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Editorial

Advances in Modelling and Simulation of Materials
in Applied Sciences
Evaggelos Kaselouris 1,2
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Advances in materials science, engineering, and computer science have created new
opportunities for physicists and engineers to develop novel methods for material processing
and characterization. This has led to a greater need for advanced modeling and simulation
techniques that can capture multiphysics phenomena across various spatial and temporal
scales. As a result, modeling and simulation have become essential tools, working alongside
experimental measurements to deepen our understanding of materials.

In recent years, significant progress has been achieved in computational approaches
such as finite element simulations [1–10], multiphysics simulations [11–18], ab initio and
molecular dynamics simulations [19–25], and structural optimization algorithms [26–32].
Applications span a wide spectrum of engineering fields, including mechanical and
manufacturing engineering [33–46], mechanical behavior and characterization of materi-
als [47–60], thermomechanics [16–18,61–66] and thermohydrodynamics [67–69], vibration
and acoustics [70–77], and fluid dynamics [78–84]. Materials under study range from met-
als and alloys to composites, metamaterials, and multifunctional structures. This enlarged
bibliography highlights the breadth of modelling and simulation approaches and high-
lights the effective integration of computational and experimental methods, showing that
simulations are not just for predicting outcomes but also for guiding the design, processing,
and optimization of materials.

Within this broad context, the contributions collected in this Special Issue (Refs. [85–94])
can be grouped into five specific topics that illustrate how these general advances are ap-
plied to cutting-edge problems in materials science. These are as follows:

(i) Finite element simulations in mechanical and manufacturing engineering: Ad-
vanced roll forming of dual-phase steels [85] and optimization of corrugated tubes
for crashworthiness [86].

(ii) Mechanical behavior and characterization of materials: Integration of digital image
correlation for accurate property determination [87]; fibrous material remodeling un-
der stress [88]; lightweight and multifunctional structures, including TPMS sandwich
cores [89] and tunable phononic crystals [90].

(iii) Reliability and vibration performance of engineered systems: Fatigue life prediction
of composite hydrogen storage vessels under random vibration [91].

(iv) Thermohydrodynamic multiphysics modelling: Simulation of plasma arc melting for
titanium alloys [92].

(v) Ab initio, atomistic modelling of materials: Short-range ordering in gallium melts [93]
and first principle calculations in Cu–Zn alloys [94].

Song and co-authors [85] performed finite element simulations using Abaqus to inves-
tigate the roll forming process of a wheel rim made from high-strength dual-phase steel
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DP590 following flash butt welding. The study modeled the flaring, three-roll forming,
and expansion stages, incorporating weld- and heat-affected zone microstructural data
to analyze stress–strain distribution, thickness reduction, and forming stability. Results
showed stress and strain concentrations in welded and coarse- or fine-grained heat-affected
zones, with significant thickness reduction in groove and flange sections due to softening in
intercritical and subcritical HAZ regions. Microstructural features, such as layered marten-
site and coarse grains, played a decisive role in deformation behavior. Process optimization,
including a recommended friction coefficient of 0.4 and an optimal feed-to-roll speed ratio
of 15 mm/s to 1:1.2, improved forming quality. The findings highlight the need for careful
application of DP590 in rim manufacturing and suggest broader potential in automotive,
aerospace, and rail sectors, as well as opportunities for advanced simulation methods,
parameter refinement, and microstructure control to enhance performance and durability.

To address the limitations of longitudinal corrugated tubes (LCTs) and circumferen-
tial corrugated tubes (CCTs) in crashworthiness, a novel bi-directional corrugated tube
(BCT) was developed in the study of Zou and co-authors [86], combining the high specific
energy absorption of CCTs with the stable platform force of LCTs. Formed by rolling
a bi-directional corrugated structure into a circular tubular form, the BCT was evaluated
through experiments and finite element simulations, with results showing strong agree-
ment. Parametric studies and multi-objective optimization revealed that tailored geometric
parameters significantly improve energy absorption and stability, with the BCT achieving
up to 80% higher specific energy absorption than CCTs and 45% higher than LCTs, while
reducing ultimate load capacity. These findings position the BCT as a promising energy
absorber for applications in automotive crash boxes, aerospace structures, and other fields
requiring enhanced crashworthiness, with future work focusing on high-speed impact and
vibration behavior.

Accurate mechanical property parameters are essential for reliable finite element simu-
lations, and the study of Wang and co-authors [87] compared strain gauge and digital image
correlation (DIC) techniques in tensile testing of 316 L stainless steel used in pressurized
water reactor pipelines. Results showed that while both methods yield nearly identical data
within the strain gauge’s range, DIC offered a far broader measurement scope, capturing
complete strain evolution and enhancing elastoplastic simulation accuracy. Finite element
predictions calibrated with DIC data closely matched experimental strain distributions,
validating DIC as a powerful tool for both parameter acquisition and simulation verifica-
tion. Its wider applicability positions it as a promising method for characterizing complex,
heterogeneous nuclear structures such as welded joints or defect-containing components,
where traditional gauges face spatial limitations.

Rodella [88] presented a continuum model for fibrous materials, like those in bio-
logical tissues and composites, that undergo plastic remodeling under mechanical stress.
The research identified three distinct classes of material behavior based on how their inter-
nal fibers reorient under tension. This reorientation led to complex and extreme responses,
including phase segregation (where different regions of the material develop unique fiber
alignments) and transitions between auxetic and non-auxetic properties. The findings,
derived from a combination of analytical and numerical methods, offer significant implica-
tions for engineering new materials with tunable properties for applications ranging from
soft robotics and protective equipment to biomedical implants.

Triply periodic minimal surface (TPMS) sandwich structures offer promising lightweight,
high-strength, and energy-absorbing solutions, and the study of Vasile and co-authors [89]
evaluated eight novel TPMS cores and a stochastic topology using finite element anal-
ysis, using Ansys, with both implicit and conventional modeling approaches. While
implicit modeling proved as accurate as traditional CAD-based methods, it required up to
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four times greater computational effort. Sensitivity analyses identified optimal meshing
parameters, and four material models for SLA-manufactured photopolymer parts were
assessed, with the Multilinear model achieving the highest accuracy at only 2.54% devi-
ation from experimental results. Numerical simulations closely matched experimental
failure mechanisms for most cases, validating the predictive capability of the approach.
The findings highlight implicit modeling as a viable tool for optimizing complex geometries
before fabrication, offering valuable guidance for designing high-performance sandwich
structures in engineering applications.

The study of Kaniolakis Kaloudis and co-authors [90] investigated how unit cell
multiplicity influenced the acoustic response of phononic crystals (PCs), using a laser–
plasma sound source characterization method combined with computational multiphysics
simulations. Results revealed that increasing cell multiplicity deepened phononic bandgaps,
exponentially attenuated acoustic energy in the first bandgap, and enhanced spectral
flatness in passband regions, while also increasing the number of resonant peaks tied
to spherical harmonics and standing wave modes. A methodology was proposed to
determine the number of unit cells required to achieve a specific bandgap depth, especially
with respect to the behavior of a structure with infinite length. These findings underscore
the tunability of PCs for targeted sound control and noise insulation applications, and
set the stage for future studies on defected cells, higher-order structures, and material
density effects.

Xiong and co-authors [91] presented an experimental–numerical investigation of
composite hydrogen storage vessels (CHSVs) under random vibration, a key reliability
concern for fuel cell vehicle applications. Finite element models, validated against modal
testing with <9% frequency deviation, were used to predict stress distribution and fatigue
life via Steinberg’s and Dirlik’s methods. Results identified the head section as the critical
fatigue zone, with initial maximum stresses of 469.4 MPa (winding layer) and 173.0 MPa
(liner), corresponding to lifetimes of ~1.66 × 106 and 3.06 × 106 cycles. Optimization of ply
parameters reduced stresses by 66% and 85%, respectively, and extended both components’
lifetimes to over 1 × 107 cycles, meeting high-cycle fatigue standards. The findings provide
design and optimization guidelines applicable to a broad class of CFRP–metal or CFRP–
polymer pressure vessels.

The study by Bellot and co-authors [92] combined advanced numerical modeling
and pilot-scale experiments to evaluate inclusion removal in titanium alloys processed
via Plasma Arc Melting–Cold Hearth Remelting (PAMCHR), a key route for producing
aeronautical-grade materials. Using a custom PAM3D model on the Ansys-Fluent plat-
form, the work simulated thermohydrodynamic behavior, melting rates, and high-density
inclusion (HDI) trajectories in a 100–150 kg/h pilot furnace. Multiphysics simulations,
validated by crucible bath profile and residence time measurements, revealed that over
50% of torch-supplied heat is lost through crucible cooling and that bath depth reached
approximately one-third of the metal height in the crucible. Both modeling and HDI insem-
ination tests confirmed efficient sedimentation-based removal of refractory inclusions—an
advantage over processes like Vacuum Arc Remelting. These results provide a predictive
tool for process optimization and highlight PAMCHR’s potential for reliably producing
ultra-clean titanium alloys for critical aerospace applications.

Wang and co-authors [93] employed the Wulff cluster model (WCM) to elucidate the
short-range ordering (SRO) structure of gallium melts, revealing clusters with Wulff-shaped
exteriors and crystallographic symmetry interiors. High-temperature XRD measurements
at 523 K, 623 K, and 723 K showed excellent agreement with Ab initio simulations in
peak positions, widths, and relative intensities, even well above the melting point. Minor
deviations at 523 K are linked to pre-nucleation onset. By integrating experimental data,
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DFT-derived surface energies, and structural modelling, the study confirms WCM’s capa-
bility to describe SRO in melts with partial covalent character, such as gallium, providing
insight into melt structure–property relationships.

The study of Huang and co-authors [94] combined first-principles calculations with
the Boltzmann transport equation to investigate electrical and thermal conductivities
of Cu–Zn alloys across α, α + β′, and β′ phases with 0–50 at.% Zn. Results revealed
a non-monotonic decrease–increase trend in both properties, consistent with experiments.
Electronic structure analysis showed that Cu d-orbitals dominated near the Fermi level
in the α-phase, with increasing Zn lowering the effective density of states and reducing
electron transport. Thermal conductivity trends, validated via the Wiedemann–Franz law,
aligned with measured data. These findings provide theoretical insight into transport
mechanisms and optimization strategies for complex alloy systems.

Acknowledgments: The Guest Editor would like to thank all the contributing authors, the reviewers,
and the editorial team of Materials.
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Abstract: In this study, finite element (FE) simulation by the software Abaqus was relied on to
investigate the roll forming process of a wheel rim made of an innovative dual-phase steel, i.e., DP590,
after flash butt welding (FBW). In the simulation, an FE model was generated, including the design of
the dies for flaring, three-roll forming, and expansion, and detailed key processing parameters based
on practical production of the selected DP590. Combined with the microstructures and properties
of the weld zone (WZ) and heat-affected zones (HAZs) after FBW, the distribution of stress/strain
and the change in thickness of the base metal (BM), WZ and HAZs were analyzed, and compared
in the important stages of roll forming. Theoretically, the variation in the microstructure and the
corresponding stress–strain behaviors of the BM, WZ, and HAZs after FBW have led to the thickness
reduction of DP590 that originated from softening behaviors occurring at the region of subcritical
HAZs (SCHAZs), and a small amount of tempered martensite has evidently reduced the hardness
and strength of the SCHAZ. Meanwhile, the distribution of stress/strain has been influenced to some
extent. Further, the study includes the influence of the friction coefficient on the forming quality of
the wheel rim to guarantee the simulation accuracy in practical applications. In sum, the dual-phase
steel has to be carefully applied to the wheel rim, which needs to experience the processes of FBW
and roll forming, focusing on the performance of SCHAZs.

Keywords: flash butt welding; dual-phase steel DP590; FE modeling; roll forming

1. Introduction

As an important component, the wheel rim plays an important role in the smooth and
safe operation of automobiles [1]. The rim and the tire support each other and buffer the
force transmitted by the ground, so the performance of the entire wheel is largely deter-
mined by the performance of the rim. With the rapid development of the manufacturing
industry, various research and development institutes have carried out a series of technical
studies and research on steel wheels to improve the strength, fatigue, and other mechan-
ical properties of the wheel rim, as well as the comprehensive performance of welding
and forming, to ensure the safety of the wheel rim [2,3]. Modern tubeless rims generally
use equal-thickness steel plates as raw materials [4], with a 2.5–8 mm thickness range.
The general process of their production isinvolves (1) uncoiling, (2) blanking, (3) rolling,
(4) flash butt welding, (5) slag scraping, (6) flaring, (7) one-pass rolling, (8) two-pass rolling,
(9) three-pass rolling, (10) expansion and finishing, (11) air tightness test, and (12) punching
valve holes. The process diagram is shown in Figure 1.
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The rim material is made using high-strength steel DP590. Dual-phase (DP) steel is
a low-carbon steel alloy subjected to critical-zone heat treatment or a controlled rolling
process to obtain martensite and ferrite at a faster cooling rate [5]. Since the dual-phase steel
has a hardened phase distributed on the fine ferrite matrix and continues to be strengthened
by solid solution atoms [6], 5–20% martensite guarantees the strength of the material. With
the increase in martensite content, the strength of DP steel can reach 500–1200 MPa [7,8].

There is no obvious yield point in the stress–strain curve of DP steel, which effectively
avoids the wrinkling problem on the surface of the formed parts. DP steel has a low
yield strength and high tensile strength, which makes it have a high yield ratio. The
strength of the workpiece during the forming process is low, and the strength after forming
is high. Therefore, the formed parts have high impact energy absorption and fatigue
strength. During the deformation process, the elongation of DP steel is uniform and
the total elongation is large [9]. Therefore, dual-phase steel has good comprehensive
mechanical properties and is a potential material for rims [10].

Flash butt welding technology is the mainstream method for rail welding. In addition
to being used in the field of rails, it is also used for the closed welding of open blanks
and parts, such as automobile rims, bicycle rims, and motorcycle rims [11]. Because it has
no need to add other materials [12] and has a high welding efficiency, it has become the
mainstream welding method for wheel rim production. In the flash butt welding process,
high-temperature plastic deformation occurs in the weld and the heat-affected zone near
the weld, which leads to a change in the microstructure and mechanical properties [13], thus
affecting the subsequent forming process. Therefore, the roll-forming quality of welded
joints is closely related to the welding process parameters [14,15].

Compared with the traditional design method, numerical simulation technology
has great advantages in terms of cost, efficiency, and working environment. More and
more mechanical manufacturing processes have been unprecedentedly developed with the
support of finite element technology [16]. A reasonable finite element model is established
to provide scientific researchers and engineers with the dynamic details of the product
during processing [11]. The important processes in rim production were studied, and the
influence law of key process parameters was found and was reasonably regulated, which
can improve product quality, shorten the development cycle, and cut costs [17].

There has been a lot of research on the numerical simulation of the roll forming
process, and some experience has been summarized. Kiuchi [18] developed a computer-
based numerical simulation system for cold roll forming, which is suitable for various roll
forming processes. It is convenient to analyze the influence of rolling pass, roll position,
product size, and sheet mechanical properties on forming. Abe et al. [19] used the rigid-
plastic finite element method to simulate the multi-pass forming of spokes, discussed the
thinning of wall fillet thickness in each stage, and studied the influence of fillet punch
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radius and tensile ratio on fillet thinning. Bi et al. [20] carried out a numerical simulation
of the spinning of automobile rims and improved the spin forming process. The research
results have a certain reference value for the study of rim spin forming. Fang et al. [21]
established a finite element model of the rolling process in ABAQUS, studied the law of rim
roll forming, and analyzed the deformation results of each pass. The reliability of the model
was verified, which provides a reference for the numerical simulation of high-precision
rims. Finally, the problem of rim cracking was analyzed, and the influence of different
flaring die angles on the forming results of the rim was explored. Lu et al. [22] established
a simulation model of rim plastic forming, studied some key technologies of the model,
analyzed the distribution of stress and strain, and compared it with the actual production
of the rim to verify the accuracy of the model. Hwang et al. [23] used an offline hot-rolling
simulator and numerical simulation technology to simulate and analyze the measured
temperature of each region of the workpiece.

In comparison to existing research, this study focuses on DP590 steel wheel rims and
utilizes ABAQUS 2020 finite element analysis software to establish models to investigate
the key mechanisms involved in the forming process of wheel rims post-flash welding. The
study integrates the processes of flash welding and roll forming, delineating the welding
seam and heat-affected zone within the model. Through microscopic structural analysis, it
correlates the stress–strain distribution and thickness during roll forming with the actual
microstructure, revealing the association between microstructural changes and macroscopic
forming quality. The study explores the impact of critical process parameters on this process
to ensure the accuracy of simulation results in practical applications. The findings of this
research are crucial for optimizing wheel rim manufacturing processes, enhancing product
quality, and reducing production costs. They provide new insights into improving wheel
rim roll forming processes and serve as a reference for future studies.

2. FEM Model of the Roll Forming of a Wheel Rim
2.1. Die Design

The research object of this study is DP590, and its alloy composition and mechanical
properties parameters, obtained by tensile test, are shown in Table 1.

Table 1. DP590 alloy elements and mechanical properties.

Alloying
Element

Elements C Mn Cr Si Al Ti Nb P N S Fe
wt.% 0.056 1.199 0.268 0.085 0.039 0.02 0.013 0.015 0.004 0.001 Bal.

Performance
parameter

Yield strength 318 MPa
Ultimate tensile

strength 614 MPa

Elongation rate 39.3%
Young’s modulus 199 GPa

Poisson ratio 0.33

The GB/T 31961-2015 [24] profile of a 15◦ deep-groove rim of 22.5 × 7.50 truck and
bus rims, is shown in Figure 2a. It is welded into a ring by plate winding, flaring at both
ends, and then formed by three passes of roll bending. The last step is finishing.

In the simulation process, the mold of the rim-forming process can be designed
according to the target aim of segmented deformation and the principle of a constant
centerline position before and after deformation. The equal gap theory is used to design
the size of each pass of the rolling mold according to the final size diagram, as shown in
Figure 2b–f.
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Figure 2. (a) 15◦ deep-groove rim national standard size; mold size: (b) expansion die size;
(c) third-roll die size; (d) second-roll die size; (e) first-roll die size; (f) flaring die size.

2.2. Finite Element Models of the Roll Forming of the Wheel Rim

The commercial finite element software ABAQUS/Explicit 2020 was used as the sim-
ulation tool. ABAQUS/Explicit is a finite element software designed for simulating and
analyzing complex nonlinear problems, particularly suitable for fast dynamic events and
large deformations. Its primary applications include fast dynamic analysis, large deforma-
tion problems, complex contact phenomena, and nonlinear material behavior simulation.
It effectively handles high-speed dynamic events such as impacts, collisions, and explo-
sions, providing accurate results for metal forming, material fracture, and collapse, while
addressing issues like contact separation, sliding, and friction [25]. It is widely used in
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the automotive and aerospace industries and in civil engineering [26], manufacturing,
and biomedical engineering [27]. However, ABAQUS/Explicit requires significant com-
putational resources during explicit simulations, especially with high-resolution models
and long-duration simulations. The choice of time step directly impacts the stability and
accuracy of the simulation results. To ensure accuracy, it is common practice to validate
and calibrate simulation models using experimental data, and to conduct error analysis to
understand potential sources of numerical errors. Through the optimization of parameters
and model settings, ABAQUS/Explicit can provide simulation outputs highly consistent
with experimental results, enabling in-depth exploration of the nature and principles
behind complex dynamic phenomena.

Figure 3 shows the model for roll forming. The forming system includes an upper die,
lower die, and guide wheel. The upper die and the lower die have convex and concave
profiles, respectively. Initially, the flaring ring blank is placed on the lower die. Once the
model is started, the upper die and the lower die begin to rotate. The lower die moves
upward to contact the upper die, and the annular blank rotates at the same speed as the
lower die during the clamping process. The guide wheel and retaining ring are used to
stabilize the blank and prevent it from shaking.
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Figure 3. Finite element model of each process of rim production: (a) flaring; (b) rolling; (c) expansion.

To explore the stress–strain law of the roll forming process of the welded rim, the
weld and the heat-affected zone are separately divided when the model is established.
Based on the peak temperature of each region, the HAZ can be divided into four main
regions: the coarse-grained heat-affected zone HAZ1 (CGHAZ), the fine-grained heat-
affected zone HAZ2 (FGHAZ), the inter-critical heat-affected zone HAZ3 (ICHAZ), and
the subcritical heat-affected zone HAZ4 (SCHAZ). According to their microstructure and
properties, different material parameters are assigned to each region, and a width of 3 mm
is set, respectively [28], as shown in Figure 4. The true stress–true strain parameters of
each region are introduced after conversion, and the changes in stress–strain and thickness
reduction near the weld are observed.
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In the process of rim roll forming, three-dimensional finite element modeling is used.
Since die deformation during the rolling process can be neglected, the die is modeled as an
analytical rigid body. To consider the change in the thickness of the workpiece during the
rolling process, the radial force and the axial force are analyzed. In this study, the SC8R
solid-shell element was used for meshing, and a total of 4528 elements and 9362 nodes
were generated. To ensure the reliability and accuracy of the computational results, we
conducted a detailed mesh convergence analysis. We progressively refined the mesh,
doubling the number of elements each time, and selected the stress, strain, and deformation
at critical locations as the convergence criteria. Additionally, we analyzed the reaction
forces and displacements at key points during the rolling process. By comparing the results
at different mesh densities, we found that when the number of elements increased to 4528,
the variation rate of the stress and deformation at critical locations stabilized, with a change
rate of less than 1%, meeting ABAQUS’s convergence criteria. We finally selected a mesh
with 4528 elements and 9362 nodes, achieving a good balance between computational
efficiency and accuracy. Further mesh refinement showed that the variation rate of the
results at critical locations remained below 1%, indicating that the mesh had converged.

In this study, the metal roll forming simulation calculation is carried out using the finite
element method. Considering various boundary conditions, such as mold shape, friction,
rotation speed, etc., a three-dimensional model is established for nonlinear calculation, and
the stress–strain, thickness, material flow, and other related information in the forming
process are obtained. The elastic-plastic finite element method takes into account the elastic
deformation of the material. It can analyze the dynamic motion of the plastic deformation
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zone, the stress and strain changes during processing and forming, and can better simulate
the actual production and processing process.

Several basic rules of the elastic-plastic finite element method are as follows:
Yield criterion:
When the equivalent stress exceeds the yield stress of the material, the material enters

the plastic deformation stage, which satisfies the condition of the yield criterion:

F0 = F0(σij, k0
)
= 0 (1)

In the formula, σij is the stress tensor component, k0 is the material characteristic
parameter, and F0 is the initial yield surface.

When the metal material is deformed, the commonly used yield conditions are:
(a) Mises condition:

F0(σij, k0
)
= F

(
σij
)
− k0= 0 (2)

Among which,

f
(
σij
)
− k0 =

1
2

sijsij ; k0 =
1
3

σ2
s0 (3)

sij = σij − σmδij ; σm =
1
3
(σ11+σ22+σ33) (4)

In the formula, f is the plastic stress–strain function, sij is the stress component, σs0 is
the initial yield stress of the material, and σm is the normal stress.

The relationship between sij and equivalent stress:

1
2

sijsij =
σ2

3
(5)

(b) Tresca condition:
In the three-dimensional principal stress space, the yield surface is a regular hexagonal

prism with σ1= σ2 = σ3 as the axis and an inscribed Mises cylindrical surface. Its yield
trajectory on the π plane is a regular hexagon with an inscribed Mises yield trajectory. The
yield function expression is:

F0(σij, k0
)
=

1
6

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
]
− 1

3
σ2

s0 (6)

Flowing rule:
The relationship between plastic strain increment and the stress state is expressed by

Prandt-Reuss:
dε

p
ij= dλ

∂ f
∂σij

(7)

In the formula, dε
p
ij is the plastic strain increment component, f is the plastic stress–

strain function, and λ is the proportional constant. this Equation indicates that dε
p
ij is

perpendicular to the surface defined by f = 0.
Hardening criterion:
The hardening criterion of the material indicates that the initial yield criterion changes

with the increase in plastic deformation. The hardening criterion specifies the material
loading function under plastic deformation:

F
(
σij, k, aij

)
= 0 (8)

In the formula, σij is the stress tensor component, k is the plastic work, and aij is the
moving tensor of the loading surface.

In actual rim processing, to prevent the rim from bouncing or offsetting when it
contacts the upper and lower rolling molds, guide wheels are set on both sides of the rim.
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The guide wheel is mainly used to transfer the pressure provided by the cylinder to the rim.
Due to the complex contact between the guide wheel and the edge of the rim, the model of
the guide wheel is simplified in the process of numerical simulation, and the force provided
by the cylinder is replaced by establishing a spring and adjusting the elastic coefficient and
the damping coefficient. According to the calculation formula of elastic coefficient kmax,
the elastic coefficient is set to 1000 N/mm, and the damping coefficient is set to 0.3.

In the flaring process, the upper and lower dies are in contact with the inner surface of
the workpiece, respectively. In the three-pass rolling process, the upper die is in contact
with the outer surface of the workpiece, the lower die is in contact with the inner surface of
the workpiece, and the side guide wheel is in contact with the side of the workpiece. In the
numerical simulation, the contact is surface-to-surface contact, and the Coulomb friction
model of the penalty function is used. In friction contact, the tangential direction is the
friction behavior, the friction coefficient is defined as 0.3, and the normal direction adopts
the default ‘hard’ contact. In the simulation process, the rotation speed of the upper rolling
die is 180 r/min, the rotation speed of the lower rolling die is 216 r/min, and the feed rate
of the lower rolling die is 15 mm/s.

3. Results and Discussion
3.1. Microstructure and Properties

Figure 5 shows the microstructure of different heat-affected zones at the weld. The
microstructure of the DP590 steel matrix metal is composed of 12.81% martensite (M) and
87.19% polygonal ferrite (PF). The WZ has coarse grain and Widmanstatten structure [29].
Using the CALPHAD software “Thermal-Calc” (Thermo-Calc Software, Stockholm, Swe-
den), the equilibrium phase diagram of DP590 was calculated. The results show that
the Ac1 and Ac3 temperatures are 665 ◦C and 844 ◦C, respectively. During the flash butt
welding process, the heat-affected zone is divided according to Ac1 and Ac3: the peak
temperatures of the CGHAZ and FGHAZ regions are higher than Ac3, leading to complete
recrystallization. The grain size in CGHAZ is generally greater than 100 µm, while in
FGHAZ it is mostly less than 50 µm. The peak temperature in the ICHAZ is between
Ac1 and Ac3, resulting in partial recrystallization. The peak temperature in the SCHAZ is
lower than Ac1 but higher than 200 ◦C, so no austenite transformation occurs, but it still
affects performance.

In Figure 5c,d, the CGHAZ and FGHAZ show a lath martensite structure and austenite
grain boundaries, with the CGHAZ having larger original austenite grains than the FGHAZ.
The ICHAZ consists mainly of fine ferrite and some retained tempered sorbite. The
SCHAZ’s microstructure is similar to that of the base metal, but with larger ferrite grains
and a lower martensite content.

The average microhardness values for different regions of the weld are: CGHAZ (232.7
HV0.5) > FGHAZ (225.8 HV0.5) > ICHAZ (187.7 HV0.5) > BM (184.2 HV0.5) > SCHAZ (167.2
HV0.5) [29]. The microhardness of the ICHAZ and SCHAZ is significantly lower than that
of the coarse-grained and fine-grained regions. In terms of softening behavior, the hardness
of the SCHAZ decreased by 9.2% compared to the BM. The welded heat-affected zone of
DP590 steel is defined as an abnormal softening zone that must meet usage requirements.
Figure 5 shows that the CGHAZ and FGHAZ have a lath martensite structure, providing
high hardness. In contrast, the hardness of the ICHAZ is significantly reduced, mainly
due to fine ferrite grains and a small amount of tempered martensite. The microstructure
of the SCHAZ is very similar to that of the BM, but its martensite exhibits characteristic
tempering, which is the cause of softening in the SCHAZ.
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3.2. Stress and Strain in the Forming Process

The distribution of Von Mises stress (S, Mises) and equivalent plastic strain (PEEQ)
of the flaring blank is shown in Figure 6. The results indicate that the primary equivalent
stress in the workpiece is 372.2 MPa, while the maximum equivalent stress at the weld
reaches 553.5 MPa. The majority of deformation during the flaring process occurs at the
rim area. After flaring, the rims on both sides of the workpiece take on a horn-like shape,
with strain distributed symmetrically. The peak strain observed is 6.07%.
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The distribution of the equivalent stress and plastic strain of the flaring ring formed
by the first roll bending is shown in Figure 7(a1,b1). The weld area experiences stress
concentration due to the layered martensitic structure, with the maximum stress reaching
689.4 MPa, primarily localized on both sides of the groove. The coarse grain structure in
the CGHAZ and FGHAZ also leads to higher stress during the forming process [30]. The
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key forming sections in the rolling process are the middle groove and the flanges on either
side. The groove is pre-formed, and the flanges are shaped further based on the horn-like
form created during flaring. The deformation at the rounded corners on both sides of the
groove is the most significant, with a maximum strain of 4.2%, followed by other parts of
the groove. The rolling process involves the most extensive deformation in the three-pass
process. The plastic strain at the left corner of the groove is greater than at the right corner
because, during rolling, material primarily flows from the left side of the groove to the
groove’s base, leading to a tendency toward thinning.

The stress and strain distribution of the workpiece during the second rolling process
is shown in Figure 7(a2,b2). Compared with the first pass, the primary goal of the second
rolling process is to refine the shape: the groove bottom remains unchanged while the rim
is further shaped. In the second pass, the workpiece is mainly subjected to an equivalent
stress of about 454.2 MPa. Stress concentration occurs at the fillet weld near the flange
side of the groove, which is related to the softening in the ICHAZ and the SCHAZ. These
areas are structurally weaker and more prone to thickness reduction. Additionally, the
simulation results show significant deformation at the rim near the groove, indicating high
radial and axial stress. The maximum stress is 748.6 MPa, correlating with the presence of
larger ferrite grains and layered martensite in the microstructure [31]. Regarding the PEEQ,
the maximum strain, about 3.77% is found at the groove. The middle groove continues to
exhibit substantial strain, with the strain at the left corner of the lower groove exceeding
that of the right corner.

After two passes of roll forming, the rim contour is almost formed, except for the
corner of the groove. The purpose of the third pass of roll forming is to leave each fillet
of the groove and the rim completely formed, and the feed rate is increased compared
with the first two processes. Figure 7(a3,b3) shows the equivalent stress and plastic strain
on the forming contour after the third pass of roll forming. In the three-roll process, the
rim is first deformed, and then the fillets of each part of the groove is also deformed to
varying degrees. The stress concentration occurs at the fillet welds on both sides of the
groove, and the maximum stress here is 697.2 MPa. This may be because the material flow
mainly occurs in these areas during the three rolling processes, which is consistent with the
microstructure in the CGHAZ and FGHAZ, indicating that the layered martensite with a
high hardness may be subjected to great stress during the forming process. The maximum
PEEQ appears at the rim edge with the thickest contour wall, and the strain is 3.64%.

As shown in Figure 8, the stress and strain distribution of the workpiece after expan-
sion is also called bulging. The expansion process is designed to expand the diameter of the
workpiece to the design requirements through the expansion die so that the workpiece flat-
tens. The stress value in the larger stress area is about 558.6 MPa. The strain at the groove
is the largest, about 2.33%. In the process of expansion, the diameter of the groove is the
smallest; first, contacting the mold and driving the whole to expand. After measurement,
the diameter before expansion is 565.8 mm, the diameter after expansion is 571.5 mm, and
the expansion rate is about 1%.
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3.3. Thickness Analysis in Rim-Forming Process

Along the path from the left rim to the right rim, the thickness variation curve of the
three-pass roll forming process of the base metal, weld, and heat-affected zone of the rim is
output, and the thinning of each region during the rim-forming process is explored.

The thickness variation curve of different regions of the rim after the first roll is shown
in Figure 9a. The main forming parts include the groove and the flanges on both sides.
On the left flange, the base material experiences the greatest thinning, with a reduction
rate of 3.06%. Secondly, the heat-affected zone HAZ4 has a thinning rate of 2.77%, likely
due to the hardness reduction caused by carbon diffusion, martensite decomposition, and
tempering of the material. This softening effect may lead to a decrease in hardness in this
area, ultimately resulting in thickness reduction. The thickness changes in the weld and
HAZ1 are similar, indicating signs of material hardening in these areas. This hardening is
primarily due to stress concentration during the first rolling process, which induces work
hardening in the material [32]. Since the martensitic structure in the CGHAZ and FGHAZ
can provide higher hardness, the rate of thickness reduction in these regions is relatively
low. However, the groove exhibits the highest thinning rate, reaching 3.83%, likely due
to stress concentration in this area during the first rolling process, resulting in material
stretching and deformation.

Figure 9b shows the thickness variation curve of different regions of the rim after the
two-roll process. After the second rolling, both the flanges on either side of the rim and the
groove experience thinning. On the right side of the groove, near the flange, the thinning is
particularly noticeable. This is primarily because, during the second rolling process, the
flange and the groove bottom deform almost simultaneously, causing further forming of
the flanges on both sides. The right side of the groove is subjected to greater tensile stress,
with a thinning rate of 7.33%. This high thinning rate phenomenon may be related to the
softening of the structure in the FGHAZ and ICHAZ, making these areas more prone to
thickness reduction and stress concentration during the forming process. The thinning
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pattern in the various regions of the flanges on both sides remains consistent with that of
the first rolling. The base material on the left flange experiences the greatest thinning, with
a reduction rate of 3.05%, followed by HAZ4 with a reduction rate of 2.77%. However, the
differences in thinning across the various regions of the flanges are less pronounced than in
the first rolling. The differences in thinning rates in the various regions of the groove are
not significant, averaging around 9.67%.
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According to Figure 9c, the change in rim thickness after three rolls is similar to
that after two rolls, but the deformation is the smallest. Due to the superposition of
thickness from the three rolling processes, the thinning at the groove is the greatest, with
a reduction rate reaching 17%. This may be related to the martensitic structure in the
CGHAZ and FGHAZ, as well as the smaller grain size in the FGHAZ. These microstructural
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characteristics may lead to greater stress in this region during the forming process, resulting
in thickness reduction. On the left side of the groove near the rim, significant deformation
from the second and third rolling processes results in considerable tension, with a thinning
rate of 9.67%. After the third rolling process, ear widths form on both sides of the flanges,
and the difference in thinning rate among the various regions is minimal. This is mainly
because the shape of the flanges ensures a relatively uniform thickness distribution.

3.4. The Influence of Process Parameters on the Rim-Forming Process
3.4.1. The Influence of Friction Coefficient on the Forming Process

In roll forming, the rim rotates with the upper and lower molds by friction. However,
due to the influence of lubrication conditions and mold surface quality, it is difficult to
determine the relationship between the friction and the sensitive parts. According to the
empirical values in the literature, the effects of friction coefficients of 0.1, 0.2, 0.3, and 0.4 on
the forming quality of the rim were investigated in the simulation.

Since the weld seam at the groove of the rim is the most obvious area of thinning,
the thickness change in the weld seam after one roll forming pass with different friction
coefficients is mainly studied. Figure 10a shows the influence of different friction coeffi-
cients on the thickness of one side rim, and the path from left to right is rim-to-groove. It
can be seen that when the friction coefficient is 0.1, the flange thickness is smaller and the
groove thickness is larger; when the friction coefficient is 0.2, the thickness of the groove
is the smallest and the thinning rate of the groove is the highest. The thinning effect of a
friction coefficient of 0.3 is similar to that of 0.2. Because groove forming involves material
distribution and flow, too small a thickness will lead to an excessive thinning rate, and
balanced thickness distribution is more conducive to forming quality. Figure 10b shows the
influence of different friction coefficients on the equivalent stress. The higher the friction
coefficient, the smaller the equivalent stress and the lower the forming difficulty. Based on
the above results, the forming quality is best when the friction coefficient is 0.4.
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Figure 10. (a) Effect of different friction coefficients on rim reduction; (b) effect of different friction
coefficients on equivalent stress.

3.4.2. The Influence of Feed Rate on the Forming Process

The feed distance refers to the distance during which the lower roll feeds upwards,
contacts the inner surface of the workpiece, and continues to drive the workpiece upward
until the outer surface of the workpiece contacts the upper roll. If the feed speed is too high,
it can easily cause the workpiece to “deviate”, resulting in asymmetrical wheel flanges after
forming. Additionally, significant material flow occurs in the groove formation during the
first rolling process. Once the groove position is determined, it lays the foundation for
subsequent processes, making analysis of the quality of the first roll forming critical. The
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feed speed affects the force exerted on the workpiece by the mold; excessive force increases
the difficulty of the rolling process and destabilizes the model.

The variation curve of the maximum support reaction force of different feed speeds
obtained by simulation is shown in Figure 11a. The back force represents the interaction
force between the workpiece and the guiding wheel, reflecting the stability of the forming
process. As the feed rate increases, the model experiences higher back forces, indicating in-
creased difficulty and instability in the forming process. In practical production, prolonged
exposure to significant loads and impacts can prematurely fatigue equipment components,
reducing equipment stability and accuracy, and potentially causing the wheel rim forming
to deviate. Figure 11b illustrates the variation curve of the minimum thickness of the wheel
rim at different feed rates. It shows a trend where the minimum thickness initially increases
and then decreases with an increasing feed rate. A larger minimum thickness indicates less
thinning of the wheel rim during forming, indicating higher forming quality. When the
feed rate increases to 30 mm/s, the thinning rate reaches 6.47%, accompanied by higher
back forces, which are unfavorable for stable forming. Considering the impact of feed
rate on back force and thickness, a feed rate of 15 mm/s provides better stability for the
forming model.
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3.4.3. The Influence of Mold Speed on the Forming Process

When the rim is rolled, the down roll of the driving wheel drives the workpiece
to rotate, and its speed is larger than the up roll, which can make workpiece forming
easier. The mold speed affects the initial speed of the rim starting to rotate. Taking
180 r/min as the up-rolling speed, ratios of 1:1, 1:1.2, 1:1.5, and 1:1.8 were set up to study
the influence of down-rolling speeds of 180 r/min, 216 r/min, 270 r/min, and 324 r/min
on the rim-forming process.

The speed of rolling down will affect the initial speed of rim rotation and the stability of
the model. Figure 12 shows the effect of the down rolling speed on the maximum equivalent
stress and circumferential stress. The circumferential stress refers to the stress acting on the
rim circumference (the direction around the rim). These stresses are caused by the pressure
applied in the forming process, the transfer of force, the deformation of the material, and
the effect of the forming die. It can be seen from this Figure that the equivalent stress
extremum increases with the increase in the rolling speed. The equivalent stress extremum
of the one-roll forming process is mainly concentrated near the fillet of the groove. An
excessive stress value can easily lead to stress concentration, making it a dangerous part.
From the extreme value of circumferential stress, when the rotational speed of the lower die
is 180 r/min, the extreme value of circumferential stress is at its largest, reaching 758 MPa.
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An excessively low rotational speed increases the difficulty of forming, and excessively
high circumferential stress will increase the likelihood of circumferential cracking of the
rim. With the increase of rotational speed, the circumferential stress extremum decreases
first and then increases. When the rolling speed is 216 r/min, the circumferential stress
extremum is at its lowest, which is 692 MPa. When the rotational speed continues to
increase, the extreme value of circumferential stress increases again, but the change is small.
In order to reduce the difficulty of forming and ensure that the stress on the rim cannot be
too great, a ratio of up- and down-rolling speed of 1:1.2 is the most suitable.
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4. Conclusions

This study uses finite element simulation to analyze the stress–strain distribution,
thickness reduction, and microstructural changes during the rim roll-forming process
of high-strength dual-phase steel DP590. The simulation results are consistent with the
expectations, and the main findings are as follows:

1. Stress and Strain Concentration: Stress and strain are mainly concentrated in the
welded region and heat-affected zones (especially the CGHAZ and FGHAZ), leading to
local deformation and thickness reduction.

2. Thickness Reduction: Thickness reduction primarily occurs in the groove and flange
sections. The reduction rate in the groove section is 3.83% after the first rolling step, 7.33%
after the second step, and 17% after the third step, mainly due to material softening and
carbon diffusion in the heat-affected zones.

3. Role of Microstructure: Microstructural characteristics significantly influence stress
and strain distributions. The layered martensitic structure in the CGHAZ and FGHAZ
causes high stress, while softening in the ICHAZ and SCHAZ leads to thickness reduction.
Coarse grain and Widmanstatten structures in the welded area also contribute to stress
concentration, affecting forming stability.

4. Parameter Selection: In the roll forming process, a higher friction coefficient can
improve forming quality, and a friction coefficient of 0.4 is recommended. Additionally, the
proper feed-speed and roll-speed ratio can enhance stability and stress control, with the
optimized match by the feed speed of 15 mm/s and a 1:1.2 ratio of the upper and lower
roll speeds.

This study provides new insights into the key regions and microstructural charac-
teristics of high-strength dual-phase steel DP590 during rim roll forming. By optimizing
process parameters and conducting in-depth investigations into microstructures, the man-
ufacturing quality and stability of rims can be enhanced. Future research directions can
focus on the following areas:
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1. Expansion into application fields: The successful application of dual-phase steel in
rim manufacturing opens up potential for its use in other mechanical structures. Particularly
in the automotive and aerospace industries and in rail transportation sectors, the high
strength and excellent formability of dual-phase steel can significantly improve the strength
and durability of structural components.

2. Exploration of new simulation methods and material types: Future studies could
introduce multi-physics coupling simulations and advanced numerical optimization meth-
ods to optimize parameter selection and process design in rim-forming processes. Similarly,
similar analytical techniques could be applied to other advanced high-strength steel mate-
rials, such as improved models of dual-phase steel or other complex structural alloy steels.

3. Further improvement of material performance: Research efforts could focus on
enhancing mechanical properties and forming quality of dual-phase steel through mi-
crostructure control and process parameter optimization. This includes optimizing forming
processes to reduce stress concentration and thickness reduction, thereby improving prod-
uct stability and reliability.
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Abstract: Longitudinal corrugated tubes (LCTs) exhibit stable platform force under axial compression
but have low specific energy absorption. Conversely, circumferential corrugated tubes (CCTs) offer
higher specific energy absorption but with unstable platform force. To overcome these limitations, this
paper introduces a novel bi-directional corrugated tube (BCT) that amalgamates the strengths of both
the CCT and LCT while mitigating their weaknesses. The BCT is formed by rolling a bi-directional
corrugated structure into a circular tubular form. Numerical simulations of the BCT closely align
with experimental results. The study further examines the influence of discrete parameters on the
BCT’s performance through simulations and identifies the tube’s optimal design using the integral
entropy TOPSIS method. A full factorial experimental approach is then employed to investigate the
impact of radial amplitude, axial amplitude, and neutral surface diameter on the crushing behavior
of the BCT, comparing it with the CCT and LCT. The results reveal that increasing Ai enhances the
axial resistance of the structure, while increasing Aj reduces the buckling effect, resulting in a higher
specific energy absorption and lower ultimate load capacity for the BCT compared to the CCT and
LCT. A simultaneous multi-objective optimization of the CCT, LCT, and BCT confirms that the BCT
offers superior specific energy absorption and ultimate load capacity. The optimal configuration
parameters for the BCT have been determined, providing significant insights for practical applications
in crashworthiness engineering.

Keywords: bi-directional corrugated tubes; axial crushing; energy absorption; stable plateau force;
multi-objective optimization

1. Introduction

In the quest for light weight and high energy absorption structures, thin-walled
tubes have emerged as the predominant choice for energy absorption applications [1–3],
notably in spacecraft landers [4], medical apparatus [5], robots [6], and automobiles [7–9].
An exemplary energy-absorbing structure must possess not only a superior capacity to
absorb energy but also maintain a consistent and stable reaction force throughout its
deformation process. This combination of attributes ensures effective energy dissipation
while minimizing the impact on the system or its occupants.

Thin-walled tubes subjected to axial compression are frequently utilized as crash
boxes behind car bumpers, owing to their extended deformation stroke and superior
energy absorption. The performance of these tubes is predominantly influenced by the
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topological characteristics of their cross-sections and their subsequent evolution, which
can be meticulously controlled through mathematical functions or curves. This approach
allows for the facile generation of diverse cross-sectional profiles by adjusting specific
parameters of the control function or curve. While Wu et al. [10] introduced the use
of the Fourier function in cross-section design, it was noted that Fourier cross-section
tubes may have limited applicability in sandwich structures due to non-coincidence of the
tangent points of their concave sections along the same circumference. Alternatively, Deng
et al. [11,12] proposed circumferentially corrugated tubes, which exhibit enhanced energy
absorption capabilities due to the increased structural resistance conferred by their complex
cross-sections. Similarly, Li et al. [13] and Eyvazian et al. [14] introduced transversely
corrugated square tubes with sinusoidal profiles, demonstrating higher specific energy
absorption compared to conventional square tubes. However, it is noteworthy that these
circumferential corrugated tubes, despite their high energy absorption, often produce
force–displacement curves characterized by high initial peak loads and unstable plateau
forces. This instability stems from the repeated buckling and bending failures of axially
loaded tubes.

Extensive exploratory studies have been conducted to mitigate the initial peak force
and enhance the stability of the crushing process in thin-walled structures. Singace et al. [15]
experimentally investigated the energy absorption characteristics of corrugated tubes,
introducing corrugations to enforce plastic deformation and improve the uniformity of the
load–displacement behavior under axial loading. Eyvazian et al. [16] explored the impact
of corrugation on the crushing behavior of circular aluminum tubes, focusing on energy
absorption and damage patterns. Their findings indicated that longitudinal corrugated
tubes promote more predictable and controllable collapse patterns. The controllability and
predictability of the collapse patterns are crucial for applications where precise energy
management is essential, such as in automotive safety systems, aerospace structures, and
protective packaging. By utilizing corrugated tubes, engineers can design systems that
more effectively dissipate impact energy, reducing the risk of injury or damage to occupants
or surrounding structures. Consequently, these tubes are considered promising candidates
for controlled energy absorption devices and have garnered significant research interest.

Dong et al. [17] designed flexure-inducing tubes based on the modal analysis of
straight-walled triangular tubes, enabling folding according to specific modes by strate-
gically presetting convex and concave structural forms. Chen et al. [18] analyzed the
non-linear elastic–plastic behavior of circular tubes with corrugated profiles using finite
element methods, providing insights into their deformation mechanisms and energy ab-
sorption characteristics. Eyvazian et al. [19] conducted both experimental and theoretical
examinations of corrugated tubes under axial loading, validating their findings and rein-
forcing the understanding of their crushing behavior. Alkhatib et al. [20] focused on the
additive manufacturing and experimental testing of sinusoidal corrugated tubes under
quasi-static loading conditions. Imai et al. [21] employed isogeometric analysis and experi-
ments to study the effect of contour curvature on the energy absorption characteristics of
cylindrical corrugated tubes. Wu et al. [22] proposed sinusoidal corrugated tubes designed
to control collapse modes and minimize the initial peak crushing force and load fluctuation.
Their findings revealed that while these tubes exhibited more uniform force–displacement
curves, they significantly reduced energy absorption compared to conventional straight
circular tubes. Inspired by the concept of functionally graded materials, Yao et al. [23]
developed novel hybrid corrugated tubes with an amplitude profile that decreases progres-
sively from large to small during compression. This design was found to enhance energy
absorption capacity compared to ordinary corrugated tubes. Finally, Ha et al. [24] intro-
duced an innovative tubular corrugated structure, modeled after the profile of a coconut
tree. This design aimed to improve energy absorption, reduce the initial peak crushing
force, and stabilize the crushing process.

Despite their remarkable ability to effectively mitigate initial peak forces and plateau
force fluctuations, corrugated tubes exhibit a trade-off in the form of reduced specific

28



Materials 2024, 17, 3958

energy absorption. The results indicate that deformation behavior can be stabilized and
load–displacement curves, as well as energy absorption, can be controlled by introducing
corrugations with varying distances. In summary, these corrugated tubes demonstrate
significant potential for reducing initial peak forces and enhancing deformation stability,
which has garnered increasing attention. However, it is important to note that the specific
energy absorption of these corrugated tubes is diminished.

As illustrated in Figure 1, longitudinally corrugated tubes (LCTs) exhibit a low collaps-
ing force, smooth plateau force, and reduced energy absorption under axial compression.
In contrast, circumferentially corrugated tubes (CCTs) demonstrate higher energy absorp-
tion, accompanied by a higher collapsing force, and a fluctuating plateau force. Based
on the shape of the force–displacement curve under quasi-static compression, energy ab-
sorbers can be broadly classified into two categories: those with a nearly “flat-topped”
load–displacement curve and those with an initial peak force followed by a steeply decreas-
ing curve. Obviously, the force–displacement curve of the LCT aligns with the former type,
characterized by a nearly “flat-topped” profile, whereas the CCT exhibits the latter type,
marked by an initial peak force followed by a steep decline. This dichotomy underscores
the contrasting force–displacement characteristics of the LCTs and CCTs. An analysis of
the cross-sectional shapes reveals that the ripples in the LCTs are present on the sidewall,
while those in the CCTs appear on the cross-section. By integrating sidewall corrugations
and cross-section corrugations, a bi-directional corrugated tube (BCT) can be developed.
Notably, BCTs exhibit a unique tunability, as their properties can be modulated by adjusting
the amplitudes of the cross-sectional and sidewall corrugations. When the cross-sectional
corrugation amplitude of the BCT is zero, it degenerates into an LCT; similarly, when the
sidewall corrugation amplitude of the BCT is 0, it degenerates into a CCT. This adaptability
suggests the feasible of identifying BCT structures with relatively stable plateau forces and
higher energy absorption.
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Figure 1. Comparing the force–displacement curves of a CCT and an LCT under axial compressive
loads, and in order to keep similar specific energy absorption and obtain a more stable plateau force,
a BCT structure is proposed.

In this study, BCTs were fabricated using 3D printing and subjected to axial compres-
sion tests to investigate their deformation mechanisms. To further explore the deformation
and energy-absorbing properties of BCTs under axial compression, a comprehensive finite
element model was developed using the commercial software ABAQUS. Initially, discrete
parameters were parameterized based on the finite element method to assess the crash-
worthiness of these BCTs. The integral entropy TOPSIS method was then employed to
evaluate and select the optimal discrete parameters for crashworthiness. Subsequently, the
full factorial design method was utilized to examine the effects of continuous parameters
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such as circumferential ripple amplitude Ai, axial ripple amplitude Aj, and neutral plane
diameter D. The results were compared with those of CCTs and LCTs to underscore the
advantages of BCTs. Finally, multi-objective optimization was performed for CCTs, LCTs,
and BCTs to highlight the combination of high specific energy absorption and stable plateau
force in BCTs, ultimately determining the optimal geometric parameters for the tubes.

2. Materials and Methods
2.1. Geometric Features

Figure 2a meticulously illustrates the bi-directional corrugated structure, showcasing
its unique undulating patterns in two perpendicular directions. Within this context, the
Cartesian coordinate system, defined by the axes (x, y, z), serves as a fundamental reference
framework for elucidating the geometry of the structure. The governing equations in the x
and z directions are:

yi = Ai × cos[2πNx/(πD)] (1)

yj = Aj × cos[2πMz/H] (2)
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Figure 2. Geometry modeling process for the BCT: (a) bi-directional corrugated structure, (b) structure
with 12 × 2 cells, (c) BCT modeling by the mapping method, (d) geometric modeling of the BCT.

The amplitudes of the ripple curves in the x-axis and z-axis directions are denoted as
Ai and Aj, respectively. N represents the number of units in a single-layer BCT, while D
denotes the diameter of the neutral plane of the BCT. M signifies the number of layers in
the BCT, and H indicates the height of the BCT.

To fully leverage the superior mechanical properties of bi-directional corrugated struc-
tures within tubular frameworks, the bi-directional corrugated structure is integrated as the
unit element within the tubular structure to enhance its resistance to axial compression. The
fabrication process of the BCT is illustrated in Figure 2. It is evident that the 3D structure
depicted in Figure 2b (I) is transformed into a circular tubular form as shown in Figure 2c
(II). The complete BCT consists of N and M bi-directional corrugated units arranged in
the circumferential and axial directions, respectively. Here, N and M denote the number
of bi-directional corrugated structural units aligned in the x and z directions within the
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Cartesian coordinate system. Figure 2b presents the isometric, front, and top views of this
structure, with N and M values of 16 and 2, respectively. The distance from the XOZ plane
is denoted as r, representing the inner diameter of the BCT, as illustrated in Figure 2b (I).
The bi-directional corrugated structure in Figure 2b is bent to form the circular tubular BCT
depicted in Figure 2c. The coordinates of the BCT in the column coordinate system are rep-
resented as (r, θ). The radial thickness of the BCT, shown in Figure 2c (II), is determined by
2
(

Ai + Aj
)
, which also represents the thickness of the bi-directional corrugated structural

unit along the x-axis. Furthermore, the bending angle φ is calculated as φ = 2π/N. The
geometric model of a twelve-layer BCT is illustrated in Figure 2d, with specific geometric
parameters detailed in Figure 2c. For clarity, the wall thickness (t) is 1 mm, and the length
(H) is 120 mm.

2.2. Crashworthiness Indicators

This section examines six key crashworthiness criteria to offer a comprehensive un-
derstanding of energy absorbers through various metrics. These metrics are defined as
follows.

1. Energy absorption (EA): This is defined as the area under the force–displacement
curve, given by:

EA =
∫ s

0
F(x)dx (3)

where F(s) denotes the loading force as a function of displacements. S represents the
effective stroke, which is numerically defined as 70% of the tube length.

2. Specific energy absorption (SEA): This metric represents the energy absorption per
unit mass and indicates the energy absorption efficiency of the structure. It can be
expressed as:

SEA =
EA
m

=

∫ S
0 F(x)dx

m
(4)

3. Initial peak crushing force (IPCF): This refers to the maximum force attained on the
force–displacement curve following the elastic phase. The force at this peak is termed
the IPCF.

4. Mean crushing force (MCF): MCF is defined as the ratio of EA to the effective stroke
S. It can be quantified by the following equation:

MCF =
EA
S

=

∫ S
0 F(x)dx

S
(5)

5. Crushing force efficiency (CFE): ratio of MCF to Fmax.

CFE =
MCF
Fmax

(6)

6. Undulation of load carrying capacity (ULC): ULC quantifies the smoothness of the
force–displacement curve by calculating the ratio of the work done due to deviations
of the actual load from the MCF to the EA. A smaller ULC value signifies a more
uniform and smoother energy absorption process.

ULC =

∫ S
0 |F(x)− MCF|dx
∫ S

0 F(x)dx
(7)

2.3. Compression Test

The material used for the BCT was stainless steel 316 L, with the following mechanical
properties: [25] density ρ = 7980 kg/m3, Young’s modulus E = 171 GPa, yield stress
σy = 552 MPa, and Poisson’s ratio ν = 0.3. Given that quasi-static loading conditions
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are simulated, strain rate effects are not considered into the finite element modeling.
To evaluate the stability of the BCT platform under axial compression and its capacity
for energy absorption, the BCT specimen was prepared as illustrated in Figure 3a. The
specimen, fabricated using additive manufacturing techniques, features a height of 120 mm
and a wall thickness of 1 mm. The chosen parameters for the number of corrugations N
and the number of layers M were 16 and 12, respectively. Additionally, both Ai and Aj
were set to 2 mm, and the diameter of the neutral plane (D) was specified as 51 mm.
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Figure 3. (a) Schematic diagram of the BCT specimen. (b) FE model of the tube under axial impact
loading. (c) Force–displacement curves of experimental and numerical results of the BCT. (d) Mesh-
size validation for the force–displacement of the BCT under axial compression.

The degradation history of the BCT, as depicted in Figure 3c, provides valuable
insights into its behavior under axial compression loads applied at a quasi-static rate of
5 mm/min. As compression displacement increases, the BCT undergoes a controlled
deformation process, with layers progressively collapsing from the base upwards. This
compression includes the formation of lobes, with 12 folds present and observable. The
force–displacement curves for the BCT, as shown in Figure 3c, demonstrate a high degree of
correlation between experimental and simulated data. These curves reveal a stable plateau
force throughout the compression process. Notably, the experimental force–displacement
curves exhibit reduced fluctuation, with the number of oscillations corresponding to the
number of pre-folded layers. This finding further supports the notion that the BCT’s
deformation is well ordered and controlled, leading to a more stable and predictable
performance under compression.
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2.4. FE Modeling

The crashworthiness of the BCT was assessed using the finite element analysis software
ABAQUS/Explicit. The finite element model, as depicted in Figure 3b, consists of three
components: the moving plate, the fixed plate, and the test tube. Initially, all degrees of
freedom of the rigid plate are coupled to a reference point, where boundary conditions
are applied. The upper rigid plate is subjected to a vertical downward displacement with
a velocity of 1 m/s [22], while the lower rigid plate is fixed in all six degrees of freedom.
Meshing is performed using 4-node simplified integral linear quadrilateral elements (S4R).
The numerical model incorporates generalized contact with a friction coefficient of 0.3
to accurately represent the interaction between the rigid plate and the tube. To balance
computational efficiency with accuracy, a cell size of 1.0 mm × 1.0 mm is utilized. For the
rigid plates, which are modeled as discrete rigid shells, no cell properties are assigned, and
the mesh size for these shells is set to 4 mm. This approach allows for a detailed analysis
of the BCT’s deformation and energy absorption mechanisms while keeping the overall
simulation time manageable.

As shown in Figure 3c, the force–displacement curves obtained from the FEM exhibit
an elastic phase similar to the experiment. After reaching a similar IPCF, the curve
fluctuates up and down in the plastic plateau segment in small magnitudes. The overall
agreement between the FEM and experimental force–displacement curves, particularly in
the elastic and plastic plateau segments, provides confidence in the validity and accuracy of
the simulation results. These results can then be used to further analyze the crashworthiness
of the BCT material.

Figure 3c illustrates a comparison between the experimental force–displacement data
and numerical results, demonstrating a strong concordance between the finite element
simulations and the experimental observations. The response curves plotted in Figure 3c
exhibit comparable trends and fluctuation characteristics. The IPCF for specimen 1 and
specimen 2 are 31.76 kN and 31.26 kN, respectively, while the simulated IPCF is 32.95 kN,
as detailed in Table 1. This close correspondence further reinforces the validity of the finite
element model. Moreover, the discrepancies in EA and MCF between experimental and
simulated data are within 3%, highlighting the precision of the simulation in capturing the
essential characteristics of the BCT. These findings provide strong evidence that the finite
element model was successfully calibrated to accurately represent the mechanical behavior
of the BCT under the given loading conditions.

Table 1. Error analysis of experiment and simulation.

Mass (g) MCF (kN) EA (J) SEA (J/g)

specimen 1 243.3 30.37 1974.13 8.11
specimen 2 242.8 30.42 1977.18 8.14

FEM 240.99 31.00 2014.98 8.36

3. Discussion
3.1. Discrete Parametric Analysis
3.1.1. Effect of N and M

Figure 4 provides a detailed analysis of 25 design cases with varying values for N and
M, revealing that the deformation modes of the BCTs predominantly fall into three distinct
categories: progressive flexure mode (P-mode) [26], diamond mode (D-mode), and mixed
mode (M-mode). When N = 20, the collapse consistently occurs in P-mode, regardless of
the value of M. This observation suggests that a higher N value promotes a more uniform
progressive flexure due to increased rigidity and stability provided by the higher number
of cells along the tube’s length. For N = 4, both M4 and M6 exhibit D-mode deformation,
similar to conventional corrugated tubes (CTs). The fewer layers in these configurations
result in larger individual cell heights, making the structure more prone to diamond-
shaped deformations under compression. As the number of layers increases (e.g., M8),
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the deformation transitions to P-mode. This indicates that a higher layer count, resulting
in smaller cell heights, enhances the structure’s ability to undergo progressive flexure
rather than localized diamond-shaped buckling. Interestingly, in configurations with a
greater number of layers (e.g., M10 and M12), a mixed deformation mode is observed.
Initially, the structure undergoes P-mode deformation, followed by a transition to D-mode.
This behavior can be attributed to the balance between the increased structural integrity
provided by the additional layers and the inherent tendency of the structure to buckle in
a diamond pattern under certain conditions. For intermediate values (8 ≤ N ≤ 16), the
deformation mode shifts from mixed mode to P-mode as N increases. This shift indicates a
critical threshold, where the structural configuration favors progressive flexure over mixed
deformation, likely due to the optimized balance between cell height and layer count.
These observations highlight the complex interplay between the geometric parameters N
and M in determining the deformation behavior of BCTs. By leveraging this understanding,
engineers and designers can tailor the geometric configuration of BCTs to achieve desired
mechanical properties for specific applications.
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Figure 5 presents the load–displacement curves for 25 different cases, providing insight
into the mechanical performance of BCTs under varying geometric parameters. Notably,
the initial stiffness of the BCTs is observed to increase with a larger N. This phenomenon
can be attributed to the greater number of cells along the tube’s length, which enhances the
overall structural rigidity and resistance to initial deformation. Conversely, the initial peak
crushing force (IPCF) decreases with an increase in M or a decrease in N. This indicates that
BCTs with more layers (higher M) or fewer cells along the length (lower N) are less capable
of sustaining high peak forces, likely due to the reduced height of individual cells, which
leads to earlier onset of buckling and less force being required for deformation. Except
for cases N4M4 and N8M4, the peaks of the BCT curves are closely aligned, reflecting
effective energy absorption capabilities. These two exceptions can be explained by their
unique configurations where the combination of N and M results in less optimal energy
dissipation characteristics, possibly due to localized buckling or irregular deformation
patterns. Furthermore, as N decreases, the load–displacement curves exhibit reduced
fluctuation, leading to smoother energy absorption. This behavior suggests that BCTs with
fewer cells along the length distribute the applied load more evenly across the structure,
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thereby avoiding abrupt changes in force and resulting in a more stable energy absorption
process. Specifically, for lower N values (e.g., N4), the curves show more pronounced
peaks and valleys, indicating intermittent energy absorption due to localized buckling
events. As N increases (e.g., N12 and above), the curves become smoother, with less
pronounced fluctuations, suggesting a more uniform deformation process and continuous
energy absorption. These findings underscore the importance of optimizing both N and
M to achieve desired mechanical properties, particularly in applications requiring high
energy absorption and minimal force fluctuations.
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Figure 6 presents a detailed analysis of the crashworthiness parameters of the BCTs,
offering insights into their performance under various geometric configurations. IPCF in-
creases with a decrease in M or an increase in N. This indicates that BCTs with fewer layers
(lower M) or more cells along the length (higher N) can sustain higher peak forces before
deformation. This behavior is likely due to the increased structural integrity provided by a
higher number of cells, which enhances resistance to initial impact forces. SEA rises with
increasing values of both M and N, though the influence of N is more pronounced. This
suggests that while both parameters contribute to the energy absorption capacity of the
BCTs, the number of cells along the length (N) plays a more critical role. By fostering a more
distributed pattern of energy absorption, a higher N value leads to more distributed energy
absorption, enhancing the overall crashworthiness of the structure. ULC shows minimal
sensitivity to changes in N but increases significantly with higher M. This indicates that the
layer count (M) is a more crucial factor in determining the maximum load-bearing capacity
of the BCT before failure. Higher M values enhance the overall structural strength, allowing
the BCT to absorb more energy before reaching its ultimate load. CFE generally increases
with larger values of M. This reflects the improved ability of the BCT to absorb energy
efficiently during deformation. Higher M values result in a more stable and controlled
collapse mechanism, enhancing the overall energy absorption efficiency of the structure.
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The impact resistance of the BCT is also illustrated in Figure 6. The results indicate
that BCTs with higher values of N and M exhibit superior impact resistance, demonstrating
their effectiveness in dissipating impact energy and minimizing damage. A higher N
increases IPCF due to the added structural elements, while a lower M decreases IPCF
because of fewer layers to distribute the load.

Both M and N contribute positively to increasing SEA, but the impact of N is more
significant, indicating a strong dependence on the longitudinal configuration of the BCT.
On the other hand, the insensitivity of ULC to N suggests that the overall lengthwise
configuration is less critical, whereas higher M enhances the BCT’s ultimate load capacity
significantly. Furthermore, larger M values result in higher CFE, showcasing better energy
absorption capabilities and efficient crash management.
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3.1.2. Selection Method and Results

Selecting the BCT from the 25 proposed designs presented a challenge due to the
multiple evaluation criteria involved. To address this challenge, the Technique for Order of
Preference by Similarity to Ideal Solution (TOPSIS) method [27], widely recognized for its
efficacy and versatility across various domains, was employed. This method effectively
mitigates subjective bias and accommodates both quantitative and qualitative data [27].
Utilizing the integral entropy TOPSIS approach [28], it is possible to derive the weights
of the indicators wi and calculate the relative proximity Qj. Detailed procedural steps are
provided in Appendix A.

Following the exclusion of six BCTs with ULC exceeding 30%, the remaining
19 BCTs were assessed based on crashworthiness metrics. Among these, SEA and CFE were
identified as advantageous criteria, with weights assigned as 0.71 and 0.29, respectively.
The relative distances between the tubes were calculated and are detailed in Appendix B
(Table A1). Notably, M12 consistently yielded the highest Qj irrespective of variations
in N. When varying M, N20 and N16 consistently exhibited the two highest Qj values.
However, ULC for N20 was disproportionately high compared to N16. Consequently, for
all subsequent analyses, N16M12 was selected as the optimal configuration.

3.2. Parametric Analysis of Continuous Type Parameters
3.2.1. Deformation Patterns

Table 2 outlines the design framework involving three variables, each evaluated across
six levels, culminating in a total of 216 design cases. These cases incorporate various values
for Ai, Aj, and D, which are subsequently simulated. An interesting aspect of this design
framework is the ability to transform the BCT into other common structural forms by
setting specific values for Ai and Aj. For instance, when both Ai and Aj are set to 0, the
BCT effectively transforms into a circular tube (CT). This transformation allows for a direct
comparison between the performance of the BCT and that of a traditional circular tube.
Likewise, setting Ai to 0 results in the BCT resembling a LCT, while setting Aj to 0 yields
a CCT.

Table 2. Values of each level of the parameters.

Parameters Levels Values

Ai 6 0, 0.5, 1.0, 1.5, 2.0, 2.5
Aj 6 0, 0.5, 1.0, 1.5, 2.0, 2.5
D 6 48, 52, 56, 60, 64, 68

Figure 7 presents a detailed depiction of the conformational distribution of BCTs (D60).
Figure 7a displays the configuration of BCTs with 1 CT illustrated in black wireframe,
5 LCTs in green wireframe, 5 CCTs in blue wireframe, and 25 BCTs in red wireframe.
Figure 7b elucidates the distribution of deformation modes observed in the D60 configura-
tion. When Ai is 0, LCTs exhibit three distinct deformation modes. Similarly, when Aj is
0, CCTs exhibit two deformation modes. This analysis confirms that BCTs are capable of
exhibiting a total of five distinct deformation modes.
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Figure 7. (a) BCT conformational distribution (D60) and (b) distribution of deformation patterns
(D60).

Figure 8 illustrates the deformation modes and corresponding force–displacement
curves for the BCT with D60, highlighting distinct behaviors under different configurations.
Observed in Ai2.5Aj0.5, this mode is characterized by high IPCF and unstable energy
absorption within the plastic deformation region. The force–displacement curves show
significant fluctuations, indicating inefficient energy absorption. This behavior is consistent
with previous reports [29], where the structural instability leads to rapid changes in force.
When Ai2.0Aj1.0, the BCT exhibits N-mode, resulting in a reduction in IPCF. However,
the force–displacement curves still display pronounced fluctuations. This indicates that
while the peak force is lower, the energy absorption process remains unstable, leading to
less efficient performance [18]. In the configuration Ai1.0Aj1.5, the BCT exhibits P-mode,
characterized by a lower IPCF and reduced fluctuations in the force–displacement curves.
The plastic section shows a plateau force marginally exceeding IPCF, indicating a more
stable and efficient energy absorption mode. This mode ensures that the energy is absorbed
progressively, minimizing the risk of sudden structural failure. Observed in Ai1.5Aj1.0,
this mode demonstrates localized diamond deformation following P-mode. The force–
displacement curves are similar to N-mode but with reduced fluctuation, indicating a
combination of progressive and localized deformation mechanisms. This mixed behavior
provides a balance between stability and energy absorption efficiency. When the corruga-
tion parameters are set to Ai0.5Aj2.5, the BCT exhibits S-mode, characterized by concurrent
deformation of all units. This results in very smooth force–displacement curves with an
ultimate load capacity (ULC) below 10%. The uniform deformation leads to highly effi-
cient energy absorption with minimal fluctuations, making this mode the most stable and
effective among the observed configurations. Overall, the analysis shows that by carefully
selecting the corrugation parameters Ai and Aj, engineers can fine-tune the deformation
modes and energy absorption capabilities of the BCT to suit specific design requirements.
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Figure 8. (a) Representative force–displacement curves and (b) deformation history diagram of
representative deformation patterns.

3.2.2. Crashworthiness Analysis

Figure 9 presents the contour plots of specific energy absorption (SEA) for BCTs with
varying diameters, providing a detailed visualization of how SEA varies with different
geometric parameters Ai and Aj. The contour plots indicate that the lowest SEA values are
observed at lower Ai and higher Aj values. This suggests that configurations with smaller
initial cell heights (Ai) and larger lateral expansions (Aj) are less effective at absorbing
energy, likely due to less optimal structural configurations for energy dissipation. As
Ai increases or Aj decreases, SEA progressively increases. This indicates that increasing
the initial cell height or reducing the lateral expansion enhances the energy absorption
capability of the BCTs. Higher Ai values likely contribute to greater structural integrity
and improved energy distribution during deformation, while lower Aj values reduce the
spread of deformation, concentrating energy absorption in a more controlled manner. The
intensification of the red regions on the contour plots as the diameter of the BCTs increases
highlights an important aspect of their energy absorption performance. The deeper red
hues signify higher SEA values, indicating that larger diameter BCTs exhibit greater energy
absorption capabilities. This trend can be attributed to the increased material volume and
structural capacity of larger diameter tubes, which provide more room for deformation and
dissipation of impact forces. Additionally, the red regions shift towards higher values of Ai
with increasing BCT diameter. This trend indicates that for larger diameter BCTs, higher
initial cell heights (Ai) become more critical in achieving maximum SEA. This shift reflects
the necessity for stronger structural configurations in larger diameter tubes to manage and
distribute the absorbed energy efficiently.
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Figure 10 presents the contour plots of ultimate load capacity (ULC) for BCTs with
varying diameters, providing detailed insights into how ULC is influenced by the geo-
metric parameters Ai and Aj. The analysis reveals that ULC decreases with increasing Aj
and decreasing Ai. This indicates that larger amplitude of axial ripples (Aj) and smaller
amplitude of transverse ripple (Ai) lead to lower ULC, suggesting reduced structural
strength under compressive loads. Notably, Aj has a more pronounced effect on ULC
compared to Ai, highlighting its significant role in determining the compressive properties
of the BCTs. The contour plots show that the regions of lowest ULC are concentrated
within the ranges of 1.5 ≤ Aj ≤ 2.5 and 0 ≤ Ai ≤ 1.5. These ranges indicate the geometric
configurations that result in the weakest structural performance under compressive loads.
Understanding these ranges is crucial for avoiding designs that may lead to premature
failure or inadequate load-bearing capacity. As the diameter of the BCT increases, the area
corresponding to the minimum ULC values expands towards higher Ai values. This trend
suggests that larger diameters require higher Ai to maintain structural integrity and avoid
significant reductions in ULC. This shift highlights the need to adjust geometric parameters
proportionally with the diameter to ensure optimal performance. Aj plays a pivotal role
in modulating the compressive properties of the BCTs. Its significant impact on reducing
ULC compared to Ai underscores the importance of lateral expansion in determining the
overall structural strength. For optimal deformation stability, Aj should be selected at a
higher value to minimize buckling effects. This ensures that the BCT can sustain higher
compressive loads without experiencing instability or failure.
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3.2.3. Comparison between BCTs and CCTs

The load–displacement characteristics of BCTs and CCTs with identical geometrical
parameters are depicted in Figure 11. The force–displacement curves for CCTs show a
rapid increase in force during the initial impact stage, followed by significant fluctuations
around the mean load. These fluctuations correspond to the formation of folds, indicating
an unstable energy absorption process. In contrast, the intricate cross-section of the BCT
enhances its overall axial impact resistance, resulting in a higher initial peak crush force
(IPCF). Moreover, BCTs exhibit smaller load fluctuations compared to CCTs, enabling
better control over the energy absorption capacity. This controlled deformation results in
a more efficient energy absorption process. Further studies indicate that BCTs not only
possess a lower ultimate load capacity (ULC), but also achieve a similar or even higher
specific energy absorption (SEA) compared to CCTs, making them more efficient in terms
of energy absorption. The PEEQ (equivalent plastic strain) contours illustrated in Figure 12
reveal the irreversible plastic deformation induced by the crushing load, which ultimately
determines the energy absorption capacity of the tubes [30]. For CCTs, two folds are
observed at 28 mm and 92 mm from the moving flat plate, both occurring symmetrically
from the horizontal center of the tube and extending towards the ends. This symmetrical
folding pattern indicates a localized deformation, which can lead to higher load fluctuations.
These findings suggest that BCTs may be more suitable for applications requiring high
energy absorption capacity and stable deformation behavior under compressive loads.

In contrast, BCTs exhibit a progressive buckling deformation pattern along the axial
corrugation. Pleats initially form at the tube ends, followed by a progressive deformation
along the length of the tube. Subsequently, additional pleats emerge from the horizontal
center and extend towards the ends. This progressive buckling allows for a more distributed
energy absorption process, minimizing the load fluctuations. Notably, the PEEQ regions
are concentrated near the crushing interface, indicating effective energy absorption at these
points. The irreversible plastic deformation induced by the crushing load is focused in
these regions, ultimately determining the energy absorption capacity of the tubes.
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The load–displacement response of BCTs exhibits minimal fluctuations during the
crushing process, thereby reducing the risk of injury and enhancing crashworthiness. Addi-
tionally, the crushing displacement required to form the second fold in BCTs is significantly
less than that in CCTs, yet the energy absorption is substantially greater. This indicates that
BCTs are capable of absorbing more energy over a shorter deformation distance, enhancing
their efficiency. By reducing the required deformation distance, BCTs can potentially enable
the design of lighter and more space-efficient crashworthy structures, which is crucial for
applications where weight and space are constrained.

Overall, the force–displacement curves of CCTs exhibit significant fluctuations during
axial crushing, consistent with Deng’s previous findings [11]. This behavior indicates that
CCTs require more energy to develop hinges, which can be attributed to their intricate
cross-sectional design that enhances overall structural stiffness. In contrast, BCTs demon-
strate a smoother energy absorption pattern due to the axial ripples that dictate the fold
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locations, allowing the tube to deform in a controlled manner according to the pre-folding,
as illustrated in Figure 12.

This figure shows that the specific energy absorption (SEA) of BCTs surpasses that of
CCTs by up to 80.23% in the first dataset. This substantial increase in SEA demonstrates
that BCTs are more effective at absorbing energy per unit mass compared to CCTs. Simulta-
neously, the ultimate load capacity (ULC) of BCTs is reduced by 57.63% relative to CCTs.
The significant reduction in ULC highlights the BCT’s capability to deform under lower
peak loads, which can be advantageous in crash scenarios where controlled deformation is
crucial. Here, the SEA of BCTs is shown to be only 11.15% higher than that of CCTs. Despite
this relatively modest increase in SEA, the BCT achieves a remarkable ULC reduction of
up to 72.96% compared to CCTs. This indicates that BCTs offer a more efficient energy
absorption profile, with a substantial reduction in peak loads, which could be beneficial in
mitigating impact forces during a crash. These panels further illustrate that BCTs not only
maintain a high SEA compared to CCTs of the same size but also exhibit a smoother energy
absorption curve throughout the crushing process. The smoother energy absorption is at-
tributed to the BCT’s design, which allows for more controlled and consistent deformation.
The axial ripples in BCTs pre-determine the fold locations, enabling the tube to deform in a
predictable and stable manner. This results in reduced fluctuations in load and enhanced
performance in energy dissipation.

In summary, Figure 13 highlights that BCTs offer superior energy absorption capabili-
ties compared to CCTs, with a higher SEA and lower ULC. The improved performance
of BCTs in energy absorption, combined with their ability to maintain smoother load–
displacement behavior, demonstrates their potential for enhanced crashworthiness in
practical applications.
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3.2.4. Comparison between BCTs and LCTs

The comparative analysis presented in Figure 14 offers profound insights into the
load–displacement characteristics of BCTs in contrast to LCTs with identical geometrical
parameters. This comparison reveals several key insights into the mechanical performance
of BCTs relative to LCTs. Furthermore, the observation that BCTs can withstand augmented
loads while maintaining or even reducing their ULC compared to LCTs underscores a
notable enhancement in their load-bearing capabilities. Despite having a comparable
or lower peak load, BCTs exhibit a unique advantage in their ability to handle higher
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loads without experiencing significant failure or instability. This is indicative of the BCTs’
efficient load distribution and deformation characteristics. BCTs demonstrate the capacity
to withstand higher loads while maintaining or reducing the ULC. This suggests that
BCTs offer enhanced load-bearing capabilities and better performance under compressive
forces. The improved load resistance of BCTs is likely due to their structural design,
which allows for more effective energy absorption and load distribution. The ability of
BCTs to maintain similar or lower ULC while withstanding higher loads highlights their
potential for applications where both high energy absorption and controlled deformation
are required. This makes BCTs suitable for applications such as impact protection and
crashworthiness, where efficient energy dissipation and structural resilience are critical.
In summary, Figure 14 highlights that BCTs not only match or exceed the performance of
LCTs in terms of load-bearing capacity, but also demonstrate the ability to withstand higher
loads while maintaining similar or lower ULC values. These findings suggest that BCTs
offer significant advantages in terms of mechanical performance and structural efficiency.
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Figure 15 presents a comparative analysis of the PEEQ contours for both the LCT
and the BCT, revealing distinct deformation behaviors under compressive loading. The
PEEQ contours for the LCT show that the initial two folds form at the extremities of the
tube, followed by a significant global buckling deformation at the midpoint. This hybrid
deformation pattern indicates that the LCT undergoes localized folding at the ends, which
then transitions into a global buckling mode. This results in a less efficient energy absorp-
tion process, as the deformation is not uniformly distributed along the length of the tube.
In contrast, the BCT initially exhibits folding at a distance of 24.54 mm from the moving
plate’s displacement. Following this initial deformation, the successive layers of the unit
experience destabilization, with the upper end of each layer moving outward and the
lower end moving inward. This local destabilization leads to a global buckling deformation
in the lowest four layers of the BCT. This pattern demonstrates a more progressive and
controlled deformation, which contributes to more efficient energy absorption. Throughout
the crushing process, the load–displacement response of the LCT shows minimal fluctua-
tion but also low energy absorption. This behavior is indicative of the LCT’s less effective
energy dissipation, as the hybrid deformation mode results in reduced overall performance
in energy absorption. Conversely, the BCT’s load–displacement response exhibits more
pronounced fluctuations initially, transitioning to a relatively smooth response. This transi-
tion reflects the BCT’s ability to absorb energy more effectively over a larger deformation
range, resulting in a significantly higher energy absorption (EA) compared to the LCT. The
presence of circumferential corrugation in the BCT enhances its structural stiffness and
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contributes to a more efficient deformation mode, improving overall crashworthiness. The
observed differences in deformation modes between the LCT and BCT highlight the impact
of structural design on crashworthiness. The LCT, with its axial corrugation, undergoes a
combination of deformation modes that reduce its energy absorption capacity. In contrast,
the BCT’s circumferential corrugation improves its structural performance, allowing for
more effective energy dissipation and a smoother load–displacement response. These find-
ings underscore the advantages of BCT design in achieving better energy absorption and
structural efficiency, consistent with previous studies such as those by Eyvazian et al. [16].
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Figure 16 provides a comprehensive comparison of crashworthiness parameters for
BCTs and LCTs across four different tube configurations, highlighting the performance
differences between these designs. This figure shows that the BCT, with identical geo-
metrical parameters to the LCT, achieves a significant 36.43% reduction in ultimate load
capacity (ULC). This significant reduction indicates that the BCT experiences lower peak
loads during deformation, which can contribute to reduced risk of catastrophic failure.
Additionally, the BCT demonstrates a 36.33% increase in specific energy absorption (SEA),
reflecting its superior ability to absorb energy per unit mass. The increase in SEA suggests
that the BCT is more effective in dissipating energy during impact, enhancing overall
crashworthiness. Here, the BCT exhibits up to 44.9% higher SEA compared to the LCT with
the same geometric parameters. This substantial improvement in SEA further underscores
the BCT’s effectiveness in energy absorption. The BCT also shows a 3.64% reduction in
ULC, reinforcing its capability to handle impact loads more efficiently while maintaining a
lower peak load. This combined effect of lower peak loads and heightened energy absorp-
tion capabilities positions BCTs as a highly favorable structural solution for applications
requiring robust crashworthiness performance, which provides additional confirmation
of the BCT’s superior performance in energy absorption. The BCT consistently maintains
a lower ULC and demonstrates higher SEA compared to the LCT of equivalent size. The
results indicate that the BCT offers better overall energy absorption capabilities, which is
crucial for applications requiring enhanced impact resistance and controlled deformation.
The significant increase in SEA for the BCT compared to the LCT indicates a more efficient
energy dissipation mechanism. This improvement is vital for applications where maximiz-
ing energy absorption is essential for safety and performance. Furthermore, the reduction
in ULC observed in the BCT highlights its advantage in experiencing lower peak loads,
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which can lead to improved structural performance and reduced risk of failure during
impact scenarios. The combination of higher SEA and lower ULC confirms that the BCT
outperforms the LCT in terms of crashworthiness. This makes the BCT a more effective
choice for applications that require superior energy absorption and load management. In
summary, Figure 16 conclusively illustrates that the BCT provides substantial improve-
ments in crashworthiness over the LCT, as evidenced by its higher SEA and lower ULC.
These performance metrics underscore the BCT’s exceptional energy absorption capabilities
and overall efficiency in mitigating the effects of impact, making it an attractive option for
a wide range of demanding applications.
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3.3. Effect of Wall Thickness

Figure 17a provides a comprehensive illustration of the force–displacement curves
for BCTs with varying wall thicknesses ranging from 0.6 to 1.6 mm. As the wall thick-
ness (t) of the BCTs increases, there is a noticeable rise in both the platform force and
initial stiffness. This trend indicates that thicker walls contribute to a greater resistance
against deformation, resulting in higher peak forces during impact. The increased initial
stiffness reflects a more rigid response at the onset of deformation, which is beneficial for
applications requiring enhanced structural support. The observed increase in platform
force with greater thickness suggests that thicker BCTs can sustain higher loads before
yielding or collapsing. This enhancement in load-bearing capacity is critical for applications
that demand high impact resistance and durability. Figure 17b presents in a radar plot
the crashworthiness parameters of BCTs with different wall thicknesses. ULC remains
relatively constant at approximately 12% across different thicknesses. This consistency
suggests that the wall thickness has a minimal effect on the maximum load-bearing capacity
of the BCTs, implying that other factors may play a more significant role in determining
ULC. CFE is around 80% for all thicknesses, indicating a high level of energy absorption
efficiency relative to the force applied. This efficiency is maintained across the range of
wall thicknesses, demonstrating that the BCT’s design effectively manages impact forces
regardless of thickness.
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In summary, Figure 17 demonstrates that increasing wall thickness in BCTs enhances
their force–displacement response and improves several crashworthiness parameters.
While CFE and ULC remain relatively stable, IPCF, EA, and SEA benefit significantly
from increased thickness. These findings suggest that optimizing wall thickness is crucial
for maximizing the impact performance and energy absorption capabilities of BCTs.

4. Optimization
4.1. Definition of the Optimization Problem

To assess the impact of parameters on the crashworthiness of the selected tube, the
N16M12 configuration was identified as optimal. Variations in the parameter D cause the
BCT to transition into the densification stage more rapidly. As an energy absorber, the BCT
should maximize the crushing energy per unit mass, making SEA a crucial maximization
objective. Additionally, the mechanical response of the energy absorbing structure should
exhibit a long and stable stress plateau, making ULC another important metric. A lower
ULC indicates a more stable platform force. Thus, the objective is to design a BCT that
combines higher SEA with lower ULC. To optimize these crashworthiness metrics, pa-
rameters Ai, Aj, D, and t are considered variables for optimization. The goal is to achieve
high specific energy absorption while maintaining stable energy absorption. Accordingly, a
multi-objective optimization framework was established to meet these criteria:





min(−SEA, ULC)
st 0 mm ≪ Ai ≪ 2 mm
0 mm ≪ Aj ≪ 2 mm

50 mm ≪ D ≪ 60 mm
0.65 mm ≪ t ≪ 1.35 mm

(8)

Here, a simultaneous multi-objective optimization of the CCT and LCT was performed
to compare and evaluate the crashworthiness performance of the BCT relative to both the
CCT and LCT. The process of multi-objective optimization is outlined as follows:





min(−SEA, ULC)
st 0 mm ≪ Ai ≪ 2 mm
50 mm ≪ D ≪ 60 mm

0.65 mm ≪ t ≪ 1.35 mm

(9)

47



Materials 2024, 17, 3958





min(−SEA, ULC)
st 0 mm ≪ Aj ≪ 2 mm
50 mm ≪ D ≪ 60 mm

0.65 mm ≪ t ≪ 1.35 mm

(10)

The optimization process is detailed in Figure 18. Subsequently, sample points are
determined using a design-of-experiments approach and subsequently simulated using
ABAQUS/Explicit. The resulting simulation data are utilized to develop a surrogate model
through the kriging method. Finally, multi-objective optimization (MOO) is conducted
using the NSGA-II algorithm to derive the final Pareto frontier.

Materials 2024, 17, x FOR PEER REVIEW 21 of 27 
 

 

 
Figure 18. NSGA-II process flow diagram. 

4.2. Approximate Model 
To manage the extensive experimental data, the optimal Latin hypercube design 

(OLHD) method is employed for determining the sample points, owing to its excellent 
space-filling and uniform properties. Using this approach, surrogate models for 𝑈𝐿𝐶 
and 𝑆𝐸𝐴 are developed via the kriging method. Specifically, 51, 21, and 21 sample points 
are determined for constructing surrogate models for the BCT, CCT, and LCT, respec-
tively, ensuring model accuracy. The crashworthiness parameters corresponding to these 
sample points are calculated using the finite element method. 

Once the surrogate model is constructed, its accuracy is evaluated using a set of 20 
sample points. Four evaluation metrics—coefficient of determination (𝑅ଶ), relative aver-
age absolute error (𝑅𝐴𝐴𝐸), relative maximum absolute error (𝑅𝑀𝐴𝐸), and root mean 
square (𝑅𝑀𝑆𝐸)—are employed to assess the validity of the constructed model [11]. The 
specific formulas for these metrics are as follows: 𝑅ଶ = 1 − ∑ (𝑦௜ − 𝑦ො௜)ଶ௡௜ୀଵ∑ (𝑦௜ − 𝑦ത௜)ଶ௡௜ୀଵ  (11)

𝑅𝐴𝐴𝐸 = ∑ |y௜ − 𝑦ො௜|௡௜ୀଵ𝑛 × ට 1𝑛 − 1 ∑ (y௜ − 𝑦ො௜)௡௜ୀଵ  (12)

𝑅𝑀𝐴𝐸 = 𝑚𝑎𝑥(|yଵ − 𝑦ොଵ|, |yଶ − 𝑦ොଶ|, … , |y௡ − 𝑦ො௡|)ට 1𝑛 − 1 ∑ (y௜ − 𝑦ො௜)௡௜ୀଵ  (13)

𝑅𝑀𝑆𝐸 = ඩ1𝑛 ෍(𝑦௜ − 𝑦ො௜)ଶ௡
௜ୀଵ  (14)

Here, y௜  represents the true values, 𝑦ො௜  denotes the predicted values, 𝑦ത௜  is the mean 
value of the sample points, and n is the number of specimens. The model’s accuracy im-
proves as the values of 1 − 𝑅ଶ, 𝑅𝐴𝐴𝐸, 𝑅𝑀𝐴𝐸, and 𝑅𝑀𝑆𝐸 approach 0. Table 3 summa-
rizes the accuracy metrics for the surrogate models of 𝑆𝐸𝐴 and 𝑈𝐿𝐶, demonstrating that 
the constructed models exhibit high precision. 

start Determine the design variable 
and optimization function

Optimize sample points 
using the optimal Latin 

hypercube design method
Finite element simulation

Surrogate model constructionSurrogate model 
accuracy assessmentSatisfy？Final surrogate 

model

N

Y

Initialize population

Gen=1？

Evolutional
generation Gen-2

Parent, offspring
merger

Generate new 
parent population？

Selection, cross-over
and mutation

Gen<Gen(max)？

End optimization

Gen=Gen+1

Y

N

Y

Y

Fast non-dominated
sorting

Congestion assessment

Construct a new parent
population

N

N Non-dominated 
ranking

Selection, cross-over 
and mutation

Multi-objective
optimization (NSGA-Ⅱ）

Output optimal solution

Figure 18. NSGA-II process flow diagram.

4.2. Approximate Model

To manage the extensive experimental data, the optimal Latin hypercube design
(OLHD) method is employed for determining the sample points, owing to its excellent
space-filling and uniform properties. Using this approach, surrogate models for ULC and
SEA are developed via the kriging method. Specifically, 51, 21, and 21 sample points are
determined for constructing surrogate models for the BCT, CCT, and LCT, respectively,
ensuring model accuracy. The crashworthiness parameters corresponding to these sample
points are calculated using the finite element method.

Once the surrogate model is constructed, its accuracy is evaluated using a set of
20 sample points. Four evaluation metrics—coefficient of determination (R2), relative
average absolute error (RAAE), relative maximum absolute error (RMAE), and root mean
square (RMSE)—are employed to assess the validity of the constructed model [11]. The
specific formulas for these metrics are as follows:

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (11)
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RAAE =
∑n

i=1
∣∣yi − ŷi

∣∣

n ×
√

1
n−1 ∑n

i=1(yi − ŷi)
(12)

RMAE =
max

(
|y1 − ŷ1|, |y2 − ŷ2|, . . . ,

∣∣yn − ŷn
∣∣)

√
1

n−1 ∑n
i=1(yi − ŷi)

(13)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (14)

Here, yi represents the true values, ŷi denotes the predicted values, yi is the mean value of
the sample points, and n is the number of specimens. The model’s accuracy improves as the
values of 1 − R2, RAAE, RMAE, and RMSE approach 0. Table 3 summarizes the accuracy
metrics for the surrogate models of SEA and ULC, demonstrating that the constructed
models exhibit high precision.

Table 3. Accuracy evaluation of the surrogate model for BCTs, CCTs, and LCTs.

Columns Index R2 RAAE RMAE RMSE

BCTs
ULC 0.9119 0.0572 0.2391 0.0924
SEA 0.9370 0.0662 0.1400 0.0793

CCTs
ULC 0.9004 0.1113 0.2176 0.1264
SEA 0.9357 0.0827 0.1399 0.0917

LCTs
ULC 0.9246 0.0887 0.1632 0.1021
SEA 0.9704 0.0547 0.1047 0.0622

4.3. Optimization Results

The two objectives of the structure are further optimized using the NSGA-II algorithm
to derive the Pareto solution set [31]. The optimized Pareto frontier is illustrated in Figure 19.
This figure demonstrates that SEA and ULC are conflicting objectives; theoretically, all
solutions along the Pareto frontier are optimal and provide valuable guidance for engineers
in making decisions based on specific requirements. For instance, point A represents the
optimal solution when SEA is prioritized, while point B is ideal for maximizing ULC. The
trade-off between SEA and ULC is determined using the minimum distance selection
method (TMDSM), which identifies the “knee point” that offers a balanced compromise
between the two objectives. The mathematical expression for this compromise point is
given by [32]:

minD =

√√√√ 1
n

n

∑
τ=1

(
fcτ − min( fτ(x))

max( fτ(x))− min( fτ(x))

)2
(15)

where fcτ represents the τth objective value in the Pareto solution for the cth point, MinD
is the minimum distance from the “utopia point” to a point on the Pareto frontier, and n is
the number of optimization points.

Finally, a comparison between the numerical results and the optimized solutions
reveals notable insights, as depicted in Table 4. The maximum discrepancies observed
in SEA and ULC between the optimized and numerical results are 2.12% and 3.86%,
respectively, indicating a high level of accuracy in the optimized results.
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Table 4. Comparison of the optimization value and finite element analysis results.

Item Ai Aj D t

NSGA-II FEA Results Accuracies

SEA ULC SEA ULC RE RE
(J/g) (%) (J/g) (%) (%) (%)

Optimal
BCTs 1.55 1.19 51.27 1.35 19.80 14.25 20.22 13.70 2.12 3.86

Table 5 presents a comparative analysis of the crashworthiness indices—SEA and
ULC—across BCTs, CCTs, and LCTs. When SEA is the primary objective, BCTs demonstrate
significant improvements, with increases of 16.72% and 49.14% over optimal CCTs and
LCTs designs, respectively. However, these improvements are accompanied by increases in
ULC of 3.39% and 126.93%, respectively. Conversely, when minimizing ULC is prioritized,
BCTs achieve reductions of 79.09% and 53.94% compared to CCTs and LCTs, respectively,
though this results in decreases in SEA of 77.50% and 71.25%, respectively. Notably, the
optimal BCT design reduces ULC by 47.99% with only a modest decrease in SEA compared
to the optimal CCT design and enhances SEA by 13.40% with a slight increase in ULC
compared to the optimal LCT design. These findings highlight the superior crashworthiness
of the optimized BCTs through multi-objective optimization.
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Table 5. Comparison of crashworthiness data for the CCTs, LCTs, and BCTs optimization solution.

Item Index Ai Aj D t
NSGA-II RE

(Compared to CCTs)
RE

(Compared to LCTs)

SEA ULC SEA ULC SEA ULC
(J/g) (%) (J/g) (%) (J/g) (%)

BCTs

Ideal max
SEA 0.93 0.33 54.01 1.35 26.04 28.23 16.72 3.39 49.14 126.93

Ideal min
ULC 0.53 1.86 55.32 0.76 5.02 5.73 −77.50 −79.09 −71.25 −53.94

Optimal
BCTs 1.55 1.19 51.27 1.35 19.80 14.25 −11.25 −47.99 13.40 14.55

CCTs Optimal
CCTs 0.09 0 50.01 1.35 22.31 27.40 - - - -

LCTs Optimal
LCTs 0 0.83 50.00 1.35 17.46 12.44 - - - -

5. Conclusions

To enhance the crashworthiness of thin-walled tubes, this study introduces a novel
corrugated structure on both the cross-section and along the wall of the tube, leading to the
design of the BCT. The crashworthiness of BCTs was evaluated through axial compression
experiments and finite element analysis, yielding the following key conclusions:

1. The BCT is fabricated using a bending method, with the accuracy of the finite element
model validated by experimental verification.

2. Discretization analysis assesses the influence of parameters N and M on the crash-
worthiness of the BCT. The TOPSIS ranking method identifies the optimal values for
N and M, which are determined as 12 and 16, respectively.

3. A full-parameter design of experiments investigates the effects of Ai, Aj, and D on
structural crashworthiness. Ai influences the energy absorption capacity, Aj enhances
the stability of the platform force, and an increase in D improves the likelihood of
achieving an optimal energy-absorbing configuration.

4. The SEA of the BCT exceeds that of the CCT by up to 80.23%, while the ULC is reduced
by 57.63%. Additionally, the ULC of the BCT is decreased by 72.96% compared to
the CCT, and it exhibits a 36.43% lower ULC compared to the LCT, with up to 44.9%
higher SEA than the LCT.

5. A simultaneous multi-objective optimization of CCT, LCT, and BCT based on the
NSGAII method reveals that the Pareto front of the BCT demonstrates superior
crashworthiness advantages compared to both CCT and LCT. The proposed BCT
shows significant potential as an energy absorber with promising applications across
various fields.

Given its stable reaction load and high SEA value, the BCT holds substantial promise
in crashworthiness engineering. In automotive applications, it can be used for the crash
box behind the front bumper, and in aerospace, it can be utilized for the bottom plate strut.
Further research will focus on analyzing its mechanical properties under high-speed impact
and studying its vibration characteristics, ensuring a progressive examination of this work.
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Abbreviations
The following abbreviations are used in this manuscript:

LCT longitudinal corrugated tube
CCT circumferential corrugated tube
BCT bi-directional corrugated tube
N number of units in a single-layer BCT
M number of layers in the BCT
Ai amplitude of transverse ripple
Aj amplitude of axial ripples
D diameter of the neutral plane of the BCT
t wall thickness of the BCT
H height of the BCT
r distance from the XOZ plane
φ bending angle
R half of the outer diameter of the BCT
EA energy absorption
SEA specific energy absorption
IPCF initial peak crushing force
MCF mean crushing force
CFE crushing force efficiency
ULC undulation of load carrying capacity
ρ density
E Young’s modulus
σy yield stress
ν Poisson’s ratio
PEEQ equivalent plastic strain
Fmax The maximum value of the load in the load displacement curve

Appendix A

Step one: First create a decision matrix (Dx) and normalize the data for the Dx based
on whether the criterion is benefit or cost.

For a problem with n structures and m criteria, Dx is constructed as follows:

Dx =




x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn


 (A1)

where xij is the performance value of the ith criterion under the jth structure.
The standardized formula is:

sij =





xij−mini(xij)
maxi(xij)−mini(xij)

(criteria is bene f it)
maxi(xij)−xij

maxi(xij)−mini(xij)
(criteria is cost)

(A2)

where maxi
(
xij
)

and mini
(

xij
)

stand for the maximum and minimum values of the samples
under the ith criterion, respectively.

According to the above equation, the standardized matrix S =
(
sij
)

mn can be obtained.
Step two: Normalize each row of the normalized matrix and calculate the entropy

value and weights.
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The normalized formula is:
nij =

sij

∑n
i=1 sij

(A3)

The entropy formula for the ith standard is:

ei = − 1
ln n

n

∑
i=1

nijln nij (A4)

The weights under each criterion are calculated separately after calculating the entropy
value:

wi =
1 − ei

∑m
i=1(1 − ei)

(A5)

Step three: Construct a weighted matrix W =
(

w∗
ij

)
mn

and obtain two ideal solution
points.

The weighted matrix is calculated as:

w∗
ij = wi × sij (A6)

The ideal solution points are the maximum and minimum values of under each
criterion, respectively:

W+∗ =
{

w+∗
1 , w+∗

2 , · · · , w+∗
m
}
= {w1, w2, · · · , wm} (A7)

W−∗ =
{

w−∗
1 , w−∗

2 , · · · , w−∗
m
}
= {0, 0, · · · , 0} (A8)

Step four: Euclidean distance between each scenario and the ideal scenario with the
relative proximity of the alternatives is calculated.

Euclidean distance formulas are, respectively:

D+
j =

√
m

∑
i=1

(
w+∗

i − w∗
ij

)2
=

√
m

∑
i=1

(
wi − w∗

ij

)2
(A9)

D−
j =

√
m

∑
i=1

(
w−∗

i − w∗
ij

)2
=

√
m

∑
i=1

(
w∗

ij

)2
(A10)

The formula for relative proximity is:

Qj =
D−

j

D+
j + D−

j
=

√
∑m

i=1

(
w∗

ij

)2

√
∑m

i=1

(
wi − w∗

ij

)2
+

√
∑m

i=1

(
w∗

ij

)2
(A11)

Finally, Qj is sorted from highest to lowest.
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Appendix B

Table A1. Ranking using the entropy TOPSIS method.

Tubes Qj Ranking Tubes Qj Ranking

N4M6 0.0076 19 N12M10 0.2954 11
N4M8 0.2060 16 N12M12 0.3533 6
N4M10 0.2816 13 N16M6 0.3486 7
N4M12 0.2901 12 N16M8 0.3057 10
N8M6 0.1760 18 N16M10 0.5116 5
N8M8 0.2518 15 N16M12 0.6022 4
N8M10 0.3227 9 N20M8 0.6435 3
N8M12 0.3270 8 N20M10 0.8101 1
N12M6 0.1766 17 N20M12 0.7906 2
N12M8 0.2621 14
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Abstract: Accurate mechanical property parameters constitute an indispensable guaran-
tee for the accuracy of finite element simulations. Traditionally, uniaxial tensile tests are
instrumental in acquiring the stress–strain data of materials during elongation, thereby
facilitating the determination of the materials’ mechanical property parameters. By capital-
izing on the digital image correlation (DIC) non-contact optical measurement technique, the
entire test can be comprehensively documented using high-speed cameras. Subsequently,
through in-depth analysis and meticulous numerical computations enabled by computer
vision technology, the complete strain evolution of the specimen throughout the test can
be precisely obtained. In this study, a comparison was made between the application of
strain gauges and DIC testing systems for measuring the strain alterations during the
tensile testing of 316L stainless steel, which serves as the material for the primary circuit
pipelines of pressurized water reactor (PWR) nuclear power plants (NPPs). The data pro-
cured from these two methods were utilized as material mechanical parameters for finite
element simulations, and a numerical simulation of the uniaxial tensile test was executed.
The results reveal that, within the measuring range of the strain gauge, the DIC method
generates measurement outcomes that are virtually identical to those obtained by strain
gauges. Given its wider measurement range, the DIC method can be effectively adopted in
the process of obtaining material mechanical parameters for finite element simulations.

Keywords: uniaxial tensile test; elastoplastic finite element method; mechanical properties

1. Introduction
The finite element method plays a vital role in engineering design and simulation.

Precise material mechanical properties are among the key factors that ensure the accuracy
of finite element simulation results. Material mechanical parameters are commonly de-
termined using uniaxial tensile tests, with accurate measurements of stress–strain data
being paramount. When it comes to strain measurement, traditional methods like exten-
someters and strain gauges have their drawbacks, including a limited measuring range,
significant installation errors of measuring tools, and an inability to capture the features
of material necking [1,2]. The digital image correlation method is a non-contact, high-
precision measurement technique that employs computer vision technology for image
processing and numerical calculations to obtain full-field deformation and strain fields at
different scales [3,4]. This approach can be applied to measurement areas ranging from
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very small to large, and its results are easily comparable to finite element results or strain
gauge measurements. The DIC method, a technique first proposed in the 1980s, is widely
used in laser speckle metrology for surface displacement measurement and its use has
witnessed substantial growth, thanks to the pioneering efforts of scholars and researchers
in the field. This progress encompasses various dimensions, including the selection of
functions, the enhancement of speckle quality, and the development of interpolation algo-
rithms. These advancements have led to significant improvements in DIC’s computational
accuracy and speed in measuring displacements [5–8]. In recent years, the focus of DIC
research has shifted primarily towards broadening its range of applications. Researchers
have employed DIC to measure the Young’s modulus of aluminum alloys, validating its
precision through comparisons with strain gauge measurements [9,10]. By harnessing
DIC’s full-field measurement capabilities, scholars have explored the impact of factors
such as specimen size on the Young’s modulus. Additionally, DIC has proven valuable
in assessing Poisson’s ratio, anisotropic plastic ratio parameters, and flow curves. It has
also found applications in high-temperature tensile experiments [11]. Behrad success-
fully employed experimental DIC methods to predict the stress–strain response of 304
stainless steel specimens across a temperature range spanning from room temperature
to 900 ◦C [12]. Shen et al. combined finite element analysis with DIC measurements to
investigate the uniaxial tensile properties of aerospace composite materials at elevated
temperatures, highlighting the consistency between finite element predictions and DIC
experiments [13]. In addition to tensile mechanical properties, digital image correlation
(DIC), combined with complementary testing techniques such as acoustic emission (AE),
X-ray computed tomography (X-CT), and scanning electron microscopy (SEM), proves
invaluable in scrutinizing residual stresses, damage progression, and crack propagation [14–
16]. Zhu et al. utilized miniature ring-core cutting alongside DIC techniques to ascertain
residual interfacial stresses in thermal barrier coatings [17]. Zhang et al. integrated DIC
with scanning electron microscopy to analyze the deformation and fracture behaviors of
pure titanium under various loading conditions, including uniaxial, notched tension, and
shear loading [18]. DIC, extending beyond its non-contact, non-destructive, and full-field
measurement capacities, facilitates localized displacement measurements and provides in
situ monitoring capabilities. The technique has proven highly effective in characterizing
the local mechanical properties of non-uniform materials like welded joints and in crack
detection [19–21]. In summary, DIC surpasses traditional strain measurement methods,
offering clear advantages. The experimental data derived through DIC plays a pivotal role
in supporting advancements in material damage assessment, fracture mechanics, and finite
element methods. Recent studies by Oka et al. and Novich et al. highlight DIC’s potential
for nuclear-grade steels [22,23], but systematic validation for 316L under reactor-relevant
conditions remains lacking.

In this study, numerical analyses and experiments were carried out to investigate the
process of strain variation during uniaxial tensile tests, and the results can help guide the
accurate acquisition of mechanical property parameters (curves) required during finite
element simulation.

2. Experiment and Procedure
To accurately capture the strain variations during uniaxial tensile testing of materials,

this study employed two distinct methods: strain gauges and digital image correlation
(DIC) techniques. The strain distribution was assessed using these methods, while a
uniaxial tensile testing machine was utilized to apply the loading load. 316L nuclear-grade
austenitic stainless steel has been used as the material of the primary circuit pipeline of
pressurized water reactor (PWR) nuclear power plants (NPPs) due to its strength and

57



Materials 2025, 18, 1875

good corrosion resistance [24]. Within the framework of uniaxial tensile experiments, the
assessment of material strain was carried out by means of both strain gauge measurements
and DIC techniques. For each of these methodologies, three independent experimental
trials were meticulously conducted. This comprehensive experimental approach ultimately
led to the generation of a cumulative total of six datasets. The stress–strain changes
experienced by 316L austenitic stainless steel during the uniaxial tensile experiment were
analyzed by using numerical simulation methods and compared with the experimental
results obtained.

2.1. Specimen

In accordance with GB/T 228.1-2010, metallic materials are subjected to tensile testing
at room temperature [25]. By taking into consideration the type of testing machine fixtures,
a stainless steel sheet is meticulously crafted into a sheet-shaped tensile specimen, as
illustrated in Figure 1, through the process of wire cutting. The gauge section of the
specimen exhibits a section size of 3 mm × 2 mm and a length of 20 mm, following
corresponding test standards of GB/T 2039-1997 [26]. Furthermore, the chamfer radius
between the clamping section and the gauge section is precisely measured at 8 mm. To
ensure that the surface roughness of the specimen remains below 3.2 µm, the surface is
polished until a distinct metallic luster becomes apparent.
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Figure 1. The plate tensile specimen geometric dimensioning (unit: mm).

2.2. Utilizing Strain Gauges to Acquire Strain Data During Material Stretching

Resistance strain gauges are strain measurement components that operate based on
the strain effect. The fundamental principle involves the mechanical deformation of strain
gauges fixed on a structure when subjected to external loads, leading to changes in their
resistance values. Through appropriate calculations, the strain variations in the structure
can be determined. The specific experimental procedures for measuring the stress–strain
curve of materials using a uniaxial tensile testing machine in conjunction with strain gauges
involve the following steps:

(1) Strain gauge patch

Prior to pasting, the gauge section of the specimen is subjected to crosswise polishing
along a 45◦ direction using fine sandpaper to enhance the bonding strength. Following
polishing, the surface of the specimen is meticulously scrubbed with cotton yarn. In this
particular test, acrylic epoxy resin adhesive is chosen as the adhesive material, and strain
gauges are carefully affixed to the surface of the gauge section. The pertinent parameters
of the resistance strain gauge BX120-3AA (Telesky, Shenzhen, China) employed in this
study are comprehensively presented in Table 1. The parameters in Table 1 are based on
the manufacturer’s specifications for the strain gauges used in this study.

Table 1. Parameters of strain gauge.

Substrate
Material

Wire
Material

Length and
Width (mm)

Resistance
Ω

Sensitivity
Coefficient

Nominal
Voltage

acetal constantan 6.5 × 3.5 120.0 ± 0.3 2.06 ± 0.01 ≤12 V
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(2) Connect strain gauge to deformeter

To facilitate the collection of strain data, the wires of the strain gauges are connected
to the extension lines of the strain gauges through welding. This is achieved by utilizing a
DH3818Y static strain tester (DONGHUA, Taizhou, China), which allows for the precise
and accurate measurement of strain.

(3) Experiment process

The stretching rate of the tensile test is set to 2 mm/min. Following the configu-
ration of the pertinent parameters within the strain acquisition software, both uniaxial
tensile testing and strain data acquisition are executed simultaneously. Upon fracture of
the specimen, the experiment is terminated. This experiment is carried out at ambient
temperature conditions.

2.3. Utilizing DIC to Acquire Strain Data During Material Stretching

The fundamental principle of digital image correlation (DIC) involves the use of
artificial speckle fields that are randomly or pseudo-randomly distributed on the surface of
a test piece as carriers of deformation information. This enables the experimental mechanics
method of full-field displacement and strain analysis of the surface of materials or structures
under external load. During DIC testing, a three-dimensional adjustment bracket is utilized
to adjust the position of speckle capture and control the leveling of the CCD camera. The
light source is primarily used to regulate the intensity and convergence of light on the
surface of the sample, resulting in a uniform light field. The recorded images of speckle
variations on the sample’s surface are then analyzed to extract valuable information about
the material’s mechanical behavior. The specific steps for measuring strain changes during
the uniaxial tensile test of 316L stainless steel using DIC are as follows:

(1) Speckle spraying

In this study, 316L stainless steel specimens of the same batch and size as those used
in uniaxial tensile tests and strain gauge measurements were employed. The surface of
each specimen was cleaned before being spray-painted to create a uniform speckle pattern
with controlled paint concentration, as shown in Figure 2.
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After speckle spray treatment, the specimens were vertically clamped onto the fix-
tures of the loading device. As shown in Figure 3a, the digital image correlation (DIC)
measurement system used in this study is a VIC-2D system, which consists of a CCD
camera, a light source, and a three-dimensional adjustment stand with a leveler. The data
acquisition software used was VIC-Snap 8. An MTS-LPS.105 testing machine (MTS Systems
Corporation, Eden Prairie, MN, USA) was employed as the material loading device, with a
maximum load capacity of 100 kN. The clamping positions of the specimens are illustrated
in Figure 3b.
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Figure 3. Experiment set-up of the tensile testing machine with DIC system. (a) DIC system
composition. (b) The installation position of the specimen.

(2) DIC device parameter adjustment

A CCD camera was mounted on a three-dimensional adjustment stand and aligned
parallel to the ground using a leveler. The distances between the CCD camera, the light
source, and the specimen were determined to ensure that the deformation of the gauge
section of the specimen could be captured by the acquisition system. The light source was
turned on to create a uniform light field on the surface of the specimen. The acquisition
software was then run, and the aperture was adjusted to an appropriate position on the
computer screen before adjusting the focal length until a clear and well-lit image appeared
on the acquisition software interface.

(3) DIC software acquisition parameters and tensile speed settings.

The acquisition software (GOM Correlate, version 2020) was set to capture images at a
frame rate of two frames per second. Prior to the start of the test, a photograph was taken
at the unloaded state to establish a reference position for later software strain calculations.
After setting the reference position, the uniaxial tensile test and image acquisition by the
CCD camera were simultaneously initiated with a tensile speed of 2 mm/min using the
testing machine.

3. Numerical Modeling
In this study, the ABAQUS software (version 2020) was used to complete the finite

element analysis process. The FE model is shown in Figure 4, based on the dimensions of
the tensile test specimen in Figure 1. For the boundary conditions, we set two reference
points on the geometric model of the specimen. The left reference point (RP1) is fixed, and a
displacement loading in the X-direction is applied to the center of the right reference point
(RP2). The reference points (RP1 and RP2) couple with the inner surface of the loading
hole of the specimen and the degrees of freedom outside the X direction are constrained to
avoid possible rigid body motion. The code provided element C3D8 (8-node linear brick)
was chosen. A total of 1176 elements were found with good convergence to catch the strain
distribution on the gauge length of the specimen.
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Figure 4. Mesh and boundary condition used for plate tensile specimen.

4. Results and Discussions
4.1. Strain Gauge Test Results

The engineering stress–strain curve (σeng − εeng) of a material can be obtained through
uniaxial tensile testing, and then the plastic parameters of the material can be obtained.
It should be noted that the true strain (εtrue) of the material is measured by the strain
gauge, so it is necessary to convert the engineering stress (σeng) obtained from the tensile
machine to obtain the true stress–strain curve (σtrue − εtrue) of the material. The conversion
relationship between the engineering stress–strain curve and the true stress–strain curve
(σtrue − εtrue) is as follows:

σtrue = σeng
(
1 + εeng

)
(1)

εtrue = ln
(
1 + εeng

)
(2)

The true stress–strain curve of the material, as measured, is depicted in Figure 5, where
the green curve represents the true stress–strain curve of 316L stainless steel obtained
through a strain gauge. It can be observed that due to the range limitation caused by the
measuring principle of the strain gauge, the strain gauge fails when the strain value in the
gauge section reaches approximately 0.05 during the testing process, causing a discontinuity
in the curve and rendering it impossible to continue measuring the mechanical property
curve of the material. During numerical simulations, significant deformation occurs at
locations of stress concentration. To ensure the reliability of the numerical simulation results,
a strain data measurement method with a wider range needs to be employed during testing.
Notably, all experimental groups demonstrated mechanical response consistency within 2%
relative standard deviation, with graphical presentation optimized through the selection of
representative datasets from strain gauge and DIC measurement systems.
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Figure 5. The true stress–strain curve from strain gauge.
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4.2. DIC Results Comparison

To obtain the corresponding true stress–strain curve, the engineering stress (σeng) from
the tensile testing machine was converted to true stress (σtrue) using Equations (1) and (2).
Subsequently, a comparison between the stress–strain curves obtained by the resistance
strain gauge and DIC method is shown in Figure 6. A magnified inset was incorporated
to highlight the measurement domain of the strain gauge, facilitating the precise obser-
vation of strain localization characteristics within the elastic deformation regime. The
results demonstrate that within the measurement range of the resistance strain gauge,
both methods yield consistent true stress–strain curves for the material, thereby validating
the reliability of the DIC method. Minor discrepancies observed in the initial stage may
originate from specimen manufacturing tolerances and slight variations in strain gauge
bonding accuracy.
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The comparison between the two methods reveals that the measurement range of re-
sistive strain gauges is relatively limited, and they cannot function properly when the strain
exceeds approximately 0.05. Consequently, resistive strain gauges are unable to obtain
full-field strain data from the tested sample. In contrast, non-contact optical measurement
methods, such as DIC, can reliably output full-field strain data from the tested sample
with a measurement range that extends up to the point of fracture, which is significantly
higher than that of strain gauges. Therefore, during numerical simulations, it is feasible to
select the true stress–strain data obtained through DIC as the material mechanical property
parameters in the finite element model.

The strain cloud diagram of the gauge section of the sample during the tensile process
can be obtained through processing using GOM Correlate software, as shown in Figure 7a–c.
Since the lower clamp of the tensile testing machine remains fixed, the load is applied
through displacement of the upper clamp. Therefore, the symbol D in Figure 7 represents
the displacement of the specimen at the gripping location of the upper clamp. From the
figures, it can be observed that with the continuous increase in load, the strain value of the
gauge section also increases. During the uniaxial tensile test, the strain distribution of the
gauge section is relatively uniform, and data on the variation in strain values of the gauge
section with time can be outputted through the software. The computational results of the
finite element models with different material parameters are shown in Figure 7d–i. Among
them, Figure 7d–f shows the strain distribution obtained through finite element calculation
using DIC test results as the material mechanical property parameters, while Figure 7g–i
uses the strain gauge test results as the material mechanical property parameters. From the

62



Materials 2025, 18, 1875

figures, it can be observed that when the material undergoes significant plastic deformation,
the computational results in Figure 7d–f are generally consistent with the experimental
(DIC) results. However, due to limited data based on strain gauge measurements, the
finite element computation results deviate from the experimental results at higher levels
of plastic deformation. The DIC technique enables full-field strain measurements (as
demonstrated in Figure 6), capable of resolving strain distributions in regions inaccessible
to conventional strain gauges (e.g., high-strain gradient zones), though its implementation
is hindered by the high cost of speckle-recording equipment, limiting accessibility in
budget-constrained settings.
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Figure 7. The changes in strain with different mechanical parameters.(a) D = 4.50 mm (DIC result);
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data); (e) D = 5.97 mm (FFM result using DIC data); (f) D = 7.56 mm (FFM result using DIC data);
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data); (i) D = 7.56 mm (FFM result using strain gauge data).
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The accuracy of DIC-measured strains aligns with recent studies on nuclear materials.
For example, Zhang et al. demonstrated that DIC achieves ±0.1% strain accuracy for
austenitic steels under quasi-static loading, consistent with our findings [16]. During
necking, our observed strain localization matches the patterns in 316L steel reported by
Jordan et al., who combined DIC with finite element modeling [27].

5. Conclusions
The following conclusions can be drawn from this study:

(1) When the sample under study experiences significant deformation, the limited mea-
surement range of the strain gauge can impose constraints on the quantity of strain
data that can be collected. This, in turn, has a substantial impact on the acquisition
of accurate mechanical property parameters. The restricted gauge range acts as a
bottleneck, hindering the comprehensive characterization of the material’s mechanical
behavior during large-scale deformation processes.

(2) The utilization of the DIC technique for strain measurement offers a distinct advan-
tage in enabling precise strain testing over a significantly broader range. This broader
measurement scope allows for the collection of more comprehensive material mechan-
ical parameters, which are crucial for conducting accurate elastoplastic finite element
simulations. The DIC method provides a more holistic view of the material’s strain
evolution, thereby enhancing the reliability and accuracy of the finite element models.

(3) On the premise of accurately determining the mechanical property parameters of the
material, the finite element simulation-derived strain distribution of 316L steel has
been found to be in excellent agreement with the strain distribution obtained through
DIC measurements. This congruence validates the effectiveness of the DIC method as
an essential validation tool for finite element simulations. The DIC technique not only
provides reliable experimental data but also serves as a benchmark for validating
the numerical results of finite element models, thereby contributing to the overall
improvement of the simulation accuracy and the understanding of the material’s
mechanical behavior.

For the purpose of structural integrity analyses of key nuclear structures such as
reactor pressure vessels (RPVs) and primary circuit pipelines, many scholars and research
institutions are making efforts to predict the mechanical properties after long-term service.
The validated accuracy of DIC in characterizing homogeneous 316L stainless steel strongly
supports its potential application in quantifying the mechanical behavior of heterogeneous
nuclear structures, such as welded joints or defect-containing components—critical yet un-
derstudied scenarios in primary circuit pipelines. Building on our methodology, where DIC
achieved relatively high strain resolution on polished specimens, the technique could map
strain localization near weld seams or crack tips in irradiated/welded 316L, overcoming
the spatial limitations of strain gauges. For instance, our speckle preparation protocol could
be adapted to create controlled artificial defects (e.g., micro-notches mimicking stress corro-
sion cracks) to study strain redistribution during damage progression. The FE framework,
currently calibrated using homogeneous material data, could integrate DIC-derived hetero-
geneous strain fields to refine constitutive models for weld zones, where microstructure
variations (e.g., heat-affected zone and base metal) induce mechanical property gradients.
Further study has been planned along this line.
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Abstract: Fibrous materials, prevalent in biological tissues and engineered composites,
undergo remodeling in response to mechanical loads, leading to plastic changes in fiber
orientation. A previously developed continuum model describes this remodeling process.
Building on that framework, the present study examines the extreme behaviors of such
materials. Analytical results for the homogeneous response under tensile loading reveal
three distinct classes: in class (A), fibers asymptotically approach a specific angle; in
class (B), fibers align perpendicularly to the load direction; and in class (C), fibers align
either with the load direction or perpendicularly, depending on their initial orientation.
Numerical simulations are employed to analyze the non-homogeneous material response
in a standard tensile test, demonstrating how differences in behavior arise from the material
class and the initial fiber orientation distribution. This investigation focuses on the extreme
behaviors of material classes (A) and (C), emphasizing phase segregation and transitions
between auxetic and non-auxetic behavior.

Keywords: fibrous material; auxetic; segregation; remodeling; plasticity; variational approach

1. Introduction
Fibrous materials have recently garnered significant interest due to their essential

roles in both biological systems and engineered materials. In biological contexts, human
tissues and organs, such as skin, cartilage, and connective tissues, are structured with
microsized fibers, which are crucial for maintaining mechanical integrity and functionality.
Similarly, engineered fibrous materials, including textiles, nonwovens, and composites, are
designed with similar architectures and are extensively studied for their unique mechanical
properties and diverse applications [1–4].

Fibrous materials, both in biological systems and engineered materials, can undergo
plastic reorganization under mechanical loading, leading to changes in fiber orientation.
This remodeling process is especially relevant in biological tissues, where mechanical
stimuli at the chemo-mechanical level drive the reorganization of collagen fibers. For
instance, in the arterial wall, stress-driven collagen fiber remodeling plays a significant
role in adapting the tissue to varying loads and pressures [5,6]. The reorientation of fibers
in response to stress is a key mechanism for maintaining the tissue structural integrity
and functionality, as seen in blood vessels where collagen fibers remodel to accommodate
changes in mechanical demands [7,8]. Similarly, in soft tissues such as skin and cartilage, the
alignment and reorganization of fibers influence the mechanical properties and adaptability
of the tissues, contributing to their ability to withstand dynamic loads [9,10].

These processes are not limited to biological tissues; engineered materials, including
hydrogels and fiber-reinforced composites, also exhibit fiber reorientation under mechani-
cal loading. For example, studies have shown that the alignment of fibers in hydrogel-based

Materials 2025, 18, 1674 https://doi.org/10.3390/ma18071674
67



Materials 2025, 18, 1674

materials can significantly affect their mechanical properties, such as stiffness and elastic-
ity [11,12]. Moreover, understanding these remodeling processes has direct applications in
designing materials for soft robotics and tissue engineering, where the ability to control
and predict fiber orientation is crucial for optimizing material performance [13,14].

The mechanical properties of these tissues include both elastic [15,16] and inelastic [17–19]
responses. Specifically, the extracellular matrix can undergo plastic remodeling, leading
to irreversible deformations that significantly affect cell behavior, such as migration and
differentiation [19–21].

The effects of reorientation, particularly post-yield deformation, remain largely un-
explored in both biological and engineered composites. This study focuses on the plastic
threshold mechanism, neglecting viscous effects and other secondary properties. As a
result, the asymptotic behavior is determined solely by the choice of free energy, allowing
for analytical solutions in two-dimensional (2D) problems [22]. The model is grounded in
the principles of continuum mechanics, specifically developed for materials incorporating
an internal state variable [23–27]. The model introduced in [22] describes the behavior of
fiber reorientation within these materials and demonstrates that remodeling, defined as the
reorganization of the internal structure, induces diverse material responses.

In particular, when the analysis is restricted to a 2D beam subjected to traction, the
fibers within the material can align themselves in different ways depending on their initial
orientation. The fibers may eventually align at a specific angle, perpendicularly to the
direction of the applied load, or along the load direction.

Notably, fiber reorganization can induce substantial changes in mechanical behavior,
including transitions between auxetic and non-auxetic responses, as well as the emergence
of regions with distinct mechanical properties due to phase segregation. While previous
studies have established the role of fiber reorientation in influencing material properties,
a comprehensive understanding of how these transitions emerge, the conditions under
which they occur, and their structural consequences remains incomplete.

The paper addresses this gap by building on the continuum model presented in [22] to
investigate the underlying mechanisms driving these phase transitions. By analyzing how
fiber realignment governs the macroscopic response of the material, this study provides new
insights into the tunability of fibrous materials, with long-term implications for applications
in both biological systems and engineered structures.

The paper is organized as follows: Section 2 introduces the continuum model proposed
in [22], outlining the key assumptions related to (i) the free energy governing the elastic
response and (ii) the plastic reorientation model that describes the dissipation process,
defined by the yield function. Section 3 summarizes the main analytical results from [22],
focusing on a traction problem in the homogeneous case. Section 4 describes the numerical
methods used to obtain the results presented in Section 5, which illustrate phase segregation
and the transition from auxetic to non-auxetic behavior. Section 6 discusses how these
results can be applied to real-world scenarios. Finally, Section 7 offers concluding remarks
and outlines directions for future research.

2. Free Energy and Reversibility Domain Assumptions
Consider a 2D body B where each point x has a position vector x = xαeα relative to

the origin o. Each point is associated with an oriented fiber, whose direction is given by the
unit vector n(ϑ) = cos ϑe1 + sin ϑe2, where ϑ is an internal state variable, see Table 1 for
the notation. Following the theories [23–25], ϑ influences the free energy, and its evolution
dictates dissipation.
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Table 1. Notations used in the model.

Symbol Description

x Position vector of a point in the body.
ϑ Internal state variable representing fiber orientation.
E Linearized strain tensor, based on displacement field u.
Λ State of the body at time t, consisting of strain E and fiber orientation ϑ.
n Unit vector in the fiber direction, depending on the internal state variable ϑ.
C Elasticity tensor for transversely isotropic material in the fiber direction n(ϑ).
µ Lamé coefficient (shear modulus).
λ Lamé coefficient (first Lamé constant).
c1 Material constant describing transverse isotropy.
c2 Material constant describing transverse isotropy.
E Young’s modulus.
ν Poisson ratio.
γ Remodeling torque, associated with changes in fiber orientation ϑ.
η̄ Dissipation potential, associated with fiber reorientation.
Θ̄ Accumulated fiber rotation over time t.
ψ Free energy density, a function of E and ϑ.
δ Remodeling dissipation.
E Free energy density, a function of E and ϑ.
P Set of valid pairs (c1, c2) ensuring positive free energy density.
S Stiffening set, representing materials where fibers align to enhance stiffness.
C Compliance set, representing materials where fibers reduce stiffness in their

orientation direction.
R Reversibility domain where the remodeling torque is below a critical threshold.

∂R Boundary of the reversibility domain: yield set.

The state of B at time t is defined by Λ = {E, ϑ}, where E = sym∇u is the linearized
strain based on the displacement field u. The free energy density is a quadratic function of
the strain:

ψ = ψ̂(E, ϑ) =
1
2
C
(
n(ϑ)

)
E · E. (1)

Here, C
(
n(ϑ)

)
is the elasticity tensor for a transversely isotropic material with respect

to n(ϑ). In 2D, the free energy density is as follows:

ψ̂(E, ϑ) = µ∥E∥2 +
λ

2
(trE)2 + c1(trE) E n(ϑ) · n(ϑ) + c2

(
E n(ϑ) · n(ϑ)

)2
, (2)

where λ and µ are the Lamé coefficients, and c1 and c2 characterize the transverse isotropy.
With fixed Lamé coefficients (µ > 0, 2µ + λ > 0), the pair (c1, c2) must belong to a set P to
ensure the positiveness of the energy density:

P =

{
(c1, c2) ∈ R : c2 >

c2
1 − 4µc1 − 4µ(µ + λ)

2(2µ + λ)

}
. (3)

This set is represented by the red dashed parabola plotted in Figure 1. To understand
the role of c1 and c2, the author recall the Young modulus and Poisson ratio definitions for
an uniaxial traction test T̄ = σt⊗ t in the direction t = cos αe1 + sin αe2. The corresponding
strain is Ē = C−1(n(ϑ)

)
T̄. Thus, Young modulus and Poisson ratio depend on the angle

(α − ϑ) between the testing direction and the fiber orientation:

E(α, ϑ) = Ê(α, ϑ) :=
T̄t · t
Ēt · t

; ν(α, ϑ) = ν̂(α, ϑ) :=
Ēt⊥ · t⊥

Ēt · t
. (4)
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Polar plots illustrate how Young modulus varies with (α− ϑ), as shown in the insert of
Figure 1a. The stiffening set S is defined by ensuring that the ratio of Young moduli parallel
and perpendicular to the fiber direction (E∥ = Ê(α = ϑ, ϑ) and E⊥ = Ê(α = ϑ − π/2, ϑ)) is
greater than 1 as follows:

E∥
E⊥

= 1 +
2(c1 + c2)

2µ + λ
> 1 =⇒ S = {(c1, c2) ∈ P : c1 + c2 > 0}. (5)

This set is represented by the yellow area in Figure 1a. Conversely, the compliance set
C = P \ S represents materials where fibers reduce stiffness in their orientation direction.
This set is depicted in gray in Figure 1a. For more details on the possible application of
this set, the reader is referred to [28,29], where the authors discuss the potential use of these
materials in modeling the tethering of fibers in the extracellular matrix of biological tissues.

0 1 2-1

-0.5

0

1

(a)

0 1 2-1

-0.5

0

1

(b)

Figure 1. (a) The red dashed line confines the set where {c1, c2}/E0 ensures positive energy (Equation (3)),
with E0 being the isotropic Young modulus. The yellow area, a subset of P , represents the stiffening
set (Equation (5)). The insert shows polar plots of Young modulus Ê(α, ϑ = 0) for α ∈ [0, 2π],
corresponding to colored dots from the stiffening set S . (b) Colored areas depict asymptotic behaviors
of fiber orientation ϑ in traction tests (see [22]): alignment at a given angle (blue), perpendicular
alignment to the load (gray), and alignment either perpendicularly or with the load, depending on
initial orientation (red).

Within the Generalized Standard Materials framework [25], dissipation is described
by the dissipation potential, a convex and positive function of the internal state variable
rates. Since n · n = 1 and ṅ = β n⊥ with n⊥ := ∂ϑn(ϑ) = − sin ϑe1 + cos ϑe2, then the
scalar product between ṅ · n = 0. Thus, from Equation (2), the energy release rate takes
the form:

−∂ϑψ̂(E, ϑ)ϑ̇ = −∂nψ̂(E, n(ϑ)) · ṅ(ϑ)

= −2
(

c1trE + 2c2En(ϑ) · n(ϑ)
)

En(ϑ) · βn⊥(ϑ)

= −βγ(E, ϑ),

(6)

where γ(E, ϑ) is the remodeling torque associated with changes in fiber orientation ϑ. To
satisfy the fundamental inequality, [25], the energy release rate at E must exceed that at any
admissible Ẽ:

−β[γ(E, ϑ)− γ(Ẽ, ϑ)] > 0 (7)

for any E and Ẽ in the reversibility domain, R(η). This domain comprises symmetric strain
tensors for which the remodeling torque remains below a critical threshold η > 0:

R(η) =

{
E ∈ Sym : sup

ϑ∈[−π/2,+π/2]
|γ(E, ϑ)| ≤ η

}
. (8)
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This set represents strains for which the fiber orientation ϑ remains constant, re-
sulting in purely elastic material behavior. Its boundary, named yield set, is denoted by
∂R(η) = {E : supϑ |γ(E, ϑ)| = η}. Following [25,30], the dissipation rate is given by the
Legendre transform:

d(ϑ)(ϑ̇) = sup
E∈R(η)

(
− ∂ϑψ̂(E, ϑ)ϑ̇

)
= η β |ϑ̇| = η̄|ϑ̇|. (9)

Considering a quasi-static process over a time interval t, the total dissipation is

δ = δ̂(t) =
∫ t

0
d(ϑ(τ))(ϑ̇(τ)) dτ = η̄

∫ t

0
|ϑ̇(τ)| dτ =: η̄ Θ̄(t), (10)

where Θ̄(t) is the accumulated fiber rotation over time t. Finally, the total energy is
the integral of the free energy density, Equation (1), plus the remodeling dissipation,
Equation (10), over the body B:

E
(
E(t), ϑ(t)

)
=
∫

B

(
ψ̂
(
E(t), ϑ(t)

)
+ δ̂(t)

)
dA. (11)

3. Analytical Solution for the Homogeneous Material in a
Traction Problem

Consider the traction problem sketched in Figure 2, where a rectangular sample of
length L and height H is free on the upper and lower edges and allowed to slide on the left
side. The points on the right side experience a horizontal displacement of ū = εL e1, whilst
their vertical displacement remains unconstrained.

ū = εLe1

ϑ0H

L

e1

e2

Figure 2. Sketch of the setup for the traction problem, where ϑ0 represents the initial orientation of
the fibers.

In [22], this problem is presented a complete analytical characterization of the homo-
geneous case in terms of strain and fiber rotation, as the imposed horizontal displacement
ū = ε Le1 monotonically increases starting from ε = 0. The fiber orientation ϑ evolves
according to the following Karush Kuhn Tacker (KKT) conditions [31]:

ϑ̇ ≥ 0, |γ(E, ϑ)| − η ≤ 0, ϑ̇(|γ(E, ϑ)| − η) = 0. (12)

Hence, it is possible to find an asymptotic value of the fiber orientation for ε → ∞
once the material reaches the plastic regime:

ϑ∞(λ, µ, c1, c2) =
1
2

arccos

(
2µ(c1 + c2)

c2
1 − 2c2(µ + λ)

)
. (13)
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In summary, the stiffening materials are identified in three classes as represented in
different colored regions in Figure 1b:

Class (A): Materials in class (A) exhibit a minimum of the free energy ψ at 0 < ϑ∞ <

π/2 (it suffices to consider ϑ ∈ [0, π/2] as ϑ ≡ ϑ + π and, for the symmetry of the problem,
ϑ ≡ −ϑ) and two local maxima at ϑ = {0, π/2}. See, for instance, blue dots to the top left
of Figure 3 for an illustration. The evolution of the homogeneous traction problem, starting
from an initial uniform fiber orientation ϑ0 ∈ [0, π/2], is depicted in the bottom left of
Figure 3. The fiber orientation evolves with jumps if ϑ0 lies on an unstable branch (dashed
blue lines in Figure 3 bottom left, corresponding to 0 ≤ ϑ0 < ϑA

s1 or ϑA
s2 < ϑ0 ≤ π/2), or

continuously if ϑ0 is initially on a stable branch (continuous blue lines in Figure 3 bottom
left, corresponding to ϑA

s1 ≤ ϑ0 < ϑ∞ or ϑ∞ < ϑ0 ≤ ϑA
s2). From a physical standpoint,

materials in class (A) exhibit preferred fiber orientations that do not align with principal
loading directions, leading to anisotropic stiffening effects that are particularly useful in
biological tissues or engineered composites where directional reinforcement is required.
For example, in muscle fibers or fibrous composite laminates, such energy landscapes
help in tailoring mechanical responses to external forces while maintaining structural
integrity [32,33].

Class (B): Materials in class (B) exhibit a single minimum of ψ at ϑ = π/2, with ϑ = 0
representing a maximum. Furthermore, ϑ∞ does not exist within the real numbers. Refer
to the middle top of Figure 3 for the energy landscape and the middle bottom for the
evolutionary paths of a generic initial fiber orientation, illustrated by continuous gray lines
with arrows. Physically, class (B) materials favor alignment of fibers in a single dominant
direction (ϑ = π/2), which suggests a material design where unidirectional reinforcement
is beneficial. Such a configuration is particularly relevant in fiber-reinforced polymers
and natural materials such as tendons, where maximizing stiffness along a specific axis is
crucial for load-bearing efficiency and mechanical performance under tension.

Class (C): Materials in class (C) exhibit two minima of ψ at ϑ = {0, π/2}, with ϑ∞

corresponding to a maximum. Refer to the top right panel of Figure 3 for the energy land-
scape and the bottom right for the evolutionary paths of a generic initial fiber orientation,
illustrated by continuous gray lines with arrows. As indicated by the large red arrows, ϑ∞

is a critical point, meaning that a fiber initially oriented at ϑ∞ + α, with α being a small
perturbation, will reorient towards π/2. Conversely, if the initial orientation is ϑ∞ − α, the
final orientation will be 0. This scenario allows for the observation of phase segregation
in a material with particular distributions of fiber orientation. In practical terms, class
(C) materials exhibit bistable behavior, which is crucial for applications where controlled
anisotropy and phase separation are desirable. This includes smart materials, such as
shape-memory polymers or adaptive bio-inspired structures, where switching between
two stable configurations under mechanical stimuli can be leveraged for tunable stiffness,
actuation, or self-healing capabilities. Additionally, phase segregation effects in this class
are particularly relevant for tissue engineering, where fiber alignment can dictate cellular
growth patterns and mechanical functionality in biomimetic scaffolds [34,35].

By classifying materials based on these energy profiles, this framework provides a
fundamental understanding of how the fiber orientation process influences mechanical
behavior. This insight aids in designing materials with tailored anisotropic properties
for various engineering and biomedical applications, ranging from high-performance
composites to biomimetic tissues.
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Figure 3. The top row illustrates the free energy landscape ψ (solid colored lines) and its derivative
∂ϑψ = −γ (dashed black line) for material classes (A), (B), and (C), corresponding to points PA,
PB, and PC in Figure 1b, distinguished by blue, white, and red colors, respectively. The bottom row
depicts the evolution, in the yield set, of the fiber orientation ϑ from various initial orientations;
continuous gray lines indicate the evolutionary paths, which can be continuous or exhibit jumps.

4. Numerical Implementation
The energetic properties of the problem solution and the general conditions offered by

the incremental energy minimization framework [36] suggest the alternating minimization
(AM) strategy as a natural resolution algorithm. In this specific case, the AM consists of
two sequential minimization steps repeated over each time increment until convergence:
first, the total energy is minimized with respect to the displacement field, u, while keeping
the fiber rotational field, ϑ, fixed. Second, the total energy is minimized with respect to ϑ,
while keeping u fixed. This process is detailed in the pseudo-code Algorithm A1.

The first step is equivalent to solving a linear elasticity problem. The second step is a
nonlinear problem, but it is local in space, allowing for minimization via a local projection
method, such as a modified Newton-Raphson scheme. The problem requires discretization
in both time and space. The time discretization is merely a path-ordering parameter since
no dynamics is involved.

Space Discretization: The domain B = {(x1, x2) : x1 ∈ (0, L) ∧ x2 ∈ (0, H)} is dis-
cretized using an unstructured mesh. The displacement field u is approximated using a
piece-wise affine finite element space [37] over B. The fiber rotational field ϑ, due to its
intrinsic locality (a feature common in rate-independent plasticity problems), is projected
onto a discontinuous finite element space over B.

Time Discretization: The time interval [0, T] is discretized in n non-uniform time steps
dti. The accumulated fiber rotation is discretized as follows:

Θ̄(ti) ≃ Θ̄i = Θ̄i−1 + ∥ϑi + ϑi−1∥. (14)

At each time step i, the solution, representing the state Λ of the sample, must be a
local minimum of the total energy with respect to both fields:

{ui, ϑi; Θ̄i} = argmin
u,ϑ

{
Ei(u, ϑ; Θ̄)

}
, Ei(u, ϑ; Θ̄) =

∫

B
ψi(u, ϑ) + δi(ϑ; Θ̄), (15)

subject to the Dirichlet boundary conditions u(0, x2) · e1 = 0 and u(L, x2) · e1 = ū(εi),
where Ei represents the time-discretized form of the total energy in Equation (11).
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The code implementation uses python as an interface to FEniCS (https://fenicsproject.
org, accessed on 5 April 2025) [38,39], an open-source computing platform for solving
partial differential equations (PDEs).

5. Numerical Results
This section presentes the numerical results obtained by solving the problem described

in Section 2 using the numerical implementation detailed in Section 4. Starting from the
analytical solution discussed in Section 3, this study explores two different scenarios: (i) the
transformation from an auxetic to a non-auxetic mechanical behavior of a material in class
(A) under specific initial fiber orientation conditions, and (ii) the segregation process of
the fiber orientation field which is characteristic of materials in class (C). Materials in class
(B) are not considered in this work, as they do not exhibit any extreme behavior. Once
perturbed, fibers in class (B) materials tend to reorient monotonically toward a single stable
configuration, making their evolution relatively straightforward compared to the bistable
or metastable behaviors of classes (A) and (C). However, such materials are particularly
relevant in applications where a predictable and stable anisotropic response is desired, such
as tendon-like biological tissues or fiber-reinforced composites designed for unidirectional
strength. For further details about this material, the reader is referred to [22].

5.1. Auxetic to Non-Auxetic Trasformation

The present section focuses on a specific material in class (A), represented by the blue
dot, PA, in Figures 1b and 4. This material has anisotropic parameters c1 = −0.75 and
c2 = 1.3, while the Lamé coefficients are chosen as λ = µ = 3/8. Equation (13) provides
the asymptotic orientation, which is ϑ∞ ≃ 54°. As seen in Section 3, ϑ∞ is a minimum of
the free energy and coincides with the limit orientation that the fibers will tend towards
during the loading process, regardless of the initial orientation.

In Figure 4, two similar schematics are shown where the black region represents the set
of anisotropic coefficients that exhibit auxetic behavior at ϑ∞, denoted as A∞ = {(c1, c2) ∈
S : ν(ϑ∞) < 0}. The material under considerations, represented by point PA, does not
belong to this area, indicating that the asymptotic orientation does not exhibit auxetic
behavior. Conversely, the red region represents the auxetic set A0 = {(c1, c2) ∈ S : ν(ϑ0) <

0}. In panel (a), ϑ0 = 6°< ϑA
s1, while in panel (b), ϑ0 = ϑA

s1 ≃ 15°. Although the black
regions are identical in both panels, the red areas differ. On the left, PA belongs to A0, while
on the right, it does not. This indicates that the material PA is a good candidate to perform
the transition from auxetic to non-auxetic: with an initial orientation ϑ0 = 6°, it behaves
like an auxetic material, but when the fiber reaches its limit orientation, the material no
longer exhibits auxetic behavior.

In Figure 5a, the reorientation path is represented by red lines with arrows as ε

increases, while Figure 5b shows the complete landscape of the Poisson ratio, given by
Equation (4). Figure 6a–d presents four snapshots taken along this loading path: the
snapshot (a) shows the initial orientation and the undeformed shape of the sample. As
ε increases, the homogeneous material reaches the boundary of the reversibility domain,
labeled S0 in Figure 5. The behavior is auxetic, as seen in the deformed shape in Figure 6b
snapshot S0, where, for instance, the left side of the deformed shape is larger than the
same side of the original undeformed shape (black rectangle). Upon reaching this limit, the
orientation evolves, with ϑ jumping from ϑ0 = 6° to 30°, labeled S1 in Figure 6c. From this
snapshot and the Poisson ratio landscape, one can observe that the behavior is no longer
auxetic until it reaches the asymptotic value of 54°, Figure 6d.
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Figure 4. The black region represents the set of anisotropic coefficients that exhibit auxetic behavior at
the asymptotic orientation ϑ∞, denoted as A∞. The red region represents the auxetic set A0. The panel
(a) shows the latter set with ϑ0 = 6°, while the panel (b) shows the same set with ϑ0 = ϑA

s1 ≃ 15°.
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ϑ0 = (π/2)(x1/L)
ϑ0 = 6°

(c)

Figure 5. (a) The reorientation path in the plane {ϑ, ε2/η} is represented by the continuous red line
with arrows. (b) Poisson ratio landscape for the material in class (A) with c1 = −0.75 and c2 = 1.3.
(c) Force F as a function of the applied displacement ε.

The same process is analyzed for a material in class (A) with a linear distribution of
the initial fiber orientation, ϑ0 = (π/2)(x1/L), as shown in the right panel of Figure 6e–h.
At small load levels ε, the left and right extremities of the deformed shape exhibit auxetic
behavior, characterized by an increase in size, as indicated by the violet region in the
Poisson ratio landscape. As the loading progresses, the material transitions towards the
asymptotic orientation ϑ∞ ≃ 54°, which is nearly achieved everywhere in the configuration
shown in Figure 6h. However, it is important to note that the exact asymptotic value is
only fully reached as ε → ∞, as depicted in Figure 5a. Additionally, the yield set for fibers
oriented at ϑ > ϑ∞ is reached at higher values of ε compared to fibers oriented at ϑ < ϑ∞.

Finally, in Figure 5c, the material response is shown in terms of force F as a function of
the applied displacement ε. The force is computed at each load step as the integral of the
traction vector TnΓ over the boundary, ∂uB, where the displacement is applied:

F =
∫

∂uB
TnΓ dΓ, (16)
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where nΓ is the normal unit vector to that boundary. In this panel, the red line represents
the response of the material with initial orientation ϑ0 = 6°, with the drop S0–S1 indicating
the sudden reorientation. The purple line represents the response of the material with
a linear distribution of the initial orientation ϑ0 = (π/2)(x1/L). Both responses tend
towards the same asymptotic behavior at large ε, represented by the dashed black line.

(a) ε = 0.00

(b) ε = 0.22

(c) ε = 0.23

(d) ε = 0.57

(e) ε = 0.00

(f) ε = 0.22

(g) ε = 0.27

(h) ε = 0.57

Figure 6. Auxetic to non-auxetic transition. Material in class (A)with c1 = −0.75 and c2 = 1.3. (a–d) Left
panel from top to bottom: (a) initial undeformed configuration with constant distribution of ϑ0 = 6°
followed by (b) the auxetic behavior, (c) the transition to non-auxetic, and finally (d) the asymptotic
value ϑ∞ ≃ 54°. (e–h) Right panel from top to bottom: (e) initial undeformed configuration with
linear distribution of ϑ0 = π/2x1/L followed by (f) the simultaneous auxetic (sides) and non-auxetic
(middle) behaviors , (g) the propagation of the non-auxetic phase, and finally (h) reaching the limit
value almost everywhere ϑ∞ ≃ 54°.

5.2. Segregation Process

To illustrate the segregation process, the analysis focuses on a material from class
(C), represented by the red dot PC in Figure 1b. This material has anisotropic parameters
c1 = 1.5 and c2 = 0, while the Lamé coefficients are chosen as λ = µ = 3/8. The asymptotic
orientation is ϑ∞ ≃ 30°. For this specific material class (C), ϑ∞ becomes the maximum of the
free energy and corresponds to the critical point, which means that a fiber initially oriented
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as ϑ∞ ± α, with α a small perturbation, will reorient towards π/2 or 0, respectively. This
section presents two study cases, in which the author explores the evolutions of different
non-uniform distributions of initial orientation ϑ0(x). The first one has a piece-wise linear
distribution along the coordinate x1:

ϑi
0(x1) =





π
5L x1 if 0 ≤ x1 ≤ L

2 ,
π
2L x1 if L

2 > x1 > L.
(17)

This is also plotted in red in the left panel of Figure 7 along the sample diagonal, and is
shown by the white line in Figure 8a.

The second study case has an initial distribution that follows the function:

ϑii
0 (x) =

π

2L
x1 cos

( π

2H
x2

)
with x1 ∈ [0, L] and x2 ∈ [0, H], (18)

this becomes 0 along the left and top edges and reaches π/2 in the bottom-right corner
x1 = L and x2 = 0; see the contour plot of snapshot on the panel (e) in Figure 8 and
blue line in the left panel of Figure 7 for the effective distribution along the diagonal of
the sample.
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π
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F
ϑi
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Figure 7. (Left) Initial distributions of the fiber orientation for cases: (i) ϑi
0 Equation (17) and

(ii) ϑii
0 Equation (18) both plotted along the dashed white line in Figure 8 top row. (Right) Force F as a

function of the applied displacement ε.

The evolution of the fiber orientation for these two cases is depicted in Figure 8. The
left panel shows the deformed shape and the evolution, as a contour plot, of the fiber
orientation field for the piece-wise linear distribution given by Equation (17), ϑi

0. The right
panel shows the deformation and reorientation for ϑii

0 , given by Equation (18). The top
row of Figure 8 shows the initial distribution of the fiber orientation, while the bottom row
shows the final distribution. In both cases, the segregation process is evident, particularly
in the second study case where one can observe the propagating front of segregation. The
final distributions show fibers reaching the two minima at 0° and 90°, polarizing the sample
in two regions.

Finally, the force–displacement curve is shown in the right panel of Figure 7. The red
line represents the response of the material with the piece-wise linear distribution of the
initial orientation, while the purple line represents the response of the material with the
distribution (18). Both responses are confined within the green cone, which is bounded by
the responses of the material characterized by initial fiber orientations of 0° (dashed black
line) and 90° (dotted black line).
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(a) ε = 0.00

(b) ε = 0.24

(c) ε = 0.29

(d) ε = 0.88

(e) ε = 0.00

(f) ε = 0.18

(g) ε = 0.31

(h) ε = 0.71

Figure 8. Segregation process. Material in class (C) with c1 = 1.5 and c2 = 0. (a–d) Left panel
from top to bottom: (a) initial undeformed configuration with piece-wise linear distribution of ϑi

0
given by Equation (17), (b) the segregation front on the right half of the sample, (c) the completely
segregated half sample, and (d) the final distribution: the red part is at 0° while the grey half
has an orientation equal to 90°. (e–h) Right panel from top to bottom: (e) initial undeformed
configuration with distribution of ϑii

0 given by Equation (18), (f) the segregation process is activated
from the bottom right corner, in (g) the segregation front starts to appear, and (h) reports the final
segregated distribution.

6. Practical Implications
One key aspect of the results is the emergence of phase segregation, where distinct

fiber orientations develop within different regions of the material. This phenomenon leads
to localized variations in mechanical properties, potentially influencing failure mechanisms,
toughness, and adaptability. In engineering applications, such behavior can be leveraged
to design materials with tailored mechanical responses, such as controlled deformation
patterns or enhanced energy dissipation. In biological tissues, phase segregation may play
a role in structural adaptation processes, allowing different regions to develop specialized
mechanical functions over time [40,41].
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Furthermore, the transition from auxetic to non-auxetic behavior, governed by fiber
alignment, offers opportunities for designing materials with tunable mechanical proper-
ties. Auxetic materials, characterized by their negative Poisson ratio, are known for their
enhanced fracture resistance and superior shock absorption [42,43]. A deeper understand-
ing of this transition can facilitate the development of smart materials for applications in
biomedical implants, soft robotics, and impact-resistant structures.

By capturing these extreme behaviors, this study lays the foundation for design-
ing advanced fibrous materials with programmable mechanical properties. The findings
contribute to optimizing composite structures, improving the durability of biomimetic
materials, and refining computational models for predicting material responses under
various loading conditions. Moreover, the theoretical framework and numerical simu-
lations presented here provide a basis for future experimental validation and practical
implementation in real-world applications.

7. Concluding Remarks and Future Perspectives
This work presents a comprehensive continuum model for fibrous materials undergo-

ing plastic remodeling, leading to significant changes in fiber orientation and, consequently,
their mechanical response. The study demonstrates that such remodeling processes can
result in complex material behaviors, including phase segregation and transitions between
auxetic and non-auxetic properties, with far-reaching implications for both engineered
materials and biological tissues.

Through a combination of analytical and numerical approaches, the author demon-
strates how the reorientation of fibers can drastically alter the mechanical response of the
material. Specifically, three distinct classes of material behavior were identified based on the
peculiarities of the free energy function: materials that exhibit a stable fiber orientation at
an intermediate angle, materials that align fibers perpendicularly to the load direction, and
materials that can exhibit either behavior depending on the initial fiber orientation. This
classification underscores the crucial role of fiber orientation in governing the mechanical
properties of fibrous materials.

Beyond theoretical insights, the findings have practical relevance for material design
and optimization. The emergence of phase segregation—where different regions of the
material develop distinct fiber orientations—has implications for localized mechanical
properties, influencing structural toughness, failure mechanisms, and adaptability. This
phenomenon could be exploited to engineer materials with controlled deformation patterns,
improved energy dissipation, or enhanced durability in applications ranging from soft
robotics to impact-resistant structures. Similarly, the ability to transition between auxetic
and non-auxetic behaviors offers exciting possibilities for tunable materials. Auxetic
structures, known for their enhanced fracture resistance and shock absorption, could be
tailored for biomedical implants, protective equipment, and morphing materials capable of
adjusting their mechanical response in real time.

Numerical simulations have provided further insights into the evolution of fiber
orientation under applied loads. These insights pave the way for the development of fibrous
materials with programmable mechanical properties, optimizing composite structures and
biomimetic materials for specialized applications.

Future work will address the current limitations by extending the model to three-
dimensional settings, enabling a more comprehensive understanding of remodeling in
real-world scenarios. Additionally, incorporating viscous effects will enhance the model’s
ability to capture time-dependent material responses, improving its predictive accuracy
and facilitating closer alignment with experimental observations.
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Overall, this study lays a solid foundation for advancing the understanding of fi-
brous materials undergoing plastic remodeling, offering new opportunities for the de-
sign of materials with tailored mechanical properties for engineering, biomedical, and
industrial applications.
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Appendix A
In this appendix, the author reports the algorithm presented in Section 4, which

outlines the alternating minimization scheme used to solve the coupled problem of dis-
placement and fiber remodeling in fibrous materials.

Algorithm A1 Alternating Minimization Scheme

Require: Initial values {u0, ϑ0, Θ̄0} and Dirichlet boundary conditions
Ensure: Solution fields {un, ϑn, Θ̄n} at the final time step

1: Initialize: i = 0, u0 = 0, ϑ0 = 0, Θ̄0 = 0
2: for i = 1, 2, . . . , n do
3: Update Dirichlet boundary conditions based on the current time step
4: while uerr > utol AND ϑerr > ϑtol do
5: Solve the linear elastic problem for ui:
6: ui = arg min

u

{
Ei(u, ϑi−1; Θ̄i−1)

}

7: Evaluate the yield function γ(ui, ϑi−1)
8: if γ(ui, ϑi−1) ≤ η̄ then
9: Remodeling does not occur; ϑi = ϑi−1

10: else
11: Initialize local projection iteration: j = 0, ϑ0

i = ϑi−1
12: while ϑerr,proj > ϑtol,proj do
13: Increment projection iteration: j = j + 1
14: Solve the remodeling problem via local projection:
15: ϑ

j
i = Projection(ϑj−1

i + ∆ϑj)

16: Update projection error: ϑerr,proj = ∥ϑ
j
i − ϑ

j−1
i ∥L2

17: end while
18: ϑi = ϑ

j
i

19: end if
20: Update displacement error: uerr = ∥ui − ui−1∥H1
21: Update fiber rotation error: ϑerr = ∥ϑi − ϑi−1∥L2
22: end while
23: Update accumulated fiber rotation: Θ̄i = Θ̄i−1 + ∥ϑi + ϑi−1∥
24: end for
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Abstract: Sandwich structures with triply periodic minimal surface (TPMS) cores have
garnered research attention due to their potential to address challenges in lightweight
solutions, high-strength designs, and energy absorption capabilities. This study focuses on
performing finite element analyses (FEAs) on eight novel TPMS cores and one stochastic
topology. It presents a method of analysis obtained through implicit modeling in Ansys
simulations and examines whether the results obtained differ from a conventional method
that uses a non-uniform rational B-spline (NURBS) approach. The study further presents a
sensitivity analysis and a qualitative analysis of the meshes and four material models are
evaluated to find the best candidate for polymeric parts created by additive manufacturing
(AM) using a stereolithography (SLA) method. The FEA results from static and explicit
simulations are compared with experimental data and while discrepancies are identified in
some of the specimens, the failure mechanism of the proposed topologies can generally be
estimated without the need for an empirical investigation. Results suggest that implicit
modeling, while more computationally expensive, is as accurate as traditional methods. Ad-
ditionally, insights into numerical simulations and optimal input parameters are provided
to effectively validate structural designs for sandwich-type engineering applications.

Keywords: TPMS; sandwich structure; finite element simulation; implicit modeling

1. Introduction
Sandwich structures that incorporate TPMS cores are a promising type of lightweight

and robust material in the field of mechanical engineering. Characterized by their periodic
geometry and minimal surface area, they offer a combination of high strength-to-weight
ratio, excellent energy absorption, and adaptability to various design requirements. These
structures have attracted significant interest for applications in aerospace, biomedical
engineering, and structural mechanics due to their ability to efficiently manage mechanical
loads while minimizing material usage. A comprehensive classification of the various types
of sandwich structures featuring metamaterial cores is provided in references [1–3].

TPMS topologies, such as the Schwarz primitive, Schoen gyroid, and diamond sur-
faces, are defined mathematically through equations, enabling precise control over their
geometrical parameters and relative density [4,5]. Their mathematical foundation makes
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them particularly suitable for optimization and integration into sandwich panels, where
they act as cores between rigid face sheets. Recent advancements in additive manufacturing
have facilitated the fabrication of these complex geometries, enabling fabrication of designs
that were previously impractical [6–8].

Experimental studies alone, while providing valuable empirical insights, may not fully
capture the complexities of the physical phenomena. Thus, a finite element analysis (FEA)
serves as a complementary and indispensable tool for expanding the understanding derived
from experiments. In addition, a correspondence between experimental data and FEA
increases the confidence in the validity of the obtained results. This is especially important
when complex topologies fabricated through additive manufacturing are considered, given
the defects such methods could induce, altering their mechanical response [9].

Predicting deformation patterns, stress distribution, and failure mechanisms of TPMS
structures under various loading conditions have received extensive interest. Recent rele-
vant studies focus on FEA of the most common types of TPMS structures under compres-
sive [10,11] and impact loading [12,13]. The effects of core geometry, material properties,
and relative density on the overall performance of the structures was investigated for
parts fabricated through AM of metallic [14,15] or polymeric materials [16,17]. Alternative
optimization approaches, such as graded structures [18,19], or hybrid topologies [20,21],
have also been proposed. The most commonly used types of FEA software used for
simulating TPMS geometries are the Abaqus Explicit Solver [22–25] and Ansys Explicit
Dynamics [26–29].

Implicit modeling allows for the quick generation of different topologies, facilitating
the validation of FEA models against experimental data. Consequently, all other design
variables are utilized to predict specific mechanical responses, as illustrated in the example
described in [30]. To reduce the computational effort of simulating small and complex-
shaped TPMS samples, studies tend to analyze only the behavior of a representative volume
element (RVE) [26,31]. However, due to the lack of double symmetry and because the
general failure mode is influenced by adjacent cells, an analysis of a larger domain is
required and often performed [32,33].

This research article focuses on the numerical simulation and analysis of sandwich
structures with novel TPMS cores, underlining the benefits of using implicit modeling.
A total of eight novel TPMS structures and one stochastic geometry are verified while
comparing results with experimental data. The design and fabrication of the topologies
were described in more detail in [34]. By presenting computational tools and determining
how different input parameters and material models influence FEA results, this study seeks
to contribute to the development of lightweight, efficient, and customizable structural
solutions for advanced engineering applications.

2. Materials and Methods
Due to the complex shape of the proposed shell-based TPMS samples, the walls of the

cells come into contact with each other at high strain values. Thus, an analysis over the
entire 10 mm deformation range (33% strain) which was considered experimentally [34]
was impossible to perform in the Static Structural module of Ansys. So, separate analyses
were carried out. The first one captured only the sample response in the elastic region and
the onset of yielding and was performed in the Static Structural module, neglecting any self-
contacts and gradual stiffening. The study was continued in the Explicit Dynamics module
where the samples were simulated up to the deformation considered in the experimental
tests, i.e., 10 mm.
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2.1. CAD Model for Simulation

Preparing the geometry for FEA is a critical endeavor for an accurate analysis. The
initial step involves obtaining a comprehensive representation of the structure, through
methods such as computer-aided design, implicit modeling, or three-dimensional scanning.
Simulation accuracy depends on the fidelity of the geometry, which ensures reliable results
for the investigated physical phenomenon [35].

Computer-aided design (CAD) and implicit modeling are two distinct approaches in
geometric representation. CAD employs explicit parametric models with precise geometries
defined by vertices, edges, and faces. In contrast, implicit modeling represents surfaces
as scalar fields using mathematical functions. This approach is not as widely used in
engineering but is more flexible for handling complex shapes and topological changes.
Although it has advantages in terms of easy parametrization and visualization of topologies,
its usage in FEA models can prove problematic [36]. Different methods have been proposed
to reduce the number of triangles used in converting implicit models into CAD-neutral
formats [31,37]. In this study, the usage of geometries obtained through both conventional
CAD and implicit modeling is presented and compared.

Traditionally, in FEA, CAD-type geometries that are easy to integrate into numerical
calculation models are used. This is possible, however, only when the samples are simple
enough to be modeled either through parametrization based on mathematical functions
or by a geometric approach. The stages of designing a CAD gyroid structure can be seen
in Figure 1 and consist of the following: defining the reference tridimensional contour
(a) and surface (b), making the necessary translations and multiplying to create the RVE
(c), multiplying the RVE according to the proposed dimensions (d), applying the correct
thickness of the walls (e), cutting the abnormal faces generated on the sides (f), and adding
the face sheets of the sandwich structure (g).
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Figure 1. Construction of the CAD-type geometry of sample S1 (gyroid): (a) Surface contour; (b) Ref-
erence surface for 1/8 of RVE; (c) The surface of an RVE; (d) Multiplication for sample dimensions;
(e) Obtaining a solid by thickening the walls; (f) Cutting to desired dimensions; (g) Obtaining the
sandwich-type geometry.
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The multitude and complexity of these operations help to underline the benefits of
using implicit modeling, as all these steps can be replaced by changing the mathematical
parameters of the model.

In the case of complex geometries such as topologies S2–S9 defined in [34], modeling
by using a CAD approach becomes problematic. When the functions used are complicated,
the transition from the explicit form of the defining function f (x, y, z) = c to the parametric
equations x = f (t), y = g(t), z = h(t), used by conventional design software, is difficult.
In Figure 2, the procedure that resulted from implicit modeling used in this paper to
generate a complex model integrated into numerical analyses is proposed.
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Figure 2. Procedure for obtaining solids usable in finite model analyses starting from implicit modeling.

This was achieved through the following steps. First, the implicit topology was created
in the nTopology (version 4.5.3) software. The implicit volume was meshed with a size of
0.05 mm, and the resulting geometry was exported in the STL format. This dimension was
adopted because it is the same as the layer height that was used in the AM process. Then,
the STL format is converted into a PLY format. We used Solidworks 2023 software, as our
observations indicated that this model produces a faceted body with fewer errors, requiring
simpler further processing. The resulting format is then imported into the Spaceclaim
module of Ansys Workbench 2024 R1. Because the PLY format does not retain information
related to the dimensions of the sample, it is necessary to scale the imported part. This was
initially performed for the gyroid geometry, for which the CAD format is also available.
Samples being of the same size, the conversion factor remains the same for each subsequent
sample. A faceted-surface-type geometry is thus obtained, consisting of surfaces specific
to the mesh previously created. The next step is the correction of the discontinuous or
missing edges and the smoothing of adjacent surfaces with sharp angles between them.
This is necessary because the continuity errors appearing on the surface of the samples
make the successful creation of a solid impossible. The geometry is transformed into
higher-dimensional surfaces using the Autoskin feature. This transformation can generate
approximation errors, leading to missing surfaces or erroneous edges. It was therefore
necessary to fix the geometry by simplifying the sides of the surfaces, smoothing the
wrongly discretized sides, removing the extra surfaces, joining the small surfaces, and
filling the gaps. One step that simplifies the subsequent application of the boundary
conditions is to join the surfaces to be used as contacts in the FEA, such as the top and
bottom sheets of the sandwich structure. After this step, the conversion to a solid is
performed, which can be further imported as geometry into the numerical analysis model.
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2.2. Material Definition

The second challenge consists in defining, as accurately as possible, the behavior of the
material used to manufacture the samples. Although the library of the Mechanical module
of Ansys contains a large number of predefined material models, it does not address the
majority of materials used in AM processes, especially SLA. Thus, to ensure the accuracy
of the model, the mechanical properties of the commercially available photosensitive
resin used (Tough 1500 v1—Formlabs—Somerville, MA, USA) were specified based on
experimental data obtained from uniaxial tensile tests.

Ten samples were fabricated using the same printing parameters and evaluated under
uniaxial loading. Tensile tests were performed, according to the ASTM D638 standard [38],
on an Instron 68TM-50 (Instron—Norwood, MA, USA) static and dynamic testing system
with a 10 kN force cell and an Instron 2630-100 (Instron—Norwood, MA, USA) digital
extensometer. Figure 3 briefly portrays the fabrication and testing setup of the tensile
specimens. The conventional stress–strain curves were subsequently converted to true
stress–strain curves.
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is identified, where the slope of the curve becomes negative, and a necking zone can be 
observed on the specimen. The third region corresponds to a long hardening region, spe-
cific to polymeric materials, with an almost linear evolution until the final rupture of the 
specimen. 

Figure 3. Fabrication of tensile samples and their uniaxial tensile tests: (a) Layout of the samples
in the printing software; (b) Samples on the printing table; (c) Post-processing by washing with
isopropyl alcohol; (d) Post-processing by treatment with ultraviolet radiation; (e) Printed samples;
(f) The uniaxial testing configuration of the specimens; (g) Specimens after tensile tests.

The red curve represented in Figure 4 shows the average (mean) true stress–strain
curve for the 10 uniaxial tensile tests carried out. An initial region of linear elastic behavior
of the material is observed up to a strain of 2%. After yielding, a strain-softening tendency
is identified, where the slope of the curve becomes negative, and a necking zone can
be observed on the specimen. The third region corresponds to a long hardening region,
specific to polymeric materials, with an almost linear evolution until the final rupture of
the specimen.

To use these curves as a reference behavior for numerical simulations, a separation
between the linear elastic and non-linear behavior of the material is needed. Considering,
based on the analysis performed on the homogeneity of the samples [39], that the material
has isotropic properties, the first region was defined considering the mean value for the
longitudinal (Young’s) modulus of elasticity of E = 1296 MPa and a Poisson’s ratio ν = 0.35,
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based also on the observations from relevant literature [40,41]. Next, using four material
models presented below, the non-linearity of the material was approximated.

Figure 4. True stress–strain plots obtained through tensile testing of 10 specimens and the mean curve.

The simplest approach is to use a bilinear approximation of the curve, where the initial
linear segment given by the slope E characterizes the elastic region, while the subsequent
linear segment accounts for the hardening behavior after yielding and is given by the
tangent modulus Et. The relatively constant hardening rate after yielding makes the model
suitable for the studied polymeric material. The bilinear isotropic hardening model that
approximates the experimentally obtained data is presented in Figure 5a, with the defining
parameters given in Table 1.

Table 1. Parameters used to define the material models used in FEA.

Bilinear isotropic hardening model Multilinear isotropic hardening

Young‘s modulus E = 1296 MPa εel =
σreal

E (1)

Yield strength σy = 32.12 MPa εpl = εreal − εel (2)

Tangent modulus Et = 90.12 MPa σreal = 138εpl
2 − 6.7εpl + 35 (3)

Power law non-linear isotropic hardening Three-network model [24]

σreal
σy

=
(
σreal
σy

+ 3G
σy

εpl

)N

(4)

Shear modulus A—140.5 MPa Shear modulus evolution rate B—16

Flow resistance A—51.5 MPa Flow resistance B—76.5 MPa

N = 0.15 [41]

Stress eponential A—1.4 Stress eponential B—2.1

Initial shear modulus B—362.5 MPa Shear modulus C—2.5 MPa

Final shear modulus B—22.5 MPa Locking stretch—16
Bulk modulus—502 MPa

A model that overlays the experimental curve with better accuracy is the multilinear
hardening plasticity, which does not assume a constant slope and allows a more realistic
representation of the material response by incorporating several linear segments. Its
definition was achieved by introducing several points corresponding to the true stress–true
plastic strain curve. Each segment corresponds to a distinct hardening stage, allowing the
model to capture the evolving behavior of the material as it undergoes successive plastic
deformations. Since the model does not allow for defining a negative slope, which is visible
in the red curve presented in Figure 4, it was necessary to convert the true stress–strain
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evolution into a curve that is increasing continuously. The construction of a polynomial
function that superimposes as much as possible over the real variation, described by
relation (3) in Table 1, was achieved and is represented in Figure 5b. The other formulas
used in defining the model of material are relations (1) and (2), where: σreal—true stress
value, εpl—plastic strain, εel—elastic strain, E—Young’s modulus.
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Considering the numerous material models available in FEA libraries used for nu-
merical simulations and the complexity involved in defining them, it is beneficial to adopt
simplifying approaches when working with more complex materials. Such a model is the
power law non-linear isotropic hardening model, used in the case of materials that exhibit a
non-linear hardening in the plasticity zone, defined by (4), where: σy—yield stress value,
G—transversal modulus of elasticity, and N = 0.15 constant exponent as defined in [42]. In
Figure 5c, the resulting model curve is plotted together with the experimental data.

Working with any material model requires determining appropriate material pa-
rameters from experimental data. A good option is the use of the package PolyUMod®

(Polymer FEM, bought by Ansys) whose family of material models has incorporated ad-
vanced user-material models for finite element modeling of polymers, biomaterials, and
other non-linear materials. To facilitate parameter extraction, Polymer FEM has developed
MCalibration, which enables the semi-automatic extraction of pertinent material parameters
from experimental data. This allows for the use of an iterative approach, in which the
parameters and coefficients from the predefined material model formulas are modified
until its curve approximates as accurately as possible the true strain–stress curves obtained
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experimentally by testing the tensile specimens. These parameters were then entered into
the Ansys software Workbench 2024 R1, into the appropriate models, to be used in the FEA.

Due to the observations made after compressive testing, when the samples returned
almost to their original shape within a couple of minutes, a material model that takes into
account a viscoelastic behavior was also considered. The three-network model (TNM) states
that three time-dependent viscous networks in molecular equilibrium give the mechanical
response of the material, acting in parallel. In Table 1, the parameters that define the
model, customized within PolyUMod, are manually adjusted and presented following the
parameter notations found in Ansys. Figure 5d highlights the resulting curve. Volghin and
Shishkovsky provide similar examples of the use of the model in [43] and Kumar in [44],
for simulating the response of a part made from polylactic acid. The advantage of the
model is that it allows capturing specific softening curves with negative slope that usually
occur in polymers after yielding (Figure 5d).

2.3. Geometry Meshing

Another element that fundamentally influences the accuracy and reliability of FEA is
the realization of a mesh adapted to the geometry and loading conditions, which ensures
the faithful representation of the structural response [45]. The fineness, element type, and
method used for meshing the model directly influence the convergence of the solution and
the ability to capture the failure mode of structures with intricate topologies.

In the case of the proposed TPMS samples, although the CAD-type geometry could
be meshed with quadratic elements, the models designed through implicit modeling
presented errors or significantly reduced values for the mesh quality when trying to use
the same order of elements. For this reason, to maintain consistent results, it was decided
to discretize all the models using tetrahedron elements. The solid parts were discretized
using Solid187 elements, while the contact area was constructed using Targe170 elements,
which are specific to rigid materials and therefore applicable to the platens of the testing
machine and Conta174 elements, which are specific for deformable elements and therefore
applicable for the geometry of the metamaterial [46,47].

Creating a matching mesh between the elements of both surfaces in contact is crucial
for accurately capturing their mechanical behavior. If this is easily obtained for the upper
and lower surfaces of the specimen given by the contact between the platens and the face
sheets of the sandwich structures, achieving compatibility between the elements of the
metamaterial walls that come into contact with each other is difficult to realize. This is one
of the reasons why convergence is often not reached at greater strain values.

Several meshing methods were verified to see which one works better for the proposed
geometries. The simplest and most effective is the “Automatic Method”. However, it
generated meshing errors in certain regions, consisting of several surfaces with large radii
of curvature. The complicated nature of the topologies made the “Multizone” method
exhibit serious implementation difficulties and unrepeatability between samples when
separate meshing of the face sheets and the metamaterial core was attempted. The “Patch
Conforming” method is well-suited for complex geometries, providing enhanced control
over mesh quality. It enabled the successful meshing of all analyzed samples.

A convergence study was carried out separately for the geometry of the test model
assembly. The metamaterial solid was meshed with elements with a maximum size of
0.3 mm, 0.5 mm, 1 mm, 2 mm, or 3 mm, while the compression machine platens were
discretized into two regions using spheres of influence, visible in Figure 6a. The minimum
dimension of 0.3 mm was selected to have at least 3 elements along the thickness of the
sample walls. The platen region in contact with the sample and its immediate vicinity was
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meshed with elements whose size coincided with that of the tested part. In the outer area
of the platens the size was increased up to 10 mm.
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Figure 6. (a) Geometry of the gyroid model; (b) 3 mm maximum mesh element size; (c) 2 mm
maximum mesh element size; (d) 1 mm maximum mesh element size; (e) 0.5 mm maximum mesh
element size; (f) 0.3 mm maximum mesh element size.

To indicate the mesh quality, the “Element quality” index available in Ansys was used,
where values close to 1 show elements formed from equilateral tetrahedrons, while values
close to 0 indicate deformed elements with sharp angles. The latter introduces large errors
in capturing the physical phenomenon. Figure 6b–f show the different wall thickness
meshes considered for the sensitivity analysis.

2.4. Boundary Conditions

For the first static analysis, the Static Structural module of Ansys that aimed to capture
the mechanical response in the elastic deformation zone until the onset of yielding is used.
The following boundary conditions were considered: the contact between the platens of the
testing machine and the faces of the sandwich structure was frictionless, the lower platen
had all its degrees of freedom blocked, and a 2.5 mm vertical displacement was applied to
the upper platen.

The second numerical simulation was carried out in the Explicit Dynamics module,
where it was possible to take into account the self-contact that occurred between the walls
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of the samples over the entire 10 mm deformation range. In this case, to simplify the
model, a 10 mm deformation was introduced to the upper surface of the TPMS structures,
without considering in the model the platens of the testing machine. The bottom surface
was considered fixed.

3. Results
Next, the results obtained from numerical simulations are presented. As previously

mentioned, the geometries obtained through implicit modeling require an increased com-
putational effort and a more complex meshing procedure. In order to gain a detailed
understanding of the phenomenon and establish how the parameters used in the FEA
model influence the results, several tests were carried out on the gyroid geometry, consid-
ered as a benchmark topology.

3.1. Influence of Mesh Size

Initially, a convergence study was performed in order to analyze how the maximum
size of the elements influence the final results. Figure 7a displays the percentage distribu-
tion of the number of elements of each mesh. Figure 7b shows the meshing qualitative
parameters. It is observed that, contrary to expectations, there is no proportionality be-
tween the maximum size of the mesh and the number of elements into which the solid
is discretized. This is due to the large elements generated in areas with large radii of
curvature, which require a finer mesh in adjacent areas where the radius of curvature of the
surfaces decreases. However, a positive trend in the average quality index and a negative
trend in the standard deviation are observed as the refinement of the mesh increases. Also,
the number of elements along the thickness of the geometry walls is important, noting
that in the case of a mesh with an element size greater than 1 mm, a single element was
generated throughout the thickness. This resulted in element shapes that significantly
deviate from the ideal equilateral triangle shape typical of regular tetrahedron elements.
As the mesh size is decreased, the walls are divided into more layers, which facilitates the
creation of higher-quality elements along the surfaces.
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Figure 7. (a) Meshing quality index distribution; (b) Meshing qualitative parameters.

An analysis of this type is useful because it became obvious that when the mesh refine-
ment increased, the percentage of elements of higher qualities also increased significantly.
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Thus, the total number of distorted elements has been considerably reduced, leading to a
lower probability of convergence issues of significant errors for the proposed gyroid model.

Figure 8 shows the compressive force curves as a function of deformation for different
mesh sizes. The study was carried out in the Static Structural module of Ansys Mechanical, on
the gyroid geometry, not taking into account the self-contacts that occur during deformation.
The material selected was the Multilinear model presented in Figure 5.
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Figure 8. Evolution of the compressive force as a function of deformation for different mesh sizes.

As the mesh refinement is increased, the value of the compressive force decreases
significantly. If the model is composed of more elements, the value of the loading force is
calculated more precisely. This is based on the increased ability to capture stress gradients
more accurately across the part. There is, however, a point of diminishing improvement,
where only computational time was added without a significant increase in model accuracy.
For this reason, a mesh with a maximum size of 0.3 mm was adopted in order to provide
a reasonable balance between convergence time and result accuracy. This mesh size was
kept constant in all subsequent analyses.

3.2. Influence of Material Models

Due to the typical behavior of the polymer material, given by a higher yield stress
followed by a softening region and stiffening at significant deformations, several material
models were proposed to establish which characterizes the material behavior with the
best accuracy.

Figure 9a shows the compressive force as a function of the deformation for the numer-
ical simulations (dotted lines) obtained for the gyroid sample with the material models
described in Figure 5. It is observed that all of them give a response close to the average
experimental curve obtained through compressive testing of three identical samples (red
curve). All models present a similar stiffness deviation in the elastic region but follow
different yield responses. In order to correctly estimate which of the four models came
closest to the experimental data, the difference between the area under the curve of the
numerical simulations for each model and the area under the curve of the average force
recorded empirically was evaluated. Figure 9b highlights this deviation. Based on this plot,
deviations of 2.54% for the Multilinear model, 4.65% for the Bilinear model, 5.08% for the
Powerlaw model, and 3.16% for the TNM were determined.
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Figure 9. (a) Compressive force as a function of deformation for the proposed material models;
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Thus, the Multilinear model presented the highest degree of curve overlap, most
accurately capturing the real behavior of the samples, and was further used in the FEA.

3.3. Influence of Using CAD-Type Geometry or Geometry Obtained by Implicit Modeling

Considering that most of the built samples cannot be reproduced by conventional
CAD means, the problem that arises is whether the use of the geometry obtained through
implicit modeling introduces any errors in the FEA. For this purpose, a comparison was
performed, based on the gyroid sample as a benchmark test, between the results obtained
when the solid used in the numerical simulations was a conventional CAD geometry or
was obtained as indicated in Figure 2. The test conditions are the same as previously stated,
the only variable being the geometry type.

Figure 10 visually shows the two formats used, the CAD one in (a), defined by the
procedure presented in Figure 1, and the one obtained after correcting the geometry
obtained through implicit modeling in (b), following the procedure described in Figure 2.
Figure 10c displays the geometric deviations between the two models, with an imposed
tolerance of 0.1 mm. This provides an overview on the fidelity of reproducing the nominal
geometry through implicit modeling in order to see how these deviations may generate
different outcomes in the numerical simulation.
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Figure 11 displays the differences obtained by using the two types of geometries in
the computational model. For validation, all the material models presented above were
verified. A very good overlap between the two pairs of tests is observed. The conclusion is
that utilizing a mesh of 0.3 mm to convert the implicit model into a solid compatible with
numerical simulation yields results that closely match those obtained through conventional
analysis using CAD geometries.
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3.4. Finite Element Analysis in Ansys Static Structural Module

The analysis of the results obtained by numerical simulation in the Ansys Static Struc-
tural module is presented below. Figure 12 presents the meshed geometric model and
a comparison between the average force–deformation curve obtained from three exper-
imental tests performed on each proposed structure and the curves obtained from FEA.
An approach similar to that presented in Figure 9b was used to identify the degree of
overlap of the curves, obtaining the following relative deviations from the empirical
data: S1—1.54%, S2—13.78%, S3—10.61%, S4—7.61%, S5—8.56%, S6—29.11%, S7—8.5%,
S8—1.8%, S9—30.3%, S10—10.53%. It can be seen that all samples exhibited higher FEA
stiffnesses in the elastic region, which can be attributed to differences between the longitudi-
nal modulus of elasticity obtained from the tensile tests and its simulated value. A tendency
of higher simulation error from the experimental results is observed as the yield strength of
the samples decreases. If geometries S1 and S8 present the highest compressive forces and
the lowest deviations, at the opposite side are samples S6 and S9 with the lowest accuracies
and the lowest capable forces. The high discrepancy indicated in the case of sample S6
can be attributed to the small features of the topology and the smaller wall thickness. This
did not allow for three elements to be generated across the walls of the entire cell, thus
reducing the accuracy of the results. In the case of specimen S9, the reason behind the high
error could be its deformation mode. Due to its inclined layers, the structure does not show
a bending-dominated behavior, such as for the other samples. An explicit analysis of this
specimen could provide better results. At the same time, the discrepancies could also be
related to alterations generated during the AM printing.
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element analysis for each geometry.

The equivalent von Mises stress criterion is specific to ductile materials such as metals.
Polymers, especially under compressive loads, can exhibit complex behaviors such as vis-
coelasticity, non-linearity and time-dependent deformation, introducing uncertainties in the
application of the criterion [48]. However, in many cases of testing parts made from plastic
polymers by AM, especially for quasi-static loading, von Mises stresses are intensively used
and can serve as an approximate criterion for identifying the yield phenomenon [11,27,31].
This is particularly important, especially for complex structures, where the stress states can
vary significantly due to geometric complexity and three-dimensional stress distributions.
Table 2 presents the distribution of equivalent von Mises stresses and equivalent total
strain for the static simulations performed, along with a representation of the experimental
compressive response of each structure. The yellow contour in the last column highlights
the areas where visible deformation was first observed during experimental testing. The
red curve indicates the failure contour of the specimen.
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Table 2. Visualization of FEA results and experimental compressive response for each sample.

Sample
(C1)

Von Mises Equivalent Stress Distribution
[MPa] (C2) Total Strain Distribution [-] (C3) Compressive Response

(C4) [34]

S1
(R1)
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Table 2. Cont.

Sample
(C1)

Von Mises Equivalent Stress Distribution
[MPa] (C2) Total Strain Distribution [-] (C3) Compressive Response

(C4) [34]
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Table 2. Cont.

Sample
(C1)

Von Mises Equivalent Stress Distribution
[MPa] (C2) Total Strain Distribution [-] (C3) Compressive Response

(C4) [34]
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Table 2. Cont.

Sample
(C1)

Von Mises Equivalent Stress Distribution
[MPa] (C2) Total Strain Distribution [-] (C3) Compressive Response

(C4) [34]
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Table 2. Cont.

Sample
(C1)

Von Mises Equivalent Stress Distribution
[MPa] (C2) Total Strain Distribution [-] (C3) Compressive Response

(C4) [34]

S9
(R9)

Materials 2025, 18, x FOR PEER REVIEW 20 of 26 
 

 

S9 
(R9) 

  

 

  

S10 
(R10) 

 

 

  

Similarly, specimen S2 exhibited maximum stress values in the central layer of three-
element cells (C2-R2), leading to maximum deformation in this area. This behavior is vis-
ible in the equivalent strain field (C3-R2) and the failure mode captured experimentally in 
C4-R2. For the S3 topology, the homogeneous stress distribution throughout the volume 

Materials 2025, 18, x FOR PEER REVIEW 20 of 26 
 

 

S9 
(R9) 

  

 

  

S10 
(R10) 

 

 

  

Similarly, specimen S2 exhibited maximum stress values in the central layer of three-
element cells (C2-R2), leading to maximum deformation in this area. This behavior is vis-
ible in the equivalent strain field (C3-R2) and the failure mode captured experimentally in 
C4-R2. For the S3 topology, the homogeneous stress distribution throughout the volume 

Materials 2025, 18, x FOR PEER REVIEW 20 of 26 
 

 

S9 
(R9) 

  

 

  

S10 
(R10) 

 

 

  

Similarly, specimen S2 exhibited maximum stress values in the central layer of three-
element cells (C2-R2), leading to maximum deformation in this area. This behavior is vis-
ible in the equivalent strain field (C3-R2) and the failure mode captured experimentally in 
C4-R2. For the S3 topology, the homogeneous stress distribution throughout the volume 

Materials 2025, 18, x FOR PEER REVIEW 20 of 26 
 

 

S9 
(R9) 

  

 

  

S10 
(R10) 

 

 

  

Similarly, specimen S2 exhibited maximum stress values in the central layer of three-
element cells (C2-R2), leading to maximum deformation in this area. This behavior is vis-
ible in the equivalent strain field (C3-R2) and the failure mode captured experimentally in 
C4-R2. For the S3 topology, the homogeneous stress distribution throughout the volume 

Materials 2025, 18, x FOR PEER REVIEW 20 of 26 
 

 

S9 
(R9) 

  

 

  

S10 
(R10) 

 

 

  

Similarly, specimen S2 exhibited maximum stress values in the central layer of three-
element cells (C2-R2), leading to maximum deformation in this area. This behavior is vis-
ible in the equivalent strain field (C3-R2) and the failure mode captured experimentally in 
C4-R2. For the S3 topology, the homogeneous stress distribution throughout the volume 

S10
(R10)

Materials 2025, 18, x FOR PEER REVIEW 20 of 26 
 

 

S9 
(R9) 

  

 

  

S10 
(R10) 

 

 

  

Similarly, specimen S2 exhibited maximum stress values in the central layer of three-
element cells (C2-R2), leading to maximum deformation in this area. This behavior is vis-
ible in the equivalent strain field (C3-R2) and the failure mode captured experimentally in 
C4-R2. For the S3 topology, the homogeneous stress distribution throughout the volume 

Materials 2025, 18, x FOR PEER REVIEW 20 of 26 
 

 

S9 
(R9) 

  

 

  

S10 
(R10) 

 

 

  

Similarly, specimen S2 exhibited maximum stress values in the central layer of three-
element cells (C2-R2), leading to maximum deformation in this area. This behavior is vis-
ible in the equivalent strain field (C3-R2) and the failure mode captured experimentally in 
C4-R2. For the S3 topology, the homogeneous stress distribution throughout the volume 

Materials 2025, 18, x FOR PEER REVIEW 20 of 26 
 

 

S9 
(R9) 

  

 

  

S10 
(R10) 

 

 

  

Similarly, specimen S2 exhibited maximum stress values in the central layer of three-
element cells (C2-R2), leading to maximum deformation in this area. This behavior is vis-
ible in the equivalent strain field (C3-R2) and the failure mode captured experimentally in 
C4-R2. For the S3 topology, the homogeneous stress distribution throughout the volume 

Materials 2025, 18, x FOR PEER REVIEW 20 of 26 
 

 

S9 
(R9) 

  

 

  

S10 
(R10) 

 

 

  

Similarly, specimen S2 exhibited maximum stress values in the central layer of three-
element cells (C2-R2), leading to maximum deformation in this area. This behavior is vis-
ible in the equivalent strain field (C3-R2) and the failure mode captured experimentally in 
C4-R2. For the S3 topology, the homogeneous stress distribution throughout the volume 

Materials 2025, 18, x FOR PEER REVIEW 20 of 26 
 

 

S9 
(R9) 

  

 

  

S10 
(R10) 

 

 

  

Similarly, specimen S2 exhibited maximum stress values in the central layer of three-
element cells (C2-R2), leading to maximum deformation in this area. This behavior is vis-
ible in the equivalent strain field (C3-R2) and the failure mode captured experimentally in 
C4-R2. For the S3 topology, the homogeneous stress distribution throughout the volume 

The distribution of equivalent stresses, in the case of specimen S1, showed high
uniformity (column 2, row 1 notated as C2-R1) and together with the equivalent total
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strain (C3-R1), localized especially in the central area of the sample, leads to a deformation
mechanism according to the one indicated in the figure in C4-R1.

Similarly, specimen S2 exhibited maximum stress values in the central layer of three-
element cells (C2-R2), leading to maximum deformation in this area. This behavior is
visible in the equivalent strain field (C3-R2) and the failure mode captured experimentally
in C4-R2. For the S3 topology, the homogeneous stress distribution throughout the volume
(C2-R3) indicates a stable failure behavior, as is visible in C4-R3. This, however, is not as
easy to anticipate by analyzing only the equivalent strain field in C3-R3. Next, S4 faced
convergence difficulties due to the thin walls generated on its sides and the inability to
mesh them with a sufficient number of elements across their thickness. To address this,
the deformation was limited to 1 mm, which only captures the elastic behavior of the
specimen and the onset of yielding. Even at low deformation values, the regions with
maximum equivalent stresses (C2-R4) coincide with the areas where deformation was
first observed during experimental testing (C4-R4). Similarly, the equivalent total strain
in C3-R4 indicates the critical regions between the layers, where yielding led to layer
self-contacts, as highlighted in C4-R4. For specimen S5, the failure mechanism is easier to
anticipate, with maximum equivalent stresses concentrated in the upper region (C2-R5)
consistent with the deformation mode presented in C3-R5. Specimen S6 demonstrated the
best uniformity, both in terms of equivalent von Mises stresses (C2-R6) and equivalent total
strain (C3-R6). In this case, it was difficult to estimate the failure mode identified in C4-R6,
with higher strain values in the lower zone of the specimen. For S7 the figures in C2-R7
show a leftward shift of the equivalent von Mises stresses, together with higher strain
values in those zones suggested by C3-R7. Both these results are consistent with way the
structure loses its equilibrium, identified experimentally in C3-R7, generated by buckling
along the middle of the vertical walls of the RVE. As expected, specimen S8 presents the
highest strains in the thin areas generated along the contour, which fractured at a specific
strain of 20%. The distribution of equivalent von Mises stresses (C2-R8) and the most
deformed areas (C3-R8) corresponded to empirical observations of 45◦ deformation angles
on the outer walls (C4-R8). Topology S9 experienced the highest values of equivalent von
Mises stresses (C2-R9) and equivalent total strain (C3-R9) in the areas between the inclined
layers that make up the geometry, resulting in a folding failure mechanism where cells
lay one on top of the other, as shown in C4-R9. Finally, specimen S10 also encountered
convergence difficulties due to its stochastic nature, limiting the simulation to a 1 mm
deformation. For this geometry, identifying a failure mechanism cannot be a realistic
resolution, as the maximum equivalent stresses and total strains exhibited unpredictable
behavior. Consequently, a direct comparison between experimental and FEA results was
not feasible for this sample.

3.5. Finite Element Analysis in Ansys Explicit Dynamics

Next, the numerical simulation was conducted using the Ansys Explicit Dynamics
module to evaluate the deformation mechanism across the entire range of experimentally
imposed deformations. This type of FEA can handle cases of significant shape changes or
lack of linearity of the material more efficiently.

Table 3 shows the variations in compressive force as a function of deformation, ob-
tained experimentally and via FEA in both the Static Structural and Explicit Dynamics
modules for the S1 and S8 topologies. The gyroid, S1, was selected as a reference due to
its significance in relevant literature, while topology S8 was validated for demonstrating
superior yield strength compared to the gyroid. Considering the constant input parameters
of the two simulations, the overlap on the first 2.5 mm is evident. The slight difference
between the two FEA curves (yellow and green) may be due to two factors. First, the
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analysis performed in the Explicit Dynamics module has a larger deformation increment,
which can lead to less accurate approximations of the curve between successive points.
Second, the definition of the Multilinear material is limited to a maximum of 10 points.

Table 3. Visualization of FEA results and experimental compressive response for samples S1 and S8.

Sample
(C1)

Von Mises Equivalent Stress Distribution
[MPa] (C2)

Comparison Between the Force–Deformation Plots and Those
Obtained by Finite Element Analysis (C3)

S1
(R1)
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The proposed model does not adequately capture the non-linearity caused by the
hardening phenomenon in the samples, as indicated by the reduced loading force at high
strain values in both green curves. The figures in column C2 display the equivalent von
Mises stress fields at a deformation of 10 mm. The general failure mechanism is similar to
the one identified experimentally and presented in Table 2, column C4.
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4. Discussion and Conclusions
After conducting a sensitivity analysis of the geometric model, it was determined

that a maximum size of 0.3 mm for the regular tetrahedron elements offers an optimal
balance between result accuracy and computational efforts. While this value is in line with
similar sensitivity analyses from relevant literature [49,50], the analysis was specifically
conducted to validate the mesh size for the proposed TPMS structures, given their intricate
geometry and different dimensions. This corresponds to at least three elements along
the thickness of the walls of the cellular solids. However, employing a uniform meshing
strategy throughout the entire part may prove to be insufficient in the case of geometries
with walls whose thickness is not constant or in areas with very low thicknesses, where
at least two rows of elements cannot be generated. This, in turn, results in convergence
problems or accuracy reduction, as observed in the cases of topologies S4 and S10.

An analysis was conducted on the implications of using implicit modeling in FEA. For
the same gyroid topology, S1, numerical analyses were carried out using geometric models
created through both conventional CAD methods and implicit modeling. The dimensional
deviations between the models exceeded the imposed tolerance value of 0.1 mm, with
maximum values of 0.17 mm. However, the resulting variation of compressive force
as a function of deformation showed a very good overlap between the two models. A
disadvantage of using geometries obtained through implicit modeling is the significantly
longer time required to establish the faceted geometry, transform the geometry into a solid,
perform the meshing, and solve the model. This can be up to 4 times longer than in the
case of a conventional approach, which makes the finer meshing of solids more challenging
due to the rapid increase in computational effort.

Four material models were proposed to identify which best approximates the behavior
of the selected photopolymer resin. Data obtained from tensile tests were used to empir-
ically define two isotropic material models: Bilinear and Multilinear. Following this, an
iterative method was employed to configure two additional material models: Powerlaw
and the Three-Network Model. The parameters defining their equations were configured so
that the characteristic curves of the materials overlapped as accurately as possible over
the average true stress–strain curve obtained through tensile tests. FEAs were conducted
for all four material models, and the error between the FEA results and the experimental
data determined through three different compression tests was assessed. Deviations of less
than 6% were found, with the Multilinear model achieving the best accuracy at only 2.54%
deviation. This is in line with findings in relevant literature for isotropic hardening models
such as the analyses performed by Zheng et al. in [10], Naghavi et al. in [30], or Krešic et al.
in [51]. Also, as suggested by these studies, the numerical results for compressive force
after yielding tends to have lower values than the experimental data.

Performing quasi-static numerical analyses that include high strain values on complex
three-dimensional geometries can prove difficulties due to the contact interactions within
the samples. Increasing the tolerance of the walls penetrating each other can increase the
convergence rate but will also lead to reduced accuracy. In this sense, static tests were
performed for a deformation of only 2.5 mm, a value chosen so that there would be no
contacts that would lead to convergence difficulties. Even in this case, due to the periodic
nature that determined thin walls on specimen S4 and the stochastic nature of sample S10,
the deformation value was reduced to 1 mm to achieve convergence, even though this
limited the range of phenomena captured.

By corroborating the equivalent von Mises stresses and equivalent total strain fields
obtained for each sample, conclusions were drawn regarding the general failure modes of
the samples. In most instances, the FEA results indicated a deformation mechanism similar
to what was observed in experimental testing. However, sample S6 was an exception, as the

105



Materials 2025, 18, 260

substantial deformation occurring in the lower part of this specimen was not captured in the
numerical simulation. This discrepancy could be due to the limited strain value imposed in
the simulation, or because the real failure mode was influenced by manufacturing defects
which were not considered in the FEA.

Using implicit models in FEA is a viable approach when traditional CAD models
are unavailable due to complex designs. The numerical simulation method proposed in
this paper automatically generates or optimizes innovative topologies through implicit
modeling, allowing for the validation of their properties before manufacturing takes place.
This process will be the focus of a future study, which will involve the automatic generation
and evaluation of structures using a Python–Ansys interface.
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Abstract: Acoustic metamaterials and phononic crystals are progressively consolidating as
an important technology that is expected to significantly impact the science and industry of
acoustics in the coming years. In this work, the impact of unit cell multiplicity on the spec-
tral features of the acoustic response of phononic crystals is systematically studied using
the recently demonstrated laser-plasma sound source characterization method. Specifically,
by exploiting the advantages of this method, the impact of the number of repeated unit
cells on the depth of the phononic band gaps and the passband spectral features across
the entire audible range is demonstrated. These experimental findings are supported by
specially developed computational simulations accounting for the precise structural charac-
teristics of the studied phononic crystals and are analysed to provide a phenomenological
understanding of the underlying physical mechanism. It is shown that by increasing the
unit cell multiplicity, the bandgaps deepen and the number of resonant peaks in the crystal
transmission zones increases. The resonant mode shapes are computationally investigated
and interpreted in terms of spherical harmonics. This study highlights the tunability and
design flexibility of acoustic components using phononic crystals, opening new paths
towards applications in the fields of sound control and noise insulation.

Keywords: acoustic metamaterials; phononic crystals; laser-plasma sound sources; acoustic
characterization

1. Introduction
Acoustic metamaterials (AMs) and phononic crystals (PCs) are engineered materials

that manipulate sound in ways that are not possible with conventional acoustic materials.
Particularly, AMs exploit structures shorter than the wavelength of the sound they control
to achieve unconventional behaviour like negative refraction and acoustic cloaking [1,2].
Conversely, PCs are artificial periodic arrangements of multiple components (unit cells)
that affect acoustic wave propagation due to Bragg scattering. Each unit cell features an
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internal structure with regions of differing acoustic properties, such as acoustic impedance
and/or sound speed [3–5]. Interaction between propagating acoustic waves and PCs re-
sults in a characteristic frequency response consisting of forbidden and permitted spectral
regions, named phononic band gaps (stopbands) and transmission bands (passbands), re-
spectively [6]. The acoustic spectral profile of PC is related to Bragg scattering [7–10], which
takes place when the wavelength of the propagating acoustic wave (AW) is comparable
to the features and periodicity of the structure [11]. Specifically, when the AWs propagate
through the structure, they encounter regions of different acoustic impedances, forming
interfaces upon which the AWs scatter. Superposition of the scattered waves from multiple
layers gives rise to interference patterns. When the Bragg condition for constructive inter-
ference is satisfied, wave propagation is allowed, and the passband regions are formed.
Conversely, for the frequencies satisfying the destructive interference condition, acoustic
transmission is prohibited, leading to the emergence of spectral bandgaps.

Importantly, the passbands and stopbands of PCs can be precisely engineered by
designing the geometrical and structural characteristics of the unit cells. Their capability to
tailor their acoustic response makes PCs ideal for various applications. Particularly, PCs are
utilized in noise insulation [12–14], vibration isolation [15,16], sound attenuation [17] and
soundproofing [18], where the targeted attenuation of desired frequencies is achieved by
exploiting phononic crystal bandgaps. Additionally, control of the passband features facili-
tates the design of acoustic waveguides [19–24] and acoustic filters [5,11,25–27], enabling
the selective transmission of AWs by amplifying the transmission in specific frequencies.
Finally, apart from precisely tailored acoustic filtering [21], specially designed PCs can
bend, focus or redirect the propagating sound waves [28–30], rendering them useful in
applications such as acoustic cloaking and directional sound generation [31,32].

The complexity of acoustic wave-structure interaction in PCs often renders the com-
prehension and analytical description of their behavior difficult. Currently, the design of
new PCs is commonly done via complex numerical simulations and is often based on the
experience of the designer rather than on a systematic approach. Moreover, experimental
evaluation of developed structures on the level of a single or a few unit cells has proved
difficult with conventional methods. The recently demonstrated Laser-Plasma Sound
Source (LPSS) method [33] allows for evaluation of acoustic features of the PC transmission
spectrum, including band gap depth and resonant features, with unprecedented accuracy.
This work exploits the LPSS method to identify the impact of the number of unit cells on
the transmission spectra of PCs across the entire audible range. Particularly, we experi-
mentally evaluate the transmission spectra of linear PCs with different lengths, developed
via repetition of the same unit cell. LPSSs are highly effective in characterizing PCs due to
their massless and point-like geometry, rapid pressure profile, broad frequency spectrum
and high acoustic energy [33]. Particularly, we focus on the impact of the number of unit
cells on the following: (a) the depth of the bandgaps; and (b) the profile of the resonant
features in the passbands of the acoustic transmission spectrum within the entire audible
range. Our findings reveal a clear connection between the number of unit cells and the
depth of the gaps. Specifically, the depth increases with the increasing number of unit
cells. Furthermore, an increase in the cell multiplicity leads to an increase in the number of
resonant peaks within the second and third passbands. The experimental observations are
validated by specially developed computational simulations, showing excellent agreement.
This work reveals the exact role of the structural multiplicity in the shaping and control of
the spectral features of PCs. More specifically, it provides an experimental methodology
for the determination of the number of unit cells required to achieve a specific bandgap
depth, especially with respect to the behavior of a structure with infinite length. It also
demonstrates the impact of cell multiplicity on the resonant features of the passbands,
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which can be directly related to the spectral flatness of the transmission regions. To the best
of our knowledge, there are no publications that provide computationally validated experi-
mental evidence on these aspects. This is potentially due to the prior absence of sufficiently
accurate experimental methods for their investigation, a shortcoming that is here overcome
by the LPSS method. In this respect, the study contributes to the systematization of the
design and optimization process of PCs. More generally, it can lead to efficient PC designs
with tailored control over AW transmission, which can be useful in various scientific and
industrial applications, especially in room acoustics and noise control.

2. Materials and Methods
The phononic crystals used in this study were developed via the repetition of a

cylindrical unit cell consisting of a spherical air cavity surrounded by six air conduits. The
samples were fabricated in house using polylactic acid (PLA) (XYZprinting), with the fused
filament technique on an 3D printer (XYZprinting da Vinci Super, New Taipei Taiwan).
The unit cells had a lattice constant a = 29 mm, with a sphere radius of R = 0.395a, a
conduit radius of r = 0.095a and an infill of 100%. The infill value represents the porosity
of the crystal, with an infill of 100% corresponding to a porosity of 0%. Four structures
were fabricated with the repetition of 2, 3, 4 and 5 unit cells (Figure 1). This structure
has already been shown, both experimentally and numerically, that provides wide and
complete acoustic band gaps [9,33].
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Figure 1. Internal (a) and external (b) design of the unit cell, where a = 29 mm is the lattice constant,
R = 0.395a is the sphere radious, r = 0.095a is the conduit radious and l = 0.105α is the conduit
length. (c) Image of a 3D-printed unit cell made of PLA.

Evaluation of the impact of the unit cell multiplicity on the transmission spectrum of
the PCs was carried out by the use of laser plasma sound sources. LPSSs are generated
in ambient air by the thermoelastic reaction of a localized air volume following Laser-
Induced Breakdown (LIB). High-intensity, short or ultrashort laser pulses ionize the air
particles, generating high-temperature free electrons via multiphoton ionization and inverse
Bremsstrahlung. These hot electrons thermalize the heavier ions via various physical
processes, e.g., recombinations, causing the rapid thermal expansion of the air volume
and the formation of a characteristic acoustic N-pulse [33]. The laser generated acoustic N-
pulses exhibit a first order high-pass profile at the lower end of the acoustic spectrum. For
excitation from nanosecond laser pulses, this first order profile spans from the infrasounds
(<20 Hz) to the high end of the audible spectrum (~20 kHz) or even the near ultrasounds
(~60 kHz). Peak pressure levels can exceed 130 dB, depending on the optical energy
deposited by the laser pulses in the excitation volume. Extensive studies of the N-pulses
and their relation to the laser pulse characteristics and parameters can be found in [34–38].

In our experiments, LPSS formation was done by a 6 nanosecond Nd: YAG pulsed
laser system (Quantel Brilliant B) with 1064 nm central wavelength and up to 10 Hz
repetition rate. Here, a repetition rate of 5 Hz was used that allows for a 200 ms time
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interval between consecutive pulses. The laser beam was focused with a 7.5 cm bi-convex
lens in the ambient air. The laser pulse energy of 5.5 mJ ensured that the laser-plasma source
was perfectly spherical and hence omnidirectional, as evaluated by fast shadowgraphy.
The LPSSs were positioned ~2 mm from the input hole of the structure. The acoustic
measurement system was based on a broad frequency range (90 kHz) and high dynamic
range (35 dB(A)–160 dB) microphone (G.R.A.S 46BE and power module 12AK). A sound
card (RME Fireface 802) with a 192 kHz sampling rate and 24-bit resolution was used for
the sampling of the acoustic signals. The microphone was placed at a distance of ~3 mm
from the output hole, so that it was sufficiently close to the structure but without blocking
the output hole. The experimental set up is shown in Figure 2. The acoustic signals were
recorded with the Audacity software (version 3.7.0) [39]. Each measurement contained
a train of 120 consecutive responses, corresponding to a total duration of 24 s. Noise
reduction was achieved by taking the average waveform of the 120 acoustic responses. An
analytical description of the signal processing methodology can be found in [33].
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Figure 2. Schematic diagram of the experimental setup used for the acoustic evaluation of phononic
crystals via laser-plasma sound source excitation.

Finally, numerical simulations regarding the PCs’ acoustic response were performed
using COMSOL Multiphysics® (version 5.5) and particularly the Acoustics Module and the
Solid Mechanics interface. The Finite Element Method included in the commercial package
was used to numerically solve the wave propagation following equation for sound:

∇
(
− 1

ρc
(∇pt − qd)

)
−

k2
eq pt

ρc
=

4π

ρc
Sδ(x − x0) (1)

S = ωeiφ
√

ρcuair prms

2π
(2)

where pt is the total acoustic pressure, ρc is the density of ambient air, keq = 2π
ω is the

wavenumber and ω the angular frequency, qd is the dipole domain source and δ(x − x0) is
the Dirac’s delta function. Additionally, S is the amplitude of the monopole point source,
prms is the reference pressure and uair is the speed of sound in ambient air. The source
spectrum exhibits a 1st order high pass profile ( S ∼ ω) in order to emulate the LPSS
spectrum within the frequency range of interest.

For the numerical calculations, the following values for the properties of the PLA were
used: Poisson ratio v = 0.35, Young’s Modulus E = 3.53 GPa and density ρ = 1240 kgm−3.
The acoustic-solid interaction frequency domain interface was used in the model for the
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coupling of the ambient air with the solid boundary. A monopole point source of flow type
was used to represent the laser-plasma sound source within the audible frequency range.
Perfectly Matched Layers (PML) were used at the boundaries of the computational domain
to eliminate boundary reflections. The transmission spectra are calculated according to the
following equation:

T = 20log10
pT

pI
(3)

where pT and pI represent the transmitted and incident pressure field on the two sides of
the sample.

3. Results
Figure 3a,b show the measured and simulated spectral responses of the PCs to LPSS

excitation in the frequency range from 1.5 to 20 kHz. The laser-plasma source was placed
at a distance of ~2 mm from the input hole, resulting in acoustic wave propagation along
the depth of the PC. The experimental results shown in Figure 3a clearly reveals two
phononic bandgaps between 3.6 and 9.4 kHz and between 11 and 13.6 kHz, as well as three
passbands with characteristic resonant peaks at approximately 2.5–3.5 kHz, 9.5–11 kHz
and 13.5–19.5 kHz. As expected, the frequency ranges of both the phononic bandgaps and
the passbands remained approximately the same, independently from the number of unit
cells. However, the phononic bandgaps became deeper with increases in the number of
unit cells, as the structure’s behaviour tends towards that of the infinite structure.
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To quantify the deepening of the band gap, the energy ratio ER is calculated as follows:

ER = E(n)
bg1/E(2)

bg1 (4)

E(n)
bg1 is the energy in the 1st band gap of an n-cell structure and is given by the

following:

E(n)
bg1 =

fup

∑
flow

S2( f ) (5)

where flow = 3850 Hz, fup = 9050 Hz denote the lower and upper frequencies of the
band gap and S2( f ) is the spectral energy obtained by fast Fourier transform (FFT) of the
transmission signal sT(t), expressible as the following:

S2( f ) = (FFT{sT(t)})2 (6)

In ER, the energy of the n-cell structure is compared to that of the 2-cell structure(
E(2)

bg1

)
, which is considered to be the PC with the lowest cell multiplicity. The energy

ratio taken by the experimental measurements can be seen in the scatter plot of Figure 4
(experimental data). One step further, ER can be used for the estimation of the sufficient
number of unit cells for the PC to approximately function as an infinite phononic crystal.
For this purpose, we have adopted the criterion of band gap energy drop by a factor of 1/e
(~36.7%), expressible as the following:

E(n)
bg1

E(2)
bg1

≤ 1
e

⇒ 10log10


E(n)

bg1

E(2)
bg1


 ≤ −4.34 dB (7)

where e is the base of the natural logarithm.
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The resulting 4-points graph is fitted by an exponential decay function, expressible as
the following:

g(n) = aexp(−bn) (8)

with a = 11, b = 1.2, which was found to perfectly match the observed bandgap energy
decay. The results are presented in Figure 4 (see below), showing that 3-cell structures
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already fulfill the 1/e energy drop criterion. Even for a stricter criterion of 10% (−10 dB),
4 cells are sufficient.

Moreover, these experimental results reveal the impact of cell multiplicity on the pass-
band frequency regions. Particularly, the first passband (~2.5–3.5 kHz) appears as a mainly
uniform and broadened spectral feature. Distinct spectral peaks can be vaguely observed in
some of the responses. In the second passband, frequency range (~9.5–10.9 kHz), distinct
resonant peaks are clearly observed which are equal in number to the unit cells of the
structure, as shown in Figure 5. In the third passband (~13.5–19.5 kHz), the behaviour of
the resonant peaks is more complex, where the number of peaks N appears to relate to
the unit cell number n according to the formula N = 2n − 1. Notably, the experimental
findings of Figure 5 show that by increasing the number of unit cells, the spectral flatness
of the passband regions increases. Here, as a measure of spectral flatness, the average
peak-to-dip distance is taken, which approximately is 10 dB for the 2-cell structure while it
reduces to ~3 dB in the 5-cell structure. This is because the contribution of the increased
number of resonant peaks leads to spectral overlaps that shape a flat spectrum. It should be
mentioned here that the high-pass slope observed in the passband regions, as for example
in the 4-cell and 5-cell structures, can be attributed to the high pass profile of the LPSS
excitation and is not an inherent acoustic feature of the structure. Hence, the slope would
be absent in the structure response to a flat acoustic source. A thorough interpretation of the
physical mechanisms leading to the formation of these features is given in the Discussion.
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Figure 5. Details of the measured spectral profiles shown in Figure 3a for the frequency range
8.5–12 kHz. The resonant peaks of the second passband are equal in number with the number of the
unit cells.

Furthermore Figure 3b demonstrates the excellent agreement between the computa-
tional model and the experimental results in terms of the relation of the bandgap depth
and the number of resonant peaks of the passband regions. Minor deviations can be at-
tributed to the fact that the computational model simulates the receiver as a point with
negligible dimensions in contrast to the real microphone, which effectively is a surface. On
the microphone, the more complex superposition of wave fronts exiting the PC leads to
deeper bandgaps, especially as the number of unit cells increases.
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4. Discussion
Here we present an analysis of the formation of the transmission spectral peaks from

the interaction of the propagating acoustic wave and the cavities and conduits forming
the internal structure of the PCs. Specifically, the acoustic impedance, or equivalently the
acoustic refractive index of the air encountered by the propagating acoustic waves, alternate
successively between the narrow cylindrical conduits and the comparatively wider spheres
within the PC structure. As a result, the acoustic behavior of the PCs resembles that of
a layered material, where sound waves at each interface between successive layers are
partially reflected, in a process resembling Bragg scattering in crystals. The reflected
waves then interfere with each other constructively (in phase) or destructively (out of
phase) forming spectral regions where propagation is enhanced or suppressed respectively.
In the passband regions, Helmholtz resonances appear in the spherical cavities while
standing waves appear in the cylindrical conduits, especially in the high end of the audible
range. The resonances in the spherical cavities can be estimated by the spherical harmonic
functions Ym

l (θ, φ), which are given by the following equation [40]:
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2Ym
l (θ, φ) + l(l + 1)Ym

l (θ, φ) = 0 (9)

where θ and φ represent the azimuth and elevation angles, respectively, while l and
m represent the degree and order of the harmonic function, respectively. A schematic
representation of the pressure distribution inside a spherical cavity for the first three
degrees (l = 0, 1 and 2) of the spherical harmonic is shown in Figure 6. The different
colours in the geometrical distributions represent out of phase pressure profiles.
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Figure 7a shows the transmission spectrum for the unit cell, where three resonant
peaks appear with central frequencies of 3.1 kHz, 10.5 kHz and 16.3 kHz. In accordance
with the simulated mode shapes (Figure 7b), namely the simulated pressure distribution at
a particular frequency, these spectral peaks can be attributed to the spherical harmonics
arising in the spherical cavity. Particularly, the first peak (I) corresponds to the zero-degree
spherical harmonic with l = 0, while the second (II) and third peaks (III) correspond to the
first (l = 1) and second (l = 2) degree spherical harmonics respectively. The symmetry
conditions of the studied scenario are dictated by the source, which is placed before the
left hole of the structure, leading to an acoustic wave that initially propagates along the x
axis (see Figure 7c). This results in a symmetric behaviour of the structure in the y and z
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directions, as can be observed by the two-plane representations of the figure (Figure 7c). It
should be noted that the mode shapes shown in Figure 7b,c represent absolute pressure.
Hence, they do not contain any phase information, in contrast to the graph of the spherical
harmonics (Figure 6), in which the opposite phase is denoted with different colours.
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The fundamental resonance frequency of a spherical cavity with six narrow conduits
can be calculated from the following equation [42]:

f0 =
uair

2π

√
6Ac

VcLc,eff
(10)

Lc,eff = Lc + 1.7r (11)

where Ac = πr2 is the conduit cross sectional area, uair is the speed of sound in ambient air,
Vc is the volume of the spherical cavity, Lc is the conduit length, Lc,eff is the effective conduit
length and r the conduit diameter. For the geometry of the unit cell under investigation, the
fundamental frequency is f0 = 2.85 kHz, which is in accordance with the experimentally
measured ( f0 ∼ 3 kHz) and numerically calculated frequency.

Regarding the 2-cell PC, the transmission spectrum shown in Figure 8a features three
passband regions, while Figure 8b corresponds to the simulated mode shapes. Here, the
first passband features two resonant peaks (I and II), while the second passband feature
two prominent resonant peaks (III and IV) and the third features three (V, VI and VII). The
appearance of additional resonances can be attributed to the coupling between the two
cavities via a conduit with a length that is double the length of a single conduit. Particularly
the resonant peaks of the first passband correspond to the symmetric and antisymmetric

117



Materials 2025, 18, 1251

modes of the zero-degree spherical harmonic (l = 0) of the spherical cavities, coupled
via the cylindrical conduit. The frequencies of the symmetric and antisymmetric modes
exhibit a small frequency shift from the fundamental frequency f0 due to the coupling
factor. The same underlying mechanism also forms the two resonant peaks of the second
passband, where the spherical harmonic forming the resonant peaks in this case is the
first degree (l = 1). In the third passband, the resonant peaks IV and V again correspond
to the symmetric and antisymmetric modes of the second degree harmonic (l = 2). The
third resonant peak with experimentally measured frequency, 18.35 kHz, however, can be
attributed to the conduit itself acting as a resonator. Particularly, this conduit resonance
corresponds of the λ/2 standing wave condition, taking into account the length and the
end correction for the conduit geometry. Calculation of the conduit resonant frequency
using the Equation (7) gives fc = 18.3kHz, expressible as the following:

fc = 2
uair
Lc,eff

(12)
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Figure 8. (a) Experimentally, measured transmission spectrum of the 2-cell structure, with I, II
and III indices denoting the resonance peaks of the first passband. The III and IV indices denote
the resonance peaks of the second passband and the V, VI and VII indices denote the resonance
peaks of the third passband. (b) 2D representation of the absolute pressure distribution (mode
shapes), l = 0, 1 and 2 denote the first three degrees of the spherical harmonics, and λ is the longest
wavelength for which the standing wave condition in the conduit is fulfilled.

For a larger number of unit cells, the number of resonant peaks within the first
and second passbands are equal to the unit cell multiplicity, with each peak associated
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with symmetric and antisymmetric modes, respectively. However, due to the very small
∆ f for the harmonic of the first degree, the peaks unify, forming a single and widened
peak. Finally, for the third passband, the number of resonant peaks follows the relation
N = 2n − 1. In this relation, n resonances pertain to the spheres acting as resonators,
with their symmetric and antisymmetric modes, which are equal to the number of the
spheres. The additional resonances originate from the n − 1 conduits acting as resonators.
The conduits also constitute a system of interconnected resonators, having symmetric and
antisymmetric modes. Since the number of modes equal the number of conduits, they are
n − 1. By adding the sphere and conduit modes, we get the total 2n − 1 resonant peaks
observed in the 3rd passband both in the measurements and simulations.

5. Conclusions
In this work we studied the impact of the multiplicity of unit cells on the profile

of the acoustic response of PCs. We presented our experimental results and simulations
demonstrating that by varying the number of unit cells it is possible to manipulate the PC
spectral profiles. It was shown that an increase in the multiplicity of unit cells results in
an increase in the depth of the first and second bandgap regions. Specifically, the acoustic
energy in the first band gap decays exponentially with the number of cells. Based on this
finding, a methodology to estimate the number of unit cells required for the structure
to approximate the behavior of an infinite structure was outlined. Furthermore, it was
shown that cell multiplicity also determines the number of resonant peaks in the passband
regions. With the help of computationally evaluated mode shapes, the resonant peaks were
attributed to distinct spherical harmonics of the spherical cavities and standing wave modes
of the cylindrical conduits. This relation was found to be in accordance with calculations
of the resonant frequencies using the analytical formulas for the spherical harmonics and
standing waves. Notably, it was shown that an increase in the unit cell multiplicity leads
to an increased spectral flatness of the passband region. These results provide a clear
demonstration of the controllability of the acoustic response of PCs by modulating their
unit cell multiplicity. They allow for the determination of the number of unit cells in order
to achieve the desired (a) acoustic energy suppression in the bandgaps and (b) spectral
flatness in the passband regions. Moreover, they contribute to the understanding of the
functionality of such PC structures as well as to the systematization of their design process.
The control of the acoustic wave transmission via PCs paves the way for innovative
applications in the field of acoustics, such as noise insulation and room acoustics.

In the future, the presented methodology will be applied to other PC structures,
including structures with defected cells and higher-order structures. The results will
be compared to the findings presented here, to identify potential global patterns in the
behavior of PCs. Also, an investigation will be carried out to identify the impact of the
material density of the structure on the observed transmission spectra. This will be achieved
by measuring identical structures that are 3D printed with varying infill densities of the
PLA material via the LPSS method.
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Abstract: A composite hydrogen storage vessel (CHSV) is one key component of the
hydrogen fuel cell vehicle, which always suffers random vibration during transportation,
resulting in fatigue failure and a reduction in service life. In this paper, firstly, the free
and constrained modes of CHSV are experimentally studied and numerically simulated.
Subsequently, the random vibration simulation of CHSV is carried out to predict the stress
distribution, while Steinberg’s method and Dirlik’s method are used to predict the fatigue
life of CHSV based on the results of stress distribution. In the end, the optimization of ply
parameters of the composite winding layer was conducted to improve the stress distribution
and fatigue life of CHSV. The results show that the vibration pattern and frequency of the
free and constrained modes of CHSV obtained from the experiment tests and the numerical
predictions show a good agreement. The maximum difference in the value of the vibration
frequency of the free and constrained modes of CHSV from the FEA and experiment tests
are, respectively, 8.9% and 8.0%, verifying the accuracy of the finite element model of CHSV.
There is no obvious difference between the fatigue life of the winding layer and the inner
liner calculated by Steinberg’s method and Dirlik’s method, indicating the accuracy of FEA
of fatigue life in the software Fe-safe. Without the optimization, the maximum stresses of
the winding layer and the inner liner are found to be near the head section by 469.4 MPa
and 173.0 MPa, respectively, and the numbers of life cycles of the winding layer and the
inner liner obtained based on the Dirlik’s method are around 1.66 × 106 and 3.06 × 106,
respectively. Through the optimization of ply parameters of the composite winding layer,
the maximum stresses of the winding layer and the inner liner are reduced by 66% and 85%,
respectively, while the numbers of life cycles of the winding layer and the inner liner both
are increased to 1 × 107 (high cycle fatigue life standard). The results of the study provide
theoretical guidance for the design and optimization of CHSV under random vibration.

Keywords: composite hydrogen storage vessel (CHSV); random vibration; free and
constrained modes; fatigue life; numerical simulation

1. Introduction
Hydrogen energy is extensively considered the most promising candidate to replace

fossil fuels in the field of transportation, with the advantages of zero greenhouse gas
emissions, no pollution, and renewability, and it is especially widely used in long-distance
and heavy-duty trucks [1]. CHSV is one key component of the hydrogen fuel cell vehicle,
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which is directly related to the driving range, production cost, and safety of the vehicle [2].
During the actual vehicle driving cycle, a lot of uncertainty, such as braking and turbulence,
occur randomly, which will cause stress concentration and excessive deformation at the
connection of each component of the CHSV, resulting in vibration fatigue failure and a
reduction in service life [3]. Therefore, it is of great importance to carry out the random
vibration damage analysis, fatigue life prediction, and structure optimization of CHSV for
the long-term operation of hydrogen fuel cell vehicles.

In the past few decades, much research has been conducted on the structural design
and optimization of CHSV to improve safety performance. Bouhala et al. summarized
relevant simulation models and proposed innovative methods for designing CHSV with
high performance [4]. A finite element model was developed by Moskvichev et al. [5] to
simulate the stress-strain behavior of CHSV with different numbers of composite layers un-
der internal pressure. Their work investigated the effect of the propagation of initial defects
in composite shells and the critical size of surface cracks. Kabiri et al. [6] implemented the
Tsai-Hill failure criterion into the finite element model of CHSV to study the stress distribu-
tion and the critical region and then investigated its fatigue life using the residual strain
energy method. Vafaeesefat et al. [7] proposed a multi-objective strategy for the head shape
and winding angle optimization of CHSV, taking into account the internal pressure and vol-
ume, the vessel weight, and the composite material properties. Furthermore, Wang et al. [8]
further proposed a prediction method for the CFRP CHSV under cyclic fatigue loading
and high-temperature conditions based on the integration of micromechanics of failure
and the time-temperature superposition principle method. Roh et al. [9] established a finite
element model of CHSV to analyze the stress distribution among the vessels with a new
integrated end-cap design for the dome section. They found that the high-stress points
shifted from the dome to the cylindrical section of the vessel with the integrated end-cap
design. In addition, Cho et al. [10] further investigated the effect of dome curvature on
the failure mode of CHSV through hydraulic burst tests and numerical simulations. To
study the complex phenomenon of plastic liner blistering during the depressurization of
type IV hydrogen storage tanks, Yersak et al. [11] developed a polymer liner blistering
model, which greatly reduced the experimental cost. Halm et al. [12] developed a finite
element model to simulate the coupled effects of mechanical damage and temperature on
the burst and leak of type IV hydrogen storage tanks under fire tests, which can accurately
predict the time to burst of the composite tank, as well as the transition between burst
and leak. Rohit et al. [13] conducted a comprehensive investigation into the structural and
explicit performance of three types of CHSVs using 3D models for drop and crash tests.
The study revealed that Type 1 CHSVs failed to meet safety requirements under extreme
conditions, while Type 3 CHSVs exhibited induced stresses below the yield point in both
scenarios, and Type 4 CHSVs presented the best performance. Li et al. [14] investigated
the hydrogen fill rate, ambient temperature, volume, and hydrogen inlet temperature to
evaluate their effects on the temperature rise within the CHSV. Zhou et al. [15] conducted
impact damage and bursting experiments on Type III and Type IV cylinders and found that
with the increase in impact energy, the fiber fracture area, matrix crack area, and impact
depth of the two cylinder types increased. Furthermore, in the same impact energy, Type III
cylinders presented a smaller impact depth but a larger fiber fracture and matrix crack area.
Hu et al. [16] conducted finite element modeling of CHSV based on the Hashin damage
model and metal plastic damage theory [17,18] and carried out blasting tests. Their studies
showed that the progressive damage model can effectively investigate the matrix cracking
and fiber fracture and predict burst pressure.

Although the finite element modeling and experiment tests have been applied suc-
cessfully to the structural design and optimization of CHSV, most of them are focused

123



Materials 2025, 18, 712

on the performance analysis and service life prediction of CHSV under the inter pressure
condition, the leaking condition, and the fire condition. Nevertheless, the CHSV often
inevitably suffers vibrations from uneven road surfaces and internal vibrations during
vehicle operation. Therefore, it is imperative and of great importance to study the dy-
namic response and fatigue life analysis of CHSV under random vibration. Yao et al. [19]
proposed an approach to optimize the strapping parameters for in-vehicle CHSV using a
GA-XGBoost model, and finite element models were established to verify the optimized
results. Huang et al. [20] used the finite element method to conduct the multi-objective
optimization of stiffness and strength of a two bottle horizontal hydrogen supply system
under vibration conditions. Coskun et al. [21] conducted a study on CHSV with various
geodesic dome profiles, analyzing modal and random vibration responses. They examined
five polar opening radii to reveal the effects of filament winding orientation and internal
pressure severity on the dynamic characteristics. Ryu et al. [22] analyzed the effect of the hy-
drogen shaking phenomenon inside the CHSV by performing the frequency characteristics
of the CHSV at zero frequency, intrinsic frequency, and train operation. As the frequency
increased, the free surface wave of liquid hydrogen became shorter and more pronounced.
Wang et al. [23] further investigated the intrinsic frequency and mode shapes of CHSV,
adopted four calculation methods to estimate the vibration fatigue life of the CHSV inner
liner, and found that the number of cycle times of the CHSV inner liner calculated by the
four methods all reached over 106 cycles. It is not difficult to see from the above research
that the structural optimization of the hydrogen supply system and the fatigue analysis
of the inner liner of CHSV under random vibration have been widely discussed, but few
studies have been conducted on the fatigue analysis and structural optimization of the
composite winding layer of CHSV under random vibration.

In this paper, finite element models were developed to simulate the dynamic response
of CHSV under random vibration. Modal testing experiments were conducted to verify
the accuracy of numerical simulations. Then, the stress and deformation simulation for
CHSV under random vibration was performed for the fatigue life prediction, including the
stress and deformation analysis of the aluminum liner and composite winding layer. The
Steinberg’s method and the Dirlik’s method were used to predict the fatigue life of CHSV
under random vibration. In the end, the optimization of ply parameters of the composite
winding layer was conducted to improve the stress distribution and fatigue life of CHSV.
The results of the study provide a simulation strategy and an experimental method for the
prediction and optimization of fatigue life of CHSV under random vibration.

2. Methods
2.1. Basic Theory of Stochastic Processes with Power Spectral Density (PSD)

Stochastic processes can be classified into two categories according to their statistical
properties over time: smooth random vibrations and non-smooth random vibrations. The
power spectral density (PSD) can be used to both describe the smooth process in the
frequency domain and express the energy distribution of the stochastic process, which is an
important parameter of the stochastic process in the frequency domain [24] and is defined
as follows:

Sx(ω) =
∫ +∞

−∞
Rx(τ)e−jωτdτ (1)

Rx(τ) =
1

2π

∫ +∞

−∞
Sx(ω)ejωτdω (2)

where Sx(ω) is the self-power spectral density function, ω and f are the circular frequency
and frequency, respectively, and Rx(τ) is the autocorrelation function.
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In the engineering application, the circular frequency ω > 0; therefore, the unilateral
power spectral density is defined as follows:

G(ω) =

{
2Sx(ω), ω > 0
Sx(0), ω = 0

(3)

The PSD and the root mean square (RMS) of von Mises stress in the software Abaqus
2017 are calculated based on the reference [25]. In the software Abaqus 2017, the PSD for
von Mises stress at node a is given as follows:

Sa
mises( f ) =

m

∑
β=1

m

∑
α=1

Sαβ( f )Ta
αβ (4)

where m is the number of modes and Sαβ( f ) are the elements of the PSD matrix of general-
ized displacements.

Ta
αβ = [ψa

α]
T [A]

[
ψa

β

]
(5)

[ψa
α] are the modal stress components of the αth mode of node a, and the constant

matrix A is given as follows:



1 −1/2 −1/2 0 0 0
−1/2 1 −1/2 0 0 0
−1/2 −1/2 1 0 0 0

0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3




(6)

Similarly, the root mean square of the von Mises (RMS) stress of node a is computed as

RMISESa( f ) =

√√√√
m

∑
β=1

m

∑
α=1

Vαβ( f )Ta
αβ (7)

where Vαβ( f ) are the elements of the variance matrix of generalized displacements.

2.2. Estimation of Fatigue Life Under Random Vibration

Under random vibration conditions, the alternating stress or deformation will cause
the fatigue cumulative damage of CHSV [26]. Linear fatigue cumulative damage assumes
that the sequence of alternating load and the cumulative damage do not affect each other,
which is widely used to predict the fatigue life of structures made of CFRP [27] and
aluminum alloy [28]. In addition, the different types of load damage superposition are
linear distributions, while fatigue damage occurs when the value of cumulative damage
reaches 1. Miner’s linear cumulative damage theory is given as follows [29]:

D = ∑ Di = ∑
ni
Ni

(8)

where ni and Ni denote the actual number of stress cycles and the fatigue life at the stress
level Si, respectively.

In the case that the cyclic stress is continuously varying, Equation (8) can be trans-
formed into

D =
∫ +∞

0

ns

Ns
ds (9)

where ns and Ns are the number of actual cycles and damage cycles when the peak stress is
s, respectively. Generally when D = 1, the CHSV will be damaged.
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The power function model is widely used to describe the fatigue life curve of common
composite materials and is given as follows:

smN = c (10)

c and m are the material constants, obtained through fatigue testing. N is the number of
damage cycles when the stress amplitude is s.

3. Simulation and Experimental Procedure
3.1. Composite Hydrogen Storage Vessel

Figure 1 shows the CHSV with an inner radius of 74.5 mm and an outer radius of
78.5 mm, which is supported by a Chinese company (Shanghai, China). The CHSV consists
of a thin inner liner (hAl = 4 mm) made of aluminum alloy and an outer winding layer
(hCFRP = 3.2 mm) made of carbon fiber-reinforced composite (CFRP), which is manufactured
through the dry winding process [30]. The stacking sequence of the CFRP winding layer
is [13.5◦2/90◦2]7, which consists of long and continuous T700 carbon fibers and FXR-
521L/FXC-521L epoxy resin. The viscosity of epoxy resin (supplied by the Shanghai
Fuchen Chemical Co., Ltd., Shanghai, China), used for CHSV, is 4000 to 8000 cP at 25 ◦C,
and the solid particle size is less than 10~25 µm. The fiber volume fraction of the CFRP
winding layer is approximately 0.62, and the fiber volume fraction of the winding layer
is always around 60% to 70% [31]. Material properties of the CHSV are listed in Table 1,
which are provided by the Chinese company.
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Table 1. Material properties of the CHSV.

Material Properties CFRP (T700/Epoxy) Aluminum Alloy (6061-T6)

Longitudinal modulus, E1 (GPa) 139.00 6.00
Transverse modulus, E2 = E3 (GPa) 8.00

Longitudinal shear modulus, G12 = G13 (GPa) 6.37
Transverse shear modulus, G23 (GPa) 3.70

Major Poisson’s ratio, υf12 = υf13 0.30 0.30
Minor Poisson’s ratio, υf23 0.35
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3.2. Modal Testing

Modal testing is widely used to investigate the vibrational frequency and mode of a
mechanical structure, which is of great significance and the crucial step in studying the
dynamic properties of CHSV under random vibration.

In our study, both free modal testing and constrained modal testing were conducted to
investigate the vibration modes and frequencies of three same-type CHSVs and verify the
accuracy of numerical simulation. As shown in Figure 2A, the CHSV was suspended using
four elastic ropes during the free modal test. The equipment for the constrained modal
test of CHSV is presented in Figure 2B. The two ends of CHSV were fixed to the brackets
by the flexible tapes, and the brackets were attached to the vibration test bench through a
bolted connection. Both the free and constrained modal tests were performed using the
impact test method, while four PCB three-phase accelerometers were used to collect the
acceleration signals of four points evenly distributed around the circumference of CHSV at
every hammer blow. In order to accurately obtain the vibration characteristics of CHSV,
the acceleration signals of 20 points on five equidistant sections along the CHSV axis were
obtained through five impact tests sequentially. The Leuven measurement and system
(LMS) data acquisition system was used to obtain and analyze the vibration patterns of
CHSV at different intrinsic frequencies.
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Figure 2. Schematic diagram of (A) the free modal experiment and (B) the constrained modal
experiment of CHSV.

3.3. Finite Element Modeling

Finite element modeling is extensively used in modal analysis and random vibration
analysis [32], which can simulate various test schemes and save design time. In the
present study, the basically finite element model of CHSV meshed with linear hexahedral
elements (C3D8R) was developed in the software Abaqus 2017, which is shown in Figure 3.
The linear hexahedral elements (C3D8R) were widely used to simulate the fatigue life
of engineering parts under alternating loads, which has the advantages of shortening
the computation time, improving the computation accuracy, and preventing the shear
self-locking phenomenon [33]. The element number of the inner aluminum alloy liner and
CFRP winding layer of CHSV is 72,360 and 720,560, respectively. The geometric dimension
of CHSV has been described in Section 3.1, as well as the material properties of the inner
aluminum alloy liner and CFRP winding layer, are listed in Table 1.

For the free modal simulation of CHSV, the degrees of freedom for all nodes were
set to free, while the degrees of freedom of nodes located at the fixation area of the vessel
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according to the constrained modal test were constrained for constrained modal simulation.
The finite element model and boundary condition of CHSV under the constrained modal
test and random vibration condition are presented in Figure 4.
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Figure 4. Finite element model and boundary condition of constrained mode and random vibra-
tion simulation.

The random vibration simulation of CHSV was then carried out on the basis of con-
strained modal simulation, and a random vibration load was applied to CHSV. Furthermore,
the applied random vibration load generated by a vehicle driving in a real situation was
according to the reference [34] and the acceleration power spectral density of the loaded
vehicle under a vibration environment is shown in Figure 5. As shown in Figure 5, the
vibration in the vertical direction is the most intense, which is more representative and is
consistent with the z direction in Figure 4.
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4. Results and Discussion
4.1. Modal Simulation and Experiment

Figure 6 compares the finite element predictions and experimental results of the first
four orders of free modes of CHSV. There is a good match of vibration pattern and frequency
between the results from the finite element analysis (FEA) and from the experiment test.
From Figure 6c, it can be observed that the vibration frequency of FEA and the experiment
test increases from about 210 Hz to 470 Hz, and the maximum difference in the value of
vibration frequency between the results from the FEA and experiment test is about 8.9% at
the first-order mode. As shown in Figure 6a,b, the first four vibration patterns of CHSV
are, respectively, the compression and bulge that appeared in the middle section with a
symmetrical distribution of 90 degrees, the compression and bulge that presented in the
middle section with a symmetrical distribution of 45 degrees, the bending in the middle
section, and the compression in the middle section.
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Figure 7 shows the comparison between the finite element predictions and experimen-
tal results of the first four orders of constrained modes of CHSV. The results of vibration
pattern and frequency from FEA show a good agreement with the experimental results.
From Figure 7c, it can be found that the vibration frequency of FEA and experiment test
increases from about 240 Hz to 580 Hz, and the maximum difference in the value of vibra-
tion frequency between the results from the FEA and experiment test is about 8.0% at the
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first-order mode. Furthermore, the first-order vibration pattern is the cylinder bending in
the middle section, the second-order vibration pattern is the expansion of the middle of the
cylinder, the third-order vibration pattern is the depression of the upper and lower parts of
the cylinder in the opposite direction, and the fourth-order vibration pattern is the twisting
of the cylinder in the form of an S shape.

By comparing Figure 6 with Figure 7, it can be found that the same order vibration
frequency of the constrained mode is higher than that of the free mode, while their vibration
modes of each order show obvious differences. In addition, it can be concluded that the
finite element model of CHSV has a high accuracy based on the comparison between the
finite element predictions and experimental results of the free mode and constrained mode.
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4.2. Random Vibration

The von Mises stress of the winding layer and the inner liner of the CHSV under
random vibration is shown in Figure 8. It can be seen that the maximum stress points
for the winding layer and inner liner are both concentrated near the CHSV mouth, where
the location with the thickest fiber buildup is. The maximum value of von Mises stress
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is 469.4 MPa for the winding layer and 173.0 MPa for the liner, respectively. It is obvious
that the winding layer is more prone to fatigue failure compared with the inner liner under
random vibration.
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Figure 8. Stress of the (a) winding layer and (b) inner liner under random vibration.

The root mean square of von Mises (Rmises) stress of the winding layer and the inner
liner of the CHSV under random vibration is presented in Figure 9. Rmises stress is the
probability distribution of von Mises stress, which is an important research reference in the
random vibration study and reflects the magnitude of stress fluctuation. The maximum
value of Rmises stress is 86.13 MPa for the winding layer and 62.98 MPa for the liner,
respectively, which will be used for subsequent fatigue life prediction.
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Figure 10 shows the maximum vibration deformation of the winding layer and the
inner liner of the CHSV under random vibration. The maximum values of deformation
of both the winding layer and the inner liner located in the center of the vessel are about
0.45 mm and will not produce a large distortion.
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4.3. Fatigue Life Calculations

In the present study, the Steinberg’s method is used to predict the fatigue life of CHSV.
The Steinberg’s method, also known as the three-band method, assumes that the stresses
follow a Gaussian distribution and the cumulative damage is a linear combination of
damages under different stress levels. The cumulative damage D and the fatigue life n are
defined as follows [35]:

D =
n1σ

N1σ
+

n2σ

N2σ
+

n3σ

N3σ
(11)

n =
1

0.683
N1σ

+ 0.271
N2σ

+ 0.043
N3σ

(12)

where n1σ, n2σ and n3σ are the actual number of cycles at −1σ~1σ, −2σ~2σ, and −3σ~3σ

stress levels, respectively. N1σ, N2σ and N3σ are the number of cycles of S-N curves at −1σ~1σ,
−2σ~2σ, and −3σ~3σ stress levels, respectively. 0.683, 0.271, and 0.043 are the probability of
stress distribution at −1σ~1σ, −2σ~2σ, and −3σ~3σ stress levels, respectively.

The fatigue life S-N curve of aluminum alloy Al6061-T6 is presented in Figure 11 [36],
which is used to predict the life cycle of the CHSV inner liner made of Al6061-T6. In
Section 4.2, the maximum values of stresses in the inner liner of CHSV with confidence
interval 1σ, 2σ and 3σ are 62.98 MPa, 125.96 MPa, and 188.94 MPa, respectively, corre-
sponding to the numbers of cycles N1σ = 1.04 × 107, N2σ = 2.31 × 106, and N3σ = 6.38 × 105,
respectively. According to Equation (12), the number of life cycles of the inner liner can be
obtained, as follows:

n =
1

0.683
N1σ

+ 0.271
N2σ

+ 0.043
N3σ

=
1

0.683
1.04×107 +

0.271
2.31×106 +

0.043
5.38×105

= 3.79 × 106 (13)

The fatigue life S-N curve of CFRP in the winding layer is shown in Figure 12 [37], and
the red line shows the fatigue life curve of the specimen reinforced with multiple layers
of CFRP. In Section 4.2, the maximum values of stresses of composite layup of the CHSV
with confidence interval 1σ, 2σ and 3σ are 86.13 MPa, 172.26 MPa, and 258.39 MPa, respec-
tively, and the corresponding numbers of life cycles are N1σ = 2.14 × 107, N2σ = 1.22 × 106,
and N3σ = 2.63 × 105, respectively. The fatigue life can also be calculated according to
Equation (12), as follows:

n =
1

0.683
N1σ

+ 0.271
N2σ

+ 0.043
N3σ

=
1

0.683
2.14×107 +

0.271
8.97×105 +

0.043
1.92×105

= 1.79 × 106 (14)
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where 1n σ , 2n σ  and 3n σ  are the actual number of cycles at −1σ~1σ, −2σ~2σ, and −3σ~3σ 
stress levels, respectively. 1N σ , 2N σ  and 3N σ  are the number of cycles of S-N curves 
at −1σ~1σ, −2σ~2σ, and −3σ~3σ stress levels, respectively. 0.683, 0.271, and 0.043 are the 
probability of stress distribution at −1σ~1σ, −2σ~2σ, and −3σ~3σ stress levels, respectively. 

The fatigue life S-N curve of aluminum alloy Al6061-T6 is presented in Figure 11 [36], 
which is used to predict the life cycle of the CHSV inner liner made of Al6061-T6. In Sec-
tion 4.2, the maximum values of stresses in the inner liner of CHSV with confidence inter-
val 1σ , 2σ  and 3σ  are 62.98 MPa, 125.96 MPa, and 188.94 MPa, respectively, corre-
sponding to the numbers of cycles 1Nσ  = 1.04 × 107, 2N σ  = 2.31 × 106, and 3N σ  = 6.38 × 
105, respectively. According to Equation (12), the number of life cycles of the inner liner 
can be obtained, as follows: 
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In addition, the Rmises stress results of the winding layer and the inner liner obtained
in Section 4.2 were then imported into software Fe-safe 2017, in which Dirlik’s method
was adopted to calculate their fatigue life. Figure 13 shows the results of the fatigue life of
the winding layer and the inner liner calculated from the software Fe-safe. The numbers
of cycles of the winding layer and the inner liner calculated are 106.221 = 1.66 × 106 and
106.486 = 3.06 × 106, respectively. Furthermore, the lowest fatigue life area of the winding
layer appears at the CHSV neck, as well as the lowest fatigue life area of the inner liner
located at the two ends of CHSV.

The fatigue life of the winding layer and the inner liner calculated by the Steinberg’s
method and the Dirlik’s method are compared in Table 2. The values of the number of life
cycles of the winding layer and the inner liner calculated by the Steinberg’s method are
slightly higher than the results calculated by the Dirlik’s method, and the two methods
obtain similar prediction results, indicating the accuracy of FEA of fatigue life in the
software Fe-safe. Both the values of the number of life cycles of the winding layer and the
inner liner are lower than 1 × 107 (high cycle fatigue life standard). In order to further
improve the fatigue life of CHSV, the structural optimization of CHSV was then carried out
in Section 4.4.
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Table 2. Random vibration fatigue life estimation results.

Fatigue Life Estimation Winding Layer Inner Liner

Number of life cycles (Steinberg method) 1.79 × 106 3.79 × 106

Number of life cycles (Dirlik method) 1.66 × 106 3.06 × 106

4.4. Structural Optimization and Analysis

The most effective and common way to optimize the structure of CHSV is to adjust
the spiral winding angle and reduce the thickness of the head section [38]. Reaming is
a process to improve the fiber thickness distribution of the head section by changing the
helical winding angle, which can make the strength of the head section be distributed more
uniformly and improve the bearing capacity of CHSV, without considering the hydrogen
embrittlement. Due to the limitation of the curved surface of the head section, the helical
winding angle generally ranged from 12◦ to 70◦ [39]. Furthermore, the number of layers
must be even and consistent based on the characteristics of spiral winding. The above
constraint conditions are given as follows [40]:





13.5◦ ≤ α ≤ 70◦

αi < αi+1
b

2R < sin αi+1 − sin αi <
2b
R

∑ ni = x

(15)

where i = l, 2, . . . 6, x is the number of spiral winding layers, and α the helical winding angle.
In the reaming process, the determining factor of the final thickness distribution of the

winding layer is the reaming angle and the corresponding number of winding layers. In
the present study, as listed in Table 3, six kinds of winding angles are chosen.

Table 3. Optimized layer laying scheme.

Winding Angle 13.5◦ 24.1◦ 36.6◦ 47.8◦ 55.5◦ 90.0◦

Number of winding layers 6 2 2 2 2 16

The comparison of winding layers before and after optimization is shown in Figure 14.
It can be found that the angle of the winding layer and the stacking of fibers become
smoother after the redesign and optimization. The thickness of the fiber layer of the head
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section is about 13.4 mm before optimization, which is reduced to 7.5 mm after optimization
with an obvious decrease of 44%.
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Figure 14. Comparison of winding layers: (a) before optimization and (b) after optimization.

Figure 15 shows the stress of the winding layer and the inner liner of the CHSV after
optimization under the same vibration conditions. Compared with Figure 8, it can be
observed that the stresses are still concentrated on the head section of CHSV. However, the
maximum value of stress of the winding layer decreases from 469.4 MPa to 156.0 MPa, as
well as the maximum value of stress of the inner liner, which decreases from 173.0 MPa
to 25.0 MPa. The reduction amplitudes of the maximum stresses of the winding layer
and the inner liner reached 66% and 85%, respectively, indicating that the optimization
of the winding layer can integrally improve the bearing capacity of CHSV. Similar results
of stress reduction after the optimization of the winding layer have been published in the
references [41,42].
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Figure 15. Stress of (a) the winding layer and (b) the inner liner of the CHSV after optimization.

Fatigue life prediction of optimized CHSV is presented in Figure 16. The number of life
cycles of the winding layer and of the inner liner have both been greatly improved, reaching
over 1 × 107 (high cycle fatigue life standard). It can be concluded that the optimization of
the lay-up angle can effectively improve the safety of the CHSV under random vibration.
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5. Conclusions
In this paper, the finite element models of CHSV are developed to simulate their

dynamic response under the modal testing condition and random vibration condition.
Modal testing experiments are conducted to verify the accuracy of numerical simulations.
Based on the simulation results of stress under random vibration, the fatigue life of CHSV
is subsequently calculated by Steinberg’s method and Dirlik’s method, respectively. In the
end, the optimization of ply parameters of the composite winding layer was conducted to
improve the stress distribution and fatigue life of CHSV. Based on the studies, the following
conclusions are drawn:

1. The predicted results of the vibration pattern and frequency of CHSV under the free
mode and constrained mode conditions show a good agreement with that of the
experiment tests. The maximum difference in the value of the vibration frequency for
the free and constrained modes of CHSV from the FEA and experiment tests both
occur at the first mode and are 8.9% and 8.0%, respectively, verifying the accuracy of
the finite element modeling of CHSV;

2. Without the optimization of the winding layer, the maximum values of stress are
469.4 MPa for the winding layer and 173.0 MPa for the liner under random vibration,
and both appear at the head section with the thickest fiber accumulation, which
indicates that the head section is most likely to occur fatigue failure. Through the
optimization of the winding layer, the thickness of the fiber layer of the head section
is reduced from 13.4 mm to 7.5 mm, with an obvious decrease of 44%. In addition, the
stress of the winding layer and the inner liner after the optimization of the winding
layer dropped by 66% and 85%, respectively;

3. There is no obvious difference between the fatigue life of the winding layer and
the inner liner calculated by Steinberg’s method and Dirlik’s method. Without the
optimization of the winding layer, the number of life cycles of the winding layer and
the inner liner under random vibration conditions obtained from Dirlik’s method is
about 1.66 × 106 and 3.06 × 106, respectively, while the lowest fatigue life area of the
winding layer appears at the CHSV neck and the lowest fatigue life area of the inner
liner located in the two ends of CHSV. After the optimization of the winding layer, the
numbers of life cycles of the winding layer and the inner liner have been significantly
improved, and both reached over 1 × 107 (high cycle fatigue life standard).

The research in this paper provides theoretical guidance for the design, modeling, and
optimization of CHSV under random vibration of CHSV, which can be extrapolated to
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other vessels consisting of the CFRP winding layer and inner liner made of metal materials
or polymer materials.
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Abstract: Titanium alloys are increasingly used in aeronautical applications, a sector that
requires highly controlled materials. In particular, inclusion cleanliness is a necessary and
mandatory condition for safe use in aeronautical components. During the production and
processing of titanium alloys, inclusions are likely to appear, in particular high-density
inclusions (HDIs) originate from refractory metals such as molybdenum or tungsten car-
bide. Plasma Arc Melting–Cold Hearth Remelting (PAMCHR) is one of the most effective
recycling and refining process for titanium alloys. Firstly, this work reports the thermal
modeling of the melting of raw materials in the melting crucible and a complete 3D numer-
ical simulation of the thermo-hydrodynamic behavior of the metal flow in the PAMCHR
furnace, based on the software Ansys-Fluent CFD V21.1. Simulation results are presented
for a 100 kg/h melting test performed in a pilot furnace with a comparison between the
measured and calculated pool profiles and residence time distributions that show satis-
factory agreements. Additionally, a Lagrangian calculation of particle trajectories in the
liquid metal pool is also performed and insemination of HDIs in the pilot furnace has been
tested. Both numerical and experimental tests demonstrate the inclusion removal in the
melting crucible.

Keywords: titanium alloys; recycling; plasma melting; inclusion; simulation

1. Introduction
Titanium is a metal widely used in the aerospace industry due to its low density

compared to steels and superalloys, as well as its excellent mechanical properties, including
toughness, corrosion resistance, and ductility. In addition to its classification by the EU as a
critical material, the high production cost of titanium—primarily due to the complex and
energy-intensive process of manufacturing titanium sponge—makes recycling particularly
economically viable [1,2].

Currently, titanium recycling mainly focuses on alloy scraps generated during the
manufacturing of aircraft and engine components, such as swarf, cutting chips, and turn-
ings [3]. Beyond its economic benefits, recycling also enhances environmental sustainability
by reducing waste, electrical energy consumption, and associated CO2 emissions.

Materials 2025, 18, 2051 https://doi.org/10.3390/ma18092051
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To either compete with or complement Vacuum Arc Remelting (VAR), an alternative
recycling technology utilizing water-cooled, flat-bottomed copper crucibles emerged in the
1990s, offering lower production costs compared to VAR, higher recycling possibility, and
better inclusion removal potential [4,5]. Depending on the heat source, this technology is
categorized into two processes: Electron Beam Cold Hearth Refining (EBCHR) and Plasma
Arc Melting–Cold Hearth Refining (PAMCHR). The EBCHR process employs electron guns
in a vacuum environment to ensure proper beam operation, while PAMCHR uses plasma
torches under an inert gas atmosphere (Argon or Helium).

For these processes to reach the alloy composition, titanium scraps are melted with
some virgin titanium sponge and master alloys in the first melting chamber of the crucible,
as illustrated in Figure 1. The liquid metal then flows through a refining crucible before
finally reaching a mold casting crucible, where it solidifies into a secondary ingot.
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Figure 1. Schematic of remelting processes with water-cooled crucibles and PAMCHR.

Characteristics of the EB process include a relatively quiet molten pool and a quasi-
steady distribution of the input heat. But the vacuum environment leads to evaporation
losses of the alloy components with a high vapor pressure, such as Al and Cr [6–8]. On the
contrary, the very low evaporation is the main advantage of the PAMCHR process against
EBCHR, which uses plasma torches as the heat source (operating pressure range between
0.4 and 1 bar).

Despite industrial interest in the PAMCHR process over the past twenty years, the
mathematical modeling required to optimize the process remains underdeveloped. A more
detailed review of the literature is available at [9]. Modeling began in the late 1990s with
the work of Huang et al. [10], including the blowing effect of the plasma jet on the bath
surface. Subsequently, in 2013, Xu et al. [11] developed a CFD model based on Ansys-
Fluent software V21.1 applied to Ti-Al intermetallic remelting. More recently, in 2018,
the Department of Materials Engineering at UBC [12,13] focused their experimental and
modeling work on energy transfer from arc plasma to liquid bath.

Inclusion removal is a critical concern for titanium alloys used in aerospace ap-
plications. Two types of inclusions can be distinguished based on their density—and
consequently—their chemical composition: low-density inclusions (LDIs) and high-density
inclusions (HDIs) [14]. Both are exogenous, meaning they form before the remelting pro-
cess, and their occurrence is extremely rare—some studies estimate only one inclusion per
5000 tons [15]. Due to their diverse origins [16], these particles can vary in size from a
few hundred micrometers to several millimeters. If not eliminated during remelting, these
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inclusions can cause fractures during extended fatigue cycles, such as those experienced by
rotating jet engine components. For obvious safety reasons, an alloy free of inclusions is
compulsory for engine manufacturing, and remelting processes are specifically designed to
remove these two main types of exogenous inclusions. In this paper, we focus exclusively
on HDIs, while LDIs will be addressed in a future publication.

HDIs include refractory metals such as tungsten (W), molybdenum (Mo), and tantalum
(Ta), along with carbides like tungsten carbide (WC) [17,18]. These defects primarily
originate from machining tool fragments. Consequently, recycling machining off-cuts are
a major source of HDIs in the recycling materials. Due to their high melting points and
slow dissolution rates, HDIs pose a significant challenge. They do not melt and, as noted
by Bomberger and Froes [19], typically sink to the bottom of crucibles during remelting,
where they dissolve slowly. Yamanaka and Ichihashi [20] investigated the sinking and
dissolution behavior of Ta and Mo cylinders in a titanium pool during VAR, using a 100 mm
diameter mold. They reported dissolution rates of 0.5 µm/s for Ta and 0.7 µm/s for Mo and
show that HDIs might survive the VAR process. In 2010, Ghazal et al. [21] examined the
behavior of HDIs (W and Mo) in titanium and titanium alloy (Ti64 and Ti17) baths melted
by an electron beam, measuring dissolution rates ranging from 1.6 to 8 µm/s. Finally,
Xu et al. [22] employed CFD simulations to demonstrate that HDIs can be removed by
trapping them at the bottom of PAM crucibles due to their relative density. The residence
time in the liquid bath before entrapment is short, always under four seconds.

The TIARE (“TItanium Aerospace REcycling”) project brings together the authors
of this paper and aims to support the titanium recycling industry by enhancing the un-
derstanding of the recycling process. To this end, IRT-M2P operates a high-capacity pilot
furnace equipped with three torches, delivering a total power of 1.2 MW and enabling
melting rates of up to 150 kg/h of Ti64. The melting and refining crucibles, along with the
ingot mold, are arranged in a U-shape, as in the schematics shown in Figures 1 and 2. As
part of the TIARE project, we conducted tests to measure liquid bath profiles, residence
time distribution, and seeding with synthetic HDIs. Additionally, a comprehensive PAM3D
phenomenological model of the PAMCHR furnace was developed, building on an initial
version presented in [9], which modeled heat and momentum transfers between the plasma
jet and the liquid surface. PAM3D is currently being further developed at Institut Jean
Lamour using the commercial CFD software Ansys-Fluent V21.1. In this new version of the
numerical code, both the melting and refining crucibles are modeled, with particular focus
on the raw material melting stage. Finally, the dynamic behavior of HDIs is simulated
using a Lagrangian approach. The results of the PAM3D model are compared with new
experimental data from pilot furnace tests, thus making this paper particularly original.
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2. Methods
2.1. Trials Using the Pilot Furnace

Three series of tests were carried out using the IRT-M2P pilot furnace, with identical
operating conditions, i.e., an electrical power of 358 kW per torch (U = 203 V and I = 1765 A).
The scanning pattern of each torch is shown in Figure 3, each torch having a period of
15 s. Torch 1 spends most of its time on the melting zone with the aim of melting the solid
input charge.
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Figure 3. Patterns of the two torches (black lines) and instantaneous heat flux density for a given
torch position.

2.1.1. Shape of the Liquid Pool

An initial comparison between the simulation and an experimental test is based
on estimating the liquid bath height in the melting and refining crucibles. To facilitate
macrographic analysis of the liquid front, the steady-state melting of Ti64 is replaced with
TiCp (Commercially Pure), creating a chemical distinction between the liquid bath and the
skull. The skull was sectioned at six different locations and in two directions to compare
the liquid pool profiles.

2.1.2. RTD Measurement

To experimentally measure the Residence Time Distribution (RTD), a copper marker
was added to the titanium load. First, a 37 kg Ti64 bar was melted to establish a quasi-
stationary regime. Then, a second Ti64 bar, containing a 127 g copper cube inserted into a
drilled hole, was introduced. After melting, the solidified ingot (1233 mm in height and
150 mm in diameter) was cut in half and chemically analyzed through sampling along
two longitudinal profiles: one at the center (along the ingot’s axis) and the other at the
periphery. The copper mass fraction was determined using Inductively Coupled Plasma
(ICP) spectrometry.

2.1.3. HDI Insemination

A test was carried out with compacted sponges (called here briquette) seeded with
HDIs. In the compact box, 5 mm cubes of Mo, W, and Ta were placed (appearing in yellow—
one in the center and one on each side of the box) at four different distances from the front
of the box, as seen in the top view of Figure 4. At the outer edge of the box (from 0.60 m or
three-quarters of the box), unseeded briquettes were placed. The box was then filled with a
second layer of briquettes over the first layer. The total weight of the filled box was 39 kg.
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Figure 4. Arrangement of the HDIs in the Ti64 briquette box (left), and photograph of the box after
deposition of the first briquette layer (right).

2.2. Mathematical Modeling

To account for the effects of torch sweeping over the bath, PAM3D models the metal
liquid flow in the crucibles in transient and turbulent regimes. To simplify and reduce
complexity, we apply the following assumptions:

(i) The surface of the liquid bath is considered to be flat; deformation of the surface under
the plasma torch jet is neglected. The torch blast and its action on the bath are taken
into account through a shear stress τs exerted on the bath surface and distributed as a
function of the distance to the point of impact of each torch. The value of this stress
has been estimated from a simplified 2D model of the plasma jet [9]. This 2D model
and the work provided by Huang et al. [10] demonstrate that the deformation of the
free surface can be neglected in a first stage of modeling.

(ii) The effects of the electromagnetic forces are neglected. The electric current transferred
between the plasma torch and the liquid bath induces an electromagnetic force. Using
a 2D model, a comparison between electromagnetic and natural convection forces
showed the predominance of the latter, and consequently the neglect of electromag-
netic forces [23].

(iii) The flow of liquid metal is mainly controlled by the movement of the torches. The
torches move cyclically along a continuous trajectory with a configurable period.
The heat flux and parietal stress distributions due to the torch jets follow a radial
distribution around the moving impact point, and their expressions are detailed in [9].

2.2.1. Governing Transport Equations

To avoid making this paper excessively long, the set of governing transport equations
(mass, momentum and heat) are not reported here but are extensively described in refer-
ences [9,23,24]. The reader can find a detailed description of the governing equations in
these references. The momentum and heat equations are coupled in particular, but not
exclusively, by thermal natural convection modeled through the Boussinesq assumption:

ρ = ρ0 − βTρ0(T − T0) (1)

Because the crucibles are water-cooled, a solid phase called “skull” develops on contact
with the cold walls, as shown later. The Kozeny–Carman relation is applied to calculate the
permeability K in the mushy zone [25]. The volume fraction of liquid called gl is expressed
as a linear function of the temperature between the solidus (Tsol) and liquidus (Tliq) of
the alloy. Accordingly, the permeability K falls to zero when the temperature reaches the
solidus, leading to a zero velocity in the solid phase.

K = K0
g3

l

(1 − gl)
2 (2)

The turbulence in the liquid pool was described with the realizable k-ε model [24],
where the production of the turbulent kinetic energy takes into account velocity gradient
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and buoyancy. This model has become the industry standard for many kinds of engineering
problems, especially within the metallurgy industry.

2.2.2. Boundary Conditions

The boundary conditions are summarized in Figure 5, where particular attention has
been given to transfers between the plasma and the metal surface [9].
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The upper surface radiates toward the water-cooled furnace walls. The radiation is
expressed by the Stefan–Boltzmann relation using the emissivity εm corresponding to the
state (solid or liquid) of the metal on the surface:

φ
up
ray(T) = σsbεm

(
T4 − T4

fur

)
(3)

with σsb the Stefan–Boltzmann constant, T the surface temperature, and εm = 0.23 for liquid
surfaces and 0.60 for solid [26]. Tfur is the temperature of the water-cooled furnace walls,
assumed to be uniform and equal to 100 ◦C.

The heat flux density contributed by the torches to the bath surface φto is calculated
from the sum of the electrical αelecφelec, convective αconvφconv, and radiative αrayφray

contributions of each torch, defined by the following equation:

φto(x, t) = ∑
i

[
αconvφconv

(∣∣∣→x −→
x i(t)

∣∣∣
)
+ αelecφelec

(∣∣∣→x −→
x i(t)

∣∣∣
)
+ αrayφray

(∣∣∣→x −→
x i(t)

∣∣∣
)]

ηtoUi(t)Ii(t) (4)

Ui and Ii are, respectively, the voltage and current at which each torch i is operated,
which vary with time, as does the position xi(t) of each torch’s impact point. ηto is the
torch efficiency, i.e., the ratio between heat power and electrical power. It is estimated to be
0.66 [23]. The shape of the φconv, φelec, and φray distributions are detailed in [9] and their
relative contributions (α coefficients) are noted in Table 1.

Table 1. Coefficients of the relative contributions of the heat provided by the plasma torch [9].

0.66 ηto

0.05 αélec

0.30 αconv

0.65 αray

A Fourier condition is applied to model the heat resistance between the solidified
alloy and copper wall:

φwall = hwall
(
Tp − Twall

)
(5)
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where Twall is assumed equal to 100 ◦C. The value hwall = 500 W/m2/K is then used as the
averaged value, which was reported in [27] for the simulation of PAMCHR.

On the liquid surface, a shear stress τs is calculated in the region of the arc plasma
blast. It varies radially around the impact center of each torch, as follows:

τs(r) = f(r)τmax (6)

The function f(r) is zero at the stopping point of the plasma flow, giving a value of
zero for the stress. The value of τmax = 10 Pa is retained in the model. The distribution
function and the numerical values of the coefficients are given and justified in [9].

Since the surface tension of liquid metal varies with temperature, temperature gra-
dients create surface tension differences, leading to tangential stress—known as the
“Marangoni effect”. This phenomenon can be described using the following equations:

τyx =
∂σ

∂T

(
∂T
∂x

)

s
and τzx =

∂σ

∂T

(
∂T
∂z

)

s
(7)

In the model, the variation of surface tension with temperature (∂σ/∂T) is assumed
constant and is provided as input to the simulations.

2.2.3. Melting Model

The melting model is applied to each cell node P of the pre-defined inlet zone (Sinlet).
The melting rate

.
mp is calculated for each cell P under this feed surface, based on an

enthalpy balance, as follows:

(
φto(xp, t)−φ

up
ray(xp, t)

)
Sn =

.
mp

(
hliq(Tsh)− hsol(Tref)

)
(8)

The heat flux supplied by the torch minus that lost through radiation is used to heat
and melt the solid mass flux, as illustrated in Figure 6. In Equation (8), hliq is defined as
the enthalpy of the liquid Ti64 at Tsh superheat temperature (inlet value of the model) and
hsol is the solid enthalpy at room temperature (25 ◦C), set to zero as a reference enthalpy in
Ansys-Fluent [24]. Sn is the north surface of the cell, see Figure 6.
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Figure 6. Modeling of the melting rate in each cell of the inlet zone or on the top surface.

For the cells where the net heat flux is negative (
(
φto(xp, t)−φ

up
ray(xp, t)

)
< 0), no

energy is available for melting and
.

mp = 0. Otherwise,
.

mp is calculated from Equation (8).
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According this melting model, two source terms are introduced for the cells of the
inlet zone, a volumetric mass source term:

Sm,P =

.
mp

Vp
(9)

and a volumetric momentum source term:

Smo,P = −
.

m2
p

ρ0SnVp
(10)

where Vp is the volume of cell P. The negative sign in Equation (10) comes from the upward
pointing y-axis.

2.2.4. Trajectory of High-Density Inclusions (HDIs)

Discrete phase trajectories are simulated using a one-way Lagrangian approach. Par-
ticle positions are tracked by integrating their velocity

→
up over time, which in turn is

obtained by integrating their acceleration at every time step. Acceleration is calculated
by solving the fundamental equation of dynamics Equation (11) for each particle. In the
specific case of HDIs, the lift force can be considered as negligible, so that the equation
reduces to:

Mp(1 +
ρ

2ρp
)

d
→
up

dt
= Mp

(
1 − ρ

ρp

)
→
g − CD,tρ

πd2
p

8

∥∥∥→u sl

∥∥∥
(→

up −→
u
)
+

3
2

Mp
ρ

ρp

d
→
u

dt
(11)

where Mp, dp, and ρp are, respectively, the mass, equivalent diameter, and density of the
inclusion. usl is the sliding velocity between particle and liquid at the particle location.
CD,t is a dimensionless drag coefficient. For a particle larger than the Kolmogorov scale ηK,
turbulence modifies the flow around the particle, resulting in a modification of the drag
coefficient, which according to Brucato et al. [28] is modeled as:

CD,t = CD,0

(
1 + 8.67·10−4

(
dP

ηK

)3
)

(12)

CD,0 is the drag coefficient of the same moving particle in a stagnant fluid. The latter
depends on the particle’s Reynolds number according to the correlation [29]:

CD,0 =
a

Rep
+

b
Re2

p
+ c (13)

where the values of a, b, and c depend on Rep.
Simulation results for the operating conditions of the pilot furnace show that the

Kolmogorov scale ηK remains between 30 and 400 µm in the upper part of the bath where
turbulence is developed. The dp > ηK condition is therefore verified. Furthermore, the

correction (Equation (12)) becomes significant when 8.67·10−4
(

dp
ηK

)3
> 0.1, i.e., dp ≳ 5 ηK.

On the other hand, the correction (Equation (12)) was established and validated by
Brucato et al. for an interval of values represented by the black frame on the left in Figure 7.
The simulation results reported in Section 3 present conditions that fall outside this validity
interval, which led us to limit the correction to the maximum value of (CD,t−CD,0)

CD,0
= 100, as

illustrated in the right side of Figure 7.
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Figure 7. Drag coefficient correction as a function of particle diameter and Kolmogorov scale seen by
the particle, given by Brucato [28] (left) and applied in PAM3D (right).

2.2.5. Numerical Procedure

The 3D domain is meshed with 74,074 hexahedral cells (see Figure 8). The mesh
is refined near to the top surface, with a cell height of 0.87 mm. The solution to the set
of transport equations is based on the Ansys-Fluent CFD code V21.1 [24], where several
user-defined functions (UDF) have been added to account for all the features of the model.
Otherwise, the SIMPLEC algorithm is used to solve the Navier–Stokes equations. In
addition, the second-order upwind scheme was used for all the pde except for momentum,
which uses the first-order upwind scheme. Simulations were run on 8 parallel processing
cores, leading to the ratio 1 h computation time per 10 s real operating time. The transient
numerical simulation with a time-step of 5 ms is carried on until a quasi-stationary state
is reached over a torch period (15 s in the actual case). By this time, the thermal and flow
conditions in the crucibles have lost the memory of the initial conditions.

Figure 8. 3D mesh of the IRT’Pilot furnace.

3. Results and Discussion
3.1. Heat Transfer and Fluid Flow

Figure 9 shows temperature maps of the PAMCHR crucible surface at two times (t1 and
t2), corresponding to different torch locations. At t1, when the melting torch is above the
feed surface, shown as a black outline in Figure 9; overheating is not very pronounced since
a significant proportion of the torch power is consumed in melting the loaded titanium and
not in heating the bath surface. However, when the melting torch leaves the feed surface
at time t2, a localized zone of higher superheat appears around the torch impact point.
Outside the torch impact area, the bath surface temperature averages 1850 ◦C. We can also
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see that on the surface of the crucibles, the metal is liquid except on the outlet channel and
at the edge of the melting crucible, as shown by the Tliq isovalue plotted in black.
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Figure 9. Surface temperature at two different times t1 (left) and t2 (right). 
Figure 9. Surface temperature at two different times t1 (left) and t2 (right).

The plasma blast, combined with the thermal Marangoni effect, generates a strong
surface flow, with liquid velocities reaching over 20 cm/s, as shown in Figure 10. This
kinetic energy is rapidly degraded by turbulence and viscous stress, so that velocities within
the liquid pool remain in the 1 to 5 cm/s range. The bath is therefore moderately turbulent
in its upper layer (the first 2 cm near the surface), with a dissipation rate εmax = 1.5 m2/s3,
and a minimum Kolmogorov length scale of 30 µm.
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It must be noticed that at t1, the torch on the refining hearth goes downstream, whereas
at t2, this torch moves back upstream, as depicted with the black arrow in Figure 10. Thus,
even if the torch blast is modeled without a preferred direction (orthoradial symmetry),
a more intense flow upstream from the torch motion is noticed than downstream. This
phenomenon can be playfully compared with that of a sheepdog moving through its flock.

3.2. Global Balance

When dealing with computational heat and fluid dynamics, an essential factor to
consider is the heat balance reported in Table 2. During a torch period, 39% of the electric
power is transferred to heat power (280 kW) on the bath surface: 22% of this power is lost
to radiation and 58% lost to the side and bottom walls. Lastly, 18% of the heat power is
convected by the liquid metal leaving the refining crucible.
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Table 2. Global heat balance over a torch period (15 s).

Electrical Power of the Two Torches (kW) 716.59

Thermal power provided by the two torches on the crucibles (kW) 281.82

Accumulation (kW) 0.044 ~0.01%

Power lost on crucible walls (kW) 163.73 58%

Power lost by heat radiation (kW) 63.08 22%

Enthalpy heat flux transferred to the ingot * (kW) 52.4 18%

Residual 2.57 0.9%
* Enthalpy reference: Solid Ti64 at room temperature.

3.3. Melting Rate

The melting rate is variable over time, depending on the position of the melting torch
relative to the material inlet surface. Figure 11 shows the evolution of the melting rate as a
function of time over one melting torch period. It varies from 0 when the torch is outside
the feed surface to 140 kg/h when the torch is above this surface, with an average value of
92 kg/h, in excellent agreement with the experimental value (92 kg/h).
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3.4. Liquid Pool Profiles

The skull was sectioned to compare bath depths. Three sections were made in each
crucible, as shown in Figure 12. Planes P1, P2, and P3 are located in the melting crucible,
while planes P21A, P21B, and P21L are in the refining crucible.
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Figure 12. Location of the skull’s sections (left) and as they appear in the simulation results (right).

In Figure 13, the solid fronts in planes P1 and P2 of the melting crucible, obtained
both experimentally and through PAM3D simulation, exhibit identical shapes, with similar
liquid metal depths of 30 mm and 25 mm, respectively. However, plane P3, located near the
transfer channel, shows a greater bath depth in the experiment than in the simulation. This
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discrepancy can be attributed to the torch trajectory—specifically, its inclination—which is
not accounted for in the simulation. This results in a shift in the torch’s impact point and
an asymmetry in its effect on the bath. Additionally, plane P3 reveals visible differences in
the contact quality between the skull and the bottom of the crucible, varying between the
left and right sides of the image, which could also contribute to significant variations in
bath depth.

In the refining crucible shown in Figure 14, the measured depths in plane P21L align
well with the liquid fractions observed in the PAM3D simulation, showing approximately
one-third liquid and two-thirds solid. It is much higher than that obtained in a typical
electron beam refining hearth, where this ratio is close to 20% [6], and should have an
influence on the residence time of inclusions in the liquid pool. The skull shapes in planes
P21B and P21A are less accurately captured. In plane P21A, the simulated bath depth
is greater than the measured depth. For plane P21B, while the maximum depths in the
simulation and experiment are similar, the experimental pool shape is highly asymmetrical—
an aspect not captured in the simulation.
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3.5. Residence Time Distribution (RTD) 

Figure 13. Sections of the melting skull (left) and simulated liquid pool (right). Flow is given with the
red arrow. (Black circular markers locate post-mortem structural or chemical analyses of the alloy).
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3.5. Residence Time Distribution (RTD)

The simulation of copper transport within the process is achieved by coupling the
PAM3D code with a simulation using the PAMELA code, which models the growth and
solidification of the final ingot. Further details on the PAMELA software can be found
in [30]. The copper mass fraction vs. time signal at the refining crucible outlet, calculated
by PAM3D, serves as an input condition for the PAMELA model.

The RTD is reported in Figure 15. The solute first appears at the center of the ingot—
slightly lower in height than at the periphery—due to the hollowing effect of the liquid
pool. While the simulation overestimates the peak mass fraction value and slightly shifts its
position within the ingot, the overall shape of the signal remains consistent, aligning with
the behavior of perfectly stirred reactors, as described in [23]. The measurements taken at
the top of the ingot (i.e., at the end of the trial) show stronger agreement between the exper-
imental and simulated copper fractions. Despite some discrepancies, the experimental and
simulated distributions exhibit similar qualitative trends and are sufficiently close quantita-
tively, particularly at the end of the test. This confirms that the transport mechanisms and
thermo-hydrodynamic phenomena are accurately captured by the numerical model.
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3.6. Fate of HDIs

X-ray inspections of the skull were performed using a TC320 RX24 (Cie SGS, Arceuil,
France) at a voltage of 270 kV and a current of 12 mA. The resulting X-ray images are
shown in Figure 16. The density difference between Ti64 and the HDIs (Mo, W, and Ta)
provides sufficient contrast to make the HDIs clearly visible in the images.

All HDIs detected via X-ray are located within the melting crucible, with their trapping
positions directly beneath the feeding point—except for one cube, highlighted in yellow in
Figure 16, which is slightly displaced from the cluster of other HDIs marked in red. This
deviation may be attributed to a slight tilting of the feed box just before melting stopped,
causing the cube to be injected slightly farther away.

As expected, due to the significant density difference between the particles and liquid
Ti64, the simulated HDIs become trapped by the solid front directly below their injection
point. Their residence time in the liquid phase before entrapment is extremely short—less
than one second for these 5 mm particles. Calculations varying the HDI size indicate that
only particles with an equivalent diameter smaller than 120 µm are transported within the
liquid bath. These results agree well with simulations by Xu et al. [11], which also reported
residence times of less than one second for particles larger than 1 mm.
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4. Conclusions and Perspectives
The PAM3D code, developed on the Ansys-Fluent platform, is a phenomenological

model that describes the thermal–hydraulic behavior of liquid Ti64 in the melting and
refining crucibles of the PAMCHR process. The model for the raw material melting stage
employs an enthalpy balance to compute the melting rate, considering the plasma torch’s
power and trajectory within the crucible. As in the reality of the industrial process, the
melting speed value changes considerably depending on the position of the melting torch,
above the raw material inlet zone or outside it. A global heat balance is calculated over time,
showing that over 50% of the thermal energy supplied by the torches is lost in the crucible
cooling circuit. The behavior of inclusions is simulated using a Lagrangian approach,
specifically applied here to HDI refractory inclusions.

A series of tests were conducted using the IRT-M2P’s high-capacity pilot furnace
(1.2 MW total electrical power, with a titanium melting rate of up to 150 kg/h) to compare
experimental results with numerical simulations. The model accurately predicts the liquid
bath profiles, showing a bath depth of approximately one-third of the metal height in
the crucible. The residence time distribution of a copper tracer introduced into the raw
materials follows a similar trend to the simulation results. Moreover, both the HDI insemi-
nation test and the simulation confirm that the process is efficient to remove these particles
through sedimentation at the bottom of the melting crucible. This is probably the most
important result of this work compared with other processes such as VAR, where efficiency
is not totally guaranteed [20,21].

Simulating LDI behavior in the PAMCHR process presents greater complexity, as
it requires accounting for dissolution in the Ti64 bath [31,32]. Further experimental and
simulation work is planned.
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Abstract: In this paper, the short-range ordering structures of Ga melts has been investi-
gated using the Wulff cluster model (WCM). The structures with a Wulff shape outside
and crystal symmetry inside have been derived as the equivalent system to describe the
short-range-order (SRO) distribution of the Ga melts. It is observed that the simulated
HTXRD patterns of the Ga WCM are in excellent agreement with the experimental data at
various temperatures (523 K, 623 K, and 723 K). This agreement includes first and second
peak positions, widths, and relative intensities of patterns, particularly at temperatures
significantly above the melting point. A minor deviation in the second peak position has
been observed at 523 K, attributed to the starting of the pre-nucleation stage. These findings
demonstrate that the WCM can effectively describe the SRO structure in melt systems
exhibiting a certain extent of covalency.

Keywords: gallium melts; Wulff cluster model; short-range ordering; high-temperature
XRD; DFT; surface energy

1. Introduction
In recent years, gallium and its alloys have played an important role in many fields

such as semiconductor devices; solar cells; catalysis [1–8], especially for the manufacture of
microwave communication and microwave integration; infrared optics and infrared detec-
tor devices; integrated circuits; and light-emitting diodes, etc. [9,10]. To enhance the quality
and improve the gallium production manufacturing techniques, a deep understanding of
the short-range structures of Ga melts is necessary. This is the key to the properties of the
melt and subsequent products.

To investigate the melt structure, experimental methods such as HTXRD [11], X-ray ab-
sorption fine structure (EXAFS) [12,13], neutron scattering [14], and so on, are widely used.
Intensity patterns and pair distribution functions (PDFs) have been intensively studied
through intensity correction and Fourier transformation [15–17], although the fundamental
physical picture of the SRO of the melts is obscured by the high-temperature and liquid
experimental conditions. In other words, the physical definition of the liquid state remains
incomplete. In this case, simplified physical models such as the hard sphere model, micro-
crystalline model, and cluster model [18–21] have been built to help researchers understand
the experimental phenomena. However, determining the atomic-scale structure of metallic
melts is still challenging. This is intertwined with several unresolved issues, such as the
non-Arrhenius changes in viscosity and the amorphous SRO structures.

Materials 2025, 18, 133 https://doi.org/10.3390/ma18010133
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In prior research, a thermodynamic statistical model, namely WCM, was built by
our group with the aim of describing the SRO of the melts. In this model, the most
probable microstructure is regarded as an equivalent system of SRO in melts within a
state of thermodynamic equilibrium. The most probable microstructure is given by the
Wulff shape within the corresponding crystalline structure. Meanwhile, the size of the
microstructure is derived directly from the experimental data obtained via HTXRD. This
model is successfully applied to melts of pure metals [22], binary homogeneous alloys [23],
eutectic alloys [24], and alloys with intermetallic compounds [25]. All of the above systems
have a common feature, namely, that the bonding within them is a metallic bond. The
covalent bond system (like Ga) is a kind of system that has never been studied in this way.
The widespread use of semiconductors makes the study of the melt structure within a
covalent bond system very necessary because it is still unclear.

In this article, the melt SRO of a system with covalent bonds (Ga) is investigated using
the Wulff cluster model under thermodynamic equilibrium. The suitability of WCM in the
system with covalent bonds has been proven by HTXRD experiments.

2. Methods
2.1. Experimental Methods

The pure gallium specimen employed in this research consisted of 15 g of pure gallium
with a purity of 99.99%. Prior to the measurement, we ensured that there was no oxide
on the specimen. Subsequently, the molten specimen was analyzed using HTXRD(Jinan,
China) with a Mo target serving as the X-ray source. The sample was superheated at 773 K
for 50 min within an yttria crucible, and then gradually cooled to the target temperatures
(723 K, 623 K, and 523 K). Before the liquid X-ray diffraction patterns were measured, the
samples were maintained at the respective temperatures for 30 min. The specific parameters
were as follows: Generator Current was set at 40 mA, Generator Voltage was 45 KV, and
the scanning angle (2θ) was from 10◦ to 80◦ with 0.5◦ step length. The exposure time for
each step was 30 s. After atomic scattering correction and a nonlinear transformation of
the intensity curve, the structure factor curve S(Q) can be derived using the following
formula [25]:

S(Q) =
I(θ)

N f (Q)2 (1)

Here, f (Q) represents the atomic form factor, which is obtained from the International
Tables for Crystallography [26]; N is defined as the number of atoms engaged in diffraction;
Q, which is a nonlinear scaling of θ, is the magnitude of inverted lattice vector, computed
as Q = 4πsinθ/λ, where λ designates the X-ray wavelength employed in the HTXRD
measurement. The PDF ρ(r) is employed to depict the number density of atoms on a
spherical shell centered around an atom with a radius r from the center. It constitutes a
fundamental approach for probing the distribution of atoms within the molten state. S(Q)

could be described by the formula as follows [25]:

S(Q) = 1 +
∫ ∞

0
4πr2[ρ(r)− ρ0]

sin(Qr)
Qr

dr (2)

Here, ρ0 represents the average density determined by macroscopic density and atomic
mass. Although the utilization of certain auxiliary functions and mathematical approxi-
mation methods emerged, the PDF ρ(r) could be acquired by sinusoidal transformation.
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Experimentally [27,28], the correlation radius Rc, according to Formula (3), is regarded as
the size of the equivalent structure [25].

∣∣∣∣
ρ(r)
ρ0

− 1
∣∣∣∣ < 0.02 (r > Rc) (3)

2.2. Simulation Methods

In the present article, the Vienna ab initio Simulation Package 6.3 (VASP 6.3) is utilized
for first principle calculation with the aim of obtaining the surface energy γ. The generalized
gradient approximation (GGA) exchange-correlation potential and the Perdew–Burke–
Ernzerhof (PBE) exchange-correlation function are chosen [29,30]. The projector augmented
wave (PAW) pseudopotential potentials constructed by Kresse and Joubert is used [31,32].
After conducting convergence tests, an energy cutoff of 500 eV is selected. The Monkhorst–
Pack scheme with 7 × 7 × 1 k-points is selected to ensure a satisfactory convergence of
the energy for slab modeling. Concurrently, the alternative Monkhorst–Pack scheme with
7 × 7 × 7 k-points is deemed an appropriate selection for pure gallium bulk modeling (as
will be detailed subsequently). The relaxation of most stable structures continues until the
residual forces of the total structure are less than 0.01 eV/Å. In prior research, it has been
established that the relative proportions of distinct faces in the Wulff shape, as determined
by interface energy, closely approximate those computed via γ [23,33,34]. Therefore, it is
reasonable to use the computed γ instead of interface energy to describe the structure of
the Wulff model.

The influence of temperature on various surfaces has been meticulously investigated.
It has been proved that a finite temperature hardly influences the γ. Specifically, when
compared with the surface energy at 0 K, the discrepancy in surface energy remains less
than 0.5% even at 800 K [21–24]. Consequently, γ at 0 K can be adopted for the construction
of the Wulff shape.

For the purpose of calculating the surface energy of different crystallographic plane
families, the double-faced slab model, which is shown in Figure 1, is employed. In this
model, specific atoms are extracted from a bulk supercell, thereby creating a vacuum layer
and simultaneously exposing the desired crystal plane. One lattice vector c of the supercell
is arranged to be perpendicular to the exposed surface, whereas the other two lattice vectors
are configured to be parallel to it. The atoms located in the vicinity of the center of the slab
model, which are considered the atoms belonging to the bulk phase, are fixed (ordinarily
approximately 60%). In contrast, the outermost atoms, which are representative of the
surface atoms, are permitted to relax. The surface energy, denoted as γ, is determined
by [35]:

γ =
1

2A
(Esalb − NEbulk) (4)

In Equation (4), A designates the area of the crystallographic surface that is exposed
within the model. Esalb represents the total energy of the system, Ebulk corresponds to the
total energy of the primitive cell in the bulk phase (bulk model), while N signifies the
quantity of primitive cells.

To enable a comparison with the experiment data, the X-ray diffraction (XRD) pattern
is simulated. This is achieved by inversely solving the Laue equation using the afore-
mentioned cluster. The angle step length is configured to be 0.05◦, and the full width at
half maxima (FWHM) is configured to be smaller than the step length, thereby facilitating
the acquisition of peak position. In the output data, the peaks with intensities less than
10% of the maximum peak intensity are excluded. Subsequently, the residual peaks are
expanded in accordance with the Gaussian peak function to mimic the small-size effect and
the significant lattice distortion of the atomic cluster structure within a melt. A tempera-
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ture background function is incorporated to simulate the alterations in the X-ray intensity
distribution that result from temperature variations. The ultimate broadening formula is as
follows [36]:

I(2θ) =
n

∑
i=1



Ii


 P1√

2π ·
√

a2
1 + b2

e
− (2θ−2θi)

2

2(a2
1+b2) +

P2√
2π ·

√
a2

2 + b2
e
− (2θ−2θi)

2

2(a2
2+b2)





 (5)

where Ii is associated with the intensity of simulation peaks; P1 denotes the proportion of
the number of inner atoms to the total amount of atoms within the WCM; P2 represents
the ratio of outer atoms; a1 and a2 relate to the peak widening induced by the inner and
outer lattice distortions, respectively; and b is related to the peak widening caused by fine
crystallization. The parameters were ascertained based on experimental observations and
were suitably adjusted within an appropriate range.
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Figure 1. Demonstration of the double-faced slab model.

3. Results and Discussion
3.1. HTXRD Results of Pure Gallium

The HTXRD patterns of the pure Ga samples at temperatures of 523 K, 623 K, and
723 K are displayed in Figure 2a. The discrepancies among the intensity curves under these
three temperatures are rather subtle, and the positions of the most prominent peaks do
not exhibit significant alterations. The peaks are attributed to the SRO structures (clusters)
within the melts, while the background height is a consequence of the free atoms scattering
(disordered atoms). It can be found that the strongest peak of each curve shifts to the right
with a very small amplitude as the temperature shifts from high to low, which appears at
16.4◦ (723 K), 16.6◦ (623 K), and 17◦ (523 K). At the same time, the position of the secondary
peak moves right slightly with the reduction in temperature, which appears near 32◦ and
has a wider peak shape compared with the first peak. In addition, the first peak is about
four times stronger than the second one. To obtain the pair distribution function, the
temperature background ought to be removed from the experimental data; then, the data
are normalized and transformed into S(Q) through Formula (1). S(Q) undergoes sinusoidal
transformation to ρ(r) by Formula (2). Subsequently, it is divided by the PDF ρ0 to obtain
g(r), shown in Figure 2b. From Formula (3), the average correlation radii of the melts at
523 K, 623 K, and 723 K are 11.11 Å, 10.50 Å, and 8.91 Å, respectively. These radii exhibit a
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tendency to increase with the decrease in temperature, which is in consonance with the
prior anticipation.
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Figure 2. (a) XRD intensity pattern and (b) PDF of the pure gallium melt at temperatures of 523 K,
623 K, and 723 K.

3.2. Basic Characteristics of Gallium

Gallium is a kind of special metal that has certain extent covalency in the crystal state.
All of the computational structures are founded upon α-Ga, which adopts an orthorhombic
crystal system with four atoms residing within the primitive cell. Each atom is in proximity
to seven neighboring atoms, thereby giving rise to a greatly anisotropic atomic environment,
and it is the single crystal phase of gallium that can exist chronically under normal pressure
and temperature [37–42]. The specific structure is shown in Figure 3.
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Figure 3. (a,b) Pure gallium bulk structure in two perspectives. (c) Gallium atom coordination
relationship.

Compared with the experiment data [43], the gallium crystal lattice parameters shown
in Table 1 have a maximum error of only 3%, which indicates that the chosen model and
parameters are reasonable.
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Table 1. Lattice parameter (Å) of the Ga bulk.

Parameter A (Å) B (Å) C (Å)
Nearest

Neighboring (Å)
Second Nearest

Neighboring (Å)

Experiment 4.51 4.49 7.65 2.44 2.71–2.79
Calculation 4.63 4.55 7.77 2.51 2.73–2.77

In Table 1, A, B, and C represent lattice constants. Each Ga atom has one very close
neighboring atom and six atoms only a little further away, which is shown in the table.

The charge density distributions of Cu and Ga are shown in Figure 4. The red part in
the color axis denotes the region of high charge density, and the blue and black parts in
the color axis represent the region of low charge density. Generally speaking, the valence
electrons of typical metals (like Cu) exhibit nonlocalized characteristics. In Figure 4a, the
blue area indicates the uniform charge density in the Cu bulk. Unlike typical metals, the
valence electrons are more localized between the Ga atoms (area in the figure consisting
of a hexagonal ring marked in the figure), which shows in the red color in Figure 4b. The
other areas have relatively low charge densities between the rings of six Ga atoms (the area
surrounded by the black line). It is obvious that the bonds exhibit the properties of covalent
bonds in the Ga crystal.
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3.3. Wulff Cluster Model of Ga

The HTXRD experiments mentioned above were repeated serval times at each tem-
perature with extremely consistent results, which obviously demonstrates the melts are a
thermodynamic equilibrium system. On the one hand, according to the Wulff construction,
the most probable shape should have the lowest total surface Gibbs free energy, determined
by the interface energies [35]. On the other hand, the electron distribution, which should
obey Fermi–Dirac distribution, determines many properties of the crystals, especially the
point group symmetry. The electron distribution hardly changes significantly until the
temperature reaches the Fermi degeneracy temperature (FDT). Considering that the FDT
typically exceeds in the order of magnitude of 104 K, the temperature of metallic crystals
and melts (generally in the order of magnitude between 102 K and 103 K) are considerably
low. As a result, the trend in point group symmetry hardly changes between these two
phases. Hence, the structures with a Wulff shape outside and crystal symmetry inside
have been derived as the equal system for characterizing the SRO distribution within the
microstructure of the melts.
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Although the Wulff cluster model that has the lowest total surface Gibbs free energy
on the cluster’s surface could describe all kinds of metals in principle, the applicability in
the crystal with the properties of covalent bonds still needs investigation. To determine
the Wulff shape of Ga, surface energies of Ga surfaces are calculated using the two-side
slab model mentioned above. The result of the calculation determines which crystal planes
will be exposed on the cluster surface. The established slab model is shown in Figure 5.
Low Miller index crystal planes with low surface energies are selected to establish the slab
modeling and compute the γ. The specific data of γ are displayed in Table 2. All of the data
are relatively reasonable compared with other DFT calculation results [44].
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Figure 5. Top and side views of the (a) Ga (101) surface, (b) Ga (120) surface, (c) Ga (201) surface,
(d) Ga (100) surface, (e) Ga (001) surface, (f) Ga (111) surface, (g) Ga (102) surface. The area surrounded
by the orange line in the figure is the unit of the surface. All surfaces that are exposed on the Wulff
shape are shown in the figure.

Table 2. Surface energy calculation of Ga cluster.

Crystal
Plane

Surface Energy γ
(J/m2)

Percentage
(%)

Crystal
Plane

Surface Energy γ
(J/m2)

Percentage
(%)

Ga (001) 0.591 21.670 Ga (102) 0.643 0.690
Ga (100) 0.477 30.960 Ga (201) 0.590 0.770
Ga (101) 0.618 1.380 Ga (211) 0.605 0.000
Ga (111) 0.592 18.640 Ga (310) 0.554 0.000
Ga (120) 0.607 25.960 Ga (010) 0.847 0.000

As shown in Table 2, the Ga (100) plane, among all crystalline planes calculated, has
the minimum γ (0.477 J/m2). During the calculation process, we found that the distance
between the nearest neighboring atoms on the (100) surface decreased and dimerization
occurred, which is the main reason for the lowest γ. For the low-index surfaces of Ga that
are calculated, the trend of surface energy γ100 < γ001 < γ101 is apparent. These results
indicate that the density of each crystal plane also has an impact on surface energy, and
the (100) plane is precisely the most close-packed plane of Ga. Meanwhile, the relatively
low-index crystal planes are prone to being exposed on the Wulff cluster. In addition, the
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crystal planes can be exposed more on the cluster when the surface energy γ of the plane
decreases to a certain extent compared with the other planes. On the basis of the modeling
and above-mentioned calculational results, the shape of WCM that is depicted according to
the calculated γ data is displayed in Figure 6a. For the Ga cluster, the (100) surface’s ratio
of corresponding exposed area is the largest (about 30.96%). The shape of the WCM of the
Ga cluster is similar to a spindle shape.
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Figure 6. (a) The schematic of the Ga Wulff shape. The atomic equivalent structure of Ga melts at
(b) 523 K, (c) 623 K, and (d) 723 K.

To acquire the Wulff cluster, the average correlation radii and other related data men-
tioned above are given by the HTXRD experiments, and the atomic equivalent structures
of the Ga melts are displayed in Figure 6b–d. It can be observed that for the Ga Wulff
atomic microstructure, the majority of the calculated faces exist. Due to the small cluster
size, relatively high index faces with relatively low surface energies, such as the Ga (210)
and Ga (310) surfaces, cannot be exposed on the Wulff cluster.

To check the accuracy of WCM within the melts featuring covalent bonds, it is neces-
sary to conduct a direct comparison between the calculated XRD results and the experiment
data shown in Figure 7. The blue perpendicular lines denote the diffraction patterns of
the atomic structures above at 0 K, the red curve is the experimental XRD results, and
the black one is the calculated broadening XRD curve. Not only the positions but also
the comparative intensities of the two peaks of the simulated XRD curves agree with the
experimental data quite well, especially at high temperatures (623 K and 723 K). Note that
a slight deviation of the position of the second peak at 523 K takes place. Such phenomena
happen at low temperatures near the melting point and have been observed in almost all
metallic alloy systems [19,21,22]. It is usually caused by the beginning of the pre-nucleation
stage. Determining the short-range structure of gallium melts serves as a foundation for
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further research into gallium-based liquid alloys, providing us the opportunity to under-
stand the inner interactions within these materials. This gives us the chance to design the
composition and processing techniques of gallium-based liquid metals with an industrial
product-oriented approach, which will significantly promote the development of industries
such as lubrication and flexible electrodes.
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Figure 7. The XRD simulation results compared with the experimental data at (a) 523 K, (b) 623 K,
and (c) 723 K.

4. Conclusions
In this paper, the SRO structures of Ga melts has been investigated by the WCM, which

has been proven to successfully describe the melt structure of pure metals, homogenous
alloys, eutectic alloys, and alloys with intermetallic compounds. Structures with Wulff
shapes outside and crystallographic symmetry inside have been derived as the equivalent
system to describe the SRO distribution of the Ga melts. The XRD curves of Ga melts at
different temperatures (523 K, 623 K, 723 K) were obtained in the experiment, and the g(r)
and the correlative radius r (11.11 Å, 10.50 Å, 8.91 Å) were obtained accordingly. The γ

data of different crystal planes of Ga crystals were acquired in the DFT calculation, and the
γ of the (100) plane was the lowest (0.477 J/m2). Based on the above results, the atomic
equivalent structures at different temperatures have been presented. Through comparison
with the experimental outcomes of HTXRD, it has been discovered that overlaying the
HTXRD pattern of the gallium WCM enables the simulated HTXRD pattern to be in
excellent agreement with the experimental data at the designated temperatures. This
includes aspects such as the peak position, width, and relative intensity, particularly at
temperatures significantly above the melting point. A tiny deviation of the second peak
position at 523 K occurred, which was caused by the beginning of the pre-nucleation stage.
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In this case, the WCM can describe the SRO structure of melt systems with a certain extent
of covalency, such as Ga.
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Abstract: Cu–Zn alloys are widely used engineering materials with well-known industrial
applications. However, studies on their electrical and thermal conductivities have primarily
relied on experimental measurements, while theoretical investigations remain limited.
In this work, eight crystal structure models were constructed to represent three phase
configurations (α single phase, α + β′ dual phase, and β′ single phase) of Cu–Zn alloys
with Zn concentrations ranging from 0 to 50 at.%. Based on the first-principles calculations
combined with the Boltzmann transport equation, the electrical and thermal conductivities
of these models were computed, and the electronic structure of the α-phase configurations
was further analyzed. The results show that both electrical and thermal conductivities
exhibit a non-monotonic trend with increasing Zn content, initially decreasing and then
increasing. This trend is in strong agreement with available experimental data. Further
analysis of the electronic structure reveals that, in the α-phase region, the density of states
near the Fermi level is mainly contributed by Cu d-orbitals. As Zn content increases,
the effective DOS near the Fermi level decreases, leading to reduced electron transport
capability. For thermal conductivity, both the Wiedemann–Franz law and the first-principles
calculations were employed, yielding results consistent with experimental trends. In
summary, this study systematically investigates the variation of electrical and thermal
conductivities of Cu–Zn binary alloys with Zn content and explores the underlying physical
mechanisms from the perspective of electronic structure. The findings provide valuable
theoretical support for understanding and optimizing the transport properties of complex
alloy systems.

Keywords: Cu–Zn alloy; first-principles calculations; electrical conductivity; thermal
conductivity

1. Introduction
Copper–zinc (Cu–Zn) alloys are widely used in modern industry due to their high

electrical and thermal conductivity, excellent corrosion resistance, and good workability.
These properties make them attractive for applications in electronics, automotive manufac-
turing, and piping systems. In the electronics industry, Cu–Zn alloys are commonly used
in connectors and terminals for their high conductivity and thermal stability. In the field of
automobile manufacturing, their superior thermal conductivity and corrosion resistance
make them suitable for radiator cores, connectors, and related components [1–3].
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The Cu–Zn alloy system exhibits complex phase transformation behavior depending
on zinc content and temperature. The maximum solid solubility of Zn in Cu is approxi-
mately 38.95 wt.%. When the Zn content is below this limit, the alloy primarily shows a
face-centered cubic (FCC) α-phase. As the Zn content exceeds 40 wt.%, the alloy enters the
α + β two-phase region [4]. In this range, the β-phase exists as a disordered body-centered
cubic (BCC) structure above 454 ◦C and transforms into an ordered β′-phase upon cooling
below this temperature. The β′-phase retains the BCC lattice but exhibits long-range order,
such as DO3 or B2-type structures [5]. With further increase in Zn content to around
50 wt.%, the β-phase becomes dominant, forming a single-phase β structure [6].

Beyond 50 wt.% Zn, additional complex intermetallic phases such as γ, δ, and ε

emerge, characterized by more intricate crystal structures, significant atomic disorder, and
vacancy-induced lattice relaxations. These features fundamentally change the nature of
the phase transformation behavior compared to the Cu-rich side. These phase transforma-
tions significantly influence the electrical, thermal, and mechanical properties of Cu–Zn
alloys [7–11]. From an industrial perspective, the compositional range of 0–50 wt.% Zn
covers the most commercially important brasses. According to international standards such
as ASTM B36 [12], widely used wrought and cast brass grades (C21000–C28000) typically
contain 37–41 wt.% Zn. Alloys with Zn content above 50 wt.% suffer from severe deterio-
ration in workability and electrical conductivity, making them unsuitable for widespread
industrial applications. By adjusting the phase structure and composition, the physical
properties of the alloys can be tailored, which is valuable for applications in electronics,
electrical engineering, and structural components.

With the development of computational materials science, the first-principles calcula-
tions based on the density functional theory (DFT) have become widely used in metallic
materials research. These methods enable the investigation of materials at the electronic
structure level and have provided important insights into phase stability, electronic proper-
ties, and transformation mechanisms.

For the Cu-rich side (Zn < 50 wt.%) of the Cu–Zn system, first-principles calcula-
tions have successfully been applied to analyze order–disorder transitions between the
α and β phases under various compositions and temperatures. The phase stability and
transformation mechanisms have been explained from an electronic structure perspec-
tive, offering a clear understanding of their stability and evolution with composition and
temperature [13–18]. However, modeling the Zn-rich side (Zn > 50 wt.%) is consider-
ably more challenging. The presence of γ, δ, and ε phases introduces highly complex,
vacancy-mediated structures and significant lattice distortions, making it difficult to con-
struct accurate atomic models and maintain consistent evaluation criteria across different
phases [11]. Moreover, the underlying physical mechanisms governing phase transforma-
tions in the Zn-rich region differ substantially from those in the Cu-rich region, further
complicating theoretical investigations. Similar phase-change behavior upon crossing
50 at.% composition has also been observed in other alloy systems, such as in Sn–Sb and
Cu–Ni–Cr-based materials, where doping-induced structural transitions lead to significant
changes in physical properties [19,20]. Considering these factors, this study focuses on
Cu–Zn alloys with Zn contents up to 50 wt.%.

Experimental data have also revealed that the electrical and thermal conductivity of
Cu–Zn alloys varies with Zn content [8,9]. Specifically, both properties tend to decrease
initially and then increase as Zn content rises from 0 to 50 wt.%. However, most of these
findings rely on experimental methods. The lack of theoretical modeling limits under-
standing of the underlying mechanisms. Moreover, experimental approaches often require
substantial effort in sample preparation and testing and may introduce inconsistencies due
to varying conditions.
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In this context, atomic models of Cu–Zn alloys in the α, α + β′, and β′ phase regions
were constructed. The electrical and thermal transport properties, along with the electronic
structures, are investigated using DFT combined with the Boltzmann transport equation.
The influence of phase structure and composition on transport properties is analyzed in
detail. This work aims to uncover the mechanisms by which different phase structures
affect electron transport behavior. By correlating theoretical calculations with available
experimental data, the study provides a deeper understanding of the relationship between
electronic structure and transport performance.

Furthermore, recent studies on the band topological characteristics of alloy materials
have confirmed the nontrivial topological band structure of the Sn–Sb alloy system. Its
topologically protected surface state can significantly increase the carrier mobility and gen-
erate abnormal transport behaviors [21,22]. Although the current research on Cu–Zn alloys
mainly focuses on the influence of traditional phase transitions and electronic structures on
transport performance, topological band engineering provides a new idea for regulating
their electrical/thermal conductivity. For instance, inducing topological quantum phase
transitions through composition design or generating topological surface states by utilizing
interface effects may break through the performance limits of traditional alloys [23]. The
electronic structure-transport property correlation framework established in this study not
only lays a foundational basis for exploring potential topological effects in Cu–Zn systems
but also provides theoretical guidance for alloy design and multifunctional optimization.

2. Computational Methods
2.1. Computational Models

According to the Cu–Zn binary phase diagram [24], within the composition range
investigated in this study (Zn ≤ 50 at.%), the Cu–Zn alloy system exhibits three typical
phase structures with increasing Zn content: single-phase α (FCC), dual-phase α + β′, and
single-phase β′ (BCC). To investigate the effects of different phases and compositions on
the electrical and thermal conductivities of Cu–Zn alloys, the crystal structure models were
constructed for Zn concentrations ranging from 0 to 50 at.%.

In the α phase, Zn atoms randomly substitute Cu atoms in a disordered solid solution
with a face-centered cubic (FCC) structure. To accurately represent the atomic disorder,
the alloy theoretic automated toolkit (ATAT) [25,26] was used to generate special quasi-
random structures (SQS). Six α-phase structures with different Zn concentrations (12.5,
18.75, 21.875, 25, 28.125, and 31.25 at.%) were constructed, as shown in Figure 1a–f. For each
concentration, 20 α-phase SQS models were generated, and their ground-state energies
were calculated. Unstable structures were eliminated, and the remaining structures were
subjected to molecular dynamics simulations for diffusion-annealing treatment. The most
stable configuration was selected as the representative structure for each composition. The
β′ phase, a Cu–Zn intermetallic compound with a body-centered cubic (BCC) structure,
has a fixed Cu:Zn atomic ratio of 1:1 and exhibits an ordered solid solution, as shown
in Figure 1g. The α + β′ dual-phase structure was constructed by combining the α and
β′ unit cells at a defined interface. Due to the significant lattice mismatch between the
α phase (a = 3.677 Å) and the β′ phase (a = 2.921 Å), the vasp.6.3.0 software was used to
reconstruct the lattice vectors. The final α + β′ interface model has an interfacial spacing of
1.8 Å and an interfacial angle γ = 45◦, as shown in Figure 1h. All electronic structure and
transport property calculations for the Cu–Zn alloys in this study were performed based
on the above models.
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Figure 1. Crystal structure models of Cu–Zn alloys with different Zn content: (a) α phase with 12.5%
Zn content; (b) α phase with 18.75% Zn content; (c) α phase with 21.875% Zn content; (d) α phase
with 25% Zn content; (e) α phase with 28.125% Zn content; (f) α phase with 31.25% Zn content; (g) β′

phase with 50% Zn content; (h) α + β′ diphase configuration.

2.2. Electrical Conductivity Calculations

The electronic transport coefficients were calculated by solving the Boltzmann trans-
port equation (BTE) under the relaxation time approximation (RTA) [27], as implemented
in the BoltzTraP2 code [28]. The transport coefficients, including the electrical conductivity
(σ) and the electronic thermal conductivity (κe), are defined as follows:

σ(T, µ) = − τ

Ω

∫ +∞

−∞
σ(ε)

∂ f (ε, µ, T)
∂ε

dε, (1)

κ(T; µ) = − τ

q2TΩ

∫ +∞

−∞
σ(ε)(ε − µ)2 ∂ f (ε, µ, T)

∂ε
dε, (2)

where τ is the relaxation time, Ω is the unit cell volume, and f is the Fermi–Dirac distribution
function, which is defined as follows:

f (ε) =
1

e
ε−µ
kT + 1

, (3)
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with ε being the electron energy, µ the chemical potential, k the Boltzmann constant, and
T the absolute temperature. The transport distribution function (TDF) σ(ε) is expressed
as follows:

σ(ε) =
1
N ∑k σαβ(i, k)δ(ε − εk), (4)

where N is the number of k-points and σik is the conductivity tensor at each k-point [27,29],
calculated as follows:

σαβ(i, k) = e2τi,kvα(i, k)vβ(i, k), (5)

where e is the elementary charge, and va and vβ are the group velocities along the α and
β directions, given by (1/ℏ) (∂ϵ/∂k). BoltzTraP2 uses Fourier interpolation of the band
structure obtained from VASP calculations to generate denser k-point meshes, enabling
more accurate and efficient evaluation of the transport properties [30].

2.3. Thermal Conductivity Calculations

The thermal conductivity (κ) is a key parameter characterizing the heat transport
capability of materials and includes contributions from both electronic (κe) and lattice
(phonon) thermal conductivities (κph) [31], calculated as follows:

κ = κe + κph, (6)

For metals where heat transport is predominantly electronic, κe can be estimated from
the electrical conductivity using the Wiedemann–Franz law [32], calculated as follows:

κe = LσT, (7)

where L is the Lorenz number (typically approximated as 2.44 × 10−8WΩK−2), σ is the
electrical conductivity, and T is the absolute temperature.

2.4. Computational Parameters

All calculations were performed using the Vienna Ab initio Simulation Package
(vasp.6.3.0) [33,34]. The projector augmented wave (PAW) method [35,36] was employed, and
the exchange-correlation interactions were described using the Perdew–Burke–Ernzerhof
(PBE) functional. A plane-wave energy cutoff of 400 eV was used. The total energy conver-
gence criterion was set to 1.0 × 10−6 eV/atom.

k-point sampling in the Brillouin zone was performed using the Monkhorst–Pack
scheme centered at the Γ point. For structure optimization, the k-point meshes were
4 × 4 × 4 for the α phase, 12 × 12 × 12 for the β′ phase, and 4 × 3 × 5 for the α + β′

dual-phase models. Geometry optimizations were carried out using the conjugate gradient
algorithm [37], and the convergence criterion for atomic forces was 0.02 eV/Å.

All total energy and electronic structure calculations were based on the optimized
structures. The k-point meshes used for density of states (DOS) calculations were the same
as the geometry optimizations.

3. Results and Discussion
3.1. Structural Optimization Results

To verify the reliability and accuracy of our calculations, the optimized lattice parame-
ters of pure Cu (FCC), Zn (HCP), and the Cu–Zn alloy α-phase (FCC) and β′-phase (BCC)
were compared with experimental values, as shown in Table 1. The results indicate that
the optimized lattice constants in this study are in good agreement with the experimental
data reported in the literature [38–42]. The deviations in lattice parameters are within 1%,
demonstrating the reasonableness and credibility of our structural optimization results.
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Table 1. Calculated lattice parameters and experimental crystallographic data of pure copper, pure
zinc, and Cu–Zn intermetallic compounds.

Phase Crystal
Structure Lattice Parameters (Å) Ref.

Cu FCC
a = 3.6077 Exp. [40]
a = 3.6072 Exp. [41]
a = 3.615 This study

Cu3Zn-α FCC a = 3.6718 Exp. [43]
a = 3.677 This study

CuZn-β’ BCC a = 2.9575 Exp. [44]
a = 2.921 This study

Zn HCP
a = 2.6594 c = 4.9368 Exp. [42]
a = 2.6190 c = 4.986 This study

3.2. Electrical Conductivity: Results and Discussion

As an important industrial alloy, Cu–Zn has been extensively studied, and consider-
able experimental data on its properties have been accumulated. In particular, Aoyama, S.,
and Ito, T., conducted a series of electrical conductivity measurements on Cu–Zn alloys
in the 1940s [8], which are used here as reference standards for validating our computa-
tiona results.

The nonequilibrium behavior of conduction electrons in metals can be described by
the Boltzmann transport equation (BTE), which relates the response of electrons to external
forces with changes in their distribution function. Due to the complexity of electron
scattering processes, the relaxation time approximation (RTA) is often employed to simplify
the BTE by introducing an average timescale for scattering. This approximation assumes
that electrons reach a quasi-equilibrium state between scattering events, allowing their
transport behavior to be described using group velocity and relaxation time.

In this work, electrical conductivity is calculated by combining the Fermi-Dirac dis-
tribution with the BTE under the RTA framework. The resulting conductivity depends
on both the group velocity and the relaxation time. The group velocity characterizes the
electron propagation at a given wavevector and is calculated as the gradient of the band
energy with respect to the wavevector. The relaxation time reflects the dynamics of electron
scattering. In this study, a constant relaxation time τ = 2.375 × 10−14 s is adopted based
on the average values reported for Cu–Zn alloys in the literature [43]. The group velocity
is obtained from the electronic band structures computed by VASP and further processed
using BoltzTraP2. The computed and experimental conductivity values are summarized in
Table 2.

Table 2. Experimental [8] and calculated conductivity of Cu–Zn binary alloy.

Zn at.% 12.81 17.02 19.81 24.04 29.41 35.3 39.39 43.68 48.02

Conductivity (experimental)
107 S/m 3.56 3.08 3.04 2.83 2.46 2.39 3.28 4.73 8.25

Zn at.% 12.5 18.75 21.875 25 28.125 31.25 36 - 50

Conductivity (computed)
107 S/m 2.02 1.83 1.78 1.66 1.57 1.49 1.02 - 4.46

Figure 2 compares the experimental and calculated electrical conductivities of Cu–Zn
alloys as a function of Zn concentration. Overall, both data sets exhibit excellent agreement
in terms of trends and conductivity variations across different phase regions, validating
the effectiveness of the first-principles approach. In the α-phase region (FCC random
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solid solution, Zn < 35 at.%), both experimental and theoretical results show a decreasing
conductivity with increasing Zn content. This behavior is attributed to the increased
lattice distortion caused by the random substitution of Zn atoms, which enhances electron
scattering, shortens the mean free path of conduction electrons, and consequently reduces
electrical conductivity.
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In the α + β′ two-phase region (Zn = 35–50 at.%), the β′ phase (ordered BCC structure)
begins to form and increases in proportion with Zn content. Experimentally, as the alloy
transitions from the α single-phase to the α + β′ two-phase region, the conductivity trend
levels off, followed by a noticeable increase when Zn exceeds 37.04 at.%. However, a slight
drop in the calculated conductivity at 36 at.% Zn is observed. This discrepancy is likely
due to the simplifications in the two-phase structural model, which cannot fully capture
the complex interfacial features present in real materials, thereby affecting the accuracy of
the calculated conductivity.

At approximately 50 at.% Zn, the alloy enters the β′ single-phase region, where the
experimental conductivity reaches 8.25 × 107 S/m, significantly higher than that of the
α-phase region. The calculated results show excellent agreement with this experimental
trend. The enhanced conductivity in the β′ phase is attributed to its ordered BCC structure,
which reduces electron scattering and improves the continuity of electron transport by
minimizing lattice imperfections.

In summary, the calculated electrical conductivities of Cu–Zn alloys using the first-
principles calculations show good agreement with experimental data across different
phases and compositions. This confirms the feasibility of using first-principles approaches
to predict electrical conductivity variations in metal alloys.

3.3. Effect of Zn Content on the Electronic Structure

To gain deeper insight into the observed decrease in electrical conductivity of the
α-phase Cu–Zn alloy with increasing Zn content, we analyzed the electronic structure by
calculating the density of states (DOS) at various Zn concentrations. The DOS describes the
number of available electronic states per unit energy interval. In a given metal phase, small
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compositional changes can lead to variations in the DOS near the Fermi level. In Cu–Zn
alloys, the gradual incorporation of Zn alters the electronic state distribution, which in turn
affects electron transport properties. This enables us to quantify the influence of Zn content
on conductivity from an electronic structure perspective.

Figure 3 presents the total density of states (TDOS) and the projected density of states
(PDOS) of Cu and Zn d-orbitals for α-phase Cu–Zn alloys at 12.5 at.% and 31.25 at.% Zn.
The contributions from s- and p-orbitals are comparatively small; a detailed discussion of
their characteristics is provided in Figure S1 of the Supplemental Materials.
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Figure 3. Total state density (TDOS) of the α phase of Cu–Zn alloy and partial wave state density
(PDOS) of d-orbitals of Cu and Zn elements. (a) 12.5% Zn content; (b) 31.25% Zn content. The small
graph on the right is a local magnification of the total state density near the Fermi surface.

Additionally, since the Zn d-orbitals are mainly localized between –8 eV and –7 eV,
no prominent Zn d peaks appear in the energy range of interest. As observed in Figure 3,
the DOS near the Fermi level is dominated by Cu d-orbitals, which serve as the primary
contributors to electrical conduction.

The TDOS values near the Fermi level for six α-phase structures are listed in Table 3.
These values are obtained by integrating the TDOS in the energy window from –0.25 eV
to 0.25 eV. The results indicate a clear decreasing trend in the DOS at the Fermi level with
increasing Zn content, which aligns with the observed decline in electrical conductivity.
This trend can be attributed to the reduced number of available electronic states near
the Fermi level upon Zn addition, thereby hindering electron transport and decreasing
conductivity. Although Zn s- and p-orbitals provide some contribution near the Fermi
level, their DOS is significantly lower than that of Cu d-orbitals, resulting in a negligible
impact on the overall conductivity.

Table 3. TDOS integrals of six α phases of Cu–Zn alloy between −0.25 eV and 0.25 eV near the
Fermi surface.

Zn Doping Ratio 12.5 at.% 18.75 at.% 21.875 at.% 25 at.% 28.125 at.% 31.25 at.%

Integrated TDOS Value 1.96 1.93 1.89 1.85 1.83 1.78
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3.4. Thermal Conductivity: Results and Discussion

Aoyama, S., and Ito, T., experimentally measured the thermal conductivity of Cu–Zn
alloys in 1940 [8], and their data are used in this study as a reference standard for evaluating
the calculated results. We investigated the variation in thermal conductivity of Cu–Zn alloys
with Zn content and phase transitions between the α and β′ phases. Two different methods
were employed to calculate the thermal conductivity at 78 K: the Wiedemann–Franz law and
a first-principles approach combining density functional theory (DFT) with the Boltzmann
transport theory. The corresponding results are summarized in Table 4. In the table, σ

represents the experimentally measured electrical conductivity at 78 K, κexp denotes the
experimental thermal conductivity, κWF is the thermal conductivity derived using the
Wiedemann–Franz law, and κDFT refers to the result obtained from DFT-based calculations.

Table 4. Thermal conductivity of Cu–Zn binary alloy at 78 K.

Results of Wiedemann–Franz Law Calculation Method

Zn at.% 17.01 19.92 24.04 29.41 35.30 39.39 43.68 48.20

κexp (W/m/K) 71 69 62 54 52 64 90 156
κWF (W/m/K) 38.82 38.31 35.67 31.01 30.12 41.34 59.62 103.98

Results of DFT calculation method

Zn at.% 12.5 18.75 21.875 25 28.125 31.25 36 50

κDFT (W/m/K) 37.74 34.97 33.92 31.26 30.83 29.73 19.55 80.99

Figure 4 illustrates the thermal conductivity of Cu–Zn alloys at 78 K, based on the data
in Table 4. The traditional method for calculating lattice (phonon) thermal conductivity
involves solving the phonon Boltzmann transport equation using third-order interatomic
force constants [44,45]. However, determining these third-order force constants becomes
increasingly complex and computationally demanding as the number of atoms in the
primitive cell increases. Moreover, the lattice contribution to the total thermal conductivity
in Cu–Zn alloys has been reported to be relatively minor, typically accounting for only
4–7% of the total thermal conductivity [31]. Therefore, it is reasonable to neglect the phonon
contribution in this study.

The experimental thermal conductivity values (κexp) are slightly higher than those
predicted by the Wiedemann–Franz law (κWF), yet they are very close in magnitude. This
suggests that although the Wiedemann–Franz approach omits the phonon contribution, it
still provides a reasonably accurate estimate of the total thermal conductivity in Cu–Zn
alloys. This further confirms that the electronic component dominates the thermal transport
in these alloys.

Comparison between the experimental data (κexp) and the DFT-calculated results
(κDFT) shows that κexp is slightly higher than κDFT, but the values are close and follow a
consistent trend. This agreement among κexp, κWF, and κDFT supports the conclusion that
electron thermal conductivity is the dominant contributor to the total thermal conductivity
in Cu–Zn alloys and also validates the accuracy and reliability of the thermal conductivity
calculations presented in this study.
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Figure 4. The thermal conductivity curves of the Cu–Zn binary alloy with different Zn contents
at 78 K of the experimental data (κexp), Wiedemann–Franz Law calculation results (κWF), and DFT
calculation results (κDFT).

By comparing the electrical conductivity and thermal conductivity curves of Cu–Zn
alloys in Figures 2 and 4, a clear positive correlation between the two properties with respect
to Zn atomic concentration can be observed. When the Zn content is below 35 at.%, both
electrical and thermal conductivities decrease with increasing Zn concentration, reaching
their minimum at approximately 35 at.% Zn. Beyond this point, both properties exhibit
a rapid increase as Zn content continues to rise. The two sets of curves demonstrate a
highly synchronized trend. This behavior reflects the dominant role of electronic transport
characteristics in determining both the electrical and thermal conductivities of Cu–Zn
alloys. In summary, the accuracy of electrical conductivity calculations directly influences
the reliability of thermal conductivity predictions. Therefore, improving the precision
of electrical conductivity calculations is essential for enhancing the overall accuracy of
thermal conductivity modeling in computational studies.

4. Conclusions
In this study, eight crystal structure models of Cu–Zn binary alloys were constructed,

covering three types of phase configurations within the Zn concentration range of 0–50 at.%:
α single phase (FCC), α + β′ dual phase, and β′ single phase (BCC). The electrical and
thermal conductivities of these models were calculated using the first-principles calcula-
tions in combination with the Boltzmann transport equation, and the electronic structure of
the α-phase configurations was further investigated. The results show that both electrical
and thermal conductivities of Cu–Zn alloys exhibit a decreasing–increasing trend with
increasing Zn content from 0 to 50 at.%, displaying a clear positive correlation between the
two properties. This trend is in good agreement with experimental observations. Electronic
structure analysis further reveals that, in the α-phase region, the density of states (DOS)
near the Fermi level is mainly contributed by the Cu d-orbitals. As Zn content increases,
the effective DOS near the Fermi level decreases, leading to a reduction in electron trans-
port capability and, consequently, a decline in electrical conductivity within the α-phase
region. Regarding thermal conductivity calculations, both the Wiedemann–Franz law and
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first-principles methods were employed, and the calculated results exhibit trends consistent
with experimental data. In summary, this work systematically investigates the variation
of electrical and thermal transport properties of Cu–Zn binary alloys with Zn content
and elucidates the underlying physical mechanisms from the perspective of electronic
structure. The findings provide theoretical insights to support transport property studies
and performance optimization in complex alloy systems.
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//www.mdpi.com/article/10.3390/ma18102310/s1, Figure S1: Calculated PDOS of Zn-s and Zn-p
in the structures of (a) β′ single phase and (b) α single phase(Zn 12.5% content).
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