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Editorial
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Over the past decade, astronomy has shifted from a data-starved to a data-drenched sci-
ence [1,2]. The Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST), ESA’s
Euclid, and the Square Kilometre Array (SKA) pathfinders are already delivering terabytes
of images, spectra, and time-series each night. Traditional analysis pipelines—calibrated
for megabyte-scale data sets—cannot keep pace, and a new generation of artificial intelli-
gence (AI) and machine learning (ML) techniques has become indispensable [3-6]. Yet the
very power of these methods has revealed a critical gap: the “black-box” nature of many
state-of-the-art algorithms threatens the reproducibility, interpretability, and ultimately the
credibility of the discoveries they enable.

This Special Issue was conceived to bridge three intertwined gaps:

Trustworthy Al. How do we exploit deep neural networks, self-supervised learning,
and real-time inference without sacrificing the transparency required by the scientific method?

Domain-specific bottlenecks. Solar radio spectroscopy, wide-field meteor monitoring,
CO clump cataloguing, and RR Lyrae parameterisation each suffer from small training sets,
strong selection effects, or instrument-specific artefacts that generic ML toolkits ignore.

Environmental integrity. As facilities push into previously “quiet” frequency bands,
radio-frequency interference (RFI) threatens both current and future observations; rigorous
site-protection modelling is now mission-critical.

The eight articles collected here address these challenges head-on and chart a coherent
path forward.

Lieu’s comprehensive review opens the volume by framing the interpretabil-
ity crisis [Contribution 1]. She distils the vocabulary—transparency, interpretability,
explainability—and showcases astronomy-specific tools (symbolic regression, physics-
informed neural networks, and SHAP /LIME visualizations) that convert predictive power
into physical insight. Her call for interdisciplinary benchmarks sets the tone for every
contribution that follows.

The next contribution, on solar physics, demonstrates the power of self-supervised
learning when labeled examples are scarce [Contribution 2]. By adapting BERT-style
masking to Vision Transformers, the authors achieve 99.5% accuracy in classifying solar
radio bursts—outperforming supervised baselines—while revealing that a 75% masking
rate (far above NLP standards) is optimal for redundant spectral images. The study
establishes a new transfer-learning paradigm for small-sample astronomical data.

Accurate environmental protection starts with accurate propagation models [Contri-
bution 3]. The RFI analysis software presented here integrates global terrain, meteorology,
and satellite ephemerides into an ITU-R-compliant framework that has already guided
site-selection for the Five-hundred-meter Aperture Spherical Telescope (FAST) and the
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planned Qitai Telescope (QTT) [Contribution 4]. Freely available binaries and an interactive
map-based GUI invite the community to extend these protections to next-generation arrays.

Single-site meteor detection is notoriously plagued by false positives from aircraft,
satellites, and sensor noise. GWAC’s new algorithm exploits temporal differencing,
probabilistic Hough transforms, and light-curve morphology to reach 90% accuracy on
4K x 4K frames sampled every 15 s—a three-fold speed-up over prior work [Contribution
5]. The open-source pipeline is already ingesting real-time data from the Geminid stream
and will inform the forthcoming Chinese Space Station Telescope transient key project.

Cataloguing molecular clouds has traditionally required human-tuned thresholds and
dozens of free parameters [Contribution 6]. MCD-YOLOVS5 replaces this tedium with a two-
stage deep-learning workflow: an attention-augmented YOLOvVS detector slices Galactic
plane images, while Density Peak Clustering stitches velocity channels into 3D clumps.
Trained on 10,000 synthetic but realistic MWISP cubes, the network attains 98% recall with
only two tunable parameters—an order-of-magnitude reduction compared with FellWalker
or ClumpFind.

The RR Lyrae study shows how neural emulators can invert light-curve morphology
into fundamental stellar parameters [Contribution 7]. A dense hydrodynamic grid and
a four-layer ANN recover mass, luminosity, effective temperature, and metallicity from
TESS single-band photometry alone. The derived period-luminosity—metallicity relation is
consistent with theoretical predictions and demonstrates a fast, scalable route to precision
stellar astrophysics for LSST’s multi-band light curves.

Finally, the study on H II regions in NGC 2403 concludes that these regions are
primarily star-forming with a clear inside-out evolution pattern [Contribution 8]. The N,O,
diagnostic is identified as the most reliable for estimating metallicity due to its insensitivity
to the ionization parameter and age. The study highlights limitations in reproducing
certain emission lines, particularly [O II], suggesting future work should consider the
effects of stellar rotation or binary populations to improve model accuracy. This research
provides valuable insights into the properties and evolution of H II regions in NGC 2403,
contributing to the broader understanding of star formation and galaxy evolution.

Taken together, these works deliver a clear message: interpretable, domain-aware Al
is no longer optional; it is the prerequisite for turning tomorrow’s exabyte surveys into
lasting scientific knowledge.

Looking forward, five priorities emerge:

Mechanistic interpretability. We must move from post hoc saliency maps to architec-
tures that embed conservation laws, radiative transfer, and gravitational dynamics directly
into their loss functions.

Causal inference. Correlations uncovered by neural networks need to be inter-
rogated with counterfactual simulations to disentangle astrophysical causation from
observational bias.

Scalable, uncertainty-aware pipelines. As data volumes grow, even lightweight
explainability tools become computationally prohibitive. Hardware-aware pruning and
probabilistic neural networks will be essential.

Cross-messenger consistency. Joint electromagnetic, gravitational-wave, and neutrino
data sets require federated learning frameworks that respect proprietary formats while
preserving interpretability.

Ethical stewardship of the spectrum. RFI mitigation strategies must evolve in tandem
with satellite mega-constellations; open-source tools like those presented here should
become community standards endorsed by the IAU and national regulators.

We invite the readership to treat this Special Issue not as a collection of isolated
advances but as a blueprint for the next decade of trustworthy, data-driven discovery.
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The code, models, and data sets accompanying each paper are released under permissive
licences precisely to encourage rapid iteration and broader adoption. Let us build on these
foundations—together—to ensure that the coming avalanche of astronomical data yields
insights that are as reliable and profound as the night sky itself.

As Al technology continues to evolve, its applications in astronomy are expected to
expand and deepen, leading to even more groundbreaking discoveries [7-14]. The future
of Al in astronomy holds several promising directions:

Advanced Machine Learning Models: The development of more sophisticated ma-
chine learning models will likely uncover new types of phenomena and optimize space
missions in ways not yet imagined. These models will be capable of handling the increas-
ing volume and complexity of astronomical data, leading to more accurate predictions
and discoveries.

Data Fusion and Multi-Messenger Astronomy: The ability to effectively fuse data
from multiple sources and instruments will become increasingly important. Al will play a
crucial role in integrating and analyzing data from different telescopes, observatories, and
missions, enabling a more comprehensive understanding of cosmic events. This will be par-
ticularly important for multi-messenger astronomy, where data from gravitational waves,
electromagnetic radiation, and other sources are combined to study cosmic phenomena.

Enhanced Observational Capabilities: Al will continue to improve the capabilities of
ground-based and space-based telescopes. This includes advancements in adaptive optics,
which can correct for atmospheric distortions in real-time, and the development of new
algorithms for image processing and data analysis. The integration of AI with upcoming
observatories such as the SKA and the Rubin Observatory will enable unprecedented levels
of detail and accuracy in astronomical observations.

Citizen Science and Public Engagement: Al can facilitate citizen science projects by
automating tasks that would otherwise require significant human effort. This will allow
more people to participate in astronomical research, contributing to the discovery and
analysis of celestial objects. Additionally, Al-generated visualizations and educational tools
will enhance public engagement and understanding of astronomy.

Addressing Challenges: While Al offers numerous benefits, it also presents challenges
such as data quality, model interpretability, and computational resource requirements.
Future research will focus on developing robust data quality enhancement algorithms,
creating interpretable Al models, and optimizing computational resources to ensure the
efficient and effective use of Al in astronomy.

In conclusion, Al has already transformed the field of astronomy by enhancing data
processing, enabling new discoveries, and improving observational capabilities. As technol-
ogy continues to advance, Al will play an increasingly vital role in unravelling the mysteries
of the universe, making astronomy more accessible and engaging for both researchers and
the public.
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Abstract: Solar radio observation is an important way to study the Sun. Solar radio bursts contain
important information about solar activity. Therefore, real-time automatic detection and classification
of solar radio bursts are of great value for subsequent solar physics research and space weather
warnings. Traditional image classification methods based on deep learning often require considerable
training data. To address insufficient solar radio spectrum images, transfer learning is generally
used. However, the large difference between natural images and solar spectrum images has a large
impact on the transfer learning effect. In this paper, we propose a self-supervised learning method
for solar radio spectrum classification. Our method uses self-supervised training with a self-masking
approach in natural language processing. Self-supervised learning is more conducive to learning the
essential information about images compared with supervised methods, and it is more suitable for
transfer learning. First, the method pre-trains using a large amount of other existing data. Then, the
trained model is fine-tuned on the solar radio spectrum dataset. Experiments show that the method
achieves a classification accuracy similar to that of convolutional neural networks and Transformer
networks with supervised training,.

Keywords: solar radio spectrum; deep learning; self-supervised learning; transfer learning

1. Introduction

Solar radio spectrum observations are an important tool for studying solar outbursts,
which contain important information about solar activity [1]. The solar radio spectra are
divided into various types, corresponding to different physical events [2,3]. With the
development of radio spectrometers and the massive observational data trend, manual
detection and classification of solar radio spectra can no longer meet the needs of research.
Therefore, it is important to automatically detect and classify solar radio bursts from this
massive information efficiently and rapidly for subsequent scientific research and space
weather warning and forecasting.

The solar broadband radio spectrometers (SBRS) at the National Astronomical Obser-
vatory of the Chinese Academy of Sciences were put into operation during the 23rd solar
activity cycle [4]. The devices have produced a large number of observations. However,
since solar radio bursts are a low-probability event, the observed spectra of solar radio
bursts are very small. Additionally, due to the presence of interference, the raw data are
not clearly characterized and it is difficult to quickly distinguish between different kinds
of data. This creates difficulties for subsequent astronomical studies [5]. Therefore, it is of
great help for solar physics research to classify solar radio spectra accurately, quickly and
automatically.

With the rapid development of hardware levels and artificial intelligence, an increas-
ing number of deep learning models and algorithms are used to solve tasks related to
natural language processing [6] and computer vision [7,8]. For astronomy problems, many
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previous works were carried out on solar radio spectrum classification and these works
have used image processing algorithms, neural network models and deep learning [9].
P.]J. Zhang et al. designed an event recognition analysis system that can automatically
detect solar type III radio bursts. This system used Hough transform to recognize the
line segment associated with type III bursts in the dynamic spectra [10]. However, the
computational parameters of this method must be artificially designed and are not univer-
sally applicable. In recent years, with the development of convolutional neural networks
(CNN) [11,12], long short-term memory (LSTM) networks [13], and deep confidence net-
works [14], many of these methods were applied to the classification of solar radio spectra.
S.M.]. Jalali introduced LSTM [15], which was combined with a CNN to propose the CNN-
LSTM approach [16]. This method improves performance with similar time consumption.
B. Yan used a feature pyramid network (FPN) as a backbone network [17] and used ResNet
to extract features [18]. By simply connecting to the structure, FPN fuses features of dif-
ferent scales and different levels of semantics. The performance of detection is improved
without affecting the speed of detection. In other related studies, a classification algorithm
based on joint convolutional neural networks and transfer learning was proposed by using
the inherent correlation between natural datasets and astronomical datasets. In addition,
a cost-sensitive multiclassification loss function was proposed to make the network pay
more attention to categories with fewer samples during the training process and use the
meta-learning method to classify the solar radio spectrum with fewer samples. In addition,
H. Salmane et al. proposed automatic identification methods for specific types of solar
radio burst structures [19].

In current research on image classification, a large amount of training data is generally
needed. However, since solar radio bursts are low-probability events, there are few samples.
To solve the problem of fewer data, some studies have used transfer learning technology
and improved loss functions. However, the large difference between natural images and
solar radio spectrum images is not conducive to the application of transfer learning.

In natural language processing, self-supervised learning methods have become popu-
lar and these methods no longer require large amounts of labeled data in the training step.
Researchers can design some rules to let the data supervise their own training [20]. For
example, bidirectional encoder representations from Transformer (BERT) are designed as a
kind of fill-in-the-blank method by masking some words in a sentence and then letting the
network guess those words. In natural language processing, self-supervised learning is
usually based on autoregressive language modeling in generative pre-training (GPT) and
mask self-coding in BERT. Their basic principle is to delete some data and let the network
learn to predict the deleted content.

In this paper, a solar radio spectrum classification method based on self-supervised
learning is proposed. The method uses BERT to train the network to classify solar radio
spectrum images by randomly masking a portion of the solar radio spectrum images and
letting the network fill in the blank. The main contribution of this paper is that we apply
self-supervised learning to classify the solar radio spectrum for the first time. This method
is more conducive to using transfer learning. This paper can provide a reference for other
small sample data classifications in astronomy.

2. Solar Radio Spectrum Dataset and Its Preprocessing

The solar radio spectra are obtained from the solar broadband radio spectrometer
(SBRS) at the National Astronomical Observatory of the Chinese Academy of Sciences. The
raw data are stored in binary format and visualized to obtain the solar radio spectrum
images. The vertical axis of the solar radio spectrum image represents the frequency of the
spectrum, the horizontal axis represents the time, and each pixel value represents the radio
flux of the Sun at a certain time and frequency. When displayed as a grayscale image, white
indicates high solar radio flux, black indicates low solar radio flux, and the whole image
represents the solar radio flux at a frequency over a period of time. The solar radio spectra
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are divided into three categories: burst, calibration and non-burst, as shown in Figure 1.
The classification tasks in this paper are aimed at these three categories.

(a) (b) | ©

Figure 1. Solar radio spectrum data types. (a) Radio burst; (b) calibration; (c) non-burst.

The solar radio spectra images show that the original image is noisy and most of
the noise is transverse stripe noise. This noise will affect the subsequent classification
accuracy. The frequency channel normalization can reduce transverse stripe noise and
make its features obvious, and the calculation method is as follows:

n m n

Pxy) =pluy) - %ZP(WH%Z ) p(xy) M

y=0 x=0y=0

where p(x,y) represents the radio intensity at time x and frequency y on the spectrum
and p’(x,y) is the radio intensity after channel normalization. The final result is shown in
Figure 2. The noise of the horizontal stripe is significantly reduced and the burst is more
obvious. It makes the features of the image more obvious and facilitates the learning of the
subsequent network.

(b)

Figure 2. Results of channel normalization. (a) Before channel normalization; (b) after channel

normalization.

3. Method Section
3.1. Self-Supervised Learning

Self-supervised learning (SSL) is the main method used with the Transformer model
to learn from large-scale unlabeled datasets [21]. The basic idea of SSL is to fill in the
gaps. It masks or hides some parts of the input and uses observable parts to predict
hidden parts [22]. Another effective method of self-supervised learning is contrastive
learning [23]. In this case, we usually learn the feature representation of samples by
creating positive and negative samples and comparing the data with positive samples and
negative samples in the feature space. The advantage of contrastive learning is that it does
not need to reconstruct pixel-level details to obtain image features but only needs to learn
differentiation in the feature space. However, the construction of positive and negative
samples is a difficult point in contrastive learning.

SSL provides a promising learning paradigm since it enables learning from a vast
amount of readily available nonannotated data. SSL is implemented in two steps. First, a
model is trained to learn a meaningful representation of the underlying data by solving a
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pretext task. The pseudo labels for the pretext task are automatically generated based on
data attributes and task definition. Therefore, a critical choice in SSL is the definition of a
pretext task. Second, the model trained in the first step is fine-tuned on the downstream
tasks using labeled data. The downstream tasks include image classification and object
detection [24,25].

3.2. Self-Supervised Learning with Self-Masking

Self-supervised learning methods are widely used in natural language processing.
However, due to the large difference between the CNN model in computer vision and
the Transformer used in natural language processing, the natural language processing
method cannot be effectively transferred to computer vision tasks. However, when Vision
Transformer (ViT) was proposed [26], the channel between computer vision and natural
language was opened [27-30].

We refer to the mask method used in the BERT and GPT in natural language and let
the model learn to restore sentences after covering some words. When the methods are
transferred to solar radio spectrum classification, the solar radio spectrum image is first
divided into blocks, which are equivalent to a word in a sentence. Then, these blocks are
masked randomly and sent to the network. The network is composed of the encoder and
decoder of ViT. After the image is restored through model learning, the trained encoder is
removed and connected to the fully connected layer for classification. The structure of the
self-mask model is shown in Figure 3.
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Figure 3. Self-masking model structure.

Compared with text, we can cover more parts due to the more redundant information
in the image. This not only saves space and improves the model speed but also helps the
model learn more information from solar radio spectrum images.

3.3. Encoder and Decoder

Our encoder is only derived from the ViT structure for visible unmasked blocks.
Similarly to standard ViT, our encoder embeds patches by adding a linear projection of
the positional embedding and then processes the dataset through a series of Transformer
blocks. However, our encoder only needs to work on a small subset (e.g., 25%), which
allows us to train very large encoders that require only a fraction of the computations and
memory. The complete dataset is processed by a lightweight decoder.
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The input to the decoder is a complete token set consisting of encoded visible blocks
and mask tokens. Each mask token is a shared and learned vector that represents the
missing blocks to be predicted. We add a position to all tokens in this complete set. If we
do not do this, mask tokens will not have information about their positions in the image.
The decoder also has another series of Transformer blocks.

The decoder is only used to perform image reconstruction tasks prior to training. Thus,
the decoder architecture can be designed in a flexible way, independent of the encoder
design. We experiment with very small decoders that are narrower and shallower than
the encoder. For example, our default decoder is 10% smaller in computations per token
than the encoder. In this asymmetric design, the complete set of tokens is processed by the
lightweight decoder only, which significantly reduces the pre-training time. The encoder

and decoder structures are shown in Figure 4.
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3.4. Data Enhancement

Because solar bursts are low-probability events, the solar radio burst spectra observed
are not much. To improve the generalization ability and avoid the overfitting of the model,
we augment the spectrum of solar radio bursts. We adopt a simple and data-independent
augmentation method called mixup. Mixup can be implemented in only a few lines of
code. A virtual training sample is constructed with minimal computational overhead. In an
extensive evaluation, the results show that mixup improves the generalization error of the
most advanced models in ImageNet, CIFAR, voice and tabular datasets. In addition, mixup
helps to eliminate the memory of false labels, the sensitivity to confrontation samples
and the instability of confrontation training. The formula for mixup data enhancement is
as follows:

X=Axi+ (1= A)x; 2

y=Ayi+(1—A)y; ®)

where x; and x; are two images randomly selected from the training set and y; and y;
are their corresponding one-hot tags, respectively. Prior knowledge indicates that the
linear interpolation of the sample images and the linear interpolation of the corresponding
one-hot labels correspond. Mixup constructs a new sample and its one-hot label X, iy based
on this prior knowledge. Among them, A is obtained by the data distribution S(«, «), and
« is a super parameter.
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By adjusting the super parameter «, we can adjust the proportion of interpolation
between images. The research also shows that there is no good method to set « at present
and the sensitivity to « is different in different datasets.

To further improve the generalization ability of the model and avoid overfitting,
dropout is also introduced in this model. In deep learning, if the amount of data is small
and the model is complex, the trained model will easily overfit. Dropout can alleviate the
overfitting problem and achieve a regularization effect to a certain extent.

4. Experimental Dataset and Experimental Configuration
4.1. Experimental Dataset

A solar radio burst corresponds to a certain solar activity event, which is a low-
probability event. The calibration data are relatively small and a large number of solar
radio spectra are no-burst spectra. Therefore, there is an imbalance between the three types
of samples.

Since the solar radio spectrum has two parts, left-handed and right-handed polariza-
tion, we separated the two parts so that the burst and calibration data can be expanded.
The amount of solar radio data after amplification is shown in Table 1. The quantity of the
three types of spectra is roughly in a balanced state, which alleviates the data imbalance
problem. The experiment shows that the separation of these two parts has no effect on the
results of solar radio spectrum classification.

Table 1. Number of solar radio spectrum samples.

Type Training Set Testing Set Total
Non-burst 1648 412 2060
Burst 1476 369 1845
Calibration 1292 322 1614

After data enhancement, the total number of samples is 5519. We divided these
randomly according to a proportion of approximately 8:2; 4415 labeled images were used
as the training set and the remaining 1104 were used as the testing set. The specific number
of samples in each category of the dataset is shown in Table 1.

4.2. Experimental Configuration and Evaluation Index

The software environment for our experiments is Windows 10, the programming
platform is PyCharm, and the architecture is PyTorch. In the hardware device, the CPU
is an Intel Core i7-10700k, the memory is 32 GB, and the GPU is a NVidia GeForce RTX
2080Ti. For pre-training, the batch size is 16, the image size is 224 x 224, the epoch is set
to 300, the learning rate is 1.5 x 1074, the warmup learning rate is 1076, the warmup is
30 epochs, and the weight decay is set to 0.05. In the fine-tuning stage, the epoch is set to
50, the learning rate is 1073, the warmup learning rate is 10~°, the warmup is five epochs,
and the other parameters are unchanged.

In practice, the burst class has greater research value and greater impact on daily life,
so we mainly focus on the burst class. The burst class is defined as a positive class, and the
other two classes are defined as negative classes. We define TP as the number of samples
that are positive and correctly classified as positive, FP as the number of samples that are
negative but wrongly classified as positive, TN as the number of samples that are negative
and correctly classified as negative, and FN as the number of samples that are positive
but classified as negative. The evaluation metrics used in the experiment are accuracy,
precision, recall, specificity, and F-score.

Accuracy refers to the proportion of the number of accurate samples classified by all
categories to the total number of samples. It is calculated as follows:

TP+ TN
TP+TN+FP+FN

Accuracy =

4)
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Precision refers to the proportion of the number of correctly predicted positive samples
to the total number of predicted positive samples. It is calculated as follows:

TP

TP+ FP ©)

Precision =
Recall refers to the proportion of correctly predicted positive samples relative to all
actual positive samples. It is calculated as follows:

TP

Recﬂll - m

(6)
Specificity refers to the proportion of correctly predicted negative cases relative to all
actual negative cases. It is calculated as follows:

TN

—_— 7
TN+ FP @

Specificity =
The balanced F-score is used for the overall evaluation of precision and recall. It is

calculated as follows: .
Precision x Recall

Precision + Recall

Fi=2x (8)
5. Experimental Results and Discussion
5.1. Effect of Masking Rate on Classification Accuracy

When using the self-masking model structure for training, we divide the solar radio
spectrum image into blocks and then mask these blocks randomly and send them to the
network for training. We found that different masking rates affect training and classification
accuracy. After using different masking rates for the experiments, the influence of masking
rates on classification accuracy is shown in Figure 5.
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Figure 5. Influence of masking rate on classification accuracy.

In Figure 5, the experimental data show that a high masking rate corresponds to a high
accuracy. When the masking rate is between 60% and 75%, the classification accuracy is the
highest. The experimental results are counterintuitive. In natural language processing, the
best masking rate of the BERT method is about 15%. In our results, the optimal masking
rate is much higher. This may be because compared with text, images have more redundant
information, while text contains more dense information.

Therefore, masking more information in the image can remove much redundant
information unrelated to classification. This is more conducive to learning useful features
and more essential information from the image, which is conducive to subsequent transfer
learning. In this experiment, a random masking rate of 75% is finally selected and the
masking effect is shown in Figure 6.
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(a) (b) | ©

Figure 6. BERT masking experiments. (a) Original image; (b) after 75% masking; (c) restored images.

5.2. Pre-Training with Transfer Learning

After expanding the solar radio spectrum image dataset there are still few experimental
data, therefore, the effect of training the mask model with these data, as shown in Figure 3,
is poor. Therefore, we adopt the transfer learning training method. First, we train the mask
model on the large dataset ImageNet [31]. At this stage, we do not need to use the tags in
the ImageNet dataset. Then, we remove the encoder module and connect it to the fully
connected layer and transfer it to the small dataset of the solar radio spectra for fine-tuning.
An accuracy comparison using transfer learning is shown in Table 2.

Table 2. Transfer learning effect.

Method Accuracy (%)
Training from the beginning 70.60
Transfer learning 98.63

As seen in Table 2, the transfer learning ability of the model is very good, which greatly
improves the accuracy of the experiment. This is also because the Vision Transformer (ViT)
structure requires a large amount of training data. Although the ViT model achieves
good results, it is based on the use of a larger dataset than ImageNet. If only ImageNet is
used, the results of the ViT model are not better than those of the CNN structure model.
However, because the self-supervised method can learn more information about images
than the supervised method, the information contained in the image itself is also far greater
than the information contained in the label, therefore, the transfer learning effect of the
self-supervised model is very good.

5.3. Data Enhancement in Training

In the process of ViT training, to further alleviate overfitting and accelerate conver-
gence, we used many data enhancement methods. In our experiment, we tried color
change, random erasure, mixup, cutmix, and their combination. The experimental results
are shown in Table 3.

Table 2 shows that based on the accuracy of 98.63% after transfer learning, mixup and
cutmix improve the accuracy, the other two methods have no significant improvement
effect on the final accuracy, and changing the color even makes the accuracy decrease
slightly. Experiments were also conducted to determine how mixup generates virtual data.
The experiments were divided into four groups. The accuracy of the model is higher with
three interpolations plus the source of the same batch. Experiments were also conducted
for the source of cutmix data, which were divided into two groups. The experimental
results show that the results are better when the data come from the same batch. The final
combination of mixup and cutmix yielded an accuracy of 99.3%, as shown in Table 3.

12
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Table 3. Results of data enhancement experiments.

Mixing Method Accuracy (%) Recall (%)
Random Erasing 96.7 97.8
Color change 98.6 98.4
+Quadratic interpolation +Random 98.7 97.3
Mixu +Triple interpolation +Batch 98.1 97.8
P +Quadratic interpolation +Batch 98.7 98.4
+Triple interpolation +Random 98.9 97.6
Cutmi +Batch 98.8 97.0
utmix +Random 98.7 97.3
Mixup + Cutmix 99.3 98.4
5.4. Dropout

We conducted experiments on different dropout methods, including dropout, Drop-
Path, and DropAttention [32]. Dropout discards nodes in the network with a certain
probability, DropPath discards paths in the network, and DropAttention discards the atten-
tion weight in the Transformer with a certain probability. The three methods can prevent
overfitting, overcome network degradation and improve the network effect. The best
results are shown in Table 4. In the three dropout experiments, DropPath is relatively good
and the drop probability is 0.1.

Table 4. Results of dropout experiments.

Method Accuracy (%) Recall (%)
Dropout 98.8 97.8
DropPath 98.9 98.4
DropAttention 98.6 98.4

5.5. Final Classification Results

After integrating the above methods, the final results of the model and the change
curve of its loss are shown in Figure 7. The final accuracy of the model is 99.5%. Compared
with the results of some previous studies, it showed a good improvement effect and good
migration results are achieved. Although the final restored image is relatively fuzzy, the
restored image exhibits the characteristics of the solar radio burst images well. This shows
that the network learns the characteristics of solar radio burst spectrum images well.
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Figure 7. Model training results. (a) Accuracy curve, (b) Loss curve.

To measure the effectiveness of our model from various aspects, other indicators were
considered in the experiment to evaluate our model. First, the confusion matrices of the
three categories are calculated and the results are shown in Figure 8. Then, the confusion
matrix is used to calculate the precision, recall and specificity of each category. In addition,
the F1 score of each category is calculated. An F1 score of 1 is the best and 0 is the worst.
The results are shown in Table 5.
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Figure 8. Confusion matrix.
Table 5. Experimental results of our model.
Type Precision (%) Recall (%) Specificity (%) F1 Score
Burst 99.5 98.9 99.7 0.992
Non-burst 99.0 99.8 99.4 0.994
Calibration 100 99.7 100 0.998

Our model is also compared with other models. The comparison model uses Vision
Transformer, Swin Transformer, VGG, GoogLeNet, MoblieNet, ResNet and DenseNet as the
core of the experimental network. For a fair comparison, other models are also migrated
to the solar radio spectrum image for fine adjustment after pre-training. The results are
shown in Table 6.
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Table 6. Comparison experiments.

Models Accuracy (%) Recall (%)
Vision Transformer 94.3 97.5
VGG16 96.0 98.4
Swin Transformer 99.0 99.1
Resnet 98.9 98.9
MobileNet 95.6 98.1
GoogLeNet 96.6 98.4
DenseNet 99.1 99.1
Ours 99.5 99.7

The self-supervision model can achieve the same accuracy as the current mainstream
CNN and Transformer models. At the same time, compared with Vision Transformer, the
accuracy of our model is obviously higher under the same transfer learning conditions.
This shows that self-supervised learning is indeed more conducive to transfer learning
than supervised learning.

For this application, we pay more attention to solar radio bursts that occurred with
low probability. It is more critical to find all solar radio bursts as far as possible. Therefore,
a high recall rate is important. Our method has achieved a 99.7% recall rate, which is better
than other models.

6. Conclusions

In this paper, we propose a solar radio spectrum classification method based on self-
supervised learning. By referring to the BERT method in natural language processing, it is
improved for solar radio spectrum classification. After randomly masking the solar radio
spectrum image, the method lets the model learn to restore the image to learn the image
features. This method uses the image itself as a label to enable the network to learn more
information, therefore, it is very suitable for transfer learning, thus addressing the issue of
fewer solar radio spectrum image datasets. This method can also obtain a good result on a
small dataset. Through experiments, an accuracy of 99.5% was achieved on the solar radio
spectrum dataset. Compared with other models, our model achieves better experimental
accuracy. However, our model has a larger number of parameters and requires more
training time. Therefore, we need to continue to study how to reduce the scale of the model.

According to the spectral morphology of solar radio bursts, they can be divided
into type I, II, I1I, IV, V and their associated fine structures. Different solar radio bursts
correspond to different solar physical phenomena. Next, we will further subdivide and
label the burst samples and use the fine-grained method to classify type I, II, III, IV, V bursts.
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Abstract: In this study, we aim to analyze the electromagnetic interference (EMI) regarding the Five-
hundred-meter Aperture Spherical radio Telescope (FAST) caused by base stations in the International
Mobile Telecommunications-2000 (IMT-2000) frequency band. By analyzing the frequency bands
used by the transmitting and receiving devices and the surrounding environmental parameters
and utilizing an approach to predicting radio wave propagation loss that is based on deterministic
methods, we conclude by comparing the predicted received power at the FAST with its interference
protection threshold. Our analysis demonstrates that, currently, only 55.31% of IMT-2000 base
stations in the FAST radio quiet zone (RQZ) meet the protection threshold. Additionally, this
article verifies the applicability and accuracy of the radio wave propagation model used in the
research based on field strength measurements. Overall, this study provides valuable insights for
improving the electromagnetic environment surrounding FAST and reducing the EMI caused by
mobile communication base stations. It also provides corresponding analysis methods and useful
suggestions for analyzing electromagnetic radiation interference in other radio telescopes.

Keywords: radio telescopes; electromagnetic interference; IMT-2000; FAST

1. Introduction

The Five-hundred-meter Aperture Spherical radio Telescope (FAST) was approved in
2007 and completed acceptance testing in 2020, officially entering its operational phase. As
a major national advanced scientific and technological project in China, it holds the record
for being the largest spherical radio telescope with a single-dish configuration and the most
exceptional sensitivity worldwide [1-3]. FAST, known as the “Chinese Eye of the Sky”, has
a comprehensive performance about 10 times higher than that of the Arecibo telescope in
the United States, which was destroyed in December 2020 [4]. Since its completion, FAST
has achieved many significant scientific research results [5,6]. As a passive observational
device for radio astronomy, radio telescopes rely on high-sensitivity terminal equipment
to receive radio signals from celestial bodies for scientific research. Therefore, the radio
astronomy service is highly vulnerable to electromagnetic interference (EMI) from other
active services, which may affect its inherent scientific observations [7]. In addition, to
strictly control the electromagnetic environment around FAST, the local government has
established a radio quiet zone (RQZ) centered on the FAST site, with a radius of 30 km.

Universe 2023, 9, 248. https:/ /doi.org/10.3390/universe9060248 18 https://www.mdpi.com/journal /universe



Universe 2023, 9, 248

Among them, 0-5 km is the core area, 5-10 km is the middle area, and 10-30 km is the
remote area. However, numerous mobile communication base stations have yet to meet
the daily communication needs of local residents. These base stations may interfere with
FAST during operation and affect its performance. Therefore, it is crucial to monitor the
electromagnetic environment surrounding FAST, and exploring the signal radiation pattern
of mobile communication base stations is essential to ensure the inherent observation
of FAST.

Due to the ultra-high sensitivity of FAST, it is susceptible to electromagnetic signals.
To mitigate interference from other businesses, it is necessary to implement electromagnetic
compatibility and interference avoidance measures before construction and operation [8,9].
For example, Wang et al. have established a FAST satellite interference mitigation system
for satellite interference sources. This system uses specific antennas to detect satellite
interference in the 1-5 GHz frequency band and establishes a satellite EMI database to
suppress satellite interference. Through practical observation, the feasibility of this system
has been verified, and a practical solution has been provided to mitigate the impact of
satellite interference on FAST [10]. Wang et al. analyzed the fading characteristics in
the UHF band of the karst landforms around the FAST site based on the experimental
datasets of six frequency channels around FAST using the Kolmogorov-Smirnov statistical
method [11]. Additionally, based on radio propagation methods and cognitive theory,
they also analyzed the radiation characteristics of mobile communication base stations
in the 870-878.6 MHz frequency band within the FAST RQZ. Four strategies for interfer-
ence avoidance and frequency coordination were proposed for base stations exceeding
the FAST interference protection threshold, and the consistency of these strategies was
verified through experimentation. In addition, a set of evaluation criteria for frequency
coordination strategies was established to analyze the satisfaction of the proposed strategy
under different criteria. This research provides theoretical and experimental support for
improving the radiation interference of mobile communication base stations within the
FAST RQZ [12].

In order to analyze the potential EMI caused by International Mobile Telecommunications-
2000 (IMT-2000) mobile communication base stations on the operation of FAST, we use
the method listed in Recommendation ITU-R. Based on the parameters of equipment and
frequency information at the transceiver end, combined with the protection requirements
of radio astronomy services, we analyze whether the IMT-2000 base station in the FAST
RQZ will generate EMI to FAST.

2. Analysis Object
2.1. FAST

The location of FAST is situated in Kedu Town, Dawodang, within Pingtang County,
located in the Guizhou Province of China (106.85° E, 25.64° N). With its natural geographic
advantages and the unique structure designed by Chinese scientists, it is currently the
world’s largest and most sensitive single-dish radio telescope and a major scientific and
technological infrastructure project of China’s Eleventh Five-Year Plan. The scientific
objectives of FAST mainly include: observing neutral hydrogen in the universe, searching
for new pulsars, measuring very long baseline interference (VLBI), and extending deep
space communication capabilities [13]. The FAST receiving and terminal systems currently
include seven sets of receivers involving 70 MHz-3 GHz [14]. As shown in Figure 1,
the IMT-2000 base stations around FAST include two operators, such as China Mobile
Communications Corporation (CMCC) and China Unicom Communications Corporation
(CUCCQ), mainly distributed within a range of 5-30 km from FAST, as radio equipment is
prohibited in the core area of RQZ.
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Figure 1. The distribution of IMT-2000 base stations around FAST.

According to the interference protection requirements for FAST and Recommendation
ITU-R RA.769 [15], IMT-2000 base stations mainly involve two types of receivers in FAST,
namely, B05 and B07. The operating frequency range of the B05 receiver is 1100-1900 MHz,
and the system noise temperature is 20 K, while the operating frequency range of the B07
receiver is 2000-3000 MHz, and the system noise temperature is also 20 K. The relevant
interference threshold values are shown in Figure 2. Furthermore, in the FAST-IMT interfer-
ence analysis, we are particularly concerned with the maximum input power that the FAST
can tolerate, and the B05 and B07 receiver protection power thresholds are both —199 dBW.
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Figure 2. The interference protection requirements for FAST.
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In analyzing interference on the FAST-IMT link, the FAST antenna serves as the
receiving end, and its antenna gain in the direction of the received signal is the primary
consideration. The typical antenna radiation patterns of the FAST antenna include the
main vertical plane (zenith angle is 0°), the central horizontal plane (elevation angle is
0°), and the three-dimensional radiation pattern, as shown in Figure 3. The pattern of the
antenna reveals a well-shaped main lobe with a narrow beamwidth, with a peak gain of
74.21 dB, accompanied by a number of minor lobes and back lobes of lower gain, with the
highest side lobe located at about 120° with respect to the main lobe, as shown in Figure 3a.
Figure 3b shows that the horizontal pattern of FAST is directionless over 360° when the
elevation angle is 0°, exhibiting a uniform distribution of equivalent radiated power with a
gain of 74.21 dB.

0

(==}

&
O

R

/"J‘ L\ 90
VA@QMB 30dB 60dB/ B 30dB 60dB/ 90dB

+180 +180

(a) (b)

Figure 3. The typical radiation pattern of the FAST antenna at 1905 MHz: (a) 2D-vertical direction
(zenith angle is 0°); (b) 2D-horizontal direction (elevation angle is 0°); (c) 3D.

2.2. IMT-2000 Base Station

The IMT-2000 system was formally proposed by ITU in 2000, which extends the 2G
communication system from narrowband to broadband. The IMT-2000 system is mainly
committed to mobile internet technology, which fully integrates wireless communication
and other communication technologies, such as the Internet. It operates in the 2000 MHz
frequency band, with an uplink frequency band of 1890-2030 MHz and a downlink fre-
quency band of 2110-2250 MHz, abbreviated as IMT-2000. The IMT-2000 system mainly
adopts Code Division Multiple Access (CDMA) as its core technology and has now formed
three mainstream technology standards, including wideband W-CDMA, CDMA-2000,
TD-SCDMA, and others. The emergence of the IMT-2000 system has made mobile com-
munication services capable of multimedia transmission, better transmission quality, and
higher spectral efficiency [16].

Wideband Code Division Multiple Access, referred to as W-CDMA, is a technology
that evolved from the GSM core network. It primarily employs CDMA with a 5 MHz
bandwidth, fast power control for both uplink and downlink, downlink transmit diversity,
and synchronous and asynchronous operation between base stations. W-CDMA is the most
widely adopted, has the most diverse range of terminal equipment among the IMT-2000
standards, and is currently operated mainly by CUCC. CDMA-2000 is a wideband CDMA
technology developed from the narrowband CDMA-2000 technology. The forward link
can adopt transmit diversity and forward /backward power control to improve channel
fading resistance and channel capacity. It is fully compatible with the CDMA-2000 system
and inherits the transmission characteristics of the CDMA-2000 system. It is currently
operated by CTCC. TD-SCDMA technology was proposed by China to ITU in 1999. It
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TMT-2000
(MHz)

integrates intelligent wireless, synchronous CDMA, software-defined radio, and other
related technologies. It has significant advantages in terms of business support, spectrum
utilization, switching efficiency, anti-interference, and compatibility. It is highly valued by
communication equipment manufacturers and is primarily operated by CMCC, as shown
in Figure 4.
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TD-SCDMA CDMA-2000 W-CDMA TD-SCDMA CDMA-2000 W-CDMA

1880 1920 1940 1965 2010 2025 2110 2130
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Figure 4. The frequency distribution of each operator (IMT-2000 frequency band).

The frequency bands used in the FAST RQZ for IMT-2000 include four frequency bands,
namely, 1880-1920 MHz, 2010-2025 MHz, 2110-2130 MHz, and 2130-2155 MHz. In the
analysis of interference characteristics of FAST-IMT, the EMI from the base station, which
serves as the transmitting end, consists of two parts: electromagnetic leakage interference
from the transmitter equipment and radiation interference from the IMT-2000 base station
antenna [2]. Compared with the radiation interference from the base station antenna,
the leakage interference from the transmitter equipment is weaker. Therefore, when
analyzing the EMI of base stations, the radiation interference from the base station antenna
is primarily considered. According to the interference prediction method described in
Section 3.1, to predict the interference generated by communication base stations, relevant
parameters such as the baseband resource reference power of the base station antenna,
antenna gain, antenna height, and antenna radiation pattern need to be taken into account.
All IMT-2000 base stations in the FAST RQZ use the same antenna model, which operates
in 880-960/1700-2200/1880-2700 MHz frequency bands, with an azimuth of 65° and a tilt
angle of 0°. Figure 5 shows the typical directional patterns of the IMT-2000 base station
antenna in the working frequency bands, including the central horizontal plane (elevation
angle is 0°), main vertical plane (zenith angle is 0°), and three-dimensional radiation pattern.
The base station antenna exhibits a relatively wide main beam with a low gain but also
shows significant sidelobes that may contribute to cross-polarization and intermodulation
interference. Additionally, the minimum gain of the antenna is —30 dB, and the peak gain
is 0 dB.
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Figure 5. The typical radiation pattern of the base station antenna at 1700-2200 MHz and 1880-2700 MHz:
(a) 2D-vertical direction (1700-2200 MHz); (b) 2D-horizontal direction (1700-2200 MHz); (c) 3D
(1700-2200 MHz); (d) 2D-vertical direction (1880-2700 MHz); (e) 2D-horizontal direction (18802700 MHz);
(f) 3D (1880-2700 MHz).

3. EMI Analysis
3.1. Analysis Method

EMI may exist at any time due to one or more propagation mechanisms, and which
propagation mechanism is dominant mainly depends on the current weather conditions,
the terrain environment, the radio frequency used, the percentage of time of interest, and
the propagation path distance, among others. In the problem of interference prediction,
it is difficult to propose a unified and consistent method for different distances and time
percentages. Therefore, to ensure prediction accuracy, appropriate propagation models
should be selected for different climate and path conditions [17].

In radio astronomy, the power I received from the interfering source during observa-
tion time T can be expressed as [18]

[— 1 il Py(i) - CL;t(i) -Gy (i) 1)

p(i)

where N is the number of samples in the T; P;(i) is the transmit power level value (W) of
the radio astronomy input antenna at instant i; G;(i) is the gain of the interference source
antenna in the direction of the receiving antenna at instant i; G,(i) is the gain of the receiving
antenna in the direction of the transmitter at instant i; L (i) is the transmission loss at instant
i. Here, N, P1(i), Gt(i), and G,(i) are all set parameters, and L,(i) can be predicted by the
corresponding propagation model.

In the interference prediction analysis of FAST-IMT, ITU-R P.2001 is employed to
predict the basic transmission loss caused by signal enhancement and fading. This model
can be over distances ranging from 3 km to at least 1000 km beyond the effective range
of 0% to 100% annual coverage [19]. The prediction analysis model involves four sub-
models, namely, propagation close to the surface of the Earth, anomalous propagation,
troposcatter propagation, and ionospheric propagation. Finally, a Monte Carlo simulation-
based comprehensive method is utilized to predict the total transmission loss along the
path, as shown in Figure 6.

Z|

(1) Sub-model 1—Propagation close to the Earth’s surface: when the height of the trans-
mitting and receiving antenna is low to the ground, with the maximum radiation
direction along the surface, radio waves mainly propagate along the surface of the
Earth. At this time, the transmission loss mainly includes free-space basic transmission
loss, diffraction loss, clear-air effect, atmospheric attenuation, and other factors.
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Sub-model 2—Anomalous propagation: atmospheric propagation mainly refers to the
anomalous propagation of the atmospheric layers, namely, the atmospheric waveg-
uide phenomenon.

Sub-model 3—Troposcatter propagation: affected by different solar irradiation inten-
sities, thus forming an uneven propagation medium in the troposphere and causing
scattering. The troposcatter transmission loss mainly considers the basic troposcatter
transmission loss, rain—snow precipitation attenuation, and atmospheric absorp-
tion loss.

Sub-model 4—lonospheric propagation: for long-haul and low-frequency predictive
links, it is essential to consider the ionospheric scattering transmission loss caused by
sporadic-E, mainly including the one-hop propagation mode and two-hop propaga-
tion mode.

Set relevant parameters based on the device and environment: FAST and IMT-2000
base station locations, frequencies, heights of transceiver antennas, environment type,
time probability, location probability, and other basic path information parameters.
Then, determine the propagation parameters such as the propagation distance, path
midpoint position, sea propagation length, path elevation angle, refractive index,
precipitation probability, equivalent Earth radius, effective height, and path rough-
ness parameters.

Free-space basic transmission loss: when the transmitting and receiving antennas
are located within the “visible” distance from each other, the radio wave propagates
point-to-point along a straight line without reflection or scattering.

When the transmitting and receiving antennas are beyond the line-of-sight range,
radio waves propagate mainly through diffraction, including diffraction losses for
the Earth’s spherical surface, Bullington diffraction losses for the actual profile, and a
notional smooth profile.

The primary components of the gaseous attenuation effect are total gaseous attenua-
tion occurring during non-rain periods and gaseous attenuation resulting from water
vapor in non-rain and rain situations.

The clear-air zero-fade effect under no atmospheric ducting mainly includes the
refractive index change effect, the reflectivity of rain clouds, and the atmospheric
thermal noise.

The transmit angle-dependent loss is the unique angular attenuation in the irregular
propagation mechanism. When the corrected path angular separation is not greater
than 0, its loss is 0; otherwise, it is the product of angular attenuation and the corrected
total angular separation.

The time-distance-dependent loss depends on the distance and time percentage of the
great circle.

According to the longitude and latitude coordinates of the station site, combined with
the climatic zone model specified by ITU, determine the climatic zone and obtain the
climatic zone’s meteorological and atmospheric structure parameters.

Rain-snow and precipitation attenuation loss include the attenuation caused by
rain, snow, and rainfall in the typical path between the transmitting and receiving
antennas. It can be calculated using iterative functions based on the positions of
the transmitting and receiving terminals, the antenna heights, and the path length
between the transmitting and receiving antennas.

The dominant factor contributing to atmospheric absorption loss is the combined
effect of total gaseous attenuation during non-rain periods and gaseous attenuation
resulting from water vapor in both non-rain and rainy situations.
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Figure 6. The propagation prediction process of the ITU-R P.2001 model.
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3.2. Analysis Result

Using the interference evaluation method described in Section 3.1, and based on the
3 arc-seconds 90 m (SRTM3) high-precision elevation data, the interference caused by the
IMT-2000 base stations listed in Figure 1 regarding FAST is analyzed. Because the zenith
angle of FAST will change with different observation tasks and the antenna gain towards
the direction of receiving signals from the base station will also change, in order to consider
all possible scenarios to the maximum extent in the calculation process, several special
parameters are set, as follows:

e  Frequency: The upper and lower limits of each IMT-2000 base station working fre-
quency band are selected as the analysis main frequency points, including multiple
frequencies such as 1880 MHz, 1885 MHz, 1900.4 MHz, 1905 MHz, 1910.4 MHz,
1920 MHz, 2010 MHz, and 2025 MHz under CMCC and 2130.1 MHz, 2131.1 MHz,
2135.1 MHz, 2136.1 MHz, and 2155.1 MHz under CUCC.

e Time percentage: Five kinds of time probability, including 1%, 10%, 50%, 90%,
and 99%.

FAST receiving antenna zenith angle: 0°, 10°, 20°, 30°, and 40°.
Antenna radiation direction: towards the base station transmitting antenna and away
from the base station transmitting antenna.

Because the working frequency of the FAST receiver does not involve 1900-2000 MHz,
the communication base station operating in 1900.4 MHz, 1905 MHz, 1910.4 MHz, and
1920 MHz under CMCC will not cause interference regarding FAST. Here, we only analyze
the communication base station that shares the working frequency band with the receiver.

Based on the above parameters, we analyzed the interference situation of IMT-2000
mobile base stations, with a total of 62,415 data analyzed, of which 34,521 data meet the
requirements, accounting for 55.31%. The evaluation results are classified and counted
according to nine distance ranges of 5-6 km, 6-7 km, 7-8 km, 8-9 km, 9-10 km, 10-15 km,
15-20 km, 20-25 km, and over 25 km, as shown in Figure 7 (Note: there are no IMT-2000
base stations of CTCC near the FAST). The results show that: under the current conditions,
the proportion of data meeting the FAST threshold requirements for base stations within a
distance range of over 25 km is the highest, accounting for 64.03%, while the proportion for
the 7-8 km range is the lowest, accounting for only 24.21%. Meanwhile, Table 1 provides
the statistical proportion of data that meets the requirements for different receivers of FAST
involved in the IMT-2000 frequency band. In the IMT-2000 frequency band, the operating
frequency of the communication base station of CUCC is above 2100 MHz, which does
not involve the B05 (1100-1900 MHz) receiver. Within the frequency band of the B05
receiver, the analysis data of IMT-2000 base stations meet the FAST protection requirements,
accounting for 55.06%. The percentage is 56.00% in the B07 receiver frequency band.

Table 1. The statistical analysis of the proportion of IMT-2000 receivers meeting the FAST interference
threshold.

Receiver CMCC cuccC Total Data Proportion

B05
(1100-1900 25,298 - 45,945 55.06%
MHz)
B07
(2000-3000 400 8823 16,470 56.00%
MHz)
Total 25,698 8823 62,415 55.31%
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Figure 7. The statistical graph of the proportion of IMT-2000 base stations meeting the FAST interfer-
ence threshold at various distances.

To suppress the EMI of communication base stations on FAST when the received
power exceeds the interference threshold, protective measures can be implemented from
the interference source. The most direct and effective measure is to shut down the com-
munication base station, but this method results in the loss of communication quality and
has a high cost [20]. In addition, Wang et al. provide four effective measures for mitigating
the interference of communication base stations. These measures include increasing the
operating frequency of the base station, adjusting the radiation direction of the base station
antenna, reducing the height of the base station antenna installation, and decreasing the
radiation power of the base station [12]. By implementing these measures, the interference
received power of the base station at FAST can be significantly reduced while ensuring
communication efficiency and quality.

3.3. Result Validation

In order to verify the applicability and accuracy of the deterministic radio wave
propagation model used in this article, based on the frequency parameters of the IMT-2000
base station, the radio propagation characteristics of the propagation link formed between
the experimental test base station and the surrounding receiving test positions are predicted.
Testing was conducted using calibrated testing equipment and was in accordance with
standards such as GB/T 12572-2008, H] /T 10.2-1996, and GJB2080, and the received power
at the receiving point is measured and compared with the simulation prediction results of
the propagation model.

Four IMT-2000 base stations, including test base stations 1, 2, 3, and 4, were selected
at different directions and distances around FAST. These base stations were operated by
different operators and served as test sites. Then, multiple receiving points were set up in
different sectors. In order to ensure the accuracy of the test results and avoid interference
from terrain, buildings, high-voltage power lines, and other factors, the receiving antenna
should be located in flat and open areas. The relationship between the test station and the
various receiving test points, as well as the installation of the transmitting and receiving
equipment, are shown in Figure 8; the notation “SEC120_1" in the figure refers to the first
selected receiving point in sector 120 of the base station, and so on. The specific parameters
of the field test are shown in Table 2.
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Figure 8. The location information for IMT-2000 test stations.
Table 2. The field test parameter for the IMT-2000 frequency band.
Test Station Parameters Receiver Point Parameters
Test Location Altitude Antenna Distance from  Frequency  Transmit Antenna Path
Station (m) Height (m) FAST (km) (MHz) Power (W) Height (m) Distance (km)
(106.74° E,
1 25.69° N) 1150 15 12.12 1895/1909.4
(106.96° E, 20 4 0.9-2.1
2 25.50° N)) 1035 12 12.41 1895
(106.95° E,
3 25.61° N) 960 21 11.09 1895
(106.87° E,
4 25.70° N) 930 15 5.50 1895

Taking test base stations 1, 2, 3, and 4 as the main test base stations, we carried out the
radio wave propagation characteristics prediction analysis and testing for the IMT-2000
frequency band mobile communication signals of different operators. The statistical results
of the predicted link radio wave propagation characteristics between each test station and
the surrounding test points are shown in Figure 9 and Table 3. After comparative analysis,
the results show that: the predicted results are consistent with the measurement results,
with a consistent overall trend. Table 3 shows the mean error (ME), mean deviation (MD),
and standard deviation (SD) of four different tests conducted on the base station. Based
on the results, test base station 1 had the largest ME of —4.23 dB, indicating a significant
underestimation of the received signal power. Test base station 3 had the largest MD and
SD values of 10.00 dB, which suggests that the errors for this base station were consistently
large and highly variable. The last row presents the total measurement and prediction
errors, with an ME of —1.20 dB, an MD of 4.43 dB, and an SD of 5.83 dB. Overall, the total
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ME value for all tests is negative, while the MD and SD values are positive, indicating
an overall underestimation of the base station performance with relatively good accuracy
and variability. However, due to the proximity of several test points near buildings and
high-voltage lines near the test base station 3, only the SEC40_4 receiving point was selected.
As a result of the small number of test samples, a significant error was observed for the test
base station 3.

Test Base Station-1 Test Base Station-2
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Figure 9. The comparative analysis and statistics between the measurement and prediction: (a) Test
base station-1; (b) Test base station-2; (c) Test base station-3; (d) Test base station-4.

Table 3. The error analysis of the measurement and prediction.

Test Base Station ME (dB) MD (dB) SD (dB)
1 —4.23 4.49 6.05
2 1.93 2.87 3.23
3 10.00 10.00 10.00
4 3.65 3.65 4.82
Total —1.20 443 5.83

Therefore, the interference evaluation model used in this article can effectively support
the analysis of the radio wave propagation characteristics of the link between the IMT-2000
base stations and FAST in the region.

4. Conclusions

This article analyzes whether the IMT-2000 base station in the FAST RQZ affects the
normal observation operation of FAST, based on the frequency parameters of FAST and
IMT-2000 mobile communication base stations using the ITU-R P.2001 method verified by
experiments. By comparing the radio astronomy protection requirements and the protection
threshold of FAST, it is concluded that the IMT-2000 base stations in the FAST RQZ meet
the threshold data, accounting for only 55.31%. The proportion of data meeting the FAST
threshold requirements for base stations within a distance range of over 25 km is the highest,
accounting for 64.03%, while the lowest proportion is only 24.21% for the 7-8 km range.
Furthermore, the analysis results validated that the predicted ME is —1.20 dB, the MD is
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4.43 dB, and the SD is 5.83 dB. Furthermore, the ITU-R P.2001 selected in this article is an ITU
recommendation. The universal method can be analyzed more accurately by combining
radio meteorological parameters in different regions. The significance of adopting the
universal method in this article extends beyond planning mobile communication services
in the FAST RQZ and improving the electromagnetic environment around FAST. It also
serves as a valuable supplementary approach for other frequency-dependent devices. In the
future, the combination of artificial intelligence and other methodologies will be employed
to develop localized statistical analysis methods, aiming to provide more robust support
for evaluating relevant business operations.
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Abstract: Radio astronomy uses radio telescopes to detect very faint emissions from celestial objects.
However, human-made radio frequency interference (RFI) is currently a common problem faced
by most terrestrial radio telescopes, and it is getting worse with the development of the economy
and technology. Therefore, it is essential to monitor and evaluate interference during the planning,
construction, and operation stages of the radio telescope and protect the quiet radio environment
around the radio astronomical site. In this paper, we present a software for an RFI analysis of the radio
environment around the telescope. In this software, information has been collected, including the
location of the site; the technical specifications, such as aperture and the frequency range of the radio
telescopes; and the terrain around the site. The software and its modules are composed of telescope,
geographic, and meteorological databases, and analysis modules of terrestrial and space-based RFI.
Combined with the propagation characteristics of radio waves, we can analyze and evaluate RFI on
the ground and in space around the radio telescope. The feasibility of the software has been proved
by the experimental implementation of the propagation properties and RFI source estimation. With
this software, efficient technical support can be expected for protecting the radio environment around
the telescope, as well as improving site selection for planned radio astronomical facilities.

Keywords: radio telescopes; radio frequency interference; RFI analysis software

1. Introduction

Radio astronomers study the Universe by detecting and analyzing radio waves emitted
by celestial objects, such as stars, galaxies, and black holes. These signals are transmitted
over long distances and require sensitive instruments to detect them. However, RFI
from human-made sources, such as mobile phones, TV broadcasts, satellites, and other
communication systems, can cause unwanted noise and signal interference, making it
difficult to distinguish between the cosmic signals and the RFI. This can seriously degrade
the quality of astronomical data, limit the sensitivity of observations, and even render some
observations useless.

Therefore, radio astronomers take special care to position their telescopes in remote
locations away from human-made RFI sources and use various RFI mitigation techniques
to filter out or correct for interference. Setting up the Radio Quiet Zone (RQZ) is the
most effective way to protect the electromagnetic environment from the terrestrial RFI [1].
Meanwhile, some large radio telescope facilities have established monitoring systems for
terrestrial RFI and developed the satellite RFI databases and prediction systems to prevent
interference from satellites [2—4].

In addition, astronomers also need to use some statistical algorithms or manual editing
to further mitigate and flag the RFI-contaminated data [5-7]. With new technologies such as
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multi-beam and phased array feed receivers, the amount of astronomical data is increasing
dramatically, and avoiding RFI or providing efficient flagging will be necessary for next-
generation radio facilities. Some machine-learning-based RFI recognition methods have
been applied and developed to reduce human intervention and increase accuracy [8-10].
This type of supervised learning method requires a large amount of training data to obtain
accurate results and is mostly in the experimental stage.

In the field of RFI monitoring and estimation, Ref. [11] provided a scientific basis for
the scientific site selection and radio astronomy protection operations through relevant
electromagnetic environment tests. Ref. [12] validated the applicability of the ITU-R model
in the Karst Region of Guizhou to support the analysis and assessment of the RFI around
FAST. Ref. [13] focused on an intelligent monitoring and positioning system to reduce
radio frequency interference (RFI) based on monitoring, identifying, and positioning RFI
sources. Ref. [14] conducted electromagnetic compatibility studies on FAST, evaluated
the RFI impact on mobile communication stations by conducting RFI tests, and proposed
a permanent communication station to reduce RFI. Ref. [15] analyzed the radiation char-
acteristics of the public communication stations around FAST and proposed interference
avoidance and frequency coordination strategies based on cognitive theory.

In recent years, radio astronomical facilities in China have been rapidly developed.
The Five-hundred-meter Aperture Spherical radio Telescope (FAST) has commenced as-
tronomical observation since 2020, the 65-m radio telescope of Shanghai Astronomical
Observatory (TM65) has obtained several extraordinary outcomes, and the Qitai 110m
Radio Telescope (QTT) in Xinjiang is under construction [16-19]. Meanwhile, the devel-
opment of the economy and electronic infrastructure near the telescope site has made the
electromagnetic environment complex. Wang et al. studied the radio signal’s fading char-
acteristics in the Karst landscape environment and analyzed the radiation characteristics
of the public communication stations around FAST RQZ [15,20]. In order to manage the
surrounding electromagnetic environment more efficiently and balance the requirements
of science and economics during the site selection and in the construction and operation
phases of the radio telescope, we need to analyze and estimate RFI sources and protect the
radio environment around the site.

In this paper, we describe an RFI analysis software that can estimate single or multiple
RFI sources on the ground or in space around the radio telescope. Section 2 introduces
the software and its modules, including the telescope, geographic, and meteorological
database, and the analysis modules of terrestrial RFI and RFI in space. Section 3 presents
the experimental implementation of the propagation properties and RFI source estimation.
Section 4 gives a conclusion.

2. The RFI Analysis Software of Radio Environment around the Radio Telescope

This section introduces the RFI analysis software of the radio environment around the
telescope. It is able to calculate the propagation loss based on the location of the RFI source
and receiver, and it can further calculate the field strength and power at the receiver by
combining the parameters of the RFI source and receiver. With this information, we can
better manage the radio equipment or select the frequency range for observation in the site
selection and operation phases of the telescope.

The schematic diagram is shown in Figure 1. It contains the database part and the
functional part. The observatory database maintains the location of the site and the technical
parameters of each telescope. The geographic and meteorological database gives the Digital
Elevation Model (DEM) and radio meteorological environmental data. The RFI sources
database offers information on the location of stationary RFI sources, the orbits of sources
in space, and their operating parameters. The RFI analysis module provides terrestrial and
space-based RFI analysis functions and radio wave propagation characteristics analysis for
single or multiple RFI sources.
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Figure 1. The schematic diagram of the RFI analysis software.

The software is developed on the Visual Studio platform using the C++ development
language. It provides a friendly human-machine interface, keeping the interface simple
and highlighting the system’s main functions. The user interface is divided into two main
parts: the menu bar and the map area, where the menu bar provides shortcut buttons for
all functions of the software, and the map area carries out station marking and effective
display. The software interface is designed in a simple style and can be operated in a guided
manner according to the user’s functional requirements.

Figure 2 shows the specific architecture of the software, which is designed in a layered
approach, with four layers, including the application layer, the core layer, the support layer,
and the physical layer.
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Figure 2. The specific architecture of the RFI analysis software.

The application layer is at the top of the architecture and consists of the graphical user
interface layer and the business layer. The graphical user interface layer is responsible
for receiving various parameter configuration commands from users and providing a
consistent access interface for users, as shown in Figure 3. The business layer provides
reusable business function modules, and the implementation of this layer and the graphical
user interface layer results in a message-driven mechanism to communicate through a
custom set of messages and exchange data information through memory. The functional
modules of the application layer mainly include astronomical observatory management,
RFI source management, terrestrial point-to-point/area propagation characteristics analysis,
satellite point-to-point/area propagation characteristics analysis, etc.
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The core layer mainly provides the underlying methods for each functional module of
the business layer, including radio meteorological environment modeling, radio equipment
modeling, terrestrial radio wave propagation prediction, Earth-Space radio wave propaga-
tion prediction, and RFI analysis. This layer provides various kinds of data and analysis
results for each functional module. The interaction with the business layer adopts the API
interface method, which provides a unified access interface for users and communicates
with the upper layer through the interface function.

The support layer provides the required basic service environment for the upper
layer, including the Windows operating system, map information system, and database
management system. The operating system provides process services, thread services,
interface units, etc. The map information system provides the geographic information
required by the software. The database management system realizes the storage and
management of antenna, equipment data, and radio wave propagation environment data.
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Figure 3. The graphical user interface of the RFI analysis software.

2.1. Databases

The radio observatory database has a hierarchical design, where one observatory
may have multiple telescope systems, and one telescope system may also have multiple
antennas. It contains the name, the longitude and latitude of the observatory site, and the
equipment parameters, including receiving frequency range, aperture, gain, beam pattern,
and polarization. Users can add, delete, modify, and query observatory sites, telescope
systems, and antenna equipment.

The geographic database provides the 3 arc-sec accuracy DEM with a longitude
range from 70° E to 135° E and a latitude range from 10° N to 55° N. A DEM is a 3D
computer graphics representation of elevation data to represent terrain or overlaying
objects, commonly of a planet, moon, or asteroid. DEMs are used often in geographic
information systems and are the most common basis for digitally produced relief maps.
The geographic data will be loaded and used to construct the transmission loss model
between the RFI transmitter and the receiver.

The meteorological database consists of a ground dielectric constant, conductivity, at-
mospheric refractive index and gradient, atmospheric temperature, atmospheric humidity,
atmospheric pressure, etc. The ground electrical parameters include ground conductivity
and dielectric constant, which are determined by measuring the ground wave propagation
field strength and time delay from the transmitting source, and then using the ground
wave propagation characteristics for inversion. The atmosphere parameters, such as pres-
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sure and temperature, are obtained by analyzing meteorological data from 752 terrestrial
meteorological stations in China, 120 space-based stations, and more than 600 terrestrial
stations in the neighboring areas of China for the past 20 years. The meteorological data
required for calculation are mainly selected from the annual statistical data of the ITU, and
the parameters are shown in Table 1. Combined with parameters such as the location of
the proposed link, antenna height, and percentage time, our software predicts the basic
transmission loss not exceeded for a given percentage of an average year based on the
radio meteorological data.

Table 1. The parameters in the meteorological database.

No. Parameter Name Unit
1 Vertical reflectivity gradient [21] N-units/km
2 Average sea level value of surface reflectivity [21] N-units
3 Average annual difference in the values of the reflectivity at the surface and N-units/km
1000 m above the surface [21]
4 Wet term of the surface reflectivity [21] ppm
5 Surface water vapor density [22] g/ m3
6 Mean annual rainfall amount [23] mm
7 Ratio of convective to total rainfall amount [23] -
8 Probability of rainy 6-hours periods [23] %
9 0 degree isotherm height [24] km
10 Mean rain height [24] km

The RFI sources database records the terrestrial and space-based RFI sources. Terres-
trial RFI data offer the location, frequency range, power, and main lobe angle. Satellite RFI
data offer the orbit calculated by the Two-Line Elements (TLE), the antenna beam pattern,
the frequency range, and the power. When performing RFI analysis, users can manually
add new RFI sources or select RFI sources from the database.

2.2. RFI Analysis Module

We construct the RFI analysis module with these databases to analyze the propagation
characteristics and interference situations for different RFI sources. The RFI analysis module
supports the analysis of a single RFI source for a single receiver or an area, which can be
used to evaluate additional electronics around the telescopes and provide a basis for site
selection, respectively. Moreover, the analysis of RFI sources can be terrestrially fixed or
satellite services, as shown in Table 2.

Table 2. Scope of application of different types of wave propagation calculation models.

Supported Frequency

No. Model Name Services
Range
Terrestrial radio wave radio, mobile
1 propagation prediction 30 MHz~50 GHz communication, television,
model [25] radar
Earth-Space radio wave communication, navigation
2 propagation prediction 1 GHz~55 GHz ! & ’

model [26-30] radio, television

The terrestrial model facilitates the prediction of propagation characteristics within the
troposphere, spanning a frequency range from 30 MHz to 50 GHz. This model considers
the main transmission mechanisms within the troposphere, including propagation close to
the surface of the Earth, anomalous propagation due to stratified atmosphere, troposcatter
propagation, and propagation via sporadic-E reflection. Utilizing numerical analysis
techniques for synthesis, the model enables the prediction of transmission loss [25,31]. A
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practical propagation prediction model will then be derived by further combining domestic
experimental data and analysis results.

Compared to free-space propagation, several propagation effects may require consid-
eration when calculating the propagation loss for Earth—space paths: tropospheric effects
(including gaseous absorption, and attenuation and depolarization by rain and other hy-
drometeors), ionospheric effects (such as scintillation and Faraday rotation), and local
environmental effects (including attenuation by buildings and vegetation). Moreover, the
prediction methods for Earth—space telecommunication systems vary depending on the
specific service involved, including broadcasting-satellite systems [27], maritime mobile
systems [28], land mobile systems [29], and aeronautical mobile systems [30]. In the case of
space-to-Earth paths for broadcasting systems, the propagation attenuation factor A(f) is
calculated by the formula, and the unit is dB [26]:

A= Abs(f) + Ase (Plf) + AgaS (f) + \/Agt (prf) + [Arain (p'f) + Acloud (pff)]z (1)

Ay is the antenna attenuation factor, A is the ionospheric atmospheric attenuation, Agas
is the atmospheric gases attenuation, At is the troposphere scintillation attenuation, Arain
and Agouq are the attenuation factors of rain and cloud, respectively, f is the frequency,
and p stands for the time percentage of each parameter.

In practice, the software will combine models based on the service type and frequency
range, RFI source location, and electromagnetic wave propagation mode to calculate the
propagation loss and field intensity. The next section gives some experimental RFI analysis
for terrestrial and satellite RFI sources.

3. Experimental Implementation of the RFI Analysis Software

In this section, we present the experimental implementation of the software for propa-
gation analysis and RFI estimation. Both the terrestrial and satellite RFI parts include the
point-to-point and point-to-area functions. The point-to-point analysis is used to guide the
installation and application of radio transmitters. The emission power of the equipment is
derived from the measurement in the microwave darkroom, then the measurement results
are loaded into the software to obtain the interference level in different locations. The
point-to-area analysis is used for radio telescope site selection. It is able to calculate the
distribution of the interference level of an existing RFI source to an area. Thus, the part
with the lowest interference intensity is selected as the alternative site.

3.1. Terrestrial RFI Analysis

The characteristics analysis of the point-to-point radio wave propagation needs to set
the transmitting and receiving point information: the user can choose from the database or
add new sites, equipment, and antennas. The input information includes the site location,
transmitting equipment operating frequency, power, antenna main lobe azimuth and
elevation angle, receiving equipment name, sensitivity, and antenna main lobe azimuth
and elevation angle. The radio meteorological environment around the transmitting and
receiving points is also obtained from the database, and the results are calculated using the
algorithm model.

For multiple-RFI-sources analysis, we integrate the received power over a time period
of T. The power received from an interferer during observation can be expressed as follows:

==

N @
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where [ is the interference power in the reference bandwidth at the receiver input averaged
over the observation period T, N is the number of samples in the integration time T, P4 (i)
is the transmitting power level in the radio astronomy service bandwidth at the input
to the antenna, G;(i) is the gain of the transmitting antenna in the direction of the radio
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astronomy antenna, G, (i) is the gain of the radio astronomy antenna in the direction of the
transmitter, and L (i) is the propagation loss at instant i.

Table 3 and Figure 4 show the computing results of the point-to-point propagation
characteristics analysis. The example uses a communication station as the RFI source,
which operates at 870 MHz and is located at (106°37/4.0005" E, 25°37'45.010"” N). The left
part shows the plot of the analytical results: the variation in field strength and topography
versus distance from the transmitter. The right table gives the corresponding computing
results. Compared with the free-space propagation loss, our algorithm further takes into
account the terrain and atmosphere, and the calculated field strength is lower and more in
line with the actual situation.

Table 3. The point-to-point analytical results for terrestrial RFI source.

. Free-Space
Distance (km) Altitude (m) Flz‘é St‘r;;ng;th Propagation
pvim, (dB pV/m)
0 1206 87.78 107.77
3.79 1104.3 33.03 76.21
7.57 1154.2 31.19 70.18
11.36 1091.7 18.79 66.66
15.15 1198.3 254 64.16
18.93 1103.4 20.8 62.23
22.72 1017 21.43 60.64
26.51 823.9 13.64 59.3
30.29 837.9 —13.46 58.14
34.08 903 0.05 57.12
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Figure 4. The point-to-point analysis for terrestrial RFI source.

The characteristics analysis of point-to-area radio wave propagation requires setting
the transmitting point and receiving area information, where the transmitting point can
also be loaded from the database, or added by the user. The receiving area can be obtained
by manually entering the latitude and longitude range, or by selecting an area on the map.

Table 4 and Figure 5 show the results of the point-to-area propagation characteristics
analysis. The left part gives the distribution of the RFI source field intensity in the selected
area. The table on the right gives the corresponding latitude, longitude, altitude, distance
from the RFI source, field strength, and propagation loss of the different sampling points in
the selected area.
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Table 4. The point-to-point analytical results for terrestrial RFI source.

Field

Longitude La?tude Distance Altitude Strength Propagation Loss
(°E) (°N) (km) (m) (dB uV/m) (dB)
106.14119 26.20192 69.885 1744 4.477 169.987
106.14119 26.24359 67.256 1751 5.465 168.97
106.14119 26.28526 64.878 1760 6.457 167.978
106.14119 26.32692 62.739 1771 7.42 167.015
106.14119 26.36859 60.878 1784 8.304 166.13
106.14119 26.41026 59.321 1796 9.129 165.306
106.14119 26.45192 58.092 1804 9.712 164.722
106.14119 26.49359 57.213 1803 9.949 164.486
106.14119 26.53526 56.701 1783 9.718 164.717

Strength L
@ e w4743
¢ = o) [EhRE i 26.78
Y @ .
?ﬁ / E7 6.12

Figure 5. The point-to-area analysis for terrestrial RFI source.

Figure 6 shows the compared results of the software analysis and the practical test.
The transmitting site is in Hanglong Town, Guizhou Province, and the receiving site is
at the FAST site. The practical test results (black line) cover 0.1-1.7 GHz. It can be seen
that there is a high agreement between the analytical results of our model (red line) and
the actual measurements, showing that our model is more practical than the free-space
propagation model (blue line).
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Figure 6. The analytical results of propagation loss from Hanglong to FAST.
3.2. Satellite RFI Analysis

The operation of the satellite RFI analysis function is similar to that of the terrestrial
analysis function. Satellite point-to-point radio wave propagation characteristic analysis
requires the input of transmitting and receiving equipment information, which can be
selected from the database or added manually. The input includes satellite information:
name, operating frequency, power, main lobe shape and pointing angle! 2, and receiver
information: name, location, sensitivity, main lobe azimuth and elevation angle. The
corresponding radio meteorological parameters are also retrieved from the database, and
the results are calculated using the appropriate algorithm model.

Figure 7 shows the analytical results of the satellite RFI point-to-point propagation
characteristics. It gives the variations in the transmission losses of GPS_BIIF_4, GPS_BIIF_9,
and GPS_BIII_2 to the receiving device with time. Furthermore, the computing results also
can be output as a table.

Point-to-point propagation loss analysis for satellite RFI source
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Figure 7. The point-to-point analysis for satellite RFI source.

In reality, interference of the satellite received by radio telescopes is usually the result
of multiple satellites acting simultaneously. ITU-R M.1583-1 gives a method for calculating
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radio telescope interference from non-geostationary orbiting satellites [32]. However, it
does not take into account the propagation loss between the satellite and the telescope.
Our software combines the estimation method and propagation loss model to give a more
realistic estimation.

Figure 8 shows the RFI estimation for multiple satellites including individual satellites
and synthetic results. The corresponding time, satellite position, and interference power
information can be saved as a table.

Satellite RFI estimation for multiple satellites
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Figure 8. The results of satellite RFI estimation.

In this section, we present the main function of the software, including the propagation
loss field strength computing for both terrestrial and satellite RFI sources. Furthermore, we
compare the estimated results with actual tests for point-to-point terrestrial RFI sources.
The experiments show that our models give identical results to the actual test and are more
accurate compared with the free-space model.

4. Conclusions

In conclusion, we have constructed RFI analysis software for the radio environment
around the radio telescope, combining complex information from celestial and satellite
sources into a database. The database provides RFI sources, radio telescopes, and meteo-
rological and geographic information, and users can add, delete, and modify the database
for maintenance operations. The functional module provides the algorithms and interface
to calculate the propagation loss for different kinds of RFI sources and environments. We
further verified its accuracy by comparing the results of software analysis and practical tests.

With the software, we can use point-to-point analysis to evaluate the new transmitter
and guide the subsequent installation and application of the transmitter. On the other hand,
the software also provides point-to-area analysis to calculate the interference intensity
distribution over an area, which can be useful for the selection of radio astronomical sites.
The software is expected to be an efficient tool for protecting the radio environment around
the radio telescope. In addition, interference analysis of satellites can guide us in choosing
the observation time with minimum impact and support the division of spectrum resources
in the future.
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The following abbreviations are used in this manuscript:

RFI Radio frequency interference
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API Application Programming Interface

DEM Digital Elevation Model

FAST  Five-hundred-meter Aperture Spherical radio Telescope
TLE  Two-Line Elements

Notes

1 https:/ /celestrak.org/, accessed on 22 March 2022.

2 https:/ /www.space-track.org/, accessed on 22 March 2022.
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Abstract: Compared with the international meteor surveillance systems, the ground wide angle
camera (GWAC) system exhibits characteristics such as images with the resolution of 4K x 4K and
single-site observation. These characteristics present challenges for meteor detection in the GWAC
system. Consequently, this paper proposes a new meteor detection algorithm for the GWAC system
on the base of the solely mini-GWAC system data algorithm. The new algorithm consists of the
following key steps: (1) to compare differences between adjacent frames, applying block-based
image binarization thresholds, and incorporating median filtering to reduce noise; (2) to adopt the
probabilistic Hough transform (PHT) to identify moving objects and cluster them based on the
origin moment of the line segments, while assessing the credibility of clustering; (3) to introduce the
so-called maximum disappearance frame for moving objects in the tracking algorithm, enhancing the
ability to track multi-frame moving objects. The utilization of the line segment inclination angle of
the moving object as the direction of movement facilitates the tracking of multiple moving objects,
thereby reducing the probability of mistakenly selecting single-frame moving objects; (4) to leverage
the light curves of single-frame moving objects to select meteors to enhance the accuracy of meteor
detection. Comparative experiments demonstrate that our proposed algorithm processes each frame
image in just 0.39 s, achieving an accuracy of 89.8% in the dataset of 5856 adjacent frames. The
experimental results indicate that the algorithm achieved an accuracy of 90.27% when applied in the
meteor detection of the image data captured by the GWAC system from Dec. 10th to 19th in 2019 and
2021, obtaining excellent detection results.

Keywords: meteor detection; GWAC; moving objects tracking; light curve

1. Introduction

The origin of meteor astronomy can be traced back to the 19th century [1-3], when
scientists began to systematically study and observe meteors. For example, understanding
the characteristics of meteors can provide information about the interplanetary dust envi-
ronment surrounding Earth and how it has evolved during the solar system’s evolutionary
process. Meteor automation processing is a critical technology that enables efficient detec-
tion, tracking, and analysis of meteors. Scientists can obtain accurate meteor trajectories
and mass characteristics, thereby promoting research on the origin and physical properties
of meteors [4].

Most of the existing international meteor networks detect meteors through temporal
and spatial correlations [5], primarily utilizing techniques such as temporal difference,
pixel averaging, thresholding, and Hough transform (HT). MeteorScan [6] compares frame
differences between adjacent time image pairs and performs HT recognition and matched
filtering to reduce false detection probability. MetRec [7] reduces noise by averaging
pixelsin a 2 x 2 fashion and downsamples the image size by a factor of four. It employs
multi-frame region of interest (ROI) tracking to detect meteor, but this results in higher
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computational complexity. In contrast, UFOcapture [8] does not utilize mean differencing
and spatial-temporal correlation. It applies a 5 x 5 spatial filter with frame differencing
that is then masked and thresholded. ASGARD [9,10] performs real-time detection by
comparing the pixels of the current video frame with the previous 10 frames, counting
the number of pixels with increased brightness that exceed a set threshold to reduce
noise interference.

There are a number of meteor surveillance systems internationally. International
Meteor Organization (IMO) [11] Video Meteor Network, established by Germany, currently
consists of 88 cameras operated by 49 observers from 16 countries. They use MetRec
to capture meteor tracks from video sequences at the standard frame rates of 25 or 30
FPS of the cameras. SonotaCo Network, located in Japan, consists of 70 observation
stations. It utilizes stars for field calibration and employs software such as UFOCapture,
UFOAnalyzer and UFOOTrbit to detect and analyze meteors. The Cameras for All-sky
Meteor Surveillance (CAMS) network [12] consists of three observation stations, with
each station operating 60 cameras. It can monitor the sky at altitudes above 31 degrees.
MeteorScan-based trajectory search technology autonomously processes meteor images
acquired from each station. European viDeo MeteOr Network Database (EDMOND) [13]
is generated through collaboration and data sharing among several European national
networks and IMO Video Meteor networks. It collects data from 155 sites and utilizes
UFOOrbit for automated processing of meteors. The nine-channel Mini-Mega TORTORA
(MMT-9) [14] was deployed in 2014 at a specialized astrophysical observatory near the 6
m Russian telescope. It offers high time-resolution with exposure times ranging from 0.1
to several hundred seconds. It has the capability to observe a wide range of 900 square
degrees or a narrow range of 100 square degrees of the sky simultaneously, enabling
real-time data processing and effective detection of various transient events. This system
has detected over 90,000 meteors. Meteors occur at a rate of 300-350 per night, with
durations ranging from 0.1 to 2.5 s and angular velocities reaching up to 38 degrees per
second. The Canadian Automated Meteor Observatory (CAMO) [15] is an automated video
meteor system comprising two sites. It comprises two enhanced cameras: a wide-field
camera with a 28° field of view, utilized for collecting meteor light curves and calculating
trajectories; and a narrow-field camera with a 1.5° field of view, employed for tracking
meteors and obtaining high-resolution observations. The cameras have a resolution of 640
x 480, with the wide-field camera capturing 80 frames per second and the narrow-field
camera capturing 110 frames per second. ASGARD is used for real-time detection of the
wide-field images to guide the narrow-field tracking of meteors.

GWAC [16-18], established at the Xinglong Observatory of the National Astronomical
Observatories of China, is used for the measurement of optical transient objects before,
during, and after gamma-ray bursts [19]. It consists of 40 joint field of view (JFoV) cameras.
Each camera, with an aperture of 18 cm and custom-made lenses with an f-ratio of £/1.2, is
equipped with a 4k x 4k E2V back-illuminated CCD chip. The wavelength range is from
0.5 to 0.85 um. The field of view for each camera is 150 deg? and the pixel scale is 11”7. The
total field of view for each unit carrying four JFoV cameras is ~600 deg®. The entire camera
array covers an area of 5000 deg? in the sky, capturing an image every 15 s, including a
10-s exposure and 5-s readout [20]. The limiting magnitude reaches a V-magnitude of 16,
allowing for the detection of various moving objects such as meteors, asteroids, comets,
airplanes, space debris, and satellites. The maximum brightness value before the system
reaches saturation is 8 mag. Continuous observations are conducted each observing night
for up to 10 h on specific areas of the sky. The GWAC system is designed for short-timescale
sky surveys, aiming to detect accurately and rapidly astronomical anomalies. The detection
of meteors is a significant component of the GWAC system, offering valuable insights into
meteor trajectories, brightness levels, and mass distribution information.

International meteor surveillance systems are characterized by multi-site observations,
primarily using the video, and focusing on brighter meteors [21]. However, the GWAC
system differs in the following aspects: (1) It lacks the ability to measure the height and

45



Universe 2023, 9, 468

velocity information of moving objects through single-site observations. (2) It captures
images at a frequency of every 15 s, with a resolution of 4k x 4k. While meteor duration
typically ranges from 0.1 to 2.5 s, so it often appears as single frames in GWAC system.
(3) There is a presence of a significant amount of background moving objects. The cur-
rent international meteor detection algorithms are not applicable for the meteor detection
in the GWAC system. Xu Yang and colleagues [22] conducted a study on identifying
meteor candidates using two months of data from the mini-GWAC system in 2019. The
mini-GWAC system has a lower image resolution of only 3k x 3k and captures fewer back-
ground stars and moving objects. They provide data indicating that aircraft can achieve
angular velocities of 1.85 degrees per second and satellites can attain angular velocities of
0.025 degrees per second with durations of 10 s. This enables them to remain within the
image frame for an extended period before exiting. As a result, they exhibit continuous
presence across multiple frames. We exclude non-meteor objects by considering their
presence in multiple frames. Consequently, using this algorithm for meteor candidate
detection for the GWAC system resulted in several issues, including missing and false
detection of moving objects, incomplete clustering of moving objects, and low precision
in single-frame moving-object filtering. Therefore, we presented a meteor detection al-
gorithm specifically designed for the GWAC system based on the algorithm proposed in
Reference [22]. Our algorithm can detect meteors from GWAC images with a magnitude
range of about —0.66~—7.26 mag. For the brightest meteor, the GWAC can only record a
part of it, so it should be brighter than the magnitude given by the GWAC. Our proposed
algorithm aims to achieve real-time meteor detection while improving accuracy.

The main contributions of this study are as follows: (1) to apply image block division
to set image binarization threshold and introduce median filtering to reduce noise and
detect more line segments, avoiding the issues of false detection and missed detection of
numerous moving objects. (2) to utilize the origin moment information of the line segment
in the moving objects clustering model, and we employ the line segment inclination angle
information to verify the credibility of the clustering objects to improve the accuracy of
moving objects clustering. (3) to propose a moving object tracking algorithm. The concept
of the maximum disappearance frame for moving objects introduced in the moving objects
tracking algorithm contributes to tracking multi-frame moving objects. The inclination
angle of the line segments of moving objects utilized as the direction of movement facili-
tates the tracking of multiple moving objects. Thereby it can improve the probability of
correctly filtering single-frame moving objects and the accuracy of meteor detection. (4) to
conduct comparative experiments between our proposed algorithm and the Reference [22]
algorithm to validate the effectiveness. Our algorithm achieves a precision of 89.4% and an
improvement of 8.4%, resulting in an average processing time of 0.39 s per image frame.
Additionally, we utilized data collected by GWAC system from 10th to 19th December in
2019 and 2021 for meteor detection. The precision of our algorithm was found to reach
90.27%.

2. Materials and Methods

This study utilizes data collected from the GWAC system and proposes a new meteor
detection algorithm based on the mini-GWAC system algorithm. In the first step, we
apply the temporal difference method to remove non-transient objects from adjacent frame
images. Subsequently, we employ the PHT to identify the line segments corresponding
to the detected moving objects after conducting image preprocessing. A moving objects
clustering algorithm is applied in order to cluster these line segments. In the second step,
we implement a single-frame moving object tracking algorithm that utilizes the angle
feature of the line segments to effectively filter single-frame moving objects. Finally, by
analyzing the light curves of the single-frame moving objects, we can classify the single- and
double-peaked single-frame moving objects as potential meteor candidates. The flowchart
illustrating our meteor detection algorithm is presented in Figure 1.
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Figure 1. Flowchart of our meteor detection algorithm.

2.1. Dataset

We collected data from the GWAC system during the Gemini meteor shower pe-
riod, including seven days from 12 December to 18 December 2021, and eight days from
10 December to 14 December and 17 December to 19 December 2019. The collected data
for each date are shown in Figure 2.

In 2019
30,000 - 29, 345
’ 28,420 In 2021
25, 411
25,000 - ] 24,078
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Figure 2. Raw events of experimental data for each date in 2019 and 2021.

The GWAC system has a time sampling period of 15 s, and each camera can capture
a maximum of 240 images per hour. It captures the fixed sky area for approximately
10 h during each observing night. From 10 December to 19 December 2019, a total of
105,033 images were collected by the GWAC system. Similarly, the GWAC system captured
a total of 162,821 images from 12 December to 18 December 2021. Consequently, the total
number of images to test obtained in 2019 and 2021 was 267,854.

2.2. Meteor Detection Model
2.2.1. Temporal Difference

Temporal difference [23] is a widely employed technique for detecting moving objects,
applied diverse applicability in various domains including video analysis, video surveil-
lance, and action recognition. It detects moving objects by subtracting the pixel values
between adjacent frames.

Di(x,y) = I(x,y) — Li-1(x,y) ¢))

where I;_1(x,y) represents the pixel values of the t — 1 frame image, I;(x, y) represents the
pixel values of the t frame image, and D;(x, y) represents the pixel differences between
the adjacent and ¢t — 1 frame images. In order to identify transient moving objects, it is
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used to remove stars, filter out sporadic noise and cosmic rays to reduce the influence of
background moving objects.

2.2.2. Preprocessing of Images

Preprocessing operations need to be applied to the differenced images before recogniz-
ing moving objects. Image preprocessing includes image binarization and median filtering.
Firstly, the differenced images are subjected to binary thresholding. The images captured
by the GWAC system have a high resolution of 4k x 4k. The binary thresholding is set
as twice the standard deviation of the average pixel across the entire image. There is a
risk of losing potential moving objects if the threshold is set too high in cases of bright
backgrounds. Likewise, setting the threshold too low in cases of dark backgrounds can
result in substantial background noise. Therefore, it is divided into 2 x 2 small images,
resulting in four regions d;(i = 1,2,3,4). The threshold T; for each region is calculated
as T; = pu; + 20;(i = 1,2,3,4), where yu; and ;% represent the average pixel intensity and
variance of each region, respectively. The formula for image binarization is as follows:

. 255 di(x,y) >T;,.
di(x,y) = { 0 others (i=1,2,3,4) ()

Pixels above the threshold are assigned the color white, while pixels at or below the
threshold are assigned the color black. Utilizing an adaptive block-wise adjustment of the
binary thresholding allows for a more precise differentiation between moving objects and
their background, resulting in reduced background noise and accurate preservation of the
detailed trajectories of the moving objects. Subsequently, the binary images undergo me-
dian filtering to reduce noise and prevent interference with PHT for detection. Recognizing
that moving objects usually cover multiple pixels, a 3 x 3 template is deliberately chosen
for median filtering to effectively remove isolated noise points.

2.2.3. Detection and Clustering of Moving Objects

The differenced images are utilized to distinguish the moving objects from the back-
ground following image preprocessing. The moving objects appear as straight lines, which
can be recognized using HT. Hough transform [24] is based on the concept of mapping
a pixel point (x,y) from the image space to a sinusoidal curve r = x cos 6 + y sin 0 of the
polar coordinate space (r,0). The sinusoidal curve represents all possible straight lines
passing through that point. Collinear points in the image space are represented by a single
point (,6") at which sinusoidal curves in the polar coordinate space intersect. Straight
lines can be detected by evaluating the accumulation value at that point (/,6’) in the polar
coordinate space, as illustrated in Figure 3. HT can also be applied to detect geometric
shapes such as circles, ellipses, and other specific shapes in addition to line detection [25,26].

7= x, 0080+ y,sin@

(x1y7) s>,

(x2.»2)

r=x,00860+ y,sind

H P
0 (<

4

Figure 3. Points in the image space to sinusoidal curves in the polar coordinate space.

HT exhibits high computational complexity, particularly when handling large-sized
images. The PHT is employed as a solution to mitigate this problem by reducing the com-
putational burden. A subset of randomly selected points from the image is considered as
sample points in the PHT, which then finds other connected sample points and accumulates
votes based on their relationships to determine the parameters of the lines. The linear
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features and positions of the moving object can be extracted by utilizing the computation
and analysis of the PHT [27].

The PHT recognizes moving objects, generating multiple line segments forming a set.
Hence, the clustering of line segments from the moving objects is an essential step. The
process of clustering line segments utilizes two primary features [28]: the line segment
origin moment 4 and the inclination angle 6. The implementation method of line segments
clustering is as follows:

1.  The new clustering object set is initialized by adding the origin moment d, the average
origin moment d, two position coordinates (x1,y1) and (x2, ), the inclination angle

0, the average of the inclination angle # and the variance of the inclination angle 8
from the first line segment or unmatched line segment in the line segments set.

Ay =y2—y1,Bx =x2—x1 (3)
_ Ay

0= arctanE (4)

1 =/ (Ax)* + (Ay)? )

g |y1Ax;x1Ay| ©)

2. The distance is calculated between the origin moment d of the line segment in the

line segment set and the average origin moment d of each clustering object set in turn.
If the distance is less than the maximum distance error (MDE), the line segment is

classified into the same clustering object set, d, 6 and f are updated in clustering object
set. If the line segment is matched with all clustering object sets, step 1 is executed to
add a new clustering object set.

3. When all the line segments in the line segment set are clustered, the clustering reli-
ability of each clustering object set is judged by 8 of the line segments within each
clustering object set.

4. If the variance of the inclination angles  of the clustering object set is less than
the maximum inclination angle error (MIAE), it indicates a successful clustering
set; otherwise, it fails. Then the inclination angle error is calculated between the
inclination angle 0 of the line segments of the failed clustering object set and the

average inclination angle 6 of each clustering object set in turn. If it is less than
MIAE, this line segment is matched with this clustering object set; otherwise, step 1 is
executed to add a new cluster object set.

5. Each clustering object set represents a moving object. The longest line segment in the
clustering object set is denoted as the longest trajectory of the moving object, with
position coordinates (Xyin, Ymin) and (Xmax, Ymax)-

2.2.4. Tracking Moving Objects and Filtering Single-Frame Moving Objects

Meteor characteristics in the GWAC system primarily appear in single frames, while
non-meteor objects tend to appear in multiple frames. We track moving objects in each
frame to detect if the moving objects in the current frame match with the previous ones,
consequently filtering single-frame moving objects [29]. The main implementation method
is as follows:

6.  The position coordinates (Xin, Ymin) and (Xmax, Ymax ), the inclination angle 6, and
midpoint coordinate (x,,;4, Yiq) of each moving object in every frame are obtained. If
it is the first frame, each moving object is assigned an initial ID.

7. ltis firstly necessary to determine whether the moving objects in the current frame
match with the ones in the previous frames.
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8. We calculate the inclination angle 6’ of the line segments formed by pairing the
midpoints (X4, Ymiqg) of the moving objects in the current frame with the midpoints
(Xobj, Yobj) of the moving objects in the tracking object set, and create a matrix M of
the inclination angles 6.

MG, j) = arctan?m4D =Y 0) oo 10a ) @)

Xmid (1) — Xobj (]

9. Where the total of moving objects in the current frame is m, while the tracking object
set consists of n moving objects.

10. We update the ID and the position coordinate of the moving objects in the current
frame. The inclination angle 6; of the moving object j in the tracking object set indicates
its movement direction in the next frame. The inclination angles 6’ i,j in column j of
the matrix M indicate the actual movement directions of the moving object j. Then we
find the moving object i in the current frame that inclination angle 6'; ; is the nearest
6; and calculate the error in the inclination angle between the two. If this error is
less than MIAE, the moving object i in the current frame is successfully matched the
moving object j in the tracking object set. They are regarded as the same object and
assigned the same ID. The appearance count of this moving object j is added by 1.

11.  If there are moving objects matched unsuccessfully in the tracking object set, they
are marked as disappeared moving objects. When the number of frames in which
they have disappeared exceeds the maximum disappearance frame (MDF), they are
removed from the tracking object set.

12.  If there are moving objects matched unsuccessfully in the current frame, they are
marked as newly appeared moving objects and assigned a new ID. They are added to
the tracking object set along with their position coordinates and inclination angles.
The appearance count of these objects is incremented by 1.

13.  We filter single-frame moving objects. When the moving object is marked as disap-
peared and the number of frames it has been missing exceeds the MDF, it is considered
a single-frame moving object if the appearance count of it is 1.

In the moving-object tracking algorithm, the concept of the MDF for moving objects
introduced in the moving objects tracking algorithm is contributed to track multi-frame
moving objects. The inclination angle of the line segments of moving objects utilized as the
direction of movement facilitates the tracking of multiple moving objects. Thereby it can
reduce the probability of incorrectly filtering single-frame moving objects and improve the
accuracy of meteor detection.

2.2.5. Meteor Detection

In addition to utilizing the meteor characteristics in the GWAC system appearing in a
single frame, meteor features can also be used for further filtering single-frame moving
objects to select meteor candidates and improve the accuracy of meteor detection. Meteors
typically exhibit a brief bright light and a long tail, distinguishing them from other moving
objects such as airplanes and satellites, as shown in Figure 4.

(@

Figure 4. Different moving objects observed for the GWAC system: (a) meteor; (b—d) other mov-

(d)

ing objects.

The variation of brightness of celestial bodies over time is referred to as the light curve
in astronomy [30]. It is not possible to obtain the variation curve of brightness of moving
objects over time in the GWAC system. Therefore, the variation curve of brightness of
moving objects with respect to the image pixels is used for the light curve and defined as
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the trajectory of the moving objects [22]. By calculating the light curves of single-frame
moving objects, we analyze their shapes, and filter out non-meteor single-frame moving
objects to obtain meteor.

e  Preprocessing of single-frame moving objects

The images are rotated clockwise « to obtain horizontally moving objects. The rotation
transformation is as follows:

1 0 0 cosa —sina 0 1 0 0
(xy1)=xy)| 0 -1 1 sine cosa 0 0 -1 1] (8
—05w 05h 1 0 0 1 05w’ 0510 1

where the co-ordinates of the image before rotation are (x,y), and after rotation they are
(x',y"). w and h represent the width and height of the image before rotation. w’ and /'
represent the width and height of the image after rotation. The rotation angle « is 180° — 0.
The position co-ordinates of the single-frame moving object before rotation are (x;;,, Yyin ),
(Xmax, Ymax ), and after rotation they are (X' i, ¥ i) and (X' 1ax, ¥ ;0. )- The rotation angle
of the moving object is 8. Next, the region is cropped, and the cropping area is as follows.

(" min —30, ¥ iy —10) -+ (*'max +30, ¥/,,;,, — 10)
area(x,y) = | : ST )
(" min —30, ¥ iy +10) -+ (¥ pyin — 30, ¥ ,,,;,, +10)

e  Thelight curves of single-frame moving objects

We sum the brightness along the vertical axis with respect to the horizontal axis in the
cropping area of the single frame moving object, resulting in the light curve.

F(x) = zy area(x,y) (10)

The light curve exhibits abundant spike noise. To reduce the noise, we perform a
smoothing convolution, resulting in smoothed light curves. We then detect the peaks in
the light curves and classify them into flat peaks, single-peaked, or double-peaked moving
objects based on the number of peaks. This is illustrated in Figure 5.
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Figure 5. The light curves of single-frame moving objects in the GWAC system: (a) A flat peak object
and its light curve; (b) A single-peaked object and its light curve; (c) A double-peaked object and its
light curve.

According to [30], flat curves of meteors only account for 15% of the total classified
objects in meteor events. The category of flat curves comprises a small number of meteors
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but large number of non-meteor objects. To obtain highly accurate meteor candidates,
single-peaked and double-peaked moving objects are selected, filtering out non-meteor
moving objects.

3. Results and Discussions
3.1. Implementation Details

The meteor detection algorithm was implemented using Python and OpenCV. The
experiments were conducted on an AMD Ryzen 7 4800H CPU and a NVIDIA GeForce GTX
1650 Ti GPU.

The parameters for PHT are established as follows: p is set to one pixel, the accu-
mulator threshold parameter is set to 35, the minimum length of line segments is set to
35 pixels, and the maximum allowed gap between line segments is set to 10 pixels. As
for line-segment clustering, the maximum distance error is limited to 200 pixels, and the
maximum inclination angle error is constrained at 3°. As for moving objects tracking, it is
ensured that the maximum disappearance frame are kept at 3.

The results of the object detection are evaluated using precision (P) and recall (R).
Precision represents the probability of correctly identifying meteor samples among the
data identified as meteor samples. Recall represents the probability of correctly identifying
meteor samples among meteor samples in the dataset.

TP
P= TP+ FP (1)
TP
R= 7 12
TP+ FN (12)

where TP represents true positive, TN represents true negative, FP represents false positive,
and FN represents false negative.

3.2. Experimental Results
3.2.1. Comparative Experiments

To provide a visual and accurate comparison between our proposed algorithm and the
algorithm proposed in Reference [22], Figure 6 displays the results of temporal difference
and image preprocessing for both algorithms. From the comparison shown in Figure 6a,b,
moving objects are not observed. Figure 6¢c shows the presence of overexposed regions
after temporal difference of the Reference [22] algorithm. In Figure 6d, image preprocessing
does not handle the regions, resulting in false detections in the PHT. In contrast, it can
be observed that our proposed algorithm does not have overexposed regions after the
temporal difference and image preprocessing from Figure 6e,f. The noise is significantly
reduced, avoiding false detection of moving objects.

The results of image preprocessing and PHT for both the Reference [22] algorithm
and our proposed algorithm are showed in Figure 7. The comparison between Figure 7a,b
reveals the presence of transient moving objects in adjacent frames. After applying the
image preprocessing of the Reference [22] algorithm, a significant amount of noise inter-
feres with the subsequent recognition for the PHT in Figure 7c, leading to the absence of
detected moving objects in Figure 7d. However, the image preprocessing with block-based
thresholding and median filtering significantly reduces noise in Figure 7f, resulting in
the detection of moving objects in Figure 7e using the PHT. Therefore, the comparative
experiments demonstrate that block-based thresholding for image binarization and median
filtering can effectively reduce noise and prevent the occurrence of missed detection of
moving objects.
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(@) (b) (©) (d) (e) ()

Figure 6. The results of the adjacent frame temporal difference and image preprocessing:
(a) A partial view of the G024_Mon_objt_211214T20201965 (frame t); (b) A partial view of the
G024_Mon_objt_211214T20203464 (frame t + 1); (c,d) The results of the Reference [22] algorithm;
(e,f) The results of our proposed algorithm.

(a) (b) (c) (d) (e) (f)

Figure 7. The results of the adjacent frame image preprocessing and PHT: (a) A par-
tial view of the G024 _Mon_objt 211214T19104960 (frame t); (b) A partial view of the
G024_Mon_objt_211214T19110460 (frame t + 1); (c,d) The results of the Reference [22] algorithm;
(e,f) The results of our proposed algorithm.

The results of the line segments clustering for both the Reference [22] algorithm and
our proposed algorithm are displayed in Figure 8. From Figure 8a, it can be observed that
there is only one moving object in the image G024_Mon_objt_211214T20281960. However,
Figure 8b and its bottom-left magnified portion show that the Reference [22] algorithm
clusters this moving object into two separate ones. Figure 8c demonstrates the effectiveness
of our proposed algorithm in clustering the moving object into a single object.

(a) (b) (c)

Figure 8. The results of line segments clustering: (a) A partial view of the
G024_Mon_objt_211214T20281960; (b) The clustered line segments by the Reference [22] al-
gorithm; (c) The clustered line segments by our proposed algorithm. Note: The red lines represent
the clustering results, where each line corresponds to a clustering moving object.
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The Reference [22] algorithm only considers the tracking of adjacent frames for moving
objects. When a moving object appears in adjacent frames and is missed in a certain frame,
there is possibility of mistakenly identifying the last frame’s moving object as a single-
frame moving object. As shown in Figure 9a—c, when a moving object appears in three
adjacent frames, it is labeled as ID:0 in the first frame. If this moving object is not detected
in the second frame, resulting in the failed match, the first frame of this moving object is
erroneously classified as a single-frame moving object. This, in turn, affects the accuracy
of meteor detection. Our proposed algorithm sets the MDF as three times, meaning that
object can still be matched with the same object even after disappearing for three frames.
As shown in Figure 9d-f, when a moving object appears in the first frame with ID:0 and is
matched with the moving object in the second frame, if the second frame doesn’t detect
this moving object resulting in a failed match, the position co-ordinates of the moving
object from the first frame are retained, and it is considered as one disappearance of the
object. Later, when matched with the moving object in the third frame, it is labeled as ID:0,
accurately identifying the single-frame moving object. Since it reappears several frames
later, we can exclude that this was a meteor.

(a) (b) (c)
(d) (e) )

Figure 9. The tracking results of multi-frame moving object: (a—c) The tracking results of multi-frame

moving object by the Reference [22] algorithm; (d—f) The tracking results of multi-frame moving
object by our proposed algorithm.

The Reference [22] algorithm only utilizes the inclination angle of adjacent line seg-
ments, which leads to the problem of matching the last frame’s moving objects with
multiple moving objects in the current frame as the same object. As shown in Figure 10a,b,
the inclination angle of the moving object in the first frame is 154.18°, while in the second
frame it is 153.86°. The inclination angle of the new moving object (left side in Figure 10b
or Figure 10d) is 156.98°. The Reference [22] algorithm assigns ID:0 to the moving object
in the first frame, and all moving objects in the second frame that have the inclination
angle within 5° difference from the first frame’s moving object are matched, resulting
in mistakenly identifying the newly appeared moving object in Figure 10b as the same
moving object. Our proposed algorithm, on the other hand, utilizes the inclination angle of
the line segments from the first frame’s moving object as the reference for the movement
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direction of the next frame’s moving object. The inclination angle between the midpoint of
the second frame’s (current frame) moving object and the midpoint of the previous frame’s
moving objects is considered as the direction of the actual trajectory. If the difference in the
direction inclination angle is less than 3°, they are matched as the same object. As shown in
Figure 10d, the moving object in the second frame is successfully matched with the moving
object in the first frame, with ID:0, and a new moving object with ID:1 is detected.

(a) (b)
(c) (d)

Figure 10. The tracking results of multiple moving objects: (a,b) The tracking results of multiple

moving objects by the Reference [22] algorithm; (c,d) The tracking results of multiple moving objects
by our proposed algorithm.

The visual results of the experimental comparison between our proposed algorithm
and the Reference [22] algorithm from Figures 610 demonstrate our proposed algorithm
can effectively reduce noise, prevent missed detections of moving objects, accurately
identify the single-frame moving object and track multiple moving objects. This validates
the effectiveness of our algorithm.

In this study, 5856 adjacent frames images from 14 December 2021 were selected as
the dataset for accurate comparison. Single-frame moving objects were filtered and further
refined to select meteor candidates. The selected dataset was manually annotated, revealing
a total of 242 single-frame moving objects and 189 meteor candidates. The algorithms
proposed by Reference [22] and this study were used to filter the single-frame moving
objects, and precision and recall were calculated for each algorithm. In addition, there are
a few edge objects in the single-frame moving objects. After removing the edge objects,
the Reference [22] algorithm and our proposed algorithm were used to detect meteor
candidates. Similarly, precision and recall were calculated. The calculation results are
shown in Table 1. The precision of our proposed algorithm in single-frame moving object
selection reaches 91.4%, which is an improvement of 13.3% compared to the Reference [22]
algorithm. Out of 242 single-frame moving objects, 88.0% were correctly filtered. In terms
of meteor selection, our algorithm achieves a precision of 89.4%, showing an improvement
of 8.4% compared to the Reference [22] algorithm. Out of 189 meteor objects, 83.5% were
accurately detected. The high precision of the meteor detection algorithm ensures the
high probability of correctly identifying meteor samples among the data identified as
meteor samples, which provides valuable positional information for further research on
the brightness and mass of meteors.
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Table 1. The precision and recall for filtering single-frame moving objects and detection of meteors
by the Reference [22] algorithm and our proposed algorithm.

Filtering Single-Frame Detection of Meteors

Method Moving Objects
Precision Recall Precision Recall
The Reference [22] 0.781 0.759 0.814 0.793
Our algorithm 0.914 0.880 0.898 0.835

The time characteristic of the entire meteor detection process was evaluated by com-
paring the Reference [22] algorithm with our proposed algorithm on the dataset of 5856
image frames. The summarized experimental results can be found in Table 2. The Ref-
erence [22] algorithm required 6965 s to process the 5856 image frames, resulting in an
average processing time of 1.19 s per image frame. In contrast, our proposed algorithm
completed the process in 2280 s, resulting in an average processing time of 0.39 s per
image frame. This indicates an average improvement of 0.8 s per image frame compared
to the Reference [22] algorithm, satisfying the real-time requirements of the GWAC for
meteor detection.

Table 2. The time of the entire meteor detection process by the Reference [22] algorithm and our
proposed algorithm.

Method The Reference [22] Our Algorithm
Time/s 6965 2280

3.2.2. Meteor Detection for the GWAC Data

Firstly, moving-object identification was conducted on 267,854 images from 2019 and
2021. The results showed that 11,460 moving objects in 2019 and 26,523 moving objects
in 2021, totaling 37,983 moving objects, were identified. Subsequently, the identification
of meteor objects required further selection of single-frame moving objects. The filtering
results revealed that 2759 single-frame moving objects were selected in 2019 and 6742 single-
frame moving objects were selected in 2021, with a total of 9501 single-frame moving objects.
In 2019, single-frame moving objects accounted for 24.08% of the total number of moving
objects, while in 2021 they accounted for 25.41%. The overall selection of single-frame
moving objects in 2019 and 2021 accounted for only 24.75% of the total number of identified
moving objects, indicating that non-meteor objects such as airplanes and satellites with
multiple frames constituted a higher proportion of the total moving objects. The results
of total identified moving objects and single-frame moving objects for each date in 2019
and 2021 are presented in Figure 11. On 13 December 2021, during the peak period of the
Geminid meteor shower, the highest number of single-frame moving objects was identified,
reaching up to 1350. Near the peak period on 14 December 2021, 1224 single-frame moving
objects were identified.

Finally, meteor detection was performed on the single-frame moving objects from
2019 and 2021, obtaining highly accurate meteor candidates. The detection of meteors for
each date in 2019 and 2021 is presented in the following Table 3.

There were 11.28% edge-moving objects detected among the selected single-frame
moving objects in 2019 and 2021. These edge-moving objects only represent partial trajecto-
ries, making them indeterminate, and therefore classified as flat-peak moving objects. In
2019, a total of 1719 meteor candidates were selected, out of which 1544 were confirmed
through manual verification, resulting in an accuracy of 89.82%. Similarly, 4295 meteor
candidates were selected in 2021, with 3897 confirmed through manual verification by
checking their light curves, resulting in an accuracy of 90.73%. The average precision in
meteors detection for 2019 and 2021 reached 90.27%, with meteor candidates accounting
for 15.83% of the total moving objects. From Table 3, it is evident that on December 13th in
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2019 and 2021, the Gemini meteor shower reached its peak, with the highest number of
detected meteors.

Table 3. Number of single-frame moving objects and meteors for each date in 2019 and 2021.

Number of Single-Frame

Number of Meteors

Manually Verified Number

Date Moving Objects (2019/2021) (2019/2021) of Meteors (2019/2021)
10 December 358/0 208/0 179/0
11 December 331/0 228/0 197/0
12 December 370/938 216/621 201/562
13 December 393/1350 291/857 267/785
14 December 212/1224 126/833 111/747
15 December 0/1020 0/711 0/657
16 December 0/1121 0/633 0/569
17 December 368/406 206/323 194/298
18 December 324/683 195/317 172/279
19 December 403/0 249/0 223/0
Total 2759/6742 1719/4295 1544 /3897
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Figure 11. The results of total identified moving objects and single-frame moving objects for each
date: (a) in 2019; (b) in 2021.

4. Conclusions

The GWAC system captures a significant number of meteors, and the detection of
these meteors is crucial for further research on their brightness and mass information. In
comparison to international meteor systems, the GWAC system exhibit characteristics such
as a V-magnitude of 16, the 150 deg? field of view for each camera, and single-station
observation. These characteristics present challenges for meteor detection in the GWAC
system. Current meteor detection algorithms are limited to the mini-GWAC system data,
resulting in issues including false detection, missed detection, incorrect object clustering,
and mismatched object tracking within the GWAC system. We proposed a meteor detection
algorithm applicable to the GWAC system based on the algorithm developed for the mini-
GWAC system. Experimental results demonstrate that the proposed algorithm achieves
higher accuracy and faster detection speed, with the accuracy of meteor detection reaching
up to 90.27%. For future research, we could entail addressing image noise resulting from
factors such as camera shake in the GWAC system to further improve the accuracy.
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Abstract: The detection and analysis of molecular clumps can lead to a better understanding of star
formation in the Milky Way. Herein, we present a molecular-clump-detection method based on
improved YOLOVS5 joint Density Peak Clustering (DPC). The method employs a two-dimensional
(2D) detection and three-dimensional (3D) stitching strategy to accomplish the molecular-clump
detection. In the first stage, an improved YOLOV5 is used to detect the positions of molecular clumps
on the Galactic plane, obtaining their spatial information. In the second stage, the DPC algorithm is
used to combine the detection results in the velocity direction. In the end, the clump candidates are
positioned in the 3D position-position-velocity (PPV) space. Experiments show that the method can
achieve a high recall of 98.41% in simulated data made up of Gaussian clumps added to observational
data. The efficiency of the strategy has also been demonstrated in experiments utilizing observational
data from the Milky Way Imaging Scroll Painting (MWISP) project.

Keywords: YOLOV5; density peak clustering; molecular clouds; clump detection

1. Introduction

As one of the most essential components of the interstellar medium, molecular clouds
consist primarily of molecular gas mixed with small amounts of atoms, ions, and dust [1].
The scale of molecular clouds spans from giant clouds with tens of pc to dense clumps with
less than 0.1 pc [2]. Molecular clouds usually present complex and hierarchical structures.
Clumpiness is a universal property of molecular clouds and plays a key role in understand-
ing the fragmentation of cloud complexes into sub-clouds finally small enough to form
individual stars [3]. Modern astronomy recognizes dense clumps in the molecular clouds
as the key sites of star formation [4]. Thus, the detection and analysis of dense clumps
in molecular clouds can better elucidate star formation and matter cycling in the Milky
Way [5].

Several researchers have already studied automatic detection algorithms for molecular
clumps. In 1990, Stutzki and Guesten (1990) [3] proposed the GaussClumps algorithm
and applied it to the M17 molecular cloud to detect 170 clumps. In 1994, Williams et al.
(1994) [6] proposed the ClumpFind algorithm and tested it on RMC and MMC. They
detected 83 clumps in the RMC and 78 clumps in the two observed regions of MMC. In 2015,
Berry (2015) [7] proposed the FellWalker algorithm, which has been utilized by Kirk et al.
(2016) [8] to detect a total of 915 clumps in three subregions of the Orion B molecular cloud
and obtain basic physical information, such as the fluxes and sizes of these clumps. In 2022,
Luo et al. (2022) [9] proposed the LDC algorithm, which has detected 658 clumps in the
M16 molecular cloud. Astronomers need to set the initial parameters of these detection
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algorithms according to the observational instrument and the morphological features of the
target during detection. The detection results are closely related to the parameter settings.
Before detection, astronomers need to repeatedly adjust the parameters to optimize the
algorithm or manually verify the detection results and thus ensure accuracy. To accomplish
the task of large-scale molecular clump census from the rapidly growing CO molecular-
cloud observation, the research, and development of detection algorithms with higher
efficiency are needed.

With the rapid development of artificial intelligence technology, deep-learning meth-
ods represented by convolutional neural networks (CNNs) have extensively been used
in image and machine vision [10-15]. Deep learning also provides a viable method for
extracting essential features of astronomical data. Kim and Brunner (2017) [16] proposed
a CNN to classify stars and galaxies. Gonz “alez et al. (2018) [17] implemented the task
of galaxy detection and classification by using the YOLO target-detection algorithm. Le-
ung and Bovy (2019) [18] designed a Bayesian neural network to measure multi-element
abundances in stellar spectra. Xie et al. (2021) [19] applied a convolutional neural model to
stellar spectra for detecting stars with low metal content. He et al. (2021) [20] proposed
a target-detection network based on YOLOvV4 to detect sources in SDSS images and a
classification model called APSCnet to classify sources. Yi et al. (2022) [21] proposed an
automatic detection model based on a deep-learning approach for automatically detecting
low-surface-brightness galaxies from SDSS images. Cao et al. (2023) [22] used an improved
Faster R-CNN framework based on deep learning to detect L-dwarf from SDSS images
automatically. These new techniques enable the automatic analysis of astronomical data
and demonstrate the feasibility of supervised deep learning for astronomical data mining.
Therefore, an automatic clump-detection algorithm that extracts the desired types of tar-
gets directly from the observational data through supervised feature learning from clump
morphological properties can be similarly designed for CO survey data.

The Milky Way Imaging Scroll Painting (MWISP) project [23] is a large-scale CO
survey project carried out by the Purple Mountain Observatory of the Chinese Academy of
Sciences by using the DLH-13.7 m millimeter-wave radio telescope, which simultaneously
observes '2CO, 13CO, and C'®0(1-0) lines emission. The first phase of MWISP has acquired a
large number of molecular-cloud observational data, providing sufficient training samples
for the deep-learning-based clump detection algorithm. This paper proposes a clump-
detection method based on an improved YOLOVS joint Density Peak Clustering (DPC) [24].
The method initially locates the clumps in the position-position (PP) coordinate representing
the Galactic longitude and latitude by using the improved YOLOVS5. Subsequently, DPC
is used to cluster the clumps in the velocity direction, thereby ultimately realizing the
clump detection in position-position-velocity (PPV) three-dimensional (3D) space. This
method utilizes supervised deep learning to detect clumps by labeling the areas of interest.
The detection results are directly related to the labeling scheme and feature learning of the
data. During detection, the 3D information where the target candidate is located can be
obtained quickly with far fewer parameters tuning during detection.

The paper is organized as follows. Section 2 describes the generation of the experi-
mental data. Section 3 details the theory of the clump-detection algorithm based on the
improved YOLOVS5 joint DPC. Section 4 presents the training process and the main experi-
mental results in PPV space. Finally, conclusions are drawn in Section 5.

2. Data

To better train the improved YOLOvV5 and comprehensively evaluate the performance
of the proposed method, a large number of clumps are required. Synthesized data are
designed for the quantitative evaluation of detection performance. Synthesized data are
composed by randomly adding simulated clumps to the observational data background.
The simulated clumps are generated by the 3D Gaussian model, and the background is
the observational 13CO(1-0) line emission data obtained by MWISP. The simulated clumps,
the observational data, and the synthesized data are described separately below.
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2.1. Simulated Clumps

Localized high densities characterize the clumps, and Gaussian functions can be used
to describe their intensity distributions [3]. Simulated clumps can be generated utilizing
the 3D Gaussian model with several parameters [25], as shown in Table 1. The 3D Gaussian
model is described as:

cos’f  sin?0 2
flx,y,0) = Aexp{—[( 202 +ﬁ)(x—xo)

cos?®  sin?6
+(T'y2—ﬂ)(X—xo)(y—yo) (1)

L2 2 2
sin“@  cos“0 »  (v—1p)
2%2 + 20.5 )(y yO) + 20.%

where A represents the peak intensity of the clump, oy, 0y, 0, represent the standard
deviations on the Galactic longitude, the Galactic latitude, and the velocity, respectively,
(x0,Y0,v0) represents the position of the center of mass of the clump, and 6 represents
the rotation angle on the Galactic plane. To enable generated simulated clumps with the
parameter-distribution characteristics of the observational data, the statistics of the clump
parameters detected in the '3CO(1-0) line emission data of the M16 region obtained by
MWISP are regarded as the input into the 3D Gaussian model. The 13CO(1-0) line emission
of M16 region ranges 15°15' < 1 <18°15, 0° < b < 1°30’. LDC [9] algorithm was applied to
detect the 3CO(1-0) line emission of M16 and a total of 658 clumps have been detected.
We counted the morphological parameters of these clumps and obtained the parameters
range in Table 1. Five thousand simulated clumps were randomly generated, and fluxes
were calculated according to the parameters in Table 1. The flux distribution is shown in
Figure 1. These simulated clumps maintain consistency with the MWISP observational
data and provide a more realistic representation of the detection performance.

+(

Table 1. Parameters of the 3D Gaussian model.

Parameter Name Explanation Range
Peak Peak intensity of the clump [0.7,15]
Ox Standard deviation on the Galactic longitude [1,4] x 2.3548
oy Standard deviation on the Galactic latitude [1,4] x 2.3548
0y Standard deviation on the velocity direction [1,7] x 2.3548
(x0, Yo, v0) Position of the center of mass of the clump Randomization
0 Rotation angle on the Galactic plane 0°-180°
900
800 |
700F |
600 |
£ 500 wil
[}
O
400
300
200 |
100 F
% 500 1000 1500 2000 2500 3000 3500 4000
Flux (K km s™)

Figure 1. Distribution of the number of fluxes of 5000 randomly generated simulated clumps.
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2.2. Observational Data

Three typical regions within the first, second, and third Galactic quadrants of the
13CO(1-0) line emission data obtained from MWISP are selected as the background for gen-
erating the synthesized data. The typical noise level of 13CO(1-0) line emission is about 0.23 K
with a channel width of 0.167 km s~ 1. Three regions all contain information in the three dimen-
sions of Galactic longitude, Galactic latitude, and velocity. Due to the structure of the spiral
arm of the Milky Way, different quadrants contain different spiral arms and have different gas
distributions. The range of the Galactic plane is 3° x 2° and the velocity range is 70 km s~ !,
of all three backgrounds, corresponding with the size of 361 x 241 x 424 pixels. The regions
selected in the first Galactic quadrant range 13° < I < 16° and —1°30' < b < 30/, and the
velocity ranges 0 km s ! < vs. < 70 km s~ .. It belongs to the inner Milky Way area, in the
direction of the galactic center. The regions selected in the second Galactic quadrant range
101° < I < 104° and 2° < b < 4°, and the velocity ranges —60 km s ™! < vs. < 10 km s~ .
The regions selected in the third Galactic quadrant range 184°30" < [ < 187°30" and
—1° < b < 1°, and the velocity ranges —10 km s ™! < vs. < 60 km s~ . They both belong
to the outer Milky Way area. The density of the three regions is different. The background
gas is dense in the first Galactic quadrant region and sparse in the third Galactic quadrant
region. In the second Galactic quadrant region, the density of the background is between
the first and the third Galactic quadrants. Different gas densities can reflect the detection
performance of the detection algorithm in different signal-to-noise ratio environments.
Figure 2 shows the velocity-integrated intensity maps for each selected background region.
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Figure 2. Cont.
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Figure 2. Velocity —integrated intensity maps for selected background regions. (a) the first Galactic
quadrant with 13° < [ < 16° and —1°30" < b < 30'; the velocity ranges 0 km s~} < vs. < 70 km s 1.
(b) the second Galactic quadrant with 101° < [ < 104° and 2° < b < 4°; the velocity ranges
—60 kms ! < vs. < 10 km s L. (c) the third Galactic quadrant with 184°30' < | < 187°30/ and
—1° < b < 1°; the velocity ranges —10 km s 1 < vs. < 60 km s !

2.3. Synthesized Data

One hundred simulated clumps obtained using the 3D Gaussian model are added
randomly to the designated region mentioned in Section 2.2 to generate synthesized data.
The added simulated clumps are uniformly distributed throughout all regions. This process
is repeated three times to create the first, second, and third Galactic quadrants’ synthesized
data. To ensure that each synthesized data item has 100 complete simulated clumps, it
should avoid boundary regions and clump fusion during the addition process. Velocity-
integrated intensity maps for three Galactic quadrants’ synthesized data are shown in
Figure 3. Synthesized data also contains information in the three dimensions of Galactic
longitude, Galactic latitude, and velocity. The size of synthesized data is the same as its
corresponding background region size. The range of the Galactic plane is 3° x 2° and
the velocity range is 70 km s~ !, of all synthesized data, corresponding with the size of
361 x 241 x 424 pixels.

As the synthesized data are generated, information about each added simulated clump is
recorded in a clump parameter table for each synthesized data. The information contained in
the table is shown in Table 2, where ID denotes the clump number. Peakl, Peak2, and Peak3
indicate the peak intensity coordinates. Cenl, Cen2, and Cen3 indicate the center of mass
coordinates. Sizel, Size2, and Size3 denote the axial lengths. 6 represents the rotation angle
on the Galactic plane. Sum denotes the total flux. Peak indicates the peak intensity.

Once the detection is complete, the results are compared with the clump parameter
tables. The algorithm performance can then be quantitatively evaluated.

Table 2. Parameter information table of simulated clumps.

Parameter Name Explanation
ID Clump number
Peak1, Peak2, Peak3 Peak coordinates of clumps
Cenl, Cen2, Cen3 Coordinates of the center of mass of clumps
Sizel, Size2, Size3 Axis lengths of clumps in the Galactic plane, and velocity direction
0 Rotation angles of clumps on the Galactic plane
Sum Total flux of clumps
Peak Peak intensity of clumps
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Figure 3. Velocity—integrated intensity maps of the synthesized data: (a) the first Galactic quadrant
synthesized data. (b) the second Galactic quadrant synthesized data. (c) the third Galactic quadrant
synthesized data.
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3. Method

This paper presents a new method based on an improved YOLOV5 joint DPC for
detecting molecular clumps in PPV data. Detection is divided into two stages. In the first
stage, the improved YOLOVS5 is used to detect the clumps in two-dimensional (2D) space
and obtain their position on the Galactic plane. In the second stage, DPC is used to combine
the detection results obtained in the first stage in the velocity direction, thereby helping

achieve the final clump detection in 3D space. The code has been shared on Github 1.

3.1. The Improved YOLOv5 — Molecular Clump Detection (MCD)-YOLOv5

YOLOVS is an extensively used target-detection tool that combines speed and
accuracy [26-29]. One of its key advantages is that it is a one-stage detection algorithm. It

65



Universe 2023, 9, 480

provides faster inference and detection speeds, making it useful for handling large amounts
of molecular cloud data.

YOLOVS5 consists of a backbone, neck, and YOLO head. The backbone can extract the
information of the input. The neck can extract features from the backbone to improve the
performance of the network. The YOLO head outputs the results of the network predictions.
Although YOLOVS is a strong performer in many target-detection tasks, it has limitations in
detecting small targets which are often low in pixels, small in percentage, easy to overlap,
and difficult to distinguish. The molecular-cloud data have clumps with weak intensity
which may be obscured by the molecular-cloud background. Owing to the rotation angle,
some clumps also appear small on the Galactic plane. To enhance the ability of YOLOV5
to detect these small clumps, we introduce the Coordinate Attention (CA) module and
Normalized Wasserstein Distance (NWD) loss function to YOLOvVS5. This improved version,
called Molecular clump detection (MCD)-YOLOVS5, and its architecture is shown in Figure 4.

1 oo N —

- -

=

@z - {--—_ (ComvtiesILD |

Figure 4. Architecture of MCD-YOLOv5. MCD-YOLOVS5 is mainly composed of three parts: back-
bone, neck, and YOLO head. The backbone consists of CBS, C3_1, and CA modules. CBS is a
composite convolution module, which encapsulates a convolutional layer, a batch normalization
layer, and the SiLU activation function. MCD-YOLOV5 contains two types of C3 modules; C3_1 is
applied in the backbone and C3_2 is applied in the neck. The C3_1 module and C3_2 module both
consist of CBS.
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In C3_1, the input feature map passes through three branches, while in C3_2, it only passes through
two branches. The branches are finally spliced by channel and then output through a CBS module.
We add a CA module after each layer of the C3_1. The neck consists of SPPF(Spatial Pyramid
Pooling-Fast), and CSP-PAN(CSP-Path Aggregation Network) modules. SPPF is a spatial pyramid
pooling module. SPPF encapsulates a CBS module and three maximum pooling layers. Three pooling
results with input feature maps are spliced by channel and passed through a CBS module. CSP-PAN
is composed of CBS and C3_2, and the feature fusion of different feature layers is realized through
upsampling and downsampling, which solves the target multi-scale problem to a certain extent.
The main part of the YOLO head is three detectors, that is, using mesh-based anchors to detect objects
on feature maps at different scales.

3.1.1. Coordinate Attention

To improve YOLOVS's ability to recognize the clumps with weak intensity in slices, a
CA module [30] is utilized. The architecture of the CA module is shown in Figure 5. CAis a
lightweight attention module, which encodes each channel of the feature map along the X and
Y directions. The resulting feature maps are combined and transformed via convolutional
transform to create intermediate feature maps. These feature maps are then divided into
separate tensors, which are again transformed and expanded to become the value of the
attention weight assignment. The CA module is added after each layer of the C3_1 module
in YOLOVS, thereby increasing the number of layers from 10 to 14. This action enables a
more accurate identification of regions of interest during the feature extraction of clumps.

l

Residual

BN+h_Swish

A

Re-weight
}

Figure 5. Architecture of Coordinate Attention module. The module is made of two average pooling
layers, a convolution layer with concat operation, a batch normalization layer with an h_swish
activation function, two convolution layers, and two sigmoid activation functions. The average
pooling layers encode each channel of the feature map along the X and Y directions. The resulting
feature maps are combined and transformed via the convolution layer with concat operation and
the batch normalization layer with an h_swish activation function to create intermediate feature
maps. These feature maps are then divided into separate tensors, which are again transformed
and expanded by the convolution layer and sigmoid activation function to become the value of the
attention weight assignment.

3.1.2. Normalized Wasserstein Distance

Detecting small clumps is challenging owing to limited appearance information,
conferring difficulty in recognizing features. The use of Intersection over Union (I0OU) [31]
as a metric in YOLOV5 to measure the goodness of the generated anchor frames during
detection also results in the poor detection of small targets. Wang et al. (2022) [32] analyzed
the sensitivity of IoU to location deviations of tiny objects, and proposed NWD as a better
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metric for measuring the similarity between two bounding boxes. To improve the detection
performance of YOLOVS5 for small target clumps, the NWD loss function is introduced.
The expressions for NWD and the loss function based on NWD are presented as follows:

w, h T we h T 2
W3 (Np, Ny) = H ({Cxpfcyp/ 2”2”} , [ng,cyglzg,zg] ) @)
W2(N,, Ny)
NWD(Np/ Ng) = exp %ﬂg 3)
Lywp =1 — NWD(N,, Ng) @

where N, is the Gaussian distribution model of the prediction frame P; N, is the Gaussian
distribution model of the gt frame G; (cxp, cyp, wp, hp) is the coordinates of the upper left
corner of the prediction frame P and the width and height information; (cxg, cyg, wg, hg)
represents the coordinates of the upper left corner of the gt frame G and the width and
size information, respectively; and sz( Ny, Ng) is the second-order Wasserstein distance
between Nj, and N. C is a constant. This paper uses the original Complete IoU Loss
(CIOU) [33] of YOLOV5 and NWD loss in the molecular-clump-detection task. The weight
ratio of CIOU loss and NWD loss is 7:3.

3.2. Density Peak Clustering Algorithm

The DPC algorithm was proposed by Rodriguez & Laio (2014) [24] in 2014. DPC
assumes that points with low local density surround the cluster centers, which are relatively
distant from others. This feature is very similar to clumps embedded in the molecular cloud
with lower average density and localized density enhancement. Accordingly, this paper
uses DPC to complete the splicing of clumps in the velocity direction.

DPC is implemented by dividing the data points within a specific range into a region
followed by calculating the density p; and distance J; of each data point within that region:

min dyj,  if pj > p;
o JPj=pi
6 =
max d
j=12,..n

ij, otherwise ®)

d;j denotes the Euclidean distance between data points i and j. When a point with a
higher density than the current data point exists, the distance of this point is the minimum
of all data points denser than the point. After setting the thresholds for density and
distance, clustering centers can be determined from these data points. Clustering can also
be accomplished by assigning points not clustering centers to the nearest clustering centers
based on the distances of other data points from the clustering centers.

After MCD-YOLOVS, the clumps are extracted in the slices by the coordinate position
information obtained from the detection, and the center of mass of the extracted region is
calculated by the adaptive threshold segmentation [34]. Through the position coordinates
(x;,y;) of the center of mass and its velocity channel information v;, the intensity I; of the
corresponding position in the synthesized data is also extracted. These pieces of information
are used in this paper to represent the density of each input data point with the following
expression:

o = Ii (6)

The inputs and outputs of DPC are listed in Table 3. DPC clusters the centers with
position and density output by MCD-YOLOVS5 and divides them into different categories.
The final number of categories is the number of clumps detected.
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Table 3. Input and output data for DPC.

Description Parameters Name Explanation
X; Galactic longitude coordinates of the center of mass in the region detected by MCD-YOLOv5
Yi Galactic latitude coordinates of the center of mass in the region detected by MCD-YOLOv5
Input v; Channels in the velocity direction detected by MCD-YOLOv5
I; Intensity of (x;, y;, v;) in the synthesized data
Output numClust Number of clustered clumps categories

3.3. MCD-YOLOw5 Joint DPC

The flowchart of the clump-detection method based on MCD-YOLOVS5 joint DPC is
shown in Figure 6. The molecular cloud data are sliced in the velocity direction, resulting
in 2D data along the Galactic plane. These data are inputted into MCD-YOLOVS5 for detec-
tion. Once all slices have been detected, MCD-YOLOVS5 outputs the coordinate position
information of the detected clumps. The center of mass of each detected clump can be
calculated based on MCD-YOLOVS5 output information. Using the center of mass and the
velocity channel size where the corresponding slice is located, the intensity value of the
related part on the molecular cloud data is obtained as the input to DPC. DPC clusters the
centers of mass and classifies them into different categories. The region comprising clumps
corresponding with center of mass points in the same category is classified as a clump.
The spatial coordinates of the slices of molecular clouds belonging to the same clump in
the direction of the Galactic plane and the span in the direction of velocity are statistically
calculated to transform the PP data into PPV data. The output of MCD-YOLOVS5 joint DPC
is 3D cubic regions containing clumps. By obtaining information about each 3D region, we
can calculate the centroid (Cen;) and size (Size;) of the molecular cloud clumps on different
axes i (i = 1,2,3). The definition of the centroid is as follows:

Z?il(lj - ;) )

Cen; =
2}‘:1 Ij

the Size; of the clump on axis i is defined as:

®)

Size; =

Z}zl(Ij ' sz) B (Z;Zfl(lj : x]->2

n
Zjil L

Data Cube

Figure 6. Flowchart of the clump-detection method based on MCD-YOLOVS5 joint DPC. The four
branches represent any four slices in a given data cube. Each slice achieves 2D detection by MCD-
YOLOVS5 to obtain the anchor information of the target on the corresponding slice. The rest slices are
indicated by ellipses. Heads in different size fonts indicate different scales of detection heads.
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4. Experiments and Discussion

To verify the effectiveness and reliability of the detection method based on MCD-
YOLOVS joint DPC, MCD-YOLOVS is trained by using synthesized data from the first
and third Galactic quadrants. Its performance in detecting clumps is tested using the
synthesized data from the second Galactic quadrant. The training process of MCD-YOLOVS5,
the effectiveness of DPC, and the test results are presented in the following sections.

4.1. Evaluation of Indicators

The performance of MCD-YOLOVS5 for detecting clumps on the 2D Galactic plane
is quantified by using precision, recall, and average precision (AP), which are the most
commonly used in target-detection tasks. Using the recall rate to evaluate the 3D de-
tection performance of the clump-detection method based on MCD-YOLOVS5 joint DPC.
The precision, recall, and AP expressions are as follows:

.. TP
precision = TP+ EP’ 9)
TP
= —+—— 1
reca TP+ EN’ (10)
1
AP = /O P(r) (11)

In calculating precision and recall, true positive (TP) denotes the number of clumps
predicted to be clumps that are actually clumps, false positive (FP) denotes the number of
clumps predicted to be clumps but are not actually clumps, and false negative (FN) denotes
the number of clumps predicted to be not clumps that are actually clumps. In calculating AP,
P(r) denotes the maximum precision value when the recall takes the corresponding value.

4.2. MCD-YOLOu5 Training and DPC
4.2.1. MCD-YOLOV5 Dataset Generation

The slices generated by intercepting along the velocity channel of the synthesized data
are used as samples in the dataset. Each sample has only one velocity channel and contains
information in two dimensions, Galactic longitude, and Galactic latitude, with a pixel size of
361 x 241. A total of 45 first-Galactic-quadrant and 45 third-Galactic-quadrant synthesized
data cubes with 9000 simulated clumps to generate the dataset used for the training and
validation of MCD-YOLOVS. There are a total of 37,350 samples in this dataset. The samples
obtained from the first-Galactic-quadrant and third-Galactic-quadrant synthesized data are
shown in Figure 7a and Figure 7b, respectively.

Considering that MCD-YOLOVS5 is a supervised deep-learning method, the location
information on the clumps in each sample needs to be provided. The position information of
clumps in the training samples can be obtained by the clump parameter table mentioned in
Section 2.3. The specific process for obtaining the label information is as follows. The center
of mass (Cenl and Cen2) of the simulated clumps on the Galactic plane is taken as the
starting point. To form a rectangle that can cover the clumps, the pixel distance with Sizel
is expanded upward and downward, and the pixel distance with Size2 is expanded to
the left and the right. Recording the coordinate position information of the rectangles
gives information about the labeling of clumps on a sample. We can obtain the position
information of the same simulated clump appearing in the sample by taking the center of
mass coordinate Cen3 of the simulated clump in the velocity direction as the midpoint and
expanding the width of Size3 forward and backward. Figure 7 shows that the simulated
clumps are accurately labeled by the above method. Figure 7c shows the labeling of the
synthesized data slices in the third Galactic quadrant. Figure 7d shows the labeling of the
synthesized data slices in the first Galactic quadrant.
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(a) (b)
(c) (d)

Figure 7. Examples from the MCD-YOLOV5 dataset and the annotation information: (a) synthesized
data in the third Galactic quadrant, (b) synthesized data in the first Galactic quadrant, (c) annotation
information on (a), and (d) annotation information on (b). The red-labeled boxes represent the clumps.

4.2.2. Training MCD-YOLOv5

To train MCD-YOLOVS5 effectively, the dataset is divided into a training set and a test
set at a ratio of 8:2, and takes 10% from the training set as the validation set. The training set
is used to train MCD-YOLOVS5, the validation set is used to verify the performance metrics
of MCD-YOLOVS5 during training, and the test set is used to test the detection effect of MCD-
YOLOVS5 after training is completed. During training, the number of training rounds is set
to 300, the amount of batch training data is 128, the training momentum is 0.9, the initial
learning rate is 0.001, and the weight decay is 0.0005. The stochastic gradient descent
(SGD) serves the optimization function to train MCD-YOLOVS. The default parameters of
YOLOVS were used for training in this paper.

To verify the improved performance of MCD-YOLOvV5 compared with YOLOVS5 in
detecting clumps, we train MCD-YOLOv5 and YOLOVS5 on the same dataset. Figure 8
shows the variation in localization loss and confidence loss. The curve variation shows
that MCD-YOLOvV5 and YOLOV5 are not overfitted or underfitted, and MCD-YOLOvV5
decreases more smoothly during training. The variation curves of the precision and recall
on the validation set with the number of training rounds are shown in Figure 9a,b. Figure 9¢c
demonstrates the variation of AP in MCD-YOLOv5 and YOLOVS5 during the training when
IOU is set to 0.5. IOU denotes the intersection and concurrency ratio of the area of the
predicted frame to the area of the actual frame. In general, the predicted frames produced
by the model are recognized to be correct only if the IOU is greater than or equal to the
set threshold. The curve changes show that the precision of MCD-YOLOV5 does not
considerably differ from that of YOLOVS5, but its recall rate exceeds that of YOLOVS.

We select a slice containing smaller clumps and input it into the trained MCD-YOLOvV5
and YOLOVS5 at the same time for detection. Results are shown in Figure 10. By comparison,
MCD-YOLOVS5 detects all seven clumps in the slices, whereas YOLOvV5 misses a smaller
clump labeled 2. This experiment illustrates the improved small target detection perfor-
mance of the MCD-YOLOVS5. Table 4 shows the precision, recall, and AP of MCD-YOLOv5
and YOLOVS in the test set. By comparison, MCD-YOLOVS5 performs better than YOLOv5
in detecting clumps when processing the same molecular cloud data slices.
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Figure 8. Comparing loss-change curves MCD-YOLOv5 and YOLOVS training. The clump-detection
task has only one category of clump, so the loss contains only localization loss and confidence loss:
(a) variation in localization loss (Box Loss) with number of training rounds (epoch), (b) variation in
confidence loss (Obj Loss) with number of training rounds (epoch).
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Figure 9. Variation curves of precision, recall, and AP as a function of the number of training rounds
(epoch) for MCD-YOLOvV5 and YOLOV5 on the validation set: (a) precision, and (b) recall, and (c) AP.

(a)

(b) (c)

Figure 10. A typical example of detection results of MCD-YOLOv5 and YOLOVS. (a) Seven simulated
clumps in the area. (b) MCD-YOLOVS5 detected 7 clumps. (c) YOLOVS detected 6 clumps. The red
rectangular box in (c) represents the missed clump.

Table 4. Detection results of MCD-YOLOvV5 and YOLOV5 on the test set.

Model Precision Recall AP
MCD-YOLOv5 0.969 0.935 0.972
YOLOvV5 0.969 0.910 0.956

4.2.3. Result of DPC

When MCD-YOLOVS5 completes the detection, the center of mass of the detected
clumps and their corresponding intensity information is inputted into DPC according to
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the method mentioned in Section 3.2. DPC then classifies the centers of mass belonging
to the same clumps into the same class. The results of DPC are shown in Figure 11.
The differently colored dots represent the center of mass of a clump detected by MCD-
YOLOVS, the red rhombus represents a clustering center, and the green square represents
the location of the center of mass of a simulated clump. If the dots representing the detected
clumps have the same color, these centers of mass are classified as one clump. Figure 11
shows that most of the cluster centers obtained through DPC can correspond with the
centers of mass of the simulated clumps. This finding indicates that using intensity-based
DPC can classify slices belonging to the same clumps into a single class in the direction of
velocity, thereby ultimately realizing the detection of 3D clumps in PPV.
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Figure 11. Display of the DPC results. The differently colored dots represent the center of mass of
a clump detected by MCD-YOLOV5, the red rhombus represents a clustering center, and the green
square represents the location of the center of mass of a simulated clump.

4.3. Detection Results of Second-Quadrant Synthesized Data

To test the detection performance of the proposed method based on MCD-YOLOvV5
joint DPC, 100 second-Galactic-quadrant synthesized data (containing 10,000 simulated
clumps) are selected for testing. To effectively evaluate the performance, we stipulate that
if the centroid Euclidean distance between the detected clumps and the simulated clumps
is not greater than two pixels (The minimum standard deviation of Gaussian distribution),
the clumps are regarded as detected.

The 100 second-Galactic-quadrant synthesized data are intercepted along the veloc-
ity direction, yielding 42,400 slices of size 361 x 241. The slices are inputted into the
trained MCD-YOLOVS5 to obtain the detection results. During MCD-YOLOV5 detection,
the confidence is set to 0.6, i.e., the location information of the region is recorded only
when the probability of being a clump exceeds 0.6. Then, the detection results of the same
synthesized data are inputted into DPC to obtain the detection results of clumps in the
synthesized data. Using MCD-YOLOVS5 joint DPC, 9841 simulated clumps are correctly
detected by matching with the simulated clump information tables, with a recall rate of
98.41%. Figure 12 shows the velocity-integrated intensity map of a detection result, where
the white circles are the center of mass positions of the simulated clumps, and the red dots
indicate the center of mass positions of the clumps that are detected and matched with the
simulated clumps by MCD-YOLOVS5 joint DPC. Figure 13 shows the integrated intensity
map of the detected clump of second-quadrant synthesized data of different directions,
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the maximum spectrum, and the average spectrum. As can be seen from the figure, the area
detected by MCD-YOLOVS5 joint DPC matches the characteristics of the simulated clumps.
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Figure 12. Velocity —integrated intensity maps of the detection result. The white circles are the center
of mass positions of the simulated clumps, and the red dots indicate the center of mass positions of
the clumps that are detected and matched with the simulated clumps by MCD-YOLOVS5 joint DPC.
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Figure 13. The information of the simulated clump is shown. (a,b) two examples of the integrated
intensity map of the detected clumps of second quadrant synthesized data. The top three subplots
offer the 1—-b, 1—v, and b—v maps integration in three directions for a clump, while the middle and
bottom of the figure show the peak spectrum and average spectrum of the clump, respectively.

To compare the performance of MCD-YOLOVS5 joint DPC with the traditional clump-
detection algorithms, we use FellWalker and ClumpFind on the same synthesized data.
To improve the detection performance of FellWalker and ClumpFind, both algorithms are
parameter-tuned according to the synthesized data to achieve better performance before
detection. The detection parameters are determined by the value of the RMS of the MWISP
and the experience of the users. When using MCD-YOLOVS5 joint DPC, only two parameters
need to be used, the threshold of density and distance in DPC. The detection parameters
of FellWalker, ClumpFind, and MCD-YOLOVS5 joint DPC are shown in Tables 5, 6, and 7,
respectively. We determine whether each simulated clump is detected by matching the
clump parameter tables with the output center-of-mass information of all three algorithms.
Based on statistical results, 9841 clumps were detected by MCD-YOLOVS5 joint DPC, 9770
by FellWalker, and 9631 by ClumpFind. When the second-Galactic-quadrant synthesized
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data was detected using MCD-YOLOVS5 joint DPC, 10,584 clumps were detected. Since
the synthesized data includes the observational data background and simulated clumps,
it needs to consider the number of clumps in the background data when calculating
the error rate. The remaining 743 detected clumps were manually identified by manual
verification, 495 clumps were falsely detected, and the false detection rate was 4.68%.
Manual verification is based on the integrated intensity maps of the detected clump in
different directions.

Table 5. FellWalker Parameters.

Parameters Name And Default Value
FELLWALKER.ALLOWEDGE =1
FELLWALKER.CLEANITER =1
FELLWALKER.FLATSLOPE = 2xRMS
FELLWALKER. FWHMBEAM = 2
FELLWALKER.MAXBAD = 0.05
FELLWALKER.MAXJUMP =4
FELLWALKER.MINDIP = 1 xRMS
FELLWALKER.MINHEIGHT = 3xRMS
FELLWALKER.MINPIX = 27
FELLWALKER.NOISE = 2xRMS
FELLWALKER.VELORES =2

Table 6. ClumpFind parameters.

Parameters Name And Default Value
CLUMPFIND.ALLOWEDGE =1
CLUMPFIND.DELTAT = 2xRMS
CLUMPFIND.FWHMBEAM = 2
CLUMPFIND.IDLAIG =1
CLUMPFIND.MAXBAD = 0.05
CLUMPFIND.MINPIX = 27
CLUMPFIND.NAXIS =3
CLUMPFIND.NOISE = 2xRMS
CLUMPFIND.TLOW = 3xRMS
CLUMPFIND.VELORES =2

Table 7. MCD-YOLOVS5 joint DPC parameters. minRho represents the minimum peak intensity of
the clump, i.e., the point corresponding to this intensity can be used as the cluster center during the
DPC clustering process. minRho can be set according to the intensity characteristics of the clumps
in different regions. minDelta represents the minimum pixel distance to distinguish between two
clumps. minDelta can be set according to the sparseness of the clump distribution.

Parameters Explanation Default Value
Name
minRho The minimum intensity of clump [2, 5]xRMS
minDelta The minimum pixel distance to distinguish 4

between two clumps
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In terms of the total number of detections, the method in this paper is slightly higher,
but the number of parameters is greatly reduced and the setup is simpler. The recall rates
based on MCD-YOLOVS joint DPC, FellWalker, and ClumpFind detection results are shown
in Table 8. Figure 14 demonstrates the variation of recall with flux and Peak Signal-to-Noise
Ratio (PSNR). PSNR and flux of each simulated clump can be calculated by the clump
parameter table. After the detection is completed, the detection results of the clumps
are matched with the simulated clump parameter table. Clumps in the detection results
that satisfy the matching rule are recorded as clumps detected correctly. The recall rate is
statistically plotted according to the different intervals of PSNR and flux, which can show
the detection performance of the algorithm for different PSNR and flux of clumps. It can be
seen that MCD-YOLOVS5 joint DPC is higher than the other two methods in most positions
of the performance curve. In other words, the method in this paper requires only a small
number of parameters to achieve the detection performance of the traditional algorithm
with optimized parameters.

Table 8. Detection results of MCD-YOLOVS5 joint DPC, FellWalker, and ClumpFind.

Method Matched Clumps Recall
MCD-YOLOVS5 joint DPC 9841 98.41%
FellWalker 9770 97.70%
ClumpFind 9631 96.31%
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Figure 14. Variation of recall with flux and PSNR for ClumpFind, FellWalker, and MCD-YOLOv5
joint DPC: (a) Recall variation with flux, and (b) Recall variation with PSNR.
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4.4. Detection Results of Observational Data

To verify the feasibility of MCD-YOLOVS5 joint DPC on the observational data, we
selected a region in the third Galactic quadrant of the '*CO(1-0) line emission data obtained
by MWISP for testing. The region selected ranges 180° < I < 195° and —5° < b < 5°,
and the velocity ranges —200 km s ! < vs. < 200 km s~ . This region is divided into dif-
ferent data blocks at 1° grid spacing corresponding with the size of 121 x 121 x 2411 pixels.
To obtain annotation information, we used the LDC algorithm to detect this region and
obtained the clumps and their corresponding parameter information. We selected the
clumps among 200 data blocks with 487 clumps to obtain 8496 samples and their annota-
tion information by the method mentioned in Section 4.2.1. The pixel size of the sample is
121 x 121. Figure 15 shows the examples from the observational dataset and the annotation
information on the samples. The dataset is divided in the same way as in Section 4.2.2.
The training parameter is the default parameter of YOLOVS. To reduce the complexity of
model training, we used Transfer Learning [35] when training MCD-YOLOV5 with the obser-
vational dataset. The trained model parameters on the synthesized dataset in Section 4.2.2
are used as the pre-training weights for the model training on the observational dataset.
Figure 16 shows variation curves of loss-change, precision, and recall on the validation set
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of the observational dataset. Figure 16a,b shows that MCD-YOLOVS5 is not overfitted or
underfitted when trained on the observational dataset. We selected some samples in the
validation set and inputted them into the trained MCD-YOLOV5 for detection.

The detection results of MCD-YOLOVS5 are shown in Figure 17. It can be seen that
MCD-YOLOVS5 can obtain the correct detection position of clump candidates in the 2D PP
plane. After MCD-YOLOV5, we use DPC to obtain the final detection results of clumps in
PPV space. The detection process and result outputs for observational data are identical
to that for synthetic data, which is described in Section 4.3. Figure 18 demonstrates the
velocity-integrated intensity maps of some of the detection results. It can be seen that
the clumps are detected in a consistent location using both methods, MCD-YOLOV5 joint
DPC and FellWalker. Figure 19 shows the integrated intensity map of the detected clump
of observational data of different directions, the maximum spectrum, and the average
spectrum. As can be seen from the figure, the area detected by MCD-YOLOVS5 joint DPC
matches the characteristics of the clumps.

By visual inspection, the detected candidate regions match the empirical criteria,
demonstrating the viability of the proposed method in observational data. Moreover,
the method in this paper does not detect spurious clumps caused by pure noise because
there is no such type of target in the training labels. However, since the proposed method
is based on supervised deep learning, the final performance is affected by the number of
training samples and the accuracy of labeled information. During the experiments, there
were also some missed detections of clumps due to incomplete training sets. When the
background intensity is greater than the clump, the background will obscure the clumps,
resulting in MCD-YOLOV5 missing the detection during the two-dimensional detection
on the Galactic plane in the first stage. At the same time, a Gaussian-type clump occurs
in multiple velocity channels, and the area of the clump is relatively small at the start
and end of the velocity channel. MCD-YOLOVS5 is prone to missed detection. Due to the
loss of information at both ends, the resulting clump area will be smaller than the actual
clump area after the DPC algorithm clusters. In this case, using the results of clustering to
calculate the centroid will cause the result to be skewed from the actual position. Therefore,
when compared with the simulated clump parameter table, the distance exceeds the size
specified by the matching rule, so it is judged to be missed. In fact, the results of DPC
clustering show that this type of clump is detected. In conclusion, the method in this paper
is an attempt at deep learning for clump target detection in the PPV space.

(a) (b) (c) (d}

Figure 15. Examples from the MCD-YOLOV5 dataset and labeling the annotation information on the
samples. (a—d) all show the labeling of the observational data slices in the third Galactic quadrant.
The red-labeled box is annotation information.
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Figure 16. Variation curves of loss-change, precision, and recall on the validation set of the real
dataset during MCD-YOLOVS training: (a) variation in localization loss, (b) variation in confidence
loss, (c) variation in precision and recall.

Figure 17. Detection results of MCD-YOLOVS5 in observational data. (a,c) the slices generated by

intercepting along the velocity channel of the observational data. (b,d) the detection results of MCD-

YOLOVS5. The red-labeled box is annotation information, the yellow-labeled box is the detection
result of MCD-YOLOVS.
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Figure 18. Velocity —integrated intensity maps of detection results. (a,b) velocity—integrated intensity
maps of detection results of the two examples. The white circles are the center of mass positions
of the clumps detected by MCD-YOLOVS5 joint DPC, and the red dots indicate the center of mass
positions of the clumps that are detected by FellWalker.
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Figure 19. The information of the clump is shown. (a,b) two examples of the integrated intensity
map of the detected clumps of observational data. The top three subplots offer the 1-b, 1-v, and b—v
maps integration in three directions for a clump, while the middle and bottom of the figure show the
peak spectrum and average spectrum of the clump, respectively.

5. Summary

We propose a method based on an improved YOLOVS joint DPC to realize the auto-
matic detection of molecular clumps. Among them, YOLOvS5 adds the CA module to the
original backbone and modifies the loss function, which is used to improve the detection
performance of small clumps. The intensity of the center of mass is considered in the
process of DPC and is used to improve the clustering effect of the clumps. The algorithm
localizes the molecular clumps on the Galactic plane by using MCD-YOLOv5 and combines
the detection results in the velocity direction by using DPC to realize molecular-clump
detection in PPV space. We constructed a large amount of synthetic data to test the detec-
tion performance of the algorithm. Experimental results show that the method proposed
has fewer initial parameters, higher detection efficiency, and achieves the same detection
performance as parameter-tuned FellWalker and ClumpFind. From the experiments with
observational data, the method in this paper can also accurately find the positions where
the clump candidates are located. Subsequently, the generalization ability of the model in
observational data can be further improved by optimizing the quality of labels.

Author Contributions: Conceptualization, Z.-W.C. and Y.H.; methodology, S.Z. and Y.H.; software,
J.-B.H. and X.-Y.L,; validation, C.L. and X.-Y.L.; formal analysis, J.-B.H. and C.L.; investigation, J.-B.H.
and X.-Y.Z.; resources, Z.-W.C. and X.-Y.Z.; data curation, ].-B.H., C.L. and X.-Y.L.; writing—original
draft preparation, J.-B.H. and Y.H.; writing—review and editing, X.-Y.Z. and S.Z.; visualization,
J.-B.H., and X.-Y.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China U2031202.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The testing data that support the study are openly available in https:
/ / github.com/SunetK/MCD-YOLOvV5-joint-DPC (accessed on 16 August 2023). Other datasets used
or analyzed during the study are available from the corresponding author upon reasonable request.

Acknowledgments: We are grateful to the anonymous referee for their invaluable insights and
comments, which enabled us to refine and enhance this work. This work is supported by the National
Natural Science Foundation of China (grants Nos. U2031202). This research makes use of the data
from the Milky Way Imaging Scroll Painting (MWISP) project, which is a multi-line survey in 1>CO,
13CO, and C'80 along the northern Galactic plane with PMO-13.7m telescope. We are grateful to all
the members of the MWISP working group, particularly the staff members at PMO-13.7m telescope,
for their long-term support.

79



Universe 2023, 9, 480

Conflicts of Interest: The authors declare no conflicts of interest.

Notes

1

https:/ /github.com/SunetK/MCD-YOLOv5-joint-DPC(accessed on 16 August 2023).

References

1.  Heyer, M.; Dame, T.M. Molecular Clouds in the Milky Way. Annu. Rev. Astron. Astrophys. 2015, 53, 583-629. [CrossRef]

2. Williams, J.P; Blitz, L.; McKee, C.F. The Structure and Evolution of Molecular Clouds: From Clumps to Cores to the IMF. arXiv
1999, arXiv:astro-ph/9902246.

3. Stutzki, J.; Guesten, R. High Spatial Resolution Isotopic CO and CS Observations of M17 SW: The Clumpy Structure of the
Molecular Cloud Core. Astrophys. J. 1990, 356, 513. [CrossRef]

4. Krumholz, M.R.; McKee, C.E; Tumlinson, J. The Star Formation Law in Atomic and Molecular Gas. Astrophys. J. 2009, 699, 850-856.
[CrossRef]

5. Zinnecker, H.; Yorke, H-W. Toward Understanding Massive Star Formation. Annu. Rev. Astron. Astrophys. 2007, 45, 481-563.
[CrossRef]

6. Williams, ].P.,; de Geus, E.J.; Blitz, L. Determining Structure in Molecular Clouds. Astrophys. J. 1994, 428, 693. [CrossRef]

7.  Berry, D.S. FellWalker-A clump identification algorithm. Astron. Comput. 2015, 10, 22-31. [CrossRef]

8. Kirk, H.; Di Francesco, ].; Johnstone, D.; Duarte-Cabral, A.; Sadavoy, S.; Hatchell, J.; Mottram, J.C.; Buckle, J.; Berry, D.S.; Broekhoven-
Fiene, H.; et al. The JCMT Gould Belt Survey: A First Look at Dense Cores in Orion B. Astrophys. ]. 2016, 817, 167. [CrossRef]

9. Luo, X.; Zheng, S.; Huang, Y.; Zeng, S.; Zeng, X.; Jiang, Z.; Chen, Z. Molecular Clump Extraction Algorithm Based on Local
Density Clustering. Res. Astron. Astrophys. 2022, 22, 015003. [CrossRef]

10. Chen, Q.; Wang, Y,; Yang, T.; Zhang, X.; Cheng, J.; Sun, J. You Only Look One-Level Feature. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2021, Virtual, 19-25 June 2021; pp. 13039-13048. [CrossRef]

11. Wang, J.; Song, L.; Li, Z.; Sun, H.; Sun, ].; Zheng, N. End-to-End Object Detection With Fully Convolutional Network. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, Virtual, 19-25 June 2021; pp. 15849-15858.
[CrossRef]

12.  Yan, B.; Peng, H.; Wu, K,; Wang, D.; Fu, J.; Lu, H. LightTrack: Finding Lightweight Neural Networks for Object Tracking via
One-Shot Architecture Search. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021,
Virtual, 19-25 June 2021; pp. 15180-15189. [CrossRef]

13.  Kumar, A.; Rawat, Y.S. End-to-End Semi-Supervised Learning for Video Action Detection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, 18-24 June 2022; pp. 14680-14690. [CrossRef]

14. Liang, C.; Wang, W.; Zhou, T.; Yang, Y. Visual Abductive Reasoning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, 18-24 June 2022; pp. 15544-15554. [CrossRef]

15.  Zhou, K;; Yang, J.; Loy, C.C.; Liu, Z. Conditional Prompt Learning for Vision-Language Models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, 18-24 June 2022; pp. 16795-16804.
[CrossRef]

16. Kim, EJ; Brunner, R.J. Star-galaxy classification using deep convolutional neural networks. Mon. Not. R. Astron. Soc. 2017,
464, 4463-4475. [CrossRef]

17.  Gonzélez, R.E.; Mufioz, R.P.; Herndndez, C.A. Galaxy detection and identification using deep learning and data augmentation.
Astron. Comput. 2018, 25, 103-109. [CrossRef]

18. Leung, HW.; Bovy, J. Deep learning of multi-element abundances from high-resolution spectroscopic data. Mon. Not. R. Astron.
Soc. 2019, 483, 3255-3277. [CrossRef]

19. Xie, J.; Bu, Y; Liang, J.; Li, H.; Wang, X.; Pan, J. Improve the Search of Very Metal-poor Stars Using the Deep Learning Method.
Astron. J. 2021, 162, 155. [CrossRef]

20. He, Z.; Qiu, B;; Luo, A.L,; Shi, J.; Kong, X.; Jiang, X. Deep learning applications based on SDSS photometric data: Detection and
classification of sources. Mon. Not. R. Astron. Soc. 2021, 508, 2039-2052. [CrossRef]

21. Yi, Z;LiJ;Du, W,; Liu, M,; Liang, Z.; Xing, Y.; Pan, J.; Bu, Y.; Kong, X.; Wu, H. Automatic detection of low surface brightness
galaxies from Sloan Digital Sky Survey images. Mon. Not. R. Astron. Soc. 2022, 513, 3972-3981. [CrossRef]

22. Cao,Z.;Yi, Z,;Pan,]; Su, H; Bu, Y.; Kong, X.; Luo, A. L-dwarf Detection from SDSS Images using Improved Faster R-CNN.
Astron. J. 2023, 165, 184. [CrossRef]

23. Su,Y,;Yang, ].; Zhang, S.; Gong, Y.; Wang, H.; Zhou, X.; Wang, M.; Chen, Z.; Sun, Y.; Chen, X,; et al. The Milky Way Imaging
Scroll Painting (MWISP): Project Details and Initial Results from the Galactic Longitudes of 25.°8-49.°7. Astrophys. ]. Suppl. Ser.
2019, 240, 9. [CrossRef]

24. Rodriguez, A.; Laio, A. Clustering by fast search and find of density peaks. Science 2014, 344, 1492-1496. [CrossRef]

25. Matsubara, T. Analytic Minkowski functionals of the cosmic microwave background: Second-order non-Gaussianity with
bispectrum and trispectrum. Phys. Rev. D 2010, 81, 083505. [CrossRef]

26. Li, Z;Wang, Y,; Chen, K,; Yu, Z. Channel Pruned YOLOV5-based Deep Learning Approach for Rapid and Accurate Outdoor

Obstacles Detection. arXiv 2022, arXiv:2204.13699.

80



Universe 2023, 9, 480

27.

28.

29.
30.

31.
32.

33.

34.
35.

Darapaneni, N.; Kumar, S.; Krishnan, S.; Rajagopal, A.; Nagendra.; Paduri, A.R. Implementing a Real-Time, YOLOvV5 based
Social Distancing Measuring System for COVID-19. arXiv 2022, arXiv:2204.03350.

Ewaidat, H.A.; Brag, Y.E. Identification of lung nodules CT scan using YOLOV5 based on convolution neural network. arXiv
2022, arXiv:2301.02166.

Jain, S. Adversarial Attack on Yolov5 for Traffic and Road Sign Detection. arXiv 2023, arXiv:2306.0607.

Hou, Q.; Zhou, D.; Feng, J. Coordinate Attention for Efficient Mobile Network Design. In Proceedings of the 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20-25 June 2021.

Yu, J.; Jiang, Y.; Wang, Z.; Cao, Z.; Huang, T. UnitBox: An Advanced Object Detection Network. arXiv 2016, arXiv:1608.01471.
Wang, J.; Xu, C,; Yang, W.; Yu, L. A Normalized Gaussian Wasserstein Distance for Tiny Object Detection. arXiv 2022,
arXiv:2110.13389.

Zheng, Z.; Wang, P,; Liu, W.; Li, ].; Ye, R.; Ren, D. Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression.
arXiv 2019, arXiv:1911.08287.

Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man, Cybern. 1979, 9, 62—66. [CrossRef]
Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345-1359. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

81



universe ﬁw\D\Py
G

Article
Extraction of Physical Parameters of RRab Variables Using
Neural Network Based Interpolator

Nitesh Kumar »*%, Harinder P. Singh %>, Oleg Malkov %, Santosh Joshi 4, Kefeng Tan °, Philippe Prugniel °
and Anupam Bhardwaj ’

Department of Physics, Applied Science Cluster, University of Petroleum and Energy Studies (UPES),

Dehradun 248007, India

Department of Physics & Astrophysics, University of Delhi, Delhi 110007, India; hpsingh@physics.du.ac.in

Institute of Astronomy of the Russian Academy of Sciences (INASAN), 48 Pyatnitskaya St.,

Moscow 119017, Russia; malkov@inasan.ru

4 Aryabhatta Research Institute of Observational Sciences (ARIES), Manora Peak, Nainital 263001, India;
santosh@aries.res.in

5 National Astronomical Observatories, Chinese Academy of Sciences (NAOC), 20A Datun Road,

Chaoyang District, Beijing 100101, China; tan@nao.cas.cn

Centre de Recherche Astrophysique de Lyon (CRAL), Observatoire de Lyon, 9 Avenue Charles André,

69230 Saint-Genis-Laval, France; prugniel@obs.univ-lyon1.fr

Inter-University Centre for Astronomy and Astrophysics (IUCAA), Post Bag 4, Ganeshkhind,

Pune 411007, India

Correspondence: nitesh.kumar@ddn.upes.ac.in

These authors contributed equally to this work.

Abstract: Determining the physical parameters of pulsating variable stars such as RR
Lyrae is essential for understanding their internal structure, pulsation mechanisms, and
evolutionary state. In this study, we present a machine learning framework that uses
feedforward artificial neural networks (ANNSs) to infer stellar parameters—mass (M),
luminosity (log(L/ L)), effective temperature (log(Tes)), and metallicity (Z)—directly from
Transiting Exoplanet Survey Satellite (TESS) light curves. The network is trained on a
synthetic grid of RRab light curves generated from hydrodynamical pulsation models
spanning a broad range of physical parameters. We validate the model using synthetic
self-inversion tests and demonstrate that the ANN accurately recovers the input parameters
with minimal bias. We then apply the trained model to RRab stars observed by the TESS.
The observed light curves are phase-folded, corrected for extinction, and passed through
the ANN to derive physical parameters. Based on these results, we construct an empirical
period-luminosity-metallicity (PLZ) relation: log(L/ L) = (1.458 £ 0.028) log(P/days) +
(-0.068 £ 0.007) [Fe/H] + (2.040 £ 0.007). This work shows that ANN-based light-curve
inversion offers an alternative method for extracting stellar parameters from single-band
photometry. The approach can be extended to other classes of pulsators such as Cepheids
and Miras.

Keywords: stellar parameters; RR Lyrae variables; neural network

1. Introduction

RR Lyrae stars are low-mass (0.5 SM/Mg < 0.8), evolved stellar objects (age 2 10 Gyr
[1]) that occupy the intersection of the horizontal branch and the classical instability strip
in the Hertzsprung—Russell diagram. These stars are undergoing a core helium-burning
phase, which is similar to the evolutionary stage of intermediate-mass classical Cepheids
(3 SM/Mg < 13). Owing to their well-established period-luminosity relations (PLRs) in
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the infrared regime—originally identified by Longmore et al. [2] and subsequently refined
by several studies (e.g., [3-7])—RR Lyrae variables serve as reliable distance indicators and
are critical to calibrating the cosmic distance ladder [8,9]. Furthermore, these stars offer
important insights into stellar evolution and pulsation physics [10], and they are effective
tracers of ancient stellar populations in various galactic environments [11].

The physical parameters of RR Lyrae stars are traditionally estimated using empirical
relations that connect various light curve characteristics—such as Fourier decomposition
parameters and color indices—with the pulsation period [12-14]. However, advances in the
theoretical modeling of stellar pulsation have enabled the construction of extensive model
grids to investigate the intrinsic properties of RR Lyrae and other variable stars [15-17].
Notably, the radial stellar pulsation (RSP) module developed by Smolec and Moskalik
[18], implemented within the Modules for Experiments in Stellar Astrophysics framework
(MESA; [19-23]), offers a powerful tool for generating theoretical pulsation models. These
models facilitate the derivation of fundamental stellar parameters—such as mass, luminos-
ity, and effective temperature—thereby providing deeper insights into the structure and
evolution of RR Lyrae stars.

The motivation for inferring fundamental physical parameters—such as mass, lumi-
nosity, effective temperature, and metallicity—f{rom light curves comes from the prolif-
eration of time-domain photometric data from large-scale surveys. While double-lined
eclipsing binaries and resolved spectroscopic binaries provide the most precise parame-
ter estimates, such systems are rare with only a few hundred thoroughly characterized
examples [24,25]. In contrast, wide-field photometric surveys like EROS [26], MACHO [27],
OGLE [28], ASAS [29], TrES [30], HAT [31], CoRoT [32], and Kepler [33] have yielded
millions of high-quality light curves for pulsating variables, including RR Lyrae stars. This
unprecedented data volume makes light curve-based inference methods increasingly attrac-
tive for characterizing stellar populations on a large scale, particularly where spectroscopic
data are lacking.

An alternative method for inferring the physical parameters of RR Lyrae stars involves
directly comparing observed light curves with a reference library of theoretical models.
For instance, Das et al. [34] applied this approach to a sample of RRab stars in the Large
Magellanic Cloud (LMC), estimating their physical parameters by matching observed light
curves with those from the model grid of Marconi et al. [15]. However, this technique is
constrained by the limited coverage of the model grid, as only a small subset of observed
LMC light curves closely matched the available theoretical templates. A similar technique
is used by Kumar et al. [35] for deriving physical parameters of stars in a globular cluster
using medium resolution spectra.

A more sophisticated strategy involves constructing a denser and smoother model
grid and employing non-linear optimization techniques for parameter estimation [36].
Nevertheless, generating such a comprehensive model grid is computationally demanding,
posing practical limitations. To overcome this challenge, Kumar et al. [37] developed
an artificial neural network (ANN) trained on the model grid of Marconi et al. [15] for
RRab stars in the V and I photometric bands. The resulting ANN! serves as an efficient
interpolator that is capable of producing high-resolution, smooth model light curves in
approximately 55 ms per sample, thereby significantly accelerating the parameter inference
process. Hence, we can increase the density of the models using this RRab interpolator.
However, the RRab interpolator reliably generates the light curves within the parameter
space on which it was trained (see Kumar et al. [37]).

Artificial neural networks (ANNSs) offer several advantages in the modeling and infer-
ence of pulsating variable star light curves. Once trained, ANNSs can perform parameter
inference on observed light curves within milliseconds, which is significantly faster than
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traditional methods such as grid-based forward modeling or interpolation using physical
templates [37-39]. Furthermore, ANNs allow the generation of a denser and smoother
model grid across the parameter space, improving the fidelity and resolution of the in-
ferred parameters. In our case, the ANN-based interpolator enables efficient mapping from
physical parameters to light curves, and vice versa, over a finely sampled synthetic grid.
While the current work focuses on the I band, which closely resembles the TESS passband,
the approach is generalizable to other photometric bands provided suitable training data
are available. These benefits make ANNs a powerful alternative to classical interpolation
schemes in the context of variable star analysis.

In this study, we generated a smooth grid of model light curves in the I band over
a given parameter space and then trained a reverse interpolator as discussed in Kumar
et al. [39] to obtain the physical parameters of non-Blazhko fundamental mode RR Lyrae
stars observed in the Transiting Exoplanet Survey Satellite (TESS) field. The I band model
light curves were preferred over the V band for training the reverse interpolator, as the
TESS light curves exhibit greater similarity to the I band, thereby enabling more accurate
parameter estimation from TESS observations.

2. Data and Theoretical Grid
2.1. Synthetic Grid Construction

To accurately determine the physical parameters of pulsating variable stars, it is
necessary to compare observed light curves with a grid of model light curves. How-
ever, pre-computed grids of hydrodynamical models are typically coarse and unevenly
distributed across parameter space, owing to the high computational cost and time re-
quired to solve the time-dependent equations governing stellar pulsations. Furthermore,
constraints on parameters such as mass, surface gravity, and metallicity often rely on
spectroscopic measurements, which are not always available for photometric datasets.
Consequently, constructing a fine, dense grid of models becomes essential for reliably
inferring stellar properties.

In this work, we generated a fine synthetic grid of RRab light-curve templates in
the I band using the RRab interpolator trained by Kumar et al. [37]. We adopted a finer
and more uniform sampling where mass (M) varies from 0.5 to 0.8 M with a constant
step size of 0.05 M, luminosity (log(L/ L)) spans from 1.50 to 2.00 dex with a step size
of 0.0555 dex, and effective temperature (T,¢) ranges from 5000K to 8000 K with a step
size of approximately 88.23 K. The metallicity (Z) covers the range from 107* t0 1072 in
seven logarithmic steps. The adopted parameter boundaries correspond to the limits of the
original training parameter space of the interpolator, and the step sizes were selected to
ensure uniform coverage across each parameter dimension. For each value of metallicity,
the hydrogen abundance (X) is computed using the relation X =1 — Y — Z, assuming a
fixed helium fraction Y = 0.245. The parameter space of the synthetic grid is shown in
Table 1. Using the trained interpolator, we generate synthetic template light curves in the I
band for a grid comprising 17,150 distinct combinations of stellar parameters.

Table 1. The synthetic model light curves are generated in the I band using the RRab interpolator for
the given combination of the physical parameters.

Parameter Range Step Size
Mass (M/Mg) 0.5-0.8 0.05
log(L/Le) 1.50-2.00 0.0555
Tegs (K) 5000-8000 88.23
Metallicity (Z) 10-4-1072 logarithmic steps
Hydrogen fraction (X) 0.755-0.745 computedas1 —Y —Z
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The pulsation period (P) of an RR Lyrae star is closely linked to its mass, luminosity,
and effective temperature, as originally described by the van Albada—-Baker (vAB) rela-
tion [40]. We employ a modern version of the vAB relation, incorporating the dependence
on metallicity, as formulated by Marconi et al. [15], to compute the periods for our synthetic
models. This relation is specifically calibrated for fundamental-mode (RRab) pulsators.

2.2. Observational TESS Sample

The Transiting Exoplanet Survey Satellite (TESS) is a NASA Astrophysics Explorer
mission employing four wide-field CCD cameras to perform a nearly all-sky photometric
survey, providing a pre-selected 2-minute cadence and 30-minute full-frame images (FFIs)
covering approximately 2300 deg? per sector [41]. The continuous, high-precision optical
time-series photometry provided by TESS has revolutionized the study of pulsating vari-
ables by offering uniformly sampled, multi-sector light curves free from diurnal gaps [41].
Among its many variable-star discoveries, TESS has observed over a thousand RR Lyrae
variables, including hundreds of fundamental-mode RRab pulsators, allowing detailed
analyses of their pulsation modes, the incidence and characteristics of the Blazhko effect,
and low-amplitude secondary oscillations [42]. Differential-image photometry techniques
applied to TESS FFIs have cleanly extracted RRab light curves, which, when combined
with Gaia parallaxes, have been used to refine empirical period-luminosity—metallicity
relationships and to classify RR Lyrae populations across the sky [42].

We compiled a sample of RRab stars by cross-matching known RRab variables from the
SIMBAD database with the TESS Input Catalog version 8.2 [43—45]. The selection criteria
required that each star had been observed in at least one TESS sector and had available
measurements for at least one of the following parameters: effective temperature (Te.g),
surface gravity (log g), or metallicity ([Fe/H]). This process resulted in a final sample of
71 RRab stars. The spatial distribution of these stars is shown in Figure 1. The light curves
of these stars were taken from the TESS archive using lightkurve? [46] tool in Python. We
converted the raw Pre-search Data Conditioning Simple Aperture Photometry (PDCSAP)
flux to TESS magnitude using a zero point magnitude equal to 20.44 from TESS data release
notes®>. We converted the TESS magnitude to I band magnitude by deriving a relation
between the TESS magnitude and I band magnitude using the spectra of a typical RRab star.

Figure 1. RA(J2000.0)-Dec(J2000.0) The distribution of the 71 RRab stars cross-matched between
SIMBAD and the TESS Input Catalog v8.2 [43-45].

3. Parameter Estimator ANN Model

To derive the physical parameters of RRab stars observed by TESS, we first con-
structed a fine synthetic grid of model light curves covering a broad range of stellar masses,
luminosities, effective temperatures, and metallicities. The template light curves were
generated in the I band, matching the photometric bandpass most closely related to the
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TESS instrumental response. The synthetic grid comprised 17,150 distinct parameter com-
binations, each corresponding to a unique model light curve generated using the trained
RRab interpolator. The uniform and dense coverage of the grid enables robust interpolation
across the relevant regions of parameter space and circumvents the limitations imposed by
the sparsity of traditional hydrodynamical models. The TESS light curves, corrected for
interstellar extinction and folded on their best periods, serve as the observational inputs
for the extraction of physical parameters.

The relationship between the observed light curve (y) and the corresponding set
of physical parameters (x) can be expressed as a forward mapping function f such that
y = f(x). Inverting this mapping—recovering x given y—requires the construction of an
inverse function g such that x = g(y) = f~!(y). Artificial neural networks (ANNSs) provide
a powerful and flexible framework for approximating such inverse mappings, particularly
when the underlying functions are continuous and differentiable [47-49]. By training an
ANN on the synthetic grid of light curves and associated stellar parameters, we enable the
efficient and accurate retrieval of mass, luminosity, effective temperature, and metallicity
for observed RRab stars directly from their light-curve morphology.

We trained a reverse interpolator using a synthetic grid of light curves and corre-
sponding physical parameters. In this setup, the reverse interpolator is a feedforward
ANN, where the input is the absolute I band light curve, sampled at 500 equally spaced
phase points between 0 and 1, and the output consists of the physical parameters—mass
(M/Mg), luminosity (log(L/Le)), effective temperature (log(Te)), and metallicity (Z).

The input layer consists of 500 absolute I band magnitude values, each corresponding
to one of the sampled phase points. Since the physical parameters exhibit vastly different
numerical ranges, we employed the Robust Scaler method to scale the output values. This
approach scales the data using the interquartile range (IQR), making the network less
sensitive to outliers and leading to more stable and efficient training. By transforming
the physical parameter outputs into a more uniform scale, we ensured that the ANN
training could converge more quickly and avoid issues stemming from disparities in the
different parameters.

The most crucial part in training any ANN is the choice of hyperparameters of the net-
work, like the number of hidden layers, number of neurons in each hidden layer, activation
function, optimization algorithm and learning rate. The training time and the convergence
of the ANN depend on these choices of hyperparameters. We used RandomSearch tuner
from the KerasTuner library for conducting a systematic hyperparameter tuning.

We defined the model architecture in such a way that allows the number of hidden
layers to vary between one and six. For each hidden layer, the number of units and
activation function were treated as tunable parameters, and the output layer was kept
without any activation to predict the physical parameters. We chose the adam [50] optimizer
with the learning rate sampled logarithmically between 10~* and 10~2. All layers were
initialized with the Glorot uniform initializer. We trained each model for 50 epochs with
a batch size of 128, using the mean squared error (MSE) as both the loss function and
tuning objective.

The hyperparameter search explored 100 different configurations in total. Table 2
summarizes the hyperparameter grid. The dataset was divided into three parts: 80% for
training, 10% for validation, and the remaining 10% for testing. The final model selection
was based on the configuration achieving the minimum validation MSE.

We achieved the lowest validation loss with an ANN model comprising four hidden
layers containing 256, 128, 32, and 8 neurons, respectively. Each hidden layer has the ReLU
activation function and includes 1.2 regularization with a strength of 10~° to mitigate over-
fitting. The output layer consists of four neurons and no activation function, corresponding
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to the four scaled predicted physical parameters. A schematic diagram of the final ANN
architecture is shown in Figure 2.

Table 2. Hyperparameter grid for ANN model tuning.

Hyperparameter Values

Number of layers 1to6

Units per layer 16, 32, 64, 128, 256, 512

Activation function RelLU, tanh

Learning rate 104 t0 1072 (log-uniform sampling)
Batch size 32 (fixed)

Optimizer adam [50]

Kernel initializer Glorot Uniform (fixed seed)

Loss function Mean Squared Error (MSE)

i 108 (£5): los(Ten), 2

Input
(Light Curve)

Figure 2. ANN architecture adopted after hyperparameter optimization for physical parameter estimation.

Hidden Layer 1
256 neurons

(L2 Regularizer)

Hidden Layer 2 Hidden Layer 3 Hidden Layer 4 0
utput
128 neurons 32 neurons 8 neurons
(L2 Regularizer)| |(L2 Regularizer)| |(L2 Regularizer)| |

The final ANN model was trained using the adam optimizer with an initial learning
rate of 0.001 and MSE as the loss function with 80% of the original models used for training,
10% for validation, and the remaining 10% reserved for testing. To facilitate efficient
convergence, we implemented a piecewise constant learning rate schedule: the learning
rate was decreased by a factor of 5 at batch sizes of 10 and 100, respectively. Training was
performed over 1200 epochs with a batch size of 32. The model weights were updated
using shuffling at each epoch, and training was parallelized across eight CPU workers with
multiprocessing. The total training time was ~27.35 min, utilizing a system equipped with
64 CPU cores operating at a maximum frequency of 3.5 GHz.

The training and validation loss curve for the ANN model, along with the learning
rate, is shown in Figure 3. The curve shows the training and validation loss (MSE) during
the training over the course of 1200 epochs while also showing the variation in the learning
rate. This figure provides insight into both the convergence behavior of the model and the
effect of the learning rate.

1073 —— learning rate 3
S 104t 1

Training Loss

— Validation Loss

Loss (Mean Squared Error)

107 |

10° 10! 102 103
Epochs

Figure 3. Training and validation loss curves, along with the learning rate progression, for the ANN
model over the training epochs.
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4. Results
4.1. Self Inversion

To assess the performance of the trained parameter estimator ANN model, we per-
formed a self-inversion test. In this test, the synthetic model I band light curves from the
test grid were passed through the trained ANN, and the recovered physical parameters
were compared with their original values.

The comparison between the ANN-predicted and true values of mass, luminosity,
effective temperature, and metal abundance for the test set is shown in Figure 4. The strong
correlation between the predicted and true values demonstrates that the network accurately
recovers stellar parameters across the entire grid. The predicted points closely match the
original values with negligible scatter or systematic bias, as presented in Table 3.

2.0 H
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Q —
i) z 0.0075 H ,
s 07 E 18 % 2
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< = L 7 5 . /
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e .
0.5 15K 00000 |
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Figure 4. Comparison between the original and predicted values of mass, log(L/Lg), log(Tes)
and Z from the synthetic self-inversion on the test set is shown in top panel. In the bottom panel,
the error distribution is shown along with the mean and standard deviation of the error. The close

overlap indicates excellent recovery performance of the reverse interpolator for mass, luminosity
and temperature.

The relative root-mean-square error (Relative RMSE) provides an intuitive measure of
a model’s predictive performance across parameters with different numerical scales. It is
defined as the root-mean-square error normalized by the mean absolute value of the true
parameter values and is expressed as a percentage:

% 2?21 (xz‘ - 3?1‘)2
Relative RMSE = = x 100%
n Y |xi|

where x; and %; are the true and predicted values of the parameter, respectively.

Table 3. Performance of the trained parameter estimator model on the test set based on MSE and
relative root-mean-square error (Relative RMSE). The Relative RMSE is computed as the RMSE
normalized by the mean absolute value of the true parameter values.

Parameter MSE Relative RMSE (%)
Mass (M) 5.6 x 107° 1.15
Luminosity (L) 1.6 x 107° 0.23
log(Teg) 3.1x107° 0.04
Metallicity (Z) 1.1 x 1077 12.81
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The synthetic self-inversion tests confirm that the trained parameter estimator model
is capable of recovering the physical parameters of RRab stars from their light curves with
high accuracy and minimal bias. For example, the model achieves relative RMSE values
of only 1.15% for mass, 0.23% for luminosity, and 0.04% for log(Te¢), indicating excellent
agreement between predicted and true values. This test validates the internal consistency
and predictive reliability of the trained parameter estimator model, although a relatively
higher relative RMSE of 12.81% is observed for metallicity.

4.2. Application to TESS RRab Stars
4.2.1. Light-Curve Processing and Folding

To apply the trained parameter estimator model to real data, we selected a sample
of RRab stars observed by the TESS for which literature estimates of fundamental stellar
parameters are available in Stassun et al. [45]. The TESS light curves were downloaded
in the form of short-cadence (2-min) simple aperture photometry (SAP) flux from SPOC
Jenkins et al. [51] pipeline FITS files. The fluxes were converted into apparent magnitudes
using the standard TESS zero point (adopted from TESS data release notes*):

MTESS = -25 loglo (ﬂLIX) +20.44. (1)

The period for each light curve was derived using the Lomb-Scargle [52,53] method
and then phase-folded using this derived period. Only positive flux points were retained to
avoid contamination. To suppress observational noise and fill missing data segments, we
fitted a Fourier series to the folded light curve with 10 Fourier components (see Equation (6)
of Kumar et al. [39]). The smoothed light curve was sampled at 1000 phase points and
then rebinned to 500 evenly spaced bins between phases 0 and 1. This format matches the
structure of the input layer used during ANN training.

4.2.2. Photometric Corrections and Calibration

To convert apparent TESS band magnitudes into absolute I band magnitudes, several
corrections were applied. Gaia DR3 parallaxes were used to compute distances, from which
the distance modulus y was derived as

p = 5logyo(d [pc]) — 5. 2

Extinction values were obtained from the IRSA Galactic Dust Reddening Tool, which
returns extinction in V band magnitudes (Ay) based on the star’s equatorial coordinates
using the reddening maps of the Schlafly and Finkbeiner [54]. The I band extinction A; was
estimated using standard extinction ratios and applied to the apparent TESS magnitudes
after converting them to the I band. As TESS does not operate in the standard I band, we
employed the empirical transformation:

I= MTESS — 0.0695. (3)
Thus, the absolute I band magnitude for each star becomes

4.2.3. ANN-Based Parameter Inference

The preprocessed and rebinned absolute I band light curves were then passed through
the trained ANN to predict the underlying stellar parameters. The ANN output includes
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the stellar mass M/ M, logarithmic luminosity log(L/ L ), effective temperature log(Tef),
and metallicity Z:
(M,log L,1og Togr, Z) = ANN(yTESs)- (5)

The effective temperature can be recovered via inverse logarithmic transformation:
T = 10198 eti. To derive the iron abundance, we converted Z to [Fe/H] using the relation
provided by [55]

[Fe/H] = log,, (é;;@) , (6)
where Zs = 0.0122 and X = 0.7392 [56]. The hydrogen abundance X is calculated from
X =1-Y — Z, assuming a fixed helium mass fraction Y = 0.245. This value corresponds
to the primordial helium abundance, which is suitable for RR Lyrae stars given their old
evolutionary status. Helium enrichment in such populations is expected to be minimal.
Observational support for this assumption is provided by Marconi and Minniti [57], who
found little evidence of helium enhancement among RR Lyrae stars in the Galactic bulge.

Table 4 presents the derived physical parameters for a sample of RRab stars based
on their TESS light curves, using our trained ANN-based parameter estimator. For each
star, the table lists the TESS ID, parallax from the TESS Input Catalog v8.2 [45], the liter-
ature period, and the Lomb-Scargle period measured from the TESS data. The effective
temperature (T,¢), mass (M), luminosity (L), and metallicity (Z) inferred by the ANN are
compared against corresponding values from the literature when available. We also report
the photometric surface gravity (log g).

Figure 5 shows the comparison between the physical parameters of RR Lyrae stars de-
rived from ANN analysis of TESS light curves and those from literature values. The top row
displays one-to-one comparisons with literature values on the x-axis and ANN predictions
on the y-axis, while the bottom row shows error distributions. The ANN method produces
effective temperatures with a mean error of 143 K (¢ = 352 K), metallicities with a mean
error of 0.27 dex (0 = 0.83 dex), masses with a mean error of —0.74 M (¢ = 0.13 M),
and luminosities with a mean error of 9.63 L, (0 = 11.32 L).

7500 = % 2.0
0 o . 60 pa—
7000 S P g *'«"*i,o - e e ST
o z - * T e EO 15 3 z =
S 2 . o < % 40 ey
% 6500 T -1 ) K 4
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= & /”6* 2 1.0 2 5o
000 L = P w0
5500 K~ L 05K e ol
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Figure 5. Comparison between literature values and ANN predictions for RR Lyrae stars. Top row:
One-to-one comparison of literature values (x-axis) versus ANN predictions (y-axis) for effective
temperature, metallicity, mass, and luminosity with error bars representing literature uncertainties.
Bottom row: Distribution of prediction errors (ANN-literature) for each parameter, showing mean
() and standard deviation (o) values. The dashed lines in all panels represent perfect agreement.
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While the temperature and luminosity predictions show reasonable agreement with
literature values, mass estimates from the ANN are systematically lower by approximately
0.74 M. From stellar evolution, RR Lyrae stars are known to have masses in the range
0.5-0.8 M. In contrast, many literature values (from the TIC catalogue) report anomalously
high masses (1.1-1.7 M), which is likely due to the use of isochrone or SED fitting methods
that may not have accounted for the evolved, low-mass RR Lyrae stars.

The relatively large spread in metallicity (c = 0.83 dex) and mean offset of 0.27 dex
likely arises from degeneracies in light curve morphology, where variations in metallicity
can mimic the effects of other parameters. Furthermore, literature metallicities are derived
from diverse sources and methods, which introduces inconsistencies when used as a
reference benchmark.

Overall, the ANN method demonstrates reasonable predictive power for effective
temperature and luminosity, while systematic shifts in mass and scatter in metallicity reflect
a combination of astrophysical degeneracies and uncertainties in the literature values. This
supports our approach of deriving fundamental stellar parameters directly from time-series
photometry while also highlighting the need for caution when comparing to literature
sources that may not be tailored for RR Lyrae-type variables.

4.3. Period—Luminosity—Metallicity (PLZ) Relation

Using the stellar parameters inferred from the TESS RRab light curves via the trained
ANN, we constructed a new empirical period-luminosity—metallicity (PLZ) relation. We
fitted the logarithm of the luminosity as a linear function of the pulsation period and metallicity:

log(L/Ls) = alog(P/days) + b [Fe/H] + ¢, (7)

where P is the pulsation period in days, and [Fe/H] is the derived metallicity from the ANN-
inferred Z values. The coefficients 4, b, and c were determined using a least-squares fitting.

a = 1.458 £0.028, b = —0.068 £ 0.007, ¢ = 2.040 £ 0.007. (8)

Figure 6 presents a plot of the ANN predicted luminosities as a function of period and
metallicity, which was overlaid with the fitted PLZ plane. The scatter of individual stars
around the plane is shown as a color-coded scatter plot with the color scale representing
[Fe/H]. Stars with lower metallicity (bluer colors) lie systematically higher in luminosity at
fixed period, which is consistent with theoretical expectations.
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Figure 6. Period-luminosity-metallicity (PLZ) relation derived from ANN-inferred stellar parameters.
The background shows the fitted plane, while the scatter points represent individual stars color-coded
by metallicity [Fe/H].
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5. Conclusions

In this study, we developed and validated an artificial neural network (ANN)-based
framework to infer the physical parameters of fundamental-mode RR Lyrae (RRab) stars
directly from their light curves. Using a synthetic grid of pulsation models, we trained a
feedforward ANN to learn the inverse mapping from I band light-curve morphology to
stellar parameters: mass (M), luminosity (log L), effective temperature (log Te), and metal-
licity (Z). The network achieved high accuracy in recovering these parameters in synthetic
self-inversion tests, demonstrating strong internal consistency and robustness across a wide
parameter space.

The self-inversion test, conducted on a hold-out test set of 1,715 models not seen
during training, showed good agreement between predicted and true values, particularly
for log Tegs and log L. However, the performance was comparatively poorer for M and
Z, which was likely due to degeneracies in the light-curve morphology, where multiple
combinations of parameters can lead to similar pulsation features.

We then applied the trained parameter estimator model to observed RRab stars from
the TESS mission. After preprocessing the light curves, including flux-to-magnitude con-
version, phase folding, Fourier smoothing, extinction correction, and distance modulus
calibration, we extracted stellar parameters from the light curves of individual stars. The val-
ues of M, log L, log T, and Z, inferred using the model, were used to compute surface
gravity (log g) and iron abundance [Fe/H], providing a complete physical characterization
based solely on photometric data.

We compared the ANN-inferred values with those available in the literature (TIC v8.2
catalog). While the ANN-predicted values for log T,¢ and log L generally aligned well with
the catalog values, the agreement was notably worse for mass and metallicity. A significant
fraction of the TIC-inferred masses for RRab stars was found to lie in the range 1.1-1.7 M,
which is inconsistent with established evolutionary models for RR Lyrae stars that predict a
mass range of 0.5-0.8 M. These discrepancies suggest that catalog masses—often derived
from isochrone or SED fitting—may not be reliable for evolved horizontal-branch stars like
RR Lyraes. Consequently, the differences are more likely due to limitations in the literature
data rather than overfitting or failure of the ANN model.

Furthermore, a period-luminosity—metallicity (PLZ) relation was derived using the
ANN-predicted parameters. While the PLZ relation is physically plausible, its interpreta-
tion is naturally constrained by the accuracy of the inferred stellar properties.

This work demonstrates that an ANN-based inversion of RRab light curves offers an
alternative to traditional model fitting and spectroscopic analysis. In the future, the method
can be extended to include multi-band light curves, overtone RRc stars, and different
classes of pulsating variable stars like Cepheids and BL Herculis-type variables. This work
is the first step and can provide a fast way to estimate global physical parameters when
trained with an extended parameter space of RRab theoretical models. Uncertainty-aware
architectures and larger, better-constrained training sets will further improve the robustness
and applicability of such data-driven frameworks in time-domain stellar astrophysics.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN artificial neural network
PLZ period-luminosity-metallicity (relation)
TESS  Transiting Exoplanet Survey Satellite

Notes

1

The RRab interpolator for generating RRab light curves for a given combination of physical parameters is publicly available at
https:/ /ann-interpolator.web.app/ (accessed on 22 June 2025).

2 https:/ /lightkurve.github.io/lightkurve/ (accessed on 22 June 2025).

3 https:/ /archive.stsci.edu/files/live/sites/mast/files/home/missions-and-data/active-missions/tess/_documents/TESS_Instr
ument_Handbook_v0.1.pdf (accessed on 22 June 2025).

4 See note 3 above.
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Abstract: Being ionized nebulae where star formation events take place, HII regions
are not only natural laboratories for studying physical processes of star formation and
photoionization but also signatures reflecting evolution of their internal stellar populations
and hosting galaxies. In this paper, we present a comprehensive analysis of spectral
emission-line data for H1I regions in the nearby spiral galaxy NGC 2403, aimed at gaining
deep insight into underlying properties and evolution for the H1I regions and the galaxy.
The spectroscopic data are obtained through observations with the 2.16 m telescope at
National Astronomical Observatories of China and a collection of published data in the
literature. Photoionization modeling is combined in the analysis for diagnosing the spectral
features and interpreting the observational data with certain physical mechanisms. Results
of this work not only involve estimates of a set of parameters such as metallicity, the
ionization parameter, etc., and evolution stages for the H1I regions in NGC 2403 but also
reveal distinct characteristics of different spectral features and their sensitivities to specific
parameters, which provides an instructive implication for proper usages of emission-line
diagnostics for H1I regions or galaxies nearby and far away.

Keywords: H1I regions; ISM: lines and bands; galaxies: abundances; galaxies: individual
(NGC 2403); galaxies: ISM

1. Introduction

Being gaseous nebulae irradiated by recently formed massive stars, H1I regions are
conspicuous sites where star formation activities accompanying photoionization processes
occur, and young stellar populations surrounded by ionized interstellar medium reside.
Spectra of H1I regions contain a great number of emission lines, which serve as a useful
tool for probing not only astrophysical mechanisms/properties in H1I regions but also
evolution history of host galaxies (Peimbert et al. [1], Maiolino and Mannucci [2], Kewley
etal. [3]).

Metallicity is an important parameter derivable from emission-line features for H1I re-
gions. It behaves like a signature of element enrichment with star formation, and hence
its spatial distributions are an imprint of chemical evolution for galaxies. The most accu-
rate method for deriving metallicity from spectral emission lines is based on estimates of
electron temperature (Te) and referred to as the Te or direct method (Peimbert et al. [1]).
However, the T, method requires measurements of auroral lines such as [O1IT]A4363,
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[N IIJA5755, or [S111]A6312, which are intrinsically weak in spectra and even undetectable at
high metallicity. In this case, strong collisionally excited emission lines such as [O IT]A3727,
[O111]AA4959,5007, [N II]JAA6548, 6583, and [STI]AA6717,6731 are applied to estimating
metallicity with empirical or theoretical calibrations, and they have provided more widely
used diagnostics in studies of external galaxies (Alloin et al. [4], Pagel et al. [5], Pettini and
Pagel [6], Pilyugin and Thuan [7], Bresolin [8]).

In addition to metallicity, the collisionally excited emission lines have been found to
also relate with the ionization parameter and electron density at different levels of sensitivi-
ties. Some spectral indices combining certain emission lines have been adopted to probe the
physical parameters for H II regions or emission-line galaxies (e.g., [O II]A5007 /[O I1]JA3727
or [STIIJAA9069, 9531 /[S11]AA6717,6731 for probing the ionization parameter, Kewley and
Dopita [9], Morisset et al. [10]; [O 11]JA3726/[O 11]A3729 or [S11]A6717 /[S11]A6731 for prob-
ing electron density, Wang et al. [11]).!

Since H1I regions are excited by young massive stars, aging of the ionizing sources
is considered to have an effect on the excitation and the subsequent spectral features
(Levesque et al. [12], Xiao et al. [13]). Variations of commonly adopted diagnostic indices
with stellar population age can be non-negligible, as they may affect the inferred metallicity,
ionization parameter, electron density, and other physical properties. Nevertheless, the im-
pact of age on the emission lines of H Ilregions has yet to be systematically addressed in
observational studies of galaxies.

Kong et al. [14] conducted a spectroscopic survey of 20 nearby galaxies and obtained
a substantial collection of HII region spectra. These data provide critical information on
metallicity, ionization parameters, and dust extinction, offering observational constraints
for theoretical models of galaxy formation, chemical evolution, and photoionization. As one
of the target galaxies in this project, NGC 2403 is a late-type spiral galaxy (classified into the
SAB(s)cd morphological type) located in the M81 galaxy group at the distance ~3.18 Mpc
from the Milky Way (Tully et al. [15]). Basic information on astrometry for this galaxy
includes the celestial coordinates R.A. = 07:36:51.3, Dec. = +65:36:09.7 (Skrutskie et al. [16]),
the apparent size Ry5 = ~10'.93, the inclination ~60°, and the position angle ~126° (de
Vaucouleurs et al. [17]). There are a number of bright H1I regions widespread in NGC 2403,
making it possible to conduct a spatially resolved spectroscopic analysis. Mao et al. [18]
performed a spatially resolved study of 11 large, bright H1I regions in NGC 2403 using the
Kong et al. [14] dataset. They examined the performance of various metallicity calibration
indicators within individual H1I regions.

In the present work, we target H1II regions in the late-type spiral galaxy NGC 2403
and carry out an observational investigation in combination with modeling. Spec-
troscopy is taken for the sampled H1I regions and aimed at a comprehensive inspection
of emission-line characteristics related to underlying physical properties. In particular,
we attempt to derive the parameters from certain diagnostics on the one hand and
scrutinize specific influences of certain parameters on different emission-line features on
the other hand.

Subsequent content of this paper is structured as follows. Section 2 presents obser-
vations, data reduction, measurements, and ancillary data from the literature. Section 3
introduces the photoionization model employed in this study. Results are described
in Section 4, followed by a discussion about implications and suggestions in Section 5.
Section 6 in the end summarizes conclusions drawn in this work.
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2. Data

2.1. Observations

A total of 84 H I regions in NGC 2403 were selected from the catalog of Sivan et al. [19]
and observed with the 2.16 m telescope at the Xinglong Station of National Astronomi-
cal Observatories of China (NAOC) as part of a spectroscopic survey of H1II regions in
20 nearby large galaxies (Kong et al. [14]). The 2.16 m telescope equips the Optomechanics
Research Inc. (OMR) long-slit spectrograph with a TEKTRONIX TEK1024, AR-coated
back-illuminated CCD. A 200 A/mm dispersion grating, blazed at ~5500 A, was used in
the spectrograph with a 4’-length slit, providing a dispersion sampling of 4.8 A per pixel
and a spectral resolution of 500-550 in A/AA\ at 5000 A with a wavelength coverage of
3500-8000 A (Fan et al. [20]).

The long-slit spectroscopic observations were carried out over several nights from
January 2007 to December 2008 (Kong et al. [14], Mao et al. [18]). During the observing
runs, the slit width was set to 2”.5 to match the average local seeing disk. The position
angle of the long slit was oriented to cross as many H II regions as possible at one exposure
frame. The exposure time for each slit position was 1800s x 2 or 1200s x 3 to achieve
a suitable signal-to-noise (S5/N) ratio. Instrument bias and dome flats were recorded at
the beginning and the end of each night. A He-Ar lamp was observed immediately after
observing each object at the same position for wavelength calibration. Spectrophotometric
standard stars including Feige 34 and He 3 (Corbin and Warren [21]) were observed in each
night for flux calibration. Table 1 lists statistics of the observations. The orientations of the
spectrographic slit and the locations of the H1I regions are shown in Figure 1.

Table 1. Observations.

Slit ID. Obs. Date Slit Angle R.A. Decl. Exp. Time Airmass
1) 2 (3) @ (5) (6) (?)

NGC2403-A 16 January 2007 —33.7 07:37:00 +65:36:08 1800 x 2 1.1128
NGC2403-C 17 January 2007 +40.4 07:36:52 +65:36:11 1800 x 2 1.1056
NGC2403-E 18 January 2007 —52.0 07:37:07 +65:36:39 1800 x 2 1.1059
NGC2403-G 18 January 2007 —42.5 07:36:42 +65:36:02 1800 x 2 1.1067
NGC2403-H 01 January 2008 +9.7 07:36:21 +65:38:01 1800 x 2 1.1064
NGC2403-1 01 January 2008 +9.7 07:37:17 +65:32:42 1800 x 2 1.1588
NGC2403-O 02 January 2008 +68.4 07:36:32 +65:39:09 1800 x 2 1.1218
NGC2403-L. 03 January 2008 —80.2 07:37:03 +65:34:02 1800 x 2 1.1158
NGC2403-K 04 January 2008 —83.9 07:36:50 +65:35:01 1800 x 2 1.1118
NGC2403-N 04 January 2008 —77.0 07:36:48 +65:33:25 1800 x 2 1.1422
NGC2403-Q 05 January 2008 +74.5 07:36:41 +65:39:06 1800 x 2 1.1127
NGC2403-S 06 January 2008 —26.1 07:36:23 +65:36:19 1800 x 2 1.1055
NGC2403-U 07 January 2008 -71.0 07:36:51 +65:36:45 1800 x 2 1.1218
NGC2403-01 29 November 2008 —70.0 07:36:51 +65:36:09 1200 x 3 1.1484
NGC2403-04 29 November 2008 +10.0 07:36:51 +65:36:09 1200 x 3 1.1052
NGC2403-05 29 November 2008 +13.0 07:36:51 +65:36:09 1200 x 3 1.1524
NGC2403-02 30 November 2008 +90.8 07:36:51 +65:36:09 1200 x 3 1.1122
NGC2403-03 01 December 2008  +63.0 07:37:09 +65:38:02 1200 x 3 1.1124

Notes. Columns: (1) the identifiers of the slit coverages; (2) the observation period; (3) the rotate angle; (4)-(5)
R.A., Decl. for the central position of the slit; (6)—~(7) the exposure time for each observation and air mass.
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Figure 1. (Left panel): Hx narrow-band image for NGC 2403 taken with the 2.1 m telescope at Kitt
Peak National Observatory, with the coverages of the spectrographic slit (red solid lines) superim-
posed. The information of each of the slit coverages are listed in Table 1. (Right panel): The same
image as the left panel but with H1I regions studied in this work marked by different symbols in
different colors; the H I regions observed with the 2.16 m telescope at NAOC are marked with red
open circles; those collected from other studies are colored in green and symbolized as listed in the
lower-right corner of the panel. The scale in the bottom right corner in the left panel indicates the
4 arcmin length which is the same in the right panel. In each of the panels, north is up, and east is to
the left.

2.2. Data Reduction

Data reduction was conducted using PyRAF 2.2.0, a Python-based interface to IRAF
V2.17,% employing the CCDRED, TWODSPEC, and ONEDSPEC packages. The conven-
tional routine including bias removal, flat-field correction, and cosmic-ray rejection was
implemented in the two-dimensional (2D) data in the form of a space-dispersion plane.
One-dimensional spectra were extracted using 10" apertures, corresponding to the ~154 pc
local scale (by taking the distance ~3.18 Mpc addressed in Tully et al. [15] into account).
These apertures were placed along the spatial axis in the spatial-dispersion plane of the
2D spectra to extract the H1I region profiles. When placing the apertures, we prioritized
centering them on the peaks of the Ha emission, provided that adjacent apertures would
not overlap. In cases where two nearby Ha peaks were closely spaced, we slightly shifted
the aperture centers to avoid overlap, while still ensuring coverage of the emission peaks.

Spectral trajectories along the dispersion were traced by sampling and fitting contin-
uum points with certain tracing function; the continuum points were obtained by summing
enough dispersion lines; for some H I regions with very weak continua, spectra for the
standard stars were used as reference for tracing the dispersion trajectories. Background
levels were estimated in blank areas along the spatial axis of the 2D data and subtracted
from the spectra of the objects during the spectral extraction process.

For each of the extracted spectra, the dispersion scale was calibrated to wavelength by
referencing the emission-line spectra of the He-Ar lamp. Flux calibration was performed
by adopting the spectra of the spectrophotometric standard stars and the atmospheric
extinction curve at the XingLong station. During our observations, the air mass ranged from
1.105 to 1.159 (mean 1.120). A fixed 2.5 slit width was adopted to match the average seeing
of 2.0 (Fan et al. [20]). The slit was not oriented at the parallactic angle in order to maximize
target coverage. Following Filippenko [22], we estimated differential atmospheric refraction
(DAR) offsets at secz ~ 1.15 to be +0".53 at [OII|A3727 and —0".27 at [SII]A6731, relative
to 5000 A. At secz = 1.10, the offsets were +0".43 and —0".22, respectively. Because the
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slit width direction was not always perpendicular to the atmospheric dispersion direction,
the actual centroid shifts were smaller than the full DAR. At 3721 A, all DAR-induced shifts
were substantially smaller than both the local seeing and the slit width. Consequently, no
DAR or slit-loss corrections were applied in this work. All of the calibrated spectra were
corrected for galactic foreground extinction, by utilizing the Cardelli et al. [23] (hereafter
denoted as CCM) extinction curve and the total-to-selective extinction ratio Ry = 3.1.
The color excess of the galactic extinction E(B — V)gar = 0.04 mag for NGC 2403 was
obtained from the Schlegel et al. [24] galactic dust map and applied to the correction.

2.3. Emission-Line Measurements

The STARLIGHT software (Cid Fernandes et al. [25]) was employed to reproduce the
underlying stellar continuum, for the purpose of subtraction the continuum from each of
the calibrated spectra to obtain sole emission-line spectra. Before the continuum fits, all of
the observed spectra were corrected for redshift (shifted to the rest frame) and resampled to
1 A per pixel using the SpectRes code (Carnall [26]), suiting the requirement of STARLIGHT.
The model was composed of simple stellar populations (SSPs) selected from the Bruzual
and Charlot [27] spectral library of stellar population synthesis, encompassing 75 ages
spanning from 1 Myr to 18 Gyr and 3 metallicities (Z = 0.008, 0.02, 0.05), on the basis of
the Chabrier [28] initial mass function (IMF) and the Padova 1994 evolutionary tracks (Le
Borgne et al. [29]). Dust attenuation was imposed on the model spectra with the CCM
extinction law taken into account. The fits for the observed spectra were performed through
a x2-minimization approach using the Markov Chain Monte Carlo (MCMC) algorithm,
and the best-fit model spectra were obtained.

Emission-line fluxes were measured in the continuum-subtracted spectra via Gaussian-
profile fits. Each of the emission lines [O I1]JA3727, HB, and [O 11I]A5007 was fitted with a
single Gaussian profile; the three blended lines [N I1]JAA6548, 6583 + Ha as well as the two
blended lines [STI]AA6717, 6731 were deblended by fitting them with multiple Gaussian
components. The flux ratio of [O111]A4959 to [O1I]JA5007 was fixed to 1:3, and so was
[N 11]A6548 to [N 11]A6583.

Uncertainties of the emission-line fluxes were estimated using the expression in Mao
et al. [18], Gonzalez-Delgado et al. [30]:

Oiine = Teont N2 [1+ EW/(N8Y)]Y2, (1)
where 0cont is the standard deviation of the continuum close to the emission line, Npix is
the number of pixels covering the measured emission line, EW is the equivalent width of
the emission line, and A, is the dispersion in units of A /pixel.

The measured emission-line fluxes were corrected for dust attenuation using the
Balmer decrement, following the prescription in Calzetti [31]:

L L
(LHa/LHp)obs _ 1(O4E(B-V)[K(HB)~k(Ha)] o)
(LHa/LHﬁ)im'

where (Lyy,/ LH'B)obs is the observed Ha-to-Hp flux ratio, (Lyy, /Ly ﬁ)ini = 2.86 is the
assumed intrinsic Ha-to-Hp flux ratio ratio in accordance with the Case B recombination
at the electron temperature T, = 10* K and the electron density 7, = 100 cm~3 (Oster-
brock and Ferland [32]), k(HB) — k(Ha) = 1.074 and Ry = 3.1 are quoted from the CCM
extinction law.

The attenuation-corrected fluxes for the emission lines are listed in Table 2.
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2.4. Ancillary Data from the Literature

Complementary with the observed spectra, we additionally compiled a dataset of spectral
emission lines for 104 H1I regions in NGC 2403 from the literature, all of which have been
corrected for dust attenuation. Specifically, the supplementary sample contained 6 H1I regions
collected from McCall et al. [33], 5 H1I regions collected from Fierro et al. [34], 12 H I regions
collected from Garnett et al. [35], 9 H 11 regions collected from Bresolin et al. [36], 3 H1I regions
collected from Garnett et al. [37], 17 H 11 regions collected from van Zee et al. [38], 7 H 11 regions
collected from Berg et al. [39], 12 H II regions collected from Mao et al. [18], and 33 H 11 regions
collected from Rogers et al. [40]. The spatial locations for these H1I regions along with the
observed ones are all shown in Figure 1.

For the common H 1T regions observed in this work and collected from other studies,
we compared the emission-line fluxes, and the result is shown in Figure 2. Most of the
data points were enveloped within the +2¢ (+0.24 dex) demarcation, which verified the
consistency of the data. Differences between the apertures in size and position for extracting
the spectra for the same H1I regions in the different studies were considered to be a general
source of the deviation. Specifically, a few of [OII]JA3727 and [S1I]AA6717,6731 lines
deviated to a relatively large extent, which was ascribed to influences of different noise
levels at the blue end of the spectra on [O11]A3727 and different deblending qualities for
[S11]AA6717,6731 doublets, respectively.
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Figure 2. Comparison between the emission-line fluxes for the same H1I regions measured in
this work and those quoted from other studies, including McCall et al. [33], Fierro et al. [34],
Garnett et al. [35], Bresolin et al. [36], Garnett et al. [37], Mao et al. [18], and Rogers et al. [40].
The emission lines include [O11] A3727 (blue), [O111] AA4959,5007 (green), [NII] A6584 (yellow),
and [S1I] AA6717,6731 (red), and they are normalized by HB. The data points are marked using
the same symbols as in Figure 1. The line of unity is represented as the black solid line. The +2¢
(£0.24 dex, i.e., the standard deviation of the data) range are enveloped by the black dotted lines.

3. Photoionization Model

We adopted model grids developed by Levesque et al. [12], which combine the
STARBURST99 stellar population synthesis model (Leitherer et al. [41], Vazquez and
Leitherer [42]) with the MAPPINGS III photoionization model (Sutherland and Dopita [43],
Allen et al. [44]). In this work, ionizing stellar populations were modeled by assuming star
formation history of an instantaneous burst in the range 0-9.5 Myr with the step length
0.5Myr in age, 5 metallicity values including Z = 0.001, 0.004, 0.008, 0.02, and 0.04 (corre-
sponding to 0.05, 0.2, 0.4, 1, and 2 ZO)/ and the Geneva “High” mass-loss star evolutionary
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tracks (Schaller et al. [45], Schaerer et al. [46], Charbonnel et al. [47], Schaerer et al. [48];
recommended in Levesque et al. [12]).

Ionized gaseous nebulae were configured in a parallel-plane geometry. The ionization
parameter g at the inner surface of the nebulae was set to spanning g = 1 x 107, 2 x 107,
4 x107,8 x 107, 1 x 108, 2 x 108, 4 x 108 cm s~ 1. The gas-phase metallicity matched with
that of the model stellar populations. The electron density 7 = 100 cm~3 was chosen in
accordance with the low-density limit for H1I regions in NGC 2403 (Garnett et al. [35], Berg

et al. [39], Rogers et al. [40]).

4. Results

Strong emission lines in optical spectra for ionized gaseous nebulae encode a wealth of
information and serve as effective diagnostics for a series of physical parameters. In this sec-
tion, we present results of diagnoses from a series of strong-line indices for the H II regions
in NGC 2403 and in turn inspect influences of underlying parameters on the emission lines.

4.1. BPT Diagram

The diagnostic diagram of the indices [O 111]JA5007 /Hp versus (vs.) [NI11]A6583 /Hp
proposed by Baldwin, Phillips, and Terlevich (denoted as BPT, Baldwin et al. [49]) is
a powerful tool for classifying emission-line objects into active galactic nuclei (AGNs),
low-ionization-emission regions (LINERs), or star-forming regions (Kewley et al. [50],
Kauffmann et al. [51]). Figure 3 is the BPT diagram for the HII regions in NGC 2403,
with the 0.0 Myr model grid as well as the Kewley et al. [50] and Kauffmann et al. [51]
demarcation curves for the classification superimposed. Almost all of the points are
consistent with the Kauffmann et al. [51] curve, and only one falls between the Kauffmann
et al. [51] and Kewley et al. [50] curves, indicating that nearly all samples originate from
star formation activity. By comparing the color-coded data points with the model grid,
the data locus in the BPT diagram reflects a sequence of metallicity or/and the ionization
parameter varying with the galactocentric distance and suggests a correlation of the two
indices with both metallicity and the ionization parameter.

1.0
————— Kewley et al.(2001)
— —— Kauffmann et al.(2003)

0.8

0.6

R/R2s

0.4
IO.Z
0.0

Figure 3. log([O1I]A5007/Hp) as a function of log([N11]JA6583/Hp) (the BPT diagram) for the
H 11 regions in NGC 2403 with the Levesque et al. [12] model grid (the constant age 0 Myr, variations

log([OINI]A5007/HPB)
[=)

log([NII]A6583/Ha)

in the metallicity Z (in units of Z)), and the ionization parameter q) superimposed. The data points
are marked using the same symbols as in Figure 1 and color-coded by the galactocentric distance
(de-projected) in units of Rps. The criteria for classifying ionizing sources (stars and AGNs) are
quoted from Kewley et al. [50] (black dotted line) and Kauffmann et al. [51] (black solid line).
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4.2. Metallicity Estimates

The oxygen abundance for the H1I regions in NGC 2403 was estimated for assessing
the metallicity. There are a number of recipes for obtaining the oxygen abundance but con-
siderable discrepancies among them, leaving an important challenge in metallicity studies
(Maiolino and Mannucci [2], Kewley et al. [3], Mao et al. [18], Kewley and Ellison [52]). In
this work, we adopted four widely used empirical diagnostics for estimating oxygen abun-
dance. They are described as follows.

R23 (Pilyugin and Thuan [7]):3

R23 +726.1 + 842.2P + 337.5P?

12 +1log(O/H)pion = 3
1080/ Hign = 555652 76P 1 43.98P2 1 1.793R23" ®)
_ [O11]A3727+[O 111]A14959,5007 1 _ [O 111]A14959,5007 .

where R23 = log H P = [0 Tm2959.5007 1 [O 113727
O3N2 (Pettini and Pagel [6]):
12+ log(O/H) = 8.73 — 0.3203N2, @)
_ [O111]A5007/HP
where O3N2 = log TN 116583, Hat *
N2 (Pettini and Pagel [6]):
12 +1log(O/H) = 9.37 4+2.03 x N2+ 1.26 x N22 +0.32 x N2°, (5)
_ [N 11]76583 .
where N2 = log *“—p7—
N202 (Bresolin [8]):
12 4+ log(O/H) = 8.66 + 0.36 x N202 — 0.17 x N202?2, (6)

where N202 = log %ﬁ%.

From the above diagnostics, we estimated the oxygen abundances for the H I regions
in NGC 2403, whose radial profiles are displayed in Figure 4, with the best-fit linear curves
superimposed. The uncertainty of the slope was quantified as a standard deviation derived
from bootstrapping the sample 3000 times, and the corresponding fit parameters are listed
in Table 3. A negative gradient is obviously seen from each of the profiles, consistent with
the inside-out scenario of galaxy evolution. However, differences in gradient slope and
data dispersion between these radial profiles are evident and imply greater complexity for
the emission-line indices, which inevitably affects and biases relevant studies based on

metallicity gradients derived from these recipes.

Table 3. Fitting parameters of radial metallicity distribution.

Indicator Gradient o R?
(dex/Ry5) (dex)

¥} () (3) )

R23pos —0.31 + 0.04 0.17 0.35

O3N2py4 —0.35 +0.05 0.12 0.41

N2poy —0.31 £ 0.03 0.09 0.58

N202gy7 —0.58 £+ 0.02 0.08 0.81

Notes. Columns: (1) Metallicity indicator; (2)-(4) slope of the radial metallicity gradient, dispersion, and coefficient

of determination of the fit, as presented in Figure 4.
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Figure 4. Radial distributions of the oxygen abundance derived from the indices R23 ((top-left
panel), the calibration is addressed in Pilyugin and Thuan [7] and denoted as R23pys5), O3N2 ((top-
right panel), the calibration is addressed in Pettini and Pagel [6] and denoted as O3N2pg4), N2
((bottom-left panel), the calibration is addressed in Pettini and Pagel [6] and denoted as N2py4),
and N202 ((bottom-right panel), the calibration is addressed in Bresolin [8] and denoted as N20O2gq7)
for the H1I regions (represented by the same symbols as assigned in Figure 1) in NGC 2403 with
the weighted linear best-fit curves (cyan dashed lines) superimposed. The fitting parameters are
compiled in Table 3.

4.3. Index—Index Diagrams

In order to inspect the emission-line indices in more depth, we carried out a series of
diagnoses by diagramming relations of the indices for the data in combination with the model
grids. These diagnoses result in a further understanding of not only underlying parameters
in the observed features but also more properties for the HII regions in NGC 2403. In this
section, the emission-line indices inspected in the diagnoses included the metallicity indicators
R23, O3N2, N2, and N202. As a widely used proxy of the ionization parameter, 0302
(= [O111]AA4959,5007 /[0 11]A3727) was also employed in our work for specially tracing
ionization states.*

4.3.1. Diagnosis at Fixed Age

Figure 5 shows the interrelations between R23, O3N2, N2, N202, and O302, with the
model grid reflecting the initial situation (i.e., the 0 Myr age) superimposed in each of the
panels. As illustrated in these diagrams, among the four metallicity indicators, the cor-
relation with O302 is strong for O3N2 and N2 (Pearson coefficients p = 0.88 and —0.72,
respectively), moderate for R23 (o0 = 0.45), and weak for N202 (p = —0.39). Different
levels of degeneracy of metallicity and the ionization parameter in the different indices are
disclosed by the model grids. Specifically, for constant values of metallicity, O3N2 increases
monotonically with the ionization parameter, whereas N2 decreases at higher ionization
states with a slight curvature; dependence of R23 on the ionization parameter appears
complicated, with two opposite trends to the low- and high-metallicity ends, similar to the
so-called double-value effect of R23 on its estimates of the oxygen abundance; by contrast,
N202 stays robust against variations in the ionization parameter, as manifested by the
extensive model grid and the widespread data distribution in the O302-N202 diagram in
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Figure 5. This result verifies the non-negligible sensitivities of O3N2 and N2 to the ioniza-
tion parameter, as well as the reliability of N2O2 for estimating metallicity, particularly at
variable ionization states. The sensitivity of R23 to the ionization parameter was inherently
weaker than that of O3N2 and N2; furthermore, the correction for the ionization influence
was taken into account in the R23 calibration (Pilyugin and Thuan [7]).

1.0

0.0Myr

0.8

N2

55, 0.6

R/R2s

0.4

0302

15 —i0 -0s5 0 2 00 05 10 -1 0 i 00
N202 O3N2 R23 0302

Figure 5. Interrelations between every two indices among R23, O3N2, N2, N202, 0302 for the
H1I regions in NGC 2403, with the Levesque et al. [12] model grid (the constant age of 0 Myr,
variations in metallicity Z (in units of Z)) and the ionization parameter q) superimposed. The data
points are marked using the same symbols as in Figure 1 and color-coded the same as in Figure 3.
The rate of the data covered by the model grid (defining the number ratio of the data points falling
within the grid to the total of the data points, denoted as the coverage rate or “CR”) is presented in
the lower-right corner in each of the panels. Histograms of the indices are also shown.

Nonetheless, the data points from the outer part of the galaxy (r > 0.2Rp5) lie in
the conjunction zone of the higher and lower branches of the R23 calibration and thus
appear with dispersion in the R23-based estimates of metallicity. For the HII regions
located in the inner area of the galaxy (7 < 0.2Rps5), even larger dispersion emerges in the
R23-based estimates of metallicity (see the top-left panel of Figure 4). This is likely due to
an inherent problem in the Pilyugin and Thuan [7] calibration. We found these data points
in possession of lower excitation levels (quantified by the excitation parameter P as defined
in Equation (3)). As pointed out in Moustakas et al. [56], the R23 calibration lacks sufficient
low-excitation (P < 0.2) data, which prevents its good performance in such a regime and
thereby induces the dispersion in estimates of metallicity.?

The N202 metallicity diagnostic is based on the relation of N/O-O/H at high metal-
licity, where secondary nitrogen production leads to a correlation between N/O and O/H
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(Maiolino and Mannucci [2], Kewley and Dopita [9]). For NGC 2403, Berg et al. [39] found
that within R ~ 0.93 Rps5 (our estimate), log(N/O) and 12 + log(O/H) exhibited a tight
linear correlation, without the plateau characteristic of primary nitrogen production. To-
gether with its insensitivity to the ionization parameter and immunity to the double-valued
degeneracy, this supports the robustness of N202 as a metallicity indicator.

As a consequence, among the four panels in Figure 4, the metallicity estimated from
N202 shows the most reliable radial metallicity gradient for NGC 2403, with a slope of
—0.58 4= 0.02 dex R2_51, a dispersion of o = 0.08 dex, and a coefficient of determination of
R?=081.

Comparison of the data distribution with the model grid in each of the index—index
diagrams in Figure 5 manifests different extents of coverage of the model to the data
points. Specifically, there are approximately 93-94% of the data points covered by the
model grid in each of the O3N2-N202, 0302-N2, and O302-O3N2 diagrams, about 84%
in the O3N2-N2 diagram, and around 60% or even less in the N202-N2 and R23-relative
diagrams. The model appears to characterize the data well in the O3N2-N202, 0302-N2,
0302-O3N2, and O3N2-N2 diagrams but not in the others. In each of the N202-N2 and
R23-relative diagrams, the data locus fails to follow the bending regime of the model grid
but keeps a more linear trend in the plane. As a result, some of the data points exceed the
model coverage, and they are the H1I regions located in the outskirts of NGC 2403.

4.3.2. Diagnosis with Age Evolution

The model grids in Figures 3 and 5 were established at the fixed age of 0 Myr (in an
initial situation) for the purpose of eliminating effects of age but specially focusing on
behaviors of metallicity and the ionization parameter. As a matter of fact, emission lines
are supposed to tightly relate with the age of ionizing stellar populations, due to a decrease
in the number of ionizing photons when stellar populations age. With the diagrammatic
diagnosis independent of age worked out above, we conducted modeling of the spectral
indices by varying the age (range of 0-9.5Myr) in this section, to inspect the age evolution
of the index—index relationships, whose results are shown in Figures 6-9 and Appendix A.
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The coverage rates for all diagnostic diagrams are summarized in Table 4.
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Figure 6. BPT diagrams for the H1I regions in NGC 2403 with the Levesque et al. [12] model grids
(constant age, variations in metallicity Z (in units of Z)) and the ionization parameter q in each of
the panels) superimposed. The data points and the dotted and solid lines have the same meaning in
all of the panels as in Figure 3). In the different panels, the model grids vary with the age ranging
from 0 to 9.5 Myr (This only shows part of the age grid as a representative.) The age and the CR (the
same definition as in Figure 5) are listed in the lower-right corner in each of panels. The data points
are marked using the same symbols as in Figure 1 and color-coded the same as in Figure 3.
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Figure 7. Constraints on the stellar population age derived from the equivalent width of the HB emis-
sion line (EWggg). The model curves show EWyg-age relations for instantaneous bursts at different
metallicities from the STARBURST99 model (Leitherer et al. [41]) using the publicly available 1999
dataset downloaded from the official website. Horizontal dotted and dashed lines mark the observed
maximum and minimum EWyyg values of the emission lines across the galaxy. The red vertical line
indicates the 6.5 Myr upper-age limit inferred from the BPT diagram coverage. The minimum EWpg
value is found in the central, higher-metallicity region, consistent with an age of ~7 Myr (Z = 0.02).
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Figure 8. The CR (the same definition as in Figure 5) of the model grid as a function of the age
ranging from 0 to 9.5 Myr, for the diagrams in Figures 3, 5 and 10. The dashed lines are color-coded by
specific index-index relations with the legend displayed in the top-right corner. The black filled boxes
connected by the black solid line represent the average evolution of the CR among all of the diagrams.
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Figure 9. Spectral index or HB-normalized emission lines of [O 111]A5007, [N 11]JA6583, and [O 11]A3727
(hereafter referred to as [O111], [N II], and [O11], respectively) as a function of age reproduced by the
Levesque et al. [12] model. In each of the panels, the model products are color-coded by metallicity
and symbol-coded by the ionization parameter, with the legend listed in the lower-left corner in the
bottom-right panel.

Figure 6 shows a modeled evolution of the BPT relationship superimposed on the
observed data. The most apparent behavior of the model grid is a progressive downward
shift with aging, i.e., an intensive decline in [O111]JA5007 /Hp relative to a weak change
in [N11JA6583/Ha. It is because the [OI11] emission lines are more preferentially excited
at a higher degree of ionization, in contrast to the [N II]A6583 emission lines associated
with low-ionization environments (Kewley et al. [3], Osterbrock and Ferland [32]); with the
aging of stellar populations and resultant softening of stellar radiations, H1I regions have
lower ionization states and more delicate [O I1I] excitation. A direct aftermath of the change
in the spectral features is a decrease in the coverage rate of the model to the data in the
diagram. The model grids with 0-1 Myr cover ~80% of the data points, but the coverage
rate rapidly reduces to <30% at >2Myr and 0% (no coverage) at >6.5Myr. The total
separation of the model grid from the observed data suggests the upper age limit ~6.5 Myr
for the H1I regions in NGC 2403 under this framework. We further cross-checked the
age constraint using the equivalent width of HB (EWyg ﬁ) as predicted by the Starburst99
models for instantaneous bursts (Leitherer et al. [41]), based on the 1999 dataset from the
official website®. For each metallicity, we compared the model EWyyg—age relations with
the observed maximum and minimum EWH[% values in Figure 7. The smallest EWy
was found in the central high-metallicity regions, corresponding to an age of ~7Myr
(for Z = 0.02) in the models. Given that the observed continuum contains contributions
from the underlying stellar populations of the galactic disk in addition to the H1Iregions,
the measured EWpy B is likely underestimated, thus biasing the age estimate toward older
values. Taking this effect into account, the upper limit of ~6.5Myr inferred from the BPT
coverage remains a reasonable estimate.
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Combining Figures 3, 5, 6 and A1-A9, we find that a few of the data points from
the central area of the galaxy are missed by the 0 Myr model but covered by the 2—6 Myr
grids, which indicates an older stage for these H1I regions than others in the sample. It
is interesting that at the 3-6 Myr evolution phase, the model grids emerge with peculiar
fluctuation at the high-metallicity part, which is ascribed to an influence of Wolf-Rayet
(W-R) stars on the [O 11I] emission lines (Levesque et al. [12]).

Variations in the model coverage to the observed data in the index—index diagrams
with age are shown in Figure 8, with an evolutionary trend of the average coverage among
all of the diagrams superimposed. We can see that in general, for almost all of the diagrams,
the model coverage stands at the highest levels at 0—1 Myr but drops sharply at 2-6 Myr
and is lowest after 6 Myr. The highest coverage rates differ between the various diagrams
by ~50% at most. All of the R23-relative diagrams possess the coverage rate <60%. It is
suspected that the model grids are likely to have some problem in reproducing the [O11]
emission line or/and sampling the parameter spaces, which is discussed in Section 5.2.
By contrast, the N202-O3N2 and N202-O302 curves maintain high coverage rates for a
long period (>4 Myr timescale), because the ionization parameter and metallicity are more
effectively decoupled in the two diagrams, leading to larger areas of the model grids with
higher possibilities for covering the data points. After 6 Myr, the coverage rate for most of
the diagrams decreases to <10%, except for N202-N2 and [N 11]-[O 11], which are able to
keep ~30% coverage rate after 6 Myr. This is because the [O11] and [N II] emission lines
are low-ionization emission lines not as sensitive to age as others, which is depicted in
Figure 97.

By modeling N202, N2, O3N2, R23, 0302, [O11], [O111], and [N11] at a variety of
values for metallicity, the ionization parameter, and stellar population age addressed
in Levesque et al. [12], Figure 9 reproduces the age evolution of the spectral indices
and the emission line ratios, at each constant metallicity and ionization parameter, re-
spectively, as an underlying factor interpreting the above features in the diagrams
(Figures 5, 6, 10 and A1-A18). We can see from the evolutionary tracks that the indices
N202 and N2 are the least sensitive to age; N202 even appears invariant with respect to the
ionization parameter in the whole age range of 0-10 Myr, suggesting negligible degeneracy
(if any) of metallicity, ionization parameter, and stellar population age in these indices,
but N2 jointly depends on both metallicity and ionization parameter for H1I regions during
the first 6 Myr.

The O3N2 tracks gradually decline with age at lower metallicity than the solar
value (Z < 0.02) but fluctuate conspicuously in the 3-6 Myr range at higher metallici-
ties (Z = 0.04); O3N2 is also sensitive to both metallicity and ionization parameter, similar
to N2 but spanning the whole 0-10 Myr range. O302 is similar to O3N2 in terms of age
tracks but more dependent on the ionization parameter than metallicity, and this is the
reason for this index being commonly adopted as an ionization proxy. The R23 index
exhibits a weak declining trend with age and a decreasing sensitivity to the ionization
parameter as metallicity increases. The fluctuation in the 3-6 Myr range is a noticeable
feature in all of the tracks for O3N2, 0302, and R23 at the metallicity Z = 0.04, coincident
with the [O111] tracks at the same age and metallicity. As explained above, this feature
is caused by the influence of W-R stars on the [O11I] emission line, which results in the
peculiar behaviors of the 3-6 Myr model grids in all of the [O 111] relative diagrams and has
potential impact on observed data loci in this special age interval. The relation with age is
strong for [O111] but weak for [O11] and [N II] emission lines, which suggests strong age
dependence of O3N2 and O302 but insensitivity to N202 and N2.
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Figure 10. Interrelations between every two emission-line ratio (normalized by HB) among [O11],
[N11], and [O111] for the H1I regions in NGC 2403, with the Levesque et al. [12] model grid (constant
age of 0 Myr, variations in metallicity Z (in units of Z)) and the ionization parameter q) superimposed.
The data points are marked using the same symbols as in Figure 1 and color-coded the same as in
Figure 3. The CR (same definition as in Figure 5) is presented in the lower-right corner in each of the
panels. Histograms of the indices are also shown.

5. Discussion
5.1. Effects of Apertures

Differences in position and size of apertures for spectral extraction have much potential
to introduce extra uncertainties in the measurements. The specific effects of apertures
on different emission lines and different spectral indices are suspected to be different.
For instance, higher-ionization emission lines such as [O 1] tend to be more compact and
concentrated in central parts of H1I regions, whereas lower-ionization emission lines such
as [O11] and [N 1I] often extend over a wider scale (Kewley et al. [3]); for the behaviors of
spectral indices, spatially resolved observations of large H1I regions have revealed that
0302 peaks around the nebular centers, while N202 is relatively invariable across different
locations within the H1I regions (Mao et al. [18]).

As a consequence, if apertures are more centrally placed, they are more likely to
capture stronger [OI1I] emission lines, leading to higher values for O302. By contrast,
larger apertures enclosing more outer areas of HII regions are more likely to extract
stronger [O11] and [N II] emission lines and hence obtain a decrease in O302 or O3N2.
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5.2. Potential Limitation in the Model on the [O11] Emission Line

In the above results, the model fails to adequately fit the observed data in the N202-
N2 diagram as well as R23-relative diagrams, particularly for the H I regions located in
outskirts of the galaxy with relatively low metallicities. In order to find an interpretation,
we further inspected line-line diagrams, as shown in Figure 10. We can see that the model
grid covers almost all of the data points in the [O 111]-[N 1I] diagram but only one half in
the [N 11]-[O11] and [O111]-[O 11] diagrams. Variations in age are sufficient to account for
the low coverage in the [N 11]-[O 11] and [O 111]-[O 11] diagrams (see Figure 8).

The parameter space of metallicity and the ionization parameter in the model, in prin-
ciple, is supposed to cover the observed data. It is unclear whether the failure of the
coverage in the [O111]-[O 1I] diagram is caused by inadequate sampling resolution or other
inherent limitations in the model. From the [N I1]-[O11I] diagram, we can affirm that the
Levesque et al. [12] model grids are unable to reproduce the observed lines at low metallic-
ity end typically in the galactic outskirts. Specifically, for a given [N 11], the model fails to
reproduce a sufficient range of [O11] intensities to match the observed data. This limitation
also provides an interpretation of the lack of model coverage in the N2-N202 diagrams
as presented above. Indeed, generation of certain emission lines in photoionization mod-
eling is an intrinsically complicated mechanism. In addition to metallicity, the ionization
parameter, and gas density, many other parameters, such as the shape and the intensity
of ionizing radiation field, as well as the gas geometry and physics, play critical roles in
predicting emission lines.

5.3. Impact of Rotation of Stars or Binary Populations

Spectral types of ionizing sources are a dominant factor for determining emission lines
in photoionization processes and dependent on several assumptions in stellar population
synthesis such as initial mass function, star formation history, stellar evolutionary tracks,
stellar rotation, binary-population interactions, etc. It is mentioned in Levesque et al. [12]
that the model is likely to require harder spectra to create sufficient ionizing fields and
yield enough [S11] to successfully reproduce observed data. In this case, rotation of stars is
suggested to achieve this. The stellar rotation is expected to create harder ultraviolet spec-
tra for a longer period of time (Levesque et al. [57], Dorn-Wallenstein and Levesque [58]).
Alternatively, binary stars are another possible requisite for maintaining hardness of ul-
traviolet radiation despite aging stellar populations (Stanway et al. [59]). Binary stellar
population models make it possible to continuously reproduce observed data after 10 Myr
in the BPT diagram and those at low metallicity or high redshifts in the [O 111]-[S1I] diagram
(Xiao et al. [13], Zhang et al. [60]).

6. Summary

In this paper, we presented an investigation of spectral emission-line characteristics
of H1I regions in the nearby spiral galaxy NGC2403. Spectroscopic observations were
taken with the 2.16 m telescope at the National Astronomical Observatories of China,
with supplementary data collected from the literature. As a consequence, a total of 188
H 11 regions in NGC 2403 were compiled in the final sample. A combined model of pho-
toionization and stellar population synthesis was employed for comparing and interpreting
the observed data.

Through the BPT diagnosis, nearly all of the samples were confirmed to originate from
stellar irradiation and hence classified as star-forming regions. Radial profiles of metallicity
for NGC 2403 were obtained by applying the four widely used strong-line diagnostics, R23,
O3N2, N2, and N202, respectively, and all of them exhibited negative gradients, reflecting
an inside-out evolution process for this galaxy, but the slopes and the dispersions of the
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gradients were different. N202 resulted in the gradient with the steepest slope and the
least dispersion, while the N2 and R23 indicators yielded the flattest gradients, and R23
exhibited the largest dispersion.

Via a series of diagrammatic inspections on the four spectral indices R23, O3N2, N2,
and N202, as well as individual emission lines within them, we demonstrated strong
sensitivities of O3N2 and N2 to the ionization parameter; R23 was comparatively less
sensitive to the ionization parameter but had a double-value effect which was especially in-
fluential for the H1I regions in NGC 2403; N202 appeared to be the most robust diagnostic,
in monotonic correlation with metallicity and with negligible sensitivity to the ionization
parameter. By inspecting the individual emission lines, we disclosed that the [O 111] emis-
sion line was strongly related with the age of ionizing stellar populations, in contrast to the
[O11] or [N IT] emission line in relatively weak relation with stellar population age. As a
consequence, the indices R23 and O3N2 involving the [O I1I] emission line were dependent
on stellar population age, while N2 and N202 were less affected by stellar population
age, but the influence of the ionization parameter on N2 became more serious for young
stellar populations (<6 Myr). Thus, N202 is suggested to more reliably indicate metallicity
than the other three diagnostics. Furthermore, within the adopted photoionization model
framework, the grid corresponding to an age of 0—1 Myr provided the best overall match to
the observational data, whereas models older than 6.5 Myr showed poor agreement.
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Appendix A. Index-Index Diagrams with Age Evolution

In this appendix, we present the index—index diagrams and the line-line diagrams,
with the model grids at different ages superimposed, corresponding to the analysis in
Section 4.3.2. The index—index diagrams are shown in Figures A1-A9, and the line-line
diagrams are shown in Figures A10-A18.
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Figure A1. The same as Figure 5 but superimposing the 1.0 Myr model grids.
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Figure A2. The same as Figure 5 but superimposing the 2.0 Myr model grids.
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Figure A3. The same as Figure 5 but superimposing the 3.0 Myr model grids.
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Figure A4. The same as Figure 5 but superimposing the 4.0 Myr model grids.
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Figure A5. The same as Figure 5 but superimposing the 5.0 Myr model grids.
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Figure A6. The same as Figure 5 but superimposing the 6.0 Myr model grids.
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Figure A8. The same as Figure 5 but superimposing the 7.0 Myr model grids.
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Figure A11. The same as Figure 10 but superimposing the 2.0 Myr model grids.
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Figure A12. The same as Figure 10 but superimposing the 3.0 Myr model grids.
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Figure A14. The same as Figure 10 but superimposing the 5.0 Myr model grids.
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Figure A16. The same as Figure 10 but superimposing the 6.5 Myr model grids.
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Figure A17. The same as Figure 10 but superimposing the 7.0 Myr model grids.
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Notes

1

[O11]A3727 is a sum of the double lines [O 11]A3726/[O 11]A3729, which are hardly resolvable for low-resolution spectroscopy and
thus taken as one single line [O IT]A3727.

2 IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Universities for
Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation.

3 The R23 method has a double-value effect. We choose the higher branch in this work, because the H1I regions in NGC 2403 are
generally metal-rich according to our initial assessment.

4 In observational studies, a ratio between two emission lines for a certain ion at different ionization states is usually
taken as a proxy of the ionization parameter (e.g., Kewley et al. [3], Mao et al. [18], Relafio et al. [53]). The emission-
line indices [O111]AA4959,5007 /[O11]A3727 (denoted as O302) and [SIII]AA9069,9531/[S11]AA6717,6731 (denoted as S352
Kewley et al. [3], Kewley and Dopita [9], Morisset et al. [10], Dopita et al. [54], Garner et al. [55]) are the most widely used ion-
ization tracers. Owing to the wavelength coverage in our observations, we employed O302 in the diagnoses.

5 Although the ionization parameter was taken into account, the sensitivity of the Pilyugin and Thuan [7] calibration to the
ionization parameter was still found in our further analysis (Li et al., in preparation), which points to the complexity of the R23
index as a reliable or questionable estimator of metallicity.

6 https:/ /massivestars.stsci.edu/starburst99, accessed on 8 August 2025.

7 In Figure 9, we note that some of the high-metallicity model points (in red and yellow) exhibit abrupt jumps at older ages. We
suspect that these anomalies are artifacts arising from the model calculations. However, since this cannot be confirmed and they
do not significantly impact our analysis, we chose to retain them.
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Abstract: The exponential growth of astronomical data necessitates the adoption of artificial
intelligence (AI) and machine learning for timely and efficient scientific discovery. While
Al techniques have achieved significant successes across diverse astronomical domains,
their inherent complexity often obscures the reasoning behind their predictions, hindering
scientific trust and verification. This review addresses the crucial need for interpretability in
Al-powered astronomy. We survey key applications where Al is making significant impacts
and review the foundational concepts of transparency, interpretability, and explainability. A
comprehensive overview of various interpretable machine learning methods is presented,
detailing their mechanisms, applications in astronomy, and associated challenges. Given
that no single method offers a complete understanding, we emphasize the importance of
employing a suite of techniques to build robust interpretations. We argue that prioritizing
interpretability is essential for validating results, guarding against biases, understand-
ing model limitations, and ultimately enhancing the scientific value of Al in astronomy.
Building trustworthy Al through explainable methods is fundamental to advancing our
understanding of the universe.

Keywords: machine learning; XAl interpretable

1. Introduction

It is hard to believe that it was just 100 years ago, on the night of 5-6 October 1923,
when Edwin Hubble, using the 100-inch Hooker telescope, discovered the first galaxy,
besides our own galaxy the Milky Way—our galactic neighbor Andromeda [1]. This
revelation expanded our perspective immeasurably, transforming the Milky Way from
the entirety of existence to just one of countless galaxies scattered throughout the vast
expanse of space. The revelation ignited a new era of astronomical exploration, with
astronomers eager to map the universe and uncover its secrets. For centuries, the driving
force behind many of the most profound discoveries has been the combination of advanced
instrumentation and the discerning eye of human observers [2]. Even with advanced
datasets, the manual scrutiny of scientists remains crucial, as evidenced by the recent
identification of the Altieri Einstein ring within Euclid’s archive [3]. Furthermore, dedicated
amateur astronomers, armed with their own smaller instruments and a keen eye for detail,
continue to play a vital role, contributing to discoveries including new asteroids or even
exoplanets [4,5]. Even without telescope access, citizen science initiatives like Galaxy
Zoo [4,6] have empowered the public to tackle datasets that were already beginning to
challenge professional astronomers, classifying galaxies and discovering new phenomena.
This collaborative human effort, aided by technology, has fueled a decade of remarkable
discoveries, leading directly into the current era where the sheer scale of data presents
unprecedented challenges.
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The scale of modern astronomy has indeed grown exponentially. Early large-scale
digital sky surveys, such as the Sloan Digital Sky Survey (SDSS) [7] and the Panoramic Sur-
vey Telescope and Rapid Response System (Pan-STARRS) [8], generated petabytes of data,
creating massive archives. This trend is accelerating dramatically with next-generation
facilities like the Vera C. Rubin Observatory conducting its Legacy Survey of Space and
Time (LSST) [9], the Square Kilometre Array (SKA) [10], and space missions including
Euclid [11], JWST [12], and the Roman Space Telescope [13]. Driven by significant advance-
ments in detector sensitivity, resolution, and survey speed, these instruments are projected
to generate data volumes measured not just in petabytes, but potentially exabytes over
their lifetimes. Critically, this data deluge is not just voluminous but also characterized
by immense complexity—multi-wavelength, time-sensitive, intricate structures. Their
subtle signals are buried within noise and high dimensionality. Furthermore, the variety of
data formats continues to expand, including vast mosaics of images, detailed spectra for
millions of objects, high-cadence time series (light curves), complex integral field unit (IFU)
datacubes mapping spatial and spectral information, and the outputs of increasingly so-
phisticated cosmological and astrophysical simulations (e.g., [14]). Handling such datasets
is far beyond the capacity of traditional human analysis alone [15].

To extract meaningful scientific insights from this flood of information, artificial
intelligence (Al), particularly machine learning (ML), has become an essential toolkit for
modern astronomy, with usage growing exponentially over the last decade [16-18]. ML
algorithms are uniquely suited for tasks intractable with traditional methods at these scales.
This includes sophisticated pattern recognition in complex datasets, classification of diverse
astronomical objects (e.g., stars, galaxies, supernovae types), regression for estimating
physical parameters (e.g., photometric redshifts, stellar properties), anomaly detection to
identify rare or unexpected phenomena, and dimensionality reduction to manage and
interpret high-dimensional data spaces. Crucially, ML models can often identify subtle,
non-linear correlations and patterns across vast numbers of features—relationships that
might be imperceptible to human observers or beyond the scope of conventional statistical
techniques [19].

This reliance on AI/ML stems directly from the inherent limitations of traditional
methods in this data-rich era. Manual inspection cannot match the required speed and scal-
ability. Human analysis is also susceptible to cognitive biases, perceptual limitations, and
fatigue, potentially leading to inconsistencies in identifying and categorizing objects due to
the subjective nature. Furthermore, many discoveries in astronomy come from unexpected
anomalies where mistakes can become more likely, particularly when looking for rare or
subtle signals. Conventional algorithms and human intuition struggle to effectively model
or interpret the complex relationships within high-dimensional parameter spaces. They of-
ten rely on predefined criteria and may miss novel or rare events. AI/ML, in contrast, offers
the potential for consistent analysis at scale, enabling the exploration of data complexity in
ways previously impossible and can detect patterns beyond human perception.

The need for automation and speed is particularly acute in time-domain astron-
omy [20]. Facilities like the Zwicky Transient Facility [21,22] and, soon, the Rubin Observa-
tory [9] generate millions of alerts nightly. Identifying and rapidly classifying interesting
transient events such as supernovae (SNe) near peak brightness, gamma-ray bursts (GRBs),
fast radio bursts (FRBs), or the elusive electromagnetic counterparts to gravitational wave
(GW) events requires immediate attention within minutes or hours of detection [23]. This ne-
cessitates automated systems capable of real-time filtering, classification, and prioritization
of these alerts to enable rapid follow-up observations with other telescopes. Human-in-the-
loop processes are simply too slow for this discovery space and, thus, there is a compelling
driver for Al adoption. Manually inspecting even a fraction of this is infeasible. Beyond
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transients, near-real-time applications are also emerging for tasks like optimizing telescope
scheduling based on observing conditions and scientific priorities, or performing rapid
data quality assessments [24].

While the power and success of Alin tackling these challenges are undeniable, leading
to numerous discoveries (as this review will detail), the increasing sophistication of the
ML models employed often comes at the cost of transparency. Many powerful algorithms,
particularly deep learning models excelling at the tasks described above, function as
“black boxes”, where the internal logic behind a specific prediction or classification is
not readily apparent [25]. In scientific discovery, however, understanding why a model
arrives at a conclusion is as important as the conclusion itself. Trust, validation against
known physics, reliability, and the ability to identify whether a discovery is genuine
or merely an artifact of the model or data are paramount [26]. This critical need for
understanding and trustworthiness motivates the growing field of interpretable machine
learning and explainable AI (xAI) within astronomy. Furthermore, developing Al systems
capable of more explicit reasoning may offer pathways to both more robust and more
understandable models.

Therefore, this review proceeds by first establishing the necessary context for trust-
worthy Al We will begin by exploring the foundational concepts of xAl and transparency,
outlining their critical importance for validation and reliability in astronomical research
(Section 2). Subsequently, we survey key astronomical domains where Al has enabled
significant discoveries, examining the methods used and highlighting where interpretabil-
ity considerations arise (Section 3). Following this is a comprehensive guide to specific
emerging xAl techniques and reasoning models (Section 4), and we end by discussing open
challenges, promising trends, and the collaborative efforts needed to advance scientifically
valuable AT (Section 5).

2. Foundations of Trustworthy Al in Astronomy

The indispensable role of Al and machine learning (ML) in handling complex modern
astronomical data brings critical considerations regarding trustworthiness and compre-
hensibility. Many powerful ML models, especially deep neural networks adept at image
analysis and pattern recognition, often operate as “black boxes” [25]. Their internal me-
chanics, involving potentially billions of parameters tuned through complex optimization,
lack inherent transparency. This opacity hinders the understanding of precisely how
outputs like classifications or anomaly scores are generated, moving beyond simple input-
output checks.

Trustworthiness in Al extends beyond model complexity. As data-driven systems,
ML performance hinges on training data quality and representativeness. Astronomical
datasets, often heterogeneous, incomplete, or affected by instrumental systematics, can lead
models to inadvertently exploit irrelevant features or biases. Iterative model development
cycles (feature selection, tuning, evaluation) compound these issues. Without rigorous
validation and understanding of model behavior, this can lead to overfitting, learning noise
or spurious correlations, or the production of results that seem desirable but are ungeneral-
izable or scientifically unsound. Furthermore, the vulnerability of vision models to subtle
perturbations highlights robustness challenges [27]. Lack of transparency exacerbates these
risks, complicating independent verification.

Therefore, in astronomy, where empirical evidence, validation against physical princi-
ples, and reproducibility are foundational, high predictive accuracy alone is insufficient.
Understanding the reasoning behind Al results is crucial for building trust, verifying find-
ings, fostering new insights, and enabling effective human-machine collaboration [26]. This
necessitates examining the core concepts underpinning trustworthy Al: transparency, inter-
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pretability, and explainability. While often used interchangeably, they represent distinct
facets of understanding Al systems:

*  Transparency refers to the accessibility and understandability of the model’s internal
mechanics. This involves knowledge of the architecture, algorithms, learned param-
eters (e.g., weights in a neural network), and potentially the training data [25,28].
A model can be transparent (e.g., open source and well-documented) yet still lack
intuitive comprehensibility for domain experts.

* Interpretability captures the extent to which a human—especially a domain ex-
pert—can understand the relationship between inputs and outputs, or the decision
logic of a model [29,30]. Models like linear regression or decision trees are inherently
interpretable; their outputs can be directly tied to feature contributions. In contrast,
deep neural networks and ensemble models (e.g., random forests) present significant
challenges to interpretation due to their layered complexity and non-linearity.

¢ Explainability (xAl) refers to methods that provide human-understandable post hoc
explanations for model behavior, particularly for opaque models [31,32]. These ex-
planations may be local (explaining a single decision) or global (overall behavior).
Tools like SHAP [33], LIME [34], and attention-based visualizations [35] approxi-
mate model reasoning or highlight influential features, providing insights without
full interpretability.

However, post hoc XAl methods have limitations. They often approximate reason-
ing and can be incomplete or misleading, particularly when justifying decisions retroac-
tively [36,37]. Critics argue that this reliance might legitimize black-box use where in-
terpretable alternatives exist, spurring a movement towards models interpretable by de-
sign [38]. Interpretability holds particularly high stakes in astronomy. Complex Al risks
learning from instrumental artifacts, biases, or spurious correlations, potentially leading
to unsound conclusions [39]. Interpretability allows astronomers to verify if models focus
on astrophysically meaningful features (e.g., galaxy morphology, spectral lines) rather
than confounders. Explainable models can also drive discovery by highlighting subtle,
unnoticed patterns for further investigation. Explainability enhances scientific account-
ability. When unexpected results arise (e.g., a new transient type), robust explanations
build community confidence and guide follow-up experiments. Understanding failure
modes (e.g., poor performance in specific data subsets) is crucial for improving pipelines
and model design. Furthermore, in an era of automated surveys, explainability is vital for
ethical and equitable science. Historical data biases (e.g., from sky coverage limits, human
classification) can be unintentionally amplified by Al Interpretable methods are, thus, es-
sential for identifying, quantifying, and mitigating these biases, promoting more inclusive
and robust outcomes. Regardless of the approach, pursuing transparency, interpretability,
and explainability is fundamental to the scientific value and reliability of Al in astronomy.
Integrating these qualities into Al development, evaluation, and deployment ensures that
derived insights are credible, reproducible, and advance our understanding of the universe.
Grasping these concepts and the surrounding debate provides a necessary framework for
assessing Al applications in astronomy.

3. AI Applications and Discoveries in Astronomy

Having established the foundational concepts of trustworthy Al (Section 2), this section
surveys the diverse applications and significant discoveries enabled by Al and machine
learning across various astronomical domains. The aim is to illustrate the transformative
impact of these techniques while also highlighting, where relevant, the nature of the models
employed and the associated considerations for trustworthiness.
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3.1. Strong Lensing

Strong gravitational lensing provides a unique window into the Universe. These rare
events occur when a massive foreground object (e.g., galaxy, cluster) bends and magnifies
light from a distant background source, creating multiple images, arcs, or complete Einstein
rings [40]. Studying these systems is invaluable for mapping dark matter, probing lens
structure, measuring cosmological parameters like the Hubble constant [41], and observing
otherwise faint distant sources, enabling glimpses into the early Universe and tests of
general relativity [42].

First discovered in 1979 [43], strong lenses were identified for decades primarily
through visual inspection or targeted searches, yielding several hundred confirmations.
However, the advent of large-scale surveys and machine learning (ML) has dramatically
increased the known sample. An early ML success was demonstrated in the Strong Lens
Finding Challenge [44], where the winning support vector machine (SVM) [45], an al-
gorithm finding optimal separating hyperplanes, outperformed human inspectors on
simulated images by detecting subtle statistical differences. This SVM notably relied on
hand-crafted features based on prior knowledge (e.g., arc morphology), offering some
interpretability as the importance of specific, physically motivated features could be as-
sessed. While this reliance potentially limited discovering novel configurations, the authors
noted that it could reduce overfitting compared to pixel-based methods, despite cautioning
about potential biases. Applying this SVM to the Kilo Degree Survey (KiDS) [46] revealed
new candidates but also highlighted biases necessitating human intervention, particularly
the model’s tendency to misclassify non-lens objects like spiral galaxies as strong lenses
due to the underrepresentation of these contaminating object types in the training data,
necessitating human intervention, a process unscalable for future datasets [47].

This scalability challenge spurred the adoption of convolutional neural networks
(CNNSs), which automatically learn hierarchical features from raw pixels (e.g., [48,49]).
CNNs excel at image recognition, and recent applications to DESI Legacy Imaging Sur-
veys [50] and Euclid Quick Release data [51] have yielded thousands of new candidates,
vastly expanding the known sample (previously <1000 confirmed). Despite their per-
formance, the complex, multi-layered structure of CNNs makes them archetypal “black
boxes”, lacking the inherent transparency of feature-based SVMs. Understanding their
decision process requires post hoc explainable Al techniques. Applying such techniques
is crucial for validating candidates, distinguishing real lenses from mimics or artifacts,
and building trust, especially as surveys like Euclid anticipate over 100,000 candidates,
exceeding human vetting capacity. Bridging this performance-understanding gap through
interpretation, particularly for rare lenses, is an area of emerging research (e.g., [52]).

3.2. Galaxy Morphology

Just as in lens finding, Al has also revolutionized the study of galaxy morphology,
another area where visual classification has been central. Understanding galaxy formation
and evolution critically depends on robust morphological classification—distinguishing
spirals, ellipticals, irregulars, and mergers. These morphologies offer insights into dynami-
cal histories, stellar populations, and environmental influences. Modern imaging surveys
(SDSS, Pan-STARRS, DES], Euclid, LSST) produce vast datasets of millions to billions of
galaxy images, necessitating automated, scalable classification approaches.

Early efforts like the Galaxy Zoo project [6] successfully crowdsourced morphologi-
cal classifications, yielding high-quality labeled datasets and catalyzing ML adoption in
astronomy. Traditional ML models (e.g., random forests, SVMs) trained on manually ex-
tracted features (concentration, asymmetry, Gini coefficient) showed promise (e.g., [53,54]).
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Their key advantage was inherent interpretability via feature importance rankings, helping
astronomers understand which measurable properties drove classification.

Deep learning, particularly CNNs, transformed morphological classification, removing
the need for hand-crafted features. Studies by Dieleman et al. [55] and Dominguez Sdnchez
et al. [56] demonstrated CNNs outperforming traditional methods, especially with large
labeled datasets. Consequently, CNNs have generated large-scale morphological catalogs
crucial for galaxy evolution studies.

However, this improved performance comes at the cost of interpretability. CNNs
are highly accurate, yet their internal decision making based on visual features remains
unclear. This opacity limits scientific trust and potential discovery. Are CNNs identify-
ing canonical features (spiral arms, bars, bulges, tidal tails) or overfitting to artifacts or
spurious correlations?

To probe the inner workings of these CNNs, techniques like saliency maps, Grad-
CAM, and attention mechanisms (Section 4) visualize which image regions most influence
classification. For instance, Bhambra et al. [57] used such tools to assess if CNNs focused on
expected features like bars or merger tails. These visualizations provide qualitative insights
and act as sanity checks, verifying alignment with meaningful astrophysical features or
revealing unexpected patterns warranting further investigation.

3.3. Transient Detection and Classification

Moving from static morphology to dynamic phenomena, transient astronomy studies
events evolving on short timescales (milliseconds to years) before fading or changing signif-
icantly. Unlike stars or galaxies, transients often signal cataclysmic events like supernovae
(SNe), gamma-ray bursts (GRBs), fast radio bursts (FRBs), tidal disruption events (TDEs), or
various variable stars. Modern surveys (e.g., ZTF, Gaia, and, soon, LSST) generate immense
data streams—thousands to millions of alerts nightly—creating a data-rich but time-poor
field [9]. This sheer volume and diverse mix of known variables, artifacts, and potential
novel events demand sophisticated automation for rapid identification, classification, and
follow-up.

Machine learning provides essential tools for this challenge. Its primary contribution
is scalability, enabling crucial real-time filtering of vast alert streams to distinguish inter-
esting signals from non-astrophysical detections or common variables, a task impossible
manually [58]. Furthermore, transients involve complex, multi-modal data (light curves,
spectra, host properties, images). ML, especially deep learning, is effective at automatically
extracting features and identifying intricate patterns across these data types, often surpass-
ing traditional algorithms [59]. ML classifiers can also provide vital probabilistic outputs
for incomplete or ambiguous data [60], guiding follow-up decisions under uncertainty
[61]. Crucially, ML powers anomaly detection algorithms, sifting through millions of
events to flag outliers deviating from known classes, paving the way for discovering new
astrophysical phenomena.

However, the effective deployment and scientific acceptance of these techniques criti-
cally depend on understanding and trusting their outputs. This brings interpretability and
explainability to the forefront. Scientific trust and validation are paramount. Astronomers
need confidence that an ML classification (e.g., SN Ia vs. SN II) or anomaly flag relies
on relevant astrophysical characteristics (light curve shape, color evolution) rather than
spurious correlations or artifacts [62]. This understanding directly impacts rapid follow-
up prioritization, as interpretable justifications boost confidence when allocating scarce
telescope time for confirmation, often needed within hours [17].

137



Universe 2025, 11, 187

Moreover, interpretability is intrinsically linked to discovery via anomaly detection.
An ML model merely flagging an event as anomalous offers limited insight. Explain-
able methods highlighting why an event is unusual (specific features or behaviors) are
essential for characterizing potential novel phenomena and understanding the underlying
physics [59]. For instance, Zhang et al. [63] demonstrated that saliency maps (Section 4.2),
which highlight regions of input data most influential to a model’s output, can not only
enhance transient features, even without extensive pre-processing like interference de-
dispersion, but their analysis also led to the uncovering of a new pulsar in archival data,
showcasing how interpretability can directly contribute to discovery. Finally, interpretabil-
ity fosters effective human-—Al collaboration. Explanations (feature importance, attention
maps, prototype comparisons) allow domain experts to synergize their knowledge with ML
predictions, enabling faster validation, building intuition, and accelerating discovery. Thus,
while ML provides the indispensable engine for transient data, xAl provides the crucial
layer of understanding and verification needed to ensure the reliability and scientific value
of Al-driven transient astronomy.

3.4. Galaxy Cluster Mass Estimation

Beyond the high-volume, high-speed challenges of transient astronomy, the need for
interpretability also arises in specific astrophysical modeling tasks. Galaxy clusters serve as
a prime example. As the largest known gravitationally bound systems, containing hundreds
to thousands of galaxies within massive dark matter halos (10'%-10'°M,), accurately
estimating their masses provide independent measurements for cosmological parameters
like Q)y;, 0g, and w through cluster number counts aids in breaking degeneracies [64].
However, this is challenging using observational data like X-ray emission tracing the hot
intracluster medium. Low photon counts can affect distant and low mass clusters leading
to statistical uncertainties, and the complex physics of the intracluster medium, unlike
the simpler Cosmic Microwave Background, introduces systematic uncertainties such as
hydrostatic bias, even when photon statistics are good.

Addressing this challenge, Ntampaka et al. [65] applied deep learning to estimate
galaxy cluster masses directly from simulated, low-resolution, single-color mock images
mimicking observations from the Chandra X-ray Observatory. They employed a relatively
simple CNN architecture, for which, despite the architectural simplicity compared to some
modern networks, the resulting mass estimates yielded mass estimates with small biases
relative to the simulation’s true masses.

However, recognizing the black box nature of even simpler CNNSs, a key part of their
work involved visually interpreting the trained model. They adapted a gradient ascent
approach inspired by techniques like Google’s DeepDream [66] to modify input images,
identifying features that maximally activated neurons or drove higher mass predictions.
This method served as a post hoc explainability technique aimed at feature attribution
through visualization.

Their analysis revealed that the CNN was most sensitive to X-ray photons in the
cluster outskirts, not the brighter inner regions. This was significant as it aligned with
independent analyses indicating outskirts contain substantial mass information. Ntampaka
et al. [65] concluded that the work highlights the utility of interpreting ML models. The
visualization provided plausible physical reasoning for the model’s predictions, increasing
trust beyond simple accuracy metrics. It showcased the value of applying explainability
methods, even early ones, to validate Al against physical intuition and ensure models
leverage meaningful signals within complex astronomical data.
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3.5. Galactic Archaeology

Mapping the structural components of the Milky Way, its disk, halo, and stellar
populations, is central to understanding its formation and evolutionary history, a field
known as galactic archaeology. Large-scale astrometric surveys, with Gaia [67] being a
prominent example, provide unprecedented high-dimensional datasets containing stellar
positions, motions, and magnitudes for over a billion stars that have fueled numerous
discoveries. For instance, machine learning has been pivotal in identifying rare objects like
hypervelocity stars (HVSs). Ref. [68] used an artificial neural network on Gaia DR1 data
to identify thousands of candidates, which, after refinement, quadrupled the number of
known HVSs. Neural networks have also extended the known memberships of hundreds of
open clusters down to Gaia’s detection limit [69]. However, extracting coherent structures
from this vast data space often relies on unsupervised machine learning techniques [70],
especially clustering algorithms, which identify intrinsic groupings without predefined
labels. These methods have been instrumental in uncovering new stellar streams [71] and
substructures within the halo and disk [72]. In this context, interpretability focuses less
on model predictions and more on understanding the physical nature and significance of
the emergent structures, posing unique challenges in validation and scientific inference.
Unlike supervised learning, where ground truth provides a benchmark, clustering in
galactic archaeology requires domain-informed interpretation and cross-validation with
simulations or follow-up observations to confirm astrophysical relevance. Prototype-based
explanations (Section 4.5), where a cluster’s centroid acts as a representative prototype,
offer one avenue for interpreting these clustering results.

4. Interpretable Machine Learning Methods

As machine learning becomes deeply embedded in the astronomical discovery
pipeline, the imperative for interpretability grows more urgent. In a domain where sci-
entific validation, reproducibility, and alignment with physical principles are essential,
models must not only perform well but also be understood and trusted by human users.

Interpretable machine learning (IML) provides tools and frameworks for unpacking
the decision-making processes of Al models. These methods offer insights into model
behavior through different lenses: feature importance highlights which inputs matter most;
attention mechanisms and saliency maps suggest where the model is focusing; rule-based
models articulate decision logic; and post hoc tools like SHAP and LIME help explain
specific predictions. These techniques can validate outputs, identify biases, uncover errors,
and even inspire new scientific hypotheses.

Several IML approaches have already been adapted to astronomy, including symbolic
regression for deriving physically meaningful relationships and hybrid strategies that com-
bine spatial and feature-level insights, for example, integrating attention maps with SHAP
values to understand both what and where a model is attending. Given the complexity
of astronomical data, including high-dimensional photometry, time-domain variability,
and multi-wavelength imaging, no single interpretability technique is sufficient. Hybrid
methods are often needed to capture the full range of insights.

However, each technique comes with limitations. Feature importance methods can
struggle with correlated inputs and high-dimensional spaces. Attention maps do not
always align with human intuition, and saliency methods may be sensitive to noise or
adversarial perturbations. SHAP and LIME, while flexible and model-agnostic, can be
computationally intensive and sometimes unfaithful to the model’s true reasoning, es-
pecially in extrapolative settings. Faithfulness, in the context of explainable Al, refers to
how accurately an explanation reflects the model’s underlying reasoning process for a
specific prediction or behavior. A faithful explanation should genuinely represent why the
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model made a particular decision, rather than being a plausible but potentially misleading
justification. Rule-based models, though transparent, often lack the performance required
for tasks involving subtle or complex patterns.

Interpretability techniques can also be broadly classified as model-specific or model-
agnostic. Model-specific methods, such as gradients or attention mechanisms in CNNSs,
leverage internal model structures to provide efficient, architecture aware insights. Model-
agnostic techniques like SHAP and LIME offer broader applicability and support compar-
ison across model types, though often at the expense of faithfulness and computational
efficiency. A growing body of research suggests that combining both can enhance under-
standing without compromising performance.

Quantifying interpretability remains an open challenge. Metrics such as fidelity (align-
ment with the model’s true logic), stability (robustness to input perturbations), simplicity
(e.g., rule length or tree depth), and comprehensibility (human interpretability) are com-
monly used. In astronomy, domain-specific criteria such as consistency with known physics
and localization accuracy are also increasingly applied to evaluate explanation quality.

Taken together, IML techniques offer astronomers a powerful toolkit for evaluating,
debugging, and refining machine learning models. They offer distinct pathways to under-
standing how Al systems process data and arrive at predictions which we discuss in this
section. Table 1 provides a quick overview of the use cases for each data type.

Table 1. Guide to selecting interpretability methods based on data type and goal.

Interpretability Goal Image Data Tabular Data Time Series Data
SHAP SHAP SHAP
?
What matters? (global) PI PL/GI PI
Saliency - Saliency
Why this decision? (local) LIME / SHAP LIME/SHAP LIME / SHAP
attention - attention
- rule-based -
Saliency - Saliency
Where is it looking? LIME/SHAP - -
attention - attention
How does it generalise? Symbol.lc Symbol'lc Symbol‘lc
regression regression regression
What is similar? Prototype/ Prototype/ Prototype/
Exempler Exempler Exempler

4.1. Feature Importance

A fundamental step towards understanding machine learning models, particularly
those trained on tabular data, involves identifying which input features most significantly
influence their predictions. Feature importance techniques quantify the contribution of
each input variable to the model’s performance or decision-making process. These methods
are valuable across various astronomical applications, such as predicting stellar parameters
from photometry or spectra, classifying supernova types based on light curve characteris-
tics, or identifying galaxy clusters from survey data, as understanding the role of individual
observational variables (e.g., specific colors, spectral line ratios, morphological parameters)
is crucial for scientific validation and insight. Two commonly employed techniques are Gini
importance (intrinsic to tree-based models) and permutation importance (model-agnostic).

4.1.1. Gini Importance

Gini importance (GI), also known as mean decrease in impurity (MDI), assesses the
importance of features in tree-based ensemble models like random forests and gradient
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boosted trees. Decision trees build partitions by recursively splitting nodes based on
the feature and threshold that yield the greatest reduction in node impurity. The Gini
importance quantifies how much the impurity decreases when a specific feature is used
for splitting data at each node. Common impurity measures are the Gini impurity (for
classification) or variance (for regression). The Gini impurity for a node m with K classes is
calculated as

K K
IG(m) = 2 Pmk(l - pmk) =1- 2 pik 1)
k=1 k=1

where p,,x is the proportion of samples of class k in node m.
The importance of a feature j at a specific node m is the impurity reduction achieved
by splitting on that feature at a threshold :

AI(m,j,t) = I(m) — (NLumL) T NRI(mR)), @

N m N m
where N, N, and Np are the number of samples in the parent and the left and right
child nodes, respectively. The optimal split at the node m is determined by evaluating
all available features (or a subset of them, in the case of random forests) and all possible
thresholds for each of those features to maximize AI. The overall importance of feature j in
a single tree T is the sum of impurity reductions at all nodes m where feature j was used
for splitting, weighted by the fraction of samples reaching that node.

GIr(j)= ). (Nw/N)AI(m). ®)

me&Nodes(T)

For an ensemble or random forest, this is averaged over all trees.

K
Glupi(j) = 3 3. Glr(j). @
T=1

Features yielding larger impurity reductions across many trees are considered more im-
portant, so Gini importance can be used as a feature selection technique, where features
with low Gini importance scores can be removed without significantly impacting model
performance. The Gini importance is computationally efficient to compute as it is a byprod-
uct of training. This makes it a fast and simple method for assessing feature importance.
However, it is calculated on the training data which means that it can overestimate the
importance of features with many possible values (high cardinality), as they have more
opportunities to create splits. It may also not accurately reflect the true importance of
correlated features, as it might overestimate the importance of one feature while neglecting
the others. This reflects the feature’s role in the model’s internal structure rather than
directly measuring its impact on predictive performance on unseen data.

4.1.2. Permutation Importance

Permutation importance (PI), also known as mean decrease in accuracy/score (MDA),
is a model-agnostic technique applicable to any fitted model after training on unseen
data (validation or test set). It quantifies the importance of individual input features
by measuring the decrease in model performance when a feature’s values are randomly
shuffled. The intuition is that if a feature is important for the model’s predictions, then
scrambling its values should significantly degrade performance. The importance I(j) of
feature j is the difference between the baseline score and the score after permutation:

PI(j) = S(D) — 5(Dj) ®)
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where S is the baseline baseline performance score (e.g., accuracy, Fl-score, R2, mean
squared error [73]) on the validation or test dataset D, and D; is the dataset where the
j-th feature column has been randomly permuted across samples. This process is often
repeated multiple times with different random shuffles, and the importances are averaged
for stability. A large drop PI(j) indicates that the model heavily relies on feature j and
that it is most important for prediction on unseen data. As this is applied on unseen data,
it is considered more reliable than Gini importance and it can capture interaction effects
implicitly. However, it is computationally more expensive as it requires multiple model
inferences per feature and its interpretation can be complicated if input features are highly
correlated, as permuting one feature may not change performance much because correlated
features still contain the same information.

Feature importance measures, like Gini importance and permutation importance, are
helpful in astronomical discovery and can play a role in anomaly detection. When building
models to predict astronomical properties, feature importance helps to verify if the model
relies on features expected to be important based on physics. For instance, if a photometric
redshift model ranks specific color indices known to correlate strongly with redshift as most
important, it increases confidence that the model has learned astrophysically meaningful
relationships. Conversely, if a model achieves high accuracy and ranks an unexpected
feature (e.g., a less commonly used color, a subtle morphological parameter) as highly
important, it can prompt new scientific questions. This might suggest that this feature
contains more predictive power than previously thought for that specific task or dataset,
potentially leading to investigations into underlying physical reasons or revealing biases
in the data. This can be a pathway to discovery by highlighting non-obvious correlations.
Knowing which features are most predictive can guide astronomers in designing future
surveys (e.g., prioritizing certain filters) or in refining feature extraction processes for future
models. If a model performs well but relies heavily on features suspected to be related
to instrumental effects or artifacts, feature importance can also flag this issue, preventing
spurious scientific claims. The caveat is that feature importance primarily shows correlation
and predictive power within the context of the specific model and data, not necessarily
fundamental causation (Figure 1). GI and PI can be divergent; the former measures how
effectively a feature is used to reduce impurity in splits in the training data, so it is reflective
of the model’s construction, whereas the latter directly measures a feature’s contribution to
the model’s predictive performance on unseen data. However, this information is still a
valuable input for scientific reasoning and hypothesis generation. Hoyle et al. [74] found
that selecting the most important photometric features and adding them to standard inputs
significantly improves the accuracy and reduces catastrophic outliers in machine learning-
based redshift estimations for galaxies. Gini importance has been used to show that C-class
flare percentages and maximum X-ray flux are particularly critical features for solar flare
forecasting [75], and permutation feature importance applied to light curve characteristics
of variable stars has revealed that the importance of specific features not only depends on
the classification task but also on the distance metric used [76]. Using Gini importance, [77]
found that spherical overdensities, as opposed to the ellipticity and prolateness (tidal shear
features), are the most important features in predicting dark matter halo masses.
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Figure 1. A visual comparison of Gini importance and permutation importance for a set of astro-
nomical features used to classify star burst vs. star forming galaxies in the Sloan Digital Sky Survey
(SDSS) DR18 data using a random forest model. Here, Gini seems to favor the “u-g” feature as
the most important by a large margin, whilst the PI score suggests the contrary. Nonetheless, PI is
not able to identify a single-feature dominance. This highlights how different methods can yield
different interpretations.

4.2. Saliency-Based Methods

Deep learning models, particularly CNNs for image-based tasks and recurrent neural
networks (RNNSs) for sequential data, have become highly effective tools in astronomy for
tasks like galaxy morphology classification, strong lens detection, or light curve analysis
(e.g., [55,78-80]). These models, while powerful, are notoriously uninterpretable. A popular
option involves generating saliency maps [81]. These methods aim to highlight which parts
of the input (e.g., pixels in an image) were most influential in determining a specific output
(e.g., the classification score for a particular class; see Figure 2). Techniques like integrated
gradients [82] or gradient-weighted class activation mapping (Grad-CAM) [83] allow for
direct comparison with known astrophysical features. In astronomy, this is especially
invaluable for determining whether a model focuses on physically meaningful structures
such as spiral arms, galactic bars, tidal disturbances, lensed arcs, or specific features in
time series data represented as images, or are instead relying on spurious artifacts, noise
patterns, or unexpected regions, potentially indicating overfitting.

In doing so, they help establish trust in the model’s predictions and reveal opportuni-
ties for scientific discovery, particularly when unexpected regions emerge as influential.
They also serve a critical diagnostic function; for example, when a model produces incorrect
predictions, saliency maps can expose the regions responsible, assisting in model debug-
ging and identifying edge cases. Moreover, comparisons between models with different
architectures can uncover divergent decision pathways for the same task, enriching our
understanding of how model design affects interpretability.

Although often compared to attention mechanisms (Section 4.4.2), saliency methods
differ in that they typically operate post hoc and offer less direct insight into internal model
dynamics. They show what regions in an input affect a specific output, rather than where the
model focuses on. Thus, interpreting saliency maps as full causal explanations of model be-
havior requires caution. Nonetheless, when integrated with astrophysical domain knowledge,
saliency methods contribute not only to model validation but also to the discovery of rare or
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subtle phenomena that might otherwise be overlooked. Jacobs et al. [85] argue the limitation
of saliency maps in a scientific context as they primarily focus on identifying important
spatial regions in an input image and often lack granularity or quantitative insight into
model biases and weaknesses related to other physical parameters.

smooth & round smooth & cigar-shaped edge-on-disk unbarred spiral

Guided Backprop Saliency

GradCAM

Figure 2. A comparison of saliency methods applied to a CNN trained on the Galaxy MNIST
image dataset [84] to classify various morphologies of galaxies (“smooth and round”, “smooth and
cigar-shaped”, “edge-on-disk”, “unbarred spiral”). The (top row) shows the input images, and
subsequent rows display different saliency map visualizations: vanilla saliency (second row), guided
backpropagation (third row), and Grad-CAM (bottom row). These methods highlight the image
regions most influential in the model’s classification, offering insights into whether the CNN focuses
on astrophysically relevant features or potential artifacts. While vanilla saliency maps provide a noisy
interpretation of a pixel-level importance, GradCAM maps, derived from the last convolutional layer,
are too coarse, losing the fine-grained structure, e.g., the individual surrounding galaxies. Guided
backpropagation provides an intermediatry of the two.

4.2.1. Vanilla Saliency

The most basic saliency method computes the gradient of the model’s output score
(typically the pre-activation score for the predicted class) with respect to each input pixel x;;:
_ [9f(x)
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where f(x) is the model. The magnitude of the gradient indicates sensitivity—pixels where
small changes would most affect the output score are deemed important. While simple,
these maps can be noisy and suffer from gradient saturation issues where the gradient can
vanish or explode.

4.2.2. Guided Backpropagation or SmoothGrad

To reduce the noise present in standard gradient saliency maps, guided backpropaga-
tion [86] modifies the gradient computation by suppressing negative gradients at ReLU
activation layers during the backward pass. This adjustment focuses the explanation on
features that positively contribute to the model’s decision:

”“%mazhu(”“» @)
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Alternatively, SmoothGrad reduces the noise by adding noise to the input image. This re-
sults in cleaner, more focused saliency maps but can lack a clear probabilistic interpretation
and and may suppress important negative evidence by design.

4.2.3. Integrated Gradients

A more theoretically robust method designed to overcome saturation issues and
satisfy desirable axioms like sensitivity and completeness is integrated gradients (IGs) [82].
Instead of just using the local gradient at the input x, IG integrates the gradients along a
straight-line path from a chosen baseline input x’ (e.g., a black image, an average image, or
an image with random noise) to the actual input x. The attribution (importance score) for
the i-th input feature (pixel) x; is defined as follows:

Looaf(x' +a(x—x))
=0 axi

IGi(x) = (' — x) / do (8)
4

In practice, this integral is typically approximated numerically. A key property is com-

pleteness: the sum of integrated gradients across all input features equals the difference

between the model’s output score at the input x and the baseline x’, but while providing

more reliable attributions, the choice of baseline x’ can significantly influence the resulting

saliency map.

4.2.4. Grad-CAM (Gradient-Weighted Class Activation Mapping)

Distinct from methods that directly attribute importance to input pixels via gradients,
gradient-weighted class activation mapping (Grad-CAM) [83] is specifically tailored for
CNN:s. It produces coarser, heatmap-style visualizations localized using the feature maps
of an intermediate or deep convolutional layer (often the final one). Grad-CAM identifies
image regions contributing to the prediction of a specific class ¢ based on the activations in
that layer. If Ay is the k-th feature map of a chosen convolutional layer, then the weight is
obtained by global average pooling the gradients,

c 1 of (x
%‘z;;ig'

©)

where Z is the number of pixels in the feature map. This represents the importance of each
feature map k for class c. These weights can then be used to compute a heatmap,

LCGrad—CAM = ReLU (; D‘;Ak> (10)
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which highlights regions important for class ¢ at the spatial resolution of the chosen
feature map. The ReLU ensures that only features positively correlated with the class are
visualized. It is typically upsampled to overlay on the original image to provide spatially
coarse but semantically meaningful explanations, linking output decisions to higher-level
features. Grad-CAM is especially effective in identifying higher-level structures, such as
galaxy morphology or strong lensing features. However, the quality of the explanation
depends on the selected convolutional layer, and different choices may lead to different
interpretations. Guided GradCAM [87] combines the strengths of Grad-CAM and guided
backpropagation, by performing an element-wise multiplication of their outputs. The
intention is to leverage the class-discriminative localization ability of Grad-CAM as a mask
for the fine-grained guided backpropagation map. This should result in a higher resolution
visualization. Methods like Grad-CAM have already been widely used for interpretation
of CNN models in astronomy (e.g., [57,88,89]).

While saliency methods offer intuitive visual explanations, their reliability has been
increasingly questioned. Adebayo et al. [90] demonstrated that many gradient-based
methods, including guided backpropagation, produce visually similar maps even when
the model’s learned parameters are randomized, suggesting that these methods might be
dominated by input processing such as edge detection rather than reflecting learned model
knowledge. Similarly, Srinivas and Fleuret [91] argued that gradient-based explanations
may primarily highlight regions causing maximal change rather than those representing
meaningful semantic features used by the model. These findings highlight the importance
of applying sanity checks and being cautious about over-interpreting saliency maps without
rigorous validation, especially when such methods are used in scientific contexts.

4.3. Model Agnostic Methods

Model-agnostic tools like SHAP (SHapley Additive Explanations) [34] and LIME
(Local Interpretable Model-Agnostic Explanations) [33] provide versatile frameworks for
explaining predictions across a wide range of model types. SHAP values offer a theoretically
grounded decomposition of predictions into feature contributions, while LIME fits simple
surrogate models in the local neighborhood of a prediction to approximate the behavior
of the full model. Both are widely used to evaluate feature relevance, detect biases, and
facilitate model debugging, though they come with limitations.

4.3.1. SHAP: SHapley Additive Explanations

SHAP values (Figure 3) are based on the concept of Shapley values from cooperative
game theory [92]. Given a function f representing the model’s prediction, the goal is to
assign a value ¢; to each feature x; such that

n

fx) =do+ ) ¢i (11)
i=1
where ¢y is the expectation value (i.e., the baseline prediction when no features are present),
and each ¢; represents the contribution of feature i to the prediction for input x.
Formally, the Shapley value for feature i is defined as

o=y, BHELEED sy - £0s)) 1)

SCN{i}

where N is the set of all the features, and fx(S) = E[f(X)|Xs = xg] is the expected output of
the model conditional on knowing the values xg for features in subset S. This expectation
is often approximated using a background dataset or other techniques. fx(SU {i}) is
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similarly defined when feature i is also known. The term [f,(S U {i}) — fx(S)] represents
the marginal contribution of adding feature i to the subset S. The combinatorial term
weights this contribution according to its position in all possible feature orderings. While
SHAP is primarily designed for local interpretability (explaining individual predictions),
it can also produce global explanations by aggregating local explanations across multiple
instances, visualizing them through SHAP summary and dependence plots.

smooth & cigar-shaped edge-on-disk unbarred spiral smooth & round

T | : ‘ ‘ I
~0.0010 ~0.0005 0.0000 0.0005 0.0010
SHAP value

Figure 3. SHAP applied to a CNN model trained to classify galaxy morphologies. The example
shows the explanation of a correctly predicted smooth-cigar-shaped galaxy. Here, superpixels with
positive SHAP values (red) contribute positively towards the prediction. Blue contribute negatively.
We use the partition explainer, which does not assume that features are independent from each other.
The SHAP explanation suggests that the focus is on the center of the image, with the disk contributing
negatively towards the spiral or round classes.

SHAP values provide feature attributions satisfying several desirable properties that
contribute to their theoretical appeal. These include efficiency (the sum of feature contribu-
tions equals the difference between the prediction and the baseline), symmetry (features
contributing identically receive the same attribution), the dummy property (features having
no effect on the prediction receive zero attribution), and additivity (the SHAP values for
combined models are the sum of the values from individual models). However, computing
exact Shapley values is typically computationally intractable for models with many features.
Consequently, practical SHAP implementations rely on efficient approximations or model-
specific algorithms, such as the popular TreeSHAP for tree-based ensembles, to estimate
these values efficiently. SHAP has been used to understand molecular abundances in star-
forming regions. Heyl et al. [93] were able to quantify parameters on molecular abundances;
for example, they discovered that HyO and CO’s gas phase abundances depend strongly
on the metallicity, as well as reconfirming other known relationships with abundances,
and Ye et al. [94] used SHAP to identify five key absorption features in spectra for carbon
star identification.

4.3.2. LIME: Local Interpretable Model-Agnostic Explanations

LIME (Figure 4) takes a different approach operating on a simple, intuitive principle
to approximate the behavior of a complex, potentially non-linear model f in the local
neighborhood of a specific input instance x using a simpler, inherently interpretable surro-
gate model g (e.g., a sparse linear model or a shallow decision tree). For a linear model,
the explanation g for an instance z’ (a simplified, interpretable representation of z) takes
the form

g(z) = weZ, (13)

where w, are the weights (feature importances) to be learned. LIME constructs a local
dataset by perturbing the original input and observing the model’s response:

L(f,gmx) = ) mx(2)(f(2) —g(2)* + O (14)

zeZ
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This loss function measures how well g approximates f for the perturbed samples z
weighted by their proximity 7y, which defines the neighborhood around x. To ensure
that the explanation ¢ remains interpretable, a complexity penalty ()¢ is added. For linear
models, this might encourage sparsity (e.g., minimizing the number of non-zero weights
or using an L1-norm penalty). For decision trees, it might penalize depth. The surrogate
model g is trained to minimize £, yielding feature weights that approximate the influence of
each input feature locally. Unlike SHAP, LIME does not require exhaustive enumeration of
feature subsets and is computationally more efficient, but its explanations can vary depend-
ing on the sampling process and surrogate complexity. In classifying galaxy morphologies,
Goh et al. [95] showed that LIME enabled the effective identification of influential regions
in the image but also showed that the model utilized some unexpected image regions
beyond the galaxy object itself for classification, potentially an area of bias inherent in
the images.

smooth & cigar-shaped

p(smooth & cigar-shaped) = 0.7720 p(edge-on-disk) = 0.2264 p(unbarred spiral) = 0.0015 p(smooth & round) = 0.0000
0 0 0 0
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Figure 4. LIME explanation of a correctly predicted smooth-cigar-shaped galaxy by a CNN classifier
model. Green corresponds to superpixels that positively contribute to the prediction, and red
corresponds to superpixels that negatively contribute. This highlights that the LIME interpretation is
that the classification focuses on the image as a whole rather than any particular region.

4.4. Interpretable Models by Design

While post hoc explanations for “black-box” models, particularly deep neural net-
works, are widely used ultimately, they are based on approximations that can be misleading.
An alternative and growing field focuses on designing model architectures that are inher-
ently structured for transparency, facilitating direct interpretation (e.g., linear regression,
decision trees). In these models, the explanations are the model itself, offering stronger
foundations for trust, transparency, and fairness that is especially critical in areas where
the decision stakes are high. However, it is important to remember the trade-off between
interpretability and accuracy, especially in high-dimensional, non-linear tasks. Inherently
interpretable models are typically more limited (e.g., simpler models), and performance
accuracy is often lower on complex tasks. We now explore some of these approaches in
more detail.

4.4.1. Rule-Based Methods

Feature importance techniques (like Gini or permutation importance) tell us which
features the model found most influential in general. Rule-based approaches represent a
class of inherently interpretable models that aim for complete transparency in their decision-
making process through their structure. The most common example is the decision tree [96],
where predictions are made by following a specific path of IFF-THEN conditions from a
root node to a leaf node, based on thresholds applied to input feature values (Figure 5).

This explicit logic chain makes it straightforward, in principle, to understand exactly
how a specific prediction was derived for any given input instance. Other methods, like
rule lists or algorithms such as RuleFit [97], explicitly generate sets of rules often combined
with linear models.

The primary strength of these methods lies in their high interpretability and trans-
parency. The decision logic is human-readable, making them intuitive and particularly
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useful in classification tasks requiring well-defined decision boundaries or where explain-
ing the reasoning to stakeholders is paramount. They can also naturally capture interaction
effects between features within a single rule path. But, despite their transparency, rule-
based methods often have limited flexibility and expressive power, particularly when
dealing with the complex, high-dimensional, and often noisy data typical of modern as-
tronomical surveys where intricate non-linear relationships may exist. Very deep decision
trees, while technically transparent, can become visually complex and difficult for humans
to fully grasp. Furthermore, tree structures can be unstable. Small variations in the training
data can lead to significantly different trees and rules. Consequently, they may achieve
lower predictive accuracy compared to ensemble methods or deep learning models on
many complex astronomical tasks.

u-g<1.053
gini = 0.375
samples = 100000
value = [25007, 74993]
class = Starforming

True False
gr=<0.961 u-g<1.139
gini = 0.435 gini = 0.192
samples = 24901 samples = 75099
value = [16938.0, 7963.0] value = [8069, 67030]
class = Starburst class = Starforming
gini = 0.405 gini = 0.412 gini = 0.405 gini = 0.147
samples = 22706 samples = 2195 samples = 10186 samples = 64913
value = [16301.0, 6405.0] value = [637, 1558] value = [2873, 7313] value = [5196, 59717]
class = Starburst class = Starforming class = Starforming class = Starforming

Figure 5. The structure of a decision tree classifier applied to classify and star-forming galaxies in
the Sloan Digital Sky Survey (SDSS) DR18. Each internal node displays the feature threshold (e.g.,
color “u-g < 1.053” at the root), the Gini impurity, the number of samples reaching that node, the
distribution of samples across classes (value), and the majority class at that point. For instance, the
root node starts with 100,000 samples and splits them based on the “u-g” color. If the condition is
“True”, samples proceed to the left child (24,901 samples, majority class “Non-Star-forming”) and if
“False”, they go to the right child (75,099 samples, majority class “Star-forming”). The tree continues
to split samples, aiming to create purer leaf nodes that represent the final classifications. By observing
feature importance and visualizing the decision tree, we gain insights into how the model classifies
galaxies based on the chosen features and their ranges. The first split on “u-g” implies that this color
magnitude plays a significant role in the classification.

While perhaps less frequently deployed for achieving state-of-the-art performance on
complex raw data analysis today, rule-based logic remains conceptually valuable. Simple
decision trees have been used for basic classification tasks (e.g., star/galaxy separation
based on magnitude and morphology metrics (e.g., [98])) or formed components of early
transient alert systems [99]. More complex rule-based classification algorithms like random
forests can effectively learn the complex relationship between the initial density field
conditions of dark matter particles and their final state (whether they end up in massive
halos), allowing for accurate prediction of simulation outcomes without running the full
simulation [100].

4.4.2. Attention Mechanisms

Often compared to saliency are attention mechanisms. Initially developed to improve
performance in tasks like machine translation [101], they have been increasingly integrated
into neural architectures [35]. They offer a natural interface for interpretability beyond
simply analyzing feature rankings or explicit rules by highlighting which parts of the
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input (e.g., image regions, sequence elements, specific features) the model focuses on when
generating an output.

The core idea behind attention is to allow a model to dynamically weigh the impor-
tance of different parts of its input data, rather than relying solely on fixed-size receptive
fields (as is standard in CNNs) or compressing all prior information into a single hidden
state vector (as in basic RNNs). When processing an element (e.g., predicting the next
word in a sentence, classifying an image), the attention mechanism computes a set of
weights called attention scores over the input elements, indicating how much attention or
importance should be given to each one.

A dominant form of attention, particularly central to the influential Transformer
architecture [35], is scaled dot-product attention, also known as self-attention (Figure 6).
Mathematically, the self-attention mechanism computes attention scores as follows:

QK

x = softmax(\/a> (15)

With the final weighted output representation:
Attention(Q,K, V) = aV (16)

where the queries (Q), keys (K), and values (V) are vectors derived from the input em-
beddings. Query (Q) represents the current element or context asking for information
(“What am I looking for?”). Key (K) represents identifiers or labels for the input elements
(“What information does this element have?”), and value (V) represents the actual content
or features of the input elements associated with the keys. The dimensionality of the
key vectors d is used for scaling, and the resulting attention matrix « is often treated as a
measure of interpretability. It can be visualized to inform use about which input tokens or
spatial regions in an image the model focused on.
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Figure 6. Scaled dot-product attention mechanism.

Self-attention computes the relevance of different parts of the input sequence to
each other. But a single attention layer might only capture one type of relationship (e.g.,
similarity in spatial location or color in an image, or proximity in time in a light curve). To
address this, multi-head attention runs several attention mechanisms in parallel (“heads”),
each with its own learnable parameters, allowing the model to jointly attend to information
from different representation subspaces at different positions. The outputs from all heads
are concatenated and projected.

Attention mechanisms are inherently more interpretable than traditional deep learning
layers, because they produce explicit, learnable weights that can be visualized and analyzed
(Figure 7). These attention scores can be mapped back to domain-specific structures: pixels
in an image, time points in a signal, or wavelengths in a spectrum—offering intuitive
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insights for scientists. Like feature importance, attention is not an anomaly detector, per
se, but when a model flags a galaxy or transient as unusual, the attention map can reveal
which regions of the image or spectral range triggered the anomaly, and whether the model
is focusing on meaningful astrophysical structure or noise/artifacts. This grounds the
anomaly score in interpretable terms. Attention maps can also help filter false positives by
revealing when the model’s focus is on irrelevant regions (e.g., image borders, artifacts).
However, a significant body of research argues that attention weights are not a direct or
reliable explanation of model predictions [102]. Reasons include that high attention does
not guarantee causality, the complex non-linear transformations after the attention layer
can influence the final prediction, and the attention weights can sometimes be manipulated
without significantly changing the model’s output, whilst equally significant are challenges
against those claims [103]. In any case, while attention maps offer valuable insight into the
model’s internal processing and where it looks, they should be interpreted with caution.
They are a potentially useful diagnostic tool but not necessarily a faithful explanation of
why a prediction was made. Ref. [104] used attention-gating not only to improve their
classification of radio galaxies but also to help choose models that align better with how
astronomers classify radio sources by eye.

True: 1| Pred: 1 True: 2 | Pred: 2 True: 0 | Pred: O True: 2 | Pred: 1 True: 2 | Pred: 2

_ Attention Ma Attention Map Attention Ma

e

Attention Map Attention Ma
w 1 B o

Figure 7. Attention maps of a CNN with attention model trained on the Galaxy MNIST image dataset.
The (top row) shows the input galaxy images with the true and predicted classes. The (bottom row)
shows the corresponding attention maps with red indicating high attention. While the attention
maps highlight visible galaxy structures, they can also focus on regions less obvious to humans, such
as fainter outskirts or surrounding galaxies. For instance, neighboring galaxies may be highlighted
if they are involved in mergers (affecting morphology) or if they are indicative of environmental
density, as galaxy morphology often correlates with environment (e.g., ellipticals in clusters, spirals
in the field). These maps indicate computationally influential regions that may not perfectly align
with human-perceived salient astrophysical features and are worth further investigation.

4.4.3. Symbolic Regression

Symbolic regression is an interpretable machine learning technique that seeks to dis-
cover analytical expressions that best model a given dataset, without assuming a predefined
functional form (like linear regression or neural networks). Unlike traditional regression
methods that fit coefficients to a fixed equation, symbolic regression algorithms explore
a combinatorial space of mathematical operators (e.g., +, —, X, <+, exp, log) and input
features to construct candidate models [105]. The objective is to minimize a loss function
L(y, ) while simultaneously optimizing for simplicity and parsimony, often guided by
multi-objective optimization:

f}leig(ﬁ(y/f(x)) + AComplexity(f)), (17)
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where F denotes the space of symbolic expressions, and Complexity(f) is a regularization
term penalizing complexity.

The primary appeal of SR lies in its potential for high interpretability and transparency.
The direct output is a human-readable mathematical formula, representing perhaps the
ultimate form of a “white-box” model. If the discovered equation is compact, accurate,
and physically plausible, it can provide profound scientific insight, potentially revealing
previously unknown empirical relationships or even approximations to fundamental phys-
ical laws directly from data [106,107]. This contrasts sharply with black-box models where
the learned relationships are opaque. This approach is particularly compelling in physics-
informed contexts, where the recovery of closed-form expressions aligns with scientific
intuition and the formulation of empirical or theoretical laws. SR can generate simple,
interpretable analytical approximations for complex physical simulations or theoretical
functions where a readily understandable formula is desired [108] and in astronomy, sym-
bolic regression has been used to rediscover known physical laws from simulated data and
holds promise for uncovering novel empirical scaling relations between galaxy properties,
parameters describing stellar evolution, or equations governing orbital dynamics directly
from observational or simulation data [109-111].

Despite its interpretability, SR faces several limitations. The search space is typically
vast and non-convex, often requiring evolutionary algorithms (e.g., genetic programming)
or more recent neural-guided approaches (e.g., deep symbolic regression) to navigate
efficiently. As a result, symbolic regression can be computationally expensive, especially in
high-dimensional settings where many candidate expressions must be evaluated. Addi-
tionally, symbolic models may be sensitive to noise, and the lack of strong priors can lead
to overfitting or implausible expressions in data-poor regimes.

Nevertheless, SR offers a rare combination of accuracy and explicitness that makes it a
valuable tool for hypothesis generation and scientific insight in astronomy. Its outputs are
interpretable, closed-form equations that can be scrutinized, validated, or rejected in the
light of physical principles, fostering a deeper understanding of the patterns uncovered
by machine learning. Wadekar et al. [112] trained a neural network to predict neutral
hydrogen content from dark matter fields. The saliency maps revealed that the neural
network considered the halo’s environment, not just the halo itself, when making pre-
dictions, motivating the closer exploration of assembly bias. Using SR, they were able to
parameterize a new and physically interpretable model of assembly bias.

4.4.4. Learning Interpretable Latent Representations

In some machine learning models, particularly those involving dimensionality reduc-
tion like autoencoders, the input data are transformed into a latent space. This space is
a lower-dimensional, abstract representation where the original data are encoded, often
in a compressed form. While this encoding is structured, it is not automatically under-
standable by humans unless the model is specifically designed to be so. Interpretability in
latent spaces means understanding what each latent variable encodes, with, ideally, each
dimension corresponding to a distinct, meaningful factor of variation (e.g., one variable
controls rotation, another controls scale). This can be encouraged through the following;:

¢  Disentanglement techniques, which aim to separate independent factors of variation
in the latent representation by adding additional constraints to the loss function to
encourage each latent dimension to capture an independent aspect of the data. Models
like B-variational autoencoders (8-VAEs) or other disentangled VAEs perform this.
The B-VAE loss is defined as

L= Lreconstruction + ﬁDKL (%7 <Z|x) | |P(Z)) (18)
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where Lyeconstruction i the original loss, Dky (q¢(z[x)||p(z)) is the Kullback-Leibler
(KL) divergence that measures how much the learned latent distribution g¢(z|x)
deviates from a chosen prior distribution p(z) (typically a standard Gaussian), and
the hyperparameter  encourages the model to learn a latent distribution that is closer
to the simple prior and, thus, promotes disentanglement.

*  Conditional generation models like conditional variational autoencoders (CVAEs)
condition the model on known variables like class labels. By observing how the latent
space changes when conditioned on different known variables, its possible to infer
how certain learned features in the latent space relate to these explicit conditions.

e Latent traversals involve systematically changing one latent variable at a time
(while keeping others fixed) and observing the generated outputs. This technique
can reveal what each dimension represents and whether it aligns with human-
understandable concepts.

¢ Post hoc analysis of latent space structure: After training, dimensionality reduction
techniques like principal component analysis (PCA) and clustering on the latent space
can be an effective way to further explore the latent space to gain insights to what the
model has learned.

An application of these principles is demonstrated by [113] who trained a variational
encoder using a B-VAE loss to predict the halo mass function (HMF) by compressing it
into a three-dimensional latent space. Post training, they use mutual information analysis
to understand the cosmological dependence of each latent variable. Notably, one latent
variable captured non-universal HMF behavior, linking it to the Universe’s recent growth
history after matter—dark-energy equality, suggesting that subtle differences in the Uni-
verse’s expansion history after dark energy becomes dominant, leading to the deviations
from universality.

However, learning latent variables that align with human-understandable concepts
remains challenging [114]. Even disentangled latent variables might not consistently map
semantic features, and for models like VAEs, the latent space is probabilistic (variables are
samples from distributions). This inherent randomness can add a layer of complexity when
trying to interpret the precise meaning of the encoding for individual data points.

4.4.5. Physics-Informed Neural Networks (PINN5s)

Whilst not intrinsically interpretable in the same way that simpler models like lin-
ear regression or decision trees are, physics-informed neural networks (PINNs) possess
characteristics that make them more interpretable than standard “black-box” neural net-
works. These networks incorporate knowledge of physical laws, often as partial differential
equations (PDEs), into the loss function used to train the neural network [115]. This archi-
tectural bias ensures that the model predictions remain consistent with established physical
principles. We can interpret their outputs in the context of these laws, and we can trust
that the model’s behavior is, to some extent, governed by these principles, enhancing their
transparency and trustworthiness. By encoding domain knowledge directly into the model
structure, PINNSs help bridge the gap between black-box neural networks and physically
interpretable modeling; however, despite their promise, challenges remain in training
efficiency, handling stiff PDEs, and scaling to high dimensions [116].

4.5. Prototypes and Exemplars

While many interpretability methods are benchmarked on supervised tasks due to
the presence of a ground truth, understanding the outputs of unsupervised methods like
clustering is also needed. Here, interpretability often shifts to understanding the defining
characteristics of the discovered groups or structures and assessing their astrophysical
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relevance, rather than explaining a singular prediction. This can be challenging as there
is no ground truth and, hence, no explanation target, and quantitative evaluation of
interpretation correctness is less straightforward. An intuitive approach is then reasoning
by analogy, explaining predictions by comparing new inputs to known examples from
the training set. These prototype- and exemplar-based methods offer explanations by
referencing representative data points from the training set, grounding a model’s decision
to specific instances rather than abstract features or internal model mechanics [117]. They
operate on the principle “This input is class Y because it resembles these known examples
of Y”, requiring a meaningful similarity function defined either in the original feature space
or a learned embedding space.

Two main variants exist. Exemplar-based methods, like k-nearest neighbors, use actual
training data points, making predictions directly traceable to real observations. Prototype-
based methods instead use learned or synthetic representatives (e.g., cluster centroids
or learned latent prototypes) that act as archetypes for a class, summarizing groups of
examples. Unsupervised learning techniques [70] are frequently used to discover or define
potential prototypes or to create the feature space in which exemplars are identified. The
appeal lies in their alignment with human reasoning, mirroring how astronomers interpret
visual data (e.g., classifying galaxies by comparison, as in Galaxy Zoo) or time series
data (e.g., comparing supernova light curves). This approach is also useful for model
debugging, allowing inspection of influential examples to diagnose issues like overfitting
or dataset biases.

However, limitations exist. Effectiveness hinges on the quality and interpretability of
the chosen similarity metric, as proximity in high-dimensional or latent spaces may not re-
flect true semantic similarity. These methods typically provide only local explanations, can
be computationally demanding for large datasets, and often lack feature level granularity,
explaining that an input is similar but not which features drive the similarity.

Despite these challenges, prototype- and exemplar-based explanations remain valu-
able, particularly when intuitive, traceable interpretations grounded in real data are needed.
In astronomy, where expert visual inspection is common, they help bridge the gap between
complex model outputs and scientific understanding.

4.6. Al Reasoning Models

One area that is seeing significant benefits of XAl is, surprisingly, large language mod-
els (LLMs). Traditional LLMs excel at generating text and answering questions, but they
often struggle with tasks requiring logical deduction or multi-step problem solving. Their
adoption in scientific research is, therefore, often hindered by limitations such as a tendency
for generating plausible but incorrect results and a lack of true understanding of underlying
principles. The lack of transparency in how these models arrive at their conclusions makes
it difficult to validate their results and build trust in their predictions, especially when
applied in astronomy where verifiable logic is paramount. As LLMs become integrated into
scientific workflows, from data analysis to hypothesis generation, we need to ensure that
we understand how they arrive at their outputs. Methods like chain-of-thought (CoT) and
question—-analysis prompting guide models to reason step-by-step, improving performance
on complex tasks and offering a degree of process transparency [118,119]. These techniques
allow users to follow and evaluate the logic behind model outputs, helping to catch errors
and build trust.

However, this surface-level reasoning can mask deeper issues. CoT outputs may
appear logical but do not necessarily reflect the model’s true internal processes [120-
122]. Caution is warranted, as CoT’s seemingly logical steps may not be faithful [123],
potentially representing post hoc rationalizations, flawed logic, or pattern mimicry instead
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of true reasoning. Faithfulness remains difficult to measure, existing metrics are debated
[124], and CoT reasoning is vulnerable to adversarial attacks [125]. This highlights a
broader challenge: enhancing interpretability in Al-driven science not just through better
outputs, but through better understanding of model behavior. The emergence of agentic
systems like the AI Scientist-v2 [126] and Al Cosmologist [127] are moving us towards fully
automated research pipelines, from hypothesis generation to code implementation and
analysis, further emphasizing the rapid developments in Al and the need for transparent
and trustworthy reasoning for a future in astronomy that uses Al responsibly.

5. Navigating the Future and Concluding Remarks

Artificial intelligence is rapidly advancing astronomical discovery; yet, moving for-
ward, the successful integration of it into the core of astronomical research requires more
than just predictive accuracy. The ultimate scientific value of these powerful tools hinges
critically on our ability to understand, validate, and trust their outputs through inter-
pretable and explainable methodologies.

Despite progress, the practical application of trustworthy and interpretable Al in
astronomy faces substantial open challenges and limitations. A primary concern is scalabil-
ity; many sophisticated xAl techniques (such as model-agnostic methods like LIME and
SHAP that require multiple model evaluations, or symbolic regression with its vast search
space for expressions) incur significant computational costs, making their application to
the petabyte- and exabyte-scale datasets from facilities like LSST or SKA, or to increasingly
complex deep learning models, a major bottleneck [128], hindering their effective use in
real-time transient astronomy. Fundamental questions also persist about the faithfulness of
explanation and the reliability of the training data, including whether data uncertainties
are adequately considered. For instance, while visually appealing, vanilla saliency maps
can be noisy and sensitive to model architecture. GradCAM can be too coarse, leading to
missed fine-grained features. Likewise, attention mechanisms, despite being inherent to
the model, can be misleading, potentially highlighting correlations rather than causal links.
Furthermore, some saliency methods have been shown to be insensitive to model parameter
and label randomization, questioning their dependency on learned parameters [37,90,129].
This issue extends to other methods: LIME explanations are highly sensitive to pertur-
bation strategy and kernel width, and its linear approximations may capture non-linear
behaviors; permutation-based feature importance can be misleading for highly correlated
features; and achieving true, meaningful disentanglement in latent spaces of interpretable-
by-design models like B-VAEs remains notoriously difficult. Compounding this is the
lack of standardized benchmarks and evaluation metrics specifically tailored for assessing
explanation quality within the astronomical context [130,131]. Even when explanations
are generated, their potential complexity can make them difficult for domain scientists to
interpret effectively, hindering actionable insights. Given these varied limitations, it is clear
that no single xAI method offers a complete understanding. Relying on just one technique
risks painting a biased picture. We, therefore, encourage the reader to employ and compare
a range of interpretability methods and look for consensus. If different methods highlight
similar features or patterns, confidence in the interpretation increases. It is also imperative
to test explanations, for example, by observing how the model’s prediction changes when
that feature is perturbed or removed. Furthermore, as different training runs can produce
equally valid but non-unique networks, the robustness of explanations to such variations
must be considered. Addressing this full spectrum of challenges necessitates developing
more efficient, demonstrably faithful xAI methods, alongside tools and interfaces that
lower the barrier for user expertise.
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Beyond these technical hurdles lie important ethical considerations. While large
public astronomical datasets generally pose minimal individual privacy risks compared
to other fields [132], responsible data governance, including equitable access to data and
tools, and transparency in methodology remain crucial. A significant ethical challenge is
mitigating bias; Al models trained on historical astronomical data can inadvertently learn
and perpetuate observational selection effects or existing societal biases present in data
collection or labeling, potentially leading to skewed scientific conclusions. Interpretable
Al methods are vital tools for detecting and potentially mitigating these biases, ensuring
fairness and robustness in scientific findings. Responsible use also demands transparency
from researchers regarding their use of Al and xAI methods, including acknowledging
limitations. Over-reliance on complex models without adequate interpretation, or using
explanations to simply reinforce preexisting beliefs, could undermine the scientific process
itself. Addressing this full spectrum of technical, practical, and ethical challenges through
continued research and interdisciplinary dialogue is essential for the responsible and
effective advancement of Al-driven discovery in astronomy.

Despite the challenges, the future of interpretable machine learning in astronomy
discovery looks promising. Significant advancements are being pursued in deep learning
interpretability, moving beyond surface-level explanations towards mechanistic inter-
pretability aiming to reverse engineer the specific algorithms learned within complex
neural networks [133]. There is also exciting potential in leveraging ML for causal in-
ference, enabling a shift from identifying correlations to understanding cause-and-effect
relationships directly from astronomical data [134]. Furthermore, the synergy between
physics-informed machine learning [135,136], which embeds physical laws into models,
and xAl techniques promises models that are not only potentially more robust but also
interpretable by design. Future directions also include developing hybrid Al systems
(e.g., neural-symbolic) and domain-specific interpretability methods tailored to the unique
characteristics of astronomical data (images, spectra, time series, simulations), alongside
more robust techniques for evaluating the faithfulness and utility of explanations [137].
These trends collectively point towards a future where Al serves as a more transparent,
reliable, and insightful partner in astronomical discovery.

Advancing trustworthy Al in astronomy fundamentally requires closer interdisci-
plinary collaboration and the establishment of shared best practices. Fostering joint work-
shops, dedicated funding initiatives supporting cross-domain teams, and developing
common software libraries tailored for astronomical data can bridge the gap between Al
researchers and domain scientists. Simultaneously, the community should work towards
standardizing IML workflows: developing guidelines for the application and reporting of
explainability methods in publications, creating astronomy-specific benchmarks to objec-
tively evaluate different techniques, and promoting open-source sharing of models and
interpretation code. Such concerted efforts will accelerate the development and responsible
adoption of robust, reliable, and truly insightful interpretable machine learning tools for
astronomical discovery.

This review surveyed the profound impact of artificial intelligence on astronomical
discovery, demonstrating its necessity in the face of exponentially growing data. The central
takeaway, however, is that predictive power alone is insufficient for scientific progress; it
must be built upon a foundation of trust, which is cultivated through interpretability and
explainability. Understanding how and why Al models arrive at their conclusions allows
astronomers to validate findings, debug complex systems, guard against bias, and discover
new scientific insights directly from the learned representations. We collated some key
interpretation tools, but addressing the current limitations in XAl and embracing emerging
trends towards more transparent, causal, and physically grounded models is a still an
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ongoing endeavor for the future of the field. Ultimately, through the adoption of best
practices by prioritizing interpretability alongside predictive performance, trustworthy Al
will become an indispensable and reliable partner for astronomical discovery.
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