible benefits to customers compared to existing solutions

Customer segment

Value of customer segment = size × purchasing power
Size:
1: if majority of the total potential customers can be targeted, otherwise the percentage
of the total potential customers can be targeted
Purchasing power:
1: high
0.5: medium
0.1: low
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Table 4. Cont.

Elements from Business
Model Canvas

Value Criteria

Partners

1: if the partner is the existing partner
0.5: if it is new but easy to reach
0: if it is new but difficult to reach
Note: total value = ∏(value of individual partners), because the more partners you
need to have, the more risk exists

Resources

1: if it is an existing resource
0.5: if it is new but easy to reach
0: if it is new but difficult to reach
Note: total value = Σ(individual resource)/number of compulsory resources

Revenue streams

Depends mainly on customers’ familiarity and companies’ affordability
1: if it is familiar to customers and fits to companies’ normal business
0.5: if it partly familiar to customers and companies need to make small changes
0: if it is totally new to customers and companies

Cost
1: if large spending for devices and personals
0.5: if within the range of affordable spending
0: if based on existing devices and personals

Customer relationship

Mainly depends on how simple and easy the approach is.
1: if it is for keeping existing customers
0.5: if it is for growing existing customers
0.1 if it for getting new customers
Note:
If it is easy to get new customers, you can move it to 0.5 or even 1.
Total value = Σ(individual customer relationship)/number of compulsory customer
relationships

Channels
1: if it is an existing channel
0.5: if it is new but easy to establish
0: if it is new but difficult to establish

Activities

1: if it is an existing activity or similar to the existing activities
0.5: if it is new but easy to conduct
0: if it is new but difficult to conduct
Note: total value = Σ(individual activity)/number of activity, because the more
activities you need to manage, the more difficult the task

4.3. SWOT Analysis and TOWS Analysis

The discussion of buildings’ aggregation potentials needs to be integrated with the context of the
specific electricity market. For instance, the demand response status among EU member countries is
divided into three groups: (1) who have yet to seriously engage with DR reforms; (2) who are in the
process of enabling DR through retailers only; (3) who enable both DR and independent aggregation [6].
Therefore, business models for buildings to participate in energy aggregation markets are strongly
influenced by national electricity market structures.

This paper uses the Nordic electricity market as an example, and applies SWOT and TOWS
analyses to evaluate feasibility and barriers of different business models. SWOT is an acronym
for strengths, weaknesses, opportunities, and threats. It is a structured planning method that
evaluates internal and external factors of an organization, project, or business venture. Strengths
and weaknesses aim to examine organization’s internal situation, opportunities and threats focus on
external environment. SWOT analysis is broadly used in planning and decision-making.

However, SWOT analysis does not show relationships between internal and external factors.
Therefore, this paper applies TOWS analysis to match internal factors and external factors to identify
relevant strategic options. The strategy options in TOWS are described in Table 5.
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Table 5. TOWS analysis and strategy options.

Strategy Options Opportunities Threats

Strengths
S-O Strategies

Strategies that use strengths to take
advantages of opportunities

S-T Strategies
Strategies that use strengths to avoid threats

Weaknesses
O-W Strategies

Strategies that take advantages from
opportunities for mitigating weaknesses

W-T Strategies
Strategies that mitigate weakness and avoid threat

5. Results

Buildings are commonly defined into three types (residential, commercial, and industrial). Due to
the requirement of volume threshold for aggregation markets (e.g., the minimum bid to provide
primary service in Demark is 0.3 MW), this paper divides buildings into two categories according to
their energy consumptions: small and large energy consumers. The majority of residential buildings
and some commercial buildings are small energy consumers. Comparatively, industrial buildings and
some commercial buildings are large energy consumers.

There are four business models proposed for buildings to participate in the energy aggregation
market in this paper (shown in Table 6).

Table 6. Four Business Models of Buildings’ Participation in the Aggregation Market.

Aggregation
Market

Types Business Model Direct Participants
Indirect Building

Participants

Demand
Response

Implicit DR
(price based)

1—buildings participate in the
implicit DR program via retailers Retailers All buildings

Explicit DR

2—buildings (small energy
consumers) participate in the
explicit DR via aggregators

Independent
aggregator

Buildings with
small energy
consumption

3—buildings (large energy
consumers) directly access the
explicit DR program

Buildings with
large energy
consumption

-

Virtual Power
Plants

Trading, balancing,
network services

4—buildings access the energy
market via VPP aggregators by
providing DERs

VPP aggregators
DER owners

(buildings which
equip the DERs)

5.1. Business Model 1—Buildings Participate in the Implicit DR Program via Retailers

All buildings can participate in the implicit DR program. In this business model (shown in
Table 7), buildings receive the DR program package as part of their electricity supply contract with
their electricity retailer. Therefore, buildings can obtain a lower bill. For instance, buildings can reduce
electricity usage at peak periods or shift their usage to off-peak periods.

Retailers can provide different DR program packages due to buildings’ own preferences and
constraints, and improve consumers’ satisfaction rate. For instance, customers’ satisfaction rate can be
increased due to lower bills. Retailers might get new customers by providing an explicit DR package
as a competitive offer. On the other hand, retailers need to provide consulting services to customers.
Retailers usually do not have professional knowledge in the DR domain, and DR services are a new
business model for retailers. Therefore, retailers need to hire experts and additional staff for the
DR business.

5.2. Business Model 2—Buildings (Especially with Small Energy Consumption) Participate in the Explicit DR
Program via Aggregators

In Business Model 2 (shown in Table 8), buildings, especially those with low energy consumption,
can obtain direct payment by participating in explicit DR programs via aggregators.
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Aggregators can maintain good relationships with customers through (1) an efficient and
customer-friendly payment system and control system; (2) a training and consulting service, including
DR knowledge and market information sharing. Meanwhile, the customized DR contracts should
be based on customers’ energy constraints and preferences; (3) the participation in the DR market
needs customers to install direct load control systems. Therefore, aggregators can provide discount
or free control systems, and maintenance services to customers; (4) Aggregators provide backup for
individual loads as part of pooling activities that can increase the overall reliability, and reduce risk for
individual consumers.

Aggregators generate revenue by providing DR services to the market (e.g., wholesale market,
regulating market, and ancillary service). Aggregators might also receive incentives from regulators,
TSOs and DSOs, depended on market regulations and structures.

5.3. Business Model 3—Buildings (with Large Energy Consumption) Directly Access Explicit DR Program

Buildings with large energy consumption are the energy flexibility providers who can directly
participate and compete directly with producers in the DR market (wholesale market, regulating
market, or ancillary service) (shown in Table 9).

To participate in wholesale and balancing markets, large energy consumers need to comply
with market rules. Meanwhile, to participate in the reserve market as an ancillary service, buildings
need to allow TSOs to directly control energy flexibility resources of buildings (e.g., building energy
management systems).

Buildings can receive direct payment by providing flexibility via direct participation in explicit
DR programs, and may get incentives from regulators, DSOs and TSOs.

5.4. Business Model 4—Buildings Access the Energy Market via VPP Aggregators by Providing DERs

In this business model, buildings (which have DERs) are able to obtain direct payment from
VPP aggregators by providing energy flexibility. The volume threshold for power producers may
prevent small DER owners to trade their energy individually, and VPP aggregators aggregate DERs
and flexible loads as a single entity in the wholesale market that can help DER owners collectively to
participate in the market with lower risk.

Buildings can have different types of DERs. Therefore, DER owners can participate in different
aggregation markets (shown in Table 10). For instance, residential buildings usually only have PVs.
Due to response requirements for different markets (e.g., primary service in Denmark requires a
response in 15 seconds with a minimum of 0.3 MW), aggregation potentials that can be provided by
DER owners depend mainly on the types of DERs.

VPP aggregators can provide customized market access strategies for different types of DER
owners. Meanwhile, VPP aggregators should provide accurate forecast information of supply and
demand, and user-friendly control systems, because this influences DER owners’ daily business or
energy usage patterns.

The main reason for DER owners to participate in the energy flexibility market is monetary
benefits. Therefore, VPP aggregators need to provide an efficient and fair payment system that also
affects DER owners’ satisfaction and motivation.
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6. Case Study—The Aggregation Potential for Buildings in the Nordic Electricity Market

The Nordic electricity market of Denmark, Finland, Norway, and Sweden, comprises of a
wholesale market and a retail market. Each Nordic country is an integral part of the free Nordic
electricity market [44]. The wholesale market trade is via the Nord Pool Spot market. The Nord Pool
market is owned by the TSOs in the Nordic countries. There are two electricity market places in the
Nord Pool Spot market: Elspot (Day-ahead) and Elbas (Intra-day), and a regulating power market.
The national TSOs in each country are responsible for the electricity retail markets. In Denmark,
Energinet.dk is responsible, and consumers can freely choose their electricity retailers.

In the current Nordic electricity market, there is no independent aggregator, and demand response
has been enabled within the ancillary services [13]. In some Nordic countries, customers have
opportunities to participate in priced-based programs (e.g., time-of-use (TOU), critical peak pricing,
and real-time pricing) [15].

There are nearly 15 million electricity customers in the Nordic electricity market, and the four
business models show that there are opportunities and benefits for electricity consumers to participate
in the energy aggregation market. However, there are also barriers and constraints under the current
energy market structure.

Opportunities: there is a market need for buildings’ energy flexibility, due to market (e.g.,
imbalance payment) and grid (grid capacity) demands. Meanwhile, technologies including control
systems, forecast software, and DERs, are more advanced, cheaper, and user-friendly compared to
before. Therefore, market players, such as aggregators and buildings, participate much more easily in
the aggregation market. In many countries, regulators, TSOs, or DSOs have provided incentives for
participation in the aggregation market.

Threats: there are still regulation barriers for market players to access the aggregation market. For
instance, there is no DR market in some countries such as Denmark, and DR participation is limited to
the small consumers and only large consumers can participate in the wholesale market. Meanwhile,
monetary benefit is not significantly visible to encourage buildings to participate in the aggregation
market, especially with the compromise of comfort and low return on investment.

Strengths: the majority of buildings have potentials to provide flexibility to the energy market,
either by changing energy usage pattern (adjustable loads) or by giving direct control of their appliances
or DERs to aggregators.

Weaknesses: Return on investment is the main concern for energy consumers. Small energy
consumers, e.g., residential buildings, still lack investment incentives to purchase controllable
appliances, control systems, and DERs. Energy consumers might also be conservative due to potential
effects on their daily business or energy usage patterns. Meanwhile, limited capacity of energy
flexibility provided by small energy consumers (e.g., residential buildings) might prevent their access
to the aggregation market or not have visible monetary benefits.

6.1. Value of the Business Model (VBM) in the Nordic Electricity Market

For the aggregation market development, it is necessary to investigate which business model
brings more value to the whole market. By applying the evaluation of business model analysis (1), the
value for the four business models are shown in Table 11.

Under the current situation of the Nordic electricity market, Business Model 1—‘buildings
participate in the implicit DR program via retailers’ significantly provides the highest value to the
whole aggregation market. This business model not only covers all buildings, is highly supported by
regulations, but also requests few changes in the existing market structure.

Comparatively, Business Model 2—‘buildings participate in the explicit DR via aggregators’
brings the lowest value to the whole aggregation market. The reason is (1) there are no independent
aggregators in the Nordic electricity market as yet, and stakeholders are conservative to this business
model (the value of ‘partners’ is only 0.425); (2) buildings with small energy consumption provide
limited energy flexibility, and the benefit is not visible under the current Nordic market regulation
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(the values of ‘value proposition’ is 0.5); meanwhile, (3) buildings with small energy consumption
usually do not install building control systems, and the cost to participate the market and install control
systems is high (the values of ‘cost’ is −1.4).

Business Models 2 and 4 both present buildings’ participation in the aggregation market via
aggregators. The comparison results show that buildings that equip DERs have more potentials and
incentives to participate the aggregation market.

Table 11. Value of four developed business models in the Nordic electricity market.

Business Model

1—buildings
participate in the
implicit DR program
via retailers

2—buildings
participate in
the explicit DR
via aggregators

3—buildings
directly access
to the explicit
DR program

4—buildings access the
energy market via VPP
aggregators by
providing DERs

Value Proposition 1 0.5 1 1
Customer Segment 1 0.21 0.21 0.19

Partners 1 0.025 1 0.125
Resources 1 0.83 0.75 0.75

Revenue Streams 0.5 1.1 1.2 1.7
Cost −0.5 −1.4 −0.5 −1.4

Customer Relationship 0.75 0.425 0.75 0.875
Channels 1 1 1.5 1.5
Activities 1 0.6 0.67 1

Value of Business Model 3.75 ∼=0.17 (0.1659) ∼=1.34 (1.3377) ∼=0.77 (0.7695)

6.2. Recommendation for Encouraging Building Participation

With TOWS analysis (shown in Table 12), this paper presents the following suggestions to
encourage buildings to participate in the aggregation market:
• Regulation needs to be adjusted to allow buildings easy access to the aggregation market;
• Incentives from regulators, TSOs/DSOs can encourage buildings to participate in the energy

aggregation market;
• Clear monetary benefits (e.g., payment) needs to be defined;
• Financial support, e.g., loans, renting, cost reduction strategies and packages, for installation of

control systems, DERs, and controllable appliances;
• Easy and user-friendly control systems with accurate forecast and analysis;
• Customized service (e.g., payment and control solutions) for different types of buildings;
• Selective market access for buildings which can have visible benefit from the aggregation market

(e.g., large energy consumers or industrial buildings with large capacity of DERs);
• Utilization of ADR (automatic DR) in buildings with challenges of privacy, user acceptance, and

security needs to be addressed.

Table 12. Combined SWOT and TOWS analyses of buildings’ energy aggregation potentials.

Opportunities Threats

1. European Union (EU) climate and energy goals
2. Technology readiness
3. Market demands
4. Constraints of grid capacity
5. Cost reduction
6. Incentives

• Regulation barriers
• Limited monetary benefits
• Slow Return on investment (ROI)

Strenghts S-O Strategies S-T Strategies

• Flexible load
• Installed DERs
• Advanced appliances

• Cost reduction strategies and
packages of control system and
DER equipment;

• Easy and user-friendly
control systems

• Regulation changed to allow buildings
easy access to the aggregation market;

• Clear monetary benefits and incentives;
• Analysis and service (including training)

regarding consumer behavior.

Weaknesses O-W Strategies W-T Strategies

• No investment support
• Constraints of daily business and

energy usage pattern
• Low capacity of energy flexibility

• Aggregation of small consumers
by DR and VPP programs;

• Incentives from regulators,
TSOs/DSOs;

• Software support for forecast
and analysis.

• Financial support for equipment control
system (e.g., loans, renting);

• Selective market access for buildings
which can have visible benefits from the
aggregation market (e.g., large energy
consumers, or industrial buildings with
large capacity of DERs)
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7. Conclusions

This paper develops and discusses four business models for buildings (e.g., residential, industrial,
and commercial) to participate in the aggregation markets by providing flexible loads and DERs.
With a case study of the Nordic electricity market, an evaluation of the four business models is
conducted with the SWOT analysis and evaluation tool of business model analysis. The evaluation
result shows that there are opportunities for buildings to participate in the aggregation market and
constraints for different types of buildings. Under the current Nordic market regulation, the most
feasible business model is: buildings participate in the implicit DR program via retailers. Meanwhile,
the regulation barriers and limited monetary incentives impede buildings’ participation. Therefore, the
business model of ‘buildings with small energy consumption participate in explicit DR via aggregators’
possesses more challenges compared to other three business models.

This study contributes to the literature in several unique ways. First, this study demonstrates
four business models with explicit description about how the flexibility potentials of buildings can be
utilized in different aggregation scenarios.

Second, by investigating buildings’ participation in the four scenarios, this study contributes to
the literature regarding the correlation between buildings’ flexibility and aggregation market access.
This study finds that the flexibility resources and potentials are different for different types of buildings,
and building owners have different needs and behaviors. Thus, it is essential to understand building
owners’ needs, comforts, and behaviors to develop feasible market access strategies for different types
of buildings.

Third, the importance and implication of incentive programs, national regulations and energy
market structures to the buildings’ participation are identified. Incentive programs can enhance
buildings’ participation. In addition, the involvement of governments and regulators in the aggregation
market can provide incentives, increase DR awareness and participation. However, the aggregation
market is still immature, and regulations and polices of aggregation markets are various across
countries. For instance, in Europe, the countries Belgium, France, Ireland, and the UK have created
the regulative framework to enable both DR and independent aggregators, whereas other European
countries have not yet engaged with DR reforms, e.g., Portugal and Spain. Therefore, the business
models of aggregation potentials for buildings need to be based on national regulations and energy
market structures.
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Abstract: Demand response aggregators have been developed and implemented all through the
world with more seen in Europe and the United States. The participation of aggregators in energy
markets improves the access of small-size resources to these, which enables successful business
cases for demand-side flexibility. The present paper proposes aggregator’s assessment of the
integration of distributed energy resources in energy markets, which provides an optimized reschedule.
An aggregation and remuneration model is proposed by using the k-means and group tariff, respectively.
The main objective is to identify the available options for the aggregator to define tariff groups for the
implementation of demand response. After the first schedule, the distributed energy resources are
aggregated into a given number of groups. For each of the new groups, a new tariff is computed
and the resources are again scheduled according to the new group tariff. In this way, the impact of
implementing the new tariffs is analyzed in order to support a more sustained decision to be taken
by the aggregator. A 180-bus network in the case study accommodates 90 consumers, 116 distributed
generators, and one supplier.

Keywords: aggregator; clustering; demand response; distributed generation

1. Introduction

The number of aggregators operating in energy markets has been on the rise since the end of the
last decade [1]. Companies like Voltalis (Paris, France), REstore (Antwerp, Belgium), and EnerNOC
(Boston, MA, USA) are currently major aggregators of flexibility and are the usual participants in
energy markets [2]. These companies provide tools for energy services (e.g., optimization, monitoring,
consultancy) to consumers, which reduces unnecessary or inefficient consumption. The aggregators,
after an analysis of the consumer’s load profile, conciliates the energy reductions of the consumers
with its participation in the energy markets. In this way, a cooperative relation between the aggregators
and the resources is achieved.

Demand Response (DR) and distributed generators are the flexibility resources with more interest
and development in current power systems, which opens a path for others to raise as well, for instance,
electric vehicle and storage units [3,4]. Demand response is divided in two types including price
and incentive-based where the first corresponds to the response of consumers given a price signal
(price variation) and, the latter, to the response of consumers given monetary incentives (tax relief,
payment) [5–10]. These two types of demand response are used by different entities and to distinct
consumers. Namely, the grid operators and aggregators use incentive-based while retailers tend to
use more price-based strategies. Distributed generators have been significantly promoted in recent
years through feed-in tariffs to make these resources more attractive to consumers [11–13]. Due to this
initiative, the number of prosumers (consumers that own generation means) raised significantly in
several countries (e.g., Portugal, Germany, UK). However, the high participation of these resources
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in energy markets has not yet been achieved mostly because of their small generation capacity and
intermittent production. The complement that demand response and distributed generators give to
each other provide the aggregator with sufficient tools to manage these resources and allow their
indirect participation in energy markets [2,14–18].

1.1. Related Literature

Several energy markets are not adjusted to demand response participation due to the requirements
needed to participate either in terms of minimum capacity or event duration. For example, in
Finland, secondary reserve has 5 and 10 MW minimum capacity in automatic and manual actuation,
respectively [19–21]. In the same country, it is possible to find more adjusted conditions in the primary
reserve with a minimum capacity of 100 kW. Another example is the Californian independent system
operator, CAISO (Folsom, CA, USA), with minimum requirement of 100 and 500 kW to consumer’s
participation [22]. In such market approaches, the aggregator or a single entity can deliver the requested
reduction amount. In both cases, the market operator is not concerned about the way that consumers
are aggregated and enumerated.

The need for an aggregator entity arises as a solution for the participation of small-size consumers
when considering that it can create a virtual energy amount that enables enough energy to be
negotiated in the market by the aggregator. This participation of the aggregator should ensure
that the revenues obtained are sufficient to reward the participating resources while providing profit
for the aggregator. In incentive-based programs, resources are remunerated bearing in mind their
availability and utilization where it is considered a period that consumers make their loads available
to be modified and, in the second, payment is made when load modification is actually done [23,24].
These are current approaches for the remuneration of consumers participating in demand response
programs. However, for the research in the present paper, the questions are how much to pay to the
consumers, how many distinct tariffs to implement, and which consumers should be in each tariff.

Aiming the aggregation and the remuneration of demand response resources, several works
appear in the literature with most of them addressing only one of these topics and others addressing
both in a single methodology, which are namely previous works from the authors of the present
paper [25,26]. In fact, most of the recent and relevant literature in demand response, namely review
papers, still insist in the demand response opportunities and flexibility options that are more and more
evident with the increase of technology that supports demand response by providing examples of
practical evidence of DR implementations and identifying the most relevant barriers without referring
to possible innovative approaches for aggregation and remuneration [6,27]. Most of the identified
barriers are related to market structures and incentives regarding the incentivizing consumers to
participate in DR programs [28].

In Reference [29], a hierarchical DR architecture is proposed in order to control and coordinate
various DR categories. In Reference [30], the author refers to the way that incentivizing DR with flat
incentives implies with the revenues of retailers. In fact, in the beginning, DR incentives are needed
but in a large implementation, DR must be remunerated by adequate and fair market mechanisms.
In Reference [31], DR and generators are compared regarding the actual costs in real markets, which
refers to the actual remuneration cost for DR. In Reference [32], the authors deal with the comfort in a
building in order to determine the flexibility of consumption. A multi-agent approach is proposed for the
bids and auctions establishment. The consumers are assumed to take part of the negotiation. None of
the referred works proposed a model that implements the remuneration for DR participation, which
consists of addressing the consumers’ benefits and offering an advantageous remuneration for them.
Moreover, the aggregation is done according to the open call to the previously enrolled consumers.

In Reference [25], the authors proposed a methodology in which aggregation and remuneration
is done in an integrated approach in order to support the aggregator decisions. In Reference [26],
a complementary approach is defined in order to analyze the profits of the aggregator, which supports the
participation in the market by comparing the situations of using or not additional suppliers with DR use.
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However, in the previous works, after defining the groups and the tariffs, the aggregation and the
remuneration, it was assumed that the operation costs are still minimized. In the present paper, the
proposed methodology contributes to making an evaluation of the new optimal scheduling of the resources
using the new tariffs. New decision aspects are raised for the aggregator namely because some consumers
are lower remunerated with the re-scheduling even if the aggregator operation costs are the same.

1.2. Proposed Aggregator

The present paper proposes a methodology to address market participation of an aggregator in
energy markets by considering two types of distributed energy resources including demand response
and distributed generation. Due to the small size of these resources, a Virtual Power Player (VPP) is
considered the aggregator for DR and DG resources making it possible for them to participate in the
electricity market. This aggregator defines the groups and the tariffs for each group to be scheduled in
each different context or period of the day, which receives incomes from the market and forms the
consumers to fulfill their load and paying to DG and DR resources by also obtaining some profits.
The DG and DR are scheduled according to the available forecasts that are assumed to be adequately
accurate. It is also a task assumed for the VPP to accommodate the deviations of the DG and the DR
resources due to their unpredictability.

After an initial schedule of resources, these are aggregated and assigned a tariff for each of
the groups formed with these tariffs considered forward when performing the second schedule of
resources. This allows the aggregator to schedule resources in line with a group tariff that is applied to
all resources in that group and decided whether to participate or not with bids in the energy markets.
Aggregation is made through k-means clustering algorithm while the group tariff corresponds to the
average price of the resources in the group.

The present section approached the most relevant concepts related to the developed methodology
and the activities that it intends to represent. In Section 2, the proposed methodology is presented
and explained in detail while Section 3 shows the mathematical formulation used. In Section 4, the
case study used to verify the usefulness of the methodology is presented, and finally, in Section 5, the
conclusions obtained from the methodology implementation are presented.

2. Proposed Methodology

The present section details the proposed methodology that can be divided into three stages per
scheduling phase, which is illustrated in Figure 1. Phase one is presented in Section 2.1 while phase 2
is presented in Section 2.2.

Figure 1. Proposed methodology scheme.
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2.1. Phase One

According to Figure 1, phase one is divided into three stages. In the first stage, each resource has
an individual price that represents the cost to the aggregator to schedule it in terms of demand response
or distributed generation. The optimization model considers demand response programs such as
curtailment. The mathematical formulation for the minimization of the aggregator’s operation costs is
detailed in Section 3. The results of the optimization include the amounts scheduled in generators and
the energy to be reduced from the consumers in order for the load-generation relation to be balanced in
each of the periods considered. Additionally, the resources for aggregation are obtained from this stage.

In the second stage, the aggregation stage, the resources that have contribution higher than
zero in the aggregator’s schedule (stage 1), are in the aggregation process. The other resources with
zero contribution are not considered in either aggregation and remuneration stages. This ensures
that non-participating resources do not affect the results of the aggregation and remuneration and,
therefore, neither influence the prices for the participants. This second stage of the methodology
uses k-means to obtain the group indexes for each distributed resource. The number of groups to
be formed is a parameter that the aggregator can modify in consonance with its operation context.
This aggregation analysis is made for each period. The distributed resource types have distinct
aggregation processes. However, consumers and generators are not aggregated together. In this way,
different data inputs are considered for aggregation in both cases. The clustering stage is very relevant
for the groups definition. Normally, the consumers’ tariffs are defined for all the consumers of the
same type (domestic, commercial, industrial, etc.). In the proposed approach, the aggregator is able to
request the simulation of several number of tariff groups, according to the number of DR programs.
The clustering algorithm will provide it.

When aggregating consumers, the data input consists of:

- the energy scheduled in the curtailment program for each consumer,
- and the price of these reductions (input parameter of the objective function).

In the case of distributed generators, the data input in the aggregation process is:

- scheduled energy for each unit,
- and individual price (input parameter of the objective function).

The third stage, which is the final stage of phase one, corresponds to computing the group
parameters. These can be defined as the relevant features that the aggregator needs to form a bid in
the energy markets including average price and total energy scheduled. The number of resources is
important information to the aggregator so that it knows the resources in each group.

In conclusion, the results of phase one are the consumers and generators in each group and the
tariff for each group.

2.2. Phase Two

In the second phase, we have three stages, according to Figure 1. The first stage corresponds to the
same procedure performed in the first stage of phase one. The difference is that now, in the first stage
of phase two, the prices for the resources entering the scheduling are the ones resulting from stage
three of phase one for each group, which involve the resulting tariffs. In this way, after scheduling
phase two, the aggregator can compare each period based on the operation costs and conclude if it is
or not beneficial to proceed with phase two or adopt the results of phase one. This allows for a more
efficient operation of the aggregator by maintaining its capability of market participation.

In the second stage, the resources are aggregated for each period. The clustering algorithm
considered is implemented and given as input for the energy schedule and price (these features are
considered for both the distributed generators and consumers participating in the demand response
program). The information about aggregation is also available for the aggregator in terms of power,

214



Energies 2018, 11, 713

tariffs, the number of resources in each group, the resources that participated in the scheduling, and
the group assignment.

In the final stage of phase two, the aggregator goes to market considering the groups formed and
respective group tariffs as available bids. In addition, the results provided give the aggregator the
possibility to check which consumers have been positively or negatively affected by the re-scheduling
made in Phase two. In this context, the aggregator must ensure that the bids guarantee fair payment of
distributed energy resources and its services.

The provided overall results are relevant for the aggregator to consider in terms of the participation
in energy markets even though the present paper doesn’t consider the different specific market
opportunities that can be available for the aggregator to participate. In fact, the consideration of market
negotiation should be accompanied by several involved parties’ agreements so that the rest of the grid
wouldn’t be impaired in its stability and energy quality.

The methodology proposed in the present paper provides a solution for the management
of aggregator’s activities including the optimal scheduling of resources with an aggregation and
remuneration model to complement its participation in market. In fact, the optimization of the
energy resources used is made in the present paper in order to support the proposed aggregation
and remuneration methodology. It is not intended to be the focus of the paper since it can be found
in other previous works [25,26]. Also, the clustering algorithm and its input features as used in the
present paper have been previously used in Reference [26]. It is included in the present paper in
order to support the overall proposed methodology framework. In this way, the present paper is
innovative by presenting a rescheduling model for the decrease of aggregator’s operation costs based
on the aggregation and remuneration model applied to distributed resources. Section 3 details the
mathematical formulation used to guarantee the resource’s optimized scheduling.

3. Scheduling Formulation

The optimization problem is labeled as mixed-integer linear programming (MILP) since discrete
and continuous variables are considered. The scheduling problem is relatively simple considering the
program’s definition and respective modelling. However, the problem’s size implicates an analysis
of the best option. The proposed methodology was implemented in TOMSYM™ optimization
environment, which was developed in MATLAB™. The algorithm was run in a 64-bit computer
system with 16 GB RAM and 2.1 GHz processor.

In Equation (1), the objective function is considered for optimization, which involves the demand
response programs mentioned before as well as the distributed generators and external suppliers.
This objective function is considered for both schedules (phase one and phase two) of resources.
However, in the second, the CDG

(p,t), Cred
(c,t), and Ccut

(c,t), are updated for certain resources, which include
the ones that participated in the aggregation and remuneration processes. The variables of the problem,
as presented in the objective function (1) are: Energy schedule for external supplier s, in period t,
Energy schedule for distributed generator p, in period t, and Energy schedule for load curtailment in
consumer c, in period t. This means that the output of the optimization problem corresponds to the
power amounts present in Equation (1).

Min OC =
S

∑
s=1

PSup
(s,t).C

Sup
(s,t) +

P

∑
p=1

PDG
(p,t).C

DG
(p,t) +

C

∑
c=1

Pcut
(c,t).C

cut
(c,t) (1)

As mentioned before, the system’s balance is insured by defining the constraint represented
in Equation (2). This maintains the balance between load and generation, which considers the
contributions of demand response and distributed generation.

S

∑
s=1

PSup
(s,t) +

P

∑
p=1

PDG
(p,t) =

C

∑
c=1

[
PLoad
(c,t) − Pcut

(c,t)

]
(2)
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The aggregator, when establishing a contract with the resources, specifies an energy amount
that both agree or in real-time monitors the resource’s availability. In this case, the resource and the
aggregator have previously agreed upon a given amount of flexibility for each period. In this way, the
external supplier limits are represented by Equation (3), for the distributed generators by Equation (4)
and for the curtailment program by Equations (5) and (6).

PminSup
(s,t) ≤ PSup

(s,t) ≤ PmaxSup
(s,t) (3)

PminDG
(p,t) ≤ PDG

(p,t) ≤ PmaxDG
(p,t) (4)

Pmincut
(c,t) ≤ Pcut

(c,t) ≤ Pmaxcut
(c,t) (5)

Pcut
(c,t) = Pmaxcut

(c,t) .λcut
(c,t), λcut

(c,t)ε{0, 1} (6)

This simple mathematical formulation guarantees the correct execution of the aggregator’s
activities and programs at play. This optimization minimizes the aggregator’s cost considering the
individual cost (in a first scheduling) and aggregate cost (in a second scheduling) of each resource.

Regarding the aggregation process, this is based on k-means clustering algorithm, which have
as inputs the energy scheduled and individual price including the number of groups wanted by
the aggregator. The algorithm is based on the minimization of distances between resources and
centroids, which is shown in Equation (7). Centroids are points that represent the center of a given
group, are initially randomly set, and, in the following iterations, can be computed given a certain
rule (e.g., average position of the objects in the group). The distances are then computed for each
resource in relation to the centroids (number of centroids equals the number of groups desired) where
the nearest are placed in that group. This is an iterative process where resources can change group
between iterations.

J(T, M) =
K

∑
i=1

N

∑
j=1

γ(i,j) ‖ x(j) − m(j) ‖2 (7)

where T represents a partition matrix (matrix with the group index for each object), M the cluster
prototype or centroid matrix, x an object of a given set (this set corresponds to the resources considered),
and m the centroid at the given iteration. The binary variable Y assumes the value one when the
object j belongs to the cluster i represented by the centroid and zero when otherwise. The k-means
algorithm insures that every object considered is assigned to a group and that all groups have at least
one object (none are empty). The k-means algorithm is already developed in MATLAB as a function of
k-means. This function returns several outputs including group index for each object, centroid matrix
over iterations, distances from objects to each centroid, and the sum of distances for each centroid.
In this context, only the first output is needed for the proposed methodology.

The remuneration of resources considers an arithmetic average tariff by the group based on the
resource’s prices in that group. In this way, there is an average price that some consumers will be
encouraged to participate while others may be unsatisfied due to low payment bearing in mind their
initial individual price. However, price equality is assured for all resources belonging to the same
group. Moreover, in a previous work [25], a maximum-based tariff was proposed in which the highest
price in the group was represented as the group tariff where consumers were either satisfied to be
remunerated at their price request or encouraged to participate since the tariff was higher than the
initial price point.

4. Case Study

The proposed case study is composed of a distribution network with 180 bus [33]. In terms of
resources, the network has 116 distributed generators, 90 consumers, and a single external supplier.
All consumers can participate in the curtailment program and each one has a distinct price, as shown
by Figure 2. It is important to note that although the labels in Figure 2 and its axis rises until 88
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due to visualization optimization, the chart includes 90 bars as expected with one for each consumer.
Realistic case studies are an important part of the proposed methodology effectiveness and adaption,
which insure that it outputs valid solutions for both resources and the aggregator.

Figure 2. Curtailment prices for consumers.

In generation, the prices are the same for resources of the same type. For instance, all photovoltaic
units have an equal price for scheduling. In Table 1, the features of generation resources are presented.
In the second column of this table, the installed capacity of each type of generation resource is shown.
Moreover, some types of resources have distinct levels of installed power such as in the case of wind
and photovoltaic units. In the third column, the number of resources of each resource type are shown
and considered for the level of installed power.

Table 1. Generation resources features.

Generation Resource Inst. Power (kW) # Units Price (m.u./p.u.)

Photovoltaic

200 11

0.1560
150 9
25 13
20 24
15 3

Small hydro 3010 1 0.1014

Biomass 450 1 0.1231

Co-generation 2100 1 0.0796

Wind

300 2

0.0964
200 2
100 38
20 11

Total 6590 116 -

External supplier 10,000 1 Dynamic

217



Energies 2018, 11, 713

Figure 3. Dynamic tariff considered for the external supplier.

The last column of the table presents the linear prices of each type of resource in exchange for
their contribution for scheduling. Besides the distributed generators, Table 1 also presents the features
of the external supplier considered in the same terms of the previous mentioned generators. However,
it is important to notice that a dynamic tariff is considered for the external supplier and it is shown in
Figure 3.

The consumers’ curtailment capacity is the same throughout all periods and takes the values as
shown in Figure 4. The consumers are classified into five different types including domestic, large
commerce, large industrial, medium commerce, and small commerce.

Figure 4. Curtailment capacity in all periods by type of consumer.

This flexibility is used to manage consumption according to the energy prices of the other
resources and the available generation at a given period. This type of approach to demand response
(load curtailment programs) is often used in power systems by system operators to balance generation
and consumption in times where the security and reliability of the network are at risk. In this way, the
aggregator can provide relevant services to the system operator and enabling an indirect participation
of distributed energy resources (generators and consumers) in the operation of the system.

This section presented the case study evaluated in the present paper and its results are shown
in the results section. The proposed case study is adjusted to the operation of an aggregator and
represents a realistic approach to the real activities that an aggregator develops.
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5. Results

The scheduling of resources is analyzed considering distinct number of groups to be formed in
the aggregation process such as the operation costs obtained in the rescheduling of resources, which
are distinct considering the number of groups formed after the first scheduling.

Table 2 presents the results obtained in terms of operation costs and number of resources that
changed price from the first to second scheduling. The operation costs obtained in the first scheduling
is always the same since the initial conditions are maintained equal. The reschedule depends on
the number of groups formed after the first schedule. In Table 2, the evaluated periods are chosen
based on the power variation that occurred in the reschedule. This includes periods where there are
differences between the first and the second scheduling for the available resources. Moreover, it shows
the number of resources where the prices were changed between the first and second scheduling due
to the aggregation and remuneration processes implemented after the first scheduling. For instance,
in period 11 with a total number of groups equal to 3, a total of 80 distributed generators and 75
consumers changed their price. The value in parentheses represents the number of resources that
changed the energy schedule while the value between brackets reflects the number of resources
where the energy price was raised and lowered, respectively (number of raised prices, number of
lowered prices). For instance, given the previous example, only one distributed generator changed
the energy schedule and no consumers changed in the second scheduling. Furthermore, of the 80
distributed generators that changed price, 53 had a raise and 27 had a decrease on the price in the
second scheduling. Similarly, out of the 75 consumers, 27 had a raise and 48 had a decrease on the price.

Table 2. Summary of results from rescheduling.

Total Number of Groups

3 4 5 6

1st Schedule (m.u.) 43.7693

Reschedule (m.u.) 43.6797 43.7286 43.8317 43.8075

Evaluated Periods [10,11,20,21] [10,20,21] [20] [20]

Changes in
Distributed
Generators

10 75 (1) [53,22] 74 (1) [53,21] - -
11 80 (1) [53,27] - - -
20 55 (1) [53,2] 53 (1) [53,1] 49 (1) [48,1] 49 (1) [48,1]
21 55 (1) [53,2] 44 (1) [42,2] - -

Changes in
Demand
Response

10 75 (0) [33,42] 75 (0) [35,42] - -
11 75 (0) [27,48] - - -
20 75 (0) [34,41] 74 (0) [25,49] 74 (0) [25,49] 73 (0) [33,40]
21 75 (0) [27,48] 74 (0) [33,41] - -

Generally speaking, the optimization of individual consumers is expected to provide better results.
However, the aggregator is not able to implement one DR program tariff for each consumer. In the
first schedule, the consumers are optimized as groups according to their initial tariffs that are defined
according to their consumer’s types, which is shown in Figure 4. With the reschedule made based
on the consumers grouped according to the clustering input features, the groups are now optimized
and the optimization results are better for the total number of groups equal to 3. The obtained actual
amount of improvement can be seen as a small amount for a single event occurring in a short period of
time. However, implementing several DR events during a year can have a great impact on the overall
results for the aggregator.

Moving on to the results obtained for the scheduling of resources, a total number of clusters must
be chosen and, therefore, the least expensive is picked in which the total number of groups is equal to
3. The initial scheduling results, before the resources are aggregated and a group tariff is assigned to
the participant resources, are shown in Figure 5.
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Figure 5. Scheduling before aggregation and remuneration processes.

The scheduling shows the contribution of all the resources considered including the external
supplier, distributed generators, and consumers. Figure 6 presented the scheduling of the resources
after the aggregating, i.e., stage 1 of phase two where the red outline demonstrates the periods
and resource contributions that changed in relation to the initial scheduling. It is possible to see a
reduction in terms of external supplier contributions and, consequently, a raise in the distributed
generators participation. This variation is also related to the dynamic energy price offered by the
external suppliers. Additionally, in both initial and final scheduling, the consumers were supplied
without interruption where the “Energy Non-supplied” resource was not implemented. Moreover,
this resource is considered the last option to be scheduled since it delimits energy interruptions in the
consumers and affects their normal operation. In this way, the use for this is only justified in case of
emergency situations where system reliability and security is at risk. In terms of demand response,
we see a more or less constant behavior from the consumers with small quantities being used by the
aggregator to obtain a valid scheduling of the resources.

Figure 6. Scheduling after aggregation and remuneration processes.

Figure 6 shows that changes in the energy schedule were verified in periods number 10, 11, 20,
and 21 when the total number of clusters is equal to 3.

Figure 7 shows the changes in prices of distributed energy resources between the initial prices and
the ones resulting from phase one of the proposed methodology when the total number of groups is 3,
which considered the evaluated periods shown in Table 2. For distributed generators (left hand-side
graphs), the maximum raise noticed was around 0.019 m.u. (period 20 and 21, as seen in the top-right
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of each graph) in comparison with the initial price while around 0.042 m.u. was noted in period
10 as the maximum decreased. When considering demand response, the maximum increase was
around 0.043 m.u. (periods 11 and 21) while around 0.023 m.u. was noticed in period 11 when the
maximum decreased.

Table 3 presents the results obtained for the aggregation of resources, which was independently
made for distributed generators and consumers participating in the demand response program for
period 20. By matching Tables 2 and 3, it is possible to see that an additional generator was included
in the aggregation when comparing with verified changes. The reason for this is that this resource
was scheduled by the aggregator, but its price was not changed by the aggregation and remuneration
processes performed before the second scheduling.

Table 3. Aggregation of resources—Period 20 | K = 3.

Resource
Number of Resources in Group

# Resources
1 2 3

Domestic 9 0 4 13
Large Industrial 3 3 0 6

Medium Commerce 12 0 1 13
Small Commerce 21 0 2 23
Large Commerce 9 10 1 20

Total 54 13 8 75

Wind 52 1 0 53
Biomass 1 0 0 1

Photovoltaic 0 0 0 0
Small Hydro 0 0 1 1

Co-generation 0 1 0 1
Total 53 2 1 56

Regarding the consumers, all of those who were scheduled by the aggregator and consequently
participated in the aggregation and remuneration processes were also affected by price changes.
The results for period 20 are presented for a total number of groups equal to 4 in Table 4 to compare
group’s number influence based on the tables mentioned before.

Similar results to the previous analysis of period 20 for a total number of groups equal to 3,
which were obtained for a total number of groups equal to 4. Moreover, changes only occur at the
resource’s distribution amongst the groups, but patterns that were visible were the same number of
resources assigned to a given group and, having one more group to fill in as showed by Table 4, group
assignments of certain resources were changed. The choice of these two evaluations, period 20 for a
total number of groups equal to 3 and 4, is based on the operation costs obtained (as shown in Table 4)
by being the ones with lower costs when compared to the first scheduling.

Table 4. Aggregation of resources—Period 20 | K = 4.

Resource
Number of Resources in Group

# Resources
1 2 3 4

Domestic 0 4 0 9 13
Large Industrial 4 0 1 1 6

Medium Commerce 0 1 0 12 13
Small Commerce 0 2 0 21 23
Large Commerce 14 1 0 5 20

Total 18 8 1 48 75

Wind 52 0 1 0 53
Biomass 1 0 0 0 1

Photovoltaic 0 0 0 0 0
Small Hydro 0 1 0 0 1

Co-generation 0 0 0 1 1
Total 53 1 1 1 56
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Figure 7. Changes in prices for (a) Distributed Generators and (b) Demand Response.

6. Conclusions

Aggregators in power systems and energy markets have become more often players in a
deregulated environment provided by new legislation promoting the inclusion of distributed energy
resources. Aggregators provide several solutions to the operation of power systems from easing
complexity to fading energy transit throughout the network. This last feature is focused on integrating
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distributed energy resources that are capable of surgically injecting generation and/or load in certain
points of the network to facilitate its operation.

The present paper proposed a methodology to support an aggregator in dealing with distributed
energy resources with a focus on the rescheduling of resources following aggregation and remuneration
processes. The aggregator, after an initial scheduling, aggregates the resources participating in the
scheduling and computes a representative tariff for each group of distributed energy resources.
The initial tariffs of the participating resources are updated to enter a new scheduling (rescheduling) of
the aggregator. With the proposed methodology, the aggregator is able to have enriched information
in order to have more balanced decisions regarding the consumer’s participation and remuneration
for DR programs implementation instead of providing a single final optimal decision.

With the results obtained from the first and second scheduling, the aggregator can compare
operation costs and evaluate when is best to choose one or the other. Otherwise, the aggregator would
not be aware of the impact of the actual scheduling after the new tariffs application resulting from the
proposed methodology.
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Nomenclature

Indexes
S Total number of external suppliers
P Total number of distributed generators
C Total number of consumers
T Total number of periods
K Total number of clustering groups
N Total number of clustering observations
Parameters
CSup
(s,t) Energy tariff for external supplier s, in period t

CDG
(p,t) Energy tariff for the distributed generator p, in period t

Ccut
(c,t) Energy tariff for the load curtailment of consumer c, in period t

PLoad
(c,t) Energy consumption of consumer c, in period t

PmaxSup
(s,t)

Maximum energy that can be scheduled by the external supplier s,
in period t

PminSup
(s,t)

Minimum energy to be scheduled by the external supplier s, in
period t

PmaxDG
(p,t)

Maximum energy that can be scheduled by the distributed generator
p, in period t

PminDG
(p,t)

Minimum energy to be scheduled by the distributed generator p, in
period t

Pmaxcut
(c,t) Maximum curtailment that can scheduled by consumer c, in period t

Pmincut
(c,t) Minimum curtailment that can scheduled by consumer c, in period t

Variables
PSup
(s,t) Energy schedule for external supplier s, in period t

PDG
(p,t) Energy schedule for distributed generator p, in period t

Pcut
(c,t) Energy schedule for load curtailment in consumer c, in period t

Xcut
(c,t) Binary decision to apply curtailment in consumer c, in period t
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