
mdpi.com/journal/symmetry

Special Issue Reprint

Evolutionary Computation, 
Metaheuristics, Nature-
Inspired Algorithms,
and Symmetry

Edited by 

Yirui Wang, Shangce Gao and Yang Yu



Evolutionary Computation,
Metaheuristics, Nature-Inspired
Algorithms, and Symmetry





Evolutionary Computation,
Metaheuristics, Nature-Inspired
Algorithms, and Symmetry

Guest Editors

Yirui Wang

Shangce Gao

Yang Yu

Basel • Beijing • Wuhan • Barcelona • Belgrade • Novi Sad • Cluj • Manchester



Guest Editors

Yirui Wang

Faculty of Electrical

Engineering and Computer

Science

Ningbo University

Ningbo

China

Shangce Gao

Faculty of Engineering

University of Toyama

Toyama

Japan

Yang Yu

College of Automation &

College of Artificial

Intelligence

Nanjing University of Posts

and Telecommunications

Nanjing

China

Editorial Office

MDPI AG

Grosspeteranlage 5

4052 Basel, Switzerland

This is a reprint of the Special Issue, published open access by the journal Symmetry (ISSN 2073-8994),

freely accessible at: https://www.mdpi.com/journal/symmetry/special issues/24GBAD8UEM.

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-5833-0 (Hbk)

ISBN 978-3-7258-5834-7 (PDF)

https://doi.org/10.3390/books978-3-7258-5834-7

© 2025 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license (https://creativecommons.org/licenses/by-nc-nd/4.0/).



Contents

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Wu Wen, Yibin Huang, Zhong Xiao, Lizhuang Tan and Peiying Zhang

GAPSO: Cloud-Edge-End Collaborative Task Offloading Based on Genetic Particle
Swarm Optimization
Reprinted from: Symmetry 2025, 17, 1225, https://doi.org/10.3390/sym17081225 . . . . . . . . . 1

Ebubekir Kaya, Ahmet Kaya and Ceren Baştemur Kaya

Adaptive Network-Based Fuzzy Inference System Training Using Nine Different Metaheuristic
Optimization Algorithms for Time-Series Analysis of Brent Oil Price and Detailed
Performance Analysis
Reprinted from: Symmetry 2025, 17, 786, https://doi.org/10.3390/sym17050786 . . . . . . . . . . 22

Chuan Liu, Yi Tang and Jian Wang

High-Efficiency and Ultrawideband Polarization Conversion Metasurface Based on Topology
and Shape Optimizaiton Design Method
Reprinted from: Symmetry 2024, 16, 1674, https://doi.org/10.3390/sym16121674 . . . . . . . . . 50

Xinghang Xu, Du Cheng, Dan Wang, Qingliang Li and Fanhua Yu

An Improved NSGA-III with a Comprehensive Adaptive Penalty Scheme for
Many-Objective Optimization
Reprinted from: Symmetry 2024, 16, 1289, https://doi.org/10.3390/sym16101289 . . . . . . . . . 63

Iztok Fajfar, Žiga Rojec, Árpád Bűrmen, Matevž Kunaver, Tadej Tuma, Sašo Tomažič and

Janez Puhan

Imperative Genetic Programming
Reprinted from: Symmetry 2024, 16, 1146, https://doi.org/10.3390/sym16091146 . . . . . . . . . 81

Jinyang Du, Renyun Liu, Du Cheng, Xu Wang, Tong Zhang and Fanhua Yu

Enhancing NSGA-II Algorithm through Hybrid Strategy for Optimizing Maize Water and
Fertilizer Irrigation Simulation
Reprinted from: Symmetry 2024, 16, 1062, https://doi.org/10.3390/sym16081062 . . . . . . . . . 100

Jianjun Deng, Junjie Wang, Xiaojun Wang, Yiqiao Cai and Peizhong Liu

Multi-Task Multi-Objective Evolutionary Search Based on Deep Reinforcement Learning for
Multi-Objective Vehicle Routing Problems with Time Windows
Reprinted from: Symmetry 2024, 16, 1030, https://doi.org/10.3390/sym16081030 . . . . . . . . . 116

Haocheng Wang, Yu Zhang and Lixin Mu

Short-Term Electrical Load Forecasting Using an Enhanced Extreme Learning Machine Based on
the Improved Dwarf Mongoose Optimization Algorithm
Reprinted from: Symmetry 2024, 16, 628, https://doi.org/10.3390/sym16050628 . . . . . . . . . . 141

v





About the Editors

Yirui Wang

Yirui Wang received his Ph.D. degree from the Faculty of Engineering, University of Toyama,

Toyama, Japan, in 2020. He is currently an Associate Professor with the Faculty of Electrical Engineering

and Computer Science, Ningbo University, Zhejiang, China. His research interests include computational

intelligence, swarm intelligent algorithms, combinatorial optimization, and computer vision.

Shangce Gao

Shangce Gao received his Ph.D. degree in Innovative Life Science from the University of Toyama,

Toyama, Japan, in 2011. He is currently a Professor with the Faculty of Engineering, University

of Toyama, Japan. His current research interests include nature-inspired technologies, machine

learning, and neural networks for real-world applications. He serves as an Associate Editor for many

international journals such as IEEE Transactions on Neural Networks and Learning Systems, and IEEE/CAA

Journal of Automatica Sinica.

Yang Yu

Yang Yu received his M.S. and Ph.D. degrees from the University of Toyama, Toyama, Japan, in

2017 and 2020, respectively. He is currently a Lecturer within the College of Automation & College

of Artificial Intelligence, Nanjing University of Posts and Telecommunications. His main research

interests are evolutionary computing, optimization problems, and artificial neural networks.

vii





Article

GAPSO: Cloud-Edge-End Collaborative Task Offloading Based
on Genetic Particle Swarm Optimization

Wu Wen 1, Yibin Huang 1, Zhong Xiao 2,*, Lizhuang Tan 3 and Peiying Zhang 4

1 School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China;
wenwu@gzhu.edu.cn (W.W.); gd.hyb@e.gzhu.edu.cn (Y.H.)

2 School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China
3 Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Qilu

University of Technology (Shandong Academy of Sciences), Jinan 250014, China; tanlzh@sdas.org
4 Qingdao Institute of Software, College of Computer Science and Technology, China University of Petroleum

(East China), Qingdao 266580, China; zhangpeiying@upc.edu.cn
* Correspondence: gzxiaozhong@gzhu.edu.cn

Abstract

In the 6G era, the proliferation of smart devices has led to explosive growth in data volume.
The traditional cloud computing can no longer meet the demand for efficient processing
of large amounts of data. Edge computing can solve the energy loss problems caused
by transmission delay and multi-level forwarding in cloud computing by processing
data close to the data source. In this paper, we propose a cloud–edge–end collaborative
task offloading strategy with task response time and execution energy consumption as
the optimization targets under a limited resource environment. The tasks generated
by smart devices can be processed using three kinds of computing nodes, including
user devices, edge servers, and cloud servers. The computing nodes are constrained
by bandwidth and computing resources. For the target optimization problem, a genetic
particle swarm optimization algorithm considering three layers of computing nodes is
designed. The task offloading optimization is performed by introducing (1) opposition-
based learning algorithm, (2) adaptive inertia weights, and (3) adjustive acceleration
coefficients. All metaheuristic algorithms adopt a symmetric training method to ensure
fairness and consistency in evaluation. Through experimental simulation, compared with
the classic evolutionary algorithm, our algorithm reduces the objective function value by
about 6–12% and has higher algorithm convergence speed, accuracy, and stability.

Keywords: cloud–edge–end collaborative network; task offloading; method symmetry;
genetic algorithm; particle swarm optimization; metaheuristic algorithm

1. Introduction

With the rapid advancement of intelligent technology, mobile devices have become
extremely popular in daily life. For example, in the Internet of Vehicles field, mobile
devices equipped on vehicles are widely used for image processing, video streaming,
and augmented reality/virtual reality [1]. In the smart healthcare domain, smart devices
and sensors are widely used to remotely collect and monitor patient status in order to
collect patient health data [2,3]. In the industrial field, Industry 5.0 is the next stage of
industrial development. It has become a trend to integrate modern technologies such as ar-
tificial intelligence, robotics, and the Internet of Things into manufacturing and production

Symmetry 2025, 17, 1225 https://doi.org/10.3390/sym170812251



Symmetry 2025, 17, 1225

processes [4]. Numerous sensors and mobile devices continuously collect and generate
massive amounts of data. However, mobile devices themselves have significant limitations
in processing large-scale data. Their computing power and storage capacity are difficult to
cope with such a huge data torrent. At the same time, the centralized processing method
of traditional cloud computing is not friendly to delay-sensitive tasks [5]. Long delays
will occur during data transmission, which cannot meet the immediacy requirements of
scenarios such as autonomous driving and real-time industrial control. Edge computing
(EC) sinks computing resources to the edge of the network. Mobile devices can offload
tasks to edge servers to achieve task processing with lower transmission delays, while
expanding computing resources and improving user service quality.

The continuous generation of large-scale data has led to an increasing demand for
computing resources and user experience. In this context, cloud computing and mobile
edge computing each play an indispensable and important role. Cloud computing provides
powerful centralized computing and storage resources, which are suitable for processing
tasks that require large amounts of computing and data storage [6,7]. Edge computing, due
to its proximity to the data source, can provide low-latency computing services, which is
particularly suitable for tasks with high real-time requirements. On the other hand, user
devices themselves also have certain computing resources. For simple tasks and scenarios
with high privacy protection requirements, local computing can be used for data processing.
However, a single form of edge computing or cloud computing cannot meet the needs
of complex scenarios and cannot balance energy consumption and time delay [8]. The
cloud–edge–end collaborative computing model that integrates cloud computing, edge
computing, and local computing can give full play to their respective advantages and build
an efficient and flexible data processing architecture.

Task offloading is a key link in the cloud–edge–end collaborative environment, which
involves the decision-making process of transferring tasks from mobile devices to edge
servers or cloud servers [9]. This process requires a comprehensive consideration of the
characteristics of the task itself, the performance parameters of the user device, the resource
status of the edge server, and the relevant properties of the cloud server. By formulating a
reasonable task offloading strategy, cloud–edge–end collaborative computing can achieve
full utilization of resources and efficient processing of tasks, thereby meeting the diverse
needs of users for service quality in different scenarios.

In this paper, we use the Genetic Particle Swarm Optimization (GAPSO) algorithm to
solve the task offloading problem in the cloud–edge–end collaborative network environ-
ment. This algorithm helps to reduce task response time and energy consumption under
the constraints of limited computing resources and edge server bandwidth. The main
contributions of this paper are as follows:

(1) This paper proposes a task processing framework for a cloud–edge–end collaborative
environment. User devices can choose between three computing modes: local com-
puting, edge computing, and cloud computing. Compared with the traditional mode,
the cloud–edge–end collaborative environment can better utilize limited computing
resources and improve data processing efficiency.

(2) This paper implements a task transmission method that fully considers the band-
width resources of edge servers. The transmission process of tasks from user devices
(UDs) to edge servers (ESs) and ES to cloud servers (CSs) is more in line with the
actual situation.

(3) This paper designs a GAPSO algorithm, which improves the diversity of initial parti-
cles through the Opposition-Based Learning (OBL) algorithm, introduces adaptive

2



Symmetry 2025, 17, 1225

inertia weights and adjustive acceleration coefficients, and uses a genetic algorithm
(GA) to optimize the local optimal solution of particles.

(4) This paper uses a symmetrical training method to conduct multiple experiments. The
experimental results show that the GAPSO algorithm can achieve higher convergence
accuracy, stability, and convergence speed.

In this paper, the entire experiment is constructed using a symmetric design method.
All metaheuristic algorithms are applied under the same training conditions, including the
same cloud–edge–end collaborative architecture and environmental parameter configura-
tion. At the same time, the optimization target metric, number of training iterations, and
experimental evaluation indicators are also kept consistent. This structured framework not
only enhances the reliability of comparative analysis but also highlights the importance of
symmetric experiments in the study of cloud–edge–end collaborative applications.

The rest of this paper is organized as follows. Related work is reviewed in Section 2.
Section 3 presents the system model and problem formulation of this paper. The proposed
GAPSO algorithm is introduced in Section 4. Section 5 provides our experimental results.
Finally, in Section 6, we summarize our work.

2. Related Work

2.1. Task Offloading for Edge Computing

Edge computing task offloading refers to offloading tasks to edge servers close to data
sources or user devices. Edge computing is usually deployed close to end devices, such as
base stations or routers. Compared with cloud computing, edge computing can significantly
reduce network latency and bandwidth usage [10,11] and is suitable for applications with
high real-time requirements and large data volumes, such as intelligent transportation [12],
smart healthcare [13], autonomous driving [14], unmanned aerial vehicles (UAVs) [15], and
the Metaverse [16]. Zhou [17] considered the joint task offloading and resource allocation
problem of multiple MEC server collaboration and proposed a two-level algorithm. The
upper-level algorithm combines the advantages of algorithms such as PSO and GA to
globally search for advanced offloading solutions. The lower-level algorithm is used to
effectively utilize server resources and generate resource allocation plans with fairness
guarantees. Sun [18] considers splitting multiple computationally intensive tasks into
multiple subtasks simultaneously. A joint task segmentation and parallel scheduling
scheme based on the dominant actor–critic (A2C) algorithm is proposed to minimize the
total task execution delay. Chen [19] proposed a two-stage evolutionary search scheme
(TESA), where the first stage optimizes computing resource selection, and the second stage
jointly optimizes task offloading decisions and resource allocation based on a subset of the
first stage, thereby significantly reducing latency. Zhu [20] considered the impact of user
offloading decisions, uplink power allocation, and MEC computing resource allocation
on system performance. An edge computing task offloading strategy based on improved
genetic algorithm (IGA) is proposed.

2.2. Task Offloading for Cloud–Edge Collaboration

Cloud–edge collaborative task offloading refers to the collaborative processing be-
tween cloud computing and edge computing. Tasks can be allocated between the cloud
and edge based on their characteristics and requirements. The advantage of cloud–edge
collaboration is that it can take into account the powerful computing power of cloud com-
puting and the low latency characteristics of edge computing, thereby optimizing resource
utilization and service quality [21,22]. Zhang [23] proposed a task offloading strategy based
on a time delay penalty mechanism and a bipartite graph matching method to optimize the

3



Symmetry 2025, 17, 1225

task allocation between edge devices and the cloud. The aim is to minimize system energy
consumption. Gao [24] established a dynamic queue model and used the drift and penalty
function framework to transform the problem into a constrained optimization problem.
Finally, a task offloading algorithm based on Lyapunov optimization was proposed. Lei [25]
considered that the performance of geographically distributed edge servers varies over
time and developed a dynamic offloading strategy based on a probabilistic evolutionary
game theory model.

2.3. Task Offloading for Cloud–Edge–End Collaboration

Cloud–edge–end collaborative task offloading further extends the concept of cloud–
edge collaboration by incorporating the computing capabilities of end devices (such as
smartphones, sensors, and IoT devices). In this model, tasks can be flexibly allocated be-
tween end devices, edge servers, and cloud servers. This collaborative approach maximizes
the use of computing resources at all levels and provides a more flexible and efficient
computing solution. Liu [26] decomposed the task offloading and resource allocation
problem into two sub-problems. First, the optimal solution of the task partitioning ratio
was obtained using a mathematical analytical method, and then the Lagrangian dual (LD)
method was used to optimize the task offloading and resource allocation strategies to
minimize the task processing delay. Zhu [27] proposed a speed-aware and customized task
offloading and resource allocation scheme aimed at optimizing service latency in mobile
edge computing systems. By utilizing the Advantage Actor Critic (A2C) algorithm, comput-
ing nodes are dynamically selected to improve user service quality. Qu [28] takes the total
task execution delay and key task execution delay as the optimization goals and proposes
an emergency offloading strategy for smart factories based on cloud–edge collaboration
through the Fast Chemical Reaction Optimization (Fast-CRO) algorithm. The algorithm
can quickly make emergency unloading decisions for the system. Wu [29] proposed an
online task scheduling algorithm based on deep reinforcement learning for mobile edge
computing networks with variable task arrival intensity to achieve online task offloading
and optimize overall task latency. Ji [30] performed intelligent tasks through a cloud–edge
collaborative computing network. A hybrid framework that combines a model-free deep
reinforcement learning algorithm and a model-based optimization algorithm was proposed
to jointly optimize communication resources and computing resources, achieving near-
optimal energy performance. Zhou [31] proposed an edge server placement algorithm
ISC-QL to determine the optimal placement location of edge servers in the Internet of
Vehicles system, which achieved optimization of load balancing, average latency, and
average energy consumption.

In summary, researchers have conducted a lot of research on the task offloading
problem of cloud computing and edge computing. The relevant work is shown in Table 1,
but there are relatively few studies that consider the collaborative integration of cloud, edge,
and end for the task offloading environment. The above research content does not clarify
the impact of edge bandwidth resources on the system data transmission environment. At
the same time, there is a lack of stable and efficient algorithms to solve the task offloading
problem of cloud–edge–end collaboration, which is crucial for optimizing the execution of
large-scale tasks in a multi-user environment.

4



Symmetry 2025, 17, 1225

Table 1. Summary of related works versus our survey.

Reference

Task Offloading Environment Optimization Objective

AlgorithmCloud Edge End Completion
Time

Energy
Consumption

[17] � � � � � APGTO + FGRA two-level algorithm.
[18] � � � � � Advantage Actor Critic (A2C) algorithm.
[19] � � � � � Two-stage evolutionary search

scheme (TESA).
[20] � � � � � Improved genetic algorithm (IGA).
[23] � � � � � Dichotomy search algorithm.
[24] � � � � � Lyapunov optimization method.
[25] � � � � � Evolutionary Game Algorithm.
[26] � � � � � Mathematical analytical method and

Lagrangian dual (LD) method.
[27] � � � � � Speed aware and customized TORA scheme

based on A2C algorithm.
[28] � � � � � Fast Chemical Reaction Optimization

(Fast-CRO) algorithm.
[29] � � � � � Online task scheduling (Online-TS) algorithm.
[30] � � � � � Deep reinforcement learning based hybrid

(DRLH) framework.
[31] � � � � � Edge Server Placement Algorithm ISC-QL.

Ours � � � � � Genetic particle swarm optimization
(GAPSO) algorithm.

3. System Model and Problem Formulation

As shown in Figure 1, we consider a three-layer network framework for cloud–edge–
end collaboration, which mainly includes the cloud computing layer, edge computing layer,
and user device layer. It consists of 1 CS, S ESs, and N UDs, with a total of 1 + S + N nodes.
The coordinates of each node are composed of (X, Y, Z) three-dimensional coordinates.
Each node has its own CPU clock frequency f , fC represents the CPU clock frequency of
the CS, fEj represents the CPU clock frequency of the jth ES (j ∈ S), and fUi represents the
CPU clock frequency of the ith UD (i ∈ N). We assume that each ith UD has Mi tasks to
execute, and each task has a unique characteristic attribute dk (k ∈ Mi) to represent the
computing data size of the task. Each task can be executed on its own user device, all edge
servers, and cloud servers, and the offloading node is unique. Therefore, each task has
(S + 2) execution modes. For tasks with a small computing data size, they can be executed
on the user device, while for tasks with a large computing data size, they can be transferred
to the edge server or cloud server for execution, that is, the processing power of the user
device itself is taken into account, while the high computing resources of the cloud server
are also taken into account.

Since users are generally concerned about task completion efficiency, while service
providers focus on the energy consumption of service provision, we focus on optimizing
the average response time and average energy consumption of all tasks. In the three-layer
network architecture, response time must account for the influence of transmission delay
factors in both edge computing and cloud computing modes. For the cloud computing
mode, the edge server is selected as a transit node. Given that cloud servers feature
abundant bandwidth resources, edge servers act as transit nodes for both edge computing
and cloud computing modes; thus, we focus on the bandwidth resource constraints of edge
servers. Wj represents the bandwidth resource of the jth ES.

In order to make full use of bandwidth resources and computing resources in the
three-layer computing environment, resource exclusivity will be adopted. When there is

5



Symmetry 2025, 17, 1225

a task transmission, the remaining tasks will wait for the release of bandwidth resources.
Similarly, when there is a task execution, the remaining tasks will wait for the release of
computing resources. Table 2 summarizes the key symbols used in this paper. Next, we
introduce the response time model and energy consumption model, respectively [32–35],
and analyze the three-layer computing mode corresponding to each model.

Figure 1. Cloud–edge–end collaborative computing model.

Table 2. Commonly used terms in cloud–edge–end model.

Notation Description

N The number of UD
S The number of ES
Mi The amount of tasks generated by ith UD
M Total number of tasks
dk The data size of kth task
c The number of CPU clock cycles required per bit
κ The effective switching capacitance of the chip
Wj The communication bandwidth of jth ES
N0 Power of noise
σ Path loss index
fUi The CPU clock frequency of ith UD
fEj The CPU clock frequency of jth ES
fC The CPU clock frequency of the CS
pU The transmit power of UD
pE The transmit power of ES
qE Energy consumption per bit in ES
qC Energy consumption per bit in CS
DUi ,Ej The distance between ith UE and jth ES
gUi ,Ej Channel gain between ith UE and jth ES
DEj ,C The distance between jth ES and CS
gEj ,C Channel gain between jth ES and CS
rUi ,Ej The communication rate between ith UD and jth ES
rEj ,C The communication rate between jth ES and CS
Tresk The response time of kth task
EGk The energy consumption of kth task

3.1. Response Time Model

Task response time refers to the complete time interval from task submission to the
return of task processing results, and its components include task waiting time, task
transmission time, and task processing time. In this subsection, we will calculate and
analyze the response time of tasks in different computing modes.

6



Symmetry 2025, 17, 1225

(1) Local computing mode: The local computing mode means that the tasks generated by
the user device are directly executed on the user device. The local computing mode is
not affected by the transmission delay factor. The task response time is the sum of
the execution waiting time and the execution time. When ith UD is idle, the response
time Tresk of kth task (k ∈ Mi) in ith UD is the local execution time of the task, and the
task execution waiting time is 0. Otherwise, the response time Tresk of kth task needs
to take into account the waiting time of the task. The task response time of the local
computing mode is defined as follows:

Tresk = Tewk +
dkc
fUi

(1)

where Tewk represents the execution waiting time of kth task.
(2) Edge computing mode: The edge computing mode refers to the transmission of tasks

generated by user devices to edge servers for execution. The edge computing mode
needs to consider the transmission delay of tasks between user devices and edge
servers. Since the result data after the task is executed is small, the transmission
delay of the result data transmitted back to the user device is ignored here. The
transmission time of kth task is the transmission delay of kth task from ith UD to jth
ES. The task response time is the sum of the transmission waiting time, transmission
time, execution waiting time, and execution time. When the edge server bandwidth
resources are not occupied, the transmission waiting time of kth task is 0. When jth ES
is idle, Tewk of kth task is 0. The transmission rate rUi ,Ej [36] between ith UD and jth ES
is defined as follows:

DUi ,Ej =
√
(XEj − XUi )

2 + (YEj − YUi )
2 + (ZEj − ZUi )

2 (2)

gUi ,Ej = (DUi ,Ej)
−σ (3)

rUi ,Ej = Wj log2 (1 +
pU gUi ,Ej

N0Wj
) (4)

The task response time of the edge computing model is defined as follows:

Ttok = Ttwk +
dk

rUi ,Ej

(5)

Tresk = Ttok + Tewk +
dkc
fEj

(6)

where Ttwk represents the transmission waiting time of kth task, and Ttok represents
the transmission end time of kth task.

(3) Cloud computing mode: The cloud computing model refers to the task generated
by the user device being transmitted to the cloud server for execution. The task is
transmitted to the cloud server, with the edge server as the transit transmission node.
The selection method of the transit edge node is determined by comprehensively
considering the amount of tasks to be transmitted, bandwidth resources of the edge
node, and the distance between the user UD and the CS to which the task is transited
using the edge node. And the occupation of the edge bandwidth resources by the
task transmission is not released until it is transmitted to the cloud server. Since the
result data after the task is executed is small, the transmission delay of the result data

7



Symmetry 2025, 17, 1225

from the cloud server back to the edge server and from the edge server back to the
user device is also ignored here. The transmission time of kth task is the sum of the
transmission delays of kth task from ith UD to jth ES and jth ES to CS. The task response
time is the sum of the transmission waiting time, transmission time, execution waiting
time, and execution time. Similarly, when the edge server bandwidth resources are not
occupied, Ttwk of kth task is 0. When CS is idle, Tewk of kth task is 0. The transmission
rate rEj ,C between jth ES and CS is defined as follows:

DEj ,C =
√
(XC − XEj)

2 + (YC − YEj)
2 + (ZC − ZEj)

2 (7)

gEj ,C = (DEj ,C)
−σ (8)

rEj ,C = Wj log2 (1 +
pEgEj ,C

N0Wj
) (9)

The task response time of the cloud computing model is defined as follows:

Ttok = Ttwk +
dk

rUi ,Ej

+
dk

rEj ,C
(10)

Tresk = Ttok + Tewk +
dkc
fC

(11)

3.2. Energy Consumption Model

Energy consumption refers to the total energy consumed by the system in the process
of processing tasks, and its components mainly include task execution energy consumption
and task transmission energy consumption. In this subsection, we will specifically calculate
and analyze the energy consumption of tasks in different computing modes.

(1) Local computing mode: Since the local computing mode does not perform task trans-
mission, there is no energy consumption generated by task transmission. Therefore,
the energy consumption EGk of kth task is the execution energy consumption of kth

task. The energy consumption of the local computing mode is defined as follows:

EGk = κ( fUi )
v−1dkc (12)

where v is a positive constant.
(2) Edge computing mode: Since the edge computing mode requires the transmission of

tasks between user devices and edge servers, the transmission energy consumption
of tasks needs to be considered. Since the result data after the task is executed is
small, the transmission energy consumption of the result data transmitted from
the edge server back to the user device is ignored here. The transmission energy
consumption only considers the transmission energy consumption of kth task from ith

UD to jth ES. The energy consumption of kth task is the sum of the transmission energy
consumption and the execution energy consumption. The energy consumption of the
edge computing mode is defined as follows:

EGk = pU
dk

rUi ,Ej
+ dkqEj (13)

8



Symmetry 2025, 17, 1225

(3) Cloud computing mode: Since the cloud computing model requires edge servers as
transit nodes, it is necessary to consider the transmission energy consumption of tasks
from user devices to edge servers and from edge servers to cloud servers. Since the
result data after the task is executed is small, the transmission energy consumption of
the result data from the cloud server back to the edge server and from the edge server
back to the user device is also ignored here. The energy consumption of the cloud
computing model is defined as follows:

EGk = pU
dk

rUi ,Ej
+ pE

dk
rEj ,C

+ dkqC (14)

3.3. Problem Formulation

The purpose of this paper is to optimize the task offloading problem in the cloud–edge
collaborative network environment while taking into account the full utilization of the edge
server bandwidth resources and the CPU resources of the three-layer computing nodes.
Formulas (1), (6), and (11) describe the task response time of the three computing modes,
respectively. Since each user is mainly concerned about the efficiency of completing his or
her own tasks, we use the average response time of the task as a measure of user service
quality. The average response time of M tasks is defined as follows:

Tresavg =
M

∑
k=1

(
Tresk

M

)
(15)

Formulas (12)–(14) describe the energy consumption corresponding to the three com-
puting modes, respectively. Since service providers are mainly concerned with the energy
consumption caused by providing services, we use the average energy consumption of
tasks as a measure to evaluate service energy consumption. The average energy consump-
tion of M tasks is defined as follows:

EGavg =
M

∑
k=1

(
EGk
M

)
(16)

The target optimization problem is defined as follows:

min
ω1,ω2

(
ω1Tresavg + ω2EGavg

)
(17)

where w1 and w2 represent the weights of average response time and average energy
consumption in the target optimization problem, respectively.

4. Task Offloading Based on GAPSO

4.1. Standard Particle Swarm Optimization (SPSO) Algorithm and Coding

(1) SPSO: The particle swarm optimization algorithm is a swarm intelligence optimization
technology that simulates the foraging behavior of bird flocks. It finds the optimal
solution by simulating information sharing between individuals in a bird flock [37]. In
the algorithm, each solution is regarded as a particle flying in the solution space. The
particle adjusts its flight direction and velocity according to the individual’s historical
best position (individual extremum) and the group’s historical best position (global
extremum). Each particle has only two attributes: speed and position. The speed
indicates the particle’s moving speed, and the position indicates the particle’s moving
direction [38]. Specifically, since there are M tasks in total, the spatial dimension

9



Symmetry 2025, 17, 1225

is M, and there are L particles in the population, then the solution space can be
expressed as X = (X1, X2, X3, . . . , XL), where the lth particle consists of two M-
dimensional vectors, Xl and Vl . Xl = (xl

1, xl
2, xl

3, . . . , xl
M)T represents the position

of the particle, and Xl(h) represents the position after h rounds of iteration. At the
same time, the speed of each particle is expressed as Vl = (vl

1, vl
2, vl

3, . . . , vl
M)T. As the

iteration proceeds, the position and speed of the particle will change according to the
individual historical optimal solution pbest and the global optimal solution gbest, as
shown in Formulas (18) and (19). The solution can be obtained by iterative execution
until the end.

Vl(h+1) = ωVl(h) + c1r1(pbest − Xl(h)) + c2r2(gbest − Xl(h)) (18)

Xl(h+1) = Xl(h) + Vl(h+1) (19)

where r1 and r2 are random numbers in the range [0, 1].
(2) Coding: The position and speed of particles in the PSO algorithm are two important

properties, since each task has O = S + 2 execution modes. The position and speed of
particles are expressed by Formulas (20) and (21). Among them, xmo = 0 means that
task m is not executed at node o, and xmo = 1 means that task m is executed at node o.
The particle position is constrained by Formula (22). And vmo is a random number
between (−5, 5). After the calculation of Formula (18), Vl(h+1) will be calculated
by Formula (23), and each vmo value will be converted into a probability between
(0, 1). Formula (19) indicates that roulette is used to select execution nodes to avoid
falling into local optimality. In the particle position matrix of this paper, the higher
the number of rows, the lower the corresponding task transmission and execution
priority. Formula (24) is used as the particle fitness.

X =

⎡⎢⎢⎢⎢⎢⎣
x11 x12 · · · x1O

x21 x22 · · · x2O

x31 x32 · · · x3O

· · · · · · · · · · · ·
xM1 xM2 · · · xMO

⎤⎥⎥⎥⎥⎥⎦ (20)

V =

⎡⎢⎢⎢⎢⎢⎣
v11 v12 · · · v1O

v21 v22 · · · v2O

v31 v32 · · · v3O

· · · · · · · · · · · ·
vM1 vM2 · · · vMO

⎤⎥⎥⎥⎥⎥⎦ (21)

ΣO
o=1xmo = 1 (22)

φ(v) =
1

1 + ev (23)

−
(

ω1Tresavg + ω2EGavg

)
(24)

where m = 1, 2, ..., M. o = 1, 2, ..., O.

10



Symmetry 2025, 17, 1225

4.2. Adaptive Inertia Weight w

The inertia weight w plays a balancing role between the global search capability and
local search capability of the SPSO algorithm. It determines the extent to which the current
velocity of the particle is affected by the previous velocity and has a significant impact
on the accuracy and convergence speed of the algorithm. In the early stage of algorithm
iteration, setting a larger w can increase the movement speed of particles, thus enhancing
the global search capability. As the iterative process proceeds, gradually reducing w can
reduce the moving speed of particles, prompting the particle swarm to focus on local search.
We adopt a linear strategy to adjust w to adaptively adjust the local and global search ability
of particles. The specific adjustment method is shown in Formula (25).

ω = ωmax − (ωmax − ωmin) ∗ h
hmax

(25)

where h and hmax represent the current iteration number and the maximum iteration
number, respectively, and wmax and wmin are the maximum and minimum values of the
predefined inertia weight, respectively.

4.3. Adaptive Acceleration Coefficients c1, c2

The acceleration coefficient c1 determines the particle’s dependence on the local op-
timum, which helps to explore the local environment and maintain population diversity.
The acceleration coefficient c2 determines the particle’s dependence on the global optimum,
which helps the algorithm converge quickly. We use a nonlinear strategy to dynamically
adjust c1 and c2. Specifically, let c1 gradually decrease from 2.5, while c2 gradually increases
from 0.5. In the early stages of iteration, particles rely more on personal experience, in-
crease search diversity, quickly approach the global optimal solution, and avoid falling
into the local optimum. As the iteration deepens, particles gradually turn to rely on group
experience, enhance local search capabilities, fine-tune the optimal solution, and accelerate
convergence. The specific adjustment method is shown in Formulas (26) and (27).

c1 = (cmin − cmax) ∗
√

h
hmax

+ cmax (26)

c2 = (cmax − cmin) ∗
√

h
hmax

+ cmin (27)

where cmax and cmin are the maximum and minimum values of the predefined acceleration
coefficients, respectively.

4.4. OBL Algorithm Initialization Population

The OBL algorithm is a search strategy for optimization problems that enhances
population diversity by introducing the concept of opposition. This approach effectively
improves the algorithm’s search capability and the quality of the initial population. It
increases the diversity of the search by generating a corresponding opposition solution
for each initial solution, which helps to explore the solution space more comprehensively.
Compared with simply introducing random solutions, it is more likely to approach the
global optimum, thereby accelerating the convergence of the algorithm. At the same
time, it also helps to avoid falling into the local optimum and improve the global search
performance of the algorithm. The detailed process of initializing the particle swarm is
shown in Algorithm 1.

11



Symmetry 2025, 17, 1225

4.5. Crossover and Mutation

Crossover in genetic algorithms is a process that simulates biological reproduction. It
allows two parent individuals to exchange some of their genetic information to produce
offspring. The purpose of crossover is to combine the excellent characteristics of parent
individuals to create new individuals that may have higher fitness. Mutation is a process
that simulates gene mutation. It introduces new genetic diversity by randomly changing
one or more gene bits in the genetic code of an individual with a certain probability.
Mutation operations can sometimes guide particles out of the local optimum and find the
global optimal solution.

This paper uses crossover and mutation operations in GA to update the local optimal
solution of particles, that is, to update the position matrix of particles. This paper uses
two-point crossover to generate new individuals. And all gene bits of new individuals are
mutated probabilistically. Since each column in the position matrix represents an execution
mode, the S column is edge server computing, and the two columns are local computing
and cloud server computing. Therefore, when a gene bit mutates, first, the three computing
methods are selected with equal probability, and then the specific execution mode is selected
with equal probability, that is, the probability of mutation to local computing and cloud
server computing is 1

3 , and the probability of mutation to any edge server computing is 1
3S .

The crossover and mutation operations are shown in Figures 2 and 3. Algorithm 2 details
the process of GA updating the local optimal solution.

Algorithm 1 Initialize the population-based OBL

Input: L (population size), M (number of tasks), O (number of execution modes)
1: for l = 1 to L do
2: for m = 1 to M do
3: mode = randint(1, O + 1);
4: modeT = O + 1 − mode;
5: for o = 1 to O do
6: if theno = mode
7: xl

mo = 1;
8: else
9: xl

mo = 0;
10: end if
11: if o = modeT then
12: xl′

mo = 1;
13: else
14: xl′

mo = 0;
15: end if
16: vl

mo = rand f loat(−5, 5);
17: vl′

mo = rand f loat(−5, 5);
18: end for
19: end for
20: P = P ∪ (Xl , Vl);
21: P′ = P′ ∪ (Xl′ , Vl′);
22: end for
23: In the population P ∪ P′, the task response time and energy consumption of each

particle are calculated using Equations (1), (6), (11)–(14) according to the position of
each particle. And obtain the fitness of all particles according to (15), (16), (24) and
sort them;

24: Select the top L particles as the initial population P;
25: return P

12



Symmetry 2025, 17, 1225

Figure 2. Crossover operation of the position matrix.

Figure 3. Mutation operation on the location matrix.

Algorithm 2 Update local optimal solution based GA

Input: p (current particle), Xpbest (position matrix of the local optimal solution of the cur-
rent particle), Xgbest (position matrix of the global optimal solution of the population),
pm (mutation probability)

1: X1, X2 = Crossover(Xp, Xpbest);
2: X3, X4 = Crossover(Xp, Xgbest);
3: for i = 1 to 4 do
4: X

′
i = Mutation(Xi);

5: end for
6: Calculate the fitness corresponding to the position matrices X

′
1, X

′
2, X

′
3, and X

′
4 respec-

tively;
7: Compare the fitness corresponding to the position matrices Xpbest, Xp, X

′
1, X

′
2, X

′
3, X

′
4,

select the position matrix with the best fitness as the position matrix of the local optimal
solution for the current particle, and update the particle’s local optimal position Xpbest;

4.6. GAPSO Algorithm

This paper adopts the GAPSO algorithm to solve the problem of task offloading in
cloud–edge–end collaboration. Task offloading is optimized by introducing the OBL algo-
rithm, adaptive inertia weight, and adaptive acceleration coefficient. In this algorithm, the
OBL algorithm is first used to initialize the particle swarm. The OBL algorithm introduces
the concept of opposition in the particle initialization process, constructs opposing particles,
and avoids the initial solution being confined to a limited range, so as to improve the
quality and diversity of the initial population. Then the population is updated iteratively.
The inertia weight and acceleration coefficient are updated at the beginning of each iter-
ation, responding to the evolution state of the particle swarm in real time, dynamically
optimizing the balance between exploration and development, and avoiding premature
convergence or slow convergence. During the iteration process, the GA algorithm is used to
implement particle crossover and mutation operations, update the local optimal solutions
of all particles, and guide the particles to jump out of the local optimal solution with a
certain possibility. Until the end condition is met, the optimal task offloading solution is
output. The detailed process is shown in Algorithm 3.

13



Symmetry 2025, 17, 1225

Algorithm 3 The algorithm steps of GAPSO

Initialization parameters: wmax, wmin, cmax, cmin
Output: The offloading solution for all tasks corresponding to the global optimal solution

1: Use Algorithm 1 to initialize the population P;
2: Initialize the local optimal solution of each particle and the global optimal solution of

the population;
3: h = 0;
4: while (h < hmax) or (the fitness function value does not change within a certain number

of iterations) do
5: Use Equations (25)–(27) to update the inertia weight ω and acceleration

coefficients c1, c2;
6: for l = 1 to L do
7: Particle Pl = (Xl , Vl), use Equation (18) to update the speed Vl , and use

Equations (19) and (23) to update the position Xl ;
8: Through the position Xl , calculate the response time and energy consumption

of all tasks, and update the fitness of the current particle Pl ;
9: Use Algorithm 2 to update the local optimal solution of the current particle;

10: end for
11: Update the global optimal solution of the population;
12: h = h + 1;
13: end while

5. Experiments and Analysis

5.1. Experimental Settings

In this section, we will consider a network topology environment covered by one CS,
multiple ESs, and multiple UDs. The positions of CS, ESs, and UDs are determined by
three-dimensional spatial coordinates (X, Y, Z). The position of CS is fixed. The positions
of ESs and UDs are randomly distributed in the spatial area, and the distance between
them is ensured to exceed a certain limit distance to avoid overcrowding. Each UD will
generate a random number of tasks, each with a unique attribute, task data size, in the
range of [3000, 5000] KB.

We use the Windows 11 operating system to build the experimental simulation envi-
ronment on the Python 3.11.5 platform. The relevant parameters used in the simulation
experiment are summarized in Table 3 [39,40]. The following algorithms are used to com-
pare the performance with the algorithm proposed in this paper: GA, SPSO, adaptive
inertia weight and chaotic learning factor particle swarm optimization (AICLPSO) [41], and
chaotic adaptive particle swarm optimization algorithm (CAPSO) [42]. This experiment
is based on a symmetric architecture. All algorithms are run under the same conditions,
including the same cloud–edge–end topology environment, environment parameter con-
figuration, number of iterations, and evaluation criteria. This symmetric design ensures
fairness in the comparison between algorithms and helps improve the reliability of the re-
sults. At the same time, this balanced experimental structure not only helps to enhance the
effectiveness of the research but also fits in with the consistency emphasized by symmetry.

In view of the research problem in this paper, the parameter settings of each algorithm
are shown in Table 4. Considering the influence of randomness, each algorithm is repeated
10 times.

14



Symmetry 2025, 17, 1225

Table 3. Experimental parameter setting.

Parameters Value

Mi Unif (8, 10)
dk (KB) Unif (3000, 5000)
c (cycles/bit) 500
κ 10−28

v 3
σ 4
Wj (MHZ) randint (10, 15)
N0 (dBm/HZ) −174
fUi (GHZ) Unif (0.5, 1.0)
fEj (GHZ) Unif (5.0, 10.0)
fC (GHZ) 40
pU (mW) 100
pE (mW) 200
qE (J/bit) Unif (10−8, 2 × 10−8)
qC (J/bit) Unif (3 × 10−8, 4 × 10−8)

Table 4. Information on algorithm parameters settings.

Algorithm Parameter Settings

GA pm = 0.1, pc = 0.8
SPSO ω = 0.9, c1 = c2 = 2
AICLPSO ω1 = 0.75, ω2 = 0.35, ci1 = ci2 = n = h = 2, g = m = 1,

s = f = 0.4, a = 0, r = 0.5, ρ = 2.593, x0 = 0.6
CAPSO ωmax = 0.9, ωmin = 0.4, cmax = 2.5, cmin = 0.5, ξ = 0.2, a = 4
GAPSO ωmax = 0.9, ωmin = 0.4, cmax = 2.5, cmin = 0.5, pm = 0.2

5.2. Performance Evaluation

Based on actual needs, users are usually more concerned about the efficiency of task
execution, while service providers regard energy consumption in the service process as a
core concern. Based on this realistic scenario, in order to achieve a balanced optimization
of the interests of both users and service providers, this section uses the average response
time and average energy consumption with equal weights as comprehensive evaluation
indicators. In this section, in order to intuitively show the significant advantages of
the cloud–edge–end environment, we rely on the offloading algorithm proposed in this
article. For the four environments of cloud–edge–end (CEE) collaboration, cloud–edge
(CE1) collaboration, cloud–end (CE2) collaboration, and edge–end (EE) collaboration, we
focus on comparing and analyzing their optimal average response time and total energy
consumption performance under the task number gradient of 200, 225, 250, 275, and 300.
At the same time, under the same cloud–edge–end collaboration experimental environment
configuration, we will further compare the optimization performance differences between
the proposed algorithm and other algorithms.

(1) Parameter sensitivity analysis: Figure 4a,b are experiments conducted while keeping
cmax and cmin unchanged. In Figure 4a, ωmax is kept unchanged. It can be seen from the
figure that the curve converges earlier when ωmin is 0.2. This is because the low inertia
weight in the middle and late stages of the iteration causes the particles to ignore the
historical speed and completely rely on the current optimal position, resulting in too
fast convergence. When ωmin is 0.6, the curve converges more slowly and the final
effect is poor. This is because the particle speed is insufficiently attenuated, and a

15



Symmetry 2025, 17, 1225

strong exploration inertia is always maintained, resulting in the inability to converge
well in the over-exploration search space. In Figure 4b, ωmin is kept unchanged. It
can be seen from the figure that the curve converges the worst when ωmax is 0.7.
This is because when ωmax is small, the inertial component of the particle speed is
weak, so the particles rely on the attraction of c1 and c2 earlier, which accelerates the
development to the current optimal position, resulting in insufficient exploration,
and the particles are easy to quickly gather in the local optimal area. When ωmax

is 1.1, the effect of faster exploration of the optimal solution is shown in the early
stage of the iteration. This is because the inertial component of the particle velocity is
higher and more dependent on the historical velocity, which reduces the attraction
of c1 and c2, thereby promoting a wider exploration of the search space, so there is
a greater probability of finding a better solution in the early stage, but it will not be
able to converge to the optimal solution quickly in the later stage. Figure 4c,d are
experiments carried out while keeping ωmax and ωmin unchanged. In Figure 4c, cmax

is kept unchanged. It can be seen from the figure that the convergence effect is the
worst when cmin is 0.2. This may be because the particles in the later stage mainly
rely on inertial motion, lack traction to the optimal solution, and cannot jump out
of the suboptimal solution. When cmin is 0.8, the convergence effect is poor. This is
because the c1 and c2 coefficients are too high in the middle and late stages, forcing
the particles to develop to the current optimal position too early and fall into the local
optimal solution. In Figure 4d, cmin is kept unchanged. It can be seen from the figure
that when cmax is 2.2, the convergence is slow and the convergence effect is the worst.
This is because the maximum step size is limited in the early stage, the exploration
ability is insufficient, and it is impossible to jump out of the local optimum. When
cmax is set to 2.6, the initial optimization is faster, but the convergence effect is poor.
This is because the higher the cmax value, the greater the exploration advantage in the
early stage. However, this will also make the particle movement step too large, which
makes it easy to miss the optimal solution. Therefore, in order to achieve a balance
between exploration and development and ensure robust convergence, ωmax is set to
0.9, ωmin is set to 0.4, cmax is set to 2.5, and cmin is set to 0.5.

(2) Comparison of average response time, total energy consumption, and number of tasks:
Figures 5 and 6 show the changing trends of the average response time for completing
each task and the total energy consumption for completing all tasks in different
environments. In the four operating environments, as the number of tasks increases,
the amount of tasks waiting to be processed in different execution modes increases
due to the total amount of computing resources, resulting in an upward trend in the
average response time and total energy consumption of tasks. In Figure 5, under the
same number of tasks, CEE has a maximum acceleration effect of 49.64% in response
time compared with CE2, a maximum acceleration effect of 27.26% compared with EE,
and a maximum acceleration effect of 4.31% compared with CE1, showing a significant
advantage overall. In Figure 6, under the same number of tasks, CEE has a maximum
energy saving of 24.83% compared with CE2 and a maximum energy saving of 22.89%
compared with CE1, showing a significant advantage. Compared with EE, CEE takes
the cloud computing model into consideration. Since the distance from CS to ES
is significantly increased compared to the distance from ES to UD, a large amount
of transmission energy is required to offload tasks to CS for processing, resulting
in more total energy consumption for CEE than EE. These two figures show that
the emergence of edge computing will greatly reduce the response time and energy

16



Symmetry 2025, 17, 1225

consumption of completing tasks. At the same time, it can also show that cloud–edge–
end collaboration has significant advantages and broad development prospects.

(a) (b)

(c) (d)

Figure 4. (a) ωmin variable. (b) ωmax variable. (c) cmin variable. (d) cmax variable.

Figure 5. Average response times for different environments and number of tasks.

17



Symmetry 2025, 17, 1225

Figure 6. Total energy consumption for different environments and number of tasks.

(3) Algorithm performance: Under the cloud–edge–end collaborative processing frame-
work proposed in this paper, the time complexity of the GAPSO, GA, SPSO, AICLPSO,
and CAPSO algorithms is consistent with O(n3 log n). The average change in the
objective function value obtained by repeating 10 experiments for each algorithm to
process the same task data in the same cloud–edge–end collaborative environment is
shown in Figure 7. From the change in the curve, the GAPSO algorithm proposed
in this paper shows obvious optimization effect. In the early stage of iteration, the
GAPSO algorithm can obtain better initial solutions than the GA, SPSO, and AICLPSO
algorithms, which highlights that the introduction of the OBL algorithm in the GAPSO
algorithm can increase the diversity of the initial population and overcome the obsta-
cle of falling into the local optimum to a certain extent. In the later stage of iteration,
the GAPSO algorithm achieves better convergence accuracy than the other four al-
gorithms and can reduce the objective function value by about 6–12%, indicating
that the algorithm can find a better task allocation solution. The objective function
value does not change after 1200 consecutive iterations, which is used as the basis for
judging the convergence of the algorithm. From the convergence points marked in
the figure, it can be seen that the GAPSO algorithm converges faster than the GA and
SPSO algorithms. As can be seen from Table 5, GAPSO has obvious advantages over
other algorithms in terms of mean, variance, and standard deviation, indicating that
the algorithm has high stability. In general, the GAPSO algorithm we proposed has
higher convergence accuracy and stronger stability. It can effectively avoid falling
into local optimal solutions and is easier to search for global optimal solutions.

Table 5. Test results of each algorithm.

Algorithm Count Mean Variance Standard Deviation

GA 10 23.2442 0.0667 0.2582
SPSO 10 21.9417 0.0193 0.1391

AICLPSO 10 22.3194 0.0464 0.2153
CAPSO 10 21.8245 0.0602 0.2453
GAPSO 10 20.3197 0.0134 0.1156

18



Symmetry 2025, 17, 1225

Figure 7. Change in the average objective function value of each algorithm.

6. Conclusions

This paper focuses on the problem of task offloading in the cloud–edge–end col-
laborative environment and constructs a cloud–edge–end collaborative task processing
framework. The framework supports flexible allocation of tasks between user devices,
edge servers, and cloud servers, can give full play to the advantages of nodes at each
layer, and effectively reduce the computing pressure of user devices. At the same time,
in order to reduce the average response time and execution energy consumption of task
completion, this paper introduces an opposition-based learning algorithm, adaptive inertia
weight, and adaptive acceleration coefficient to propose a GAPSO algorithm. The proposed
algorithm is compared with other traditional algorithms and heuristic algorithms using
method symmetric design. Experimental results verify that the proposed algorithm can
obtain a better initialization solution set and task offloading scheme, reducing the objective
function value by about 6–12%, while showing excellent convergence speed, accuracy, and
stability. At the algorithm level, there are many research algorithms for the cloud–edge–
device collaborative environment. However, algorithms with high adaptability to actual
application scenarios are still scarce. At the practical application level, cloud–edge–end
collaboration has gradually penetrated into key areas such as industrial Internet of Things,
intelligent transportation, smart cities, and telemedicine. However, the heterogeneity and
dynamic nature of resources in different hardware devices, as well as the privacy and secu-
rity issues of user devices during collaborative task processing, have not been effectively
resolved. Therefore, for cloud–edge–end collaborative applications, the development of
highly adaptable algorithms, the research on resource computing power, and the privacy
and security of data transmission are still issues worth studying in the future.

Author Contributions: Conceptualization, W.W., Y.H. and P.Z.; Methodology, W.W., Z.X. and L.T.;
Software, W.W. and Y.H.; Investigation, Y.H., Z.X. and L.T.; Writing—original draft, W.W., Y.H. and
Z.X.; Visualization: Y.H. and L.T.; Validation, W.W. and Y.H.; Formal analysis, P.Z. All authors have
read and agreed to the published version of this manuscript.

Funding: This work is partially supported by the Tertiary Education Scientific research project of
Guangzhou Municipal Education Bureau under Grant 2024312246, the Guangdong Province Natural
Science Foundation of Major Basic Research and Cultivation Project under Grant 2024A1515011976,
the Shandong Provincial Natural Science Foundation under Grant ZR2023LZH017, ZR2022LZH015,
ZR2023QF025 and ZR2024MF066, the National Natural Science Foundation of China under Grant
52477138, 62471493 and 62402257, and the China University Research Innovation Fund under
Grant 2023IT207.

19



Symmetry 2025, 17, 1225

Data Availability Statement: The original contributions presented in this study are included in the
article. Further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no potential conflicts of interests.

References

1. Gao, H.; Wang, X.; Wei, W.; Al-Dulaimi, A.; Xu, Y. Com-DDPG: Task offloading based on multiagent reinforcement learning
for information-communication-enhanced mobile edge computing in the internet of vehicles. IEEE Trans. Veh. Technol. 2023,
73, 348–361. [CrossRef]

2. Quy, V.K.; Hau, N.V.; Anh, D.V.; Ngoc, L.A. Smart healthcare IoT applications based on fog computing: Architecture, applications
and challenges. Complex Intell. Syst. 2022, 8, 3805–3815. [CrossRef]

3. Mahajan, H.B.; Junnarkar, A.A. Smart healthcare system using integrated and lightweight ECC with private blockchain for
multimedia medical data processing. Multimed. Tools Appl. 2023, 82, 44335–44358. [CrossRef] [PubMed]

4. Sharma, M.; Tomar, A.; Hazra, A. Edge computing for industry 5.0: Fundamental, applications and research challenges. IEEE
Internet Things J. 2024, 11, 19070–19093. [CrossRef]

5. Tang, S.; Chen, L.; He, K.; Xia, J.; Fan, L.; Nallanathan, A. Computational intelligence and deep learning for next-generation
edge-enabled industrial IoT. IEEE Trans. Netw. Sci. Eng. 2022, 10, 2881–2893. [CrossRef]

6. Islam, A.; Debnath, A.; Ghose, M.; Chakraborty, S. A survey on task offloading in multi-access edge computing. J. Syst. Archit.
2021, 118, 102225. [CrossRef]

7. Liu, B.; Xu, X.; Qi, L.; Ni, Q.; Dou, W. Task scheduling with precedence and placement constraints for resource utilization
improvement in multi-user MEC environment. J. Syst. Archit. 2021, 114, 101970. [CrossRef]

8. Wang, X.; Xing, X.; Li, P.; Zhang, S. Optimization Scheme of Single-Objective Task Offloading with Multi-user Participa-
tion in Cloud-Edge-End Environment. In Proceedings of the 2022 IEEE Smartworld, Ubiquitous Intelligence & Computing,
Scalable Computing & Communications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles (Smart-
World/UIC/ScalCom/DigitalTwin/PriComp/Meta), Haikou, China, 15–18 December 2022; pp. 1166–1171.

9. Saeik, F.; Avgeris, M.; Spatharakis, D.; Santi, N.; Dechouniotis, D.; Violos, J.; Leivadeas, A.; Athanasopoulos, N.; Mitton, N.;
Papavassiliou, S. Task offloading in Edge and Cloud Computing: A survey on mathematical, artificial intelligence and control
theory solutions. Comput. Netw. 2021, 195, 108177. [CrossRef]

10. Zhang, Y.; Yu, H.; Zhou, W.; Man, M. Application and research of IoT architecture for End-Net-Cloud Edge computing. Electronics
2022, 12, 1. [CrossRef]

11. Pan, L.; Liu, X.; Jia, Z.; Xu, J.; Li, X. A multi-objective clustering evolutionary algorithm for multi-workflow computation
offloading in mobile edge computing. IEEE Trans. Cloud Comput. 2021, 11, 1334–1351. [CrossRef]

12. Gong, T.; Zhu, L.; Yu, F.R.; Tang, T. Edge intelligence in intelligent transportation systems: A survey. IEEE Trans. Intell. Transp.
Syst. 2023, 24, 8919–8944. [CrossRef]

13. Zhang, Y.; Chen, G.; Wen, T.; Yuan, Q.; Wang, B.; Hu, B. A cloud-edge collaborative framework and its applications. In
Proceedings of the 2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT), Chongqing,
China, 22–24 November 2021; pp. 443–447.

14. McEnroe, P.; Wang, S.; Liyanage, M. A survey on the convergence of edge computing and AI for UAVs: Opportunities and
challenges. IEEE Internet Things J. 2022, 9, 15435–15459. [CrossRef]

15. Liu, Y.; Deng, Q.; Zeng, Z.; Liu, A.; Li, Z. A hybrid optimization framework for age of information minimization in UAV-assisted
MCS. IEEE Trans. Serv. Comput. 2025, 18, 527–542. [CrossRef]

16. Chen, M.; Liu, A.; Xiong, N.N.; Song, H.; Leung, V.C. SGPL: An intelligent game-based secure collaborative communication
scheme for metaverse over 5G and beyond networks. IEEE J. Sel. Areas Commun. 2023, 42, 767–782. [CrossRef]

17. Zhou, J.; Zhang, X. Fairness-aware task offloading and resource allocation in cooperative mobile-edge computing. IEEE Internet
Things J. 2021, 9, 3812–3824. [CrossRef]

18. Sun, Y.; Zhang, X. A2C learning for tasks segmentation with cooperative computing in edge computing networks. In
Proceedings of the GLOBECOM 2022—2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 4–8 December 2022;
pp. 2236–2241.

19. Chen, Q.; Yang, C.; Lan, S.; Zhu, L.; Zhang, Y. Two-Stage Evolutionary Search for Efficient Task Offloading in Edge Computing
Power Networks. IEEE Internet Things J. 2024, 11, 30787–30799. [CrossRef]

20. Zhu, A.; Wen, Y. Computing offloading strategy using improved genetic algorithm in mobile edge computing system. J. Grid
Comput. 2021, 19, 38. [CrossRef]

21. Chen, H.; Qin, W.; Wang, L. Task partitioning and offloading in IoT cloud-edge collaborative computing framework: A survey. J.
Cloud Comput. 2022, 11, 86. [CrossRef]

20



Symmetry 2025, 17, 1225

22. Hu, S.; Xiao, Y. Design of cloud computing task offloading algorithm based on dynamic multi-objective evolution. Future Gener.
Comput. Syst. 2021, 122, 144–148. [CrossRef]

23. Zhang, X.; Zhang, H.; Zhou, X.; Yuan, D. Energy minimization task offloading mechanism with edge-cloud collaboration in IoT
networks. In Proceedings of the 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 25–28
April 2021; pp. 1–7.

24. Gao, J.; Chang, R.; Yang, Z.; Huang, Q.; Zhao, Y.; Wu, Y. A task offloading algorithm for cloud-edge collaborative system based
on Lyapunov optimization. Clust. Comput. 2023, 26, 337–348. [CrossRef]

25. Lei, Y.; Zheng, W.; Ma, Y.; Xia, Y.; Xia, Q. A novel probabilistic-performance-aware and evolutionary game-theoretic approach to
task offloading in the hybrid cloud-edge environment. In Proceedings of the Collaborative Computing: Networking, Applications
and Worksharing: 16th EAI International Conference, CollaborateCom 2020, Shanghai, China, 16–18 October 2020; Proceedings,
Part I 16; Springer: Berlin/Heidelberg, Germany, 2021; pp. 255–270.

26. Liu, F.; Huang, J.; Wang, X. Joint task offloading and resource allocation for device-edge-cloud collaboration with subtask
dependencies. IEEE Trans. Cloud Comput. 2023, 11, 3027–3039. [CrossRef]

27. Zhu, D.; Li, T.; Tian, H.; Yang, Y.; Liu, Y.; Liu, H.; Geng, L.; Sun, J. Speed-aware and customized task offloading and resource
allocation in mobile edge computing. IEEE Commun. Lett. 2021, 25, 2683–2687. [CrossRef]

28. Qu, X.; Wang, H. Emergency task offloading strategy based on cloud-edge-end collaboration for smart factories. Comput. Netw.
2023, 234, 109915. [CrossRef]

29. Wu, H.; Geng, J.; Bai, X.; Jin, S. Deep reinforcement learning-based online task offloading in mobile edge computing networks.
Inf. Sci. 2024, 654, 119849. [CrossRef]

30. Ji, Z.; Qin, Z. Computational offloading in semantic-aware cloud-edge-end collaborative networks. IEEE J. Sel. Top. Signal Process.
2024, 18, 1235–1248. [CrossRef]

31. Zhou, Z.; Abawajy, J. Reinforcement learning-based edge server placement in the intelligent internet of vehicles environment.
IEEE Trans. Intell. Transp. Syst. 2025. [CrossRef]

32. Cai, J.; Liu, W.; Huang, Z.; Yu, F.R. Task decomposition and hierarchical scheduling for collaborative cloud-edge-end computing.
IEEE Trans. Serv. Comput. 2024, 17, 4368–4382. [CrossRef]

33. Wang, J.; Feng, D.; Zhang, S.; Liu, A.; Xia, X.G. Joint computation offloading and resource allocation for MEC-enabled IoT systems
with imperfect CSI. IEEE Internet Things J. 2020, 8, 3462–3475. [CrossRef]

34. An, X.; Fan, R.; Hu, H.; Zhang, N.; Atapattu, S.; Tsiftsis, T.A. Joint task offloading and resource allocation for IoT edge computing
with sequential task dependency. IEEE Internet Things J. 2022, 9, 16546–16561. [CrossRef]

35. Fan, W.; Liu, X.; Yuan, H.; Li, N.; Liu, Y. Time-slotted task offloading and resource allocation for cloud-edge-end cooperative
computing networks. IEEE Trans. Mob. Comput. 2024, 23, 8225–8241. [CrossRef]

36. Tong, Z.; Deng, X.; Mei, J.; Liu, B.; Li, K. Response time and energy consumption co-offloading with SLRTA algorithm in
cloud–edge collaborative computing. Future Gener. Comput. Syst. 2022, 129, 64–76. [CrossRef]

37. Alqarni, M.A.; Mousa, M.H.; Hussein, M.K. Task offloading using GPU-based particle swarm optimization for high-performance
vehicular edge computing. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 10356–10364. [CrossRef]

38. Ma, S.; Song, S.; Yang, L.; Zhao, J.; Yang, F.; Zhai, L. Dependent tasks offloading based on particle swarm optimization algorithm
in multi-access edge computing. Appl. Soft Comput. 2021, 112, 107790. [CrossRef]

39. Wang, Y.; Ru, Z.Y.; Wang, K.; Huang, P.Q. Joint deployment and task scheduling optimization for large-scale mobile users in
multi-UAV-enabled mobile edge computing. IEEE Trans. Cybern. 2019, 50, 3984–3997. [CrossRef]

40. Tong, Z.; Deng, X.; Ye, F.; Basodi, S.; Xiao, X.; Pan, Y. Adaptive computation offloading and resource allocation strategy in a
mobile edge computing environment. Inf. Sci. 2020, 537, 116–131. [CrossRef]

41. Yuan, C.; Su, Y.; Chen, R.; Zhao, W.; Li, W.; Li, Y.; Sang, L. Multimedia task scheduling based on improved PSO in cloud
environment. In Proceedings of the 2023 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting
(BMSB), Beijing, China, 14–16 June 2023; pp. 1–6.

42. Duan, Y.; Chen, N.; Chang, L.; Ni, Y.; Kumar, S.S.; Zhang, P. CAPSO: Chaos adaptive particle swarm optimization algorithm.
IEEE Access 2022, 10, 29393–29405. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

21



Article

Adaptive Network-Based Fuzzy Inference System Training
Using Nine Different Metaheuristic Optimization Algorithms
for Time-Series Analysis of Brent Oil Price and Detailed
Performance Analysis

Ebubekir Kaya 1,2,*, Ahmet Kaya 3 and Ceren Baştemur Kaya 4

1 Department of Computer Engineering, Engineering Architecture Faculty, Nevşehir Hacı Bektaş Veli
University, Nevşehir 50100, Türkiye

2 CEKA Software R&D Co., Ltd., Nevşehir 50100, Türkiye
3 Departments of Mathematics, Faculty of Arts and Sciences, Nevşehir Hacı Bektaş Veli University,

Nevşehir 50100, Türkiye; ahmetkaya@nevsehir.edu.tr
4 Department of Computer Technologies, Nevşehir Vocational School, Nevşehir Hacı Bektaş Veli University,

Nevşehir 50100, Türkiye; ceren@nevsehir.edu.tr
* Correspondence: ebubekir@nevsehir.edu.tr or ebubekirkaya@yandex.com

Abstract: Brent oil holds a significant position in the global energy market, as oil prices in
many regions are indexed to it. Therefore, forecasting the future price of Brent oil is of great
importance. In recent years, artificial intelligence techniques have been widely applied in
modeling and prediction tasks. In this study, an Adaptive Neuro-Fuzzy Inference System
(ANFIS), a well-established AI approach, was employed for the time-series forecasting of
Brent oil prices. To ensure effective learning and improve prediction accuracy, ANFIS was
trained using nine different metaheuristic algorithms: Artificial Bee Colony (ABC), Selfish
Herd Optimizer (SHO), Biogeography-Based Optimization (BBO), Multi-Verse Optimizer
(MVO), Teaching–Learning-Based Optimization (TLBO), Cuckoo Search (CS), Moth Flame
Optimization (MFO), Marine Predator Algorithm (MPA), and Flower Pollination Algorithm
(FPA). Symmetric training procedures were applied across all algorithms to ensure fair
and consistent evaluation. The analyses were conducted on the lowest and highest daily,
weekly, and monthly Brent oil prices. Mean squared error (MSE) was used as the primary
performance metric. The results showed that all algorithms achieved effective prediction
performance. Among them, BBO and TLBO demonstrated superior accuracy and stability,
particularly in handling the complexities of Brent oil forecasting. This study contributes to
the literature by combining ANFIS and metaheuristics within a symmetric framework of
experimentation and evaluation.

Keywords: artificial intelligence; ANFIS; Brent oil; metaheuristic optimization; methodological
symmetry; time-series analysis; swarm intelligence; optimization algorithms; nature-
inspired algorithms

1. Introduction

For many years, crude oil has been one of the most significant energy and financial
assets in the world and continues to be so. Roughly one-third of the world’s energy is
derived from crude oil, which may be refined into a variety of fuels to satisfy varied
consumer needs [1]. It is also a common raw material for petroleum-based items in daily

Symmetry 2025, 17, 786 https://doi.org/10.3390/sym1705078622



Symmetry 2025, 17, 786

life. Since fluctuations in the price of crude oil have a domino effect on the global economy,
forecasting its price is crucial for planning long-term strategies. Because of its very volatile
and turbulent structure—which is especially influenced by politics—accurate prediction-
making is crucial [1,2]. In order to make our predictions, we must first discuss artificial
intelligence, an area of study that has seen significant growth in popularity recently and
has been employed widely. The primary methods of artificial intelligence include heuristic
optimization algorithms, fuzzy logic, artificial neural networks, and neuro-fuzzy systems.
Numerous issues in the actual world have been resolved with them [3–5]. Fuzzy sets and
inference systems are the most preferred approach for solving ambiguous and imprecise
situations [6]. However, it is crucial to keep in mind that they are unable to make rules
on their own or carry out the learning process [7]. Nonetheless, self-organization, self-
interaction, and environmental learning are all possible with artificial neural networks
(ANNs) [8]. The Adaptive Network-Based Fuzzy Inference System (ANFIS) [9], which
integrates the characteristics of artificial neural networks and fuzzy inference systems, is
one of the most well-known neuro-fuzzy systems. It combines the best features of both
systems: fuzzy, which performs well in mapping via membership functions and alpha cuts,
and ANN, which is great at self-organizing [5,8]. Hence, it provides a reliable approach to
problem modeling and identification.

2. Literature Review

During the past few decades, forecasting the price of crude oil has made extensive
use of conventional statistical and econometric methods [10,11]. Amano made one of
the first study proposals about oil market forecasting [12]. The author predicted the oil
market using a small-scale econometric model. In order to forecast crude oil prices in the
1980s, Huntington used an advanced econometric model [13]. Furthermore, a probabilistic
model was used by Abramson and Finizza to forecast oil prices [14]. When the price series
being studied is linear or nearly linear, the models mentioned above can produce accurate
forecast results. However, there is a significant amount of nonlinearity and irregularity in
real-world crude oil price series [10,11,15].

To deal with the limitations of classic models, some nonlinear and advanced artificial
intelligence (AI) models have been applied to predict crude oil [15]. Wang, Yu, and Lai
integrated an ANN model with a knowledge database that includes historical events and
their influence on oil prices. According to the authors, performance for a hybrid ANN
approach was 81%, and it was 61% for a pure ANN system [16]. Mirmirani and Li applied
genetic algorithms for predicting the price of crude oil and compared their findings with
the VAR model [17].

Using intrinsic mode function inputs and an adaptive linear ANN learning paradigm,
Yu, Wang, and Keung forecasted the West Texas Intermediate (WTI) crude oil and Brent
petrol spot prices for the years 1986–2006 [10]. Kulkarni and Haidar provided an excellent
description of building an ANN model [2]. They employed a multilayer feedforward
neural network to estimate the direction of the crude oil spot price up to three days ahead
of time, using data spanning from 1996 to 2007. For one, two, and three days in the future,
respectively, their forecast accuracy was 78%, 66%, and 53%.

Gori et al. trained and tested an ANFIS method that was able to estimate oil prices for
the years 1999 to 2003 by using data on oil prices from July 1973 to January 1999 [18]. Chi-
roma et al. applied a novel approach, a co-active neuro-fuzzy inference system (CANFIS),
to predict crude oil price by using monthly data of WTI [19]. They developed this approach
in place of ANFIS and frequently used techniques to increase forecast accuracy. Mombeini
and Yazdani suggested a hybrid model based on ARIMA (AutoRegressive Integrated

23



Symmetry 2025, 17, 786

Moving Average) and ANFIS to study the fluctuation and volatility of prices of West Texas
Intermediate (WTI) crude oil markets to create a more exact and accurate model. Several
statistical studies utilizing the MAPE, R2, and PI tests were carried out in order to reach
this purpose [20]. The objective of Abdollahi and Ebrahimi in their study was to present a
strong hybrid model for accurate Brent oil price forecasts [21]. The suggested hybrid model
includes ANFIS, Autoregressive Fractionally Integrated Moving Average (ARFIMA), and
Markov-switching models. To effectively capture the linear and nonlinear characteristics,
these three techniques were combined. The technique put out by AbdElaziz et al. depends
on using a modified salp swarm algorithm (SSA) to improve the ANFIS’s performance [22].
They compared the outcome with nine further modified ANFIS approaches. Anshori et al.
examined a case study and optimized the initial ANFIS parameters using the Cuckoo
Search technique to estimate global crude oil prices [23]. Eliwa et al. [24] used 30-year
gasoline prices to anticipate prices using the ANFIS model. By supporting this model with
VAR (Vector Autoregression) and ARIMA models, they were able to obtain high accuracy
and significant correlation.

Recently, deep learning and hybrid models, such as LSTM (Long Short-Term Memory),
GRU (Gated Recurrent Unit), SVM (Support Vector Machine), RF (Random Forest), XGBoost
(eXtreme Gradient Boosting), and other hybrid approaches, have begun to appear as novel
methodologies in time-series analyses. Awijen et al. [25] presented a comparative research
study on the use of machine learning and deep learning to anticipate oil prices during
crises. In the study, processes were performed primarily utilizing RNN (recurrent neural
network), LSTM, and SVM algorithms. Jabeur et al. [26] predicted the fall in oil prices using
some machine learning techniques with neural network models. They found that among
the methods applied, such as RF, LightGBM (Light Gradient-Boosting Machine), XGBoost,
and CatBoost, RF and LightGBM offered the best results. Jiang et al. [27] compared the
LSTM model to other methods such as AR (Autoregression), SVR, RNN (recurrent neural
network), and GRU and determined that the LSTM model produced better outcomes for
China’s crude oil forecast. In order to predict and test the prices of Brent and WTI crude
oil at various time-series frequencies, Hasan et al. [28] present a model they call LKDSR,
which combines machine learning techniques like k-nearest neighbor regression, linear
regression, regression tree, support vector regression, and ridge regression. Furthermore,
Sezer et al.’s study [29], a comprehensive literature review on the use of deep learning for
forecasting financial time series, is valuable.

Iftikhar et al. [30] conducted a comprehensive analysis for Brent oil price forecasting
by evaluating hybrid combinations of linear and nonlinear time-series models using the
Hodrick–Prescott filter. Using European Brent crude oil spot data, Zhao et al. [31] con-
structed a three-layer LSTM model to predict prices, with highly positive outcomes. Dong
et al. [32] used VMD to eliminate noise from the data and PSR (Phase Space Reconstruction)
to rebuild the price of crude oil. Lastly, they used CNN-BILSTM (a hybrid bidirectional
LSTM and CNN architecture) to make multi-step predictions. By using SVM, ARIMA, and
LSTM techniques to analyze crude oil prices, Naeem et al. [33] developed a hybrid model
for crude oil price prediction. In order to improve the forecasting accuracy of crude oil
prices and properly analyze the linear and nonlinear features of crude oil, Xu et al. [34]
developed hybrid approaches. For this purpose, they used models such as ARIMAX, GRU,
LSTM, and MLP (Multilayer Perceptron). Sen et al. [35] investigated the prediction of crude
oil prices using ANN, LSTM, and GRU models. They optimized the hyperparameters
of LSTM and GRU using the PSO (Particle Swarm Optimization) method. Jin et al. [36]
forecasted daily and monthly prices for Henry Hub natural gas, New York Harbor No. 2
heating oil, and WTI and Brent crude oil using nonlinear autoregressive neural network

24



Symmetry 2025, 17, 786

models. Various model configurations, training methods, hidden neurons, delays, and data
segmentations are taken into account while evaluating the performance.

ANFIS was chosen due to its ability to combine the strengths of both neural networks
and fuzzy logic, making it highly suitable for modeling complex, nonlinear systems such
as time-series prediction problems. Additionally, ANFIS allows flexible adaptation through
learning, while also maintaining interpretability through fuzzy rules.

When compared with hybrid models, ANFIS produces successful results when the
proper parameters are introduced for time-series analysis. While hybrid models require
more computations and make the model more complicated, they cannot produce a notice-
able effect. As a result, thanks to ANFIS, we achieve successful results in a simpler way
without the need for further processing.

In this study, metaheuristic algorithms were employed in the training process of ANFIS.
Achieving effective results with ANFIS largely depends on the quality of the training
process. A review of the literature shows that metaheuristic algorithms are commonly used
for training ANFIS and have led to successful outcomes in various applications. Therefore,
in the context of Brent oil price prediction, metaheuristic optimization was selected as
the training strategy for ANFIS. Specifically, nine widely used and literature-supported
metaheuristic algorithms—known for their strong performance in ANFIS training—were
implemented in this study.

In this study, the entire experimental setup was constructed with a methodologically
symmetric design. All metaheuristic algorithms were applied under the same training
conditions, including identical datasets, ANFIS configurations, input–output pairings, and
evaluation metrics. This symmetry in training and evaluation ensured fairness, consistency,
and repeatability across the experiments. Such a structured and balanced framework
contributes not only to the reliability of the comparative analysis but also reflects the core
principles of symmetric design in artificial intelligence research.

3. Materials and Methods

3.1. Selfish Herd Optimizer

Each individual in a herd groups up with other conspecifics in an attempt to enhance
its chance of avoiding predator attacks; however, it does not consider how this behavior
may influence the chances of survival of other individuals [37]. SHO is an optimization
algorithm based on the simulation of selfish herd behavior observed in individuals in
animal herds at risk of predation. In this algorithm, there are two different kinds of search
agents: packs of predators (P) and members of a selfish herd (H) known as the prey. The
survival value of each individual in the population is obtained by the following formula:

SVi =
fi − fbest

fbest − fworst
(1)

where fi denotes the fitness value of i, which is the individual’s position, and fbest and
fworst are the best and worst fitness values reached after running the SHO [37]. The
two movements that make up the herd movement operator are the leader movement
and the following and deserting movement of the herd. The leader movement and the
herd’s following and deserting movements are the two movements that make up the
herd movement operator. The next iteration updates the herd leader’s position using the
following formula:

ht+1
L =

{
ht

L + ct, i f Sht
L
= 1

ht
L + st, i f Sht

L
< 1

(2)

25



Symmetry 2025, 17, 786

where ct and st are movement vectors that depend on the selfish repulsion experiment and
selfish attraction experiment, respectively [37].

Furthermore, members of an aggregation other than the leader are classified into two
groups: herd followers (HFs) and herd defectors (HDs). Each herd member’s updated
location is computed using the following equation [37]:

ht+1
i =

{
ht

i + f t
i , i f ht

i ∈ Ht
F

ht
i + dt

i , i f ht
i ∈ Ht

D
(3)

where f t
i is the herd following vector and dt

i is the herd deserting vector. Then, SHO
considers the location of a specific herd member while modeling the movement of each
predator pi within the attacking predator P, as seen below:

pt+1
i = pt

i + 2q
(
ht

r − pt
i
)

(4)

where q is a random number in the interval [0, 1] [37].
Lastly, two phases are applied: the predation phase, which determines the predation

probability for each individual in the threatened herd, and the renewal phase, which
replenishes the population in the event that hunting causes it to decline by creating new
individuals through mating operations. In the end, the iteration terminates if the stopping
condition is satisfied.

3.2. Biogeography-Based Optimization

This optimization technique was developed by Dan Smith in 2008 and is based on the
migration and dispersal of live organisms in an ecosystem [38]. The method treats each
solution conceptually as an island, and these islands are optimized using the migration and
emigration behavior of species. The migration of species, the emergence of new species, and
the extinction of existing ones are all explained by this mathematical modeling [39]. BBO
analyzes whether migration and change will occur, respectively, using its two functioning
mechanisms: migration and mutation.

For the habitat suitability index (HSI) corresponding to the fitness value, if the solution
vector suitability index variables (SIVs) are suitable for the considered habitat, it is called
a high his; otherwise, it is called a low HSI. Here, the SIV is the independent variable of
the habitat, and the HSI is the dependent variable. The ratio λ is used to probabilistically
decide whether to migrate each SIV in the solution. In the migration part, if the given SIV
value for the ith solution is chosen to migrate, the ratio μ is used to probabilistically decide
whether to migrate a randomly selected SIV variable for the ith solution [39]. If a solution
has a low probability, its existence is unexpected. As a result, it is likely to evolve into a
different solution. In contrast, a solution with a high probability is less likely to transform
into another solution. As a result, the probability of a solution is determined using the
following equation:

mS = mmax

(
1 − Ps

Pmax

)
(5)

where S is a solution and the parameter mmax is user-defined [39].

3.3. Multi-Verse Optimizer

The Big Bang theory states that the universe began with this explosion. According to
the theory, there were several explosions, each of which created a new universe. The Multi-
Verse Optimization (MVO) technique is inspired by the three major sources in this theory:
white holes, black holes, and wormholes [40,41]. The MVO algorithm is divided into two

26



Symmetry 2025, 17, 786

parts: exploration (using white and black holes) and exploitation (using wormholes). The
exploration section provides the most promising places for finding the best local optima.
Wormholes are utilized in the second stage, called exploitation, to search local areas for the
global best. MVO uses a roulette wheel selection process to obtain universe matrix input
values across different universes [40,41]. If we suppose that wormhole tunnels bridge one
universe with the best universe yet created to accommodate local changes in each universe,
then this mechanism has the following formula [40]:

Xj
i =

⎧⎪⎨⎪⎩
{

Xj + TDR × ((
ubj − lbj

)× r4 + lbj
)

i f r3 < 0.5
Xj − TDR × ((

ubj − lbj
)× r4 + lbj

)
i f r3 ≥ 0.5

i f r2 < WEP

xj
i i f r2 ≥ WEP

(6)

where Xj denotes the jth parameter of the best universe, xj
i is the jth parameter of the ith

universe, TDR and WEP are two coefficients, lbj and ubj are the lower and upper bounds,
and r2, r3, and r4 are random values between 0 and 1. The travel distance ratio (TDR),
which determines the distance rate (variation) at which an object can be transported, and
the wormhole existence probability (WEP), which indicates the likelihood that wormholes
exist in universes, are two coefficients with the following formulas [40]:

WEP = min + l ×
(

max − min
L

)
(7)

TDR = 1 − l
1
p

L
1
p

(8)

3.4. Teaching–Learning-Based Optimization

This is an algorithm constructed around classical learning theory, which was inspired
by the ability of students to acquire knowledge and the ability of teachers to teach. It is
divided into two phases: learning from the teacher (teacher phase) and learning through
student engagement (learner phase) [42].

The teacher phase begins with identifying the teacher who provides the best solution
in the population. The probability of success at this stage is distributed according to a
Gaussian distribution. Although it is not realistically practical, a competent teacher is
expected to raise the level of the students to that of their own. The truth is that the teacher
attempts to increase the average class results depending on their own strengths. Therefore,
at this stage, the current answer is modified according to the following expression [42]:

xnew,i = xold,i + ri
(

Mnew − TF Mi
)

(9)

where ri is a random value from 0 to 1, TF is a teaching factor, Mi is the mean, and Mnew is
the new mean. Here, TF might be either 1 or 2.

In the learner phase, students connect with one another and share information in
order to raise their knowledge levels. Interacting with a more informed student leads to
increased knowledge by learning new things from them. If the new student provides a
better answer than the previous student as a result of their learning, the following changes
are made [42]: (

I f f
(

xi) < f
(

xj), then xold,i + ri(xi − xj)
I f f

(
xj
)
< f

(
xi
)
, then xold,i + ri

(
xj − xi

)) (10)

27



Symmetry 2025, 17, 786

3.5. Cuckoo Search

Some cuckoo species engage in parasitic behavior, placing their own eggs in the
foreign nest and tossing the eggs of the nest owner bird to increase the survival probability
of their own eggs. This behavior served as the inspiration for the CS algorithm. In the
algorithm, each egg is considered a solution. The initial population is the number of
randomly generated eggs in the nest where the egg is placed. From just one egg chosen by
the cuckoo to be placed in this nest, a new solution is produced as follows [43]:

xt+1
i = xt

i + α ⊕ Levy(λ) (11)

where α > 0 denotes the step size.
The best nests with high-quality eggs are kept for future generations, whereas Pa

values of the rest are reproduced. Here, Pa ∈ [0, 1] represents the probability that the
cuckoo egg will be detected by the host bird [43].

3.6. Moth Flame Optimization

This algorithm was inspired by the motions of moths around a light source. The
developed MFO technique treats possible solutions as moths and problem variables as their
location in space. Because the MFO method is population-based, each moth represents a
potential solution, and each location is represented as a decision matrix [44]. Another key
component of this method is flames, which are represented by a matrix similar to the moth
matrix. In this technique, both moths and flames represent solutions; the only difference is
how they are handled and transformed at each iteration. While moths are the basic search
components that move around the search space using the spiral flight mechanism, flames
indicate the best locations obtained by the moths up to the relevant iteration [44]. The
algorithm defines the main update mechanism as a logarithmic spiral, with the moth as the
starting point and the flame position as the end point, as follows:

S
(
Mi, Fj

)
= Diebtcos(2πt) + Fj (12)

where Di is the distance of the ith moth for the jth flame, constant b defines the form of the
logarithmic spiral, and t is a random value between −1 and 1 [44].

3.7. Marine Predator Algorithm

Inspired by the predator–prey relationship between marine predators and their prey,
this algorithm was developed to depend on the probability of encounters between marine
predators and their prey [45,46]. The initial solution starts with random variables in the
search space and continues by defining the best solution values for prey and predator in
two same-sized matrices named prey and elite [45]. In the first phase, the prey moves
rapidly and conducts an exploratory phase to look for its food using Brownian motion. On
the other hand, the predator monitors the prey’s movements while remaining motionless.
Then, the prey matrices are updated according to the following formulas [45]:

(−−−−−→stepsizei =
→
RB ⊗ (

−−→
Elitei −

→
RB ⊗ −−→

Preyi)
−−→
Preyi =

−−→
Preyi + P · →R ⊗−−−−−→

stepsizei

)
(13)

where I = 1, 2, . . . , n, constant P = 0.5, and R ∈ [0, 1].

28



Symmetry 2025, 17, 786

In Phase 2, the prey and predator move at the same speed; the predator uses Brownian
motion, and the prey uses Levy motion. The following formulas are used to update the
prey matrices [45]:

(−−−−−→stepsizei =
→
RL ⊗

(
→

Elitei −
→
RL ⊗ −−→

Preyi)

−−→
Preyi =

−−→
Preyi + P · →R ⊗−−−−−→

stepsizei

)
(14)

where i = 1, 2, . . . , n/2.

(−−−−−→stepsizei =
→
RB ⊗

(
→
RB ⊗−−→

Elitei −
−−→
Preyi)

−−→
Preyi =

−−→
Elitei + P · CF ⊗−−−−−→

stepsizei

)
(15)

Here, i = n/2, . . . , n, and CF =
(

1 − Iter
Max−Iter

)2 Iter
Max−Iter .

In the third phase, the algorithm employs the predator’s Levy motion for the duration
of the iteration, assuming that the predator moves faster than the prey. After that, the prey
matrices are updated using the subsequent formulas [45]:

(−−−−−→stepsizei =
→
RL ⊗

(
−−→

RL ⊗−−→
Elitei −

−−→
Preyi)

−−→
Preyi =

−−→
Elitei + P · CF ⊗−−−−−→

stepsizei

)
(16)

The procedure continues until the algorithm’s stopping condition is satisfied or the
maximum number of iterations is reached.

3.8. Flower Pollination Algorithm

The basis of the FPA was inspired by the reproductive process of flowering plants.
There are two main ways that flowers are pollinated: biotic and abiotic. While biotic
methods—that is, by organisms like flies, insects, bees, butterflies, etc.—pollinate the
majority of flowering plants, abiotic methods—that is, by inanimate objects like the wind—
pollinate some flowering plants. Pollen can travel over great distances thanks to insects’
long-range flight capabilities. This characteristic helps to ensure the best reproduction dur-
ing the flower pollination process. The following equation illustrates how this circumstance
can be expressed mathematically [47]:

xt+1
i = xt

i + γL
(
g* − xt

i
)

(17)

where the current best solution is represented by g*, the step size is adjusted by γ, the
solution vector is represented by xt+1

i , and the Levy distribution L > 0 denotes the strength
of pollination.

The rule for local pollination is as follows [47]:

xt+1
i = xt

i + γL
(

xt
j − xt

k

)
(18)

where xt
j and xt

k denote pollen types found in different flowers of the same plant species.

3.9. Artificial Bee Colony Algorithm

This is a metaheuristic optimization technique inspired by the foraging behavior of
bees. The algorithm includes three types of bees: the onlooker bee, which waits in the

29



Symmetry 2025, 17, 786

dance area to select a food source; the employed bee, which searches for nectar by visiting
known food sources and sharing the source information with the onlooker bee; and the
scout bee, which searches for food at random around the hive [48,49]. The colony of ABC
has an equal number of worker and spectator bees, and each food source has a single
worker bee. Stated differently, the quantity of food sources surrounding the hive and the
size of worker bees are chosen equally. The ABC algorithm begins with a random solution
that is spread over the population that was initially created in the first step. If the nectar
content of the new source is greater than that of the prior one, the bee forgets the former
location and memorizes the new one. To find a potential solution, employed bees look for
a better location in the nearby food source as described below [49]:

vij = xij +φij

(
xij − xkj

)
(19)

where φij represents a random number from −1 to 1. In the second step, the employed bees
share knowledge, while the onlooker bees choose the food source and compute the amount
of nectar. The third stage involves sending the determined scout bees to potential food
sources. These three steps continue until the stopping criteria are satisfied, after which the
algorithm is terminated.

3.10. Adaptive Network-Based Fuzzy Inference System (ANFIS)

ANFIS is a hybrid artificial intelligence method consisting of the combination of
artificial neural networks and fuzzy inference systems, which uses different methods in
parameter calculations. An effective structure was created by combining the learning ability
of artificial neural networks with the IF–THEN rule between the input and output of fuzzy
logic in ANFIS. The structure of ANFIS is divided into five layers, as seen in Figure 1, and
they are explained below [9,50].

Figure 1. The general ANFIS structure consists of two inputs and one output [48].

Layer 1. This layer, known as the fuzzification layer, employs membership functions
to generate fuzzy sets from inputs. The values of the prior parameters allow the shape of
the membership functions to be determined. Also, membership functions’ shapes can be
defined by the parameters in their structure.

Layer 2. The rule layer calculates the product of membership functions from the
preceding layer to generate firing strength (wi) values as follows:

30



Symmetry 2025, 17, 786

O2
i = wi = μai(x)μbi(yx) (20)

where i = 1 and 2. The outputs of this layer are used as input weight functions for the
following node.

Layer 3. This layer is known as the normalization layer, and the normalized firing
strengths are calculated from the firing strengths obtained in previous layers using the
following formula:

O3
i = wi =

wi

w1 + w2
(21)

where i = 1 and 2.
Layer 4. In the defuzzification layer, the output obtained in the normalization layer is

multiplied by a linear equation (first order), and the output values are calculated as follows:

O4
i = wix fi = wix(pit + qiu + vi) (22)

Here, the parameter set {p, q, r} is known as the result parameter.
Layer 5. The summation layer sums the results of each rule in the defuzzification layer

to generate the ANFIS output, as shown below:

O5
i = ∑

i
wixfi (23)

To summarize, ANFIS training includes determining structural parameters using
an optimization approach, and successful training is necessary for producing successful
outcomes with ANFIS.

4. Simulation Results and Discussion

Within the scope of this study, ANFIS training was carried out using nine different
metaheuristic algorithms to estimate the daily, weekly, and monthly minimum and max-
imum values of Brent oil price, and the obtained results were analyzed in detail. The
algorithms used in ANFIS training were SHO, BBO, MVO, TLBO, CS, MFO, MPA, FPA,
and ABC.

The Brent oil data used in this study were taken from the investing.com website
as daily, weekly, and monthly datasets. The daily dataset covered the period between
3 January 2022, and 29 December 2023. Here, it is crucial to note that daily databases did
not include data for weekends and holidays. The weekly dataset contained data from 1
January 2014 to 31 December 2023, and the monthly dataset spanned from 1 January 2014
to 1 January 2024. We collected 515 data points for the daily dataset and 522 data points for
the weekly dataset to achieve more fitting analysis results. In contrast, since the monthly
data collection contained fewer data over a larger range, 121 data points were collected to
guarantee consistency. It is also worth noting that these daily, weekly, and monthly data
were acquired separately for the lowest and highest values in the specified date ranges.

In this study, six prediction problems, as outlined in Table 1, are addressed. Specifically,
the aim is to estimate the minimum and maximum values that Brent oil prices can reach on
a daily, weekly, and monthly basis. The data used in these estimations are structured as
time series. The time-series data were transformed into input–output pairs suitable for the
training of ANFIS. The main goal of this transformation is to predict future values by using
past data. However, in time-series problems, it is not always clear how many past values
should be used to achieve the best prediction accuracy. To reduce this uncertainty, separate
datasets were prepared for daily, weekly, and monthly predictions, each consisting of two,
three, and four inputs, respectively, along with one output. Through these multiple config-

31



Symmetry 2025, 17, 786

urations, the effect of the number of inputs on prediction performance was systematically
investigated.

The ANFIS structures used in the study are illustrated in Figure 2. Figure 2a shows
the block diagram of an ANFIS model with two inputs, while Figure 2b presents the
training process and error calculation steps for a three-input model. Figure 2c displays the
system structure when four inputs are used. In all these models, the output represents the
subsequent time step value in the series.

Table 1. List of problems regarding the forecasting of Brent oil.

Problem Definition

DMin Predicting the lowest daily price of Brent oil
DMax Predicting the highest daily price of Brent oil
WMin Predicting the lowest weekly price of Brent oil
WMax Predicting the highest weekly price of Brent oil
MMin Predicting the lowest monthly price of Brent oil
MMax Predicting the highest monthly price of Brent oil

 
(a) 

 
(b) 

 
(c) 

Figure 2. Block diagram created for Brent oil price prediction using (a) two (b) three (c) four input
systems.

In the preprocessing phase, normalization plays an important role, especially when
the dataset is large or contains high variability. For this reason, all input and output values
were normalized to the [0, 1] range. All results and evaluations were made based on these
normalized values.

Another critical factor that influences the performance of ANFIS is the type and
number of membership functions (MFs). According to the literature, generalized bell-
shaped membership functions (gbellmf) are effective in modeling normalized time-series

32



Symmetry 2025, 17, 786

data. Therefore, gbellmf was selected in this study to remain consistent with existing
studies and to avoid unnecessary experimentation.

Additionally, the number of membership functions significantly affects learning per-
formance. In this work, systems with different input counts were trained using two, three,
and four membership functions, respectively, in order to analyze their impact on prediction
accuracy. Since the number of parameters to be optimized increases with more inputs, the
number of MFs was adjusted accordingly. For example, in the model with four inputs, only
two MFs were used to reduce the complexity of the learning process.

Notably, 80% of the obtained dataset is used in the training process, and 20% is utilized
in the testing process. All error values in the study are calculated as mean squared error
(MSE). To compare the results obtained with each algorithm fairly, the population size and
maximum generation number were evaluated similarly. In other words, the population
size and maximum generation number were set as 20 and 2500, respectively.

Table 2 presents a summary of the overall workflow followed in this study. The
process begins with data collection, where time-series data relevant to Brent oil prices are
obtained. This is followed by the normalization and feature setup stage, where raw data are
scaled to a uniform range and input–output pairs are prepared for model training. In the
next step, the ANFIS structure is defined, including the selection of membership function
types and their quantities. The model is then subjected to training and testing, allowing
performance evaluation based on different configurations. Finally, the results are assessed
through various evaluation metrics to determine prediction accuracy and overall model
effectiveness.

Table 2. Step-by-step workflow of the proposed ANFIS model.

Step Description

1 Data Collection
2 Normalization and Feature Setup
3 ANFIS Structure Definition
4 Training and Testing
5 Evaluation Metrics

4.1. Analysis for Predicting the Lowest and Highest Daily Prices of Brent Oil

The results obtained in estimating the daily minimum value of Brent oil price are
presented in Table 3. When the results obtained for all applications of all algorithms are
examined, it is seen that the average training error values do not exceed the 10−3 level. The
mean training error values were found to be in the range of 1.7 × 10−3 to 2.6 × 10−3. The
best mean training error value, 1.7 × 10−3, was achieved with TLBO, BBO, and MPA. The
worst mean training error value was found with SHO. The results of other algorithms, except
SHO, are 1.9 × 10−3 or better. Due to the structure of the problem, increasing the number of
membership functions did not clearly improve or worsen the mean training error values.
Minor behavioral differences were observed between the algorithms. The best training error
value was found as 1.5 × 10−3 on the four-input system with BBO. Low standard deviation
values were achieved for the training process. Except for a few applications, the value
was at the 10−5 level. The best mean test error value was found to be 1.6 × 10−3, and this
value was obtained from many algorithms and many applications. The training algorithms
could not make the mean test error value better than 1.6 × 10−3. In addition, the best mean
training error and the best mean test error values are parallel to each other. The best test
error value was 1.4 × 10−3. This value can be obtained with different algorithms. Good
standard deviation values were also achieved for the test, except for a few applications. The
comparison graph for the real output and the predicted output, taking into account the best
training error value obtained with BBO, is presented in Figure 3.

33



Symmetry 2025, 17, 786

Table 3. Comparison of the results obtained for the solution of the DMin problem.

Algorithm
Number of

Inputs
Number of

MFs

Results

Train Test

Mean Best
Standard
Deviation

Mean Best
Standard
Deviation

ABC

2
2 1.9 × 10−3 1.8 × 10−3 4.2 × 10−5 1.6 × 10−3 1.4 × 10−3 1.1 × 10−4

3 1.9 × 10−3 1.8 × 10−3 3.5 × 10−5 1.6 × 10−3 1.5 × 10−3 1.0 × 10−4

4 1.8 × 10−3 1.7 × 10−3 4.6 × 10−5 1.6 × 10−3 1.5 × 10−3 1.2 × 10−4

3
2 1.9 × 10−3 1.7 × 10−3 6.3 × 10−5 1.6 × 10−3 1.4 × 10−3 1.0 × 10−4

3 1.9 × 10−3 1.7 × 10−3 5.0 × 10−5 1.6 × 10−3 1.5 × 10−3 1.1 × 10−4

4 2 1.9 × 10−3 1.8 × 10−3 5.4 × 10−5 1.7 × 10−3 1.5 × 10−3 1.4 × 10−4

FPA

2
2 1.9 × 10−3 1.7 × 10−3 3.5 × 10−5 1.6 × 10−3 1.5 × 10−3 9.5 × 10−5

3 1.9 × 10−3 1.8 × 10−3 2.1 × 10−5 1.6 × 10−3 1.4 × 10−3 1.2 × 10−4

4 1.9 × 10−3 1.8 × 10−3 2.3 × 10−5 1.6 × 10−3 1.5 × 10−3 9.0 × 10−5

3
2 1.9 × 10−3 1.8 × 10−3 3.1 × 10−5 1.6 × 10−3 1.5 × 10−3 7.1 × 10−5

3 1.9 × 10−3 1.8 × 10−3 4.1 × 10−5 1.6 × 10−3 1.5 × 10−3 1.1 × 10−4

4 2 1.9 × 10−3 1.8 × 10−3 4.7 × 10−5 1.6 × 10−3 1.5 × 10−3 7.9 × 10−5

BBO

2
2 1.8 × 10−3 1.6 × 10−3 8.8 × 10−5 1.6 × 10−3 1.4 × 10−3 1.3 × 10−4

3 1.7 × 10−3 1.6 × 10−3 6.1 × 10−5 1.7 × 10−3 1.6 × 10−3 9.9 × 10−5

4 1.7 × 10−3 1.6 × 10−3 8.3 × 10−5 1.6 × 10−3 1.5 × 10−3 7.5 × 10−5

3
2 1.7 × 10−3 1.6 × 10−3 5.5 × 10−5 1.6 × 10−3 1.5 × 10−3 3.1 × 10−5

3 1.7 × 10−3 1.6 × 10−3 7.2 × 10−5 1.6 × 10−3 1.5 × 10−3 5.7 × 10−5

4 2 1.7 × 10−3 1.5 × 10−3 1.1 × 10−4 1.6 × 10−3 1.5 × 10−3 3.9 × 10−3

MFO

2
2 1.8 × 10−3 1.7 × 10−3 7.4 × 10−5 1.6 × 10−3 1.5 × 10−3 3.9 × 10−5

3 1.8 × 10−3 1.6 × 10−3 7.8 × 10−5 1.6 × 10−3 1.5 × 10−3 4.8 × 10−5

4 1.8 × 10−3 1.6 × 10−3 7.8 × 10−5 1.6 × 10−3 1.5 × 10−3 5.6 × 10−5

3
2 1.8 × 10−3 1.7 × 10−3 8.3 × 10−5 1.6 × 10−3 1.5 × 10−3 6.7 × 10−5

3 1.8 × 10−3 1.6 × 10−3 7.5 × 10−5 1.6 × 10−3 1.5 × 10−3 6.2 × 10−5

4 2 1.8 × 10−3 1.7 × 10−3 6.7 × 10−5 1.6 × 10−3 1.5 × 10−3 6.0 × 10−5

CS

2
2 1.8 × 10−3 1.7 × 10−3 3.8 × 10−5 1.6 × 10−3 1.5 × 10−3 1.7 × 10−4

3 1.8 × 10−3 1.8 × 10−3 2.7 × 10−5 1.6 × 10−3 1.4 × 10−3 7.7 × 10−5

4 1.8 × 10−3 1.8 × 10−3 2.7 × 10−5 1.6 × 10−3 1.4 × 10−3 1.1 × 10−4

3
2 1.9 × 10−3 1.8 × 10−3 2.7 × 10−5 1.6 × 10−3 1.4 × 10−3 9.3 × 10−5

3 1.9 × 10−3 1.8 × 10−3 2.1 × 10−5 1.6 × 10−3 1.5 × 10−3 7.6 × 10−5

4 2 1.9 × 10−3 1.8 × 10−3 3.5 × 10−5 1.6 × 10−3 1.5 × 10−3 9.8 × 10−5

MPA

2
2 1.7 × 10−3 1.6 × 10−3 7.4 × 10−5 1.6 × 10−3 1.5 × 10−3 5.8 × 10−5

3 1.7 × 10−3 1.6 × 10−3 8.5 × 10−5 1.6 × 10−3 1.4 × 10−3 6.6 × 10−5

4 1.7 × 10−3 1.6 × 10−3 6.8 × 10−5 1.6 × 10−3 1.5 × 10−3 7.1 × 10−5

3
2 1.7 × 10−3 1.6 × 10−3 8.1 × 10−5 1.6 × 10−3 1.5 × 10−3 5.6 × 10−5

3 1.8 × 10−3 1.6 × 10−3 6.9 × 10−5 1.6 × 10−3 1.5 × 10−3 4.6 × 10−5

4 2 1.8 × 10−3 1.6 × 10−3 6.7 × 10−5 1.6 × 10−3 1.4 × 10−3 8.6 × 10−5

MVO

2
2 1.8 × 10−3 1.7 × 10−3 5.9 × 10−5 1.6 × 10−3 1.5 × 10−3 7.0 × 10−5

3 1.8 × 10−3 1.7 × 10−3 6.0 × 10−5 1.6 × 10−3 1.5 × 10−3 7.9 × 10−5

4 1.8 × 10−3 1.7 × 10−3 6.4 × 10−5 1.6 × 10−3 1.5 × 10−3 4.8 × 10−5

3
2 1.8 × 10−3 1.7 × 10−3 5.2 × 10−5 1.6 × 10−3 1.5 × 10−3 7.9 × 10−5

3 1.8 × 10−3 1.6 × 10−3 6.0 × 10−5 1.6 × 10−3 1.4 × 10−3 7.3 × 10−5

4 2 1.8 × 10−3 1.7 × 10−3 5.4 × 10−5 1.6 × 10−3 1.5 × 10−3 5.3 × 10−5

SHO

2
2 1.9 × 10−3 1.8 × 10−3 1.1 × 10−4 1.6 × 10−3 1.5 × 10−3 1.4 × 10−4

3 1.9 × 10−3 1.8 × 10−3 1.1 × 10−4 1.7 × 10−3 1.5 × 10−3 1.6 × 10−4

4 1.9 × 10−3 1.8 × 10−3 9.0 × 10−5 1.7 × 10−3 1.5 × 10−3 1.0 × 10−4

3
2 1.9 × 10−3 1.8 × 10−3 1.3 × 10−4 1.6 × 10−3 1.4 × 10−3 1.5 × 10−4

3 2.1 × 10−3 1.9 × 10−3 1.4 × 10−4 1.9 × 10−3 1.5 × 10−3 3.1 × 10−4

4 2 2.6 × 10−3 1.9 × 10−3 2.0 × 10−3 2.3 × 10−3 1.4 × 10−3 2.1 × 10−3

TLBO

2
2 1.8 × 10−3 1.6 × 10−3 8.6 × 10−5 1.6 × 10−3 1.5 × 10−3 8.7 × 10−5

3 1.8 × 10−3 1.6 × 10−3 8.8 × 10−5 1.6 × 10−3 1.5 × 10−3 2.9 × 10−4

4 1.7 × 10−3 1.6 × 10−3 9.1 × 10−5 1.6 × 10−3 1.5 × 10−3 1.0 × 10−4

3
2 1.8 × 10−3 1.7 × 10−3 7.4 × 10−5 1.6 × 10−3 1.5 × 10−3 6.1 × 10−5

3 1.7 × 10−3 1.6 × 10−3 7.4 × 10−5 1.6 × 10−3 1.5 × 10−3 4.9 × 10−5

4 2 1.8 × 10−3 1.6 × 10−3 8.8 × 10−5 1.6 × 10−3 1.5 × 10−3 5.6 × 10−5

Best results are given in bold.

34



Symmetry 2025, 17, 786

Figure 3. Comparison of graphs of real and predicted outputs plotted according to the best training
error obtained for DMin.

Table 4 presents a comparison of the estimates for the highest daily price of Brent oil.
Changing the number of membership functions affected the results differently depending
on the training algorithms. When the training results are evaluated, it is seen that the
change in the number of membership functions does not change the mean error values
obtained with ABC, CS, and MVO. In all applications of these algorithms, the 1.1 × 10−3

value was reached as the mean error value. The increase in the number of membership
functions improved the mean training error in BBO and TLBO. The opposite situation
was observed in MPA. The best mean training error value was obtained on a two-input
system using MPA. This value is 9.3 × 10−4. After MPA, the best mean training error
value belongs to BBO. The best training error value was found to be 7.7 × 10−4 on the
four-input system using TLBO. For at least one implementation of algorithms other than
CS, the best training errors are at a level of 10−4. Effective standard deviation values were
obtained, especially because the training error values found by the algorithms were close
to each other. When we look at the mean test error values, we see that the algorithms
mostly obtain results that are close to each other. The mean test error values are in the
range of 1.0 × 10−3 to 1.6 × 10−3. The best mean error value was found to be 1.0 × 10−3

with BBO, MFO, and TLBO. According to all test results, the mean error value is frequently
obtained as 1.1 × 10−3. In fact, these results are parallel to the training results. As with
the mean test error value, the best test error value also belongs to BBO. It is 8.3 × 10−4.
In addition to that, effective standard deviation values were obtained in the test results.
Figure 4 presents the comparison of graphs of real and predicted outputs plotted according
to the best training error obtained for the highest daily Brent oil price. It is seen that a
very successful prediction was made, and the predicted output mostly coincides with the
actual output.

35



Symmetry 2025, 17, 786

Table 4. Comparison of the results obtained for the solution of the DMax problem.

Algorithm
Number of

Inputs
Number of

MFs

Results

Train Test

Mean Best
Standard
Deviation

Mean Best
Standard
Deviation

ABC

2
2 1.1 × 10−3 1.0 × 10−3 5.1 × 10−5 1.2 × 10−3 9.3 × 10−4 1.0 × 10−4

3 1.1 × 10−3 9.3 × 10−4 5.6 × 10−5 1.1 × 10−3 9.6 × 10−4 7.1 × 10−5

4 1.1 × 10−3 1.0 × 10−3 2.7 × 10−5 1.1 × 10−3 9.2 × 10−4 9.2 × 10−5

3
2 1.1 × 10−3 9.5 × 10−4 6.1 × 10−5 1.1 × 10−3 8.8 × 10−4 1.1 × 10−4

3 1.1 × 10−3 1.0 × 10−3 4.2 × 10−5 1.1 × 10−3 8.9 × 10−4 1.8 × 10−4

4 2 1.1 × 10−3 1.0 × 10−3 4.1 × 10−5 1.1 × 10−3 1.0 × 10−3 9.1 × 10−4

FPA

2
2 1.1 × 10−3 9.9 × 10−4 3.7 × 10−5 1.2 × 10−3 1.0 × 10−3 9.5 × 10−5

3 1.1 × 10−3 1.1 × 10−3 2.4 × 10−5 1.1 × 10−3 9.2 × 10−4 8.9 × 10−5

4 1.1 × 10−3 1.1 × 10−3 1.7 × 10−5 1.1 × 10−3 9.4 × 10−4 8.2 × 10−5

3
2 1.1 × 10−3 9.1 × 10−4 4.8 × 10−5 1.1 × 10−3 9.7 × 10−4 1.9 × 10−4

3 1.2 × 10−3 1.1 × 10−3 2.3 × 10−5 1.2 × 10−3 1.0 × 10−3 1.4 × 10−4

4 2 1.2 × 10−3 1.1 × 10−3 4.2 × 10−5 1.51 × 10−3 9.7 × 10−4 3.2 × 10−4

BBO

2
2 1.0 × 10−3 8.6 × 10−4 8.9 × 10−5 1.1 × 10−3 8.4 × 10−4 9.6 × 10−5

3 9.5 × 10−4 8.4 × 10−4 9.9 × 10−5 1.0 × 10−3 8.9 × 10−4 8.1 × 10−5

4 9.4 × 10−4 8.1 × 10−4 1.1 × 10−4 1.0 × 10−3 8.3 × 10−4 9.8 × 10−5

3
2 1.1 × 10−3 8.2 × 10−4 9.1 × 10−5 1.1 × 10−3 8.8 × 10−4 1.7 × 10−4

3 9.8 × 10−4 8.1 × 10−4 1.0 × 10−4 1.1 × 10−3 8.7 × 10−4 1.7 × 10−4

4 2 9.6 × 10−4 8.1 × 10−4 9.7 × 10−5 1.3 × 10−3 9.8 × 10−4 2.0 × 10−4

MFO

2
2 1.1 × 10−3 8.7 × 10−4 7.1 × 10−5 1.1 × 10−3 1.0 × 10−3 5.0 × 10−5

3 1.0 × 10−3 8.5 × 10−4 1.0 × 10−4 1.1 × 10−3 1.0 × 10−3 4.9 × 10−5

4 1.0 × 10−3 8.1 × 10−4 1.1 × 10−4 1.1 × 10−3 9.1 × 10−4 5.7 × 10−5

3
2 1.1 × 10−3 9.3 × 10−4 4.2 × 10−5 1.1 × 10−3 9.4 × 10−4 8.4 × 10−5

3 1.1 × 10−3 8.5 × 10−4 6.3 × 10−5 1.0 × 10−3 9.2 × 10−4 7.3 × 10−5

4 2 1.0 × 10−3 8.4 × 10−4 7.5 × 10−5 1.4 × 10−3 1.0 × 10−3 2.4 × 10−4

CS

2
2 1.1 × 10−3 1.0 × 10−3 2.4 × 10−5 1.4 × 10−3 9.2 × 10−4 1.0 × 10−4

3 1.1 × 10−3 1.0 × 10−3 2.1 × 10−5 1.2 × 10−3 1.0 × 10−3 9.6 × 10−5

4 1.1 × 10−3 1.0 × 10−3 2.5 × 10−5 1.2 × 10−3 1.0 × 10−3 1.1 × 10−4

3
2 1.1 × 10−3 1.0 × 10−3 3.5 × 10−5 1.2 × 10−3 9.2 × 10−4 1.3 × 10−4

3 1.1 × 10−3 1.0 × 10−3 3.1 × 10−5 1.2 × 10−3 9.6 × 10−4 2.2 × 10−4

4 2 1.1 × 10−3 1.0 × 10−3 2.7 × 10−5 1.3 × 10−3 9.3 × 10−4 2.2 × 10−4

MPA

2
2 9.3 × 10−4 8.2 × 10−4 1.0 × 10−4 1.1 × 10−3 8.9 × 10−4 7.1 × 10−5

3 9.7 × 10−4 8.3 × 10−4 1.1 × 10−4 1.1 × 10−3 9.2 × 10−4 7.4 × 10−5

4 1.0 × 10−3 8.4 × 10−4 1.0 × 10−4 1.1 × 10−3 1.0 × 10−3 1.1 × 10−4

3
2 9.8 × 10−4 8.5 × 10−4 8.9 × 10−5 1.1 × 10−3 9.7 × 10−4 7.1 × 10−5

3 1.0 × 10−3 8.4 × 10−4 8.4 × 10−5 1.1 × 10−3 9.9 × 10−4 7.6 × 10−5

4 2 9.8 × 10−4 8.6 × 10−4 7.1 × 10−5 1.3 × 10−3 1.0 × 10−3 2.0 × 10−4

MVO

2
2 1.1 × 10−3 9.1 × 10−4 4.8 × 10−5 1.1 × 10−3 9.9 × 10−4 5.1 × 10−5

3 1.1 × 10−3 9.5 × 10−4 5.7 × 10−5 1.1 × 10−3 9.7 × 10−4 7.0 × 10−5

4 1.1 × 10−3 9.7 × 10−4 4.3 × 10−5 1.1 × 10−3 9.9 × 10−4 8.2 × 10−5

3
2 1.1 × 10−3 9.1 × 10−4 5.4 × 10−5 1.1 × 10−3 9.0 × 10−4 1.0 × 10−4

3 1.1 × 10−3 9.2 × 10−4 5.3 × 10−5 1.1 × 10−3 9.2 × 10−4 1.2 × 10−4

4 2 1.1 × 10−3 9.1 × 10−4 5.5 × 10−5 1.3 × 10−3 9.1 × 10−4 2.2 × 10−4

SHO

2
2 1.1 × 10−3 9.2 × 10−4 8.7 × 10−5 1.2 × 10−3 9.0 × 10−4 1.6 × 10−4

3 1.1 × 10−3 8.8 × 10−4 1.2 × 10−4 1.2 × 10−3 8.5 × 10−4 1.6 × 10−4

4 1.1 × 10−3 1.0 × 10−3 8.4 × 10−5 1.2 × 10−3 9.2 × 10−4 1.7 × 10−4

3
2 1.1 × 10−3 1.0 × 10−3 5.2 × 10−5 1.3 × 10−3 9.0 × 10−4 3.6 × 10−4

3 1.0 × 10−3 1.1 × 10−3 2.0 × 10−4 1.6 × 10−3 1.0 × 10−3 5.5 × 10−4

4 2 1.3 × 10−3 1.0 × 10−3 1.4 × 10−4 1.6 × 10−3 9.9 × 10−4 3.3 × 10−4

TLBO

2
2 1.1 × 10−3 8.3 × 10−4 6.8 × 10−5 1.1 × 10−3 1.0 × 10−3 4.3 × 10−5

3 1.0 × 10−3 8.5 × 10−4 1.2 × 10−4 1.1 × 10−3 9.8 × 10−4 6.3 × 10−5

4 9.7 × 10−4 8.3 × 10−4 1.1 × 10−4 1.1 × 10−3 9.9 × 10−4 5.4 × 10−5

3
2 1.0 × 10−3 8.2 × 10−4 1.0 × 10−4 1.1 × 10−3 9.5 × 10−4 4.2 × 10−5

3 9.9 × 10−4 8.2 × 10−4 1.2 × 10−4 1.0 × 10−3 9.1 × 10−4 1.1 × 10−4

4 2 9.6 × 10−4 7.7 × 10−4 8.3 × 10−5 1.4 × 10−3 9.3 × 10−4 3.1 × 10−4

Best results are given in bold.

36



Symmetry 2025, 17, 786

Figure 4. Comparison of graphs of real and predicted outputs plotted according to the best training
error obtained for DMax.

4.2. Analysis for Predicting the Lowest and Highest Weekly Prices of Brent Oil

Table 5 shows the results obtained with the training algorithms for predicting the
lowest weekly price. Although it varies according to the training algorithms, the increase in
the number of membership functions usually does not significantly affect the mean training
error values. Except for a few applications of SHO, the mean training error value at a level
of 10−4 was achieved. The best mean training error value was found to be 7.1 × 10−4 with
BBO, MPA, and TLBO. The worst mean training error value for this problem was obtained
on the four-input system using SHO. In other words, the mean training error value in all
applications is in the range of 7.1 × 10−4 to 1.1 × 10−3. In addition, the best training error
value was found to be 6.6 × 10−4 using TLBO and BBO. When we look at the training
results, generally, successful results were obtained in all algorithms. It is seen that these
results are supported by low standard deviation values. Standard deviations were found
especially at the 10−4, 10−5, and 10−6 levels. No algorithm was able to find a better result
than 1.0 × 10−3 in the mean test error values. In this respect, it is a fact that test error
values lag behind training error values. The best mean test error was found using FPA,
BBO, MFO, CS, MPA, MVO, and TLBO. The worst mean error value was reached with
SHO. In other words, it is possible to say that the mean test error values were obtained in
the range of 1.0 × 10−3 to 1.5 × 10−3. The best test error value was found to be 9.4 × 10−4.
The effective standard deviation value was reached in the testing process as well as in the
training process. Figure 5 shows the comparison graph of the predicted output and the real
output for the mean error value of 7.1 × 10−4. Since this result was obtained with several
algorithms, the graph was drawn by considering only the result found with TLBO. The
large overlap of both graphs is an indication that the training process was successful.

37



Symmetry 2025, 17, 786

Table 5. Comparison of the results obtained for the solution of the WMin problem.

Algorithm
Number of

Inputs
Number of

MFs

Results

Train Test

Mean Best
Standard
Deviation

Mean Best
Standard
Deviation

ABC

2
2 7.8 × 10−4 7.2 × 10−4 3.2 × 10−5 1.1 × 10−3 9.8 × 10−4 8.0 × 10−5

3 7.8 × 10−4 7.2 × 10−4 3.6 × 10−5 1.1 × 10−3 9.4 × 10−4 6.4 × 10−5

4 7.8 × 10−4 7.4 × 10−4 2.2 × 10−5 1.1 × 10−3 1.0 × 10−3 6.7 × 10−5

3
2 8.1 × 10−4 7.1 × 10−4 5.1 × 10−5 1.1 × 10−3 9.7 × 10−4 7.2 × 10−5

3 8.2 × 10−4 7.5 × 10−4 3.8 × 10−5 1.1 × 10−3 9.9 × 10−4 7.7 × 10−5

4 2 8.6 × 10−4 7.9 × 10−4 5.0 × 10−5 1.2 × 10−3 1.0 × 10−3 7.8 × 10−5

FPA

2
2 7.5 × 10−4 7.3 × 10−4 1.2 × 10−5 1.0 × 10−3 9.4 × 10−4 4.4 × 10−5

3 7.7 × 10−4 7.3 × 10−4 2.1 × 10−5 1.1 × 10−3 8.7 × 10−4 7.8 × 10−5

4 7.7 × 10−4 7.4 × 10−4 1.4 × 10−5 1.1 × 10−3 9.9 × 10−4 5.7 × 10−5

3
2 7.9 × 10−4 7.4 × 10−4 3.0 × 10−5 1.1 × 10−3 1.0 × 10−3 6.1 × 10−5

3 8.1 × 10−4 7.6 × 10−4 2.7 × 10−5 1.1 × 10−3 9.5 × 10−4 6.1 × 10−5

4 2 8.4 × 10−4 7.7 × 10−4 4.4 × 10−5 1.1 × 10−3 1.0 × 10−3 8.9 × 10−5

BBO

2
2 7.2 × 10−4 7.1 × 10−4 6.8 × 10−6 1.0 × 10−3 9.7 × 10−4 2.8 × 10−5

3 7.2 × 10−4 7.0 × 10−4 4.3 × 10−6 1.0 × 10−3 9.6 × 10−4 4.4 × 10−5

4 7.1 × 10−4 6.6 × 10−4 1.4 × 10−5 1.0 × 10−3 9.9 × 10−4 3.0 × 10−5

3
2 7.2 × 10−4 7.0 × 10−4 9.1 × 10−6 1.1 × 10−3 9.5 × 10−4 5.7 × 10−5

3 7.1 × 10−4 7.0 × 10−4 7.8 × 10−6 1.1 × 10−3 9.9 × 10−4 5.0 × 10−5

4 2 7.2 × 10−4 6.6 × 10−4 1.6 × 10−5 1.1 × 10−3 9.6 × 10−4 5.6 × 10−5

MFO

2
2 7.4 × 10−4 7.2 × 10−4 4.5 × 10−6 1.0 × 10−3 9.9 × 10−4 2.4 × 10−5

3 7.3 × 10−4 7.2 × 10−4 4.1 × 10−6 1.0 × 10−3 9.9 × 10−4 2.2 × 10−5

4 7.2 × 10−4 7.1 × 10−4 8.6 × 10−6 1.0 × 10−3 9.9 × 10−4 3.1 × 10−5

3
2 7.3 × 10−4 7.0 × 10−4 9.6 × 10−6 1.0 × 10−3 9.8 × 10−4 2.1 × 10−5

3 7.3 × 10−4 7.1 × 10−4 1.1 × 10−5 1.1 × 10−3 9.8 × 10−4 5.1 × 10−5

4 2 7.4 × 10−4 7.2 × 10−4 1.6 × 10−5 1.1 × 10−3 1.0 × 10−3 8.7 × 10−5

CS

2
2 7.4 × 10−4 7.3 × 10−4 5.3 × 10−6 1.0 × 10−3 9.4 × 10−4 3.6 × 10−5

3 7.4 × 10−4 7.3 × 10−4 8.4 × 10−6 1.0 × 10−3 9.6 × 10−4 4.7 × 10−5

4 7.5 × 10−4 7.3 × 10−4 1.3 × 10−5 1.0 × 10−3 9.6 × 10−4 4.7 × 10−5

3
2 7.6 × 10−4 7.4 × 10−4 1.5 × 10−5 1.1 × 10−3 9.7 × 10−4 9.9 × 10−5

3 7.8 × 10−4 7.5 × 10−4 1.5 × 10−5 1.1 × 10−3 1.0 × 10−3 6.1 × 10−5

4 2 8.0 × 10−4 7.6 × 10−4 2.7 × 10−5 1.1 × 10−3 9.9 × 10−4 7.9 × 10−5

MPA

2
2 7.2 × 10−4 7.1 × 10−4 6.2 × 10−6 1.0 × 10−3 9.9 × 10−4 1.5 × 10−5

3 7.2 × 10−4 7.0 × 10−4 7.0 × 10−6 1.0 × 10−3 9.8 × 10−4 1.9 × 10−5

4 7.2 × 10−4 7.1 × 10−4 5.8 × 10−6 1.0 × 10−3 9.7 × 10−4 2.3 × 10−5

3
2 7.1 × 10−4 6.7 × 10−4 1.1 × 10−5 1.1 × 10−3 9.7 × 10−4 4.7 × 10−5

3 7.1 × 10−4 6.8 × 10−4 1.2 × 10−5 1.1 × 10−3 9.6 × 10−4 1.3 × 10−4

4 2 7.1 × 10−4 6.9 × 10−4 6.9 × 10−6 1.1 × 10−3 1.0 × 10−3 2.8 × 10−5

MVO

2
2 7.3 × 10−4 7.2 × 10−4 4.1 × 10−6 1.0 × 10−3 9.9 × 10−4 2.6 × 10−5

3 7.3 × 10−4 7.2 × 10−4 5.8 × 10−6 1.0 × 10−3 9.9 × 10−4 1.9 × 10−5

4 7.3 × 10−4 7.1 × 10−4 9.2 × 10−6 1.0 × 10−3 9.8 × 10−4 2.8 × 10−5

3
2 7.3 × 10−4 7.1 × 10−4 9.8 × 10−6 1.1 × 10−3 9.7 × 10−4 4.3 × 10−5

3 7.3 × 10−4 7.2 × 10−4 1.4 × 10−5 1.1 × 10−3 9.4 × 10−4 9.5 × 10−5

4 2 7.4 × 10−4 7.2 × 10−4 2.4 × 10−5 1.1 × 10−3 9.5 × 10−4 5.5 × 10−5

SHO

2
2 7.5 × 10−4 7.2 × 10−4 3.9 × 10−5 1.1 × 10−3 9.6 × 10−4 7.0 × 10−5

3 7.9 × 10−4 7.3 × 10−4 6.2 × 10−5 1.1 × 10−3 9.9 × 10−4 1.6 × 10−4

4 8.1 × 10−4 7.4 × 10−4 6.3 × 10−5 1.1 × 10−3 9.9 × 10−4 9.8 × 10−5

3
2 8.2 × 10−4 7.1 × 10−4 1.4 × 10−4 1.1 × 10−3 9.9 × 10−4 1.8 × 10−4

3 1.0 × 10−3 7.7 × 10−4 1.8 × 10−4 1.1 × 10−3 1.0 × 10−3 2.6 × 10−4

4 2 1.1 × 10−3 7.5 × 10−4 3.1 × 10−4 1.5 × 10−3 1.1 × 10−3 5.1 × 10−4

TLBO

2
2 7.2 × 10−4 7.0 × 10−4 8.8 × 10−6 1.0 × 10−3 9.9 × 10−4 1.6 × 10−5

3 7.2 × 10−4 6.9 × 10−4 1.1 × 10−5 1.0 × 10−3 9.8 × 10−4 2.7 × 10−5

4 7.2 × 10−4 6.9 × 10−4 1.2 × 10−5 1.0 × 10−3 9.7 × 10−4 2.6 × 10−5

3
2 7.2 × 10−4 6.8 × 10−4 1.4 × 10−5 1.1 × 10−3 1.0 × 10−3 3.1 × 10−5

3 7.1 × 10−4 6.6 × 10−4 1.5 × 10−5 1.1 × 10−3 9.9 × 10−4 4.7 × 10−5

4 2 7.2 × 10−4 6.7 × 10−4 1.5 × 10−5 1.1 × 10−3 9.9 × 10−4 5.4 × 10−5

Best results are given in bold.

38



Symmetry 2025, 17, 786

Figure 5. Comparison of graphs of real and predicted outputs plotted according to the best training
error obtained for WMin.

Table 6 shows the results obtained for predicting the highest weekly price. Increasing
the number of membership functions of the inputs in ABC, BBO, and MFO also improved
the solutions. Mixed behaviors were observed in other algorithms. The best mean training
error was obtained by using BBO algorithms and MPAs on the two-input system. This value
is 6.0 × 10−4. The worst mean training error value was found to be 1.0 × 10−3 with SHO.
Other application results are between the best and worst mean values specified. The best
training error value was found using MFO, and its value was 5.4 × 10−4. Effective standard
deviation values were reached in the training process. Except for a few applications,
standard deviation was found at the 10−5 level. During the testing process, especially
in FPA and TLBO, increasing the number of membership functions used in the inputs
improved the mean test error value. A similar situation was observed in three-input
systems in ABC, BBO, and MVO. In other applications, stable behavior was not exhibited.
The best mean error value was found on four-input systems with TLBO and MVO. This
value is 5.8 × 10−4. In addition, the best error value was found to be 4.6 × 10−4. This value
was obtained with four different training algorithms. Successful standard deviation values
were achieved in the testing process as well as in the training process. It is seen that the
standard deviation values obtained in all applications are in the 10−4 or 10−5 level. Figure 6
shows a comparison graph of the predicted output and the real output based on the best
training result. It is seen that the graphs overlap except for a few output values. This shows
that the training process carried out to solve the relevant problem was successful.

39



Symmetry 2025, 17, 786

Table 6. Comparison of the results obtained for the solution of the WMax problem.

Algorithm
Number of

Inputs
Number of

MFs

Results

Train Test

Mean Best
Standard
Deviation

Mean Best
Standard
Deviation

ABC

2
2 7.5 × 10−4 6.3 × 10−4 5.2 × 10−5 7.0 × 10−4 5.1 × 10−4 2.7 × 10−4

3 7.4 × 10−4 6.6 × 10−4 4.2 × 10−5 7.0 × 10−4 4.7 × 10−4 1.4 × 10−4

4 7.2 × 10−4 6.3 × 10−4 4.1 × 10−5 8.1 × 10−4 5.4 × 10−4 7.6 × 10−4

3
2 7.8 × 10−4 6.2 × 10−4 6.4 × 10−5 7.3 × 10−4 5.0 × 10−4 2.2 × 10−4

3 7.7 × 10−4 6.5 × 10−4 4.6 × 10−5 6.9 × 10−4 5.5 × 10−4 5.1 × 10−5

4 2 8.2 × 10−4 7.1 × 10−4 4.8 × 10−5 6.8 × 10−4 5.2 × 10−4 1.2 × 10−4

FPA

2
2 7.2 × 10−4 6.1 × 10−4 3.8 × 10−5 6.4 × 10−4 4.7 × 10−4 1.2 × 10−4

3 7.4 × 10−4 6.7 × 10−4 3.2 × 10−5 6.3 × 10−4 5.0 × 10−4 8.9 × 10−5

4 7.4 × 10−4 6.8 × 10−4 3.1 × 10−5 6.1 × 10−4 5.0 × 10−4 7.8 × 10−5

3
2 7.7 × 10−4 6.7 × 10−4 3.7 × 10−5 6.5 × 10−4 5.0 × 10−4 1.2 × 10−4

3 8.0 × 10−4 7.1 × 10−4 3.3 × 10−5 6.3 × 10−4 5.3 × 10−4 6.9 × 10−5

4 2 8.4 × 10−4 7.7 × 10−4 4.0 × 10−5 6.8 × 10−4 5.4 × 10−4 8.31 × 10−5

BBO

2
2 6.3 × 10−4 5.7 × 10−4 3.5 × 10−5 6.7 × 10−4 4.6 × 10−4 1.1 × 10−4

3 6.1 × 10−4 5.5 × 10−4 3.7 × 10−5 7.4 × 10−4 4.8 × 10−4 2.3 × 10−4

4 6.0 × 10−4 5.6 × 10−4 2.7 × 10−5 7.1 × 10−4 4.7 × 10−4 2.5 × 10−4

3
2 6.4 × 10−4 5.5 × 10−4 5.7 × 10−5 6.9 × 10−4 5.1 × 10−4 2.1 × 10−4

3 6.3 × 10−4 5.6 × 10−4 5.2 × 10−5 6.4 × 10−4 5.0 × 10−4 7.7 × 10−4

4 2 6.6 × 10−4 5.6 × 10−4 6.6 × 10−5 6.6 × 10−4 4.8 × 10−4 1.6 × 10−4

MFO

2
2 7.1 × 10−4 6.1 × 10−4 9.3 × 10−5 6.7 × 10−4 5.1 × 10−4 1.1 × 10−4

3 6.6 × 10−4 5.5 × 10−4 5.6 × 10−5 6.9 × 10−4 4.6 × 10−4 1.2 × 10−4

4 6.4 × 10−4 5.4 × 10−4 4.6 × 10−5 6.5 × 10−4 5.1 × 10−4 9.4 × 10−5

3
2 6.9 × 10−4 5.8 × 10−4 6.0 × 10−5 6.6 × 10−4 5.1 × 10−4 9.4 × 10−5

3 6.6 × 10−4 6.0 × 10−4 3.9 × 10−5 6.9 × 10−4 4.8 × 10−4 2.0 × 10−4

4 2 7.0 × 10−4 5.5 × 10−4 6.0 × 10−5 6.1 × 10−4 4.8 × 10−4 8.2 × 10−5

CS

2
2 6.6 × 10−4 6.4 × 10−4 2.7 × 10−5 6.3 × 10−4 4.8 × 10−4 1.1 × 10−4

3 7.0 × 10−4 6.7 × 10−4 1.7 × 10−5 6.0 × 10−4 4.9 × 10−4 5.5 × 10−5

4 7.0 × 10−4 6.7 × 10−4 2.0 × 10−5 6.0 × 10−4 5.1 × 10−4 2.6 × 10−5

3
2 7.2 × 10−4 7.0 × 10−4 1.9 × 10−5 6.3 × 10−4 5.2 × 10−4 3.9 × 10−5

3 7.4 × 10−4 7.0 × 10−4 3.1 × 10−5 6.4 × 10−4 5.3 × 10−4 1.6 × 10−5

4 2 7.1 × 10−4 7.0 × 10−4 1.6 × 10−5 6.6 × 10−4 5.4 × 10−4 3.3 × 10−5

MPA

2
2 6.1 × 10−4 5.7 × 10−4 2.6 × 10−5 6.9 × 10−4 4.7 × 10−4 9.2 × 10−5

3 6.0 × 10−4 5.7 × 10−4 2.0 × 10−5 6.5 × 10−4 4.7 × 10−4 1.2 × 10−4

4 6.2 × 10−4 5.8 × 10−4 3.8 × 10−5 6.8 × 10−4 4.6 × 10−4 1.7 × 10−4

3
2 6.4 × 10−4 5.8 × 10−4 4.5 × 10−5 6.4 × 10−4 5.0 × 10−4 6.4 × 10−5

3 6.3 × 10−4 5.8 × 10−4 2.8 × 10−5 6.7 × 10−4 5.4 × 10−4 1.2 × 10−4

4 2 6.5 × 10−4 5.7 × 10−4 5.7 × 10−5 6.3 × 10−4 5.2 × 10−4 6.1 × 10−5

MVO

2
2 6.6 × 10−4 6.0 × 10−4 4.4 × 10−5 6.8 × 10−4 5.3 × 10−4 1.1 × 10−4

3 6.5 × 10−4 6.0 × 10−4 4.0 × 10−5 7.1 × 10−4 5.1 × 10−4 1.7 × 10−4

4 6.5 × 10−4 6.1 × 10−4 3.9 × 10−5 6.4 × 10−4 4.9 × 10−4 1.1 × 10−4

3
2 6.8 × 10−4 6.0 × 10−4 5.1 × 10−5 6.4 × 10−4 5.3 × 10−4 1.7 × 10−4

3 6.8 × 10−4 6.1 × 10−4 5.0 × 10−5 6.3 × 10−4 4.7 × 10−4 8.9 × 10−5

4 2 7.2 × 10−4 6.2 × 10−4 6.5 × 10−5 5.8 × 10−4 4.6 × 10−4 6.2 × 10−5

SHO

2
2 7.2 × 10−4 6.1 × 10−4 8.1 × 10−5 6.6 × 10−4 5.2 × 10−4 1.1 × 10−4

3 7.5 × 10−4 6.2 × 10−4 7.8 × 10−5 6.4 × 10−4 4.7 × 10−4 7.7 × 10−5

4 7.8 × 10−4 6.3 × 10−4 7.1 × 10−5 6.8 × 10−4 5.6 × 10−4 9.3 × 10−5

3
2 8.6 × 10−4 6.7 × 10−4 1.8 × 10−4 7.1 × 10−4 4.9 × 10−4 2.3 × 10−4

3 1.0 × 10−3 7.5 × 10−4 2.9 × 10−4 7.2 × 10−4 5.6 × 10−4 3.1 × 10−4

4 2 9.5 × 10−4 6.4 × 10−4 1.7 × 10−4 8.6 × 10−4 4.9 × 10−4 2.5 × 10−4

TLBO

2
2 6.3 × 10−4 5.8 × 10−4 2.7 × 10−5 7.4 × 10−4 5.3 × 10−4 8.0 × 10−5

3 6.1 × 10−4 5.6 × 10−4 3.3 × 10−5 7.0 × 10−4 4.8 × 10−4 1.2 × 10−4

4 6.2 × 10−4 5.5 × 10−4 4.5 × 10−5 6.4 × 10−4 4.7 × 10−4 1.2 × 10−4

3
2 6.3 × 10−4 5.7 × 10−4 5.1 × 10−5 7.3 × 10−4 5.1 × 10−4 8.9 × 10−5

3 6.2 × 10−4 5.5 × 10−4 3.8 × 10−5 6.7 × 10−4 5.0 × 10−4 1.3 × 10−4

4 2 6.6 × 10−4 5.5 × 10−4 7.1 × 10−5 5.8 × 10−4 4.8 × 10−4 6.4 × 10−5

Best results are given in bold.

40



Symmetry 2025, 17, 786

Figure 6. Comparison of graphs of real and predicted outputs plotted according to the best training
error obtained for WMax.

4.3. Analysis for Predicting the Lowest and Highest Monthly Prices of Brent Oil

Table 7 shows the results of estimating the lowest monthly price of Brent oil. According
to the mean error values of the training process, the increase in the number of membership
functions in ABC, BBO, MFO, and TLBO algorithms generally partially improved the
results. In the FPA and some results of CS, it is seen that the increase in the number of
membership functions does not affect the result. Effective results were obtained in MPA
with low membership numbers. In CS, better results were obtained in two-input systems.
The effect of the number of membership functions is limited. In SHO, increasing the
number of membership functions worsened the mean error. The best training mean error
value was found to be 2.9 × 10−3 with BBO. A 3.0 × 10−3 mean error value was achieved
with MPA and TLBO algorithms. The worst mean value among all algorithms was found
with SHO on the four-input system. This value is 4.3 × 10−3. The best training error value
was found to be 2.1 × 10−3 with the BBO algorithm. After BBO, the best training error
value belongs to TLBO. The value of TLBO is 2.2 × 10−3. Standard deviation values were
reached at 10−4 and 10−5 levels for the training process. It is particularly noteworthy that
the standard deviation values obtained in the training results of CS are at the 10−5 level.
When all algorithms are considered, it is seen that average test error values are reached in
the 4.7 × 10−3 to 6.3 × 10−3 range. The best mean test error value was found with MFO
on a three-input system. This value is 4.7 × 10−3. Especially in BBO, MFO, MPA, MVO,
SHO, and TLBO, it was observed that the mean test error values worsened as the number
of membership functions increased. The best test error value was obtained as 4.0 × 10−3

using SHO. It is seen that in other algorithms, error values of 4.3 × 10−3, 4.4 × 10−3,
4.5 × 10−3, and 4.6 × 10−3 are mostly obtained. In the testing process, effective standard
deviation values were generally achieved. In the test condition, standard deviation values
were found at the 10−4 level except for some applications of MFO, CS, and SHO. As stated
before, the best training error was obtained on BBO as 2.9 × 10−3. Figure 7 compares the
graphs of the predicted output and the real output for this result. It is seen that the real
output and the predicted output are consistent with each other except for a few points.

41



Symmetry 2025, 17, 786

Table 7. Comparison of the results obtained for the solution of the MMin problem.

Algorithm
Number of

Inputs
Number of

MFs

Results

Train Test

Mean Best
Standard
Deviation

Mean Best
Standard
Deviation

ABC

2
2 3.5×10−3 2.9 × 10−3 1.7 × 10−4 5.2 × 10−3 4.5 × 10−3 8.2 × 10−4

3 3.4 ×10−3 2.9 × 10−3 1.6 × 10−4 5.3 × 10−3 4.4 × 10−3 6.1 × 10−4

4 3.3 × 10−3 3.0 × 10−3 9.4 × 10−5 5.3 × 10−3 4.5 × 10−3 5.4 × 10−4

3
2 3.5 × 10−3 3.0 × 10−3 1.5 × 10−4 5.4 × 10−3 4.3 × 10−3 9.2 × 10−4

3 3.4 × 10−3 3.0 × 10−3 1.4 × 10−4 5.4 × 10−3 4.5 × 10−3 6.8 × 10−4

4 2 3.4 × 10−3 3.2 × 10−3 1.1 × 10−4 5.6 × 10−3 4.5 × 10−3 6.6 × 10−4

FPA

2
2 3.5 × 10−3 3.4 × 10−3 5.5 × 10−5 4.8 × 10−3 4.5 × 10−3 2.6 × 10−4

3 3.5 × 10−3 3.4 × 10−3 6.8 × 10−5 5.1 × 10−3 4.5 × 10−3 5.7 × 10−4

4 3.5 × 10−3 3.3 × 10−3 7.7 × 10−5 5.0 × 10−3 4.5 × 10−3 4.9 × 10−4

3
2 3.6 × 10−3 3.4 × 10−3 9.4 × 10−5 5.0 × 10−3 4.4 × 10−3 3.3 × 10−4

3 3.6 × 10−3 3.4 × 10−3 1.0 × 10−4 5.3 × 10−3 4.5 × 10−3 5.3 × 10−4

4 2 3.7 × 10−3 3.4 × 10−3 1.8 × 10−4 5.4 × 10−3 4.5 × 10−3 8.0 × 10−4

BBO

2
2 3.3 × 10−3 2.6 × 10−3 2.7 × 10−4 5.0 × 10−3 4.5 × 10−3 3.9 × 10−4

3 3.0 × 10−3 2.2 × 10−3 3.1 × 10−4 5.2 × 10−3 4.5 × 10−3 4.0 × 10−4

4 3.0 × 10−3 2.4 × 10−3 2.5 × 10−4 5.4 × 10−3 4.6 × 10−3 4.7 × 10−4

3
2 3.2 × 10−3 2.5 × 10−3 2.5 × 10−4 5.1 × 10−3 4.3 × 10−3 3.8 × 10−4

3 2.9 × 10−3 2.1 × 10−3 3.6 × 10−4 5.4 × 10−3 4.6 × 10−3 5.8 × 10−4

4 2 3.0 × 10−3 2.4 × 10−3 2.7 × 10−4 5.2 × 10−3 4.3 × 10−3 6.8 × 10−4

MFO

2
2 3.5 × 10−3 2.7 × 10−3 2.4 × 10−4 4.8 × 10−3 4.5 × 10−3 2.7 × 10−4

3 3.4 × 10−3 2.6 × 10−3 2.7 × 10−4 4.9 × 10−3 4.5 × 10−3 2.8 × 10−4

4 3.3 × 10−3 2.6 × 10−3 2.4 × 10−4 5.0 × 10−3 4.5 × 10−3 3.1 × 10−4

3
2 3.4 × 10−3 2.6 × 10−3 2.7 × 10−4 4.7 × 10−3 4.4 × 10−3 3.2 × 10−4

3 3.2 × 10−3 2.5 × 10−3 2.6 × 10−4 5.0 × 10−3 4.4 × 10−3 4.3 × 10−4

4 2 3.3 × 10−3 2.6 × 10−3 2.4 × 10−4 5.4 × 10−3 4.5 × 10−3 1.8 × 10−3

CS

2
2 3.5 × 10−3 3.3 × 10−3 5.2 × 10−5 5.2 × 10−3 4.5 × 10−3 1.3 × 10−3

3 3.4 × 10−3 3.3 × 10−3 4.4 × 10−5 5.0 × 10−3 4.5 × 10−3 4.3 × 10−4

4 3.4 × 10−3 3.3 × 10−3 5.5 × 10−5 5.2 × 10−3 4.54× 10−3 4.9 × 10−4

3
2 3.5 × 10−3 3.4 × 10−3 5.2 × 10−5 5.1 × 10−3 4.3 × 10−3 4.8 × 10−4

3 3.5 × 10−3 3.4 × 10−3 3.3 × 10−5 5.4 × 10−3 4.5 × 10−3 4.7 × 10−4

4 2 3.5 × 10−3 3.4 × 10−3 8.9 × 10−5 6.3 × 10−3 4.6 × 10−3 1.7 × 10−3

MPA

2
2 3.1 × 10−3 2.5 × 10−3 3.0 × 10−4 5.0 × 10−3 4.5 × 10−3 3.5 × 10−4

3 3.2 × 10−3 2.7 × 10−3 2.4 × 10−4 5.1 × 10−3 4.5 × 10−3 4.8 × 10−4

4 3.1 × 10−3 2.5 × 10−3 2.4 × 10−4 5.3 × 10−3 4.5 × 10−3 5.2 × 10−4

3
2 3.0 × 10−3 2.4 × 10−3 2.9 × 10−4 4.9 × 10−3 4.3 × 10−3 3.1 × 10−4

3 3.1 × 10−3 2.5 × 10−3 2.7 × 10−4 5.4 × 10−3 4.5 × 10−3 5.4 × 10−4

4 2 3.0 × 10−3 2.3 × 10−3 3.2 × 10−4 5.6 × 10−3 4.5 × 10−3 9.0 × 10−4

MVO

2
2 3.4 × 10−3 2.8 × 10−3 1.6 × 10−4 4.8 × 10−3 4.4 × 10−3 3.7 × 10−4

3 3.4 × 10−3 3.0 × 10−3 1.3 × 10−4 5.0 × 10−3 4.6 × 10−3 3.0 × 10−4

4 3.3 × 10−3 2.9 × 10−3 1.7 × 10−4 5.1 × 10−3 4.6 × 10−3 4.2 × 10−4

3
2 3.4 × 10−3 2.8 × 10−3 1.8 × 10−4 4.8 × 10−3 4.4 × 10−3 2.5 × 10−4

3 3.4 × 10−3 3.1 × 10−3 1.1 × 10−4 5.2 × 10−3 4.5 × 10−3 4.4 × 10−4

4 2 3.3 × 10−3 3.0 × 10−3 1.4 × 10−4 5.3 × 10−3 4.5 × 10−3 6.0 × 10−4

SHO

2
2 3.5 × 10−3 3.2 × 10−3 2.5 × 10−4 4.9 × 10−3 4.5 × 10−3 3.7 × 10−4

3 3.5 × 10−3 2.7 × 10−3 3.1×10−4 5.2 × 10−3 4.4 × 10−3 4.9 × 10−4

4 3.7 × 10−3 3.0 × 10−3 5.5×10−4 5.5 × 10−3 4.6 × 10−3 6.4 × 10−4

3
2 3.8 × 10−3 3.1 × 10−3 4.2×10−4 5.8 × 10−3 4.0 × 10−3 3.0 × 10−3

3 4.2 × 10−3 3.4 × 10−3 7.9×10−4 6.0 × 10−3 4.8 × 10−3 1.0 × 10−3

4 2 4.3 × 10−3 3.3 × 10−3 7.5×10−4 6.1 × 10−3 4.8 × 10−3 1.4 × 10−3

TLBO

2
2 3.4 × 10−3 2.7 × 10−3 1.9×10−4 4.8 × 10−3 4.5 × 10−3 2.1 × 10−4

3 3.3 × 10−3 2.6 × 10−3 1.7×10−4 5.0 × 10−3 4.6 × 10−3 3.5 × 10−4

4 3.1 × 10−3 2.4 × 10−3 2.8×10−4 5.2 × 10−3 4.4 × 10−3 4.4 × 10−4

3
2 3.1 × 10−3 2.2 × 10−3 3.7×10−4 4.9 × 10−3 4.4 × 10−3 3.1 × 10−4

3 3.1 × 10−3 2.3 × 10−3 2.8×10−4 5.3 × 10−3 4.6 × 10−3 4.0 × 10−4

4 2 3.0 × 10−3 2.3 × 10−3 3.8×10−4 5.3 × 10−3 4.5 × 10−3 5.8 × 10−4

Best results are given in bold.

42



Symmetry 2025, 17, 786

Figure 7. Comparison of graphs of real and predicted outputs plotted according to the best training
error obtained for MMin.

The results obtained regarding the estimation of the highest monthly price of Brent oil
are given in Table 8. The increase in the number of membership functions, especially in
ABC, BBO, MFO, and TLBO, improved the training mean errors. A similar situation was
observed in MVO, except for one application. All mean error values are the same except for
when using two gbellmf on a two-input system, which produced a different mean training
error value of the MPA. The best mean error value among all applications was found
using three gbellmf on a three-input system with BBO and TLBO algorithms. This value is
2.0 × 10−3. Apart from BBO and TLBO, the best mean training error value belongs to MPA.
The worst mean training error value belongs to SHO. This value is 3.1 × 10−3. In the light
of this information, it is seen that the mean error values obtained for the training process
in estimating the monthly maximum value are between 2.0 × 10−3 and 3.1 × 10−3. It has
also been determined that the training mean errors in two- and three-input systems are
generally better than in four-input systems, and the best mean training results are obtained
in these systems. The best training error value was found to be 1.6 × 10−3 using TLBO.
The best training error values found with BBO and MPA are 1.7 × 10−3 and 1.9 × 10−3,
respectively. Effective standard deviation values for the training process were reached.
Standard deviation values at the 10−4 or 10−5 level were obtained. Looking at the test
results, the change in the number of memberships generally affected the results differently.
It was observed that the mean test error values of BBO and TLBO were not as good as the
mean training error values. The best test mean error values were obtained to be 7.5 × 10−3

using MFO and MVO. The best test error value was found to be 4.9 × 10−3 with MFO. The
test results show that standard deviation values were obtained at 10−3 and 10−4 levels.
These values are consistent with the results obtained. Figure 8 shows the comparison of
the real output and the predicted output for the best training error value. Both graphs
largely overlap. This is one of the indicators demonstrating that the training process
was successful.

43



Symmetry 2025, 17, 786

Table 8. Comparison of the results obtained for the solution of the MMax problem.

Algorithm
Number of

Inputs
Number of

MFs

Results

Train Test

Mean Best
Standard
Deviation

Mean Best
Standard
Deviation

ABC

2
2 2.6 × 10−3 2.2 × 10−3 1.4 × 10−4 8.6 × 10−3 6.6 × 10−3 1.1 × 10−3

3 2.4 × 10−3 2.2 × 10−3 9.0 × 10−5 8.3 × 10−3 5.4 × 10−3 1.0 × 10−3

4 2.3 × 10−3 2.1 × 10−3 7.08× 10−5 8.2 × 10−3 6.8 × 10−3 8.9 × 10−4

3
2 2.5 × 10−3 2.2 × 10−3 1.5 × 10−4 8.4 × 10−3 5.2 × 10−3 1.3 × 10−3

3 2.3 × 10−3 2.1 × 10−3 1.1 × 10−4 8.4 × 10−3 6.0 × 10−3 1.2 × 10−3

4 2 2.4 × 10−3 2.0 × 10−3 1.5 × 10−4 8.2 × 10−3 5.6 × 10−3 1.4 × 10−3

FPA

2
2 2.6 × 10−3 2.3 × 10−3 1.1 × 10−4 8.1 × 10−3 7.0 × 10−3 7.8 × 10−4

3 2.6 × 10−3 2.4 × 10−3 8.6 × 10−5 8.3 × 10−3 7.0 × 10−3 1.0 × 10−3

4 2.5 × 10−3 2.4 × 10−3 7.4 × 10−5 8.2 × 10−3 6.6 × 10−3 7.0 × 10−4

3
2 2.7 × 10−3 2.4 × 10−3 9.2 × 10−5 8.0 × 10−3 6.4 × 10−3 8.9 × 10−4

3 2.6 × 10−3 2.4 × 10−3 1.1 × 10−4 8.3 × 10−3 5.8 × 10−3 1.1 × 10−3

4 2 2.8 × 10−3 2.4 × 10−3 1.9 × 10−4 8.5 × 10−3 5.9 × 10−3 1.5 × 10−3

BBO

2
2 2.3 × 10−3 2.0 × 10−3 1.5 × 10−4 7.7 × 10−3 5.5 × 10−3 9.4 × 10−4

3 2.2 × 10−3 2.0 × 10−3 1.4 × 10−4 7.7 × 10−3 6.2 × 10−3 9.4 × 10−4

4 2.1 × 10−3 2.0 × 10−3 1.2 × 10−4 7.9 × 10−3 6.2 × 10−3 1.1 × 10−3

3
2 2.2 × 10−3 1.9 × 10−3 1.8 × 10−4 8.7 × 10−3 6.6 × 10−3 1.1 × 10−3

3 2.0 × 10−3 1.7 × 10−3 1.7 × 10−4 8.8 × 10−3 5.9 × 10−3 2.7 × 10−3

4 2 2.2 × 10−3 1.9 × 10−3 2.0 × 10−4 8.1 × 10−3 6.2 × 10−3 1.4 × 10−3

MFO

2
2 2.5 × 10−3 2.1 × 10−3 2.5 × 10−4 7.5 × 10−3 6.1 × 10−3 6.9 × 10−4

3 2.4 × 10−3 2.0 × 10−3 2.1 × 10−4 7.8 × 10−3 6.4 × 10−3 7.5 × 10−4

4 2.3 × 10−3 2.1 × 10−3 1.6 × 10−4 7.5 × 10−3 6.4 × 10−3 7.2 × 10−4

3
2 2.5 × 10−3 2.1 × 10−3 2.2 × 10−4 8.2 × 10−3 6.5 × 10−3 7.9 × 10−4

3 2.4 × 10−3 2.0 × 10−3 1.8 × 10−4 8.3 × 10−3 6.5 × 10−3 7.4 × 10−4

4 2 2.4 × 10−3 2.1 × 10−3 2.3 × 10−4 8.2 × 10−3 4.9 × 10−3 1.1 × 10−3

CS

2
2 2.5 × 10−3 2.4 × 10−3 7.4 × 10−5 7.9 × 10−3 6.5 × 10−3 7.1 × 10−4

3 2.5 × 10−3 2.4 × 10−3 6.7 × 10−5 7.8 × 10−3 5.6 × 10−3 9.2 × 10−4

4 2.5 × 10−3 2.4 × 10−3 4.2 × 10−5 8.1 × 10−3 6.1 × 10−3 1.0 × 10−3

3
2 2.6 × 10−3 2.4 × 10−3 8.7 × 10−5 8.8 × 10−3 6.4 × 10−3 2.5 × 10−3

3 2.5 × 10−3 2.3 × 10−3 1.0 × 10−4 8.5 × 10−3 6.2 × 10−3 1.3 × 10−3

4 2 2.7 × 10−3 2.5 × 10−3 1.2 × 10−4 8.1 × 10−3 5.6 × 10−3 1.3 × 10−3

MPA

2
2 2.3 × 10−3 2.1 × 10−3 9.3 × 10−5 7.8 × 10−3 6.2 × 10−3 9.4 × 10−4

3 2.2 × 10−3 2.1 × 10−3 9.7 × 10−5 8.3 × 10−3 5.9 × 10−3 1.1 × 10−3

4 2.2 × 10−3 2.0 × 10−3 1.1 × 10−4 8.0 × 10−3 6.0 × 10−3 9.5 × 10−4

3
2 2.2 × 10−3 1.9 × 10−3 1.4 × 10−4 8.4 × 10−3 6.5 × 10−3 1.4 × 10−3

3 2.2 × 10−3 1.9 × 10−3 1.3 × 10−4 8.6 × 10−3 6.4 × 10−3 9.0 × 10−4

4 2 2.2 × 10−3 1.9 × 10−3 2.1 × 10−4 9.0 × 10−3 6.4 × 10−3 1.3 × 10−3

MVO

2
2 2.5 × 10−3 2.2 × 10−3 1.8 × 10−4 7.5 × 10−3 6.2 × 10−3 7.7 × 10−4

3 2.4 × 10−3 2.2 × 10−3 1.1 × 10−4 7.8 × 10−3 5.8 × 10−3 8.9 × 10−4

4 2.4 × 10−3 2.2 × 10−3 1.2 × 10−4 8.2 × 10−3 6.1 × 10−3 9.4 × 10−4

3
2 2.5 × 10−3 2.1 × 10−3 2.0 × 10−4 8.0 × 10−3 6.1 × 10−3 9.1 × 10−4

3 2.4 × 10−3 2.2 × 10−3 1.4 × 10−4 8.7 × 10−3 6.1 × 10−3 2.7 × 10−3

4 2 2.5 × 10−3 2.1 × 10−3 2.8 × 10−4 7.8 × 10−3 5.7 × 10−3 1.3 × 10−3

SHO

2
2 2.7 × 10−3 2.3 × 10−3 2.4 × 10−4 8.2 × 10−3 6.1 × 10−3 8.8 × 10−4

3 2.6 × 10−3 2.1 × 10−3 3.9 × 10−4 8.9 × 10−3 7.1 × 10−3 1.3 × 10−3

4 2.7 × 10−3 2.1 × 10−3 3.7 × 10−4 8.6 × 10−3 6.4 × 10−3 1.1 × 10−3

3
2 2.9 × 10−3 2.2 × 10−3 4.9 × 10−4 8.5 × 10−3 5.9 × 10−3 1.5 × 10−3

3 3.1 × 10−3 2.4 × 10−3 4.8 × 10−4 9.0 × 10−3 7.4 × 10−3 1.2 × 10−3

4 2 3.1 × 10−3 2.3 × 10−3 4.1 × 10−4 8.6 × 10−3 5.9 × 10−3 2.3 × 10−3

TLBO

2
2 2.4 × 10−3 2.0 × 10−3 1.6 × 10−4 8.0 × 10−3 6.5 × 10−3 1.1 × 10−3

3 2.3 × 10−3 1.9 × 10−3 1.6 × 10−4 8.0 × 10−3 5.7 × 10−3 1.3 × 10−3

4 2.2 × 10−3 1.8 × 10−3 1.5 × 10−4 7.9 × 10−3 6.3 × 10−3 7.7 × 10−4

3
2 2.3 × 10−3 2.0 × 10−3 1.8 × 10−4 8.3 × 10−3 6.7 × 10−3 9.3 × 10−4

3 2.0 × 10−3 1.6 × 10−3 2.0 × 10−4 9.2 × 10−3 7.5 × 10−3 1.1 × 10−3

4 2 2.1 × 10−3 1.6 × 10−3 2.4 × 10−4 8.9 × 10−3 6.0 × 10−3 1.4 × 10−3

Best results are given in bold.

44



Symmetry 2025, 17, 786

Figure 8. Comparison of graphs of real and predicted outputs plotted according to the best training
error obtained for MMax.

The findings obtained in this study should be interpreted within the scope of certain
limitations. In particular, the number of inputs, the number and type of membership
functions, population size, and the maximum number of generations are the primary
constraints considered. Exploring alternative configurations beyond these parameters may
lead to higher-quality solutions. However, due to the significant time and computational
cost required for such evaluations, the scope of the study was intentionally limited.

The use of historical data proved to be more effective in daily and weekly forecasts.
The results clearly show that daily and weekly predictions outperform monthly predictions,
as demonstrated in the related tables and figures. One possible reason for this difference is
the limited number of data points in the monthly dataset. Additionally, the longer time
gap between the input data and the predicted output in monthly forecasts increases the
likelihood of external factors influencing the outcome, which may also reduce accuracy.

When examining both training and test results for daily, weekly, and monthly predic-
tions, it is observed that standard deviation values are generally low. This indicates that the
successful outcomes obtained are consistent and repeatable. The fact that test results largely
aligned with training results suggests that the training process was effectively conducted
and that no overfitting occurred.

Although all algorithms yielded effective results, it can be stated that BBO and TLBO
performed better than the others in solving the target problem. This does not imply that
the other algorithms were unsuccessful, but rather that these two algorithms were more
suitable for this specific problem and configuration. It should also be considered that
the observed performance differences may be influenced by the previously mentioned
limitations of the study.

Furthermore, an increase in the number of inputs and membership functions also
increases the number of parameters to be optimized during training, which extends the
overall training time. Considering that each algorithm was executed 30 times for statistical
validity, the increase in training duration should be considered a critical factor.

In addition to the findings discussed above, the study was conducted within a method-
ologically symmetric framework. Each of the nine metaheuristic algorithms was applied
under identical conditions, using the same datasets, ANFIS configurations, and perfor-
mance metrics. The number of runs, input–output structures, and evaluation criteria were
all uniformly defined across algorithms and prediction types (daily, weekly, and monthly).

45



Symmetry 2025, 17, 786

This symmetric design ensured a fair comparison and enhanced the reproducibility and
objectivity of the results. Such a balanced experimental structure not only strengthens the
internal validity of the study but also aligns with the scientific focus of symmetry, where
consistency and structured modeling approaches are emphasized.

These findings offer valuable insights into the energy market, particularly in the con-
text of crude oil price forecasting. The results indicate that accurate short- and medium-term
predictions can be achieved using ANFIS models trained with metaheuristic algorithms.
The superior performance observed in daily and weekly forecasts, compared to monthly
ones, highlights the potential of the proposed approach for short-term decision-making
processes such as risk management, investment planning, and dynamic pricing strategies.
Moreover, the consistently low standard deviation values observed across multiple runs
suggest that the model is stable and reliable, which is essential for supporting data-driven
decisions in volatile energy markets like crude oil trading.

5. Conclusions

In this study, an Adaptive Neuro-Fuzzy Inference System (ANFIS) was trained using
nine different metaheuristic algorithms—namely SHO, BBO, MVO, TLBO, CS, MFO, MPA,
FPA, and ABC—to predict short- and medium-term Brent crude oil prices. The main
objective was to evaluate the performance of these training algorithms in estimating
the daily, weekly, and monthly minimum and maximum price levels of Brent oil. The
raw time-series data were preprocessed and transformed into ANFIS-compatible input–
output structures, allowing the use of past values to predict future ones. In addition, the
effects of different input sizes and varying numbers of membership functions were also
systematically examined. The key findings of the study can be summarized as follows:

• All nine metaheuristic algorithms produced effective results when used to train ANFIS
models for Brent oil price prediction. These findings confirm that ANFIS models
enhanced with metaheuristic optimization are suitable tools for handling nonlinear
and dynamic characteristics in energy market forecasting.

• A strong consistency was observed between training and test results, indicating
that the models were not overfitted and maintained generalizability across different
problem sets. This also highlights the robustness of the training process and the
reliability of the optimized ANFIS configurations.

• Distinct mean error values were observed for daily, weekly, and monthly predictions.
While some algorithms performed well in daily or weekly predictions, their effec-
tiveness declined in monthly contexts. This observation emphasizes the need for
context-specific tuning of algorithms depending on the prediction window.

• The number and type of membership functions significantly influenced the prediction
performance in some cases, while in others, variations in membership function count
had a negligible impact. This suggests that for certain complex problem structures,
the optimization process may reach saturation, preventing further improvement
regardless of parameter adjustments. Such limitations might stem from the intrinsic
difficulty of the problem or insufficient input diversity.

• Across all experiments, both training and testing phases yielded low standard de-
viation values. This indicates that the algorithms provided stable and repeatable
solutions even though each training phase started from random initial conditions.
This reinforces the statistical reliability of the proposed approach.

• Although all algorithms achieved acceptable performance levels, BBO and TLBO
consistently outperformed the others in most scenarios. These two algorithms demon-

46



Symmetry 2025, 17, 786

strated stronger optimization capabilities in guiding ANFIS training toward more
accurate predictions, especially in terms of lower error rates and faster convergence.

• The symmetric structure of the evaluation process—equal iterations, consistent
datasets, and identical parameter settings—strengthens the objectivity and reliability
of the findings.

Overall, this study provides evidence that combining ANFIS with metaheuristic opti-
mization offers a powerful framework for short- and medium-term energy price forecasting.
The models developed here are particularly useful for stakeholders in the energy market
who require reliable, interpretable, and adaptable prediction tools. These results are not
only relevant in the context of Brent oil price forecasting but also offer broader insights
into the use of adaptive hybrid AI systems in energy economics. The methodology demon-
strated here can be adapted to other commodities and financial markets where nonlinear
patterns dominate, and high prediction reliability is required. Future research may focus
on exploring hybrid training strategies, incorporating additional economic indicators, or
evaluating the models under real-time constraints to enhance practical applicability.

Author Contributions: E.K.: conceptualization, methodology, validation, software, review and edit-
ing, original draft preparation, supervision; A.K.: methodology, software, writing, data curation,
original draft preparation; C.B.K.: software, writing, data curation, example analysis, visualiza-
tion, original draft preparation. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was produced from the project supported by TUBITAK—TEYDEB (The
Scientific and Technological Research Council of Türkiye—Technology and Innovation Funding
Programmes Directorate) (Project No. 3230705).

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: Author Ebubekir KAYA is primarily affiliated with Nevşehir Hacı Bektaş Veli
University and is also employed part-time at CEKA Software R&D Co, Ltd., the remaining authors
declare that the research was conducted in the absence of any commercial or financial relationships
that could be construed as a potential conflict of interest. No financial support was received from
CEKA Software R&D Co. Ltd. The company solely contributed to the provision of a productive
working environment. CEKA Software R&D Co. Ltd. was not involved in the study design, data
collection, analysis, analysis, interpretation, writing of the manuscript, or the decision to submit the
article for publication.

References

1. Gupta, N.; Nigam, S. Crude oil price prediction using artificial neural network. Procedia Comput. Sci. 2020, 170, 642–647.
[CrossRef]

2. Kulkarni, S.; Haidar, I. Forecasting model for crude oil price using artificial neural networks and commodity futures prices. arXiv
2009, arXiv:0906.4838.

3. Amin, F.; Fahmi, A.; Abdullah, S. Dealer using a new trapezoidal cubic hesitant fuzzy TOPSIS method and application to group
decision-making program. Soft Comput. 2019, 23, 5353–5366. [CrossRef]

4. Fahmi, A.; Abdullah, S.; Amin, F.; Khan, M.S.A. Trapezoidal cubic fuzzy number Einstein hybrid weighted averaging operators
and its application to decision making. Soft Comput. 2019, 23, 5753–5783. [CrossRef]

5. Karaboga, D.; Kaya, E. Estimation of number of foreign visitors with ANFIS by using ABC algorithm. Soft Comput. 2020, 24,
7579–7591. [CrossRef]

6. Ata, R.; Koçyigit, Y. An adaptive neuro-fuzzy inference system approach for prediction of tip speed ratio in wind turbines. Expert
Syst. Appl. 2010, 37, 5454–5460. [CrossRef]

7. Bisht, D.C.; Jangid, A. Discharge modelling using adaptive neuro-fuzzy inference system. Int. J. Adv. Sci. Technol. 2011, 31, 99–114.

47



Symmetry 2025, 17, 786

8. Okwu, M.O.; Tartibu, L.K.; Ojo, E.; Adume, S.; Gidiagba, J.; Fadeyi, J. ANFIS model for cost analysis in a dual source multi-
destination system. Procedia Comput. Sci. 2023, 217, 1266–1279. [CrossRef]

9. Jang, J.-S. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [CrossRef]
10. Yu, L.; Wang, S.; Lai, K.K. Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm. Energy

Econ. 2008, 30, 2623–2635. [CrossRef]
11. Lang, K.; Auer, B.R. The economic and financial properties of crude oil: A review. N. Am. J. Econ. Financ. 2020, 52, 100914.

[CrossRef]
12. Amano, A. A small forecasting model of the world oil market. J. Policy Model. 1987, 9, 615–635. [CrossRef]
13. Huntington, H.G. Oil price forecasting in the 1980s: What went wrong? Energy J. 1994, 15, 1–22. [CrossRef]
14. Abramson, B.; Finizza, A. Probabilistic forecasts from probabilistic models: A case study in the oil market. Int. J. Forecast. 1995,

11, 63–72. [CrossRef]
15. Hamdi, M.; Aloui, C. Forecasting crude oil price using artificial neural networks: A literature survey. Econ. Bull 2015, 35,

1339–1359.
16. Wang, S.; Yu, L.; Lai, K.K. A novel hybrid AI system framework for crude oil price forecasting. In Proceedings of the Chinese

Academy of Sciences Symposium on Data Mining and Knowledge Management, Beijing, China, 12–14 July 2004; pp. 233–242.
17. Mirmirani, S.; Cheng Li, H. A comparison of VAR and neural networks with genetic algorithm in forecasting price of oil.

In Applications of Artificial Intelligence in Finance and Economics; Emerald Group Publishing Limited: Leeds, England, 2004;
pp. 203–223.

18. Gori, F.; Ludovisi, D.; Cerritelli, P. Forecast of oil price and consumption in the short term under three scenarios: Parabolic, linear
and chaotic behaviour. Energy 2007, 32, 1291–1296. [CrossRef]

19. Chiroma, H.; Abdulkareem, S.; Abubakar, A.; Zeki, A.; Gital, A.Y.u.; Usman, M.J. Co—Active neuro-fuzzy inference systems
model for predicting crude oil price based on OECD inventories. In Proceedings of the 2013 International Conference on Research
and Innovation in Information Systems (ICRIIS), Kuala Lumpur, Malaysia, 27–28 November 2013; pp. 232–235.

20. Mombeini, H.; Yazdani-Chamzini, A. Developing a new approach for forecasting the trends of oil price. Bus. Manag. Rev. 2014,
4, 120.

21. Abdollahi, H.; Ebrahimi, S.B. A new hybrid model for forecasting Brent crude oil price. Energy 2020, 200, 117520. [CrossRef]
22. Abd Elaziz, M.; Ewees, A.A.; Alameer, Z. Improving adaptive neuro-fuzzy inference system based on a modified salp swarm

algorithm using genetic algorithm to forecast crude oil price. Nat. Resour. Res. 2020, 29, 2671–2686. [CrossRef]
23. Anshori, M.Y.; Rahmalia, D.; Herlambang, T.; Karya, D.F. Optimizing Adaptive Neuro Fuzzy Inference System (ANFIS)

parameters using Cuckoo Search (Case study of world crude oil price estimation). J. Phys. Conf. Ser. 2021, 1836, 012041. [CrossRef]
24. Eliwa, E.H.I.; El Koshiry, A.M.; Abd El-Hafeez, T.; Omar, A. Optimal gasoline price predictions: Leveraging the ANFIS regression

model. Int. J. Intell. Syst. 2024, 1, 8462056. [CrossRef]
25. Awijen, H.; Ben Ameur, H.; Ftiti, Z.; Louhichi, W. Forecasting oil price in times of crisis: A new evidence from machine learning

versus deep learning models. Ann. Oper. Res. 2025, 345, 979–1002. [CrossRef]
26. Jabeur, S.B.; Khalfaoui, R.; Arfi, W.B. The effect of green energy, global environmental indexes, and stock markets in predicting oil

price crashes: Evidence from explainable machine learning. J. Environ. Manag. 2021, 298, 113511. [CrossRef] [PubMed]
27. Jiang, Z.; Zhang, L.; Zhang, L.; Wen, B. Investor sentiment and machine learning: Predicting the price of China’s crude oil futures

market. Energy 2022, 247, 123471. [CrossRef]
28. Hasan, M.; Abedin, M.Z.; Hajek, P.; Coussement, K.; Sultan, M.N.; Lucey, B. A blending ensemble learning model for crude oil

price forecasting. Ann. Oper. Res. 2024, 1–31. [CrossRef]
29. Sezer, O.B.; Gudelek, M.U.; Ozbayoglu, A.M. Financial time series forecasting with deep learning: A systematic literature review:

2005–2019. Appl. Soft Comput. 2020, 90, 106181. [CrossRef]
30. Iftikhar, H.; Zafar, A.; Turpo-Chaparro, J.E.; Canas Rodrigues, P.; López-Gonzales, J.L. Forecasting day-ahead brent crude oil

prices using hybrid combinations of time series models. Mathematics 2023, 11, 3548. [CrossRef]
31. Zhao, Y.; Hu, B.; Wang, S. Prediction of brent crude oil price based on lstm model under the background of low-carbon transition.

arXiv 2024, arXiv:2409.12376.
32. Dong, Y.; Jiang, H.; Guo, Y.; Wang, J. A novel crude oil price forecasting model using decomposition and deep learning networks.

Eng. Appl. Artif. Intell. 2024, 133, 108111. [CrossRef]
33. Naeem, M.; Aamir, M.; Yu, J.; Albalawi, O. A novel approach for reconstruction of IMFs of decomposition and ensemble model

for forecasting of crude oil prices. IEEE Access 2024, 12, 34192–34207. [CrossRef]
34. Xu, Y.; Liu, T.; Fang, Q.; Du, P.; Wang, J. Crude oil price forecasting with multivariate selection, machine learning, and a nonlinear

combination strategy. Eng. Appl. Artif. Intell. 2025, 139, 109510. [CrossRef]

48



Symmetry 2025, 17, 786

35. Sen, A.; Choudhury, K.D. Forecasting the Crude Oil prices for last four decades using deep learning approach. Resour. Policy
2024, 88, 104438. [CrossRef]

36. Jin, B.; Xu, X. Price forecasting through neural networks for crude oil, heating oil, and natural gas. Meas. Energy 2024, 1, 100001.
[CrossRef]

37. Fausto, F.; Cuevas, E.; Valdivia, A.; González, A. A global optimization algorithm inspired in the behavior of selfish herds.
Biosystems 2017, 160, 39–55. [CrossRef]

38. Saraçoğlu, B.; Güvenç, U.; Dursun, M.; Poyraz, G.; Duman, S. Biyocağrafya Tabanlı Optimizasyon Metodu Kullanarak Asenkron
Motor Parametre Tahmini. İleri Teknol. Bilim. Derg. 2013, 2, 46–54.

39. Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [CrossRef]
40. Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural

Comput. Appl. 2016, 27, 495–513. [CrossRef]
41. Rosales Muñoz, A.A.; Grisales-Noreña, L.F.; Montano, J.; Montoya, O.D.; Perea-Moreno, A.-J. Application of the multiverse

optimization method to solve the optimal power flow problem in alternating current networks. Electronics 2022, 11, 1287.
[CrossRef]

42. Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching–learning-based optimization: A novel method for constrained mechanical design
optimization problems. Comput.-Aided design 2011, 43, 303–315. [CrossRef]

43. Yang, X.-S.; Deb, S. Engineering optimisation by cuckoo search. Int. J. Math. Model. Numer. Optim. 2010, 1, 330–343. [CrossRef]
44. Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015, 89, 228–249.

[CrossRef]
45. Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A nature-inspired metaheuristic.

Expert Syst. Appl. 2020, 152, 113377. [CrossRef]
46. Mugemanyi, S.; Qu, Z.; Rugema, F.X.; Dong, Y.; Wang, L.; Bananeza, C.; Nshimiyimana, A.; Mutabazi, E. Marine predators

algorithm: A comprehensive review. Mach. Learn. Appl. 2023, 12, 100471. [CrossRef]
47. Yang, X.-S. Flower pollination algorithm for global optimization. In Proceedings of the International Conference on Unconven-

tional Computing and Natural Computation, Orléan, France, 3–7 September 2012; pp. 240–249.
48. Kaya, E. Adaptif ağ tabanlı bulanık çıkarım sistemleri (anfis)\’nin yapay arı koloni algoritması ile eğitilmesi (Adaptive network

based fuzzy inference system (anfis) training by using artificial bee colony algorithm). Ph.D. Thesis, Erciyes University, Talas,
Turkey, 2017.

49. Karaboga, D. Artificial bee colony algorithm. Scholarpedia 2010, 5, 6915. [CrossRef]
50. Karaboga, D.; Kaya, E. Adaptive network based fuzzy inference system (ANFIS) training approaches: A comprehensive survey.

Artif. Intell. Rev. 2019, 52, 2263–2293. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

49



Article

High-Efficiency and Ultrawideband Polarization Conversion
Metasurface Based on Topology and Shape Optimizaiton
Design Method

Chuan Liu 1,*, Yi Tang 2 and Jian Wang 1

1 School of Information Science and Engineering, Ningbo University, Ningbo 315211, China;
wangjian1@nbu.edu.cn

2 School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China;
tangyi0319@126.com

* Correspondence: liuchuan@nbu.edu.cn

Abstract: This study introduces a two-stage optimization method for designing an ultrawideband
polarization conversion metasurface. By integrating topology and shape optimization techniques,
the proposed method expands the design space to achieve enhanced polarization conversion band-
width. The first stage employs genetic-algorithm-based topology optimization to establish the initial
structural configuration through binary coding. Subsequently, the second stage refines the design
through shape optimization by extracting and modifying the boundaries of the topology-optimized
structure. The optimized design demonstrates high polarization conversion efficiency (>90%) across
4.08–14.39 GHz, yielding a relative bandwidth of 111.64%, which represents a 4.88% improvement
compared to topology-only optimization. This enhancement demonstrates the effectiveness of
our combined optimization method in ultrawideband polarization conversion metasurface design,
offering a promising method for developing high-performance electromagnetic devices.

Keywords: metasurface; polarization conversion; ultrawideband; topology optimization; shape
optimization; genetic algorithm

1. Introduction

The emergence of metamaterials [1,2] has revolutionized electromagnetic wave ma-
nipulation through their engineered subwavelength structures that enable unprecedented
control over electromagnetic properties. Their two-dimensional equivalents, metasur-
faces [3], have attracted particular interest due to their reduced fabrication complexity,
superior integrability, and compact form factor. Among the diverse functionalities of
metasurfaces, polarization state manipulation has received significant interest for its funda-
mental importance in electromagnetic applications. Specifically, polarization conversion
metasurfaces [4] have demonstrated exceptional capabilities across multiple frequency
regimes, from microwave [5] to terahertz [6] and optical domains [7]. These advances have
catalyzed innovations in communications [8], electromagnetic sensing [9], and radar tech-
nology [10], making polarization conversion metasurfaces critical components in modern
electromagnetic systems.

Recent research on polarization conversion metasurfaces has primarily focused on
expanding operational bandwidth. Gao et al. [11] designed a double V-shaped architecture
with relative bandwidth 77% (12.4–27.96 GHz) that utilizes multi-resonance mechanism to
achieve broadband polarization conversion. Jia et al. [12] developed a dual-patch configu-
ration incorporating both square and L-shaped resonators, where the strategic coupling
between these patches effectively expands the operational bandwidth (6.03–17.78 GHz,
98% bandwidth). In [13], Xu et al. introduced an H-shaped structural design; the wideband
polarization conversion depends on four resonances generated in the simple-geometry

Symmetry 2024, 16, 1674. https://doi.org/10.3390/sym16121674 https://www.mdpi.com/journal/symmetry50



Symmetry 2024, 16, 1674

unit (7–19.52 GHz, 94% bandwidth). Additional geometries [14–21] achieving wideband
polarization conversion include the W-shaped structure (82.3% bandwidth) [14], square
split ring structure (94.8% bandwidth) [15], and strip-based fractal structure (96.8% band-
width) [16], each contributing unique methods to bandwidth enhancement. Despite these
achievements, conventional design methods face several limitations. The reliance on prede-
fined geometric shapes inherently limits the exploration of potential optimal configurations,
constraining the available design space. Moreover, the trial-and-error nature of empirical
design methods further compounds these challenges, resulting in a time-consuming design
process. These limitations underscore the need for a more systematic design method that
can overcome the constraints of conventional methods and potentially discover novel
geometric configurations for enhanced performance.

Topology optimization, an established technique for automated material distribution,
has proven effective in structural design, particularly in mechanical engineering [22–26].
Recently, this method has been successfully adapted to electromagnetic design chal-
lenges [27–31], including polarization conversion metasurfaces [32–35]. The fundamental
nature of topology optimization involves solving a binary (0–1) optimization problem to
determine material presence in discrete design domains. The computational complexity
of topology optimization typically relates to the mesh elements in the design domain.
This becomes particularly challenging in electromagnetic applications, where fine mesh
resolutions are often required for accurate wave solutions. The overall computational
complexity of the topology optimization process, considering I iterations, mesh elements
Nmesh, and the cost of a single simulation M, is given by O(I · Nmesh · M) [36–38]. As mesh
density increases to improve solution accuracy, both Nmesh and the computational cost
M grow significantly, making it challenging to balance accuracy with computational re-
sources. Achieving higher design freedom through refined meshing often incurs substantial
computational costs, while coarser meshes may compromise optimal performance. These
limitations have prompted the need for an optimization method that can balance design
freedom with computational efficiency.

Current research in the polarization conversion metasurfaces faces two gaps: the
limited exploration of design space due to conventional design methods, and the computa-
tional inefficiency of pure topology optimization methods. To address these gaps, we pro-
pose a two-stage optimization method that combines both topology and shape optimization
techniques. Our method specifically targets these limitations by first employing topology
optimization to explore the full design space and generate an initial conceptual configura-
tion of the unit cell, unrestricted by predetermined geometries. This is followed by a shape
optimization phase utilizing Bezier curve parameterization for boundary regularization
and refinement, which significantly reduces computational complexity while maintaining
design freedom. By integrating these optimization techniques, our method achieves both
design efficiency and bandwidth expansion. The effectiveness of this optimization method
is demonstrated through the design of polarization conversion metasurfaces with ultraw-
ideband characteristics. Compared to conventional design methods, our method offers a
more efficient pathway for designing ultrawideband polarization conversion metasurfaces.
The proposed method can also be extended to various electromagnetic devices, including
antennas, metamaterials, and other wave manipulation devices.

2. Design Method

2.1. Theoratical Analysis and Unit Cell Design

The fundamental operating principle of polarization conversion metasurfaces relies
on differential phase responses between orthogonal directions [4], as illustrated in Figure 1.
When y-polarized electromagnetic waves interact with an anisotropic unit cell structure
(Figure 1b), the incident electric field �Ei decomposes into two orthogonal components
along the u- and v-axes, which are oriented at 45° counterclockwise relative to the x-y
coordinate system. The anisotropic unit cell generates distinct reflection coefficients for

51



Symmetry 2024, 16, 1674

these orthogonally polarized components. We can mathematically express the incident and
reflected electric fields as [39]:

�Ei = Eiuejϕû + Eivejϕv̂ (1)

�Er = ruEiuej(ϕ+ϕu)û + rvEivej(ϕ+ϕv)v̂ (2)

where Eiu and Eiv represent the incident field amplitudes along the u- and v-directions,
respectively; ϕ denotes the incident wave phase; ru and rv are reflection coefficient am-
plitudes; and ϕu and ϕv correspond to the reflection coefficient phases. The polarization
conversion from y- to x-polarization occurs when two conditions are satisfied: equal reflec-
tion coefficient amplitudes (|ru| = |rv|) and a phase difference of 180◦ between orthogonal
components (|ϕu − ϕv| = 180◦). This fundamental anisotropic characteristic forms the
basis for the unit cell design. The coding scheme of the structure design relies heavily on
this anisotropic characteristic.

Figure 1. (a) Conceptual illustration of cross-polarization conversion. (b) Working principle of the
polarization conversion metasurface.

Figure 2a illustrates the unit cell of the proposed metasurface. The unit cell comprises
four layers: the top layer is the metallic structure to be designed, followed by a dielectric
substrate layer, an air gap, and a bottom metallic layer. The thicknesses of the dielectric
substrate and air layer are denoted as d and h, respectively, while the periodicity is p.
The metallic layers comprise 18-μm-thick copper (σ = 5.8 × 107 S/m) on both top and
bottom surfaces. The structure features d = 1 mm, h = 5 mm, and p = 12 mm, with F4B
(dielectric constant 2.65 and loss tangent 0.001) serving as the dielectric substrate. Based
on the preceding analysis, to achieve polarization conversion functionality, the designed
metasurface must possess anisotropic properties. Therefore, the design region is set as
the dashed area shown in Figure 2b, with the remaining parts of the structure determined
by symmetry.

Based on the above theoretical analysis, achieving broadband polarization conversion
requires the careful design of the metallic pattern to maintain the required amplitude and
phase conditions across a wide frequency range. To systematically explore the vast design
space and find an optimal structure that satisfies these conditions, we employ a two-stage
optimization method. The first stage uses topology optimization to establish the initial
structural configuration, which we describe in detail below.

52



Symmetry 2024, 16, 1674

Figure 2. (a) Unit cell of the proposed design. (b) Schematic of the binary encoding method for
topology optimization.

2.2. Topology Optimizaiton

In the first design stage, topology optimization is implemented to determine the intial
unit cell conceptual configuration. The top metallic pattern is represented by a binary
topology code sequence where metallized regions are indicated by 1 and non-metallized
regions by 0. In the topology optimization process, the genetic algorithm (GA) is employed.
Unlike gradient-based methods, GA is less likely to be trapped in local optima, making it
particularly suitable for the design of metasurfaces. Moreover, the ability of GA to explore
a broad design space enables it to identify innovative and efficient configurations. The
study combines MATLAB and CST Microwave Studio (CST), where MATLAB handles the
GA-based optimization and CST provides electromagnetic simulation for evaluating the
fitness function. This hybrid framework ensures accurate electromagnetic analysis and
efficient optimization.

The workflow begins with the initialization of the population in MATLAB, where ran-
dom unit cell designs are generated according to the coding scheme. The electromagnetic
performance of each design is then evaluated through full-wave simulation in CST. The
frequency domain solver is employed with tetrahedral mesh type. The mesh density is set
to 10 cells per wavelength at the highest frequency of interest. The adaptive mesh refine-
ment is enabled with a convergence criterion of 0.02 for S-parameters. The electromagnetic
response is analyzed using a single unit cell with periodic boundaries along the x- and y-
axes. The polarization conversion characteristics of the metasurface are quantified through
co-polarized (ryy, rxx) and cross-polarized (rxy, ryx) reflection coefficients, corresponding
to the preserved and transformed polarization components, respectively. Considering the
symmetry and for simplicity, the analysis of the polarization conversion metasurface in
this work only considers the case of y-polarized incidence.

The simulation results are further processed in MATLAB to calculate the fitness
value. If the optimization criteria are not met, the algorithm proceeds with the selection
of superior individuals based on their fitness values, followed by crossover and mutation
operations to generate new populations. The fitness function is defined based on the
polarization conversion ratio [PCR = r2

xy/(r2
xy + r2

yy)], where the optimization objective is
to maximize the frequency range where the polarization conversion efficiency exceeds 90%.
This threshold of 90% is consistent with the established standard in the field for defining
high-efficiency polarization conversion [13,15]. Consequently, the fitness function can be
formulated accordingly:

FIT = −2( fmax − fmin)

( fmax + fmin)
(3)

53



Symmetry 2024, 16, 1674

where fmax and fmin denote the upper and lower frequency bounds of the operating band
(PCR > 0.9), respectively. The topology optimization problem is formulated as a non-linear
binary programming problem. The design variable χ = {χ1, χ2, · · · , χn} represents the
material distribution in the design domain, where χi ∈ {0, 1} indicates the absence or
presence of metallic material in the i-th element of the mesh. The objective is to maximize
the bandwidth while maintaining high polarization conversion efficiency. Thus, the FIT
is minimized, which is inversely related to the bandwidth. The optimization problem is
expressed as:

find χ

min FIT

s.t.
Ne

∑
i=1

χisi ≤ S f

Ne

∑
i=1

si

i = 1, ..., Ne

PCR( f , χ) =
r2

xy( f , χ)

[r2
xy( f , χ) + r2

yy( f , χ)]
≥ Pm, ∀ f ∈ [ f l, f u]

(4)

where PCR( f , χ) is the polarization conversion ratio at frequency f , [ f l, f u] defines the
frequency range of interest, si represents the area of each element, S f is the maximum
allowable metal fill ratio, Ne is the number of design variables, and Pm is the minimum
required PCR threshold (set to 0.9 based on established standards in the field). The inequal-
ity constraint on PCR ensures that the conversion efficiency meets or exceeds the required
threshold across the operating bandwidth. Through iterative selection, crossover, and muta-
tion operations, the algorithm progressively evolves toward improved designs until either
the optimization goal (relative bandwidth > 120) is achieved or the maximum iteration (60)
is reached. Figure 3 presents the framework of our topology optimization process.

Figure 3. Computational workflow for topology-based metasurface design.

54



Symmetry 2024, 16, 1674

The topology-optimized structure is depicted in Figure 4a; it demonstrates the suc-
cessful implementation of the optimization method, resulting in a unique arrangement of
metallic patches in a diagonally symmetric pattern. The mesh element size was carefully
selected to balance computational efficiency and design accuracy. The optimization process
was conducted on a total of 56 binary design variables, with the following parameters:
a population size of 14, mutation rate of 0.3, and maximum iteration number of 60. The
algorithm was running on a workstation with an Intel Core i7-10700K processor (manufac-
tured by Intel Corporation in Santa Clara, CA, USA) and 32 GB RAM. Convergence was
achieved after 24 iterations, with a total computation time of approximately 120 h. The
final fitness value reached −106.45. The polarization conversion performance is shown
in Figure 4b,c. Figure 4b presents the reflection coefficients of the structure. At normal
incidence, between 4.17 GHz and 13.66 GHz, the cross-polarized reflection coefficient rxy
(green dashed curve) approaches 0 dB, while the co-polarized reflection coefficient ryy (blue
solid curve) remains below −10 dB, indicating predominant reflection with orthogonal
polarization relative to the incident waves. The high polarization conversion efficiency
within this frequency range demonstrates that the topology-optimized design achieves
effective polarization conversion. Furthermore, three adjacent resonances can be observed
at frequencies of 4.55 GHz, 7.52 GHz, and 12.83 GHz, where the polarization conversion
efficiency peaks at nearly 100%, and the superposition of these three resonances forms
a wideband polarization conversion. Figure 4c shows the calculated PCR as a function
of frequency, revealing PCR values consistently above 0.9 from 4.17 GHz to 13.66 GHz,
demonstrating that more than 90% of y-polarized incident waves are successfully converted
to x-polarized reflected waves. The design achieves a polarization conversion bandwidth
of 9.49 GHz, equivalent to a relative bandwidth of 106.45%. It is evident that through the
first step of topology optimization, the fundamental structure of the unit cell is established,
already achieving significant polarization conversion bandwidth. This initial configuration
serves as the basis for further shape optimization in the next design stage.

Figure 4. (a) Binary structural pattern obtained through genetic algorithm-based topology opti-
mization, where yellow regions represent the presence of metallic patches. Electromagnetic per-
formance of the topology-optimized structure: (b) frequency-dependent co-polarization (ryy) and
cross-polarization (rxy) reflection coefficients, demonstrating the conversion between orthogonal
polarization states; (c) PCR, showing the efficiency of polarization conversion across the operating
frequency band with a bandwidth of 106.45% (PCR > 0.9).

2.3. Shape Optimizaiton

Following the topology optimization, a shape optimization stage is conducted to
further refine the structural configuration. This optimization stage addresses the challenge
of refining complex boundaries while maintaining electromagnetic performance, with the
objective of optimizing the boundary shape of the topology-optimized structure while
preserving its topological characteristics. The boundary optimization problem is mathe-
matically formulated using Bezier curve parameterization, where each boundary segment
is described by B(t) = ∑n

i=0 (
n
i )Pi(1 − t)n−iti, t ∈ [0, 1], with the binomial coefficient (n

i ) cal-

55



Symmetry 2024, 16, 1674

culated as n!
i!(n−i)! , and Pi representing control points. The optimization process begins with

the boundary extraction of the topology-optimized design, where the structural contours
are represented by coordinate points. As shown in Figure 5a, the boundaries of the metallic
pattern (indicated by blue lines) are extracted through image processing techniques in
MATLAB using the bwboundaries function, which enables the precise description of the
topological boundaries. The extracted boundaries serve as the foundation for subsequent
Bezier curve fitting and optimization, providing a discrete set of boundary points that
accurately represent the topology-optimized structure.

Figure 5. (a) Extraction of boundary points from the topology optimization result. (b) Control point
placement. (c) Boundary fitting for the topology optimization result.

Control points for the Bezier curves are placed based on two main factors: (1) geo-
metric features and (2) electromagnetic characteristics. As illustrated in Figure 5b, control
points are first positioned at locations with prominent geometric variations, such as sharp
turns and corners. Additional control points are then added based on the surface current
distribution analysis shown in Figure 6, which presents the current distributions at three
resonant frequencies: 4.55 GHz, 7.52 GHz, and 12.83 GHz. The analysis reveals strong
current concentrations near the central region across all resonant frequencies, with particu-
larly intense currents along boundary b1 and b2 (labelled in Figure 5a) at the lowest and
highest resonant frequencies. Small structural features exhibiting weak surface currents are
identified and removed to make the designed structure simplified. The final control point
distribution and the resulting boundary fitting are shown in Figure 5c.

Figure 6. Surface current distributions of the topology optimization result at resonant frequencies:
(a) 4.55 GHz; (b) 7.52 GHz; and (c) 12.83 GHz.

The shape optimization was also solved using GA, with the optimization formulation
as follows:

56



Symmetry 2024, 16, 1674

find xi, yi i = 1, ..., Nn

min FIT

s.t. ai ≤ xi ≤ bi,

ci ≤ yi ≤ di,

PCR =
r2

xy(xi, yi)

[r2
xy(xi, yi) + r2

yy(xi, yi)]
> Pm

(5)

where xi and yi represent the coordinates of the control point i, and ai, bi, ci, and di denote
the upper and lower bound of control point i.

Based on the obtained control points, the unit cell was reconstructed in the software, as
shown in Figure 7a. The objective function remains consistent with the topology optimiza-
tion stage, aiming to maximize the polarization conversion bandwidth. The optimization
primarily adjusts the positions of critical control points while preserving the key features
of the topology-optimized design, resulting in a refined structure with an expanded po-
larization conversion bandwidth. Table 1 presents the initial coordinates of the control
points along with their upper and lower bounds. The optimization process utilizes a
population size of 10 and a mutation rate of 0.3, continuing until either the optimization
goal is achieved or the maximum iteration count is reached. The optimization process
follows a similar procedure as in the topology optimization phase.

Figure 7. (a) Reconstructed model derived from the topology optimization result, where the bound-
aries of metallic patches are extracted and parameterized for subsequent optimization; (b) final
optimized structure after shape optimization, showing refined boundary shapes of the unit cell.

Table 1. Initial coordinates of control points and their upper and lower bounds.

P1 P2 P3 P4 P5 P6 P7 P8 P9

x/mm −4.706 −2.228 −3.938 −1.569 −3.288 −0.801 −0.833 0 0
y/mm 4.706 4.662 3.938 4.706 5.448 5.495 3.036 0 1.185
a/mm −4.706 −3.000 −3.938 −1.569 −4.000 −0.801 −1.200 0 −0.500
b/mm −4.706 −1.700 −3.938 −1.569 −3.000 −0.801 0.600 0 0.500
c/mm 4.706 3.800 3.938 4.706 5.000 5.495 2.500 0 0.800
d/mm 4.706 5.000 3.938 4.706 6.000 5.495 4.000 0 1.300

P10 P11 P12 P13 P14 P15 P16 P17 P18

x/mm 0 0.376 0.778 0.296 1.569 1.569 1.569 1.963 2.358
y/mm 2.358 2.358 2.358 4.410 4.706 3.137 1.569 6.315 4.706
a/mm −0.300 0.100 0.600 −0.100 1.200 1.200 1.569 1.500 2.000
b/mm 0.200 0.500 0.900 0.700 1.700 1.700 1.569 2.200 3.000
c/mm 2.000 2.000 2.000 3.800 4.200 2.800 1.569 5.800 4.200
d/mm 2.600 2.600 2.600 5.500 5.500 3.600 1.569 6.800 5.000

57



Symmetry 2024, 16, 1674

Table 1. Cont.

P19 P20 P21 P22

x/mm 3.885 4.706 2.358 2.358
y/mm 6.183 4.706 3.532 2.358
a/mm 3.200 4.706 2.000 2.358
b/mm 4.300 4.706 2.800 2.358
c/mm 5.800 4.706 3.000 2.358
d/mm 6.800 4.706 3.800 2.358

3. Results and Discussion

3.1. Results

The final optimized structure is shown in Figure 7b, and the coordinates of all control
points are listed in Table 2. The polarizaton conversion performance of the metasurface
designed through the combined topology and shape optimization method is presented in
Figure 8. For comparison, the results from the topology-only optimization (dash-dotted
curves) are plotted alongside those from the complete two-stage optimization process (solid
curves). The reflection coefficients plotted in Figure 8a reveal three distinct resonances
in both cases, demonstrating the fundamental characteristics of the polarization conver-
sion mechanism. Notably, the proposed two-stage optimization method achieves a wider
frequency range by shifting the second and third resonances toward higher frequencies
while maintaining high cross-polarization conversion efficiency. The PCR comparison
in Figure 8b clearly illustrates the expanded bandwidth achieved through the combined
optimization method. The metasurface exhibits high-efficiency polarization conversion
(PCR > 0.9) over a wider frequency range of 4.08–14.39 GHz, corresponding to an oper-
ational bandwidth of 10.31 GHz. This translates to a remarkable relative bandwidth of
111.64%, representing a 4.88% improvement over the topology-only optimization result.
This enhancement can be attributed to the additional design flexibility provided by the
shape optimization stage, which enables the fine-tuning of the critical structural features.

Table 2. Optimized coordinates of control points.

P1 P2 P3 P4 P5 P6 P7 P8 P9

x/mm −4.706 −2.600 −3.938 −1.569 −4.000 −0.801 −0.800 0 −0.400
y/mm 4.706 4.600 3.938 4.706 5.900 5.495 3.500 0 1.100

P10 P11 P12 P13 P14 P15 P16 P17 P18

x/mm 0 0.400 0.800 0.700 1.400 1.200 1.569 1.700 2.400
y/mm 2.200 2.300 2.500 4.200 4.900 3.200 1.569 6.600 5.000

P19 P20 P21 P22

x/mm 4.200 4.706 2.700 2.358
y/mm 6.800 4.706 3.300 2.358

The polarization conversion performance at varying angles of incidence of the final
design is further examined. As shown in Figure 9a, with an increasing incidence angle, the
second resonance of the co-polarization reflection coefficient shifts to higher frequencies,
while the third resonance shifts to lower frequencies. Additionally, the reflection coefficient
values increase across the frequency range. Consequently, as illustrated in Figure 9b,
the PCR gradually decreases, resulting in a reduced bandwidth for efficient polarization
conversion. Despite this reduction, the metasurface maintains a PCR above 0.8 across a
broad frequency range for incident angles less than 30◦. Even at an incident angle of 40◦, the
metasurface demonstrates high-efficiency operation within the 4.12–11.83 GHz frequency
range. This indicates that the proposed design performs well across a wide range of incident
angles, making it a promising candidate for applications requiring robust polarization
conversion under oblique incidence. Further analysis at larger oblique incidence angles

58



Symmetry 2024, 16, 1674

reveals that the performance deteriorates more significantly for angles beyond 40◦, with
the PCR dropping below 0.6 at 50◦ incidence. This represents a common limitation in
polarization conversion metasurface designs, while our proposed structure maintains
reasonable performance for most practical applications where incident angles typically
remain below 40◦.

Figure 8. Performance comparison between topology-optimized and shape-optimized designs:
(a) frequency-dependent co-polarization (ryy) and cross-polarization (rxy) reflection coefficients
for both designs; (b) PCR exceeding 0.9 over 4.17–13.66 GHz for topology optimization and
4.08–14.39 GHz for combined optimization, demonstrating bandwidth enhancement from 106.45%
to 111.64% through the two-stage optimization method.

Figure 9. (a) Simulated co- and cross-polarization reflection coefficients, and (b) PCRs under
oblique incidence.

To demonstrate the effectiveness of our two-stage optimization method, we have
compared the performance metrics with previous works, as summarized in Table 3. The
comparison reveals that our combined topology and shape optimization method achieves
superior bandwidth performance.

3.2. Discussion

These results demonstrate the effectiveness of the proposed two-stage optimization
method in expanding the design space and enhancing flexibility. The shape optimization
stage successfully refines the topology-optimized configuration by adjusting the boundary
curves through control point, ultimately expanding the bandwidth to 111.64%, representing
a 4.88% improvement. This enhancement can be attributed to the shape optimization
stage’s ability to fine-tune the boundary curves through control point manipulation, which
allows for the more precise adjustment of the resonant characteristics. Compared to
existing methods in the literature, our method shows competitive performance. The
superior bandwidth can be attributed to the complementary roles of topology and shape
optimization, where topology optimization establishes the fundamental structure through
binary coding, and shape optimization enables fine geometric adjustments for performance

59



Symmetry 2024, 16, 1674

enhancement. The optimized structure can be conveniently manufactured using standard
printed circuit board (PCB) technology.

Table 3. Performance comparison with previous works.

Works
Design

Technique
(Resonators)

Operating
Bandwidth

(GHz)

Bandwidth
(PCR > 0.9)

(GHz)

Relative
Bandwidth

(%)

[40] asymmetric
double ring

6.67–17.09 10.42 87.7

[41] cut wire 5.10–12.10 7.0 78.6
[20] modified double

square ring
6.30–20.50 14.3 105.9

[32] topology design 8.00–30.00 <22 <115.7
Our

work
topology and
shape design

4.08–14.39 10.31 111.64

The practical implementation of metasurfaces demands careful consideration of man-
ufacturing constraints. At lower frequencies, conventional PCB fabrication methods have
demonstrated their effectiveness and cost-efficiency in metasurface manufacturing. How-
ever, as operational frequencies extend from microwave through terahertz to optical
regimes, two significant challenges emerge: the necessity for higher fabrication preci-
sion due to reduced structural dimensions, and the complexity of achieving large-area
manufacturing [42]. Although various advanced fabrication techniques have been de-
veloped to address these challenges [43,44], the development of manufacturing methods
continues to pursue the simultaneous achievement of low cost, large-area, and high resolu-
tion. Manufacturing feasibility must be incorporated into the metasurface design phase
to ensure that fabricated structures achieve their intended performance. Specifically, the
minimum feature size must comply with fabrication limitations. Furthermore, smooth
boundaries in metasurface structures enhance manufacturability without compromising
performance, a characteristic naturally achieved through our shape optimization stage.
These design considerations, together with appropriate material selection, facilitate reliable
fabrication while preserving the desired performance. Our future work will focus on
experimental validation to optimize the design for practical applications and evaluate the
impact of fabrication constraints on performance.

4. Conclusions

In this work, we introduced a two-stage optimization method that integrates GA-
based topology optimization with subsequent shape refinement using Bezier curve fitting.
Compared to conventional topology-only method, this combined strategy offers enhanced
flexibility in the structural design process and enables the more efficient exploration of the
metasurface parameter space. Through this method, we achieved an ultrawideband polar-
ization conversion metasurface with a polarization conversion ratio exceeding 0.9 across a
wide frequency range (4.08–14.39 GHz), corresponding to a relative bandwidth of 111.64%.
This performance represents a meaningful improvement (approximately 4.88%) over results
derived from topology-only optimization. Furthermore, our metasurface demonstrated
robustness under oblique incidence up to 40°, showing robustness under oblique incidence.
Compared to other metasurface designs, our integrated method leverages the strengths
of both global and local optimization: topology optimization provides a global structural
framework, while shape refinement introduces precise geometric tuning. This combined
method facilitates the more effective navigation of the complex parameter space than a
single method alone. As a result, the proposed method can be readily applied or adapted
to a wide range of electromagnetic devices. While our numerical simulations demon-
strate promising results, several factors should be considered in practical implementations.
The two-stage optimization method may increase computational complexity, potentially

60



Symmetry 2024, 16, 1674

limiting its scalability for more intricate or higher-dimensional problems. The actual per-
formance may be influenced by fabrication tolerances and material property variations.
These limitations suggest opportunities for future research, including the integration of ad-
vanced optimization algorithms and development of optimization strategies that consider
fabrication constraints.

Author Contributions: Conceptualization, C.L.; methodology, C.L.; software, C.L. and Y.T.; valida-
tion, C.L., Y.T. and J.W.; formal analysis, C.L. and J.W.; writing—original draft preparation, C.L.;
writing—review and editing, C.L., Y.T. and J.W.; and funding acquisition, C.L. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant
number 12202214).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Shalaev, V.M. Optical negative-index metamaterials. Nat. Photonics 2007, 1, 41–48. [CrossRef]
2. Zheludev, N.I.; Kivshar, Y.S. From metamaterials to metadevices. Nat. Mater. 2012, 11, 917–924. [CrossRef] [PubMed]
3. Yu, N.; Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 2014, 13, 139–150. [CrossRef] [PubMed]
4. Hao, J.; Yuan, Y.; Ran, L.; Jiang, T.; Kong, J.A.; Chan, C.T.; Zhou, L. Manipulating electromagnetic wave polarizations by

anisotropic metamaterials. Phys. Rev. Lett. 2007, 99, 063908. [CrossRef] [PubMed]
5. Khan, M.I.; Tahir, F.A. An angularly stable dual-broadband anisotropic cross polarization conversion metasurface. J. Appl. Phys.

2017, 122, 053103. [CrossRef]
6. Jin, G.; Ren, Y.; Tang, B. Numerical simulations of circular dichroism and polarization conversion in VO2-based terahertz

metamaterials. Crystals 2023, 13, 437. [CrossRef]
7. Ding, F.; Wang, Z.; He, S.; Shalaev, V.M.; Kildishev, A.V. Broadband high-efficiency half-wave plate: A supercell-based plasmonic

metasurface approach. ACS Nano 2015, 9, 4111–4119. [CrossRef] [PubMed]
8. Chuang, H.R.; Kuo, L.C. 3-D FDTD design analysis of a 2.4-GHz polarization-diversity printed dipole antenna with integrated

balun and polarization-switching circuit for WLAN and wireless communication applications. IEEE Trans. Microw. Theory Technol.
2003, 51, 374–381. [CrossRef]

9. Heydari, S.; Bazgir, M.; Zarrabi, F.B.; Gandji, N.P.; Rastan, I. Novel optical polarizer design based on metasurface nano aperture
for biological sensing in mid-infrared regime. Opt. Quantum. Electron. 2017, 49, 83. [CrossRef]

10. Barry, C. A smart radar absorber. Smart Mater. Struct. 1999, 8, 64.
11. Gao, X.; Han, X.; Cao, W.P.; Li, H.O.; Ma, H.F.; Cui, T.J. Ultrawideband and high-efficiency linear polarization converter based on

double V-shaped metasurface. IEEE Trans. Antennas Propag. 2015, 63, 3522–3530. [CrossRef]
12. Jia, Y.; Liu, Y.; Guo, Y.J.; Li, K.; Gong, S. A dual-patch polarization rotation reflective surface and its application to ultra-wideband

RCS reduction. IEEE Trans. Antennas Propag. 2017, 65, 3291–3295. [CrossRef]
13. Xu, J.; Li, R.; Qin, J.; Wang, S.; Han, T. Ultra-broadband wide-angle linear polarization converter based on H-shaped metasurface.

Opt. Express 2018, 26, 20913–20919. [CrossRef] [PubMed]
14. Zheng, Q.; Guo, C.; Yuan, P.; Ren, Y.H.; Ding, J. Wideband and high-efficiency reflective polarization conversion metasurface

based on anisotropic metamaterials. J. Electron. Mater. 2018, 47, 2658–2666. [CrossRef]
15. Li, F.; Chen, H.; Zhang, L.; Zhou, Y.; Xie, J.; Deng, L.; Harris, V.G. Compact high-efficiency broadband metamaterial polarizing

reflector at microwave frequencies. IEEE Trans. Microw. Theory Technol. 2019, 67, 606–614. [CrossRef]
16. Zheng, Q.; Guo, C.; Vandenbosch, G.A.E.; Yuan, P.; Ding, J. Ultra-broadband and high-efficiency reflective polarization rotator

based on fractal metasurface with multiple plasmon resonances. Opt. Commun. 2019, 449, 73–78. [CrossRef]
17. Omar, A.A.; Hong, W.; Al-Awamry, A.; Mahmoud, A. A single-layer via-less wideband reflective polarization rotator utilizing

perforated holes. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 2053–2056. [CrossRef]
18. Couto, M.M.; Silva, M.W.B.; Campos, A. A novel ultra-wideband reflective cross-polarization converter based on anisotropic

metasurface. J. Electromagn. Waves Appl. 2021, 35, 1652–1662. [CrossRef]
19. Kamal, B.; Chen, J.D.; Ying, Y.Z.; Jian, R.; Ullah, S.; Khan, W.U.R. High efficiency and ultra-wideband polarization converter

based on an I-shaped metasurface. Opt. Mater. Express 2021, 11, 1343–1352. [CrossRef]
20. Chatterjee, J.; Mohan, A.; Dixit, V. Ultrawideband RCS reduction of planar and conformal surfaces using ultrathin polarization

conversion metasurface. IEEE Access 2022, 10, 36563–36575. [CrossRef]
21. Khan, H.A.; Rafique, U.; Abbas, S.M.; Ahmed, F.; Huang, Y.F.; Uqaili, J.A.; Mahmoud, A. Polarization-independent ultra wideband

RCS reduction conformal coding metasurface based on integrated polarization conversion-diffusion-absorption mechanism.
Photonics 2023, 10, 281. [CrossRef]

22. Sigmund, O.; Maute, K. Topology optimization approaches. Struct. Multidiscip. Optim. 2013, 48, 1031–1055. [CrossRef]

61



Symmetry 2024, 16, 1674

23. Deaton, J.D.; Grandhi, R.V. A survey of structural and multidisciplinary continuum topology optimization: Post 2000. Struct.
Multidiscip. Optim. 2014, 49, 1–38. [CrossRef]

24. Zhu, J.H.; Zhang, W.H.; Xia, L. Topology optimization in aircraft and aerospace structures design. Arch. Comput. Methods Eng.
2016, 23, 595–622. [CrossRef]

25. Latifi Rostami, S.A.; Ghoddosian, A. Topology Optimization Under Uncertainty by Using the New Collocation Method. Period
Polytech-civ 2019, 63, 278–287. [CrossRef]

26. Latifi Rostami, S.A.; Li, M.; Kolahdooz, A.; Chung, H.; Zhang, J. Robust Topology Optimization of Continuum Structures Under
the Hybrid Uncertainties: A Comparative Study. Period. Polytech. Civ. Eng. 2023, 67, 637–645. [CrossRef]

27. Diaz, A.R.; Sigmund, O. A topology optimization method for design of negative permeability metamaterials. Struct. Multidiscip.
Optim. 2010, 41, 163–177. [CrossRef]

28. Hassan, E.; Wadbro, E.; Berggren, M. Topology optimization of metallic antennas. IEEE Trans. Antennas Propag. 2014,
62, 2488–2500.

29. Molesky, S.; Lin, Z.; Piggott, A.Y.; Jin, W.; Vucković, J.; Rodriguez, A.W. Inverse design in nanophotonics. Nat. Photonics 2018,
12, 659–670. [CrossRef]

30. Zhu, S.H.; Yang, X.S.; Wang, J.; Wang, B.Z. Design of mimo antenna isolation structure based on a hybrid topology optimization
method. IEEE Trans. Antennas Propag. 2019, 67, 6298–6307. [CrossRef]

31. Chen, F.; Zhu, J.; Zhang, W. Topology optimization for the layout design of radar absorbing coatings in cavities. Struct. Multidiscip.
Optim. 2022, 65, 250. [CrossRef]

32. Sui, S.; Ma, H.; Wang, J.; Feng, M.; Pang, Y.; Xia, S.; Xu, Z.; Qu, S. Symmetry-based coding method and synthesis topology
optimization design of ultra-wideband polarization conversion metasurfaces. Appl. Phys. Lett. 2016, 109, 014104. [CrossRef]

33. Yuan, Q.; Ma, H.; Sui, S.; Wang, J.F.; Zheng, L.; Meng, Y.Y.; Qu, S.B. Centrosymmetric topology optimization design achieves
ultra-broadband polarization conversion and its further application. J. Phys. D Appl. Phys. 2020, 53, 335001. [CrossRef]

34. Wang, J.; Zhao, X.C.; Jiang, Y.N.; Gu, W.Q.; Xu, K.D. Optimal design of broadband linear-to-circular polarization conversion
metasurface. Mater. Des. 2024, 242, 113004. [CrossRef]

35. Zhang, Y.J.; Li, C.L.; Luan, J.Q.; Zhao, M.; Gao, D.S.; Li, P.L. Ultra-broadband and wide-angle reflective terahertz polarization
conversion metasurface based on topological optimization. Chin. Phys. B 2024, 33, 104210. [CrossRef]

36. Huang, X.; Xie, M. Evolutionary Topology Optimization of Continuum Structures: Methods and Applications; John Wiley & Sons:
Hoboken, NJ, USA, 2010.

37. Bendsoe, M.P.; Sigmund, O. Topology Optimization: Theory, Methods, and Applications; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2013.

38. Maksum, Y.; Amirli, A.; Amangeldi, A.; Inkarbekov, M.; Ding, Y.; Romagnoli, A.; Rustamov, S.; Akhmetov, B. Computational
acceleration of topology optimization using parallel computing and machine learning methods–analysis of research trends. J. Ind.
Inf. Integr. 2022, 28, 100352. [CrossRef]

39. Liu, C.; Gao, R.; Wang, Q.; Liu, S. A design of ultra-wideband linear cross-polarization conversion metasurface with high
efficiency and ultra-thin thickness. J. Appl. Phys. 2020, 127, 153103. [CrossRef]

40. Xu, J.; Li, R.; Wang, S.; Han, T. Ultra-broadband linear polarization converter based on anisotropic metasurface. Opt. Express
2018, 26, 26235–26241. [CrossRef] [PubMed]

41. Zhao, J.C.; Cheng, Y.Z. Ultra-broadband and high-efficiency reflective linear polarization convertor based on planar anisotropic
metamaterial in microwave region. Optik 2017, 136, 52–57. [CrossRef]

42. Yoon, G.; Tanaka, T.; Zentgraf, T.; Rho, J. Recent progress on metasurfaces: Applications and fabrication. J. Phys. D Appl. Phys.
2021, 54, 383002. [CrossRef]

43. Su, V.C.; Chu, C.H.; Sun, G.; Tsai, D.P. Advances in optical metasurfaces: Fabrication and applications [Invited]. Opt. Express
2018, 26, 13148–13182. [CrossRef]

44. Ako, R.T.; Upadhyay, A.; Withayachumnankul, W.; Bhaskaran, M.; Sriram, S. Dielectrics for terahertz metasurfaces: Material
selection and fabrication techniques. Adv. Opt. Mater. 2020, 8, 1900750. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

62



symmetryS S

Article

An Improved NSGA-III with a Comprehensive Adaptive
Penalty Scheme for Many-Objective Optimization

Xinghang Xu 1, Du Cheng 2, Dan Wang 1, Qingliang Li 3 and Fanhua Yu 3,*

1 College of Computer Science and Technology, Beihua University, Jilin 132013, China;
qixiangxxh123@gmail.com (X.X.); wangdanjl_jl@163.com (D.W.)

2 School of Artificial Intelligence, Jilin University, Changchun 130012, China; chengdu23@mails.jlu.edu.cn
3 College of Computer Science and Technology, Changchun Normal University, Changchun 130032, China;

liqingliang@ccsfu.edu.cn
* Correspondence: yufanhua@beihua.edu.cn

Abstract: Pareto dominance-based algorithms face a significant challenge in handling many-objective
optimization problems. As the number of objectives increases, the sharp rise in non-dominated
individuals makes it challenging for the algorithm to differentiate their quality, resulting in a loss
of selection pressure. The application of the penalty-based boundary intersection (PBI) method
can balance convergence and diversity in algorithms. The PBI method guides the evolution of
individuals by integrating the parallel and perpendicular distances between individuals and refer-
ence vectors, where the penalty factor is crucial for balancing these two distances and significantly
affects algorithm performance. Therefore, a comprehensive adaptive penalty scheme was proposed
and applied to NSGA-III, named caps-NSGA-III, to achieve balance and symmetry between con-
vergence and diversity. Initially, each reference vector’s penalty factor is computed based on its
own characteristic. Then, during the iteration process, the penalty factor is adaptively adjusted
according to the evolutionary state of the individuals associated with the corresponding reference
vector. Finally, a monitoring strategy is designed to oversee the penalty factor, ensuring that adaptive
adjustments align with the algorithm’s needs at different stages. Through a comparison involv-
ing benchmark experiments and two real-world problems, the competitiveness of caps-NSGA-III
was demonstrated.

Keywords: many-objective optimization; penalty-based boundary intersection; comprehensive
adaptive penalty scheme; NSGA-III

1. Introduction

Many real-world optimization problems often involve multiple conflicting objectives
to be optimized simultaneously, which are referred to as multi-objective optimization
problems (MOPs). Multi-objective evolutionary algorithms (MOEAs) are powerful tools for
addressing MOPs as they can extensively explore the decision space and evaluate and select
individuals to achieve the optimization of multiple objectives. MOEAs can be broadly cate-
gorized into three categories: Pareto dominance-based approaches [1–3], decomposition-
based approaches [4–6], and indicator-based approaches [7–9]. Among these, Pareto
dominance-based algorithms, such as NSGA-II and SPEA2, have been widely applied
to various engineering and real-world problems, such as path decision [10], flight
optimization [11], and distributed generation system planning [12]. However, these algo-
rithms encounter considerable difficulties when addressing many-objective optimization
problems (MaOPs) involving more than three objectives. The primary challenge arises from
the sharp increase in the proportion of non-dominated individuals within the population as
the dimensionality of objectives increases. This results in the Pareto dominance relationship
becoming ineffective, making the algorithm’s convergence not guaranteed.

Symmetry 2024, 16, 1289. https://doi.org/10.3390/sym16101289 https://www.mdpi.com/journal/symmetry63



Symmetry 2024, 16, 1289

To address the aforementioned issues, extensive research has been conducted, which
can be primarily categorized into three approaches. The first approach is improvements to
the Pareto dominance relationship, such as ε-dominance [13], hpaEA [14], and PeEA [15].
Specifically, ε-dominance is a novel dominance relation that divides the objective space into
multiple hyperboxes, each containing at most one solution, thereby maintaining a balance
between convergence and diversity. The hpaEA identifies non-dominated solutions with
significant Pareto front tendencies as prominent and then refines these non-dominated
solutions using hyperplanes formed by them and their neighbors, thereby relaxing the
Pareto dominance relationship. PeEA is a method for estimating the shape of the Pareto
front (PF) by guiding the search process with a curvature-based approach, which handles
the issue of selection pressure loss in problems with varying PF shapes. The second ap-
proach is to define new diversity criteria. Deb and Jain [3] proposed NSGA-III, which uses a
reference point-based method to increase selection pressure and maintain solution diversity.
The third approach is the adoption of collaborative strategies, such as θ-NSGA-III [16] and
SSCEA [17]. θ-NSGA-III builds on NSGA-III by incorporating the θ-dominance relationship
to balance the algorithm’s convergence and diversity. SSCEA is a coevolutionary method
that combines indicator-based and Pareto dominance-based approaches.

Notably, the θ-dominance relationship in θ-NSGA-III makes use of the PBI method [4].
The PBI method effectively balances algorithm convergence and diversity, with its perfor-
mance primarily dependent on the penalty factor θ. A smaller θ promotes convergence,
while a larger θ promotes diversity. However, setting a fixed penalty factor based on empir-
ical knowledge does not guarantee the performance of PBI when dealing with Pareto fronts
(PFs) of different shapes. An excessively large penalty factor may result in a uniformly dis-
tributed PF, which may not represent the true PF. Conversely, an excessively small penalty
factor could lead to the loss of boundary individuals. Therefore, adaptive adjustment of
the penalty factor is necessary. Yang et al. [18] proposed two penalty schemes: the adaptive
penalty scheme (APS) and the subproblem-based penalty scheme (SPS). In APS, all subprob-
lems have the same θ, which progressively increases as the iterations proceed, gradually
shifting the focus from convergence to diversity. In SPS, penalty values are calculated
based on the subproblems. To prevent the loss of boundary individuals during itera-
tions, larger penalty values are assigned to boundary subproblems to emphasize diversity,
while smaller penalty values are set for intermediate subproblems to emphasize conver-
gence. Additionally, based on population and weight vector distribution information,
Han et al. [19] proposed a dynamic penalty scheme. Specifically, when a subproblem
is farther from the associated individuals and neighboring subproblems, the penalty
factor is increased to enhance diversity. Conversely, the penalty factor is decreased to
enhance convergence.

The adaptive penalty schemes enhance the algorithm’s performance in handling
MaOPs. Different penalty schemes involve the algorithm’s needs at different stages, charac-
teristics of subproblems, and the state of population evolution. However, existing works do
not comprehensively consider these factors, which could be more beneficial for designing
penalty schemes. In summary, we proposed a comprehensive adaptive penalty scheme
and applied it to NSGA-III (caps-NSGA-III) to balance the convergence and diversity of
the algorithm. The main contributions of this paper are as follows:

1. An adaptive penalty scheme is proposed. Each penalty factor is initially calculated
based on its reference vector and is then adaptively adjusted according to the evo-
lutionary state of the individuals associated with that reference vector during the
iteration process.

2. A monitoring strategy is proposed, in which the adaptive penalty scheme is monitored
and adjusted to meet the algorithm’s needs at different stages. For example, if diversity
adjustment is performed during the algorithm’s early stage (convergence phase), this
is considered a violation. Once the violation handling criterion is met, a convergence
operation is performed.

64



Symmetry 2024, 16, 1289

3. Through comparisons with five state-of-the-art many-objective evolutionary algo-
rithms on benchmark function experiments and two real-world applications, the com-
petitiveness of caps-NSGA-III is demonstrated.

The rest of the paper is structured as follows: Basic definitions and improvement moti-
vations are introduced in Section 2. The proposed caps-NSGA-III algorithm is presented in
Section 3. The experimental setup and results are described in Section 4. Finally, Section 5
concludes this paper and discusses some future work.

2. Related Work

2.1. Basic Definitions

A multi-objective optimization problem (MOP) is typically considered as a minimiza-
tion problem and can be mathematically defined as follows [20]:

min F(x) = ( f1(x), f2(x), · · · , fm(x))T

subject to x ∈ Ω
(1)

where x = (x1, x2, · · · , xn)T is an n-dimensional decision variable vector from the decision
space Ω and m is the number of objectives. F : Ω → Rm is the vector of m objective function
values, and Rm represents the objective space. When m > 3, the problem is termed a
many-objective optimization problem (MaOP).

Pareto dominance

For two solutions x1, x2 ∈ Ω, x1 is said to Pareto dominate x2 (x1 ≺ x2), if fi(x1) ≤ fi(x2),
for every i ∈ {1, 2, · · · , m}, and f j(x1) < f j(x2), for at least one index j ∈ {1, 2, · · · , m}.

Pareto optimal

For a decision vector x∗ ∈ Ω, if there does not exist another vector x ∈ Ω such that
x ≺ x∗, then x∗ is Pareto optimal.

Pareto set

The Pareto set (PS) is defined as

PS = {x ∈ Ω | x is Pareto optimal}
Pareto front

The Pareto front (PF) is defined as

PF = { f (x) ∈ Rm | x ∈ PS}
2.2. NSGA-III

The Non-dominated Sorting Genetic Algorithm III (NSGA-III) is one of the most
outstanding many-objective evolutionary algorithms available today. It has proven ef-
fective in addressing various engineering optimization problems, leading to significant
outcomes [21–23]. However, as a Pareto dominance-based algorithm, it has a significant
limitation. With increasing dimensionality of objectives, the Pareto non-dominance relation
gradually fails, making the algorithm’s convergence not guaranteed. Additionally, in the
selection process of NSGA-III, only those individuals closest to the reference vectors are con-
sidered. While this approach can achieve good diversity, the convergence is unsatisfactory.
Therefore, there is a need to enhance the consideration of convergence.

2.3. PBI and SPS

The penalty-based boundary intersection (PBI) method can balance convergence and
diversity, and its computation is as follows:

gpbi(x | ω, Z∗) = d1 + θd2 (2)

65



Symmetry 2024, 16, 1289

where x is the decision vector, ω is the reference vector, Z∗ is the ideal point in the objective
space, θ is penalty factor, d1 is the projection of F(x) onto ω, and d2 is the perpendicular
distance from F(x) to ω. The calculations for d1 and d2 are as follows:

d1 =
‖ (F(x)− Z∗)Tw ‖

‖ w ‖ (3)

d2 =‖ F(x)− Z∗ − d1
w

‖ w ‖ ‖ (4)

where F(x) is the objective vector for the individual x. d1 and d2 are illustrated
in Figure 1.

Figure 1. Illustration of distances d1 and d2.

The penalty factor in PBI significantly impacts its performance. The subproblem-based
penalty scheme (SPS) is a method for calculating penalty factors as follows:

θi = eαβi

βi = max
1≤j≤m

ω
j
i − min

1≤j≤m
ω

j
i

(5)

where i is the ith reference vector, α is a control parameter for the magnitude of the penalty,
and βi is the difference between the maximum and minimum component of i.

Within SPS, boundary weight vectors and intermediate weight vectors have differ-
ent penalty factors θ. For boundary weight vectors, especially near the coordinate axes,
βi approaches 1 and θi takes a higher value, which emphasizes diversity. For the inter-
mediate weight vectors, where all components are nearly equal, βi approaches 0 and θi
approaches 1, emphasizing convergence. It is worth noting that after initialization, θ values
remain constant during the iteration, which could potentially lead to the abandonment of
valuable solutions.

In Figure 2, ω = (0.1, 0.9)T is a boundary weight vector, and segment A − B is part of
the true PF. As seen in Figure 2, for ω and the associated individuals a and b, it is evident
that individual b is closer to the expected PF segment than individual a. However, due
to gpbi of b being greater than that of a, individual b is not selected. This indicates that an
excessive focus on the weight vectors themselves, while neglecting the algorithm’s need
for individuals with strong convergence in the early stage, and a blind pursuit of diversity,
may impair the algorithm’s convergence performance.

In Figure 3, ω = (0.5, 0.5)T is an intermediate weight vector. Individuals a and b are
two points associated with ω, located near the segment A − B of the true PF. As seen in
Figure 3, for ω and the associated individuals a and b, it is evident that individual b is
closer to ω. However, because the gpbi of a is less than that of b, the more diverse individual
b is abandoned. This indicates that an excessive focus on the weight vectors themselves,

66



Symmetry 2024, 16, 1289

while neglecting the algorithm’s need for individuals with strong diversity in the late stage,
and a blind pursuit of convergence, could result in a decrease in solution diversity.

Figure 2. Illustration of the limitation of the fixed θ value in SPS using boundary weight vector.

Figure 3. Illustration of the limitation of the fixed θ value in SPS using intermediate reference vector.

2.4. Motivation

Pareto-based methods have limitations in addressing many-objective optimization
problems (MaOPs). Researchers have extensively explored improvements by improving the
Pareto dominance relationship, defining new diversity criteria, and adopting collaborative
approaches. In fact, collaborative approaches essentially combine the Pareto dominance
relationship with additional convergence metrics. Solutions are initially ranked based on
Pareto dominance and further selected according to convergence metrics. For example,
the knee point proposed by Zhang et al. [24] and the grid dominance measure proposed
by Yang et al. [25] are both additional convergence metrics. Additionally, the PBI method
used in θ-NSGA-III is also a convergence-related metric. It calculates the parallel distance
(measuring convergence) and the perpendicular distance (measuring diversity) between
solutions and reference vectors, adjusting the importance of both through a penalty factor.
Notably, the penalty factor significantly affects the algorithm’s performance, and a fixed
value based on experience may not be suitable for all types of problems. To address this
issue, Yang et al. [18] proposed two adaptive penalty schemes: APS and SPS. APS adjusts
the penalty factor based on the algorithm’s needs at different stages. In the early stage,
it focuses on convergence, and as the iterations progress, the penalty factor gradually
increases to emphasize diversity. SPS sets the penalty factors based on the characteristics
of each subproblem, with central subproblems focusing on convergence and boundary
subproblems emphasizing diversity. Additionally, Han et al. [19] proposed an adaptive
penalty scheme that adjusts the penalty factor based on the evolutionary state of the
population. However, existing methods do not comprehensively consider these aspects.
Therefore, we propose a comprehensive penalty scheme. Based on the limitations of the SPS

67



Symmetry 2024, 16, 1289

method described in Section 2.3 and the adaptive adjustment strategy for the penalty factor
based on the population’s evolutionary state, we propose an adaptive penalty scheme to
improve the performance of the algorithm in handling MaOPs, as detailed in Section 3.2.
Additionally, there is a key threshold in the adaptive penalty scheme that determines the
algorithm’s convergence and diversity behavior. This threshold should not be fixed but
should be adjusted throughout the entire evolutionary process. Therefore, we propose a
monitoring strategy to adjust the threshold, allowing the adaptive penalty scheme to meet
the algorithm’s varying requirements for convergence and diversity at different stages,
thus improving its ability to handle MaOPs, as detailed in Section 3.3.

3. Proposed Algorithm

The main framework of caps-NSGA-III is shown in Algorithm 1. First, the reference
vectors are generated and the initial penalty factors are calculated. Next, the population is
initialized using chaotic mapping, after which the iteration process begins. First, the offspring
population Qt is generated using NSGA-III’s genetic operators and then combined with Pt to
form the population Rt. After, non-dominated sorting is utilized to divide Rt into various
Pareto-based non-domination levels, with the final layer denoted as layer l. Next, starting
from F1, each Pareto layer is added to the set St until the number of individuals in St is greater
than or equal to N. If the number equals N, the next iteration begins. Otherwise, individuals
from the first l layers are stored, and a PBI distance-based NSGA-III selection procedure
(replacing the perpendicular distance with the PBI distance (PBI value)) is executed in layer
l to select the remaining required individuals. After generating the population Pt+1, each
penalty factor is adaptively adjusted, and the monitoring strategy is then executed.

Algorithm 1 General framework of caps-NSGA-III

Input: N (Population size), M (Number of objectives), V (Number of decision variables),
ub (Upper bounds of decision variables), lb (Lower bounds of decision variables),
MFEs (Maximum number of fitness evaluations), ε (Threshold of convergence metric),
VF (Violation factor)

Output: population P
1: Z ← Generate Reference Vectors()
2: θ0 ← Calculate the initial penalty factor //SPS
3: P0 ← Chaotic mapping population initialization(N, V, ub, lb) //Algorithm 2
4: while termination condition is not met do
5: Qt ← Genetic Operator(Pt)
6: Rt = Pt ∪ Qt
7: (F1, F2, · · · ) = Non-dominated-sort(Rt)
8: repeat
9: St = St ∪ Fi and i = i + 1

10: until |St| � N
11: Last front to be included: Fl = Fi
12: if |St| = N then
13: Pt+1 = St, break
14: else
15: Pt+1 = ∪l−1

j=1Fj

16: Pt+1 ← The selection process of NSGA-III based on PBI distance.
17: end if
18: θt+1 ← Adaptive penalty factor(Pt, Pt+1, θt, t, MFEs, N, Z, ε) //Algorithm 3
19: [ε, θt+1, VF] ← Monitoring strategy(Pt, Pt+1, θt, θt+1, VF, ε) //Algorithm 4
20: end while

3.1. Chaotic Mapping Population Initialization

With increasing objective dimensions, the initial population may exhibit duplication
or clustering, leading to reduced diversity. Therefore, we introduced a widely used chaotic

68



Symmetry 2024, 16, 1289

mapping method [26] to initialize the population [27,28]. The Logistic equation is a typical
chaotic mapping system [29] and is calculated as follows:

xl = μx(1 − x) (6)

where x is a random number in [0, 1], and μ is a logistic control parameter, a random
floating-point number in the range [0, 4].

The specific process for chaotic mapping initialization of the population is detailed
in Algorithm 2.

Algorithm 2 Chaotic mapping population initialization (N, V, ub, lb)

Input: N, V, ub , lb
Output: P0

1: P0 = ∅
2: for i = 1 : | N | do
3: for j = 1 : | V | do
4: xj = rand(0, 1)
5: xlj = μxj(1 − xj)
6: xi,j = lbj + (ubj − lbj)xlj
7: end for
8: P0 = P0 ∪ xi
9: end for

3.2. Adaptive Penalty Factor

In the SPS method, after initializing the penalty factor (θ) it remains fixed, which may
lead to the abandonment of some excellent individuals and affect the algorithm’s perfor-
mance. Therefore, we proposed an adaptive method based on SPS. Initially, each reference
vector’s penalty factor is computed based on its own characteristic. Then, during the
iteration process, the penalty factor is adaptively adjusted according to the evolutionary
state of the individuals associated with the corresponding reference vector. Specifically,
for reference vector i, the PBI of the centroid of the individuals associated with i is calcu-
lated in Pt and Pt+1, respectively. The d1 of PBI is used as a convergence indicator: a smaller
d1 means the next-generation centroid is closer to the true PF, suggesting that individuals
associated with i are converging. When d1 changes relatively significantly, the θ value is
reduced to emphasize convergence. Conversely, the θ value is increased to emphasize
diversity. The detailed process is outlined in Algorithm 3.

Algorithm 3 Adaptive penalty factor (Pt, Pt+1, θt, t, MFEs, N, Z, ε)

Input: Pt , Pt+1 , θt , t , MFEs , N, Z , ε
Output: θt+1

1: CP = Pt ∪ Pt+1
2: Perform associated operation on CP.
3: for i = 1 : | Z | do

4: ASt ← Find the set of individuals in Pt associated with Z(i)
5: ASt+1 ← Find the set of individuals in Pt+1 associated with Z(i)
6: Calculate the centroids ct and ct+1 of ASt and ASt+1, respectively.
7: Calculate d1, d2, and PBI for ct and ct+1, respectively.
8: if d1,ct − d1,ct+1 /d1,ct > ε then

9: θt+1 = θt − t∗N
MFEs ×

|PBIct+1−PBIct |
PBIct

10: else

11: θt+1 = θt +
t∗N

MFEs ×
|PBIct+1−PBIct |

PBIct
12: end if

13: end for

69



Symmetry 2024, 16, 1289

3.3. Monitoring Strategy

Algorithms have varying requirements at different stages. The adaptive adjustment of
the penalty factor should align with the algorithm’s needs, with controlling the threshold for
increasing or decreasing θ being crucial, as it directly impacts the algorithm’s convergence
and diversity behavior. To achieve symmetry between convergence and diversity, we
proposed a monitoring strategy. Specifically, if a diversity adjustment is performed during
the convergence phase, it is considered a violation. When the predefined violation factor
is exceeded, convergence adjustment is then performed. Similarly, during the diversity
phase, if the number of convergence adjustments exceeds the violation factor, a diversity
adjustment is then performed. The specific process is detailed in Algorithm 4.

Algorithm 4 Monitoring strategy(Pt, Pt+1, θt, θt+1, VF, ε)

Input: Pt , Pt+1 , θt , θt+1 , VF , ε
Output: ε, θt+1, VF

1: Phase = 0 //Phase = 0 represents the early stage of the algorithm.
2: [d1,t, d1,t+1] = Calculate the sum of d1 for individuals’ PBI in Pt and Pt+1.
3: if t > T/2 then
4: if d1,t - d1,t+1/d1,t < 10−3 then
5: Phase = 1 // Phase = 1 represents the late stage of the algorithm.
6: end if
7: end if
8: if Phase = 0 then
9: if θt+1 − θt > 0 then

10: VF = VF − 1 //Violation
11: end if
12: if VF = 0 then
13: ε = ε − | crd | * rand(0, 1) //crd is the rate of change of d1 in the centroid’s PBI at

the first violation.
14: θt+1 = θt+1 − | crpbi | * rand(0, 1) //crpbi is the sum of the rate of change of the

PBI of the centroid for the three violations.
15: end if
16: else
17: if θt+1 − θt < 0 then
18: VF = VF − 1 //Violation
19: end if
20: if VF = 0 then
21: ε = ε + | crd | * rand(0, 1)
22: θt+1 = θt+1 + | crpbi | * rand(0, 1)
23: end if
24: end if

3.4. Complexity Analysis

The time complexity calculation for caps-NSGA-III primarily includes chaotic map-
ping population initialization (Algorithm 2), non-dominated sorting (line 7), environmental
selection (line 16), adaptive penalty factor (Algorithm 3), and monitoring strategy (Algo-
rithm 4). Assuming the population size is N, the number of objectives is M, the number of
decision variables is V, and the number of reference vectors is K. Consequently, the time
complexity of chaotic mapping population initialization is O(NV) and the time complexity
of non-dominated sorting is O(MN2). The main components of environmental selection
include normalization, PBI calculation, and niche selection. The time complexity for nor-
malization is O(MN2), for PBI calculation is O(MNK), and for niche selection is O(N2)
(in the worst case, selecting N individuals). Since K ≤ N, the time complexity of environ-
mental selection is O(MN2). Additionally, the time complexity of the adaptive penalty
factor (Algorithm 3) is O(NK) and that of the monitoring strategy (Algorithm 4) is O(K).
In summary, the overall time complexity of caps-NSGA-III is O(MN2).

70



Symmetry 2024, 16, 1289

4. Experimental Studies

4.1. Benchmark Function and Algorithm Parameter Settings
4.1.1. Benchmark Function Settings

The experiments utilize the widely used DTLZ [30] and WFG [31] test suites. For DTLZ,
we focus only on the DTLZ1 to DTLZ4 problems, similar to NSGA-III. The decision variable
V is defined as V = M+ r− 1, where the objective dimension M ranges from 3 to 15 and the
parameter r is 10 (or 5 for DTLZ1). For WFG, we consider all problems and define the
decision variable V as V = k + l, where the position-related variable k = 2(M − 1) and the
distance-related variable l = 20.

4.1.2. Algorithm Parameter Settings

The experiment compared five many-objective evolutionary algorithms: SSCEA, PeEA,
hpaEA, θ-NSGA-III, and NSGA-III. These five algorithms were all designed to address
the limitations of the traditional Pareto dominance method in handling many-objective
optimization problems, covering the three approaches mentioned in Section 1. Among them,
SSCEA and θ-NSGA-III, like caps-NSGA-III, belong to the third approach; NSGA-III
belongs to the second approach; and PeEA and hpaEA belong to the first approach. Our
aim is to validate the effectiveness of caps-NSGA-III by comparing it with similar methods
as well as those from the other two approaches. The algorithms’ parameter settings
involved in this study are as follows:

1. Population size settings: The population size is determined by the parameter H and
the objective dimension M, with specific settings detailed in Table 1. We use the
method of Das and Dennis [32] to generate reference vectors. When M exceeds 3,
the method of Deb and Jain [3] is employed.

2. Runs and termination criteria: The number of runs is 20 for each instance, with the
termination criteria for the algorithms defined as the maximum number of fitness
evaluations, as detailed in Table 2.

3. Crossover and mutation operator settings: The crossover probability is 1, with the dis-
tribution index set to 30 (20 for SSCEA, PeEA, and hpaEA). The mutation probability
is 1/V, with a distribution index of 20.

4. Parameter Settings: All algorithms use the parameter settings from the original
studies. In caps-NSGA-III, μ = 4 for the Logistic equation and α = 4 for SPS. The initial
threshold is defined as cd ∗ rand, where cd is the initial rate of change of d1 of the
centroid associated with the reference vector, and the violation factor is set to 3.

Table 1. Settings of population size.

M H Population Size

3 12 91
5 6 210
8 H1 = 3, H2 = 2 156
10 H1 = 3, H2 = 2 275
15 H1 = 3, H2 = 1 135

H1 and H2 represent the number of divisions for the boundary layer and the inner layer, respectively.

Table 2. Settings of termination condition.

Test Instance M = 3 M = 5 M = 8 M = 10 M = 15

DTLZ1-DTLZ4 18,200 42,000 31,200 55,000 27,000
WFG1-WFG9 36,400 157,500 234,000 550,000 405,000

71



Symmetry 2024, 16, 1289

4.2. Performance Metrics
4.2.1. Inverted Generational Distance (IGD)

Let P represent the set of points on the final obtained PF and P∗ represent a set of
points uniformly spread over the true PF. The IGD [33] is then calculated as follows:

IGD(P, P∗) = ∑
|P|
i=1 d(Pi, P∗)

|P∗| (7)

where |P| is the number of individuals in set P, d(Pi, P∗) is the minimum Euclidean distance
from the solution Pi to P∗, and |P∗| is the number of individuals in set P∗.

4.2.2. Hypervolume (HV)

Let P represent the set of points on the final obtained PF and Z = (z1, z2, · · · , zm)T

represent an m-dimensional reference point in the objective space that is dominated by all
Pareto optimal points. The HV [34] is then calculated as follows:

HV(P, Z) = Volume(∪F∈P[ f1, z1] ∗ · · · ∗ [ fm, zm]) (8)

4.3. Results and Discussion
4.3.1. Results on DTLZ Suite

The IGD values obtained by the six algorithms under different DTLZ1-4 instances are
shown in Table 3, with the best results highlighted. According to Table 3, caps-NSGA-III
excels in 10 out of 20 tests on DTLZ1-4. Especially on DTLZ3, caps-NSGA-III outper-
forms other algorithms in tests with all objectives except for the 10-objective instance.
Additionally, SSCEA works well on the eight-objective and ten-objective DTLZ1 instances,
the 10-objective DTLZ2 instance, and the 10-objective DTLZ3 instance. PeEA excels on the
10-objective DTLZ4 instance. The hpaEA demonstrates superior performance on the three-
objective DTLZ2 instance and on the three-objective and five-objective DTLZ4 instances.
θ-NSGA-III excels on the 15-objective DTLZ2 instance. NSGA-III performs well on the
three-objective DTLZ1 instance.

Figure 4 presents the final PFs generated by six algorithms on the 15-objective DTLZ4
instance. As seen in Figure 4, caps-NSGA-III’s overall performance surpasses other al-
gorithms. The diversity performance of θ-NSGA-III and NSGA-III is slightly inferior.
Notably, hpaEA exhibits poor convergence, with the maximum function values for all
objectives exceeding 1.

4.3.2. Results on WFG Suite

Table 4 presents the HV values obtained by the six algorithms on the WFG suite,
with the best results highlighted. According to Table 4, caps-NSGA-III excels in 24 out of
45 tests. Notably, it outperforms other algorithms across all objectives on the WFG3 and
WFG8 test problems. Additionally, SSCEA, hpaEA, θ-NSGA-III, and NSGA-III achieve the
best performance in nine, two, eight, and two instances, respectively. Among them, SSCEA
performs well on WFG2 and WFG4. Additionally, it also demonstrates superior results on
the eight-objective and fifteen-objective WFG1 instances. The hpaEA performs excellently
only on the three-objective and five-objective WFG9 instances. θ-NSGA-III demonstrates
excellent performance on WFG6 and achieves superior results in high-dimensional (10- and
15-objective) tests on WFG5 and WFG7. Additionally, it also attains superior performance
on the 10-objective WFG9 instance. Finally, NSGA-III shows excellent performance only on
the 10-objective WFG6 instance and the 15-objective WFG9 instance. Notably, PeEA does
not show any advantages in the comparisons.

72



Symmetry 2024, 16, 1289

caps-NSGA-III SSCEA PeEA

hpaEA θ-NSGA-III NSGA-III

Figure 4. Parallel coordinates of the non-dominated fronts obtained by the six algorithms on the
15-objective DTLZ4 instance.

Figure 5 presents the final PFs generated by six algorithms on the 15-objective WFG4
instance. As seen in Figure 5, caps-NSGA-III’s overall performance surpasses the other
algorithms. θ-NSGA-III and NSGA-III exhibit marginally lower performance compared to
caps-NSGA-III. Notably, hpaEA shows poor diversity, as does PeEA for objectives 2–8.

caps-NSGA-III SSCEA PeEA

hpaEA θ-NSGA-III NSGA-III

Figure 5. Parallel coordinates of the non-dominated fronts obtained by the six algorithms on the
15-objective WFG4 instance.

73



Symmetry 2024, 16, 1289

T
a

b
le

3
.

Th
e

IG
D

va
lu

es
(m

ea
n

an
d

st
an

da
rd

de
vi

at
io

n)
ob

ta
in

ed
by

ca
ps

-N
SG

A
-I

II
an

d
ot

he
r

al
go

ri
th

m
s

on
th

e
D

TL
Z

te
st

su
it

e.

P
ro

b
le

m
M

N
S

G
A

-I
II

θ-
N

S
G

A
-I

II
h

p
a
E

A
P

e
E

A
S

S
C

E
A

ca
p

s-
N

S
G

A
-I

II

D
TL

Z
1

3
1.

46
4
×

10
−1

(1
.6

3
×

10
−1

)
2.

36
0
×

10
−1

(3
.1

2
×

10
−1

)
1.

98
9
×

10
−1

(1
.7

8
×

10
−1

)
2.

04
6
×

10
−1

(2
.2

6
×

10
−1

)
2.

70
5
×

10
−1

(2
.6

8
×

10
−1

)
3.

51
5
×

10
−1

(1
.0

2
×

10
−4

)
5

2.
08

4
×

10
−1

(1
.7

3
×

10
−1

)
1.

14
5
×

10
−1

(1
.3

9
×

10
−1

)
2.

18
0
×

10
−1

(1
.7

9
×

10
−1

)
7.

52
6
×

10
−2

(5
.6

6
×

10
−2

)
7.

34
2
×

10
−2

(5
.8

4
×

10
−2

)
5.

59
2
×

10
−2

(5
.3

4
×

10
−3

)
8

9.
12

2
×

10
−1

(3
.3

1
×

10
−3

)
4.

30
5
×

10
−1

(3
.2

9
×

10
−1

)
1.

27
7
×

10
0

(7
.2

2
×

10
−1

)
1.

93
7
×

10
−1

(1
.2

1
×

10
−1

)
1.

16
2
×

10
−1

(4
.6

3
×

10
−2

)
4.

19
9
×

10
−1

(2
.1

4
×

10
−1

)
10

2.
99

6
×

10
−1

(1
.9

9
×

10
−1

)
2.

45
8
×

10
−1

(1
.9

8
×

10
−1

)
3.

02
3
×

10
0

(1
.1

5
×

10
0 )

1.
44

3
×

10
−1

(6
.1

8
×

10
−2

)
1.

07
0
×

10
−1

(4
.4

5
×

10
−3

)
1.

85
5
×

10
−1

(4
.6

1
×

10
−2

)
15

8.
53

0
×

10
−1

(5
.7

6
×

10
−1

)
5.

60
1
×

10
−1

(2
.7

8
×

10
−1

)
3.

70
3
×

10
0

(9
.2

8
×

10
−1

)
3.

38
0
×

10
−1

(1
.7

9
×

10
−1

)
3.

41
1
×

10
−1

(1
.8

6
×

10
−1

)
3.

35
7
×

10
−1

(1
.5

4
×

10
−1

)

D
TL

Z
2

3
5.

44
9
×

10
−2

(2
.4

1
×

10
−5

)
5.

44
8
×

10
−2

(1
.5

9
×

10
−5

)
5.

36
1
×

10
−2

(1
.7

8
×

10
−1

)
6.

47
1
×

10
−2

(4
.4

5
×

10
−3

)
5.

79
5
×

10
−2

(1
.0

5
×

10
−3

)
8.

22
3
×

10
−1

(8
.5

0
×

10
−2

)
5

1.
65

1
×

10
−1

(1
.0

1
×

10
−4

)
1.

65
1
×

10
−1

(8
.6

4
×

10
−4

)
1.

67
4
×

10
−1

(2
.0

0
×

10
−2

)
1.

76
3
×

10
−1

(3
.2

4
×

10
−3

)
1.

65
2
×

10
−1

(8
.6

4
×

10
−4

)
1.

65
1
×

10
−1

(4
.9

9
×

10
−5

)
8

4.
01

7
×

10
−1

(8
.9

2
×

10
−2

)
3.

23
5
×

10
−1

(2
.5

0
×

10
−3

)
5.

26
7
×

10
−1

(5
.5

2
×

10
−2

)
3.

67
0
×

10
−1

(4
.2

8
×

10
−3

)
3.

47
7
×

10
−1

(6
.9

2
×

10
−3

)
3.

21
7
×

10
−1

(5
.1

5
×

10
−3

)
10

4.
65

5
×

10
−1

(4
.4

9
×

10
−2

)
4.

26
6
×

10
−1

(2
.3

9
×

10
−3

)
6.

23
8
×

10
−1

(4
.5

0
×

10
−2

)
4.

21
4
×

10
−1

(2
.3

5
×

10
−2

)
3.

87
0
×

10
−1

(4
.8

2
×

10
−3

)
4.

31
9
×

10
−1

(1
.5

0
×

10
−2

)
15

6.
52

7
×

10
−1

(2
.1

4
×

10
−2

)
6.

17
2
×

10
−1

(1
.0

1
×

10
−2

)
9.

35
8
×

10
−1

(3
.5

5
×

10
−2

)
7.

52
1
×

10
−1

(5
.6

9
×

10
−2

)
6.

43
2
×

10
−1

(5
.6

4
×

10
−2

)
6.

39
3
×

10
−1

(1
.6

5
×

10
−2

)

D
TL

Z
3

3
1.

30
2
×

10
1

(5
.4

9
×

10
0 )

8.
84

6
×

10
0

(4
.4

2
×

10
0 )

1.
53

4
×

10
1

(9
.8

3
×

10
0 )

5.
32

8
×

10
0 (2

.9
7
×

10
0 )

1.
74

2
×

10
1

(1
.3

2
×

10
1 )

9.
93

3
×

10
−1

(2
.1

0
×

10
−4

)
5

4.
91

4
×

10
0

(4
.0

9
×

10
0 )

5.
60

5
×

10
0

(3
.0

4
×

10
0 )

5.
35

9
×

10
0

(3
.0

3
×

10
0 )

3.
83

3
×

10
0 (3

.2
0
×

10
0 )

3.
24

2
×

10
0

(2
.0

8
×

10
0 )

1.
02

0
×

10
0

(8
.3

8
×

10
−1

)
8

1.
36

0
×

10
1

(6
.2

4
×

10
0 )

1.
28

1
×

10
1

(9
.5

4
×

10
0 )

3.
35

8
×

10
1

(5
.5

2
×

10
−2

)
1.

20
2
×

10
1 (8

.6
9
×

10
0 )

7.
16

2
×

10
0

(4
.0

1
×

10
0 )

7.
14

8
×

10
0

(4
.6

4
×

10
0 )

10
9.

36
3
×

10
0

(5
.0

6
×

10
0 )

6.
36

1
×

10
0

(5
.1

7
×

10
0 )

5.
41

4
×

10
1

(1
.8

3
×

10
1 )

3.
76

2
×

10
0 (3

.2
6
×

10
0 )

2.
84

6
×

10
0

(2
.7

2
×

10
0 )

6.
69

3
×

10
0

(6
.9

3
×

10
0 )

15
2.

38
5
×

10
1

(9
.9

8
×

10
0 )

1.
42

1
×

10
1

(5
.6

0
×

10
0 )

8.
53

0
×

10
1

(2
.2

8
×

10
1 )

9.
57

5
×

10
0 (6

.3
9
×

10
0 )

9.
85

3
×

10
0

(6
.5

3
×

10
0 )

9.
56

7
×

10
0 (4

.6
2
×

10
0 )

D
TL

Z
4

3
5.

44
9
×

10
−2

(1
.8

2
×

10
−5

)
5.

44
9
×

10
−2

(1
.1

7
×

10
−5

)
5.

35
2
×

10
−2

(3
.5

9
×

10
−4

)
6.

14
9
×

10
−2

(1
.1

0
×

10
−3

)
5.

76
5
×

10
−2

(7
.6

8
×

10
−4

)
8.

13
5
×

10
−1

(9
.6

4
×

10
−2

)
5

1.
65

1
×

10
−1

(1
.2

1
×

10
−4

)
1.

65
0
×

10
−1

(6
.1

7
×

10
−5

)
1.

61
2
×

10
−1

(7
.5

5
×

10
−4

)
1.

72
9
×

10
−1

(2
.0

5
×

10
−3

)
1.

67
4
×

10
−1

(1
.2

4
×

10
−3

)
1.

65
1
×

10
−1

(5
.9

6
×

10
−5

)
8

3.
26

0
×

10
−1

(1
.6

2
×

10
−3

)
3.

28
5
×

10
−1

(2
.5

0
×

10
−2

)
3.

59
4
×

10
−1

(1
.2

6
×

10
−2

)
3.

65
6
×

10
−1

(2
.8

5
×

10
−3

)
3.

51
0
×

10
−1

(1
.0

1
×

10
−3

)
3.

25
1
×

10
−1

(1
.1

7
×

10
−3

)
10

4.
35

1
×

10
−1

(3
.3

1
×

10
−3

)
4.

31
2
×

10
−1

(2
.5

8
×

10
−3

)
5.

15
6
×

10
−1

(1
.7

1
×

10
−2

)
4.

08
0
×

10
−1

(4
.4

2
×

10
−3

)
4.

08
1
×

10
−1

(8
.4

2
×

10
−3

)
4.

37
5
×

10
−1

(2
.6

3
×

10
−3

)
15

6.
33

3
×

10
−1

(1
.6

3
×

10
−2

)
6.

32
0
×

10
−1

(4
.4

7
×

10
−3

)
6.

47
9
×

10
−1

(1
.0

9
×

10
−2

)
1.

11
5
×

10
0 (8

.8
8
×

10
−2

)
8.

62
7
×

10
−1

(1
.0

1
×

10
−1

)
6.

31
7
×

10
−1

(1
.3

0
×

10
−2

)

T
a

b
le

4
.

Th
e

H
V

va
lu

es
(m

ea
n

an
d

st
an

da
rd

de
vi

at
io

n)
ob

ta
in

ed
by

ca
ps

-N
SG

A
-I

II
an

d
ot

he
r

al
go

ri
th

m
s

on
th

e
W

FG
te

st
su

it
e.

P
ro

b
le

m
M

N
S

G
A

-I
II

θ-
N

S
G

A
-I

II
h

p
a
E

A
P

e
E

A
S

S
C

E
A

ca
p

s-
N

S
G

A
-I

II

W
FG

1

3
6.

74
6
×

10
−1

(4
.3

4
×

10
−3

)
7.

12
2
×

10
−1

(6
.2

1
×

10
−4

)
4.

85
9
×

10
−1

(3
.1

3
×

10
−3

)
7.

26
8
×

10
−1

(2
.1

4
×

10
−3

)
5.

90
5
×

10
−1

(6
.4

6
×

10
−3

)
8.

02
5
×

10
−1

(3
.8

1
×

10
−2

)
5

8.
55

3
×

10
−1

(2
.4

7
×

10
−4

)
8.

70
8
×

10
−1

(5
.3

7
×

10
−3

)
8.

73
1
×

10
−1

(3
.0

8
×

10
−2

)
9.

19
9
×

10
−1

(3
.2

0
×

10
−3

)
8.

95
5
×

10
−1

(2
.7

8
×

10
−3

)
9.

31
3
×

10
−1

(4
.3

3
×

10
−2

)
8

7.
84

0
×

10
−1

(2
.1

6
×

10
−3

)
8.

03
4
×

10
−1

(6
.4

3
×

10
−3

)
7.

87
2
×

10
−1

(6
.1

7
×

10
−3

)
9.

08
6
×

10
−1

(4
.8

6
×

10
−2

)
9.

11
3
×

10
−1

(9
.3

9
×

10
−2

)
8.

83
8
×

10
−1

(7
.0

7
×

10
−2

)
10

9.
34

0
×

10
−1

(7
.6

6
×

10
−3

)
9.

46
6
×

10
−1

(4
.3

5
×

10
−3

)
9.

14
2
×

10
−1

(6
.7

8
×

10
−2

)
9.

22
4
×

10
−1

(1
.9

5
×

10
−2

)
9.

77
3
×

10
−1

(9
.6

4
×

10
−2

)
9.

85
8
×

10
−1

(2
.4

5
×

10
−3

)
15

8.
05

6
×

10
−1

(3
.2

1
×

10
−3

)
7.

75
4
×

10
−1

(6
.4

2
×

10
−3

)
7.

85
9
×

10
−1

(1
.2

8
×

10
−3

)
9.

21
7
×

10
−1

(4
.5

7
×

10
−3

)
9.

77
0
×

10
−1

(2
.1

1
×

10
−3

)
9.

19
7
×

10
−1

(1
.8

0
×

10
−1

)

W
FG

2

3
8.

31
9
×

10
−1

(9
.6

2
×

10
−2

)
8.

15
3
×

10
−1

(5
.7

9
×

10
−2

)
7.

94
1
×

10
−1

(8
.3

6
×

10
−3

)
8.

11
2
×

10
−1

(8
.7

1
×

10
−3

)
8.

42
8
×

10
−1

(6
.3

3
×

10
−3

)
9.

04
6
×

10
−1

(8
.4

0
×

10
−3

)
5

9.
49

7
×

10
−1

(4
.3

8
×

10
−3

)
9.

23
5
×

10
−1

(5
.2

4
×

10
−3

)
8.

62
4
×

10
−1

(9
.7

7
×

10
−2

)
9.

04
6
×

10
−1

(9
.3

2
×

10
−2

)
9.

58
3
×

10
−1

(9
.3

1
×

10
−2

)
9.

79
4
×

10
−1

(6
.5

9
×

10
−4

)
8

8.
96

1
×

10
−1

(8
.9

5
×

10
−3

)
3.

86
2
×

10
−1

(9
.3

1
×

10
−2

)
5.

05
8
×

10
−1

(1
.2

3
×

10
−3

)
9.

23
6
×

10
−1

(6
.6

4
×

10
−2

)
9.

57
1
×

10
−1

(6
.5

8
×

10
−2

)
9.

31
8
×

10
−1

(2
.1

1
×

10
−2

)
10

9.
50

3
×

10
−1

(4
.2

5
×

10
−3

)
8.

66
9
×

10
−1

(6
.8

2
×

10
−2

)
9.

39
4
×

10
−1

(2
.3

2
×

10
−2

)
4.

05
1
×

10
−1

(5
.2

6
×

10
−3

)
9.

75
1
×

10
−1

(6
.2

9
×

10
−3

)
9.

35
2
×

10
−1

(1
.8

9
×

10
−2

)
15

8.
23

7
×

10
−1

(6
.8

2
×

10
−3

)
7.

12
9
×

10
−1

(8
.4

1
×

10
−3

)
8.

08
7
×

10
−1

(2
.1

9
×

10
−2

)
8.

86
5
×

10
−1

(2
.8

1
×

10
−2

)
9.

29
6
×

10
−1

(9
.0

2
×

10
−2

)
3.

02
7
×

10
−1

(9
.7

9
×

10
−2

)

W
FG

3

3
3.

44
6
×

10
−1

(6
.5

5
×

10
−3

)
3.

40
7
×

10
−1

(5
.4

9
×

10
−3

)
3.

32
4
×

10
−1

(3
.4

6
×

10
−3

)
3.

24
7
×

10
−1

(2
.1

4
×

10
−3

)
3.

83
5
×

10
−1

(1
.4

9
×

10
−3

)
4.

63
1
×

10
−1

(2
.7

2
×

10
−2

)
5

1.
08

6
×

10
−1

(3
.9

7
×

10
−2

)
1.

44
4
×

10
−1

(3
.1

8
×

10
−3

)
1.

14
9
×

10
−1

(5
.5

1
×

10
−3

)
1.

60
5
×

10
−1

(5
.7

6
×

10
−2

)
1.

61
0
×

10
−1

(5
.4

8
×

10
−3

)
6.

14
2
×

10
−1

(5
.0

4
×

10
−3

)
8

0.
00

0
×

10
0

(0
.0

0
×

10
0 )

4.
46

9
×

10
−4

(3
.1

3
×

10
−1

)
0.

00
0
×

10
0

(0
.0

0
×

10
0 )

1.
68

1
×

10
−2

(5
.9

5
×

10
−2

)
6.

34
9
×

10
−3

(3
.9

7
×

10
−3

)
4.

31
7
×

10
−1

(1
.9

3
×

10
−2

)
10

0.
00

0
×

10
0

(0
.0

0
×

10
0 )

0.
00

0
×

10
0

(0
.0

0
×

10
0 )

0.
00

0
×

10
0

(0
.0

0
×

10
0 )

5.
14

7
×

10
−1

(4
.7

2
×

10
−3

)
0.

00
0
×

10
0

(0
.0

0
×

10
0 )

5.
33

5
×

10
−1

(2
.6

3
×

10
−3

)
15

0.
00

0
×

10
0

(0
.0

0
×

10
0 )

0.
00

0
×

10
0

(0
.0

0
×

10
0 )

0.
00

0
×

10
0

(0
.0

0
×

10
0 )

0.
00

0
×

10
0

(0
.0

0
×

10
0 )

0.
00

0
×

10
0

(0
.0

0
×

10
0 )

3.
23

7
×

10
−1

(1
.1

5
×

10
−1

)

74



Symmetry 2024, 16, 1289

T
a

b
le

4
.

C
on

t.

P
ro

b
le

m
M

N
S

G
A

-I
II

θ-
N

S
G

A
-I

II
h

p
a
E

A
P

e
E

A
S

S
C

E
A

ca
p

s-
N

S
G

A
-I

II

W
FG

4

3
5.

45
6
×

10
−1

(2
.7

5
×

10
−2

)
5.

47
1
×

10
−1

(4
.5

7
×

10
−3

)
5.

05
6
×

10
−1

(3
.2

5
×

10
−3

)
5.

33
8
×

10
−1

(4
.6

6
×

10
−3

)
5.

49
6
×

10
−1

(1
.2

7
×

10
−3

)
5.

47
4
×

10
−1

(1
.8

7
×

10
−3

)
5

7.
87

9
×

10
−1

(3
.6

2
×

10
−3

)
7.

89
8
×

10
−1

(2
.5

4
×

10
−3

)
6.

46
8
×

10
−1

(4
.1

3
×

10
−3

)
7.

69
3
×

10
−1

(5
.5

2
×

10
−3

)
7.

98
3
×

10
−1

(9
.4

7
×

10
−3

)
7.

85
8
×

10
−1

(2
.8

5
×

10
−2

)
8

8.
91

8
×

10
−1

(4
.3

3
×

10
−3

)
9.

03
9
×

10
−1

(6
.4

7
×

10
−3

)
5.

61
5
×

10
−1

(2
.3

9
×

10
−3

)
7.

96
3
×

10
−1

(3
.8

2
×

10
−3

)
9.

06
5
×

10
−1

(7
.1

6
×

10
−3

)
8.

99
6
×

10
−1

(4
.0

5
×

10
−3

)
10

9.
32

7
×

10
−1

(5
.7

4
×

10
−3

)
9.

56
1
×

10
−1

(4
.1

6
×

10
−2

)
6.

00
8
×

10
−1

(6
.7

9
×

10
−3

)
6.

81
1
×

10
−1

(3
.8

1
×

10
−3

)
9.

57
0
×

10
−1

(9
.4

7
×

10
−2

)
9.

50
8
×

10
−1

(5
.4

3
×

10
−1

)
15

9.
59

6
×

10
−1

1
(2

.0
6
×

10
−2

)
9.

77
9
×

10
−1

(8
.3

0
×

10
−3

)
4.

65
9
×

10
−1

(9
.7

8
×

10
−3

)
8.

22
6
×

10
−1

(2
.2

4
×

10
−1

)
9.

56
8
×

10
−1

(9
.3

0
×

10
−3

)
9.

84
3
×

10
−1

(1
.6

3
×

10
−3

)

W
FG

5

3
5.

07
3
×

10
−1

(3
.9

5
×

10
−3

)
5.

06
9
×

10
−1

(2
.5

9
×

10
−3

)
5.

00
1
×

10
−1

(5
.2

9
×

10
−2

)
5.

00
6
×

10
−1

(5
.6

4
×

10
−3

)
5.

00
9
×

10
−1

(4
.4

3
×

10
−3

)
5.

28
9
×

10
−1

(3
.5

8
×

10
−3

)
5

7.
51

7
×

10
−1

(3
.0

7
×

10
−4

)
7.

52
9
×

10
−1

(5
.8

1
×

10
−3

)
7.

33
0
×

10
−1

(4
.2

7
×

10
−3

)
7.

24
0
×

10
−1

(4
.7

5
×

10
−3

)
7.

20
0
×

10
−1

(8
.2

6
×

10
−2

)
7.

62
8
×

10
−1

(1
.8

6
×

10
−3

)
8

8.
49

6
×

10
−1

(5
.2

4
×

10
−2

)
8.

53
6
×

10
−1

(4
.1

6
×

10
−3

)
7.

36
6
×

10
−1

(2
.8

7
×

10
−2

)
8.

08
6
×

10
−1

(2
.0

1
×

10
−2

)
8.

06
7
×

10
−1

(5
.7

0
×

10
−1

)
8.

59
9
×

10
−1

(1
.0

6
×

10
−3

)
10

8.
98

0
×

10
−1

(5
.8

7
×

10
−2

)
9.

02
0
×

10
−1

(5
.4

2
×

10
−2

)
7.

79
4
×

10
−1

(9
.4

1
×

10
−2

)
3.

54
6
×

10
−1

(8
.1

9
×

10
−2

)
8.

51
7
×

10
−1

(2
.6

3
×

10
−1

)
8.

94
2
×

10
−1

(2
.4

5
×

10
−3

)
15

9.
08

2
×

10
−1

(5
.2

9
×

10
−2

)
9.

14
7
×

10
−1

(5
.3

3
×

10
−2

)
5.

71
3
×

10
−1

(3
.8

9
×

10
−3

)
8.

13
6
×

10
−1

(1
.4

1
×

10
−3

)
8.

27
5
×

10
−1

(6
.5

9
×

10
−1

)
9.

13
7
×

10
−1

(6
.1

1
×

10
−2

)

W
FG

6

3
5.

13
7
×

10
−1

(3
.8

9
×

10
−3

)
5.

12
8
×

10
−1

(3
.1

1
×

10
−3

)
5.

06
0
×

10
−1

(3
.3

9
×

10
−3

)
4.

96
3
×

10
−1

(1
.1

6
×

10
−3

)
5.

14
1
×

10
−1

(2
.6

4
×

10
−2

)
5.

19
8
×

10
−1

(2
.0

1
×

10
−3

)
5

7.
60

0
×

10
−1

(6
.5

8
×

10
−2

)
7.

61
8
×

10
−1

(4
.3

3
×

10
−3

)
7.

43
9
×

10
−1

(5
.8

0
×

10
−3

)
7.

13
2
×

10
−1

(5
.0

1
×

10
−3

)
7.

59
2
×

10
−1

(2
.6

3
×

10
−3

)
7.

42
2
×

10
−1

(3
.4

9
×

10
−3

)
8

8.
61

0
×

10
−1

(1
.1

3
×

10
−2

)
8.

66
1
×

10
−1

(6
.5

2
×

10
−3

)
7.

97
2
×

10
−1

(1
.5

5
×

10
−3

)
7.

19
0
×

10
−1

(4
.7

9
×

10
−3

)
8.

65
4
×

10
−1

(8
.6

7
×

10
−2

)
8.

38
4
×

10
−1

(6
.6

3
×

10
−3

)
10

9.
12

4
×

10
−1

(1
.3

8
×

10
−2

)
9.

12
0
×

10
−1

(1
.5

7
×

10
−2

)
8.

47
1
×

10
−1

(2
.7

2
×

10
−2

)
7.

68
1
×

10
−1

(1
.5

2
×

10
−2

)
9.

09
1
×

10
−1

(1
.1

9
×

10
−1

)
8.

73
2
×

10
−1

(5
.7

9
×

10
−3

)
15

9.
17

1
×

10
−1

(1
.6

7
×

10
−2

)
9.

25
9
×

10
−1

(6
.6

6
×

10
−3

)
6.

44
5
×

10
−1

(1
.4

4
×

10
−2

)
8.

49
5
×

10
−1

(2
.7

9
×

10
−2

)
9.

13
0
×

10
−1

(1
.3

1
×

10
−1

)
8.

80
8
×

10
−1

(9
.3

9
×

10
−3

)

W
FG

7

3
5.

39
1
×

10
−1

(1
.3

5
×

10
−3

)
5.

39
5
×

10
−1

(5
.7

1
×

10
−3

)
5.

37
6
×

10
−1

(1
.1

6
×

10
−2

)
5.

37
1
×

10
−1

(4
.5

5
×

10
−3

)
4.

92
3
×

10
−1

(7
.2

6
×

10
−3

)
5.

51
7
×

10
−1

(3
.9

3
×

10
−3

)
5

8.
00

0
×

10
−1

(1
.1

9
×

10
−3

)
8.

01
1
×

10
−1

(9
.4

4
×

10
−4

)
7.

73
2
×

10
−1

(2
.1

3
×

10
−3

)
7.

72
1
×

10
−1

(9
.6

3
×

10
−4

)
7.

26
8
×

10
−1

(7
.0

9
×

10
−1

)
8.

02
0
×

10
−1

(5
.0

4
×

10
−3

)
8

8.
26

1
×

10
−1

(5
.4

1
×

10
−3

)
9.

04
5
×

10
−1

(7
.6

3
×

10
−4

)
7.

34
3
×

10
−1

(6
.0

5
×

10
−2

)
8.

76
1
×

10
−1

(4
.3

5
×

10
−3

)
8.

02
3
×

10
−1

(2
.1

9
×

10
−1

)
9.

12
4
×

10
−1

(3
.7

5
×

10
−3

)
10

8.
75

4
×

10
−1

(6
.4

3
×

10
−3

)
9.

62
3
×

10
−1

(7
.1

1
×

10
−1

)
7.

75
7
×

10
−1

(7
.2

6
×

10
−3

)
9.

24
0
×

10
−1

(3
.0

8
×

10
−3

)
8.

76
2
×

10
−1

(9
.0

3
×

10
−1

)
9.

53
5
×

10
−1

(2
.6

3
×

10
−3

)
15

9.
65

2
×

10
−1

(8
.1

8
×

10
−3

)
9.

86
6
×

10
−1

(5
.8

1
×

10
−2

)
5.

89
7
×

10
−1

(6
.4

2
×

10
−2

)
8.

82
5
×

10
−1

(4
.5

7
×

10
−2

)
8.

79
2
×

10
−1

(7
.3

9e
+)

9.
86

0
×

10
−1

(1
.1

0
×

10
−2

)

W
FG

8

3
4.

47
0
×

10
−1

(2
.8

8
×

10
−3

)
4.

53
3
×

10
−1

(3
.7

1
×

10
−3

)
4.

46
3
×

10
−1

(5
.1

6
×

10
−3

)
4.

36
7
×

10
−1

(5
.1

6
×

10
−3

)
4.

68
4
×

10
−1

(4
.8

8
×

10
−2

)
5.

06
8
×

10
−1

(2
.1

5
×

10
−2

)
5

6.
73

0
×

10
−1

(2
.1

9
×

10
−3

)
6.

74
8
×

10
−1

(3
.5

1
×

10
−2

)
6.

73
0
×

10
−1

(4
.4

2
×

10
−3

)
6.

41
1
×

10
−1

(6
.0

7
×

10
−3

)
6.

72
0
×

10
−1

(7
.4

6
×

10
−1

)
7.

52
2
×

10
−1

(2
.8

5
×

10
−2

)
8

7.
52

9
×

10
−1

(9
.6

9
×

10
−3

)
7.

46
8
×

10
−1

(1
.1

9
×

10
−2

)
6.

78
9
×

10
−1

(7
.6

5
×

10
−3

)
7.

54
4
×

10
−1

(1
.3

9
×

10
−2

)
7.

53
3
×

10
−1

(6
.2

6
×

10
−1

)
8.

86
3
×

10
−1

(1
.2

3
×

10
−2

)
10

8.
52

0
×

10
−1

(8
.4

9
×

10
−3

)
8.

40
5
×

10
−1

(1
.7

5
×

10
−2

)
7.

47
3
×

10
−1

(9
.2

8
×

10
−3

)
8.

52
9
×

10
−1

(8
.7

3
×

10
−2

)
8.

39
8
×

10
−1

(2
.8

6
×

10
−1

)
9.

44
0
×

10
−1

(5
.4

3
×

10
−1

)
15

8.
63

5
×

10
−1

(1
.4

2
×

10
−1

)
8.

85
2
×

10
−1

(5
.2

4
×

10
−2

)
6.

43
2
×

10
−1

(1
.4

9
×

10
−2

)
8.

74
4
×

10
−1

(1
.7

7
×

10
−2

)
8.

94
6
×

10
−1

(3
.2

1e
+)

9.
76

9
×

10
−1

(4
.2

6
×

10
−3

)

W
FG

9

3
4.

67
4
×

10
−1

(2
.0

5
×

10
−3

)
4.

67
8
×

10
−1

(1
.8

4
×

10
−2

)
5.

00
6
×

10
−1

(2
.2

8
×

10
−3

)
4.

68
5
×

10
−1

(5
.2

7
×

10
−3

)
4.

56
6
×

10
−1

(3
.0

2
×

10
−1

)
4.

97
1
×

10
−1

(9
.7

1
×

10
−4

)
5

6.
66

7
×

10
−1

(2
.1

6
×

10
−2

)
6.

74
7
×

10
−1

(3
.4

1
×

10
−3

)
6.

81
4
×

10
−1

(2
.5

6
×

10
−2

)
6.

67
8
×

10
−1

(8
.0

7
×

10
−3

)
6.

19
6
×

10
−1

(2
.0

6
×

10
−1

)
6.

79
9
×

10
−1

(2
.8

5
×

10
−2

)
8

7.
04

2
×

10
−1

(1
.6

8
×

10
−2

)
7.

13
8
×

10
−1

(1
.9

3
×

10
−2

)
6.

71
6
×

10
−1

(2
.3

8
×

10
−2

)
6.

97
0
×

10
−1

(9
.0

9
×

10
−3

)
6.

32
8
×

10
−1

(3
.4

9
×

10
−1

)
7.

34
7
×

10
−1

(3
.0

4
×

10
−3

)
10

7.
61

6
×

10
−1

(3
.7

3
×

10
−3

)
7.

86
0
×

10
−1

(4
.1

8
×

10
−2

)
7.

28
8
×

10
−1

(8
.7

7
×

10
−3

)
5.

62
0
×

10
−1

(4
.0

7
×

10
−3

)
6.

92
1
×

10
−1

(6
.3

4
×

10
−2

)
7.

62
7
×

10
−1

(5
.4

3
×

10
−1

)
15

7.
47

5
×

10
−1

(2
.7

8
×

10
−2

)
7.

44
5
×

10
−1

(4
.0

5
×

10
−2

)
5.

73
0
×

10
−1

(1
.8

7
×

10
−3

)
7.

10
3
×

10
−1

(5
.0

1
×

10
−2

)
6.

17
2
×

10
−1

(2
.7

7
×

10
−1

)
7.

33
7
×

10
−1

(5
.9

3
×

10
−3

)

75



Symmetry 2024, 16, 1289

Overall, caps-NSGA-III performs the best in many-objective tests for DTLZ1-4 and
WFG1-9, particularly in DTLZ3, WFG3, and WFG8. This demonstrates the effectiveness of
the penalty scheme we proposed in tackling complex many-objective problems. The adap-
tive penalty scheme enhances the algorithm’s performance, and the monitoring strategy
further harmonizes its convergence and diversity performance across different stages.

4.4. Real-World Problem Applications

Two real-world cases were selected for experimental comparison: car side impact [35,36]
and water resource planning [35,36]. Among these, water resource planning refers to the
optimal planning problem for urban storm drainage systems. It involves three variables (lo-
cal detention storage capacity, maximum treatment rate, and maximum allowable overflow
rate) and five objective functions, which include costs (drainage network, storage facility,
treatment facility, and expected flood damage) and expected economic loss due to flood.
The car side impact problem involves seven variables, including the thicknesses of the
B-Pillars, floor, crossmembers, door beam, roof rail, etc. It aims to achieve three objectives:
minimizing the car’s weight, minimizing the public force experienced by a passenger, and
minimizing the average velocity of the V-Pillar responsible for withstanding impact load.
As recommended by Tanabe and Ishibuchi [35], an additional objective function was added
to each problem: minimizing the total constraint violation.

For both problems, the population sizes are 100 and 150, respectively, and the termi-
nation conditions are 10,000 and 21,000 fitness evaluations, respectively. Other algorithm
settings remain consistent with those outlined in Section 4.1.2. Due to the unavailability
of the true PF, the HV metric is employed for evaluation, with the obtained HV results
presented in Table 5. According to Table 5, caps-NSGA-III exhibits the best performance
for both problems. This demonstrates the algorithm’s effectiveness in addressing real-
world problems.

Table 5. The HV values (mean and standard deviation) obtained by caps-NSGA-III and other
algorithms on real-world problems.

Problem NSGA-III θ-NSGA-III SPS-NSGA-III hpaEA PeEA SSCEA caps-NSGA-III

Car side impact 2.677 × 10−2 2.537 × 10−2 2.653 × 10−2 1.795 × 10−2 1.779 × 10−2 2.323 × 10−2 2.732 × 10−2

(1.27 × 10−3) (1.05 × 10−3) (1.20 × 10−3) (2.31 × 10−3) (2.50 × 10−3) (1.56 × 10−3) (1.11 × 10−3)
Water resource

planning
1.097 × 10−1 6.780 × 10−2 1.105 × 10−1 1.221 × 10−1 1.192 × 10−1 1.217 × 10−1 1.249 × 10−1

(2.35 × 10−2) (2.69 × 10−2) (2.24 × 10−2) (1.68 × 10−2) (2.81 × 10−2) (1.73 × 10−2) (2.70 × 10−2)

4.5. Parameter Sensitivity Analysis

To investigate the impact of parameters on caps-NSGA-III, we conducted a sensitivity
analysis on the parameter α in the SPS method with values of 1, 2, and 4. The experimental
setup is consistent with Section 4. We selected four test problems—WFG3 (linear PF),
WFG8 (concave PF), WFG2 (convex PF), and WFG1 (mixed PF)—to identify the optimal
value of α.

Figure 6 presents the HV line plots for different values of α across various types of PF.
It can be observed from the figure that different values of α indeed affect the performance
of caps-NSGA-III. Although performance differences on WFG8 are small, indicating that
concave problems may be less influenced by the penalty factor θ, caps-NSGA-III overall
performs best when α = 4. On the whole, caps-NSGA-III achieves the best results when
α = 4, especially on WFG2, where the difference compared to other α values is the most
significant. This may be because the boundary regions of convex problems are harder to
identify, and larger values of α can lead to higher θ values for boundary vectors, thereby
helping to maintain diversity.

76



Symmetry 2024, 16, 1289

WFG3 WFG8

WFG2 WFG1
Figure 6. Analysis of the impact of α on caps-NSGA-III for the WFG1, WFG2, WFG3, and WFG8
problems. The blue line represents α = 1, the orange line represents α = 2, and the yellow line
represents α = 4.

4.6. Ablation Studies

To verify the effectiveness of the adaptive penalty factor and monitoring strategy
components, we conducted a series of ablation experiments on the three-, eight-, and fifteen-
objective WFG test suites, with the experimental setup consistent with that described in
Section 4. The algorithms compared include the original PBI-NSGA-III, SPS-NSGA-III,
adaptive penalty factor-NSGA-III (AP-NSGA-III), and caps-NSGA-III, which combines
the adaptive penalty factor with the monitoring strategy. Among these, PBI-NSGA-III
represents the baseline algorithm, SPS-NSGA-III is used to validate the effectiveness of the
SPS component, AP-NSGA-III is used to validate the effectiveness of the adaptive penalty
factor component, and caps-NSGA-III is used to validate the effectiveness of the monitoring
strategy component.

Table 6 presents the HV values obtained by the four algorithms on the WFG suite,
with the best results highlighted. The results show that caps-NSGA-III performed the best,
achieving the top performance in 20 out of 27 comparisons. It is followed by AP-NSGA-III,
which achieved the best performance in four comparisons, and then SPS-NSGA-III, which
achieved the best performance in three comparisons. Notably, PBI-NSGA-III did not show
any advantages in the comparisons. By comparing the four algorithms both as a whole and
individually, it can be observed that the introduction of each component indeed improved
the performance of the algorithms.

77



Symmetry 2024, 16, 1289

Table 6. The HV values (mean and standard deviation) obtained by caps-NSGA-III and other
algorithms on the WFG test suite.

Problem M PBI-NSGA-III SPS-NSGA-III AP-NSGA-III caps-NSGA-III

WFG1
3 7.477 × 10−1 (4.26 × 10−2) 7.780 × 10−1 (2.67 × 10−2) 7.881 × 10−1 (3.08 × 10−2) 8.025 × 10−1 (3.81 × 10−2)
8 7.488 × 10−1 (1.63 × 10−1) 9.174 × 10−1 (1.06 × 10−1) 9.340 × 10−1 (7.05 × 10−2) 8.838 × 10−1 (7.07 × 10−2)

15 7.686 × 10−1 (2.48 × 10−1) 8.863 × 10−1 (1.90 × 10−1) 8.637 × 10−1 (2.15 × 10−1) 9.197 × 10−1 (1.80 × 10−1)

WFG2
3 8.001 × 10−1 (9.38 × 10−2) 8.311 × 10−1 (8.54 × 10−2) 9.018 × 10−1 (1.15 × 10−2) 9.046 × 10−1 (8.40 × 10−3)
8 7.856 × 10−1 (6.63 × 10−2) 8.466 × 10−1 (1.14 × 10−1) 9.018 × 10−1 (2.94 × 10−2) 9.318 × 10−1 (2.11 × 10−2)

15 3.303 × 10−1 (7.13 × 10−2) 4.540 × 10−1 (9.23 × 10−2) 4.467 × 10−1 (1.45 × 10−1) 3.027 × 10−1 (9.79 × 10−2)

WFG3
3 4.481 × 10−1 (3.28 × 10−2) 4.595 × 10−1 (2.52 × 10−2) 4.889 × 10−1 (1.79 × 10−2) 4.631 × 10−1 (2.72 × 10−2)
8 4.141 × 10−1 (3.33 × 10−2) 4.107 × 10−1 (2.54 × 10−2) 4.116 × 10−1 (2.42 × 10−2) 4.317 × 10−1 (1.93 × 10−2)

15 3.851 × 10−1 (4.09 × 10−2) 3.998 × 10−1 (5.18 × 10−2) 3.931 × 10−1 (5.01 × 10−2) 3.237 × 10−1 (1.15 × 10−1)

WFG4
3 5.463 × 10−1 (1.76 × 10−3) 5.471 × 10−1 (1.69 × 10−3) 5.473 × 10−1 (1.42 × 10−3) 5.474 × 10−1 (1.87 × 10−3)
8 8.615 × 10−1 (7.47 × 10−2) 8.664 × 10−1 (6.15 × 10−2) 8.797 × 10−1 (5.39 × 10−2) 8.996 × 10−1 (4.05 × 10−3)

15 9.720 × 10−1 (1.41 × 10−2) 9.721 × 10−1 (1.42 × 10−2) 9.517 × 10−1 (5.01 × 10−2) 9.843 × 10−1 (1.63 × 10−3)

WFG5
3 5.273 × 10−1 (3.53 × 10−3) 5.273 × 10−1 (2.97 × 10−3) 5.277 × 10−1 (3.03 × 10−3) 5.289 × 10−1 (3.58 × 10−3)
8 8.482 × 10−1 (4.92 × 10−2) 8.449 × 10−1 (9.32 × 10−2) 8.510 × 10−1 (3.27 × 10−2) 8.599 × 10−1 (1.06 × 10−3)

15 8.913 × 10−1 (6.73 × 10−2) 8.766 × 10−1 (8.30 × 10−2) 8.526 × 10−1 (1.05 × 10−1) 9.137 × 10−1 (6.11 × 10−2)

WFG6
3 5.194 × 10−1 (2.75 × 10−3) 5.194 × 10−1 (1.89 × 10−3) 5.202 × 10−1 (2.95 × 10−3) 5.198 × 10−1 (2.01 × 10−3)
8 8.371 × 10−1 (6.49 × 10−3) 8.395 × 10−1 (8.29 × 10−3) 8.325 × 10−1 (4.62 × 10−3) 8.384 × 10−1 (6.63 × 10−3)

15 8.764 × 10−1 (2.02 × 10−2) 8.762 × 10−1 (1.64 × 10−2) 8.802 × 10−1 (1.12 × 10−2) 8.808 × 10−1 (9.39 × 10−3)

WFG7
3 5.522 × 10−1 (3.62 × 10−3) 5.518 × 10−1 (2.96 × 10−3) 5.525 × 10−1 (1.46 × 10−3) 5.517 × 10−1 (3.93 × 10−3)
8 9.045 × 10−1 (3.69 × 10−2) 8.499 × 10−1 (4.61 × 10−2) 8.700 × 10−1 (7.61 × 10−2) 9.124 × 10−1 (3.75 × 10−3)

15 9.811 × 10−1 (4.26 × 10−3) 9.809 × 10−1 (4.52 × 10−3) 9.630 × 10−1 (3.74 × 10−2) 9.860 × 10−1 (1.10 × 10−2)

WFG8
3 4.992 × 10−1 (1.72 × 10−2) 4.989 × 10−1 (1.92 × 10−2) 4.991 × 10−1 (1.80 × 10−2) 5.068 × 10−1 (2.15 × 10−2)
8 7.833 × 10−1 (2.17 × 10−2) 7.892 × 10−1 (2.03 × 10−2) 7.471 × 10−1 (1.77 × 10−2) 8.863 × 10−1 (1.23 × 10−2)

15 8.837 × 10−1 (6.71 × 10−2) 9.002 × 10−1 (1.04 × 10−2) 9.424 × 10−1 (4.41 × 10−2) 9.769 × 10−1 (4.26 × 10−3)

WFG9
3 4.966 × 10−1 (1.09 × 10−3) 4.968 × 10−1 (1.62 × 10−3) 4.963 × 10−1 (1.22 × 10−3) 4.971 × 10−1 (9.71 × 10−4)
8 7.010 × 10−1 (9.82 × 10−2) 7.247 × 10−1 (7.30 × 10−2) 7.134 × 10−1 (6.39 × 10−2) 7.347 × 10−1 (3.04 × 10−3)

15 7.150 × 10−1 (6.20 × 10−2) 6.856 × 10−1 (8.63 × 10−2) 6.445 × 10−1 (8.38 × 10−2) 7.337 × 10−1 (5.93 × 10−3)
Best/Worse 3/24 5/22 6/21

Best means that the algorithm’s HV value is better than caps-NSGA-III, while Worse means it is worse than
caps-NSGA-III.

5. Conclusions

In this paper, an improved algorithm named caps-NSGA-III is proposed. This al-
gorithm integrates NSGA-III with a comprehensive adaptive penalty scheme to balance
convergence and diversity. Specifically, chaotic mapping is used in caps-NSGA-III to ini-
tialize the population, achieving a more uniform distribution and enhanced population
diversity. Additionally, in the initial stage, penalty factors are computed according to
the properties of the reference vectors themselves. Then, during iterations, these penalty
factors are adaptively adjusted according to the evolutionary state of the individuals asso-
ciated with the corresponding reference vectors, thereby better balancing the algorithm’s
convergence and diversity. Simultaneously, controlling the threshold for convergence or di-
versity operation is crucial. To meet the algorithm’s needs at different stages, we proposed
a monitoring strategy. The adaptive adjustment of penalty factors is monitored during
algorithm iterations to achieve adaptive threshold changes, thereby further enhancing
the algorithm’s performance. Caps-NSGA-III’s effectiveness was demonstrated through
comparisons with five many-objective evolutionary algorithms. Additionally, the capabil-
ity of caps-NSGA-III to address practical issues was also validated through comparative
experiments on real-world problems. Although our proposed caps-NSGA-III shows im-
provements in solving MaOPs, its performance on large-scale MaOPs requires further study.
Therefore, future work will focus on further exploring caps-NSGA-III and delving into
the following aspects: decision variable analysis (DVA [37]), cooperative coevolution (CC)
frameworks (incorporating various grouping methods like random grouping [38], dynamic
grouping [39], and differential grouping [40]), and problem transformation techniques
(such as the Weighted Optimization Framework, WOF [41]) to enhance its performance on
MaOPs involving a large number of decision variables.

78



Symmetry 2024, 16, 1289

Author Contributions: Conceptualization, X.X., D.C. and F.Y.; methodology, X.X., D.C. and F.Y.; soft-
ware, X.X. and D.C.; validation, X.X.; formal analysis, X.X., D.C. and F.Y.; investigation, X.X.; resources,
D.C. and F.Y.; data curation, D.W.; writing—original draft preparation, X.X.; writing—review and
editing, X.X., D.C. and F.Y.; visualization, X.X. and Q.L.; supervision, F.Y.; project administration, F.Y.;
funding acquisition, F.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Jilin Provincial Science and Technology Development
Plan Project under grant 20220203184SF and the General Project of Graduate Innovation Program at
Beihua University ([2023]051).

Data Availability Statement: All of the data are in the article, no other new data are created.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

PBI Penalty-based boundary intersection
caps-NSGA-III Comprehensive adaptive penalty scheme-NSGA-III
MOPs Multi-objective optimization problems
MOEAs Multi-objective evolutionary algorithms
MaOPs Many-objective optimization problems
PF Pareto front
PS Pareto set
APS Adaptive penalty scheme
SPS Subproblem-based penalty scheme
crd Rate of change of d1 in the centroid’s PBI at the first violation
crpbi Sum of the rate of change of the PBI of the centroid for the three violations
IGD Inverted generational distance
HV Hypervolume

References

1. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. [CrossRef]

2. Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the strength Pareto evolutionary algorithm. TIK Rep. 2001, 103.
3. Deb, K.; Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting

approach, part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 2013, 18, 577–601. [CrossRef]
4. Zhang, Q.; Li, H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 2007,

11, 712–731. [CrossRef]
5. Asafuddoula, M.; Ray, T.; Sarker, R. A decomposition-based evolutionary algorithm for many objective optimization. IEEE Trans.

Evol. Comput. 2014, 19, 445–460. [CrossRef]
6. Bao, C.; Gao, D.; Gu, W.; Xu, L.; Goodman, E.D. A new adaptive decomposition-based evolutionary algorithm for multi-and

many-objective optimization. Expert Syst. Appl. 2023, 213, 119080. [CrossRef]
7. Bader, J.; Zitzler, E. HypE: An algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 2011, 19, 45–76.

[CrossRef]
8. Sun, Y.; Yen, G.G.; Yi, Z. IGD indicator-based evolutionary algorithm for many-objective optimization problems. IEEE Trans. Evol.

Comput. 2018, 23, 173–187. [CrossRef]
9. Yuan, J.; Liu, H.L.; Yang, S. An adaptive parental guidance strategy and its derived indicator-based evolutionary algorithm for

multi-and many-objective optimization. Swarm Evol. Comput. 2024, 84, 101449. [CrossRef]
10. Zhu, C.; Zhu, X. Multi-objective path-decision model of multimodal transport considering uncertain conditions and carbon

emission policies. Symmetry 2022, 14, 221. [CrossRef]
11. Yang, W.; Wen, X.; Wu, M.; Bi, K.; Yue, L. Three-Dimensional Conflict Resolution Strategy Based on Network Cooperative Game.

Symmetry 2022, 14, 1517. [CrossRef]
12. Ney, R.; Canha, L.; Adeyanju, O.; Arend, G. Multi-objective optimal planning of distributed energy resources using SPEA2

algorithms considering multi-agent participation. In Proceedings of the 2019 54th International Universities Power Engineering
Conference (UPEC), Bucharest, Romania, 3–6 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6.

13. Laumanns, M.; Thiele, L.; Deb, K.; Zitzler, E. Combining convergence and diversity in evolutionary multiobjective optimization.
Evol. Comput. 2002, 10, 263–282. [CrossRef] [PubMed]

14. Chen, H.; Tian, Y.; Pedrycz, W.; Wu, G.; Wang, R.; Wang, L. Hyperplane assisted evolutionary algorithm for many-objective
optimization problems. IEEE Trans. Cybern. 2019, 50, 3367–3380. [CrossRef]

79



Symmetry 2024, 16, 1289

15. Li, L.; Yen, G.G.; Sahoo, A.; Chang, L.; Gu, T. On the estimation of pareto front and dimensional similarity in many-objective
evolutionary algorithm. Inf. Sci. 2021, 563, 375–400. [CrossRef]

16. Yuan, Y.; Xu, H.; Wang, B. An improved NSGA-III procedure for evolutionary many-objective optimization. In Proceedings of
the 2014 Annual Conference on Genetic and Evolutionary Computation, Vancouver, BC, Canada, 12–16 July 2014; pp. 661–668.

17. Liu, G.; Pei, Z.; Liu, N.; Tian, Y. Subspace segmentation based co-evolutionary algorithm for balancing convergence and diversity
in many-objective optimization. Swarm Evol. Comput. 2023, 83, 101410. [CrossRef]

18. Yang, S.; Jiang, S.; Jiang, Y. Improving the multiobjective evolutionary algorithm based on decomposition with new penalty
schemes. Soft Comput. 2017, 21, 4677–4691. [CrossRef]

19. Han, D.; Du, W.; Du, W.; Jin, Y.; Wu, C. An adaptive decomposition-based evolutionary algorithm for many-objective optimization.
Inf. Sci. 2019, 491, 204–222. [CrossRef]

20. Srinivas, N.; Deb, K. Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 1994,
2, 221–248. [CrossRef]

21. Wang, Y.; Chen, C.; Tao, Y.; Wen, Z.; Chen, B.; Zhang, H. A many-objective optimization of industrial environmental management
using NSGA-III: A case of China’s iron and steel industry. Appl. Energy 2019, 242, 46–56. [CrossRef]

22. Liu, F.; Liu, J.; Yan, X. Solving the asymmetry multi-objective optimization problem in PPPs under LPVR mechanism by Bi-level
programing. Symmetry 2020, 12, 1667. [CrossRef]

23. Liu, Y.; You, K.; Jiang, Y.; Wu, Z.; Liu, Z.; Peng, G.; Zhou, C. Multi-objective optimal scheduling of automated construction
equipment using non-dominated sorting genetic algorithm (NSGA-III). Autom. Constr. 2022, 143, 104587. [CrossRef]

24. Zhang, X.; Tian, Y.; Jin, Y. A knee point-driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput.
2014, 19, 761–776. [CrossRef]

25. Yang, S.; Li, M.; Liu, X.; Zheng, J. A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput.
2013, 17, 721–736. [CrossRef]

26. Schuster, H.G.; Just, W. Deterministic Chaos: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2006.
27. Gutiérrez, A.; Lanza, M.; Barriuso, I.; Valle, L.; Domingo, M.; Perez, J.; Basterrechea, J. Comparison of different pso initialization

techniques for high dimensional search space problems: A test with fss and antenna arrays. In Proceedings of the 5th European
Conference on Antennas and Propagation (EUCAP), Rome, Italy, 11–15 April 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 965–969.

28. Guo, H.; Zhu, D.; Zhou, C.; Zou, C. DNA sequences design under many objective evolutionary algorithm. Clust. Comput. 2024,
27, 14167–14183. [CrossRef]

29. May, R.M. Simple mathematical models with very complicated dynamics. Nature 1976, 261, 459–467. [CrossRef]
30. Deb, K.; Thiele, L.; Laumanns, M.; Zitzler, E. Scalable test problems for evolutionary multiobjective optimization. In Evolutionary

Multiobjective Optimization: Theoretical Advances and Applications; Springer: Berlin/Heidelberg, Germany, 2005; pp. 105–145.
31. Huband, S.; Hingston, P.; Barone, L.; While, L. A review of multiobjective test problems and a scalable test problem toolkit. IEEE

Trans. Evol. Comput. 2006, 10, 477–506. [CrossRef]
32. Das, I.; Dennis, J.E. Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria

optimization problems. SIAM J. Optim. 1998, 8, 631–657. [CrossRef]
33. Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C.M.; Da Fonseca, V.G. Performance assessment of multiobjective optimizers: An

analysis and review. IEEE Trans. Evol. Comput. 2003, 7, 117–132. [CrossRef]
34. Zitzler, E.; Thiele, L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE

Trans. Evol. Comput. 1999, 3, 257–271. [CrossRef]
35. Tanabe, R.; Ishibuchi, H. An easy-to-use real-world multi-objective optimization problem suite. Appl. Soft Comput. 2020,

89, 106078. [CrossRef]
36. Palakonda, V.; Kang, J.M.; Jung, H. Benchmarking Real-World Many-Objective Problems: A Problem Suite With Baseline Results.

IEEE Access 2024, 12, 49275–49290. [CrossRef]
37. Trivedi, A.; Srinivasan, D.; Sanyal, K.; Ghosh, A. A survey of multiobjective evolutionary algorithms based on decomposition.

IEEE Trans. Evol. Comput. 2016, 21, 440–462. [CrossRef]
38. Yang, Z.; Tang, K.; Yao, X. Large scale evolutionary optimization using cooperative coevolution. Inf. Sci. 2008, 178, 2985–2999.

[CrossRef]
39. Li, X.; Yao, X. Cooperatively coevolving particle swarms for large scale optimization. IEEE Trans. Evol. Comput. 2011, 16, 210–224.
40. Mei, Y.; Omidvar, M.N.; Li, X.; Yao, X. A competitive divide-and-conquer algorithm for unconstrained large-scale black-box

optimization. ACM Trans. Math. Softw. (TOMS) 2016, 42, 1–24. [CrossRef]
41. Zille, H.; Ishibuchi, H.; Mostaghim, S.; Nojima, Y. A framework for large-scale multiobjective optimization based on problem

transformation. IEEE Trans. Evol. Comput. 2017, 22, 260–275. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

80



symmetryS S

Article

Imperative Genetic Programming

Iztok Fajfar *, Žiga Rojec, Árpád Bűrmen, Matevž Kunaver, Tadej Tuma, Sašo Tomažič and Janez Puhan

Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
* Correspondence: iztok.fajfar@fe.uni-lj.si; Tel.: +386-1-476-8722

Abstract: Genetic programming (GP) has a long-standing tradition in the evolution of computer
programs, predominantly utilizing tree and linear paradigms, each with distinct advantages and
limitations. Despite the rapid growth of the GP field, there have been disproportionately few attempts
to evolve ’real’ Turing-like imperative programs (as contrasted with functional programming) from
the ground up. Existing research focuses mainly on specific special cases where the structure of
the solution is partly known. This paper explores the potential of integrating tree and linear GP
paradigms to develop an encoding scheme that universally supports genetic operators without
constraints and consistently generates syntactically correct Python programs from scratch. By
blending the symmetrical structure of tree-based representations with the inherent asymmetry of
linear sequences, we created a versatile environment for program evolution. Our approach was
rigorously tested on 35 problems characterized by varying Halstead complexity metrics, to delineate
the approach’s boundaries. While expected brute-force program solutions were observed, our method
yielded more sophisticated strategies, such as optimizing a program by restricting the division trials
to the values up to the square root of the number when counting its proper divisors. Despite the
recent groundbreaking advancements in large language models, we assert that the GP field warrants
continued research. GP embodies a fundamentally different computational paradigm, crucial for
advancing our understanding of natural evolutionary processes.

Keywords: evolutionary algorithms; tree genetic programming; linear genetic programming;
imperative programming

1. Introduction

Genetic programming (GP) is a prominent sub-field of evolutionary algorithms (EAs),
simulating Darwinian processes on a computer. The GP paradigm was established by John
Koza in the early 1990s [1] and had been steadily growing until recently [2]. This trend ap-
pears to have reversed with the emergence of large language models (LLMs) [3]. However,
we believe that GP will continue to be a significant study area, both as a complementary
approach to LLMs and an independent research topic.

Despite the rapid growth of the GP field since the 1990s, there have been dispropor-
tionately few attempts to evolve ’real’ Turing-like programs. Most research focuses on
less complex logical or arithmetic expressions, without incorporating iteration or mem-
ory [4]. One reason is that the original GP concept is not Turing complete, a limitation
addressed by [5] through the introduction of indexed memory. Another reason is that
the original GP paradigm encodes a program as a tree, necessitating viewing a computer
program as a sequential application of functions and operators to arguments (so-called
functional programming). While not a limitation per se, this is not the most natural way
to conceptualize computer programs. Shortly after the traditional tree representation of a
computer program in GP, linear and graph representations emerged [6,7]. In contrast to the
functional programming language expressions encoded by trees in traditional GP, linear
genetic programming evolves sequences of instructions from an imperative programming
language. The difference in program representation necessitates different genetic operators,

Symmetry 2024, 16, 1146. https://doi.org/10.3390/sym16091146 https://www.mdpi.com/journal/symmetry81



Symmetry 2024, 16, 1146

making both approaches even more distinct. Both approaches, tree and linear, have their
respective advantages and disadvantages, and researchers and practitioners select one
based on the specific requirements of their problem. There has been criticism that the
GP concept has an intrinsic flaw in that it cannot produce real software effectively [2,4],
primarily because computer code is not as robust as genetic code. It is extremely sus-
ceptible to even the smallest changes. This is one of the main reasons that the existing
research focuses mainly on specific special cases where the structure of the solution is partly
known [8,9]. The vast majority of studies are limited to symbolic regression and classifica-
tion problems [2,10–22]. Other important domains where GP is being used include, but are
not limited to, control systems [23,24], analog optimization [8,25–28], scheduling [29,30],
and image processing [31,32]. To the best of our knowledge, no systematic research has been
conducted to evolve general Turing-like (imperative) programs (as contrasted with functional
programming) from scratch, with no a priori assumptions on the solution structure.

The contribution of this paper is twofold. First, we introduce a computer program
representation that merges tree and linear representations, using trees for expressions and
a linear representation for encoding the overall computer program. We use Python as
a programming language for generated programs. Second, we systematically apply our
approach to several well-known algorithms of varying complexities to identify the limits
of the proposed method.

The structure of this paper is as follows. Sections 2 and 3 detail the encoding of
programs and the methodology for generating a concrete program from this encoding.
Section 4 describes the evolutionary algorithm employed, while Section 5 outlines the
overall experimental setup. The final sections present and discuss the results.

2. The Proposed Program Genotype

2.1. The Basic Idea

A computer program is a linear sequence of instructions, generally asymmetrical.
However, a program can contain nested conditional and loop statements, which imply
an inherently symmetrical tree structure. Expressions also exhibit a tree structure. This
symmetrical/asymmetrical duality of a computer program was the most important issue we
had to address when devising the structure of our genotype. Another critical consideration
was the possibility of a randomly created loop-controlling expression resulting in an
infinite loop or a loop with an unreasonably high number of iterations. Limiting the
number of loop iterations is crucial when composing and executing thousands of randomly
generated programs.

We encoded the program itself as a linear set of statements. Whenever there is a
control statement header, a certain number of the following lines form the statement’s body.
That number is stored with the header and is subject to evolutionary operations.

Most authors address the problem of non-halting programs or programs with excessive
loop iterations by setting an upper limit on the number of executed instructions. We
adopted a slightly different approach by limiting the number of iterations for any loop.
This method prevents the potentially destructive effects of genetic operators, which could
compromise the program by including parts of already functioning code in a loop. If the
code is such that successive repetitions have no different effects than a single iteration,
the program will continue to function correctly. Conversely, if the number of instructions is
limited, parts of the code outside the loop may never execute.

We implemented the upper limit on loop iterations using a for loop combined with a
break statement. For example, we encode a while loop with a control expression expr and
an upper limit of maxIter iterations in the following manner:

for i ← 1 to maxIter do

if not expr then break
end if

// Loop body comes here

82



Symmetry 2024, 16, 1146

end for

Here, the loop iterator i is a safeguard, while expr is the control expression of the
equivalent while loop:

while expr do

// Loop body comes here
end while

2.2. The Structure of the Genotype

We composed the genotype of a program with a fixed number of consecutive lines,
thus eliminating bloat and simplifying genetic operators. To make the system even simpler
and more robust, every program line has the same structure, containing the necessary
information to be decoded into any possible line depending on its position in the program.
That way, we are always able to build a syntactically correct program. The consequence of
this universality is a large amount of redundant code stored in our genotype. The redundant
pieces of code are not expressed in the phenotype (an actual program) and are usually
referred to as introns. This redundancy seems like a downside, but it is also believed that
introns reduce search space and speed up the convergence by dynamically hiding the
genotype segments not needed for the ultimate solution [33].

The structure of a single line of code is depicted in Figure 1. After the type of the
line, which can be an assignment, a macro, a control statement’s header, or simply the pass
placeholder, the line also includes the parameter bodyLen (holding the control statement
body length), the expression tree, the macro index, and the list of variables. The bodyLen
parameter is only relevant when the line type is a control statement’s header, and its value
ranges from 2 to the maximum body length (see Table 1).

assignment/macro/for/if/else/pass

bodyLen

An expression tree

macroIndex

A list of variables (varList)

Figure 1. The structure of a single line of a program.

Figure 2 shows an example of an expression tree. Each node of the expression tree
contains two code snippets: the first one is used when the node is terminal, while the
second one is used when the node is non-terminal (see Figure 3). As seen in Figure 2,
the root of the tree—a non-terminal node in our case—produces the greater-than operator,
which will compare the expressions derived from the left and right subtrees. We derive the
expression abs(x2) from the right subtree because the first node is non-terminal while the
second is terminal. In the same way, we use the mod, − (minus), and abs from the three
non-terminal nodes of the left subtree, and 2, x3, and x2 from the three terminal nodes.
Thus, from this tree, we derive the expression mod(2 − x3, abs(x2)) > abs(x2).

It is probably worth mentioning at this point that we have limited ourselves to using
only scalar variables. A serious consequence is that functions that can be added as prefabri-
cated elements to our genetic material cannot return more than a single value. Note that
although Python works exclusively with references, one still cannot pass a scalar variable
by reference to obtain an output value from a function. This limitation does not allow us to
use, for example, a function that swaps the values of two variables. For that reason, we
added macros to our genotype. The parameter macroIndex is used to select a macro from
the list of predefined macros.

83



Symmetry 2024, 16, 1146

x1

· > ·

x1

mod(·, ·)

x3

· − ·

2
mod(·, ·)

x3

· �= ·

0
abs(·)

x2

· − ·

2
abs(·)

x2

·+ ·

Figure 2. An example of a tree representing the expression mod(2 − x3, abs(x2)) > abs(x2).

Terminal code

Non-terminal code

Figure 3. The structure of a single node of an expression tree.

Finally, the list of variables holds as many variables as there are placeholders to fill
in the largest macro from the list. If the line type is an assignment, then the first from the
variable list will be used as a left value in the assignment.

Notice that some data contained in program lines and expression trees may appear
redundant in specific contexts. They are nevertheless retained to standardize crossover,
mutation, and code extraction procedures. Moreover, these ’redundant’ data might en-
capsulate hidden genetic material that was once beneficial and could prove useful again
(see, e.g., [34]).

At the beginning of each evolutionary run, we need a population of randomly gen-
erated programs, which are constructed using several parameters summarized in Table 1
together with a short explanation of their meaning. The first parameter limits the number
of variables used in the generated program. All the variables share the same name prefix
with added numbers (e.g., x0, x1, x2, · · · ). Next comes a list of operators and function
names. The operators must be selected among the standard Python operators. At the same
time, the function names can be arbitrary as long as they are defined separately and their
definitions added to the list of function definitions. Following the list of macro definitions
and constants is a list of probabilities indicating the likelihood of each line type being
selected during the initial random genotype creation. Those probabilities also guide the
random line type selection during the mutation procedure.

The limitation of the depth of control statement nestings is also important. More
than a single nested loop is hardly necessary. At the same time, it would be extremely
time-consuming if we allowed it. On the other hand, it is important to allow deeper nesting
of a conditional statement since there are a lot of cases in which such a statement comes
in handy when nested in an already nested loop. Apart from loop nesting, the maximum
number of iterations should also be limited, lest the programs could unreasonably slow
down the evolution.

84



Symmetry 2024, 16, 1146

As expressions in our programs need not be too complex, we limited the expression
tree depth. Initial depth is limited to two but grows later due to bloat. We employed two
mechanisms to fight bloat. The first is a limit on the depth to which a tree is evaluated,
and the second is a limit on the maximum allowed depth by trimming a tree after each
crossover and mutation. The first of the two limits is lower, so some hidden genetic material
usually stays in a tree. Note that, technically, it is not a problem to limit the evaluation
depth since every node includes a code to be used in both cases—when the node acts as a
terminal or as a non-terminal. The evaluation algorithm simply selects the proper one and
ignores the other.

The last three parameters in Table 1 represent three more important limits on evalua-
tion trees’ densities, the overall program length, and the maximum control statement body
length. Note that the actual program length can be shorter than the given length because of
possible pass statements.

Table 1. The program parameters used in our experiments. Values in parentheses are default values
used in our experiments. If there is no default value (N/A), the value must be explicitly provided for
each experiment by the practitioner.

Number of variables (5) How many variables will be used in the program

Operators (N/A) List of operators and/or function names

Function definitions (N/A) List of function definitions

Macro definitions (N/A) List of macro definitions

Constants (N/A) List of constants

Line type probabilities (assignment = 0.55, for = 0.10, if = 0.15,
else = 0.10, pass = 0.10)

How probable it is, during a random program generation and
mutation, for a certain line type to be selected

Macro selection probability (0.15)
If at least one macro is defined, this probability is added to the
above list. All the probabilities are proportionally reduced so
that they sum to 1

Maximum loop nesting (1) The maximum allowed depth of loop nesting

Maximum if nesting (2) The maximum allowed depth of conditional statement nesting

Maximum loop iterations (100) The maximum allowed number of iterations of a single loop

Tree generation depth (2) The maximum initial depth of an expression tree

Tree evaluation depth (3) The maximum depth to which an expression tree is evaluated

Maximum tree depth (5) The depth to which trees are trimmed after crossover
and mutation

Tree density (0.7) The density of an expression tree during generation
and mutation

Program length (15) The number of lines in the program

Maximum body length (5) Maximum number of statements within a control
statement body

3. Building a Python Program

Algorithm 1 illustrates the construction of actual Python code from the genotype
introduced in Section 2. To thoroughly comprehend the algorithm, one must understand
the role of indentation in Python code. In Python, the body of a control statement consists
of indented lines. All indented lines belong to the statement’s body. Conversely, the first
line with the same indentation level as the control statement’s header is no longer part of
that control statement but it succeeds it.

85



Symmetry 2024, 16, 1146

Algorithm 1 Algorithm for constructing a Python program from genotype.

1: procedure COMPOSEPYTHONPROGRAM
2: indent ← 0
3: for each line in the program do
4: if lineType = assignment then
5: code ← code + varList[0] + "=" + expressionFromTree()
6: else if lineType = for then
7: if indent < maxLoopNest then
8: code ← code + "for i in range(" + maxIter + ")"
9: indent ← indent + 1

10: code ← code + "if " + expressionFromTree() + ": break"
11: end if
12: else if lineType = if then
13: if indent < maxI f Nest then
14: code ← code + "if " + expressionFromTree() + ":"
15: indent ← indent + 1
16: end if
17: else if lineType = else then
18: if inside an if or for block then
19: if the block contains at least one line of code then
20: indent ← indent − 1
21: code ← code + "else:"
22: indent ← indent + 1
23: end if
24: end if
25: else if lineType = macro then
26: selectedMacro ← macroList[macroIndex]
27: Replace placeholders in selectedMacro with variables from varList
28: code ← code + selectedMacro
29: else if lineType = pass then
30: code ← code + "pass"
31: end if
32: if number of statements in current block equals bodyLen then � The block has
33: indent ← indent − 1 � reached the maximum allowed length
34: end if
35: end for
36: code ← code + "pass" � In case the last line of the program is if, for, or else.
37: end procedure

In Section 2, we saw that the genotype of an individual program consists of multiple
sequential lines of code. Each line is divided into five distinct parts, with the first part
specifying the line’s type. This type determines how subsequent parts are utilized during
code construction. Algorithm 1 operates through a loop that processes each line of the
program genotype. Prior to this loop, the code indentation is initialized to zero (see Line 2).
Within the loop, various line types are addressed using an if–else chain. The first type
in this sequence, denoted as ’assignment’ (see Line 4), builds an assignment statement.
Here, varList[0] (i.e., the first variable in the list) is used as the variable name on the left
side of the assignment operator, while the expression derived from the corresponding
expression tree forms the right side. Note that both these elements—the variable list and
the expression tree—are encapsulated within the line’s genotype. Note that code is a string,
with the + symbol serving as a concatenation operator. Moreover, every line of code from
Algorithm 1 starts with the correct indentation and ends with a newline character—details
omitted from the algorithm for clarity.

The next line type addressed in the algorithm is the for statement (see Line 6). It is
important to note that this line is bypassed once the maximum permitted loop nesting
depth is reached. Otherwise, the algorithm generates a two-line code segment. The initial

86



Symmetry 2024, 16, 1146

line forms a conventional Python loop executing maxIter times. Recall that maxIter sets
the upper limit for the number of loop iterations. Following this, an indented if statement
is introduced—indicating its inclusion within the loop body—which triggers an early
loop exit when its expression evaluates as true. As explained in Section 2.1, this design
effectively creates a while loop equipped with a safeguard against excessive iterations,
crucial to prevent undue hindrance in the evolutionary process.

The if statement (Line 12) is managed similarly. It is skipped entirely when the
maximum permitted nesting depth is attained. Following the addition of the control
statement header, the indentation increases to ensure that the following lines fall within
the statement body.

The else part, handled in Line 17, is incorporated only when nested within the body of
an if or for statement that contains at least one line of code. Note that in Python, a for loop
can also have an optional else segment, which is executed upon loop completion. However,
it will not be executed if the loop is interrupted by a break statement. Recall, in our context,
the for loop functions akin to a while loop with a capped number of iterations. Hence,
the else segment only comes into play when this iteration limit is met. Such a design can
prove beneficial during evolution, though it might be extraneous in final programs. When
integrating the else keyword, the indent level is reduced beforehand and then increased
afterward, effectively closing the current block and commencing a new one.

Line 25 processes a macro. It simply takes a macro from the list and replaces its
placeholders, in order of appearance, with the variables from the variable list.

The final line type addressed is the pass statement (see Line 29), serving as a place-
holder for potential subsequent code. After that (see Line 32), it is necessary to verify if the
current block length is reached, and if so, conclude that block by decreasing the indentation.
Upon completing the program, an additional pass statement is appended (see Line 36) to
avoid an error if the program’s last line is a control statement header.

4. The Evolutionary Algorithm

The evolutionary algorithm is outlined in Algorithm 2. First, some initialization
procedures are carried out in Lines 2 to 4. After some preliminary runs, we settled with the
genetic parameters summarized in Table 2 that we used in all our experiments. We explain
the meaning of each parameter later on in the context of the algorithm. The program
parameters, however (see Line 3 of Algorithm 2), are initialized differently for each run,
depending on the type of program we want to evolve. Recall that the used program
parameters are summarized in Table 1 at the end of Section 2.

Table 2. The genetic parameters used in our experiments.

Population size 1000
Array of training data length 20
Selection Linear ranking with elitism
Selection pressure 1.3
Elite size 10
Number of generations 2000
Mutation probability 0.5
Line crossover probability 0.3
Number of crossover lines 4
Toggle terminal probability 0.3
Mutation depth 2
Fitness calculation method Least squares
Premature stopping criterion 1 Fitness does not change for 600 generations
Premature stopping criterion 2 Fitness drops to zero

Line 4 of Algorithm 2 prepares the training data. This is simply an array of in-
put/output pairs of data that our program should produce. For instance, if we wanted
to evolve a program that returns the largest of three input values, we would need the

87



Symmetry 2024, 16, 1146

array [[[2, 7, 12], 12], [[−4, 56, 21], 56], [[6,−15, 3], 6], · · · ]. The array is generated randomly
using some preset limit values. It turned out that without them, the algorithm might not
work in limited cases. For example, in multiplication, it is necessary to include training
data involving ones and zeroes in different combinations. It is also important that these
critical values appear as first and second parameters. It happened that the algorithm
trained on the data missing multiplication with zero as the second parameter worked
for multiplications of the form 0 · x but not x · 0. It also happened that in evolving the
algorithm detecting primes, the training array contained only even non-primes. Naturally,
the evolved algorithm erroneously detected even numbers instead of primes.

The last thing we need to do before entering the main program loop is generate
random programs and evaluate their fitness values. As seen in Table 2, we use the least
squares method to calculate the program fitness. To do that, we run the program and then
calculate the sum of squared differences between actual and required outputs. The program
with the smallest fitness is the best.

Algorithm 2 The evolutionary algorithm.

1: procedure EVOLVEPROGRAM
2: Initialize genetic parameters
3: Initialize program parameters
4: Calculate training data
5: Generate a population of random programs
6: Calculate the fitness of each program in the population
7: for generation = 1 to Number of generations do
8: Selection
9: for Pair of programs in selection do � Parents

10: if Random value in [0,1) < pline crossover then
11: Line crossover
12: else
13: Program crossover
14: end if
15: end for
16: for program in selection do � Children
17: if Random value in [0,1) < pmutation then
18: Mutate program
19: end if
20: Calculate fitness
21: end for
22: Replacement
23: if at least one of the premature stopping criteria met then
24: Stop evolution
25: end if
26: end for
27: end procedure

4.1. Selection

In the main program loop, we first select programs to participate in genetic operations.
Because the fitness landscape of a computer program’s population is extremely rugged, we
opted for rank selection to give less fit programs an equal chance to reproduce. We used
linear ranking [35], where selection probability is linearly dependent on the rank position
of the individual in the population. We calculate the probability p for rank position ri as

p(ri) =
1
n

(
sp − (2sp − 2)

i − 1
n − 1

)
, 1 ≤ i ≤ n, 1 ≤ sp ≤ 2.

Here, n is the size of the population and sp is selection pressure. Notice that sp = 1
gives equal probabilities for all the population members, which means there is no selection

88



Symmetry 2024, 16, 1146

pressure. On the other hand, if sp = 2, selection pressure is very high. As seen in Table 2,
we set selection pressure to 1.3, which—combined with the elite size of 10—produced the
best results.

4.2. Crossover

The next operation in the main program loop is crossover. We form random pairs of
programs from the group selected for genetic operations and perform either a program or
line crossover, depending on a preset probability pline crossover.

The crossover of the whole program is straightforward. We select a random cutting
point (the same for both programs in question) and then swap cutoff parts of the programs
as shown in Figure 4.

Before Crossover

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

Crossover Point

After Crossover

x1 x2 x3 y4 y5

y1 y2 y3 x4 x5

Figure 4. The crossover of two 5-line programs x and y. The crossover point lies between the 3rd and
4th lines. The operation swaps the lines x4 and x5 with y4 and y5.

The line crossover is a little more elaborate. First, we randomly select a prescribed
number of lines from each program. The number is one of the genetic parameters shown in
Table 2. As the line structure is universal, there is no limit on which lines to select. Figure 5
shows an example of the line crossover of two programs. On each pair of lines, we perform
one of the following crossover operations:

• Exchange the first part of the line (i.e., the type of statement).
• Exchange the second part of the line (i.e., the bodyLen parameter).
• Perform the expression tree crossover.
• Exchange the fourth part of the line (i.e., the macroIndex parameter).
• Perform the list of variables crossover.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

Figure 5. An example of the line crossover of two 10-line programs x and y. Lines x2, x4, x5, and x8

from the first program and lines y1, y3, y4, and y5 from the second program were selected for
the crossover.

The parts of the lines that hold a single value (i.e., the type of statement and the
parameters bodyLen and macroIndex) are exchanged. When the crossover is performed on
expression trees, the operation follows the standard tree crossover procedure where we cut
a random subtree from each tree and swap the cutoff parts. Figure 6 shows the procedure.
Note that, if both cutting points are above the roots of the trees, the expression trees are
merely exchanged.

In order to limit bloat—as already mentioned in Section 2.2—the trees are trimmed
after the crossover not to exceed the prescribed maximum depth (see Table 1).

89



Symmetry 2024, 16, 1146

Before Crossover

a

b

d

f g

i

e

h

c

A

B

D

G

E

C

F

H

J

I

After Crossover

a

b

G e

h

c

A

B

D

d

f g

i

E

C

F

H

J

I

Figure 6. In tree crossover, two random subtrees are selected and swapped.

The crossover on the list of variables is carried out the same way as it is on the whole
program (see Figure 4). Like in expression tree crossover, the whole lists can also be
exchanged if the crossover point appears before the first element of the list.

4.3. Mutation

The children obtained as a result of the crossover are mutated with the probability
pmutation (see Line 16 in Algorithm 2). If the child is selected for mutation, one component
of one line of its code is picked up randomly and mutated in the following manner:

• The line type is randomly replaced by one of the six possible choices.
• The parameter bodyLen is randomly replaced with the number between 2 and the

maximum allowed number of statements within a control statement body.
• In the expression tree, a randomly selected node (not deeper than mutation depth—see

Table 2) is mutated as described below.
• The parameter macro index is replaced by a randomly chosen index.
• In the list of variables, a randomly selected variable is replaced by another randomly

picked up variable.

The mutation of a node in an expression tree consists of two operations. First, the termi-
nal code is replaced by a randomly selected element from the list of variables and constants.

90



Symmetry 2024, 16, 1146

Second, the non-terminal code is replaced by a randomly selected element from the list of
functions and operators. If the newly selected function or operator needs more arguments,
additional random subtrees are generated to support them. Finally, we toggle the type of
the node (i.e., terminal or non-terminal) with the toggle terminal probability (see Table 2).

4.4. Replacement and Stopping

After the genetic operations have been completed, we replace the whole population
except for the elite (see Table 2) with the obtained children. If the fitness of the best
individual in the population drops to zero or the fitness does not change for 600 generations
(see Table 2), the evolution stops. Otherwise, the evolution continues until the maximum
number of generations has been reached.

5. Experiment Setup

Given that we aim to evolve our programs from the ground up, without using any a
priori knowledge about the solution structure, we conjectured that the problem set for our
experiment should consist mainly of basic, with some intermediate, programming problems.
We constructed the problem set using assignments from the introductory programming
course at our university, selecting 35 different problems to test our approach. The selection
of problems themselves including the sets of operators and functions/macros used must
be diverse enough to push our approach to its limits—both lower (no success) and upper
(100% success rate). At the same time, most problems should fall within the intermediate
range, with success rates in between.

Table 3 summarizes all the problems with the operators, functions, macros, and con-
stants used to evolve the programs for their solutions. The number of arguments and return
values for each problem is given in parentheses after the problem name. The functions
mod, idiv, mul, and bigMul are safe modulo, integer division, and multiplication operators,
respectively, with their definitions listed in Appendix A. The rest of the parameters were
common to all the runs and are listed in Table 1.

Table 3. The problems used in our experiments.

Problem Name Notes
(No. of Input/Output Values) Operators Constants

absolute (1/1) Absolute value of a number
−,< 0, 1

absoluteDifference (2/1) Absolute difference of two numbers
−,< 0, 1

absoluteDifferencePlus (2/1) No minus operator
+,< 0, 1

absoluteDifferencePlusMacro (2/1) Utilize macro if b > a: a, b = b, a
+,< 0, 1

absoluteDifferencePlusSorted (2/1) First argument not less than second
+,< 0, 1

collatz (1/1) Length of Collatz sequence
+,−,<,=, mul, mod, idiv 0, 1, 2, 3

collatzMacro (1/1) Utilize macro a = a // 2 if a % 2 == 0 else a * 3 + 1
+,<,= 0, 1

collatzStep (1/1) The next number in Collatz sequence
+,<,=, mul, mod, idiv 0, 1, 2, 3

countDigits (1/1) Number of digits in a natural number
+,−,<,=, idiv 0, 1, 10

exactDivision (2/1) Integer division without remainder
+,−,<,= 0, 1

exactDivisionPlus (2/1) No minus operator
+,<,= 0, 1

91



Symmetry 2024, 16, 1146

Table 3. Cont.

Problem Name Notes
(No. of Input/Output Values) Operators Constants

exactDivisionTimes (2/1) Utilize multiplication operator
+,<,=, mul 0, 1

factorial (1/1) n!
−,<, bigMul 0, 1

fibonacci (1/1) n-th number of Fibonacci sequence
+,<,= 0, 1

fibonacciMacro (1/1) Utilize macro a, b = b, a
+,<,= 0, 1

gcd (2/1) Greatest common divisor
−,<,= 0, 1

gcdMacro (2/1) Utilize macro a, b = b, a
<, mod 0

gcdModulo (2/1) Utilize modulo operator
−,<,=,∧, mod 0, 1

integerDivision (2/1) Floor division, dismiss remainder
+,−,< 0, 1

integerDivisionRem (2/2) Floor division, quotient and remainder
+,−,< 0, 1

lcm (2/1) Least common multiple
+,−,<,=, idiv, mul 0, 1

lcmMacro1 (2/1) Utilize macro if a > b: a = a - b
+,−,<,=, idiv, mul 0, 1

lcmMacro2 (2/1) Utilize macro a = a - b
+,−,<,=, idiv, mul 0, 1

lcmMacro4 (2/1) Utilize macro a, b = b, a
+,−,<,=, idiv, mul 0, 1

max2 (2/1) Larger of two numbers
< 0, 1

max3 (3/1) Largest of three numbers
< 0, 1

multiplication (2/1) Product of two integers
+,−,<,= 0, 1

multiplicationNonneg (2/1) Nonnegative integers
+,−,<,= 0, 1

prime (1/1) Test primality of a number
+,<,=, mod 0, 1, 2

primeMacro (1/1) Utilize macro if mod(a, b) == 0: c = 0
+,<,=, mod 0, 1, 2

properDivisors (1/1) Count proper divisors
+,−,<,=, mod 0, 1

properDivisorsMacro (1/1) Utilize macro if mod(a, b) == 0: c = c + 1
+,−,<,=, mod 0, 1

remainder (2/1) Remainder of floor division
−,<,= 0, 1

sort (2/2) Sort two numbers
< 0, 1

triangularNumber (1/1) Sum of natural numbers from 1 to n
+,<,= 0, 1

For the most part, Table 3 is self-explanatory. There are, however, some points that
need further explanation. The problems with the same names but different suffixes evolved
under the same conditions, the only difference being the set of used operators, functions,
and macros. For instance, absoluteDifference and absoluteDifferencePlus differ only in that
the first uses the subtraction and the other the addition operator. Or, fibonacci and
fibonacciMacro differ in that the second uses a macro that swaps the values of two
variables (for the reader unfamiliar with Python, it might be useful to know that the code

92



Symmetry 2024, 16, 1146

a, b = b, a swaps the values of the variables a and b.). Whenever we use a macro as
the building block for the solution, the used macro is listed in Python format in the Notes
column. Notice that some macros could also be implemented as functions without affecting
the results.

6. Results and Discussion

We performed 1000 evolution runs for each program from the previous section using
20 2.66 GHz Core i5 (four cores per CPU) machines, which took 3 weeks of computing
time. Table 4 lists the percentages of successful evolution runs for each program, with the
average number of needed generations (averaged over successful runs only) and estimated
program complexity. We calculated the Halstead metrics for the hand-written programs,
and we list in the table programming effort (E), program difficulty (D), and intelligence
content (I). The calculated complexity measures generally agree with the evolution success
rate. One notable exception is the gcdModulo (greatest common divisor) function using
the modulo operator. The success rate is surprisingly high with extremely high values of
the E and D measures and a relatively high I measure. When we looked deeper into the
matter, we discovered an error by one of our researchers. Namely, his version was a brute
force gcd algorithm trying divisions with all integers between 1 and the smaller of the two
parameters, which resulted in unreasonably high complexity measures. The evolution came
up with a much smarter version of the algorithm, which, after removing the statements
with no effect and replacing the for and break statements with the while loop, looks like this:

def gcdModulo(x, y):
while y > 0:

tmp = x
x = y
y = tmp % y

return x

Halstead complexity measures for the above function are E = 640, D = 10.40,
and I = 5.92, which better agrees with the evolution success rate for that function.

Table 4 also shows that using a macro for coding a part of the solution invariably
increases the success rate. That was, of course, expected, because including an appropriate
building block necessarily decreases the algorithm complexity. That way, we can success-
fully evolve more complex algorithms that would otherwise defy evolution. For example,
we could not evolve the collatz function because of the high complexity. We were, how-
ever, able to evolve collatzStep function with high probability and then use this function
to evolve collatzMacro. We observed a similar situation with the functions absoluteDif-
ferencePlus, sort, and absoluteDifferencePlusMacro. Indeed, any macro utilized in our
experiments is sufficiently straightforward that we could evolve it effectively as a function.
The next step in such cases would be to automatize the definition of a helper function and
its use in the same evolutionary process. The idea of automatically defined functions (ADFs)
has already been introduced in [1] as a way of reusing code in genetic programming but
has not received very much attention [36,37]. The solutions are limited to tree-formed
GP and impose serious constraints on the genetic operators, as different branches are not
allowed to directly exchange genetic material, leaving this question an important open
research issue.

We carried out additional experiments using a different set of operators not shown in
Table 4. In some cases, fewer operators increased the success rate significantly. For example,
removing the less than operator from the Fibonacci function increased the success rate
to 27.4%, and removing the minus operator from the countDigits function increased it to
26.7%. Both results are significant with p-value p = 0.01. Removing the equality, minus
and conjunction operators, and the constant value 1 from the gcdModulo function did not
change the success rate but dropped the average number of generations to 339, which was
also a statistically significant result with p = 0.01. In some other cases, we also observed

93



Symmetry 2024, 16, 1146

some improvement although not statistically significant. Those improvements could be
attributed to the smaller search space we created with fewer building blocks. Generally,
the search space dimension increases exponentially with the number of building blocks [7].
It is difficult to say how strong the influence of certain superfluous operators is. Still,
at least the operators that can be replaced by the ones already included in the set should
be removed. For example, one does not need less than and greater than operators in the
same set. Usually, even equality or inequality operators are extra in conjunction with the
less-than operator. By the same token, we observed that often more learning samples give
better results. One possible explanation is that more samples increase the resolution of the
search space, making it easier to descend towards the minimum.

Table 4. Proportions of solved problems (1000 runs) with an average number of generations and
Halsteas metrics. To calculate the average number of fitness evaluations, multiply the number of
generations by the population size (1000). Since each fitness evaluation involves running a program
on all the input/output pairs in the training data array, the actual number of program executions is
20 times larger, corresponding to the length of the training data array.

Program Name Program Complexity Success Rate Avg. Number
E D I (%) of Generations

absolute 269 8.75 3.52 100.0 6
max2 301 8.17 4.51 100.0 11
absoluteDifference 403 9.33 4.62 100.0 23
sort 484 10.50 4.39 100.0 32
max3 596 10.00 5.96 99.7 65
gcdMacro 90.0 404
collatzStep 694 10.00 6.94 87.7 259
collatzMacro 71.3 515
gcdModulo 2337 19.50 6.15 61.6 619
absoluteDifferencePlusSorted 768 10.50 6.96 36.0 562
primeMacro 26.7 571
lcmMacro1 22.0 796
remainder 637 13.50 3.50 21.0 650
absoluteDifferencePlusMacro 20.6 619
countDigits 715 11.0 5.91 19.7 853
fibonacciMacro 17.1 1186
prime 1054 12.83 6.40 16.7 801
exactDivisionTimes 781 10.83 6.65 16.0 799
triangularNumber 684 10.80 5.86 9.8 747
integerDivision 873 11.67 6.42 8.4 692
exactDivision 693 10.00 6.93 6.4 806
fibonacci 868 9.71 9.20 6.3 1584
multiplicationNonneg 873 11.67 6.42 4.6 622
properDivisorsMacro 2.4 1441
integerDivisionRem 811 10.83 6.91 2.2 1098
lcmMacro2 2.2 1043
exactDivisionPlus 856 10.29 8.09 2.1 643
factorial 880 13.00 5.21 1.3 1947
gcd 2346 26.67 3.27 1.6 895
lcm 2166 20.00 5.42 0.9 714
absoluteDifferencePlus 1848 16.67 6.65 0.0 N/A
collatz 3164 24.29 5.37 0.0 N/A
multiplication 2667 20.58 6.29 0.0 N/A
properDivisors 1636 16.50 6.01 0.0 N/A

Another noteworthy observation is that some of the evolutions appear to have huge
jumps in fitness value, while the majority exhibit a more or less steady drop. Figure 7
shows the convergence of Fibonacci and factorial functions in which significant drops can
be observed. Interestingly, these drops happen in different runs at approximately the same

94



Symmetry 2024, 16, 1146

levels as the graphs show (notice the suggested horizontal lines formed by the alignment
of graphs). On the other hand, functions in Figure 8 show more steady convergence,
although here, one also observes lots of sudden drops that stem from the highly nonlinear
nature of the search process caused by the destructive nature of genetic operators in linear
GP [2,4]. The more severe fitness drops in Figure 7 are caused by a coarse fitness landscape.
Namely, Fibonacci and factorial values are positioned far apart, while values obtained from,
for instance, multiplication cover the space more evenly.

100 101
102 103

Generation number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

F
it
n
e
s
s

1e12 calculateFib

Generation number

F
it
n
es
s

                                

Figure 7. Convergence of functions fibonacci, FibonacciMacro, and factorial.

Figure 8. Convergence of functions multiplication, exactDivisionPlus, and gcd.

We already looked at a specific evolved program (for finding the greatest common
divisor) at the beginning of this section where the evolution came up with quite a cunning
solution. Of course, we discovered more similarly interesting solutions. The following one
is the program that counts the number of proper divisors.

95



Symmetry 2024, 16, 1146

def properDivisorsMacro(n):
count = 0
div = 1
x1 = 0
x2 = 1
x2 += 1
while x2 <= n:

if n % div == 0: count += 1
if x1 % 2 == 0: div += 1
x2 += div
x1 += 1

return count

We removed from the original program all the statements with no side effects, renamed
the variables, and made some other minor changes so the program is more human-readable.
We retained, however, the basic idea behind the solution, which is quite fascinating. Namely,
if one wants to count all proper divisors of n, one does not need to try divisions by numbers
greater than

√
n. And that is exactly what the above program is doing—instead of trying

divisions with numbers greater than
√

n, it counts each division with numbers in the
(left–closed and right–open) interval [2,

√
n) twice. Of course, the program would not have

to try each division twice but only count them. It is, nevertheless, an interesting solution.
It is easy to see in the above program that each division with numbers greater than one

is carried out twice. But does the process stop at
√

n? Notice that variable x2, responsible
for halting the program, starts with 2 (= 1 + 1). Then, we have

x2 = 2
n−1

∑
k=1

+n = n2.

We made some more similar observations. For example, in a program that detects
primes, the division was first tried by two, then only with odd numbers smaller than
the number tested. Certainly, all these observations took some serious looking because
evolved programs are generally quite obscure and often follow confusing logic with many
redundant operations, but they are by no means wrong. One possible direct application
of these programs would be software obfuscation. Let us conclude this section with an
example of an unedited function returning the x0th number of a Fibonacci sequence:

def fibonacci(x0):
x1=x2=x3=x4=0
x4=x2==x1
x2=x4+x1
for i in range(100):

if x0+x3<x0<x0: break
x4=x4
x3=x3==x4==x0+x2

x3=x2==x3
for i in range(100):

if x3==x0: break
x4=x4
x1=x2
x2=x4+x2
x3=1+x3
x4=x1
pass

return x4

96



Symmetry 2024, 16, 1146

7. Conclusions

In this paper, we studied the possibility of evolving imperative computer programs
that are not purely expression-oriented but allow for the linear sequence of statements.
Specifically, we evolved Python programs. The basis for our work is a special gene-encoding
approach combining linear sequences of statements and trees encoding expressions. Be-
cause the program population is spawned randomly, it is important to prevent infinite
loops. Therefore, we encoded the while statement as the for loop with a break. The iterator
of the for loop serves as a safety net setting the upper limit on the number of iterations,
while the break statement contains the actual loop condition. We tried in our experiments
to evolve different simple programs for which we also calculated Halstead metrics. As ex-
pected, we had less success with programs with higher complexity measures, or at least
the evolution lasted more generations. We observed that increasing the number of used
operators or decreasing the number of training samples could hinder the evolution, often
with statistical significance. Whenever we added a useful prefabricated building block
(in the form of a macro) to genetic material, the evolution results were better. Specifically,
the success rates for the next number of the Collatz sequence calculation and the sequence
length counting using a macro were quite high. In contrast, the evolution of the sequence
length counting alone was unsuccessful. That leads to the possibility of augmenting the
fitness function to support automatically defined functions in the same evolution for more
complex tasks, which we feel is an important open research question. Last, we observed
some smart solutions evolved by our approach that went beyond a simple brute force
approach. It is important to point out that those solutions appeared without being explicitly
enforced by the fitness function. We believe that with additional fitness criteria that would
favor more efficient solutions, we could obtain more optimal programs. There is also room
for improvement in several other directions. For example, incorporating array processing
would be an enormous step towards more useful programs.

In conclusion, we believe our paper is an important step that will hopefully motivate
further research in this direction. Although the advent of large language models may
make the GP approach seem outdated, it is important to emphasize that the pure evolu-
tionary approach operates at a fundamentally different level of computation. While it is
lower in abstraction than higher-level computational methods, it is by no means inferior
in significance.

Author Contributions: Conceptualization, I.F. and Ž.R.; methodology, J.P.; software, Ž.R. and M.K.;
validation, J.P., Á.B. and T.T.; formal analysis, Á.B.; investigation, M.K. and J.P.; resources, S.T.; data
curation, I.F., M.K. and Ž.R.; writing—original draft preparation, I.F.; writing—review and editing,
Ž.R.; visualization, I.F.; supervision, T.T. and Á.B.; project administration, T.T. and S.T.; funding
acquisition, S.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Slovenian Research and Innovation Agency (Javna agencija
za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije) through the program P2-
0246 (ICT4QoL—Information and Communications Technologies for Quality of Life).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

Appendix A. Functions Used in Evolution

This appendix lists all the functions that we used as building blocks for the programs
to be evolved. The functions implement basic mathematical operators with built-in safety
mechanisms that guard against undesired scenarios like division by zero or multiplica-
tion overflow.

97



Symmetry 2024, 16, 1146

def mod(x, y): #Safe modulo
if y == 0: return 1 #Prevent division by zero
return x % y

def idiv(x, y): #Safe floor division
if y == 0: return 0 #Prevent division by zero
return x // y

def mul(x, y): #Limited multiplication
if x * y > 10000: return 10000
if x * y < -10000: return -10000
else: return x * y

def bigMul(x, y): #Limited multiplication
if x * y > 100000000000000: return 100000000000000
if x * y < -100000000000000: return -100000000000000
else: return x * y

References

1. Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; MIT Press: Cambridge, MA,
USA, 1992.

2. Yampolskiy, R.V. Why We Do Not Evolve Software? Analysis of Evolutionary Algorithms. Evol. Bioinform. 2018, 14,
1176934318815906. [CrossRef]

3. Romera-Paredes, B.; Barekatain, M.; Novikov, A.; Balog, M.; Kumar, M.P.; Dupont, E.; Ruiz, F.J.R.; Ellenberg, J.S.; Wang, P.; Fawzi,
O.; et al. Mathematical discoveries from program search with large language models. Nature 2023, 625, 468–475. [CrossRef]
[PubMed]

4. Woodward, J.; Bai, R. Why evolution is not a good paradigm for program induction: A critique of genetic programming.
In Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation, Shanghai, China, 12–14 June 2009;
pp. 593–600. [CrossRef]

5. Teller, A. Turing completeness in the language of genetic programming with indexed memory. In Proceedings of the First IEEE
Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence, Orlando, FL, USA, 27–29 June
1994; Volume 1, pp. 136–141. [CrossRef]

6. Banzhaf, W.; Francone, F.D.; Keller, R.E.; Nordin, P. Genetic Programming: An Introduction: On the Automatic Evolution of Computer
Programs and Its Applications; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1998.

7. Brameier, M.F.; Banzhaf, W. Linear Genetic Programming; Springer: New York, NY, USA, 2007. [CrossRef]
8. Fajfar, I.; Puhan, J.; Bűrmen, Á. Evolving a Nelder-Mead Algorithm for Optimization with Genetic Programming. Evol. Comput.

2016, 25, 351–373. [CrossRef] [PubMed]
9. Cramer, N.L. A representation for the adaptive generation of simple sequential programs. In Proceedings of the First International

Conference on Genetic Algorithms and Their Applications, Pittsburgh, PA, USA, 24–26 July 1985; Psychology Press: London, UK,
1985; Volume 183, p. 187.

10. Augusto, D.A.; Barbosa, H.J.C. Symbolic regression via genetic programming. In Proceedings of the Sixth Brazilian Symposium
on Neural Networks, Rio de Janeiro, Brazil, 25 November 2000; Volume 1, pp. 173–178. [CrossRef]

11. Icke, I.; Bongard, J.C. Improving genetic programming based symbolic regression using deterministic machine learning.
In Proceedings of the 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp. 1763–1770.
[CrossRef]

12. Evans, B.; Al-Sahaf, H.; Xue, B.; Zhang, M. Evolutionary Deep Learning: A Genetic Programming Approach to Image
Classification. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July
2018; pp. 1–6. [CrossRef]

13. Bi, Y.; Xue, B.; Zhang, M. Genetic Programming for Image Classification: An Automated Approach to Feature Learning; Springer:
Berlin/Heidelberg, Germany, 2021. [CrossRef]

14. Najaran, M.H.T. A genetic programming-based convolutional deep learning algorithm for identifying COVID-19 cases via X-ray
images. Artif. Intell. Med. 2023, 142, 102571. [CrossRef]

15. Bakurov, I.; Castelli, M.; Scotto di Freca, A.; Vanneschi, L.; Fontanella, F. A novel binary classification approach based on geometric
semantic genetic programming. Swarm Evol. Comput. 2021, 69, 101028. [CrossRef]

16. Espejo, P.G.; Ventura, S.; Herrera, F. A Survey on the Application of Genetic Programming to Classification. IEEE Trans. Syst.
Man Cybern. Part C Appl. Rev. 2010, 40, 121–144. [CrossRef]

17. Dara, O.A.; Lopez-Guede, J.M.; Raheem, H.I.; Rahebi, J.; Zulueta, E.; Fernandez-Gamiz, U. Alzheimer’s Disease Diagnosis Using
Machine Learning: A Survey. Appl. Sci. 2023, 13, 8298. [CrossRef]

98



Symmetry 2024, 16, 1146

18. Rovito, L.; Bonin, L.; Manzoni, L.; De Lorenzo, A. An Evolutionary Computation Approach for Twitter Bot Detection. Appl. Sci.
2022, 12, 5915. [CrossRef]

19. Muni, D.; Pal, N.; Das, J. Genetic programming for simultaneous feature selection and classifier design. IEEE Trans. Syst. Man
Cybern. Part B Cybern. 2006, 36, 106–117. [CrossRef]

20. Oğuz, K.; Bor, A. Prediction of Local Scour around Bridge Piers Using Hierarchical Clustering and Adaptive Genetic Programming.
Appl. Artif. Intell. 2022, 36, 2001734. [CrossRef]

21. Alturky, S.; Toma, G. A Metaheuristic Optimization Algorithm for Solving Higher-Order Boundary Value Problems. Int. J. Appl.
Metaheuristic Comput. 2022, 13, 1–17. [CrossRef]

22. Sobania, D.; Schmitt, J.; Köstler, H.; Rothlauf, F. Genetic programming for iterative numerical methods. Genet. Program. Evolvable
Mach. 2022, 23, 253–278. [CrossRef]

23. Brablc, M.; Žegklitz, J.; Grepl, R.; Babuska, R. Control of Magnetic Manipulator Using Reinforcement Learning Based on
Incrementally Adapted Local Linear Models. Complexity 2021, 2021, 6617309. [CrossRef]

24. García, C.A.; Velasco, M.; Angulo, C.; Marti, P.; Camacho, A. Revisiting Classical Controller Design and Tuning with Genetic
Programming. Sensors 2023, 23, 9731. [CrossRef] [PubMed]

25. Beşkirli, A.; Dağ, İ. An efficient tree seed inspired algorithm for parameter estimation of Photovoltaic models. Energy Rep. 2022,
8, 291–298. [CrossRef]

26. Beşkirli, A.; Dağ, İ. A new binary variant with transfer functions of Harris Hawks Optimization for binary wind turbine
micrositing. Energy Rep. 2020, 6, 668–673. [CrossRef]

27. Beşkirli, A.; Dağ, İ. Parameter extraction for photovoltaic models with tree seed algorithm. Energy Rep. 2023, 9, 174–185.
[CrossRef]

28. Beskirli, A.; Özdemir, D.; Temurtas, H. A comparison of modified tree–seed algorithm for high-dimensional numerical functions.
Neural Comput. Appl. 2020, 32, 6877–6911. [CrossRef]

29. Zhan, R.; Zhang, J.; Cui, Z.; Peng, J.; Li, D. An Automatic Heuristic Design Approach for Seru Scheduling Problem with Resource
Conflicts. Discret. Dyn. Nat. Soc. 2021, 2021, 8166343. [CrossRef]

30. Xu, M.; Mei, Y.; Zhang, F.; Zhang, M. Genetic Programming and Reinforcement Learning on Learning Heuristics for Dynamic
Scheduling: A Preliminary Comparison. IEEE Comput. Intell. Mag. 2024, 19, 18–33. [CrossRef]

31. Mahmood, M.T. Defocus Blur Segmentation Using Genetic Programming and Adaptive Threshold. Comput. Mater. Contin. 2022,
70, 4867–4882. [CrossRef]

32. Correia, J.; Rodriguez-Fernandez, N.; Vieira, L.; Romero, J.; Machado, P. Towards Automatic Image Enhancement with Genetic
Programming and Machine Learning. Appl. Sci. 2022, 12, 2212. [CrossRef]

33. Wineberg, M.; Oppacher, F. The Benefits of Computing with Introns. In Proceedings of the First Annual Conference, Stanford,
CA, USA, 28–31 July 1996; Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L., Eds.; Stanford University: Stanford, CA, USA, 1996;
pp. 410–415. [CrossRef]

34. Abdelkhalik, O. Hidden Genes Genetic Optimization for Variable-Size Design Space Problems. J. Optim. Theory Appl. 2013,
156, 450–468. [CrossRef]

35. Baker, J.E. Adaptive Selection Methods for Genetic Algorithms. In Proceedings of the 1st International Conference on Genetic
Algorithms, Pittsburgh, PA, USA, 24–26 July 1985; pp. 101–111.

36. Ferreira, C. Automatically Defined Functions in Problem Solving. In Gene Expression Programming: Mathematical Modeling by an
Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2006; pp. 233–273. [CrossRef]

37. Ferreira, C. Automatically Defined Functions in Gene Expression Programming. In Genetic Systems Programming: Theory and
Experiences; Nedjah, N., Abraham, A., Macedo Mourelle, L.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 13,
pp. 21–56. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

99



symmetryS S

Article

Enhancing NSGA-II Algorithm through Hybrid Strategy for
Optimizing Maize Water and Fertilizer Irrigation Simulation

Jinyang Du 1, Renyun Liu 1,*, Du Cheng 2, Xu Wang 1, Tong Zhang 1 and Fanhua Yu 3

1 Department of Mathematics, Changchun Normal University, Changchun 130032, China;
QX202200197@stu.ccsfu.edu.cn (J.D.); QX202200217@stu.ccsfu.edu.cn (X.W.);
QX202200207@stu.ccsfu.edu.cn (T.Z.)

2 School of Artificial Intelligence, Jilin University, Changchun 130012, China; DUGOCD@126.com
3 Jilin Communications Polytechnic, Changchun 130015, China; yufanhua@163.com
* Correspondence: liurenyun@ccsfu.edu.cn

Abstract: In optimization problems, the principle of symmetry provides important guidance. This
article introduces an enhanced NSGA-II algorithm, termed NDE-NSGA-II, designed for addressing
multi-objective optimization problems. The approach employs Tent mapping for population initial-
ization, thereby augmenting its search capability. During the offspring generation process, a hybrid
local search strategy is implemented to augment the population’s exploration capabilities. It is crucial
to highlight that in elite selection, norm selection and average distance elimination strategies are
adopted to strengthen the selection mechanism of the population. This not only enhances diversity
but also ensures convergence, thereby improving overall performance. The effectiveness of the
proposed NDE-NSGA-II is comprehensively evaluated across various benchmark functions with
distinct true Pareto frontier shapes. The results consistently demonstrate that the NDE-NSGA-II
method presented in this paper surpasses the performance metrics of the other five methods. Lastly,
the algorithm is integrated with the DSSAT model to optimize maize irrigation and fertilization
scheduling, confirming the effectiveness of the improved algorithm.

Keywords: NSGA-II; DSSAT model; local search; optimization of irrigation and fertilization

1. Introduction

In the real world, optimization problems frequently manifest as multi-objective opti-
mization problems (MOPs), characterized by a set of conflicting objective functions [1–4].
MOPs are pervasive across numerous application domains, rendering research on intel-
ligent algorithms for addressing MOPs a perennially active area of investigation [5–7].
In MOPs, improving one objective often worsens another, caused by conflicting objectives.
In most cases, no single solution can optimize all the objectives at the same time, so the
algorithm must find a set of trade-off solutions called the Pareto front (PF) [8,9].

A common challenge in MOPs is devising methods to swiftly attain a convergent
solution while also achieving a more evenly distributed solution set [10,11]. To better
solve more complex problems, in recent years, various multi-objective evolutionary algo-
rithms (MOEA) have been proposed, including NSGA-II [12], MOEA/D [13], SPEA2 [14],
and other algorithms. Since their inception, these algorithms have garnered immense
attention from researchers due to their impressive global search performance, high-speed
operational efficiency, and straightforward algorithmic framework. These multi-objective
optimization algorithms are applied to agricultural models. Zhou and Fan [15] optimized
the agricultural industry structure through a genetic-algorithm-based MOP to achieve
sustainable development. Llera [16] et al. optimized control settings using the NSGA-II
algorithm to help growers achieve maximum yield and minimize costs under greenhouse
conditions. Cheng [17] et al. optimized the irrigation and fertilization plan for winter wheat
by combining the NSGA-II algorithm with the DSSAT model. Song [18] et al. optimized

Symmetry 2024, 16, 1062. https://doi.org/10.3390/sym16081062 https://www.mdpi.com/journal/symmetry100



Symmetry 2024, 16, 1062

the spring wheat irrigation plan using the AquaCrop model and NSGA-II algorithm. Liu
and Yang [19] constructed a distributed AquaCrop model and NSGA-II for simulation
optimization to develop effective irrigation plans. Despite the theoretical and experimental
effectiveness of these classic algorithms, they exhibit significant shortcomings in practical
applications, particularly regarding convergence speed and solution consistency. Specifi-
cally, when addressing high-dimensional and complex problems, the existing algorithms
often require extended periods to achieve satisfactory solutions. In practical applications,
rapid convergence is essential for conserving computational resources and time. Further-
more, the solutions generated by the current algorithms can vary significantly between
different runs, leading to insufficient reliability. Ensuring solution consistency is crucial for
maintaining the stability and reproducibility of results.

This article proposes an improved NSGA-II algorithm to address the aforementioned
issues. In initializing the population, using the Tent mapping initialization method ensures
a more unified initial solution, facilitates exploration of different regions, and enhances
the initial searchability. In the adaptive elite selection strategy proposed in this article,
in the early stage, the solutions with good convergence and diversity are selected based
on norms to enhance convergence and maintain a certain degree of diversity. In the later
stage, a selection method based on the average distance elimination strategy is adopted to
evenly distribute the population on the Pareto front, which is beneficial for the diversity of
the algorithm. Furthermore, within the offspring generation process, a mixed local search
strategy is employed. This approach facilitates random updates of the solution between
the optimal individual and neighboring individuals, thereby enhancing the solution’s
search capabilities. Subsequently, the algorithm was combined with the DSSAT [20–22]
model to optimize irrigation and fertilization management during the maize growth cycle.
The main contributions of this article are summarized as follows: (1) The initialization
method of the Tent chaotic mapping was employed for initializing the population. (2) An
adaptive elite selection strategy grounded in norm and average distance elimination was
formulated to identify superior solutions. (3) A mixed local search strategy was added
during the generation of offspring. (4) The algorithm was integrated with the DSSAT model
to simulate agricultural scenarios, leading to the development of a successful irrigation and
fertilization strategy.

The rest of this article is organized as follows. Section 2 introduces the NSGA-II and
its related works. Section 3 provides a comprehensive description of the proposed NDE-
NSGA-II, including the applied strategies and a complete framework. Section 4 conducted
experiments on the benchmark function, evaluated the performance of NDE-NSGA-II,
and discussed the experimental results in detail. Section 6 applies NDE-NSGA-II and the
original algorithm to maize yield optimization, proving the feasibility of the algorithm
proposed in this paper. Afterwards, the performance of the algorithm is discussed. Finally,
this article provides a summary in the sixth section.

2. Related Works

2.1. Multi-Objective Algorithm NSGA-II

NSGA-II is developed based on NSGA, incorporating the principles of nondominated
sorting and an elitism strategy. The algorithm calculates the neighborhood density of
individuals using the crowding distance (CD). Selection operators for both fitness and
diversity are employed to enhance the overall performance of the algorithm.

According to the nondominated sorting strategy of NSGA-II, as illustrated in Figure 1,
suppose the population size is N, and Population Rt (with a size of 2N) is formed by
combining the current dominated solution set Pt and the current offspring Qt. Following
the dominance relation, Rt obtains a series of nondominated Pareto solution sets denoted
as F1, F2, . . . , where F1 is at the top level. If the quantity of F1 is less than N, all members
of F1 are selected into Population Pt+1. The remaining members in Population Pt+1 are
chosen from F2, F3, and so forth, until the total number of members reaches N. Notably,
the order of the first member in F3 is less than N, while the order of the last member is

101



Symmetry 2024, 16, 1062

greater than N. To maintain population diversity, the NSGA-II algorithm employs CD
sorting on F3. Individuals with a larger CD are given priority to enter Population Pt+1.
The CD calculation method is expressed in Formula (1).

nd =
M

∑
m=1

fm(i + 1)− fm(i − 1)
f max
m − f min

m
(1)

where f max
m and f min

m are the maximum and minimum of objective function fm, m is the
individual of the solution set, M represents the number of targets.

Figure 1. Nondominated sorting strategy of nondominated sorting genetic algorithm II [23] (NSGA-II).

2.2. Problems in CD Sorting of NSGA-II

Following the completion of nondominated sorting, the CD of each solution within
the nondominated solution set at the same level is calculated based on the objective space.
The CD of the extreme solution (either the maximum or minimum solution across all
objectives within the objective space) is consistently set as infinity. For all other solutions,
they are sorted based on all objectives, and their CD is defined as the average value of
target distances between two adjacent solutions.

In Figure 2, considering eight nondominated solutions, five solutions were selected
based on the CD. According to the CD sorting algorithm of NSGA-II, solutions 1, 2, 3, 4,
and 8 are chosen. However, it is observed that after the selection, the results of Solutions 4
and 8 are deemed unreasonable due to the sparse distance between them.

Upon the preceding analysis, it is evident that the congestion distance mechanism
employed by NSGA-II exhibits uneven distribution issues, potentially compromising
the diversity of solutions. Consequently, we present an enhancement strategy for this
mechanism in the subsequent section.

Figure 2. Screening results with NSGA-II. The numbers in the figure denote different individuals,
and the letters indicate those that have been removed.

102



Symmetry 2024, 16, 1062

3. The Proposed NDE-NSGA-II

This section provides a comprehensive introduction to the proposed NDE-NSGA-II,
with the main objective of enhancing the convergence and diversity of NSGA-II. Firstly,
the initialization method of Tent mapping in chaotic mapping was adopted to generate
a more uniform population during the initialization stage. Subsequently, a local search
strategy and an adaptive elite selection mechanism were adopted to maintain convergence
and diversity within the population, ensuring the balance of solutions. Then the overall
workflow of NDE-NSGA-II was introduced, including these key enhancements to the
traditional NSGA-II model. The overall framework is illustrated in Figure 3.

Figure 3. The flow chart of NDE-NSGA-II algorithm.

3.1. Initializing Population with Tent Mapping

Over the past few decades, chaotic mapping [24] has found extensive application
across various fields, including parameter optimization, feature selection, and chaos control.
The popularity of chaotic mapping arises from three distinctive properties inherent in
chaotic mapping sequences: initial value sensitivity, ergodicity, and non-repeatability.
Utilizing chaotic mapping in the initialization stage serves to mitigate repetition, fostering
a more uniformly distributed initial population. This approach addresses challenges
encountered by previous intelligent optimization algorithms during the initialization phase,
consequently enhancing the diversity of the decision space. The Tent mapping in chaotic
maps has been proven to be an effective initialization method [25].

103



Symmetry 2024, 16, 1062

This article employs the Tent mapping in chaotic mapping for initialization, and the
method is outlined as follows:

Pop = lb + T(N, dim)× (ub − lb) (2)

In this context, Pop represents the initialized population, ub and lb denote the upper
and lower bounds of the population, N signifies the number of populations, dim indi-
cates the number of decision variables, and T represents the mapped random number.
The formula for calculating T is as follows:

Tn+1 =

{
Tn
α Tn < α

1−Tn
1−α Tn ≥ α

(3)

Among them, α = 0.7. The pseudocode for initializing the population is as shown in
Algorithm 1.

Algorithm 1 Tent Chaos Initialization

Input: : population size N, decision variables dim, variable upper bound ub, variable
lower bound lb

Output: : new population Pop
1: α = 0.7 Tent chaos coefficient
2: T = rand(N, dim) Random initialization population
3: for i = 1 : N do
4: for j = 2 : dim do
5: if Ti,j−1 < α then
6: Ti,j = Ti,j−1/α
7: else
8: Ti,j = (1 − Ti,j−1)/(1 − α)
9: end if

10: end for
11: end for
12: Pop = lb + T × (ub − lb)

3.2. Local Search Strategy

In NSGA-II, nondominated sorting is used to assign individuals to different Pareto lev-
els. Utilizing this approach can bolster the algorithm’s convergence; however, in instances
where the optimization problem exhibits high complexity, it may suffer from inadequate
optimization accuracy and susceptibility to local optima. Quadratic interpolation serves as
a technique for locating the minimum value point of the objective function, a method previ-
ously demonstrated to enhance local exploration capabilities [26]. This paper advances the
existing methods by introducing a hybrid local update strategy. In this strategy, particles
undergo random updates positioned between the optimal individual and neighboring
individuals. The formula for this update strategy is as follows:

Xi =

{
Yi rand < 0.3
Zi rand > 0.3

(4)

Yi,j = 0.5 ×
(X2

i,j − X2
m,j)× fb + (X2

m,j − X2
b,j)× fi + (X2

b,j − X2
i,j)× fm

(Xi,j − Xm,j)× fb + (Xm,j − Xb,j)× fi + (Xb,j − Xi,j)× fm
(5)

Among these, Xi,j represents the current particle, where Xm,j and fm denote the mean
individual and fitness values of the j-th dimensional particle, respectively. Furthermore, fb
and Xb,j represent random individuals and fitness values among those with Pareto level 1.

104



Symmetry 2024, 16, 1062

Zi,j =

{
Xi,j + c1 × (Xn,j − Xi,j)× (1 − t

T )
2 c2 > 0.5

Xi,j − c1 × (Xn,j − Xi,j)× (1 − t
T )

2 c2 < 0.5
(6)

c1 and c2 are random numbers sampled from the interval [0,1], where t denotes the current
iteration number, T represents the maximum iteration number, and Xn,j refers to the
neighboring individual of the current individual. The above two formulas demonstrate
symmetry. The formula is as follows:

Xn,j = rand(1 − sin(
2t
T

× π))× Xi,j (7)

In the aforementioned update strategies, individuals constituting 0.4 N are selected
for local updates. The pseudocode for a local search is as shown in Algorithm 2.

Algorithm 2 The local searching strategy

Input: : individuals at boundary and center points POp, offspring size N
Output: : population determined by local algorithm Nn f

1: for i = 1 : N do
2: Randomly select an individual X from Pop
3: index=rand(dim)
4: x=Xindex
5: Conduct local updates based on Formula (4).
6: Xindex=x_new
7: end for
8: Nn f =Pop

3.3. Convergence and Diversity Measures

The NSGA-II algorithm utilizes the Pareto dominance method for solution selection,
effectively maintaining convergence. However, the selection of solutions from the last layer
can impact the algorithm’s convergence and diversity during elite selection. To address this,
the article introduces enhancements to the elite selection strategy. The convergence degree
of each solution in population P is assessed using the p-norm value of the objective vector:

Norm(x) =‖ F(x)n ‖p=
M

∑
i=1

( f n
i (x)p)(1/p) (8)

where Fn(x) is the objective vector of solution x after the normalization and M is the
number of objectives. The most commonly used norm values are p = 1 and p = 2. In
this context, we opt for p = 2. A smaller Norm value of solution x indicates its better
convergence performance.

In the initial stages of population iteration, to guarantee that the algorithm can sustain
both convergence and substantial diversity, the formula for selecting based on the norm
and crowding distance is as follows:

f (x) = −Norm(x)× α + CD(x)× β (9)

Among them, a = 0.8, b = 0.2.
The smaller Norm(x), the better, and the larger CD(x), the better. Therefore, a larger

f (x) is better. Based on this, when selecting a solution, we choose a larger f (x).
The NSGA-II algorithm ensures diversity through a crowding distance strategy. How-

ever, as previously discussed, when the distance between two individuals is very close,
and the crowding distance is large, this method may struggle to effectively preserve pop-
ulation diversity. This article introduces a strategy based on the balance of the distance
between individuals. Initially, the individual with the smaller crowding distance among
two individuals with the closest distance is eliminated. This process is repeated sequen-

105



Symmetry 2024, 16, 1062

tially until the desired number of populations is reached. Illustrated in Figure 4, the initial
elimination includes individual 3, followed by the sequential elimination of individuals 5
and 7. The final selection comprises individuals 1, 2, 4, 6, and 8, resulting in a more uniform
distance between populations and better preservation of diversity.

Figure 4. Screening results with average distance elimination method. The numbers in the figure
denote different individuals, and the letters indicate those that have been removed.

This article employs the following formula to determine whether to conduct conver-
gence analysis or diversity analysis:

P = M × (ra − (ra − rb)× t
T

× n
N
) (10)

Among these variables, M represents the number of targets, with the values of ra and
ba set to 0.8 and 0.3, respectively. n denotes the count of individuals with Pareto level 1
within the population, while N represents the total number of populations. The pseudocode
for convergence and diversity is presented in Algorithm 3.

Algorithm 3 Elitist selection

Input: population size N, combined population combine_X, adaptive probability P
Output: updated population X

1: X = 0
2: current_N = 0
3: for i=1 : max_rank do
4: current_N = size(combine_Xi)
5: if current_N≤N then
6: X = X + combine_Xi
7: else
8: remain_N = N − current_N
9: if rand < P then

10: Update individuals according to Equation (9)
11: else
12: while size(combine_Xi)! = remain_N do
13: Sort(combine_Xi) Sort based on the distance of each individual
14: delete(min(combine_Xi)))
15: end while
16: X = X + combine_Xi
17: end if
18: end if
19: end for

106



Symmetry 2024, 16, 1062

4. Algorithm Comparison

In this section, a set of diverse benchmark tests was conducted to evaluate the perfor-
mance of NDE-NSGA-II across ZDT [27] to DTLZ [28] functions. The experimental results
involved a comparison with four well-established algorithms, NSGA-II, CDE-NSGA-II [23],
MOEA/D, and SPEA2, alongside a novel algorithm, CMWOA [29], which incorporates a
competition mechanism.

4.1. Indicators for Evaluation

Firstly, this section introduces commonly used indicators for evaluating algorithm
performance. In the realm of multi-objective problems (MOPs), the Pareto front (PF) is
a crucial concept. Essentially, PF reflects the quality of the Pareto set obtained by the
algorithm. The properties of Pareto sets can be described in terms of convergence, diffusion,
and uniformity [30], where diffusion and uniformity are denoted as diversity.

To evaluate convergence, this article adopts the indicator GD+ [31], which can be seen
as an improvement on the calculation method of the change in distance of the indicator
GD. It can better evaluate the convergence degree of the solution than GD. The smaller the
value of GD+, the better the solution set.

In terms of diversity, the CPF [32] value is chosen as the performance indicator,
with the main idea of projecting the m-dimensional solution onto the M-1 dimensional
space. The Pareto set with better diversity results in a higher CPF value.

HV [33] is a comprehensive evaluation indicator for multi-objective optimization
algorithms that are sensitive to advantageous relationships. Once a solution set advances
in dominance, HV returns a higher value. Meanwhile, due to the important position of
dominance in the Pareto set, HV also reflects other performances to a certain extent.

Beyond the aforementioned metrics, we also deliberated on the quantity of offspring
discarded or generated by each algorithm within the mutation strategy.

4.2. Convergence Evaluation of Different Algorithms on ZDT and DTLZ Test Problems

Table 1 displays the average GD+ values, accompanied by standard deviations (in
parentheses), for the four algorithms, with optimal values highlighted in bold font. Fur-
thermore, a Wilcoxon rank-sum test was performed at a significance level of 0.05. Symbols
such as “+”, “−”, and “=” in the final row denote whether the respective algorithm is
significantly superior, significantly inferior, or similar to the proposed NDE-NSGA-II.

Table 1 illustrates that for GD+, NDE-NSGA-II achieved superior results in 5 instances,
while NSGA-II, MOEA/D, SPEA, CDE-NSAG-II, and CMWOA secured 1, 3, 0, 0 and 3 best
results, respectively. Notably, referencing the information in Table 1, it can be inferred that
the proposed NDE-NSGA-II is well-suited for addressing problems with a non-uniform
search space and local Pareto front, as observed in ZDT4, ZDT6, DTLZ1, and DTLZ2.
However, when confronted with Pareto front problems featuring discrete features like ZDT3
and DTLZ7, NDE-NSGA-II exhibits a comparatively poorer performance. Moreover, results
from Wilcoxon’s rank-sum test demonstrate that NDE-NSGA-II significantly outperforms
the other three methods in more than half of the 12 benchmark functions. This indicates
that the NDE-NSGA-II algorithm proposed in this paper emerges as a competitive and
effective solution.

107



Symmetry 2024, 16, 1062

Table 1. GD+ values of the proposed NDE-NSGA-II and three multi-objective algorithms.

D NSGA-II MOEA/D SPEA2 CDE-NSGA-II CMWOA NDE-NSGA-II

ZDT1 30 1.1801 × 10−2 7.5242 × 10−2 1.4196 × 10−2 8.8438 × 10−3 3.6228 × 10−4 6.5618 × 10−4

(2.56 × 10−3)− (3.78 × 10−2)− (2.63 × 10−3)− (8.28 × 10−4)− (1.09 × 10−4)+ (1.92 × 10−4)
ZDT2 30 1.3028 × 10−2 2.1120 × 10−3 1.1928 × 10−2 1.2578 × 10−2 2.5870 × 10−4 2.2736 × 10−4

(3.38 × 10−3)− (2.21 × 10−3)− (4.24 × 10−3)− (1.77 × 10−3)− (1.12 × 10−4)− (8.81 × 10−5)
ZDT3 30 6.2900 × 10−3 7.5059 × 10−2 1.6723 × 10−3 6.5377 × 10−3 2.1435 × 10−4 3.0208 × 10−3

(4.67 × 10−3)− (2.67 × 10−2)− (9.49 × 10−3)+ (5.17 × 10−4)− (6.90 × 10−5)+ (2.86 × 10−4)
ZDT4 10 2.7336 × 10−3 1.9089 × 10−2 1.8403 × 10−1 7.2919 × 10−5 2.6171 × 10−1 6.6700 × 10−5

(1.39 × 10−3)− (1.82 × 10−2)− (1.19 × 10−1)− (3.80 × 10−5)= (2.05 × 10−1)− (4.22 × 10−5)
ZDT6 10 5.9099 × 10−2 7.6242 × 10−2 5.8502 × 10−2 1.4148 × 10−1 1.5845 × 10−1 2.4991 × 10−4

(2.59e × 10−2)− (2.50 × 10−2)− (2.86 × 10−2)− (4.90 × 10−2)− (1.67 × 10−2)− (1.47 × 10−4)
DTLZ1 7 1.5090 × 10−2 3.2258 × 10−3 1.1246 × 10−1 .6833 × 10−2 5.6172 × 10−1 2.4667 × 10−3

(6.28 × 10−2)− (1.73 × 10−3)− (1.84 × 10−1)− (8.51 × 10−2)− (5.34 × 10−1)− (1.16 × 10−3)
DTLZ2 12 1.0877 × 10−2 4.6049 × 10−3 5.4658 × 10−2 1.3317 × 10−2 3.1309 × 10−2 1.0645 × 10−2

(9.51 × 10−4)= (6.05 × 10−4)+ (4.57 × 10−4)− (1.73 × 10−3)= (3.27 × 10−3)− (1.70 × 10−3)
DTLZ3 12 2.4541 × 10−1 9.8374 × 10−1 7.5176 × 100 1.9417e × 100 2.4602 × 101 6.0531 × 10−1

(5.12e × 10−1)+ (1.13 × 100)− (3.57 × 100)− (2.93 × 100)− (3.41 × 101)− (8.26 × 10−1

DTLZ4 12 9.2717 × 10−3 1.7034 × 10−3 2.0093 × 10−1 1.2253 × 10−2 4.0307 × 10−2 8.9998 × 10−3

(2.88 × 10−3)= (2.13 × 10−3)+ (2.26 × 10−1)− (3.76 × 10−3)− (8.06 × 10−3)− (3.09 × 10−3)
DTLZ5 12 1.6588 × 10−3 2.3254 × 10−4 5.2708 × 10−3 1.6606 × 10−3 1.2031 × 10−2 1.5690 × 10−3

(3.60 × 10−4)= (1.88 × 10−4)+ (3.00 × 10−4)− (2.55 × 10−4)= (2.07 × 10−3)− (3.00 × 10−4)
DTLZ6 12 2.9192 × 10−5 1.8013 × 10−1 2.8984 × 10−2 8.3978 × 10−5 2.1359 × 10−5 8.6511 × 10−6

(4.50 × 10−5)− (4.84 × 10−1)− (1.35 × 10−1)− (3.71 × 10−4)− (1.41 × 10−6)− (5.41 × 10−7)
DTLZ7 12 5.1449 × 10−2 1.6310 × 10−2 8.1079 × 10−2 1.5389 × 10−2 1.1640 × 10−2 9.6279 × 10−2

(1.10 × 10−2)+ (4.30 × 10−3)+ (1.43 × 10−1)+ (2.84 × 10−2)− (2.09 × 10−3)+ (2.51 × 10−2)
+/−/= 2/7/3 4/8/0 2/10/0 0/9/3 3/9/0

4.3. Diversity Evaluation of Different Algorithms on ZDT and DTLZ Test Problems

Concerning diversity, as indicated by the CPF values in Table 2, the proposed NDE-
NSGA-II algorithm outperforms the other five algorithms. It secures the first rank among
seven benchmark tests and the second rank among two test functions.

Table 2. CPF values of the proposed NDE-NSGA-II and three multi-objective algorithms.

D NSGA-II MOEA/D SPEA2 CDE-NSGA-II CMWOA NDE-NSGA-II

ZDT1 30 6.8546 × 10−1 1.7925 × 10−1 8.0205 × 10−1 8.3221 × 10−1 8.7450 × 10−1 8.7580 × 10−1

(2.76 × 10−2)− (8.16 × 10−2)− (2.58 × 10−2)− (1.95 × 10−2)− (9.60 × 10−3)= (8.94 × 10−3)
ZDT2 30 6.4410 × 10−1 6.2313 × 10−3 7.2467 × 10−1 7.7441 × 10−1 8.7093 × 10−1 8.6470 × 10−1

(7.42 × 10−2)− (8.72 × 10−3)− (4.44 × 10−2)− (2.79 × 10−2)− (8.81 × 10−3)= (1.09 × 10−2)
ZDT3 30 6.6189 × 10−1 1.1442 × 10−1 7.0745 × 10−1 5.9863 × 10−1 8.9315 × 10−1 6.1488 × 10−1

(3.87 × 10−2)+ (5.97e × 10−2)− (5.33 × 10−2)+ (3.30 × 10−2)= (9.73 × 10−3)+ (5.12 × 10−2)
ZDT4 10 6.7576 × 10−1 4.7501 × 10−1 3.1359 × 10−1 7.6621 × 10−1 4.6558 × 10−1 8.7401 × 10−1

(2.98 × 10−2)− (1.59 × 10−1)− (9.78 × 10−2)− (1.94 × 10−2)− (2.16 × 10−1)− (8.41 × 10−3)
ZDT6 10 5.1181 × 10−1 2.7228 × 10−1 5.0701 × 10−1 5.5266 × 10−1 8.4110 × 10−1 8.7239 × 10−1

(5.75 × 10−2)− (1.13 × 10−1)− (4.77 × 10−2)− (6.90 × 10−2)− (2.95 × 10−2)− (9.44 × 10−3)
DTLZ1 7 2.9803 × 10−1 7.0126 × 10−1 3.5206 × 10−1 3.0072 × 10−1 2.9647 × 10−1 5.9606 × 10−1

(4.97 × 10−2)− (4.40 × 10−3)+ (2.17 × 10−1)− (6.34 × 10−2)− (2.33 × 10−1)− (2.68 × 10−2)
DTLZ2 12 3.2695 × 10−1 7.0787 × 10−1 7.1574 × 10−1 3.4783e × 10−1 6.6517 × 10−1 6.1444 × 10−1

(3.54 × 10−2)− (6.26 × 10−3)+ (2.83 × 10−2)+ (3.56 × 10−2)− (2.38 × 10−2)+ (3.06 × 10−2)
DTLZ3 12 2.8899 × 10−1 4.3226 × 10−1 1.0824 × 10−1 3.1697 × 10−1 4.6823 × 10−1 4.8327 × 10−1

(7.70 × 10−2)− (1.71 × 10−1)− (5.32 × 10−2)− (1.28 × 10−1)− (1.63 × 10−1)− (1.75 × 10−1)
DTLZ4 12 3.1499 × 10−1 2.0613 × 10−1 4.9790 × 10−1 3.3847 × 10−1 6.2879 × 10−1 6.3433 × 10−1

(1.11 × 10−1)− (3.01 × 10−1)− (3.20 × 10−1)− (8.73 × 10−2)− (2.83 × 10−2)= (2.97 × 10−2)
DTLZ5 12 7.8294 × 10−1 8.1416 × 10−2 9.4421 × 10−1 9.1363 × 10−1 9.0961 × 10−1 9.5135 × 10−1

(3.54 × 10−2)− (3.69 × 10−2)− (1.32 × 10−2)− (1.24 × 10−2)− (2.74 × 10−2)− (7.11 × 10−3)
DTLZ6 12 6.7924 × 10−1 1.5450 × 10−1 9.2164 × 10−1 8.9498 × 10−1 9.1266 × 10−1 9.5063 × 10−1

(6.48 × 10−2)− (1.80 × 10−1)− (4.13 × 10−2)− (1.54 × 10−2)− (8.00 × 10−3)− (6.60 × 10−3)
DTLZ7 12 4.4126 × 10−1 2.6965 × 10−1 6.2981 × 10−1 1.8519 × 10−1 8.0188 × 10−1 2.4661 × 10−1

(4.01 × 10−2)+ (3.39 × 10−2)= (1.13 × 10−1)+ (5.49e × 10−2)− (8.17 × 10−2)+ (6.78 × 10−2)
+/−/= 2/10/0 2/9/1 3/9/0 0/11/1 3/6/3

108



Symmetry 2024, 16, 1062

An examination of the results from the rank-sum test indicates that the NDE-NSGA-II
proposed in this article significantly surpasses NSGA-II, MOEA/D, SPEA2, CDE-NSGA-II,
and CMWOA on 10, 9, 9, 11, and 6 benchmarks, respectively. Notably, in most test functions,
the NDE-NSGA-II algorithm demonstrates both high convergence and high diversity. This
further substantiates that NDE-NSGA-II can achieve commendable convergence while
concurrently maintaining high diversity. Moreover, it is crucial to highlight that the CPF
index effectively neutralizes the impact of convergence, providing a reliable assessment
of diversity. This suggests that the adopted strategy has indeed played a pivotal role in
enhancing population diversity and convergence.

4.4. Comprehensive Evaluation of Different Algorithms on ZDT and DTLZ Test Problems

As previously discussed, the HV value functions as a comprehensive indicator that
reflects the overall performance of multi-objective algorithms. The algorithm’s overall
performance improves with an increase in the value of HV.

Table 3 presents the experimental results of HV values. It is evident from the table
that the proposed NDE-NSGA-II surpasses NSGA-II in ten instances, MOEA/D in nine
instances, SPEA2 in ten instances, CDE-NSGA-II in eleven instances, and CMWOA’s HV
value in nine instances. It is noteworthy that among the twelve examples, the proposed
NDE-NSGA-II secures the top rank in six test functions.

Table 3. HV values of the proposed NDE-NSGA-II and three multi-objective algorithms.

D NSGA-II MOEA/D SPEA2 CDE-NSGA-II CMWOA NDE-NSGA-II

ZDT1 30 7.0524 × 10−1 5.4399 × 10−1 7.0400 × 10−1 7.0929 × 10−1 7.2012 × 10−1 7.1989 × 10−1

(3.16 × 10−3)− (6.02 × 10−2)− (3.56 × 10−3)− (1.27 × 10−3)− (1.43 × 10−4)= (1.99 × 10−4)
ZDT2 30 4.1906 × 10−1 1.0257 × 10−1 4.2034 × 10−1 4.2709 × 10−1 4.4480 × 10−1 4.4488 × 10−1

(2.54 × 10−2)− (1.35 × 10−2)− (6.61 × 10−3)− (6.21 × 10−3)− (1.47 × 10−4)= (9.95 × 10−5)
ZDT3 30 5.7787 × 10−1 5.6843 × 10−1 5.9423 × 10−1 5.7400 × 10−1 5.8321 × 10−1 5.7821 × 10−1

(1.93 × 10−2)= (6.44 × 10−2)− (2.45 × 10−2)+ (8.99 × 10−4)= (1.28 × 10−4)+ (6.09 × 10−3)
ZDT4 10 7.1643 × 10−1 6.8649 × 10−1 5.1044 × 10−1 7.1913 × 10−1 4.4701 × 10−1 7.2048 × 10−1

(1.76 × 10−3)− (2.59 × 10−2)− (1.29 × 10−1)− (3.84 × 10−5)= (1.66 × 10−1)− (5.05 × 10−5)
ZDT6 10 3.1969 × 10−1 2.7870 × 10−1 3.1472 × 10−1 2.5339 × 10−1 3.8867 × 10−1 3.8870 × 10−1

(2.98 × 10−2)− (2.95 × 10−2)− (3.49 × 10−2)− (4.50 × 10−2)− (1.87 × 10−4)= (1.79 × 10−4)
DTLZ1 7 8.0353 × 10−1 8.3780 × 10−1 6.5584 × 10−1 7.9397 × 10−1 3.1433 × 10−1 8.3594 × 10−1

(9.10 × 10−1)− (2.96 × 10−3)= (2.51 × 10−1)− (1.20 × 10−1)− (3.76 × 10−1)− (2.39 × 10−3)
DTLZ2 12 5.2846 × 10−1 5.5490 × 10−1 5.4292 × 10−1 5.2397 × 10−1 5.2613 × 10−1 5.4495 × 10−1

(4.17 × 10−3)− (8.96 × 10−4)+ (1.44 × 10−3)= (4.39 × 10−3)− (4.52 × 10−3)− (2.35 × 10−3)
DTLZ3 12 4.1495 × 10−1 2.0737 × 10−1 0.0000 × 100 2.4195 × 10−1 6.9750 × 10−2 3.3573 × 10−1

(1.64 × 10−1)+ (2.31 × 10−1)− (0.00 × 100)− (2.17 × 10−1)− (1.81 × 10−1)− (2.12 × 10−1)
DTLZ4 12 5.1554 × 10−1 3.6056 × 10−1 4.9017 × 10−1 5.1736 × 10−1 5.2232 × 10−1 5.3118 × 10−1

(5.78 × 10−2)− (1.66 × 10−1)− (9.55 × 10−2)− (3.49 × 10−2)− (5.86 × 10−3)− (4.99 × 10−2)
DTLZ5 12 1.9844 × 10−1 1.8256 × 10−1 1.9840 × 10−1 1.9899 × 10−1 1.9399 × 10−1 1.9899 × 10−1

(2.71 × 10−4)= (4.25 × 10−4)− (3.76 × 10−4)= (2.06 × 10−4)= (1.43 × 10−3)− (1.81 × 10−4)
DTLZ6 12 1.9946 × 10−1 1.5260 × 10−1 1.9309 × 10−1 1.9921 × 10−1 2.0018 × 10−1 2.0024 × 10−1

(1.32 × 10−4)− (6.17 × 10−2)− (3.65 × 10−2)− (5.51 × 10−3)− (3.47 × 10−5)= (2.26 × 10−5)
DTLZ7 12 2.4741 × 10−1 2.3085 × 10−1 2.5446 × 10−1 1.5659 × 10−1 2.7467 × 10−1 1.6271 × 10−1

(5.76 × 10−3)+ (1.33 × 10−2)+ (1.27 × 10−2)+ (7.12 × 10−3)− (6.32 × 10−3)+ (6.76 × 10−3)
+/−/= 2/8/2 2/9/1 2/8/2 0/9/3 2/6/4

4.5. Quantify the Number of Mutation Strategies across Different Algorithms and Test Functions

As illustrated in Table 4, our algorithm retains a greater number of solutions compared
to other algorithms across various test functions during the mutation-based offspring
generation process. This demonstrates that our algorithm effectively mitigates resource
waste. Furthermore, our algorithm secured first place in 6 out of the 12 test functions,
further attesting to its effectiveness.

109



Symmetry 2024, 16, 1062

Table 4. Number of individuals eliminated/created during mutation.

D NSGA-II MOEA/D SPEA2 CDE-NSGA-II CMWOA NDE-NSGA-II

ZDT1 30 127/299 291/633 161/303 134/318 122/314 98/310
ZDT2 30 129/302 315/594 152/318 133/302 137/295 125/312
ZDT3 30 163/269 388/633 142/325 145/295 147/311 120/328
ZDT4 10 82/103 216/407 76/100 89/111 89/94 105/189
ZDT6 10 58/101 121/219 53/95 54/102 41/94 65/106

DTLZ1 7 8/70 36/237 8/69 10/75 20/73 8/77
DTLZ2 12 4/132 36/382 6/123 3/115 4/102 2/121
DTLZ3 12 44/126 43/347 33/117 28/113 28/108 16/126
DTLZ4 12 14/103 26/268 7/124 16/132 11/113 2/120
DTLZ5 12 7/122 13/343 9/113 11/126 13/120 6/134
DTLZ6 12 85/115 48/339 11/133 11/115 2/106 6/132
DTLZ7 12 102/193 298/587 103/222 90/230 80/233 123/241

5. Experiments and Analysis of Results

5.1. Study Area

The research area is situated in Hulan District, Harbin City, Heilongjiang Province,
China (46.340683◦ N 126.795502◦ E), as shown in Figure 5. This region, located in northeast-
ern China, falls within the continental monsoon climate of the northern temperate zone,
exhibiting distinct cold, warm, dry, and wet seasons.

Figure 5. Location of the field of study.

Fine-tuning a variety of parameters is vital for accurately simulating the local growth
environment. Maize (Longdan 96) has a plant height of 280 cm and an ear height of 100 cm.
18 leaves can be seen in adult plants. The number of rows per ear is 16–18, with teeth-
shaped and yellow grains, and a weight of 34 g per hundred grains. It is suitable for
planting in the first accumulated temperature zone of Heilongjiang Province (data sourced
from Heilongjiang Academy of Agricultural Sciences). In this experiment, field data from
2015 were gathered, and the parameters in the variety parameter file were adjusted using a
trial-and-error method. Weather data spanning from 2011 to 2015 for average optimization
were employed. The weather data for 2015 are shown in Figure 6. The DSSAT model can
effectively use these parameters to simulate the growth of local crops.

110



Symmetry 2024, 16, 1062

Figure 6. Precipitation and highest and lowest temperatures in 2015.

5.2. Objective Function

Multi-objective optimization problems involve maximizing or minimizing two or
more objectives by adjusting one or more variables. In the context of crop production,
decision-makers modify irrigation and fertilization methods to attain optimal outcomes.
This study specifically addresses the timing and quantity of irrigation or fertilization in the
field. The objective function is outlined as follows:

Max : Y =
∑N

i=0 DSSATi(ia0 , . . . , iaj , fa0 , . . . , fad , Di)

N
(11)

Min : I =
∑N

i=0 ∑
j
n=0(ian)

N
(12)

Min : F =
∑N

i=0 ∑d
m=0( fam)

N
(13)

In the formula, Y is the yield, I is the total irrigation amount, F is the total nitrogen
application amount, ian is the one-time irrigation amount, fam is the one-time nitrogen ap-
plication amount, j is the irrigation amount, d is the nitrogen application amount, and N = 5
represents the number of years simulated. Di is the time for irrigation and fertilization.

5.3. Optimization Strategies and Configuration

Symmetry also plays an important role in water and fertilizer irrigation in agriculture.
Figure 7 shows the flowchart of optimizing water and fertilizer. We use the R language
to drive the DSSAT model for optimization. Using the integrated method of water and
fertilizer, the effect of different fertilizers on the maize yield was studied. The simulation sit-
uation is divided into two groups: rain irrigation and drip irrigation. We applied urea (N1),
diammonium phosphate (N2), and ammonium nitrate (N3) separately. Maize undergoes
five growth stages—seedling (VE), jointing (VJ), tasseling (VT), filling (R2), and physiologi-
cal maturity (R6). Fertilization and irrigation are carried out during these stages. The dates
for irrigation and fertilization are determined based on historical experience, but due to
differences in weather between different years, we have set their historical experience dates
to ±5 days. Considering the actual situation and based on historical experience, the sowing
date of Longdan 96 is set on May 1st, and the harvest date is set on October 1st. The goal of
each optimization strategy is to maximize production while minimizing resource waste. In
the case of two objectives, the population is 100 with 100 iterations, and in the case of three
objectives, the population is 300 with 100 iterations.

111



Symmetry 2024, 16, 1062

Figure 7. Flow chart of optimized water and fertilizer irrigation.

5.4. Result and Analysis

Figure 8 illustrates that in the absence of irrigation, the utilization of N1 fertilizer
not only results in a higher yield (10,515 kg/ha) but also requires less fertilizer compared
to the other two fertilizers. Furthermore, the enhanced algorithm identifies a more ra-
tional fertilization strategy. For instance, at the point of maximum yield (10,515 kg/ha),
the original algorithm utilized 312 kg/ha of fertilizer, whereas the improved algorithm
required only 264 kg/ha, reflecting a 15% reduction in fertilizer application compared
to the original algorithm. This outcome substantiates the reliability and efficacy of the
improved algorithm.

(a) N1 (b) N2 (c) N3

Figure 8. Comparison of fertilization strategies between NSGA-II algorithm and NDE-NSGA-II algo-
rithm.

From Figure 9, it can be seen that under the comprehensive strategy of drip irrigation
and fertilization, the highest yields of N1, N2, and N3 nitrogen fertilizers were 13,585 kg/ha,
13,589 kg/ha, and 13,587 kg/ha, respectively. This means that under irrigation conditions,
all three fertilization methods can achieve higher yields. Compared with the original
algorithm, the improved algorithm exhibits superior yield performance while minimizing
resource waste to the greatest extent possible.

In addition, the improved algorithm provides decision-makers with more irrigation
decision-making solutions and verifies its reliability. Given the relatively low resource
consumption of N2 fertilizer, which has the lowest cost among the three types of fertilizers
(see Table 5 for details), N2 fertilizer has become the preferred choice under irrigation
strategies, improving its economic benefits. The optimal yield and resource consumption
achieved by applying different fertilizers, coupled with historical experience, are detailed
in Table 6, overall, applying N2 fertilizer and achieving the highest yield, with water
consumption reduced by 37.5%, nitrogen application reduced by 8.3%, and yield increased
by 5.9%.

112



Symmetry 2024, 16, 1062

(a) N1 (b) N2 (c) N3

Figure 9. Comparison of irrigation and fertilization strategies between NSGA-II algorithm and
NDE-NSGA-II algorithm.

Table 5. Different fertilizer prices.

N1 Costs (Yuan/kg) N2 Costs (Yuan/kg) N3 Costs (Yuan/kg)

3.98 2.65 3.82

Examining Table 6, it is evident that opting for the N2 fertilization strategy yields the
highest output. However, in regions facing water scarcity, alternatives such as minimal
irrigation or no irrigation strategies could be considered as viable options.

Table 6. Comparison of best-simulated irrigation and nitrogen fertilizer test results with best practices
(using different fertilizers).

Yield (kg/ha)

Yield Increase (%)

Total Irrigation (mm)

Irrigation Reduction (%)

Total Nitrogen (kg/ha)
Fertilization

Reduction (%)Practices
Optimized

Results
Practices

Optimized
Results

Practices Optimized
Results

N1 12,836 13,585 5.8% 80 55 31.3% 300 375 −25%

N2 13,589 5.9% 50 37.5% 275 8.3%

N3 13,587 5.5% 62 22.5% 277 7.7%

6. Discussion

The NDE-NSGA-II algorithm significantly outperforms traditional multi-objective
optimization algorithms. It has demonstrated robust performance in test functions and
excels in optimizing resource allocation strategies, such as crop irrigation and fertilization.
However, the algorithm has certain limitations. Although NDE-NSGA-II improves conver-
gence speed, its computational complexity is relatively high, particularly for large-scale
optimization problems, which can lead to increased computational resource consump-
tion. Additionally, the algorithm’s performance may be sensitive to parameter settings,
and improper parameter selection can affect optimization results, necessitating further
research on parameter tuning and automation methods. Furthermore, this study primarily
relies on simulation environments for testing, and the algorithm’s performance in practical
applications has not been fully validated, requiring further empirical research. In sum-
mary, the development of the NDE-NSGA-II algorithm is significant for multi-objective
optimization, and its potential impact on agricultural applications underscores its practical
value. However, further research is needed to address existing limitations and validate its
effectiveness in real-world scenarios.

7. Conclusions

This article presents the NDE-NSGA-II algorithm as a solution for handling multi-
objective problems. Specifically, chaotic mapping is utilized to enhance the initialization

113



Symmetry 2024, 16, 1062

process. This is followed by the implementation of a point selection method based on norm
and average distance elimination strategies, aiming to improve convergence and diversity
within the population. The performance of the proposed NDE-NSGA-II is rigorously
validated across 12 benchmark functions, each with distinct features. Comparative analyses
are conducted against other state-of-the-art methods in the field of multi-objective problems
(MOPs). The experimental results robustly affirm the effectiveness and reliability of the
algorithm, showcasing its capability to simultaneously address multi-objective problems
with high diversity and achieve commendable convergence. Finally, the NDE-NSGA-
II algorithm, introduced in this paper, is applied to optimize maize-related scenarios,
demonstrating superiority over the classical NSGA-II method. However, we only simulated
an ideal corn water and fertilizer irrigation, which has certain limitations. In the future,
we can consider using certain methods to predict weather changes and yield. These
results further underscore the practical efficacy of the NDE-NSGA-II algorithm proposed
in this study.

In the future, applying NDE-NSGA-II to more complex high-dimensional multi-objective
problems will be a promising work. At the same time, further testing will be conducted on
multi-objective problems in the real world, and the algorithm will be improved.

Author Contributions: Conceptualization, J.D. and R.L.; methodology, J.D.; software, D.C.; valida-
tion, X.W.; formal analysis, T.Z.; investigation, F.Y.; resources, J.D.; data curation, D.C.; writing—
original draft preparation, R.L.; writing—review and editing, J.D.; visualization, R.L.; supervision,
J.D.; project administration, X.W.; funding acquisition, D.C., R.L. and F.Y. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data supporting this study’s findings are available from the
corresponding author upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Cai, Y.; Wang, J. Differential evolution with hybrid linkage crossover. Inf. Sci. 2015, 320, 244–287. [CrossRef]
2. Zhou, A.; Qu, B.Y.; Li, H.; Zhao, S.Z.; Suganthan, P.N.; Zhang, Q. Multiobjective evolutionary algorithms: A survey of the state of

the art. Swarm. Evol. Comput. 2011, 1, 32–49. [CrossRef]
3. Pourvaziri, H.; Naderi, B. A hybrid multi-population genetic algorithm for the dynamic facility layout problem. Appl. Soft.

Comput. 2014, 24, 457–469. [CrossRef]
4. Saborido, R.; Ruiz, A.B.; Luque, M. Global WASF-GA: An evolutionary algorithm in multiobjective optimization to approximate

the whole pareto optimal front. Evol. Comput. 2017, 25, 309–349. [CrossRef] [PubMed]
5. Tran, K.D. An improved non-dominated sorting genetic algorithm-ii (ANSGA-II) with adaptable parameters. Int. J. Intell. Syst.

Technol. Appl. 2009, 7, 347–369. [CrossRef]
6. Ahadzadeh, B.; Abdar, M.; Safara, F.; Khosravi, A.; Menhaj, M.B.; Suganthan, P.N. SFE: A simple, fast and efficient feature

selection algorithm for high-dimensional data. IEEE Trans. Evol. Comput. 2023, 27, 1896–1911. [CrossRef]
7. Lin, Z.; Gao, K.; Wu, N.; Suganthan, P.N. Scheduling eight-phase urban traffic light problems via ensemble meta-heuristics and

Q-learning based local search. IEEE Trans. Intell. Transp. Syst. 2023, 24, 14415–14426. [CrossRef]
8. Ma, Z.; Wu, G.; Suganthan, P.N.; Song, A.; Luo, Q. Performance assessment and exhaustive listing of 500+ nature-inspired

metaheuristic algorithms. Swarm Evol. Comput. 2023, 77, 101248. [CrossRef]
9. Gad, A.G.; Houssein, E.H.; Zhou, M.C.; Suganthan, P.N.; Wazery, Y.M. Damping-assisted evolutionary swarm intelligence for

industrial iot task scheduling in cloud computing. IEEE Internet Things J. 2023, 11, 1698–1710. [CrossRef]
10. Ma, H.; Zhang, Y.; Sun, S.; Liu, T.; Shan, Y. A comprehensive survey on NSGA-II for multi-objective optimization and applications.

Artif. Intell. Rev. 2023, 56, 15217–15270. [CrossRef]
11. Li, W.; Zhang, T.; Wang, R.; Huang, S.; Liang, J. Multimodal multi-objective optimization: Comparative study of the state-of-the-art.

Swarm Evol. Comput. 2023, 77, 101253. [CrossRef]
12. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.A.M.T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans.

Evol. Comput. 2002, 6, 182–197. [CrossRef]
13. Zhang, Q.; Li, H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 2007,

11, 712–731. [CrossRef]
14. Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the strength Pareto evolutionary algorithm. TIK Rep. 2001, 103,

10017663175.

114



Symmetry 2024, 16, 1062

15. Zhou, Y.; Fan, H. Research on multi objective optimization model of sustainable agriculture industrial structure based on genetic
algorithm. J. Intell. Fuzzy Syst. 2018, 35, 2901–2907. [CrossRef]

16. Cheng, D.; Yao, Y.; Liu, R.; Li, X.; Guan, B.; Yu, F. Precision agriculture management based on a surrogate model assisted
multiobjective algorithmic framework. Sci. Rep. 2023, 13, 1142. [CrossRef]

17. Song, J.; Li, J.; Yang, Q.H.; Mao, X.; Yang, J.; Wang, K. Multi-objective optimization and its application on irrigation scheduling
based on AquaCrop and NSGA-II. J. Hydraul. Eng. 2018, 49, 1284–1295.

18. Llera, J.R.; Deb, K.; Runkle, E.; Xu, L.; Goodman, E. Evolving and comparing greenhouse control strategies using model-based
multi-objective optimization. In Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore,
India, 18–21 November 2018; pp. 1929–1936.

19. Liu, X.; Yang, D. Irrigation schedule analysis and optimization under the different combination of P and ET0 using a spatially
distributed crop model. Agric. Water Manag. 2021, 256, 107084. [CrossRef]

20. White, J.W.; Alagarswamy, G.; Ottman, M.J.; Porter, C.H.; Singh, U.; Hoogenboom, G. An overview of CERES–sorghum as
implemented in the crop system model version 4.5. Agron. J. 2015, 107, 1987–2002. [CrossRef]

21. Ritchie, J.T. Description and performance of CERES wheat: A user-oriented wheat yield model. ARS Wheat Yield Proj. 1985, 8,
159–175.

22. Otter-Nacke, S.; Ritchie, J.T.; Godwin, D.C.; Singh, U. A User’s Guide to CERES Barley—V2. 10; International Fertilizer Development
Center Simulation Manual: Muscle Shoals, AL, USA, 1991; IFDC-SM-3.

23. Liu, J.; Chen, X. An improved NSGA-II algorithm based on crowding distance elimination strategy. Int. J. Comput. Intell. Syst.
2019, 12, 513–518. [CrossRef]

24. Dos Santos Coelho, L.; Mariani, V.C. Use of chaotic sequences in a biologically inspired algorithm for engineering design
optimization. Expert Syst. Appl. 2008, 34, 1905–1913. [CrossRef]

25. Yan, Z.; Jin, Q.; Zhang, Y.; Wang, Z.; Li, Z. An Improved Multi-Objective Harris Hawk Optimization with Blank Angle Region
Enhanced Search. Symmetry 2022, 14, 967. [CrossRef]

26. Kaveh, A.; Ilchi Ghazaan, M.; Saadatmand, F. Colliding bodies optimization with Morlet wavelet mutation and quadratic
interpolation for global optimization problems. Eng. Comput. 2022, 38, 2743–2767. [CrossRef]

27. Zitzler, E.; Deb, K.; Thiele, L. Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput. 2000, 8,
173–195. [CrossRef] [PubMed]

28. Deb, K.; Thiele, L.; Laumanns, M.; Zitzler, E. Scalable multi-objective optimization test problems. In Proceedings of the 2002
Congress on Evolutionary Computation, CEC’02 (Cat. No. 02TH8600), Honolulu, HI, USA, 12–17 May 2002; Volume 1,
pp. 825–830.

29. Zeng, N.; Song, D.; Li, H.; You, Y.; Liu, Y.; Alsaadi, F.E. A competitive mechanism integrated multi-objective whale optimization
algorithm with differential evolution. Neurocomputing 2021, 432, 170–182. [CrossRef]

30. Li, M.; Yao, X. Quality evaluation of solution sets in multiobjective optimisation: A survey. ACM Comput. Surv. (CSUR) 2019,
52, 26. [CrossRef]

31. Ishibuchi, H.; Masuda, H.; Tanigaki, Y.; Nojima, Y. Modified distance calculation in generational distance and inverted generational
distance. In Proceedings of the Evolutionary Multi-Criterion Optimization: 8th International Conference, EMO 2015, Guimarães,
Portugal, 29 March–1 April 2015; Proceedings, Part II 8; Springer International Publishing: New York, NY, USA, 2015; pp. 110–125.

32. Tian, Y.; Cheng, R.; Zhang, X.;Li, M.; Jin, Y. Diversity assessment of multi-objective evolutionary algorithms: Performance metric
and benchmark problems [research frontier]. IEEE Comput. Intell. Mag. 2019, 14, 61–74. [CrossRef]

33. Zitzler, E.; Thiele, L. Multiobjective optimization using evolutionary algorithms—A comparative case study. In Proceedings
of the International Conference on Parallel Problem Solving from Nature, Berlin, Heidelberg, 27–30 September 1998; Springer:
Berlin/Heidelberg, Germany, 1998; pp. 292–301.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

115



symmetryS S

Article

Multi-Task Multi-Objective Evolutionary Search Based on
Deep Reinforcement Learning for Multi-Objective Vehicle
Routing Problems with Time Windows

Jianjun Deng 1, Junjie Wang 2, Xiaojun Wang 2, Yiqiao Cai 2,* and Peizhong Liu 3,*

1 Chengdu Aeronautic Polytechnic, Chengdu 610100, China; dengjianjun@cap.edu.cn
2 College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China;

18816234790@163.com (J.W.); t_wxjmq@163.com (X.W.)
3 College of Engineering, Huaqiao University, Quanzhou 362000, China
* Correspondence: caiyq@hqu.edu.cn (Y.C.); pzliu@hqu.edu.cn (P.L.)

Abstract: The vehicle routing problem with time windows (VRPTW) is a widely studied combinatorial
optimization problem in supply chains and logistics within the last decade. Recent research has
explored the potential of deep reinforcement learning (DRL) as a promising solution for the VRPTW.
However, the challenge of addressing the VRPTW with many conflicting objectives (MOVRPTW) still
remains for DRL. The MOVRPTW considers five conflicting objectives simultaneously: minimizing
the number of vehicles required, the total travel distance, the travel time of the longest route, the total
waiting time for early arrivals, and the total delay time for late arrivals. To tackle the MOVRPTW, this
study introduces the MTMO/DRP-AT, a multi-task multi-objective evolutionary search algorithm, by
making full use of both DRL and the multitasking mechanism. In the MTMO/DRL-AT, a two-objective
MOVRPTW is constructed as an assisted task, with the objectives being to minimize the total travel
distance and the travel time of the longest route. Both the main task and the assisted task are
simultaneously solved in a multitasking scenario. Each task is decomposed into scalar optimization
subproblems, which are then solved by an attention model trained using DRL. The outputs of these
trained models serve as the initial solutions for the MTMO/DRL-AT. Subsequently, the proposed
algorithm incorporates knowledge transfer and multiple local search operators to further enhance
the quality of these promising solutions. The simulation results on real-world benchmarks highlight
the superior performance of the MTMO/DRL-AT compared to several other algorithms in solving
the MOVRPTW.

Keywords: multiobjective vehicle routing problem with time windows; deep reinforcement learning;
evolutionary multi-task optimization; knowledge transfer

1. Introduction

The vehicle routing problem with time windows (VRPTW) is a widely studied com-
binatorial optimization problem in logistics, encompassing areas such as supply chain
management, production planning, waste collection, home healthcare, and so on [1–5]. As a
crucial variant of the vehicle routing problem (VRP), the VRPTW involves servicing a set
of customers with specific time windows and known demands using a fleet of vehicles [1].
The primary goal of the VRPTW is to minimize delivery costs by optimizing routes while
adhering to all constraints. However, the VRPTW is computationally NP-hard [2], making
it challenging to solve effectively.

Due to its practical significance in various applications in the real world, the VRPTW
has emerged as a prominent research problem in the field of operations research [2,3].
Consequently, numerous optimization approaches have been developed to tackle this chal-
lenge [6–8]. Broadly, optimization approaches for the VRPTW are categorized into exact
methods [6], suitable for small-scale problems, and meta-heuristic methods [7,8], preferred

Symmetry 2024, 16, 1030. https://doi.org/10.3390/sym16081030 https://www.mdpi.com/journal/symmetry116



Symmetry 2024, 16, 1030

for large-scale problems. Meta-heuristic methods, known for their capability and potential
in tackling the VRPTW, encompass various search mechanisms [3,7,8]. These methods
address both the single-objective VRPTW and the multi-objective VRPTW. Previous stud-
ies [9,10] have discussed the VRPTW as an inherently multi-objective optimization problem
with many conflicting objectives relevant to real-world applications. As a result, research
on the multi-objective VRPTW (MOVRPTW) problem has gained significant attention and
is now considered a prominent area in the field of computational intelligence [3].

However, because of the high complexity of the MOVRPTW, most existing meta-
heuristic methods still face significant challenges in effectively solving it [11]. These
methods often require a significant number of iterations to update the population or
conduct search, especially for optimization problems with many conflicting objectives. This
will lead to lengthy computational times for optimization. Furthermore, meta-heuristic
methods necessitate problem-specific experience and knowledge, requiring adjustments
to yield favorable results when encountering new problems or even new instances of
similar problems [12]. Therefore, there yet remains much room for proposing more efficient
approaches to address the challenges brought by the MOVRPTW.

With the rapid advancement of artificial intelligence technology, deep reinforcement
learning (DRL) has become increasingly prevalent and successful across various fields.
Notably, it has made significant contributions in areas such as computer vision [13,14] and
natural language processing [15]. In the realms of operations research and combinatorial
optimization, DRL has also proven its advantages in terms of autonomous feature discovery,
effective accumulation of problem information, and efficient decision optimization [16–19].
However, as discussed in [20], directly applying the trained model on unseen problem
instances may be considered unreliable. Furthermore, the majority of DRL-based method-
ologies concentrate on resolving a single MOVRPTW problem by initiating the search from
scratch, disregarding the similarities between disparate tasks. Consequently, the useful
knowledge gained by addressing one problem cannot be fully leveraged for optimizing
other similar problems. Therefore, it is crucial to explore ways to further enhance the
quality of the output results obtained by the trained model, especially in the context of
DRL-based approaches.

Recently, a new paradigm called evolutionary multitask optimization (EMTO) has
emerged in the field of evolutionary algorithms. EMTO aims to optimize multiple tasks
simultaneously using a shared search space [21]. By leveraging the latent synergies among
those tasks, EMTO has been shown to outperform single-task optimization methods, yielding
superior performance in both continuous and combinatorial optimization problems [21,22].
Furthermore, the efficacy of EMTO has been demonstrated in successfully solving a wide
range of combinatorial optimization problems [23,24]. It can, thus, be seen that the integration
of the EMTO framework with DRL-based approaches presents a compelling proposition for
addressing complex combinatorial optimization problems.

Building upon the aforementioned findings, this study introduces the MTMO/DRL-
AT, a multi-task multi-objective evolutionary search algorithm for solving the MOVRPTW
with five conflicting objectives. The proposed algorithm combines DRL and the multi-
tasking mechanism. In the MTMO/DRL-AT, a two-objective VPRTW is constructed as
an assisted task based on the characteristics of the main MOVRPTW task. Both the main
task and the assisted task are decomposed into scalar optimization subproblems, each
addressed by an attention model trained using DRL. The output results of these trained
models serve as the initial solutions for the MTMO/DRL-AT. Subsequently, the proposed
algorithm optimizes both tasks simultaneously under a multitasking framework. To fur-
ther improve the quality of the solutions, multiple local search operators are employed.
Experimental studies on 45 real-world instances are conducted to validate the effectiveness
of the proposed algorithm. The simulation results clearly demonstrate the superiority of
the MTMO/DRL-AT over other compared approaches in solving MOVRPTWs.

In summary, the main contributions of this study are as follows:

117



Symmetry 2024, 16, 1030

• A novel evolutionary optimization algorithm, termed the MTMO/DRL-AT, is pre-
sented for solving MOVRPTWs involving five conflicting objectives. The MTMO/DRL-
AT conducts a multitasking search over both the main task and an assisted task,
utilizing an attention model trained through DRL.

• The synergy between DRL-based model training and the multitasking-based search
mechanism is built up. Attention models are trained using DRL for subproblems
in both the main and assisted tasks, serving as the starting point for the algorithm.
Knowledge transfer strategies and objectivewise local search operators are then em-
ployed to further refine the optimization of both tasks, ultimately improving the
quality of solutions derived from the trained models.

The remainder of this paper is structured as follows: Section 2 describes the formula-
tion of the MOVRPTW. Section 3 reviews related work. Section 4 shows the DRL-based
modeling and training for the MOVRPTW. Section 5 presents the details of the MTMO/DRL-
AT. Then, the experimental results and analysis are provided in Section 6. Finally, Section 7
gives the conclusions and future work.

2. Problem Formulation of MOVRPTW

The MOVRPTW is a complex multi-objective optimization problem with practical
applications and multiple constraints. It can be mathematically represented by a complete
undirected graph, denoted as G = {V, E}, where V represents the node set and E represents
the edge set. The node set V = {vi|i = 0, 1, . . ., N}, consists of a depot, denoted as v0, and
other customer nodes, v1, v2, . . . , vN . The edge set E = {ei,j|i, j ∈ V, i �= j}, where each
edge ei,j is linked to a travel time ti,j and a travel distance di,j. Similarly, each customer is
assigned to a demand qi, a service time window [bi, ei], and a service time si.

In the MOVRPTW, each vehicle is assigned a route, rk = (ck
0, ck

1, . . . , ck
Nk

, ck
Nk+1

), that

consists of a sequence of Nk customers to be visited, denoted as rk and ck
0 = ck

Nk+1 = 0,
where ck

j represents the jth customer to be visited in rk and ck
0 = ck

Nk+1 = 0 (depot). Each
customer is exclusively serviced by a single vehicle. Moreover, it is essential to ensure
that the cumulative demand of customers assigned to each vehicle does not exceed its
maximum capacity, denoted as Q. Additionally, all vehicles are obligated to depart from
and return to the depot within the time window specified as [0, e0]. To allow for some
flexibility, a soft time window constraint is implemented, permitting a vehicle to arrive at a
customer’s location after the specified latest service time, ei, within a maximum allowed
delay time, denoted as md. The delay time experienced by vehicle k at the jth customer is
defined as dtck

j
= max{0, ack

j
− eck

j
}, where ack

j
represents the arrival time at customer ck

j .

In case a vehicle arrives prior to the earliest service time (bi), it is required to wait until
bi to initiate service, resulting in a waiting time. The waiting time for vehicle k at the jth
customer is determined by wck

j
= max{0, bck

j
− ack

j
}.

Figure 1 provides an example of the solution representation for the MOVRPTW.
As illustrated in Figure 1, the MOVRPTW consists of one depot (i.e., 0) and nine customers
to be serviced (i.e., 1 to 9). A solution comprising three routes is denoted as x = (r1, r2, r3),
where r1 = (0, 5, 7, 1, 0), r2 = (0, 9, 6, 3, 0), and r3 = (0, 8, 4, 2, 0).

5

1

7

6

3

8

4

2

9

0

0 5 7 01

0 6 3 09

00 248

depot

(a) (b)

Figure 1. Solution representation for the MOVRPTW. (a) A solution for the MOVRTPW. (b) The
solution representation.

118



Symmetry 2024, 16, 1030

To provide a clear mathematical model of the MOVRPTW, the basic notations used in
this study are summarized in Table 1.

Table 1. Notations for MOVRPTW.

Notation Description

Property sets:
C The set of customers: C = {1, 2, 3, . . ., N};
V The set of vertices: V = C ∪ {0};
E The set of edges between vertices: E = {eij|i, j ∈ V};
D The set of distances between customers: D = {dij|i, j ∈ C};
T The set of travel times between customers: T = {tij|i, j ∈ C}.;

Problem parameters:
Q The maximum capacity of the vehicle;
qi The demand of customer i;

md The maximum allowable delay time at each customer;
[bi, ei] The time window of customer i;

bi The earliest service time for customer i;
ei The latest service time for customer i;
si The service time for customer i.

Problem variables:
xk

ij eij is traversed by the kth vehicle (i.e., xk
ij = 1)

or not (i.e., xk
ij = 0);

K The number of routes in x;
rk The kth route consisting of a sequence of Nk customers

rk = {ck
0, ck

1, . . ., ck
Nk

, ck
Nk+1

};
ck

j The jth customer visited in the kth route;
ai The time the vehicle arrives at customer i;
wi The waiting time incurred by the vehicle at customer i;
dti The delay time generated by the vehicle at customer i.

In general, the mathematical model of the MOVRPTW, which includes five objectives,
is defined as follows [9,10]:

minF(x) = ( f1, f2, f3, f4, f5) (1)

f1 = K (2)

f2 =
N

∑
i=1

N

∑
j=0,j �=i

K

∑
k=1

dijxk
ij (3)

f3 = max
k=1,...,K

{
N

∑
i=1

N

∑
j=0,j �=i

xk
ij(tij + wi + si)} (4)

f4 =
N

∑
i=1

N

∑
j=0,j �=i

K

∑
k=1

wixk
ij (5)

f5 =
N

∑
i=1

N

∑
j=0,j �=i

K

∑
k=1

dtixk
ij (6)

The MOVRPTW mathematical model, described by Equation (1), is a multi-objective
problem that encompassed five objectives. These objectives are defined as follows: In
Equation (2), the first objective aims to minimize the number of vehicles required. In
Equation (3), the second objective focuses on minimizing the total travel distance. In
Equation (4), the third objective aims to minimize the travel time of the longest route. In
Equation (5), the fourth objective seeks to minimize the total waiting time for early arrivals.
In Equation (6), the fifth objective aims to minimize the total delay time for late arrivals.

119



Symmetry 2024, 16, 1030

The constraints of the MOVRPTW are defined as follows:

N

∑
i=1

xk
i0 =

N

∑
j=1

xk
0j = 1, k = 1, . . . , K (7)

N

∑
j=0,j �=i

xk
ij =

N

∑
j=0,j �=i

xk
ji ≤ 1, i ∈ C, k = 1, . . . , K (8)

N

∑
i=0,i �=j

K

∑
k=1

xk
ij =

N

∑
j=0,j �=i

K

∑
k=1

xk
ij = 1, i ∈ C, j ∈ C (9)

N

∑
i=0

qi

N

∑
j=0,j �=i

xk
ij ≤ Q, k = 1, . . . , K (10)

N

∑
j=0,j �=i

dtixk
ij ≤ md, i ∈ C, k = 1, . . . , K (11)

(ti0 + ai + wi + si)xk
i0 ≤ e0, i ∈ C, k = 1, . . . , K (12)

xk
ij ∈ {0, 1}, i ∈ C, j ∈ C, k = 1, . . . , K (13)

Constraints (7) and (8) ensure that each vehicle starts from the depot and then returns
to the depot. Constraint (9) guarantees that each customer is served only once by one
vehicle. Constraint (10) ensures that the total demand served by a vehicle does not exceed its
maximum capacity Q. Constraint (11) limits the delay time for each customer to the specified
value md. Constraint (12) states that each vehicle must return to the depot before it closes.
Constraint (13) defines the range of the decision variable.

3. Literature Review

This section begins by providing an overview of the existing studies conducted on the
VRPTW. Subsequently, it briefly examines recent DRL approaches applied to combinatorial
optimization problems (COPs), with a specific focus on the VRP and its variants. Lastly, it
reviews the applications of EMTO to the VRP.

3.1. Meta-Heuristic Approaches for VRPTW

Broadly, optimization approaches for the VRPTW are categorized into exact meth-
ods [6], suitable for small-scale problems, and meta-heuristic methods [7,8], preferred for
large-scale problems. Meta-heuristic methods, known for their capability and potential in
tackling the VRPTW, encompass various search mechanisms [3,7,8]. These methods address
both the single-objective VRPTW and the multi-objective VRPTW. Previous studies [9,10]
have discussed the VRPTW as an inherently multi-objective optimization problem with
many conflicting objectives relevant to real-world applications. Therefore, this subsection
provides only a brief overview of the related work on the MOVRPTW, which is summarized
in Table 2. Other related work on the VRP and its variants can be found in [2,3,6–8].

Researchers have proposed various multi-objective optimization algorithms with vari-
ous optimization frameworks and local search strategies to address the MOVRPTW. For
example, Qi et al. [25] introduced a decomposition-based multi-objective evolutionary al-
gorithm, which included a specially designed selection operator and three local searches.
Moradi [26] proposed a discrete learnable evolution model for multi-objective optimization
that integrated machine learning and a new priority-based representation scheme. In addi-
tion to the above evolutionary optimization methods, DRL-based methods are also used
to solve the MOVRPTW. In [19], Zhang et al. introduced the MODRL/D-EL, an approach
that combines the decomposition technique with attention models. They also employed
evolutionary learning to further fine-tune the parameters of the trained model.

120



Symmetry 2024, 16, 1030

Table 2. Summary of the methods for solving the MOVRPTW.

Reference Authors Problem Approach

MOVRPTW with two objectives
[25] Qi et al. MOVRPTW with f1 and f2 Decomposition-based EA

Specially designed selection operator
Three novel local searches

[26] Moradi MOVRPTW with f1 and f2 The strength Pareto evolutionary algorithm (SPEA)
Discrete learnable evolution model
A priority-based representation scheme

[19] Zhang et al. MOVRPTW with f2 and f3 Multiobjective DRL with evolutionary learning (MODRL/D-EL)
Decomposition technique
Attention models
Evolutionary learning to further fine-tune the model’s parameters

MOVRPTW with many objectives
[9] Gutiérrez et al. MOVRPTW with f1– f5 Nondominated sorting genetic algorithm (NSGA-II)

New instances from real-world data

[10] Zhou and Wang MOVRPTW with f1– f5
Local-search-based multiobjective optimization
algorithm (LSMOVRPTW)
Objectivewise local searches

[27] Zhang et al. MOVRPTW with f1– f5
Multi-objective memetic algorithm based on adaptive local search
chains (MMA-ALSC)
Enhanced local search chain techniques
Multi-directional local search strategy

[28] Cai et al. MOVRPTW with f1– f5 Hybrid evolutionary multitasking algorithm (HEMT)
Simultaneously optimize multiple distinct instances
Knowledge transfer and knowledge reuse strategies

Efforts have also been made to tackle the VRPTW with more than three objectives
(also called the many-objective VRPTW [29]). To address this problem, Gutiérrez et al. [9]
proposed a nondominated sorting genetic algorithm (NSGA-II) and developed new in-
stances from real-world data to address weak dependence relationships among objectives.
Followed that, Zhou and Wang [10] designed multiple objectivewise local searches for
distinct objectives of the VRPTW, thereby proposing a local search-based multiobjective
optimization algorithm (LSMOVRPTW). Recently, Zhang et al. [27] presented a multi-
objective memetic algorithm based on adaptive local search chains (MMA-ALSC). This
approach combined enhanced local search chain techniques with a multi-directional local
search strategy to guide the search process. By exploiting the similarity between differ-
ent MOVRPTWs, Cai et al. [28] proposed a hybrid evolutionary multitasking algorithm
(HEMT). Their approach involved solving multiple different MOVRPTWs concurrently,
employing an exploration stage that incorporated knowledge transfer and an exploitation
stage that used a knowledge reuse strategy.

3.2. The DRL-Based Approaches for the COPs

In recent years, DRL has proven successful in addressing complex COPs across various
fields. For single-objective optimization, Vinyals et al. [30] proposed a Pointer network (Ptr-
Net) model based on the sequence-to-sequence (Seq2Seq) model, achieving good results
on the Traveling Salesman Problem (TSP). Bello et al. [16] trained a Ptr-Net model to solve
TSPs using reinforcement learning and a critic network as a baseline. Nazari et al. [31]
used Ptr-Net to solve dynamic VRPs by dividing the instances into dynamic and static
parts and then trained the model with reinforcement learning algorithms. Nowak et al. [32]
proposed a Graph Neural Network (GNN) using supervised training and beam search.
Deudon et al. [33] improved the traditional Pointer network based on a Transformer with
MHA and reinforcement learning.

Kool et al. [34] introduced an attention-based approach for solving various COPs,
outperforming Ptr-Net on the TSP, CVRP, PCTSP, and others. Zhao et al. [17] designed an

121



Symmetry 2024, 16, 1030

adaptive discriminator to optimize the parameters of DRL models and a routing simulator
to aid in training and evaluating the effectiveness of DRL models. Peng et al. [35] proposed
a dynamic attention model for the VRP using a dynamic encoding–decoding structure with
reinforcement learning. Wang et al. [18] proposed a feedback mechanism integrating an
iterative greedy algorithm for flow shop scheduling problems based on DRL.

Furthermore, DRL has been applied to solve multi-objective COPs. Li et al. [12] devel-
oped the DRL-MOA, a framework using decomposition and Ptr-Net for a multi-objective
TSP. Wu et al. [36] extended the DRL-MOA with the MODRL/DAM, constructing an atten-
tion model for each subproblem and training them with reinforcement learning. Similarly,
Zhang et al. [19] presented the MODRL/D-EL, combining decomposition, attention models,
and evolutionary algorithms for parameter fine-tuning.

3.3. The EMTO Approaches for VRP

In contrast with traditional optimization approaches that focus solely on a single
optimization problem, EMTO aims to address multiple optimization tasks concurrently
within a unified representation space [21,22]. By leveraging the underlying synergies
among different optimization tasks, EMTO has demonstrated its potential in achieving
superior performance for both continuous and combinatorial optimization problems when
compared to its single-task counterparts [21,22]. The effectiveness and promising capabili-
ties of EMTO in addressing multiple related optimization tasks have garnered significant
interest from researchers, resulting in the development of various EMTO algorithms in
the fields of science and engineering [22]. In the literature, EMTO has been successfully
applied to solve the VRP and its variants.

In [37], a permutation-based multifactorial evolutionary algorithm (P-MFEA) was pro-
posed to address multiple capacitated VRPs simultaneously. In the P-MFEA, a permutation-
based unified representation was introduced as a replacement for the random key unified
representation. Additionally, a split-based decoding operator was utilized to translate the
solutions from the unified space to the problem-specific space.

In [24], an explicit EMTO (EEMTO) approach was presented to solve the capacitated
VRP. EEMTO incorporates a weighted l1-norm regularized learning process to capture
the transfer mapping and uses a solution-based knowledge transfer process across differ-
ent VRPs.

In [23], an EMTO was applied to address a novel variant of the VRP, called the
VRP with heterogeneous capacity, time window, and occasional driver (VRPHTO). The
proposed EMTO algorithm optimizes multiple VRPHTOs simultaneously and employs four
operators: permutation-based common representation, split procedure, routing information
exchange, and chromosome evaluation.

In [28], a hybrid evolutionary multitask algorithm (HEMT) was proposed to solve
multiple MOVRPTWs in a multitasking scenario. The HEMT incorporates an exploration
stage for global search with knowledge transfer, an exploitation stage for local search with
knowledge reuse, and a tradeoff mechanism to balance these search processes.

The aforementioned related works highlight the advantages of using the EMTO frame-
work in solving VRPs. However, it is worth noting that most existing EMTO approaches
primarily focus on addressing VRPs with a single objective or two objectives. The applica-
tion of EMTO in the context of the VRP with many objectives (more than three) is relatively
limited, which motives our interest to further investigate its potential.

4. DRL-Based Modeling and Training

As reviewed above, DRL has shown its advantages in solving VRPs [36,38]. However,
most of the works only focus on the extraction of node features, ignoring the fact that the
distances and traveling times between customers in the real world are asymmetric. To
efficiently solve the real-world MOVRPTW considered in this study, a multiobjective DRL
method [36] is employed. This method uses the decomposition strategy and the attention
model to enhance the optimization process.

122



Symmetry 2024, 16, 1030

In this section, the decomposition and parameter-transfer strategies for the MOVRPTW
are firstly introduced. Then, the encoder and decoder of the attention model for each
subproblem are presented. Finally, the training process for the models through DRL
is given.

4.1. Decomposition and Parameter-Transfer Strategies

In this study, the MOVRPTW is decomposed into M subproblems using the weighted
sum approach [39]. Specifically, a set of weight vectors W is generated for the MOVRPTW
using Das and Dennis’s method [40]. These weight vectors are then used to define the
objective function of the jth subproblem by the weighted sum approach, as follows:

min gws(π|λi) =
m

∑
j=1

λij f̄ j(π) (14)

where λi = (λi1, . . . , λiM) represents the weight vector of the ith subproblem, with the
constraints that ∑M

j=1 λij = 1.
After the decomposition, each scalar optimization subproblem is modeled by a neural

network, which is then solved using DRL methods. Additionally, to expedite model
training, a neighborhood-based parameter-transfer strategy [12] is utilized, as depicted in
Figure 2. This strategy involves transferring the parameters from the model of a solved
subproblem to the model of its neighboring subproblem. The neighboring subproblem’s
model is then trained using these transferred parameters as the initial starting point. More
details of the parameter-transfer strategy can be found in [12].

Figure 2. The neighborhood-based parameter-transfer strategy.

4.2. Encoder of Model

The encoder comprises three components. The first component uses a fully connected
layer to transform the feature vectors. These vectors consist of the coordinates (xi, yi),
time windows [bi, ei], demands qi, service duration wi, travel time tij, and travel distance
dij between customers, the initial embedding being h0

i and h0
ij. The second component

incorporates a multi-head attention mechanism to aggregate the information features
from both node and edge embeddings. The processed data are then further updated and
transformed in the last component through a combination of a residual network and a fully
connected feedforward layer. This results in the generation of the final embedding hN

i and
hN

ij . The structure of the encoder can be visualized in Figure 3.
As shown in Figure 3, the input data are split into two parts: node embeddings

(i.e., ci = [(xi, yi), qi, (bi, ei), si]), which contain node-specific information, and edge embed-
dings (i.e., eij = (dij, tij)), which include distance and time information between customers.

123



Symmetry 2024, 16, 1030

In the encoder of the model, the feature vector is transformed into the initial node embed-
ded in the network by linear transformation as follows:

h0
i = WNci + bN (15)

h0
ij = WEeij + bE (16)

where i, j ∈ N, N is the No. of customers, and WN and bN are trainable network parameters.

Figure 3. The structure of the encoder in the model.

Then, the node embeddings hl
0, . . ., hl

N and edge embeddings hl
0,1, . . ., hl

N−1,N are ag-
gregated using the multi-head attention operator, as follows:

h̃l
i = BN(hl−1

i + MHAl(Wl
Nhl−1

i )) (17)

h̃l
ij = BN(MHAl(Wl

Ehl−1
ij )) (18)

where BN(·) represents the batch normalized layer and MHA(·) refers to the multi-head
attention layers. Note that the MHA is related to the three vectors ql

i , kl
i , and vl

i . These
vectors can be calculated as follows: ql

i = Wl
qhl−1

i , kl
i = Wl

k[h
l−1
i ; hl−1

ij ], vl
i = Wl

v[h
l−1
i ; hl−1

ij ].

Here, the trainable parameters Wl
q, Wl

k, and Wl
v are used to map the embeddings to the

query, key, and value vectors, respectively.
After that, the embeddings of nodes and edges are combined by the residual network

layer (add and norm) to update the embeddings of each node, as follows:

hl
i = ReLu(hl−1

i + FFl(ĥl
i)) (19)

hl
ij = ReLu(hl−1

ij + FFl(ĥl
ij)) (20)

where FF(·) (feedforward) is a fully connected feedforward layer, which can further im-
prove the expression capability of the network.

124



Symmetry 2024, 16, 1030

Finally, the final embedding vector of each node is obtained through N attention
layers, as follows:

h
N
o =

1
n

n

∑
i=0

hN
i (21)

h
N
e =

1
n

n

∑
i=0

hN
ij (22)

where h
N
o and h

N
e are the final embedding vectors of the node feature and edge feature,

respectively. The node feature, the edge feature, and the final embedded vector will be
output from the encoder to the decoder.

4.3. Decoder of Model

The primary function of the decoder is to estimate the probability distribution of the
remaining nodes being selected based on the embedding vector of the nodes and edges
that are output from the encoder. This process is repeated iteratively until all customers
are served. More specifically, at each time step t ∈ N, the decoder determines the optimal
decision on πt by considering the partial tour π1:t−1 and the embedding vector of the nodes
and edges. Figure 4 shows the structure of the decoder.

First, a context embedding representing the relationships between contexts is needed.
The initial context (i.e., t = 1) includes the node features (hN′

o ) and the embedding vectors of
the edge features (hN′

e ), both obtained from the encoder. Additionally, the current vehicle’s
remaining capacity (Qt) and the last customer served by the vehicle (hN

πt−1
) are incorporated

into the initial context. The description of the initial context is as follows:

hN′
c =

⎧⎨⎩[h
N
o , h

N
e , Qt, h0], t = 1

[h
N
o , h

N
e , Qt, hπN

t−1
], t > 1

(23)

where [. . . ] denotes the vector connection operator.
Then, a new context vector hN′

c is calculated using the MHA network layer. For each
node, its key vector (qc) and the value vector (vc) are derived from the embedding vectors
of the encoder. The transformation process is as follows:

qc = WQhN′
c ,

ki = WK[hi; hij] + qc, (24)

vi = WV [hi; hij] + qc

where WQ, WK, and WV are the trainable parameters. Subsequently, the compatibility of
each node is computed by masking the nodes that have been visited. The compatibility
values are within the range of [−1, 1] and are determined as follows:

u(c)i =

⎧⎨⎩
qT

c ki√
dk

, i �∈ πt

−∞, otherwise
(25)

where i denotes the node index and dk is the dimension of qc/ki. Then, based on Equation (13),
the compatibility of each node is recalculated by transforming the context vector and the
embedding vectors of nodes and edges into the corresponding q, k, and v, with the range
of [−C, C], as follows:

u(c)i =

⎧⎨⎩C · tanh( qT
c ki√

dk
), i �∈ πt

−∞, otherwise
(26)

125



Symmetry 2024, 16, 1030

Finally, the probability of selecting node xi as the next node to be visited is calculated
as follows:

pi = pθ(πt = i|π1:t−1, s) =
eu(c)i

∑j eu(c)j
(27)

The decoder repeats the steps mentioned above, where each time, the selected node is
masked. This process continues until all customers are selected.

Figure 4. The structure of the decoder in the model.

4.4. Training Driven by DRL

In this section, we adopt the well-known actor–critic method [41] to train the model
of each subproblem. The training process, employing the actor–critic method, is outlined
in Algorithm 1. To train both the actor and critic networks, the Adam optimizer [42] is
employed in this study.

In the algorithm, the actor network, which is an attention model, is responsible for
learning the strategy gradient and selecting actions based on the probability distributions of
nodes generated by the decoder. On the other hand, the critic network acts as a baseline to
predict an estimation of the objective function for the subproblem and evaluate the results
obtained from the actor network’s strategy. This evaluation assists the actor in making
action selections. Therefore, the training parameters of each subproblem (Wλi ) include an
actor network parameterized by θ and a critic network parameterized by φ.

Suppose that the processing sequence π generated by the actor network obeys the
distribution π ∼ pθ(·|X), where pθ(·|X) is the policy given by the actor network for an
instance X. The objective �(θ|X) is the expected gws(π|λ, X):

�(θ|X) = Eπ∼pθ(·|X)g
ws(π|λ, X) (28)

where gws(π|λ, X) represents the min value calculated through the sequence π for X.
Then, the gradients of the parameters θ are calculated as follows:

∇θ�(θ|X) =
1
B

B

∑
j=1

[(gws(πi|λj, Xj)− bφ(Xj))∇θ logpθ(πj|Xj)] (29)

Here, B represents the batch size, which is the number of samples for each training
iteration. Xj is a randomly selected instance of the subproblem, and πj represents the
solution for Xj obtained from the actor network. In addition, bφ(Xj) refers to a baseline
function, which is computed by the critic network. Its purpose is to estimate the expected
objective value, which helps to reduce the variance of the gradients.

126



Symmetry 2024, 16, 1030

For the critic network, its goal is to learn how to estimate the expected objective value
for a given instance Xj. Therefore, the objective function of the critic network can be defined
as a mean-squared error function between the actual objective function generated by the
actor network for Xj and the predicted objective value bφ(Xj) from the critic network. This
can be expressed as follows:

Lφ =
1
B

B

∑
j=1

(bφ(Xj)− gws
min(πj|λi, Xj))

2 (30)

Algorithm 1 Actor–critic training method [41]
Input: Number of problem instances T, number of iterations E, parameters of actor

network θ and critic network φ. Output: Trained parameter θ, φ

1: θ, φ ← initialized parameter as Ref. [12];
2: For iteration = 1 to E
3: For k = 1 to T
4: For j = 1 to B
5: πj ← pθ(Xj);
6: bj ← bφ(Xj);
7: End
8: dθ = 1

B ∑B
j=1[g

ws(πj|λi, Xj)− bj∇θ logpθ(πj|Xj)];

9: Lφ = 1
B ∑B

j=1(bj − gws(πj|λi, Xj))
2;

10: θ ← ADAM(θ, dθ);
11: φ ← ADAM(φ,∇φLφ);
12: End
13: End

5. MTMO/DRL-AT

In this section, a multi-task multi-objective evolutionary search algorithm based on DRL
(MTMO/DRL-AT) is presented. Specifically, the general framework of the proposed algorithm
is firstly outlined. Then, three main components of the MTMO/DRL-AT, i.e., the construction
of the assisted task, knowledge transfer across tasks, and local search, are elaborated.

5.1. General Framework of MTMO/DRL-AT

The MTMO/DRL-AT framework is outlined in Algorithm 2. As can be seen, the
MTMO/DRL-AT consists of three main phases: the initialization phase, the transfer re-
production phase, and the local search phase. In the initialization phase (Lines 3–6), the
populations of the main task and the constructed assisted task are initialized using the
trained DRL-based models, as described in Section 3. Specifically, n models are selected
from the trained models for the main task, and thus, the population with n solutions is
directly obtained by these models. Similarly, for the assisted task, its population with n
solutions is produced using the selected trained models of the assisted task. In the transfer
reproduction phase (Line 8), the knowledge transfer process is applied to update the solu-
tions in the external archive A by leveraging the knowledge from both the main task and
the assisted task. In the local search phase (Line 9), the objectivewise local searches [10]
are employed to further refine the solutions in the archive A. Finally, when the stopping
condition is met, the external archive A is returned as the approximate Pareto set for
the MOVRPTW.

127



Symmetry 2024, 16, 1030

Algorithm 2 MTMO/DRL-AT
Input: Maximum running time of the target task T, population size popsize, training batch

size batch, number of transferred solutions Nf , number of subproblems for main task Nm,
number of subproblems for assisted task Na, the trained models for the main task Modelm,
the trained models for the assisted task Modela.
Output: The external archive A.
1: A = ∅; //Define the external archive for the main task
2: n = popsize/batch; // Calculate the number of submodels from M
3: SetIdx1 ← Randomn(1, Nm); // Randomly select n values from [1, Nm] as the indexes

of the models for the main task;
4: SetIdx2 ← Randomn(1, Na); // Randomly select n values from [1, Na] as the indexes

of the models for the assisted task;
5: Popm ← Modelm(SetIdx1, popsize); // Initialize Popm with the selected models for the

main task
6: Popa ← Modela(SetIdx2, popsize); // Initialize Popa with the selected models for the

assisted task
7: While t < T Do
8: Trans f er_reproduction(Popm, Popa, A, Nf ); // see Algorithm 3
9: Local_search(Popm, A); // see Algorithm 4

10: End while

5.2. Construction of the Assisted Task

When solving an MOVRPTW with many objectives, most multi-objective evolutionary
algorithms perform poorly due to a significant proportion of incomparable and mutually
nondominated solutions [29]. To address this issue, an assisted task is constructed in a
simpler search space for the MOVRPTW. This enables efficient assistance in optimizing the
original problem through knowledge transfer. By leveraging the simpler task, the search
process for the main task becomes more effective in finding high-quality solutions.

In the MOVRPTW, optimizing the objectives related to the total travel distance and
the travel time of the longest route greatly impacts the optimization of other objectives.
Therefore, the construction of the assisted task focuses on these two objectives. By selecting
them as the optimization objectives for the assisted task, the aim is to effectively optimize
these crucial factors, which in turn can positively influence the optimization of other related
objectives in the MOVRPTW problem.

Therefore, the mathematical model of the assisted task is defined below:

min H = (h1, h2) (31)

h1 =
|R|
∑
k=1

Nk

∑
i=0

dck
i ,ck

i+1
(32)

h2 = max{tNk |k=1,2,...,|R|} (33)

where h1 and h2 correspond to the f2 and f3, respectively, of the main task (i.e., Equation (1)).
Additionally, the constraints of the assisted task are identical to those of the main task, as
shown in Equation (7).

Furthermore, due to that the assisted task having a similar structure and characteristics
as the main task, the DRL-based modeling and training methods described in Section 3 are
also adopted for the assisted task.

5.3. Transfer Reproduction Operator

To effectively exploit the useful search experiences obtained from the constructed
assisted task, a transfer reproduction operator is employed to transfer knowledge between
the main and assisted tasks. The procedure of the transfer reproduction operator is shown
in Algorithm 3.

128



Symmetry 2024, 16, 1030

Algorithm 3 Transfer reproduction
Input: Population of the main task Popm, population of the assisted task Popa, number of

transferred solutions Nf , the external archive A.
Output: The updated A.
1: C ← ∅;
2: O ← ∅;
3: Use the fast nondominated sorting method [43] for the solutions in Popm and Popa,

respectively;
4: C ← the best Nf solutions in Popa;
5: C ← C

⋃
the worst popsize − Nf solutions in Popm;

6: Re-evaluate all solutions in C with the main task;
7: For xi ∈ C, i = 1, . . . , popsize
8: oi ← Genetic_operator(xi);
9: Evaluate oi with the main task;

10: O ← O
⋃

oi;
11: End
12: Update Popm with C

⋃
O;

13: Update A with C
⋃

O.

As shown in Algorithm 3, in Line 3, all solutions in Popm and Popa are ranked,
respectively, using the fast nondominated sorting approach [43]. Subsequently, as shown
in Lines 4 and 5, the best Nf solutions in Popa and the worst popsize − Nf solutions in
Popm are selected to form the set C. Next, in Line 6, each solution in C is re-evaluated
under the main task environment. Note that the duplicate solutions are removed from the
set. Afterwards, Line 8 employs the genetic operators on the solutions in C to generate
offspring. In this study, the mutation strategy and the crossover operator of differential
evolution (DE) [44] are adopted as the Genetic_operator(·). Specifically, for each solution
xi ∈ C, a mutant vector (vi) is first generated through the “DE/rand/1” mutation strategy,
as follows:

vi = xr1 + F × (xr2 − xr3) (34)

where F is the mutation factor and r1, r2, and r3 ∈ {1, 2, . . . , |C|} \ {i} are randomly
selected indices. Following that, a trial vector (ui) is generated by using the binomial
crossover operator for the pair of xi and vi, as follows:

ui,j =

{
vi,j, if rand(0, 1) ≤ Cr or j = jrand
xi,j, otherwise.

(35)

Here, Cr ∈ [0, 1] represents the crossover rate, rand(0, 1) ∈ (0, 1) denotes a randomly
generated variable, and jrand ∈ [1, Dmax] indicates a randomly selected integer. Addition-
ally, a random initialization will be performed if ui exceeds the range of [0, 1]. It is worth
noting that the solution to the problem is a customer sequence vector, whereas the solution
obtained by the genetic operator is a continuous vector. To convert a continuous vector into
a customer sequence, a ranked order value (ROV) mapping method [45] is employed.

Once each solution in O has been evaluated with the main task, Popm is updated with
the solutions of C

⋃
O using the nondominated sorting and crowding distance, as described

in Line 12, following the approach in [43]. As for updating A, the ε-dominance relation
suggested in [10] is adopted.

5.4. Local Search Operator

To further refine the solutions in A and achieve better performance for the main task,
we used the objectivewise local searches [10] in the MTMO/DRL-AT, which is presented in
Algorithm 4.

First, in Line 2, an initial solution x is randomly selected from A for the subsequent
local searches. After that, in Line 4, the objectivewise local searches are conducted on

129



Symmetry 2024, 16, 1030

x. Following the approach in [10], the local search is independently performed for each
objective, denoted as LS fi

(x) (i = 1, . . . , 5), to enhance the quality of x with respect to the
corresponding objective ( fi). Additionally, three neighborhood operators are integrated into
the local searches for f2(x)− f5(x). Specifically, in each search step, a random neighborhood
operator is conducted on x to produce a new solution x′. If fi(x′) is superior to fi(x), x
is substituted by x′. Concurrently, x′ is immediately used to update A through the ε-
dominance relation in Line 5. For more details of the objectivewise local searches, please
refer to [10]. Finally, in Line 8, the solutions in C are used to update Popm by directly
replacing its inferior solutions.

Algorithm 4 Local search
Input: Population of the main task Popm, the external archive A.
Output: The updated A, the updated Popm.
1: C ← ∅;
2: x ← Rndselect(A);
3: For i = 1 to 5
4: Perform LS fi

(x);
5: Update A with the obtained solutions;
6: Add the best solution in LS fi

to C;
7: End
8: Replace the worst five solutions in Popm with the solutions in C.

6. Experiment

To assess the effectiveness of the MTMO/DRL-AT, a series of experiments was per-
formed on a set of 45 real-world MOVRPTW instances. This section begins with a brief
description of the MOVRPTW instances. Subsequently, the experimental setup is outlined,
detailing the procedures and methodologies employed. Following that, a comprehensive
comparison between the MTMO/DRL-AT and the representative algorithms is conducted.
Finally, an in-depth analysis is presented to examine the influence of the main components
of the MTMO/DRL-AT on its overall performance.

6.1. MOVRPTW Instances

To evaluate the effectiveness of the proposed algorithm, a set of 45 real-world instances
of the MOVRPTW was adopted in this study. These instances, as described in [9], were
derived from data obtained from an actual distribution company. Consequently, they reflect
the complex and challenging nature of real-world MOVRPTW scenarios.

Table 3 provides an overview of the properties of these 45 MOVRPTW instances. As the
table shows, these instances were generated by combining various features, including the
number of customers (CN), the profile of time windows (PT), and the capacity of each
vehicle (Q). The number of customers can be set to 50, 150, or 250, while the time window
profile can range from 1 to 5. The capacity of each vehicle is determined using a formula
that incorporates the lower and upper bounds (D and D) and a modulation factor δ. Each
MOVRPTW instance is labeled as “a − b − c”, where a represents NC, b represents the
index of the δ type, and c represents the index of the TW profile. For further details, please
refer to [9,10].

Table 3. The real-world MOVRPTW instances.

Instance CN Q PT Instance CN Q PT Instance CN Q PT

50-0-0 50 690 1 150-0-0 150 1854 1 250-0-0 250 3078 1
50-0-1 50 690 2 150-0-1 150 1854 2 250-0-1 250 3078 2
50-0-2 50 690 3 150-0-2 150 1854 3 250-0-2 250 3078 3
50-0-3 50 690 4 150-0-3 150 1854 4 250-0-3 250 3078 4
50-0-4 50 690 5 150-0-4 150 1854 5 250-0-4 250 3078 5

130



Symmetry 2024, 16, 1030

Table 3. Cont.

Instance CN Q PT Instance CN Q PT Instance CN Q PT

50-1-0 50 250 1 150-1-0 150 638 1 250-1-0 250 1046 1
50-1-1 50 250 2 150-1-1 150 638 2 250-1-1 250 1046 2
50-1-2 50 250 3 150-1-2 150 638 3 250-1-2 250 1046 3
50-1-3 50 250 4 150-1-3 150 638 4 250-1-3 250 1046 4
50-1-4 50 250 5 150-1-4 150 638 5 250-1-4 250 1046 5

50-2-0 50 85 1 150-2-0 150 182 1 250-2-0 250 284 1
50-2-1 50 85 2 150-2-1 150 182 2 250-2-1 250 284 2
50-2-2 50 85 3 150-2-2 150 182 3 250-2-2 250 284 3
50-2-3 50 85 4 150-2-3 150 182 4 250-2-3 250 284 4
50-2-4 50 85 5 150-2-4 150 182 5 250-2-4 250 284 5

6.2. Experimental Setup

To train the models of the MTMO/DRL-AT, training instances of different sizes for
the MOVRPTW were generated using a data simulator. The process involves randomly
generating the coordinates of the depot and customer within the range [0, 1]× [0, 1]. The
distance and time matrices for travel between customers were randomly generated within
the range of [0, 1]. For each customer, the demand was randomly generated within the
range of [1, 9], the time window was randomly set as bi ∈ [0, 5] and ei ∈ [0, 5], and the
service time was randomly selected from the set {1, 5, 2}. In addition, the maximum
capacity of vehicles (Q) was set as follows: Q = 20 if CN = 10, Q = 30 if CN = 20,
and Q = 50 if CN = 40. During the model-training process, problem instances with
40 nodes were used, and the dataset was generated based on the aforementioned process,
with asymmetric distance and time matrices.

The parameter settings for the model and training were mostly similar to those de-
scribed in [12,36], which are shown in Table 4. In addition, the parameter settings for the
evolutionary search are also summarized in Table 4.

It is important to acknowledge that these parameter settings may not be optimal for the
proposed algorithm, as finding the optimal settings can be challenging and often problem-
specific. However, the effectiveness of these parameter settings has been demonstrated in the
following experiments. In future work, the impact of these parameters on the performance
of the MTMO/DRL-AT will be further investigated.

In the experiments, all the algorithms were implemented using Python, and the
maximum running times of different instances were set according to the suggestions
in [10]. Additionally, all the test experiments were conducted in the same configuration
environment, as outlined in Table 5.

To evaluate the performance of the compared algorithms, two measures were em-
ployed: the inverted generational distance (IGD) [46] and hypervolume (HV) [47]. The IGD
metric assesses both the convergence and diversity of the obtained nondominated solutions,
while the HV metric evaluates the volume of the union of hypercubes determined by each
nondominated solution and the reference point. A smaller value of the IGD or a larger
value of the HV suggests better performance achieved by the corresponding algorithm in
the approximation of the true Pareto front. For more detailed information on the IGD and
HV metrics, please refer to [46,47].

To further demonstrate the significant differences between the compared algorithms,
the KEEL software [48] was employed to conduct single-problem and multiple-problem
analysis using the Wilcoxon test [49,50]. The results of single-problem analysis are sum-
marized as “w/t/l”, indicating that the considered algorithm is significantly better and
performs equally to or performs worse than the competitor on the w, t, and l instances,
respectively, at the 0.05 significance level. In the multiple-problem analysis, R+ and R−
represent the sum of ranks where the considered algorithm is significantly better than
and worse than the competitor for all the instances, respectively. Additionally, the aver-
age ranking values of the considered algorithms for all instances were analyzed using

131



Symmetry 2024, 16, 1030

Friedman’s test [49,50]. For brevity, this paper only presents the statistical results of the
comparisons. For those interested in the detailed numerical values, please contact the
corresponding author.

Table 4. Parameter settings.

Parameter Value

For the model and training
Input dimension 7
Node-embedding dimension 128
Batch size during training 500
Size of problem instances 5 × 106

Number of epochs for training the 5model for the first subproblem
Number of epochs for training the 1model for each remaining subproblem

Critic network architecture

four 1D convolutional layers
with the following channels
(7, 128), (128, 20), (20, 20),
and (20, 1)
kernelsize = 1, stride = 1

Number of attention layers 1
Number of heads 8
Dimension of the query vector and 16value vector
Learning rate for the Adam optimizer 0.0001
Number of decomposed subproblems 100for the main task
Number of decomposed subproblems 70for the assisted task

For the evolutionary search
Population size (popsize) 50 for each task
Number of transferred solutions (TN) 15
Crossover rate (Cr) 0.9
Mutation factor (F) 0.5
Number of independent runs 30for each instance

Table 5. Experimental configuration.

Operating Environment Version

Server
System Ubuntu 7.5.0

CPU Intel Xeon Processor
GPU GeForce RTX 2080 (8 G)

Memory 12 GB
CUDA 11.0

Local host
System Windows 10

CPU Intel Xeon W-2223 (3.60 GHz)
Memory 16 GB

6.3. Performance Comparison
6.3.1. Comparison with LSMOVRPTW

In this section, we aim to demonstrate the effectiveness of the MTMO/DRL-AT for
solving the MOVRPTW by comparing it with the LSMOVRPTW [10]. To provide a compre-
hensive overview of the performance comparisons, Table 6 presents the statistics summa-
rizing these comparisons on all the instances.

132



Symmetry 2024, 16, 1030

As depicted in Table 6, the MTMO/DRL-AT demonstrates a significant improve-
ment over the LSMOVRPTW in terms of both the IGD and HV. Specifically, based on the
single-problem analysis conducted using the Wilcoxon test, the MTMO/DRL-AT signif-
icantly outperforms the LSMOVRPTW on 41 instances in terms of the IGD and on all
45 instances in terms of the HV. In the multiple-problem analysis carried out with the
Wilcoxon test, the MTMO/DRL-AT achieves a higher R+ than R− for both the IGD and
HV. Additionally, based on the p-value, significant differences between the MTMO/DRL-
AT and LSMOVRPTW are observed at both α = 0.05 and α = 0.1, indicating that the
MTMO/DRL-AT outperforms the LSMOVRPTW overall.

Moreover, to visually illustrate the distinct characteristics of the competing algorithms,
the approximate Pareto fronts of several representative instances obtained by the MTMO/
DRL-AT and LSMOVRPTW are projected at the f1 − f3 and f2 − f3 planes, as shown in
Figure 5. As the figure shows, the superiority of the MTMO/DRL-AT in achieving better
Pareto fronts than the LSMOVRPTW for the selected instances is evident. The solutions
generated by the MTMO/DRL-AT more accurately approximate the Pareto front and
demonstrate a wider distribution along it. This further validates the superior convergence
and diversity properties of the MTMO/DRL-AT in comparison to the LSMOVRPTW.

Table 6. Results of the single- and multiple-problem analysis by the Wilcoxon test between the
MTMO/DRL-AT and LSMOVRPTW.

Algorithm Metric w/t/l R+ R− p-Value α = 0.05 α = 0.1

MTMO/DRL-AT IGD 41/4/0 1035.0 0.0 0.0 Yes Yes
vs. LSMOVRPTW HV 45/0/0 1035.0 0.0 0.0 Yes Yes

Based on the aforementioned results, it is evident that the MTMO/DRL-AT outper-
forms the LSMOVRPTW on the majority of instances. This performance difference can
be attributed to several factors that contribute to their varying performances: (1) The
MTMO/DRL-AT incorporates attention models specifically designed for the subprob-
lems of the MOVRPTW using DRL. These attention models are capable of adapting to
MOVRPTW instances of varying scales. By leveraging the advantages of DRL, the attention
models can learn to focus on critical aspects of the MOVRPTW and make more informed de-
cisions during the optimization process. Furthermore, the output of the attention models in
the MTMO/DRL-AT serves as high-quality initial solutions for the subsequent evolutionary
process. These initial solutions provide a strong starting point for the algorithm, which can
lead to faster convergence and better overall performance. (2) Unlike the MSMOVRPTW,
which focuses solely on solving a single MOVRPTW formulation, the MTMO/DRL-AT
introduces multitasking optimization. This means that the MTMO/DRL-AT can simul-
taneously solve multiple related optimization tasks, including the assisted task of the
MOVRPTW. By incorporating multitasking optimization, valuable knowledge and insights
gained from solving one task can be shared and utilized to improve the performance on
other related tasks. This knowledge transfer and sharing contribute to the enhanced perfor-
mance of the MTMO/DRL-AT compared to the LSMOVRPTW. (3) By combining attention
models through DRL and multitasking optimization, the MTMO/DRL-AT offers a more
robust and adaptive approach to solving the MOVRPTW. The attention models provide a
finer grained focus on problem-specific details, while the multitasking optimization allows
for the utilization of shared knowledge and insights across related tasks.

133



Symmetry 2024, 16, 1030

(a) (b) (c)

(d) (e) (f)

Figure 5. Distributions of the approximate Pareto fronts obtained by the MTMO/DRL-AT and
LSMOVRPTW on the representative real-world instances: (a) 50-1-2 at f1-f3 plane; (b) 150-1-1 at
f1-f3 plane; (c) 250-2-2 at f1-f3 plane; (d) 50-1-2 at f2-f3 plane; (e) 150-1-1 at f2-f3 plane; (f) 250-2-2 at
f2-f3 plane.

6.3.2. Comparison with MMA-ALSC and HEMT

Two advanced approaches have recently been proposed to address the challenges
of the MOVRPTW: the multiobjective memetic algorithm based on adaptive local search
chains (MMA-ALSC) [27] and the hybrid evolutionary multitask algorithm (HEMT) [28].
The MMA-ALSC combines a multi-directional local search strategy with an enhanced local
search chain technique. This allows for the search to be conducted in multiple directions in
a chain-based way [27]. On the other hand, the HEMT takes a different approach by simul-
taneously considering multiple distinct MOVRPTWs within an evolutionary multitasking
framework [28]. For this experiment, only the HEMT-hm5t variant is considered due to its
promising performance. The comparisons between the MTMO/DRL-AT and MMA-ALSC
(or HEMT) were conducted, and the results of the statistical tests are shown in Table 7.

Table 7. Results of the single- and multiple-problem analysis by the Wilcoxon test between the
MTMO/DRL-AT and two recently proposed algorithms.

Algorithm Metric w/t/l R+ R− p-Value α = 0.05 α = 0.1

MTMO/DRL-AT IGD 35/9/1 1014.0 21.0 0.0 Yes Yes
vs. MMA-ALSC HV 45/0/0 1035.0 0.0 0.0 Yes Yes

MTMO/DRL-AT IGD 40/5/0 990.0 0.0 0.0 Yes Yes
vs. HEMT HV 45/0/0 1035.0 0.0 0.0 Yes Yes

According to the results presented in Table 7, the MTMO/DRL-AT demonstrates
superior performance compared to both the MMA-ALSC and HEMT across all instances.
These findings provide a deeper understanding of the comparative performance of the
algorithms: (1) In terms of the IGD, the MTMO/DRL-AT outperforms the MMA-ALSC on
35 instances and performs worse on only 1 instance. This indicates that the MTMO/DRL-AT
consistently achieves better convergence and diversity in the obtained Pareto front solutions
compared to the MMA-ALSC. The superior performance on the majority of instances
suggests the effectiveness of the MTMO/DRL-AT in capturing a more diverse and high-

134



Symmetry 2024, 16, 1030

quality set of solutions. (2) In terms of the HV, the MTMO/DRL-AT significantly surpasses
the MMA-ALSC on all 45 instances. The consistent superiority of the MTMO/DRL-AT
over the MMA-ALSC in the HV demonstrates that the MTMO/DRL-AT can generate
solutions that are both close to the true Pareto front and well-distributed across the problem
space. (3) The results of the Wilcoxon test in the multiple-problem analysis indicate that
the MTMO/DRL-AT outperforms the MMA-ALSC significantly in terms of both the IGD
and HV. This statistical analysis strengthens the claim of the superior performance of the
MTMO/DRL-AT compared to the MMA-ALSC. The significance of the difference further
reinforces the effectiveness of the MTMO/DRL-AT in solving the MOVRPTW. (4) When
compared to the HEMT, the MTMO/DRL-AT consistently exhibits strong performance on
the majority of instances. The consistent strong performance suggests that the MTMO/DRL-
AT outperforms the HEMT in terms of both the IGD and HV. This indicates that the
MTMO/DRL-AT can generate a more diverse set of high-quality solutions compared to
the HEMT.

Overall, the observations from these comparisons provide strong evidence that the
MTMO/DRL-AT is a highly effective approach for solving the MOVRPTW. The superior
performance over the MMA-ALSC and HEMT, as indicated by both the quantitative metrics
and statistical analysis, highlights the advantage of the MTMO/DRL-AT in achieving better
convergence, diversity, and solution quality.

6.3.3. Overall Comparisons

To assess the overall performance of the proposed algorithm, a comparison was
conducted between the MTMO/DRl-AT and the above competing algorithms. The results
of Friedman’s test are summarized in Table 8.

Based on the results in Table 8, the MTMO/DRl-AT emerges as the top algorithm
for both the IGD and HV, outperforming all other algorithms. The HEMT achieves the
second-best ranking for the IGD, followed by the MMA-ALSC. In terms of the HV, the
LSMOVRPTW achieves the second-best ranking, followed by the MMA-ALSC.

Moreover, when considering the characteristics of various MOVRPTW instances,
several observations can be derived from the detailed numerical values presented in
the Supplementary File. Firstly, it is evident that the MTMO/DRL-AT outperforms its
competitors in terms of both the HV and IGD values for the instances with different
customer sizes. This showcases the algorithm’s strengths in terms of convergence and
diversity. Secondly, the performance improvement achieved by the proposed algorithm
is more significant in large-scale instances compared to small-scale ones. This can be
attributed to the favorable initial solution provided by DRL.

In general, these results emphasize the competitive and exceptional performance of the
proposed algorithm when compared to other state-of-the-art algorithms for the MOVRPTW.

Table 8. Average ranking values of the compared algorithms on all the instances.

IGD HV

Algorithm Average Ranking Final Ranking Average Ranking Final Ranking

MTMO/DRL-AT 1.00 1 1.09 1
LSMOVRPTW 3.49 4 2.63 2
MMA-ALSC 2.81 3 3.00 3

HEMT 2.70 2 3.28 4

6.4. Impact of Main Components in MTMO/DRL-AT

In this section, we conducted additional experiments to address the following issues:

• Are the solutions generated by the trained models as initial solutions better for solving
the MOVRPTW compared to randomly generated initial solutions?

• Can the knowledge transfer between the main and assisted tasks effectively enhance
the performance of the MTMO/DRL-AT for the MOVRPTW?

135



Symmetry 2024, 16, 1030

• Can the local search phase further improve the performance of the MTMO/DRL-AT?

Each of the above issues will be explored and discussed in the subsequent subsections.

6.4.1. Effect Analysis of Initializing Population Using the Trained Models

To verify the effectiveness of initializing the population with the trained models, a
variant of the MTMO/DRL-AT with a random initial population, denoted as the MTMO-AT,
was considered for comparison. In the MTMO-AT, the population for both the main task
and assisted task is initialized in a random manner, replacing the generated solutions by
the trained models. The statistical comparison results between the MTMO/DRL-AT and
MTMO-AT are given in Table 9.

From Table 9, we can find that the MTMO/DRL-AT outperforms the MTMO-AT
significantly overall. Specifically, the MTMO/DRL-AT shows significant improvements
over the MTMO-AT on 40 and 31 instances in terms of the IGD and HV, respectively,
based on single-problem analysis using the Wilcoxon test. Moreover, the results of the
multiple-problem analysis reveal that the MTMO/DRL-AT achieves a higher R+ than R−
with the p-values below 0.05 in both cases, indicating significant differences between the
MTMO/DRL-AT and MTMO-AT for all the instances.

In general, the superior performance of the MTMO/DRL-AT compared to the MTMO-
AT highlights the promising potential of DRL-based approaches in addressing multi-
objective optimization problems. The results clearly indicate that leveraging deep rein-
forcement learning techniques can lead to significant improvements in solving complex
multi-objective optimization tasks.

Table 9. Results of the single- and multiple-problem analysis by the Wilcoxon test between the
MTMO/DRL-AT and MTMO-AT.

Algorithm Metric w/t/l R+ R− p-Value α = 0.05 α = 0.1

MTMO/DRL-AT IGD 40/5/0 1035.0 0.0 0.0 Yes Yes
vs. MTMO-AT HV 31/5/9 923.0 112.0 5.0 × 10−5 Yes Yes

6.4.2. Effect Analysis of Knowledge-Transfer Strategy

To evaluate the influence of the knowledge-transfer strategy on the performance of the
MTMO/DRL-AT, a comparison was made between the MTMO/DRL-AT and its variant,
the MTMO/DRL-AT_ST, which does not include the knowledge-transfer strategy. Unlike
the proposed algorithm, the MTMO/DRL-AT_ST does not generate an assisted task for
the main task, and there is no knowledge sharing between the main and assisted tasks
during the transfer reproduction phase. Table 10 provides a statistical summary of the
performance comparisons between the MTMO/DRL-AT and MTMO/DRL-AT_ST.

According to the results shown in Table 10, the MTMO/DRL-AT consistently exhibits
better performance than the MTMO/DRL-AT_ST in terms of both the IGD and HV. To be
specific, in terms of the IGD, the MTMO/DRL-AT achieves significant improvement over
the MTMO/DRL-AT_ST on 17 instances, while it performs worse on 13 instances. In terms
of the HV, the MTMO/DRL-AT outperforms the MTMO/DRL-AT_ST on 24 instances,
but is outperformed by it on 7 instances. Additionally, the multiple-problem analysis
reveals that the MTMO/DRL-AT obtains a higher R+ value than the R− value in both the
IGD and HV measures. Notably, the p-values indicate that the MTMO/DRL-AT performs
significantly better than the MTMO/DRL-AT_ST in terms of the HV, at both α levels of 0.05
and 0.1.

Overall, these findings clearly demonstrate the efficacy of the knowledge-transfer strat-
egy in improving the performance of the MTMO/DRL-AT. Additionally, the advantages
of constructing an assisted task with a simpler search space are also validated. In general,
these results highlight the benefits and effectiveness of integrating a knowledge-transfer
strategy and utilizing a simplified search space in the MTMO/DRL-AT.

136



Symmetry 2024, 16, 1030

Table 10. Results of the single- and multiple-problem analysis by the Wilcoxon test between the
MTMO/DRL-AT and MTMO/DRL-AT_ST.

Algorithm Metric w/t/l R+ R− p-Value α = 0.05 α = 0.1

MTMO/DRL-AT IGD 17/15/13 705.0 330.0 3.38 × 10−2 No Yes
vs. MTMO/DRL-AT_ST HV 24/14/7 745.0 155.0 4.20 × 10−5 Yes Yes

6.4.3. Effect Analysis of Local Search Operators

To further evaluate the effectiveness of local searches for the proposed algorithm, a
comparison was conducted between the MTMO/DRL-AT and its variant without local
search phase, referred to as the MTMO/DRL-ATw/oLS. Unlike the proposed algorithm, the
MTMO/DRL-ATw/oLS does not utilize the local search for additional optimization after
the transfer reproduction phase. The comparison results between the MTMO/DRL-AT and
its variant are presented in Table 11.

Table 11 clearly indicates that the MTMO/DRL-AT exhibits a significant advan-
tage over the MTMO/DRL-ATw/oLS in overall performance. Specifically, based on the
single-problem statistical analysis, the MTMO/DRL-AT significantly outperforms the
MTMO/DRL-ATw/oLS on 27 instances for the IGD and 45 instances for the HV. The
multiple-problem statistical analysis also reveals that the MTMO/DRL-AT obtains a higher
R+ value than the R− value compared to its variant. Furthermore, significant differ-
ences between these two variants are observed at both α = 0.05 and α = 0.1. Therefore,
these results convincingly demonstrate the positive impact of the local searches in further
enhancing the performance of the MTMO/DRL-AT when tackling the MOVRPTW.

Table 11. Results of the single- and multiple-problem analysis by the Wilcoxon test between the
MTMO/DRL-AT and MTMO/DRL-ATw/oLS.

Algorithm Metric w/t/l R+ R− p-Value α = 0.05 α = 0.1

MTMO/DRL-AT IGD 27/7/11 903.0 232.0 1.25 × 10−3 Yes Yes
vs. MTMO/DRL-ATw/oLS HV 45/0/0 1035.0 0.0 0.0 Yes Yes

7. Conclusions and Future Work

In this study, we have proposed the MTMO/DRL-AT, a multi-task multi-objective
evolutionary search algorithm based on deep reinforcement learning (DRL), for solving the
MOVRPTW. Unlike traditional evolutionary algorithms, the MTMO/DRL-AT constructs
an assisted task for the MOVRPTW with a simpler search space and simultaneously opti-
mizes both the main and assisted tasks in a multitasking scenario. Additionally, attention
models specifically designed for the subproblems of the MOVRPTW are incorporated,
allowing for adaptation to instances of varying scales and providing high-quality initial
solutions. Experimental studies on 45 real-world MOVRPTW instances have demonstrated
the outstanding and competitive performance of the proposed algorithm.

In future work, our main focus will be on enhancing the DRL-based modeling and
training process by incorporating more informative structural information extracted from
problem instances. We also aim to explore effective strategies for leveraging the knowl-
edge acquired from the assisted tasks to further improve the performance of the proposed
algorithm. Additionally, we intend to conduct a thorough investigation into the impact
of key parameters on the performance of the MTMO/DRL-AT. Lastly, we plan to ex-
tend the application of the MTMO/DRL-AT to solve other multi-objective combinatorial
optimization problems.

137



Symmetry 2024, 16, 1030

Supplementary Materials: The following Supporting Information can be downloaded at
https://www.mdpi.com/article/10.3390/sym16081030/s1.

Author Contributions: Conceptualization, Y.C. and P.L.; methodology, J.D. and X.W.; software, J.W.
and X.W.; validation, J.D. and Y.C.; writing—original draft preparation, J.D. and J.W.; writing—
review and editing, Y.C.; visualization, J.W.; supervision, P.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded in part by the Natural Science Foundation of Fujian Province of
China (No. 2021J01318), the Fujian Provincial Science and Technology Major Project (No. 2020HZ02014),
and the Quanzhou Science and Technology Major Project (No. 2021GZ1).

Data Availability Statement: Data are contained with the article.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of the data; in the writing of the
manuscript; nor in the decision to publish the results.

References

1. Kallehauge, B.; Larsen, J.; Madsen, O.B.; Solomon, M.M. Vehicle routing problem with time windows. In Column Generation;
Springer: Boston, MA, USA, 2005; pp. 67–98.

2. Braekers, K.; Ramaekers, K.; Nieuwenhuyse, I.V. The vehicle routing problem: State of the art classification and review. Comput.
Ind. Eng. 2016, 99, 300–313. [CrossRef]

3. Mańdziuk, J. New Shades of the Vehicle Routing Problem: Emerging Problem Formulations and Computational Intelligence
Solution Methods. IEEE Trans. Emerg. Top. Comput. Intell. 2019, 3, 230–244. [CrossRef]

4. Fathollahi-Fard, A.M.; Ahmadi, A.; Karimi, B. Multi-objective optimization of home healthcare with working-time balancing and
care continuity. Sustainability 2021, 13, 12431. [CrossRef]

5. Mojtahedi, M.; Fathollahi-Fard, A.M.; Tavakkoli-Moghaddam, R.; Newton, S. Sustainable vehicle routing problem for coordinated
solid waste management. J. Ind. Inf. Integr. 2021, 23, 100220. [CrossRef]

6. Baldacci, R.; Mingozzi, A.; Roberti, R. Recent exact algorithms for solving the vehicle routing problem under capacity and time
window constraints. Eur. J. Oper. Res. 2012, 218, 1–6. [CrossRef]

7. Braeysy, O.; Gendreau, M. Vehicle Routing Problem with Time Windows, Part II: Metaheuristics. Transp. Sci. 2005, 39, 119–139.
[CrossRef]

8. Dixit, A.; Mishra, A.; Shukla, A. Vehicle Routing Problem with Time Windows Using Meta-Heuristic Algorithms: A Survey. In
Harmony Search and Nature Inspired Optimization Algorithms; Advances in Intelligent Systems and Computing; Springer: Singapore,
2019; Volume 741, pp. 539–546.

9. Gutiérrez, J.; Landa-Silva, D.; Moreno-Pérez, J. Nature of real-world multi-objective vehicle routing with evolutionary algorithms.
In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Anchorage, AK, USA, 9–12 October 2011;
pp. 257–264.

10. Zhou, Y.; Wang, J. A Local Search-Based Multiobjective Optimization Algorithm for Multiobjective Vehicle Routing Problem with
Time Windows. IEEE Syst. J. 2017, 9, 1100–1113. [CrossRef]

11. Sun, Y.; Yen, G.G.; Yi, Z. IGD indicator-based evolutionary algorithm for many-objective optimization problems. IEEE Trans. Evol.
Comput. 2019, 23, 173–187. [CrossRef]

12. Li, K.; Zhang, T.; Wang, R. Deep reinforcement learning for multiobjective optimization. IEEE Trans. Cybern. 2020, 51, 3103–3114.
[CrossRef] [PubMed]

13. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1–9. [CrossRef]

14. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
15. Li, J.; Monroe, W.; Ritter, A.; Galley, M.; Gao, J.; Jurafsky, D. Deep reinforcement learning for dialogue generation. arXiv 2016,

arXiv:1606.01541.
16. Bello, I.; Pham, H.; Le, Q.V.; Norouzi, M.; Bengio, S. Neural combinatorial optimization with reinforcement learning. arXiv 2016,

arXiv:1611.09940.
17. Zhao, J.; Mao, M.; Zhao, X.; Zou, J. A hybrid of deep reinforcement learning and local search for the vehicle routing problems.

IEEE Trans. Intell. Transp. Syst. 2021, 22, 7208–7218. [CrossRef]
18. Wang, L.; Pan, Z. Scheduling optimization for flow-shop based on deep reinforcement learning and iterative greedy method.

Control Decis. 2021, 36, 2609–2617.
19. Zhang, Y.; Wang, J.; Zhang, Z.; Zhou, Y. MODRL/D-EL: Multiobjective deep reinforcement learning with evolutionary learning for

multiobjective optimization. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen,
China, 18–22 July 2021; pp. 1–8.

20. Tang, K.; Yao, X. Learn to Optimize-A Brief Overview. Natl. Sci. Rev. 2024, 11, nwae132. [CrossRef] [PubMed]

138



Symmetry 2024, 16, 1030

21. Gupta, A.; Ong, Y.S.; Feng, L. Multifactorial evolution: Toward evolutionary multitasking. IEEE Trans. Evol. Comput. 2015,
20, 343–357. [CrossRef]

22. Ong, Y.S. Towards evolutionary multitasking: A new paradigm in evolutionary computation. In Computational Intelligence, Cyber
Security and Computational Models; Springer: Singapore, 2016; pp. 25–26.

23. Feng, L.; Zhou, L.; Gupta, A.; Zhong, J.; Zhu, Z.; Tan, K.; Qin, K. Solving Generalized Vehicle Routing Problem with Occasional
Drivers via Evolutionary Multitasking. IEEE Trans. Cybern. 2021, 51, 3171–3184. [CrossRef] [PubMed]

24. Feng, L.; Huang, Y.; Zhou, L.; Zhong, J.; Gupta, A.; Tang, K.; Tan, K.C. Explicit Evolutionary Multitasking for Combinatorial
Optimization: A Case Study on Capacitated Vehicle Routing Problem. IEEE Trans. Cybern. 2021, 51, 3143–3156. [CrossRef]

25. Qi, Y.; Hou, Z.; Li, H.; Huang, J.; Li, X. A decomposition based memetic algorithm for multi-objective vehicle routing problem
with time windows. Comput. Oper. Res. 2015, 62, 61–77. [CrossRef]

26. Moradi, B. The new optimization algorithm for the vehicle routing problem with time windows using multi-objective discrete
learnable evolution model. Soft Comput. 2020, 24, 6741–6769. [CrossRef]

27. Zhang, K.; Cai, Y.; Fu, S.; Zhang, H. Multiobjective memetic algorithm based on adaptive local search chains for vehicle routing
problem with time windows. Evol. Intell. 2022, 15, 2283–2294. [CrossRef]

28. Cai, Y.; Cheng, M.; Zhou, Y.; Liu, P.; Guo, J.M. A hybrid evolutionary multitask algorithm for the multiobjective vehicle routing
problem with time windows. Inf. Sci. 2022, 612, 168–187. [CrossRef]

29. Li, B.; Li, J.; Tang, K.; Yao, X. Many-objective evolutionary algorithms: A survey. ACM Comput. Surv. (CSUR) 2015, 48, 1–35.
[CrossRef]

30. Vinyals, O.; Fortunato, M.; Jaitly, N. Pointer networks. Adv. Neural Inf. Process. Syst. 2015, 28, 1–9.
31. Nazari, M.; Oroojlooy, A.; Snyder, L.; Takác, M. Reinforcement learning for solving the vehicle routing problem. Adv. Neural Inf.

Process. Syst. 2018, 31, 1–13.
32. Nowak, A.; Villar, S.; Bandeira, A.S.; Bruna, J. A note on learning algorithms for quadratic assignment with graph neural networks.

Stat 2017, 1050, 22.
33. Deudon, M.; Cournut, P.; Lacoste, A.; Adulyasak, Y.; Rousseau, L.M. Learning heuristics for the tsp by policy gradient. In

Integration of Constraint Programming, Artificial Intelligence, and Operations Research: 15th International Conference, CPAIOR 2018,
Delft, The Netherlands, 26–29 June 2018, Proceedings; Springer: Cham, Switzerland, 2018; pp. 170–181.

34. Kool, W.; Van Hoof, H.; Welling, M. Attention, learn to solve routing problems! arXiv 2018, arXiv:1803.08475.
35. Peng, B.; Wang, J.; Zhang, Z. A deep reinforcement learning algorithm using dynamic attention model for vehicle routing

problems. In Artificial Intelligence Algorithms and Applications: 11th International Symposium, ISICA 2019, Guangzhou, China, 16–17
November 2019, Revised Selected Papers; Springer: Singapore, 2020; pp. 636–650.

36. Wu, H.; Wang, J.; Zhang, Z. MODRL/D-AM: Multiobjective deep reinforcement learning algorithm using decomposition and
attention model for multiobjective optimization. In Artificial Intelligence Algorithms and Applications: 11th International Symposium,
ISICA 2019, Guangzhou, China, 16–17 November 2019, Revised Selected Papers; Springer: Singapore, 2020; pp. 575–589.

37. Zhou, L.; Feng, L.; Zhong, J.; Ong, Y.S.; Zhu, Z.; Sha, E. Evolutionary multitasking in combinatorial search spaces: A case study in
capacitated vehicle routing problem. In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI),
Athens, Greece, 6–9 December 2016; pp. 1–8.

38. Liu, M.; Wang, Z.; Li, J. A deep reinforcement learning algorithm for large-scale vehicle routing problems. In Proceedings of the
International Conference on Electronic Information Technology (EIT 2022), Chengdu, China, 18–20 March 2022; Volume 12254,
pp. 824–829.

39. Zhang, Q.; Hui, L. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans. Evol. Comput. 2008,
11, 712–731. [CrossRef]

40. Das, I.; Dennis, J.E. Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria
optimization problems. SIAM J. Optim. 1998, 8, 631–657. [CrossRef]

41. Grondman, I.; Busoniu, L.; Lopes, G.A.; Babuska, R. A survey of actor-critic reinforcement learning: Standard and natural policy
gradients. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2012, 42, 1291–1307. [CrossRef]

42. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
43. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.

Comput. 2002, 6, 182–197. [CrossRef]
44. Storn, R.; Price, K. Differential evolution–A simple and efficient heuristic for global optimization over continuous spaces. J. Glob.

Optim. 1997, 11, 341–359. [CrossRef]
45. Liu, B.; Wang, L.; Jin, Y.H. An effective PSO-based memetic algorithm for flow shop scheduling. IEEE Trans. Syst. Man Cybern.

Part B (Cybern.) 2007, 37, 18–27. [CrossRef] [PubMed]
46. Coello, C.A.C.; Sierra, M.R. A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm. In

Proceedings of the Mexican International Conference on Artificial Intelligence, Mexico City, Mexico, 26–30 April 2004; Springer:
Berlin/Heidelberg, Germany, 2004; pp. 688–697.

47. Zitzler, E.; Thiele, L. Multiobjective optimization using evolutionary algorithms—A comparative case study. In Proceedings of
the International Conference on Parallel Problem Solving from Nature, Amsterdam, The Netherlands, 27–30 September 1998;
Springer: Berlin/Heidelberg, Germany, 1998; pp. 292–301.

139



Symmetry 2024, 16, 1030

48. Alcalá-Fdez, J.; Sanchez, L.; Garcia, S.; del Jesus, M.J.; Ventura, S.; Garrell, J.M.; Otero, J.; Romero, C.; Bacardit, J.; Rivas, V.M.; et al.
KEEL: A software tool to assess evolutionary algorithms for data mining problems. Soft Comput. 2009, 13, 307–318. [CrossRef]

49. García, S.; Fernández, A.; Luengo, J.; Herrera, F. A study of statistical techniques and performance measures for genetics-based
machine learning: Accuracy and interpretability. Soft Comput. 2009, 13, 959–977. [CrossRef]

50. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for
comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

140



symmetryS S

Article

Short-Term Electrical Load Forecasting Using an Enhanced
Extreme Learning Machine Based on the Improved Dwarf
Mongoose Optimization Algorithm

Haocheng Wang, Yu Zhang * and Lixin Mu

College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China;
wanghaocheng@nefu.edu.cn (H.W.); mulixin@nefu.edu.cn (L.M.)
* Correspondence: zhangyu0902@163.com; Tel.: +86-13804614102

Abstract: Accurate short-term electrical load forecasting is crucial for the stable operation of power
systems. Given the nonlinear, periodic, and rapidly changing characteristics of short-term power load
forecasts, this paper introduces a novel forecasting method employing an Extreme Learning Machine
(ELM) enhanced by an improved Dwarf Mongoose Optimization Algorithm (Local escape Dwarf
Mongoose Optimization Algorithm, LDMOA). This method addresses the significant prediction
errors of conventional ELM models and enhances prediction accuracy. The enhancements to the
Dwarf Mongoose Optimization Algorithm include three key modifications: initially, a dynamic
backward learning strategy is integrated at the early stages of the algorithm to augment its global
search capabilities. Subsequently, a cosine algorithm is employed to locate new food sources, thereby
expanding the search scope and avoiding local optima. Lastly, a “madness factor” is added when
identifying new sleeping burrows to further widen the search area and effectively circumvent local
optima. Comparative analyses using benchmark functions demonstrate the improved algorithm’s
superior convergence and stability. In this study, the LDMOA algorithm optimizes the weights
and thresholds of the ELM to establish the LDMOA-ELM prediction model. Experimental forecasts
utilizing data from China’s 2016 “The Electrician Mathematical Contest in Modeling” demonstrate
that the LDMOA-ELM model significantly outperforms the original ELM model in terms of prediction
error and accuracy.

Keywords: electrical load forecasting; machine learning; extreme learning machine; dynamic backward
learning; madness factor operator

1. Introduction

Accurate electric load forecasting is crucial for the planning and reliable economic
operation of power systems. It not only ensures the normal electricity usage of consumers
but also reduces costs and guarantees the safety of power systems [1]. However, challenges
in predicting electric load demand have increased sharply due to factors such as global
climate change, energy supply constraints, increasing numbers of electricity users, and the
integration of new energy device loads into the grid [2].

In the realm of electric load forecasting, researchers have employed time series re-
gression models [3] and fuzzy linear regression models [4] to predict load, focusing on the
temporal characteristics of load data and providing strong interpretability of the models.
However, these methods have limitations in forecasting non-linear load data. In recent
years, with the development of intelligent optimization algorithms, an increasing number
of researchers have started incorporating these algorithms into electric load forecasting.
Han M. C. enhanced the capability and prediction accuracy of capturing characteristics in
load data by optimizing LSTM hyperparameters through a sparrow optimization algorithm
that integrates Cauchy mutation and inverse learning strategies [5]. Zhang Z. C. quantified
the behavior of dragonflies in the dragonfly algorithm to boost the search capability, and

Symmetry 2024, 16, 628. https://doi.org/10.3390/sym16050628 https://www.mdpi.com/journal/symmetry141



Symmetry 2024, 16, 628

utilized an adaptive noise complete empirical mode decomposition method for preprocess-
ing raw data, thereby improving the prediction accuracy of SVR in load forecasting [6]. Ge
Q. B. employed K-means clustering to categorize data and then used a combined predictive
algorithm of reinforcement learning and particle swarm optimization along with the least
squares support vector machine to predict different types of data [7]. Fan G. F. developed
a new model combining the random forest model and mean-generating function model,
significantly enhancing the prediction accuracy of peaks and troughs in highly volatile
data [8]. Additionally, Xu R. [9] noted that extreme learning machines offer faster learning
speeds and less human intervention, and are easier to implement. Deng B. [10] argued
that compared to support vector machines, extreme learning machines have milder op-
timization constraints and quicker learning speeds. Some researchers have also applied
optimized ELMs to electric load forecasting. For instance, Wang Tong utilized an improved
artificial hummingbird algorithm for optimizing parameters in Extreme Learning Machines
(ELM), significantly enhancing prediction accuracy [11]. Long Gan and others have used
an improved multiverse algorithm to optimize the input layer weights and thresholds of
ELMs, thereby improving their prediction accuracy [12]. Wang Z-X. employed an adaptive
evolutionary ELM for data prediction, integrating a chaos-adapted whale optimization
algorithm based on a firefly perturbation strategy and a chaotic sparrow search algorithm,
which exhibited outstanding performance [13]. Additionally, Zhang S. proposed an ELM
model under a moth flame optimization algorithm based on Tsne dimensionality reduction
and visualization analysis, which achieved higher prediction accuracy than the original
ELM model [14].

Accurate electric load forecasting can impact related decisions in power systems,
such as generation control, economic dispatch, and maintenance scheduling. Therefore,
to achieve high-precision short-term electric load forecasting, this paper proposes an
ELM prediction model based on the improved Dwarf Mongoose Optimization Algorithm.
Applied to short-term electric load forecasting, experimental results demonstrate that this
model achieves higher accuracy compared to other ELM models.

2. Extreme Learning Machine

The Extreme Learning Machine (ELM) is a type of Single-hidden Layer Feedforward
Neural Network (SLFN) algorithm, introduced by Professor Guang-Bin Huang and oth-
ers based on the theory of the Moore–Penrose pseudoinverse [15]. This algorithm was
developed to address several issues inherent in SLFNs, such as slow learning rates, long
iteration times, and the traditional need to preset learning rates and step sizes. Unlike
conventional neural network learning algorithms, the ELM requires only the appropriate
setting of hidden layer node numbers. It autonomously generates all necessary parameters
for the hidden layer and determines the final output layer weights through the least squares
method. Due to its superior learning and nonlinear approximation capabilities compared
to traditional machine learning algorithms, researchers have applied the ELM across a
broad range of fields, including fault diagnosis [16], load forecasting [17], and feature
recognition [18].

The ELM algorithm operates with a single hidden layer, where each layer from input
to output comprises independent neurons, all interconnected in a fully connected manner.
The network structure of the ELM is illustrated in Figure 1.

Assuming there are N arbitrary samples (xi, ti), xi =
[

xi1, xi2 . . . , xin]
T ∈ Rn and

ti =
[

ti1, ti2, · · · , tim]
t ∈ Rm . This can be represented by a single hidden layer neural

network with L hidden nodes, as illustrated in Figure 1 and described by Equation (1).

oj =
L

∑
j=1

βig(wi·xi + bi) j = 1, 2, · · · , N (1)

142



Symmetry 2024, 16, 628

Here, g(x) is the activation function, wi =
[
wi1, wi2, · · · , win]

T are the input weights,
βi =

[
βi1, βi2, · · · , βim]

T ∈ Rm are the output weights, and bi is the bias of the ith hidden
layer unit, with wi·xi being the dot product between them.

Figure 1. Extreme learning machine network structure.

Extreme Learning Machines, as a type of single hidden layer neural network, have an
output error that asymptotically approaches zero, as shown in Equation (2).

L

∑
j=1

∣∣∣∣oj − ti
∣∣∣∣ = 0 (2)

Equation (2) can be represented using matrices, as shown in Equation (3):

Hβ = T (3)

Here, H denotes the hidden layer output matrix, β represents the output weights, and
T is the target output. The matrix H can be expressed by Equation (4).

H =

⎡⎢⎣ h1(x1) · · · hL(x1)
...

h1(xD) · · · hL(xD)

⎤⎥⎦, T = [t1, · · · tD] (4)

According to Equation (3), Equation (5) can be derived.

β = HTT (5)

In Equation (5), HT represents the Moore–Penrose pseudoinverse of the matrix H.

3. Dwarf Mongoose Algorithm

The Dwarf Mongoose Algorithm is an intelligent optimization algorithm inspired by
the social behavior of dwarf mongoose groups. This algorithm consists of three parts: the
Alpha Group, the Scout Group, and the Babysitter Group. The Alpha Group produces a
female leader to guide the group in foraging. The Scout Group is responsible for finding
new locations for sleeping mounds, while the Babysitter Group influences the performance
of the algorithm through its numbers.

3.1. Alpha Group

The population is initialized as shown in Equation (6),

xi,j = uni f rnd(LB, UB, Dim) (6)

143



Symmetry 2024, 16, 628

where xi,j represents the initial position, LB and UB denote the lower and upper bounds of
the solution space, Dim represents the dimension of decision variables, and uni f rnd is a
uniformly distributed random number.

Furthermore, a female leader emerges within the dwarf mongoose population, as
depicted in Equation (7).

α =
f iti

∑N
i=1 f iti

(7)

Here, f iti represents the fitness value of the ith individual, and N is the number of
individuals in the population. The number of individuals in the Alpha Group is the total
population N minus the number of individuals in the Babysitter Group, i.e., n = N − bs.

The female leader in the Alpha Group guides the other members to the food source
location via calls, as shown in Equation (8):

Xnew = Xi + peep × phi × (Xi − Xk) (8)

Here, Xnew is the new position of the dwarf mongoose, peep is the calling coefficient,
set at peep = 2 in this study, and phi is a uniformly distributed random number within [0,
1]. Xi is the current position of the female leader, and Xk is the position of another random
individual in the Alpha Group distinct from the leader. Subsequently, the new position
Xnew undergoes a fitness evaluation to obtain f iti+1, and the value of the sleeping mound
is determined according to Equation (9).

smi =
f iti+1− f iti

max{| f iti+1, f iti|} (9)

Here, smi represents the value of the sleeping mound, and the average value of the
sleeping mound can be calculated according to Equation (10).

ϕ = ∑N
i=1 smi

n
(10)

3.2. Scout Group

The primary responsibility of the Scout Group is to locate new positions for sleeping
mounds, as described by the movement formula in Equation (11).

Xi+1 =

⎧⎪⎪⎨⎪⎪⎩
xi − CF × phi × r ×

[
xi −

→
M
]

, i f ϕi+1 > ϕi

xi + CF × phi × r ×
[

xi −
→
M
]

, else
(11)

Here, r is a random number within [0, 1], CF is a mobility parameter for the dwarf mon-

goose population, and
→
M is the direction vector determining the mongoose’s movement direc-

tion. The formulas for calculating CF and
→
M are given in Equations (12) and (13), respectively.

CF = (1 − Iter
MaxIt

)(2
Iter

MaxIt ) (12)

→
M =

N

∑
i=1

xi × smi
xi

(13)

Here, Iter is the current iteration number, and MaxIt is the maximum number of itera-
tions. The movement parameter CF linearly decreases as the number of iterations increases.

3.3. Babysitter Group

When the timing parameter is greater than or equal to the exchange parameter, i.e.,
C ≥ L, the Babysitter Group assumes that the Alpha Group’s foraging capability is weak.

144



Symmetry 2024, 16, 628

At this point, the Babysitter Group will swap roles with the Alpha Group, and the dwarf
mongoose community will begin searching for a new sleeping mound.

4. Enhancements to the Dwarf Mongoose Algorithm

To address the Dwarf Mongoose Algorithm’s tendency to fall into local optima and
its weak global search performance, this paper proposes the incorporation of a reverse
learning strategy to enhance the algorithm’s exploratory capability, thereby improving
its global search performance. Additionally, the inclusion of a craziness operator factor
and the sine–cosine algorithm expands the local search range of the algorithm, helping to
circumvent issues of local optima.

4.1. Dynamic Reverse Learning Strategy

The reverse learning strategy [19] is a common perturbation tactic that expands the
algorithm’s exploration range to find better solutions. In the reversed learning strategy,
the new position generated is symmetrical to the original position at the point Xi+xi

2 . This
measure enhances the exploratory nature of the algorithm, allowing it to search in the
opposite direction for improved population individual positions. Moreover, the new
position is compared with the original in terms of fitness, and the individual with the
optimal fitness is selected as the population individual position. The reverse learning
strategy is depicted in Equation (14).

Xi = LB + UB − xi (14)

In the formula, Xi represents the population individual after reverse learning, with
LB and UB denoting the lower and upper limits of the solution space, and xi indicating the
original position of the individual within the population. To enhance the search for optimal
solutions within the solution space, a random factor is included in the reverse learning
strategy, further diversifying the population within the solution space. The dynamic
reverse learning strategy introduced in the early stages of the algorithm iteration is shown
in Equation (15).

Xi = r × (LB + UB)− xi (15)

Here, r is a random number within (0, 1).

4.2. Sine–Cosine Algorithm

During the search process, the sine–cosine algorithm [20] conducts searches in the
form of sine and cosine waveforms. This method enhances the search capabilities of
the algorithm, enabling it to avoid becoming trapped in local optima. Additionally, the
search process of the algorithm exhibits point symmetry characteristics typical of sine
and cosine functions. While the Alpha Group, led by the female leader, is searching for
new food sources, this process can easily become trapped in local optima. To avoid such
outcomes, this study incorporates the sine–cosine algorithm to expand the search range of
the algorithm. The formula for searching new food sources, updated with the sine–cosine
algorithm, is shown in Equation (16).

Xnew =

{
Xi + phi × r1 × sin(r 2)× (Xi − Xk), i f r < 0.5
Xi + phi × r1 × cos(r 2)× (Xi − Xk), else

(16)

In Equation (16), r and r1 are random numbers within (0, 1), r2 is a random number
within (0, 2π), Xi is the position of the female leader, and Xk is the position of another
individual distinct from the leader.

4.3. Craziness Factor

In the later stages of the algorithm, when dwarf mongoose individuals seek a sleeping
mound, the group tends to converge on this mound, which could lead to local optima. This

145



Symmetry 2024, 16, 628

paper introduces a craziness operator factor, which perturbs the position of the optimal
individual to prevent the algorithm from becoming trapped in local optima in its later
iterations. The position of the optimal individual after incorporating the craziness operator
factor is illustrated in Equation (17).

Xi = xi × (1 + Pc × xcraze × sign) (17)

In Equation (17), xi represents the original optimal individual position, and Pc and
xcraze are disturbance factors within the craziness operator factor, with xcraze set at 0.0001.
Pc and xcraze are described by Equations (18) and (19), respectively.

Pc =
{

1, c < Pr
0, else

(18)

sign =

{−1, c > 0.5
1, else

(19)

In the craziness factor, the sign is determined as either 1 or −1 based on the magnitude
of c, exhibiting a kind of symmetry in its values. This method of value assignment can
perturb the algorithm, expanding its search range and helping to avoid local optima. In
Equation (19), c is a random number within (0, 1), and Pr is the preset craziness probability,
set at 0.4 in this study.

4.4. LDMOA Steps and Process

In the enhanced DMOA, the reverse learning strategy is utilized to expand the algo-
rithm’s exploratory capacity and search range, thereby enhancing its global search capa-
bilities. Simultaneously, the introduction of the sine–cosine algorithm and the craziness
operator factor enhance the local search capability of the algorithm, effectively avoiding
situations of local optima. Figure 2 shows the workflow diagram of the LDMOA, and
below is the operational process of the LDMOA.

Step 1: Set the initial parameters of the algorithm, such as population parameters,
dimensions of the solution space and its limits, and maximum iteration parameters, and
utilize the dynamic reverse learning strategy to expand the search range.

Step 2: Select the female leader according to Equation (7) and set the related coef-
ficients. During the process of searching for new food sources by the dwarf mongoose
group, incorporate the sine–cosine algorithm to further expand the search for new food
source positions.

Step 3: The sleeping mound position is influenced by the optimal position; introduce
the craziness operator factor to perturb it, and then determine the sleeping mound position
and calculate its average value.

Step 4: Assess whether C ≥ L; when this condition is met, swap the Alpha Group
and Babysitter Group, and proceed with the formula to search for new sleeping mounds
and forage.

Step 5: Determine whether the algorithm has reached the maximum iteration count; if
not, repeat the above steps, and otherwise output the optimal results.

146



Symmetry 2024, 16, 628

Figure 2. LDMOA Flowchart.

4.5. Benchmark Function Testing

To ensure that the enhanced strategy provides positive improvements over the original
Dwarf Mongoose Optimization Algorithm (DMOA), we conducted benchmark function
tests comparing the modified algorithm with the original. The selected benchmark func-
tions are shown in Table 1.

Functions f1 to f2 are unimodal functions, which test the algorithm’s convergence
capability. Functions f3 to f6 are multimodal functions, evaluating the algorithm’s ability to
escape local optima. Functions f7 to f11 are hybrid functions, and f12 to f15 are composite
functions, with both sets testing the optimization performance in complex scenarios.

The enhanced and original algorithms were tested using the benchmark functions
listed in the table. To ensure the accuracy of the benchmark tests, the algorithms were
configured with parameters as shown in Table 2, including population initialization size
(nPop) and solution space dimensions (Dim). The results are presented in Section 4.6 and
Table 3.

147



Symmetry 2024, 16, 628

Table 1. Benchmark function.

Function Function Name Optimal Value

f 1 Shifted and Rotated Bent Cigar Function 100
f 2 Shifted and Rotated Zakharov Function 300
f 3 Shifted and Rotated Rosenbrock’s Function 400

f 4
Shifted and Rotated Lunacek Bi_Rastrigin

Function 700

f 5
Shifted and Rotated Non-Continuous

Rastrigin’s Function 800

f 6 Shifted and Rotated Levy Function 900
f 7 Hybrid Function 2 (N = 3) 1200
f 8 Hybrid Function 3 (N = 3) 1300
f 9 Hybrid Function 4 (N = 4) 1400
f 10 Hybrid Function 6 (N = 4) 1600
f 11 Hybrid Function 6 (N = 5) 1900
f 12 Composition Function 1 (N = 3) 2100
f 13 Composition Function 3 (N = 4) 2300
f 14 Composition Function 5 (N = 5) 2500
f 15 Composition Function 9 (N = 3) 2900

Table 2. Parameter settings.

Algorithm nPop Dim.
Number of

Runs
Number of
Iterations

DMOA 50 30 30 500
LDMOA 50 30 30 500

Table 3. Function test result.

Function Algorithm Average Value Standard Deviation

f1
DMOA 2.2380 × 108 1.5191 × 108

LDMOA 4.5751 × 106 4.7176 × 106

f2
DMOA 3.8921 × 105 1.4859 × 105

LDMOA 1.9088 × 105 3.0369 × 104

f3
DMOA 6.4582 × 102 59.71001

LDMOA 4.7798 × 102 25.6402

f4
DMOA 9.8498 × 102 16.6132

LDMOA 8.7634 × 102 16.2196

f5
DMOA 1.050 × 103 15.3858

LDMOA 9.4086 × 102 11.9651

f6
DMOA 4.8974 × 103 1.1978 × 103

LDMOA 2.5027 × 103 5.5686 × 102

f7
DMOA 3.7911 × 108 1.5928 × 108

LDMOA 2.1834 × 107 6.8054 × 106

f8
DMOA 7.4329 × 106 5.6933 × 106

LDMOA 4.0444 × 105 3.4691 × 105

f9
DMOA 2.7983 × 105 1.1979 × 105

LDMOA 2.8142 × 104 1.4802 × 104

f10
DMOA 3.9829 × 103 2.3781 × 102

LDMOA 2.9550 × 103 1.8911 × 102

f11
DMOA 8.9163 × 104 8.4653 × 104

LDMOA 2.5640 × 104 1.8000 × 104

f12
DMOA 2.5562 × 103 18.1339

LDMOA 2.4442 × 103 12.3400

f13
DMOA 2.9142 × 103 17.9570

LDMOA 2.8032 × 103 17.5984

f14
DMOA 2.9628 × 103 20.6205

LDMOA 2.8955 × 103 5.5951

f15
DMOA 5.0032 × 103 1.9213 × 102

LDMOA 3.7782 × 103 1.5826 × 102

148



Symmetry 2024, 16, 628

4.6. Results of Benchmark Function Testing

In the benchmark function test results, the mean and standard deviation reflect the
convergence performance and stability of the algorithms, respectively, with the best values
highlighted in bold. The enhanced algorithm shows superior convergence performance
and stability compared to the original algorithm. As demonstrated in Table 3, the enhanced
algorithm outperforms the original in unimodal functions f1 to f2, multimodal functions f3
to f6, hybrid functions f7 to f11, and composite functions f12 to f15. Based on the analyses
in Section 4.5, the enhanced algorithm surpasses the original in convergence, avoiding
local optima, and handling complex optimization problems. Figure 3 includes graphical
representations of some function iterations: (a) unimodal function, (b) multimodal function,
(c) hybrid function, and (d) composite function, all showing improved iterative convergence
results for the enhanced algorithm.

  
(a) (b) 

  
(c) (d) 

Figure 3. Images of selected test functions: (a) f1, (b) f3, (c) f7, (d) f13.

5. Establishing the LDMOA-ELM Model

In the Extreme Learning Machine (ELM) algorithm, the weights w and biases b signifi-
cantly influence prediction outcomes. Given that these parameters are randomly generated
in ELM, their randomness can significantly affect the model’s prediction accuracy. This
study uses the LDMOA algorithm to optimize the weights w and biases b in the ELM
algorithm, leading to notable improvements in prediction error reduction and accuracy
enhancement. The LDMOA-ELM model development process is outlined as follows:

Step 1: Import original load data, normalize it, and split it into training and test sets.

149



Symmetry 2024, 16, 628

Step 2: Initialize DMOA parameters and use Equations (15)–(17) to optimize the initial
population, the Alpha Group’s foraging process, and the process of finding new sleeping
mounds, respectively, resulting in the LDMOA.
Step 3: Compute the fitness function, using the MAPE of the ELM training set as the fitness
measure.
Step 4: Exit the loop if the maximum number of iterations is reached or accuracy require-
ments are met; otherwise, repeat Steps 2 and 3.
Step 5: Use the optimized parameters as the input weights and biases for the ELM model,
and then perform numerical predictions and output the model evaluation metrics.

The steps for establishing the LDMOA-ELM model are depicted in Figure 4.

Figure 4. Establishment of the LDMOA-ELM model.

6. Simulation Experiment

In conducting electric load forecasting experiments for comparison, to ensure the
efficacy of the improved algorithm, this study pits the proposed LDMOA-ELM algorithm
against both the original ELM algorithm and the ELM algorithm optimized by the original
Dwarf Mongoose Algorithm. The parameter settings for both the original and the enhanced
Dwarf Mongoose Algorithms are detailed in Table 4, where nPop is the population initial-
ization size, Dim is the dimension of the solution space, LB is the lower bound, and UB is
the upper bound of the solution space.

150



Symmetry 2024, 16, 628

Table 4. Parameter settings.

Algorithm nPop Dim. LB UB
Number of
Iterations

DMOA 50 30 −2 2 500
LDMOA 50 30 −2 2 500

6.1. Evaluation Metrics

The electric load forecasting evaluation standards include MAE (Mean Absolute
Error), RMSE (Root Mean Square Error), MSE (Mean Square Error), and R2 (R-Squared,
the coefficient of determination) [21]. The formulas for these metrics are shown in
Equations (20), (21), (22), and (23), respectively.

MSE =
1
n

n

∑
i=1

(
ŷi − yi)

2 (20)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)2 (21)

MAE =
1
n

n

∑
i=1

|ŷi − yi| (22)

R2 = 1 − ∑n
i=1

(
ŷi − yi)

2

∑n
i=1(yi − _

y)2 (23)

Here, ŷi represents the hourly forecasted electric load;
_
yi is the average of the hourly

electric load data; yi is the actual hourly electric load data; and n is the number of
data points.

In these metrics, MSE and RMSE values are within ‘[0, +∞)’, where a value closer
to 0 indicates perfect model prediction and, conversely, a higher value indicates greater
prediction error. The MAE follows the same range and interpretation. An R2 value closer
to 1 indicates a better fit, whereas a lower value indicates a poorer fit.

6.2. Forecasting Results Comparison

The paper utilizes the standard dataset provided by the 2016 “The Electrician Mathe-
matical Contest in Modeling” in China, with sampling every 15 min, resulting in 96 samples
per day and a total of 35,040 samples. To ensure consistency in experimental results, the
number of hidden nodes in the prediction model is uniformly set to 85, with the sample
configuration using data from the previous seven days to predict the eighth day, set across
100 sample groups. In this paper, we optimized the ELM model for multi-step-ahead
forecasting by dividing 100 sample sets into 99 training sets and one test set. The statistical
data of the three methods’ predictions are shown in Table 5. Section 6.1 demonstrates that
a higher R2 value indicates better prediction results, and smaller values for other metrics
indicate better performance. Here, the LDMOA-ELM model’s MAE, MAPE, MSE, and
RMSE values were 61.62, 0.0080845, 5953.4, and 77.158, respectively, all of which were
significantly reduced compared to the ELM model. Integrating these five evaluation met-
rics, it is evident that the LDMOA-ELM used in this study exhibits superior performance
across all indicators, with a prediction accuracy of 99.80%, which is an improvement of
15% over the ELM model. This demonstrates that the LDMOA-ELM model achieves lower
prediction errors and higher prediction accuracy. The results indicate that the improved
predictive model enhances the accuracy of forecasts for the experimental data used in this
study.

151



Symmetry 2024, 16, 628

Table 5. Evaluation metrics.

MAE MAPE MSE RMSE R2

ELM 527.35 0.069746 3.5048 × 105 592.02 0.86538
SSA-ELM 76.713 0.0097348 10,163 100.81 0.99659

DMOA-ELM 72.311 0.009243 9627.1 98.118 0.99689
LDMOA-ELM 61.62 0.0080845 5953.4 77.158 0.99802

As illustrated in Figure 5, LDMOA is more adept at escaping local optima and finding
optimal values compared to the original Dwarf Mongoose Algorithm. Figure 6 shows the
prediction results graph, indicating that the LDMOA-ELM model’s prediction curve best
fits the actual value curve. Figure 7 displays the relative prediction errors, revealing that
the relative error between the predicted values of the LDMOA-ELM model and the actual
values is significantly lower than that of the ELM model. Additionally, by integrating
the statistical data from Table 5, it is evident that the LDMOA-ELM model exhibits lower
prediction errors and improved accuracy compared to the original ELM model. Particularly
in terms of relative prediction errors, as shown in Figure 7, there is a significant difference
between the two, with the LDMOA-ELM model outperforming the original ELM model.

Figure 5. Iterative optimization.

Figure 6. Prediction results.

152



Symmetry 2024, 16, 628

Figure 7. Relative error between predicted and actual load.

Figure 8, the prediction evaluation metrics graph, shows that the ELM model
results in the highest error values, while the LDMOA-ELM model yields the smallest
error values. Integrating data from Table 5 and Figures 5–8, it is evident that the
LDMOA-ELM algorithm, in comparison to both the ELM and DMOA-ELM algorithms,
achieves the smallest prediction errors and the highest prediction accuracy, with the
LDMOA-ELM algorithm achieving a prediction accuracy of 99.80%. Figure 9 presents
the statistical graph for the Mean Absolute Percentage Error (MAPE). It is evident that
the original ELM model exhibits significantly higher MAPE values compared to the
LDMOA-ELM model. This demonstrates that the LDMOA-ELM model achieves lower
prediction errors.

Figure 8. Evaluation metrics.

153



Symmetry 2024, 16, 628

Figure 9. Mean absolute percentage error.

7. Conclusions

In response to the challenges of high randomness and low prediction accuracy in short-
term electric load forecasting, this paper introduces a short-term electric load forecasting
model that utilizes an enhanced Dwarf Mongoose Algorithm-based ELM. Initially, the
Dwarf Mongoose Algorithm was modified by incorporating reverse learning strategies,
sine–cosine strategies, and a craziness operator factor, which improved the algorithm’s
exploratory capabilities, enhanced its global search ability, and enabled it to escape from
local optima more effectively. Subsequently, combining the LDMOA with an Extreme
Learning Machine, this model was applied to forecast the relevant experimental data and
subjected to experimental analysis. The results demonstrate that, compared to the original
ELM and DMOA-ELM models, the LDMOA-ELM model exhibits significantly higher
accuracy in predicting short-term electric loads.

The LDMOA-ELM model proposed in this paper exhibits a Mean Absolute Error
(MAE) of 61.62, which is significantly lower than that of other models, thereby reducing the
prediction error of the Extreme Learning Machine to a certain extent. Although the accuracy
of the LDMOA-ELM model surpasses that of the original ELM model, the improvement in
predictive accuracy is not markedly evident when compared with other models. Future
research should focus on further refining the optimization algorithms and selecting more
appropriate predictive data to verify the accuracy and applicability of the predictive model.
At the same time, subsequent research projects should consider the processing of raw data
and comparisons between different methodologies.

Furthermore, future research in load forecasting could consider incorporating methods
such as Variational Mode Decomposition for preprocessing the raw data and compare it
with other machine learning prediction methods to highlight the advanced nature of the
optimized model. It could also be beneficial to explore the impact of varying the number of
nodes in the prediction algorithm on the precision of the forecasts, aiming to achieve better
load prediction outcomes.

Author Contributions: Conceptualization, H.W., Y.Z. and L.M.; methodology, H.W.; software, H.W.;
validation, H.W., Y.Z. and L.M.; resources, Y.Z.; data curation, H.W.; writing—original draft prepara-
tion, H.W.; writing—review and editing, Y.Z.; visualization, H.W.; supervision, Y.Z. and L.M.; project
administration, Y.Z.; funding acquisition, Y.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: This article does not contain new data; the results of the experimental
data are presented within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

154



Symmetry 2024, 16, 628

References

1. Wang, L.; Lin, Y.; Tong, H.; Li, H.; Zhang, T. Short-term load forecasting based on improved Apriori correlation analysis and an
MFOLSTM algorithm. Power Syst. Prot. Control 2021, 49, 74–81.

2. Xie, X.; Zhou, J.; Zhang, Y.; Wang, J.; Su, J. W-BiLSTM Based Ultra-short-term Generation Power Prediction Method of Renewable
Energy. Autom. Electr. Power Syst. 2021, 45, 175–184.

3. Behmiri, N.B.; Fezzi, C.; Ravazzolo, F. Incorporating air temperature into mid-term electricity load forecasting models using
time-series regressions and neural networks. Energy 2023, 278, 127831. [CrossRef]

4. Al-Kandari, A.M.; Soliman, S.A.; El-Hawary, M.E. Fuzzy short-term electric load forecasting. Int. J. Electr. Power Energy Syst. 2004,
26, 111–122. [CrossRef]

5. Han, M.C.; Zhong, J.W.; Sang, P.; Liao, H.H.; Tan, A.G. A Combined Model Incorporating Improved SSA and LSTM Algorithms
for Short-Term Load Forecasting. Electronics 2022, 11, 1835. [CrossRef]

6. Zhang, Z.; Hong, W.-C. Electric load forecasting by complete ensemble empirical mode decomposition adaptive noise and
support vector regression with quantum-based dragonfly algorithm. Nonlinear Dyn. 2019, 98, 1107–1136. [CrossRef]

7. Ge, Q.B.; Guo, C.; Jiang, H.Y.; Lu, Z.Y.; Yao, G.; Zhang, J.M.; Hua, Q. Industrial Power Load Forecasting Method Based on
Reinforcement Learning and PSO-LSSVM. IEEE Trans. Cybern. 2022, 52, 1112–1124. [CrossRef] [PubMed]

8. Fan, G.F.; Zhang, L.Z.; Yu, M.; Hong, W.C.; Dong, S.Q. Applications of random forest in multivariable response surface for
short-term load forecasting. Int. J. Electr. Power Energy Syst. 2022, 139, 108073. [CrossRef]

9. Xu, R.; Liang, X.; Qi, J.-S.; Li, Z.-Y.; Zhang, S.-S. Advances and Trends in Extreme Learning Machine. Jisuanji Xuebao/Chin. J.
Comput. 2019, 42, 1640–1670. [CrossRef]

10. Deng, B.; Zhang, X.; Gong, W.; Shang, D. An overview of extreme learning machine. In Proceedings of the 4th International
Conference on Control, Robotics and Cybernetics, CRC 2019, Tokyo, Japan, 2–30 September 2019; pp. 189–195.

11. Tong, W. Electric load forecasting based on improved Artificial Hummingbird Algorithm optimized ELM. Comput. Era 2023,
6, 43–47. [CrossRef]

12. Gan, L.; Mei, H.; Liqian, F.; Chongyin, J.; Yongjun, Z. Short-term power load forecasting based on an improved multi-verse
optimizer algorithmoptimized extreme learning machine. Power Syst. Prot. Control 2022, 50, 99–106. [CrossRef]

13. Wang, Z.X.; Ku, Y.Y.; Liu, J. The Power Load Forecasting Model of Combined SaDE-ELM and FA-CAWOA-SVM Based on CSSA.
IEEE Access 2024, 12, 41870–41882. [CrossRef]

14. Zhang, S.; Duan, X.; Zhang, L.; Jiang, A.; Yao, Y.; Liu, Y.; Mu, Y. Tsne Dimension Reduction Visualization Analysis and Moth
Flame Optimized ELM Algorithm Applied in Power Load Forecasting. Proc. Chin. Soc. Electr. Eng. 2021, 41, 3120–3129.

15. Huang, G.-B.; Wang, D.H.; Lan, Y. Extreme learning machines: A survey. Int. J. Mach. Learn. Cybern. 2011, 2, 107–122. [CrossRef]
16. Wu, Z.; Lu, X. Microgrid Fault Diagnosis Based on Whale Algorithm Optimizing Extreme Learning Machine. J. Electr. Eng.

Technol. 2024, 19, 1827–1836. [CrossRef]
17. Nayak, J.R.; Shaw, B.; Sahu, B.K. A fuzzy adaptive symbiotic organism search based hybrid wavelet transform-extreme learning

machine model for load forecasting of power system: A case study. J. Ambient Intell. Humaniz. Comput. 2023, 14, 10833–10847.
[CrossRef]

18. Pan, B.; Hirota, K.; Jia, Z.; Zhao, L.; Jin, X.; Dai, Y. Multimodal emotion recognition based on feature selection and extreme
learning machine in video clips. J. Ambient Intell. Humaniz. Comput. 2023, 14, 1903–1917. [CrossRef]

19. Tizhoosh, H.R. Opposition-Based Learning: A New Scheme for Machine Intelligence. In Proceedings of the International
Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent
Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria, 28–30 November 2005; pp. 695–701.

20. Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [CrossRef]
21. Yuan, F.; Che, J. An ensemble multi-step M-RMLSSVR model based on VMD and two-group strategy for day-ahead short-term

load forecasting. Knowl.-Based Syst. 2022, 252, 109440. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

155





MDPI AG
Grosspeteranlage 5

4052 Basel
Switzerland

Tel.: +41 61 683 77 34

Symmetry Editorial Office
E-mail: symmetry@mdpi.com

www.mdpi.com/journal/symmetry

Disclaimer/Publisher’s Note: The title and front matter of this reprint are at the discretion of the Guest

Editors. The publisher is not responsible for their content or any associated concerns. The statements,

opinions and data contained in all individual articles are solely those of the individual Editors and

contributors and not of MDPI. MDPI disclaims responsibility for any injury to people or property

resulting from any ideas, methods, instructions or products referred to in the content.





Academic Open 

Access Publishing

mdpi.com ISBN 978-3-7258-5834-7


