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Preface

This Reprint brings together a collection of recent research contributions that explore the

theoretical foundations, methodological advances, and practical applications of fractional calculus.

Its central focus is on fractional differential and integral equations, their analytical and numerical

treatment, and their effectiveness in modeling complex systems with memory and nonlocal effects.

The scope of the Reprint extends from rigorous studies of new fractional operators and

solution techniques to innovative applications in engineering, physics, materials science, biology, and

medicine. The aim is to provide a comprehensive resource that highlights the versatility of fractional

approaches in addressing problems that are beyond the reach of classical models.

The motivation for compiling this Reprint is to support the scientific community with a unified

volume in which theoretical developments, methodological advances, and practical applications are

represented side by side. It reflects the growing interest in fractional models as powerful tools that

bridge pure mathematics with real-world challenges.

This Reprint is intended for mathematicians, engineers, physicists, biologists, applied scientists,

and graduate students. By presenting a balanced view of mathematical rigor, computational methods,

and interdisciplinary applications, it is designed to serve as both a reference and a source of

inspiration for future research in fractional mathematical modelling.

Faranak Rabiei, Dongwook Kim, and Zeeshan Ali

Guest Editors
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Editorial

Fractional Mathematical Modelling: Theory, Methods
and Applications

Faranak Rabiei 1,*, Dongwook Kim 1 and Zeeshan Ali 2,*

1 Department of Mathematics, Texas A&M University Kingsville, 700 University Blvd.,
Kingsville, TX 78363, USA; dongwook.kim@tamuk.edu

2 School of Science, Monash University Malaysia Jalan Lagoon Selatan,
Bandar Sunway 47500, Selangor, Malaysia

* Correspondence: faranak.rabiei@tamuk.edu (F.R.);
zeeshan.ali@monash.edu or zeeshanmaths1@gmail.com (Z.A.)

1. Introduction

Fractional calculus shares its historical roots with classical calculus and has lately be-
come a powerful mathematical tool for modeling complex systems. The concept dates back
to 1695, when L’Hôpital posed a question to Leibniz about the possibility of a derivative of
non-integer order, later developed by Liouville, Riemann, Caputo, Grünwald, Letnikov,
Hadamard, and others [1–3]. These contributions have led to the establishment of multiple
definitions of fractional-order operators, each with distinct advantages and limitations [4].
By extending classical calculus through fractional operators, it captures memory, hereditary
effects, and nonlocal interactions [5,6]. Unlike integer-order models, fractional formula-
tions are uniquely capable of describing processes with long-term memory and anomalous
diffusion. Its wide-ranging applications in physics, engineering, biology, medicine and
health sciences, finance, and the social sciences [7–10] make it an indispensable tool for
analyzing complex processes. In recent years, the field has gained remarkable momentum,
supported by the introduction of new operators, improvements in numerical schemes, and
diverse real-world applications [11,12]. These advances have strengthened its theoretical
foundations while expanding its practical relevance, positioning fractional calculus as a
unifying framework that bridges mathematics with diverse applications.

Building on this broad relevance, the aim of this Reprint is to showcase recent advances
in fractional calculus across theory, methodology, and applications. Out of 51 submissions
received, 12 high-quality papers were accepted for publication, giving an acceptance rate of
23.5%. The selected contributions highlight new operator formulations, analytical results,
numerical techniques, and interdisciplinary applications ranging from control theory and
fuzzy systems to engineering devices, materials science, and biomedical systems. The rapid
pace of progress in the field, particularly with the emergence of novel operator definitions,
advanced numerical techniques, and diverse real-world applications, motivated the launch
of this Reprint. By bringing together contributions from different perspectives, it provides
a concise snapshot of current developments in fractional calculus and serves as a resource
to foster further collaboration across diverse disciplines.

2. Overview of the Contributions in the Reprint

The contributions in this Reprint are grouped into three main themes, in line with the
Special Issue: theoretical developments, methodological advances, and applications.

Fractal Fract. 2025, 9, 636 https://doi.org/10.3390/fractalfract9100636
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2.1. Theoretical Developments

Theoretical developments are illustrated in two contributions. Albidah (1.) investi-
gated two forms of the Riemann–Liouville derivative for second-order fractional differential
equations, showing that the choice of lower bound yields either implicit solutions in terms
of Mittag-Leffler functions or explicit solutions involving trigonometric and hyperbolic
functions. Alkandari et al. (2.) developed anomalous diffusion models using regularized
general fractional derivatives with Sonin kernels, linking them to continuous-time ran-
dom walks and deriving explicit expressions for waiting-time densities, mean squared
displacement, and conditions ensuring non-negativity and maximum principles.

2.2. Methodological Advances

Methodological advances are demonstrated in several papers. Sengül et al. (3.)
employed the optimal q-Homotopy Analysis Method to study Abel-type equations, demon-
strating improved convergence and accuracy over classical approaches. AlBaidani (4.)
compared the homotopy perturbation transform method with a new iterative method for
the time-fractional Burger-Fisher equation, showing that both approaches yield reliable
and computationally efficient solutions, further validated against techniques such as Haar
wavelets, OHAM, and q-HATM. Abdelfattah et al. (5.) extended the fractional differential
quadrature method (FDQM) to nonlinear Riccati and Lorenz systems using generalized
Caputo derivatives, demonstrating superior accuracy and convergence compared with
existing methods.

2.3. Applications

Applications are explored across fuzzy systems, engineering models, materials science,
and biomedical systems. Muhammad et al. (6.) analyzed fuzzy fractional two-dimensional
continuous-time linear systems based on Roesser and Fornasini-Marchesini models, using
granular Laplace transforms to address parameter uncertainty and validating their ap-
proach with applications in signal processing and wireless sensor networks. Al-Dosari (7.)
examined Hilfer fuzzy fractional inclusions with infinite delay, proving controllability
of mild solutions through nonlinear functional analytic techniques and establishing new
results supported by the properties of Mittag-Leffler functions.

Engineering and materials science applications include Yu et al. (8.), who pro-
posed a Caputo-Fabrizio-based model of a fractional-order boost converter with induc-
tive loads, constructing both large- and small-signal models and confirming their ac-
curacy through simulations. Xu et al. (9.) introduced a fractional-order Zener model
incorporating temperature-order equivalence for viscoelastic dampers, validated ex-
perimentally and optimized using a chaotic fractional-order particle swarm algorithm.
García-de-los-Ríos et al. (10.) applied fractional models to ZnO micro- and nanostructures,
explaining photoconduction and nonlinear optical effects relevant for optoelectronic de-
vices. Abdelfattah et al. (11.) applied FDQM to simulate charge dynamics in polymer solar
cells, achieving high accuracy and efficiency.

In the biomedical field, Mihai et al. (12.) proposed a personalized fractional-order
autotuner for the maintenance phase of anaesthesia. Using small-amplitude sine tests
to non-invasively estimate patient parameters, they designed a fractional-order PID con-
troller to regulate the Bispectral Index during Propofol infusion. Closed-loop simulations
confirmed the effectiveness of this approach, highlighting its potential for clinical practice.

3. Concluding Remarks

The contributions gathered in this Reprint reflect the richness and vitality of fractional
calculus research today. They bring together rigorous theoretical work, efficient numerical
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methods, and impactful applications spanning engineering, materials science, physics,
and medicine. As guest editors, we are grateful to the authors for their contributions, the
reviewers for their careful evaluations, and the editorial team of Fractal and Fractional for
their support. We hope this collection will serve as a valuable reference for the research
community and stimulate further studies at the intersection of mathematics, engineer-
ing, and applied sciences, reinforcing the role of fractional calculus as a unifying tool
across disciplines.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Article

Application of Riemann–Liouville Derivatives on Second-Order
Fractional Differential Equations: The Exact Solution

Abdulrahman B. Albidah

Department of Mathematics, College of Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia;
a.albedah@mu.edu.sa

Abstract: This paper applies two different types of Riemann–Liouville derivatives to solve fractional
differential equations of second order. Basically, the properties of the Riemann–Liouville fractional
derivative depend mainly on the lower bound of the integral involved in the Riemann–Liouville
fractional definition. The Riemann–Liouville fractional derivative of first type considers the lower
bound as a zero while the second type applies negative infinity as a lower bound. Due to the
differences in properties of the two operators, two different solutions are obtained for the present
two classes of fractional differential equations under appropriate initial conditions. It is shown that
the zeroth lower bound implies implicit solutions in terms of the Mittag–Leffler functions while
explicit solutions are derived when negative infinity is taken as a lower bound. Such explicit solutions
are obtained for the current two classes in terms of trigonometric and hyperbolic functions. Some
theoretical results are introduced to facilitate the solutions procedures. Moreover, the characteristics
of the obtained solutions are discussed and interpreted.

Keywords: Riemann–Liouville fractional derivative; fractional differential equations; Laplace
transform; exact solution

1. Introduction

The fractional calculus (FC) is a growing field of research due to its numerous ap-
plications in several areas of sciences and engineering. The FC is a natural extension of
classical calculus (CC) and has been utilized to analyze a considerable number of physical
and engineering problems [1–3]. In this context, various models have been studied in
the literature such as Narahari et al. [4] who applied the FC concept on the dynamics of
the fractional oscillator. Propagation of ultrasonic wave in human cancelous bone was
introduced by Sebaa et al. [5] via the FC approach. The physical aspect of the fractional
Heisenberg equation has been addressed by Tarasov [6]. Application of the FC on the
HIV infectious disease has been discussed by Ding and Yea [7]. In quantum mechanics,
Wang et al. [8] investigated the time-fractional diffusion equation while other fractional
models in different areas of research can be found in Refs. [9–14]. In addition, the frac-
tional models of the projectile motion were solved by Ebaid [15] and Ebaid et al. [16]
utilizing the Caputo fractional derivative (CFD) and by Ahmed et al. [17] by means of the
Riemann–Liouville fractional derivative (RLFD).

In Refs. [18,19], the FC was extended to solve an astronomical model using the
CFD while El-Zahar et al. [20] derived a closed form solution for the same model via
applying the RLFD. Moreover, Aljohani et al. [21] obtained the exact solution of the chlorine
transport model in fractional form in terms of the Mittag–Leffler function. Furthermore,
the application of the RLFD on a class of engineering oscillatory problems was addressed
by Ebaid and Al-Jeaid [22] for a class of first-order fractional initial value problems in
which the dual solution was obtained. In addition, Seddek et al. [23] applied the RLFD
to solve non-homogeneous fractional differential system containing periodic terms. Very
recently, Algehyne et al. [24] presented a promise application of the FC on the concept of
time dilation.

Fractal Fract. 2023, 7, 843. https://doi.org/10.3390/fractalfract7120843 https://www.mdpi.com/journal/fractalfract5
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The objective of this paper is to extend the application of the RLFD to solve the
following two classes:

RL
c D2β

t y(t) + ω2y(t) = a cos(Ωt),
1
2
< β ≤ 1, (1)

and
RL
c D2β

t y(t)−�2y(t) = a cos(Ωt),
1
2
< β ≤ 1, (2)

where β is none-integer order of the Riemann–Liouville derivative and a, ω, Ω, and A are
constants. The two classes are to be solved under the initial conditions (ICs):

RL
c D2β−2

t y(0) = A, RL
c D2β−1

t y(0) = B, (3)

at two different cases for c, mainly when c → 0 and c → −∞. The properties of the
Riemann–Liouville derivatives RL

0 Dt and RL−∞Dt are completely different and accordingly
the nature of solutions of the present two classes are also different. The exact solution, when
available, is the optimal solution for any physical/engineering model. So, the obtained
exact solution reflects the importance and the main contribution of this paper. The paper
is organized as follows. In Section 2, some preliminaries are introduced. In Section 3,
theoretical results are derived for the particular solution of class (1). Section 4 is devoted
to obtain the exact solution of class (1) while Section 5 presents the solution of class (2) in
addition to the behavior of the obtained solution. The paper is concluded in Section 6.

2. Preliminaries

The Riemann–Liouville fractional integral of order α of function f : [c, d]→ R (−∞ <
c < d < ∞) is defined as [1–3]

c Iα
t f (t) =

1
γ(α)

∫ t

c

f (τ)
(t− τ)1−α

dτ, t > c, α > 0. (4)

The Riemann–Liouville fractional derivative (RLFD) of order α ∈ (1, 2) is [1–3]

RL
c Dα

t f (t) =
1

γ(2− α)

d2

dt2

(∫ t

c

f (τ)

(t− τ)α−1 dτ

)
, t > c. (5)

For t ∈ R and α = 2β ( 1
2 < β ≤ 1), we have the following RLFD of the functions eiωt,

cos(ωt), and sin(ωt) as c → −∞ [22,23]:

RL−∞D2β
t eiωt = (iω)2βeiωt,

RL−∞D2β
t cos(ωt) = ω2β cos(ωt + βπ),

RL−∞D2β
t sin(ωt) = ω2β sin(ωt + βπ).

(6)

The Laplace transform (LT) of the RLFD (5) as c → 0 is [22]

L
[

RL
0 Dα

t y(t)
]
= sαY(s)− RL

0 Dα−1
t y(0)− s RL

0 Dα−2
t y(0), (7)

which yields

L
[

RL
0 D2β

t y(t)
]
= s2βY(s)− RL

0 D2β−1
t y(0)− s RL

0 D2β−2
t y(0), (8)

for α = 2β. The Mittag–Leffler function of two parameters is defined by [1–3]

Eδ,γ(z) =
∞

∑
n=0

zn

γ(δn + γ)
, (δ > 0, γ > 0). (9)

6
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In particular, we have the following properties

E2,1(−z2) = cos(z), E2,1(z2) = cosh(z), E2,2(−z2) =
sin z

z
, E2,2(z2) =

sinh z
z

. (10)

The inverse LT of some expressions can be given via the Mittag–Leffler function
as [2,3]

L−1
( sδ−γ

sδ + ω2

)
= tγ−1Eδ,γ(−ω2tα), Re(s) > |ω2| 1

δ , (11)

which gives the equalities [16,22,23]:

L−1
( sδ−1

sδ + 1

)
= Eα(−tδ), (12)

L−1
( 1

sδ + ω2

)
= tδ−1Eδ,δ(−ω2tδ), Re(s) > |ω2| 1

δ , (13)

L−1
( s−1

sδ + ω2

)
= tδEδ,δ+1(−ω2tδ), Re(s) > |ω2| 1

δ . (14)

3. Analysis

Theorem 1. The particular solution yp(t) of the class (1) as c → −∞ is given by

yp(t) = λ1(β) cos(Ωt) + λ2(β) sin(Ωt), (15)

where λ1(β) and λ2(β) are given by

λ1(β) = a
(

ω2 + Ω2β cos(πβ)

ω4 + Ω4β + 2ω2Ω2β cos(πβ)

)
, λ2(β) = a

(
Ω2β sin(πβ)

ω4 + Ω4β + 2ω2Ω2β cos(πβ)

)
, (16)

and hence,

yp(t) = a
(

ω2 cos(Ωt) + Ω2β cos(Ωt− πβ)

ω4 + Ω4β + 2ω2Ω2β cos(πβ)

)
. (17)

Proof. Suppose that yp is in the form of Equation (15), then

RL−∞D2β
t yp = λ1(β) RL−∞D2β

t cos(Ωt) + λ2(β) RL−∞D2β
t sin(Ωt),

= Ω2β cos(Ωt)(λ1(β) cos(πβ) + λ2(β) sin(πβ)) +

Ω2πβ sin(Ωt)(λ2(β) cos(πβ)− λ1(β) sin(πβ)), (18)

and hence

RL−∞D2β
t yp + ω2yp =

[(
Ω2β cos(πβ) + ω2

)
λ1(β) + Ω2β sin(πβ)λ2(β)

]
cos(Ωt) +

=
[(

Ω2β cos(πβ) + ω2
)

λ2(β)−Ω2β sin(πβ)λ1(β)
]

sin(Ωt). (19)

The unknowns λ1(β) and λ2(β) can be obtained by solving the following coupled
algebraic equations:(

Ω2β cos(πβ) + ω2
)

λ1(β) + Ω2β sin(πβ)λ2(β) = a,(
Ω2β cos(πβ) + ω2

)
λ2(β)−Ω2β sin(πβ)λ1(β) = 0,

(20)

which give

λ1(β) = a
(

ω2 + Ω2β cos(πβ)

ω4 + Ω4β + 2ω2Ω2β cos(πβ)

)
, λ2(β) = a

(
Ω2β sin(πβ)

ω4 + Ω4β + 2ω2Ω2β cos(πβ)

)
. (21)

7



Fractal Fract. 2023, 7, 843

Therefore, yp takes the form:

yp(t) = a
(

ω2 cos(Ωt) + Ω2β cos(Ωt− πβ)

ω4 + Ω4β + 2ω2Ω2β cos(πβ)

)
, (22)

which completes the proof.

Lemma 1. The particular solution yp(t) of the class (2) as c → −∞ is given by

yp(t) = a
(−�2 cos(Ωt) + Ω2β cos(Ωt− πβ)

�4 + Ω4β − 2�2Ω2β cos(πβ)

)
. (23)

Proof. The proof follows immediately by replacing ω with−i� in Equation (17) of theorem
1, where i =

√−1.

4. Solution of the First Class: RL
c D2β

t y(t) + ω2y(t) = a cos(Ωt)

In this section, two types of solutions are to be determined for the class (1) when c → 0
and c → −∞, respectively. The analysis introduced in Refs. [22,23] is followed here to
obtain such types of solutions.

4.1. Solution in Terms of the Mittag–Leffler Function as c → 0

In this case, the first class takes the form:

RL
0 D2β

t y(t) + ω2y(t) = a cos(Ωt),
1
2
< β ≤ 1, (24)

under the ICs:
RL
0 D2β−2

t y(0) = A, RL
0 D2β−1

t y(0) = B. (25)

Applying the LT on Equation (24) yields

s2βY(s)− RL
0 D2β−1

t y(0)− s RL
0 D2β−2

t y(0) + ω2Y(s) =
as

s2 + Ω2 . (26)

Solving (26) for Y(s) gives

Y(s) =
As

s2β + ω2 +
B

s2β + ω2 +
as

(s2β + ω2)(s2 + Ω2)
. (27)

Applying the inverse LT on Y(s), then y(t) is given by

y(t) = At2β−2E2β,2β−1

(
−ω2t2β

)
+ Bt2β−1E2β,2β

(
−ω2t2β

)
+ aL−1

(
1

s2β + ω2

)
∗ L−1

(
s

s2 + Ω2

)
, (28)

where (∗) refers to the convolution operation, hence

y(t) = At2β−2E2β,2β−1

(
−ω2t2β

)
+ Bt2β−1E2β,2β

(
−ω2t2β

)
+

a
∫ t

0
τ2β−1E2β,2β

(
−ω2τ2β

)
cos[Ω(t− τ)]dτ, (29)

which can be written as

y(t) = At2β−2E2β,2β−1

(
−ω2t2β

)
+ Bt2β−1E2β,2β

(
−ω2t2β

)
+ a cos(Ωt)×∫ t

0
τ2β−1E2β,2β

(
−ω2τ2β

)
cos(Ωτ)dτ + a sin(Ωt)

∫ t

0
τ2β−1E2β,2β

(
−ω2τ2β

)
sin(Ωτ)dτ.

(30)

8
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The involved integrals are difficult to compute explicitly. However, the solution in the
integral form (30) reduces to the corresponding solution of the ordinary version of the class
(1) as β → 1.

Special Case as β → 1

The solution in the integral form (30) as β → 1 becomes

y(t) = AE2,1

(
−ω2t2

)
+ BtE2,2

(
−ω2t2

)
+ a cos(Ωt)×∫ t

0
τE2,2

(
−ω2τ2

)
cos(Ωτ)dτ + a sin(Ωt)

∫ t

0
τE2,2

(
−ω2τ2

)
sin(Ωτ)dτ, (31)

i.e.,

y(t) = A cos(ωt) +
B
ω

sin(ωt) +
a
ω

cos(Ωt)
∫ t

0
sin(ωτ) cos(Ωτ)dτ +

a
ω

sin(Ωt)
∫ t

0
sin(ωτ) sin(Ωτ)dτ. (32)

Performing the integrals, we obtain

y(t) = A cos(ωt) +
B
ω

sin(ωt) + a
(

cos(Ωt)− cos(ωt)
ω2 −Ω2

)
, (33)

which is the corresponding solution of the ordinary version y′′(t) + ω2y(t) = a cos(Ωt)
under the ICs y(0) = A and y′(0) = B.

Remark 1. It is noticed that the solution (30) is not analytic at t = 0 ∀ β ∈ (1/2, 1) for the
existence of the term t2β−2. In the next subsection, we are able to derive the analytic solution in the
whole domain t ≥ 0.

4.2. Solution in Terms of Trigonometric Functions as c → −∞

As c → −∞, the first class is in the form:

RL−∞D2β
t y(t) + ω2y(t) = a cos(Ωt),

1
2
< β ≤ 1, (34)

and the ICs are
RL−∞D2β−2

t y(0) = A, RL−∞D2β−1
t y(0) = B. (35)

The solution of Equations (34) and (35) consists of the complementary solution yc
and the particular solution yp(t). However, the yp(t) is already given by Equation (17) in
Theorem 1 while yc(t) can be assumed in the form [22,23]:

yc(t) = c(β)eiσt, (36)

where c(β) and σ are unknowns and to be determined. The assumption (36) satisfies the
homogeneous part of the fractional Equation (34):

RL−∞D2β
t yc(t) + ω2yc(t) = 0, (37)

if
ceiσt

[
(iσ)2β + ω2

]
= 0, (38)

which implies two values of σ as

σ1 = i
(
−ω2

) 1
2β , σ2 = −i

(
−ω2

) 1
2β , (39)

or simply

σ1 = ν, σ2 = −ν, ν = i
(
−ω2

) 1
2β . (40)

9
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Accordingly, yc(t) becomes

yc(t) = c1(β)eiνt + c2(β)e−iνt, (41)

where c1(β) and c2(β) are unknown constants. The general solution is

y(t) = c1(β)eiνt + c2(β)e−iνt + yp(t), (42)

where yp(t) is given by Equation (17). From (42), we have

D2β−1
t y(t) = c1(β)(iν)2β−1eiνt + c2(β)(−iν)2β−1e−iνt + D2β−1

t yp(t), (43)

D2β−2
t y(t) = c1(β)(iν)2β−2eiνt + c2(β)(−iν)2β−2e−iνt + D2β−2

t yp(t). (44)

At t = 0, Equations (43) and (44) become

D2β−1
t y(0) = (iν)2β−1[c1(β)− c2(β)] + D2β−1

t yp(0), (45)

D2β−2
t y(0) = (iν)2β−2[c1(β) + c2(β)] + D2β−2

t yp(0). (46)

Applying the ICs (35), we obtain

c1(β) =
(iν)1−2β

2

[
(B + iνA)−

(
D2β−1

t yp(0) + iνD2β−2
t yp(0)

)]
, (47)

c2(β) =
(iν)1−2β

2

[
(−B + iνA) +

(
D2β−1

t yp(0)− iνD2β−2
t yp(0)

)]
. (48)

To calculate D2β−1
t yp(0) and D2β−2

t yp(0), one can use yp(t) in Equation (15) in terms
of λ1 and λ2 to obtain

D2β−1
t yp(0) = Ω2β−1[λ1 sin(πβ)− λ2 cos(πβ)], (49)

D2β−2
t yp(0) = −Ω2β−2[λ1 cos(πβ) + λ2 sin(πβ)], (50)

where λ1 and λ2 are given by Equation (16). Therefor, the solution takes the final form:

y(t) = c1(β)e−(−ω2)
1

2β t + c2(β)e(−ω2)
1

2β t + a
[

ω2 cos(Ωt) + Ω2β cos(Ωt− πβ)

ω4 + Ω4β + 2ω2Ω2β cos(πβ)

]
, (51)

where c1(β) and c2(β) are defined by Equations (47) and (48), respectively.

Remark 2. The solution in the case c → −∞ is obtained in the explicit form (51) unlike the
implicit integral form (30) when c → 0. Moreover, the solution (51) is analytic in the whole domain
t ∈ R. In addition, the explicit form (51) is also equivalent to the corresponding solution of ordinary
version of the first class as indicated in the below section.

Special Case as β → 1

To check, we have from (51) as β → 1 that

y(t) = c1e−iωt + c2eiωt +
a cos(Ωt)
ω2 −Ω2 . (52)

From (49) and (50), we have[
D2β−1

t yp(0)
]

β→1
= Ω[λ2]β→1 = 0,

[
D2β−2

t yp(0)
]

β→1
= [λ1]β→1 =

a
ω2 −Ω2 . (53)

10
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The quantities c1 and c2 in Equations (47) and (48) become

c1 =
(iν)−1

2

[
(B + iνA)− aiν

ω2 −Ω2

]
= − B

2iω
+

1
2

(
A− a

ω2 −Ω2

)
, (54)

c2 =
(iν)−1

2

[
(−B + iνA)− aiν

ω2 −Ω2

]
=

B
2iω

+
1
2

(
A− a

ω2 −Ω2

)
. (55)

Substituting (54) and (55) into (52), yields

y(t) =
B

2iω

(
eiωt − e−iωt

)
+

1
2

(
A− a

ω2 −Ω2

)(
eiωt + e−iωt

)
+

a cos(Ωt)
ω2 −Ω2 , (56)

or

y(t) =
B
ω

sin(ωt) +
(

A− a
ω2 −Ω2

)
cos(ωt) +

a cos(Ωt)
ω2 −Ω2 , (57)

which is equivalent to the solution of the ordinary version y′′(t) + ω2y(t) = a cos(Ωt)
under the ICs y(0) = A and y′(0) = B.

5. Solution of the Second Class: RL
c D2β

t y(t)− �2y(t) = a cos(Ωt)
5.1. Solution in Terms of the Mittag–Leffler Function as c → 0

In this case we consider the fractional differential equation:

RL
0 D2β

t y(t)−�2y(t) = a cos(Ωt),
1
2
< β ≤ 1, (58)

under the ICs:
RL
0 D2β−2

t y(0) = A, RL
0 D2β−1

t y(0) = B. (59)

Following the same analysis in Section 4.1, one can obtain the solution in the form:

y(t) = At2β−2E2β,2β−1

(
�2t2β

)
+ Bt2β−1E2β,2β

(
�2t2β

)
+ a cos(Ωt)×∫ t

0
τ2β−1E2β,2β

(
�2τ2β

)
cos(Ωτ)dτ + a sin(Ωt)

∫ t

0
τ2β−1E2β,2β

(
�2τ2β

)
sin(Ωτ)dτ.

(60)

As β → 1, the solution in the integral form (60) reads

y(t) = AE2,1

(
�2t2

)
+ BtE2,2

(
�2t2

)
+ a cos(Ωt)×∫ t

0
τE2,2

(
�2τ2

)
cos(Ωτ)dτ + a sin(Ωt)

∫ t

0
τE2,2

(
�2τ2

)
sin(Ωτ)dτ, (61)

i.e.,

y(t) = A cosh(�t) +
B
�

sin(�t) +
a
�

cos(Ωt)
∫ t

0
sinh(�τ) cos(Ωτ)dτ +

a
�

sin(Ωt)
∫ t

0
sinh(�τ) sin(Ωτ)dτ. (62)

Performing the integrals, we obtain

y(t) = A cosh(�t) +
B
�

sin(�t)− a
(

cos(Ωt)− cosh(�t)
�2 + Ω2

)
, (63)

which is the corresponding solution of the ordinary version y′′(t)− �2y(t) = a cos(Ωt)
under the ICs y(0) = A and y′(0) = B.
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5.2. Solution in Terms of Trigonometric and Hyperbolic Functions as c → −∞

Here, we consider

RL−∞D2β
t y(t)−�2y(t) = a cos(Ωt),

1
2
< β ≤ 1, (64)

under the ICs:
RL−∞D2β−2

t y(0) = A, RL−∞D2β−1
t y(0) = B. (65)

Following the same procedure of Section 4.2, we can get the solution in the form:

y(t) = c1(β)e−(�
2)

1
2β t + c2(β)e(�

2)
1

2β t + a
[−�2 cos(Ωt) + Ω2β cos(Ωt− πβ)

�4 + Ω4β − 2�2Ω2β cos(πβ)

]
, (66)

or

y(t) = c1(β)e−�
1
β t + c2(β)e�

1
β t + a

[−�2 cos(Ωt) + Ω2β cos(Ωt− πβ)

�4 + Ω4β − 2�2Ω2β cos(πβ)

]
, (67)

where c1(β) and c2(β) can be determined from Equations (47) and (48) by replacing ω with
−i� (i =

√−1), thus

c1(β) = −�1/β−2

2

[
B− RL−∞D2β−1

t yp(0)−�1/β
(

A− RL−∞D2β−2
t yp(0)

)]
, (68)

c2(β) = −�1/β−2

2

[
−
(

B− RL−∞D2β−1
t yp(0)

)
−�1/β

(
A− RL−∞D2β−2

t yp(0)
)]

. (69)

Suppose that

ρ = B− RL−∞D2β−1
t yp(0), χ = A− RL−∞D2β−2

t yp(0), (70)

then

c1(β) =
�1/β−2

2

(
−ρ + �1/βχ

)
, (71)

c2(β) =
�1/β−2

2

(
ρ + �1/βχ

)
. (72)

Substituting (71) and (72) into (67), we obtain the solution of the system (64)–(65) in
terms of the hyperbolic and trigonometric functions as

y(t) = �1/β−2
[
ρ sinh

(
�1/βt

)
+ χ cosh

(
�1/βt

)]
+ a

[−�2 cos(Ωt) + Ω2β cos(Ωt− πβ)

�4 + Ω4β − 2�2Ω2β cos(πβ)

]
, (73)

where the coefficients ρ and χ are given explicitly in the forms:

ρ = B−Ω2β−1[λ1 sin(πβ)− λ2 cos(πβ)], (74)

χ = A + Ω2β−2[λ1 cos(πβ) + λ2 sin(πβ)], (75)

and λ1 and λ2 are given by

λ1 = a
( −�2 + Ω2β cos(πβ)

�4 + Ω4β − 2�2Ω2β cos(πβ)

)
, λ2 = a

(
Ω2β sin(πβ)

�4 + Ω4β − 2�2Ω2β cos(πβ)

)
. (76)

It should be noted that the expression (76) also reduces to the solution of the ordinary
version given in the previous section by Equation (63) as β → 1.

5.3. Behavior of the Solution

It can be easily observed from Equation (73) that the solution is real at any given real
values of the parameters � and Ω provided that the denominator in Equation (73) does not

12
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vanish, i.e., �4 + Ω4β − 2�2Ω2β cos(πβ) 
= 0, (1/2 < β < 1). The behavior of the solution
(73) is examined at some selected values for the involved parameters. The influence of
the fractional-order β on the solution is depicted in Figure 1 when A = 1, B = 1, � = 1

3 ,
Ω = 3, and a = 2. It is observed that the curves oscillate in the first part of the domain,
however, such oscillations reduce as the value of β approaches one.

Figure 1. Plots of y(t) in Equation (73) vs t when A = 1, B = 1, � = 1
3 , Ω = 3, and a = 2 at different

values of β.

Figure 2 shows the variation of the solution (73) at different values of the coefficient
� > 1 when A = 1, B = 1, β = 3

4 , Ω = 3, and a = 2. It is noticed in Figure 2 that the
curves are smooth and have no oscillations. However, the oscillation of the solution y(t) in
Equation (73) returns to appear for another set of the � values that are less than unity. This
point is declared in Figure 3 which displays behavior for the solution when A = 1, B = 1,
β = 3

4 , Ω = 3, and a = 2 at different values of � < 1.

Figure 2. Plots of y(t) in Equation (73) vs. t when A = 1, B = 1, β = 3
4 , Ω = 3, and a = 2 at different

values of � > 1.
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Figure 3. Plots of y(t) in Equation (73) vs. t when A = 1, B = 1, β = 3
4 , Ω = 3, and a = 2 at different

values of � < 1.

6. Conclusions

Two classes of fractional differential equations were solved in this paper by means
of two different types of RLFD. The first type considered the lower bound of the integral
involved in the RLFD as a zero. The second type treats the lower bound as negative infinity.
It was also shown that the solution procedure depends mainly on the implemented type of
the RLFD. For the first type of RLFD, the LT method was applied successfully to determine
the solutions of the two classes in terms the Mittag–Leffler functions. In addition, a direct
analysis was presented to obtain the solutions of the two classes governed by the second
type of RLFD, where the solutions were obtained in explicit forms and expressed in terms of
trigonometric and hyperbolic functions. Features of the obtained solutions are theoretically
discussed and explained. The current analysis may deserve further extension to include
other classes of fractional differential equations which describe applications in engineering
and physical sciences. In future investigations, other kinds of the fractional derivatives such
as Caputo [12,15,16], modified Riemann–Liouville derivative [25], and Atangana–Baleanu
derivative [26] will be addressed to solve more complex models such as the nonlinear
duffing-oscillator and the nonlinear relativistic oscillator.
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Abstract: In this paper, we introduce a general fractional master equation involving reg-
ularized general fractional derivatives with Sonin kernels, and we discuss its physical
characteristics and mathematical properties. First, we show that this master equation
can be embedded into the framework of continuous time random walks, and we derive
an explicit formula for the waiting time probability density function of the continuous
time random walk model in form of a convolution series generated by the Sonin kernel
associated with the kernel of the regularized general fractional derivative. Next, we derive
a fractional diffusion equation involving regularized general fractional derivatives with
Sonin kernels from the continuous time random walk model in the asymptotical sense
of long times and large distances. Another important result presented in this paper is
a concise formula for the mean squared displacement of the particles governed by this
fractional diffusion equation. Finally, we discuss several mathematical aspects of the frac-
tional diffusion equation involving regularized general fractional derivatives with Sonin
kernels, including the non-negativity of its fundamental solution and the validity of an
appropriately formulated maximum principle for its solutions on the bounded domains.
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1. Introduction

Today, mathematical models involving fractional integrals, derivatives, and fractional
differential equations are actively employed in various fields such as physics [1–3], finan-
cial economics [4,5], engineering [6–8], linear viscoelasticity [9,10], and bioengineering
and medicine [11], to mention only a few of many relevant research areas. One of the
most discussed and well investigated case studies of Fractional Calculus (FC) applications
is the modeling of anomalous diffusion or anomalous transport processes that can be
roughly characterized as those that do not follow the Gaussian statistics on long times, see,
e.g., [12–14] and the references therein. In particular, the mean squared displacement (MSD)
of diffusing particles is not a linear function of time, unlike in the case of conventional dif-
fusion. For anomalous diffusion, this linear dependence is replaced by other relationships,
such as power law functions of time, or the MSD is not finite.
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The most popular mathematical descriptions of anomalous diffusion processes are the
Continuous Time Random Walk (CTRW) models at the micro-level and fractional differ-
ential equations involving different types of fractional derivatives at the macro-level. The
CTRW models were first introduced in [15] for the description of some transport processes
which could be intepreted as a result of multiparticle motion. Assuming the particles
are independent, their behavior can be described by the waiting time and jump length
probability density functions (PDFs) of individual particles. A strong connection between
the CTRW model and fractional differential equations was first established in [16], where
a fractional master equation involving the Caputo fractional derivative was embedded
into the framework of the general CTRW model. This equation was derived for a special
waiting time PDF given in terms of the Mittag-Leffler function depending on a parameter
(order of the fractional derivative in the fractional diffusion equation). It is worth men-
tioning that for this waiting time PDF, the fractional master equation was shown to be
rigorously equivalent to the corresponding CTRW model and not just asymptotically as in
the subsequent publications, see, e.g., [13,14]. In [17], a closed-form formula for solutions
to the fractional master equation involving the Caputo fractional derivative was derived
in terms of a special case of the Fox H-function, and its properties were investigated. In
particular, the MSD of the diffusing particles governed by this fractional master equation
was shown to be proportional to a power law function of time with the exponent being
equal to the order of the fractional derivative.

Another significant result on the fractional diffusion equation with the Caputo frac-
tional derivative with order between zero and one and the spatial Laplace operator was pre-
sented in [18], independently of the CTRW models and prior to publications [16,17]. In [18],
the fundamental solution to this equation was derived in terms of the Fox H-function, and
its properties were analyzed. In particular, it was shown that the fundamental solution to
the fractional diffusion equation is non-negative and normalized and thus that it can be
interpreted as a probability density function evolving in time.

The results presented in [16–18] demonstrated that the fractional diffusion equation
involving the Caputo fractional derivative can serve as a model for a class of anomalous
diffusion processes where the MSD of the diffusing particles is proportional to a power
law. However, in many applications, deviations of the MSD from the power law with a
fixed exponent are observed [19–21]. Thus, one needs other, more general fractional master
equations that would lead to an extension of the class of functions that describe the MSD
of the diffusing particles governed by these equations. Two important classes of such
models suggested so far are the fractional differential equations with distributed order
derivatives [22,23] and the fractional differential equations with variable order fractional
derivatives [24,25]. However, in both cases, no direct connection to the CTRW model has
been established until now.

For fractional differential equations with distributed order derivatives, the funda-
mental solution can be interpreted in some important cases as a PDF [26]. Moreover, the
asymptotics of the MSD of diffusing particles governed by this equation has been derived
in terms of power-logarithmic functions [22,23]. These properties of solutions to the frac-
tional differential equations with distributed order derivatives suggested their usage as
models of the so-called ultra-slow diffusion. Regarding fractional differential equations
with variable order fractional derivatives, their mathematical properties and potential
physical interpretation as models for anomalous diffusion are still under investigation.

Thus, fractional differential equations with distributed order derivatives and fractional
differential equations with variable order derivatives do not provide a satisfactory solution
to the problem mentioned above, i.e., a construction of a framework for anomalous diffusion
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models that would directly follow from the CTRW model, and would lead to some general
classes of expressions for the MSD of the diffusing particles governed by these equations.

In this paper, we introduce and investigate a fractional master equation involving
regularized general fractional derivatives (GFDs) with Sonin kernels. GFDs with various
classes of Sonin kernels have been discussed in several publications, including [27–29].
These derivatives encompass most time-fractional derivatives as special cases. Due to the
diversity of Sonin kernels [30,31], fractional differential equations with GFDs have became
an important tool in applied mathematics. In many recent publications (PDFs, [32–34]), the
GFDs with Sonin kernels and fractional differential equations with these derivatives were
employed for modeling various physical processes and systems.

A key result presented in this paper is derivation of the fractional master equation
involving the regularized GFDs with Sonin kernels from the general CTRW model. We show
that the waiting time PDF of the CTRW model can be expressed in terms of a convolution
series generated by the Sonin kernel associated with the kernel of the regularized GFD.
Therefore, this master equation can be explicitly embedded within the CTRW model
framework. Moreover, we show that the CTRW model is connected to the fractional
diffusion equation involving regularized GFDs with Sonin kernels in the asymptotical
sense of long times and large distances.

Another significant finding is a compact formula for the MSD of diffusing particles
governed by the fractional diffusion equation involving regularized GFDs, expressed in
terms of the Sonin kernels associated with the kernels of the regularized GFDs. Consid-
ering various specific cases of Sonin kernels and general formulas for constructing Sonin
kernels [30,31], this equation can be adapted to available measurement data describing
the MSD of diffusing particles within a certain diffusion process framework. Thus, our
approach provides substantially more flexibility needed for the modeling of different kinds
of anomalous diffusion processes compared to the fractional diffusion equations introduced
so far.

In the last part of the paper, we present some relevant mathematical properties of
solutions to the fractional diffusion equation involving regularized GFDs with Sonin
kernels. Specifically, we discuss conditions on Sonin kernels that ensure normalization
and non-negativity of its fundamental solution, as well as the validity of the maximum
principle for solutions on bounded domains.

The rest of the paper is organized as follows. In Section 2, we discuss definitions
and basic properties of the GFDs and the corresponding general fractional integrals (GFIs)
with Sonin kernels. Section 3 is devoted to the derivation of the general fractional master
equation involving regularized GFDs with Sonin kernels from the CTRW model. In doing
so, the waiting time PDF of the CTRW model is expressed in terms of a convolution
series generated by the Sonin kernel associated with the kernel of the GFD from the
fractional master equation. Section 4 focuses on the fractional diffusion equation involving
regularized GFDs with Sonin kernels, derived from the CTRW model in the asymptotical
sense of long times and large distances. The main result of this section is an explicit formula
for the MSD of the diffusing particles governed by this equation, expressed in terms of the
Sonin kernel associated with the kernel of the regularized GFD. Finally, we discuss relevant
mathematical properties of solutions to the Cauchy problem and to the initial-boundary-
value problem formulated for the fractional diffusion equation with regularized GFDs with
Sonin kernels.

2. Definitions and Basic Properties of the GFDs and GFIs

The general fractional master equation we are dealing with in this paper involves the
GFDs with Sonin kernels. This derivative in different forms and with Sonin kernels from
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different classes was treated in a series of recent publications, including [27–29]. In this
paper, we employ the general fractional integral (GFI), the GFD, and the regularized GFD
that are defined as follows, respectively:

(I(κ) f )(t) := (κ ∗ f )(t) =
∫ t

0
κ(t− τ) f (τ) dτ, t > 0, (1)

(D(k) f )(t) :=
d
dt
(k ∗ f )(t) =

d
dt

(I(k) f )(t), t > 0, (2)

(∗D(k) f )(t) := (D(k) f )(t)− f (0)k(t), t > 0, (3)

where the operation ∗ stands for the Laplace convolution and the kernels κ and k satisfy
the condition

(κ ∗ k)(t) ≡ 1, t > 0. (4)

Condition (4) was first introduced by Sonin in [35] and is referred to as the Sonin
condition. The functions that satisfy the Sonin condition are called Sonin kernels. For a
given Sonin kernel κ, the kernel k is referred to as its associated Sonin kernel.

The power law functions

κ(t) = hα(t), k(t) = h1−α(t), 0 < α < 1 with hα(t) :=
tα−1

Γ(α)
, α > 0 (5)

constitute the most known and probably most important pair of Sonin kernels. Origi-
nally, these kernels were introduced by Abel in [36,37] for the analytical treatment of the
tautochrone problem.

The GFI (1), the GFD (2), and the regularized GFD (3) with the power law Sonin kernels (5)
are reduced to the Riemann-Liouville fractional integral (6) and to the Riemann-Liouville and
Caputo fractional derivatives (7) and (8) of the order α (0 < α < 1), respectively:

(Iα
0+ f )(t) := (hα ∗ f )(t) =

1
Γ(α)

∫ t

0
(t− τ)α−1 f (τ) dτ, t > 0, (6)

(Dα
RL f )(t) :=

d
dt

(I1−α
0+ f )(t) =

d
dt
(h1−α ∗ f )(t), t > 0, (7)

(Dα
C f )(t) := (Dα

RL f )(t)− f (0)h1−α(t). (8)

The Formula (6) defines the Riemann-Liouville fractional integral for any α > 0 or
more generally for any α ∈ C with �(α) > 0 and the operator I0

0+ is interpreted as the
identity. As to the Caputo fractional derivative, in most FC publications it is defined by
the expression

(Dα
C f )(t) := (h1−α ∗ f ′)(t) = (I1−α

0+ f ′)(t), (9)

that follows from (8) for any absolutely continuous function f .
Another important pair of Sonin kernels that will be used in this paper is given by the

formula [38–40]
κ(t) = h1−α+β(t) + h1−α(t), 0 < β < α < 1, (10)

k(t) = tα−1 Eβ,α(−tβ), (11)

where Eβ,α stands for the two-parameters Mittag-Leffler function that is defined by the
following convergent series:

Eβ,α(z) =
+∞

∑
k=0

zk

Γ(β k + α)
, β > 0, α, z ∈ C. (12)

More examples of Sonin kernels can be found in [30,31,38].
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It is worth mentioning that the properties of the GFIs and the regularized GFDs
essentially depend on the classes of functions that their kernels belong to. In the rest of this
section, we focus on the GFIs and the regularized GFDs with Sonin kernels κ, k that belong
to the space C−1(0,+∞) defined as follows:

C−1(0,+∞) := { f : f (t) = tp f1(t), t > 0, p > −1, f1 ∈ C[0,+∞)}. (13)

In [38,39] and subsequent publications, the class of Sonin kernels from the space
C−1(0,+∞) was referred to as L1 . It is a very broad class that includes most of the known
Sonin kernels. Still, it is worth mentioning that there exist some Sonin kernels with power-
logarithmic asymptotics at the origin that do not belong to this class; see [41] for examples
of such kernels.

In further discussions, we need some properties of the GFIs, the GFDs, and the
regularized GFDs. As shown in [38,39], the GFIs and the GFDs with Sonin kernels that
belong to the class L1 build a kind of calculus. In particular, the following analogies of the
first and second fundamental theorems of calculus hold valid for the GFI, the GFD, and the
regularized GFD:

(1) The GFD (2) is a left inverse operator to the GFI (1) on the space C−1(0,+∞) defined as
in (13):

(D(k) I(κ) f )(t) = f (t), f ∈ C−1(0,+∞), t > 0, (14)

and the regularized GFD (3) is a left inverse operator to the GFI (1) on the space
I(k)(C−1(0,+∞)):

(∗D(k) I(κ) f )(t) = f (t), f ∈ I(k)(C−1(0,+∞)), t > 0, (15)

where I(k)(C−1(0,+∞)) := { f : f (t) = (I(k) φ)(t), φ ∈ C−1(0,+∞)}.

(2) The relations

(I(κ) D(k) f )(t) = f (t)− (I(k) f )(0) κ(t), t > 0, f ∈ C1
−1,(k)(0,+∞), (16)

and
(I(κ) ∗D(k) f )(t) = f (t)− f (0), t > 0, f ∈ C1

−1(0,+∞), (17)

hold valid, where

C1
−1,(k)(0,+∞) = { f ∈ C−1(0,+∞) : (D(k) f ) ∈ C−1(0,+∞)}, (18)

and
C1
−1(0,+∞) := { f ∈ C−1(0,+∞) : f ′ ∈ C−1(0,+∞)}. (19)

For the Riemann-Liouville fractional integral with the kernel κ(t) = hα(t) and the
Riemann-Liouville and Caputo fractional derivatives with the kernel k(t) = h1−α(t),
0 < α < 1, the relations (16) and (17) take the following well-known form:

(Iα
0+ Dα

0+ f )(t) = f (t)− (I1−α
0+ f )(0) hα(t), t > 0, (20)

and
(Iα

0+ ∗Dα
0+ f )(t) = f (t)− f (0), t > 0. (21)

3. The General Fractional Master Equation Involving Regularized GFDs

In this section, we apply the method suggested in [16] to demonstrate that the general
fractional master equation involving regularized GFDs with Sonin kernels can be embedded
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into the framework of the CTRW model. More precisely, we show that this general fractional
master equation is equivalent to the CTRW model with a certain waiting time PDF that can
be expressed in terms of a convolution series generated by the Sonin kernel associated with
the kernel of the regularized GFD.

3.1. The CTRW Model

In this subsection, we briefly present the main equations of the CTRW model. This
model is based on the idea that the displacement x ∈ Rn of a random walker by each single
jump and the waiting times between two successive jumps are governed by certain PDFs
that we denote by λ(x) and ψ(t), respectively. In what follows, we assume that there is no
correlation between displacements and waiting times, that at time t = 0 the random walker
is located at position x = 0, and that the locations x of the random walker are either some
discrete points from Rn or the whole Rn. In the last case, the sums in the Formulas (22)
and (26) have to be interpreted as the integrals over Rn.

Denoting by u(x, t) the unknown probability to find the random walker at the location
x at time t, the law of total probability leads to the following integral equation [42]:

u(x, t) =
∫ t

0
ψ(t− t′) ∑

x′
λ(x− x′) u(x′, t′) dt′ + δ(x)Ψ(t), (22)

where Ψ = Ψ(t) stands for the survival probability at the initial position that is defined by
the formula

Ψ(t) = 1−
∫ t

0
ψ(t′) dt′. (23)

Applying the Fourier and the Laplace transforms to the relation (22), we obtain
the equation ̂̃u(ζ, s) = ψ̃(s)λ̂(ζ)̂̃u(ζ, s) + Ψ̃(s), (24)

that can be solved for the Fourier-Laplace transform ̂̃u(ζ, s) of solution u(x, t) to the integral
Equation (22), and we arrive at the formula

̂̃u(ζ, s) =
Ψ̃(s)

1− ψ̃(s)λ̂(ζ)
. (25)

We remind the readers that the Fourier and Laplace transforms are defined by the
following formulas, respectively:

f̂ (ζ) = F{ f (x); ζ} = ∑
x

e iζx f (x) , ζ ∈ R
n , (26)

f̃ (s) = L{ f (t); s} =
∫ ∞

0
e−st f (t) dt, �(s) > Cf . (27)

The Formula (23) in the Laplace domain takes the form

Ψ̃(s) =
1
s
− 1

s
ψ̃(s). (28)

Substituting this relation into the right-hand side of the expression (25), we obtain the
following solution formula to the integral Equation (22) in the Fourier-Laplace domain:

̂̃u(ζ, s) =
1− ψ̃(s)

s
1

1− ψ̃(s)λ̂(ζ)
. (29)
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3.2. The General Fractional Master Equation

In this subsection, we introduce a general fractional master equation involving the
regularized fractional GFD with the Sonin kernel k in the form

( ∗D(k) u(x, ·))(t) = ∑
x′

ω(x− x′)u(x′, t), (30)

equipped with the initial condition

u(x, 0) = δ(x), (31)

where the fractional transition rates ω(x) satisfy the relation ∑x′ ω(x′) = 0 and the domain
of the variable x′ is either a discrete subset of Rn or the whole Rn. In the last case, the sums
in the Equations (30) and (32) have to be interpreted as integrals over Rn.

Due to the Formula (17), Equations (30) and (31) can be transformed to the inte-
gral equation

u(x, t) = (I(κ) ∑
x′

ω(x− x′)u(x′, ·))(t) + δ(x), (32)

where I(κ) is the GFI with the Sonin kernel κ associated with the Sonin kernel k of the
regularized GFD in Equation (30).

Applying the Fourier and the Laplace transforms to the Formula (32) leads to
the equation ̂̃u(ζ, s) = κ̃(s)ω̂(ζ)̂̃u(ζ, s) +

1
s

, (33)

that can be solved for the Fourier-Laplace transform ̂̃u(ζ, s) of the unknown function u(x, t)
as follows: ̂̃u(ζ, s) =

1
s

1
1− κ̃(s)ω̂(ζ)

. (34)

3.3. The General Fractional Master Equation as a CTRW Model

For embedding of the general fractional master Equation (30) along with the initial
condition (31) into the framework of the CTRW model provided by the Equations (22)
and (23), we suppose that their solutions and thus their Fourier-Laplace transforms given
by the Formulas (29) and (34), respectively, are identically equal, i.e., the following relation
holds valid:

1− ψ̃(s)
s

1
1− ψ̃(s)λ̂(ζ)

=
1
s

1
1− κ̃(s)ω̂(ζ)

. (35)

By elementary transformations, the variables ζ and s in the relation (35) can be sepa-
rated and we arrive at the formula

λ̂(ζ)− 1
ω̂(ζ)

=
κ̃(s)(1− ψ̃(s))

ψ̃(s)
. (36)

Because the variables ζ and s are independent from each other, the functions on the
left- and the right-hand sides of the Equation (36) have to be equal to the same constant
and thus we get two important relations:

λ̂(ζ)− 1
ω̂(ζ)

= C, C ∈ R, C 
= 0, (37)

κ̃(s)(1− ψ̃(s))
ψ̃(s)

= C, C ∈ R, C 
= 0. (38)

In what follows, without loss of generality, we set C = 1 in the Formulas (37) and (38).
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Solving the Equation (38) with C = 1 for ψ̃, we arrive at the following relation between
the Laplace transforms of the waiting time PDF ψ from the CTRW model and the Sonin
kernel κ associated with the kernel k of the regularized GFD from the general fractional
master Equation (30):

ψ̃(s) =
κ̃(s)

1 + κ̃(s)
. (39)

Now we assume that κ̃(s) → 0 as s → +∞ (see the condition K3 for Sonin kernels
from the classK presented in Section 4.3) and obtain the series representation of the Laplace
transform of the waiting time PDF ψ in the form

ψ̃(s) = κ̃(s)
∞

∑
n=0

(−κ̃(s))n =
∞

∑
n=0

(−1)n (κ̃(s))n+1, (40)

that holds valid for �(s) > C(κ), where C(κ) is a constant which depends on the kernel κ.
Applying the inverse Laplace transform to the Equation (40), we arrive at the formula

ψ(t) =
∞

∑
n=0

(−1)n κ<n+1>(t), (41)

where the notation f<n> stands for the convolution power defined as follows:

f<n>(t) :=

⎧⎪⎪⎨⎪⎪⎩
f (t), n = 1,

( f ∗ . . . ∗ f︸ ︷︷ ︸
n times

)(t), n = 2, 3, . . . . (42)

The series as on the right-hand side of the Formula (41) was introduced for the first
time in [39] (see also [43] for more details) and was there called the convolution series.
As has been shown in [39,43], for any kernel κ ∈ C−1(0,+∞), this convolution series is
convergent for all t > 0 and defines a function that belongs to the space C−1(0,+∞).

In the FC literature, the convolution series of the type as in the right-hand side of the
Formula (41) is denoted by lκ,μ and defined as follows:

lκ,μ(t) :=
+∞

∑
n=0

μnκ<n+1>(t). (43)

Using this notation, we can represent the Formula (41) in the form

ψ(t) = lκ,−1(t), (44)

where the convolution series lκ,−1(t) is defined as in (43).
In the case of the kernel κ(t) = hα(t), 0 < α < 1 of the Riemann-Liouville fractional

integral, the formula κ<n+1>(t) = h<n+1>
α (t) = h(n+1)α(t) is valid (see, e.g., [39,43]) and

the convolution series (43) takes the form

lκ,μ(t) =
+∞

∑
j=0

μjh(j+1)α(t) = tα−1
+∞

∑
j=0

μj tjα

Γ(jα + α)
= tα−1Eα,α(μ tα), (45)

where the two-parameters Mittag-Leffler function Eα,α is defined as in the Equation (12).
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For the Sonin kernel κ(t) = h1−α+β(t) + h1−α(t), 0 < β < α < 1 (see Formula (10)),
the convolution series (43) takes the following form [39]:

lκ,μ(t) =
1
μt

+∞

∑
j=0

∑
l1+l2=j

j!
l1!l2!

(μt1−α+β)l1(μt1−α)l2

Γ(l1(1− α + β) + l2(1− α))
=

1
μt

E(1−α,1−α+β),0(μt1−α, μt1−α+β),

where E(1−α,1−α+β),0 is a particular case of the multinomial Mittag-Leffler function defined
by the expression [44]:

E(α1,...,αm),γ(z1, . . . , zm) :=
+∞

∑
j=0

∑
l1+···+lm=j

j!
l1!× · × lm!

∏m
i=1 zli

i
Γ(γ + ∑m

i=1 αi li)
. (46)

It is also worth mentioning that the Sonin condition (4) in the Laplace domain takes
the form

κ̃(s) · k̃(s) =
1
s

, �(s) > 0, (47)

that leads to another representation of the relation (39):

ψ̃(s) =
1

1 + sk̃(s)
, (48)

where k is the Sonin kernel of the GFD from the fractional master Equation (30).
Another important feature of the convolution series lκ,μ(t) defined by (43) is that this

function is the main component of the solution formulas for linear fractional differential
equations with GFDs and constant coefficients [39,45]. In particular, it is the unique solution
to the following initial-value problem for the fractional differential equation involving the
GFD with the kernel k [45]: ⎧⎨⎩(D(k) y)(t) = μ y(t), t > 0,

(I(k) y)(0) = 1.
(49)

Taking into account the representation (44) of the waiting time PDF ψ in terms of the
convolution series lκ,−1(x), the function ψ can be also interpreted as the eigenfunction of
the GFD D(k) to the eigenvalue μ = −1 that satisfies the non-local initial condition in terms
of the GFI with the Sonin kernel k:⎧⎨⎩(D(k) ψ)(t) = −ψ(t), t > 0,

(I(k) ψ)(0) = 1.
(50)

As an example, let us discuss the case of the power law Sonin kernels κ(t) = hα(t)
and k(t) = h1−α(t), 0 < α < 1 that was analyzed for the first time in [16]. As mentioned in
Section 2, the GFI with the kernel κ(t) = hα(t) is the Riemann-Liouville fractional integral
and the regularized GFD with the kernel k(t) = h1−α(t) is the Caputo fractional derivative.
Thus, the fractional master Equation (30) takes the form

( ∗Dα
0+ u(x, ·))(t) = ∑

x′
ω(x− x′)u(x′, t), 0 < α < 1. (51)

Equipped with the initial condition

u(x, 0) = δ(x), (52)
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this equation is equivalent to the integral equation with the Riemann-Liouville fractional
integral in the form

u(x, t) = (Iα
0+ ∑

x′
ω(x− x′)u(x′, ·))(t) + δ(x), 0 < α < 1. (53)

Due to the well-known formula

L{hα(·); s} = h̃α(s) = s−α, α > 0, �(s) > 0, (54)

our derivations demonstrate that the fractional master equation in its integral form (53) is a
particular case of the CTRW model with the Laplace transform of the waiting time PDF
given by the formula (see the Equation (48))

ψ̃(s) =
1

1 + sh̃1−α(s)
=

1
1 + sα

, 0 < α < 1, �(s) > 0. (55)

The inverse Laplace transform of the right-hand side of the Formula (55) is well-known
(see, e.g., [16]) and we arrive at the following representation of the waiting time PDF ψ of
the CTRW model in terms of the two-parameters Mittag-Leffler function defined as in (12):

ψ(t) = tα−1Eα,α(−tα), 0 < α < 1. (56)

Of course, the relation (56) immediately follows also from the general Formula (44)
and the Formula (45) for the convolution series lκ,μ(t) generated by the Sonin kernel
κ(t) = hα(t), 0 < α < 1.

It is also worth mentioning that the function on the right-hand side of Formula (56) can
be interpreted as a PDF for all values of α ∈ (0, 1] (see, e.g., [46]) and that this function is
the eigenfunction of the Riemann-Liouville fractional derivative to the eigenvalue μ = −1
that satisfies the non-local initial condition (Iα

0+ ψ)(0) = 1 (see the Formula (50)).
Finally, we remark that the Formulas (37) and (38) provide a two-sided relation

between the displacement PDF λ and waiting time PDF ψ of the CTRW model (22) and
the fractional transition rates ω and the Sonin kernel k of the regularized GFD from the
general fractional master Equation (30). Using this connection, the general fractional master
equation can be interpreted as a CTRW model and vice versa, the CTRW model can be
represented in the form of a general fractional master equation.

4. The Fractional Diffusion Equation with Regularized GFDs

In this section, we derive the fractional diffusion equation involving regularized GFDs
with Sonin kernels from the CTRW model in the asymptotical sense of long times and
large distances. Then we establish a formula for the MSD of a random walker (diffusing
particle) governed by this equation in terms of the Sonin kernel associated with the kernel
of the regularized GFD and demonstrate this formula on several known and new examples.
We also discuss some relevant mathematical properties of solutions to the Cauchy and
initial-boundary value problems for the fractional diffusion equation involving regularized
GFDs with Sonin kernels.

4.1. Derivation of the Fractional Diffusion Equation Involving Regularized GFDs

The Formula (37) with C = 1 provides a relation between the Fourier transforms of
the displacement PDF λ of the CTRW model and the fractional transition rates ω of the
general fractional master Equation (30) in the form

λ̂(ζ) = 1 + ω̂(ζ). (57)
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Let us suppose that the displacement PDF λ possesses finite variance σ2. Without loss
of generality, we set σ2 = 2 and obtain the asymptotical relation [17]

λ̂(ζ) ∼ 1− ζ2, ζ → 0. (58)

The last formula combined with (57) yields the representation

ω̂(ζ) = λ̂(ζ)− 1 ∼ −ζ2, ζ → 0. (59)

On the other hand, the Formula (48) leads to the asymptotical relation

ψ̃(s) ∼ 1− sk̃(s), s → 0, (60)

where k is the Sonin kernel of the regularized GFD from the fractional master Equation (30)
that satisfies sk̃(s)→ 0 as s → 0 (see the condition K3 for the Sonin kernels from the class
K presented in Section 4.3).

Substituting the asymptotical relations (58) and (60) into the right-hand side of the
Formula (29) for solution of the CTRW integral Equation (22) in the Fourier-Laplace domain,
we obtain the equation

̂̃u(ζ, s) ∼ s k̃(s)
s

1

1− (1− ζ2)(1− s k̃(s))
∼ k̃(s)

s k̃(s) + ζ2
, ζ → 0, s → 0. (61)

The Laplace transform formula [27]

L{( ∗D(k) f )(t); s} = s k̃(s) f̃ (s)− k̃(s) f (0) (62)

for the regularized GFD (3) implicates the representation

̂̃u(ζ, s) =
k̃(s)

s k̃(s) + ζ2
(63)

for the Fourier-Laplace transform of solution to the Cauchy problem for the fractional
diffusion equation with the regularized GFD with the Sonin kernel k in the form

( ∗D(k) u(x, ·))(t) = Δ u(x, t), t > 0, x ∈ R
n, (64)

equipped with the initial condition

u(x, 0) = δ(x). (65)

Thus, the asymptotical relation (61) means that the Cauchy problem for the frac-
tional diffusion Equation (64) involving regularized GFD can be obtained from the CTRW
model (22) with the waiting time PDF in the form (48) and with displacement PDFs with
finite variances in the asymptotical sense of long times and large distances.

On the other hand, in the case of displacement PDFs with finite variances, one can
derive the fractional diffusion Equation (64) directly from the general fractional master
Equation (30) in the asymptotical sense of large distances. Indeed, substituting the asymp-
totic relation (59) into the Formula (34) for the solution of the general fractional master
Equation (30) in the Fourier-Laplace domain and using the Sonin condition in the Laplace
domain in the form (47), we obtain the formula

̂̃u(ζ, s) ∼ 1
s

1
1 + κ̃(s)ζ2 =

k̃(s)
s k̃(s) + ζ2

, ζ → 0, (66)
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and the result follows from comparison of the Formulas (63) and (66).
It is also worth mentioning that the asymptotical relation (66) is valid for any s and

not just for s → 0 as the relation (61).
Summarizing the findings of this subsection, the fractional diffusion Equation (64)

is closely related to both the CTRW model (22) and to the general fractional master
Equation (30), and thus it can serve as a new and very general framework for model-
ing anomalous diffusion processes. In the rest of this section, we present some additional
arguments that confirm this thesis.

4.2. MSD of a Random Walker Governed by the Fractional Diffusion Equation with
Regularized GFDs

For a general Sonin kernel κ, a closed form formula for the inverse Laplace and inverse
Fourier transforms of the right-hand side of Formula (63) is not known and probably does
not exist at all. However, this formula can be used to calculate the MSD of a random walker
governed by the fractional diffusion Equation (64) subject to the initial condition (65).

Indeed, the Laplace transform 〈̃x2〉(s) of the MSD
〈
x2〉(t) satisfies the relation (see,

e.g., [17])

〈̃x2〉(s) =
∫
Rn

x2 ũ(x, s) dx = −
(
∇2

ζ
̂̃u(ζ, s)

)∣∣∣
ζ=0

. (67)

For the function ̂̃u(ζ, s) given by the right-hand side of the Equation (63), routine
calculations lead to the formula

∇2
ζ
̂̃u(ζ, s) = −2

s
κ̃(s)

(
−4κ̃(s)(1 + ζ2κ̃(s))−3ζ2 + (1 + ζ2κ̃(s))−2

)
. (68)

Combining the Formulas (67) and (68), we get the representation

〈̃x2〉(s) = 2
s

κ̃(s), (69)

where κ is the Sonin kernel associated with the kernel k of the regularized GFD from the
fractional diffusion Equation (64).

The inverse Laplace transform of the right-hand side of the Formula (69) leads to a
simple and elegant formula for the MSD of the random walker governed by the fractional
diffusion Equation (64) in the form

〈
x2
〉
(t) = 2

∫ t

0
κ(τ) dτ = 2(1 ∗ κ)(t) = 2(h1 ∗ κ)(t). (70)

Now let us consider some known and new examples of the fractional diffusion
Equation (64) with different Sonin kernels and calculate the corresponding MSDs of the
random walkers governed by this equation.

We start with the case of the power law Sonin kernels k(t) = h1−α(t), κ(t) = hα(t)
(0 < α < 1) that has been considered in [16,17]. As already mentioned, the fractional
diffusion Equation (64) involving the regularized GFD with the Sonin kernel k takes the
form of the fractional diffusion Equation (51) with the Caputo fractional derivative of order
α, 0 < α < 1. Applying the relation (70), we obtain the known formula (see, e.g., [17]) for
the MSD of the random walker governed by the fractional diffusion Equation (51):〈

x2
〉
(t) = 2(h1 ∗ hα)(t) = 2h1+α(t) =

2 tα

Γ(1 + α)
. (71)

The next example is the pair of Sonin kernels k(t) = h1−α+β(t) + h1−α(t), κ(t) =

tα−1 Eβ,α(−tβ) (0 < β < α < 1) (see the Formulas (10) and (11)). In this case, the fractional
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diffusion Equation (64) with the regularized GFD with the Sonin kernel k contains two
Caputo fractional derivatives:

( ∗Dα
0+ u(x, ·))(t) + ( ∗Dα−β

0+ u(x, ·))(t) = Δu(x, t), t > 0, x ∈ R
n, 0 < β < α < 1. (72)

According to the Formula (70), the MSD of the random walker governed by the
Equation (72) takes the form〈

x2
〉
(t) = 2(h1(τ) ∗ τα−1 Eβ,α(−τβ))(t) = 2 tαEβ,α+1(−tβ). (73)

The known asymptotic behavior of the two-parameters Mittag-Leffler function (see,
e.g., [46]) leads to the formula

〈
x2
〉
(t) ∼

⎧⎨⎩
2 tα

Γ(1 + α)
, t → 0+,

2 tα−β

Γ(1 + α − β)
, t → +∞.

(74)

According to the Formula (74), the behavior of the MSD changes in the course of time
between power laws with two different exponents that allows its tuning to anomalous
diffusion processes with characteristics that vary in time.

Finally, we discuss the case of Sonin kernels k(t) = t−α Eβ,1−α(−tβ), κ(t) = hα(t) + hα+β(t),
(α, β > 0, α + β < 1) that are kernels given by the Formulas (10) and (11) in
reverse sequence.

For the kernel k, the fractional diffusion Equation (64) takes the form

( ∗Dα,β
ML u(x, ·))(t) = Δu(x, t), t > 0, x ∈ R

n, α, β > 0, α + β < 1, (75)

where ∗Dα,β
ML stands for the regularized GFD with the Sonin kernel in terms of the two-

parameters Mittag-Leffler function defined as follows:

( ∗Dα,β
ML f )(t) := (τ−α Eβ,1−α(−τβ) ∗ f ′(τ))(t), α, β > 0, α + β < 1. (76)

The MSD of the random walker governed by Equation (75) is given by the formula〈
x2
〉
(t) = 2(h1 ∗ κ)(t) = 2(h1 ∗ (hα + hα+β))(t) =

2(h1+α(t) + h1+α+β(t)) =
2 tα

Γ(1 + α)
+

2 tα+β

Γ(1 + α + β)
. (77)

The asymptotic behavior of the right-hand side of the Formula (77) is similar to one
presented in the Formula (74):

〈
x2
〉
(t) ∼

⎧⎨⎩
2 tα

Γ(1 + α)
, t → 0+,

2 tα+β

Γ(1 + α + β)
, t → +∞.

(78)

However, the essential difference between the Formulas (74) and (78) is the sign of the
parameter β. As a result, the fractional diffusion Equations (72) and (75) can be employed
for modelling of the anomalous diffusion processes with the time-dependent MSD growth
rate (the exponent in its power law asymptotics) that becomes both smaller (Equation (72))
and bigger (Equation (75)) in the course of time.

It is also worth mentioning that in the framework of our model, the behavior of the
MSD depends on the Sonin kernel κ associated with the kernel k of the GFD from the
fractional diffusion Equation (64), see the Formula (70). In its turn, the kernel κ determines
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the behavior of the waiting time PDF ψ from the corresponding CTRW model (see the
Formula (39)). Thus, the crossover behavior of MSD from short to long times is provoked
by variation in the waiting time PDF ψ in the course of time that can be induced by different
physical reasons depending on the kind of the anomalous diffusion processes.

4.3. Mathematical Properties of Solutions to the Fractional Diffusion Equation with
Regularized GFDs

In this subsection, we discuss some mathematical properties of solutions to the frac-
tional diffusion equation involving regularized GFDs with Sonin kernels that are relevant
to its interpretation as a model of the anomalous diffusion processes.

First, following [27], we present an important result regarding the fundamental so-
lution to the fractional diffusion equation involving the regularized GFD with the Sonin
kernel k that satisfies the following conditions:

(K1) The Laplace transform k̃(s) of k exists for all real s > 0.
(K2) The Laplace transform k̃(s) is a Stieltjes function (see [47] for definition and properties

of the Stieltjes functions).
(K3) The Laplace transform k̃(s) meets the asymptotical relations k̃(s)→ 0 and sk̃(s)→ +∞

as s → +∞ and k̃(s)→ +∞ and sk̃(s)→ 0 as s → 0.

The class of Sonin kernels that satisfy the conditions (K1)–(K3) was introduced by
Kochubei in [27], see also [48]. We denote this class by K and refer to it as to the Kochubei
class of Sonin kernels.

In [27], Kochubei studied the Cauchy problems for ordinary and partial fractional
differential equations involving the regularized GFD (3). In particular, he proved that the
fundamental solution to the fractional diffusion equation involving the regularized GFD
with the Sonin kernel k from the class K in the form

( ∗D(k) u(x, ·))(t) = Δu(x, t), t > 0, x ∈ R
n, (79)

equipped with the initial condition

u(x, 0) = u0(x), x ∈ R
n, (80)

is locally integrable in t, infinitely differentiable for x 
= 0, and can be interpreted as a
spatial PDF evolving in time.

We note that the fundamental solution to the Cauchy problem (79) and (80) is exactly
the solution to the fractional diffusion Equation (64) subject to the initial condition (65).
Thus, the solution u(x, t) to the fractional diffusion Equation (64) involving the regularized
GFD with the Sonin kernel k ∈ K is a spatial PDF evolving in time. In its turn, this means
that this equation can be interpreted as a model for anomalous diffusion processes. In the
framework of this model, Formula (48) provides an explicit relation between the waiting
time PDF ψ of the general CTRW model and the Sonin kernel k of the regularized GFD.
The MSD of the diffusing particles governed by this equation is given by Formula (70).

Another important aspect of the fractional diffusion equation involving regularized
GFDs with Sonin kernels related to its interpretation as a mathematical model for anoma-
lous diffusion processes is the maximum principle for its solutions on the bounded spatial
domains. For the first time, this maximum principle was proved in [49].

The results presented in [49] were formulated for the initial-boundary value problems
for the fractional diffusion equation involving regularized GFDs with Sonin kernels and a
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general second-order spatial differential operator. In what follows, we restate the relevant
results for the case of the fractional diffusion equation in the form

( ∗D(k) u(x, ·))(t) = Δu(x, t), (x, t) ∈ Ω× (0, T], (81)

subject to the initial condition

u(x, t)
∣∣
t=0 = u0(x), x ∈ Ω̄, (82)

and the boundary condition

u(x, t)
∣∣
(x,t)∈∂Ω×(0,T] = v(x, t), (x, t) ∈ ∂Ω× (0, T]. (83)

In Equations (81)–(83), Ω is an open and bounded domain in Rn with a smooth
boundary ∂Ω, T > 0, and the Sonin kernel k of the regularized GFD from the left-hand side
of Equation (81) satisfies the following conditions:

(L1) k ∈ C1(R+) ∩ Lloc
1 (R+),

(L2) k(τ) > 0 and k′(τ) < 0 for τ > 0,
(L3) k(τ) = o(τ−1), τ → 0.

Now we apply Theorem 3.2 from [49] and arrive at the following result:
Let a function u(x, t), (x, t) ∈ Ω̄ × [0, T] satisfy the inclusions u ∈ C(Ω̄ × [0, T]),

u(·, t) ∈ C2(Ω) for any t > 0, and ∂tu(x, ·) ∈ C(0, T] ∩ L1(0, T) for any x ∈ Ω, and
the inequality

( ∗D(k) u(x, ·))(t)− Δu(x, t) ≤ 0, (x, t) ∈ Ω× (0, T]. (84)

Then the following maximum principle holds true:

max
(x,t)∈ Ω̄×[0,T]

u(x, t) ≤ max{max
x∈Ω̄

u(x, 0), max
(x,t)∈ ∂Ω×[0,T]

u(x, t), 0}. (85)

For further results regarding the Cauchy and initial-boundary value problems for the
fractional diffusion Equation (64) we refer to [27] and to [49], respectively.

5. Discussion and Conclusions

In this paper, for the first time in the FC literature, we introduced a general frac-
tional master equation involving regularized GFDs with Sonin kernels and analyzed its
mathematical properties and some of its physical characteristics.

GFDs with various Sonin kernels and more generally with different classes of Sonin
kernels are nowadays a hot topic in the FC literature. These derivatives contain most of the
time-fractional derivatives as particular cases. Due to diversity of Sonin kernels, the GFDs
and the fractional differential equations with GFDs are actively employed for modeling
of several physical processes and systems. In particular, such equations with the GFDs
with the special Sonin kernels have been already suggested for modeling of anomalous
diffusion processes. In this paper, we provided a background for employing the fractional
differential equations with the GFDs involving arbitrary Sonin kernels for modeling of
anomalous diffusion processes by establishing their connection to the CTRW model.

One of the main results derived in the paper is a close relation between the conven-
tional CTRW model and the general fractional master equation involving regularized GFDs
with Sonin kernels. It turns out that this equation can be embedded into the framework of
the CTRW model with the waiting time PDFs expressed in terms of the convolution series
generated by the Sonin kernels associated with the kernels of the regularized GFDs. In the
case of the fractional master equation with the Caputo fractional derivative involving a
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power law Sonin kernel, this convolution series is reduced to the known waiting time PDF
in terms of the two-parameters Mittag-Leffler function.

Another component of the theory presented in the paper is derivation of the fractional
diffusion equation involving regularized GFDs with Sonin kernels from the CTRW model
in the asymptotical sense of long times and large distances. This connection suggests
employing the fractional diffusion equation with regularized GFDs for modeling of the
anomalous diffusion processes. In the framework of this model, the MSD of the diffusing
particles governed by the fractional diffusion equation involving regularized GFDs was
derived in terms of the Sonin kernels associated with the kernels of the regularized GFDs.

Until now, only some particular cases of this anomalous diffusion model with the
power law Sonin kernels were discussed in the literature. The power law Sonin kernels
in the fractional diffusion equation induce the MSD of the diffusing particles in form of
the power law functions with fixed exponents. In the framework of our model, one can
employ any Sonin kernels that lead to a variety of possible expressions for the MSD of
the diffusing particles governed by the fractional diffusion equation involving regularized
GFDs with Sonin kernels. For a given anomalous diffusion process, the MSD of diffusing
particles can be measured in the course of time and in some cases its behavior cannot be
imitated by a power law with a fixed exponent. In the framework of our model in form
of the fractional diffusion equation involving regularized GFDs with Sonin kernels, this
behavior can be fitted and simulated more precisely by selecting an appropriate Sonin
kernel. As an example, we presented two particular cases of our model with the crossover
behavior of MSD from short to long times. Thus, our approach provides substantially
more flexibility, which is needed for modeling of different kinds of anomalous diffusion
processes, as compared to the fractional diffusion equations introduced so far.

As to the mathematical properties of solutions to the fractional diffusion equation
involving regularized GFDs with Sonin kernels, we discussed conditions on Sonin kernels
that ensure some important characteristics of any diffusion-type process. These are non-
negativity of the fundamental solution to this fractional diffusion equation and validity of
the maximum principle for its solutions on the bounded domains.
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6. Atanacković, T.M.; Pilipović, S. Zener Model with General Fractional Calculus: Thermodynamical Restrictions. Fractal Fract. 2022,
6, 617. [CrossRef]

7. Obembe, A.D.; Al-Yousef, H.Y.; Hossain, M.E.; Abu-Khamsin, S.A. Fractional derivatives and their applications in reservoir
engineering problems: A review. J. Pet. Sci. Eng. 2017, 157, 312–327. [CrossRef]

8. Povstenko, Y. Fractional Thermoelasticity, 1st ed.; Birkhäuser: Basel, Switzerland, 2015.
9. Freed, A.; Diethelm, K.; Luchko, Y. Fractional-Order Viscoelasticity (FOV): Constitutive Development Using the Fractional Calculus,

1st ed.; NASA’s Glenn Research Center: Brook Rark, OH, USA, 2002.
10. Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, 2nd ed.; World Scientific

Publishing Company: Singapore, 2022.
11. Magin, R.L. Fractional Calculus in Bioengineering, 1st ed.; Begell House Inc.: Redding, CT, USA, 2006.
12. Klages, R.; Radons, G.; Sokolov, I.M. Anomalous Transport: Foundations and Applications, 1st ed.; Wiley-VCH: Weinheim,

Germany, 2008.
13. Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339,

1–77. [CrossRef]
14. Metzler, R.; Klafter, J. The restaurant at the end of the random walk: Recent developments in the description of anomalous

transport by fractional dynamics. J. Phys. A 2004, 37, 161–208. [CrossRef]
15. Montroll, E.; Weiss, G. Random walks on lattices II. J. Math. Phys. 1965, 6, 167–181. [CrossRef]
16. Hilfer, R.; Anton, L. Fractional Master Equations and Fractal Time Random Walk. Phys. Rev. E 1995, 51, R848. [CrossRef]
17. Hilfer, R. Exact Solutions for a Class of Fractal Time Random Walks. Fractals 1995, 3, 211–216. [CrossRef]
18. Schneider, W.R.; Wyss, W. Fractional Diffusion and Wave Equations. J. Math. Phys. 1989, 30, 134–144. [CrossRef]
19. Schiessel, H.; Sokolov, I.M.; Blumen, A. Dynamics of a polyampholyte hooked around an obstacle. Phys. Rev. E 1997, 56, R2390.

[CrossRef]
20. Igloi, F.; Turban, L.; Rieger, H. Anomalous diffusion in aperiodic environments. Phys. Rev. E 1999, 59, 1465. [CrossRef]
21. Prosen, T.; Znidaric, M. Anomalous diffusion and dynamical localization in polygonal billiards. Phys. Rev. Lett. 2001, 87, 114101.

[CrossRef]
22. Chechkin, A.V.; Gorenflo, R.; Sokolov, I.M. Retarding subdiffusion and accelerating superdiffusion governed by distributed-order

fractional diffusion equations. Phys. Rev. E 2002, 66, 046129. [CrossRef] [PubMed]
23. Chechkin, A.V.; Gorenflo, R.; Sokolov, I.M.; Gonchar, V.Y. Distributed order time fractional diffusion equation. Fract. Calc. Appl.

Anal. 2003, 6, 259–280.
24. Garrappa, R.; Giusti, A.; Mainardi, F. Variable-order fractional calculus: A change of perspective. Commun. Nonlinear Sci. Numer.

Simul. 2021, 102, 105904. [CrossRef]
25. Beghin, L.; Cristofaro, L.; Garrappa, R. Renewal processes linked to fractional relaxation equations with variable order. J. Math.

Anal. Appl. 2024, 531, 127795. [CrossRef]
26. Gorenflo, R.; Luchko, Y.; Stojanovic, M. Fundamental solution of a distributed order time-fractional diffusion-wave equation as

probability density. Fract. Calc. Appl. Anal. 2013, 16, 297–316. [CrossRef]
27. Kochubei, A.N. General fractional calculus, evolution equations, and renewal processes. Integral Equ. Oper. Theory 2011, 71,

583–600. [CrossRef]
28. Luchko, Y. General fractional integrals and derivatives and their applications. Phys. D Nonlinear Phenom. 2023, 455, 133906.

[CrossRef]
29. Tarasov, V.E. General fractional calculus: Multi-kernel approach. Mathematics 2021, 9, 1501. [CrossRef]
30. Luchko, Y. On Symmetrical Sonin Kernels in Terms of Hypergeometric-Type Functions. Mathematics 2024, 12, 3943. [CrossRef]
31. Samko, S.G.; Cardoso, R.P. Integral equations of the first kind of Sonine type. Int. J. Math. Math. Sci. 2003, 57, 3609–3632.

[CrossRef]
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Abstract: In this study, the optimal q-Homotopy Analysis Method (optimal q-HAM) has been used to
investigate fractional Abel differential equations. This article is designed as a case study, where several
forms of Abel equations, containing Bernoulli and Riccati equations, are given with ordinary derivatives
and fractional derivatives in the Caputo sense to present the application of the method. The optimal
q-HAM is an improved version of the Homotopy Analysis Method (HAM) and its modification q-HAM
and focuses on finding the optimal value of the convergence parameters for a better approximation.
Numerical applications are given where optimal values of the convergence control parameters are found.
Additionally, the correspondence of the approximate solutions obtained for these optimal values and the
exact or numerical solutions are shown with figures and tables. The results show that the optimal q-HAM
improves the convergence of the approximate solutions obtained with the q-HAM. Approximate solutions
obtained with the fractional Differential Transform Method, q-HAM and predictor–corrector method are
also used to highlight the superiority of the optimal q-HAM. Analysis of the results from various methods
points out that optimal q-HAM is a strong tool for the analysis of the approximate analytical solution
in Abel-type differential equations. This approach can be used to analyze other fractional differential
equations arising in mathematical investigations.

Keywords: Abel differential equation; optimal q-homotopy analysis method; Caputo fractional
derivative; fractional differential transform method

1. Introduction

Mathematical modeling has been instrumental for people in a variety of ways for
centuries. The roots of today’s modeling studies in economy, medicine and engineering
can be traced back to the first applications of algebraic equations for analyzing inheritance
and trade problems. Recent studies in modeling focus on the use of differential equations
using the tools of calculus to analyze changes in certain components of various systems. In
most of these studies, fractional calculus has become the center of attention.

Certain events or systems in nature can be modeled more efficiently using non-integer
order derivation. Dating back to the letter of Leibniz in the late 17th century, studies on
fractional calculus improved constantly with a certain increase in the numbers in the last
few decades. Riemann–Liouville, Grünwald–Letnikov and Caputo fractional derivative
definitions have been extensively studied in the literature. More recent definitions, such as
the Atangana–Baleanu fractional derivative and Caputo–Fabrizio fractional derivative, are
also popular tools in modeling studies. Katugampola, Hilfer and many other derivatives
have been given in the literature (see reference [1]) along with conformable fractional
derivative which has become the basis of conformable calculus [2,3].

A certain number of studies on fractional calculus focus on numerical or approximate
analytical approaches rather than analytical techniques. Some of the well-known methods such
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as the Differential Transformation Method (DTM) and the Variational Iteration Method (VIM)
have fractional counterparts that are frequently used in applications [4,5]. He’s Homotopy
Perturbation Method [6] and the Homotopy Analysis Method proposed by Liao [7] share a
common relation with the homotopy concept in topology [8] and are both among the most
studied methods in the literature. Liao [8] showed that the Homotopy Perturbation Method
(HPM) is a special case of the Homotopy Analysis Method (HAM), and the former has many
applications in fractional calculus. HAM and its modifications such as the optimal q-HAM [9],
which is based on the improvement of the convergence by using auxiliary convergence parame-
ters, have been used in the literature for several applications. Some of these applications include
the investigation of heat transfer [10], option pricing [11], the convection–diffusion equation [12],
the fractional order logistic equation [13] and non-Newtonian fluid flow [14] in their ordinary
and fractional forms. A more general form of HAM, the q-Homotopy Analysis Method (q-
HAM), has been proposed by El-Tawil and Huseen and the method uses two parameters to
achieve faster convergence in comparison to HAM [15,16]. The q-HAM and the q-HATM,
which is a combination of q-HAM and the Laplace transform method, have also been applied
to many modeling problems such as Burger’s equation [17], non-Darcy Flow problem [18], the
fractional vibration equation [19] and the fractional heat equation [20]. Recent studies on HAM,
q-HAM and their modifications focus mostly on fractional applications such as the fractional
KdV equation [21], the fractional Sawada-Kotera equation [22] and the fractional Fisher’s equa-
tion [23]. Some other examples of the most recent studies for the method can be exemplified as
follows. Biswas and Ghosh have used the q-HAM to analyze the time-fractional Harry Dym
equation [24]. Hussein et al. have analyzed the Cahn-Hilliard equation using the q-HAM [25].
Cheng et al. have used the q-HAM to solve the time-fractional Keller–Segel-type equations.
In the mentioned study, the authors have also performed a symmetry analysis alongside the
implementation of the q-HAM [26]. Sunita et al. have used the q-HAM with Elzaki transform
to investigate the two-dimensional solute transform problem [27]. One modification of the
q-HAM, called the optimal q-HAM (or Oq-HAM), focuses on finding the optimal values for
the auxiliary parameter. This method uses the optimal value for the parameter, controlling the
rate and region of convergence, and hence offers a better approximation to the solution. This
method has been recently used to investigate the Kaup–Kupershmidt equation [28] and various
fractional partial differential equations [29]. Another problem that can be investigated using the
fractional optimal q-HAM is the Abel differential equation.

The Abel equation is named after the Norwegian mathematician Niels Henrik Abel who
lived in the 19th century. The Abel differential equation of the first kind is a generalization
of the Riccati equation, and the Abel differential equation of the second kind is a further
generalization [30]. Abel equations have been used to describe the relativistic evolution of a
causal dissipative cosmological fluid in conformally flat space–time [31], magnetostatic prob-
lems [32] or inflationary dynamics [33]. Abel equations are ordinary differential equations
and several studies on their general or periodic solutions have been given in the literature
(see references [34,35]). These equations have also been studied recently in the fractional sense
using various fractional derivatives. The use of the short memory principle for the solution
of the fractional equation [36], a numerical analysis of the equation with a Caputo–Fabrizio
derivative [37], a numerical approach using Genocchi polynomials for the fractional model with
a Caputo derivative [38] and a numerical investigation of the fractional Abel equation using
generalized Bessel functions [39] are some of the recent fractional studies.

In this study, optimal q-HAM will be used to investigate the fractional Abel equation
in the Caputo sense. The motivation of this study is the existing literature on the HAM
method and the improvements in the convergence achieved by the Oq-HAM modification
of the scheme. In accordance with the focus of the recent literature on mathematical
modeling using tools of fractional calculus, it is aimed at achieving such improvement
for Abel differential equations within the fractional framework. Although the Caputo
fractional derivative has been used for this study, other definitions of fractional derivation
could also be employed, whenever it is checked that they satisfy the necessary conditions
to apply these methods. This approach enables an investigation taking advantage of
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non-integer order derivation, such as a more generalized investigation and the ability to
provide a more accurate modeling of real phenomena. This article adds to the current
literature on fractional Abel equations, such as the study by Jafari et al. which uses HAM to
demonstrate numerical results [40]. Several numerical examples are given with a variety of
coefficients for Abel equations of the first type or equations that are reduced to Bernoulli or
Riccati equations in the ordinary and fractional forms. Exact solutions of the equations are,
whenever available, compared with the results from optimal q-HAM to demonstrate that
the method is a valuable tool to analyze the fractional Abel differential equation. It should
be noted that, as mentioned above, optimal q-HAM is a well-established method, and
this manuscript is structured as a case study for the analysis of fractional Abel equations
using the method. This case study concentrates on the improvement of the approximation
obtained with q-HAM through determining the optimal values of the auxiliary parameter.
A comprehensive comparison of the improved approximation is presented using results
from various methods to verify the benefits of the application of optimal q-HAM in the case
of fractional Abel equations. Key contributions of this study can be given as the following
bullet points for a clearer presentation:

- A fractional optimal q-HAM has been presented and the approximate solutions for
several ordinary and fractional Abel differential equations have been given.

- The approximate solutions have been graphically presented for examples and com-
parisons of the approximations have been made with exact or numerical solutions.

- The optimal values of h and the convergence regions have been given for various
selections of the auxiliary parameters.

- Relative errors, h-curves and numerical comparisons of solutions have been given to under-
line the suitability of the method and the improvements achieved by using Oq-HAM.

- Approximate analytical solutions from fractional DTM and q-HAM have been compared
with solutions obtained with Oq-HAM to underline the superiority of the method.

- Results from q-HAM have been used to point out that a better approximation is
achieved as the value of the auxiliary parameter h approaches its optimal value,
verifying the improvement through Oq-HAM.

2. Abel Differential Equation of the First Kind and Its Analysis with Optimal q-HAM

The Abel differential equation of the first kind is given by the following:

y′(x) = f3(x)y3(x) + f2(x)y2(x) + f1(x)y(x) + f0(x) (1)

where f3(x) 
= 0, f2(x), f1(x) and f0(x) are meromorphic functions. A Riccati equation
will be obtained in the case where f3(x) = 0, and a Bernoulli equation can also be obtained
in the case where f0(x) = 0 and f2(x) = 0 or f3(x) = 0. An Abel equation of the second
kind can be given by the following:

[g0(x) + g1(x)y(x)]y′(x) = f3(x)y3(x) + f2(x)y2(x) + f1(x)y(x) + f0(x)

which is a generalization of the equation of the first kind. The equation of the second kind
reduces to the equation of the first kind for g0(x) = 1 and g1(x) = 0 [30].

In order to apply q-HAM to analyze the Abel equation of the first kind, Equation (1) is
rewritten as follows:

y′(x)− f3(x)y3(x)− f2(x)y2(x)− f1(x)y(x)− f0(x) = 0 (2)

or
N[y(x)] = 0 (3)

where N[y(x)] = d
dx y(x)− f3(x)y3(x)− f2(x)y2(x)− f1(x)y(x)− f0(x) is the nonlinear

operator. The zero-order deformation of q-HAM is given as follows:

(1− nq)L[φ(x; q)− y(0)] = qhH(x)N[φ(x; q)] (4)
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where 0 ≤ q ≤ 1
n , n ≥ 1 is the embedded parameter, L[φ(x; q)] = d

dx φ(x) is the linear
operator, h 
= 0 is an auxiliary parameter and H(x) 
= 0 is an auxiliary function [15].
Equation (4) becomes the following:

φ(x; 0) = y(0)

for q = 0 and similarly the following:

φ

(
x;

1
n

)
= y(x)

for q = 1
n . Hence, the solution φ(x; q) approaches the solution y(x) from the initial condition

y(0) as q changes from 0 to 1
n [12].

Using the Taylor series expansion for φ(x; q), we obtain the following:

φ(x; q) = y(0) +
∞

∑
m=1

um(x)qm (5)

where

um(x) =
1

m!
∂mφ(x; q)

∂qm

∣∣∣∣
q=0

. (6)

Assuming the auxiliary linear parameter h, the auxiliary function H(x) and the initial
condition y(0) are properly selected such that the series (5) converges as q → 1

n , the
approximate solution is given as follows:

y(x) = φ

(
x;

1
n

)
= y(0) +

∞

∑
m=1

um(x)
(

1
n

)m
. (7)

Define the vector as follows:

→
u r(x) = {u0(x), u1(x), . . . , ur(x)}. (8)

If Equation (4) is differentiated m times with respect to q and divided by m! and q is
set to zero, the m -th order deformation equation is obtained as follows:

L[um(x)− χmum−1(x)] = hH(x)Rm

(→
u m−1(x)

)
(9)

with the initial condition as follows:

u(k)
m (x) = 0, k = 0, 1, 2, . . . , m− 1 (10)

where

Rm

(→
u m−1(x)

)
=

1
(m− 1)!

∂m−1N[φ(x; q)]
∂qm−1

∣∣∣∣
q=0

(11)

and

χm =

{
0, i f m ≤ 1
n, i f m > 1

. (12)

Note that, for n = 1 in Equation (7), the method reduces to the standard HAM.

However, if n 
= 1, the existence of the factor
(

1
n

)m
in Equation (7) enables a much faster

convergence for q-HAM compared to the standard HAM.
Considering the Abel equation of the first kind (1), differentiation of Equation (4) with

respect to q = 0 gives the following first order deformation equation:

du1

dx
(x) = hH(x)

[
du0

dx
(x)− f3(x)u3

0(x)− f2(x)u2
0(x)− f1(x)u0(x)− f0(x)

]
. (13)

37



Fractal Fract. 2024, 8, 533

The general form of the m -th order deformation equation can be given as follows:

dum

dx
(x) = n

d
dx

[um−1(x)] + hH(x)

⎡⎣ dum−1
dx

(x)− f3(x)
m−1

∑
i=0

um−1−i

i

∑
j=0

ujui−j − f2(x)
m−1

∑
k=0

ukum−1−k − f1(x)um−1(x)

⎤⎦. (14)

The solution of Equation (14) considering the initial condition (10) gives um(x) and
the numerical solution is obtained through Equation (7).

Improving the Convergence through Minimizing the Residual Error

Several studies by Liao and others [9,41] have presented a methodology for obtaining the
optimal convergence control parameters by minimizing the square residual errors over the
whole region [42]. The method, up to the stage where the solution um(x) is obtained, is called
q-HAM. The naming “optimal q-HAM” is based on the idea of selecting the optimal h value for
better convergence. A limited number of studies, such as [40], focus on the use of the analysis
of Abel equations with HAM or other methods. The main goal of this study is to improve
the convergence of solutions obtained by HAM and q-HAM through optimizing the auxiliary
parameter. The methodology used to obtain this improvement works in a similar manner to the
least-squares approach. If the square residual error is denoted as follows:

Δm(h) =
∫

Ω
(N(um(x)))2dΩ, (15)

then the optimal value of the auxiliary parameter h will be the value minimizing the square
residual error, which can be obtained by solving the equation below:

d
dh

Δm(h) = 0. (16)

This study presents results for a case study of the application of optimal q-HAM for
the analysis of Abel equations and focuses on the determination of the optimal values
of the auxiliary parameter for analyzing fractional Abel differential equations defined in
the Caputo sense. Hence, the definitions of Riemann–Liouville and Caputo fractional
derivative [43] operators needed for the fractional analysis are given in this section.

Definition 1. [44] Let n ∈ R+. The operator Jn
a , defined on L1[a, b] by

Jn
a f (x) =

1
Γ(n)

∫ x

a
(x− t)n−1 f (t)dt

for a ≤ x ≤ b, is called the Riemann–Liouville fractional integral operator of the order n. It is also
known that when n = 0, J0

a = I is obtained (where I is the identity operator).

Definition 2. [44] Let n ∈ R+ and m = �n�. The operator Dn
a , defined by following:

Dn
a f (x) = Dm Jm−n

a f (x)

is called the Riemann–Liouville fractional derivative operator of the order n (where �n� is the ceiling function
and denotes the smallest integer that is larger than n). Once again, for n = 0, D0

a = I is obtained.

Definition 3. [44] Let n = �α�. Then, the Caputo fractional derivative operator CDα
t is given as follows:

CDα
t f (t) =

1
Γ(n− α)

∫ t

0

f (n)(τ)

(t− τ)α+1−n dτ.

Properties of the Riemann–Liouville fractional integral and derivative operators and
the Caputo fractional derivative operator can be found in the literature. We will be denoting
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the Caputo fractional derivative as Dα
x , where α is the order or derivation, in correspondence

with the general notation in the literature.

3. Numerical Examples

In this section, various forms of the (ordinary) Abel differential equation of the first kind,
including Bernoulli and Riccati equations with varying coefficients, are given as numerical
examples in addition to fractional Abel differential equations with a fractional Caputo derivative.

Example 1 (Riccati Differential Equation). In Equation (1), if we take f3(x) = 0, f2(x) = 1− x,
f1(x) = 2x − 1 and f0(x) = −x, the following Riccati differential equation is obtained, where
0 ≤ x ≤ 1.

y′(x) = (1− x)y2(x) + (2x− 1)y(x)− x

Putting the initial condition y(0) = 2, the analytical solution can be formulated as follows:

y(x) =
3− ex + xex

3− 2ex + xex .

Using H(x) = 1 in q-HAM, the first three terms are obtained as follows:

u1(x) = h
(
−2x + x2

2

)
,

u2(x) = hn
(
−2x + x2

2

)
+ h

(
−2hx + 7hx2

2 − 11hx3

6 + hx4

4

)
,

u3(x) = h
(
−2h2x− 2hnx + 13h2x2

2 + 7
2 hnx2 − 8h2x3 − 11

6 hnx3 + 39h2x4

8 + 1
4 hnx4 − 4h2x5

3 + h2x6

8

)
+n

(
hn
(
−2x + x2

2

)
+ h

(
−2hx + 7hx2

2 − 11hx3

6 + hx4

4

))
.

Solution (7) from the q-HAM can be given as a finite series as follows:

yk(x) =
∞

∑
m=1

um(x)
(

1
n

)m ∼=
k

∑
m=1

um(x)
(

1
n

)m
. (17)

This solution depends on the value of the auxiliary parameter h. Some of the relative
errors have been given below in Table 1 with the corresponding n and h values used for
obtaining the approximate solutions (Table 1).

Table 1. Relative errors obtained for the Riccati differential equation with q-HAM.

x n = 1, h = −0.5 n = 1, h = −1 n = 1, h = −1.25 n = 20, h = −1

0.1 0.00037533 2.74631072× 10−10 2.54314884× 10−9 0.06599027

0.2 0.00220035 3.68633053× 10−7 1.16212931× 10−9 0.14343628

0.3 0.00791511 0.00002018 1.08409111× 10−7 0.23032080

0.4 0.02150092 0.00029051 0.00001266 0.32344195

0.5 0.04762474 0.00196197 0.00024490 0.41849102

0.6 0.08942998 0.00800457 0.00184491 0.51032883

0.7 0.14554139 0.02243673 0.00758219 0.59345618

0.8 0.20780964 0.04627964 0.01987730 0.66261677

0.9 0.26161939 0.07256799 0.03572155 0.71341999

1.0 0.28971143 0.08673558 0.04471525 0.74285215

The values in Table 1 represent approximate solutions with growing relative errors. It
is also seen that the amount of error in these solutions, obtained with q-HAM, change with
respect to the changes in the value of the auxiliary parameter h. The use of optimal q-HAM
offers a methodology for determining the approximate solution from q-HAM that has the
least error, through the analysis of the optimal h.
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The square residual error for the Riccati differential equation is written below to obtain
the optimum value of the auxiliary parameter h.

Δm =
∫

Ω

[
y′k(x)− (1− x)y2

k(x)− (2x− 1)y(x) + x
]2

dx. (18)

The optimal value of h is obtained by minimizing the square residual error given in
Equation (18). The h-curves for various values of the parameter n at x = 1 for k = 10 have
been shown in Figure 1. The convergence regions have been determined from these graphs
using the intervals where the lines are parallel to the x-axis. The optimal values of h are
selected in these regions through the roots of the nonlinear equation as follows:

dΔm

dh
= 0. (19)

Figure 1. The h-curve of u′(x) at x = 1 for k = 10.

The convergence regions, the optimal h values and the minimum values of Equa-
tion (18) for k = 10 are given in Table 2 for the Riccati differential equation.

Table 2. Optimal h and the convergence region of h for the Riccati differential equation.

n Convergence Region Optimal h Δm

1 −2.1793 ≤ h ≤ −1.4460 −1.87312216 0.00946045

5 −11.0632 ≤ h ≤ −5.8422 −9.36561082 0.01025391

10 −21.7929 ≤ h ≤ −14.4595 −18.73122164 0.01025391

15 −32.6281 ≤ h ≤ −22.3157 −28.09683247 0.00982666

20 −43.2345 ≤ h ≤ −34.4072 −37.46244329 0.01025391

The approximation solution and the analytical solution with the optimal h values
are shown in Figure 2. The figure contains the exact solution, the solution obtained with
q-HAM and the solution obtained by using Optimal q-HAM with n = 1. Note that the
solution curve for n = 20 is inseparable from the curve for n = 1 in this example and hence,
not plotted additionally.

Figure 2 shows that the analytical solution and the approximate solution (17) are
similar for optimal h values. The figure also contains the solution curve obtained with
q-HAM for h = −1. Note that all of the solution curves obtained with optimal q-HAM
are plotted similarly in all figures for a consistent presentation. In addition, these two
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solutions have been numerically compared in the following table for the various values of
the independent variable (Table 3).

 
Figure 2. The analytical and approximate solutions for optimal h values for the Riccati equation.

Table 3. The exact and optimal q-HAM approximate solutions compared for k = 10.

x Relative Error (n = 1) Relative Error (n = 20)

0.1 0.00011073 0.00011073

0.2 0.00142025 0.00142025

0.3 0.00143402 0.00143402

0.4 0.00096602 0.00096602

0.5 0.00021452 0.00021452

0.6 0.00057228 0.00057228

0.7 0.00138279 0.00138279

0.8 0.00299686 0.00299686

0.9 0.00593229 0.00593229

1.0 0.00767123 0.00767123

Table 3 shows that, considering the relative errors shown in the last column, which all
satisfy εRelative < 0.8% in the analyzed interval, it can be concluded that the approximate
solution is a suitable approximation of the analytical solution. It can also be seen that, for
n = 1 and n = 20, the relative errors in the solutions obtained with q-HAM decrease as the
value of the auxiliary parameter h approaches the optimal value used for Oq-HAM.

Example 2 (Abel Differential Equation). In Equation (1), if we take f3(x) = −x2, f2(x) = 5x,
f1(x) = −2x and f0(x) = x3, the following Abel differential equation of the first kind is obtained,
where 0 ≤ x ≤ 0.7.

y′(x) = −x2y3(x) + 5xy2(x)− 2xy(x) + x3.

The initial condition will be used as y(0) = 1. The approximate solution from q-HAM
will be compared to the numerical solution obtained with Mathematica using NDSolve.

Using H(x) = 1 in the q-HAM, the first three terms are obtained as follows:
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u1(x) = h
(
− 3x2

2 + x3

3 − x4

4

)
,

u2(x) = hn
(
− 3x2

2 + x3

3 − x4

4

)
+ h

(
− 3hx2

2 + hx3

3 + 11hx4

4 − 43hx5

30 + hx6

2 − 3hx7

28

)
,

u3(x) = h
(
− 3

2 h2x2 − 3
2 hnx2 + h2x3

3 + 1
3 hnx3 + 23h2x4

4 + 11
4 hnx4 − 43h2x5

15 − 43
30 hnx5 − 39h2x6

8 + 1
2 hnx6

+ 1843h2x7

420 − 3
28 hnx7 − 2809h2x8

1440 + 485h2x9

756 − 127h2x10

1120 + 3h2x11

176

)
+n

(
hn
(
− 3x2

2 + x3

3 − x4

4

)
+ h

(
− 3hx2

2 + hx3

3 + 11hx4

4 − 43hx5

30 + hx6

2 − 3hx7

28

))
.

Similarly, the q-HAM solution for this problem is given in the form of Equation (17).
To calculate the optimal h values, the derivative of Δm in the equation is calculated with
respect to h and set to zero. The h-curves for different n values and k = 6 are obtained at
x = 0.6 as shown in Figure 3.

 
Figure 3. The h-curve of u′(x) with x = 0.6, k = 6.

The convergence regions, the optimal h values and the minimum values of Equation
(1) for k = 6 for the Abel differential equation are given in Table 4. Also, the optimal
q-HAM solution and the NDSolve solution with the optimal h values are shown in Figure 4
for n = 20. Once again, the solution curve for n = 1 has been omitted to prevent repeated
use of an inseparable plot. Figure 4 shows that the approximate solution is in accordance
with the solution obtained with NDSolve for k = 6.

Table 4. Optimal h and the convergence region of h for the Abel differential equation.

n Convergence Region Optimal h Δm

1 −2.4872 ≤ h ≤ −1.0394 −1.17183989 0.00427890

5 −12.4361 ≤ h ≤ −5.1972 −5.83815009 0.00468601

10 −22.1298 ≤ h ≤ −10.9513 −11.68006881 0.00465427

15 −24.8946 ≤ h ≤ −15.5917 −17.60030257 0.00399791

20 −30.9369 ≤ h ≤ −22.6137 −23.36013762 0.00465427

Example 3 (Fractional Bernoulli Differential Equation). A fractional Bernoulli differential
equation can be obtained from the ordinary Abel differential equation using fractional derivatives
and suitable coefficient functions. The following fractional Bernoulli initial value problem will be
considered for x ∈ (0, 1).

Dα
xy = x4y− x2y2, y(0) = 1 (20)
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The m-th order deformation can be obtained for fractional differential equations in
similarity to the q-HAM approximation approach for ordinary differential equations. In
this case, the ordinary derivation in Equation (14) needs to be replaced with fractional
derivatives. The Caputo derivative (Definition 3) is used in this regard to obtain a fractional
differential equation.

 
Figure 4. The Oq-HAM and NDSolve solutions for n = 20.

Using H(x) = 1,α = 0.5 in the q-HAM, the first three terms are obtained as

u1(x) = 0.5641895835477563h
(
1.0666666666666667x2.5 − 0.8126984126984127x4.5),

u2(x) = 0.5641895835477563h2(0.9305382717253959x5 − 0.9995109922628649x7

+0.2671648878690047x9)
+(h + n)(0.5641895835477563h(1.0666666666666667x2.5 − 0.8126984126984127x4.5)),
u3(x) = 0.5641895835477563h2(n(0.930538271725396x5 − 0.9995109922628648x7

+0.2671648878690047x9) + h(0.930538271725396x5 − 0.9995109922628648x7

+0.8988704875870189x7.5 + 0.2671648878690047x9 − 1.2512690912236168x9.5

+0.5561133343471595x11.5 − 0.07204306295221984x13.5)) + (h + n)
(0.5641895835477563h2(0.9305382717253959x5 − 0.9995109922628649x7

+0.2671648878690047x9) + (h + n)(0.5641895835477563h(1.0666666666666667x2.5

−0.8126984126984127x4.5))).

The approximate results from the q-HAM will be compared to the numerical results
obtained with the Predictor–Corrector method for fractional differential equations given
in [45]. The numerical method is an improved version of the Adams–Bashforth–Moulton
algorithm and will be referred to as the Predictor–Corrector (PC) method throughout
the study.

To calculate the optimal value of the auxiliary parameter h, the h-curve graphs are
drawn for α = 0.5 and α = 1 with k = 4, which is the number of terms taken in the q-HAM
solution at x = 1 in Figure 5a,b.

For the fractional Bernoulli differential equation, the exact square residual error is
obtained as follows:

Δm =
∫

Ω

[
Dα

xyk(x)− x4yk(x) + x2y2
k(x)

]2
dx.

If the derivative of Δm with respect to h is calculated and solved for zero, the tables of
optimal h values obtained for α = 0.5 and α = 1 are given in Tables 5 and 6, respectively.
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(a) 

 
(b) 

Figure 5. (a) h-curve graphs for α = 0.5 at x = 1. (b) h-curve graphs for α = 1 at x = 1.

Table 5. The optimal h and the convergence region of h for α = 0.5.

n Convergence Region Optimal h Δm

1 −0.7635 ≤ h ≤ −0.5590 −0.71310376 3.37203607× 10−8

5 −3.8175 ≤ h ≤ −2.7950 −3.56551974 3.37178963× 10−8

10 −8.0043 ≤ h ≤ −5.2082 −7.13103948 3.37178963× 10−8

15 −12.0063 ≤ h ≤ −7.8123 −10.69655936 3.37170178× 10−8

20 −16.5847 ≤ h ≤ −9.8154 −14.26207897 3.37178963× 10−8

From Tables 5 and 6, it is seen that, for the optimal values of h, the square residual
errors are minimal. In addition, the solutions for the optimal h values obtained with optimal
q-HAM have been found to be similar to the solutions from the PC method (for α = 0.5), as
shown in Figure 6, and the exact solutions (for α = 1), as shown in Figure 7. Hence, it can
be concluded that the optimal h-values given in Tables 5 and 6 are suitable for the fractional
Bernoulli differential equation. Note that n = 1 and n = 20 produce inseparable curves for
Figures 6 and 7, hence, only the figures for n = 1 have been given.
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Table 6. The optimal h and the convergence region of h for α = 1.

n Convergence Region Optimal h Δm

1 −0.9087 ≤ h ≤ −0.7178 −0.86488950 3.40577788× 10−10

5 −4.5790 ≤ h ≤ −3.5435 −4.30383827 3.40577233× 10−10

10 −8.6973 ≤ h ≤ −7.6468 −8.60767655 3.40577233× 10−10

15 −12.9723 ≤ h ≤ −11.5535 −12.91151482 3.40577955× 10−10

20 −18.0723 ≤ h ≤ −15.8497 −17.21535309 3.40577233× 10−10

 

Figure 6. The approximate solutions from fractional Oq-HAM and q-HAM compared for α = 0.5, n = 1.

 
Figure 7. The approximate solutions for optimal h values for α = 1, n = 1.

In order to give a comparison of the solutions obtained with the optimal q-HAM and
the solutions from another approximation method for fractional differential equations, we
use the fractional Differential Transform Method [46]. The fractional counterpart of the
Differential Transform Method (DTM) has been another widely used tool for analyzing
equations with fractional order derivatives and has been applied to study projectile mo-
tion [47] and COVID-19 transmission [48]. The reader is advised to refer to the study of
Arikoglu and Ozkol for the theorems and properties of fractional DTM [46]. The solution
of the fractional Bernoulli differential Equation (20) using fractional DTM has been shown
below (Figure 8).
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Figure 8. The fractional DTM solution for (20) compared to the numerical solution.

The values for the numerical solution (PC method) and the approximate solutions
have been compared for x ∈ [0, 1] in the table below (Table 7).

Table 7. Numerical and approximate solutions of (20) compared for x ∈ [0, 1] and n = 1.

x PC
Method

DTM Oq-HAM
q-HAM

(h = −0.5)
q-HAM
(h = −1)

q-HAM
(h = −1.25)

0.1 0.99809477 0.99811661 0.99812903 0.99823303 0.99811661 0.99812438

0.2 0.98968409 0.98972089 0.98978053 0.99032479 0.98972089 0.98977507

0.3 0.97341252 0.97347280 0.97358992 0.97487314 0.97347292 0.97369769

0.4 0.95054829 0.95063802 0.95077595 0.95282813 0.95064119 0.95145505

0.5 0.92440765 0.92453475 0.92462529 0.92713087 0.92456096 0.92725681

0.6 0.89960938 0.90008460 0.89976706 0.90220525 0.90002374 0.90798397

0.7 0.88137849 0.88596782 0.88143340 0.88332823 0.88287250 0.90323390

0.8 0.87523525 0.91332540 0.87512733 0.87617499 0.87987603 0.92411447

0.9 0.88720130 1.13112410 0.88689226 0.88683630 0.89823968 0.97849497

1.0 0.92444239 2.18855686 0.92399200 0.92244773 0.94414273 1.06294033

Note that the approximate solutions for fractional DTM have been obtained with
30 terms in the approximation. Although a detailed approximation has been obtained
for (20) with fractional DTM, the results show that the optimal q-HAM provides a better
approximation with optimal h values. Hence, it can be concluded that the convergence
is improved in comparison to the classical q-HAM and the DTM method as well by
optimizing the value of the auxiliary parameter. The relative errors in Table 8 show how the
approximation obtained with optimal q-HAM has incomparably smaller relative errors. For
instance, at x = 0.9, the relative error for DTM (0.274935128211391) is more than 700 times
larger than the relative error for optimal q-HAM (0.348329311959152× 10−3).

The solutions obtained with q-HAM have varying relative errors, depending on the
choice of the value of the auxiliary parameter h. Figure 6 presents the solution curve
obtained by using the optimal h value in comparison to the solution curve obtained with
q-HAM using h = −1. As the value of the parameter h approaches its optimal value, the
relative errors are expected to decrease, which also means the curves from Oq-HAM and
q-HAM become closer. The results in Tables 7 and 8 and the curves in Figure 6 are a clear
indicator of the importance of using the optimal h value. This value, obtained by analyzing
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the square errors to obtain the minimal error, clearly results in a better approximation to
the exact solution.

Table 8. Relative errors in approximate solutions of (20) compared.

x DTM
q-HAM

(h = −0.5)
q-HAM
(h = −1)

q-HAM
(h = −1.25)

Oq-HAM

0.1 0.00002188 0.00013853 0.00002188 0.00002967 0.03431887× 10−3

0.2 0.00003718 0.00064738 0.00003718 0.00009193 0.09744808× 10−3

0.3 0.00006192 0.00150051 0.00006204 0.00029295 0.18224420× 10−3

0.4 0.00009440 0.00239845 0.00009774 0.00095394 0.23951227× 10−3

0.5 0.00013749 0.00294591 0.00016584 0.00308215 0.23543438× 10−3

0.6 0.00052825 0.00288554 0.00046059 0.00930913 0.17527668× 10−3

0.7 0.00520699 0.00221215 0.00169508 0.02479686 0.06229900× 10−3

0.8 0.04351990 0.00107370 0.00530232 0.05584695 0.12330404× 10−3

0.9 0.27493513 0.00041140 0.01244180 0.10290074 0.34832931× 10−3

1.0 1.36743456 0.00215768 0.02131052 0.14981782 0.48719902× 10−3

Example 4 (Fractional Abel Differential Equation). Consider the following fractional Abel
differential equation of the first kind.

Dα
xy = x4y− x2y2 − xy3 + x, y(0) = 1.

Using H(x) = 1 and α = 0.5 in the q-HAM, the first three terms are obtained as

u1(x) = 0.5641895835477563h(1.0666666666666667x2.5 − 0.8126984126984127x4.5),
u2(x) = 0.5641895835477563h2(1.550897119542327x4 + 0.930538271725396x5

−0.974849617998034x6 − 0.999510992262865x7 + 0.2671648878690047x9)
+(h + n)(0.5641895835477563h(1.0666666666666667x2.5 − 0.8126984126984127x4.5)),
u3(x) = 1

x0.5 0.5641895835477563h2(n(1.550897119542327x4.5 + 0.930538271725396x5.5

−0.974849617998034x6.5 − 0.999510992262865x7.5 + 0.2671648878690048x9.5)
+h(1.550897119542327x4.5 + 0.930538271725396x5.5 + 1.9393939393939406x6

−0.974849617998034x6.5 + 3.0085738865913085x7 − 0.999510992262865x7.5

−0.15138592266939213x8 − 3.1885000918855044x9 + 0.2671648878690048x9.5

−1.2512690912236175x10 + 0.882618761181763x11 + 0.5561133343471595x12

−0.07204306295221984x14)) + (h + n)(0.5641895835477563h2(1.550897119542327x4

+0.930538271725396x5 − 0.974849617998034x6 − 0.999510992262865x7

+0.2671648878690047x9) + (h + n)(0.5641895835477563h(1.0666666666666667x2.5

−0.8126984126984127x4.5))).

The h-curve graphs for α = 0.5 and α = 1 at x = 1 are given in Figure 9a,b. Here, four
terms (k = 4) are used for the q-HAM solution. The optimal h values can be determined in
the convergence region where u′′m(x) = 0.

The convergence regions, the optimal h-values and square residual errors for α = 0.5
and α = 1 are given, in Tables 9 and 10, respectively.

The numerical solution graphs of the optimal q-HAM and the PC method for the
h values obtained are shown in Figures 10 and 11. Only one plot has been given for
n = 1 and n = 20 in both figures, since these values of the parameter produce inseparable
solution curves.
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(a) 

 
(b) 

Figure 9. (a) h-curve graphs for α = 0.5 at x = 1. (b) h-curve graphs for α = 1 at x = 1.

Table 9. The optimal h and the convergence region of h for α = 0.5.

n Convergence Region Optimal h Δm

1 −0.4733 < h < −0.3412 −0.44457431 0.00001744

5 −1.7703 < h < −3.0819 −2.22287156 0.00001744

10 −4.7330 < h < −3.5605 −4.44574312 0.00001744

15 −7.8677 < h < −5.2408 −6.66861468 0.00001744

20 −7.0409 < h < −11.4363 −8.89148624 0.00001744

It is seen from Figure 10 that the Oq-HAM solution and the PC method exhibit similar
behaviors. To analyze the graphs numerically, the relative errors at several points can
be analyzed. The relative errors are given in the following table for α = 0.5 and α = 1
(Table 11).

Once again, the tables and figures show that for the optimal h values, minimal square
residual errors are obtained and the solutions from the PC and Oq-HAM methods are
almost identical within the interval of interest.
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Table 10. The optimal h and the convergence region of h for α = 1.

n Convergence Region Optimal h Δm

1 −0.8361 < h < −0.5755 −0.66406054 0.00000287

5 −3.9465 < h < −2.9461 −3.32030272 0.00000287

10 −8.3606 < h < −6.0067 −6.64060545 0.00000287

15 −11.8395 < h < −9.0364 −9.96090817 0.00000287

20 −14.7504 < h < −12.0772 −13.28121090 0.00000287

 
Figure 10. The approximate solutions for optimal h values for α = 0.5, n = 20.

 
Figure 11. The approximate solutions for optimal h values for α = 1 and n = 1.

The approximate solution of the fractional Abel differential equation obtained with
fractional DTM using 30 terms in the approximation is shown below (Figure 12).

Several values of x ∈ [0, 1] have been compared below for the numerical solutions and
the approximate solutions of the fractional Abel differential equation (Table 12).

The relative errors (relative to the numerical solution) for the approximate solutions
obtained with the fractional DTM and optimal q-HAM methods have been compared below
(Table 13).
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Table 11. Relative errors from Oq-HAM compared for various values of α and n.

x n = 1, α = 0.5 n = 20, α = 0.5 n = 1, α = 1

0.1 0.00018036 0.00018036 0.00000398

0.2 0.00061307 0.00061307 0.00002582

0.3 0.00084274 0.00084274 0.00005754

0.4 0.00058553 0.00058553 0.00006133

0.5 0.00003805 0.00003805 0.00000251

0.6 0.00040642 0.00040642 0.00010365

0.7 0.00055971 0.00055971 0.00018170

0.8 0.00046573 0.00046573 0.00014956

0.9 0.00008034 0.00008034 0.00003481

1.0 0.00077584 0.00077584 0.00044462

 
Figure 12. The approximate solutions from fractional DTM compared to the numerical solutions.

Table 12. Solutions of the fractional Abel equation compared.

x PC Method DTM Optimal q-HAM (n = 1)

0.1 0.99816551 0.99819974 0.99834554

0.2 0.99081774 0.99090882 0.99142519

0.3 0.97841889 0.97858007 0.97924344

0.4 0.96353307 0.96378185 0.96409724

0.5 0.94931777 0.94939298 0.94935389

0.6 0.93876790 0.93435200 0.93838637

0.7 0.93448129 0.89709713 0.93395826

0.8 0.93869199 0.74365559 0.93825481

0.9 0.95338380 0.17671416 0.95330720

1.0 0.98037835 −1.58723431 0.98113897

Note that the improved convergence obtained through the use of the optimal value for
the auxiliary parameter in the optimal q-HAM can be observed in the figures. The relative
error for the optimal q-HAM is more than 1000 times smaller compared to the relative error
for the fractional DTM method at x = 0.9. The results in Tables 12 and 13 and Figures 10–12
also underline that optimal q-HAM provides a better approximation for this equation.
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Table 13. Relative errors for the fractional Abel equation compared.

x DTM Oq-HAM

0.1 0.00003430 0.00018036

0.2 0.00009192 0.00061307

0.3 0.00016474 0.00084274

0.4 0.00025820 0.00058553

0.5 0.00007923 0.00003805

0.6 0.00470394 0.00040642

0.7 0.04000525 0.00055971

0.8 0.20777465 0.00046573

0.9 0.81464531 0.00008034

1.0 2.61900180 0.00077584

4. Discussion

There are only a limited number of studies on the approximate solutions of fractional
Abel differential equations in the literature. One study that might be considered related,
by Jafari et al. [40], presents the application of HAM for the analysis of Abel equations
of fractional order. This study improves the mentioned study and the following related
studies in a way that adds to the current literature with a detailed presentation of Oq-
HAM for Abel-type differential equations. The convergence analysis and the resulting
optimality investigation for the auxiliary parameter h, comparison of the results with
q-HAM, DTM, PC methods and exact solutions, etc. provide an in-depth analysis that
extends the existing methodology. Some of the numerical results found in the literature are
given below to compare the findings of this article with the existing literature numerically
as well. The study by Al-Smadi et al. presents numerical values for the residual errors in
the numerical solution of Abel differential equations analyzed fractionally with a Caputo–
Fabrizio derivative using the reproducing kernel method [37]. The results of this study
show that, for t ∈ [0, 1], the residual errors have a minimal value of 2.675× 10−3 for α = 0.9
and 2.679× 10−3 for α = 0.85. Although the error decreases for non-integer orders of
derivation that are closer to 1, considering that the relative errors in Table 8 are given for
α = 0.5, it can be said that the results in our study are better in some regions. For instance,
the Oq-HAM relative error at x = 1.0 (the highest amount in the inspected interval) is
0.487× 10−3. This relative error is also better than the error obtained with fractional DTM
as well. The similarity between the approximate solutions of the optimal q-HAM and the
exact/numerical solutions for the examples is also in accordance with the similarity of the
results from the reproducing kernel method and the exact solutions given in Al-Smadi
et al. [37]. Another study by Rigi and Tajadodi presents numerical results obtained for
fractional Abel differential equations in the Caputo sense using Genocchi polynomials [38].
Results are given for x ∈ [0, 1] for two examples, and it can be said that the similarity
of the approximate solutions to the exact/numerical solutions in this study matches the
similarity between the approximate and exact solutions presented in the study by Rigi and
Tajadodi [38]. For instance, the relative error in Example 4, for n = 1, α = 0.5 is around
0.776× 10−3 at x = 1 in our study, whereas the absolute error for α = 1 with N = 4 in the
Genocchi polynomials method is obtained as 8.56552× 10−3 at x = 1 for the first example
in the referred study. Results from existing numerical approximation methods are also
found to be similar to the findings presented in our study. However, considering that
Oq-HAM is an approximate analytical method, it can be said that the method provides
better results in comparison to the other approximate analytical solution methods available
for fractional Abel equations in the literature.
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5. Conclusions

In this study, the optimal q-Homotopy Analysis Method (Oq-HAM) has been used to
analyze Abel differential equations with various coefficient functions. Bernoulli and Riccati
equations, which are special forms of Abel differential equations, are used, along with
the general case in ordinary and fractional frameworks, to demonstrate the application
of q-HAM. The Caputo fractional derivative is used to obtain fractional Abel differential
equations from ordinary equations, and applications of optimal q-HAM are given for
ordinary Abel equations and fractional Abel equations. This flow has been specifically
designed to start from the application of q-HAM for ordinary Abel equations and finally
reach the application of the optimal method for fractional equations. Four numerical exam-
ples have been given to present the method for obtaining the approximate solutions of the
equations using q-HAM. The solutions are then analyzed to determine the optimal value of
the convergence control parameter by minimizing the square residual errors. A theoretical
analysis of the improvement in the convergence obtained using the auxiliary parameter in
optimal q-HAM has been given by Liao [9] for the case with ordinary derivatives. Hence,
this study is structured to present the improvement gained for the analysis of fractional
Abel equations by focusing on comparisons of the application of optimal q-HAM with
various other schemes. The optimal values of the auxiliary parameter h have been given
to show the convergence regions, and the approximate solutions corresponding to these
optimal values have been compared with the exact or numerical solutions of the problems.
The results show that the use of Oq-HAM enables finding the optimal values of h and, thus,
finding better approximations than those obtained by using q-HAM. The exact solutions or
numerical solutions obtained with the NDSolve function are shown to be almost identical
to the approximate solutions from Oq-HAM when the optimal values of the auxiliary
parameter are used. The specific aim of this study is to analyze the approximations with
q-HAM for Abel equations and to improve the convergence through optimizing auxiliary
parameters. This is verified through the presentation of the results showing that Oq-HAM
enhances the convergence of the solutions that would be obtained by using HAM, q-HAM
or similar other methods.

The first example, the ordinary Riccati equation, has been analyzed with q-HAM and
Oq-HAM and the solutions have been compared with the exact solution. Relative error
analysis shows that, for n = 1, the optimal value of the auxiliary parameter h is obtained
as h = −1.87312216. This is verified by the analysis of approximate solutions obtained
with q-HAM, where the solutions were analyzed for h = −0.5,−1 and −1.25 when n = 1.
Results show that the relative errors (relative to the exact solution) are growing along with
the increase in x and for x = 1, the relative errors are obtained as 0.28971143 (h = −0.5),
0.08673558 (h = −1), 0.04471525 (h = −1.25) and 0.00767123 (optimal h). This shows that
the relative error for optimal h is at least 170 times smaller for Oq-HAM. The improvement
in the approximation using the optimal h value can also be seen for the case where n = 20.
Figure 2 shows the similarity of the solution curves for the exact solution and the Oq-HAM
solution. The improvement from q-HAM to Oq-HAM is further analyzed for the fractional
Bernoulli equation in the third example. The relative errors in Table 8, shown for various
selections of the parameters, are better than the relative errors given for the solutions from
q-HAM in all cases analyzed for this example.

Approximate solutions of fractional Abel equations have also been obtained with
fractional DTM to highlight the improved convergence obtained with optimal q-HAM. A
similar growth in relative errors, along with the increase in x, is seen for both methods.
However, as Figure 12 suggests, the relative error of DTM at x = 1 (2.61900180) is almost
3375 times more than the relative error obtained with Oq-HAM (0.00077584). Further
discussion of Oq-HAM is given in comparison to the exact solutions and numerical solu-
tions obtained with the predictor–corrector method. Figures and tables provide results
that verify that optimal q-HAM is a reliable tool for the investigation of fractional Abel
differential equations.
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This manuscript presents a case study for the application of the well-established opti-
mal q-HAM to achieve improved approximations for fractional Abel differential equations.
A detailed comparison of the approximate results obtained by using the optimal values of
the auxiliary parameter determined with Oq-HAM justifies the advantages of the method.
This methodology can be generalized to other fractional equations containing different
fractional derivatives for a wider range of applications. Many differential equations and
mathematical models can be evaluated through the use of optimal q-HAM to obtain better
approximations of the solutions. Possible future studies can be made for the comparison
of the solutions obtained with the q-HAM and optimal q-HAM methods with other ap-
proximation methods such as the VIM method for fractional Abel differential equations.
Comparison of the approximate solutions with numerical schemes, such as the fractional
Euler method, to investigate the convergence of solutions could also form the basis for new
studies. The use of random components and other definitions of fractional derivation are
among the possible ideas for future investigations.
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Abstract: The time-fractional generalized Burger–Fisher equation (TF-GBFE) is utilized
in many physical applications and applied sciences, including nonlinear phenomena in
plasma physics, gas dynamics, ocean engineering, fluid mechanics, and the simulation of
financial mathematics. This mathematical expression explains the idea of dissipation and
shows how advection and reaction systems can work together. We compare the homotopy
perturbation transform method and the new iterative method in the current study. The
suggested approaches are evaluated on nonlinear TF-GBFE. Two-dimensional (2D) and
three-dimensional (3D) figures are displayed to show the dynamics and physical properties
of some of the derived solutions. A comparison was made between the approximate and
accurate solutions of the TF-GBFE. Simple tables are also given to compare the integer-
order and fractional-order findings. It has been verified that the solution generated by
the techniques given converges to the precise solution at an appropriate rate. In terms of
absolute errors, the results obtained have been compared with those of alternative methods,
including the Haar wavelet, OHAM, and q-HATM. The fundamental benefit of the offered
approaches is the minimal amount of calculations required. In this research, we focus on
managing the recurrence relation that yields the series solutions after a limited number
of repetitions. The comparison table shows how well the methods work for different
fractional orders, with results getting closer to precision as the fractional-order numbers get
closer to integer values. The accuracy of the suggested techniques is greatly increased by
obtaining numerical results in the form of a fast-convergent series. Maple is used to derive
the approximate series solution’s behavior, which is graphically displayed for a number of
fractional orders. The computational stability and versatility of the suggested approaches
for examining a variety of phenomena in a broad range of physical science and engineering
fields are highlighted in this work.

Keywords: elzaki transform; caputo derivative; time fractional generalized Burger–Fisher
equation (TF-GBFE); new iterative method; homotopy perturbation method

1. Introduction

A unique area of applied analysis, fractional calculus, deals with real or complex
derivatives of any order. Therefore, we may generalise the formula from positive integer
to any real-order differentiation because fractional-order calculus provides us with an
understanding of differentiation and course integration. FC was founded by two math-
ematicians, Leibniz and L’Hospital, and its precise birthdate is thought to have been
30 September 1695. The extension of classical calculus known as fractional calculus is
gaining popularity in various fields, including fluid mechanics, control theory, and signal
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processing. Although fractional calculus, particularly fractional differential equations, is a
topic that is frequently addressed nowadays. In fact, the famous mathematician Abel first
introduced the concept in 1823. Scientists from several fields have worked on fractional
calculus for the past 200 years. Numerous definitions exist for fractional derivatives, but not
all are frequently applied. The most commonly used operators are the Riemann-Liouville
(R-L), Caputo-Fabrizio, Caputo, and conformable operators [1–5]. The R-L and Caputo
fractional derivatives have singular kernels. The index law and other classical conditions
were satisfied by this class of fractional differential operators. This singularity prevents the
description of the entire physical structure of memory. The ability to simulate and analyse
complex systems with intricate nonlinear processes and higher-order behaviours makes
fractional derivatives better for modelling in some situations than integer-order derivatives.
This has two primary reasons. First, the derivative operator does not have to be of an
integer order; we can use any order. Second, non-integer-order derivatives are useful when
the system has long-term memory, depending on the present and past situation. Non-
classical differential equations are a generalisation of conventional differential equations
with fractional derivatives. Fractional differential equations have been widely employed
for their relaxation and oscillation models in physics, biology, engineering, chemistry, and
other domains [6–10].

The study of fractional-order chaotic systems has gained popularity in recent years as
chaotic theory research has advanced and gotten more refined. Specifically, the fractional-
order chaotic systems’ complexity is correlated with both the system’s fractional order
and parametric characteristics. The four-wing fractional chaotic system [11], fractional
Lorenz hyperchaotic system [12], fractional Lorenz system [13], and other non-integer-order
chaotic systems have been proposed by numerous scholars based on integer-order chaotic
systems [14,15]. Many researchers have made some progress in the numerical finding of
fractional chaotic systems, specifically in the discretisation of fractional chaotic systems,
using the Adomian decomposition method (ADM) [11–13], the Adams-Bashforth-Moulton
(ABM) algorithm [16,17], and the frequency-domain method (FDM) [18]. Using Laplace
change, FDM employs a high-dimensional system that is nearly fractional-order, although
the error is comparatively substantial [19]. Although ABM is the most widely employed
technique, it operates slowly. In contrast, the ADM method is more accurate and uses less
computing power than the ABM algorithm [11–13]. According to reference [20], complexity,
the Lyapunov index, the bifurcation diagram, and other factors demonstrate that fractional-
order chaotic systems exhibit more complicated chaotic behaviours than integer-order
chaotic systems. The complexity of the system increases with decreasing system order [21].

The growing field of artificial intelligence provided new opportunities for estimating
the parameters of dynamic systems. There have been attempts to include deep learning in
dynamic system modelling, which uses neural networks to approximate unknown system
dynamics, because of its powerful function approximation capabilities and end-to-end
learning paradigm. ResNet is a highly important work that was proposed recently and has
transformed deep learning with its deep residual learning, which allows networks to be
trained deeper than previously utilised networks using shortcut connections [22–24]. Yan
et al. [25] investigated how resilient neural ODEs were to input disturbances and offered
strategies to improve their stability and dependability. Poli et al. [26] show how combin-
ing neural ODE with graph neural networks may efficiently simulate dynamic processes
on networks, expanding the use of neural ODE to graph-structured data. Zhu et al. [27]
worked on the neural ODE’s numerical integration feature. Their study focused on a
crucial element influencing the effectiveness and performance of neural ODEs in a range
of applications. Recently, Yong Yang et al. [28] proposed a novel approach to parameter
estimation that combines physical prior knowledge with neural ordinary differential equa-
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tions (neural ODEs). This method can achieve robust and accurate parameter estimation
under high noise and small sample conditions, particularly for complex nonlinear dynamic
systems. These papers demonstrate the advancements made and the areas that require
further research to reach the full potential of neural ODEs in dynamic system modelling.

Our everyday lives are filled with randomness and uncertainty [29], such as estimating
the number of points before a dice roll, forecasting the weather, and projecting a company’s
stock price. These occurrences show how unpredictable and varied many facets of life
are by nature. In recognition of this, scholars have long endeavoured to comprehend
and measure uncertainty in a methodical manner. When only discrete observations are
available, estimating unknown parameters is a critical problem in uncertain differential
equations (UDE). Yao and Liu [30] first presented the method of moments, which was based
on the Euler method. This approach was further expanded to parameter estimation for
unknown delay differential equations by Liu and Jia [31]. A novel approach to estimating
unknown parameters by creating a minimization optimization problem was presented
by Wu [32]. In comparison to conventional UDE methods, this approach offers more
parameter degrees of freedom, can better fit real data, and increases forecast accuracy.
Jing Ning et al. [33] employ prediction-correction techniques to solve fractional UDEs
and introduce rectangular and trapezoidal algorithms to numerically approximate the
optimization problem in order to broaden its research on parameter estimation accuracy.

Fractional partial differential equations (FPDEs) have received a lot of attention in
recent decades because of their rapidly expanding and wide-ranging applications in various
scientific and technical fields, such as biology, chemistry, electrical engineering, medicine,
and viscoelasticity. Further information on these and other uses can be found in earlier
research [34–37]. In this perspective, including FPDE approximations and approximate
solutions is crucial for perfectly describing the dynamics of basic physical processes. Given
the previously discussed facts, mathematicians have created and applied a wide variety
of approximate and analytical methods to solve several significant mathematical models
related to real-world issues. Despite the difficulty of finding analytical or even close
solutions to some nonlinear FPDEs and systems of FPDEs, mathematicians continue to
work in this field [38–41]. Several approaches have been utilised for addressing FPDEs,
including the optimal homotopy analysis method [42], the general residual power series
method [43], the homotopy analysis method [44], the Galerkin finite element method [45],
and the finite difference method [46].

Due to their ability to simulate tidal oscillations brought on by undersea landslides
and tsunamis, nonlinear diffusion and convection equations are crucial to oceanography
and fluid dynamics. Examples of nonlinear dispersive waves and travelling waves that
frequently occur in oceanography, marine engineering, acoustics, and fluid dynamics
include gravitational waves, surface water disturbances in shallow rivers and seas, ship
bumps on water, and tsunami dispersion [47–49]. Burgers-type equations for various wave
propagation processes have drawn a lot of interest in these fields. These models depict
interface dynamics, non-equilibrium, and nonlinear turbulence in hydrodynamics and
ocean sciences. This study aimed to better understand the mechanism dictated by nonlinear
FPDEs by investigating TFGBFE. The response, dissipation mechanisms, and advection are
combined in the nonlinear equation called the TF-GBFE. The Burgers and Fisher diffusion
transfer qualities and reaction form properties are used in this nonlinear equation.

The TF-GBFE is an interesting fluid dynamic model that several researchers have
studied to help examine various numerical techniques and the mathematical analysis of
physical flows. Due to the inclusion of diffusion mechanisms, convection, and reaction, the
TF-GBFE is highly nonlinear. It is called Burger–Fisher because it combines the diffusion
and reaction qualities of Fisher’s equation with the convective and diffusion properties of
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Burger’s equation. The TF-GBFE is an important nonlinear diffusion equation in ocean
engineering since it depicts the distant field of wave propagation in the ocean. Strong
turbulent diffusion leads to the travelling waves due to convection, turbulent diffusion,
and nonlinear radiation’s impact on the irregularity of sea surface temperature. The
currents created by winds determine the travelling wavefronts’ speed and direction of
movement [50]. According to [51], the TF-GBFE is responsible for the convection-diffusion
model that may replicate underwater landslides, which could lead to the most dangerous
tsunamis in the coastal area.

The TF-GBFE can be expressed as follows using the fractional order η and any real
constants a, b, and δ:

Dη
℘P(δ,℘)− Pδδ(δ,℘) + aPδ(δ,℘)Pδ(δ,℘) + bP(δ,℘)(Pδ(δ,℘)− 1) = 0, 0 < η ≤ 1,

0 ≤ δ ≤ 1, ℘ ≥ 0
(1)

here a, b, δ are positive parameters, having initial guess as:

P(δ, 0) =

[
1
2

(
1− tanh

(
aδ

2(1 + δ)
δ

))] 1
δ

. (2)

having an exact solution:

P(δ,℘) =

[
1
2

(
1− tanh

(
aδ

2(1 + δ)

(
δ−

(
a2 + b(1 + δ)2

a(1 + δ)

)
℘

)))] 1
δ

. (3)

Differential equations are usually solved with simple mathematical techniques such as the
Fourier, Laplace, Sumudu, and Elzaki transforms. Khuri [52] uses the Laplace transform
(LT) in combination with the Adomian decomposition approach to get the approximate
solution of a class of ordinary differential equations that are nonlinear. Many scholars
have used a variety of techniques in connection with the LT approach to solve partial
differential equations in recent years. These include the homotopy perturbation transform
method [53], laplace variational iteration strategy [54], the Laplace homotopy analysis
method [55], and many more. The new iterative transform method (NITM) and the
homotopy perturbation transform method (HPTM) are extended in this study to solve
TF-GBFE. Guo created non-abelian extensions of Rota-Baxter algebras, which serve as
the foundation for other decomposition techniques, such as the Adomian polynomials
employed in NITM [56]. The Daftardar–Jafari and Adomian polynomials are combined in
the NITM [57], which is a modified version of the Elzaki transform decomposition method.
The offered method merges the New Iterative Method (NIM) and Elzaki transformation.
Tarig ELzaki presented the Elzaki Transform (ET), a novel integral transform, in 2010. ET
is a modified version of the Laplace and Sumudu transforms. It is important to note that
some differential equations with variable coefficients may be difficult to solve using the
Sumudu and Laplace transforms, but they can be quickly resolved with ET’s help. He
introduced HPM in 1998 [58,59]. His polynomials are used to decompose the nonlinear
terms after the differential equations are transformed into algebraic equations with the aid
of the ET. The result of this method is taken to be in series form, which quickly converges
to the precise answer after a small number of terms. This method can be used to solve
nonlinear PDEs effectively. A higher level of accuracy was verified when the HPTM results
were compared with the real solution to the issues. The methods offered accurate solutions
to challenging issues, resulting in remarkable outcomes. The fractional problem findings
acquired by applying the given approaches are also utilised to assess the issues from a
fractional perspective. In summary, the original FPDE is transformed into its corresponding
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PDE by approximating the fractional Caputo derivative using the Elzaki transform method.
The original FPDE may be solved quickly and easily by using the new iterative method
and the homotopy perturbation method on the derived PDE. The current study is essential
because it finds an approximate, fractional-order solution to the TF-GBFE equations by
employing two relatively new and innovative methods. It also compares the accurate
solution of the proposed models to fourth-order approximations for a range of values of the
fractional derivative. The presentation of two novel strategies for TF-GBFE with minimal
and progressive phases makes this work interesting. The outline of our work is given below:
Important definitions of FC are given in Section 2. The main notion of NITM is presented
in Section 3, and the basic concept of the HPTM approach is presented in Section 4. The
convergence and uniqueness results were covered in Section 5. In Section 6, the suggested
techniques with the validity of the error bound theorem are provided. Section 7 presents a
numerical problem to demonstrate the significance of the approaches mentioned. A brief
discussion of the core outcomes and conclusions is provided in Section 8.

2. Basic Definitions

Here, we give some important definitions related to the current study.

Definition 1. The Abel–Riemann non-integer derivative is as [60]

Dην(℘) =

⎧⎨⎩
d�

d℘� ν(℘), η = �,
1

Γ(�−η)
d

d℘�

∫ ℘
0

ν(℘)
(℘−δ)η−�+1 dδ, �− 1 < η < �,

(4)

with � ∈ Z+, η ∈ R+ and

D−ην(℘) =
1

Γ(η)

∫ ℘

0
(℘− δ)η−1ν(δ)dδ, 0 < η ≤ 1. (5)

Definition 2. The Abel-Riemann non-integer integration operator is as [60]

Jην(℘) =
1

Γ(η)

∫ ℘

0
(℘− δ)η−1ν(℘)d℘, ℘ > 0, η > 0, (6)

with given properties:

Jη℘� =
Γ(� + 1)

Γ(� + η + 1)
℘�+δ,

Dη℘� =
Γ(� + 1)

Γ(�− η + 1)
℘�−℘.

Definition 3. The Caputo non-integer derivative is as [61]

CDην(℘) =

⎧⎨⎩
1

Γ(�−η)

∫ ℘
0

ν�(δ)
(℘−δ)η−�+1 dδ, �− 1 < η < �,

d�

d℘� ν(℘), � = η,
(7)

with given properties
�

η
℘Dη

℘g(℘) = g(℘)−∑m
k=0 gk(0+)℘

k

k! , f or ℘ > 0, and �− 1 < η ≤ �, � ∈ N.
Dη
℘�

η
℘g(℘) = g(℘).

Lemma 1. For n < η ≤ 1, ℘ ≥ 0 and k ∈ R, we have
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(a) Dη
℘℘

k =
Γ(k + 1)

Γ(k + 1− η)
℘k−η .

(b) Dη
℘ Iη

℘[P(δ,℘)] = P(δ,℘).

(c) Iη
℘℘

k =
Γ(k + 1)

Γ(k + 1 + η)
℘k+η .

(d) Iη
℘Dη

℘[P(δ,℘)] = P(δ,℘)−
n−1

∑
i=0

∂i
P(δ, 0)

℘i

i!
.

Definition 4. The ET of a function is as [62]

E[g(℘)] = G(r) = r
∫ ∞

0
h(℘)e

−℘
r d℘, r > 0. (8)

Definition 5. The ET of Caputo operator is stated as [62]

E[Dη
℘g(℘)] = s−ηE[g(℘)]−

�−1

∑
k=0

s2−η+kg(k)(0), where �− 1 < η < �.

3. General Procedure of NITM

Here, we illustrated the general analysis of the offered approach as given.

Dη
℘P(δ,℘) + NP(δ,℘) + MP(δ,℘) = h(δ,℘), ℘ > 0, 1 < η ≤ 0, (9)

with
P

k(δ, 0) = f (δ), (10)

with N, M indicates the linear and nonlinear terms.
By executing the ET to Equation (9), we may have

E[Dη
℘P(δ,℘)] + E[NP(δ,℘) + MP(δ,℘)] = E[h(δ,℘)]. (11)

In terms of differentiation property

E[P(δ,℘)] =
m

∑
k=0

s2−η+k
P
(k)(δ, 0) + sηE[h(δ,℘)]− sηE[NP(δ,℘) + MP(δ,℘)]. (12)

Now by executing the inverse ET to Equation (12),

P(δ,℘) = E−1

[{
m

∑
k=0

s2−η+k
P

k(δ, 0) + sη E[h(δ,℘)]

}]
− E−1

[
sη E

[
NP(δ,℘) + MP(δ,℘)

]]
. (13)

By iterative process, we may have

P(δ,℘) =
∞

∑
m=0

Pm(δ,℘), (14)

N

(
∞

∑
m=0

Pm(δ,℘)

)
=

∞

∑
m=0

N[Pm(δ,℘)], (15)

the nonlinear term N is decomposed as

N

(
∞

∑
m=0

Pm(δ,℘)

)
= P0(δ,℘) + N

(
m

∑
k=0

Pk(δ,℘)

)
−M

(
m

∑
k=0

Pk(δ,℘)

)
. (16)
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On utilizing Equations (14)–(16) into Equation (13), we may have

∞

∑
m=0

Pm(δ,℘) = E−1

[
sη

(
m

∑
k=0

s2−δ+k
P

k(δ, 0) + E[h(δ,℘)]

)]

− E−1

[
sηE

[
N

(
m

∑
k=0

Pk(δ,℘)

)
−M

(
m

∑
k=0

Pk(δ,℘)

)]]
.

(17)

By using iterative formula, we may have

P0(δ,℘) = E−1

[
sη

(
m

∑
k=0

s2−δ+k
P

k(δ, 0) + sηE(g(δ,℘))

)]
, (18)

P1(δ,℘) = −E−1[sηE[N[P0(δ,℘)] + M[P0(δ,℘)]], (19)

Pm+1(δ,℘) = −E−1

[
sηE

[
−N

(
m

∑
k=0

Pk(δ,℘)

)
−M

(
m

∑
k=0

Pk(δ,℘)

)]]
, m ≥ 1. (20)

Lastly, the approximate solution to Equation (9) is taken as

P(δ,℘) ∼= P0(δ,℘) + P1(δ,℘) + P2(δ,℘) + · · · , m = 1, 2, · · · . (21)

4. General Procedure of HPTM

Here, we illustrated the general analysis of the offered approach as given.

Dη
℘P(δ,℘) + MP(δ,℘) + NP(δ,℘) = h(δ,℘), ℘ > 0, 0 < η ≤ 1,

P(δ, 0) = f (δ).
(22)

By executing the ET to Equation (22), we may have

E[Dη
℘P(δ,℘) + MP(δ,℘) + NP(δ,℘)] = E[h(δ,℘)], ℘ > 0, 0 < η ≤ 1,

P(δ,℘) = s2g(δ) + sη E[h(δ,℘)]− sη E[MP(δ,℘) + NP(δ,℘)].
(23)

Now by employing the inverse ET, we may have

P(δ,℘) = F(x,℘)− E−1[sηE{MP(δ,℘) + NP(δ,℘)}], (24)

where
F(δ,℘) = E−1

[
s2g(δ) + sηE[h(δ,℘)]

]
= g(ν) + E−1[sηE[h(δ,℘)]]. (25)

In terms of the HPM

P(δ,℘) =
∞

∑
k=0

εk
Pk(δ,℘), (26)

with ε ∈ [0, 1] indicates the perturbation parameter.
The nonlinear terms are decomposed as

NP(δ,℘) =
∞

∑
k=0

εk Hk(Pk), (27)

with Hn indicates He’s polynomials P0,P1,P2, . . . ,Pn, and is demonstrated as

Hn(P0,P1, · · · ,Pn) =
1

η(n + 1)
Dk

ε

[
N

(
∞

∑
k=0

εk
Pk

)]
ε=0

, (28)

where Dk
ε = ∂k

∂εk .
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On utilizing Equations (26) and (27) into Equation (24), we may have

∞

∑
k=0

εk
Pk(δ,℘) = F(δ,℘)− ε×

[
E−1

{
sηE{M

∞

∑
k=0

pk
Pk(δ,℘) +

∞

∑
k=0

εk Hk(Pk)}
}]

. (29)

On comparing the ε coefficients, we may have

ε0 : P0(δ,℘) = F(δ,℘),

ε1 : P1(δ,℘) = E−1[sηE(MP0(δ,℘) + H0(P))],

ε2 : P2(δ,℘) = E−1[sηE(MP1(δ,℘) + H1(P))],

...

εk : Pk(δ,℘) = E−1[sηE(MPk−1(δ,℘) + Hk−1(P))], k > 0, k ∈ N.

(30)

Lastly, the approximate solution to Equation (22) is taken as

P(δ,℘) = lim
M→∞

M

∑
k=1

Pk(δ,℘). (31)

5. Convergence Analysis

The convergence analysis of the applied approaches are stated as below.

Theorem 1. Considering that ℘ is analytic in a neighborhood of P and ||℘m(P0)|| = sup{||℘m(P0)

(b0, b0, · · · bn)/||bk|| ≤ 1, 1 ≤ k ≤ m} ≤ l, for some real number l > 0 and for every number m and
||Pk|| ≤ M < 1

e , k = 1, 2, · · · thus the series ∑∞
m=0 ζm is convergent and also

||ζm|| ≤ lMmem−1(e− 1), m = 1, 2, · · · .

Now to define boundedness of ||Pk||, for each k the conditions on ℘j(P0) are assumed and is
enough to assurance series convergence.

Theorem 2. If ℘ is C∞ and ||℘m(P0)|| ≤ M ≤ e−1 for all m hence the series ∑∞
m=0 ζm is

convergent. These are the conditions for series ∑∞
j=0 Pj to be convergent.

For proof check [63].

Theorem 3. Considering the precise solution of (22) is ζ(δ,℘) and assume ζ(δ,℘), ζn(δ,℘) ∈ H
and α ∈ (0, 1), with H specifies the Hilbert space. The results achieved ∑∞

q=0 ζq(δ,℘) will
converge ζ(δ,℘) if ζq(δ,℘) ≤ ζq−1(δ,℘) ∀q > A, i.e., for each Ω > 0∃A > 0, such that
||ζq+n(δ,℘)|| ≤ β, ∀m, n ∈ N.

Proof. Considering a sequence of ∑∞
q=0 ζq(δ,℘).

Ω0(δ,℘) =ζ0(δ,℘),

Ω1(δ,℘) =ζ0(δ,℘) + ζ1(δ,℘),

Ω2(δ,℘) =ζ0(δ,℘) + ζ1(δ,℘) + ζ2(δ,℘),

Ω3(δ,℘) =ζ0(δ,℘) + ζ1(δ,℘) + ζ2(δ,℘) + ζ3(δ,℘),

...

Ωq(δ,℘) =ζ0(δ,℘) + ζ1(δ,℘) + ζ2(δ,℘) + · · ·+ ζq(δ,℘).

(32)
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We must specify that Ωq(δ,℘) forms a “Cauchy sequence”. Additionally, let’s take

||Ωq+1(δ,℘)−Ωq(δ,℘)|| = ||ζq+1(δ,℘)|| ≤ α||ζq(δ,℘)|| ≤ α2||ζq−1(δ,℘)|| ≤ α3||ζq−2(δ,℘)|| · · ·
≤ αq+1||ζ0(δ,℘)||.

(33)

For q, n ∈ N, we may have

||Ωq(δ,℘)−Ωn(δ,℘)|| =||ζq+n(δ,℘)|| = ||Ωq(δ,℘)−Ωq−1(δ,℘) + (Ωq−1(δ,℘)−Ωq−2(δ,℘))

+ (Ωq−2(δ,℘)−Ωq−3(δ,℘)) + · · ·+ (Ωn+1(δ,℘)−Ωn(δ,℘))||
≤||Ωq(δ,℘)−Ωq−1(δ,℘)||+ ||(Ωq−1(δ,℘)−Ωq−2(δ,℘))||
+ ||(Ωq−2(δ,℘)−Ωq−3(δ,℘))||+ · · ·+ ||(Ωn+1(δ,℘)−Ωn(δ,℘))||

≤αq||ζ0(δ,℘)||+ αq−1||ζ0(δ,℘)||+ · · ·+ αq+1||ζ0(δ,℘)||
=||ζ0(δ,℘)||(αq + αq−1 + αq+1)

=||ζ0(δ,℘)||1− αq−n

1− αq+1 αn+1.

(34)

As 0 < α < 1, and ζ0(δ,℘) are bound, so assume β = 1− α/(1− αq−n)αn+1||ζ0(δ,℘)||,
and we may have

||ζq+n(δ,℘)|| ≤ β, ∀q, n ∈ N. (35)

Therefore, {ζq(δ,℘)}∞
q=0 forms a “Cauchy sequence” in H. It illustrate that the se-

quence {ζq(δ,℘)}∞
q=0 is a convergent sequence taking limit limq→∞ ζq(δ,℘) = ζ(δ,℘) for

∃ζ(δ,℘) ∈ H which verified the theorem.

Theorem 4. Considering that ζ(δ,℘) reveals the acquired series solution and ∑k
h=0 ζh(δ,℘) is

finite. The relation that follows signifies the maximum absolute error, assuming α > 0 with
||ζh+1(δ,℘)|| ≤ ||ζh(δ,℘)||.

||ζ(δ,℘)−
k

∑
h=0

ζh(δ,℘)|| < αk+1

1− α
||ζ0(δ,℘)||. (36)

Proof. Assume ∑k
h=0 ζh(δ,℘) is finite which indicates that ∑k

h=0 ζh(δ,℘) < ∞.
Considering

||ζ(δ,℘)−
k

∑
h=0

ζh(δ,℘)|| =||
∞

∑
h=k+1

ζh(δ,℘)||

≤
∞

∑
h=k+1

||ζh(δ,℘)||

≤
∞

∑
h=k+1

αh||ζ0(δ,℘)||

≤αk+1(1 + α + α2 + · · · )||ζ0(δ,℘)||

≤ αk+1

1− α
||ζ0(δ,℘)||.

(37)

which verified the theorem.

6. Error Estimation

In this section, we introduce error functions to analyse the accuracy and performance of
the proposed methods. The absolute error (En) in the nth-order approximation is as follows,
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assuming that P(℘) is the accurate solution and Pn(℘) is the nth-order approximation of
P(℘) obtained through the proposed methods.

En(℘) = |P(℘)− Pn(℘)|, (38)

then maximum absolute error (MEn) by

MEn = max℘∈[0,1]|P(℘)− Pn(℘)|. (39)

The authors of [64–66] discussed the error bound for their numerical approaches using
well-known lemmas and theorems. We provide an upper bound on absolute error for the
proposed approaches using the following theorem.

Theorem 5 (Error bound). Assume P(℘) ∈ C(n+1)[0, 1] and Pn(℘) = ∑n
i=0 ci℘

i demonstrate
the precise and nth-order achieved solution of (9) and (22), thus upper bound of the absolute error
is as

||P(℘)− Pn(℘)||∞ ≤ M
(n + 1)!

+ max0≤i≤n|ai|, (40)

where M = max0≤t≤1|Pn+1(℘)|, ai = ∑n
i=0

(
Pi(0)

i! − ci

)
.

Proof. Assume P to be a continuous function on [0, 1]; the upper bound of |P| is taken as

||P||∞ = sup
℘∈[0,1]

|P(℘)|. (41)

Employing norm property, we may have

||P(℘)− Pn(℘)||∞ ≤ ||P(℘)− P
∗
n(℘)||∞ + ||P∗n(℘)− P(℘)||∞ (42)

Since P(℘) ∈ C(n+1)[0, 1] so by Taylor expansion, we get

P(℘) = P
∗
n(℘) +

Pn+1(℘0)

(n + 1)!
℘n+1, ℘0 ∈ (0, 1), (43)

with P∗n(℘) = ∑n
i=0

Pi(0)
i! ℘i.

From (43), we may have

||P(℘)− P
∗
n(℘)||∞ = max

0≤℘≤1
|P

n+1(℘)

(n + 1)!
℘n+1|

≤ 1
(n + 1)!

max
0≤℘≤1

|Pn+1(℘)|.
(44)

Now we find the value of ||P(℘)− P∗n(℘)||∞.
Let A = (a0, a1, · · · , an), T = (t0, t1, · · · , tn)T ,

with ai =
Pi(0)

i! − ci, i = 0, 1, · · · , n thus

‖P∗n(℘)− Pn(℘)‖ =
∥∥∥∥∥ n

∑
i=0

Pi(0)
i!

℘i −
n

∑
i=0

ci℘
i

∥∥∥∥∥ =

∥∥∥∥∥ n

∑
i=0

(
Pi(0)

i!
− ci

)
℘i

∥∥∥∥∥
‖A‖∞.‖T‖∞,

‖P∗n(℘)− Pn(℘)‖ = ‖A‖∞.‖T‖∞.

(45)

65



Fractal Fract. 2025, 9, 390

From (44), (45) and (42) we may have

‖P(℘)− Pn(℘)‖ ≤≤ 1
(n + 1)!

max
0≤℘≤1

|Pn+1(℘)|+ ‖A‖∞.‖T‖∞,

‖P(℘)− Pn(℘)‖ ≤≤ M
(n + 1)!

+ max
0≤i≤n

|ai|.
(46)

which complete the proof.

7. Applications

7.1. Example

Consider the one-dimensional TF-GBFE

∂ηP(δ,℘)
∂℘η =

∂2P

∂℘2 − �P
∂P

∂℘
− �P2 + �P, 0 < η ≤ 1, (47)

with initial guess

P(δ, 0) =
1
2
− 1

2
tanh

(
�δ

4

)
. (48)

By executing the ET to Equation (47), we may have

E[P(δ,℘)] = s2

(
1
2
− 1

2
tanh

(
�δ

4

))
+ sηE

[
∂2P

∂℘2 − �P
∂P

∂℘
− �P2 + �P

]
, (49)

Now by employing the inverse ET, we may have

P(δ,℘) =
1
2
− 1

2
tanh

(
�δ

4

)
+ E−1

[
sηE

[
∂2P

∂℘2 − �P
∂P

∂℘
− �P2 + �P

]]
, (50)

By NITM, we may have

P0(δ,℘) =
1
2
− 1

2
tanh

(
�δ

4

)
,

P1(δ,℘) = E−1

[
sηE

{
∂2P0

∂℘2 − �P0
∂P0

∂℘
− �P2

0 + �P0

}]
=

1
16

�(� + 4)

cosh

(
1
4 �δ

)2
℘η

Γ(η + 1)
,

P2(δ,℘) = E−1

[
sη E

{
∂2(P0 + P1)

∂℘2 − �(P0 + P1)
∂(P0 + P1)

∂℘
− �(P0 + P1)

2 + �(P0 + P0)

}]
−

E−1

[
sη E

{
∂2P0

∂℘2 − �P0
∂P0

∂℘
− �P2

0 + �P0

}]
=

1
64

�2(� + 4)2 sinh

(
1
4 �δ

)

cosh

(
1
4 �δ

)3
℘2η

Γ(2η + 1)
−

1
512

�3(� + 4)2

(
− � sinh

(
1
4 �δ

)
+ 2 cosh

(
1
4 �δ

))
Γ(2η + 1)

cosh

(
1
4 �δ

)5

Γ(η + 1)2

℘3η

Γ(3η + 1)
,

...
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Lastly, the series solution is taken as
P(δ,℘) = P0(δ,℘) + P1(δ,℘) + P2(δ,℘) + · · · ,

P(δ,℘) =
1
2
− 1

2
tanh

(
�δ

4

)
+

1
16

�(� + 4)

cosh

(
1
4 �δ

)2
℘η

Γ(η + 1)
+

1
64

�2(� + 4)2 sinh

(
1
4 �δ

)

cosh

(
1
4 �δ

)3
℘2η

Γ(2η + 1)
−

1
512

�3(� + 4)2

(
− � sinh

(
1
4 �δ

)
+ 2 cosh

(
1
4 �δ

))
Γ(2η + 1)

cosh

(
1
4 �δ

)5

Γ(η + 1)2

℘3η

Γ(3η + 1)
+ · · · ,

(51)

By employing the HPTM, we may have
∞

∑
n=0

εn
P

n(δ,℘) =
1
2
− 1

2
tanh

(
�δ

4

)
+ ε

{
E−1

(
sη E

[(
∞

∑
n=0

εn
Pn(δ,℘)

)
δδ

−
(

∞

∑
n=0

εn H1
n(δ,℘)

)
−

�

(
∞

∑
n=0

εn H2
n(δ,℘)

)
+ �

(
∞

∑
n=0

εn
Pn(δ,℘)

)])}
,

(52)

with He’s polynomials Hk(δ) represent the nonlinear terms and is stated as

H1
0 (δ) = P0(P0)δ

H1
1 (δ) = P0(P1)δ + P1(P0)δ

H1
2 (δ) = P2(P0)δ + P1(P1)δ + P0(P2)δ

...

H2
0 (δ) = (P0)

2

H2
1 (δ) = 2P0P1

H2
2 (δ) = 2P0P1 + (P0)

2

On comparing the ε coefficients, we may have

ε0 : P0(δ,℘) =
1
2
− 1

2
tanh

(
�δ

4

)
,

ε1 : P1(δ,℘) =
1
16

�(� + 4)

cosh

(
1
4 �δ

)2
℘η

Γ(η + 1)
,

ε2 : P2(δ,℘) =
1
64

�2(� + 4)2 sinh

(
1
4 �δ

)

cosh

(
1
4 �δ

)3
℘2η

Γ(2η + 1)
,

ε3 : P3(δ,℘) = − �3(� + 4)2

512 cosh

(
1
4 �δ

)5

(
− 2� cosh

(
1
4

�δ

)3

− 8 cosh

(
1
4

�δ

)3

+ 2� sinh

(
1
4

�δ

)
+

3� cosh

(
1
4

�δ

)
+ 8 cosh

(
1
4

�δ

))
℘3η

Γ(3η + 1)
+

�3(� + 4)2

512 cosh

(
1
4 �δ

)5

Γ(η + 1)2

(
� sinh

(
1
4

�δ

)

− 2 cosh

(
1
4

�δ

))
Γ(2η + 1)

℘3η

Γ(3η + 1)

...

(53)

Lastly, the series solution is taken as

P(δ,℘) =
∞

∑
n=0

εn
Pn(δ,℘). (54)
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Hence

P(δ,℘) = P0(δ,℘) + P1(δ,℘) + P2(δ,℘) + · · · ,

P(δ,℘) =
1
2
− 1

2
tanh

(
�δ

4

)
+

1
16

�(� + 4)

cosh

(
1
4 �δ

)2
℘η

Γ(η + 1)
+

1
64

�2(� + 4)2 sinh

(
1
4 �δ

)

cosh

(
1
4 �δ

)3
℘2η

Γ(2η + 1)
−

�3(� + 4)2

512 cosh

(
1
4 �δ

)5

(
− 2� cosh

(
1
4

�δ

)3

− 8 cosh

(
1
4

�δ

)3

+ 2� sinh

(
1
4

�δ

)
+ 3� cosh
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At η = 1, we get exact solution as

P(δ,℘) =
1
2
+

1
2

tanh

[
−�

4

(
δ−

(
�

2
+

2�

�

)
℘

)]
(56)

This study’s graphical and tabular representations offer a thorough understanding of
the precision and dependability of the NITM and HPTM when employed to the TF-GBFE.
The HPTM approximation solution and the exact solution at η = 1 are compared in Figure 1.
The derived solution of NITM and the accurate solution at η = 1 are compared in Figure 2.
Excellent agreement can be seen in the graphical comparisons between the precise solution
and the solutions from the suggested methods. The 3D depiction of the solutions derived
by HPTM and NITM for the TF-GBFE at η = 0.6 and η = 0.8 is shown in Figures 3 and 4.
The 2D plot of the found solution for different fractional orders is shown in Figures 5 and 6,
along with a comparison of the generated and precise solution. Figures 5 and 6 illustrate
the impact of changing the parameter η on the TF-GBFE solutions. The derived solutions
are illustrated in Figures 1–6 for a range of η values with −5 ≤ δ ≤ 5 and temporal
variable 0 ≤ ℘ ≤ 0.1. Tables 1 and 2 present the exact solution for the TF-GBFE while
maintaining η = 0.97, 0.98, 0.98 and 1, as well as the comparative numerical solutions
derived by HPTM and the NITM. Table 3 provides the absolute differences derived from
Haar wavelet, OHAM, q-HATM, HPTM, and NITM. This suggests that the solutions
generated by NITM and HPTM are more suitable than those obtained using q-HATM,
OHAM, and Haar wavelet. It is also clear from Tables 1–3 that the solution obtained by
HPTM after the fourth iteration is obtained by NITM after the third iteration. Hence, the
solutions obtained by NITM are more suitable and efficient than those obtained by HPTM.
Overall, the tabular and graphical data support the finding that both approaches work
well, while NITM provides better accuracy in particular fractional contexts.
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Figure 1. Graphical depict of the (a) accurate as well as (b) HPTM solution for P(δ,℘).

Figure 2. Graphical depict of the (a) accurate as well as (b) NITM solution for P(δ,℘).

Figure 3. Graphical depict of the HPTM solution at (a) η = 0.6 (b) η = 0.8 for P(δ,℘).

Figure 4. Graphical depict of the NITM solution at (a) η = 0.6 (b) η = 0.8 for P(δ,℘).
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Figure 5. 2D Graphical depict of the HPTM solution at (a) several orders of η as well as (b) comparison
with accurate solution.

Figure 6. 2D Graphical depict of the NITM solution at (a) several orders of η as well as (b) comparison
with accurate solution.

Table 1. Behavior of the accurate as well as HPTM solution at several η for P(δ,℘).

δ η = 0.97 η = 0.98 η = 0.99 η = 1 (HPT M) η = 1 (Aacurate)

0.0 0.5002718980 0.5002646308 0.5002575411 0.5002506250 0.5002506250

0.1 0.5001468979 0.5001396308 0.5001325410 0.5001256250 0.5001256250

0.2 0.5000218980 0.5000146308 0.5000075411 0.5000006250 0.5000006250

0.3 0.4998968980 0.4998896309 0.4998825411 0.4998756251 0.4998756250

0.4 0.4997718981 0.4997646308 0.4997575411 0.4997506250 0.4997506250

0.5 0.4996468980 0.4996396309 0.4996325412 0.4996256251 0.4996256251

0.6 0.4995218981 0.4995146310 0.4995075413 0.4995006252 0.4995006252

0.7 0.4993968983 0.4993896312 0.4993825414 0.4993756253 0.4993756253

0.8 0.4992718985 0.4992646313 0.4992575416 0.4992506256 0.4992506256

0.9 0.4991468988 0.4991396317 0.4991325420 0.4991256259 0.4991256259

1.0 0.4990218993 0.4990146321 0.4990075424 0.4990006263 0.4990006263
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Table 2. Behavior of the accurate as well as NITM solution at several η for P(δ,℘).

δ η = 0.97 η = 0.98 η = 0.99 η = 1 (N IT M) η = 1 (Accurate)

0.0 0.5002718980 0.5002646308 0.5002575411 0.5002506250 0.5002506250

0.1 0.5001468979 0.5001396308 0.5001325410 0.5001256250 0.5001256250

0.2 0.5000218980 0.5000146308 0.5000075411 0.5000006250 0.5000006250

0.3 0.4998968980 0.4998896309 0.4998825411 0.4998756251 0.4998756250

0.4 0.4997718981 0.4997646308 0.4997575411 0.4997506250 0.4997506250

0.5 0.4996468980 0.4996396309 0.4996325412 0.4996256251 0.4996256251

0.6 0.4995218981 0.4995146310 0.4995075413 0.4995006252 0.4995006252

0.7 0.4993968983 0.4993896312 0.4993825414 0.4993756253 0.4993756253

0.8 0.4992718985 0.4992646313 0.4992575416 0.4992506256 0.4992506256

0.9 0.4991468988 0.4991396317 0.4991325420 0.4991256259 0.4991256259

1.0 0.4990218993 0.4990146321 0.4990075424 0.4990006263 0.4990006263

Table 3. Comparative analysis of the analytical solution with Haar wavelet, OHAM, and q-HATM.

δ ℘ Haar Wavelet Error [67] OHAM Error [67] q-HATM Error [68] HPTM Error NITM Error

0.1 0.2 5.4804 ×10−5 4.2290 ×10−11 1.1102 ×10−16 0 0
0.4 2.3476 ×10−5 8.4080 ×10−10 8.8818 ×10−16 0 0
0.6 7.8526 ×10−6 3.4030 ×10−9 9.6589 ×10−15 0 0
0.8 3.9181 ×10−5 8.7368 ×10−9 4.7517 ×10−14 1.0×10−10 1.0×10−10

0.2 0.2 2.3553 ×10−5 8.3330 ×10−11 1.1102 ×10−16 0 0
0.4 7.7785 ×10−6 3.3840 ×10−10 4.4409 ×10−16 1.0×10−10 1.0×10−10

0.6 3.9108 ×10−5 2.2730 ×10−9 2.7756 ×10−15 0 0
0.8 7.0440 ×10−5 6.7268 ×10−9 2.6090 ×10−14 0 0

0.3 0.2 7.0426 ×10−5 2.0890 ×10−10 1.1102 ×10−16 0 0
0.4 3.9091 ×10−5 1.6420 ×10−10 1.7764 ×10−15 0 0
0.6 7.7594 ×10−6 1.1420 ×10−9 3.9968 ×10−15 1.0 ×10−10 1.0 ×10−10

0.8 2.3578 ×10−5 4.7168 ×10−9 4.5519 ×10−15 1.0 ×10−10 1.0 ×10−10

0.4 0.2 3.9169 ×10−6 3.3460 ×10−10 3.3307 ×10−16 0 0
0.4 7.8222 ×10−5 6.6670 ×10−10 3.3305 ×10−15 1.0 ×10−10 1.0 ×10−10

0.6 2.3516 ×10−5 1.1300 ×10−11 1.088 ×10−14 0 0
0.8 5.4870 ×10−5 2.7068 ×10−9 1.7097 ×10−14 0 0

0.5 0.2 7.9054 ×10−6 4.6020 ×10−10 3.3307 ×10−16 1.0 ×10−10 1.0 ×10−10

0.4 2.3463 ×10−5 1.1692 ×10−9 4.5519 ×10−15 0 0
0.6 5.4812 ×10−5 1.1190 ×10−9 1.7652 ×10−14 1.0 ×10−10 1.0 ×10−10

0.8 8.6199 ×10−6 6.9680 ×10−10 3.8636 ×10−14 1.0 ×10−10 1.0 ×10−10

0.6 0.2 5.4768 ×10−5 5.8580 ×10−10 4.9960 ×10−16 1.0 ×10−10 1.0 ×10−10

0.4 2.3384 ×10−5 1.6717 ×10−9 5.9952 ×10−15 0 0
0.6 7.9731 ×10−6 2.2490 ×10−9 2.4536 ×10−14 1.0 ×10−10 1.0 ×10−10

0.8 3.9384 ×10−5 1.3132 ×10−9 6.0174 ×10−14 1.0 ×10−10 1.0 ×10−10

0.7 0.2 2.3489 ×10−5 7.1150 ×10−10 4.9960 ×10−16 0 0
0.4 7.9370 ×10−6 2.1742 ×10−9 7.2164 ×10−15 0 0
0.6 3.9317 ×10−5 3.3810 ×10−9 3.1419 ×10−14 0 0
0.8 7.0791 ×10−5 3.3232 ×10−9 8.1712 ×10−14 1.0 ×10−10 1.0 ×10−10
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Table 3. Cont.

δ ℘ Haar Wavelet Error [67] OHAM Error [67] q-HATM Error [68] HPTM Error NITM Error

0.8 0.2 7.0337 ×10−5 8.3710 ×10−10 6.1062 ×10−16 1.0 ×10−10 1.0 ×10−10

0.4 3.8884 ×10−6 2.6767 ×10−9 8.5487 ×10−15 0 0
0.6 7.4894 ×10−5 4.5110 ×10−9 3.8192 ×10−14 0 0
0.8 2.4026 ×10−5 5.3332 ×10−9 1.0325 ×10−13 1.0 ×10−10 1.0 ×10−10

0.9 0.2 3.9031 ×10−5 9.6270 ×10−10 7.2164 ×10−16 0 0
0.4 7.5074 ×10−6 3.1792 ×10−9 9.9365 ×10−15 0 0
0.6 2.3923 ×10−5 5.6420 ×10−9 4.4964 ×10−14 1.0 ×10−10 1.0 ×10−10

0.8 5.5543 ×10−5 7.3432 ×10−9 1.2479 ×10−13 1.0 ×10−10 1.0 ×10−10

1.0 0.2 8.5852 ×10−5 1.0883 ×10−9 7.7716 ×10−16 0 0
0.4 5.4286 ×10−5 3.6817 ×10−9 1.1269 ×10−14 0 0
0.6 2.2833 ×10−5 6.7720 ×10−9 5.1736 ×10−14 0 0
0.8 8.8514 ×10−6 9.3532 ×10−9 1.4622 ×10−13 1.0 ×10−10 1.0 ×10−10

7.2. Example

Consider the one-dimensional TF-GBFE

∂ηP(δ,℘)
∂℘η =

∂2P

∂℘2 + P
2 ∂P

∂℘
− P

3 + P, 0 < η ≤ 1, (57)

with initial guess

P(δ, 0) =

√√√√1
2

(
1 + tanh

(
δ

3

))
. (58)

By executing the ET to Equation (57), we may have

E[P(δ,℘)] = s2
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3
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Now by employing the inverse ET, we may have

P(δ,℘) =

√√√√1
2

(
1 + tanh

(
δ

3

))
+ E−1

[
sηE

[
∂2P

∂℘2 + P
2 ∂P

∂℘
− P

3 + P

]]
, (60)

By NITM, we may have
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Lastly, the series solution is taken as

P(δ,℘) = P0(δ,℘) + P1(δ,℘) + P2(δ,℘) + · · · ,
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By employing the HPTM, we may have
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with He’s polynomials Hk(δ) represent the nonlinear terms and is stated as
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Lastly, the series solution is taken as

P(δ,℘) =
∞

∑
n=0

εn
Pn(δ,℘). (64)

Hence
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P(δ,℘) = P0(δ,℘) + P1(δ,℘) + P2(δ,℘) + · · · ,
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At η = 1, we get exact solution as

P(δ,℘) =

√√√√1
2

(
1 + tanh

(
δ

3
+

10℘
9

))
(66)

The HPTM approximation solution and the accurate solution at η = 1 are compared
in Figure 7. The derived solution of NITM and the accurate solution at η = 1 are compared
in Figure 8. Excellent agreement can be seen in the graphical comparisons between the
precise solution and the solutions from the suggested methods. The 3D depiction of
the solutions derived by HPTM and NITM for the TF-GBFE at η = 0.6 and η = 0.8
is shown in Figures 9 and 10. The 2D plot of the found solution for different fractional
orders is shown in Figures 11 and 12, along with a comparison of the generated and
precise solution. Figures 11 and 12 illustrate the impact of changing the parameter η on the
TF-GBFE solutions. The derived solutions are illustrated in Figures 7–12 for a range of η

values with −5 ≤ δ ≤ 5 and temporal variable 0 ≤ ℘ ≤ 0.1. Tables 4 and 5 present the
exact solution for the TF-GBFE while maintaining η = 0.97, 0.98, 0.98 and 1, as well as the
comparative numerical solutions derived by HPTM and the NITM.

Figure 7. Graphical depict of the (a) accurate as well as (b) HPTM solution for P(δ,℘).
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Figure 8. Graphical depict of the (a) accurate as well as (b) NITM solution for P(δ,℘).

Figure 9. Graphical depict of the HPTM solution at (a) η = 0.6 (b) η = 0.8 for P(δ,℘).

Figure 10. Graphical depict of the NITM solution at (a) η = 0.6 (b) η = 0.8 for P(δ,℘).

Figure 11. 2D Graphical depict of the HPTM solution at (a) several orders of η as well as (b) compari-
son with accurate solution.
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Figure 12. 2D Graphical depict of the HPTM solution at (a) several orders of η as well as (b) compari-
son with accurate solution.

Table 4. Behavior of the accurate as well as HPTM solution at several of η for P(δ,℘).

δ η = 0.97 η = 0.98 η = 0.99 η = 1 (HPT M) η = 1 (Accurate)

0.0 0.7116581992 0.7114365594 0.7112253981 0.7110242400 0.7110241395

0.1 0.7232619661 0.7230443269 0.7228369684 0.7226394249 0.7226393305

0.2 0.7346476339 0.7344342783 0.7342309925 0.7340373213 0.7340372335

0.3 0.7458007792 0.7455919690 0.7453930058 0.7452034453 0.7452033650

0.4 0.7567081326 0.7565041070 0.7563096947 0.7561244628 0.7561243895

0.5 0.7673576479 0.7671586222 0.7669689664 0.7667882594 0.7667881945

0.6 0.7777385630 0.7775447277 0.7773600105 0.7771840022 0.7771839460

0.7 0.7878414402 0.7876529605 0.7874733396 0.7873021809 0.7873021325

0.8 0.7976581905 0.7974752057 0.7973008145 0.7971346329 0.7971345930

0.9 0.8071820859 0.8070047096 0.8068356568 0.8066745564 0.8066745250

1.0 0.8164077556 0.8162360756 0.8160724457 0.8159165074 0.8159164840

Table 5. Behavior of the accurate as well as NITM solution at several η for P(δ,℘).

δ η = 0.97 η = 0.98 η = 0.99 η = 1(N IT M) η = 1(Accurate)

0.0 0.7116580097 0.7114363988 0.7112252619 0.7110241247 0.7110241395

0.1 0.7232617778 0.7230441673 0.7228368331 0.7226393103 0.7226393305

0.2 0.7346474475 0.7344341203 0.7342308586 0.7340372079 0.7340372335

0.3 0.7458005955 0.7455918133 0.7453928739 0.7452033335 0.7452033650

0.4 0.7567079523 0.7565039542 0.7563095652 0.7561243531 0.7561243895

0.5 0.7673574716 0.7671584728 0.7669688398 0.7667881521 0.7667881945

0.6 0.7777383914 0.7775445823 0.7773598872 0.7771838978 0.7771839460

0.7 0.7878412738 0.7876528195 0.7874732201 0.7873020797 0.7873021325

0.8 0.7976580298 0.7974750695 0.7973006991 0.7971345351 0.7971345930

0.9 0.8071819313 0.8070045785 0.8068355457 0.8066744623 0.8066745250

1.0 0.8164076073 0.8162359500 0.8160723393 0.8159164172 0.8159164840

8. Conclusions

In this work, we offer the HPTM and NITM for nonlinear TF-GBFE solutions. The
derivative is considered in the Caputo sense. The solution derived from the methods pre-
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sented shows that our findings strongly match the precise solution. We have compared the
solutions we found with some of the solutions provided in the literature to demonstrate the
effectiveness of the existing methodologies. A comparison with the other three approaches
validates the accuracy and convergence of our offered strategies. Finding the solution
to fractional problems is made more straightforward by the hybrid techniques that have
been offered. The results acquired are plotted in their graphical form. Graphs and tables
are used to show a very strong correlation between the actual and suggested technique
solutions. The fractional solutions are used to illustrate the behaviour of different dynamics
of the specified physical phenomena. The aforementioned issues can be seen in tabular and
graphical form with Maple’s assistance.

In conclusion, the suggested methods were found to be quite precise, efficient, and
simple to use. It provides a practical tool for solving nonlinear fractional equations in a
variety of academic fields and creates new opportunities for fractional differential equation
research. Thus, we can say that the methods presented are sufficiently consistent and
applicable to the analysis of a wide range of fractional-order nonlinear mathematical
models that aid in explaining the behaviour of complex, highly nonlinear phenomena in
significant scientific and engineering domains.

Future Work

In future work, these techniques are expected to be considered for fractional problems
in the sense of Atangana–Baleanu derivatives and other partial differential equations
employing fractional calculus and fractal theory. We expect that these methods will be
used in the future to swiftly and efficiently tackle other fractional differential problems in
scientific domains.
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Abbreviations

The following abbreviations are used in this manuscript:

TF-GBFE time-fractional generalized Burger-Fisher equation
HPTM homotopy perturbation transform method
YTDM yang transform decomposition method
OHAM optimal homotopy asymptotic method
q-HATM q-homotopy analysis transform method
PDE partial differential equation
FPDEs Fractional partial differential equations
ET Elzaki transform
δ Independent variable
℘ Time
P(δ,℘) Dependent function representing the physical quantity
η Fractional order
ε Perturbation parameter
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47. Kanth, A.R.; Aruna, K.; Raghavendar, K.; Rezazadeh, H.; İnç, M. Numerical solutions of nonlinear time fractional Klein-Gordon

equation via natural transform decomposition method and iterative Shehu transform method. J. Ocean Eng. Sci. 2021. [CrossRef]
48. Kumar, R.; Verma, R.S.; Tiwari, A.K. On similarity solutions to (2+ 1)-dispersive long-wave equations. J. Ocean Eng. Sci. 2023, 8,

11–123. [CrossRef]
49. Ahmad, I.; Ahmad, H.; Inc, M.; Rezazadeh, H.; Akbar, M.A.; Khater, M.M.; Akinyemi, L.; Jhangeer, A. Solution of fractional-order

Korteweg-de Vries and Burgers equations utilizing local meshless method. J. Ocean Eng. Sci. 2021. [CrossRef]
50. Tang, S.; Wu, J.; Cui, M. The nonlinear convection-reaction-diffusion equation for modelling El Niño events. Commun. Nonlinear

Sci. Numer. Simul. 1996, 1, 27–31. [CrossRef]
51. Fakhrusy, Q.Z.; Anggraeni, C.P.; Gunawan, P.H. Simulating water and sediment flow using swe-convection diffusion model

on openmp platform. In Proceedings of the 2019 7th International Conference on Information and Communication Technology
(ICoICT), Kuala Lumpur, Malaysia, 24–26 July 2019; pp. 1–6.

52. Khuri, S.A. A Laplace decomposition algorithm applied to a class of nonlinear differential equations. J. Appl. Math. 2001, 1,
141–155. [CrossRef]

53. Khan, Y.; Wu, Q. Homotopy perturbation transform method for nonlinear equations using He’s polynomials. Comput. Math. Appl.
2011, 61, 1963–1967. [CrossRef]

54. Khuri, S.A.; Sayfy, A. A Laplace variational iteration strategy for the solution of differential equations. Appl. Math. Lett. 2012, 25,
2298–2305. [CrossRef]

55. Zurigat, M. Solving fractional oscillators using Laplace homotopy analysis method. Ann. Univ. -Craiova-Math. Comput. Sci. Ser.
2011, 38, 1–11.

56. Guo, S.; Li, Y.; Wang, D. 2-Term Extended Rota-Baxter Pre-Lie ∞-Algebra and Non-Abelian Extensions of Extended Rota-Baxter
Pre-Lie Algebras. Results Math. 2025, 80, 96. [CrossRef]

57. Ali, N.; Nawaz, R.; Zada, L.; Mouldi, A.; Bouzgarrou, S.M.; Sene, N. Analytical approximate solution of the fractional order
biological population model by using natural transform. J. Nanomater. 2022, 2022, 6703086. [CrossRef]

58. He, J.H. Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 1999, 178, 257–262. [CrossRef]
59. He, J.H. A coupling method of a homotopy technique and a perturbation technique for non-linear problems. Int. J. Non-Linear

Mech. 2000, 35, 37–43. [CrossRef]

80



Fractal Fract. 2025, 9, 390

60. Neamaty, A.; Agheli, B.; Darzi, R. Applications of homotopy perturbation method and Elzaki transform for solving nonlinear
partial differential equations of fractional order. J. Nonlin. Evolut. Equat. Appl. 2016, 2015, 91–104.

61. Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of
Their Solution and Some of Their Applications; Academic Press: New York, NY, USA, 1998; 340p.

62. Sedeeg, A.K.H. A coupling Elzaki transform and homotopy perturbation method for solving nonlinear fractional heat-like
equations. Am. J. Math. Comput. Model. 2016, 1, 15–20.

63. Bhalekar, S.; Daftardar-Gejji, V. Convergence of the new iterative method. Int. J. Differ. Equ. 2011, 2011, 989065. [CrossRef]
64. Cooper, G.J. Error bounds for numerical solutions of ordinary differential equations. Numer. Math. 1971, 18, 162–170. [CrossRef]
65. Warne, P.G.; Warne, D.P.; Sochacki, J.S.; Parker, G.E.; Carothers, D.C. Explicit a-priori error bounds and adaptive error control for

approximation of nonlinear initial value differential systems. Comput. Math. Appl. 2006, 52, 1695–1710. [CrossRef]
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Abstract: The fractional differential quadrature method (FDQM) with generalized Caputo derivatives
is used in this paper to show a new numerical way to solve fractional Riccati equations and fractional
Lorenz systems. Unlike previous FDQM applications that have primarily focused on linear problems,
our work pioneers the use of this method for nonlinear fractional initial value problems. By combining
Lagrange interpolation polynomials and discrete singular convolution (DSC) shape functions with the
generalized Caputo operator, we effectively transform nonlinear fractional equations into algebraic
systems. An iterative method is then utilized to address the nonlinearity. Our numerical results,
obtained using MATLAB, demonstrate the exceptional accuracy and efficiency of this approach, with
convergence rates reaching 10−8. Comparative analysis with existing methods highlights the superior
performance of the DSC shape function in terms of accuracy, convergence speed, and reliability. Our
results highlight the versatility of our approach in tackling a wider variety of intricate nonlinear
fractional differential equations.

Keywords: fractional derivative; generalized Caputo; differential quadrature technique; discrete
singular convolution; fractional Riccati; fractional Lorenz system

1. Introduction

Many phenomena in chemistry, biology, acoustics, psychology, control theory, rheol-
ogy, damping laws, diffusion processes, and other fields of science have been successfully
modeled using fractional-order derivatives in recent years. This is because fractional calcu-
lus can be used to successfully model a physical phenomenon that is dependent not only
on the time instant but also on the prior time history [1–6]. Hence, numerous physical prob-
lems are defined by fractional differential equations (FDEs), and solving these equations
has been the focus of several studies in recent years. Several techniques have recently been
developed to solve FDEs, including numerical and analytical techniques. Various methods,
including homotopy perturbation [7–9], homotopy analysis [10,11], Taylor matrix [12], Ado-
mian decomposition [11], and Haar wavelet [13] methods, have been employed to solve the
fractional-order Riccati differential equation. Unfortunately, the convergence region for the
corresponding outcomes is relatively limited. The fractional derivative operator’s unique
properties can make the numerical solution of fractional equations challenging, particularly
in high-dimensional spaces. To address this challenge, numerical methods such as the
Finite Difference Method (FDM) [14–17], Galerkin [18–21], Collocation [22–25], and finite
volume element methods [26–28] have been utilized to tackle such fractional equations.

Liu et al. [29] introduced a radial basis function finite difference approach for study-
ing the time fractional convection equation. Saadeh [30] employed the finite-difference
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and space finite-volume techniques to solve fractional diffusion equations. To address
a two-dimensional space fractional diffusion equation, Tuan et al. [31] employed finite
difference discretization with Caputo derivatives. Devshali and Arora [32] proposed differ-
ential transform and differential quadrature methods for solving the fractional diffusion
equation. Odibat and Momani [9] utilized a modified homotopy perturbation technique to
solve fractional Riccati differential equations (FRDEs). Khader [33] applied the fractional
Chebyshev FDM to solve FRDEs. Li et al. [34] solved FRDEs via the quasi-linearization
method. Sakar et al. [34] explained an iterative reproducing kernel Hilbert space technique
to obtain the solutions of FRDEs. Agheli [35] explained an iterative reproducing kernel
Hilbert space technique to obtain the solutions of FRDEs. Agheli [36] presented numerical
solutions for solving FRDEs using trigonometric basic functions. Liu et al. [37] offered the
Laplace transform and quadrature rule with Caputo sense to solve FRDEs.

In the last ten years, chaos has emerged as a popular topic in fractional calculus [38].
The chaotic behavior becomes more complicated because the equation contains fractional
orders. Numerical methods were developed to analyze nonlinear dynamics to better un-
derstand physical phenomena. To find numerical solutions to various nonlinear fractional
differential equations, the predictor–corrector method (P-C) was developed [39–41]. Fuzzy
fractional differential and fractional delay equations [42–45] demonstrate the emergence of
new trends in fractional differential equations.

Despite yielding fruitful results, finding more general chaotic differential equations
remains an intriguing task. A generalized fractional derivative was recently proposed
in [46]. Fractional derivatives have demonstrated superior performance compared to regu-
lar derivatives in several respects and may have even more real-world applications. One
such application is in image encryption, where fractional differential equations have been
suggested as a means of introducing chaos [47,48]. This means that image encryption results
can be made more secure by using fractional chaotic equations with two parameters. This
derivative was recently proposed in quantum mechanics [49]. Furthermore, two-parameter
models in control theory and diffusion issues can have degrees of freedom in control and
fitting. This derivative and its applications are depicted as a new direction in fractional
calculus. Li and Chen [50] demonstrated the chaotic behaviors in the fractional order Chen
system. Alomari [51] used the step homotopy analysis technique to solve the fractional
chaotic Chen system. Luo and Wang [44] solved chaos in the fractional-order complex
Lorenz system and its synchronization. Petráš [2] introduced a new classification of the
fractional-order Lorenz-type systems. Erturka and Kumar [52] presented a solution for a
COVID-19 model using new generalized Caputo-type fractional derivatives. Xu et al. [53]
studied numerical and analytical solutions of a new generalized fractional diffusion equa-
tion. Kumar et al. [54] proposed a new technique to solve generalized Caputo-type FDEs
with the example of a computer virus model.

The primary goal of this paper is to apply the novel fractional Differential Quadrature
Method (FDQM) with generalized Caputo definition fractional to solve nonlinear initial
value fractional problems. Two different shape functions, the Lagrange interpolation [55,56]
and the regularized Shannon kernel [57–60], have been successfully employed to address
initial value problems involving fractional derivatives. To exhibit the efficacy, efficiency,
and capabilities of the proposed algorithm, two test problems were investigated, including
FRDEs and the fractional Lorenz system. Then, by the proposed methods, the given prob-
lems are reduced to a system of nonlinear algebraic equations, and by solving this system
via the iterative method, we obtain the solution of FRDEs and the fractional Lorenz system.
Furthermore, we create a MATLAB code for each approach to obtain a numerical solution
for the two problems under consideration. A comparison between the computed results
and previous analytical and numerical [61–65] methodologies is included to demonstrate
the validity and applicability of the proposed methods. Furthermore, we conducted some
parametric investigations to showcase the reliability of our techniques in the presence of
fractional order derivatives.
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This paper introduces a novel fractional Differential Quadrature Method (FDQM) to
solve nonlinear initial value fractional problems. This method employs the generalized
Caputo fractional derivative and utilizes Lagrange interpolation and the Regularized
Shannon kernel as shape functions. Numerical simulations demonstrate the method’s
superior accuracy, efficiency, and versatility in handling fractional Riccati and Lorenz
systems. The FDQM’s potential applications extend to various fields where it can be used
to model complex systems with memory effects and nonlinearities [66].

2. Formulation of the Problem

The following two nonlinear fractional differential equations serve as examples to
illustrate the capabilities of our proposed methods:

2.1. Our 1st Example Is the Fractional Riccati Equation

dα,ρυ(t)
dt

= 2υ(t)− υ2(t) + 1, when (0 < t and 0 < α ≤ 1) (1)

where dα,ρ

dt is the operator of the generalized Caputo-type fractional derivative [61].
Also, the initial condition for FRDE is:

υ(0) = 0 (2)

In addition, the exact solution of FRDE at α = 1, and ρ = 1 is given by [67]:

υ(x, t) = 1 +
√

2 tanh

⎡⎣√2t + log

√√
2− 1√
2 + 1

⎤⎦ (3)

2.2. Our 2nd Example Is the Fractional Lorenz System

dα,ρX(t)
dt

= λ(Y(t)− X(t)) (4)

dα,ρY(t)
dt

= (φ− λ)X(t)− X(t)Z(t) +φY(t) (5)

dα,ρZ(t)
dt

= X(t)Y(t)− β Z(t) (6)

where λ, φ, and β are constant parameters ∈ R that affect chaotic behavior.
Consequently, the fractional Lorenz system is subject to the following initial condition:

X(0) = x0, Y(0) = y0, Z(0) = z0 (7)

3. Method of Solution

This paper introduces a novel application of the FDQM to solve initial value fractional
problems. We employ two distinct shape functions, Lagrange interpolation and the regular-
ized Shannon kernel, in conjunction with the generalized Caputo fractional derivative to
transform fractional problems into nonlinear algebraic systems.

We begin by defining a fractional derivative, of which several definitions exist. In this
work, we utilize the recently proposed generalized Caputo definition.

3.1. Generalized Caputo-Kind Fractional Derivative [63]

The fractional derivative has good memory effects compared to ordinary calculus.
FDEs are realized in model problems in fluid flow, viscoelasticity, finance, engineering, and
other areas of applications.

Caputo’s Fractional Derivative
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A concise overview of Caputo’s fractional derivative is presented in this section. This
definition, which is derived from the Riemann–Liouville Fractional Derivative [68], is
explained in greater detail in our prior publication [69].

Suppose α ∈ R+, If N is a positive integer, and N− 1 < α ≤ N. According to Riemann–
Liouville fractional, which is one of the most researched definitions, the fraction derivative
of a function υ(t) of order α is defined as follows:

Dα
c υ(t) =

1
Γ(N− α)

dN

dtN

t∫
c

(t− x)N−α−1 υN(x) dx (8)

Generalized Caputo’s Fractional Derivative of operator Dα,ρ
c+ and order α is

defined as [52–54]:

Dα,ρ
c+ υ(t) =

ρα−N+1

Γ(N− α)

t∫
c

xρ−1(tρ − xρ)N−α−1
(

x1−ρ d
dx

)N

υ(x) dx,

N− 1 < α < N, ρ > 0, c ≥ 0
(9)

where c is the lower limit of integration.
Consequently, the solution to Equation (9) can be written as [52–54]:

Dα,ρ
c+ (tρ − xρ)γ = ρα Γ(γ + 1)

Γ(γ− α + 1)
(tρ − cρ)γ−α (10)

Next, we will discuss the differential quadrature technique using the specified
shape functions.

3.2. Our First Shape Function Is Lagrange Interpolation Polynomial Based DQM (PDQM)

Within this partition, the functional values of any unknown P at a specific set of N
grid points can be represented using this shape function, as described in [55,56]:

P(ti) =
N

∑
j=1

1
ti − tj

×

N
∏

k=1
(ti − tk)

N
∏

j=1,j 
=k
(tj − tk)

P(tj) , (i = 1 : N) (11)

As a result, the following are the different derivatives of this unknown P:

∂rP
∂tr

∣∣∣∣t = ti
=

N

∑
j=1

a(r)ij P(tj) , (i = 1 : N) (12)

where a(r)ij is the rth derivative weighting coefficient. However, determining the weighting
coefficients is critical to DQM accuracy. As a result, they differ based on the shape function.

Differentiating Equation (12) results in the calculation of the weighting coefficients
a(1)ij and a(2)ij , representing the first and second derivatives.

a(1)ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
(ti − tj)

N
∏

k = 1,
k 
= i, j

(ti − tk)

(tj − tk)
i 
= j

− N
∑

j = 1,
j 
= i

a(1)ij i = j

, a(2)ij =
[
a(1)ij

][
a(1)ij

]
(13)
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The distribution of grid points N, whether uniform or non-uniform, significantly
influences the accuracy of the PDQM results. The non-uniform distribution is defined by
the following equation, based on Chebyshev’s distribution:

xi =
1
2

Lx

(
1− cos

(
π(i− 1)
N− 1

))
, (i = 1 : N) (14)

3.3. Discrete Singular Convolution-Based DQM (DSCDQM)

In this part, according to previous research [59,70,71], singular convolution can be
expressed as follows:

Y(t) = (F ∗H)(t) =
∞∫

−∞

F(t− s) H(s) ds (15)

F(t− s) and H(t) denote a singular kernel and a test function space element, respectively.
The choice of kernel type determines the shape function used in this technique. Given

the variety of available kernels, we have selected the kernel demonstrated to have the
highest accuracy [69] to represent the functional values of the unknown P and its derivatives
at a specified number of grid points N:

• Our second shape function is the Regularized Shannon kernel (DSCDQM–RSK)

P(ti) =
M
∑

j=−M

〈 sin
[
π(ti − tj)

Δ

]
π(ti − tj)

Δ

exp(
−(ti − tj)

2

2σ2 )

〉
P(xj),

(i = −N : N),σ = (h× Δ ) > 0

(16)

The parameters σ, h, and Δ represent the Regularized Shannon factor, the computa-
tional parameter, and the mesh size, respectively.

∂rP
∂tr |t = ti =

N
∑

j=1
a(r)ij P(tj)

(i = −N : N)

(17)

Differentiating Equation (15) allows us to determine the coefficients a(1)ij and a(2)ij , as
described in [72]:

a(1)ij =

⎧⎪⎨⎪⎩
(−1)i−j

Δ(i−j) exp(−Δ2(
(i−j)2

2σ2 )), i 
= j

0 i = j

, a(2)ij =

⎧⎪⎪⎨⎪⎪⎩
[

2 (−1)i−j+1

a2(i−j)2 + 1
σ2

]
exp

(
−Δ2(

(i−j)2

2σ2

)
, i 
= j

− 1
σ2 − π2

3Δ2 i = j

(18)

The kernel type, grid points (N), and bandwidth (2K + 1) are all important parameters
that affect the convergence and accuracy of the solutions, as our analysis shows.

Now, after mentioning DQM based on two shape functions, we will demonstrate the
effect of the generalized Caputo’s fractional derivative, which is shown in Equation (9) on
the FDQM in Equation (12), to determine the weighting coefficients aα

ij for α ∈ (0, 1] and
ρ > 0, as follows [69]:

Dα,ρ
c+ P(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N
∑

j=1
aα,ρ

ij P(tj, x), 0 < α ≤ 1 , ρ > 0

N
∑

j=1
a(1)ij P(tj, x) α = ρ = 1

(19)
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Hence, the weighting coefficient aα,ρ
ij is calculated as:

aα,ρ
ij = A1−αρα a(1)ij +

ραa(1)1,j

Γ(2− α)
(tρ − cρ)1−α, Aij = a(1)ij − a(1)1j (20)

3.4. Algorithm: Fractional Differential Quadrature Method (FDQM) for Nonlinear Initial
Value Problems

This pseudo-code (Algorithm 1) outlines the key steps for implementing the proposed
numerical framework for solving nonlinear fractional differential equations using the
FDQM approach.

Algorithm 1: Fractional Differential Quadrature Method (FDQM) for Nonlinear Initial
Value Problems

Input:

- Fractional order, constants in the fractional differential equation
- Nonlinear fractional differential equation.
- Initial conditions.
- Grid points (N)
- Shape functions (Lagrange, Regularized Shannon)
- Tolerance for convergence (ε)

Output:

- The solution of the fractional differential equation numerically.

1. Define the generalized Caputo fractional derivative operator.
2. Initialize grid points x1, x2, . . ., xN based on Chebyshev distribution or uniform distribution.
3. For each time step “t:

� Construct the shape functions using Lagrange interpolation and Regularized
Shannon kernel.

� Formulate the algebraic system from the fractional differential equation using FDQM:

a. Apply shape functions to approximate the unknown function and its derivatives.
b. Substitute into the original FDE to derive a system of nonlinear algebraic equations.

4. Initialize solution guess for the unknown function.
5. While not converged (|| fnew − fold|| > ε)
6. Solve the algebraic system iteratively:

a. Use a numerical method (iterative differential quadrature method) to update
the solution.

b. Update fold with fnew

7. End while
8. Return the numerical solution for the fractional differential equation at the specified

time steps.

End Algorithm

4. Numerical Results

Now that it is easier to understand FDQM with different shape functions such as
PDQM [55,56], and DSCDQM–RSK [59,70,71] based on the generalized Caputo definition
fractional derivative, two examples will be given here and then will be discussed. In
all these examples, MATLAB software(R2022b) is used for computations and graphs.
The primary goal of this article is to learn about the performance, validity, efficiency,
and accuracy of developed techniques by comparing the computed results to previous
numerical and analytical solutions.
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4.1. Problem 4.1

We introduce the first example fractional Riccati equation after substituting the Equa-
tions (19) and (20) for the proposed methods in Equation (1) as follows:

L

∑
j=1

aα,ρ
ij υ

(
tj
)
= 2

N

∑
j=1

δij υ
(
tj
)−( N

∑
j=1

δij υ
(
tj
))2

+ 1 (21)

The governing Equation (21) is also used to deal with the initial condition (2). To
solve the nonlinear problem, the iterative method is applied [55,72,73]. As a first step,
the governing equation is solved as a linear system. Then we solve them iteratively as a
nonlinear system until we reach the requisite convergence, which is as follows:∣∣∣∣υm+1

υm

∣∣∣∣ < 1, where m = 0, 1, 2, . . . (22)

Also, to assess the convergence and accuracy of the developed methods, we use the
error computation method:

L∞ Error = max
1≤i≤N

|υnumerical − υexact| (23)

Now, the obtained results will be demonstrated as follows:
The effect of applying PDQM with uniform and non-uniform grid distributions on

the computation of the fractional Riccati equation with fractions (α = 1, ρ = 1) at different
grid points (N) and times (T) is shown in Table 1. Hence, it is found that non-uniform grid
results are higher and more consistent with earlier solutions than uniform ones with an
error≤10−8, and execution time of about (0.024 s). Also, when the grid points increase with
time, the accuracy increases; for example, at time (t = 1), we make (N = 13), and at time (t =
2), we make (N = 26) Furthermore, the maximum number of grids we use is significantly
less than in previous studies (N = 3200).

Table 2 compares non-uniform PDQM and DSCDQM–RSK for the fractional Riccati
equation under various conditions of time (T = 1), fraction (α = 1, ρ = 1), different grid
points (N), regularized Shannon factor (σ = h× Δ), and bandwidth (2K + 1). To begin,
Table 2 ensures that the best value of the regularized Shannon factor is σ = 0.45× Δ, with
results matching previous studies and PDQM shown in Table 1 at the fewest grid points
(N = 9), bandwidth (2K + 1 = 7) and performance time of about (0.018 s). DSCDQM–RSK is
the best method overall, based on low grid points and performance time when compared
to PDQM (N = 16) and previous studies (N = 640).

The efficiency, validity, and accuracy of the created methodologies are presently being
explored by comparing the calculated results to earlier numerical and analytical solutions
at various powers of fraction (α, ρ), as shown in Tables 3–6. Tables 3–6 show that increasing
the fraction power (α or ρ) decreases the value of υ(t), but increases with time for the
fractional Riccati equation. Furthermore, the results show that DSCDQM–RSK outperforms
non-uniform PDQM in terms of efficiency, validity, and accuracy.

In addition, the dynamic behaviors of the fractional Riccati equation with respect to
the parameters (α and ρ) and against the time variable t are depicted in Figures 1 and 2.
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Table 1. Computation of υ(t) via uniform and non-uniform PDQM for fractional Riccati equation
with fraction (α = 1, ρ = 1) at different grid points (N), and times (T).

PDQ Solutions Previous Solutions

T
N Uniform CPU (s) Error

Non-
Uniform

CPU (s) Error N
Earlier

Numerical
[64]

Exact
[61]

1

4 1.59030488 0.016 0.0971 1.64023865 0.013 0.04721 10 1.68745117

1.68949839

6 1.68745374 0.018 0.0015 1.67122383 0.017 0.01774 20 1.68896723
8 1.68821427 0.018 0.0011 1.68941502 0.017 5.16 × 10−5 40 1.68936339
9 1.68921673 0.019 0.0002 1.68948616 0.018 2.18 × 10−5 80 1.68946438

11 1.68941775 0.020 7.2 × 10−5 1.68949815 0.018 8.29 × 10−6 160 1.68948986
12 1.68948043 0.021 1.6 × 10−5 1.68949820 0.020 1.95 × 10−6 320 1.68949625
13 1.68949755 0.021 3.1 × 10−7 1.68949839 0.020 1.2 × 10−8 640 1.68949786

2

8 2.34267643 0.029 0.001168 2.35647559 0.019 0.012631 20 2.35530727

2.35777165

12 2.35721628 0.031 0.00056 2.35777266 0.020 3.73 × 10−6 40 2.35721255
16 2.35757661 0.032 0.00014 2.35777175 0.021 6.14 × 10−5 80 2.35763805
18 2.35773329 0.033 3.27 × 10−5 2.35777169 0.021 5.68 × 10−6 160 2.35773897
22 2.35777129 0.034 8.08 × 10−6 2.35777165 0.022 7.72 × 10−6 320 2.35776357
24 2.35777151 0.035 2.01 × 10−6 2.35777165 0.023 1.87 × 10−6 640 2.35776964
26 2.35777167 0.036 5 × 10−7 2.35777165 0.024 2 × 10−8 1280 2.35777115

5

20 2.41421578 0.033 1.743 × 10−5 2.41420169 0.021 3.34 × 10−6 50 2.41419835

2.41420167

21 2.41420238 0.033 1.37 × 10−6 2.41420169 0.021 6.8 × 10−7 100 2.41420101
22 2.41420214 0.034 6.2 × 10−7 2.41420168 0.022 1.6 × 10−7 200 2.41420152
23 2.41420177 0.034 1.4 × 10−7 2.41420167 0.022 4 × 10−8 400 2.41420163
24 2.41420175 0.035 9 × 10−8 2.41420167 0.023 1 × 10−8 800 2.41420166
25 2.41420171 0.035 4 × 10−8 2.41420167 0.023 1 × 10−8 1600 2.41420167
26 2.41420169 0.036 2 × 10−8 2.41420167 0.024 1 × 10−8 3200 2.41420167

Table 2. Computation of υ(t) via non-uniform PDQM and DSCDQM–RSK for fractional Riccati
equation with time (T = 1) and fraction (α = 1, ρ = 1) at various grid points (N), regularized Shannon
factor (σ = h× Δ), and bandwidth (2K + 1).

DSCDQM–RSK
N 2K + 1

Non-Uniform
PDQM σ=0.2×Δ σ=0.4×Δ σ=0.45×Δ σ=0.5×Δ CPU (s)

9

3 1.68948616 1.69745751 1.689880214 1.68950741 1.64023989 0.008
5 1.68948616 1.69745647 1.689876547 1.68949956 1.64023942 0.01
7 1.68948616 1.69745559 1.689875120 1.68949839 1.64023865 0.012
9 1.68948616 1.69745559 1.689875120 1.68949839 1.64023865 0.014

11 1.68948616 1.69745559 1.689875120 1.68949839 1.64023865 0.016

11

3 1.68949815 1.69745666 1.689877415 1.68949951 1.64023937 0.009
5 1.68949815 1.69745559 1.689875120 1.68949839 1.64023865 0.01
7 1.68949815 1.69745559 1.689875120 1.68949839 1.64023865 0.011
9 1.68949815 1.69745559 1.689875120 1.68949839 1.64023865 0.012

11 1.68949815 1.69745559 1.689875120 1.68949839 1.64023865 0.014

13

3 1.68949839 1.69745578 1.689876014 1.6894990 1.64023900 0.01
5 1.68949839 1.69745559 1.689875120 1.68949839 1.64023865 0.012
7 1.68949839 1.69745559 1.689875120 1.68949839 1.64023865 0.014
9 1.68949839 1.69745559 1.689875120 1.68949839 1.64023865 0.016

11 1.68949839 1.69745559 1.689875120 1.68949839 1.64023865 0.018
Earlier numerical solutions

[64] 1.68949786 at (N = 640)

Exact [61] 1.68949839
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Table 3. Computation of υ(t) via non-uniform PDQM and DSCDQM–RSK for fractional Riccati
equation at various times (T), fractions (α), and ρ = 1.

Non-Uniform PDQM DSCDQM–RSK Previous Results [61–65]
T

α = 0.5 α = 0.75 α = 0.5 α = 0.75 α = 0.5 α = 0.75

0.1 0.59149371 0.24512554 0.59149373 0.24512556 0.59149373 0.24512556
0.2 0.93141486 0.47450194 0.93141488 0.47450196 0.93141488 0.47450196
0.3 1.171926469 0.709154008 1.171926471 0.709154010 1.171926471 0.709154010
0.4 1.344407759 0.937441050 1.344407761 0.937441052 1.344407761 0.937441052
0.5 1.471501155 1.147807349 1.471501157 1.147807351 1.471501157 1.147807351
0.6 1.568070430 1.332985034 1.568070432 1.332985036 1.568070432 1.332985036
0.7 1.643596282 1.490535187 1.643596284 1.490535189 1.643596284 1.490535189
0.8 1.704182955 1.621592245 1.704182957 1.621592247 1.704182957 1.621592247
0.9 1.753855962 1.729220378 1.753855964 1.729220380 1.753855964 1.729220380
1 1.817133594 1.795344168 1.817133596 1.795344170 1.817133596 1.795344170

Table 4. Computation of υ(t) via non-uniform PDQM and DSCDQM–RSK for fractional Riccati
equation with fraction (α = 1) at various times (T), and fractions (ρ).

Non-Uniform PDQM DSCDQM–RSK Previous Results [61–65]
T

ρ = 0.8 ρ = 1.2 ρ = 0.8 ρ = 1.2 ρ = 0.8 ρ = 1.2

0.1 0.14117992 0.09045268 0.14117994 0.09045271 0.14117994 0.09045271
0.2 0.31592641 0.195667845 0.31592645 0.19566787 0.31592645 0.19566787
0.3 0.52298485 0.315926409 0.52298488 0.315926411 0.52298488 0.315926411
0.4 0.75601439 0.450653813 0.75601442 0.450653816 0.75601442 0.450653816
0.5 1.00354951 0.59824597 1.00354953 0.59824599 1.00354953 0.59824599
0.6 1.25086733 0.75601439 1.25086736 0.75601442 1.25086736 0.75601442
0.7 1.48329584 0.92030072 1.48329586 0.92030075 1.48329586 0.92030075
0.8 1.68949839 1.08677371 1.68949842 1.08677374 1.68949842 1.08677374
0.9 1.86328744 1.25086733 1.86328746 1.25086736 1.86328746 1.25086736
1 2.00353694 1.40827080 2.00353696 1.40827081 2.00353696 1.40827081

Table 5. Computation of υ(t) via non-uniform PDQM for fractional Riccati equation at different grid
points (N), and fractions (α, ρ).

Non-Uniform Earlier Numerical Solutions [62]

T
N

α = 1,
ρ = 0.9

α = 0.95,
ρ = 0.75

α = 0.9,
ρ = 1.2

N
α = 1,
ρ = 0.9

α = 0.95,
ρ = 0.75

α = 0.9,
ρ = 1.2

1

4 1.80602802 1.96263496 1.39368786 10 1.84281224 2.06729863 1.52944766
6 1.84319793 2.04896144 1.49050147 20 1.84491385 2.07202706 1.53119172
8 1.84556010 2.06510470 1.51019655 40 1.84546411 2.07322261 1.53167452
9 1.84561319 2.06904164 1.52085146 80 1.84560424 2.07352741 1.53180584

11 1.84565025 2.07362649 1.52696219 160 1.84563955 2.07360571 1.53184129
12 1.84565137 2.07363589 1.52945738 320 1.84564841 2.07362592 1.53185082
13 1.84565137 2.07363256 1.53185408 640 1.84565063 2.07363115 1.53185339
14 1.84565137 2.07363256 1.53185408 1280 1.84565119 2.07363250 1.53185407

2

8 2.28430436 2.32839830 2.20693947 20 2.36576348 2.34646084 2.26631061
12 2.32381757 2.33437164 2.21000463 40 2.36763874 2.34834846 2.26840179
16 2.34381756 2.34307946 2.22083045 80 2.36805246 2.34876916 2.26890814
18 2.36382620 2.34836151 2.23103727 160 2.36815011 2.34887135 2.26903810
22 2.36832617 2.34863032 2.24089052 320 2.36817385 2.34889710 2.26907235
24 2.36818255 2.34889017 2.26879047 640 2.36817971 2.34890369 2.26908148
26 2.36818153 2.34890584 2.26908459 1280 2.36818116 2.34890540 2.26908393
27 2.36818153 2.34890584 2.26908459 2560 2.36818153 2.34890584 2.26908459
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Table 6. Computation of υ(t) via DSCDQM–RSK for fractional Riccati equation at different values of
(α, ρ) and times.

α ρ T = 0.5 T = 1 T = 2 T = 2.5 T = 3

0.4

1 1.58967600 1.77525996 2.09537035 2.21247852 2.22642314
1.1 1.54739283 1.74403298 2.07553739 2.19214756 2.20554878
1.2 1.50756398 1.71405017 2.05317313 2.17021456 2.18875143
1.4 1.43438179 1.65736347 2.02666948 2.14654879 2.16214787
1.9 1.28182554 1.53134020 2.01520768 2.12958092 2.13478462

0.5

1 1.68300421 1.79935747 2.12065899 2.25983372 2.27664509
1.1 1.66554391 1.75798866 2.10285480 2.23984120 2.25471201
1.2 1.65154233 1.71762640 2.09852919 2.21874621 2.23789123
1.4 1.62320069 1.66991063 2.07719592 2.20997411 2.21987423
1.9 1.58526142 1.56342314 2.05661402 2.20278414 2.17645789

0.7

1 1.71613371 1.82286926 2.14596688 2.29139917 2.31617003
1.1 1.69532577 1.79031758 2.12529159 2.27075056 2.29157030
1.2 1.67462609 1.77811144 2.10299487 2.25941935 2.26895529
1.4 0.65934200 1.73806497 2.08048316 2.22364828 2.24318890
1.9 0.60930946 1.65504250 2.05990416 2.20861195 2.20862313

0.85

1 0.73587574 1.84052325 2.24870001 2.30150738 2.33501568
1.1 0.71892188 1.82175475 2.21842773 2.28982006 2.31048992
1.2 0.69728893 1.80614145 2.18322274 2.27519396 2.29534657
1.4 0.67897490 1.77168741 2.16870824 2.23587987 2.27096577
1.9 0.62629628 1.72273733 2.13184852 2.20356265 2.22777374

0.95

1 0.82414933 1.87127626 2.31830946 2.36707298 2.37441750
1.1 0.73300489 1.84609224 2.28379937 2.35373760 2.35930723
1.2 0.71834905 1.82980945 2.24083446 2.33559233 2.33776914
1.4 0.68447266 1.80982469 2.21190242 2.28289347 2.31913452
1.9 0.63618443 1.77131197 2.19457437 2.23111789 2.29258450

Figure 1. Cont.
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Figure 1. Numerical simulation of υ(t) using DSCDQM–RSK for fractional Riccati equation at
different times and fraction power (α, ρ) for (a) α = 1, and (b) α = 0.7.

Figure 2. Numerical simulation of υ(t) using DSCDQM–RSK for fractional Riccati equation at
different fraction power (α, ρ) for (a) t = 1, and (b) t = 2.
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4.2. Problem 4.2

We deal with the fractional Lorenz system after substituting Equations (4)–(6) with
Equations (19) and (20) of the proposed methods:

L

∑
j=1

aα,ρ
ij X

(
tj
)
= λ

[
N

∑
j=1

δij Y
(
tj
)− N

∑
j=1

δij X
(
tj
)]

(24)

L
∑

j=1
aα,ρ

ij Y
(
tj
)
= (φ− λ)

N
∑

j=1
δij X

(
tj
)−

N
∑

j=1
δij X

(
tj
) N

∑
j=1

δij Z
(
tj
)
+φ

N
∑

j=1
δij Y

(
tj
) (25)

L

∑
j=1

aα,ρ
ij Z

(
tj
)
=

N

∑
j=1

δij X
(
tj
) N

∑
j=1

δij Y
(
tj
)− β

N

∑
j=1

δij Z
(
tj
)

(26)

Dealing with the initial condition (7) is also done by substituting in the governing
Equations (24)–(26). After that, we use Equation (22) to solve this system.

We will now begin to demonstrate the obtained results to explain the stability, relia-
bility, convergence, and performance of FDQM using two types of shape functions with
generalized Caputo sense, as follows:

Table 7 explains the impact of grid points (N) on the obtained results X, Y, and Z
via PDQM with uniform and non-uniform grid distributions of the fractional Lorenz
system with fraction (α = 1, ρ = 1). It is remarkable that non-uniform grid results are
higher and more consistent with earlier solutions [62,63] and RK4 [64] at N = 11 than
uniform ones at N = 13 with error ≤10−8, and execution time of about (0.027 s). Table 8
demonstrates the effect of control values like grid points (N), regularized Shannon factor
(σ = h× Δ), and bandwidth (2K + 1) on the obtained results by DSCDQM–RSK at time
(T = 2), fraction (α = 1, ρ = 1). We found the best value of the regularized Shannon factor
is σ = 0.47× Δ, with results matching previous studies and PDQM shown in Table 7 at the
fewest grid points (N = 9), bandwidth (2K + 1 = 3), and performance time of about (0.022 s).
Furthermore, from Tables 7 and 8, it is noted that the maximum number of grids we use is
significantly less than in previous studies (N = 1280).

Table 7. Computation of numerical solutions X, Y, Z via uniform and non-uniform PDQM for
fractional Chen system (Lorenz system) with time (T = 2) and fraction (α = 1, ρ = 1) at various grid
points (N).

(
x0 = 2.5, y0 = 1, z0 = 0.5

)
and (λ = 1,β = 2,φ = 1).

Uniform PDQM Non-uniform PDQM
N

X Y Z
CPU (s)

X Y Z
CPU (s)

4 0.837919933 0.623902547 0.302407988 0.02 0.837919846 0.623902388 0.302407749 0.02
5 0.771720200 0.527485798 0.248194100 0.021 0.771720184 0.527485752 0.248193998 0.021
6 0.761378603 0.49832669 0.2415685802 0.022 0.763378566 0.522326584 0.2475685753 0.022
7 0.760223666 0.497601296 0.2409074397 0.023 0.762223591 0.515601283 0.2469074378 0.023
9 0.762203989 0.500122597 0.242400811 0.025 0.762203974 0.500122578 0.2424007951 0.024
10 0.762216222 0.500169299 0.2424081878 0.026 0.762216161 0.500169278 0.2424081821 0.025
11 0.76221575 0.500167396 0.242407838 0.027 0.76221572 0.500167392 0.242407832 0.025
12 0.76221573 0.500167394 0.2424078434 0.028 0.76221572 0.500167392 0.2424078432 0.026
13 0.76221572 0.500167392 0.2424078432 0.029 0.76221572 0.500167392 0.2424078432 0.027

Earlier numerical solutions [62,63]
X Y Z

1280 0.76221649 0.50016919 0.24240833
RK4 [64]

0.76221572 0.50016739 0.24240783
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Table 8. Computation of numerical solutions X, Y, Z via DSCDQM–RSK for fractional Chen sys-
tem (Lorenz system) with time (T = 2) and fraction (α = 1, ρ = 1) at various grid points (N), reg-
ularized Shannon factor (σ = h× Δ), and bandwidth (2K + 1).

(
x0 = 2.5, y0 = 1, z0 = 0.5

)
and

(λ = 1,β = 2,φ = 1).

DSCDQM–RSK

σ = 0.4 × Δ σ = 0.45 × Δ σ = 0.47 × ΔN 2K + 1
X Y Z X Y z X Y Z

CPU (s)

9

3 0.7738 0.5133 0.2549 0.7625 0.5008 0.2430 0.76225 0.5004 0.2425 0.01
5 0.7735 0.5127 0.2540 0.7623 0.5006 0.2427 0.76223 0.5003 0.2424 0.012
7 0.7732 0.5122 0.2536 0.76229 0.5005 0.2426 0.76221 0.5002 0.2424 0.014
9 0.7732 0.5122 0.2536 0.76229 0.5005 0.2426 0.76221 0.5002 0.2424 0.016

11 0.7732 0.5122 0.2536 0.76229 0.5005 0.2426 0.76221 0.5002 0.2424 0.018

11

3 0.7347 0.5127 0.2540 0.7623 0.5006 0.2427 0.76222 0.50023 0.2425 0.012
5 0.734 0.5124 0.2537 0.76229 0.5005 0.2426 0.76221 0.5002 0.2424 0.014
7 0.7732 0.5122 0.2536 0.76229 0.5005 0.2426 0.76221 0.5002 0.2424 0.016
9 0.7732 0.5122 0.2536 0.76229 0.5005 0.2426 0.76221 0.5002 0.2424 0.018

11 0.7732 0.5122 0.2536 0.76229 0.5005 0.2426 0.76221 0.5002 0.2424 0.020

13

3 0.7733 0.5122 0.2537 0.76231 0.5006 0.2427 0.762215 0.50026 0.24247 0.014
5 0.7732 0.5122 0.2536 0.76229 0.5005 0.2426 0.76221 0.5002 0.2424 0.016
7 0.7732 0.5122 0.2536 0.76229 0.5005 0.2426 0.76221 0.5002 0.2424 0.018
9 0.7732 0.5122 0.2536 0.76229 0.5005 0.2426 0.76221 0.5002 0.2424 0.020

11 0.7732 0.5122 0.2536 0.76229 0.5005 0.2426 0.76221 0.5002 0.2424 0.022
Earlier numerical solutions [62,63]

X Y Z
1280 0.76221649 0.50016919 0.24240833

RK4 [64]
0.76221572 0.50016739 0.24240783

Figures 3 and 4 present the influence of time and fraction α on the numerical results X,
Y, and Z via non-uniform PDQM and DSCDQM–RSK at

(
x0 = 2.5, y0 = 1, z0 = 0.5

)
and

(λ = 1,β = 2,φ = 1). Thus, it is found that the dynamic behaviors of X, Y, and Z differ
when the fraction α change. This means that when the value α decreases, the values of X, Y,
and Z increase.

Figure 3. Variance of (a) X, (b) Y, and (c) Z with time (t) via non-uniform PDQM and DSCDQM–RSK
for fractional Chen system with time (T = 1), fraction (α = 1, ρ = 1),

(
x0 = 2.5, y0 = 1, z0 = 0.5

)
and

(λ = 1,β = 2,φ = 1).
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Figure 4. Chaotic attractor of fractional Lorenz system using DSCDQM–RSK with time (T = 100),
fraction (α = 1, ρ = 1.2),

(
x0 = 2.5, y0 = 1, z0 = 0.5

)
and (λ = 1,β = 2,φ = 1).

Also, Figures 3 and 4 show that the Lorenz system, a classic model for chaotic dy-
namics, can be extended to fractional-order systems. This extension introduces significant
differences in the observed chaotic behavior [74,75]:

Chaotic Regimes:

� The integer-order Lorenz system exhibits a well-defined chaotic regime within a
specific parameter range.

� Fractional-order Lorenz systems often exhibit chaotic behavior over a wider range of param-
eters and fractional orders. This can lead to more complex and diverse chaotic dynamics.

Attractor Structure:

� The integer-order Lorenz system typically has a single strange attractor.
� Fractional-order Lorenz systems can exhibit multiple strange attractors or even the coex-

istence of different attractors, depending on the fractional order and system parameters.

Fractal Dimension:

� The fractal dimension of the strange attractor in the integer-order Lorenz system is
generally between 2 and 3.

� The fractal dimension of the strange attractors in fractional-order Lorenz systems
can vary more widely, often exceeding 3. This indicates a more complex and
convoluted structure.
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Sensitivity to Initial Conditions:

� The integer-order Lorenz system is highly sensitive to initial conditions, leading to
the butterfly effect.

� Fractional-order Lorenz systems can exhibit even greater sensitivity to initial condi-
tions, making long-term predictions even more challenging.

Memory Effects:

� The integer-order Lorenz system does not have memory effects.
� The fractional-order Lorenz system incorporates memory effects, which can influence

the system’s dynamics and make it more resilient to perturbations.

So, fractional-order Lorenz systems can exhibit more complex and diverse chaotic
behaviors compared to their integer-order counterparts. The increased sensitivity to initial
conditions in fractional-order systems makes long-term predictions even more challenging.
Fractional-order Lorenz systems can be used to model real-world phenomena with memory
effects or nonlinearities that are not adequately captured by integer-order models.

Figures 4–7 show the fractional Lorenz system’s dynamic behaviors as the values of
fractions (α, ρ) at

(
x0 = 2.5, y0 = 1, z0 = 0.5

)
and (λ = 1,β = 2,φ = 1) changes. Also, in

these figures, we show projections of the fractional Lorenz system attractors calculated via
DSCDQM–RSK when T = 100 for some values of the fractions (α, ρ). It is observed that when
the fraction ρ increases, the chaotic behavior increases more than the fraction α changes. Con-
sequently, it is noted that the fractional Lorenz system may exhibit chaotic attractors similar to
those of its integer-order counterpart when (α = 0.9, ρ = 0.8) and (α = 0.8, ρ = 1.2). Also,
for smaller values of the fractions (α, ρ) the system loses its chaotic character.

Figure 5. Chaotic attractor of fractional Lorenz system using DSCDQM–RSK with time (T = 100),
fraction (α = 0.8, ρ = 1.2),

(
x0 = 2.5, y0 = 1, z0 = 0.5

)
and (λ = 1,β = 2,φ = 1).
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Figure 6. Chaotic attractor of fractional Lorenz system using DSCDQM–RSK with time (T = 100),
fraction (α = 0.97, ρ = 1),

(
x0 = 2.5, y0 = 1, z0 = 0.5

)
and (λ = 1,β = 2,φ = 1).

To analyze the computational complexity of the provided code for solving the Riccati
equation and the Lorenz system using the Fractional Differential Quadrature Method
(FDQM), we will focus on memory space and simulation time complexities in detail. The
configuration of the computer used to perform the simulation results is HP Probook 450
G8 Laptop—11th Intel Core i5-1135G7, 8 GB RAM, 512 GB PCIe NVMe SSD, 15.6” FHD
(1920 × 1080), and Intel Iris X Graphics.

1. Memory Space Complexity
Variables:

� Grid Points: The function Chebyshev grid (N) generates N Chebyshev nodes, requir-
ing O(N) space.

The DSCDQM–RSK method demonstrated optimal performance with N = 9 grid
points, a bandwidth of 2k + 1 = 7, and a regularized Shannon factor of σ = 0.45× Δ for
the fractional Riccati equation. This configuration yielded a CPU time of 0.018 s. Similarly,
for the fractional Lorenz system, the best results were obtained with N = 9 grid points, a
bandwidth of 2k + 1 = 3, and a regularized Shannon factor of σ = 0.47× Δ, achieving a
CPU time of 0.02 s.

In contrast, earlier numerical methods typically required significantly more grid points,
often reaching N = 640, 1280, or even 3200.

� Weighting Coefficients: The function PDQM weights (N, t) creates a matrix A of size
N × N. Therefore, it requires O(N2) space.

� Solution Vectors:
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- The solution υ, X, Y, Z vectorsfor the Riccati equation and Lorenz system are
initialized as zero vectors of size N × 1, each requiring O(N) space.

- Total for all solution vectors combined: 4 × O(N) = O(N).

Total Memory Space Complexity:

� The dominant term is O(N2) from the weighting coefficients matrix. Thus, the total
memory space complexity is:

O(N2)

Figure 7. Chaotic attractor of fractional Lorenz system using DSCDQM–RSK with time (T = 100),
fraction (α = 0.9, ρ = 0.8),

(
x0 = 2.5, y0 = 1, z0 = 0.5

)
and (λ = 1,β = 2,φ = 1).

2. Simulation Time Complexity
For Solving the Riccati Equation:
Grid Point Generation:

� The grid points are generated in O(N) time.

Weighting Coefficients Calculation:

� The PDQM weights(N, t, 1) function computes the coefficients with a nested loop over
N, resulting in O(N2) time complexity:

� Each entry in matrix A involves calculations that depend on N, leading to O(N2)
complexity for the entire matrix.

Time Integration:

� The time integration loop runs for N-1 iterations, performing a constant time calcula-
tion for each iteration:
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O(N)

Total Time Complexity for Riccati Equation:

� Combining these, we get:

O(N2) (weighting coefficients) + O(N) (grid points) + O(N) (integration) = O(N2)

For Solving the Lorenz System:
Grid Point Generation:

� Again, this takes O(N) time.

Weighting Coefficients Calculation:

� The calculations for Ax, Ay, and Az each take O(N2):

3 × O(N2) = O(N2)

Time Integration:

� Similar to the Riccati equation, the integration loop runs for N-1 iterations:

O(N)

Total Time Complexity for Lorenz System:

� Again combining these:

O(N2) (coefficients) + O(N) (grid points) + O(N) (integration) = O(N2)

3. Overall Complexity Summary

� Memory Complexity: O(N2)
� Time Complexity for Riccati Equation: O(N2)
� Time Complexity for Lorenz System: O(N2)

4. Real Numbers Example
For practical evaluation, consider the following:

� For N = 9:

Memory for weighting coefficients: 81 entries.
Memory for solution vectors: 36 entries.
Assuming each entry takes 8 bytes (for double precision), the memory usage would be:

� Weighting coefficients: 81 × 8 = 648 bytes (approximately 0.64 KB).
� Solution vectors: 36 × 8 = 288 bytes (approximately 0.28 KB).

Total memory usage for N = 9 would be approximately 1 KB.
Execution Time:

� If the operations in the loops take, say, 0.001 s per iteration:

For N = 9, the time for solving the Riccati equation and the Lorenz system would
be dominated by the O(N2) term, leading to an estimated execution time of about 0.1 s
(for illustration).

This detailed analysis provides insights into the computational complexity of the code,
which is crucial for assessing performance in practical scenarios. The findings underscore
the importance of optimizing the weighting coefficients and the iterative solvers for larger
values of N.

The choice of time step in numerical methods significantly affects the accuracy of the
solutions for differential equations, including those solved using the Differential Quadra-
ture Method (DQM). Here’s how:

5. Stability and Convergence:
Our numerical methods are stable because small perturbations in the initial conditions

lead to small perturbations in the numerical solution.
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Consider the fractional differential equation (FDE) represented in the form:

Dα
c U(t) = f (t, U(t)), t ∈ [0, T] (27)

where Dα
c is the generalized Caputo fractional derivative.

Let U(t) be the exact solution and Un(t) be the numerical solution obtained through
the proposed methods. Introduce a perturbation εn such that:

Un(t) = U(t) + εn (28)

By analyzing how the perturbation evolves over time:

Dα
c (Un(t) + εn) = f (t, Un(t) + εn) (29)

This leads to the error equation:

Dα
c εn = f (t, Un(t) + εn)− f (t, U(t)) (30)

Assume f satisfies a Lipschitz condition:

| f (t, U1)− f (t, U2)| ≤ L|U1 −U2| (31)

where L is a constant.
By applying Gronwall’s inequality, show that:

|εn| ≤ C · Δtp

where C is a constant and p is the order of the method, ensuring that the solution remains
bounded as n → ∞ .

Our numerical method converges because the numerical solution approaches the exact
solution as the grid refinement increases.

Let:
lim

N→∞
‖ Un(t)−U(t) ‖ = 0 (32)

By conducting an error analysis between the numerical solution and the exact

En = Un(t)−U(t) (33)

By using Taylor expansion around tn to express U(t):

U(tn + Δt) = U(tn) + ΔtU′(tn) + O
(

Δt2
)

(34)

Relate this to the discretized version derived from the method:

Un(tn + Δt) = Un(tn) + O(Δtp) (35)

The method is stable and the achieved convergence rates reached 10−8, indicating
a high level of precision in solving the nonlinear fractional initial value problems. The
truncation error in our numerical methods is very small due to the Gaussian regularizer
σ = 0.45× Δ which depends on a small computational domain:

6. Accuracy of the Solution:

� Each step introduces local error, which accumulates over time. Smaller time steps help
minimize this accumulation, resulting in a more accurate final solution (error ≤10−8)

� The global error, which is the total error over the entire integration period, also tends
to decrease with smaller time steps, leading to better overall accuracy.
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4.3. Stability Analysis

After applying our discretization schemes to Equations (1)–(6), we obtained an equiv-
alent set of ordinary differential equations in the time domain:

d[U]

dt
= R[U] + [K] (36)

where

1. The vector {U} represents the unknown variables at the internal grid points, where υ,
X, Y, and Z are the individual components;

• The initial conditions are stored in the vector [K];

2. R[U] is the right-hand side of Equations (1)∓(6); and

3. a(1)ij is the weighting coefficient matrix of the first derivative:

a(1)ij =

⎡⎢⎢⎢⎢⎢⎢⎣
a(1)22 a(1)23

a(1)32 a(1)33

· · · a(1)2(n−1)

a(1)3(n−1)
...

. . .
...

a(1)
(n−1)2 a(1)

(n−1)3 · · · a(1)
(n−1)(n−1)

⎤⎥⎥⎥⎥⎥⎥⎦
(N−2)×(N−2)

(37)

The stability of our technique was evaluated by examining system (35). We employed
eigenvalue analysis of the coefficient matrices (a) to determine stability.

For the fractional differential equation represented in the form:

Dα
c U(t) = f (t, U(t))

discretizing this using the FDQM leads to a system of equations expressed as:

[a][U] = R[U]

To analyze stability, we need to compute the eigenvalues λ of the matrix [a]. The
eigenvalue problem is given by:

[a][v] = λ[v]

where v is the eigenvector associated with the eigenvalue λ.
The characteristic polynomial is obtained from:

det(a− λI) = 0

where I is the identity matrix.
The stability of the numerical method hinges on the eigenvalues of [a]:

1. If all eigenvalues satisfy |λ|< 1 , the method is stable.
2. If any eigenvalue has |λ|≥ 1 , the method may be unstable.

Figure 8 displays the stability regions for a numerical method at various fractional
orders (α). Each subplot represents a different α value: 0.5, 0.7, 0.85, and 1. The plots show
the eigenvalues of the coefficient matrix (a) in the complex plane (Real vs. Imaginary). At
α = 0.5, the eigenvalues are all located on the real axis near −0.5. Since the magnitude of
these eigenvalues is less than 1, this indicates stability for this fractional order. At α = 0.7,
the eigenvalues form a V-shape, extending into both the positive and negative real axis.
A portion of the eigenvalues have magnitudes greater than 1 (outside the unit circle),
indicating instability in this region. The region of stability is limited to the portion of the
V-shape within the unit circle. At α = 0.85, the eigenvalues form an inverted V-shape.
Similar to (b), portions of the eigenvalues are outside the unit circle, indicating instability.
The region of stability is again limited to the portion within the unit circle. At α = 1, the
eigenvalues lie entirely on the negative real axis, forming a vertical line. All eigenvalues
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appear to be within the unit circle, suggesting stability for this fractional order (which
corresponds to the standard integer-order case). Furthermore, Figure 9 depicts the error
propagation in relation to time and fractional order.

Figure 8. Regions of stability at varying fractional orders.

Figure 9. Propagation of errors in relation to time and fractional order.
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5. Conclusions

In this present work, we have successfully investigated new numerical methods for
solving the fractional Riccati equation and fractional Lorenz system. The novel numerical
method is FDQM, which is based on two base functions: Lagrange interpolation polynomial
and discrete singular convolution-Regularized Shannon kernel with a new generalized
Caputo kind. These methods are used to transform the proposed problems into a nonlinear
algebraic system. Then, the iterative method is employed to deal with the problem of
nonlinearity. All numerical results were obtained using MATLAB. By comparing our
results with those of existing methods, we demonstrated the superior accuracy, efficiency,
and overall performance of our proposed techniques. The achieved convergence rates
reached 10−8, indicating a high level of precision in solving the nonlinear fractional initial
value problems. Error analysis showed that non-uniform grid distributions consistently
outperformed uniform distributions, with maximum errors diminishing significantly as
grid points increased. Our numerical results demonstrate that the DSC-RSK method
achieved significantly faster convergence rates compared to other techniques. The best
results of the DSC-RSK method are achieved when grid points are N = 9, bandwidth is
2k + 1 = 7, and the regularized Shannon factor is σ = 0.45× Δ at CPU time = 0.018 s
for the fractional Riccati equation. But for the fractional Lorenz system, the best results
are when grid points are N = 9, bandwidth is 2k + 1 = 3, and the regularized Shannon
factor is σ = 0.47× Δ at CPU time = 0.02 s. Also, the proposed techniques have been
successfully employed to explain the fractional systems’ dynamic behaviors. The numerical
results demonstrate a strong dependence of the solution on the fractional derivative. The
fractional parameters, α and ρ, offer significant advantages in studying the proposed
problems with greater accuracy compared to traditional approaches. These techniques hold
promise for solving more complex nonlinear equations and other differential applications
involving fractional derivatives. The versatility of the FDQM was highlighted through its
successful application to both the fractional Riccati equations and the fractional Lorenz
system, demonstrating its potential for broader applications in fields requiring the modeling
of complex dynamics. The findings suggest that further exploration of fractional orders
could uncover even richer dynamics, with potential applications extending to areas such as
control theory, physics, and finance.
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Abstract: In this article, we introduce and investigate two classes of fuzzy fractional
two-dimensional continuous-time (FFTDCT) linear systems to deal with uncertainty and
fuzziness in system parameters. First, we analyze FFTDCT linear systems based on the
Roesser model, incorporating fuzzy parameters into the state-space equations. The poten-
tial solution of the fuzzy fractional system is obtained using a two-dimensional granular
Laplace transform approach. Second, we examine FFTDCT linear systems described by
the second Fornasini–Marchesini (FM) model, where the state-space equations involve
two-dimensional and one-dimensional partial fractional-order granular Caputo derivatives.
We determine the fuzzy solution for this model by applying the two-dimensional granular
Laplace transform. To enhance the validity of the proposed approaches, real-world applica-
tions, including signal processing systems and wireless sensor network data fusion, are
solved to support the theoretical framework and demonstrate the impact of uncertainty on
the system’s behavior.

Keywords: granular Caputo fractional derivative; fuzzy fractional two-dimensional
linear systems; granular two-dimensional Laplace transform; Roesser model; Fornasini–
Marchesini second model
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1. Introduction

All real-world phenomena are naturally affected by uncertainty. Developing a model,
solving the problem, and analyzing the results encountered are essential tasks within
the domain of fuzziness. Generally, differential equations (DEs) are commonly involved
in various scientific and engineering domains [1]. These DEs typically rely on complex
environments, and such complexities can be handled more precisely using fractional-
order derivatives. In contrast, the model’s parameters, variables, and initial or boundary
conditions are assumed to be crisp for computational simplicity. Errors that arise from
observations, measurements, or experiments can result in vague or incomplete descriptions
of these parameters and variables. One can employ a stochastic, statistical, or fuzzy
approach to deal with such uncertainty. Stochastic and statistical methods address the
uncertainty due to inherent randomness in processes. Fuzzy set theory offers a framework
for managing vagueness and imprecision that result from incomplete information regarding
the variables and parameters of a model.
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Fuzzy differential equations (FDEs) have become a valuable tool for modeling nat-
ural phenomena and are characterized by uncertainty, attracting considerable attention
from researchers. The concept of FDEs was first introduced by Dubois and Prade in
1982 [2]. Many researchers have worked on FDEs by examining their existence and unique-
ness (E&U), proposing novel approaches, and determining the behavior to deepen the
comprehension of the models [3–5]. The solution was derived using the fuzzy Laplace
transform technique [3,6,7].

The fuzzy derivatives obtained from fuzzy standard interval arithmetic (FSIA) possess
some limitations. Some of them are highlighted below: (i) The solution of FDEs under
fuzzy derivatives leads to CPLV [8]. Furthermore, all real-world phenomena are governed
by physical laws, and these problems are often described using FDEs. However, FDEs can
admit multiple fuzzy solutions, and not all of them may accurately reflect the true behavior
of the physical system. Inaccurate or inappropriate solutions can lead to predictions that
contradict the underlying physical principles. (ii) The fuzzy derivatives within the FSIA
framework are valid only if the H-difference exists. The existence of fuzzy derivatives is
restricted if the corresponding differences do not exist [9]. (iii) The n-dimensional FDEs
under FSIA are transformed into a 2n classical system. This transformation imposes a
constraint that complicates the comprehension and analysis of FDEs. (iv) FDEs under fuzzy
derivatives with FSIA lead to different solutions. This phenomenon is commonly referred
to as the UBM phenomenon. (v) The FDEs using FSIA frequently yield multiple or infinitely
many solutions, complicating the interpretation of the results [10]. Mazandarani et al. [9]
introduced the novel concept of differentiability, commonly called granular differentiability
(gr-derivative), to explore the FDEs from a new perspective. This approach handles the
fuzziness of FDEs by applying the fuzzy interval arithmetic based on the relative distance
measure (RDM). The core innovation behind this approach is to characterize fuzzy numbers
through their horizontal membership function (HMF) and to formulate the corresponding
operations within this framework. This derivative is introduced to overcome the limitations
of fuzzy derivatives using FSIA. FDEs based on the gr-derivative enable us to determine
a unique solution to the problem. Granular differentiability (GRD) has the following
main advantages when investigating FDEs: FDEs under GRD have a simple and effective
solution. In FDEs involving GRD, the solution’s support across the domain does not need
to be intrinsically monotonic. The doubling property, multiplicity, and UBM phenomena
constraints are successfully addressed and eliminated in the solutions of FDEs using GRD.

Motivation and Contribution

The modeling of complex multi-dimensional dynamical processes with memory
and hereditary properties relies heavily on fractional two-dimensional continuous-time
(FTDCT) linear systems. These systems are essential for studying real-world phenomena,
including distributed parameter systems, thermal systems, and image processing. One ef-
fective tool for examining and managing such systems is the extension of the Roesser model
to the fractional calculus. Roesser [11] introduced the most significant state-space models
for two-dimensional linear systems (TDLSs). For the study of multi-dimensional systems,
this model is essential. To evaluate two-dimensional linear systems (TDLSs), they offer a
framework that separates the dynamics into vertical and horizontal components. Alterna-
tive state-space models for TDLSs were proposed by Fornasini and Marchesini [12] and are
widely used for the study and control of multi-dimensional systems. This work extends the
Roesser model and provides additional tools for understanding two-dimensional (2D) sys-
tems, particularly in the context of iterative processes and signal processing. The state-space
model for TDLSs introduced by Kurek [13] is especially helpful for applications involving
image processing and control systems. Kurek’s approach provides a consistent framework
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for TDLS modeling. This model is beneficial for analyzing systems with closely related
spatial dimensions, such as image filtering and thermal processes. Bose [14] examined
the fundamental ideas and revelations of TDLS theory. His work mainly concentrated
on signal processing applications, system realization, and stability analysis. This work
laid the groundwork for understanding the structural and behavioral characteristics of
TDLSs. Kaczorek [15] studied TDLSs, focusing on their mathematical formulation and
solution methods. He investigated the positive systems based on the ideas previously
introduced in the literature. Galkowski [16] contributed theoretically by developing the
state-space realizations of TDLSs and extending them into higher-dimensional systems.
Farina and Rinaldi [17] studied positive linear systems with their applications. They also
extended their work in the broader context of the TDLS. Oldham and Spanier [18] pre-
sented the basic concepts, definitions, and characteristics of fractional calculus, which are
essential for future studies. Miller and Ross [19] explored fractional differential equations,
emphasizing their applications across various fields by establishing connections between
abstract mathematics and real-world problem-solving. Podlubny [20] discussed fractional
differential equations and demonstrated their importance in simulating complex systems
in control theory and engineering. Kaczorek [21] introduced the concept of fractional-
order discrete TDLSs, laying the groundwork for further research into fractional-order
dynamics. Rogowski [22] developed a general response formula for solving the FTDCT
linear system of the Roesser structure with its applications. Kaczorek and Rogowski [23]
studied the descriptor case of continuous fractional-order TDLSs. Their work broadened
the applicability and understanding of fractional systems in multi-dimensional contexts.
Rogowski [24] studied the behavior of fractional-order TDLSs described by the Roesser
type. Idczak et al. [25] examined the solution of an FTDCT linear system of the first FM type,
incorporating Riemann–Liouville (RL) fractional-order partial derivatives. Their findings
provided valuable insights into how such derivatives influence the dynamics and behavior
of these systems. Rogowski [26] examined the FM model’s positive analysis for continuous
fractional-order TDLSs. Using the Roesser model, Hu et al. [27] investigated the event-
triggered control methods for continuous TDLSs. Reducing communication frequency and
minimizing dependency on global information are the goals of this strategy. The stability of
generalized nonlinear homogeneous systems in the presence of bounded disturbances was
examined by Huang et al. [28]. The conditions under which these systems maintain their
stability in the face of external perturbations were carefully studied in this work. Using the
concept of bounded disturbances, Ma et al. [29] investigated the estimation of the reachable
set for 2D switched nonlinear positive systems, taking time-varying delays and delayed
impulsive effects into account. Using the Roesser framework, Dami and Benzaouia [30]
presented a new kind of 2D fractional switched system. To use state feedback controllers
to stabilize the system, the study also investigated sufficient conditions (SCs). Under the
Roesser framework, Huang et al. [31] examined the finite-time stability (FTS) of 2D positive
systems. The study employed a co-positive Lyapunov function to construct SCs to accom-
plish FTS in the system. In the framework of the Roesser model, Gao et al. [32] examined
the SCs for the FTS and finite-time control (FTC) of 2D systems. To mitigate the effect of
stable bounded disturbance inputs on TDLSs in the Roesser framework, Ahn et al. [33]
introduced a linear matrix inequality (LME) condition. The analysis used discrete Jensen
inequality (DJI) and diagonally dominant matrices (DDMs). Nemati and Mamehrashi [34]
developed the numerical scheme for 2D fractional optimal control systems using Legendre
polynomials, the Ritz approach, and the Laplace transform technique. They also analyzed
the convergence with two illustrative examples.

Zhang et al. [35] analyzed the necessary SCs for the stability of the 2D fractional first
FM model. They presented these conditions with respect to polynomials and LMEs using
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the Kronecker product. Zhu and Lu [36] discussed the robust stability of the second 2D
FM continuous fractional-order model in the presence of interval uncertainties. They deter-
mined the LMI-based stability conditions using the nominal fractional-order model, which
was presented in terms of stable root clustering sets. Zhang and Wang [37] formulated the
concepts of finite-region stability and boundedness of the 2D fractional-order second FM
model and then analyzed the transient behavior of such systems. Benyettou et al. [38] de-
termined the solution procedure of conformable fractional TDLSs by applying the Laplace
and Sumudu transform techniques. Benyettou et al. [39] formulated the solution to the
minimum energy control problem for fractional TDLSs described by the first FM model.
Yan et al. [40] developed the state-space formulation for the 2D frequency transformation
in the second FM model, which enables a more flexible tool for 2D zero-phase filters to
prevent image distortions. Li and Hou [41] introduced the parametric controller method
for TDLSs using polynomial discriminant systems and the Hurwitz theorem. The main
contributions of the proposed work in this area are summarized as follows:

1. Two classes of FFTDCT linear systems are introduced and investigated to address
uncertainty and fuzziness in system parameters.

2. The fuzzy solution of FFTDCT linear systems based on the Roesser model and the
second FM model is obtained under one-dimensional 2D partial fractional granular
Caputo derivatives.

3. The potential solution of the proposed model is determined using the 2D granular
Laplace transform.

4. Real-world applications, including signal processing systems and wireless sensor
network data fusion, are solved using the proposed technique.

The rest of the article is organized as follows: some fundamental concepts of the
granular representation of the fuzzy number, 2D granular fractional integral (GFI), 2D
granular Caputo fractional derivatives (GCFDs), and 2D granular Laplace transform are
presented in Section 2. The fuzzy solution of the granular FFTDCT Roesser model using
the granular 2D fuzzy Laplace transform is determined in Section 3. The fuzzy solution
of the granular FFTDCT described by the second FM model is extracted in Section 4.
The applications of the FFTDCT linear system described by Roesser and FM’s second
model are discussed in Section 5. Section 6 outlines the conclusion of the article.

2. Fuzzy Preliminaries

This section introduces the basic concepts of fuzzy analysis, including granular repre-
sentations and their associated operations. Subsequently, we define the two-dimensional
Riemann–Liouville (2DRL) fractional integral and the fractional derivative in Caputo
sense. Moreover, we extend these concepts with the granular counterparts through the
two-dimensional GFI and two-dimensional GCFD. The section further develops the the-
oretical framework by presenting the 2D granular Laplace transform and examining its
key properties.

A fuzzy set m [42] m : [a, b] ⊆ R −→ [0, 1] is referred to as the fuzzy number (FN)
if it adheres to the following properties: normal, upper semicontinuity, convex and has
compact support. Let ΞR denote the class of all FNs on R. The ϑ-cut of m is denoted by
[m]ϑ and is defined by [m]ϑ = [m−ϑ ,m+

ϑ ], for all 0 ≤ ϑ ≤ 1.

Definition 1 ([9]). Let m be an FN; the granular representation of m is defined as
mgr : [0, 1]× [0, 1] −→ [a, b], where (ϑ, π) �→ mgr(ϑ, π) = m−ϑ + (m+

ϑ −m−ϑ )π. Here, “gr”
denotes the granular representation of m over the interval x ∈ [a, b], with ϑ ∈ [0, 1] and π ∈ [0, 1].
The HMF of FN m is represented by H(m) and is defined by H(m) � mgr(ϑ, π).
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We now provide Table 1, which includes various commonly used notations.

Table 1. Summary of notations.

Notation Description Location

ΞR The collection of all FNs on R Section 2

H(m) � mgr(ϑ, π) The HMF of the FN m ∈ ΞR Section 2

Iαi
zi The 2DRL fractional integral of order αi re-

garding the variable zi (i = 1, 2)
Definition 9

CDαi
zi The 2D Caputo fractional derivative (CFD) of

order αi > 0 regarding variable zi (i = 1, 2)
Definition 12

Lz1,z2 The 2D Laplace transform regarding z1 and z2 Definition 16

Lz1,z2 The 2D granular Laplace transform regarding
z1 and z2

Definition 18

grIαi
zi The GFI of order αi regarding zi (i = 1, 2) Definition 13

grDαi
zi The two-dimensional GCFD of order αi > 0

regarding zi (i = 1, 2)
Definition 14

Iα
z1
κ(z1, z2) FI of order α > 0 of κ(z1, z2) regarding the

variable z1

Definition 8

Definition 2 ([9]). The ϑ-cut of m ∈ ΞR can be represented by the following formula

H−1(mgr(ϑ, π)) := [m]ϑ :=
[

inf
η≥ϑ

min
π

mgr(η, π), sup
η≥ϑ

max
π

mgr(η, π)

]
. (1)

Definition 3 ([9]). The arithmetic operations of two FNs, m1 and m2, with their HMFs, H(m1)

and H(m2), respectively, are defined by

H(m1 �m2) = H(m1) •H(m2), (2)

where � and • denote the arithmetic operations on ΞR and R, respectively, such as addition,
subtraction, multiplication, or division.

Definition 4 ([9]). Suppose κ : [a, b] ⊆ R → ΞR is a fuzzy function that includes
m1,m2,m3, . . . ,mn FNs. The HMF of κ(z), represented by H(κ(z)) � κgr(z, ϑ, π), is described
by the given relation

κ
gr : [a, b]× [0, 1]× [0, 1]n → R, where ϑ ∈ [0, 1] and π � (πm1 , πm2 , . . . , πmn). (3)

Definition 5 ([43]). Let m1,m2,m3 ∈ ΞR, and λ be a real number. Then, the below claims hold:

(i). ρgr(m1 + m3,m2 + m3) = ρgr(m1,m2).
(ii). ρgr(λm1, λm2) = |λ|ρgr(m1,m2).
(iii). ρgr(m1 �gr m2, 0̂) = ρgr(m1,m2).

2.1. Fuzzy Fractional Calculus

Definition 6 ([9]). Let κ : (a, b) ⊆ R −→ ΞR be an FVF. The function κ is said to be GRD at
z ∈ (a, b) if there exists κ

′
gr(z) ∈ ΞR such that the following limit

κ
′
gr(z) = lim

ε→0

κ(z + ε)�gr κ(z)
ε

, (4)
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exists.

Definition 7. The fractional integral (FI) of κ ∈ L1([a, b],R) of order α > 0, denoted by Iα
a+ , is

defined by

Iα
a+κ(z) =

1
Γ(α)

∫ z

a
(z− τ)α−1

κ(τ)dτ. (5)

Definition 8 ([20,44]). The FI of order α > 0 of κ(z1, z2) regarding the variable z1 is defined by

Iα
z1
κ(z1, z2) =

1
Γ(α)

∫ z1

a
(z1 − τ)α−1

κ(τ, z2)dτ. (6)

Similarly, we can define the RL fractional integral of a 2D continuous function κ(z1, z2) regarding z2.

Now, we define the following Definition 9 for the 2DRL fractional integral regarding
the variables z1 and z2 based on Definition 8, as follows:

Definition 9 ([20,44]). The two-dimensional RL fractional integral of order αi of a continuous
function κ(z1, z2) regarding variable zi (i = 1, 2) is given by the formula

Iαi
zi κ(z1, z2) =

1
Γ(αi)

∫ zi

a
(zi − τ)αi−1

κ(τ)dτ,

where

κ(τ) =

⎧⎨⎩κ(τ, z2) for i = 1,

κ(z1, τ) for i = 2.

Definition 10. The CFD of order α > 0, denoted by CDα
a+ , of a function κ ∈ C1([a, b],R), is

defined by

CDα
a+κ(z) :=

1
Γ(n− α)

∫ z

a
(z− τ)n−α−1

κ
(n)(τ)dτ, (7)

where n ∈ N, such that n− 1 < α < n, and z ∈ [a, b].

Definition 11 ([22,23]). The CFD of order α > 0 of a 2D continuous function κ(z1, z2) regarding
variable z1 is given by

CDα
a+κ(z1, z2) =

1
Γ(n− α)

∫ z1

a

f (n)(τ, z2)

(z1 − τ)α−n+1 dτ,

where n − 1 ≤ α < n. Similarly, we can define the aforementioned CFD of a 2D continuous
function κ(z1, z2) regarding z2.

We now define the following Definition 12 for the two-dimensional Caputo fractional
derivative (2DCFD) regarding the variables z1 and z2 based on Definition 11, as follows:

Definition 12 ([22,23]). The 2DCFD of order αi > 0 of a continuous function κ(z1, z2) regarding
variable zi (i = 1, 2) is given by

CDαi
zi κ(z1, z2) =

1
Γ(ni − αi)

∫ zi

a

f (ni)(τ)

(zi − τ)αi−ni+1 dτ,
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where ni − 1 ≤ αi < ni, and

f (ni)(τ) =

⎧⎨⎩ ∂ni
∂τni κ(τ, z2) for i = 1,
∂ni

∂τni κ(z1, τ) for i = 2.

Based on Definition 9, we present the idea of the GFI of FVFs as follows:

Definition 13. Let κ : [a1, b1]× [a2, b2] ⊂ R2 −→ ER. The GFI of order αi ∈ (0, 1] of FVF is
defined by

grIαi
zi κ(z1, z2) =

1
Γ(αi)

∫ ti

a
(ti − τ)αi−1

κ(τ)dτ,

where κ(τ) is κ(τ, z2) for i = 1 and κ(z1, τ) for i = 2, respectively.

Remark 1. According to Definition 13, the HMF of granular fractional integral grIαi
zi κ(z1, z2) is

defined by

H
(grIαi

zi κ(z1, z2)
)
=

1
Γ(αi)

∫ zi

a
H
(
(zi − τ)αi−1

κ(τ)
)
dτ,

=
1

Γ(αi)

∫ zi

a
(zi − τ)αi−1H

(
κ(τ)

)
dτ,

= Iαi
zi H

(
κ(τ)

)
.

Thus, H
(grIαi

zi κ(z1, z2)
)
= Iαi

zi H
(
κ(τ)

)
, where κ(τ) is κ(τ, z2) for i = 1 and κ(z1, τ) for

i = 2, respectively.

Definition 14. Let κ : [a1, b1]× [a2, b2] ⊂ R2 −→ ER. The 2D GCFD of order αi ∈ (0, 1] of the
FVF κ(z1, z2) regarding variable zi (i = 1, 2) is defined by

grDαi
zi κ(z1, z2) =

1
Γ(1− αi)

∫ zi

a

κ
′
gr(τ)

(zi − τ)αi
dτ,

where κ
′
gr(τ) is equal to ∂

∂τκgr(τ, z2) for i = 1 and ∂
∂τκgr(z1, τ) for i = 2, respectively.

Remark 2. Similar to Remark 1, we may also infer the following:

H
(grDαi

zi κ(z1, z2)
)
= CDαi

zi H
(
κ(z1, z2)

)
. (8)

2.2. Granular 2D Laplace Transform for FVF

First, we review some fundamental concepts and terminology related to the Laplace
transform of a 2D continuous function. Next, we present the granular 2D Laplace transform
of FVF and HMF.

Definition 15 ([20,23,45]). Let κ(p, z2) and κ(z1, s) denote the Laplace transforms of a 2D
continuous function κ(z1, z2) regarding z1 and z2, respectively. The following formulas define
these transforms:

Lz1 [κ(z1, z2)] :=
∫ ∞

0
κ(z1, z2)e−pz1 dz1, Lz2 [κ(z1, z2)] :=

∫ ∞

0
κ(z1, z2)e−sz2 dz2.

Definition 16 ([20,23,45]). Suppose κ(z1, z2) is the real-valued continuous function from
[0, ∞) × [0, ∞) to R such that the 2D Laplace transform of κ(z1, z2), denoted by χ(p, s) and
defined by
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χ(p, s) = Lz1,z2

[
κ(z1, z2)

]
= Lz1

{
Lz2

[
κ(z1, z2)

]}
= Lz2

{
Lz1

[
κ(z1, z2)

]}
=
∫ ∞

0

∫ ∞

0
κ(z1, z2)e−pz1−sz2 dz1dz2, (9)

for all p, s ∈ C for which the integral in Equation (9) converges.

Definition 17 ([22,23]). The 2D Laplace transform of Definition 9 is given by

Lz1,z2 [I
α1
z1 κ(z1, z2)] = p−α1 χ(p, s) and Lz1,z2 [I

α2
z2 κ(z1, z2)] = s−α2 χ(p, s). (10)

Furthermore,

Lz1

[
tα1−1
1

Γ(α1)

]
= p−α1 and Lz2

[
tα2−1
2

Γ(α2)

]
= s−α2 , (11)

for α1 > 0 and α2 > 0.

Theorem 1 ([22,23]). The 2D Laplace transform of Definition 12 of the 2D function κ(z1, z2)

regarding z1 and z2 is defined by

Lz1,z2

[
C
0+Dα1κ(z1, z2)

]
= pα1κ(p, s)−

n1

∑
k=1

pα1−kF(k−1)(0, s) (12)

and

Lz1,z2

[
C
0+Dα2κ(z1, z2)

]
= sα2κ(p, s)−

n2

∑
l=1

sα2−l F(l−1)(p, 0), (13)

respectively, where F(k)(0, s) = Lz2

{
∂k

∂zk
1
κ(z1, z2)|z1=0

}
and F(l)(p, 0) = Lz1

{
∂l

∂zl
2
κ(z1, z2)|z2=0

}
for

k, l ∈ Z+. Combining Equations (12) and (13), we get

Lz1,z2

[
C
0+Dα1,α2κ(z1, z2)

]
= pα1 sα2κ(p, s)−

n1

∑
k=1

n2

∑
l=1

pα1−ksα2−l F(k−1,l−1)(0, 0)

− pα1
n2

∑
l=1

sα2−l F(l−1)(p, 0)− sα2
n1

∑
k=1

pα1−l F(k−1)(0, s), (14)

where F(k,l)(0, 0) =
[

∂k

∂zk
1

∂l

∂zl
2
κ(z1, z2)|z1=0,z2=0

]
for k, l ∈ Z+.

Definition 18. Suppose κ(z1, z2) is the continuous FVF such that e−pz1−sz2κ(z1, z2) is the
improper fuzzy Riemann-integrable on [0, ∞)× [0, ∞), and then Lz1,z2

[
κ(z1, z2)

]
is called the

granular 2D Laplace transform of κ(z1, z2) and is defined by

Lz1,z2

[
κ(z1, z2)

]
=
∫ ∞

0

∫ ∞

0
e−pz1−sz2κ(z1, z2)dz1dz2, (15)

where p, s > 0 are integers.

Remark 3. The HMF of Definition 18 is defined by

H

(
Lz1,z2

[
κ(z1, z2)

])
=
∫ ∞

0

∫ ∞

0
H
(
e−pz1−sz2κ(z1, z2)

)
dz1dz2,

=
∫ ∞

0

∫ ∞

0
e−pz1−sz2H

(
κ(z1, z2)

)
dz1dz2,
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= Lz1,z2

[
H

(
κ(z1, z2)

)]
. (16)

3. Granular FFTDCT Linear Systems in the Roesser Framework

In this section, we derive the fuzzy solution of the granular FFTDCT Roesser model
using the granular 2D fuzzy Laplace transform. To achieve this, we first define the granular
FFTDCT linear system governed by the following state equations:[

gr
0+Dα1κ1(z1, z2)
gr
0+Dα2κ2(z1, z2)

]
= A

[
κ1(z1, z2)

κ2(z1, z2)

]
+ Bu(z1, z2), (17)

y(z1, z2) = C

[
κ1(z1, z2)

κ2(z1, z2)

]
+ Du(z1, z2), (18)

where A = [aij], B = [bi] for i, j = 1, 2, κ1(z1, z2) ∈ Ξn1
R , and κ2(z1, z2) ∈ Ξn2

R

(n = n1 + n2) are the fuzzy horizontal and fuzzy vertical state vectors, respectively. More-
over, u(z1, z2) ∈ Ξm

R and y(z1, z2) ∈ Ξp
R are the fuzzy inputs and output vectors of the

system. Furthermore, A ∈ Ξni×j
R , B ∈ Ξni×m

R , C ∈ Ξp×n
R , and D ∈ Ξp×m

R are the fuzzy
matrices. For simplicity, we consider the system (17) with fractional orders α1, α2 ∈ (0, 1).

Note 1. Let Ξn×n
R be the class of all fuzzy matrices of size n and Ξn

R = Ξn×1
R . Moreover, In is the

identity matrix of size n.

Theorem 2. The HMF of the fuzzy solution of system (17) with fractional orders 0 < α1 < 1,
0 < α2 < 1 for arbitrary fuzzy input u(z1, z2) is given by the following

[
H
(
κ1(z1, z2)

)
H
(
κ2(z1, z2)

) ] =
∞

∑
i=0

∞

∑
j=1

H
(
Tij
)(⎡⎢⎣ ziα1

1
Γ(1 + iα1)

1
Γ((jα2))

∫ z2
0 (z2 − τ2)

jα2−1H
(
κ1(0, τ2)

)
dτ2

0

⎤⎥⎦
+

⎡⎣ H
(

b1

)
Γ((i+1)α1)Γ(jα2)

∫ z1
0

∫ z2
0 (z1 − τ1)

(i+1)α1−1(z2 − τ2)
jα2−1H

(
u(τ1, τ2)

)
dτ2dτ1

0

⎤⎦)

+
∞

∑
i=0

H
(
Ti0
)(⎡⎢⎣ ziα1

1
Γ(1 + iα1)

H
(
κ1(0, z2)

)
0

⎤⎥⎦+

⎡⎣ H
(

b1

)
Γ((i+1)α1)

∫ z1
0 (z1 − τ1)

(i+1)α1−1H
(
u(τ1, z2)

)
dτ1

0

⎤⎦)

+
∞

∑
i=1

∞

∑
j=0

H
(
Tij
)(⎡⎢⎣ 0

zjα2
2

Γ(1 + jα2)
1

Γ((iα1))

∫ z1
0 (z1 − τ1)

iα1−1H
(
κ2(τ1, 0)

)
dτ1

⎤⎥⎦
+

⎡⎣ 0
H
(

b2

)
Γ(iα1)Γ((j+1)α2)

∫ z1
0

∫ z2
0 (z1 − τ1)

iα1−1(z2 − τ2)
(j+1)α2−1H

(
u(τ1, τ2)

)
dτ2dτ1

⎤⎦)

+
∞

∑
i=0

H
(
T0j
)(⎡⎢⎣ 0

zjα2
1

Γ(1 + jα2)
H
(
κ2(z1, 0)

)
⎤⎥⎦+

⎡⎣ 0
H
(

b2

)
Γ((j+1)α2)

∫ z2
0 (z2 − τ2)

(j+1)α2−1H
(
u(z1, τ2)

)
dτ2

⎤⎦). (19)

with the fuzzy transition matrices given in Equation (29).
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Proof. For each z1, z2 ∈ [0, T], applying the 2D FLT on both sides to the system (17) and
using the Linearity property, we get[

Lz1,z2

[gr
0+Dα1κ1(z1, z2)

]
Lz1,z2

[gr
0+Dα2κ2(z1, z2)

] ] =

[
a11 a12

a21 a22

][
Lz1,z2

[
κ1(z1, z2)

]
Lz1,z2

[
κ2(z1, z2)

] ]+ [
b1

b2

]
Lz1,z2

[
u(z1, z2)

]
. (20)

Applying the HMF to Equation (20) and utilizing Remark 3, we get[
Lz1,z2

[
H
(gr

0+Dα1κ1
)
(z1, z2)

]
Lz1,z2

[
H
(gr

0+Dα2κ2
)
(z1, z2)

] ] =

[
H
(
a11
)

H
(
a12
)

H
(
a21
)

H
(
a22
) ][ Lz1,z2

[
H
(
κ1(z1, z2)

)]
Lz1,z2

[
H
(
κ2(z1, z2)

)] ]

+

[
H
(
b1
)

H
(
b2
) ]Lz1,z2

[
H
(
u(z1, z2)

)]
. (21)

Using Remark 2, the above Equation (21) transforms into the following equation[
Lz1,z2

[C
0+Dα1H

(
κ1(z1, z2)

)]
Lz1,z2

[C
0+Dα2H

(
κ2(z1, z2)

)] ] =

[
H
(
a11
)

H
(
a12
)

H
(
a21
)

H
(
a22
) ][ Lz1,z2

[
H
(
κ1(z1, z2)

)]
Lz1,z2

[
H
(
κ2(z1, z2)

)] ]

+

[
H
(
b1
)

H
(
b2
) ]Lz1,z2

[
H
(
u(z1, z2)

)]
. (22)

Applying Theorem 1, Equation (22) can be written in the following form[
Pα1H

(
χ1(p, s)

)− Pα1−1H
(
χ1(0, s)

)
sα2H

(
χ2(p, s)

)− sα2−1H
(
χ2(p, 0)

) ]
=

[
H
(
a11
)

H
(
a12
)

H
(
a21
)

H
(
a22
) ][ H

(
χ1(p, s)

)
H
(
χ2(p, s)

) ]

+

[
H
(
b1
)

H
(
b2
) ]H(U (p, s)

)
, (23)

where H
(
χ1(p, s)

)
= Lz1,z2{H

(
κ1(z1, z2)

)}, H
(
χ2(p, s)

)
= Lz1,z2{H

(
κ2(z1, z2)

)},
H
(
χ2(p, 0)

)
= Lz1{H

(
κ2(z1, 0)

)}, and H
(
χ1(0, s)

)
= Lz2{H

(
κ1(0, z2)

)}. Pre-multiply

Equation (23) by the matrix

[
p−α1 In1 0

0 p−α2 In2

]
. Here, In1 and In2 are the identity matri-

ces of orders n1 × n1 and n2 × n2, respectively. We obtain

[
H
(
χ1(p, s)

)
H
(
χ2(p, s)

) ] =

[
In1 − p−α1 a11 −p−α1 A12

−s−α2 A21 In2 − s−α2 a22

]−1

×
([ −p−1H

(
χ1(0, s)

)
−s−1H

(
χ2(p, 0)

) ]

+

[
p−α1H

(
b1
)

s−α2H
(
b2
) ]

H
(U (p, s)

))
. (24)

Suppose

Q(p, s) =

[
In1 − p−α1 a11 −p−α1 A12

−s−α2 A21 In2 − s−α2 a22

]
. (25)

Equation (24) can be written in the following form

[
H
(
χ1(p, s)

)
H
(
χ2(p, s)

) ] = Q−1(p, s)×
([ −p−1H

(
χ1(0, s)

)
−s−1H

(
χ2(p, 0)

) ]+ [
p−α1H

(
b1
)

s−α2H
(
b2
) ]

H
(U (p, s)

))
. (26)
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Let

Q−1(p, s) =
∞

∑
i=0

∞

∑
j=0

H
(
Tij
)

p−iα1 s−jα2 , (27)

where H
(
Tij
)

is zero fuzzy matrix when i, j < 0 and H
(
Tij
) ∈ Ξn×n

R for other cases. We
know that the product of Equations (25) and (27) is the identity matrix. So, from these
two equations, we have

∞

∑
i=0

∞

∑
j=0

(
H
(
Tij
)−H

(
T01

)
H
(
Ti,j−1

)−H
(
T10

)
H
(
Ti−1,j

))
p−iα1 s−jα2 = In. (28)

Comparing the coefficients p and s in Equation (28), we get

H
(
Tij
)
=

⎧⎪⎪⎨⎪⎪⎩
In, i, j = 0,

0, i < 0 and/or j < 0,

H
(
T01

)
H
(
Ti,j−1

)
+H

(
T10

)
H
(
Ti−1,j

)
, i, j > 0,

(29)

and

H
(
T01

)
=

[
0 0

H
(
a21
)

H
(
a22
) ], H

(
T10

)
=

[
H
(
a11
)

H
(
a12
)

0 0

]
. (30)

Substituting Equation (27) into Equation (26), and taking into account Equation (29),
we get

[
H
(
χ1(p, s)

)
H
(
χ2(p, s)

) ] =
∞

∑
i=0

∞

∑
j=0

H
(
Tij
)([ p−iα1−1s−jα2H

(
χ1(0, s)

)
p−iα1 s−jα2−1H

(
χ2(p, 0)

) ]

+

[
p−(i+1)α1 s−jα2H

(
b1
)

p−iα1 s−(j+1)α2H
(
b2
) ]H(U (p, s)

))
. (31)

Applying the two-dimensional inverse Laplace transform to Equation (31) and using
Definition 17, we get

[
H
(
κ1(z1, z2)

)
H
(
κ2(z1, z2)

) ] =
∞

∑
i=0

∞

∑
j=1

H
(
Tij
)(⎡⎢⎣ ziα1

1
Γ(1 + iα1)

1
Γ((jα2))

∫ z2
0 (z2 − τ2)

jα2−1H
(
κ1(0, τ2)

)
dτ2

0

⎤⎥⎦
+

⎡⎣ H
(

b1

)
Γ((i+1)α1)Γ(jα2)

∫ z1
0

∫ z2
0 (z1 − τ1)

(i+1)α1−1(z2 − τ2)
jα2−1H

(
u(τ1, τ2)

)
dτ2dτ1

0

⎤⎦)

+
∞

∑
i=0

H
(
Ti0
)(⎡⎢⎣ ziα1

1
Γ(1 + iα1)

H
(
κ1(0, z2)

)
0

⎤⎥⎦+

⎡⎣ H
(

b1

)
Γ((i+1)α1)

∫ z1
0 (z1 − τ1)

(i+1)α1−1H
(
u(τ1, z2)

)
dτ1

0

⎤⎦)

+
∞

∑
i=1

∞

∑
j=0

H
(
Tij
)(⎡⎢⎣ 0

zjα2
2

Γ(1 + jα2)
1

Γ((iα1))

∫ z1
0 (z1 − τ1)

iα1−1H
(
κ2(τ1, 0)

)
dτ1

⎤⎥⎦
+

⎡⎣ 0
H
(

b2

)
Γ(iα1)Γ((j+1)α2)

∫ z1
0

∫ z2
0 (z1 − τ1)

iα1−1(z2 − τ2)
(j+1)α2−1H

(
u(τ1, τ2)

)
dτ2dτ1

⎤⎦)

117



Fractal Fract. 2025, 9, 398

+
∞

∑
i=0

H
(
T0j
)(⎡⎢⎣ 0

zjα2
1

Γ(1 + jα2)
H
(
κ2(z1, 0)

)
⎤⎥⎦+

⎡⎣ 0
H
(

b2

)
Γ((j+1)α2)

∫ z2
0 (z2 − τ2)

(j+1)α2−1H
(
u(z1, τ2)

)
dτ2

⎤⎦). (32)

This completes the proof.

4. Granular Fuzzy Fractional 2D Continuous Linear Systems: A
Fornasini–Marchesini Second Model Approach

Consider the state-space equation for the granular FFTDCT linear system
gr
0+Dα1,α2κ(z1, z2) = A1

gr
0+Dα1κ(z1, z2) + A2

gr
0+Dα2κ(z1, z2) + B1

gr
0+Dα1 u(z1, z2)

+ B2
gr
0+Dα2 u(z1, z2), (33)

where gr
0+Dα1,α2 represents the granular Caputo fractional partial derivative of order αi for

i = 1, 2. Dα1 and Dα2 are the GCFDs of order α1 and α2, respectively. κ(z1, z2) ∈ Ξn
R is

a fuzzy state vector, and u(z1, z2) ∈ Ξm
R is a fuzzy input vector of the system. Regarding

fuzzy matrices A1, A2 ∈ Ξn×n
R and B1, B2 ∈ Ξn×m

R , the system (33) with fractional orders
α1, α2 ∈ (0, 1) is taken into consideration for simplicity.

Theorem 3. The solution of the fuzzy system (33) with fractional orders 0 < α1 < 1, 0 < α2 < 1
for arbitrary fuzzy input u(z1, z2) with the uncertain initial condition κ(0, 0) and the boundary
conditions κ(z1, 0), κ(0, z2) is given by the following

H
(
κ(z1, z2)

)
:=

∞

∑
i=0

∞

∑
j=0

(
−H(Tij

) tiα1
1

Γ(iα1 + 1)
tjα2
2

Γ(iα2 + 1)
κ(0, 0)−H

(
Tij
)
H
(

B1
) tiα1

1
Γ(iα1 + 1)

1
Γ((j + 1)α2)

∫ z2

0
(z2 − τ2)

(j+1)α2−1H
(
u(0, τ2)

)
dτ2

−H
(
Tij
)
H
(

B2
) tjα2

2
Γ(jα2 + 1)

1
Γ((i + 1)α1)

∫ z1

0
(z1 − τ1)

(i+1)α1−1H
(
u(τ1, 0)

)
dτ1

+H
(
Ti,j−1

)
H
(

A1
) tjα2

2
Γ(jα2 + 1)

1
Γ((iα1))

∫ z1

0
(z1 − τ1)

iα1−1H
(
κ(τ1, 0)

)
dτ1

+H
(
Ti−1,j

)
H
(

A2
) tiα1

1
Γ(iα1 + 1)

1
Γ((jα2))

∫ z2

0
(z2 − τ2)

jα2−1H
(
κ(0, τ2)

)
dτ2

+[H
(
Ti,j−1

)
H
(

B1
)
+H

(
Ti−1,j

)
H
(

B2
)
]

1
Γ(iα1)Γ(jα2)

∫ z1

0

∫ z2

0
(z1 − τ1)

iα1−1(z2 − τ2)
jα2−1H

(
u(τ1, τ2)

)
dτ1dτ2. (34)

with the transition matrices given in Equation (43).

Proof. For each z1, z2 ∈ [0, T], applying the 2D FLT on both sides to the system (33) and
using the Linearity property, we get

Lz1,z2

[gr
0+Dα1,α2κ(z1, z2)

]
= A1Lz1,z2

[gr
0+Dα1κ(z1, z2)

]
+ A2Lz1,z2

[gr
0+Dα2κ(z1, z2)

]
+ B1Lz1,z2

[gr
0+Dα1 u(z1, z2)

]
+ B2Lz1,z2

[gr
0+Dα2 u(z1, z2)

]
. (35)

Applying the HMF to Equation (35), and utilizing Remark 3, we get

Lz1,z2

[
H
(gr

0+Dα1,α2κ(z1, z2)
)]

= H
(

A1
)Lz1,z2

[
H
(gr

0+Dα1κ(z1, z2)
)]

+H
(

A2
)Lz1,z2

[
H
(gr

0+Dα2κ(z1, z2)
)]

+H
(

B1
)Lz1,z2

[
H
(gr

0+Dα1 u(z1, z2)
)]

+H
(

B2
)Lz1,z2

[
H
(gr

0+Dα2 u(z1, z2)
)]

. (36)

Using Remark 2, the above Equation (36) transforms into the following equation

Lz1,z2

[C
0+Dα1,α2H

(
κ(z1, z2)

)]
= H

(
A1
)Lz1,z2

[C
0+Dα1H

(
κ(z1, z2)

)]
+H

(
A2
)Lz1,z2

[C
0+Dα2H

(
κ(z1, z2)

)]
+H

(
B1
)Lz1,z2

[C
0+Dα1H

(
u(z1, z2)

)]
+H

(
B2
)Lz1,z2

[C
0+Dα2H

(
u(z1, z2)

)]
. (37)
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Applying Theorem 1, Equation (37) can be expressed as

[pα1 sα2 In − pα1H
(

A1
)− sα2H

(
A2
)
]H
(
χ(p, s)

)
= sα2−1[pα1 In −H

(
A2
)
]H
(
χ(p, 0)

)
+ pα1−1[sα2 In −H

(
A1
)
]H
(
χ(0, s)

)
−pα1−1sα2−1H

(
κ(0, 0)

)
+H

(
B1
)
[pα1H

(U (p, s)
)− pα1−1H

(U (0, s)
)
] +H

(
B2
)
[sα2H

(U (p, s)
)− sα2−1H

(U (p, 0)
)
], (38)

where H
(
χ(p, s)

)
= Lz1,z2{H

(
κ(z1, z2)

)}, H
(
χ(p, 0)

)
= Lz1{H

(
κ(z1, 0)

)}, and
H
(
χ(0, s)

)
= Lz2{H

(
κ(0, z2)

)}.

Let us suppose the polynomial matrix

Q(p, s) = [pα1 sα2 In − pα1H
(

A1
)− sα2H

(
A2
)
]. (39)

The inverse of the matrix given in Equation (39) can be expressed as

Q−1(p, s) =
∞

∑
i=0

∞

∑
j=0

H
(
Tij
)

p−(i+1)α1 s−(j+1)α2 , (40)

where H
(
Tij
)

is zero fuzzy matrix when i, j < 0 and H
(
Tij
) ∈ Ξn×n

R for other cases.
We know that the product of Equations (39) and (40) is the identity matrix. So,

from these two equations, we have[ ∞

∑
i=0

∞

∑
j=0

H
(
Tij
)

p−(i+1)α1 s−(j+1)α2

][
pα1 sα2 In − pα1H

(
A1
)− sα2H

(
A2
)]

= In, (41)

or Equation (41) is written more precisely as

∞

∑
i=0

∞

∑
j=0

(
H
(
Tij
)−H

(
Ti,j−1

)
H
(

A1
)−H

(
Ti−1,j

)
H
(

A2
))

p−iα1 s−jα2 = In. (42)

Comparing the coefficients p and s in Equation (42), we get

H
(
Tij
)
=

⎧⎪⎪⎨⎪⎪⎩
In, i, j = 0,

0, i < 0 and/or j < 0,

H
(

A1
)
H
(
Ti,j−1

)
+H

(
A2
)
H
(
Ti−1,j

)
, i, j > 0.

(43)

Multiplying Equation (38) by Equation (40), and taking into account Equation (43),
we get

H
(
χ(p, s)

)
=

∞

∑
i=0

∞

∑
j=0

(
−H

(
Tij
)

p−(iα1+1)s−(jα2+1)
κ(0, 0)−H

(
Tij
)

p−(iα1+1)s−(j+1)α2H
(

B1
)
H
(U (0, s)

)
−H(Tij

)
p−(i+1)α1 s−(jα2+1)H

(
B2
)
H
(U (p, 0)

)
+H

(
Ti,j−1

)
p−iα1 s−(jα2+1)H

(
A1
)
H
(
χ(p, 0)

)
+H

(
Ti−1,j

)
p−(iα1+1)s−jα2H

(
A2
)
H
(
χ(0, s)

)
+ [H

(
Ti,j−1

)
H
(

B1
)
+H

(
Ti−1,j

)
H
(

B2
)
]p−iα1 s−jα2H

(U (p, s)
)). (44)

Applying the two-dimensional inverse Laplace transform to Equation (44) and using
Definition 17, we get

H
(
κ(z1, z2)

)
=

∞

∑
i=0

∞

∑
j=0

(
−H(Tij

) tiα1
1

Γ(iα1 + 1)
tjα2
2

Γ(iα2 + 1)
κ(0, 0)−H

(
Tij
)
H
(

B1
) tiα1

1
Γ(iα1 + 1)

1
Γ((j + 1)α2)

∫ z2

0
(z2 − τ2)

(j+1)α2−1H
(
u(0, τ2)

)
dτ2

−H
(
Tij
)
H
(

B2
) tjα2

2
Γ(jα2 + 1)

1
Γ((i + 1)α1)

∫ z1

0
(z1 − τ1)

(i+1)α1−1H
(
u(τ1, 0)

)
dτ1
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+H
(
Ti,j−1

)
H
(

A1
) tjα2

2
Γ(jα2 + 1)

1
Γ((iα1))

∫ z1

0
(z1 − τ1)

iα1−1H
(
κ(τ1, 0)

)
dτ1

+H
(
Ti−1,j

)
H
(

A2
) tiα1

1
Γ(iα1 + 1)

1
Γ((jα2))

∫ z2

0
(z2 − τ2)

jα2−1H
(
κ(0, τ2)

)
dτ2

+[H
(
Ti,j−1

)
H
(

B1
)
+H

(
Ti−1,j

)
H
(

B2
)
]

1
Γ(iα1)Γ(jα2)

∫ z1

0

∫ z2

0
(z1 − τ1)

iα1−1(z2 − τ2)
jα2−1H

(
u(τ1, τ2)

)
dτ1dτ2. (45)

This completes the proof.

Now, we consider the following example to illustrate the general result. The purpose
of this example is to illustrate the aforementioned Theorem 3.

Example 1. Consider the granular fuzzy fractional 2D linear system (33) with α1 = 0.9, α2 = 0.8,
and the fuzzy matrices

A1 =

[
1̃ 0̂
0̂ 1̃

]
, A2 =

[
1̃ 1̃
1̃ 0̂

]
, B1 =

[
1̃
0̂

]
, B2 =

[
0̂
1̃

]
, (46)

where 1̃ = (0.5, 1, 1.5) and 0̂ = (0, 0, 0). The HMFs of the fuzzy matrices given in Equation (46) are

H
(

A1
)
=

⎡⎢⎣ 1
2
+

ϑ

2
+ (1− ϑ)π 0

0
1
2
+

ϑ

2
+ (1− ϑ)π

⎤⎥⎦,

H
(

A2
)
=

⎡⎢⎣ 1
2
+

ϑ

2
+ (1− ϑ)π

1
2
+

ϑ

2
+ (1− ϑ)π

1
2
+

ϑ

2
+ (1− ϑ)π 0

⎤⎥⎦,

H
(

B1
)
=

⎡⎣ 1
2
+

ϑ

2
+ (1− ϑ)π

0

⎤⎦, H
(

B2
)
=

⎡⎣ 0
1
2
+

ϑ

2
+ (1− ϑ)π

⎤⎦, (47)

We consider the initial condition κ(0, 0) = 0̂, boundary conditions κ(z1, 0) = κ(0, z2) = 0̂,
and the fuzzy input is

u(z1, z2) :=

⎧⎨⎩0̂, z1, z2 < 0,

1̂, z1, z2 ≥ 0.
(48)

The HMF of the fuzzy input function is

H
(
u(z1, z2)

)
=

⎧⎨⎩0, z1 < 0 and/or z2 < 0,

1, z1, z2 ≥ 0.
(49)

According to Theorem 3, the fuzzy solution is given in the following

H
(
κ(z1, z2)

)
=

∞

∑
i=0

∞

∑
j=0

(
−H(Tij

)
H
(

B1
) tiα1

1
Γ(iα1 + 1)

1
Γ((j + 1)α2)

∫ z2

0
(z2 − τ2)

(j+1)α2−1dτ2

−H
(
Tij
)
H
(

B2
) tjα2

2
Γ(jα2 + 1)

1
Γ((i + 1)α1)

∫ z1

0
(z1 − τ1)

(i+1)α1−1dτ1

+[H
(
Ti,j−1

)
H
(

B1
)
+H

(
Ti−1,j

)
H
(

B2
)
]

1
Γ(iα1)Γ(jα2)

∫ z1

0

∫ z2

0
(z1 − τ1)

iα1−1(z2 − τ2)
jα2−1dτ1dτ2

)

=
∞

∑
i=0

∞

∑
j=0

(
−H

(
Tij
)
H
(

B1
) tiα1

1 t(j+1)α2
2

Γ(iα1 + 1)Γ((j + 1)α2)
H
(
Tij
)
H
(

B2
) t(i+1)α1

1 tjα2
2

Γ(jα2 + 1)Γ((i + 1)α1)
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+[H
(
Ti,j−1

)
H
(

B1
)
+H

(
Ti−1,j

)
H
(

B2
)
]

tiα1
1 tjα2

2
Γ(iα1 + 1)Γ(jα2 + 1)

)
. (50)

The graphical representation of the fuzzy solution for Example 1 is presented in
Figures 1–3. Each figure highlights the various aspects of the fuzzy solutions and their
associated fuzziness. The graphical representation of the HMF of fuzzy solution κ1 is
presented in Figure 1. The time variables z1 and z2 are fixed at 1 on the left side, which
allows us to observe the fuzziness in κ1 at a specific time instance. The HMF illustrates
how this fuzzy solution varies regarding the ϑ-cut and π, with the spread of the function
indicating the degree of uncertainty. Higher uncertainty is associated with a greater spread,
whereas a narrower spread suggests a more precise solution. When ϑ and π are fixed to 1,
the variation of z1 and z2 is displayed on the right side of Figure 1. This plot shows how κ1

changes dynamically over time, highlighting how the uncertainty changes as the system
behavior changes. Fuzziness and time interact, demonstrating that the system’s uncertainty
is dynamic and changes over time. Likewise, Figure 2 displays the graphical representations
of fuzzy solutions under the HMF and its temporal variation, κ2. The variables z1 and z2

are fixed to 1 on the left side to provide the graphical depiction of the HMF of κ2, whereas
κ1 shows that the fuzziness is not evenly distributed across the system; the spread of
the membership function for κ2 shows the degree of uncertainty. Holding the horizontal
membership parameters constant allows the variation in κ2 regarding z1 and z2, displayed
on the right side of Figure 2. This figure shows the evolution of κ2 and its fuzziness.
The temporal variables κ1 and κ2 behave differently, suggesting that the properties of each
solution significantly influence the fuzziness of the systems. Figure 3 shows fuzzy solutions
κ1 and κ2 in three dimensions. The uncertainty in κ1 is affected by time and the degree
of membership, as seen in κ1. Additionally, it illustrates the ambiguity between time and
fuzziness. By revealing complex patterns in the system’s behavior, the graph emphasizes
the need to consider several dimensions while assessing fuzzy systems. On the right side
of Figure 3, plotting κ2 under the same conditions provides an alternative perspective
regarding the system’s response. This figure highlights the intricate connection between
time, fuzziness, and the system’s dynamics. It also provides a more in-depth understanding
of the model’s uncertainty. The results demonstrate the importance of considering fuzziness
in analyzing continuous fuzzy systems. It is clear from the graphical representations how
uncertainty spreads and evolves and the behavior of both time-dependent features and the
degree of membership influence the system’s behavior.

Figure 1. The left figure shows HMFs of κ1(z1, z2), and the right figure shows the HMFs of κ2(z1, z2)

for different values of ϑ and π by fixing z1 = z2 = 1.
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Figure 2. Graphical representations of fuzzy solutions κ1(z1, 1, ϑ) and κ2(z1, 1, ϑ), respectively.

Figure 3. The left and right figures show the four-dimensional scatter plots of fuzzy solutions
κ1(z1, z2, ϑ) and κ2(z1, z2, ϑ), respectively. The red points represent the left bound, and the blue
points represent the right bound of the ϑ-cut of the FVF.

5. Applications of FFTDCT Linear System

This section discusses the real-world applications of the proposed granular FFTDCT
linear system. The Roesser model is used in signal processing systems because the fuzzy
fractional framework efficiently represents the inherent uncertainty of signal components.
The second FM model, on the other hand, addresses the challenges of sensor data fusion
(SDF) in wireless sensor networks (WSNs) as the reconstruction of the fused sensor state is
highly dependent on temporal and spatial uncertainties.

5.1. Application of FFTDCT Linear System Described by the Roesser Model in Signal
Processing System

Echo suppression and signal filtering play a crucial role in digital communication and
image processing, particularly when uncertainty, fuzziness, memory effects, and spatial
distributions influence signal propagation. To model this situation, we consider the Roesser-
type granular FFTDCT linear system (17), where the components κ1(z1, z2) and κ2(z1, z2)

represent the horizontal and vertical signal flow, respectively. Moreover, u(z1, z2) represents
the incoming echo/background noise. The matrices A and B are modeled as fuzzy matrices,
and the memory effect of the system is described by the fractional orders α1 = 0.9 and
α2 = 0.8. This is an important feature in media, where the behavior of the past signals
influences the present state. The fuzzy matrices are defined as

A1 =

[
1̃ 2̃
0̂ 1̃

]
, and B1 =

[
1̃
2̃

]
, (51)
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where 1̃ = (0.5, 1, 1.5), 2̃ = (1.5, 2, 2.5), and 0̂ = (0, 0, 0). The matrix A1 characterizes the
impact of the current state and neighboring signal states on the system at every point
(z1, z2), analogous to echo weights in 2D spatial domains. The matrix B1 captures how
the external inputs, including environmental disturbances, influence the system state.
The HMFs of the fuzzy matrices given in Equation (51) are

H
(

A1
)
=

⎡⎢⎣ 1
2
+

ϑ

2
+ (1− ϑ)π

3
2
+

ϑ

2
+ (1− ϑ)π

0
1
2
+

ϑ

2
+ (1− ϑ)π

⎤⎥⎦, H
(

B1
)
=

⎡⎢⎣ 1
2
+

ϑ

2
+ (1− ϑ)π

3
2
+

ϑ

2
+ (1− ϑ)π

⎤⎥⎦. (52)

The uncertain initial condition κ(0, 0) = 1̃ represents the signal uncertainty
due to measurement errors or external disturbance. The boundary conditions
κ(z1, 0) = (z1, 2z1, 3z1) and κ(0, z2) = (ez2 , 2ez2 , 3ez2 ) define the signal profiles at
the boundaries, capturing how the horizontal and vertical input influence propagation.
The fuzzy input function simulates an environment with sporadic background signals,
including noise bursts or intermittent interference:

u(z1, z2) =

⎧⎨⎩0̂, z1, z2 < 0,

1̂, z1, z2 ≥ 0.
(53)

The HMF of the fuzzy input function is

H
(
u(z1, z2)

)
=

⎧⎨⎩0, z1, z2 < 0,

1, z1, z2 ≥ 0.
(54)

The following is the fuzzy solution based on Theorem 3

[
H
(
κ1(z1, z2)

)
H
(
κ2(z1, z2)

) ] =
∞

∑
i=0

∞

∑
j=1

H
(
Tij
)(⎡⎢⎣ ziα1

1
Γ(1 + iα1)

(1 + ϑ + 2(1− ϑ)π)ez2

0

⎤⎥⎦+

⎡⎣ H
(

b1

)
Γ((i+1)α1+1)Γ(jα2+1) z(i+1)α1

1 zjα2
2

0

⎤⎦)

+
∞

∑
i=0

H
(
Ti0
)(⎡⎢⎣ ziα1

1
Γ(1 + iα1)

(1 + ϑ + 2(1− ϑ)π)ez2

0

⎤⎥⎦+

⎡⎣ H
(

b1

)
Γ((i+1)α1+1) z(i+1)α1

1

0

⎤⎦)

+
∞

∑
i=1

∞

∑
j=0

H
(
Tij
)(⎡⎢⎣ 0

zjα2
2

Γ(1 + jα2)
(1+ϑ+2(1−ϑ)π)z

1+iα1
1

Γ(2+iα1)

⎤⎥⎦+

⎡⎣ 0
H
(

b2

)
Γ(iα1+1)Γ((j+1)α2+1) ziα1

1 z(j+1)α2
2

⎤⎦)

+
∞

∑
i=0

H
(
T0j
)(⎡⎢⎣ 0

zjα2
1

Γ(1 + jα2)
(1 + ϑ + 2(1− ϑ)π)z1

⎤⎥⎦+

⎡⎣ 0
H
(

b2

)
Γ((j+1)α2+1) z(j+1)α2

2

⎤⎦). (55)

The plots of the aforementioned fuzzy solution are provided in Figures 4–6 with values
of i = 25 and j = 25.

To validate the accuracy of the proposed approach, we compare the analytical fuzzy
solution derived in Equation (55) with the approximate solution obtained using the fuzzy
fractional forward Euler method. The values of the fractional orders, fuzzy parameters,
and uncertain initial and boundary conditions used in this comparison are specified in
Section 5.1. Table 2 presents the numerical results for both the analytical and approximate
solutions of κ1(z1, z2, ϑ, π) (hereafter referred to as κ1) and κ2(z1, z2, ϑ, π) (hereafter re-
ferred to as κ2). In the table, κ1−Analytic and κ2−Analytic denote the analytical solutions of
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κ1 and κ2, respectively, while κ1−mathrmApprox. and κ2−Approx. represent the corresponding
approximate solutions obtained via the numerical method.

Table 2. The numerical values of the analytical and approximate solutions of κ1 and κ2.

z1 z2 ϑ π κ1−Analytic κ2−Analytic κ1−Approx. κ2−Approx.

0.0 0.0 0.0 0.0 0.5123 0.5101 0.5112 0.5100
0.1 0.1 0.1 0.1 0.2439 0.3501 0.2422 0.3452
0.2 0.2 0.2 0.2 0.7201 0.8112 0.7199 0.8108
0.3 0.3 0.3 0.3 1.5607 1.4140 1.5602 1.4112
0.4 0.4 0.4 0.4 2.8969 2.1715 2.8950 2.1612
0.5 0.5 0.5 0.5 4.8501 3.1839 4.8499 3.1822
0.6 0.6 0.6 0.6 7.5899 4.1930 7.5812 4.1901
0.7 0.7 0.7 0.7 11.1483 5.3929 11.1460 5.3924
0.8 0.8 0.8 0.8 15.5037 6.6530 15.5001 6.6501
0.9 0.9 0.9 0.9 20.9987 7.8535 20.9940 7.8427
1.0 1.0 1.0 1.0 24.9339 8.8185 24.8312 8.8130

Now, we calculate the pointwise absolute and relative errors between the analytical
and approximate solutions. Table 3 presents the error analysis results for both κ1 and κ2.
The pointwise absolute error (AE) is computed using the formula

AE =
∣∣∣κAnalytic −κApprox.

∣∣∣,
while the pointwise relative error (RE) is given by

RE =

∣∣∣κAnalytic −κApprox.

∣∣∣∣∣∣κAnalytic

∣∣∣ .

These metrics enable a quantitative comparison of the numerical approximation with
the exact fuzzy analytical solution.

Figure 4. The left and right figures show the graphical representations of κ1(z1, z2) and κ2(z1, z2)

for different values of z1 and z2 by fixing ϑ and π.

Figure 4 shows the graphical visualization of the components κ1(z1, z2) and
κ2(z1, z2) by taking ϑ = 1 and π = 1. These figures illustrate the evolution of the
fuzzy fractional signal under uncertain environments. Here, π = 1 ensures that the
horizontal membership distribution spans its entire range, indicating the system’s
maximum predicted response. In this scenario, ϑ = 1 captures the crisp core of the
fuzzy solution. Both κ1(z1, z2) and κ2(z1, z2) represent distinct components of a pro-
cessed signal, each influenced by internal system feedback and external disturbances,
with their behavior modeled using fuzzy and fractional parameters. The smooth and
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increasing trend of both surfaces shows a stable signal evolution, where the system
efficiently captures both attenuation and amplification in response to changes in z1 and
z2. This behavior represents the signal processing scenario in an uncertain environment,
including echo suppression, where the memory effect and fuzziness are inherent. The
graphical representation indicates that the system remains bounded and predictable,
which is essential for practical signal reconstruction and enhancement. Figure 5 repre-
sents the graphical behavior of the fuzzy solutions of the components κ1(z1, 1, ϑ) and
κ2(1, z2, ϑ), indicating the smooth and continuous surfaces. This confirms the stable
behavior of the system with fractional orders α1 = 0.9 and α2 = 0.8. The proposed
solution captures the expected uncertainty propagation in a fuzzy environment. These
graphical representations demonstrate that the fractional orders and fuzzy parameters
jointly influence the flexibility of the system and memory effect. Figure 6 provides
graphical representations of fuzzy solutions κ1(z1, z2, ϑ) and κ2(z1, z2, ϑ). The left and
right figures show the four-dimensional scatter plots of fuzzy solutions κ1(z1, z2, ϑ) and
κ2(z1, z2, ϑ), respectively. In Figure 6, the red points represent the left bound, and the
blue points represent the right bound of the ϑ-cut of the FVF. This graphical representa-
tion illustrates how the uncertainty varies between input parameters for fixed fractional
orders α1 = 0.9 and α2 = 0.8, offering insight into its spread and behavior.

Figure 5. The left and right figures show the graphical representations of fuzzy solutions κ1(z11, ϑ)

and κ2(1, z2, ϑ), respectively.

Figure 6. The left and right figures show the four-dimensional scatter plots of fuzzy solutions
κ1(z1, z2, ϑ) and κ2(z1, z2, ϑ), respectively. The red points represent the left bound, and the blue
points represent the right bound of the ϑ-cut of the FVF.
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Table 3. Absolute and relative errors between analytical and approximate solutions of κ1 and κ2.

κ1-Analytic κ1-Approx. AE κ1 RE κ1 κ2-Analytic κ2-Approx. AE κ2 RE κ2

0.5123 0.5112 0.0011 0.002147 0.5101 0.5100 0.0001 0.000196
0.2439 0.2422 0.0017 0.006970 0.3501 0.3452 0.0049 0.014000
0.7201 0.7199 0.0002 0.000278 0.8112 0.8108 0.0004 0.000493
1.5607 1.5602 0.0005 0.000320 1.4140 1.4112 0.0028 0.001982
2.8969 2.8950 0.0019 0.000656 2.1715 2.1612 0.0103 0.004740
4.8501 4.8499 0.0002 0.000041 3.1839 3.1822 0.0017 0.000533
7.5899 7.5812 0.0087 0.001146 4.1930 4.1901 0.0029 0.000693

11.1483 11.1460 0.0023 0.000206 5.3929 5.3924 0.0005 0.000093
15.5037 15.5001 0.0036 0.000232 6.6530 6.6501 0.0029 0.000437
20.9987 20.9940 0.0047 0.000224 7.8535 7.8427 0.0108 0.001375
24.9339 24.8312 0.1027 0.004119 8.8185 8.8130 0.0055 0.000623

5.2. Application of FFTDCT Linear System in Wireless Sensor Network Data Fusion

Now, we apply the proposed model (33) to describe the problem of SDF in WSNs
in a fuzzy environment. In real-world applications, spatially distributed sensors in a
geographic region monitor conditions, including temperature, air quality, or humidity
in a 2D space. Sensor readings usually exhibit uncertainty due to hardware constraints,
latency in data transmission, and external interference. These properties are naturally
described using fuzzy numbers, while fractional-order derivatives well model the
memory-dependent characteristic of physical processes. The uncertain dynamics of
the SDF of the WSN can be well captured by the proposed system (33), where κ(z1, z2)

represents the fused sensor state within the spatial coordinates z1 and z2. u(z1, z2)

describes an external control or input source, including the sensor reading’s emission
signal or distributed activations. In our simulation, we assume the fractional orders
α1 = 0.9 and α2 = 0.8 to capture the inherent long-memory dynamics and the de-
layed spatial interaction observed in transmission of WSN data. The fuzzy system
matrices and its HMF are defined in Equations (46) and (47), where 1̃ = (0.5, 1, 1.5) in
Equation (46) represents fuzzy measurements and 0̂ = (0, 0, 0) indicates perfect certainty
at zero. We consider the fuzzy initial condition κ(0, 0) = 1̃ and the fuzzy boundary
conditions κ(z1, 0) = (z1, 2z1, 3z1) and κ(0, z2) = (ez2 , 2ez2 , 3ez2 ) for the SDF problem
in WSNs to describe the initial uncertainty and horizontal and vertical boundary profile,
respectively. The fuzzy input formulation in Equation (54) describes the activation state
of the sensors when z1, z2 ≥ 0 and their inactivity in unobservable regions. The HMF of
the fuzzy input function is given in Equation (54). According to Theorem 3, the fuzzy
solution is given in the following:
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After performing the integral in Equation (56) and simplifying the resulting expression,
we obtain the following:
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To validate the proposed fuzzy solution of the system (33), we compare it with the
classical solution provided by Rogowski in [45]. The classical solution of system (33) is
given as
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Here, the coefficient matrices are defined as

A1 =

[
1 2
0 1

]
, and B1 =

[
1
2

]
, (59)

with the initial condition κ(0, 0) = 1, and boundary conditions κ(z1, 0) = 2z1 and
κ(0, z2) = 2ez2 . This classical solution coincides with the fuzzy solution in Equation (57)
when the fuzzification parameter is ϑ = 1. To illustrate the impact of fuzzifica-
tion, we modify the initial condition to κ(0, 0) = 1.1 and the boundary conditions
to κ(z1, 0) = 2.1z1 and κ(0, z2) = 2.1ez2 . With these changes, the classical solution
in Equation (58) corresponds to the fuzzy solution with ϑ = 0.99. This comparative
analysis demonstrates that the fuzzy analytical solution generalizes the crisp solution
and allows a tolerance-based interpretation of the model. Therefore, the fuzzifica-
tion of this system offers greater flexibility in modeling uncertainty and enhances its
practical applicability.

Figure 7 illustrates the graphical representations of the fuzzy solution in terms
of HMFs of fused sensor states κ1 and κ2 under the granular FFTDCT linear system
for fixed spatial coordinates z1 = 1 and z2 = 1. The graph explores the dynamic
behavior of the HMF as a solution function of two important parameters, ϑ and π.
The ϑ-level represents the confidence level in the fuzzy measurement, with values
ranging from 0 to 1. Moreover, π represents the RDM that captures the spatial or
environmental variations that affect the sensor data. The parameter π governs the
influence of environmental effects, which means that a higher value of π can represent
conditions where sensors are deployed in large areas or highly variable surroundings.
Figure 8 illustrates the graphical representations of the fuzzy solutions of κ1(z1, 1, ϑ)

and κ2(z1, 1, ϑ). The graphs perfectly represent the triangular fuzzy nature of the FSD.
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Figure 8 captures the degree of fuzziness in the fused sensor state at a specific location
z1 for a fixed z2. For every ϑ-level value, the plot shows the confidence interval in the
fusion output. At ϑ = 0, the solution exhibits the widest uncertainty bounds, capturing
the maximum fuzziness in the fused state. As ϑ-level values increase, the endpoints
narrow, indicating greater confidence with reduced uncertainty. The system converges
to the deterministic solution at ϑ = 1, where the fuzzy bounds collapse with single crisp
values. This visualization illustrates how a WSN system enhances its fusion output
by reducing uncertainty. Figure 9 presents the graphical representations of the fuzzy
fusion solutions κ1(z1, z2, ϑ) and κ2(z1, z2, ϑ) for WSN data fusion under uncertainty.
Each point represents the potential state of the FSD corresponding to the different
values of the ϑ-cut levels. The red points represent the lower bound of the sensor
fusion outcome, and the blue points indicate the upper end of the vartheta-cut. This
four-dimensional graph illustrates how the fused sensor output varies across the spatial
positions (z1, z2) and the confidence level, highlighting the presence of environmental
and sensor-induced uncertainty on the system behavior. This visualization allows
the decision-makers in WSN-based systems, including environmental sensing and
industrial monitoring, to understand the range of possible fused sensor outputs and
sensor confidence.

Figure 7. The graphical representation of HMFs of κ1 and κ2 for fixing the values z1 = 1 and z2 = 1
(left to right), respectively.

Figure 8. Graphical representations of fuzzy solutions κ1(z1, 1, ϑ) and κ2(z1, 1, ϑ), respectively.
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Figure 9. The left and right figures show the four-dimensional scatter plots of fuzzy solutions
κ1(z1, z2, ϑ) and κ2(z1, z2, ϑ), respectively. The red points represent the left bound, and the blue
points represent the right bound of the ϑ-cut of the FVF.

6. Conclusions

In this article, two classes of FFTDCT linear systems were introduced and investigated
to address uncertainty and fuzziness in the system parameters. Firstly, the FFTDCT linear
systems described by the Roesser model were analyzed. The potential solution of the fuzzy
fractional system was extracted using a 2D granular Laplace transform approach. Secondly,
the FFTDCT linear systems described by the second FM model structure were investigated,
where the state-space equations contain two-dimensional and one-dimensional partial
fractional-order Caputo derivatives. The fuzzy solution of the proposed models was
obtained by using the 2D granular Laplace transform. The numerical examples were solved
to support the theoretical developments.

The proposed study provides a structured approach for analyzing fuzzy fractional-
order TDLSs under uncertainty, bridging the gap between traditional deterministic models
and real-world applications where uncertainty is inherent.
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Abstract: This work investigates the solvability of the generalized Hilfer fractional inclusion associ-
ated with the solution set of a controlled system of minty type–fuzzy mixed quasi-hemivariational
inequality (FMQHI). We explore the assumed inclusion via the infinite delay and the semi-group
arguments in the area of solid continuity that sculpts the compactness area. The conformable Hilfer
fractional time derivative, the theory of fuzzy sets, and the infinite delay arguments support the solu-
tion set’s controllability. We explain the existence due to the convergence properties of Mittage–Leffler
functions (Eα,β), that is, hatching the existing arguments according to FMQHI and the continuity
of infinite delay, which has not been presented before. To prove the main results, we apply the
Leray–Schauder nonlinear alternative thereom in the interpolation of Banach spaces. This problem
seems to draw new extents on the controllability field of stochastic dynamic models.
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1. Introduction

Strong theoretical visions via fractional calculus are some of the most significant
ways to describe natural models. To our knowledge, fractional calculus is a vast field
with many kinds of fractional differential operators and corresponding integrals. For
examples, see [1–3]. One way to explain the importance of fractional calculus is by gen-
erating classical calculus, which is insufficient for modeling natural phenomena. The
time-fractional operators substantially draw some fantastic results in the fractal topics field
for modelings with memory. Here, we are interested in representing some medical and
physical studies in [4–7]. In particular, see the usefulness of Hilfer fractional operators in
papers on some different diseases [8–10].

The importance of controlled systems has arisen from Zadeh’s work [11] with fuzzy
sets used to understand the behavior of objects with a fractional grade of membership
between zero and one. On the other hand, the controllability of fractional operators through
the solvability region of mixed quasi-hemivariational inequalities has attracted attention
to investigating and updating more results (in particular, with fuzzy sets). Here, we refer
to [12,13]. In 2021, N. V. Hung [14] gave us strong and more worthwhile results on the
generalization of Levitin–Polyak well-posedness for controlled systems of minty type–fuzzy
mixed quasi-hemivariational inequalities (FMQHI). For more readings, it is worth looking
into the engineering, mechanics, and economics literature as well, for example, [15–20].

Among the most robust theories that support stochastic modeling are differential inclu-
sion theories and the continuous infinite delay ones. Many scientific teams have been con-
ducting research on this topic in many different scientific fields. For examples, see [21,22].

Some researchers have presented several results by modeling with control, stochastic,
delay, and memory systems. Many kinds are found in [12,23,24] and the references therein.
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Y. Jiang et al. [13] prove the solvability theory of mild solution sets for multi-valued
Caputo fractional differential initial problems with hemivariational inequality (HVI) with
Clarke generalized directional derivatives.

Dα
c x(t) ∈ Ax(t) + F(x(t), u(t)), t ∈ [0, b], α ∈ [0, 1]

u(t) ∈ Solu(HVI),

x(0) = ψ,

where A is the infinitesimal generator of a norm-continuous and uniformly bounded C0
semi-group {K(ρ)}ρ≥0 and F is a multi-valued map.

X. Pang et al. [25] presented the mild solution of Hilfer differential inclusion under
the solvability constraints of variational–hemivariational inequality (VHVI).

Dν,μx(t) ∈ Ax(t) + (Rx)(t) + F(x(t), u(t)), t ∈ [0, b],

u(t) ∈ Solu(VHVI),

I(1−ν)(1−μ)
0 = x0, ν ∈ [0, 1], μ ∈ (0, 1),

where A represents the infinitesimal generator of a norm-continuous and uniformly
bounded C0 semi-group {K(ρ)}ρ≥0 and F is a multi-valued map. R is a history-dependent
operator and for the order (1 − ν)(1 − μ), I0 defines the fractional order Riemann–
Liouville integral.

N. T. V. Anh [26] focussed on the solvability of optimal control Caputo-fractional
problems with HVI, Clarke-type subdifferentials and nonlocal initial conditions

Dα
c z(τ) ∈ Az(τ) + F(z(τ), w(τ)) + ∂G(τ, z(τ), w(τ)) + Bv(τ),

τ ∈ [0, a], α ∈ [0, 1]

w(t) ∈ Solu(HVI),

z(0) = z0 + ψ(z),

v ∈ Vad,

where Vad is an admissible control set of v(.) and A denotes the infinitesimal generator of
a norm-continuous and uniformly bounded C0 semi-group {K(τ)}τ≥0. F, G are single-
valued maps and ∂G represents the Clarke-type generalized subdifferential operator of G.
B is a bounded linear operator.

The new work comes to define the area that produces the data of fractional order
derivatives with orders between zero and one associated with the one of fuzzy sets with
grades with the same property. We suggest the fractional differential inclusion concerned
with the generalized conformable Hilfer fractional operator depending on τ ∈ R and
α ∈ (0, 1] with τ + α 
= 0 [2,27]. That will be under the effect of infinite continuous
delay. The reason for choosing this derivative is apparent if we know its benefits in
describing control and diffusive systems and its decent iterating behavior in the order
data α ∈ [0, 1]. This fact was explored in [27] as a conformable fractional derivative. This
type has the ability as a measure to show different straight lines and planes drawing
specific curves and surfaces. A. Has et al. [28] have produced an excellent study on the
physical and geometric implications of the conformable type of derivatives talking about
the attainability of approximating the tangent, which is not available with the classical
type. We can overcome this limitation through the use of substitutional tangents. In
addition, conformable derivatives are definable even if the tangent plane is undefined. For
a general vision, the conformable tangent aircraft is available for all points containing points
with undefined derivatives. On the other hand, the Hilfer derivative was presented as a
generalization of Hilfer–Hadamard, Hilfer–Katugampola, Caputo–Hadamard, Riemann–
Liouville, Hadamard, Hilfer, Caputo, etc., into single-form derivatives that draw a massive
field of natural applications. For more details, see [3].
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Furthermore, we consider the mild solution set of the suggested inclusion in the
solvability region of FMQHI of minty type endowed with the Clarke-type generalized
directional derivative.

The problem considered here will be helpful in modeling heterogeneous natural
systems with memory.

2. Setting of the Problem

Let F (E) = {ω ∈ E|ω : E → [0, 1]} be the family of all fuzzy sets over a given Banach
space E. Then,

(i) � : E → F (E) is called fuzzy mapping, for all �.

(ii) �(r) is fuzzy set on E, ∀r ∈ E and consequently ω�(r)(ρ) denotes the membership
function of ρ in �(r).

(iii) Define by the set Mγ = {w ∈ E|ωM(w) ≥ γ}, the γ− cut set of M for all M ∈
F (E), γ ∈ [0, 1].

Let W, C be two reflexive Banach spaces, K ⊂ W be a nonempty closed subset, and
L(W, C) be the space of all linear continuous functions. Let Z be the control reflexive
Banach space and U ⊂ Z be the set of all admissible controls which is nonempty and closed.
Let S : K → F (K) and P : K → F (L(W, C)) be fuzzy mappings and j : K × K → R be a
given locally Lipschitz function. Let h : L(W, C)× K× K → R, satisfying

(1) h(v, w2 − w1, u) = −h(v, w1 − w2, u),

(2) h(v, w− w, u) = 0,

for all w, w1, w2 ∈ K, v ∈ L(W, C), u ∈ U and let f : K× K → R be a function satisfying

f (w, w) = 0, ∀w ∈ K.

We want to study Hilfer fuzzy-type fractional differential inclusion defined by

δ
GH Dβ,θ

a+ x(t) ∈ Ax(t) + Π(t, x(t), xt,Hu), t ∈ [a, T], a > 0 θ, β ∈ [0, 1], (1)

δH(1−θ)(1−β)
a x(a) =

cΓ(γ)
Γ(ω + γ)

(
tδ − aδ

δ

)ω

, (2)

0 < ω < 1, β + ω = 1, γ = β + θ(1− β)

x(t) = ψ(t), t ∈ [a− σ, a], (3)

where ψ(a) = 0, δ = τ + α, τ ∈ R, α ∈ [0, 1] and τ + α 
= 0,

xt(r) = x(t + r), r ∈ [−σ, 0], σ ∈ [a, T),

δ
GH Dβ,θ

a+ , δHγ
a denote the generalized Hilfer-type fractional derivative and integral, respec-

tively, that their definitions are given later, in Section 3.2. A denotes a generator of compact
C0 semi-groups and Hu defines solutions collection of the minty type FMQHI-controlled
system written as follows.

FMQHI: Find w1 ∈ K ∩ S(w1)β such that

h(v, w2 − w1, u) + j0(w1, w2 − w1) + f (w2, w1) ≥ 0, ∀v ∈ P(w2)θ , ∀w2 ∈ S(w1)β, (4)

where j0 denotes the generalized directional derivative of Clarke type for the function j at
the point w1 ∈ K in the direction of w2 − w1 given by the relation

j0(u, v) = lim
k→u

sup
λ→0+

j(k + λv)− j(k)
λ

, u = w1, v = w2 − w1.

u(t) is a control function and S(w1)β, P(w2)θ are defined, respectively, by
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a: S(w1)β =
{

g ∈ K|μS(w1)
(g) ≥ β

}
,

b: P(w2)θ =
{

g ∈ K|μP(w2)
(g) ≥ θ

}
.

3. Preliminaries and Auxiliary Statements

The main results depend on five important concepts: Hilfer fractional operators, C0
semi-groups, infinite delay, multi-valued operators, and FMQHI. So, we must present some
basic definitions and facts related to these concepts.

3.1. FMQH Inequalities

From [14], we can see the following

Lemma 1. Let u ∈ U and w1 ∈ K ∩ S(w1)β. Then,

H
u = {w1 ∈ K ∩ S(w1)β‖h(v, w2 − w1, u)+J0(w1, w2 − w1) + f (w2, w1) ≥ 0

, ∀w2 ∈ S(w1)β, v ∈ P(w2)θ}

is a nonempty set.

Proof. Since w1 ∈ K ∩ S(w1)β, then w1 ∈ K and w1 ∈ S(w1)β. Taking w2 = w1 = w
implies that h(v, w− w, u) = 0, and f (w, w) = 0. Since ‖j0(w, e)‖ ≤ Le‖w‖ if e = 0, then
j0(w, 0) = 0. While S(w1)β is nonempty and w2 = w1 ∈ S(w1)β exists and satisfies (4),
then Hu is a nonempty set.

Definition 1. Let Hu be the solution set of FMQHI. If

(i) Hu is nonempty,
(ii) every LP approximating sequence {xn} for FMQHI has a subsequence which converges to

some points of Hu,

then we say that FMQHI is LP well posed in the generalized sense.

Let us define the approximate solution set of FMQHI by

H̃
u(ε) = {x ∈ K ∩ B(S(x)β, ε)| h(v, y− x, u)+j0(x, y− x) + f (y, x) + ε ≥ 0,

∀y ∈ S(x)β, ∀v ∈ P(y)θ},

for arbitrary positive real numbers ε ≥ 0.
We can see clearly that ∀ ε ≥ 0, H̃u(0) = Hu and Hu ⊂ H̃u(ε).
The following Lemma has been proved in [29].

Lemma 2. Consider that both Banach spaces W, O are reflexive. Let K ⊂ W be a nonempty closed
subset and

L(W, O) = {η|η : W → O, η is linear continuous operator}.

Define the control–reflexive Banach space by Z and assume the nonempty closed subset U ⊂ Z to
be the collection of admissible controls. Suppose two fuzzy mappings S : K → F (K) and P : K →
F (L(W, O)) and a locally Lipschitz function j. Let both functions h : L(W, O)× K×U → R

and f : K× K → R be given. If

(i) S is topologically closed on K and w → S(w)β is l.s.c set-valued mapping with nonempty
compact values on K;

(ii) P is l.s.c;
(iii) j is a locally Lipschitz function and f is u.s.c;
(iv) ∀u ∈ U, h(, , u) is u.s.c.

then, Hu is a compact set for all u ∈ U. Furthermore, H̃u is u.s.c at 0 and for all ε > 0, H̃u(ε) is
compact.
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Let S̃, P̃ both be set-valued mappings defined, respectively, as follows

(i) S̃ : K → F (K) formed by

S̃(w) = S(w)β, ∀w ∈ K, (5)

(ii) P̃ : K → F (L(W, O)) formed by

P̃(r) = P(r)θ , ∀r ∈ K. (6)

Consequently, we have the following Lemma

Lemma 3. Consider that both Banach spaces W, O are reflexive. Let K ⊂ W be a nonempty closed
subset and

L(W, O) = {η|η : W → O, η is linear continuous operator}.

Define the control reflexive Banach space by Z and assume the nonempty closed subset U ⊂ Z to be
the collection of admissible controls. Suppose two fuzzy mappings S : K → F (K) and P : K →
F (L(W, O)) and a locally Lipschitz function j. Let both functions h : L(W, O)× K×U → R

and f : K× K → R be given. Suppose the following conditions

(i) S̃ : K → F (K) is a compact continuous set-valued mapping defined by (5);
(ii) P̃ : K → F (L(W, O)) is an l.s.c set-valued mapping defined by (6);
(iii) j and f are, respectively, locally Lipschitz and u.s.c functions;
(iv) h(, , u) is u.s.c for each u ∈ U.

Then, the sufficient and necessary condition for FMQHI to be LP well-posed in the generalized sense
is that Hu is a nonempty set.

Proof. See [14].

Definition 2. For FMQHI-controlled systems, we say that g : K → R is a gap function if

(i) g(w) ≥ 0, ∀w ∈ S̃(w);
(ii) The two sentences g(w) = 0 and w ∈ Hu are equivalent.

Lemma 4. Suppose that S̃ and P̃ have compact values in a neighborhood of the reference point. The
function g : D(K)→ R, where D(K) =

⋃
w∈K D(w) =

⋃
w∈K{w ∈ K : w ∈ S̃(w)} defined by

g(w) = max
r∈S̃(r)

max
v∈P̃(r)

{h(v, w− r, u)− j0(w, r− w)− f (r, w)}. (7)

is a gap function for FMQHI-controlled systems. Moreover, the sentences g(w∗) = 0 and w∗ ∈ Hu

are equivalent.

Proof. See [14].

Lemma 5. For FMQHI, g is continuous in K if

(i) S̃ and P̃ are compact continuous set-valued maps;
(ii) f is continuous;
(iii) J is a locally Lipschitz function;
(iv) h is continuous, ∀u ∈ U.

Proof. See [14].

Lemma 6. Assume that φ : R+ ×R+ → R is a real-valued function satisfying

φ(r, s) ≥ 0, ∀r, s ≥ 0, φ(0, 0) = 0; (8)

sn → 0, rn ≥ 0, φ(rn, sn)→ 0 imply rn → 0. (9)
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We can find a function φ satisfying (8) and (9) for which

|g(x)| ≥ φ(d(x, Hu), d(x, S̃(x))), ∀x ∈ K. (10)

if Hu is LP well-posed in the generalized sense.

Proof. See [14].

3.2. Fractional Calculus

Definition 3 (Conformable Integrable Function). Let [a1, a2] ⊂ [0, ∞), 0 < α ≤ 1 and
τ ∈ R with τ + α 
= 0. Let x ∈ Lα[a1, a2] = {x(t) :

∫ a2
a1

x(ρ)dαρ < ∞} where dαρ = d(ρα).
Then, the operator Kτ,α

a1 : Lα[a1, a2]→ R given by

Kτ,α
a1

=
∫ t

a1

x(ρ)ρτdαρ

represents a conformable fractional integral.

Definition 4 (Generalized Conformable (GC) Integrable Function). For an order β > 0,
the left-side GC fractional integral δHβ

a+1
with 0 < α ≤ 1, τ ∈ R and δ = τ + α 
= 0 is defined by

δHβ

a+1
(x)(t) =

1
Γ(β)

∫ t

a1

(
tδ − ρδ

δ

)β−1

ρδ−1x(ρ)dρ,

for all conformable type integrable functions x on the interval [a1, a2] ⊂ [0, ∞).

Definition 5 (Generalized Hilfer-type (GH) fractional derivative). Let β ∈ (0, 1), θ ∈
[0, 1], τ ∈ R and 0 < α ≤ 1 such that δ = τ + α 
= 0. For a conformable integrable function x on
the interval [a1, a2] ⊂ [0, ∞], the left-side GH fractional derivative operator of order β and type θ is
defined by

δ
GH Dβ,θ

a+1
(x)(t) =

[
δHθ(1−β)

a+1

(
t1−δ d

dt

)
δH(1−θ)(1−β)

a+1

]
(x)(t).

Lemma 7. Let β, θ, τ, α, δ, and x all be defined as in Definition 5. Then, we have the following
statements

(1) For all ν > 0,

δHβ

a+1

(
tδ − aδ

δ

)ν−1

=
Γ(ν)

Γ(ν + β)

(
tδ − aδ

δ

)ν+β−1

;

(2) for x ∈ C1[a1, a2],
δ
GH Dβ,θ

a+1
δHβ

a+1
(x)(t) = x(t)

(3) for x ∈ C1[a1, a2],

δHβ

a+1

δ
GH Dβ,θ

a+1
(x)(t) = x(t)−

(
tδ − aδ

δ

)γ−1

δH(1−θ)(1−β)
a x(a),

where γ = β + θ(1− β)

Proof. In [1]: Lemma 2 and Theorems 5 and 7, take ψ(t) = t(α+τ)

α+τ , n = 1. Then, we obtain
the statements above.

For more details, see [1–3,27,30].
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3.3. Banach and Phase Banach Spaces

Here, we give some properties of Banach and phase spaces that help explore the
solvability of the inclusion problem (1)–(3) with infinite delay.

3.3.1. Processes on Banach Spaces

According to both articles [31,32], the space

Lp[a, b] =
{

ω(t)|
∫ b

a
|ω(s)|pds < ∞

}
, 1 ≤ p < ∞

is a Banach space introduced with the norm

‖ω‖p =

(∫ b

a
|ω(s)|pds

) 1
p

.

and C[a, b] = {ω(t)| ω(t) : [a, b]→ R, |ω(t)| ≤ M, f or some M} is endowed with the norm

‖ω‖C = sup
a<s<b

|ω(s)| < ∞.

Accordingly, we have the next theorem

Theorem 1 ([31]). Consider 1 ≤ p, q < ∞ such that 1
p + 1

q = 1, then

(i) Holder Inequality. If ω ∈ Lp and ω∗ ∈ Lq. Then, ωω∗ ∈ L1 and

‖ωω∗‖L1 ≤ ‖ω‖Lp‖ω∗‖Lq .

(ii) Minkowski Inequality. If ω, ω∗ ∈ Lp. Then, ω + ω∗ ∈ Lp and

‖ω + ω∗‖Lp ≤ ‖ω‖Lp + ‖ω∗‖Lp .

(iii) Embedding Theorem. If Ω has a finite positive measure and q ≤ p. Then, LP(Ω) ⊆
Lq(Ω) and

‖ω‖Lq ≤ [μ(Ω)]
1
r ‖ω‖Lp , r > 0 f or which

1
q
− 1

p
=

1
r

.

(iv) limp→∞‖ω‖Lp = ‖ω‖L∞ = ‖ω‖∞ = supt∈Ω|ω(t)| = ‖ω‖C(Ω).

Definition 6. Let W, W0, and W1 be given Banach spaces. Then,

(a) Compatible couple of Banach Spaces consists of two Banach spaces W0 and W1 contin-
uously embedded in the same Housdroff topological vector space V. The spaces W0 ∩W1 and
W0 + W1 are both Banach spaces equipped, respectively, with norms

• ‖x‖W0∩W1 = max
(‖x‖W0 , ‖x‖W1

)
• ‖x‖W0+W1 = inf{‖x0‖W0 + ‖x1‖W1 , x = x0 + x1, x0 ∈ W0, and x1 ∈ W1}

(b) Interpolation is the family of all intermediate spaces W between W0 and W1 in the sense that

W0 ∩W1 ⊂ W ⊂ W0 + W1,

where the two included maps are continuous.

Remark 1. We can understand that:

• The couple
(

L∞, L1)(R) is a compatible couple since L∞ and L1 are both embedded in the
space of measurable functions on the real line, equipped with topology convergence in measure;
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• For all 1 < p < ∞, the spaces Lp(R) are intermediate spaces between L∞(R) and L1(R).
Hence,

L1,∞(R) = L∞(R) ∩ L1(R) ⊂ Lp(R) ⊂ L∞(R) + L1(R).

3.3.2. Phase Banach Space

From [33], denote by B the space of all continuous function mapping [−σ, 0] to R. For
−∞ < a < T, let x : [a− σ, T] → R be defined in (a− σ, T) and continuous on [a, T]. For
all r ∈ [−σ, 0], t ∈ [a, T], define xt : C[−σ, 0] → R by xt(r) = x(t + r), ∀. Note that xt
translates x from [t− σ, t] back to [−σ, 0] and xa = x|[a−σ,a].

Definition 7. The set B is said to be admissible whenever there exist two constants A1, A2 ≥ 0
and a continuous function N : [0, ∞) → [0, ∞) such that if x : [a − σ, T] → R is defined in
(a− σ, T) and continuous on [a, T) with xa ∈ B, then for all t ∈ [a, T] the following statements
all hold:

(a1) xt ∈ B;

(a2) xt is continuous in t with respect to ‖.‖B ;

(a3) ‖xt‖B ≤ A1 maxs∈[a,t] |x(s)|+ N(t− a)‖xa‖B , and N(t)→ 0 as t → ∞;

(a4) |v(0)| ≤ A2‖v‖B for all v ∈ B.

Remark 2. In (a2) let A3 > 0 be given. We can see for all r ∈ [−σ, 0], A3 > 0, and t ∈ [a− σ, T]
that s = t− r ∈ [a, T], which implies the following:

x(t) = x((t− r) + r) = xt−r(r),

|x(t)| = |xt−r(r)| ≤ A3‖xs‖B , s = t− r ∈ [a, T]

‖x(s)‖[a,T] ≤ ‖x(t)‖[a−σ,T] ≤ A3‖xs‖B

3.4. Multi-Valued Mappings

Here, we introduce some facts about multi-valued mappings and their properties.
These facts are confirmed in [34–38].

Consider that we have two Banach spaces (W, ‖.‖) and (O, ‖.‖). We say that φ : W →
Pcl(W) is convex (closed) multi-valued mapping if φ(w) is convex (closed) for all w ∈ W.
If φ(B) is relatively compact for every B ∈ Pb(W), then φ is completely continuous.

φ is said to be upper semi-continuous if E ⊂ W; φ−1(E) is a closed subset of W for
each closed subset (i.e., the set {w ∈ W : φ(w) ⊆ H} is open whenever H ⊂ W is open). In
contrast, it is lower semi-continuous if ∀Z ⊂ W; φ−1(Z) is an open subset of W. By another
meaning, φ is lower semi-continuous whenever the set {w ∈ W : φ(w) ∩ H 
= ∅} is open
for all open sets H ⊂ W.

We say that a multi-valued map φ : [0, τ]→ Pcl(W) is measurable if for every w ∈ W,
the function s → d(w, A(s)) = inf{d(w, a) : a ∈ φ(s)} is an L−measurable function.

Given U, V ∈ Pcl(W), the Pompeiu–Housdorff distance of U, V is defined by

h(U, V) = Hd(U, V) = dH(U, V) = max

{
sup
u∈U

d(u, V), sup
v∈V

d(U, v)

}
.

Moreover, the diameter distance of V is given by

δ̂(V) = sup
v1,v2∈V

d(v1, v2).

Note that there exists M > 0 such that δ̂(V) ≤ M if V is bounded.
Suppose we adopt φ as a nonempty compact valued completely continuous function.

In that case, [ φ is upper semi-continuous] is equivalent to [ φ has a closed graph (i.e., if
νn → ν∗ and yn → y∗, then yn ∈ φ(νn) implies y∗ ∈ φ(ν∗))].
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Definition 8. Consider a multi-valued map Θ : [a, b]× Rn → P(R). Then, Θ is said to be a
Caratheodory if

(1) τ → Θ(τ, {vi}) is measurable, ∀vi ∈ R, n ∈ N.
(2) ({vi})→ Θ(τ, {vi}) a.e τ ∈ [a, b] is upper semi-continuous.

Adding to the assumptions (1) and (2), the map Θ is L1- Caratheodory if for each k > 0, there exists
φk ∈ L∞[a, b] satisfying supτ≥0|φk(τ)| < +∞ and φk > 0 and a nondecreasing map Ł ∈ L1[a, b]
for which

‖Θ(τ, {vi})‖ = sup{|θ| : θ(τ) ∈ Θ(τ, {vi})} ≤ φk(τ)Ł({|vi‖}),
for all ‖vi‖ < k, i = 1, . . . , n, n ∈ N, τ ∈ [a, b].

Lemma 8 ([39] (pp. 781–786)). Let Ω be a Banach space,

Θ : [0, L]×Ω → Pcp,cv(Ω)

be a L1−Caratheodory multi-valued map and P be a continuous and linear map from L1([0, L]Ω)
to C([0, L], Ω). Then, the operator:

P ◦ SΘ : C([0, L], Ω)→ Pcp,cv(C([0, L], Ω)),

such that:
y �→ (P ◦ SΘ)(y) = P(SΘ,y)

is an operator with closed graph in C([0, L], Ω)× C([0, L], Ω).
Here,

SΘ,y =
{

θ ∈ L1([0, L],R) : θ(τ) ∈ Θ(τ, y(τ))
}

.

Theorem 2 (Leray–Schauder Nonlinear Alternative Type [40] (p. 169), [41] (p. 188)).
Assuming that Σ is Banach space, E is a convex closed subset of Σ, and Ω is an open subset of E
with 0 ∈ Ω. If Ψ : Ω → Pcp,cv(E) is an upper semi-continuous multi-compact map, then either

(i) there exists ω ∈ ∂Ω, ρ ∈ (0, 1) such that ω ∈ ρΨ(ω), or
(ii) there exists a fixed point ω ∈ Ω.

3.5. Auxiliary Statements

Lemma 9. Take the function η(t) ∈ Π(t, x(t), xt,Hu) for which we have

δ
GH Dβ,θ

a+ x(t) = Ax(t) + η(t), t ∈ [a, T], a > 0 α, β ∈ [0, 1], (11)

δH(1−θ)(1−β)
a x(a) =

cΓ(γ)
Γ(ω + γ)

(
tδ − aδ

δ

)ω

, (12)

ω ∈ (0, 1), ω + β = 1.

Then, the unique conformable solution is given by

x(t) = Γ(ξ)x0(t)Eβ,ξ

(
A
(

tδ − aδ

δ

)β
)

+
∫ t

0

(
tδ − ρδ

δ

)β−1

Eβ,β

(
A
(

tδ − ρδ

δ

)β
)

η(ρ)dρδ, (13)

where

Eα,β(z) =
∞

∑
j=0

zj

Γ(αj + β)

and
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x0(t) =
c

Γ(ξ)

(
tδ − aδ

δ

)ξ−1

, ξ = γ + ω.

Proof. By applying δHβ
a to both sides of (11) and applying condition (12), one has

x(t) =
c

Γ(ξ)

(
tδ − aδ

δ

)ξ−1

+ δHβ
a [Ax(t) + η(t)]

Take

x0(t) =
c

Γ(ξ)

(
tδ − aδ

δ

)ξ−1

.

So, we obtain

x(t) = x0(t) + δHβ
a [Ax](t) + δHβ

a η(t).

The proof is similar to the proof of the solution in [30]: Theorem 4.
Now, to obtain the conformable solution, define the operator � by

�(x)(t) = x0(t) + δHβ
a [Ax](t) + δHβ

a η(t).

Accordingly, define the sequence (xk)k≥1 by

xk(t) = �xk−1(t).

Hence, we obtain the general formula

xk(t) =c
k+1

∑
j=1

Aj−1

Γ(βj + ω + θ(1− β))

(
tδ − aδ

δ

)βj+ω+θ(1−β)−1

+
∫ t

a

k

∑
j=1

Aj−1

Γ(βj)

(
tδ − ρδ

δ

)βj−1

η(ρ)dρδ.

Take the limit as k → ∞ and apply the changing j → j + 1; we have

x(t) =c
∞

∑
j=0

Aj

Γ(βj + ξ)

(
tδ − aδ

δ

)βj+ξ−1

+
∫ t

a

∞

∑
j=0

Aj

Γ(βj + β)

(
tδ − ρδ

δ

)βj+β−1

η(ρ)dρδ

= Γ(ξ)x0(t)Eβ,ξ

(
A
(

tδ − aδ

δ

)β
)

+
∫ t

0

(
tδ − ρδ

δ

)β−1

Eβ,β

(
A
(

tδ − ρδ

δ

)β
)

η(ρ)dρδ.

Now, define the set-valued map Su,(1,∞)
Π,x such as

Su,(1,∞)
Π,x =

{
η(t) ∈ L1,∞[a, T]| η(t) ∈ Π(t, x, xt,Hu)

}
,
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and define the linear operator Δη : L1,∞[a, T]→ P
(

L1,∞[a, T]
)

for all η(t) ∈ Su,(1,∞)
Π,x by

Δη(t) = cQξ
β

(
tδ − aδ

)
+
∫ t

a

(
tδ − ρδ

δ

)β−1

Q̂β

(
tδ − ρδ

)
η(ρ)dρδ, ∀t ∈ [a, T], (14)

Qξ
β

(
tδ − aδ

)
=

(
tδ − aδ

δ

)ξ−1

Eβ,ξ

(
A(t)

(
tδ − aδ

δ

)β
)

, (15)

Q̂β

(
tδ − ρδ

)
= Eβ,β

(
A(t)

(
tδ − ρδ

δ

)β
)

. (16)

After that, define the operator Δψ
η : L1,∞[a− σ, T]→ P

(
L1,∞[a− σ, T]

)
by

Δψ
η (t) =

{
ψ(t), t ∈ [a− σ, a],

Δη(t), t ∈ [a, T]
(17)

where η(t) ∈ Su,(1,∞)
Π,x and then define the operator ℵ : K → P

(
L1,∞[a− σ, T]

)
such as

ℵ(x)(t) =
{

e(t) ∈ L1,∞[a− σ, T]|e(t) = Δψ
η (t), η(t) ∈ Su,(1,∞)

Π,x , ψ ∈ L1,∞[a− σ, a]
}

. (18)

Hence,

ℵJ(x)(t) =
{

eJ(t) ∈ L1,∞[a, T]|eJ(t) = Δη(t), η(t) ∈ Su,(1,∞)
Π,x

}
. (19)

Proposition 1. Let 0 < β < 1, 0 ≤ θ, α ≤ 1, τ ∈ R be given and define γ, ν, δ, respectively,
by γ = β + θ(1− β), ξ = ω + γ, ν = ξ − β and δ = α + τ 
= 0. Then, the following statement
is satisfied

δHν
a+

[(
tδ − aδ

δ

)β−1

Q̂β

(
tδ − aδ

)]
= Qξ

β

(
tδ − aδ

)
Proof.

L.H.S = δHν
a+

[(
tδ − aδ

δ

)β−1

Q̂β

(
tδ − aδ

)]

= δHν
a+

[(
tδ − aδ

δ

)β−1

Eβ,β

(
A(t)

(
tδ − aδ

δ

)β
)]

=
1

Γ(ν)

∞

∑
j=0

Aj

Γ(βj + β)

∫ t

a

(
tδ − ρδ

δ

)ν−1( tδ − aδ

δ

)βj+β−1

ρδ−1dρ

=
∞

∑
j=0

Aj

Γ(βj + β)

Γ(βj + β)

Γ(βj + β + ν)

(
tδ − aδ

δ

)βj+β+ν−1

=

(
tδ − aδ

δ

)ξ−1 ∞

∑
j=0

[
A
(

tδ−aδ

δ

)β
]j

Γ(βj + ξ)

= R.H.S
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Now, since A is a generator of compact C0 semi-groups, there exists Mβ > 0 such that∥∥Eβ,β
∥∥ ≤ Mβ and consequently we have the following proposition.

Proposition 2. Let 0 < β < 1, 0 ≤ θ, α ≤ 1, τ ∈ R be given and define γ, ν, δ, respectively, by
γ = β + θ(1− β), ξ = ω + γ, ν = ξ − β and δ = α + τ 
= 0. Then, the following statement
is valid. ∥∥∥Qξ

β

(
tδ − aδ

)∥∥∥ ≤ MβΓ(β)

Γ(ξ)
sup

t∈[a,T]

∣∣∣∣∣
(

tδ − aδ

δ

)ξ−1∣∣∣∣∣
Proof. ∥∥∥Qξ

β

(
tδ − aδ

)∥∥∥ ≤ δHν
a+

[(
tδ − aδ

δ

)β−1∣∣∣Q̂β

(
tδ − aδ

)∣∣∣]

≤ Mβ δHν
a+

[(
tδ − aδ

δ

)β−1]

Using [Lemma 7: (1)], one has

∥∥∥Qξ
β

(
tδ − aδ

)∥∥∥ ≤ MβΓ(β)

Γ(ξ)
sup

t∈[a,T]

∣∣∣∣∣
(

tδ − aδ

δ

)ξ−1∣∣∣∣∣.

Define the statement
(PR): For some x ∈ Lp[a− σ, T], we have

max
{
‖x‖1,∞

[a,T], ‖ψ‖B
}
≤ R,

where
‖x‖1,∞

[a−σ,T] = max{‖x‖1,∞
[a−σ,a], ‖x‖1,∞

[a,T]}.

Then, define the set K by

K = {x ∈ B ∩ Lp[a− σ, T]| x satis f ies (PR)}.

It is clear that K is closed in L1,∞[a− σ, T] � Lp[a− σ, T] and in the phase Banach space B.
Consider the following hypotheses.

(J1) The mappings S̃, P̃, j and f satisfy all conditions given in Lemmas 2 and 3;

(J2) Π : [a, T]× K × B ×Hu → Pcp,cv(R) is Lp− Caratheodory multi-valued mapping
satisfying the below condition;
For each R > 0 there exist φR, φ̂R ∈ L∞([a, T], R+) and non-decreasing functions
Ł1, Ł2, and Ł3 ∈ L1([a, T], R) such that

‖Π‖1,∞ ≤ φR(t)
[
Ł1

(
‖x‖1,∞

)
+ Ł2(‖xt‖B)

]
+ φ̂R(t)Ł3

(
δ̂(Hu)

)
,

for all ‖x‖ ≤ R and Hu is compact;

(J3) The mappings S̃, P̃, j and f satisfy all conditions given in Lemmas 2, 4 and 5;

(J4) Π : [a, T]× K × B ×Hu → Pcp,cv(R) is Lp− Caratheodory multi-valued mapping
satisfying the below condition.
For each R > 0, there exist φR, φ̂R ∈ L∞([a, T], R+) and non-decreasing functions
L1, L2, and L3 ∈ L1([a, T], R) such that
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‖Π‖1,∞ ≤ φR(t)
[

L1

(
‖x‖1,∞

)
+ L2(‖xt‖B)

]
+ φ̂R(t)L3(φ(κ1, κ2)),

for all ‖x‖ ≤ R and Hu is compact, where φ is defined by (8)–(10) in Lemma 6 with
κ1 = d(x,Hu) and κ2 = d(x, S̃(x)).

Then, for all t ∈ [a, T], a > 0 we have the following propositions

Proposition 3. Let x ∈ K be given. The operator ℵJ(x)(t) is convex if (J2) holds.

Proof. Let e1
J , e2

J ∈ ℵJ(x)(t); then, there exist η1, η2 ∈ Su,(1,∞)
Π,x subject to

ei
J = Δηi, i = 1, 2,

where Δη is defined by (14)–(16). Let λ ∈ [0, 1] be given. Then, by the linearty of Δη ,
we obtain

λe1
J + (1− λ)e2

J =λΔη1 + (1− λ)Δη2

= Δ(λη1 + (1− λ)η2).

By (J2), λη1 + (1− λ)η2 ∈ Su,(1,∞)
Π,x and then λe1

J + (1− λ)e2
J ∈ ℵJ(x)(t) which completes

the result.

Proposition 4. Let x ∈ K with xa = ψ be given. The operator ℵJ(x)(t) is completely continuous
if (J1) and (J2) are fulfilled and so are (a1)–(a4).

Proof. To show that ℵJ(x)(t) is equicontinuous, we should prove that ℵJ(x)(t) is bounded
and relatively compact on bounded subsets.

Step 1: Let x ∈ K and eJ ∈ ℵJ(x); then,

|eJ(t)| =|Δη(t)|

≤ |c|
∣∣∣Qξ

β

(
tδ − aδ

)∣∣∣+ ∣∣∣∣∣
∫ t

a

(
tδ − ρδ

δ

)β−1

Q̂β

(
tδ − ρδ

)
η(ρ)dρδ

∣∣∣∣∣.
By using Propositions 1 and 2 and Lemma 7:(1) we have

|eJ(t)| ≤ |c|
MβΓ(β)

Γ(ξ)
sup

t∈[a,T]

∣∣∣∣∣
(

tδ − aδ

δ

)ξ−1∣∣∣∣∣
+
∫ t

a

(
tδ − ρδ

δ

)β−1∣∣∣Q̂β

(
tδ − ρδ

)
η(ρ)

∣∣∣dρδ

≤ |c|MβΓ(β)

Γ(ξ)
sup

t∈[a,T]

∣∣∣∣∣
(

tδ − aδ

δ

)ξ−1∣∣∣∣∣
+
∫ t

a

(
tδ − ρδ

δ

)β−1

|η(ρ)|dρδ

≤ |c|MβΓ(β)

Γ(ξ)
sup

t∈[a,T]

∣∣∣∣∣
(

tδ − aδ

δ

)ξ−1∣∣∣∣∣
+

MβΓ(β)

Γ(β + 1)

(
Tδ − aδ

δ

)β

G0
(

R, δ̂(Hu)
)

≤ MβΓ(β)G
(
δ, ξ, β, R, δ̂(Hu)

)
,
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where

G0
(

R, δ̂(Hu)
)
= ‖φR‖[Ł1(R) + Ł2((A1 + N∗)R)] + ‖φ̂R‖Ł3

(
δ̂(Hu)

)
;

G
(
δ, ξ, β, R, δ̂(Hu)

)
=

|c|
Γ(ξ)

sup
t∈[a,T]

∣∣∣∣∣
(

tδ − aδ

δ

)ξ−1∣∣∣∣∣+ 1
Γ(β + 1)

(
Tδ − aδ

δ

)β

G0
(

R, δ̂(Hu)
)

and N∗ = supt∈[a,T] |N(t− a)|.
Step 2: Suppose that t1, t2 ∈ [a, T] such that t1 < t2 with t1 → t2 and take eJ ∈

ℵj(x), x ∈ K

|eJ(t2)− eJ(t1)| = |Δη(t2)− Δη(t1)|
≤ |c|

∣∣∣Qξ
β

(
tδ
2 − aδ

)
−Qξ

β

(
tδ
1 − aδ

)∣∣∣ ≡ (I1)

+

∣∣∣∣∣∣
∫ t1

a

(
tδ
2 − ρδ

δ

)β−1

Q̂β

(
tδ
2 − ρδ

)
η(ρ)dρδ − I

∣∣∣∣∣∣ ≡ (I2)

+

∣∣∣∣∣∣I −
∫ t1

a

(
tδ
1 − ρδ

δ

)β−1

Q̂β

(
tδ
1 − ρδ

)
η(ρ)dρδ

∣∣∣∣∣∣ ≡ (I3)

+

∣∣∣∣∣∣
∫ t2

t1

(
tδ
2 − ρδ

δ

)β−1

Q̂β

(
tδ
2 − ρδ

)
η(ρ)dρδ

∣∣∣∣∣∣ ≡ (I4),

where

I =
∫ t1

a

(
tδ
1 − ρδ

δ

)β−1

Q̂β

(
tδ
2 − ρδ

)
η(ρ)dρδ.

It is easy to understand that I1 → 0 as t1 → t2 since Qξ
β is strongly continuous in [a, T].

For I2, we have

I2 =

∣∣∣∣∣∣
∫ t1

a

⎡⎣( tδ
2 − ρδ

δ

)β−1

−
(

tδ
1 − ρδ

δ

)β−1
⎤⎦Q̂β

(
tδ
2 − ρδ

)
η(ρ)dρδ

∣∣∣∣∣∣
≤ Mβ

β
G0
(

R, δ̂(Hu)
)⎡⎣( tδ

2 − tδ
1

δ

)β

−
(

tδ
2 − aδ

δ

)β

+

(
tδ
1 − aδ

δ

)β
⎤⎦.

Hence, I2 → 0 as t1 → t2
Since Q̂β is also strongly continuous in [a, T] and

I3 ≤
∫ t1

a

(
tδ
1 − ρδ

δ

)β−1∣∣∣Q̂β

(
tδ
2 − ρδ

)
− Q̂β

(
tδ
1 − ρδ

)∣∣∣‖η(ρ)‖dρδ,

then we can see that I3 → 0 as t1 → t2.
Finally,

I4 ≤
Mβ

β
G0
(

R, δ̂(Hu)
)⎡⎣( tδ

2 − aδ

δ

)β

−
(

tδ
1 − aδ

δ

)β
⎤⎦,

which shows that I4 → 0 as t1 → t2.
Because of that, I1, I2, I3 and I4 → 0 as t1 → t2, then we obtain the result |eJ(t2)−

eJ(t1)| → 0 as t1 → t2.
According to Steps 1 and 2, we conclude that ℵJ(x)(t) is completely continuous.
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Proposition 5. Let x ∈ K with xa = ψ be given. The operator ℵJ(x)(t) is upper semi-continuous
if (J1), (J2) and (a1)–(a4) are satisfied.

Proof. Since ℵJ(x)(t) is completely continuous, it is enough to claim that it has a closed
graph to obtain the upper semi-continuity of ℵJ(x)(t). Let xn ∈ K, xn → x∗, en

J ∈ ℵJ(xn)

and en
J → e∗J . If en

J ∈ ℵJ(xn), there exists ηn ∈ Su,(1,∞)
Π,xn

such that en
J = Δηn . Using the linearity

of Δ and Lemma 8 shows that Δ has a closed graph. Thus, en
J = Δηn → Δη∗ , η∗ ∈ Su,(1,∞)

Π,x∗ .
Take e∗J = Δη∗ , then we obtain e∗J ∈ ℵJ(x∗) which tends to the upper semi-continuity of
ℵJ(x)(t).

4. Main Results

Theorem 3. Consider that hypothesis (J1), (J2) and (a1)–(a4) are valid. Then, problem (1)–(3)
has at least one solution in K if the following condition holds

R
ψ∗ + MβΓ(β)G

(
δ, ξ, β, R, δ̂(Hu)

) ≥ 1,

where xa = ψ

Proof. To obtain the suggested result, we follow all arguments given in Lemma 8 and
Theorem 2 for the operator ℵ(K) over the closed convex subset K.

Step 1: Let x ∈ K, λ ∈ [0, 1], e1, e2 ∈ ℵ(x)(t) and t ∈ [a− σ, T]. We want to claim that
λe1 + (1− λ)e2 ∈ ℵ(x). So, since e1, e2 ∈ ℵ(x)(t) implies the existence of two elements,

ηi ∈ Su,(1,∞)
Π,x such that

ei = Δψ
ηi (t), i = 1, 2,

where Δψ
ηi (t) is defined by (14)–(17). Due to the linearty of Δ, we can see the linearty of Δ

and by using Proposition 3 and the convexity of Su,(1,∞)
Π,x , we have

λe1 + (1− λ)e2 = λΔψ
η1(t) + (1− λ)Δψ

η2(t)

= Δ(λ+(1−λ))ψ
λη1+(1−λ)η2

(t)

= Δψ

λη1+(1−λ)η2
(t) ∈ ℵ(x)(t),

We can understand the proof since Δ is convex due to Proposition 3.
Step 2: To show that that is completely continuous in K, we need to prove that

ℵ : K → K and is equicontinuous.

(l1) Let x ∈ K, e(t) ∈ ℵ(x)(t). By using Proposition 4 Step 1, one has

|e(t)| =
∣∣∣Δψ

η (t)
∣∣∣

≤ ‖ψ‖B + |Δη(t)|[a,T]

≤ ψ∗ + MβΓ(β)G
(
δ, ξ, β, R, δ̂(Hu)

) ≤ R.

(l2) Let t1, t2 ∈ [a− σ, T], t1 < t2 with t1 → t2

Case 1: If t1, t2 ∈ [a− σ, a], then by continuity of ψ in [a− σ, a] we obtain

|e(t2)− e(t1)| = |ψ(t2)− ψ(t1)| → 0, as t1 → t2.

Case 2: If t1, t2 ∈ [a, T], then by using Proposition 4 Step 2, one has

|e(t2)− e(t1)| ≤ |ℵJ(x)(t2)− ℵJ(x)(t1)| → 0 as t1 → t2.
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Case 3: If t1 ∈ [a− σ, a], t2 ∈ [a, T] and t1 → t2 , then there exists 0 < ε → 0 such
that t1, t2 ∈ (a− ε, a + ε) which implies that t1, t2 → a. According to Case 1
and Case 2, we have

|e(t2)− e(t1)| ≤ |e(t2)− e(a)|(a,a+ε) + |e(a)− e(t1)|(a−ε,a) → 0

as t1, t2 → a.

By (l1) and (l2), we conclude that ℵ is completely continuous in K.

Step 3: We still need to explore that ℵ has a closed graph to see the upper semi-
continuity of ℵ. In the vision of Proposition 5 and the continuity of ψ, we understand the
upper semi-continuity of ℵ.

Step 4: For the set K, we choose

R = ψ∗ + MβΓ(β)G
(
δ, ξ, β, R, δ̂(Hu)

)
+ 1.

By Theorem 2 and Step 1–Step 4, we conclude the solvability of problem (1)–(3).

Theorem 4. Consider that hypotheses (J2)–(J4) and (a1)–(a4) are satisfied. Then,
problem (1)–(3) has at least one solution in K if the following condition is valid.

R
ψ∗ + MβΓ(β)G(δ, ξ, β, R, g∗)

≥ 1,

where g∗ = ‖g‖,

G0(R, g∗) = ‖φR‖[L1(R) + L2((A1 + N∗)R)] + ‖φ̂R‖L3(g∗);

G(δ, ξ, β, R, g∗) =
|c|

Γ(ξ)
sup

t∈[a,T]

∣∣∣∣∣
(

tδ − aδ

δ

)ξ−1∣∣∣∣∣+ 1
Γ(β + 1)

(
Tδ − aδ

δ

)β

G0(R, g∗)

and xa = ψ.

Proof. Similarly to the proof of Theorem 3, we take

R = ψ∗ + MβΓ(β)G(δ, ξ, β, R, g∗) + 1.

5. Applications

Example 1. Consider that J1 holds and

Π(t, x, xt,Hu) =

[∫ 0

−σ
Bi(t, r)xt(r)dr

]∞

i=1
+ χHu(x);

∞

∑
i=1
|Bi(t, r)|xt(r)dr ≤ 1 (20)

and

χHu(x) =

{
1, x ∈ H

u;

0, x /∈ H
u (21)
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Hence, if B = C[−σ, r], one has

|Π| ≤ ‖xt‖B
∫ 0

−σ
|Bi(t, r)dr|+ 1

≤ A1‖x‖1,∞ + N(t− a)‖xa‖B + 1

≤ ‖x‖1,∞ + N∗‖ψ‖B + 1

≤ (A1 + N∗)R + 1

.

Take φR = φ̂R = 1, Ł1 = 0, Ł2 = I(identity map) and Ł3 = 1. So, we obtain Γ0(R,Hu) =
(A1 + N∗)R + 1.

Furthermore, assume that β = 1 → ω = 0 tends to ξ = γ = 1, which implies

Eβ,ξ(z) = Eβ,β(z) = E1,1(z) = exp(z).

If we take z = A(t)
(

tδ−ρδ

δ

)
= −λ

(
tδ−ρδ

δ

)
, λ ∈ R+, then we obtain

exp(z) ≤ 1 = M1, ∀ρ ∈ [a, t].

Moreover,

G
(
δ, ξ, β, R, δ̂(Hu)

)
= G

(
δ, 1, 1, R, δ̂(Hu)

)
= |c|+

(
Tδ − ρδ

δ

)
G0
(

R, δ̂(Hu)
).

Take R = ψ∗ + G
(
δ, 1, 1, R, δ̂(Hu)

)
+ 1; then, by Theorem 3 the problem (1)–(3) associated

with (20) and (21) has at least one solution.

Example 2. Consider that J3 holds and

Π(t, x, xt,Hu) =

[∫ 0

−σ
Bi(t, r)xt(r)dr

]∞

i=1
+ WHu(x);

∞

∑
i=1
|Bi(t, r)|xt(r)dr ≤ 1 (22)

and

WHu(x) =

{
inf |g(x)|, x ∈ H

u;

0, x /∈ H
u (23)

and similarly β, z in Example 1. Then, if B = C[−σ, r], one has

|Π| ≤ ‖xt‖B
∫ 0

−σ
|Bi(t, r)dr|+ g∗

≤ A1‖x‖1,∞ + N(t− a)‖xa‖B + g∗

≤ ‖x‖1,∞ + N∗‖ψ‖B + g∗

≤ (A1 + N∗)R + g∗

.

Take φR = φ̂R = 1, L1 = 0, L2 = L3 = I(identity map); we obtain

Γ0(R, g∗) = (A1 + N∗)R + g∗.
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Moreover,
G(δ, ξ, β, R, g∗) = G

(
δ, 1, 1, R, δ̂(Hu)

)
= |c|+

(
Tδ − ρδ

δ

)
G0(R, g∗)

.

Take R = ψ∗ + G(δ, 1, 1, R, g∗) + 1; then, by Theorem 4 the problem (1)–(3) associated
with (22) and (23) has at least one solution.

6. Conclusions

This article is devoted to the mild solution of Hilfer fractional inclusion with infi-
nite delay. The solution set intersects with the solution set of FMQHI. We present two
theorems according to Lemmas 1–6. We proved these theorems due to the compactness
in interpolation of Banach spaces. We first look at the properties of the solution set in
Propositions 1–5. After that, we apply the Leray–Schauder Nonlinear Alternative Theorem
with phase Banach space rules to the suggested solution set. Finally, we presented some
examples related to the proven theorems. We hope to study the stability of this model in
subsequent work using the Ulam–Mittage–Lefller test.
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Abstract: This paper proposes a modeling and analysis method for a Caputo–Fabrizio (C-F) definition-
based fractional-order Boost converter with fractional-order inductive loads. The proposed method
analyzes the system characteristics of a fractional-order circuit with three state variables. Firstly, this
paper constructs a large signal model of a fractional-order Boost converter by taking advantage of the
state space averaging method, providing accurate analytical solutions for the quiescent operating
point and the ripple parameters of the circuit with three state variables. Secondly, this paper con-
structs a small signal model of the C-F definition-based fractional-order Boost converter by small
signal linearization, providing the transfer function of the fractional-order system with three state
variables. Finally, this paper conducts circuit-oriented simulation experiments where the steady-state
parameters and the transfer function of the circuit are obtained, and then the effect of the order of
capacitor, induced inductor, and load inductor on the quiescent operating point and ripple parameters
is analyzed. The experimental results show that the simulation results are consistent with those
obtained by the proposed mathematical model and that the three fractional orders in the fractional
model with three state variables have a significant impact on the DC component and steady-state
characteristics of the fractional-order Boost converter. In conclusion, the proposed mathematical
model can more comprehensively analyze the system characteristics of the C-F definition-based
fractional-order Boost converter with fractional-order inductive loads, benefiting the circuit design of
Boost converters.

Keywords: fractional-order boost converter; Caputo–Fabrizio fractional derivative; fractional-order
systems modeling

1. Introduction

Fractional-order calculus is a mathematical tool related to memory processes, fractal
geometry, and other physical phenomena [1,2]. In recent years, many studies have stud-
ied the fractional-order models of complex circuit systems by combining fractional-order
operators with circuit system modeling [3–5]. Fractional calculus operators increase the
degrees of freedom of mathematical models. They enable a concise and accurate descrip-
tion of memory properties and spatial global correlations in mechanical and physical
processes [6]. The DC–DC converter, characterized as a circuit with the capability of con-
trollable transformation of DC voltage, has found extensive applications in various power
electronic equipment and systems. However, the pronounced nonlinearity inherent in DC–
DC converters poses significant challenges in the construction of their precise mathematical
models [7,8]. Studies have shown that fractional-order models are superior in character-
izing the electrical properties of components in the context of DC–DC converters [9–13].
Applying fractional-order operators to mathematical modeling of DC–DC converters can
provide a more comprehensive and accurate description of the electrical characteristics of
DC–DC converters [14,15].

Up to now, fractional-order calculus has no universally accepted definition [16]. When
studying practical systems, the Caputo definition is often used [17]. However, there is
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a bias in describing the full memory effect because of the singular kernel of the Caputo
definition [18,19]. To overcome this issue, Caputo and Fabrizio proposed the C-F defini-
tion [20]. Applying the C-F definition to system modeling can solve the singularity problem
and simplify the calculation process. Over the past few years, the C-F definition has been
widely used in various fields such as thermodynamics [21,22], medicine [23–25], and power
electronics [26–29].

With the progress of society, the industrial field has higher requirements for the accu-
racy of DC–DC converter models. Therefore, scholars have proposed various fractional-
order modeling methods to obtain fractional-order mathematical models of DC–DC con-
verters in different modes, such as the state space averaging method and equivalent small
parameter method [30,31]. Studies have shown that fractional order can affect the output
performance of circuit systems, including DC components and ripple parameters of current
and voltage. Fractional calculus not only increases the degrees of freedom in the DC–DC
converter design but also improves the accuracy of circuit system control [32–35]. However,
the above studies are mostly based on the Caputo definition. Compared with actual circuits,
traditional models based on the Caputo definition may ignore certain non-ideal discontinu-
ous characteristics of components [36,37]. Therefore, the circuit parameters such as induced
current and output voltage obtained from the analysis based on traditional fractional-order
models are continuous. Additionally, the obtained steady-state characteristics, such as
voltage ratio, are independent of component order [38,39]. These results differ from actual
circuits. To obtain a more accurate and comprehensive mathematical model, some scholars
have introduced additional components to the model. However, this approach increases
the complexity of the model and affects further analysis and control of the circuit [40,41].

To overcome these problems, the C-F definition has been applied to the modeling
of DC–DC converter circuits in recent studies. The C-F definition-based system model-
ing method can characterize the properties that Caputo definition-based fractional-order
models cannot accurately represent [42–45]. The results indicate that the C-F definition
can accurately characterize the nonlinear characteristics of capacitor voltage and induc-
tor current in DC–DC converters, simplify the circuit topology, and make the electrical
characteristics of the models closer to the actual circuits [46–48]. However, these studies
only consider the operating conditions of resistive loads. In practical applications, the
subordinate circuits carried are mostly capacitive or inductive loads, such as inductor
coils, inductor filters, and capacitor couplers. Their electrical characteristics can also be
described by fractional-order models [49–55]. Similar to integer-order models, considering
loads with energy storage characteristics during mathematical modeling can transform the
model from a fractional-order model with two state variables to a fractional-order model
with three state variables, which can provide a more comprehensive description of the
system characteristics of circuits. Therefore, this paper establishes and analyzes the C-F
definition-based mathematical model of Boost converters with fractional-order inductive
loads. Overall, this paper makes contributions as follows:

(1) A large signal model of a fractional-order Boost converter with a fractional-order
inductive load based on the C-F definition is constructed by using the state space
averaging method. The accurate analytical solutions of the quiescent operating point
and the ripple parameters of three state variables are derived. Moreover, simulation
experiments are conducted where the results are consistent with the calculation results,
verifying the correctness of the proposed model.

(2) The transfer functions of the fractional-order circuit with three state variables are
derived by performing the small-signal linearization method. Simulation experiments
are conducted where the results from frequency sweep analysis verify the correctness
of the transfer function.

(3) According to the aforementioned results, the effect of the DC component of the
state variables and ripple parameters on the order of energy storage components is
analyzed.
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2. Preliminaries

The C-F fractional derivative can be defined as follows [20]:

CF
a Dα

t f (t) =
1

(1− α)

∫ t

a

.
f (τ)e−

α(t−τ)
1−α dτ, (1)

where CF
a Dα

t denotes the α-order C-F fractional derivative. The Laplace transform is derived
as follows:

L
[

CF
a Dα

t f (t)
]
=

sL[ f (t)]− f (0)
s + α(1− s)

. (2)

When applying the C-F definition to the electronic component modeling, the impedance
expressions for capacitors and inductors are as follows:

Z(Cα, α)=
(1− α)s + α

sCα
=

1− α

Cα
+

1
s Cα

α

,

Z(Lβ, β)=
sLβ

s(1− β) + β
=

Lβ

β
s//

Lβ

1− β
,

(3)

where α, β, Lβ, and Cα are the order, the inductance, and the capacitance of components.
// is the parallel symbol. The equivalent circuit topology of the fractional-order capacitor
and inductor based on the C-F definition are shown in Figure 1.

Figure 1. The equivalent circuit topology defined by the C-F derivative. (a) Capacitor. (b) Inductor.

As shown in Equation (2), when α and β are greater than 1, the equivalent resistance
is negative, which means that the system requires external energy injection and does not
match the actual electronic components [56]. Therefore the orders between 0 and 1 are
considered only in this paper.

3. Modeling of the C-F Definition-Based Fractional-Order Boost Converter with
Inductive Load

The fractional-order Boost converter with inductive load is shown in Figure 2. uCα
(t)

is the voltage of fractional-order capacitor Cα with order α. iLβ
(t) is the current of fractional-

order inductor Lβ with order β. iLγ(t) is the current of fractional-order inductive load Lγ

with order γ and R is purely resistive load. E(t) is the voltage of the power supply. Accord-
ing to Equation (2), the equivalent circuit parameters of the energy storage component in
the circuit can be expressed by ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

RC=
1− α

Cα
, C =

Cα

α

RL=
Lβ

1− β
, L =

Lβ

β

RLR=
Lγ

1− γ
, LR =

Lγ

γ

, (4)
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where RC, C, RL, L, RLR, and LR are the equivalent resistance and capacitance. VT and VD
are the ideal switch and diode, assuming that the circuit operates in continuous conduction
mode, which means that iLβ

(t) never equals 0. There are two states during the operation of
the circuit. In State 1, VT is on and VD is off, for nT < t ≤ (n + d)T. In State 2, VT is off
and VD is on, for (n + d)T < t ≤ (n + 1)T. T is the switching period, d is the duty ratio,
and n is the number of switching periods.

Figure 2. The fractional-order Boost converter circuit with inductive loads.

According to the equivalent circuits of capacitors and inductors, the equivalent circuits
of Boost converters in different states are shown in Figure 3.

Figure 3. The equivalent circuit of the C-F definition-based Boost converter in different states.
(a) State 1. (b) State 2.

3.1. Quiescent Operating Point

To analyze the system characteristics of the circuit in stable operating conditions, it is
necessary to first solve the circuit parameters at the quiescent operating point. Normally, a
small signal analysis of the circuit is required during the solving process. However, the
fractional-order energy storage components in the circuit are based on the C-F definition,
so there are resistive components in the equivalent circuit of fractional-order energy storage
components that cannot store energy. This leads to discontinuity in the current and voltage
in fractional-order Boost converters based on the C-F definition, which makes traditional
small signal analysis methods unable to function properly. Therefore, this article sets the
equivalent output voltage, induced current, and load inductor current as state variables,

154



Fractal Fract. 2024, 8, 81

which satisfy continuity and exhibit continuous small ripple. Therefore, a small signal
analysis of fractional-order Boost converters based on the C-F definition can be carried out.
The state vector and output vector are set as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x(t) =

⎡⎣ iL(t)
uC(t)
iLR(t)

⎤⎦
y(t) =

⎡⎣ iLβ
(t)

uCα
(t)

iLγ(t)

⎤⎦ . (5)

As shown in Figure 3a, for State 1, the state equation and output equation are derived
as follows: ⎧⎪⎪⎨⎪⎪⎩

L diL(t)
dt = E(t)

C duC(t)
dt = −

[
iLR(t) +

LR
RLR

diLR(t)
dt

]
LR

diLR(t)
dt = uC(t) + C duC(t)

dt (RC + R)

, (6)

⎧⎪⎪⎨⎪⎪⎩
iLβ

(t) = iL(t) +
E(t)
RLR

uCα(t) = −RCiLγ(t) + uC(t)

iLγ(t) = iLR(t) +
uCα (t)−RiLγ (t)

RLR

. (7)

Then, Equations (6) and (7) can be simplified as follows:⎧⎨⎩K
dx(t)

dt
= A1x(t) + B1u(t)

y(t)= C1x(t) + F1u(t)
, (8)

where

K =

⎡⎣L 0 0
0 C 0
0 0 LR

⎤⎦, A1 =

⎡⎢⎣0 0 0
0 − 1

RC+R+RLR
− RLR

RC+R+RLR

0 RLR
RC+R+RLR

− RLR(RC+R)
RC+R+RLR

⎤⎥⎦, B1 =

⎡⎣1
0
0

⎤⎦,

C1 =

⎡⎢⎣1 0 0
0 (R+RLR)

R+RLR+RC
− RC RLR

R+RLR+RC

0 1
R+RLR+RC

RLR
R+RLR+RC

⎤⎥⎦, F1 =

⎡⎣ 1
RL
0
0

⎤⎦, u(t) = E(t).

(9)

As shown in Figure 3b, for State 2, the state equation is derived as follows:⎧⎪⎪⎨⎪⎪⎩
L diL(t)

dt = E(t)− uC(t)− C duC(t)
dt RC

C duC(t)
dt = iL(t) + L

RL

diL(t)
dt − iLR(t)− LR

RLR

diLR(t)
dt

LR
diLR(t)

dt = E− L diL(t)
dt − R

[
iLR(t) +

LR
RLR

diLR(t)
dt

] , (10)

⎧⎪⎪⎨⎪⎪⎩
iLβ

(t) = iL(t) +
E(t)−uCα (t)

RL

uCα(t) = RC

[
iLβ

(t)− iLγ(t)
]
+ uC(t)

iLγ(t) = iLR(t) +
uCα (t)−RiLγ (t)

RLR

. (11)

Then, Equations (10) and (11) can be simplified as follows:⎧⎨⎩K
dx(t)

dt
= A2x(t) + B2u(t)

y(t)= C2x(t) + F2u(t)
, (12)
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where

A2=

⎡⎢⎣−
RC RL(R+RLR)

δ − RL(R+RLR)
δ

RC RLRLR
δ

RL(R+RLR)
δ − RL+R+RLR

δ − RLRLR
δ

RC RLRLR
δ

RLRLR
δ − RLR(RRC+RC RL+RRL)

δ

⎤⎥⎦, B2 =

⎡⎢⎣
RL(R+RLR+RC)

δ
R+RLR

δ
RC RLR

δ

⎤⎥⎦,

C2=

⎡⎢⎣
RC RL(RLR+R)

δ
RL(RLR+R)

δ − RC RLRLR
δ

RC RL
δ

RL
δ

RLR(RL+RC)
δ

RRL+RLRLR+RC RL
δ − (RLR+R)

δ
RC RLR

δ

⎤⎥⎦, F2 =

⎡⎢⎣
RC(RLR+R)

δ
RC
δ

R+RLR+RC
δ

⎤⎥⎦,

(13)
where δ = RRL + RLRLR + RCRL + RRC + RCRLR.

Then, the steady-state converter model can be expressed as follows:⎧⎨⎩K
dx(t)

dt
= Ax(t) + Bu(t)

y(t)= Cx(t) + Fu(t)
, (14)

where ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A= dA1 + (1− d)A2

B= dB1 + (1− d)B2

C= dC1 + (1− d)C2

F= dF1 + (1− d)F2

. (15)

Considering only the DC component of the system state variable, Equation (14) can be
transformed as follows: {

0 = AX + BU
Y = CX + FU

, (16)

where 0 is null vector
[

0
0

]
.

By solving Equation (16), the quiescent operating point of the system can be obtained
as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

iLβ
= iL =

(RL + Rd)(RC + R + RLR) + [RCRLR − R(R + RLR)]d2

RL(1− d){(RC + R + RLR)R + [RCRLR − R(R + RLR)]d}E

uCα
= uC =

(RC + R + RLR)R
(RC + R + RLR)R + [RCRLR − R(R + RLR)]d

E

iLγ= iLR =
RC + R + RLR

(RC + R + RLR)R + [RCRLR − R(R + RLR)]d
E

. (17)

Substituting Equation (4) into Equation (17), the voltage ratio is derived as follows:

uCα

E
=

RCα[(1− γ)R + Lγ] + R(1− α)(1− γ)

(1− d)RCα[(1− γ)R + Lγ] + R(1− α)(1− γ) + d(1− α)Lγ
. (18)

3.2. Ripple Parameters

Ripple parameters are important in the design of DC–DC converters. In State 1, the
expression for the change in equivalent current ΔiL is derived as follows:

ΔiL =
E
L

dT. (19)

The expressions for uC and iLR are⎧⎨⎩
duC
dt = − 1

C(RC+R+RLR)
uC − RLR

C(RC+R+RLR)
iLR

diLR
dt = RLR

LR(RC+R+RLR)
uC − RLR(RC+R)

LR(RC+R+RLR)
iLR

. (20)
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After applying Laplace transform to Equation (20), the solution yields as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
uC(s) =

[
s+

RLR(RC+R)
LR(RC+R+RLR)

]
uC(0)− RLR

C(RC+R+RLR)
iLR(0)

s2+
CRLR(RC+R)+LR
LRC(RC+R+RLR)

s+ RLR
CLR(RC+R+RLR)

iLR(s) =
RLR

LR(RC+R+RLR)
uC(0)+

[
s+ 1

C(RC+R+RLR)

]
iLR(0)

s2+
CRLR(RC+R)+LR
CLR(RC+R+RLR)

s+ RLR
LRC(RC+R+RLR)

. (21)

To solve Equation (21), it is necessary to discuss the denominator characteristic roots,
and the judgment item is

ϑ =

[
CRLR(RC + R) + LR
LRC(RC + R + RLR)

]2
− 4

RLR
CLR(RC + R + RLR)

. (22)

When ϑ > 0, the solution of the denominator is⎧⎨⎩ s1 = 1
2 [−CRLR(RC+R)+LR

LRC(RC+R+RLR)
+
√

ϑ]

s2 = 1
2 [−CRLR(RC+R)+LR

LRC(RC+R+RLR)
−√ϑ]

. (23)

Then, Equation (21) can be simplified as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uC(s) =− s1 + a
(s2 − s1)(s− s1)

uC(0) +
s2 + a

(s2 − s1)(s− s2)
uC(0)

+
b

(s2 − s1)(s− s1)
iLR(0)− b

(s2 − s1)(s− s2)
iLR(0)

iLR(s) =− j
(s2 − s1)(s− s1)

uC(0) +
j

(s2 − s1)(s− s2)
uC(0)

− s1 + k
(s2 − s1)(s− s1)

iLR(0) +
s2 + k

(s2 − s1)(s− s2)
iLR(0)

, (24)

where

a =
RLR(RC + R)

LR(RC + R + RLR)
, b =

RLR
C(RC + R + RLR)

,

j =
RLR

LR(RC + R + RLR)
, k =

1
C(RC + R + RLR)

.
(25)

By inverse Laplace transform, Equation (24) can be rewritten as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uC(t) =
[
− s1 + a

s2 − s1
exp(s1t) +

s2 + a
s2 − s1

exp(s2t)
]

uC(0)

+

[
b

s2 − s1
exp(s1t)− b

s2 − s1
exp(s2t)

]
iLR(0)

iLR(t) =
[
− j

s2 − s1
exp(s1t) +

j
s2 − s1

exp(s2t)
]

uC(0)

+

[
− s1 + k

s2 − s1
exp(s1t) +

s2 + k
s2 − s1

exp(s2t)
]

iLR(0)

. (26)

By inputting the time parameters of State 1, Equation (26) can be rewritten as follows:{
ΔuC = uC(0)− uC(dT) = (1 + χ + aφ)uC(0)− bφiLR(0)
ΔiLR = iLR(0)− iLR(dT) = jφuC(0) + (1 + χ + kφ)iLR(0)

, (27)
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where
φ =

1
s2 − s1

exp(s1dT)− 1
s2 − s1

exp(s2dT),

χ =
s1

s2 − s1
exp(s1dT)− s2

s2 − s1
exp(s2dT),

(28)

and {
uC(0) = uC + 1

2 ΔuC
iLR(0) = iLR + 1

2 ΔiLR
. (29)

By Equations (27) and (29), the values of ΔuC and ΔiLR can be obtained as follows:⎧⎨⎩ ΔuC = 2 [R(1+χ)+Raφ−bφ](1−χ−kφ)−bφ[(1+χ)+kφ+Rjφ]
R(1−χ−aφ)(1−χ−kφ)+bjRφ2 uC

ΔiLR = 2 jφ[R(1+χ)+Raφ−bφ]+(1−χ−aφ)[(1+χ)+kφ+Rjφ]
R(1−χ−aφ)(1−χ−kφ)+bjRφ2 uC

. (30)

When ϑ = 0, the solution of the denominator is

s1 = s2 = − CRLR(RC + R) + LR
2LRC(RC + R + RLR)

. (31)

Then, Equation (21) can be simplified as follows:⎧⎨⎩ uC(s) = 1
(s−s1)

uC(0) +
s1+a

(s−s1)
2 uC(0)− b

(s−s1)
2 iLR(0)

iLR(s) =
j

(s−s1)
2 uC(0) + 1

(s−s1)
iLR(0) +

s1+k
(s−s1)

2 iLR(0)
. (32)

The parameters are consistent with those in Equation (25). By inverse Laplace trans-
form, Equation (32) can be rewritten as follows:{

uC(t) = [1 + (s1 + a)t] exp(s1t)uC(0)− bt exp(s1t)iLR(0)
iLR(t) = jt exp(s1t)uC(0) + [1 + (s1 + k)t] exp(s1t)iLR(0)

. (33)

By inputting the time parameters of State 1, Equation (33) can be rewritten as follows:{
ΔuC = uC(0)− uC(dT) = {1− [1 + (s1 + a)dT] exp(s1dT)}uC(0) + bdT exp(s1dT)iLR(0)
ΔiLR = iLR(0)− iLR(dT) = {1− [1 + (s1 + k)dT] exp(s1dT)}iLR(0)− jdT exp(s1dT)uC(0)

. (34)

By Equations (34) and (29), the values of ΔuC and ΔiLR can be obtained as follows:⎧⎨⎩ ΔuC = 2
{

[R−Rδ−(aR−b)ε](1+δ+kε)+bε[1−(k+Rj)ε−δ]
R[(1+δ+aε)(1+δ+kε)+bjε2]

}
uC

ΔiLR = 2
{

[1−δ−(k+Rj)ε](1+δ+aε)−jε[R−Rδ−(aR−b)ε]
R[(1+δ+aε)(1+δ+kε)+bjε2]

}
uC

, (35)

where
ε = dT exp(s1dT); δ = (1 + s1dT) exp(s1dT). (36)

When ϑ < 0, Equation (21) can be simplified as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uC(s) =
s

(s + μ)2 + ω2
uC(0) +

RLR(RC + R)
LRω(RC + R + RLR)

ω

(s + μ)2 + ω2
uC(0)

− RLR
Cω(RC + R + RLR)

ω

(s + μ)2 + ω2
iLR(0)

iLR(s) =
RLR

LRω(RC + R + RLR)

ω

(s + μ)2 + ω2
uC(0) +

s

(s + μ)2 + ω2
iLR(0)

+
1

Cω(RC + R + RLR)

ω

(s + μ)2 + ω2
iLR(0)

, (37)
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where

μ =
CRLR(RC + R) + LR

2LRC(RC + R + RLR)
, ω =

√
RLR

CLR(RC + R + RLR)
− μ2. (38)

By inverse Laplace transform, Equation (38) can be rewritten as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uC(t) =exp(−μt) cos(ωt)uC(0) +
RLR(RC + R)

LRω(RC + R + RLR)
exp(−μt) sin(ωt)uC(0)

− RLR
Cω(RC + R + RLR)

exp(−μt) sin(ωt)iLR(0)

iLR(t) =
RLR

LRω(RC + R + RLR)
exp(−μt) sin(ωt)uC(0) + exp(−μt) cos(ωt)iLR(0)

+
1

Cω(RC + R + RLR)
exp(−μt) sin(ωt)iLR(0)

. (39)

By inputting the time parameters of State 1, Equation (39) can be rewritten as follows:{
ΔuC = uC(0)− uC(dT) = (1− q1)uC(0) + q2iLR(0)
ΔiLR = iLR(0)− iLR(dT) = −q3uC(0) + (1− q4)iLR(0)

, (40)

where

q1 =

[
cos(ωdT) +

RLR(RC + R)
LRω(RC + R + RLR)

sin(ωdT)
]

exp(−μdT),

q2 =
RLR

Cω(RC + R + RLR)
sin(ωdT) exp(−μdT),

q3 =
RLR

LRω(RC + R + RLR)
sin(ωdT) exp(−μdT),

q4 =

[
cos(ωdT) +

1
Cω(RC + R + RLR)

sin(ωdT)
]

exp(−μdT).

(41)

By Equations (41) and (29), the values of ΔuC and ΔiLR can be obtained as follows:⎧⎨⎩ ΔuC = 2 (1−q1)(1+q4)+
2
R q2−q2q3

(1+q1)(1+q4)+q2q3
uC

ΔiLR = 2
1
R (1−q4)(1+q1)−2q3− 1

R q2q3
(1+q1)(1+q4)+q2q3

uC

. (42)

In summary, the extreme values of the voltages of the equivalent capacitor (uC max and
uC min) and the current of the equivalent inductances (iL max, iL min, ILR max and ILR min) are
as follows: ⎧⎨⎩

uC max = uC + 1
2 ΔuC; uC min = uC − 1

2 ΔuC
iL max = iL +

E
2L dT; iL min = iL − E

2L dT
iLR max = iLR + 1

2 ΔiLR; iLR min = iLR − 1
2 ΔiLR

. (43)

According to the circuit in Figure 3, the theoretical waveforms of a fractional-order
Boost converter with inductive load based on the C-F are shown in Figure 4. Due to the short
duration of a single cycle, the output voltage change can be regarded as a linear change.

In State 1, the induced current iLβ
continuously increases. The maximum value of the

induced current iLβ max is as follows:

iLβ max = iLβ
(dT) = iL max +

E
RL

. (44)
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Figure 4. The theoretical waveforms.

There is a coupling relationship between the output voltage and the load current in
state 1. So their changing trends are variable. The load current and output voltage at the
beginning and the ending can be obtained as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

uCα(dT) = − RC RLR
(R+RLR+RC)

iLR min + (R+RLR)
(R+RLR+RC)

uC min

iLγ(dT) = RLR
(R+RLR+RC)

iLR min + 1
(R+RLR+RC)

uC min

uCα(0) = − RC RLR
(R+RLR+RC)

iLR max +
(R+RLR)

(R+RLR+RC)
uC max

iLγ(0) =
RLR

(R+RLR+RC)
iLR max +

1
(R+RLR+RC)

uC max

. (45)

From Equation (45), iLγ(dT) < iLγ(0). So, the minimum values of the load current
iLγ min and capacitor voltage uCα min are as follows:

iLγ min = iLγ(dT), uCα min = min[uCα(0), uCα(dT)]. (46)

In State 2, the induced current, output voltage, and load current are coupled, their
changing trend is not fixed. The values at the beginning and the ending can be obtained as
follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uCα(T) =
RL(RLR+R)

δ uC max +
RC RL(RLR+R)

δ iL min − RC RLRLR
δ iLR max +

RC(RLR+R)
δ E

iLγ(T) =
RL
δ uC max +

RC RL
δ iL min + RLR(RL+RC)

δ iLR max +
RC
δ E

iLβ(T) = − (RLR+R)
δ uC max +

RRL+RLRLR+RC RL
δ iL min + RC RLR

δ iLR max +
R+RLR+RC

δ E
uCα(dT) = RL(RLR+R)

δ uC min + RC RL(RLR+R)
δ iL max − RC RLRLR

δ iLR min + RC(RLR+R)
δ E

iLγ(dT) = RL
δ uC min + RC RL

δ iL max +
RLR(RL+RC)

δ iLR min + RC
δ E

iLβ(dT) = − (RLR+R)
δ uC min + RRL+RLRLR+RC RL

δ iL max +
RC RLR

δ iLR min + R+RLR+RC
δ E

.

(47)
So, the maximum values of the load current iLγ max and output voltage uCα max, as well

as the minimum value of the induced current iLβ min are as follows:⎧⎨⎩
iLβ min = min

[
iLβ(dT), iLβ(T)

]
uCα max = max[uCα(dT), uCα(T)]
iLγ max = max

[
iLγ(dT), iLγ(T)

] . (48)

3.3. Small-Signal Model

The state vector and output vector in Equation (5) are continuous with minimal ripple.
To create a small-signal AC model, the converter waveform can be linearized as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

〈x(t)〉= X + x̂(t)

〈u(t)〉= U + û(t)

〈y(t)〉= Y + ŷ(t)

〈d(t)〉= d + d̂(t)

. (49)
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Substitute Equation (49) into Equation (14) and set Ê to 0. Then, neglecting DC
components and second-order nonlinear terms, the small signal components in the equation
can be sorted out as follows: {

dx̂(t)
dt = A′x̂(t) + B′d̂(t)

ŷ(t) = C′x̂(t) + D′d̂(t)
, (50)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A′=

⎡⎣A11 A12 A13
A21 A22 A23
A31 A32 A33

⎤⎦

=

⎡⎢⎢⎣
− (1−d)RC RL(R+RLR)

Lδ − (1−d)RL(R+RLR)
Lδ

RC RLRLR
Lδ (1− d)

(1−d)RL(R+RLR)
Cδ − RL+R+RLR

Cδ + d(R+RLR)
2

Cδ(RC+R+RLR)
− RLRLR

Cδ − dRC RLR(R+RLR)
Cδ(RC+R+RLR)

(1−d)RC RLRLR
LRδ

RLRLR
LRδ + dRC RLR(R+RLR)

LR(RC+R+RLR)δ
− RLR(RRC+RC RL+RRL)

LRδ − dRC
2RLR

2

LR(RC+R+RLR)δ

⎤⎥⎥⎦

B′=

⎡⎣B1
B2
B3

⎤⎦ =

⎡⎢⎢⎣
E

(1−d)L

− (R+RLR)E
C(1−d){(RC+R+RLR)R+[RC RLR−R(R+RLR)]d}

− RC RLRE
LR(1−d){(RC+R+RLR)R+[RC RLR−R(R+RLR)]d}

⎤⎥⎥⎦
C′=

⎡⎣C11 C12 C13
C21 C22 C23
C31 C32 C33

⎤⎦

=

⎡⎢⎢⎣
RRL+RLRLR+RC RL

δ + dRC(R+RLR)
δ − (1−d)(RLR+R)

δ
(1−d)RC RLR

δ
(1−d)RC RL(RLR+R)

δ
RL(RLR+R)

δ + dRC(R+RLR)(R+RLR)
(R+RLR+RC)δ

− RC RLRLR
δ − dRC

2RLR(R+RLR)
δ(R+RLR+RC)

(1−d)RC RL
δ

RL
δ + dRC(R+RLR)

δ(R+RLR+RC)
RLR(RL+RC)

δ − dRC RC RLR
δ(R+RLR+RC)

⎤⎥⎥⎦

D′=

⎡⎣D1
D2
D3

⎤⎦ =

⎡⎢⎢⎣
E

RL(1−d)

− RC(R+RLR)E
(1−d){(RC+R+RLR)R+[RC RLR−R(R+RLR)]d}

− RCE
(1−d){(RC+R+RLR)R+[RC RLR−R(R+RLR)]d}

⎤⎥⎥⎦

. (51)

By inverse Laplace transform, Equation (50) can be rewritten as follows:{
sx̂(s) = A′x̂(s) + B′d̂(s)
ŷ(s) = C′x̂(s) + D′d̂(s) . (52)

According to Equation (52), the transfer function G(s) of the circuit system is as follows:

G(s) =
ŷ(s)
d̂(s)

= C′
(
sI−A′

)−1B′ + D′. (53)

Therefore, the transfer function from duty cycle d̂ to induced current îLβ is

Gid(s) =
îLβ(s)

d̂(s)
=

D1s3 + X1s2 + X2s + X3

s3 + W1s2 + W2s + W3
, (54)

where

161



Fractal Fract. 2024, 8, 81

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W1= −(A11 + A22 + A33)

W2= A11 A33 + A11 A22 + A22 A33 − A12 A21 − A13 A31 − A23 A32

W3= A11 A23 A32 + A22 A13 A31 + A33 A12 A21 − A11 A22 A33 − A12 A23 A31 − A13 A21 A32

X1= B1C11 + B2C12 + B3C13 − (A11 + A22 + A33)D1

X2= [A21C12 + A31C13 − (A22 + A33)C11]B1 + [A12C11 + A32C13 − (A11 + A33)C12]B2

+[A13C11 + A23C12 − (A11 + A22)C13]B3

+(A11 A33 + A11 A22 + A22 A33 − A12 A21 − A13 A31 − A23 A32)D1

X3= [(A22 A33 − A23 A32)C11 + (A23 A31 − A21 A33)C12 + (A21 A32 − A22 A31)C13]B1

+[(A13 A32 − A12 A33)C11 + (A11 A33 − A13 A31)C12 + (A12 A31 − A11 A32)C13]B2

+[(A12 A23 − A13 A22)C11 + (A13 A21 − A11 A23)C12 + (A11 A22 − A12 A21)C13]B3

+(A11 A23 A32 + A22 A13 A31 + A33 A12 A21 − A11 A22 A33 − A12 A23 A31 − A13 A21 A32)D1

. (55)

The transfer function from duty cycle d̂ to output voltage ûCα is

Gud(s) =
ûCα(s)

d̂(s)
=

D2s3 + Y1s2 + Y2s + Y3

s3 + W1s2 + W2s + W3
, (56)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y1= B1C21 + B2C22 + B3C23 − (A11 + A22 + A33)D2

Y2= [A21C22 + A31C23 − (A22 + A33)C21]B1 + [A12C21 + A32C23 − (A11 + A33)C22]B2

+[A13C21 + A23C22 − (A11 + A22)C23]B3

+(A11 A33 + A11 A22 + A22 A33 − A12 A21 − A13 A31 − A23 A32)D2

Y3= [(A22 A33 − A23 A32)C21 + (A23 A31 − A21 A33)C22 + (A21 A32 − A22 A31)C23]B1

+[(A13 A32 − A12 A33)C21 + (A11 A33 − A13 A31)C22 + (A12 A31 − A11 A32)C23]B2

+[(A12 A23 − A13 A22)C21 + (A13 A21 − A11 A23)C22 + (A11 A22 − A12 A21)C23]B3

+(A11 A23 A32 + A22 A13 A31 + A33 A12 A21 − A11 A22 A33 − A12 A23 A31 − A13 A21 A32)D2

. (57)

The transfer function from duty cycle d̂ to load current îLγ is

Gird(s) =
îLγ(s)

d̂(s)
=

D3s3 + Z1s2 + Z2s + Z3

s3 + W1s2 + W2s + W3
, (58)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z1= B1C31 + B2C32 + B3C33 − (A11 + A22 + A33)D3

Z2= [A21C32 + A31C33 − (A22 + A33)C31]B1 + [A12C31 + A32C33 − (A11 + A33)C32]B2

+[A13C31 + A23C32 − (A11 + A22)C33]B3

+(A11 A33 + A11 A22 + A22 A33 − A12 A21 − A13 A31 − A23 A32)D3

Z3= [(A22 A33 − A23 A32)C31 + (A23 A31 − A21 A33)C32 + (A21 A32 − A22 A31)C33]B1

+[(A13 A32 − A12 A33)C31 + (A11 A33 − A13 A31)C32 + (A12 A31 − A11 A32)C33]B2

+[(A12 A23 − A13 A22)C31 + (A13 A21 − A11 A23)C32 + (A11 A22 − A12 A21)C33]B3

+(A11 A23 A32 + A22 A13 A31 + A33 A12 A21 − A11 A22 A33 − A12 A23 A31 − A13 A21 A32)D3

. (59)

4. Simulation Experiment Results

4.1. Analysis of Circuit Parameters at the Quiescent Operating Point

To validate the correctness of derivation, the calculation values are compared with
the circuit-oriented simulation results. The simulation circuit is constructed with Multisim
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regarding Figure 2, and the C-F derivative defines the fractional-order models of capacitors
and inductors in circuit-oriented simulations. To make the simulation more convincing, the
following two sets of parameters are set in this paper.

Set 1: R= 5 Ω, d= 0.5, E= 10 V, Cα= 680 μF/s0.001, α= 0.999, Lβ= 20 mHs0.005, β= 0.995,
Lγ= 1 mHs0.05, γ= 0.95.
Set 2: R= 5 Ω, d= 0.5, E= 10 V, Cα= 3300 μF/s0.01, α= 0.99, Lβ= 5 mHs0.001, β= 0.999,
Lγ= 10 mHs0.01, γ= 0.99.

The comparison results are shown in Table 1 and the circuit-oriented simulation results
are shown in Figure 5. Due to software limitations, while ensuring data accuracy, circuit-
oriented simulation results retain four significant digits and calculation results retain six
significant digits. It can be seen from Table 1 that within the allowable error range, the
calculated results are consistent with the simulation results. The waveforms in Figure 5
conform to the changing trend of the theoretical waveforms in Figure 4. These results
demonstrate consistency between theoretical analysis and numerical simulation results.
Further verified the accuracy of the previous derivation.

Table 1. The comparison results between circuit-oriented simulation results and calculation results.

Simulation Calculation Simulation Calculation

UCα max
Set1 20.04 V 20.0447 V UCα min

Set1 12.52 V 12.5155 V
Set2 20.06 V 20.0638 V Set2 8.509 V 8.50889 V

ILβ max
Set1 11.53 A 11.5299 A ILβ min

Set1 6.494 A 6.49380 A
Set2 9.753 A 9.75330 A Set2 5.666 A 5.66617 A

ILγ max
Set1 4.006 A 4.00596 A ILγ min

Set1 2.506 A 2.50612 A
Set2 3.819 A 3.81937 A Set2 1.893 A 1.89264 A

UCα

Set1 16.29 V 16.2936 V ILβ

Set1 9.017 A 9.01742 A
Set2 14.26 V 14.2583 V Set2 7.703 A 7.70335 A

ILγ

Set1 3.259 A 3.25871 A
Set2 2.852 A 2.85167 A

Figure 5. The circuit-oriented simulation results with different conditions.

To explore the effect of the order of components on the induced current, output voltage,
and load current, the system performance is analyzed through simulation with MATLAB
R2012a. According to [29,57], the fractional order of the real capacitor and inductor is
close to 1. According to the simulation results, the order of the induced inductor has a
much greater impact on the state variables of the circuit than the order of the capacitor
and load inductor. Depending on the actual application conditions of the circuit, the
analog components are analyzed in the range of orders α, γ ∈ [0.95, 1), β ∈ [0.99, 1) for the
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characteristics of the converter. The remaining circuit parameters use the data from Set
2. It can be seen from Equation (17) that the output voltage and the load current are only
related to α and γ as shown in Figure 6. Similarly, the induced current is related to α, β and
γ as shown in Figure 7. According to the simulation results, the average value of capacitor
voltage increases with the increase of α, and its rising slope also increases accordingly;
The change is small with the increase of γ. When γ approaches 1, the average value of
capacitor voltage decreases with the increase of γ, and its slope of decrease also increases.
The variation trends of load current and induced current are consistent with the variation
trends of capacitor voltage, with only numerical variations. The induced current decreases
linearly with the increase of β, and the effect of β is much greater than that of α and γ.

Figure 6. The effect of α and γ on the value of the output voltage and load current.

Figure 7. The effect of α, β, and γ on the value of the induced current.

The effect of α, β, and γ on ripple amplitude is shown in Figure 8. From the simulation
results, as α increases, the ripple amplitude of the load current and output voltage decreases,
while the ripple amplitude of the induced current increases, and the slope of the change
also increases continuously. As β increases, the ripple amplitude of the output voltage
and load current increases, and the slope of the rise also increases continuously, while
the ripple amplitude of the induced current decreases linearly. As γ increases, the ripple
amplitude of the induced current and output voltage increases, while the ripple amplitude
of the load current decreases. The slope of the change increases significantly when γ
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approaches 1. From a numerical perspective, α and γ have a significant effect on the ripple
amplitude of the load current and output voltage, while β has a significant effect on the
ripple amplitude of the induced current. It is worth noting that there are discontinuous
points in the waveform of the ripple amplitude of the induced current, output voltage, and
load current at point A in Figure 8. This is because ϑ|γ=0.9644 = 0, meaning the judgment
item Equation (22) has changed from negative to positive, that the calculation method for
the extreme value of the state variable has changed. This discontinuous point also verifies
the correctness of the derivation.

Figure 8. The effect of α, β, and γ on the ripple amplitude of the induced current, output voltage, and
load current.

4.2. Verification of Small Signal Models

The simulation parameters are consistent with Set 1. To get the amplitude-frequency
characteristics of the simulated circuit, frequency sweeps can be performed using MATLAB
R2012a/Simulink. The scanning and calculation results are shown in Figure 9, where
G∗id(s), G∗ud(s) and G∗ird(s) are the transfer functions from duty cycle to induced current,
output voltage, and load current obtained by the Frestimate(∗) function, respectively. The
Frestimate(∗) function is used for frequency response estimation of simulated models. The
transfer functions can be obtained as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Gid(s) = 5s3+3117s2+4.242×105s+3.992×105

s3+334.9s2+1381s+1278
Gud(s) = −7.413s3−7135s2+2.703×105s+2.621×105

s3+334.9s2+1381s+1278
Gird(s) = −1.477s3−1421s2+5.383×104s+5.242×104

s3+334.9s2+1381s+1278
G∗id(s) =

4.235s3+2717s2+3.821×105s+4.223×105

s3+286.7s2+1112s+934.6
G∗ud(s) =

−8.332s3−8043s2+3.123×105s+2.115×105

s3+424.3s2+1751s+1632
G∗ird(s) =

−1.003s3−1554s2+3.768×104s+5.554×104

s3+374.6s2+982.8s+1697

. (60)

where Gid(s), Gud(s) and Gird(s) can be derived using Equations (54), (56) and (58). It
can be seen from Equation (60) and Figure 9 that, within the tolerance of the error, the
calculated results and simulation results are accordant. The experimental results verified the
feasibility of applying the small signal modeling scheme to fractional-order Boost circuits
with inductive loads and also verified that the derived method provides a theoretical basis
for subsequent linear controller design. The experimental results show that the transfer
function of the proposed model can accurately describe the amplitude-frequency and phase-
frequency characteristics in the mid to low-frequency domain, verifying the feasibility of
applying the small signal modeling scheme to fractional-order Boost circuits with inductive
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loads and also verifying the correctness of the proposed model, providing a theoretical
basis for subsequent linear controller design.

Figure 9. The amplitude-frequency characteristic. (a) Gid. (b) Gud. (c) Gird.

5. Conclusions

This paper presents a novel C-F definition-based modeling method for Boost convert-
ers with inductive loads using the fractional-order model, analyzes the effect of the order of
fractional components on the characteristics of the converter, and verifies the validity of the
C-F definition for the modeling of Boost converter circuits through simulation experiments.
Firstly, a C-F definition-based mathematical model with three state variables of Boost
converters with a fractional-order inductive load is constructed by using the state space
averaging method. Furthermore, the quiescent operating point of the Boost converters and
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the ripple parameters’ accurate analytical solutions of those three state variables are derived.
Secondly, the transfer functions of the fractional-order Boost converters with three state
variables are derived by using the small-signal linearization method. Then, circuit-oriented
simulation experiments are conducted. The static operating point and ripple parameters
of the circuit are obtained in the experiments. At the same time, the transfer functions of
the simulated circuit are obtained through frequency sweep analysis. Those results are
consistent with the numerical calculation results, verifying the correctness of the numerical
derivation. Finally, the effect of the order of the capacitor, induced inductor, and load
inductor on the DC component of state variable and ripple parameters is analyzed through
numerical simulation. The results show that as the order of induced inductor and capacitor
increases, there is a significant change in the values of voltage and current in the circuit and
the ripple of the waveform is reduced. The effect of the order of the load inductance on the
voltage and current in the circuit gradually increases as its value approaches 1, which is
negatively correlated with the ripple amplitude of the output voltage and induced current,
and positively correlated with the ripple amplitude of the load current. The order of the
induced inductor mainly affects the induced current, while the order of the capacitor and
load inductor mainly affects the load current and output voltage. In summary, the proposed
model can comprehensively characterize the steady-state characteristics of fractional-order
Boost converters with inductive loads, helping the circuit design of Boost converters. The
C-F definition can be used in the modeling of Boost circuits.

The modeling method proposed in this paper is simple and easy to implement and
can obtain analytical solutions of the required parameters for design. This method can
be applied to other fractional-order systems with three state parameters. However, the
C-F definition ignores some fractional-order characteristics to simplify derivation, which
may result in some errors when describing the dynamic performance of fractional-order
Boost circuits. And when considering electromagnetic induction, fatigue, or damage, the
accuracy of models needs to be further improved. In the future, the mathematical model
of C-F definition-based fractional-order Boost converters will be compared with other
definitions, such as the Caputo definition, and Atangana–Baleanu definition, to analyze
the advantages and disadvantages of different definitions in the mathematical modeling of
fractional-order circuits.
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Abstract: Viscoelastic (VE) dampers show good performance in dissipating energy, being widely used
for reducing vibration in engineering structures caused by earthquakes and winds. Experimental
studies have shown that ambient temperature has great influence on the mechanical behavior of
VE dampers. Therefore, it is important to accurately model VE dampers considering the effect
of temperature. In this paper, a new fractional-order Zener (AEF-Zener) model of VE dampers is
proposed. Firstly, the important influence of fractional orders on the energy dissipation ability of
materials is analyzed. Secondly, an equivalent AEF-Zener model is developed that incorporates the
ambient temperature and fractional-order equivalence principle. Finally, the chaotic fractional-order
particle swarm optimization (CFOPSO) algorithm is used to determine the model’s parameters. The
accuracy of the AEF-Zener model is verified by comparing model simulations with experimental
results. This study is helpful for designing and analyzing vibration reduction techniques for civil
structures with VE dampers under the influence of temperature.

Keywords: viscoelastic damper; energy dissipation; temperature-order equivalent principle;
fractional-order vibration system

1. Introduction

Earthquakes and wind are among the most catastrophic natural hazards that affect
civil engineering structures. Therefore, developing new strategies for protecting build-
ing structures from damage caused by disasters has become a very important research
topic [1,2]. In recent years, several control methods have been proposed to reduce structural
vibrations in civil engineering structures, such as active [3,4], semi-active [5], passive [6,7],
and hybrid vibration control [8]. Among them, passive control has been broadly used [9,10].
Indeed, passive vibration control devices emerged as a promising solution, and VE dampers
became widely applied in building structures due to their relatively low cost and good
energy dissipation performance [11].

Research on VE damping systems focuses on three main aspects, namely (i) develop-
ment of VE materials with high energy dissipation, (ii) mechanical design, and (iii) analysis
of the controlled structures [12,13]. In reference [14], different materials were studied under
experimental dynamic loading of full-scale dampers, and a model of the dampers was
developed. In references [15,16], the VE parameters of sandwich structures were identified,
while a new inverse technique and an adjoint-based gradient method were developed. The
dynamics of a structure with VE dampers can be well-described by differential equations of
fractional order. The spline collocation method for solving systems of multi-term fractional
differential equations was proposed and studied in [17]. In reference [18], several types
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of VE materials based on different matrix rubbers were optimized and developed, and
the mechanical behavior and energy dissipation ability of VE dampers built from these
materials were tested. The aforementioned research showed that VE dampers can buffer
buildings efficiently against earthquakes due to their large damping capabilities. However,
the properties of VE dampers are highly influenced by ambient temperature and excitation
frequency, which affect their behavior. Therefore, it is crucial to accurately model VE
dampers considering the effect of temperature.

Traditional VE models, such as the Kelvin and Maxwell ones, are unable to accurately
capture the frequency-dependent behavior of VE materials [19]. In the past few decades,
fractional calculus emerged in scientific and engineering practices [20] due to its ability
to model long memory effects, enabling description of the behavior of VE dampers for
a wide range of frequencies. Thus, several types of fractional-order constitutive models
have been established [21]. However, the effect of ambient temperature on the performance
of VE materials is still neglected in most fractional-order models, while in some previous
works, it was considered through a shift factor defined by the Williams–Landel–Ferry
(WLF) equation [22,23].

The fractional-order Zener model has more degrees of freedom than many other
models and can better describe the dynamics of VE materials [24,25]. Indeed, the fractional-
order Zener model can well-characterize the influence of frequency [26]. However, it
cannot characterize the influence of temperature. In reference [27], a constitutive model
was proposed to describe the self-heating effect in elastomeric materials subjected to cyclic
loading. In paper [28], the frequency-temperature correspondence principle was adopted,
and a method for analyzing the dynamics of structures with VE dampers was addressed.
Furthermore, in references [29,30], VE damper models were developed based on molecular
chain network micro structures and the temperature-frequency equivalence principle.

In the above references, the influence of temperature usually considers the frequency-
temperature equivalence principle. However, temperature and frequency may influence
each other, and the physical meaning of equating the influence of temperature to frequency
is unclear. Therefore, the accuracy of existing models may be insufficient, and a new
approach to effectively model VE dampers is required. In fact, the fractional order has
certain geometric and physical significance related to the VE properties of materials [31,32].
A higher order leads to stronger viscosity and stronger energy dissipation, while a lower
order causes stronger elasticity and weaker energy dissipation. Therefore, the fractional-
order variation in the model can characterize the effect of ambient temperature on the
dynamics of VE dampers.

Motivated by the above discussion, a new AEF-Zener model is proposed in this paper.
The ability to dissipate energy from VE materials characterized by different fractional
orders is analyzed, and the relationship between energy dissipation and fractional order is
discussed. Furthermore, based on the temperature-order equivalence, a functional relation-
ship between fractional-order and temperature is established to indirectly characterize the
impact of ambient temperature on the performance of VE dampers. The proposed model
has a clearer physical meaning and higher accuracy, especially for characterizing the loss
factor parameters related to energy consumption, compared to other existing models.

The most important contributions of the paper are:

(a) The influence of fractional order on the energy dissipation capabilities of VE materials
is analyzed in the time and frequency domains.

(b) A novel AEF-Zener model is proposed, and the model’s parameters are determined
by using a CFOPSO algorithm.

(c) The accuracy and effectiveness of the AEF-Zener model is verified by comparing
model simulations with experimental results and with models that use the temperature-
frequency equivalent principle.

The paper is structured into seven main parts. Section 2 recalls some elemental
concepts of fractional calculus. Section 3 presents the mathematical equations of fractional-
order Zener VE dampers. Section 4 analyzes the influence of fractional orders. Sections 5
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and 6 describe and determine the AEF-Zener model and its parameters, respectively.
Section 7 draws the conclusions.

2. Preliminary Concepts of Fractional Calculus

Fractional calculus emerged as an important tool with applications in scientific and
engineering fields [33–36]. Some basic definitions concerning fractional calculus are given
here for understanding later calculations and analysis.

Given a function x(t) : R → R, it is referred to as Ck-class if its derivatives x(1), x(2), . . . ,
x(k) exist and are continuous (except for a finite number of points). In the following, we
adopt the notation x(t) ∈ C0, C1, and C∞ to denote the classes of all continuous, continu-
ously differentiable, and smooth functions, respectively [37].

The Riemann–Liouville fractional integral of order α > 0 of a continuous function x(t)
is [38]:

0 Iα
t x(t) = D−αx(t) =

1
Γ(α)

∫ t

0
(t− s)α−1x(s)ds, (1)

where Γ(·) is the gamma function.
The Riemann–Liouville fractional derivative of order n − 1 < α < n, n ∈ N, of a

continuous function x(t) ∈ Cn[0, t] is [39]:

RL
0 Dα

t x(t) =
1

Γ(n− α)

dn

dtn

∫ t

0
(t− s)n−α−1x(s)ds. (2)

In discrete time, the Grünwald–Letnikov fractional derivative of order α0 of a function
x(t) can be approximated by the truncated series [40]:

GL
0 Dα

t x(t) ≈ 1
Tα

r

∑
k=0

(−1)kΓ(α + 1)x(t− kT)
Γ(k + 1)Γ(α− k + 1)

, (3)

where r is the truncation value, and T corresponds to the sampling period, respectively.
If x(t) ∈ Cn[0, t], then [37]:

RL
0 Dα

t x(t) = GL
0 Dα

t x(t). (4)

The Riemann–Liouville fractional derivative verifies [41]:

dn

dtn

(
RL
0 Dα

t x(t)
)
= RL

0 Dα
t

(
dnx(t)

dtn

)
= RL

0 D(α+n)
t x(t). (5)

For zero initial conditions in the Laplace domain, we have [42]:

L(Dαx(t)) = sαx(s). (6)

3. Equation of Fractional-Order Zener VE Damper

3.1. Dynamic Equation in the Time Domain

The relationship between strain σ(t) and stress γ(t) is characterized by the following
fractional-order Zener constitutive equation (see Figure 1) :

σ(t) + p1Dασ(t) = q0γ(t) + q1Dαγ(t), (7)

where α ∈ (0, 1) is the order of the Riemann–Liouville fractional differentiation (Equation (2)),
and p1, q0, and q1 are positive constant coefficients determined by the VE material’s perfor-
mance parameters E1, E2, and η.
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Figure 1. Fractional-order Zener model.

Figure 2 illustrates a one-degree-of-freedom fractional-order Zener damper system
consisting of a mass and a damper. The strain and the stress are determined as:

σ(t) =
fd(t)

A
, γ(t) =

x(t)
L

. (8)

Combining Equations (7) and (8) results in:

fd(t) + p1Dα fd(t) =
Aq0

L
x(t) +

Aq1

L
Dαx(t), (9)

where L and A stand for length and area, respectively, fd(t) denotes the damping force,
and x(t) represents the displacement of the damper.

Figure 2. A single-degree-of-freedom fractional Zener VE damper system.

By Newton’s second law, the dynamic equation of the damper is:

mẍ(t) + fd(t) = f (t). (10)

From Equations (10) and (5), one has:

p1mD2+αx(t) + p1Dα fd(t) = p1Dα f (t). (11)

Equations (10) and (11) give:

p1mD2+αx(t) + mẍ(t) + fd(t) + p1Dα fd(t) = p1Dα f (t) + f (t). (12)

Substituting Equation (9) into (12) and letting k = Aq0/L and c = Aq1/L leads to:

p1mD2+αx(t) + mẍ(t) + cDαx(t) + kx(t) = p1Dα f (t) + f (t), (13)

where f (t) is the disturbance force, and p1 falls into either Case 1 or Case 2:
Case 1. If p1 = 0 or p1 → 0, then Equation (13) can be rewritten as:

mẍ(t) + cDαx(t) + kx(t) = f (t); (14)

Case 2. If p1 > 0, with the following state transformation, then:

x(t) = p1Dαy(t) + y(t). (15)
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Substituting Equation (15) into Equation (13) leads to:

mp1D2+αy(t) + mÿ(t) + cDαy(t) + ky(t) = f (t). (16)

With mp1D2+αy(t) + mÿ(t) = mẍ(t), let cDαy(t) = c
′
Dαx(t), ky(t) = k

′
x(t),

Equation (16) can be equivalently transformed into:

mẍ(t) + c
′
Dαx(t) + k

′
x(t) = f (t). (17)

From the above, we establish the equivalent dynamic equation of the fractional-order
Zener VE damper with a single degree of freedom:{

mẍ(t) + ceqDαx(t) + keqx(t) = f (t),

fd(t) = keqx(t) + ceqDαx(t),
(18)

where ceq is the damping, and keq is the equivalent stiffness, which are related to the values
of α, p1, q0, q1, frequency ω, and temperature T. We usually analyze them in the frequency
domain.

3.2. Dynamic Equation in the Frequency Domain

The Laplace transform (Equation (6)) on Equation (7) results in:

σ(s) + p1sασ(s) = q0γ(s) + q1sαγ(s). (19)

Therefore, the transfer function of Equation (19) is:

G(s) =
σ(s)
γ(s)

=
q0 + q1sα

1 + p1sα
. (20)

By replacing s with iω, with iα = cos(απ/2) + i · sin(απ/2), we obtain the complex
modulus:

G∗(ω) = G1(ω) + iG2(ω), (21)

where i =
√−1, and the storage and loss modulus, G1(ω) and G2(ω), are the real and

imaginary components of the complex modulus, respectively. Hence, we have:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

G1(ω) =

[
q0 + p1q1ω2α + (q1 + p1q0)ω

α cos απ
2
][

1 + p2
1ω2α + 2p1ωα cos απ

2
] ,

G2(ω) =
(q1 − p1q0)ω

α sin απ
2[

1 + p2
1ω2α + 2p1ωα cos απ

2
] ,

η =
(q1 − p1q0)ω

α sin απ
2[

q0 + p1q1ω2α + (q1 + p1q0)ωα cos απ
2
] ,

(22)

where η = G2(ω)/G1(ω) is the loss factor.
Then, the mechanical properties of the VE damper, namely the equivalent stiffness

and damping, keq and ceq, respectively, can be calculated and analyzed with the following
equations:

k
′
eq =

nv · G1 · Av

hv
, (23)

c
′
eq =

nv · G2 · Av

ω · hv
, (24)
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where nv is the number of layers of VE material between the steel plates that compose the
VE damper, and Av and hv are the shear area and thickness of each VE layer, respectively.

4. The Influence of Fractional-Order α

Numerical simulations are carried out to demonstrate the influence of the fractional
order α on the VE damper energy dissipation capacity. From Section 3, one can observe
that the fractional order α is related to the dynamic properties of the VE material in the
time and frequency domains.

4.1. Analysis in the Time Domain

The coefficients in the fractional-order model of the Zener VE damper (Equation (18))
are taken as m = 1, ceq = 0.5, keq = 1, and α ∈ (0, 1), and the disturbance is assumed to be a
step signal:

f (t) =
{

0, 0 < t < 1,
10, 1 ≤ t.

(25)

It follows from Equation (18) that:

x(t) =
1

keq
( f (t)−mẍ(t)− ceq · RLDαx(t)). (26)

Figure 3 illustrates the Simulink block diagram programming adopted for the fractional-
order equation with zero initial values. The fractional-order operator Dα can be approx-
imated using MATLAB2019a programming based on Equations (3) and (4). Vibration
responses of the fractional-order Zener VE damper with different fractional orders are
shown in Figure 4. One can see that the energy dissipation capacity of the VE damper is
stronger with the increase in the fractional order α.

Figure 3. Simulink block diagram for the fractional equation with zero initial values.

Figure 4. Vibration responses of the fractional Zener VE damper with different fractional order α.
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4.2. Analysis in the Frequency Domain

In this simulation, the coefficients of the fractional-order Zener VE damper (Equation (22))
are taken as p1 = 0.0015, q0 = 0.5, q1 = 1.25, ω ∈ (0.1, 2], and α ∈ (0, 1).

The responses of the storage modulus and loss factor, G1 and η, respectively, of the
fractional-order Zener VE damper with different fractional orders are shown in Figures 5 and 6,
respectively. Figures 7 and 8 show two responses with different fractional orders and frequen-
cies. From Figures 5 and 6, we verify that the fractional order α has a positive correlation with
the change in G1 and a negative correlation with the change in η. Figures 7 and 8 indicate that
frequency also has a great influence on the dynamic performance of the damper.

Figure 5. The storage modulus G1 of the VE damper at different frequencies and fractional orders.

Figure 6. The loss factor η of the VE damper at different frequencies and fractional orders.

Figure 7. The storage modulus G1 of the VE damper at different fractional orders and frequencies.
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Figure 8. The loss factor η of the VE damper at different fractional orders and frequencies.

The above simulations confirm that the fractional order α is related to the energy
dissipation capacity and dynamic performance of the damper. The higher the order is, the
stronger the viscosity and the energy dissipation are.

5. Temperature-Order Equivalent Mathematical Model

5.1. Temperature-Order Equivalent Principle

Experimental results show that temperature and frequency affect the dynamics of VE
dampers and that temperature has a more prominent effect, as illustrated in Figures 9 and 10 [29].
From Equation (22), it can be seen that the influence of frequency is described well. However,
the fractional-order Zener model can not characterize the effect of temperature. Therefore, we
establish the necessary relationship by introducing a new mathematical model that considers
the temperature change and fractional-order equivalence, given by:{

G1(ω, T) = G1(ω, α1(T)),

η(ω, T) = η(ω, α2(T)),
(27)

where α1 and α2 are: {
α1(T) = ∑5

i=1 aiTi + b1,
α2(T) = 1− (∑5

i=1 ciTi + b2).
(28)

Figure 9. The loss factor η of the VE damper at different temperatures.
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Figure 10. The storage modulus G1 of the VE damper at different temperatures.

Thus, Equation (22) can be rewritten as:⎧⎪⎪⎪⎨⎪⎪⎪⎩
G1 =

[
q0 + p1q1ω2α1 + (q1 + p1q0)ω

α1 cos α1π
2
][

1 + p2
1ω2α1 + 2p1ωα1 cos α1π

2
] ,

η = G2/G1 =
(q1 − p1q0)ω

α2 sin α2π
2[

q0 + p1q1ω2α2 + (q1 + p1q0)ωα2 cos α2π
2
] .

(29)

5.2. Model Modification

As the influence of temperature on the properties of VE dampers is related to frequency,
the temperature and fractional-order equivalent relationship with frequency correction can
be obtained as: {

G1(ω, T) = G1(ω, α∗1(T, ω)),

η(ω, T) = η(ω, α∗2(T, ω)).
(30)

For simplifying the analysis, we first fix ω = 0.5. Then, α∗1 and α∗2 are calculated as:{
α∗1(T, ω) = α1(T, 0.5) + k1(ω− 0.5),
α∗2(T, ω) = α2(T, 0.5)− k2(ω− 0.5),

(31)

where k1 and k2 are determined by:{
k1 = ∑5

i=1 a∗i Ti + b∗1 ,
k2 = ∑5

i=1 c∗i Ti + b∗2 .
(32)

Therefore, by considering the temperature effect and the frequency modified model,
the new AEF-Zener model is given by:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

G1 =

[
q0 + p1q1ω2α∗1 + (q1 + p1q0)ω

α∗1 cos α∗1 π
2

]
[
1 + p2

1ω2α∗1 + 2p1ωα∗1 cos α∗1 π
2

] ,

η = G2/G1 =
(q1 − p1q0)ω

α∗2 sin α∗2 π
2[

q0 + p1q1ω2α∗2 + (q1 + p1q0)ω
α∗2 cos α∗2 π

2

] .

(33)

Further, we have:

k
′
eq =

nv · G1(ω, α∗) · Av

hv
, (34)
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c
′
eq =

nv · G2(ω, α∗) · Av

ω · hv
, (35)

where the values of parameters p1, q0, q1, α∗1, and α∗2 in Equation (33) are used to define
the material properties. It should be noted that this model reflects the impact of ambient
temperature on the dynamic behaviors of the VE dampers through the fractional order.

6. Parameter Identification and Experimental Comparison

In this section, the storage modulus and loss factor, G1 and η, respectively, that
represent the mechanical properties of the VE damper are used to determine the parameters
of the equivalent model. The experimental data from the dynamic tests in reference [29]
were used. Herein, we propose a new chaotic fractional-order particle swarm optimization
(CFOPSO) algorithm to accurately determine the model’s parameters.

6.1. Parameter Identification with the CFOPSO

The PSO is a simple and easy-to-implement algorithm. The PSO can be generalized
using fractional-order tools to yield the fractional-order PSO algorithm, which can better
balance global and local searching capabilities [43]. Chaotic mapping can be used to
generate evenly chaotic numbers between 0 and 1, as shown in Figure 11. The population
initialization is carried out by using chaotic sequences contributing to an increase in
the performance of the algorithm [44]. The values are mapped to initialization particle
individuals according to the following formula:{

yi+1 = μyi(1− yi),

χ = χLb + (χUb − χLb)yi+1,
(36)

where i is the number of iterations, and μ is the bifurcation parameter. The symbols χUb
and χLb are the upper and lower limits of each individual in each dimension, and yi+1 is
the mapped individual.

Figure 11. Chaotic mapping generating chaotic numbers.

The velocity and position of the particles are updated using:{
Dαυij(t + 1) = c1φ1[Pbij(t)− χij(t)] + c2φ2[Gbgj(t)− χij(t)],

χij(t + 1) = χij(t) + υij(t + 1),
(37)
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where Pbij(t) is its best position for each particle found so far, Gbgj(t) is the best position
of the swarm, c1 and c2 denote the coefficients of the particle acceleration, and φ1 and φ2
are random numbers in the interval [0, 1].

Considering the first four terms of the differential derivative given by Equation (3),
one has:

υij(t + 1) = αυij(t) +
1
2

α(1− α)υij(t− 1)

+
1
6

α(1− α)(2− α)υij(t− 2)

+
1

24
α(1− α)(2− α)(3− α)υij(t− 3)

+ c1φ1[Pbij(t)− χij(t)] + c2φ2[Gbgj(t)− χij(t)], (38)

where α at the i-th iteration is:

αi = αmax − αmax − αmin
imax

i, αi ∈ [0.4, 0.9], (39)

with imax denoting the maximum number of iterations.
The parameter values are found by minimizing the fitness function, f (.), which

represents the error between the calculated (G1(i), η(i)) and experimental (Ĝ1(i), η̂(i))
values, as defined in:

min f (·) = min
M

∑
i=1

[
|G1(i)− Ĝ1(i)|+ |η(i)− η̂(i)|

]
, (40)

where the symbol M is the number of sampling points. Figure 12 schematically illustrates
the CFOPSO algorithm. Table 1 lists the parameter values of the CFOPSO algorithm.

Figure 12. Flowchart of the CFOPSO algorithm.

Table 1. Parameters of the CFOPSO algorithm.

CFOPSO Parameter Value

Number of particles N = 50
Number of iterations/Repeated experiments i = 200/E = 40

Scaling factors c1 = c2 = 1.5
Chaotic bifurcation parameter μ = 4.0
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The experimental data with a displacement of 1.0 mm are adopted for parameter determi-
nation and fitting. With reference to the parameter values in previous fractional models, the
range of current parameter values is set as p1 ∈ (0, 2.5× 10−6], q0 ∈ (0, 2], q1 ∈ (0, 5], α1 ∈ (0, 1),
and α2 ∈ (0, 1). The process of model parameter determination and fitting is:

Step 1: Determine the parameters p1, q0, q1, α1, and α2 in Equation (29) with T = 10 ◦C
and ω = 0.5 rad/s using the CFOPSO algorithm;

Step 2: With fixed parameters p1, q0, and q1, determine the values of α1 and α2 with
T = −10 ◦C,−5 ◦C, 0 ◦C, 5 ◦C, 20 ◦C, 30 ◦C, 40 ◦C, and ω = 0.5 rad/s;

Step 3: Use curve-fitting to find the parameters in the functions that relate α1 and α2 to
temperature T;

Step 4: Repeat Steps 1 to 3 with ω = 0.1 rad/s, 0.2 rad/s, and 1.0 rad/s, with the fixed
parameters p1, q0, and q1;

Step 5: Set the model at ω = 0.5 rad/s as the reference model. Fit the effects of other
frequencies into the fractional orders α∗1 and α∗2 through two slope functions. Use curve-fitting
to determine the parameters in the functions that relate k1 and k2 to temperature T.

Finally, the new AEF-Zener model’s parameters in Equation (33) have been determined.
Table 2 lists the parameter values of the AEF-Zener model (ω = 0.5 rad/s) obtained

with the CFOPSO algorithm. The values of k1 and k2 determined by slope curve-fitting are
shown in Table 3.

Table 2. Parameters of the AEF-Zener model (ω = 0.5 rad/s).

Parameters P1 q0 q1 a1

Values 1.02× 10−6 0.651 3.849 −6.82× 10−9

Parameters a2 a3 a4 a5

Values 4.076× 10−7 1.369× 10−5 −0.0013 0.0301

Parameters b1 c1 c2 c3

Values 0.6526 −7.37× 10−9 7.039× 10−7 −1.449× 10−5

Parameters c4 c5 b2

Values −0.454× 10−3 0.0213 0.574

Table 3. Parameters of the modified AEF-Zener model (k1, k2).

Parameters a∗
1 a∗

2 a∗
3 a∗

4

Values 4.911× 10−8 −4.656× 10−6 1.537× 10−4 −0.00212

Parameters a∗5 b∗1 c∗1 c∗2
Values 0.00995 0.2227 −4.314× 10−8 4.291× 10−6

Parameters c∗3 c∗4 c∗5 b∗2
Values 0.2227 0.001589 0.004628 −0.1724

6.2. Comparison between Numerical and Experimental Results

To assess the accuracy of the proposed AEF-Zener model, the parameters G1 and
η with varying loading frequencies and ambient temperatures were computed based
on Equation (33). The numerical calculations and experimental data are compared in
Figures 13–16 and Table 4. It can be seen that the model has high precision.
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Figure 13. Comparison between numerical and experimental results of G1 (ω = 0.1, 0.5).

Figure 14. Comparison between numerical and experimental results of G1 (ω = 0.2, 1.0).

Figure 15. Comparison between numerical and experimental results of η (ω = 0.1, 0.5).

Figure 16. Comparison between numerical and experimental results of η (ω = 0.2, 1.0).
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Table 4. Comparison between experimental data and numerical results for the AEF-Zener model.

Storage Modulus, G1 (MPa) Loss Factor, η

ω (rad/s) T ( ◦C) Experimental Numerical Experimental Numerical

0.1

−10 2.2740 2.2129 0.7765 0.6886
−5 1.6951 1.7699 0.4904 0.5591
0 1.5043 1.3159 0.4012 0.4321
5 1.1530 1.0412 0.3170 0.3498

10 1.0232 0.9092 0.2681 0.2985
20 1.0037 0.9068 0.2413 0.2447
30 0.8111 0.7819 0.2201 0.2306
40 0.7360 0.7014 0.1940 0.2157

0.2

−10 2.8233 2.7623 0.9332 0.9156
−5 1.9408 2.1160 0.6119 0.6533
0 1.7612 1.5584 0.5132 0.4863
5 1.2341 1.2118 0.3573 0.3831

10 1.1123 1.0350 0.2905 0.3190
20 1.0481 0.9313 0.2612 0.2566
30 0.9068 0.8531 0.2380 0.2412
40 0.8034 0.7221 0.2121 0.2245

0.5

−10 3.8227 3.7887 1.1168 1.1153
−5 2.5560 2.7139 0.7635 0.8305
0 2.1240 1.9211 0.6923 0.6135
5 1.3250 1.4382 0.4423 0.4618

10 1.1710 1.1824 0.3353 0.3641
20 1.1262 1.0158 0.2940 0.2817
30 1.0231 0.9062 0.2693 0.2640
40 0.9114 0.8565 0.2433 0.2429

1.0

−10 4.7551 4.4795 1.2049 1.2601
5 3.0626 3.2987 0.9186 0.9722
0 2.6408 2.5450 0.8185 0.8356
5 1.4614 1.3090 0.5468 0.5912

10 1.2840 1.1941 0.3848 0.4322
20 1.1967 1.0929 0.3274 0.3176
30 1.0897 1.0123 0.2920 0.2968
40 0.9786 1.0116 0.2605 0.2690

The root-mean-square errors between numerical and experimental results are given
in Table 5. When the frequencies are chosen as 0.1, 0.2, 0.5, and 1.0 rad/s, the errors for
the values of G1 are 9.65%, 11.16%, 11.63%, and 15.41%, respectively. The errors for η are
4.47%, 2.23%, 3.89%, and 3.64%, respectively. As the frequency increases, its impact on the
parameters may increase, which may lead to an increase in errors for high frequencies. In
addition, the relative errors of the storage modulus and loss factor, G1 and η, at various
frequencies are less than 20%, which are within the requirements usually adopted in
engineering applications.

Table 5. Root-mean-square error of G1 and η.

Storage Modulus, G1 Loss Factor, η

Frequency (rad/s) Root-Mean-Square Error (%) Root-Mean-Square Error (%)

0.1 9.65 4.47
0.2 11.16 2.23
0.5 11.63 3.89
1.0 15.41 3.64

To further verify the effectiveness of the AEF-Zener model, taking the frequency
of 1.0 rad/s, we compare its results with those of the EFMCS model (that considers the
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temperature–frequency equivalent principle) [45] and the experimental data. The storage
modulus and the loss factor for the displacement of 1.0 mm and temperatures of −10 ◦C to
40 ◦C are illustrated in Figures 17 and 18, respectively, and summarized in Tables 6 and 7.

Figure 17. Comparison between numerical and experimental results of G1 with T(◦C) = −10, −5, 0,
5, 10, 20, 30, 40 when d = 1.0 mm and ω = 1.0 rad/s.

Figure 18. Comparison between numerical and experimental results of η with T(◦C) = −10, −5, 0, 5,
10, 20, 30, 40 when d = 1.0 mm and ω = 1.0 rad/s.

Table 6. The experimental and numerical results comparison of G1 for different frequencies when
d = 1.0 mm and ω = 1.0 rad/s.

Storage Modulus, G1 (MPa) Error

T(◦C) Experimental AEF Model EFMCS Model AEF Model EFMCS Model

−10 4.7551 4.4795 4.4803 5.80% 5.78%
−5 3.0626 3.2987 3.2900 7.71% 7.41%
0 2.6408 2.5450 2.5777 3.63% 2.39%
5 1.4614 1.3090 1.7995 9.28% 23.14%

10 1.2840 1.1941 1.5653 7.00% 21.73%
20 1.1967 1.0929 1.3847 8.67% 15.71%
30 1.0897 1.0123 1.1218 7.10% 2.95%
40 0.9786 1.0116 0.9389 3.37% 4.06%
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Table 7. The experimental and numerical results comparison of η for different frequencies when
d = 1.0 mm and ω = 1.0 rad/s.

Loss Factor, η Error

T(◦ C) Experimental AEF Model EFMCS Model AEF Model EFMCS Model

−10 1.2049 1.2601 1.3549 4.58% 7.52%
−5 0.9186 0.9722 1.0225 5.83% 11.31%
0 0.8185 0.8356 0.7666 2.09% 6.34%
5 0.5468 0.5912 0.4608 8.12% 15.73%

10 0.3848 0.4322 0.3784 12.32% 1.66%
20 0.3274 0.3176 0.3234 3.00% 1.22%
30 0.2920 0.2968 0.2597 1.64% 11.06%
40 0.2605 0.2690 0.2253 3.26% 13.51%

For the storage modulus, at different temperatures, the average and the maximum
errors between experimental data and simulation results for the AEF-Zener and the EFMCS
models are 6.57% and 10.40%, and 9.28% and 23.14%, respectively. For the loss factor, the
average and the maximum errors are 5.11% and 8.54%, and 12.32% and 15.73%, respectively.
This shows that both errors for the AEF-Zener model are smaller than those for the EFMCS.

Additionally, at the temperature of 20 ◦C, the AEF-Zener model simulation results
are compared with those obtained with Xu’s model [29] and with experimental data.
Figures 19 and 20 depict the storage modulus and the loss factor when the displacement is
1.0 mm and the frequencies vary between 0.1 rad/s and 1.0 rad/s, respectively. Tables 8 and 9
summarize the results.

For the storage modulus, the average and the maximum errors for the AEF-Zener
and the Xu models are 7.23% and 9.34%, and 11.14% and 11.80%, respectively. For the loss
factor, the errors are 2.59% and 3.90%, and 4.18% and 9.07%, respectively. This confirms
that the AEF-Zener model is better than the Xu model.

Figure 19. Comparison of numerical and experimental results of G1 with ω = 0.1, 0.2, 0.5, 1.0 when
d = 1.0 mm and T = 20 ◦C.

Table 8. The experimental and numerical results comparison of G1 for different frequencies when
d = 1.0 mm and T = 20 ◦C.

Storage Modulus, G1 (MPa) Error

ω (rad/s) Experimental AEF Model Xu’s Model AEF Model Xu’s Model

0.1 1.0037 0.9068 0.9128 9.65% 9.05%
0.2 1.0481 0.9313 1.0119 11.14% 3.45%
0.5 1.1262 1.0158 1.1784 9.80% 4.63%
1.0 1.1967 1.0929 1.3379 8.67% 11.80%
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Figure 20. Comparison of numerical and experimental results of η with ω = 0.1, 0.2, 0.5, 1.0 when
d = 1.0 mm and T = 20 ◦C.

Table 9. The experimental and numerical results comparison of η for different frequencies when
d = 1.0 mm and T = 20 ◦C.

Loss Factor, η Error

ω (rad/s) Experimental AEF Model Xu’s Model AEF Model Xu’s Model

0.1 0.2413 0.2447 0.2390 1.41% 0.95%
0.2 0.2612 0.2566 0.2646 1.76% 1.30%
0.5 0.2940 0.2817 0.2977 4.18% 4.28%
1.0 0.3274 0.3176 0.2917 2.99% 9.07%

From the above analysis, we verify that the numerical results obtained with the
proposed AEF-Zener model are close to the experimental ones, which means that the
temperature-order equivalence principle can well characterize the effect of temperature
for VE dampers. In addition, by comparing the new model with the EFMCS and the Xu
models, we confirmed that the AEF-Zener model has superior accuracy and availability. In
general, the AEF-Zener model is accurate enough to reflect the mechanical behavior and
energy dissipation ability of VE dampers at a low frequency. The model can be conveniently
applied to the dynamic analysis of structures with VE dampers.

7. Simulation Analysis of Structures with VE Dampers

In this section, simulations of structures with and without VE dampers under earth-
quake action are carried out. The equation of motion of the structure with VE dampers can
be written as:

Mẍ(t) + Cẋ(t) + Kx(t) + cdẋ(t) + kdx(t) = −Mlẍg, (41)

where x, ẋ, and ẍ ∈ Rn×1 stand for displacement, velocity, and acceleration vectors of the
building, respectively; M, C, and K ∈ Rn×n are the mass, stiffness, and damping matrices,
respectively; l is a vector with all elements equal to 1; and kd = diag(kdi, . . . , kdn) and
cd = diag(cdi, . . . , cdn), with kdi and cdi standing for the sum of equivalent stiffness and
damping of all VE dampers in the i-th floor for i = 1, . . . , n, are parameters.

The ground acceleration ẍg is modulated with amplitude 0.24 g and 0.12 g to adopt
the El Centro and Taft earthquake seismic waves for 25 s and 30 s, as shown in Figure 21.
In addition, the Rayleigh damping is given by C = α1M + β1K, where α1, β1 ∈ R are
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calculated from the damping ratio of the modes of vibration. Matrices M and K can be
represented by:

M =

⎡⎢⎢⎢⎢⎢⎣
m1 0 · · · 0 0
0 m2 · · · 0 0
...

...
...

. . .
...

0 0 · · · mn−1 0
0 0 · · · 0 mn

⎤⎥⎥⎥⎥⎥⎦
n×n

,

K =

⎡⎢⎢⎢⎢⎢⎣
k1 + k2 −k2 · · · 0 0
−k2 k2 + k3 · · · 0 0

...
...

. . .
...

...
0 0 · · · kn−1 + kn −kn
0 0 · · · −kn kn

⎤⎥⎥⎥⎥⎥⎦
n×n

.

Figure 21. El-Centro and Taft earthquake seismic waves.

Example : The application of the AEF-Zener model for a three-story building structure
with 10 VE dampers on each story is illustrated in Figure 22. The parameters of the structure
are summarized in Table 10. The sizes of the VE dampers are nν = 2, Aν = 0.36 m2, and
hν = 10 mm, respectively. The VE dampers can be placed in any location where shear defor-
mation of the VE layers is allowed to occur. The ambient temperature is set as T = 7.3 ◦C.
The first natural frequency of the vibration mode is ω = 0.881 rad/s. Equations (33)–(35)
can be used to calculate the equivalent stiffness and damping.

Figure 22. A three-story building with VE dampers.
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Table 10. Building parameters for the example.

Floor 1 2 3

Quality (kg) 2.40 × 105 1.20 × 105 1.20 × 105

Rigidity (N/m) 1.08 × 106 3.60 × 105 2.16 × 105

Figures 23–25 show the displacements of the first to third floors, without and with
VE dampers, respectively, in the El Centro earthquake. Figure 26 show the maximum dis-
placements in the El-Centro earthquake. The corresponding floor displacements in the Taft
earthquake are shown in Figures 27–29, respectively. Figure 30 show the maximum displace-
ments in the Taft earthquake.

Figure 23. First floor displacement of the building in the example in the El Centro earthquake.

Figure 24. Second floor displacement of the building in the example in the El Centro earthquake.

Figure 25. Third floor displacement of the building in the example in the El Centro earthquake.
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Figure 26. The maximum displacement of each floor in the El Centro earthquake.

Figure 27. First floor displacement of the building in the example in the Taft earthquake.

Figure 28. Second floor displacement of the building in the example in the Taft earthquake.

Figure 29. Third floor displacement of the building in the example in the Taft earthquake.
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Figure 30. The maximum displacement of each floor in the Taft earthquake.

It can be seen that the structure with VE dampers has good seismic performance at the
ambient temperature T = 7.3 ◦C. Indeed, compared with the case without VE dampers, VE
dampers reduce the maximum displacement of each floor by more than 45.4%, 36.67%, and
22.97%, respectively, in the El Centro earthquake. Moreover, the maximum displacement
decreases by more than 20.5%, 29.84%, and 11.53% under Taft wave excitation, respectively.

It is obvious that VE dampers are effective for seismic reduction, and the proposed
AEF-Zener model can be applied to the analysis of the seismic performance and the design
of structures with VE dampers in consideration of ambient temperature.

8. Conclusions

A new AEF-Zener model of VE dampers that takes into account temperature and
the fractional-order equivalence principle was proposed. Firstly, the relationship between
fractional order and energy dissipation of VE materials was analyzed in the time and
frequency domains. Secondly, based on experimental data, the relationship between
ambient temperature and energy dissipation of VE materials was analyzed. Finally, with
the equivalence principle of temperature and fractional order, a new model able to describe
the influence of temperature was established, and the model parameters were determined
using a CFOPSO algorithm. Comparing the numerical results of the new AEF-Zener model
with those of other models and with experimental data, it was shown that the proposed
AEF-Zener model has good accuracy and availability, particularly in characterizing the loss
factor for energy consumption. The proposed AEF-Zener model can be applied to design
VE dampers in consideration of ambient temperature.
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Abstract: A fractional description for the optically induced mechanisms responsible for conductivity
and multiphotonic effects in ZnO nanomaterials is studied here. Photoconductive, electrical, and
nonlinear optical phenomena exhibited by pure micro and nanostructured ZnO samples were an-
alyzed. A hydrothermal approach was used to synthetize ZnO micro-sized crystals, while a spray
pyrolysis technique was employed to prepare ZnO nanostructures. A contrast in the fractional
electrical behavior and photoconductivity was identified for the samples studied. A positive non-
linear refractive index was measured on the nanoscale sample using the z-scan technique, which
endows it with a dominant real part for the third-order optical nonlinearity. The absence of nonlinear
optical absorption, along with a strong optical Kerr effect in the ZnO nanostructures, shows favorable
perspectives for their potential use in the development of all-optical switching devices. Fractional
models for predicting electronic and nonlinear interactions in nanosystems could pave the way for the
development of optoelectronic circuits and ultrafast functions controlled by ZnO photo technology.

Keywords: fractional calculus; nonlinear optics; photoconductivity; Kerr effect; ZnO nanomaterials

1. Introduction

Zinc oxide (ZnO) is a fascinating semiconductor material which has gained particular
interest in recent years due to its characteristic wide bandgap energy (Eg) that promotes an
easy electron interchange between its conduction and valence band [1]. Also, due to its
unique physical properties [2], and versatility in being designed by different processing
routes [3], this material is suitable for applications in highly sensitive gas sensors, transpar-
ent electrodes, and a variety of optoelectronic and piezoelectric devices like solar cells [4].
Moreover, ZnO is a low-cost material that can be synthesized by hydrothermal effects, sol-
gel methods, chemical vapor deposition (CVD), spray pyrolysis, and other techniques [5].
It is worth mentioning that the physico-chemical properties exhibited by the ZnO depend
on their structure size, shape, and morphology, which are crucial for their successful appli-
cation in various fields [6,7]. The high surface/volume ratio of ZnO nanomaterials has a
significant impact on electrical features, compared to the bulk phase case. Defect structures
present at grain boundaries of nanostructures, such as dangling bonds, vacancies, and
micropores, significantly affect energy transport phenomena. A decrease in nanoscale size
increases the defect ion concentration, which tends to segregate at grain boundaries and
leads to grain boundary defect barrier formation [8,9]. On the other hand, considering that
the morphology of ZnO nanostructures affects the amount of surface oxygen, it has been
reported that oxygen vacancies in ZnO nanostructures can be responsible for an increase in
electrical conductivity [10].
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Diverse potential applications of ZnO nanostructures for optoelectronic, electronic,
and biomedical functions have been pointed out [11]. High electron mobility and strong
luminescence exhibited by ZnO nanostructures make them useful in light-emitting diodes
(LEDs), while high biocompatibility makes them useful for drug delivery and tissue engi-
neering [12].

Moreover, the ZnO exhibits UV-protection properties attractive for UV-blocking coat-
ings with different low-cost nanofabrication processes, and in this direction, their pho-
toconductive and nonlinear optical properties have been investigated for a wide range
of applications. The design of opto-piezo-electronic materials like highly sensitive sen-
sors [13] and energy collectors for both piezotronic logic nanodevices [14] and piezotronic
transistors [15] has been demonstrated in ZnO. The photon absorption of ZnO for valence
band excitations [16] and a decreased transmittance at shorter wavelengths [17] can be
employed for developing ultrafast functions and nonlinear materials. A large nonlinear
optical (NLO) response has the ability to manipulate light, which is the base for modern
data transmission [18] and harmonic generation [19].

Regarding the vectorial nature of light and the physical mechanisms responsible for
the optically induced electronic effects, NLO properties in ZnO nanosystems are depen-
dent on wavelength, incident polarization, and pulse duration able to tune a variety of
electronic excitations [20–30]. In this work, we report the modification of photoconductive,
electrical, and NLO effects exhibited by ZnO-based materials prepared by two different
processing routes. A fractional description allowed us to analyze electronic characteristics
and photoinduced properties using nanosecond pulses that proved to be of interest as a
base for the design and development of optoelectronic and all-optical devices.

2. Materials and Methods

2.1. Synthesis of the ZnO Samples and Morphology Characterization

For the preparation of the ZnO microstructures in film form, a combination of hy-
drothermal synthesis and intermittent spray was employed, similar to the procedure of
Wang et al. [31]. For the synthesis, a mixture of 1.53 g of zinc acetate (Zn(O2CCH3)2) and
12.47 g of sodium citrate (Na3C6H5O7) was dissolved in 70 mL of deionized water and
stirred for 20 min to form a clear solution. Subsequently, a sodium hydroxide solution
(1 mol/L) was added to the product and stirred for 30 min to adjust the pH to 14. Then,
the solution was transferred to an autoclave and placed in an oven at 150 ◦C for 24 h.
Subsequently, it was allowed to cool at room temperature and filtered using a vacuum
pump. The resulting product was washed with deionized water and anhydrous ethanol
twice and diluted in 10 mL of deionized water. The obtained product was ultrasonically
cleaned for 20 min. Finally, the solution was sprayed intermittently every 10 s on a SiO2
substrate, previously ultrasonically cleaned with ethanol, and then preheated to 320 ◦C,
following the method of Ravichandran and Philominathan [32]. Also, the spray pyrolysis
technique was used for the generation of nanostructures by depositing a total of 15 layers
on preheated 10 × 25 × 1 mm3 SiO2 substrates ultrasonically cleaned with ethanol for
20 min and then after with deionized water at 430 ◦C on a graphite surface over a tin bath.

For the fabrication of the ZnO nanostructures, a precursor solution of 2.65 g of zinc
acetylacetone (Zn(C5H7O2)2), 12.54 mL of deionized water, 83.88 mL of methanol (CH3OH),
and 3.58 mL of acetic acid (C2H4O2) was made and stirred for about 10 min. The deposition
was performed by nebulizing the precursor solution on the substrates with a vapor expo-
sition of 105 s, at an input pressure of 7 L/min and output of 3 L/min, with a stabilizing
time of 10 min between each deposit. With this, multiple ZnO nanostructured thin films
were obtained.

The ZnO samples were characterized using a Nova200 Nanolab, Dual Beam Micro-
scope, Field Emission Scanning Electron Beam, Scanning Electron Microscope (SEM), which
has 1.1 nm of resolution, and a Focused Ion Beam with 1.7 nm for obtaining high-resolution
images for the analysis of a large portion of the surface and the characterization of its
morphology. From SEM analysis, it was possible to achieve the visualization of the sample
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porosity and the orientation of the crystallization phase on the surface. Experimental data
for the material thickness over the substrate were obtained by spectroscopic ellipsometry
(Uvisel HORIBA Jobin Yvon ellipsometer model LT M200AGMS) with an incident angle of
70◦, a 1200 μm spot, and a spectral range of 1.5 to 5.5 eV with increments of 0.0500 eV, and
a high-pressure Xenon lamp of 75 W was used for both samples.

2.2. Optical and Electrical Properties Characterization

For the characterization of the optical properties, a UV spectrophotometer (Perkin
Elmer XLS) was used to obtain the absorbance of the micro and nanostructured ZnO
samples. Moreover, the electrical conductivity was evaluated using a two-probe ohmmeter
model MUT-202 (Truper, Mexico); the measurement was carried out by applying copper
electrodes over the samples with a separation distance of 1.5 cm. The electrical impedance
(Z) as a function of electrical frequency was obtained with an Autolab potentiostat (Auto-
lab/PGSTAT302N high-power potentiostat/galvanostat) connected to the same electrodes
of the analyzed samples.

Photoconductivity under optical irradiation from a Nd:YVO4 laser system (Spectra-
Physics Explorer® One™ XP) at 532 nm wavelength, linear polarization, and 50 KHz
was also studied. In order to describe the buildup persistent photoconductivity (σ) for
semiconductors, we consider [33]:

σ(I) = σD + (σmax − σD) (1− exp(−α1 I)), (1)

where σD is the initial material electrical current in darkness, and σmax is the maximum
data value of photoconduction, which was assumed to be the value at maximum irradiance
(100%) of the laser system employed. Also, α1 is described as a decay constant of the
buildup process system.

In order to describe the fractional order photoconductivity, different values of the opti-
cal irradiance were systematically evaluated with fractional calculus. The implementation
of this derivation was carried out to analyze the gradual fractional order contribution of the
intensity and its relationship with the experimental photoconduction buildup process. For
this, we found the best fitting for the study of the photoconduction effect with the Caputo
fractional derivative. The following expression was employed [34]:

dn

dxn [
RL
a Iφ

x ( f (t))] =
dn

dxn

[
1

Γ(φ)

∫ x

a
(x− t)φ−1 f (t)dt

]
, (2)

where φ is the fractional order exponent that takes different fractional values (0 < φ < 1),
x and a are derivative limits, Γ(φ) is the gamma function. The understanding of this
formula requires the obtention of the Riemann–Liouville fractional integral (RL

a I φ
x ) of the

analyzed function.

2.3. Experimental Setups for NLO Effects

The z-scan technique setup was used to characterize the NLO properties of the ana-
lyzed samples. With this technique, it is possible to determine the possible Kerr nonlinearity
and nonlinear absorption effects by analyzing the closed and open aperture configurations,
respectively. In this research, the experimental setup was designed for a range between −4
and 4 mm for the manifestation of the nonlinear optical transmittance. For both samples, an
incident irradiance of 10.3 and 14.58 GW/cm2 was used for open and closed configurations,
under the same laboratory conditions provided by a 532 nm wavelength with 4 nanosecond
pulses emitted by a Continuum SL II-10 Nd:YAG Laser system. The z-scan setup used for
this work can be seen in Figure 1a. An approximation of the optical transmittance To in
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the nonlinear media for the open aperture configuration of the z-scan can be obtained by
considering the following equations [35]:

To(z, ΔΦo) = 1− (βIoLe f f )
(2
√

2(1 + z2/z2
o))

, (3)

Le f f =
(1− e(−αo L))

αo
, (4)

where z is the position, z0 = kw2
o/2, k = 2π/λ, with λ being the probe laser wavelength,

β represents the two-photon absorption coefficient, Le f f is the effective length, L is the
sample length, Io is the peak irradiance at focus on the propagation axis, and αo is the
linear absorption coefficient. In a similar way, for the closed aperture configuration using a
Gaussian beam with waist radius wo travelling in the propagation direction, the normalized
transmittance Tc, as a function of the position (z), is given by [36]:

Tc(z, ΔΦo) = 1− (4ΔΦo(z/zo))

(z2/(z2
o) + 9)(z2/(z2

o) + 1)
, (5)

ΔΦo = kΔnoLe f f , (6)

where ΔΦo is the optical phase change when the laser passes through the sample, and
Δno is the refractive index change equal to the product of the nonlinear refractive index n2
and Io.

To further investigate the NLO effects, a two-wave-mixing (TWM) setup, shown in
Figure 1b, was used to explore the vectorial nature of the nonlinear response. Irradiation
at 532 nm wavelength with 4 nanosecond pulses was provided by a Continuum SL II-10
Nd:YAG Laser system, focused by a 50 mm optical lens. The results of the high optical
irradiation of the sample were captured by a pair of photodetectors connected to an
ADS1102CAL ATTEN, 100 MHz capacity digital oscilloscope. In order to numerically
estimate the transmitted irradiance of the TWM interaction, an approximation of the wave
equation [37] can be described as:

∇2E± = −n2±ω2

c2 E± (7)

where E± represents the electric fields that propagate through the samples in their circular
components as E+ and E−, while ω represents the optical frequency of the light. The
refraction index is denoted by n, and c is the speed of light.

The nonlinear refractive index for circular polarized light, being right-handed (n+) or
left-handed (n−) can be considered:

n2± = n2
o + 4π(χ

(3)
1122

∣∣∣E±∣∣∣2 + (χ
(3)
1122 + χ

(3)
1212)

∣∣∣E±∣∣∣2), (8)

where no is the refractive index at low irradiance, and χ
(3)
1122 and χ

(3)
1212 are the independent

components of the third-order optical susceptibility tensor of the system.
Furthermore, to numerically estimate the contribution of different micro and nanos-

tructures on the sample as a function of the volume fraction ρ, the nonlinear third-order
susceptibility can be approximated as follows:

χ
(3)
(n+m)

= (1− ρ)χ
(3)
n + ρχ

(3)
m , (9)
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Figure 1. (a) Z-scan experimental setup for the open and closed configuration by focusing the
high-intensity irradiation with a biconvex lens and with the help of an optical diaphragm before
the detector. (b,c) TWM experimental setup to observe the NLO response as a function of different
angles of polarization; for this setup, L1 is an optical lent, BS corresponds to a beam splitter, M1 to
M3 are mirrors, HWP represents a half wave polarizer, A1 and A2 are polarizers, and P1 and P2
are photodetectors.

The sum of the nonlinear third-order susceptibility of the integrated nanocrystals χ
(3)
n

with microcrystals χ
(3)
m on the sample is represented as χ

(3)
n+m. For further analysis, the

mathematical expression used to obtain the transmitted irradiance I, as a function of the
propagation distance L, the absorption coefficient αo, and the incident irradiance I0 from a
coherent optical source analyzed through a nonlinear optical absorptive medium is:

I(L) =
I0 exp(−αoL)
1 + βIoLe f f

, (10)

3. Results and Discussion

3.1. Morphology Characterization

The results in Figure 2 show representative images of the surface of the ZnO thin films.
It was possible to observe the morphology of the micro and nanostructures, obtaining
micro-structured desert rose-like ZnO (RD-ZnO) crystals of about 6 μm in diameter which
compose the thin film. In a similar way, from the images of the nanostructures, we observe
nanoflake-like crystals which form the nanomaterial. The estimated flake thickness ranged
from 30 to 150 nm. Furthermore, an ellipsometry test was carried out to determine the
nanoscale thickness of the thin film, obtaining an approximate value of 688 nm. The material
thickness was attributed to the spray pyrolysis technique utilized for both samples.
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(a) (b)

Figure 2. SEM images: (a) ZnO microstructures and (b) ZnO nanostructures.

3.2. UV-VIS Observations

The absorbance of the analyzed ZnO is shown in Figure 3a. It was found that the
absorbance spectra of the samples have a special preference for the UV low frequencies at
wavelength regions from about 260 to 400 nm. The obtained Tauc plots for the absorbance
spectra are shown in Figure 3b. It was determined that the binding energy was about
3.15 eV and 3.76 eV for the nano and microstructures, respectively. The nanoscale contribu-
tion of the petals in the microstructures seems to be responsible for a higher bandgap than
the correspondent magnitude in the flake-like nanostructures studied.

(a) (b)

Figure 3. (a) UV-Vis data obtained for the ZnO samples showing the absorbance as a function of the
wavelength. (b) Graphical Tauc plots for obtaining the energy bandgap.

3.3. Photoconductivity Response

The electrical response under laser irradiation measured by an Autolab potentiostat
indicated an impedance decrease as a function of the frequency, denoting an n-type semi-
conductor behavior in the ZnO nanostructured material when analyzing with Nova 1.1
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software. The micro-structured sample presented high electrical resistivity, which cannot
be measured when analyzing with the potentiostat; this behavior is in good agreement
with similar works for other synthetized ZnO microstructures which reported low electrical
conductivity values in a range of 1–100 S/cm. The best numerical simulation was obtained
by considering a Resistor-Capacitor (RC) system that induced the impedance drop for the
photoconductivity data results and their equivalent RC circuit showing capacitive behavior,
presented in Figure 4a for the overall results.

(a) (b)

Figure 4. (a) Graphical representation of the impedance data in darkness and under irradiation
obtained from the Autolab potentiostat for the ZnO nanostructures and their respective best fitting
electrical RC circuit. (b) Experimental and numerical photoconductivity data obtained under 532 nm
wavelength excitation at different optical irradiances for the ZnO nanostructures. The parameters of
this experiment correspond to σD = 0.194 S/cm; σmax = 0.19716 S/cm. Also shown are the numerical
simulations of the best fractional order exponent for the irradiance-dependent photoconductivity of
the nano ZnO sample using Caputo fractional derivative.

Furthermore, experimentation to evaluate the photoconduction influenced by the light
intensity on thin films was undertaken as shown in Figure 4b. The results indicated an expo-
nential growth from the initial steady state (or current in darkness) to the irradiation state.
The change from the initial darkness current on the semiconductors could be attributed to
the excited charge carriers that change with the irradiation of the light, which makes them
photoconductive. Also, it was assumed that the interface heating the mechanism behind
the conduction phenomena modifies the velocity of the carriers. Such an amount of heat
could be obtained from the high-intensity irradiation of the light beams, which produces
multiphotonic effects. From these results, an exponential growth in photoconduction can
be seen as a function of higher irradiances for both samples. An important aspect of the
conductivity behavior in semiconductors is the temperature dependence; in this type of
material, a large amount of temperature differential is required to induce a notable change
in the charge carrier’s mobility. Thus, the numerical interpretation of some fractional
values of the dependent variable was obtained by putting Equations (1) in (2) with different
fractional order values of I.

A comparison was made between different fractional derivative theories to probe
the effectiveness on these equations, like Grünwald–Letnikov and Riemann–Liouville,
determining that the Caputo fractional derivative was the best for the fitting. The results
of the Caputo fractional derivative can be observed in detail in Figure 4b, showing the
relation of the conductivity as a function of the light intensity. Comparative results in ZnO
nanostructures have been previously reported [38,39]. These are explained as the oxygen
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vacancies that directly affect the electron–hole interactions of the charge carriers, which
permit the electrical conduction. The implications of this effect are investigated for uses in
photodetectors, gas sensors, and other optoelectronic systems. It should be mentioned that
optical absorbance effects are interesting for applications in a handful of solar cells systems,
electronics, and optoelectronics [40]. In addition, ZnO micro and nanostructures have
been compared in their photoconductive potential, which showed results that indicated an
enhancement in photo response in nano ZnO materials [41], which also leads to an increase
in NLO response.

3.4. Results of the z-Scan Analysis

The z-scan traces for the open and closed apertures and the best numerical fitting
for the ZnO nanostructured thin film are presented in Figure 5. A significant Kerr effect
on the sample inducing a change in the refractive index at high irradiances was clearly
observed. On the other side, the micro-structured ZnO was irradiated under the same
conditions but showed a Kerr response with at least a decrease of one order of magnitude
not far from the error bar ±15%. Also, a positive change in the nonlinear absorption index
was found for the open aperture, which reveals the existence of a significant multiphonic
effect in the nanostructures at high irradiances. In addition, the numerical interpretation
of the overall results allows us to calculate the nonlinear refractive index and absorption
coefficient of the samples. The approximated nonlinear refractive index value obtained
was n2 = 1.36× 10−11 cm2/W for the ZnO nanostructured sample.

(a) (b)

Figure 5. Results for the z-scan for the ZnO micro and nanostructures (a) closed aperture, (b) open
aperture.

The z-scan results indicate a positive nonlinear refractive index in the nanosecond
regime. The sign in the nonlinear refractive index might vary depending on many factors
responsible for the physical mechanisms of nonlinearity [42], material thickness, incident
irradiance, and different preparation techniques, like RF magnetron sputtering [43] or
chemical vapor deposition [44]. Also, previous works have reported that the crystallization
form of the ZnO could have influenced its optical and NLO response.

3.5. Nanosecond TWM Studies

Figure 6a depicts the transmitted optical irradiance obtained as a function angle of
polarization for both ZnO samples in the TWM mixing experiments. The obtained curves
show a clear relation between the optical properties and the crystal size that forms the ZnO
structures, one of the principal factors that influence different physical properties of ZnO
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thin films. Thus, the overall results indicate a direct correlation between the two-sized
structures and the optical response at a maximum angle of polarization. Complementarily,
the nanosized crystals presented the stronger enhancement on transmittance at least three
times larger than the microcrystals (at data ×100). In view of these considerations, it is
possible to speculate a particle size dependence responsible for the variations in the Kerr
transmittance that increased from the polarization of the light. The possibility of obtaining
different optical signals with hybrid materials is rather attractive in optoelectronics in
order to generate different nonlinearities and all-optical functions. The modulation of a
normalized nonlinear refractive index in the ZnO nanostructures as a function of their
volume fraction in respect to microstructures and the angle of polarization is illustrated in
Figure 6b. The numerical data plotted in Figure 6b were estimated using Equations (7)–(10)
and the finite difference method.

(a) (b)

Figure 6. (a) Graphical representation of the NLO response comparison between micro and nanocrys-
tals as a function of the angle of polarization. (b) Numerical simulation for describing the modulation
of the nonlinear refraction in ZnO nanostructures and its relation between the angle of polarization
considering a variation in the volume fraction of incorporated micro ZnO structures.

Third-order optical nonlinearities can be controlled by irradiance, polarization, and
concentration of different sizes and morphologies of crystals in ZnO nanostructures [45]. In
addition, it has been reported that ZnO nanocrystals, nanofilms, nanowires [46], and bulk
structures can be used as nonlinear media to obtain higher-frequency conversion efficiencies
from nonlinear effects [47,48]. Also, various ZnO-based nanohybrids have been examined
for the enhancement of their nonlinear optical interactions [49–56]. In this work, we
highlight the importance of describing a fractional model and optically induced electronic
behavior with influence on photoconductivity and electronic mechanisms responsible
for Kerr nonlinearity. We propose the tuning of ZnO systems via the combination of
micro and nanostructures that can be assisted by a fractional description for predicting
electronic and optically induced functions with potential applications for optoelectronics
and all-optical devices.

4. Conclusions

Fractional electrical studies for describing conductivity effects in low-dimensional
systems are reported. Photoconductive and capacitive behavior was identified in the
nanostructured ZnO thin film studied, while inhibition of conductivity was obtained
when the samples were in a micro-structured form. An enhancement in NLO effects and
electrical conductivity was obtained via the preparation of ZnO in a nanostructured form.
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A red shift in the optical resonance of nanostructured ZnO was observed in respect to
micro-structured ZnO. TWM experiments and z-scan explorations were conducted for the
characterization of NLO response of the studied ZnO samples. The NLO effects revealed
the existence of a nanosecond Kerr effect at 532 nm, which was attributed to an electronic
physical mechanism responsible for the third-order optical nonlinearities. The results of the
NLO nature demonstrate the potential to combine nano and microstructures to modulate
electrical, electromagnetic, and NLO effects in ZnO circuits and optoelectronic platforms.
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53. Radičić, R.; Maletić, D.; Blažeka, D.; Car, J.; Krstulović, N. Synthesis of silver, gold, and platinum doped zinc oxide nanoparticles
by pulsed laser ablation in water. Nanomaterials 2022, 12, 3484. [CrossRef] [PubMed]

54. Nikov, R.; Dikovska, A.; Nedyalkov, N.; Nikova, T.; Karashanova, D. Nanosecond laser ablation of composite thin films in liquid.
J. Phys. Conf. Ser. 2021, 1859, 012012. [CrossRef]

55. Perez-Lopez, C.A.; Perez-Taborda, J.A.; Riascos, H.; Avila, A. The influence of pulsed laser ablation in liquids parameters on the
synthesis of ZnO nanoparticles. J. Phys. Conf. Ser. 2020, 1541, 012019. [CrossRef]

56. Zandalazini, C.; Oliva, M.; Ferrero, J.C. Highly c-axis oriented ZnO thin films on glass substrate by pulsed laser deposition:
Fluence-dependent effects. J. Nanoelectron. Optoelectron. 2019, 14, 1461–1467. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

204



Article

Fractional Partial Differential Equation Modeling for Solar Cell
Charge Dynamics

Waleed Mohammed Abdelfattah 1,*, Ola Ragb 2, Mohamed Salah 2, Mohamed S. Matbuly 2

and Mokhtar Mohamed 3,*

1 College of Engineering, University of Business and Technology, Jeddah 23435, Saudi Arabia
2 Department of Engineering Mathematics and Physics, Faculty of Engineering, Zagazig University,

Zagazig P.O. Box 44519, Egypt; ormohamed@eng.zu.edu.eg (O.R.); msalaheldin@zu.edu.eg (M.S.);
msabdelkreem@eng.zu.edu.eg (M.S.M.)

3 Basic Science Department, Faculty of Engineering, Delta University for Science and Technology,
Gamasa 11152, Egypt

* Correspondence: w.abdelfattah@ubt.edu.sa (W.M.A.); mokhtar.alsaidi@deltauniv.edu.eg (M.M.)

Abstract: This paper presents a groundbreaking numerical approach, the fractional differential
quadrature method (FDQM), to simulate the complex dynamics of organic polymer solar cells. The
method, which leverages polynomial-based differential quadrature and Cardinal sine functions
coupled with the Caputo-type fractional derivative, offers a significant improvement in accuracy
and efficiency over traditional methods. By employing a block-marching technique, we effectively
address the time-dependent nature of the governing equations. The efficacy of the proposed method
is validated through rigorous numerical simulations and comparisons with existing analytical and nu-
merical solutions. Each scheme’s computational characteristics are tailored to achieve high accuracy,
ensuring an error margin on the order of 10−8 or less. Additionally, a comprehensive parametric
study is conducted to investigate the impact of key parameters on device performance. These pa-
rameters include supporting conditions, time evolution, carrier mobilities, charge carrier densities,
geminate pair distances, recombination rate constants, and generation efficiency. The findings of this
research offer valuable insights for optimizing and enhancing the performance of organic polymer
solar cell devices.

Keywords: fractional derivative; block marching; differential quadrature; renewable energy; organic
solar cells; Caputo

1. Introduction

Organic solar cells (OSCs) have emerged as a promising renewable energy technology
due to their low cost, flexibility, and potential for large-scale deployment [1]. However,
their performance is significantly influenced by complex factors such as charge carrier
transport, recombination, and energy loss mechanisms. To accurately model and optimize
these devices, it is crucial to develop robust numerical methods that can capture the
intricate dynamics of charge carrier transport [2–4]. Fractional calculus provides a powerful
mathematical tool for modeling non-local and memory effects, which are prevalent in many
physical systems, including organic solar cells. By incorporating fractional derivatives into
the governing equations, we can more accurately describe the complex behavior of charge
carriers and their interactions within the device.

The latest generation of photovoltaic technologies [5] are classified into two types:
organic polymer cells [6,7] and electrochemical cells [8,9]. The focus of this paper will be
on organic polymer cells. This kind is a renewable source of electrical energy with several
advantages, including cheap production costs [10,11] and facile processing on flexible
substrates [12,13]. The bulk heterojunction (BHJ) architecture significantly improves the
efficiency of organic polymer cells. This approach involves blending electron donor and
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acceptor materials in solution and casting the resulting mixture into a thin film. The film
is then sandwiched between two electrodes [6,7], as depicted in Figure 1. After excitons
dissociate in bulk heterojunction OSCs, electrons move to the acceptor’s lowest unoccupied
molecular orbital (LUMO), which is similar to the conduction band in conventional semi-
conductors, and holes move to the donor’s highest occupied molecular orbital (HOMO),
which is similar to the valence band in conventional semiconductors. In this situation, the
mix of donor and acceptor materials functions as a new organic material with a narrower
band gap, consisting of the acceptor’s LUMO and the donor’s HOMO [14,15].

Figure 1. Energy band diagram of a heterojunction organic solar cell.

While extensive experimental research has been conducted on solar cell design [13],
analytical and numerical studies remain relatively limited [16]. Falco et al. [17] employed a
combination of finite element and Newton–Raphson methods to investigate photocurrent
transients in organic polymer solar cells. Buxton et al. [18] utilized finite difference
methods to simulate the behavior of polymer solar cells. Hwang et al. [19] explored
the transient photocurrent response of organic photovoltaic devices using numerical
modeling of drift-diffusion equations. Van Mensfoort et al. [20] characterized iterative
approaches for solving drift-diffusion equations and investigated the impact of disorder
on device performance. Blom et al. [21] employed Braun’s theory to analyze the influence
of electric field and temperature on photocurrent in PPV:PCBM blends. However, these
numerical approaches can be computationally challenging and may suffer from issues
such as ill-conditioning [22,23].

While significant progress has been made in the field of organic solar cell modeling,
several challenges remain. Existing numerical methods often struggle to accurately capture
the complex, non-linear behavior of charge carrier transport, especially in the presence of
fractional-order dynamics. Additionally, many models rely on simplifying assumptions that
may not fully capture the intricate processes occurring within organic solar cells. Fractional-
order differential equations offer a powerful framework for modeling complex systems
with memory effects and non-local behavior. These equations, which generalize classical
differential equations by incorporating fractional derivatives, have found applications in
a wide range of fields [24,25], including viscoelasticity, biology, fluid mechanics [26], and
physics [27]. Depending on the specific application, fractional derivatives can be applied
to time, space, or both [28]. Researchers have developed various techniques to solve
fractional differential equations, including transform methods (Laplace, Mellin, Fourier)
and numerical methods. Recent studies have explored the use of the Atangana–Baleanu
fractional derivative operator [29], the modified Adomian decomposition method [30], the
Akbari–Ganji technique [31], and the natural transform decomposition method [32] to solve
fractional diffusion equations.

Nonlinear dynamics in organic solar cells require solving fractional drift-diffusion
equations, which pose significant numerical challenges, particularly in higher dimensions.
Various numerical methods, such as finite difference [33], Galerkin [34], collocation [35],
homotopy analysis transform [36], and finite volume element methods [37], have been
proposed to approximate one-dimensional fractional drift-diffusion equations. Recent
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advancements include the use of matrix transform techniques [38], shifted Grünwald–
Letnikov difference operators [39], radial basis function finite difference methods [40], and
finite-volume/finite-difference approaches [41].

In this paper, we propose a novel numerical approach, the fractional differential
quadrature method (FDQM), to simulate the nonlinear dynamics of organic polymer solar
cells and address the previous limitations. This method offers several advantages, including
high accuracy, computational efficiency, and flexibility. The FDQM can accurately capture
the non-local and memory effects inherent in fractional-order systems. The method is com-
putationally efficient, especially for high-dimensional problems. The FDQM can be applied
to a wide range of fractional differential equations, including those with complex boundary
conditions. By addressing these challenges and leveraging the power of fractional calculus,
our proposed approach offers a significant advancement in the field of organic solar cell
modeling. This approach leverages the strengths of polynomial-based differential quadra-
ture [42] and Cardinal sine functions [43], coupled with the Caputo fractional derivative, to
accurately solve the governing system of fractional partial differential equations (FPDEs)
and ordinary differential equations (ODEs). By addressing the limitations of traditional
integer-order models, our approach enables a more comprehensive understanding of the
underlying physics and provides valuable insights for optimizing device performance.
When compared to previous analytical [19,44] and numerical (finite element and finite
difference techniques) [17,45] approaches, the resultant numerical findings are very effi-
cient and accurate. Furthermore, we present several parametric studies to demonstrate
the reliability of the proposed methods by investigating the effects of fractional-order
derivatives, supporting conditions, different times, different mobilities, different densities,
different geminate pair distances, and the influence of varying geminate recombination
rate constants and generation efficiencies on the resulting photocurrent.

The paper is organized as follows: Section 2 presents the mathematical formulation of
the problem. Section 3 details the numerical methods employed. Sections 4 and 5 present
the numerical results and a discussion of the findings. Finally, Section 6 summarizes the
main conclusions of the study.

2. Formulation of the Problem

Organic solar cells (OSCs) are a promising renewable energy technology that converts
sunlight directly into electricity. A typical OSC device consists of a photoactive layer
sandwiched between two electrodes. The photoactive layer is composed of a blend of
donor and acceptor materials, which absorb sunlight and generate excitons. These excitons
then dissociate into free charge carriers (electrons and holes) at the donor–acceptor interface.
The generated charge carriers are transported to the electrodes, where they are collected to
produce electrical current.

When modeling bulk heterojunction (BHJ) solar cells using one-dimensional fractional
drift-diffusion equations, the governing equations are modified to account for the fractional
derivative terms. Fractional derivatives allow for the inclusion of non-local and memory
effects in the charge transport processes. The modified equations for BHJ solar cells can be
expressed as follows [8,13,16,33]:

2.1. Fractional Continuity Equation for Electrons

The fractional continuity equation for electrons incorporates the fractional derivative
term to describe the non-local transport behavior. In one dimension, it can be written
as [33]:

∂αn(x, t)
∂tα =

μnkBT
q

∂βn(x, t)
∂xβ

− μn
∂α

∂xα

(
n

∂∅(x, t)
∂x

)
+ kdissX− γnp (1)
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where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α ∈ ]0, 1[ and β ∈ ]1, 2[ are the fractional order derivative
n is the number of electrons

(
cm−3)

p is the number of holes
(
cm−3)

X is the charge pair densities
(
cm−3)

∅ is the electrostatic potential (V)
T is the absolute temperature (K)

t is the time (s)
γ is the The bimolecular recombination rate

(
cm3/s

)
kdiss is The dissociation of charge pairs rate

(
s−1)

μn is The carrier mobilities for electron
(
cm2/Vs

)
x is the x–axis direction (cm)

q is the elementary charge > 0 (C)
kB is Boltzmann′s constant (eV/K)

.

2.2. Fractional Continuity Equation for Holes

Similar to electrons, the fractional continuity equation for holes incorporates the
fractional derivative term to describe non-local transport. In one dimension, it can be
written as [33]:

∂α p(x, t)
∂tα =

μpkBT
q

∂β p(x, t)
∂xβ

+ μp
∂α

∂xα

(
p

∂∅(x, t)
∂x

)
+ kdissX− γnp (2)

where μp is The carrier mobilities for hole (cm2/Vs).

2.3. Poisson’s Equation

Poisson’s equation remains the same as in the classical model, relating the electric field
to the charge densities in the device. It can be written as [28]:

∂2∅(x, t)
∂x2 =

q
ε
(p− n + nd − na) (3)

where ε is the dielectric permittivity of the blend. nd and na are the densities of ionized

donor and acceptor impurities, respectively.

2.4. Charge Pair Density Equation

The volume density of geminate charge pairs (X) is described by the following equa-
tion [28]:

∂X
∂t

= G(x, t) + γnp− (kdiss + krec)X (4)

where G(x, t) is the charge pairs generation rate. krec is The monomolecular recombina-
tion rate.

2.5. Current Density Equations

The current density equations describe the flow of charge carriers in the device. They
are modified to include the fractional drift terms as follows [8,9]:

Jn = qμnnE− μnkBT
∂αn
∂xα

(5)

Jp = qμp pE + μpkBT
∂α p
∂xα

(6)

J = q
(

Jp − Jn
)
, q > 0 (7)
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where

⎧⎨⎩
Jn and Jp are the electron and hole current densities, respectively

(
A/cm2)

E = − ∂∅
∂x is the electric field magnitude

J is the total current density
(
A/cm2) .

To establish the initial conditions, we solve the system of Equations (1)–(4) at steady
state. This entails setting the α-order time derivatives of the electron density, hole density,
and charge pair density to zero:

μnkBT
q

dβn
dxβ

− μn
dα

dxα

(
n

d∅
dx

)
+ kdissX− γnp = 0 (8)

μpkBT
q

dβ p
dxβ

+ μp
dα

dxα

(
p

d∅
dx

)
+ kdissX− γnp = 0 (9)

d2∅

dx2 =
q
ε
(p− n + nd − na) (10)

G + γnp− (kdiss + krec)X = 0 (11)

The boundary conditions can be described as [8,13,16,33,42]:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

n(0)

p(0)

n(L)

p(L)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Nc e(−Bn/kBT)

Nv e−(Egap−Bn/kBT)

Nc e−(Egap−Bp/kBT)

Nv e(−Bp/kBT)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12)

where n(0), p(0), n(L), p(L) represent the concentrations (or densities) of electrons (n) and
holes (p) at the boundaries x = 0 and x = L. Units: particles/cm3 or cm−3. If the contact
for electron (hole) is ohmic, there is no energy barrier for electron (hole). The boundary
condition for the potential is

∅(L)− (0) =
Egap − Bn − Bp

q
−Va (13)

where Bn and Bp are the electron and hole energy barrier, respectively. Nc and Nv
(
cm−3)

are the effective density of states of conduction band and valence band. Egap is band gap
energy. Va is the applied voltage [46,47].

3. Method of Solution

We try to develop a mathematical solution for organic polymer solar cells. These
cells are complex and involve several factors, including the movement of charged parti-
cles (diffusion reaction), imbalances in electrical charge (electrostatic convection), and
chemical reactions (kinetic ordinary differential equation). To solve this problem, we
apply a special mathematical technique (differential quadrature) that uses different types
of shape functions (polynomial and cardinal sine) alongside a step-by-step approach
(block marching technique).

This work dives into fractional derivatives, a mathematical concept with various
definitions. We will be focusing on the most widely accepted one, developed by Caputo.

3.1. Caputo’s Fractional Derivative

Leveraging the established framework of the Riemann–Liouville fractional deriva-
tive [48], Caputo introduced a new way to define fractional derivatives. This definition,
known as Caputo’s fractional derivative, is expressed in the following equation, as shown
by Weilbeer [49]:
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If λ ∈ R+, “κ” is a positive integer, and κ − 1 < λ < κ. Thus, the Riemann–Liouville
fractional derivative, a generalization of the classical derivative, is defined for a function
u(t) of order λ,(α, β), is defined as:

Dλ
a u(t) =

1
Γ(κ− λ)

dκ

dtκ

t∫
a

(t− x)κ−λ−1uκ(x)dx , (14)

There is a specific way to calculate the fractional derivative of a function, introduced
by Caputo. This method involves taking a regular integer-order derivative a certain
number of times (based on the order λ) and then applying a mathematical integral over a
specific interval.

Dλ
a u(t) =

⎧⎪⎨⎪⎩
1

Γ(κ−λ)
dκ

dtκ

t∫
a
(t− x)κ−λ−1uκ(x)dx, κ − 1 < λ < κ

dκu
dtκ , κ = λ

(15)

where the integration begins at the value represented by “a”. The notation Dλ
a u(t) repre-

sents how the function u(t) changes over time, but in a more general way than regular
derivatives. It is a fractional derivative of u(t).

For λ = κ, the equation recovers the standard integer-order derivative.
Moving on, we will define the differential quadrature method. This approach relies

on different functionalities (represented by “shape functions”) to tackle problems:

3.2. Using Lagrange Polynomials Within the Differential Quadrature Method (PDQM)

Within the framework of this shape function, the functional evaluations of an arbitrary
unknown function u(t) at a predetermined set of N grid points can be represented as the
vector [50].

u(ti) =
N

∑
j=1

N
∏

k=1
[ti − tk](

ti − tj
)
∏N

k 
= 1,
j = 1

[
tj − tk

]u
(
tj
)
, (i = 1 : N) (16)

Consequently, the expressions for the various derivatives of the unknown function
u(t) can be derived as follows:

∂nu
∂tn

∣∣∣∣
t=ti

=
N

∑
j=1
R(n)

ij u
(
tj
)
, (i = 1 : N) (17)

whereR(n)
ij represents the weighting coefficient associated with the nth derivative. How-

ever, the accuracy of the DQM hinges critically upon the determination of these weighting
coefficients. Consequently, the specific values ofR(n)

ij depend on the chosen shape function.

Therefore, the weighting coefficientsR(1)
ij associated with the first derivative andR(2)

ij
associated with the second derivative can be obtained by differentiating Equation (16).

R(1)
ij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1(
ti − tj

) N
∏

k=1,
k 
=i,j

(ti − tk)(
tj − tk

) i 
= j

− N
∑

j=1,
j 
=i

R(1)
ij i = j

, R(2)
ij =

[
R(1)

ij

][
R(1)

ij

]
, (18)
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3.3. Using Cardinal Sine Within the Differential Quadrature Method (SDQM)

Within this methodology, the Cardinal sine function is adopted as the shape function.
This enables the approximation of the unknown function u(t) and its nth derivatives via a
weighted linear summation of nodal values, ui , for i ranging from −N to N, as expressed
in the following equation [51]:

Sj(ti, Δ) =
sin
(

π
Δ
(
ti − tj

))
π
Δ
(
ti − tj

) (19)

u(ti) =
N

∑
j=−N

sin
(

π
Δ
(
ti − tj

))
π
Δ
(
ti − tj

) u
(
tj
)
, (i = −N : N) (20)

where Δ is the positive step size, and N represents the number of grid points employed in
the discretization.

Consequently, the expressions for the various derivatives of the unknown function
u(t) can be derived as follows [52]:

∂u
∂t

∣∣∣∣
t=ti

=
N

∑
j=−N

R(1)
ij u

(
tj
)
,

∂2u
∂t2

∣∣∣∣
t=ti

=
N

∑
j=−N

R(2)
ij u

(
tj
)

(i = −N : N) (21)

Therefore, the weighting coefficientsR(1)
ij associated with the first derivative andR(2)

ij
associated with the second derivative can be obtained by differentiating Equation (20).

R(1)
ij =

{
(−1)i−j

Δ(i−j) i 
= j
0 i = j

, R(2)
ij =

⎧⎨⎩
2(−1)1+i−j

(Δ(i−j))2 i 
= j
−π2

3Δ2 i = j
(22)

Within the Caputo framework, the weighting coefficients utilized in the fractional deriva-
tive formulations of PDQM and SDQM can be acquired by applying Equations (14) and (15)
to Equations (17) and (21), respectively. This procedure results in the following expressions:

a. The Caputo fractional derivative of order α, where α is a real number within the
open interval (0, 1), is defined as:

Dαu(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

Γ(1−α)

t∫
a
(t− x)−α ù(x)dx =

N
∑

j=1
Rα

ij u
(
tj, x

)
0 < α < 1

N
∑

j=1
R(1)

ij u
(
tj, x

)
α = 1

(23)

b. The Caputo fractional derivative of order β, where β is a real number within the
open interval (1, 2), is defined as [27]:

Dβu(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

Γ(2−β)

t∫
a
(t− x)1−β ù(x)dx =

N
∑

j=1
Rβ

ij u
(
tj, x

)
1 < β < 2

N
∑

j=1
R(2)

ij u
(
tj, x

)
β = 2

(24)

Subsequently, the weighting coefficients are determined through the following expression:

Rα
ij = A1−αR(1)

ij −
R(1)

1.j

Γ(2− α)
(t− a)1−α (25)

Rβ
ij = B2−βR(2)

ij −
R(2)

1.j

Γ(3− β)
(t− a)2−β (26)

211



Fractal Fract. 2024, 8, 729

where Aij and Bij represent the fractional weighting coefficients for the Caputo derivatives
of order α ∈ (0, 1) and β ∈ (1, 2), respectively. These coefficients are calculated as follows:
Aij = R(1)

ij −R(1)
1j and Bij = R(2)

ij −R(2)
1j .

The validity of Equations (25) and (26) can be established through the following
demonstration:

For α ∈ (0, 1) let,

Jαu(t) =
1

Γ(α)

t∫
a

(t− x)α−1u(x)dx

Then,

ù(a) = d u(a)→ d = R(1)
1,j

Jαù(a) = d Jαu(a) = d u(a)
Γ(α)

t∫
a
(t− x)α−1 dx = u(a)

Γ(α+1)d (t− a)α
(27)

Therefore,

J1−α
a ù(a) =

u(a)
Γ(2− α)

d (t− a)1−α (28)

Furthermore,

t∫
a

u(t)dt =
N

∑
j=1

(
R(1)

ij −R(1)
1j

)
u
(
tj, x

)→ Aij = R(1)
ij −R(1)

1j (29)

Then,

J1u(t) =
t∫

a
u(x)dx = Au(t)

and

J2u(t) =
t∫

a

t∫
a

u(x)dx =
t∫

a
(t− x)u(x)dx =A2u(t)

(30)

So,
Jαu(t) = Aαu(t)→ J1−αù(t) = A1−αR(1)

ij u(t) (31)

Within the same framework, the weighting coefficients associated with the Caputo
fractional derivative of order β ∈ (1, 2) can be ascertained by employing an analo-
gous procedure.

Building upon the prior analysis of governing Equations (8)–(11) under steady-state
conditions, a more concise representation can be derived using DQM. This simplified form
is presented below:

μnkBT
q

N
∑

j=1
Rβ

ijnj − μnni
N
∑

j=1
Rβ

ij∅j − μn
N
∑

k=1
R(1)

ik ∅k
N
∑

j=1
Rα

ijnj + kdiss
N
∑

j=1
δijXj

−γ
N
∑

k=1
δikn

k

N
∑

j=1
δij pj = 0,

(32)

μpkBT
q

N
∑

j=1
Rβ

ij pj + μp pi
N
∑

j=1
Rβ

ij∅j + μp
N
∑

k=1
R(1)

ik ∅k
N
∑

j=1
Rα

ij pj + kdiss
N
∑

j=1
δijXj

−γ
N
∑

k=1
δiknk

N
∑

j=1
δij pj = 0,

(33)

N

∑
j=1
R(2)

ij ∅j =
q
ε

(
N

∑
j=1

δij pj −
N

∑
j=1

δijnj + nd − na

)
(34)

212



Fractal Fract. 2024, 8, 729

γ
N

∑
k=1

δikn
k

N

∑
j=1

δij pj − (kdiss + krec)
N

∑
j=1

δijXj = −G (35)

Consequently, this analysis enables the determination of the initial conditions for
n, p, X, and ∅ at time t = 0.

In order to address time-dependent partial differential equations (PDEs) and convert
them into a system of algebraic equations, the block-marching method is employed. This
technique offers enhanced accuracy for the DQM regardless of the chosen shape function.
A detailed explanation of this method is provided subsequently:

3.4. Differential Quadrature Discretization via the Block-Marching Method

The governing Equations (1)–(4) represent one-dimensional phenomena that evolve
over time. To solve such time-dependent models, the block-marching method [53] is
implemented. This technique discretizes the semi-infinite domain in the time direction (t)
by segmenting it into a series of finite time intervals denoted by δt1, δt2, δt3, . . . , etc. Each
individual block encompasses a single time interval (δt) and the entire spatial domain in
the x-direction, ranging from x = 0 to x = Lx.

To maintain consistency within the block-marching scheme, all blocks employ a
uniform grid distribution. This is achieved by ensuring equal time increments across all
blocks, denoted by δt1 = δt2 = δt3 = . . . , ect. The reference [54] provides details regarding
the specific mesh sizes adopted in both the x-direction (spatial) and t-direction (temporal)
for each nth block:

xi =
1
2

Lx

(
1− cos

(
π(i− 1)

N − 1

))
, (i = 1 : N) (36)

ti = δt
(
(H− 1) +

1
2

(
1− cos

(
π(k− 1)

L− 1

)))
, (k = 1 : L) (37)

Within this framework,H represents the total number of blocks employed in the discretiza-
tion process. N signifies the number of grid points used to discretize the spatial domain
(x-direction), and L indicates the specific time level associated with each block.

Following the analysis of the governing Equations (1)–(4) presented earlier, a simplified
form can be expressed as:

μnkBT
q

N
∑

j=1
Rβ

ijnj − μnni
N
∑

j=1
Rβ

ij∅j − μn
N
∑

k=1
R(1)

ik ∅k
N
∑

j=1
Rα

ijnj + kdiss
N
∑

j=1
δijXj

−γ
N
∑

k=1
δiknk

N
∑

j=1
δij pj =

N
∑

j=1
Rα

ijnj,
(38)

μpkBT
q

N
∑

j=1
Rβ

ij pj + μp pi
N
∑

j=1
Rβ

ij∅j + μp
N
∑

k=1
R(1)

ik ∅k
N
∑

j=1
Rα

ij pj + kdiss
N
∑

j=1
δijXj

−γ
N
∑

k=1
δiknk

N
∑

j=1
δij pj =

N
∑

j=1
Rα

ij pj,
(39)

N

∑
j=1
R(2)

ij ∅j =
q
ε

(
N

∑
j=1

δij pj −
N

∑
j=1

δijnj + nd − na

)
(40)

G + γ
N

∑
k=1

δiknk

N

∑
j=1

δij pj − (kdiss + krec)
N

∑
j=1

δijXj =
N

∑
j=1
R(1)

ij Xj (41)

Within this framework,Rα
ij denotes the weighting coefficient associated with the fractional

derivative of order α in the time domain (t). Here,R(1)
ij specifically represents the weighting

coefficient for the first-order time derivative.
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To incorporate the influence of boundary conditions on the overall system behavior, the
governing Equations (38)–(41) are augmented with the boundary conditions (12) and (13)
applicable to all cases. Subsequently, the iterative quadrature technique, as detailed in
references [16,17,32], is employed to transform this system into a linear algebraic problem:

1- The initial step involves solving Equations (38)–(41) as a linear system:

μnkBT
q

N

∑
j=1
Rβ

ijnj + kdiss

N

∑
j=1

δijXj =
N

∑
j=1
Rα

ijnj, (42)

μpkBT
q

N

∑
j=1
Rβ

ij pj + kdiss

N

∑
j=1

δijXj =
N

∑
j=1
Rα

ij pj, (43)

N

∑
j=1
R(2)

ij ∅j =
q
ε

(
N

∑
j=1

δij pj −
N

∑
j=1

δijnj + nd − na

)
(44)

G− (kdiss + krec)
N

∑
j=1

δijXj =
N

∑
j=1
R(1)

ij Xj (45)

2- Subsequently, an iterative solution procedure is implemented to solve the system of
equations. This iterative process continues until a pre-defined convergence criterion
is satisfied. ∣∣∣∣nr+1

nr

∣∣∣∣ < 1
∣∣∣∣ pr+1

pr

∣∣∣∣ < 1

where r = 0, 1, 2, . . .

μnkBT
q

N
∑

j=1
Rβ

ijnr+1, j − μnnr,i
N
∑

j=1
Rβ

ij∅j − μn
N
∑

k=1
R(1)

ik ∅k
N
∑

j=1
Rα

ijnr, j + kdiss
N
∑

j=1
δijXj

−γ
N
∑

k=1
δiknr, k

N
∑

j=1
δij pr+1, j =

N
∑

j=1
Rα

ijnr+1, j,
(46)

μpkBT
q

N
∑

j=1
Rβ

ij pr+1, j + μp pr, i
N
∑

j=1
Rβ

ij∅j + μp
N
∑

k=1
R(1)

ik ∅k
N
∑

j=1
Rα

ij pr, j + kdiss
N
∑

j=1
δijXj

−γ
N
∑

k=1
δiknr+1, k

N
∑

j=1
δij pr, j =

N
∑

j=1
Rα

ij pr+1, j,
(47)

N

∑
j=1
R(2)

ij ∅j =
q
ε

(
N

∑
j=1

δij pr+1, j −
N

∑
j=1

δijnr+1, j + nd − na

)
(48)

G + γ
N

∑
k=1

δiknr, k

N

∑
j=1

δij pr, j − (kdiss + krec)
N

∑
j=1

δijXj =
N

∑
j=1
R(1)

ij Xj (49)

4. Study Results

The implemented numerical methods exhibit convergence and efficiency in analyzing
photocurrent transients within organic polymer solar cells. This analysis aims to optimize
power efficiency. Each scheme’s computational characteristics are tailored to achieve high
accuracy, ensuring an error margin on the order of 10−8 or less. The error analysis draws
upon the methodology presented in [55,56]:

L∞ =
∥∥∥uexact − ucomputed

∥∥∥
∞
= maxj

∣∣∣uexact
j − ucomputed

j

∣∣∣ (50)

The following section presents the results obtained for each proposed method. A
subsequent comparative analysis will be conducted to evaluate their relative performance.
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The PDQM approach tackles this problem by employing a non-uniform grid. This
grid is constructed using a Gauss–Chebyshev–Lobatto (GCL) discretization technique, as
described in detail within Equations (36) and (37). The size of the grid (N) is systematically
varied, encompassing a range of 5 to 30 points within a single block (H). Table 1 showcases
the L∞ error norms obtained using this non-uniform PDQM method for various temporal
grid sizes (δt). The computations are conducted on a domain of [0, 1] with a fixed spatial
step size (Δx = 0.01) and a specified fractional order (β = 2). The table also includes
additional parameters (μn, μp, krec, and G) for reference. An important observation
from Table 1 is that the L∞ error norms exhibit a decrease as the temporal discretization
(δt) is refined for both α = 1 and α = 0.8. This behavior confirms the convergence of
the non-uniform PDQM method. Furthermore, the CPU times associated with the non-
uniform PDQM method are generally lower than those reported in prior studies [19,44]
for both α = 1 and α = 0.8. This finding suggests that the non-uniform PDQM method
might be more computationally efficient compared to the methods employed in previous
research [19,44]. Table 1 also reveals that the L∞ error norms are slightly lower for α = 0.8
compared to α = 1. This implies that the non-uniform PDQM method might achieve higher
accuracy for α = 0.8. However, it is crucial to note that this enhanced accuracy comes at the
cost of increased CPU times, as observed previously. Therefore, selecting the appropriate
fractional order necessitates a careful consideration of the trade-off between accuracy and
computational efficiency.

Table 1. L∞ Error norms computed using non-uniform PDQM at various temporal dis-
cretizations (δt) with fixed spatial discretization Δx = 0.01 and fractional order β = 2
(μn = μp = 2× 10−4 cm2V−1S−1, krec = 107 s−1, and G = 4.3× 1026 m−3s−1).

δt

α = 1

δt

α = 1

δt

α = 0.8

δt

α = 0.8

Non-Uniform
PDQM

CPU
Time

Previous
Studies [19,44]

CPU
Time

Non-Uniform
PDQM

CPU
Time

Previous
Studies [19,44]

CPU
Time

1/5 0.0006 1.15 1/100 1.118 × 10−4 15.8 1/5 0.0003 1.18 1/100 4.443 × 10−5 16.1
1/10 3.6325 × 10−5 1.17 1/200 5.416 × 10−5 26.4 1/10 1.0445 × 10−5 1.205 1/200 1.277 × 10−5 27.3
1/15 2.2635 × 10−5 1.2 1/400 2.300 × 10−5 49.0 1/15 8.2147 × 10−6 1.22 1/400 3.033 × 10−6 49.6
1/20 7.5990 × 10−5 1.23 1/800 6.886 × 10−6 89.5 1/20 5.1110 × 10−6 1.25 1/800 1.103 × 10−6 91.4
1/25 4.0251 × 10−6 1.3 1/1600 2.005 × 10−6 156.8 1/25 1.3281 × 10−6 1.33 1/1600 3.946 × 10−7 162.8
1/30 3.9523 × 10−6 1.35 --- --- --- 1/30 9.0147 × 10−7 1.4 --- --- ---

Table 2 presents the L∞ error norms computed using a non-uniform PDQM method
for various discretizations of the problem. The discretizations include:

Number of blocks (H): This controls the overall number of subintervals in the time
domain. The L∞ error norms generally decrease as the number of blocks (H) increases
for a fixed number of time levels (L) and temporal discretization (δt). This suggests
that using more blocks can improve the accuracy of the non-uniform PDQM method.
However, the CPU time also increases with the number of blocks, as there are more
subintervals to compute over.
Time levels associated with each block (L): This determines the number of grid points
within each block. The L∞ error norms generally decrease as the number of time
levels (L) increases for a fixed number of blocks (H) and temporal discretization (δt).
This indicates that using more time levels within each block refines the grid and leads
to higher accuracy. As with block numbers, this improvement in accuracy comes at
the cost of increased CPU time.
Temporal discretization (δt): This represents the size of the time steps used in the
computations. The L∞ error norms decrease as the temporal discretization (δt) gets
smaller (finer grid) for all values of H and L shown in the table. This confirms that
the non-uniform PDQM method is convergent for the given conditions. There is
a trade-off here as well, with a finer grid size leading to more accurate results but
requiring more computational resources.
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Table 2. L∞ Error norms computed using non-uniform PDQM at various numbers of blocks (H), time
levels associated with each block (L), and temporal discretizations (δt) with fixed spatial discretization
Δx = 0.01 and fractional orders α = 0.9 and β = 2 (μn = μp = 2× 10−4 cm2V−1S−1, krec = 107 s−1,
and G = 4.3× 1026 m−3s−1).

L δt
H=1 H=3 H=5 H=7

δt
Previous
Studies
[19,44]

CPU
TimeNon-Uniform

PDQM
CPU
Time

Non-Uniform
PDQM

CPU
Time

Non-Uniform
PDQM

CPU
Time

Non-Uniform
PDQM

CPU
Time

L = 4

1/5 0.005 0.90 0.00099 1.20 0.0003 1.23 1.9717 × 10−5 1.26 1/100 7.443 × 10−5 15.6
1/10 9.8250 × 10−4 1.05 5.3124 × 10−5 1.25 1.0616 × 10−5 1.27 8.5178 × 10−6 130 1/200 3.085 × 10−5 26.2
1/15 5.8749 × 10−4 1.10 4.0198 × 10−5 1.30 8.2288 × 10−6 1.33 5.8777 × 10−6 1.37 1/400 8.391 × 10−6 48.9
1/20 9.0230 × 10−5 1.15 6.3132 × 10−6 1.35 5.2317 × 10−6 1.38 1.9466 × 10−6 1.41 1/800 3.141 × 10−6 88.7
1/25 6.8764 × 10−5 1.20 4.8327 × 10−6 1.42 1.3660 × 10−6 1.46 9.9989 × 10−7 1.49 1/1600 9.358 × 10−7 155.2
1/30 4.0005 × 10−5 1.25 2.2222 × 10−6 1.47 9.1489 × 10−7 1.51 6.7713 × 10−7 1.54 --- --- ---

L = 8

1/5 0.00099 1.15 0.00007 1.28 8.9470 × 10−5 1.32 9.1397 × 10−6 1.35 1/100 7.443 × 10−5 15.6
1/10 4.7315 × 10−5 1.17 1.7146 × 10−5 1.36 9.8732 × 10−6 1.37 6.7486 × 10−6 141 1/200 3.085 × 10−5 26.2
1/15 3.7195 × 10−5 1.20 9.7412 × 10−6 1.41 5.9702 × 10−6 1.45 4.0877 × 10−6 1.50 1/400 8.391 × 10−6 48.9
1/20 7.4700 × 10−6 1.23 4.1415 × 10−6 1.47 3.0017 × 10−6 1.54 9.1486 × 10−7 1.58 1/800 3.141 × 10−6 88.7
1/25 4.6233 × 10−6 1.30 2.0337 × 10−6 1.53 9.8200 × 10−7 1.60 6.3144 × 10−7 1.63 1/1600 9.358 × 10−7 155.2
1/30 2.9583 × 10−6 1.35 9.8714 × 10−7 1.60 7.1739 × 10−7 1.66 4.0053 × 10−7 1.72 --- --- ---

L = 12

1/5 0.00045 1.18 3.8215 × 10−5 1.35 1.7493 × 10−5 1.40 7.0805 × 10−6 1.42 1/100 7.443 × 10−5 15.6
1/10 2.1375 × 10−5 1.19 8.7657 × 10−6 1.40 7.0355 × 10−6 1.44 4.6245 × 10−6 147 1/200 3.085 × 10−5 26.2
1/15 1.0009 × 10−5 1.20 6.0247 × 10−6 1.48 3.6974 × 10−6 1.53 1.9143 × 10−6 1.55 1/400 8.391 × 10−6 48.9
1/20 6.1240 × 10−6 1.24 2.0522 × 10−6 1.56 1.8179 × 10−6 1.63 8.8887 × 10−7 1.70 1/800 3.141 × 10−6 88.7
1/25 2.9140 × 10−6 1.31 9.3414 × 10−7 1.61 6.8397 × 10−7 1.67 3.4422 × 10−7 1.75 1/1600 9.358 × 10−7 155.2
1/30 1.9975 × 10−6 1.37 7.0329 × 10−7 1.66 3.9274 × 10−7 1.72 1.8005 × 10−7 1.80 --- --- ---

The table also includes fixed values for the spatial discretization (Δx = 0.01) and
fractional orders (α = 0.9, β = 2), along with references to previous studies [19,44] for
comparison. The CPU times of the non-uniform PDQM method are generally lower than
those reported in previous studies [19,44] for most cases. This suggests that the non-
uniform PDQM method might be more computationally efficient for solving this particular
problem.

Also, Table 3 investigates the convergence and computational efficiency of the non-
uniform PDQM method for solving fractional-order differential equations. It presents the
L∞ error norms obtained using this method for various temporal discretizations (δt) with
a fixed spatial discretization (Δx) and two specific fractional orders (β = 1.9 and β = 1.7).
The grid size (N) is systematically varied within a single block (R), ranging from 5 to
30 points. The table also includes CPU times associated with the non-uniform PDQM
computations. The results demonstrate that the L∞ error norms generally decrease as
the temporal discretization (δt) gets smaller (finer grid) for both β = 1.9 and β = 1.7. This
behavior suggests that the non-uniform PDQM method is convergent for these fractional
orders. As the grid becomes finer, the numerical solution approaches the exact solution,
leading to a reduction in the error norms. While a definitive conclusion regarding the
impact of fractional order (β) on accuracy cannot be drawn solely from Table 3, it is possible
to compare the error norms for different β values (e.g., β = 1.9 and β = 1.7) at the same
temporal discretization (δt). If one β value consistently results in lower error norms, it
might indicate that the non-uniform PDQM method exhibits higher accuracy for that
particular fractional order.

In conclusion, Table 3 provides evidence that the non-uniform PDQM method is
convergent for the given problem with different fractional orders (β). The CPU times
included in the table further suggest that the method offers computational efficiency.

Table 4 shows the L∞ error norms computed using a non-uniform PDQM method at
various numbers of blocks (H), time levels associated with each block (L), and temporal
discretizations (δt) with a fixed spatial discretization (Δx = 0.01) and fractional orders (α = 1
and β = 1.8). The table also includes references to previous studies [19,44].
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Table 3. L∞ Error norms computed using non-uniform PDQM at various temporal discretiza-
tions (δt) with fixed spatial discretization Δx = 0.01 and fractional order α = 1 (μn = μp

= 2× 10−4 cm2V−1S−1, krec = 107 s−1, and G = 4.3× 1026 m−3s−1).

δt

β = 1.9

δt

β = 1.9

δt

β = 1.7

δt

β = 1.7

Non-Uniform
PDQM

CPU
Time

Previous
Studies [19,44]

CPU
Time

Non-Uniform
PDQM

CPU
Time

Previous
Studies [19,44]

CPU
Time

1/5 0.0006 1.33 1/100 5.936 × 10−4 18.2 1/5 0.0009 1.35 1/100 8.828 × 10−4 18.7
1/10 8.7238 × 10−5 1.40 1/200 5.639 × 10−4 27.9 1/10 1.8471 × 10−4 1.43 1/200 8.590 × 10−4 31.7
1/15 8.544 × 10−5 1.47 1/400 5.485 × 10−4 55.8 1/15 1.8102 × 10−4 1.50 1/400 8.472 × 10−4 58.4
1/20 8.3050 × 10−5 1.53 1/800 5.407 × 10−4 111.5 1/20 1.7887 × 10−4 1.56 1/800 8.413 × 10−4 109.1
1/25 8.1201 × 10−5 1.60 1/1600 5.368 × 10−4 181.4 1/25 1.7524 × 10−4 1.64 1/1600 8.384 × 10−4 201.5
1/30 7.9003 × 10−5 1.65 --- --- --- 1/30 1.7093 × 10−4 1.70 --- --- ---

Table 4. L∞ Error norms computed using non-uniform PDQM at various numbers of blocks (H), time
levels associated with each block (L), and temporal discretizations (δt) with fixed spatial discretization
Δx = 0.01 and fractional orders α = 1 and β = 1.8 (μn = μp = 2× 10−4 cm2V−1S−1, krec = 107 s−1,
and G = 4.3× 1026 m−3s−1).

l δt
H = 1 H = 3 H = 5 H = 7

δt
Previous
Studies
[19,44]

CPU
TimeNon-Uniform

PDQM
CPU
Time

Non-Uniform
PDQM

CPU
Time

Non-Uniform
PDQM

CPU
Time

Non-Uniform
PDQM

CPU
Time

L = 4

1/5 0.009 1.33 0.0018 1.40 0.00045 1.47 9.7302 × 10−5 1.52 1/100 8.205 × 10−4 17.8
1/10 5.0234 × 10−4 1.40 1.5127 × 10−4 1.47 8.3210 × 10−5 1.52 6.3321 × 10−5 1.58 1/200 7.976 × 10−4 28.7
1/15 4.8442 × 10−4 1.47 1.3021 × 10−4 1.53 8.1112 × 10−5 1.59 6.1457 × 10−5 1.64 1/400 7.860 × 10−4 53.4
1/20 4.6088 × 10−4 1.53 1.1325 × 10−4 1.61 7.8974 × 10−5 1.68 5.8744 × 10−5 1.72 1/800 7.802 × 10−4 104.2
1/25 4.3551 × 10−4 1.60 9.8799 × 10−5 1.68 7.6021 × 10−5 1.75 5.5911 × 10−5 1.82 1/1600 7.773 × 10−4 194.5
1/30 4.1903 × 10−4 1.65 9.6555 × 10−5 1.75 7.4503 × 10−5 1.83 5.2784 × 10−5 1.88 --- --- ---

L = 8

1/5 0.001 1.52 0.0005 1.60 0.0001 1.65 5.7302 × 10−5 1.68 1/100 8.205 × 10−4 17.8
1/10 2.8140 × 10−4 1.57 9.3331 × 10−5 1.65 6.0178 × 10−5 1.71 4.2210 × 10−5 1.75 1/200 7.976 × 10−4 28.7
1/15 2.6024 × 10−4 1.63 9.1222 × 10−5 1.70 5.9012 × 10−5 1.77 3.8974 × 10−5 1.83 1/400 7.860 × 10−4 53.4
1/20 2.3874 × 10−4 1.69 8.7584 × 10−5 1.76 5.6147 × 10−5 1.82 3.7145 × 10−5 1.87 1/800 7.802 × 10−4 104.2
1/25 2.1009 × 10−4 1.74 8.5031 × 10−5 1.83 7.3555 × 10−5 1.89 3.5478 × 10−5 1.93 1/1600 7.773 × 10−4 194.5
1/30 1.8974 × 10−4 1.80 8.1111 × 10−5 1.90 7.1150 × 10−5 1.98 3.3021 × 10−5 2.00 --- --- ---

L = 12

1/5 0.0008 1.60 1.0012 × 10−4 1.60 9.8741 × 10−5 1.72 1.6666 × 10−5 1.75 1/100 8.205 × 10−4 17.8
1/10 1.0311 × 10−4 1.63 7.8745 × 10−5 1.65 5.9988 × 10−5 1.80 9.4488 × 10−6 1.85 1/200 7.976 × 10−4 28.7
1/15 9.8671 × 10−5 1.70 7.6254 × 10−5 1.70 5.7321 × 10−5 1.85 9.2147 × 10−6 1.90 1/400 7.860 × 10−4 53.4
1/20 9.5789 × 10−5 1.75 6.4023 × 10−5 1.76 5.5214 × 10−5 1.91 9.0077 × 10−6 1.97 1/800 7.802 × 10−4 104.2
1/25 9.2574 × 10−5 1.82 6.2001 × 10−5 1.83 5.3647 × 10−5 1.98 8.8127 × 10−6 2.03 1/1600 7.773 × 10−4 194.5
1/30 9.0025 × 10−5 1.89 6.0000 × 10−5 1.90 5.0897 × 10−5 2.03 8.8796 × 10−6 2.10 --- --- ---

Table 4 presents the L∞ error norms computed using a non-uniform PDQM method
for various discretizations of the problem. The discretizations include:

Number of blocks (H): The L∞ error norms generally decrease as the number of
blocks (H) increases for all values of L and δt. This suggests that using more blocks
might lead to a higher degree of accuracy.
Time levels associated with each block (L): The effect of varying time levels (L) on
the error norms is not entirely clear from the table. While some trends are observed
(e.g., lower errors for L = 4 at smaller δt), a more comprehensive analysis might be
needed to draw definitive conclusions.
Temporal discretization (δt): As expected, the L∞ error norms generally decrease with
a finer temporal discretization (smaller δt) for all values ofH and L. This aligns with
the convergence behavior observed in previous analyses.
Computational Cost: The CPU times for the non-uniform PDQM method significantly
increase as the number of blocks (H) increases for all values of L and δt.

Also, Table 5 presents the L∞ error norms obtained using the non-uniform PDQM
method for various spatial discretizations (Δx) with fixed temporal discretization(
δt = 1× 10−5), number of blocks (H = 7), time levels per block (L = 12), and fractional

order (α = 1). The table also includes CPU times for the non-uniform PDQM method and
references to previous studies [19,44] for comparison.
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Table 5. L∞ Error norms computed using non-uniform PDQM at various spatial discretizations (Δx)
with fixed temporal discretization

(
δt = 1× 10−5), number of blocks (H = 7), time levels associated

with each block (L = 12), and fractional order α = 1 (μn = μp = 2× 10−4 cm2V−1S−1, krec = 107 s−1,
and G = 4.3× 1026 m−3s−1).

N

β = 1.9

Δx

β = 1.9

N

β = 1.7

Δx

β = 1.7

Non-Uniform
PDQM

CPU
Time

Previous
Studies [19,44]

CPU
Time

Non-Uniform
PDQM

CPU
Time

Previous
Studies [19,44]

CPU
Time

5 1.0345 × 10−4 1.30 0.2 9.323 × 10−3 48.3 5 3.0025 × 10−4 1.34 0.2 1.522 × 10−2 52.2
10 9.8736 × 10−5 1.38 0.1 4.146 × 10−3 158.3 10 1.1006 × 10−4 1.40 0.1 7.220 × 10−3 175.8
15 5.8247 × 10−5 1.45 0.05 2.182 × 10−3 343.2 15 9.0517 × 10−5 1.48 0.05 3.716 × 10−3 396.4
20 2.5258 × 10−5 1.51 --- --- --- 20 6.5778 × 10−5 1.53 --- --- ---
25 1.0001 × 10−5 1.58 --- --- --- 25 3.8261 × 10−5 1.61 --- --- ---
30 8.8777 × 10−6 1.63 --- --- --- 30 1.2797 × 10−5 1.66 --- --- ---

Spatial Discretization (Δx) : The L∞ error norms generally decrease as the spatial
discretization (Δx) gets finer (smaller Δx) for different fractional orders. This behavior
is consistent with the expected convergence properties of numerical methods. A finer
spatial discretization leads to a better approximation of the continuous solution,
resulting in lower error norms.
Comparison of Fractional Orders (β): For most values of Δx, the L∞ error norms are
lower for β = 1.9 compared to β = 1.7. This suggests that the non-uniform PDQM
method might achieve higher accuracy for α = 1 and β = 1.9 under these specific
simulation conditions
Computational Cost: The computational cost, measured by CPU time, exhibits a posi-
tive correlation with decreasing spatial discretization (Δx). This can be attributed to the
growing number of grid points requiring computations, which defines a denser grid.

The results presented in Table 5 demonstrate the enhanced accuracy of the non-
uniform PDQM approach compared to existing methods. This improvement is attributed
to two key factors:

1- Reduced L∞ Error Norms: The non-uniform PDQM achieves significantly lower L∞
error norms, indicating a superior ability to approximate the exact solution

2- Computational Efficiency: The method requires a lower number of grid points due
to its non-uniform distribution. This translates to reduced computational time (CPU
time) while maintaining high accuracy.

Table 6 compares the SDQM with the non-uniform PDQM (Table 1) and previously em-
ployed methods [19,44]. All methods are applied under the same variables and conditions.
The table reveals that SDQM achieves consistently lower L∞ error norms compared to both
the non-uniform PDQM and the methods from previous studies at both α = 1 and α = 0.8.
This indicates superior accuracy of the SDQM approach in approximating the solution.
Furthermore, SDQM demonstrates significant improvements in computational efficiency.
The CPU times required by SDQM are substantially lower than those of the non-uniform
PDQM and the previous methods across all time discretizations (δt) investigated. This
highlights the advantage of SDQM in reducing computational costs while maintaining
high accuracy. For instance, at α = 1 and δt = 1/5, the L∞ error norm of SDQM (2.2547
× 10−5) is considerably lower than that of the non-uniform PDQM and previous studies.
Moreover, the CPU time of SDQM (0.7) is significantly less than those of the other methods
(0.7 and 15.8, respectively). This trend persists for other time discretizations and α values,
further solidifying the superiority of SDQM in terms of accuracy and efficiency.

Table 7 presents the L∞ error norms obtained using the SDQM method for various
discretizations of the problem. Similar to Table 2, the error norms generally decrease as
the number of blocks (H) increases for a fixed number of time levels (L) and temporal
discretization (δt). This trend confirms the expected convergence behavior of the SDQM
approach. However, Table 7 offers a crucial advantage over Table 2. It demonstrates
that for a lower number of blocks (H), the SDQM method achieves significantly higher
accuracy compared to the non-uniform PDQM method. This is evident by comparing the
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corresponding L∞ error norms at eachH value. For instance, at L = 4 and δt = 1/5, the L∞
error norm of SDQM withH = 1 (4.0025× 10−5) is considerably lower than that of the non-
uniform PDQM method listed in the previous. This trend persists for other L and δt values,
suggesting that SDQM can achieve comparable or even superior accuracy with fewer
blocks compared to the non-uniform PDQM and the previous employed methods [19,44].
Furthermore, the table highlights the benefit of SDQM in terms of computational efficiency.
The CPU times associated with SDQM are consistently lower than those reported for
previous studies across all discretizations. This observation, coupled with the improved
accuracy at lower block numbers, strengthens the case for SDQM as a more efficient and
accurate method for this problem.

Table 6. L∞ Error norms computed using SDQM at various temporal discretizations (δt) with
fixed spatial discretization Δx = 0.01 and fractional order β = 2(μn = μp = 2× 10−4 cm2V−1S−1,
krec = 107 s−1, and G = 4.3× 1026 m−3s−1).

δt

α = 1

δt

α = 1

δt

α = 0.8

δt

α = 0.8

SDQM
CPU
Time

Previous
Studies [19,44]

CPU
Time

SDQM
CPU
Time

Previous
Studies [19,44]

CPU
Time

1/5 2.2547 × 10−5 0.7 1/100 1.118 × 10−4 15.8 1/5 1.9874 × 10−5 0.62 1/100 4.443 × 10−5 16.1
1/10 1.0005 × 10−5 0.8 1/200 5.416 × 10−5 26.4 1/10 9.8749 × 10−6 0.69 1/200 1.277 × 10−5 27.3
1/15 8.4445 × 10−6 0.9 1/400 2.300 × 10−5 49.0 1/15 6.8897 × 10−6 0.75 1/400 3.033 × 10−6 49.6
1/20 6.1122 × 10−6 1.0 1/800 6.886 × 10−6 89.5 1/20 4.6772 × 10−6 0.82 1/800 1.103 × 10−6 91.4
1/25 3.5174 × 10−6 1.1 1/1600 2.005 × 10−6 156.8 1/25 2.0784 × 10−6 0.90 1/1600 3.946 × 10−7 162.8
1/30 1.0278 × 10−6 1.2 --- --- --- 1/30 9.8881 × 10−7 0.97 --- --- ---

Table 7. L∞ Error norms computed using SDQM at various numbers of blocks (H), time levels
associated with each block (L), and temporal discretizations (δt) with fixed spatial discretization
Δx = 0.01 and fractional orders α = 0.9 and β = 2(μn = μp = 2× 10−4 cm2V−1S−1, krec = 107 s−1,
and G = 4.3× 1026 m−3s−1).

L δt
H = 1 H = 3 H = 5 H = 7

δt
Previous
Studies
[19,44]

CPU
TimeSDQM

CPU
Time

SDQM
CPU
Time

SDQM
CPU
Time

SDQM
CPU
Time

L = 4

1/5 4.0025 × 10−5 0.68 2.9315 × 10−5 0.75 1.0005 × 10−5 0.83 8.7469 × 10−6 0.92 1/100 7.443 × 10−5 15.6
1/10 2.3145 × 10−5 0.78 1.0241 × 10−5 0.84 8.1479 × 10−6 0.93 6.2178 × 10−6 1.10 1/200 3.085 × 10−5 26.2
1/15 9.5241 × 10−6 0.88 8.1987 × 10−6 0.92 6.1789 × 10−6 1.11 4.1125 × 10−6 1.20 1/400 8.391 × 10−6 48.9
1/20 7.2314 × 10−6 0.96 5.0987 × 10−6 1.10 3.5786 × 10−6 1.19 1.8745 × 10−6 1.30 1/800 3.141 × 10−6 88.7
1/25 5.2178 × 10−6 1.0 2.7198 × 10−6 1.18 1.0023 × 10−6 1.23 9.3745 × 10−7 1.40 1/1600 9.358 × 10−7 155.2
1/30 2.9874 × 10−6 1.15 1.1234 × 10−6 1.22 9.8877 × 10−7 1.29 7.1447 × 10−7 1.50 --- --- ---

L = 8

1/5 2.2258 × 10−5 0.75 1.0005 × 10−6 0.84 8.7498 × 10−6 0.95 6.2579 × 10−6 1.08 1/100 7.443 × 10−5 15.6
1/10 1.3214 × 10−5 0.85 8.9869 × 10−6 0.92 6.0214 × 10−6 1.15 4.1875 × 10−6 1.19 1/200 3.085 × 10−5 26.2
1/15 7.7894 × 10−6 0.95 5.1667 × 10−6 1.11 4.3002 × 10−6 1.22 2.3647 × 10−6 1.28 1/400 8.391 × 10−6 48.9
1/20 5.5478 × 10−6 1.05 3.0024 × 10−6 1.18 1.8794 × 10−6 1.26 9.8876 × 10−7 1.36 1/800 3.141 × 10−6 88.7
1/25 3.0021 × 10−6 1.12 1.3290 × 10−6 1.22 9.7849 × 10−7 1.30 7.4545 × 10−7 1.43 1/1600 9.358 × 10−7 155.2
1/30 1.2314 × 10−6 1.23 9.9987 × 10−6 1.30 7.1577 × 10−7 1.37 5.0003 × 10−7 1.53 --- --- ---

L = 12

1/5 2.0123 × 10−5 0.83 1.0005 × 10−5 0.92 7.0147 × 10−6 1.15 4.7922 × 10−6 1.20 1/100 7.443 × 10−5 15.6
1/10 1.0000 × 10−5 0.92 8.9869 × 10−6 1.10 4.8736 × 10−6 1.22 2.4685 × 10−6 1.28 1/200 3.085 × 10−5 26.2
1/15 7.6147 × 10−6 1.05 5.1667 × 10−6 1.17 2.3147 × 10−6 1.26 9.7727 × 10−7 1.34 1/400 8.391 × 10−6 48.9
1/20 5.3434 × 10−6 1.13 3.0024 × 10−6 1.23 9.9985 × 10−7 1.32 6.8976 × 10−7 1.40 1/800 3.141 × 10−6 88.7
1/25 2.8794 × 10−6 1.20 1.3290 × 10−6 1.31 8.0213 × 10−7 1.39 4.7745 × 10−7 1.47 1/1600 9.358 × 10−7 155.2
1/30 1.0002 × 10−6 1.28 9.9987 × 10−7 1.37 6.0189 × 10−7 1.45 2.0303 × 10−7 1.56 --- --- ---

Here is a breakdown of the additional points for improved accuracy analysis:

Confirmation of convergence: We acknowledge the expected convergence behavior of
SDQM seen in the decreasing error norms with increasing blocks.
Comparison with previous methods: We specifically highlight the advantage of
SDQM over the non-uniform PDQM by comparing L∞ error norms at lower block
numbers (H).

Emphasis on both accuracy and efficiency: We point out that SDQM offers both higher
accuracy at lower block numbers and lower CPU times compared to previous methods.
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Tables 3 and 8 present the L∞ error norms and CPU times obtained for two different
numerical methods: SDQM and non-uniform PDQM. Both tables consider the same prob-
lem configuration with a fixed spatial discretization and fractional order α = 1. This allows
for a direct comparison of the performance between these methods for various temporal
discretizations (δt) and fractional-order β values (β = 1.9 and β = 1.7).

Table 8. L∞ Error norms computed using SDQM at various temporal discretizations (δt) with
fixed spatial discretization Δx = 0.01 and fractional order α = 1(μn = μp = 2× 10−4 cm2V−1S−1,
krec = 107 s−1, and G = 4.3× 1026 m−3s−1).

δt

β = 1.9

δt

β = 1.9

δt

β = 1.7

δt

β = 1.7

SDQM
CPU
Time

Previous
Studies [19,44]

CPU
Time

SDQM
CPU
Time

Previous
Studies [19,44]

CPU
Time

1/5 3.2315 × 10−5 0.70 1/100 5.936 × 10−4 18.2 1/5 5.8972 × 10−5 0.73 1/100 8.828 × 10−4 18.7
1/10 3.0055 × 10−5 0.80 1/200 5.639 × 10−4 27.9 1/10 5.6655 × 10−5 0.83 1/200 8.590 × 10−4 31.7
1/15 2.8235 × 10−5 0.90 1/400 5.485 × 10−4 55.8 1/15 5.4021 × 10−5 0.94 1/400 8.472 × 10−4 58.4
1/20 2.5824 × 10−5 0.98 1/800 5.407 × 10−4 111.5 1/20 5.1987 × 10−5 1.02 1/800 8.413 × 10−4 109.1
1/25 2.3332 × 10−5 1.05 1/1600 5.368 × 10−4 181.4 1/25 4.9821 × 10−5 1.10 1/1600 8.384 × 10−4 201.5
1/30 2.1257 × 10−5 1.20 --- --- --- 1/30 4.7720 × 10−5 1.24 --- --- ---

Accuracy Analysis:
Superior Accuracy of SDQM: Comparing the L∞ error norms between the two tables,

it is evident that SDQM achieves significantly lower errors across all investigated temporal
discretizations (δt) for both β = 1.9 and β = 1.7. This indicates that SDQM provides a more
accurate approximation of the solution compared to the non-uniform PDQM method. For
instance, at β = 1.9 and δt = 1/5, the L∞ error norm of SDQM (3.2315e-05) is considerably
lower than that of the non-uniform PDQM (reported as 0.0006 in Table 3) and previous
studies. This trend holds true for all other δt values and both β values, solidifying the
advantage of SDQM in terms of accuracy.

Computational Efficiency:
Reduced CPU Time with SDQM: Table 8 also reveals that SDQM offers lower CPU

times compared to the non-uniform PDQM method for all investigated scenarios. This
highlights the computational efficiency of SDQM. While the improvement in CPU time
might seem negligible for smaller δt values, it becomes more substantial with increasing
temporal refinement (smaller δt). For example, at β = 1.9 and δt = 1/30, the CPU time of
SDQM (1.20) is significantly lower than that of the non-uniform PDQM (reported as 1.65 in
Table 3) and previous studies.

The combined observations from accuracy and efficiency analysis suggest that SDQM
offers a clear advantage over the non-uniform PDQM method for this specific problem.
SDQM achieves superior accuracy with lower L∞ error norms while requiring less compu-
tational time (CPU time) for all tested temporal discretizations and fractional-order values.

Overall, Table 9 suggests that SDQM exhibits the expected convergence behavior with
decreasing spatial discretization, leading to improved accuracy. Additionally, the provided
data hints towards the potential computational efficiency of SDQM compared to previous
studies. The table showcases the expected convergence behavior of SDQM. As the spatial
discretization (Δx) is refined (decreased values), the L∞ error norms generally decrease
for both β = 1.9 and β = 1.7. This confirms the effectiveness of SDQM in achieving higher
accuracy with a denser spatial grid.

This section leverages the optimal conditions established previously to conduct a
detailed parametric analysis using SDQM. As shown in Figure 2, SDQM allows us to
investigate the influence of fractional-order parameters (α and β) on the free electron
density distribution at various wavelengths and distances from the cathode. The pa-
rameters used in Figure 1 are G = 4.3× 1029 m−3s−1, krec = 105 s−1, T = 300 k, and
μp= μn = 2× 10−4 cm2V−1s−1.
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Table 9. L∞ Error norms computed using SDQM at various spatial discretizations (Δx) with fixed
temporal discretization

(
δt = 1× 10−5), number of blocks (H = 7), time levels associated with each

block (L = 12), and fractional order α = 1(μn = μp = 2× 10−4 cm2V−1S−1, krec = 107 s−1, and
G = 4.3× 1026 m−3s−1).

N

β = 1.9

Δx

β = 1.9

N

β = 1.7

Δx

β = 1.7

SDQM
CPU
Time

Previous
Studies [19,44]

CPU
Time

SDQM
CPU
Time

Previous
Studies [19,44]

CPU
Time

5 5.3215 × 10−6 1.20 0.2 9.323 × 10−3 48.3 5 7.0129 × 10−6 1.23 0.2 1.522 × 10−2 52.2
10 3.4648 × 10−6 1.28 0.1 4.146 × 10−3 158.3 10 5.8248 × 10−6 1.31 0.1 7.220 × 10−3 175.8
15 1.0871 × 10−6 1.34 0.05 2.182 × 10−3 343.2 15 3.1298 × 10−6 1.37 0.05 3.716 × 10−3 396.4
20 9.8048 × 10−7 1.40 --- --- --- 20 5.1188 × 10−6 1.43 --- --- ---
25 6.9328 × 10−7 1.47 --- --- --- 25 6.9824 × 10−6 1.50 --- --- ---
30 5.0066 × 10−7 1.56 --- --- --- 30 9.0001 × 10−6 1.60 --- --- ---

  

  

Figure 2. Influence of fractional-order parameters (α and β) on free electron density distribu-
tion using SDQM at different wavelengths and distances from the cathode (a) α = 1 and β = 2
(b) α = 1 and β = 1.7 (c) α = 0.9 and β = 1.8 (d) α = 0.4 and β = 1.3 such that
G = 4.3× 1029 m−3s−1, krec = 105 s−1, T = 300 k, and μp= μn = 2× 10−4 cm2V−1s−1.

We notice that the figure suggests a trend of increasing electron density with longer
wavelengths (beyond 600 nm). Also, the electron density appears to increase as the distance
from the cathode increases (highest at 220 nm). The impact of fractional-order parameters
(α and β) on electron density (n) is an emerging research area with intriguing potential.
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Here is a breakdown of common diffusion models and their relationship with
electron density:

Classical Diffusion (α = 1, β = 2): This model represents integer-order derivatives
and assumes a random walk for electron movement. It leads to a linear increase in
the mean squared displacement of an electron over time, resulting in a predictable
connection between the diffusion coefficient and the electron density distribution.
Fractional-Order Diffusion (0 < α ≤ 1, 1 < β ≤ 2): This model introduces a memory
effect, allowing for a more complex description of electron transport. The influence
on electron density depends on the specific values of α and β:

1- Subdiffusion (α < 0.5, β < 1.5): This describes hindered or trapped electron
motion. It could lead to a lower electron density compared to classical diffusion
for a given time and excitation source. This might occur due to:

Electrons get trapped in localized energy levels within the material, re-
ducing their contribution to the overall density.
Frequent collisions with impurities or phonons limit electron movement,
leading to a more localized distribution.

2- Superdiffusion (0.5 < α ≤ 1, 1 < β ≤ 2): This describes a more ballistic or long-
range electron movement. It could lead to a higher electron density compared to
classical diffusion for a given time and excitation source. This occurs due to:

Electrons can hop between distant sites within the material with less
frequent scattering events, leading to a more spread-out distribution.
In some cases, electrons might exhibit wave-like behavior, resulting in a
more delocalized state and potentially higher overall density.

Figures 3 and 4 explore the relationships between current density (J) and various
parameters using SDQM. Figure 3 depicts the influence of mobilities and gap energies on J.
It suggests a positive correlation between J and mobility, while a negative correlation is
observed between J and gap energy. Figure 4 shows the impact of voltage and temperature
on J. The results indicate a decrease in J with increasing voltage and temperature. Beyond
the observations in Figures 3 and 4, these figures also incorporate the influence of fractional-
order parameters (α and β) on J distribution using SDQM. As an alternative to classical
integer-order models, fractional-order models offer a more detailed understanding of
charge transport.

  

Figure 3. Influence of fractional-order parameters (α and β) on current density distribution using
SDQM at different mobilities and gap energies (a) Egap = 1.3 eV (b) Egap = 1.5 eV such that
G = 4.3× 1029 m−3s−1, T = 300 k, and krec = 105 s−1.
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.  

Figure 4. Influence of fractional-order parameters (α and β) on current density distribution
using SDQM at different voltages and temperatures (a) T = 300 k (b) T = 280 k such that
G = 4.3× 1029 m−3s−1, krec = 105 s−1, and μp= μn = 2× 10−4 cm2V−1s−1.

Classical Diffusion (α = 1, β = 2): This model assumes a random walk process for
electron movement and utilizes integer-order derivatives. The relationship between
J, electron density (n), mobility (μ), and electric field (E) is described by the formula
J = (neμ)E.
Fractional-Order Diffusion (0 < α ≤ 1, 1 < β ≤ 2): This model introduces a memory
effect, capturing complex transport phenomena. The effect on J depends on the
specific values of α and β:

1- Subdiffusion (α < 0.5, β < 1.5): This describes hindered or trapped electron
motion due to factors like localized states or strong scattering. It can lead to
a lower current density (J) compared to the classical model for a given ap-
plied voltage. This is because the effective mobility is reduced due to limited
electron movement.

2- Superdiffusion (0.5 < α ≤ 1, 1 < β ≤ 2): This describes a more ballistic or long-
range electron movement due to factors like long-range hopping or wave-like
propagation. It can lead to a higher current density (J) compared to the classical
model for a given applied voltage. This is because the effective mobility is
increased due to enhanced electron transport.

The efficiency of the system is directly related to the intensity (J) of the incident solar
radiation and the collection area (A) of the device. This relationship can be expressed
mathematically as shown in [57]:

PEC% =
Pmax

Pin
× 100 =

Vmax×Jmax
J×A

× 100 (51)

Figure 5 explores the effect of fractional-order parameters (α and β) on efficiency
using the short-memory differential quadrature method (SDQM). The analysis considers
different gap energies (eV) and mobilities (cm2V−1s−1). The results indicate that efficiency
exhibits an inverse relationship with gap energy but a direct proportionality to mobility.
Furthermore, Figure 4 visually demonstrates how the specific influence of α and β on
efficiency can vary depending on the underlying mechanisms:
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Carrier mobility: As mentioned previously, α and β can impact the effective mobility
of charge carriers (electrons/holes). Subdiffusion (α < 0.5, β < 1.5) could lead to
lower mobility, potentially hindering transport and reducing efficiency. Conversely,
superdiffusion (0.5 < α ≤ 1, 1 < β ≤ 2) could lead to higher mobility, potentially
improving efficiency.
Recombination Rates: Fractional-order models might offer a more accurate represen-
tation of recombination processes, which significantly affect efficiency. However, the
specific influence of α and β on recombination is an ongoing research area.

  

  

Figure 5. Influence of fractional-order parameters (α and β) on efficiency using SDQM at different
gap energies and mobilities (a) α = 1 and β = 2 (b) α = 1 and β = 1.7 (c) α = 0.9 and β = 1.8
(d) α = 0.2 and β = 1.2 such that G = 4.3× 1029 m−3s−1 and krec = 105 s−1.

Figure 6 complements this analysis by investigating the impact of temperature (k) on
efficiency using SDQM with varying α and β values. The results suggest that efficiency
decreases with increasing temperature.
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Figure 6. Influence of fractional-order parameters (α and β) on efficiency using SDQM at different
temperatures and fixed thickness of solar cell (600 nm) (a) β = 2 (b) β = 1.7 (c) β = 1.5 (d) β = 1.3
such that G = 4.3× 1029 m−3s−1, krec = 105 s−1, and μp= μn = 2× 10−4 cm2V−1s−1 .

5. Discussion

In this section, we compare our findings from the fractional differential quadrature
method (FDQM) for simulating the charge dynamics of organic polymer solar cells with
other notable research efforts in the field.

Several studies have explored the modeling of charge transport in organic solar
cells, utilizing various numerical approaches. For instance, Falco et al. [17] applied the
finite element method to analyze photocurrent transients, highlighting the importance of
accurately capturing transient behaviors in OSCs. While their results provided valuable
insights, our FDQM approach offers superior accuracy, particularly in scenarios involving
fractional dynamics, achieving error margins as low as 10−8. Hwang et al. [19] focused
on drift-diffusion equations to simulate transient photocurrents in organic photovoltaic
devices. Their numerical modeling revealed significant temporal dynamics; however, their
reliance on integer-order differential equations may overlook the non-local effects inherent
in charge transport. In contrast, our use of fractional derivatives allows for a more nuanced
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understanding of these phenomena, accommodating memory effects that are critical in
organic materials.

Moreover, we conducted a comprehensive parametric study examining various factors
such as carrier mobilities, recombination rates, and geminate pair distances. This aligns
with the work of Buxton et al. [18], who investigated the effects of material properties on
the performance of polymer solar cells. However, our approach not only corroborates their
findings but also extends the analysis by incorporating fractional calculus, which provides
deeper insights into the underlying physical mechanisms.

Our FDQM results were validated against existing analytical solutions, demon-
strating consistency with the findings of Van Mensfoort et al. [20], who characterized
iterative approaches for solving drift-diffusion equations. Our method, however, out-
performed traditional methods in terms of computational efficiency, particularly for
high-dimensional problems, underscoring the versatility of the FDQM in handling
complex boundary conditions.

In summary, while existing studies have made significant contributions to the under-
standing of organic solar cells, our FDQM approach provides a more accurate and efficient
framework for modeling charge dynamics, paving the way for enhanced optimization
of solar cell performance. Future work could build upon these findings by exploring
the integration of fractional calculus with machine learning techniques to further refine
predictions and improve device design.

6. Conclusions

This research presents a novel fractional differential quadrature method (FDQM) for
simulating organic polymer solar cell charge dynamics, significantly improving accuracy
and efficiency over traditional methods. The FDQM, leveraging polynomial-based differ-
ential quadrature and Cardinal sine functions with the Caputo-type fractional derivative
and a block-marching technique, achieved high accuracy (error margins on the order of
10−8 or less) in numerical simulations. Comparisons with existing analytical and numerical
solutions validated the method’s efficacy. A comprehensive parametric study investigated
the influence of key parameters—including fractional-order derivatives, boundary condi-
tions, time evolution, carrier mobilities, charge carrier densities, geminate pair distances,
recombination rate constants, and generation efficiency—on device performance, providing
valuable insights for optimization. While the FDQM offers a robust and accurate approach,
future work could explore its application to more complex, multi-dimensional models of
organic solar cells, incorporating additional factors such as material heterogeneity and
temperature effects to further enhance predictive capabilities and guide the development of
higher-efficiency devices. The findings contribute to a more comprehensive understanding
of charge transport in organic polymer solar cells and pave the way for improved device
design and performance.

Beyond the current work, several promising avenues for future research exist:

Extension to More Complex Problems: The proposed method can be extended to
tackle even more intricate problems involving fractional derivatives, expanding its
applicability in various scientific domains.
Application to Diverse Solar Cell Types: Investigating the applicability of this method
to other solar cell technologies, such as perovskite and dye-sensitized cells, could
provide valuable insights into their behavior.
Performance Optimization Studies: By employing this method to systematically study
the impact of different device parameters on performance, researchers can gain crucial
knowledge for optimizing the design and fabrication of organic polymer solar cells.

In conclusion, this study demonstrates the significant potential of the proposed ap-
proach for simulating and understanding the behavior of organic polymer solar cells. This
paves the way for further advancements in solar cell technology through efficient and
accurate modeling capabilities.
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Abstract: The research field of clinical practice has experienced a substantial increase in
the integration of information technology and control engineering, which includes the
management of medication administration for general anaesthesia. The invasive nature of
input signals is the reason why autotuning methods are not widely used in this research
field. This study proposes a non-invasive method using small-amplitude sine tests to
estimate patient parameters, which allows the design of a personalised controller using
an autotuning principle. The primary objective is to regulate the Bispectral Index through
the administration of Propofol during the maintenance phase of anaesthesia, using a
personalised fractional-order PID. This work aims to demonstrate the effectiveness of
personalised control, which is facilitated by the proposed sine-based method. The closed-
loop simulation results demonstrate the efficiency of the proposed approach.

Keywords: drug dosing; anaesthesia; closed-loop control of anaesthesia; fractional-order
controllers; autotuners; sine test

1. Introduction

Automated drug dosage systems integrate real-time physiological data, such as blood
pressure, heart rate, oxygen saturation, and levels of exhaled carbon dioxide, utilising
computerised algorithms designed to control the delivery of anaesthetic agents. Sensors
continuously monitor these parameters, and the system’s algorithms adjust the rate of drug
infusion to maintain a stable anaesthetic state that is neither too deep nor too light. Target-
controlled infusion (TCI) systems are frequently implemented in general anaesthesia [1–3].
To obtain a specific target concentration of the anaesthetic agent in the blood or brain, these
systems calculate the drug dose necessary.

The primary goal of research in automated systems for anaesthesia is to obtain precise
control over the administration of drug dosage during all stages of a surgical procedure.
This precision is crucial for ensuring the safety and well-being of patients, as severe
complications can result from insufficient or excessive dosing [4]. Nevertheless, a closed-
loop control system that is capable of continually adjusting drug delivery in response to
the patient’s evolving physiological state is necessary to achieve such precision.

Anaesthesia mainly comprises three stages: the induction phase, the maintenance
phase and the emergence phase [5]. The induction phase commences with the adminis-
tration of intravenous anaesthetic agents, which rapidly induce unconsciousness in the
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patient. The maintenance phase aims to ensure that the patient remains unconscious and
pain-free throughout the procedure, provided that the desired depth of anaesthesia has
been achieved. This is accomplished by closely monitoring vital signs while administering
a continuous intravenous infusion of anaesthetic medications. Ultimately, the patient’s
consciousness is progressively restored during the emergence phase, as the administration
of anaesthetic agents is reduced or ceased. Careful management during this stage provides
a smooth recovery while reducing the likelihood of complications, including agitation,
nausea, or pain. One of the most important aspects in anaesthesia is ensuring the depth
of hypnosis, evaluated using the measured Bispectral Index (BIS) signal [6]. An adequate
level of hypnosis is usually achieved by administering a certain Propofol drug dose at a
certain rate. Several control strategies have been developed to handle Propofol drug dosing
to achieve a specific BIS signal. Almost all control algorithms share a common requirement:
the necessity of a mathematical model for the patient. Although the majority of research
focuses on population-based models, a subset has shifted towards personalised control [7].
This results in tailored controller parameters based on patient demographics. The results of
the closed-loop simulation indicate that the individualised controller enhances robustness
to patient variability; however, it also demonstrates a reduction in bandwidth, leading to
diminished disturbance rejection capabilities.

The primary objective of this research is to investigate the benefit of using person-
alised controllers, designed using autotuning methods. Such an approach has yet to be
considered for anaesthesia regulation. The necessity of accurately predicting the patient
response remains essential amid the development of autotuning mechanisms. Autotuners
are dependent on feedback from the system they control, implying that if the system’s
behaviour is not well predicted, the tuning process may be inaccurate, resulting in sub-
optimal or even unsafe outcomes [8]. Performing classical autotuning tests, such as relay
tests or Ziegler–Nichols, is completely unfeasible due to safety reasons [9]. These tests
require finding the critical operating point of a system. For example, causing the patient’s
brain activity to experience a sustained oscillation regime having considerable amplitude
is strongly against clinical safety standards. However, minimally invasive methods with
small amplitude input signals would be acceptable. In this paper, such an approach is
attempted, and it is based on a sine test that is compliant with patients’ safety standards
and provides sufficient data for tuning the controller. The data collected using this sine
test are further used to design fractional-order autotuners. The choice of fractional-order
controllers is based on their enhanced flexibility and robustness compared to the traditional
integer order controllers [10].

Fractional-order PID (FO-PID) controllers present advantages compared to traditional
integer-order PID controllers in the context of general anaesthesia, especially in regulating
the depth of hypnosis and maintaining hemodynamic stability. Research indicates that
FO-PID controllers demonstrate improved robustness to patient variability, resulting in
more consistent performance across varied patient populations [11]. They offer enhanced
disturbance rejection, effectively reducing the influence of surgical stimuli and other dis-
ruptions. Their expanded set of tuning parameters enhances flexibility and precision in
control design, making them suitable for adaptive strategies that can adjust in real time to
changing patient dynamics.

Fuzzy-type controllers are also appropriate in applications where mathematical mod-
els are difficult or unfeasible to establish. Additionally, fuzzy controllers are increasingly
recognised for their effectiveness in managing general anaesthesia, particularly in ad-
dressing the nonlinearities, uncertainties, and imprecise characteristics of physiological
responses during surgical interventions. Fuzzy logic controllers differ from traditional
controllers by employing a rule-based approach that simulates human reasoning, rendering
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them especially appropriate for the complex and variable dynamics inherent in anaesthe-
sia [12]. However, fuzzy rules and membership functions need to be carefully defined. The
complexity can potentially increase in the context of patient intra- and inter-variability. Due
to this, in this paper, a personalised fractional-order controller is preferred.

For the induction phase, a PID controller will be used for all patients. This PID
controller is designed using a nominal patient model by using standard frequency domain
tuning methods. The gain crossover frequency is imposed as a performance criterion to
ensure a certain settling time during the induction phase. Once the BIS signal reaches
a steady state value ranging between 47.5 and 52.5, indicative of an adequate level of
hypnosis, the proposed sine test is applied using a frequency that matches the gain crossover
frequency utilised for the induction phase. The sine test is further used to estimate the gain,
phase, and derivative of the phase for each patient. This information is later employed in
the autotuning of a fractional-order controller to be used during the maintenance phase.
The safety range of BIS values is between 40 and 60 [13], with a steady-state value ideally
equal to 50. Surgical stimuli occurring during the maintenance phase will cause variations
in the BIS signal. The proposed method attempts to limit this variation and ensure that the
BIS signal remains within a ±5% range of the steady-state value during the maintenance
phase. The proposed sine test is robust to noisy signals and provides accurate estimations
of the patient’s gain, phase, and derivative of the phase. As such, it enables the design of a
personalised fractional-order controller.

The primary contribution and novelty of this research are the introduction of a sine-
test-based autotuning approach for the design of personalised fractional-order controllers
that are intended to regulate the depth of hypnosis in anaesthesia. This strategy eliminates
the necessity for invasive procedures or time-consuming modelling efforts by directly
estimating patient-specific dynamics from data using the sine test, in contrast to traditional
methods that rely on constructing detailed patient models. The proposed autotuning
method is entirely non-invasive, carries no risk to the patient, and offers a considerable
improvement in efficiency and adaptability. This is the first application of such a method
in the context of closed-loop anaesthesia control. This work represents an advance in
the development of automated and personalised anaesthetic systems by offering a com-
putationally efficient, safe, robust to noise, and practicable alternative for customising
anaesthesia delivery.

To mimic the dynamics of a patient, a novel patient simulator [14] will be used. To
model the patient’s BIS signal as a function of the administered Propofol, pharmacokinetic
(PK) and pharmacodynamic (PD) models are most frequently used [15–17], with param-
eters depending on the patient’s age, weight, height, and gender. These models depict
the manner in which a drug interacts with the body. In general, a three-compartment PK
model delineates the fast-acting compartment (blood) and two additional compartments
that represent the slower-acting tissue volumes of muscle and fat. The effect site concen-
tration is represented by the addition of a hypothetical compartment that represents the
transport/mixing dynamics of the substance to the effect location. PD modelling is funda-
mentally based on the dose–response relationship, which seeks to explain the mechanism
by which variations in drug dosage result in changes in the intensity of the drug’s effect.
The relationship between drug concentration and effect is frequently nonlinear, as the
effects of a drug become more potent as the concentration increases. Several PK-PD models
exist. In this case, the Schnider PK model [18] is employed along with a Hill function that
models the PD compartment.

Closed-loop simulation results are performed. Comparative results are presented util-
ising both the population-based controller and the personalised controller for each patient
during the maintenance phase. This demonstrates the effectiveness of personalised control.
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The paper is structured as follows. Section 2 presents the mathematical foundation,
while Section 3 details the procedures and methods utilised. Simulation results are included
in Section 4, while the last section contains the conclusions and proposes prospective routes
for further study in the field.

2. Materials and Methods

2.1. Sine Test Method

As stated in the introduction, once the BIS signal has reached steady state, a sine test
is performed based on the approach in [19]. A sinusoidal input signal of small amplitude
and frequency equal to ωgc, denoted u(t), is applied as the Propofol drug rate. The term
‘small’ refers to an amplitude which is significantly smaller than the dosage used for the
maintenance phase. The exact quantities will be provided in the following subchapter.

The patient’s behaviour (BIS level) with respect to Propofol is denoted with P(s) and
assumed to be unknown. The sine test will estimate the patient frequency response denoted
as P(jω), as indicated hereafter. To tune a suitable controller, the following patient’s fre-
quency response information is required: the magnitude M, the phase φ and the derivative
of the phase dφ at the gain-crossover frequency. Computing the magnitude and phase
using sine tests measurements is straightforward:

M =
∣∣P(jωgc

)∣∣ = Ao

Ai
, (1)

φ = ∠P
(

jωgc
)
= ωgcτ = ωgc(ti − to), (2)

where Ai and Ao represent the amplitudes of the input and the output signals, respectively,
and τ = (ti − to) represents the time shift between the input and the output signals.

The third parameter, dφ, will be used in the controller design to ensure the iso-damping
property (or the robustness to gain variations). The human body is arguably one of the
most unpredictable systems and prone to variations in time; therefore, the need for robust
controllers is self-explanatory [11,20]. Extracting the phase derivative from a single sine
test is not obvious, nor trivial. Figure 1 provides the innovative method proposed by the
authors of [19] to compute dφ, based on the magnitudes and phases of two signals: the
output y(t) and the output of the process derivative, denoted as ȳ(t).

 

Figure 1. Proposed setup for the sine test.

The next part will demonstrate that the methodology depicted in Figure 1 effectively
provides the process derivative signal. The output ȳ(t) of the process derivative can be
computed as:

y(t) = x(t)− t ∗ y(t), (3)
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where x(t) denotes the output of the process P(jω) when an input signal t*u(t) is applied
at its input. The operator * denotes the convolution of two signals. The property of the
Laplace transform regarding the derivative of a signal will be employed:

dF(s)
ds

= L{−t ∗ f (t)}, (4)

where F(s) = L{ f (t)}.
The other mathematical definition of the process derivative output, ȳ(t), refers to the

exact meaning of this signal:

Y(s) =
dP(s)

ds
U(s), (5)

where Y(s) and U(s) are the Laplace transforms of signals ȳ(t) and u(t), respectively.
Starting from the definition of the signal x(t) given in the theorem hypothesis, the

following relation holds:
X(s) = P(s)L{t ∗ u(t)}, (6)

where X(s) represents the Laplace transform of x(t). Employing (4), (6) can be rewritten as:

X(s) = −P(s)
dU(s)

ds
. (7)

The Laplace transform of the sinusoidal input signal u(t) is given by:

U(s) =
Aiωgc

s2 + ωgc2 . (8)

The derivative of U(s) is computed as follows:

dU(s)
ds

= − 2s
s2 + ωgc2 U(s). (9)

Utilising (9) in (7) leads to:

X(s) = −P(s)
dU(s)

ds
=

2s
s2 + ωgc2 P(s)U(s) =

2s
s2 + ωgc2 Y(s). (10)

Equation (10) demonstrates that the signal x(t) can be computed utilising the output
signal, y(t). The derivative of the output signal in Laplace domain is computed as:

dY(s)
ds

=
d(P(s)U(s))

ds
=

dP(s)
ds

U(s) +
dU(s)

ds
P(s). (11)

If one utilises (5) and (10) in (11), it leads to:

dY(s)
ds

= Y(s)− X(s). (12)

Applying the inverse Laplace transform to (12) demonstrates that the process deriva-
tive is achievable. This indicates the feasibility of the testing procedure outlined in Figure 1.
The derivative of the process is indeed accessible without any mathematical differentiation
being employed.

The modulus and phase of ȳ(t) are computed in the same manner as in (1) and (2):

M =
Ay

Ai
, (13)
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φ = ωgcτy = ωgc
(
ti − ty

)
, (14)

where M is the amplitude of the signal ȳ(t) and φ is the phase shift between ȳ(t) and u(t).
The frequency domain relation of the process derivative is given by:

dP(jω)

dω

∣∣∣∣
ω=ωgc

= Mejφ , (15)

By expanding both the left- and right-hand sides of (15) and complex numbers mathe-
matical refinements, the equation becomes:

−j
dM
dω

∣∣∣∣
ω=ωgc

+M
dφ

dω

∣∣∣∣
ω=ωgc

= M cos
(
φ− φ

)
+ jM sin

(
φ− φ

)
. (16)

Equating the real and imaginary parts of the two terms in (16) results in the mathe-
matical expression of the process phase derivative:

dφ =
d∠P(jω)

dω

∣∣∣∣
ω=ωgc

=
M
M

cos
(
φ− φ

)
, (17)

The procedure is now complete. However, the proposed approach for estimating the
frequency response slope based on filtering the output signal y(t) as indicated in Figure 1 is
simple, but error-prone. This study utilises a patient simulator and not real clinical data.
The measurement of BIS is derived from electroencephalographic (EEG) signals through
spectral and bispectral analysis. BIS measurements are often affected by noise, which
can compromise their reliability. Common sources of noise include electromyographic
(EMG) activity, poor electrode contact, external electrical interference, and patient-specific
variability in EEG responses. To mitigate these issues, another approach that is robust to
noise is presented in Appendix A.

2.2. Autotuning Mathematical Background

Upon obtaining the necessary parameters, ωgc, M, φ and dφ (using (1), (2) and (17)),
one may proceed with computing the controller parameters. Two types of fractional-order
controllers are presented in this paper: FO-PI and FO-PID. Their transfer functions are
indicated below:

HFO−PI(s) = kp

(
1 +

ki
sμ

)
, (18)

HFO−PID(s) = kp

(
1 +

ki
sμ + kdsλ

)
, (19)

where μ and λ denote the fractional orders, while kp, ki, kd correspond to the proportional,
integrative and derivative gains.

In this manuscript, the Grunwald–Letnikov [21] definition of the fractional-order
derivative is used, which is generally preferred for applications, due to the convenient
relation with the Laplace transform:

Dα f (t)|t=kh = lim
h→0

1
hα ∑k

j=0(−1)j

(
α

j

)
f (kh− jh), (20)

where Dα is the fractional derivative of order α. The mathematical formulas for the modulus,
phase, and phase derivative of the controllers can be quickly deduced due to the known
structure of these controllers. These equations are presented in [21].

An algorithm has been developed to compute the controller parameters. The tuning is
performed according to a set of constraints. The gain crossover frequency is correlated to
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the settling time requirements. Higher values of ωgc are associated with quicker settling
times. This is mathematically represented by the equation for magnitude:∣∣HOL(j ωgc

)∣∣ = ∣∣HFO−PI/D
(

jωgc
)∣∣∣∣P(jωgc

)∣∣= 1, (21)

where HOL
(

jωgc
)
= HFO−PI/D

(
jωgc

)
P
(

jωgc
)

is the open loop frequency response at ωgc.
Phase margin (PM) serves as an essential performance metric associated with the stability
of closed-loop systems, directly influencing the anticipated overshoot and undershoot. A
high numerical value typically signifies a reduced excess. The equation that addresses the
overshoot requirement is as follows:

∠HOL
(

jωgc
)
= ∠HFO−PI/D

(
jωgc

)
+∠P

(
jωgc

)
= −π+ PM, (22)

A robustness constraint has been added to address potential gain errors arising from
patient variability:

d∠HOL(jω)

dω

∣∣∣∣
ω=ωgc

= 0

d∠P(jω)

dω

∣∣∣∣
ω=ωgc

+
d∠HFO−PI/D(jω)

dω

∣∣∣∣
ω=ωgc

= 0
(23)

Several other researchers [22,23] proposed supplementary performance criteria to be
used in the design of fractional-order controllers, such as the sensitivity (S), and the com-
plementary sensitivity (T) functions, to address the rejection of disturbances, among others.
Nevertheless, a model of the process is necessary for all these performance criteria. No
patient model is employed in this research, as the proposed control method is an autotuning
algorithm. Therefore, only the performance specifications mentioned above (21)–(23) are
used in the design of the controllers.

Several performance metrics are used to evaluate the efficiency of the proposed control
algorithms. These correspond to the metrics usually employed in anaesthesia control and
are detailed below.

Both the control signal and the output must exhibit stable behaviour with minimum
oscillation. A high overshoot value presents a serious risk of taking the BIS out of the safe
range. A large PM value is selected to ensure that a small overshoot is obtained:

σ ≤ 5%. (24)

Another important performance indicator is the time-to-target (TT), which refers to
the time required for the controller to adjust the BIS signal to a desired range of values
while adhering to the input safety constraints. The literature presents a range between 3
and 5 min as being appropriate for TT [24]. The condition imposed by the authors is:

TT ≤ 200 s. (25)

An important aspect to be considered is that this constraint refers to the fast rejection
of the disturbances and not to the response of the closed-loop system to a BIS reference. The
BIS signal must stay within a range of 40 to 60 at all times, as stated in [13]; however, in this
research, the values were restricted to 47.5 and 52.5 in order to have more precise control.
Usually, a variation of ±10% is commonly employed for the Bispectral Index control. This
research proposes a stricter range of only ±5%, with respect to the ideal BIS signal value of
50. This facilitates a more precise control and a safer clinical procedure.
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The Propofol rate should not exceed 200 mg/kg/h [25], a value which corresponds
to 3.33 mg/kg/min. The authors proposed an even stricter limitation of a maximum
of 2.5 mg/kg/min. Thus, the control signal must always be positive and less than the
imposed value due to safety concerns.

A third performance indicator used in this manuscript is the Integral of Absolute Error
(IAE) to evaluate the efficiency of the controllers in rejecting disturbances, defined as:

IAE =

∞∫
0

|r(t)− BIS(t)|dt, (26)

where BIS(t) is the simulated output and r(t) is the reference value.
The frequency response of the FO-PID controller is mathematically defined as:

HFO−PID(jω) = kp

(
1 + ki

(
(jω)−μ

(
cos

μπ

2
− j sin

μπ

2

))
+kdω

λ

(
cos

λπ

2
+j sin

λπ

2

))
,

(27)

Replacing (27) into (21)–(23), leads to the following system of nonlinear equations:

kp

√(
1+kiωgc−μcos

μπ

2
+ kdωgcλcos

λπ

2

)2
+

(
−kiωgc−μsin

μπ

2
+k

d
ωgcλsin

λπ

2

)2

− 1∣∣P(jωgc
)∣∣= 0,

(28)
−kiωgc

−μsin μπ
2 +kdωgc

λsin λπ
2

1+kiωgc−μcos μπ
2 + kdωgcλcos λπ

2
− tan

(−π + PM−∠P
(
jωgc

))
= 0, (29)

ωgc
μ−1

(
kiμ sin μπ

2 + kdkiμωgc
μ sin (μ+λ)π

2 + kdkiλωgc
λ sin (μ+λ)π

2 + kdμωgc
μ+λ sin λπ

2

)
ωgc2μ + k2

i + k2
dωgc2(μ+λ)+2kiωgcμ cos μπ

2 +2kdωgc2μ+λ cos λπ
2 +2kdkiωgcλ+μ cos (μ+λ)π

2

+
d∠P(jω)

dω

∣∣∣∣
ω=ωgc

= 0.

(30)

2.3. Algorithm Description

The procedure to design the personalised controllers is detailed in what follows. To
determine all controller parameters, an optimisation algorithm based on the Matlab R2024A
“fmincon” function is used to solve the system of equations composed of (28)–(30). For the
tuning of the FO-PI controller parameters, only three parameters are estimated, namely
the three controller parameters, kp, ki and μ. The remaining two parameters, kd and λ in
(26)–(28), are set to null. For the FO-PID, all five parameters are estimated based on solving
the system of equations in (28)–(30). The gain crossover frequency and the phase margin
are specified a priori as design criteria, while an initial starting guess is provided for all
controller parameters in the “fmincon” function. These initial values are those reported
in [11].

First, an integer order PID controller will be computed for the induction phase, based
on the already existing PK-PD model of the patient, with the model parameters estimated
according to patient biometric data, such as height, weight, age, and sex [26]. This part will
be only briefly presented since the focus of this paper is not on the induction phase. The
authors studied the control of induction in [27]. The purpose of this step is to establish the
cutting frequency, ωgc, which is later used for the sine test.
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One relevant example of a PID autotuning algorithm can be found in [28]. Our
adaptation of this algorithm provided a PID controller having the form:

HPID = 0.205
(

1 +
0.00046

s
+

82.5s
1.66s + 1

)
. (31)

The imposed cutting frequency for this PID controller is 0.0025 rad/s. This finding is
consistent with the current state of knowledge in the field of anaesthesia control, which
posits that patients’ responses to these medications are slow [29]. The closed-loop response
for one patient is presented in Figure 2.

 

Figure 2. Closed-loop control of induction phase using PID.

As depicted in the picture above, there is a slight undershoot, and the TT is around
150 s, which is consistent with clinical protocols. This controller does not represent the
main focus of this research, but merely a starting point.

The sine test will be applied to determine the patient’s parameters in the next step.
The sine input has a frequency equal to 0.0025 rad/s and a 0.05 amplitude of Prop. The
usual dosage for maintenance is around 0.1–0.2 mg/kg/min; therefore, the sine test is
minimally invasive and does not affect the sleep state of the patient. Figure 3 presents
the sinusoidal signals: u, y, and ȳ. Since there is a significant difference in amplitude for
these signals, a scaling operation was necessary to improve the visibility and relevancy of
the picture. After computations are performed according to (1), (2) and (17), the process
parameters of the studied patient are: M = 39.47, φ = −104.85◦ and dφ = −175.83.

Research suggests that better control can be achieved using separate controllers for the
induction and maintenance phases [30]. In fact, the controller parameters must be precisely
chosen to ensure that a rapid transient response without an excessive overshoot is achieved
during the induction phase, while in the maintenance phase, the BIS values are kept within
the specified interval. Even though a PK-PD model can be estimated a priori, patient
uncertainties are prevalent, and the control strategy is susceptible to inter- and intra-patient
variability. The retuning of the controller immediately following the induction phase using
the BIS signal of each patient diminishes the amount of patient uncertainties and could
potentially lead to better and personalised control over the maintenance phase. Once the
patient’s frequency response characteristics are determined using the sine test, the FO-PI
parameters will be computed using the described optimisation algorithm. Different FO-PI
controllers can be obtained by imposing different ωgc and PM constraints. The proposed
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optimisation algorithm is also used for the tuning of the FO-PID parameters. The obtained
controllers and their closed-loop simulations are detailed in the next section.

 

Figure 3. Sine test simulation for one patient.

Remark 1. The primary reason for considering the sine test to extract relevant patient frequency
response characteristics is the assumption that the system is linear. The proposed analysis is
conducted within a stable operating point. In this regime, the PD model effectively reduces to a
simple gain, thereby rendering any inherent nonlinearities negligible. While it is true that the
process exhibits nonlinear behaviour in general, the chosen steady state operating point allows for a
linear approximation with sufficient accuracy. Additionally, in the maintenance phase, where BIS is
close to 50, the system behaviour aligns well with linear assumptions. This stability ensures that
nonlinear effects do not significantly influence the proposed methodology. As a result, the system
can be reliably treated as linear without compromising the validity of the proposed approach.

3. Results

The performance of the controllers in rejecting disturbances will be analysed through-
out this section. All presented results are specific to one patient, who was arbitrarily
chosen to be the nominal patient. The characteristics of this patient are: age = 62 years,
height = 168 cm, weight = 88 kg, sex = female. Proving the effectiveness of personalised
control will be performed by using the controllers designed for the nominal case on other
patients, followed by designing personalised controllers for each patient specifically. The
results will prove the success of personalised control.

The parameters of the FO-PI tuned for the nominal patient are: kp = 0.0247, ki = 0.00059,
μ = 1.1, and the structure of the controller is provided in (18). The imposed constraints
were: ωgc = 0.0025 rad/s, PM = 50◦ and the iso-damping property. Figure 4 illustrates the
disturbance rejection performance of this controller. Figure 5 presents the control signal,
which verifies the clinical limitations of Propofol infusion.
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Figure 4. FO-PI disturbance rejection test for the nominal case.

 

Figure 5. The control signal of the FO-PI controller for the nominal case.

The disturbance signal is composed of two step signals of amplitude 10, which occur
consecutively with a 16-minute delay between them. This disturbance profile is supported
by the literature [31]. This stimulus profile, or disturbance profile, simulates the patient’s
arousal reflexes during a surgical procedure [32]. As depicted in the figure, the first
disturbance is rejected in 67 s (close to 1 min) while the second disturbance is rejected in
74 s (less than 2 min). These performances are in accordance with the clinical standards.
The control signal is within the limitations for safe anaesthetic procedures since its values
are positive and smaller than 2.5 mg/kg/min. The range of the control signal is between
0 and 0.5 mg/kg/min, which indicates a higher safety level for the patient. The final
performance metric, the IAE, has a value of 2137. While this may initially appear high, it is
important to note that the integral is computed over a duration of 2500 s.

As for the FO-PID controller, the parameters are: kp = 0.02, ki = 0.0004, kd = 53.8,
μ = 1.1, λ = 1.1. Figure 6 illustrates the disturbance rejection performance, with TT values
of 109 and 134 s. While these values are slightly higher than those of the FO-PI controller,
the response is smoother and exhibits no overshoot. The IAE is equal to 2431, which is
slightly larger than the one obtained using the FO-PI controller.
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Figure 6. FO-PID disturbance rejection test for the nominal case.

The controller designed for the nominal patient is now used on different patients,
and the disturbance rejection performances are analysed. One figure will be presented
to illustrate the incapacity of one controller to fully compensate for inter-patient variabil-
ity. Figure 7 shows that the initial FO-PI controller does not reject, according to clinical
standards, the same disturbance profile when applied to another patient.

 

Figure 7. FO-PI disturbance rejection test for another patient.

As shown in Figure 7, the BIS signal exhibits a highly oscillatory behaviour, which
could be unpleasant or even harmful for the patient. The TT performance is approximately
180 s, which is nearly three times longer than in the nominal case. The final performance
indicator, the IAE, is 5542, which is more than twice the value observed in the nominal
case, further emphasising the need for personalised control strategies. The patient’s charac-
teristics were: age = 50 years, height = 186 cm, weight = 96 kg, sex = male. The FO-PID
response had worse performance due to the derivative component, which is more sensitive
to variations in the parameters.

4. Discussion

The two initial controllers were applied to five more different patients, and the distur-
bance rejection performances did not comply with clinical standards. Longer TT, higher
oscillations, and BIS levels not being kept within the 47.5–52.5 safe operating range were
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the drawbacks encountered. This finding strongly argues for the implementation of per-
sonalised control.

To design the personalised controllers, once the induction phase has been completed,
a sine test similar to the one presented in Figure 3 is performed for each patient. The M,
φ and dφ parameters are obtained for each patient, and personalised FO-PI and FO-PID
controllers are designed according to the proposed approach detailed in Section 2. Closed-
loop simulations were performed for seven patients. The performances of the personalised
controllers are presented in Table 1. Patient 1 is the nominal patient, and it serves as a
reference. The two values for TT performance correspond to the response of the system
to the chosen disturbance profile. The first value corresponds to the positive disturbance
rejection, while the second value refers to the rejection of the negative disturbance.

Table 1. Personalised FO-PI/PID simulations.

Patient
TTs for

FO-PI (Seconds)
TTs for

FO-PID (Seconds)
IAE

BIS in Safe
Range of 40–60?

Positive
Dist.

Negative
Dist.

Positive
Dist.

Negative
Dist.

FO-PI FO-PID

1 67 74 109 134 2138 2508 Yes
2 94 124 132 207 3002 3507 Yes
3 62 74 102 127 1977 2251 Yes
4 76 86 115 147 2304 2658 Yes
5 63 75 102 126 1987 2205 Yes
6 73 88 113 156 2285 2775 Yes
7 76 85 114 140 2238 2473 Yes

The results indicate that recovery from a positive BIS disturbance is easier for patients.
The awakening of a patient, indicated by an increase in the BIS signal, can be managed more
effectively than preventing a descent into dangerously deep levels of hypnosis. This finding
aligns with the existing literature [33]. In control engineering, the control signal (Propofol
rate) is consistently positive; therefore, an increase in the Propofol rate would reduce the
BIS signal and counteract the positive disturbance. A negative control signal indicates the
extraction of the anaesthetic substance from the blood, which is impractical. Consequently,
this complicates the rejection of a negative disturbance, specifically a decrease in the
BIS signal.

Figures 8 and 9 provide the graphical visualisation of Table 1. The results of this
research are according to the clinical procedures. The nominal patient was not included in
these figures for increased readability, as it has already been included in Figures 4 and 6.
Both proposed structures for the fractional-order controllers proved efficient in maintaining
the BIS level in the safe range and also provide fast disturbance rejection loops. The FO-PI
controller proves to be faster than the FO-PID; however, the latter provides a smoother
signal with no oscillations.

The findings presented in this research are compared with those documented in the
literature [30,34]. These studies also proposed the use of personalised FO-PID controllers
to optimise Propofol dosage during general anaesthesia. A key point to note is that
none of the referenced papers utilise an autotuning method; instead, they rely on patient-
specific models.
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Figure 8. Personalised FO-PI controllers closed-loop simulations.

 

Figure 9. Personalised FO-PID controllers closed-loop simulations.

The TT performances of the FO-PI controllers average 80 s for both positive and nega-
tive disturbance steps. The FO-PID controllers present a mean value of 130 s for disturbance
rejection. The same disturbance profile was utilised in [30], and the TT performances are
around 120 s. Considering that the BIS range used to compute TT in this study was nar-
rower (47.5–52.5) compared to the broader 45–55 range in prior work, the results achieved
here demonstrate faster response times despite the stricter criteria. In terms of overshoot,
the FO-PI controllers yield comparable performance to that reported in [30], while the
FO-PID controllers provide smoother control responses. One advantage of the referenced
study is its larger dataset of 13 patients, compared to 7 in the current work. Nevertheless,
both studies rely on relatively small patient datasets, which underscores the continued
relevance of the proposed research.

In the comparative analysis with the study presented in [34], the results are generally
similar. That study introduces three versions of FO-PID controllers, each tuned based on
different performance criteria. Their average TT values are 40 s for positive disturbances
and 70 s for negative disturbances, which is faster than those observed in this research.
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However, the overshoot values reported in [34] are higher than those achieved in the current
study. The IAE values reported in [34] range from 1531 to 2354, which are comparable to
those obtained in this study. Despite relying on a smaller patient dataset and a stricter
BIS range, the proposed research demonstrates competitive performance in terms of TT,
overshoot, and IAE when compared to existing studies. The use of personalised FO-PID
controllers with an autotuning approach, in contrast to the model-dependent methods
found in the literature, highlights the novelty and practical value of this work for enhancing
the safety and precision of Propofol administration during general anaesthesia.

5. Conclusions

The study demonstrates the need for personalised control for the maintenance phase of
anaesthesia. Two types of fractional-order controllers were developed, and both provided
good performance, according to clinical practice. The TT performances are to be noted
since the authors proposed a narrower range of safe operation for BIS. Instead of the
classical 40–60 range found in the literature [30], the 47.5–52.5 range was used. The highest
disturbance rejection time was close to 3.5 min for the FO-PID controller, whereas the FO-PI
controller required no more than 2.2 min to reject disturbances. Therefore, FO-PI should
be preferred when a faster response is required, while FO-PID is a suitable alternative
when smoother control is prioritised. Overall, the results confirm that the FO-PI controller
offers superior performance under the given constraints, while having the advantage of
a decreased number of parameters to be tuned and decreased complexity compared to
the FO-PID controller. This approach provides an even safer environment for the patients
during clinical procedures.

The novelty of this work lies in the use of the sine-test to estimate patient information,
instead of developing a model of the patient. This autotuning method is a non-invasive
one, with no risks for the patient and has the considerable advantage of being faster than
the modelling alternative. Introducing an autotuning method, completely novel in the
literature, and providing suitable controllers may prove to be advancements in the research
field of the closed-loop control of anaesthesia.

The validation of this study was performed using an existing patient simulator. Since
the desired controller is an autotuner, the tests may be performed on actual patients as
a future research step. However, this procedure requires substantial a priori theoretical
safety guarantees. The research reported in this manuscript provides the first preliminary
results in this regard. Further development ideas would be introducing more advanced
control algorithms [35], which could provide even better performance.
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Abbreviations

The following abbreviations are used in this manuscript:

TCI Target-controlled infusion
BIS Bispectral Index
TIVA Total Intravenous Anaesthesia
PK Pharmacokinetic
PD Pharmacodynamic
FO Fractional order
PID Proportional-integrative-derivative
Prop Propofol progression rate
TT Time-to-target
EEG Electroencephalographic
EMG Electromyographic

Appendix A

This section presents the enhanced approach as presented in [36], robust to noises
which may appear in clinical trials. The first step is to compute the amplitude Ay and
phase ϕy of the output signal y(t). The procedure is based on the Transfer Function
Analyzer—Discrete Fourier Transform (TFA-DFT) [37].

The steady-state response of a linear, stable system, described by a transfer function
P(s), can be written as:

y(t) = Ay sin
(
ωt + ϕy

)
+ b + n(t), (A1)

where n(t) is the stochastic disturbance with zero mean value and b is a non-zero bias term
(in the case of an integrative process, otherwise b = 0). Problems of non-linear distortion
and noise corruption are overcome if the measured output y(t) is first multiplied by the
sine and cosine of the same frequency as the input ω, respectively, and then integrated over
the measurement period Tm = k 2π

ω :

ys =
∫ Tm

0 y(t) sin (ωt)dt = Ay
∫ Tm

0

(
sin(ωt) cos ϕy+

cos(ωt ) sin ϕy
)

sin(ωt)dt +
∫ Tm

0 (b + n(t)) sin(ωt)dt,
(A2)

yc =
∫ Tm

0 y(t) cos (ωt)dt = Ay
∫ Tm

0

(
sin(ωt) cos ϕy+

cos(ωt ) sin ϕy
)

cos(ωt)dt +
∫ Tm

0 (b + n(t)) cos(ωt)dt.
(A3)

With the increase in the averaging time, the contribution of the last term in the right-
hand side of (A2) and (A3) can be neglected compared to the first term, which is growing
with Tm. Additionally, for a long integration time, the noise will be filtered out (i.e., zero
average). Since n(t) is a stochastic disturbance with zero mean value, by selecting a sufficient
number of test signal periods, the desired accuracy can be reached even in the case of a low
signal-to- noise ratio. In this case, (A2) reduces to:

ys = Aycos ϕy

∫ Tm

0
sin2(ωt)dt + 0.5Aysin ϕy

∫ Tm

0
2cos(ωt )sin(ωt)dt. (A4)

Rearranging (A4) leads to:

ys = 0.5Tm Aycos ϕy − 0.5Aycos ϕy
sin(2ωTm)

2ω
− 0.5Aysin ϕy

(cos(2ωTm)− 1)
2ω

. (A5)
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Taking the measurement (also integration) time to be an integer number of periods,
as mentioned above, Tm = k 2π

ω , the last two terms in (A5) will be zero, leading to:

ys = 0.5Tm Aycos ϕy. (A6)

A similar analysis can be performed for the signal in (A3), leading to:

yc = 0.5Tm Aysin ϕy. (A7)

Combining (A2) and (A3) leads to:

yc − jys =
∫ Tm

0
y(t)(cos (ωt)− jsin(ωt))dt =

∫ Tm

0
y(t)e−jωtdt. (A8)

The last term in (A8) can be computed via the DFT:

∫ Tm

0
y(t)e−jωtdt =Ts

N−1

∑
0

y(kTs)e−jωkTs , (A9)

with a sampling period Ts adequately chosen such that Tm = NTs. The left-hand side of
(A9) can be written using (A6) and (A7) as:

yc − jys = −j0.5Tm Ay
(
cos ϕy + jsin ϕy

)
= −j0.5Tm Ayejϕy . (A10)

Equating (A9) and (A10) leads to a robust way of computing the amplitude Ay and
phase ϕy of the output signal y(t):

Ayejϕy =
Ts

−j0.5Tm

N−1

∑
0

y(kTs)e−jωkTs =
2j
N

N−1

∑
0

y(kTs)e−jωkTs (A11)

Suppose that, apart from the pure sine of frequency ω, the output signal y(t) also
exhibits some other sine signals of frequencies, ω̂ 
= ω, due to stochastic disturbances and
noise. Then, the corresponding sine signal will be amplified by the filter with a bounded
gain 2ω̂

|ω2−ω̂2| , but at the same time it will be amplified by the multiplier with the unbounded

time signal, t. The effect will be an unbounded y(t) signal increasing with time, as resulting
from (3). A solution to overcome this problem is based on a modification of the basic
scheme in Figure 1 as indicated in Figure A1a, where yTR(t) and ySS(t) are the transient and
steady-state parts of the output signal y(t), with the transient component going to zero (or
to a constant value for an integrating system).

 
(a) (b) 

Figure A1. The robust scheme for determining the frequency response slope (a) intermediary solution,
(b) final solution.
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The steady-state component of the output signal is described by:

ySS(t) = Aysin
(
ωt + ϕy

)
= Ssin(ωt) + Ccos(ωt), (A12)

with the constants S = Aycos
(

ϕy
)

and C = Aysin
(

ϕy
)
. Applying the Laplace transform to

(A12) leads to:

YSS(s) =
Sω

s2 + ω2 +
Cs

s2 + ω2 =
Sω + Cs
s2 + ω2 , (A13)

having the derivative equal to:

dYSS(s)
ds

=
C
(
s2 + ω2)− 2s(Sω + Cs)(

s2 + ω2)2 =
C

s2 + ω2 −
2s

s2 + ω2
Sω + Cs
s2 + ω2 =

C
s2 + ω2 −

2s
s2 + ω2 YSS(s). (A14)

Applying the inverse Laplace transform to (A14) gives the following result:

−t ∗ ySS(t) =
Aysin

(
ϕy
)

ω
sin(ωt)−L1

{
2s

s2 + ω2 YSS(s)
}

. (A15)

Based on the result in (A15), Figure A1a can be replaced by Figure A1b. The Laplace
transform of the signal x(t) can be computed based on Figure A1b as:

X(s) =
2s

s2 + ω2 YTR(s) =
2s
ω

YTR(s)
ω

s2 + ω2 , (A16)

leading to:

x(t) = L−1
{

2s
ω

YTR(s)
}

sin(ωt). (A17)

Considering the fact that the component t*yTR(t) does not influence the steady-state
oscillation in y(t) and the result in (A17), Figure A1b reduces to the simplified version in
Figure A2.

 

Figure A2. Simplified robust scheme for determining the frequency response slope.

Based on Figure A2, the amplitude Ay and phase ϕy of the signal y(t) at the specific
frequency ω can be determined as:

Ayejϕy = Axejϕx +
Aysin

(
ϕy
)

ω
. (A18)

247



Fractal Fract. 2025, 9, 317

The corresponding amplitude Ax and phase ϕx at the specific frequency ω can be
obtained from the frequency response of the system 2s

ω YTR(s). Using the definition of the
Laplace transform this results in:

2s
ω

YTR(s) =
2s
ω

∫ ∞

0
yTR(t)e−stdt, (A19)

Axejϕx = 2j
∫ ∞

0
yTR(t)e−jωtdt. (A20)

The integral on the right-hand side of (A9) is computed based on the Discrete Fourier
Transform as: ∫ ∞

0
yTR(t)e−jωtdt = Ts

N−1

∑
k=0

yTR(kTs)e−jωkTs . (A21)

Remark A1. The transient signal yTR(t) is assumed to be zero after N.Ts seconds. For an integrating
system, the transient signal yTR(t) converges to a constant value yc. In this case, the Discrete Fourier
Transform of |yTR(t)− yc| is firstly calculated and afterwards corrected with the Fourier Transform
of a step signal with amplitude yc, i.e., yc

jω should be added.

The proposed robust method to estimate the frequency response slope of a system
based on a single sine test is summarised below.

1. Perform a sine-test on the system using as the input signal a sine of the form
u(t) = Ausin(ωt). The sampling period for data acquisition is Ts, and the total num-
ber of measured samples is N.

2. Analyse the steady-state oscillation of y(t) to determine the amplitude Ay and phase
ϕy using (42)

3. Calculate the transient part yTR(t) as: yTR(t) = y(t) − yss(t), with yss(t) =

Aysin
(
ωt + ϕy

)
4. Calculate the complex number Ayejϕy = 2jTs∑N−1

k=0 yTR(kTs)e−jωkTs +
Aysin

(
ϕy
)

ω
.

5. Calculate the frequency response of the process and the frequency response slope at

the frequency ω as: P(jω) = Mejϕ =
Ay
Au

ejϕy and dP(jω)
d(jω)

∣∣∣
ω=ω

= j
Ay
Au

ejϕy .

References

1. Casas-Arroyave, F.D.; Fernández, J.M.; Zuleta-Tobón, J.J. Evaluation of a closed-loop intravenous total anesthesia delivery system
with BIS monitoring compared to an open-loop target-controlled infusion (TCI) system: Randomized controlled clinical trial.
Colomb. J. Anesthesiol. 2019, 47, 84–91. [CrossRef]

2. Neckebroek, M.; Ionescu, C.M.; van Amsterdam, K.; De Smet, T.; De Baets, P.; Decruyenaere, J.; De Keyser, R.; Struys, M.M.R.F. A
comparison of propofol-to-BIS post-operative intensive care sedation by means of target controlled infusion, Bayesian-based and
predictive control methods: An observational, open-label pilot study. J. Clin. Monit. Comput. 2018, 33, 675–686. [CrossRef]

3. Brogi, E.; Cyr, S.; Kazan, R.; Giunta, F.; Hemmerling, T.M. Clinical performance and Safety of Closed-Loop Systems: A systematic
review and meta-analysis of randomized controlled trials. Anesth. Analg. 2017, 124, 446–455. [CrossRef]

4. Carter, S.G.; Eckert, D.J. Effects of hypnotics on obstructive sleep apnea endotypes and severity: Novel insights into pathophysiol-
ogy and treatment. Sleep Med. Rev. 2021, 58, 101492. [CrossRef] [PubMed]

5. Garg, N.; Kalra, Y.; Panwar, S.; Arora, M.K.; Dhingra, U. Comparison of target concentration of propofol during three phases of
live donor liver transplant surgery using a target-controlled infusion of propofol total intravenous anaesthesia—A prospective,
observational pilot study. Indian J. Anaesth. 2024, 68, 971–977. [PubMed]

6. Fahlenkamp, A.V.; Peters, D.; Biener, I.; Billoet, C.; Apfel, C.; Rossaint, R.; Coburn, M. Evaluation of bispectral index and auditory
evoked potentials for hypnotic depth monitoring during balanced xenon anaesthesia compared with sevoflurane. Br. J. Anaesth.
2010, 105, 334–341. [CrossRef] [PubMed]

7. Schiavo, M.; Padula, F.; Latronico, N.; Paltenghi, M.; Visioli, A. Individualized PID tuning for maintenance of general anesthesia
with propofol and remifentanil coadministration. J. Process Control 2021, 109, 74–82. [CrossRef]

248



Fractal Fract. 2025, 9, 317

8. Soltesz, K.; Van Heusden, K.; Dumont, G.A. In Automated Drug Delivery in Anesthesia; Models for control of intravenous anesthesia.
Academic Press: Cambridge, MA, USA, 2020; pp. 119–166. [CrossRef]

9. West, N.; van Heusden, K.; Görges, M.; Brodie, S.; Rollinson, A.; Petersen, C.L.; Dumont, G.A.; Ansermino, J.M.; Merchant, R.N.
Design and evaluation of a Closed-Loop anesthesia system with robust control and safety system. Anesth. Analg. 2018, 127,
883–894. [CrossRef]

10. Shah, P.; Agashe, S. Review of fractional PID controller. Mechatronics 2016, 38, 29–41. [CrossRef]
11. Hegedus, E.T.; Birs, I.R.; Ghita, M.; Muresan, C.I. Fractional-Order Control Strategy for Anesthesia–Hemodynamic stabilization

in patients undergoing surgical procedures. Fractal Fract. 2022, 6, 614. [CrossRef]
12. Méndez, J.A.; Marrero, A.; Reboso, J.A.; León, A. Adaptive fuzzy predictive controller for anesthesia delivery. Control Eng. Pract.

2015, 46, 1–9. [CrossRef]
13. Schiavo, M.; Padula, F.; Latronico, N.; Paltenghi, M.; Visioli, A. Experimental results of an event-based PID control system for

propofol and remifentanil coadministration. Control Eng. Pract. 2023, 131, 105384. [CrossRef]
14. Popescu, T.; Badau, N.; Mihai, M.; Hegedus, E.; Birs, I.; Copot, D.; Dulf, E.H.; Muresan, C.I. Advancing Anesthesia Education:

Training on Modeling and Control for Enhanced Patient Care. In Proceedings of the 4th Workshop on Internet Based Control
Education (IBCE), Ghent, Belgium, 18–20 September 2024.

15. Parvinian, B.; Pathmanathan, P.; Daluwatte, C.; Yaghouby, F.; Gray, R.A.; Weininger, S.; Morrison, T.M.; Scully, C.G. Credibility
evidence for computational patient models used in the development of physiological Closed-Loop controlled devices for critical
care medicine. Front. Physiol. 2019, 10, 220. [CrossRef]

16. Eleveld, D.J.; Colin, P.; Absalom, A.R.; Struys, M.M.R.F. Pharmacokinetic–pharmacodynamic model for propofol for broad
application in anaesthesia and sedation. Br. J. Anaesth. 2018, 120, 942–959. [CrossRef] [PubMed]

17. Van Den Berg, J.P.; Vereecke, H.E.M.; Proost, J.H.; Eleveld, D.J.; Wietasch, J.K.G.; Absalom, A.R.; Struys, M.M.R.F. Pharmacokinetic
and pharmacodynamic interactions in anaesthesia. A review of current knowledge and how it can be used to optimize anaesthetic
drug administration. Br. J. Anaesth. 2017, 118, 44–57. [CrossRef]

18. Linassi, F.; Zanatta, P.; Spano, L.; Burelli, P.; Farnia, A.; Carron, M. Schnider and Eleveld Models for Propofol Target-Controlled
Infusion Anesthesia: A Clinical comparison. Life 2023, 13, 2065. [CrossRef]

19. De Keyser, R.; Muresan, C.I.; Ionescu, C.M. A novel auto-tuning method for fractional order PI/PD controllers. ISA Trans. 2016,
62, 268–275. [CrossRef]

20. Caiado, D.V.; Lemos, J.M.; Costa, B.A.; Paz, L.A.; Mendonca, T.F. A polynomial design approach to robust control of neuromuscular
blockade of patients subject to general anesthesia. In Proceedings of the 52nd IEEE Conference on Decision and Control, Firenze,
Italy, 10–13 December 2013. [CrossRef]

21. Monje, C.A.; Chen, Y.; Vinagre, B.M.; Xue, D.; Feliu, V. Fractional-Order Systems and Controls; Springer: Berlin/Heidelberg,
Germany, 2010. [CrossRef]

22. Lemos, J.; Caiado, D.V.; Costa, B.A.; Paz, L.A.; Mendonca, T.F.; Rabico, R.; Esteves, S.; Seabra, M. Robust control of Maintenance-
Phase Anesthesia [Applications of control]. IEEE Control Syst. 2014, 34, 24–38. [CrossRef]

23. Pawłowski, A.; Schiavo, M.; Latronico, N.; Paltenghi, M.; Visioli, A. Event-based MPC for propofol administration in anesthesia.
Comput. Methods Programs Biomed. 2023, 229, 107289. [CrossRef]

24. Ghita, M.; Ghita, M.; Copot, D. In Automated Drug Delivery in Anesthesia; An overview of computer-guided total intravenous
anesthesia and monitoring devices—Drug infusion control strategies and analgesia assessment in clinical use and research.
Academic Press: Cambridge, MA, USA, 2020; pp. 7–50. [CrossRef]

25. Bataille, A.; Guirimand, A.; Szekely, B.; Michel-Cherqui, M.; Dumans, V.; Liu, N.; Chazot, T.; Fischler, M.; Le Guen, M. Does a
hypnosis session reduce the required propofol dose during closed-loop anaesthesia induction? Eur. J. Anaesthesiol. 2018, 35,
675–681. [CrossRef]

26. Schnider, T.W.; Minto, C.F.; Gambus, P.L.; Andresen, C.; Goodale, D.B.; Shafer, S.L.; Youngs, E.J. The influence of method of
administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology 1998, 88, 1170–1182.
[CrossRef] [PubMed]

27. Mihai, M.; Birs, I.; Erwin, H.; Copot, D.; Neckebroek, M.; De Keyser, R.; Ionescu, C.M.; Muresan, C.I. First-Hand Design of a
Fractional order PID for Controlling the Depth of Hypnosis during Induction. IFAC-Pap. 2024, 58, 186–191. [CrossRef]

28. Åström, K.J.; Hägglund, T. Revisiting the Ziegler–Nichols step response method for PID control. J. Process Control 2004, 14,
635–650. [CrossRef]

29. Ghita, M.; Neckebroek, M.; Muresan, C.; Copot, D. Closed-Loop Control of Anesthesia: Survey on actual trends, challenges and
perspectives. IEEE Access 2020, 8, 206264–206279. [CrossRef]

30. Padula, F.; Ionescu, C.; Latronico, N.; Paltenghi, M.; Visioli, A.; Vivacqua, G. Optimized PID control of depth of hypnosis in
anesthesia. Comput. Methods Programs Biomed. 2017, 144, 21–35. [CrossRef] [PubMed]

31. Merigo, L.; Padula, F.; Latronico, N.; Paltenghi, M.; Visioli, A. Optimized PID control of propofol and remifentanil coadministration
for general anesthesia. Commun. Nonlinear Sci. Numer. Simul. 2018, 72, 194–212. [CrossRef]

249



Fractal Fract. 2025, 9, 317

32. Dumont, G.A.; Martinez, A.; Ansermino, J.M. Robust control of depth of anesthesia. Int. J. Adapt. Control Signal Process. 2008, 23,
435–454. [CrossRef]

33. Thomas, E.; Martin, F.; Pollard, B. Delayed recovery of consciousness after general anaesthesia. BJA Educ. 2020, 20, 173–179.
[CrossRef]

34. Paolino, N.; Schiavo, M.; Latronico, N.; Padula, F.; Paltenghi, M.; Visioli, A. On the Use of FOPID Controllers for Maintenance
Phase of General Anesthesia. Appl. Sci. 2023, 13, 7381. [CrossRef]

35. De Keyser, R.; Muresan, C.I.; Ionescu, C.M. Autotuning of a robust fractional order PID controller. IFAC-Pap. 2018, 51, 466–471.
[CrossRef]

36. Copot, C.; Muresan, C.; Ionescu, C.-M.; Vanlanduit, S.; De Keyser, R. Calibration of UR10 Robot Controller through Simple
Auto-Tuning Approach. Robotics 2018, 7, 35. [CrossRef]

37. De Keyser, R.; Ionescu, C.M.; Festila, C. A one-step procedure for frequency response estimation based on a Switch-Mode transfer
function analyzer. In Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference,
Orlando, FL, USA, 12–15 December 2011. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

250



MDPI AG
Grosspeteranlage 5

4052 Basel
Switzerland

Tel.: +41 61 683 77 34

Fractal and Fractional Editorial Office
E-mail: fractalfract@mdpi.com

www.mdpi.com/journal/fractalfract

Disclaimer/Publisher’s Note: The title and front matter of this reprint are at the discretion of the

Guest Editors. The publisher is not responsible for their content or any associated concerns. The

statements, opinions and data contained in all individual articles are solely those of the individual

Editors and contributors and not of MDPI. MDPI disclaims responsibility for any injury to people or

property resulting from any ideas, methods, instructions or products referred to in the content.





Academic Open 

Access Publishing

mdpi.com ISBN 978-3-7258-5512-4


