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Abstract: Although there have been many discussions about the influencing factors of urban expan-
sion, the heterogeneity of the driving mechanisms behind urban form remains poorly understood.
Therefore, this paper evaluated the heterogeneous impacts of potential determinants on urban form,
considering regional disparities and the stage of development. Based on land use data collected from
Landsat ETM and TM scenes, the landscape metrics of urban size, urban centrality, urban shape
irregularity, and urban fragmentation were measured to describe the urban form of 265 Chinese cities.
We find that the regional disparities and development-stage variations significantly affect urban
form. All urban form variables showed a significant stair-stepping difference in cities at various
development stages, indicating that as a city upgrades its level of development, the intensity of urban
expansion gradually increases, the shape of the urban edge becomes more fragmented and the urban
built-up area becomes more compact. Urban form in Chinese cities shows significant geographical
heterogeneity in terms of its driving forces. The effect of the socioeconomic factors on urban form
also presented changes depending on the development stage. Our results provide helpful references
for policymakers within urban spatial structure planning and land resource management.

Keywords: urban form; driving forces; geographical heterogeneity; development stage; China

1. Introduction

Urban populations have witnessed constant growth in recent decades, and urbaniza-
tion is now a global phenomenon [1]. At present, more than 50% of the global population
lives in urban areas, and this proportion is expected to exceed 67% by 2050 [2]. The built-up
area of cities around the world has expanded rapidly in line with the increase in urban
population [3]. Beyond sheer size, this expansion has also led to changes in other ur-
ban form parameters, such as urban compactness and urban shape complexity. Urban
areas are the engines of population aggregation and economic growth, upgrade industrial
structures, and lead to social prosperity [4]. However, urban areas not only offer opportu-
nities for social and economic development—they are also linked to the creation of severe
environmental challenges [5,6]. Aiming to address these challenges, sustainable plans
for urban development must be devised; such plans, in turn, require a greater scientific
comprehensive of the spatiotemporal patterns and causes of changes in urban form [7].

Urban form, which is the physical arrangement of structures, spaces, and objects that
make up cities, plays a pivotal role in society. It refers to the spatial distribution and orga-
nization of urban entities, encompassing factors such as building density, land use patterns,
infrastructure, and transportation systems. This formation significantly impacts not only how
we navigate cities, but also how resources are utilized, and how physical activity within these
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spaces is facilitated [8-10]. Urban form has been measured, characterized, and evaluated
in a variety of ways, sometimes indirectly—for instance, population density [11] and the
economy [12]. Recent developments in remote sensing technologies have seen the increasing
utilization of landscape metrics to measure urban form, which is often addressed regarding
the three aspects of urban expansion, urban shape complexity, and urban compactness [13,14].
Beyond these analyses, urban form has also long been considered as a field of intervention
and study within the disciplines of urban management and spatial planning [15,16]. In the
above traditions, much of the research has been devoted to investigating the influencing
factors and mechanisms at work in urban form, with scholars addressing aspects as diverse as
physical factors [17-19], population [20-22], economic growth [23-26], infrastructure [27,28],
industry [29], and policy [30-32]. Although increasing attention has focused on the determi-
nants of urban form, previous studies in the field have only focused on urban expansion (or
urban growth) [33-35], examining various factors in order to investigate its causes [36,37].
Nevertheless, the term “urban form” describes the form of the spatial distribution of the
composition of urban entities, including not only urban growth but also urban shape and
fragmentation. There has been little discussion about the determinants of these other aspects
of urban form to date.

In addition, although much of the previous literature has focused on the determinants
of urban form, they only focused on one single city or region, such as Beijing [38,39],
Guangzhou [24,40], Jiangsu [41] or the Yangtze River Delta [42,43]. The strength and
direction of the impact of the various determinants on changes in urban form appears
to differ between studies. Some studies have analyzed data from different periods and
found that the contribution of various determinants to urban expansion changes over
time [19,44]. This finding naturally provokes the question: do the driving forces behind
changes in urban form vary in space and at different developmental stages? Despite the
importance of this question, variations in the influencing factors behind changes in urban
form have rarely been studied in relation to their effects at different geographical scales
and/or economic development levels. This study will attempt to fill this gap by evaluating
the influencing factors that affect urban form in China, considering a range of different
economic development stages and different geographical locations.

To sum up, lots of studies exist have explored the influencing factors of urban ex-
pansion, and these findings enhance our comprehension of the spatial and temporal
characteristics of urban growth and its influencing factors. Nevertheless, previous studies
suffer from some drawbacks. Firstly, the research has generally been directed towards the
influencing factors behind urban sprawl (or urban growth) [45-47]. Urban form, however,
is a more comprehensive term than urban expansion, and knowledge about the driving
forces of urban form—which is necessary for urban management and spatial planning—is
still lacking. Second, the heterogeneity of urban form factors is rarely discussed within con-
temporary scholarly discourse. Due to the wide range of natural environments, geophysical
conditions, and socioeconomic conditions that characterize urban areas, the driving forces
behind urban form can be expected to vary from region to region and stage to stage. This
variation has not yet been comprehensively dealt with by the literature. Third, existing
analyses of the driving forces at work in urban form have mainly been carried out at the
level of individual cities [20,28]. Several studies have produced estimates of the drivers
of urban sprawl in some counties or cities [48]. A nationwide survey of the drivers of
urban form, however, remains lacking in the Chinese context. Such a study would be
essential to the formulation of national policies. Thus, the contribution of this paper is
to evaluate the spatial-temporal patterns of the urban form of China’s urban areas, and
to verify the heterogeneity of the driving forces behind those identified patterns. On
the basis of land use data interpreted from Landsat TM scenes and Landsat ETM scenes,
landscape metrics are applied to estimate the urban form of 265 cities in China, taking
into account the perspectives of urban size, urban centrality, urban shape irregularity, and
urban fragmentation. A panel regression model is adopted to evaluate the impacts of the
selected potential determinants on urban form with consideration of regional location and



Land 2023, 12, 1436

development stage. The results of this study constitute a helpful reference for policymakers
within urban land-use management and spatial planning.

2. Data and Methodology
2.1. Study Area

Since the economic reforms of 1978, China—the second-largest economy and largest
developing country in the world—has witnessed the greatest flow of rural-urban migration
in world history, with an urbanization rate increase from 17.6% in 1978 to 57.35% in 2016,
at an average annual growth rate of 1.02%. With the total area of urban land expanding
from 7438 km? in 1981 to 45,566 km? in 2015, urban areas in China have also undergone
significant expansion, accompanied by considerable changes to the configuration of the
urban landscape pattern. With its vast territory and large differences in the level of
development of its various regions, China offers scholars an excellent opportunity to study
the spatiotemporal pattern of urban form and geographical heterogeneity in the driving
mechanisms of urban form. In this paper, we selected all 265 prefecture-level cities in China
as study cases (Figure 1). Using Chenery’s criteria, which are based on per capita GDP and
the most common indicator used to evaluate the stage of economic development [49], the
265 cities were classified into three development categories on the basis of per capita GDP:
cities in the primary and middle stages of industrialization (77 cities), cities in the late stage
of industrialization (117 cities), and cities in the developed stage (68 cities) (Figure 2).
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Figure 1. Study area.
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Figure 2. The cities included in this study, and their different stages of development.

2.2. Indicators Quantifying Urban Form

In order to characterize the spatiotemporal dynamics at work in the urban form
patterns of China’s 265 prefecture cities from 1990 to 2015, urban built-up area boundaries
were determined using the global database of annual urban dynamics data from 1985 to
2015 at 30 m resolution, employing a large amount of surface reflectance data provided by
Landsat satellite, which were published by Liu et al. (2020) [50].

Landscape metrics, which aim to measure both the regulation and the design of the
uses of urban space, have been widely used to represent urban form by describing the
pattern and structure of a landscape. According to previous studies, six landscape metrics
were adopted to measure urban form and its changes: total area (TA), number of urban
patches (NP), the largest patch index (LPI), the landscape shape index (LSI), the percentage
of like adjacencies (PLAD]), and the aggregation index (Al). These metrics were considered
to characterize four aspects of urban form, namely size, centrality, shape irregularity and
fragmentation. Each of these aspects provides a unique perspective on the understanding
of urban form. The “size” is often associated with urban expansion, depicting the extent of a
city’s growth. ‘Centrality’ relates to urban compactness, reflecting the efficient use of space
within a city. ‘Shape irregularity’ ties in with urban shape complexity, encapsulating the
intricacy of the city’s layout, while ‘fragmentation” examines the degree of discontinuity
in urban spaces. In the context of urban form, these aspects interact in complex ways.
For instance, unchecked urban expansion can lead to an increase in shape irregularity
and fragmentation, while compromising centrality or urban compactness. The choice of
these metrics and an understanding of their interplay provide a more comprehensive view
of urban form, addressing not only growth but also shape and fragmentation, and thus
enriching our investigation of urban form.
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Size is measured by two metrics: TA and NP. TA, which measures the total area of all
urban land within all patches, helps to reveal the expansion process behind the built-up
area of a particular city. NP measures discrete urban areas throughout the urban landscape,
and generally increases with the rapid growth in the urban core area. Nevertheless, NP
is expected to decrease if the urban area expands and merges into an overall urban area.
Urban centrality is characterized by LPI, which reveals the percentage of the largest patch
in the urban landscape area and represents the dominance of the city in the landscape. The
extent of shape irregularity was represented by LSI in this study. LSI provides an indication
of the geometric complexity of an entire urban area by measuring the perimeter-to area
ratio of the whole landscape. As the LSI values increase, the shape of the urban built-up
area becomes more complex. Urban fragmentation was described by PLADJ and Al PLAD]
is an absolute indicator of the degree of urban landscape aggregation, and its value ranges
from 0 to 100%, with larger values representing a more concentrated urban landscape. Al
is calculated as an area-weighted average class clustering index and is used to calculate the
probability that urban patches are adjacent to each other throughout a given landscape. A
larger Al value represents a more compact urban built-up area—AIl is 1 when the urban
built-up area is maximally disaggregated and equals 100 when the urban area is aggregated
to the maximum extent into a compact, single patch. Table 1 gives a detailed description of
these six landscape metrics.

Table 1. The details of the selected landscape metrics.

Landscape Metrics Equations Explanation

1 .

Total areas (TA =y g a;; represents the total areas of patch i

(TA) TA—):jzlal](lolooo) | ij rep | P ]

Number of urban patches (NP) NP = n; n; is the number of patchgs in the landscape of
patch i
Largest patch index (LPI) 11?]53<xn <ﬂij> ajj denotes the area of patch ij, TA is the total
LPI = WT(NO) landscape area

- ¢, is the total length of edge in a landscape
025 )1 €k between class i and k
VTA TA denotes the total landscape areas
gii is the number of like adjacencies between
pixels of patch type i based on the double-count

Landscape shape index (LSI) LSI =

Percentage of like

. . - &ii thod, gjx is the number of adjacencies
PLAD] — (7) (100) method, gi¢ j
adjacencies (PLADY) Yki1 Sik between pixels of patch type i and k based on the
double-count method
L Sii gii stands for the number of like adjacencies
Aggregation index (AT) Al = { i1 ( ax L i )} % 100 (joins) between pixels of urban patch

2.3. Panel Regression Model for Influencing Factors Analysis

Whilst the task of evaluating the driving forces of urban extension has garnered con-
siderable attention from scholars, previous studies have mainly emphasized the influencing
factors of urban expansion. The influencing factors of other aspects of urban form have
not always been examined, nor has the fact that socioeconomic factors may modify these
other aspects. Observations of multiple individuals in multiple periods can be treated
simultaneously by the panel regression model; recognizing this capacity, this study used
panel regression to quantitatively measure the driving mechanisms behind urban form,
taking the research period of 1990-2015 into account. On the basis of previous studies and
data availability, we selected five variables to identify the underlying mechanisms at work
in urban form, namely population, gross domestic product, industrial structure, per capita
urban road area, and fixed investment (Figure 3). The five variables were assumed to be
linked with urban form by means of the following models:

TA; = g + o¢1P + apGDP + o31S 4+ s ROAD + 51S + ¢4 @)



Land 2023, 12, 1436

NPj = o9+ 1P 4+ 0pGDP + o3IS + o4ROAD + «51S + ¢ )
LPI;; = op + 1P + opGDP + o31S + g ROAD + a51S + ¢4 3)
LSI; = o9+ 1P 4+ apGDP + o31IS + o4 ROAD + o51S + ¢ 4)
PLAD]J;; = xp + 1P + 0pGDP + o31IS + s ROAD + a51S + ¢4 5)
Al = o9 + oy P 4+ apxGDP + o31S 4+ a4 ROAD + o51S + €5t (6)

where TA;; represents total area of city i in year ¢, NP;; represents the number of urban
patches of city i in year ¢, LPI; stands for number of urban patches of city i in year ¢,
LSI;; represents landscape shape index of city i in year t, PLAD]; denotes percentage of
like adjacencies of city i in year t, Al;; stands for the aggregation index of city i in year
t, the intercepts for all individuals are denoted by &y, &1 to &y denote coefficients of the
independent variables. P is population, GDP refers to gross domestic product, IS represents
industrial structure, ROAD denotes per capita urban road area, FAI stands for fixed asset
investment, and ¢;; is the random error.
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Figure 3. Box charts of the five driving factors.

Population (P) is the foundation of urbanization and is believed to constitute a crucial
variable, driving urban expansion and the transmutation of urban form by affecting the
urban market, rigid demand, and agglomeration ability [23]. The process of urbanization
implies a growing urban population and an increasing demand for urban construction land,
which are realized by means of urban expansion and urban renewal, which in turn drive
microscopic changes in urban landscapes [45]. Gross domestic product (GDP) is the most
commonly used economic variable to characterize macro-level economic development.
Industrial structure (IS) can also reflect economic development. The prior literature has
found that the power of economic development often determines the urban form itself [1,51].
Per capita urban road area (ROAD) represents transportation infrastructure, an index that
has improved in the past 30 years. ROAD is believed to have significant impacts on urban
form. On the one hand, urban expansion along particular routes is one of the popular
urban growth patterns [46]. On the other hand, transportation infrastructure also directly
leads to the fragmentation of urban landscapes. Fixed asset investment (FAI) is assumed
to constitute one of the influencing factors in relation to urban form, as this acts as a basic
financial security for urban development [45]. All data were from the China City Statistical
Yearbook (1996-2016).
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3. Results and Discussion
3.1. Dynamic Pattern of Urban Form

Between 1990 and 2015, China experienced accelerating industrialization and urbaniza-
tion, which together caused a significant expansion of the urban area of cities and brought
about dramatic changes in urban form. Figure 4 shows the change characteristics of the
four aspects of urban form studied over this period in China. From these figures, significant
differences can be seen in the urban form of different regions at different times. Further
comparison of urban form metrics between regions allows for a more elaborate observation
of the changes in urban form between 1990 and 2015. A significant increase in the urban
area (represented by TA and NP) can be observed between 1990 and 2015. In 2015, higher
levels of expansion were predominantly observed on the east coast and in Chongqing. It is
not surprising that cities located in the eastern region had a larger average urban area than
those situated in the central and western regions. Such a finding seems to be consistent with
the previous literature findings, showing that the attributes of urban area vary from region
to region [45,52]. Such variation reflects, to a great extent, the relatively early development
of urban land in the east, as well as its status as a developmental focus area of the “reform
and opening” policy [45]. We found a significant decrease in urban centrality from 1990 to
2015; in 1990, LSI was found to have a relatively higher value in the cities along the Yangtze
River and the southeastern coastal areas, where high-density hydrological networks exist.
This finding reflects the way in which the urban development in these regions has been
limited by natural conditions, whilst cities located in more developed regions may have
experienced the benefits of a “leap-forward” development model. For these reasons, the
geometrical shape of urban areas in those cities may appear more irregular. The LSI of
all regions increased in the period from 1990 to 2015. The spatial distribution of LSI was
relatively even in 2015, showing that as cities expand, they become restricted by various
factors, which makes their urban boundaries more irregular. A significant decrease in the
urban compactness (represented by PLADJ and Al) can be observed between 1990 and
2015. This finding reveals a trend showing that China’s urban areas are becoming less
intensive and compact.

N
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Figure 4. Cont.
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Figure 4. Urban form changes between 1990 and 2015.

As mentioned above, the studied cities were classified into three categories on the
basis of their per capita GDP, in accordance with Chenery’s economic development stage
criterion, namely the primary and middle stages of industrialization, late-stage industrial-
ization, and the developed stage. Figure 5 contains box charts that show the urban form
characteristics (measured using TA, NP, LPI, LSI, PLADJ and Al metrics) of cities in the
three different economic development categories. It can be seen from Figure 5 that TA
and NP showed a significant stair-stepping difference. Meanwhile, the urban construction
areas of cities at the developed stage were much larger than those of cities at the other
two stages. This phenomenon was most obvious in 2015, when total area evidenced a
larger average difference with a greater significance than the figures for 1990. The urban
area of the developed-stage cities increased by 236.65%, whilst the cities in a stage of late
industrialization and cities in the primary and middle stages of industrialization increased
by 186.96% and 157.45%, respectively, between 1990 and 2015. The average intensity of
urban expansion was highest for developed cities, followed by cities at a stage of late
industrialization, with the lowest intensity being recorded in cities at the primary and
middle stages. This indicates that, as cities progress in economic development terms, the
scale of new construction land and the intensity of urban expansion gradually increase.
LPI showed a significant stair-stepping difference in 1990, but in 2015 there was no such
significant difference and the LPI value significantly decreased, indicating that the polar-
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ization phenomenon of the urban area has been significantly alleviated. The measures of
LSI also showed an apparent stair-stepping difference, revealing that as cities enter more
advanced stages of development, the shape of their urban edges becomes more fragmented.
The measures of PLAD]J and Al in 2015 were significantly smaller than those in 1990, which
means that the urban compactness of cities at different stages has declined. These findings
clearly indicate that the location and development stage of a city significantly affects its

urban form.
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Figure 5. Box charts showing the urban form characteristics of cities at different economic devel-
opment stages, where the (a—f) means the variations of total area (TA), number of urban patches
(NP), the largest patch index (LPI), the landscape shape index (LSI), the percentage of like adjacencies
(PLAD]J), and the aggregation index (AI). The x in the figure means the outliers.
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3.2. Influencing Factors of Urban Form

Prior to the panel regression analysis, a variance inflation factor (VIF) test was used to
verify the presence of severe multicollinearity between the independent variables. It can
be seen from Table 2 that the VIFs of all five variables were less than 10 and the tolerances
were greater than 0.1, revealing that the selected five variables are not collinear. Thus,
we were able to examine the parameters of the panel data model. The most widely used
forms of panel regression model are the random effect (RE) estimator with a large degree
of freedom and the fixed effect (FE) estimator with a relatively small degree of freedom.
The Hausman test is generally used to determine which estimator is more suitable. In this
study, a panel regression model was established to investigate the effects of socioeconomic
variables on urban form.

Table 2. Correlation coefficients of the independent variables.

VIF Tolerance
P 1.965 0.509
GDP 4.609 0.217
IS 1.060 0.943
ROAD 1.070 0.935
FAI 4.632 0.216

Table 3 displays the estimation results. It can be seen that the factor of population
exhibited a significant positive relationship with TA, NP, and LSI, showing that growth
in the total population of a given county will result in more complex patterns of urban
development and an increase in the urban area. Most existing studies have also drawn sim-
ilar conclusions, noting that population changes directly affect urban form [45,46]. While
population exhibited a negative relationship with LPI, PLADJ and Al, it was indicated that
increases in the total population of a given county will lead to a decrease in city centrality
and compactness. The economic disparity between urban and rural areas, coupled with
increases in urban employment opportunities, lead to the massive migration of people
from rural to urban areas, bringing aboutrapid growth in the construction area of the cities
receiving these migrants [45]. GDP displayed a positive effect in relation to TA, NP, LPI,
PLADJ and Al, while it exerted a negative effect on LSI and Al, that the growth of GDP
brings about more centricity, more compact, less complex patterns of urban development
and the growth of urban areas. Such results are in accordance with prior studies that found
GDP to be a driver of urban expansion [47]. Industrial structure has a positive impact on
TA, NP and LSI while demonstrating negative correlations with respect to LPI, PLADJ and
A, indicating that an increase in the metric of industrial structure results in an expansion of
the urban area and more complex patterns of urban development, a result that reinforces
the findings of previous studies [46]. The infrastructure factor, represented by the ROAD
metric, was shown to have statistically significant effects on the selected landscape metrics.
Of these six variables, ROAD was found to have a positive impact on TA, revealing that
ROAD benefits urban development by providing easier transportation access. This finding
reflects the gradual evolution of infrastructure investment into an important driving force
for urban land expansion. ROAD was found to have negative effects on LPI, PLADJ and AL
it was revealed that the improvement in infrastructure will result in less centrality and less
compactness in a given city. In addition, we note that FAI exhibited a positive relationship
with respect to TA, NP and LSI, indicating that increases in FAI result in complexity in
patterns of urban development and an increase in urban areas.

3.3. Heterogeneity Effect

It can be seen from the above results that significant differences exist between China’s
regions in terms of urban form, which reflects their diverse economic levels, development
policies, and natural conditions. For the purpose of measuring the relationship between
different factors and urban form in various regions, three panel models were established to
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estimate the various effects of the selected driving forces on urban form in the regions of
eastern China, central China, and western China.

Table 3. Estimated results of panel data model.

TA NP LPI LSI PLAD] Al
P 0.0440 0.1109 —0.4799 0.0124 —0.2563 —0.2490
(1.58) (5.13) *** (—0.98) (0.17) (—3.62) *** (—3.42) ***
GDP 0.0845 0.0958 0.1068 —0.0312 0.1032 0.1101
(2.78) #* (3.28) *** (2.01) ** (—0.39) (1.34) (1.39)
IS 0.0190 0.0202 —0.9599 0.0238 —0.2469 —0.2444
(5.35) *** (5.74) *** (—15.46) **+* (2.53) * (—27.41)**  (—26.35) ***
ROAD 0.0955 0.0978 —0.2317 0.2901 —0.5348 —0.5642
(3.17) *** (3.32) *** (—4.43) *** (3.66) *** (—7.05) *** (—7.22) ***
FAI 0.1518 0.1339 —0.4725 0.4619 —0.6006 —0.6276
(5.04) ** (4.61) *** (—8.97) *** (5.79) ** (—7.86) *** (—7.98) ***
Estimation methods FE RE FE FE FE FE
R-squared 0.5417 0.4701 0.8039 0.5144 0.6618 0.5226
Observations 6864 6864 6864 6864 6864 6864

** denotes p < 0.05, *** denotes p < 0.01.

Tables 4-6 set out the estimated results for these three different regions in China. These
findings show that population exerted a negative effect on TA and NP in western China,
but had a positive influence on TA and NP in eastern and central China, indicating that
increases in the size of the population result in a decrease in urban size in western China
and an increase in urban size in eastern and central China. The coefficient of population’s
effect on urban area was the highest in eastern China, followed by central China and
then western China, indicating that population size has the strongest impact on the urban
area of cities in eastern China. GDP was observed to have exerted a positive influence
on urban size in central and western regions but a negative influence in eastern China.
This discovery is inconsistent with the prior literature, which has recognized the role
of economic growth as the influencing factor of urban growth [2,25,53]. The industrial
structure variable was positively related to the variable of urban size in all three regions,
supporting the perspective that industrialization is a significant part of urban extension
in China [54]. The coefficient of the effect of industrial structure on the size of cities was
the highest in eastern China, lower in central China, and the lowest in western China,
indicating that industrial structure has the largest impact on urban size in eastern China.
The ROAD variable was found to be positively linked to TA and NP. A number of other
relevant studies have drawn a similar conclusion, attributing the positive impact of ROAD
on urban size to easier transportation access [47]. The influence of ROAD in central and
western China seemed to be more significant than in eastern China, a finding that reveals
that traffic has a greater impact on urban size in less developed regions. The impact of FAI
on urban expansion also showed regional differences. A positive correlation between FAI
and urban size was found in all three regions.

The impact of the five socioeconomic factors on urban centrality demonstrated regional
heterogeneity. The results indicated that the population variable negatively correlated with
LPI in eastern and central, while it exerted a positive effect in western China. This finding
indicated that increases in the size of the population result in a decrease in urban centrality
in eastern and central China and an increase in urban centrality in western China. GDP
had negative effects on LPI in western China and exerted a positive influence on LPI in
eastern and central China. This indicates that increases in GDP result in an increase in
urban centrality in eastern and central China, but lead to a decrease in urban centrality in
western China. The industrial structure factor was found to correlate to decreases in LPI
in all three regions, which demonstrates that industrial structure directly impacts urban
centrality. ROAD and FAI maintained a negative correlation with LPI in all three regions,
revealing that transportation impacts urban centrality. Moreover, for cities in the eastern
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region, FAI was identified as being the most influential factor in relation to urban centrality,
while in cities in central and western regions, the most influential factor was ROAD.

The impacts of socioeconomic factors on urban shape complexity also varied across
different regions. Population was observed to exert a positive impact on LSI in eastern and
central China while it showed negative effects in western China, suggesting that increases
in the size of the population result in more complex urban expansion shapes in eastern and
central China and less complex urban expansion shapes in western China. Surprisingly, no
significant influence was observed between GDP and urban shape complexity in eastern
and central China; GDP was only correlated to urban shape complexity in western China.
Further, the industrial structure factor showed negative effects on LSI in eastern China
and exerted a negative influence on LSI in western and central China. The transportation
variable, represented by ROAD, was not statistically significant in eastern China, and
correlated to increases in LSI in western and central China. This finding corroborates the
findings of several previous studies that highlight the role of public transit in contributing
to urban form in China [48]. FAI was statistically significant in relation to LSI in eastern
and central China. FAI was found to have a positive effect on LSI, indicating that increases
in FAI result in increases in urban shape complexity.

The impact of the five socioeconomic factors on urban compactness demonstrated
regional heterogeneity. The results indicated that the population variable was statistically
significant for PLADH and Al in eastern and central China and was not found to exert a
significant influence on western China, which is inconsistent with the findings of previous
studies [45]. Population growth stimulates the increase in urban areas and the number
of urban areas; as such, increases in the size of a population lead to more complex urban
development patterns. GDP showed positive effects on PLAD] and Al in eastern China and
exerted a negative influence on PLAD]J and Al in western and central China. This indicates
that increases in GDP result in an increase in urban compactness in eastern China, but a
decrease in urban compactness in western and central China. The industrial structure factor
was found to correlate to decreases in PLADJ and Al in all regions, which demonstrates that
industrial structure directly impacts urban compactness. ROAD maintained a significant
correlation with PLADJ and Al in all regions, revealing that transportation also impacts
urban compactness. These results are in line with earlier cases that have shown that the
evolution of urban road networks can have an impact on urban form [48]. This finding
can be partially illustrated by the way in which urban road development can promote the
formation of sub-centers and form a decentralized urban form. FAI exerted a significant
impact on PLADJ and Al in eastern China, while this factor seems to have little impact on
PLAD]J and Al in central and western China.

Table 4. The estimated results for eastern China.

TA NP LPI LSI PLAD]J Al
P 0.0497 0.2289 —0.0885 0.0089 —0.3946 —0.3691
(1.34) (1.69) * (—1.60) (0.04) (—3.29) *** (—3.36)***
CDP —0.1115 —0.5130 0.1187 —0.3195 0.4937 0.4889
(—3.94) *** (—4.97) *** (2.81) *** (—1.88) * (5.39) *** (5.83) ***
IS 0.0295 0.1299 —0.0537 —0.0713 —0.2802 —0.2393
(6.82) *** (8.23) **+* (—8.29) *** (—2.74) *** (—19.98) **+* (—18.64) ***
ROAD 0.0496 0.1904 —0.0430 0.1176 —0.1786 —0.1885
(2.28) *** (2.40) *** (—1.32) (0.90) (—2.53) ** (—2.92) ==
FAI 0.4962 1.9507 —0.4840 1.0115 —1.2193 —1.2441
(12.18) *** (13.13) *** (—7.95) *** (4.13) *** (—9.25) *** (—10.30) ***
Estimation methods FE FE FE FE FE FE
R-squared 0.8196 0.8081 0.8884 0.3893 0.8283 0.8566
Observations 2366 2366 2366 2366 2366 2366

* denotes p < 0.1, ** denotes p < 0.05, *** denotes p < 0.01.
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Table 5. The estimated results for central China.

TA NP LPI LSI PLAD] Al
P 0.0422 0.2541 —0.2428 0.3551 —0.6780 —0.7263
(0.53) (2.79) *** (—2.60) *** (4.80) *** (—5.37) *** (—5.36) ***
GDP 0.0479 —0.0144 0.7258 —0.0388 —0.6135 —0.6904
(0.18) (—0.05) (2.13) ** (—0.15) (—1.43) (—1.50)
S 0.0102 0.0386 —0.0748 0.0477 —0.1749 —0.1742
(1.28) (4.17) *** (=7.17) *** (6.35) *** (—13.63) *** (—12.64) ***
ROAD 0.5605 2.0982 —2.2168 2.2278 —4.5712 —4.7558
(2.96) *** (9.61) *** (—9.05) *** (12.56) *** (—15.10) *** (—14.62) ***
FAI 0.0942 0.5841 —0.7858 0.3174 0.0172 0.0328
(0.54) (2.93) *** (—3.55) *** (1.96) ** (0.06) (0.11)
Estimation methods FE FE RE FE FE FE
R-squared 0.3073 0.5535 0.7279 0.6326 0.7068 0.6971
Observations 2964 2964 2964 2964 2964 2364
** denotes p < 0.05, *** denotes p < 0.01.
Table 6. The estimated results for western China.
TA NP LPI LSI PLAD]J Al
P —0.0122 —0.0569 0.1343 —0.0342 0.1231 0.0315
(—2.43) ** (—2.40) ** (1.60) (—1.25) (1.14) (0.27)
CDP 0.1345 0.5865 —0.9665 0.1847 —0.6409 —0.6070
(6.62) *** (6.11) *** (—2.71) *** (1.66) * (—1.47) (—1.29)
S 0.0032 0.0142 —0.0926 0.0313 —0.1578 —0.1933
(3.78) *** (3.58) *** (—6.26) *** (6.80) *** (—8.72) *** (—9.88) ***
ROAD 0.1731 0.8682 —2.1512 1.6132 —2.8050 —3.3333
(9.21) **+* (9.78) *** (—6.52) *** (15.69) *** (—6.95) *** (—7.64) ***
FAI 0.0416 0.0562 —0.1724 0.1008 —0.0085 0.0411
(3.31) *** (0.95) (0.78) (1.46) (—0.03) (0.14)
Estimation methods FE FE RE FE FE FE
R-squared 0.9590 0.7428 0.8175 0.8318 0.7481 0.7202
Observations 1820 1820 1820 1820 1820 1820

* denotes p < 0.1, ** denotes p < 0.05, *** denotes p < 0.01.

Although China generally entered the middle stage of industrialization in 2010, given
the vast territory of China, regional natural resources, economic foundations, and policy
differences, different levels of socioeconomic development can be seen in different regions.
For the purpose of measuring the associations between various factors and urban form in
cities at different economic development levels, we also established three panel regression
models to test the various effects of selected driving forces on urban form in cities at the
primary and middle stages of industrialization, late stage of industrialization, and the
developed stage.

Tables 7-9 review the estimated results with respect to the different economic devel-
opment levels in China. They reveal that population was only statistically significant in
relation to its effects on TA and NP for cities at the developed stage. Moreover, the influence
of population on TA was the greatest in cities at the developed stage, indicating that with
an increase in a city’s level of development, population becomes more important in relation
to urban expansion. GDP is shown to have exerted a positive influence on TA at all stages.
Industrial structure was statistically significant for urban size at all stages and the influence
of industrial structure on urban size was the highest in developed cities. The influence
of ROAD on cities in the late stage of industrialization and within the developed stage
seemed to be more significant than in cities at the primary and middle stages. This finding
reveals that traffic has a greater impact on urban expansion in more developed periods.
The coefficient of ROAD'’s influence on the size of urban areas was highest in cities in the
late stage of industrialization, followed by cities in the developed stage, and was lowest in
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cities in the primary and middle stages, indicating that transportation development has

the most significant influence on urban expansion in the later stages of industrialization.

In addition, FAI was shown to exert significant effects on urban size at the developed
stage. Moreover, for cities at the primary and middle stages, GDP was identified as the
most influential factor in relation to urban expansion, while in cities experiencing a late
industrialization or developed stage, the most influential factor was ROAD.

Table 7. The estimated results for cities at primary and middle industrialization stages.

TA NP LPI LSI PLAD]J Al
P 0.0519 0.1964 —0.0552 0.1893 —0.2475 —0.2646
(1.94) * (1.85)* (—0.63) (2.34) ** (—1.70) * (—1.72) *
GDP 1.3079 5.9918 —1.1411 3.4037 —6.1397 —6.1034
(4.20) *** (4.93) *** (—1.13) (3.65) *** (—3.63) *** (—3.40) ***
S 0.0121 0.0583 —0.1137 0.0745 —0.2477 —0.2616
(3.59) *** (4.21) *** (—10.18) *** (7.12) *** (—13.60) *** (—13.50) ***
ROAD 0.0189 0.0927 —0.0493 0.0818 —0.1302 —0.1406
(1.35) (1.57) (—1.05) (1.84)* (=1.70) * (—1.73) *
FAI —0.2174 —-0.9677 —0.4742 —0.3930 0.9313 0.8029
(—1.30) (—1.45) (—0.86) (—=0.77) (1.03) (0.83)
Estimation methods FE RE RE RE FE FE
R-squared 0.8353 0.5681 0.7961 0.6622 0.7415 0.7194
Observations 2236 2236 2236 2236 2236 2236
* denotes p < 0.1, ** denotes p < 0.05, *** denotes p < 0.01.
Table 8. The estimated results for cities at the late industrialization stage.
TA NP LPI LSI PLAD] Al
P —0.0022 0.0115 0.0752 0.0488 —0.1280 —0.0916
(—0.04) (0.15) (0.96) (0.59) (—1.29) (—0.89)
GDP 0.2704 0.6933 —0.1573 0.3624 —1.2827 —1.5204
(0.76) (1.60) (—0.34) (0.65) (—2.30) ** (—2.63) ***
IS 0.0041 0.0194 —0.0569 —0.0001 —0.1648 —0.1504
(0.51) (1.97) ** (—5.41) (—0.00) (—13.04) *** (—11.45) ***
ROAD 0.8874 3.2804 —2.4576 2.7891 —4.8847 —5.0637
(4.67) *** (14.24) *** (—9.99) *** (9.26) *** (—16.51) *** (—16.47) ***
FAI —0.0130 0.1442 —0.2200 0.0908 0.4140 0.5036
(—0.07) (0.62) (—0.89) (0.30) (1.38) (1.62)
Estimation methods FE FE RE RE FE FE
R—squared 0.3817 0.6680 0.7878 0.3591 0.6713 0.6588
Observations 2938 2938 2938 2938 2938 2938

** denotes p < 0.05, *** denotes p < 0.01.

The effect of the five socioeconomic factors on urban centrality also demonstrated
heterogeneity in terms of the development level of the cities being studied. Our results
indicate that the population variable brought about negative effects on LSI in cities at the
primary and middle stages of industrialization as well as the developed stage, and had a
positive influence on LSI in cities in the late stage. In addition, GDP did not appear to exert
a significant effect on urban shape complexity in cities at the primary and middle stages of
industrialization, or in cities at the late stage of industrialization; it only has a significant
positive effect on LSI in the developed stage. The industrial structure was significantly
correlated with LSI, revealing that industrial structure impacts urban centrality. ROAD
was found to maintain a significant correlation with respect to LPI in late industrialized
and developed cities, revealing that the influence of transportation on urban compactness
increased advances in development stage. FAI exerted a negative impact on LPI in cities at
all stages of development.
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Table 9. The estimated results for cities at the developed stage.

TA NP LPI LSI PLAD] Al
P 0.1090 0.3705 —0.1530 0.0242 —0.4095 —0.3972
(3.68) *** (3.38) *** (—1.90) * (0.13) (—3.67) *** (—3.79) ***
GDP 0.0475 0.1346 0.1971 —0.0561 0.2253 0.2231
(2.23) ** (1.71) * (3.41) *** (—0.42) (2.81) **+* (2.97) ***
IS 0.0146 0.0626 —0.0572 —0.0753 —0.1888 —0.1801
(3.77) *** (4.37) *** (—5.43) *** (—3.10) *** (—12.89) *** (—13.11) ***
ROAD 0.3496 1.3981 —0.5823 0.8692 —1.7035 -1.8171
(5.66) *** (6.13) *** (—3.48) *** (2.26) ** (—7.32) *** (—8.33) ***
FAI 0.1606 0.6429 —0.5604 0.4789 —0.6426 —0.6496
(6.27) *** (6.79) *** (—8.06) *** (2.99) *** (—6.65) *** (—7.17) ***
Estimation methods FE FE FE FE FE FE
R-squared 0.8130 0.5687 0.8941 0.4175 0.8205 0.8399
Observations 2002 2002 2002 2002 2002 2002

* denotes p < 0.1, ** denotes p < 0.05, *** denotes p < 0.01.

The impact of the five socioeconomic factors on urban shape complexity also showed
heterogeneity in relation to the development level of cities. Population showed significant
positive effects at each stage of development. GDP showed positive effects in relation to
LSl in cities within the primary and middle stages of industrialization, as well as in cities
at a stage of late industrialization, and was found to exert a negative influence on LSI
in developed cities. This indicates that the influence of GDP on urban shape complexity
first increases and then decreases as development progresses. The industrial structure
was observed to demonstrate positive correlations with respect to LSI in cities within the
primary and middle stages of industrialization, and exerted a negative influence on LSI
in late-industrialized cities and developed cities. The transportation variable, represented
by ROAD, was positive in cities at all stages. The positive effects of ROAD on urban
shape complexity can probably be attributed to interaction effects with other factors. In
addition, FAI exerted positive effects on LSI in cities in the late industrialization stage
and the developed stage, and had a negative influence on LSI in cities in the primary and
middle stages of industrialization.

The impact of the five socioeconomic factors on urban compactness also demonstrated
heterogeneity in terms of the development level of the cities being studied. Our results
indicate that the population variable brought about negative effects on PLAD] and Al
in cities at each stage of development. In addition, GDP had negative effects in relation
to PLADJ and Al in cities at the primary and middle stages of industrialization as well
as in cities at a stage of late industrialization and was observed to demonstrate positive
correlations with respect to PLADJ and Al in developed cities. The industrial structure
was significantly correlated with PLAD] and Al revealing that industrial structure impacts
urban compactness. ROAD was found to maintain a significant correlation with respect
to PLAD]J and Al in late-industrialized and developed cities, revealing that the influence
of transportation on urban compactness increased advances in development stage. FAI
did not appear to have a significant influence with respect to urban compactness in cities
at the primary and middle stages of industrialization, or in cities at the late stage of
industrialization or the developed stage.

4. Conclusions and Policy Implications

This paper aimed to measure the impacts of a range of selected potential determinants
on urban form in 265 prefecture-level cities in China by considering regional disparities
and variations in the stage of development evidenced by a given city. Landscape metrics
were employed to quantitatively address urban form from the perspectives of urban size,
urban centrality, urban shape irregularity, and urban fragmentation. We also selected five
potential influencing factors that constituted the independent variables for this paper. A
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panel regression model was utilized to measure the association between the three urban
form variables and the five driving forces.

The main results can be concluded as follows: first, significant differences existed
in the urban form of cities in different regions at different times. All three of the urban
form variables addressed in the study showed a significant stair-stepping difference in
cities at various development stages. Second, urban form in China showed significant
geographical heterogeneity in terms of the driving forces bringing about change. Most of
the explanatory factors explored in this study presented significant regional differences.
Population, industrial structure, and FAI were found to exert the greatest impact on urban
size in eastern China, revealing that these factors have a greater impact on urban size in
more developed regions. Third, five socioeconomic factors regarding urban form also had
a different impact between cities at different stages of development. For example, GDP
showed positive effects in relation to LSI in cities in the primary and middle stages of
industrialization, as well as in cities at a stage of late industrialization, and was observed to
demonstrated negative correlations with respect to LSI in developed cities. This indicates
that the influence of GDP on urban shape complexity first increases and then decreases as
development progresses.

In recent decades, urban areas in China have also undergone significant expansion,
accompanied by considerable changes to the configuration of the urban landscape pat-
tern. China is a vast territory, with large differences in development between various
regions [55-58]. The results of this paper contain significant policy suggestions for the
Chinese government. The variations that we found in the influence exerted by a range of
factors on urban form reveal the extent of regional disparities and development differences
within China. To achieve a sustainable urban form, future policymakers should consider
differences in the developmental stage of a city, as well as regional differences, avoiding a
“one size fits all” approaches to policy formulation. In addition, based on sound analyses of
the determinants of urban form changes, decision-makers working with urban landscapes
should be aware of the importance of accurately differentiating driving mechanisms. Re-
gional differences and development stage changes need to be considered when formulating
urban development policies in China. In particular, the results of this study suggest that
population plays an important role in rapid urban expansion in eastern China and in
cities at the developed stage. China should strengthen the policy of “population access”,
especially in the developed, large eastern cities, implementing strict population access
in order to control disorderly and unplanned urban expansion. Combining population
policy with urbanization policy can solve the problem of urban expansion management in
China [59-61]. In addition, the ROAD variable was observed to have a significant impact
on urban form, suggesting that urban expansion and morphological evolution are related
to improved transportation infrastructure. Therefore, optimizing existing road networks
and rationally planning road development may effectively guide the direction and speed
of urban growth. Furthermore, the close connection between urban form and industrial
structure shows that secondary industries in China’s development heavily rely on resource
inputs, and development cannot be achieved with land resources. Urgent acceleration
in the upgrading and transformation of Chinese industry is thus required if the country
is to go from relying on extensive resource use and labor-intensive growth methods to a
capital-intensive, knowledge-intensive mode of growth.

Despite the valuable findings presented in this paper, some limitations must be ac-
knowledged. Firstly, this study conceptualizes urban form in terms of urban expansion,
urban shape irregularity, and urban compactness, represented by certain landscape metrics.
However, urban form is a complex phenomenon that is shaped by a multitude of factors,
extending beyond the aspects discussed in this paper. Moreover, while landscape metrics
provide a useful tool for quantifying urban form, they do not represent the only possible
measure. Secondly, the multitude of variables that influence urban form poses another
limitation to this study. Although this research considers a number of key determinants, it
cannot encompass all possible variables that might affect urban form [62-64]. Therefore,
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while the factors studied here are important, the complexity of urban form could be further
influenced by additional factors not included in this study:.

Future research in this field could explore alternative or additional metrics to quantify
urban form, possibly capturing aspects not represented by the landscape metrics used
in this study. Furthermore, given the multifaceted nature of urban form, studies that
incorporate a wider range of influencing variables, particularly ones unique to different
socio-cultural or geopolitical contexts, could enhance our understanding of urban form.
Such endeavors will contribute to a more comprehensive understanding of urban form and
its determinants, leading to more effective urban planning and management strategies.
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Abstract: Anthropogenic land cover change is one of the primary sources of increasing carbon
emissions and affects the potential of terrestrial ecosystems to store carbon and act as carbon sinks. As
anecessary means to reduce land expansion, land-use intensification significantly impacts greenhouse
gas emission reduction and the low-carbon transition of the economy. This paper constructs a
framework for the relationship between intensive land use (ILU) and low carbon transition (LCT),
considering direct and spatially driven effects. First, this paper constructs a multidimensional
indicator to measure intensive land use and documents the spatial pattern of intensive land use
levels in China. Second, this paper assesses the spatial driving effect of intensive land use on
China’s economic low-carbon transition. Based on data from 283 Chinese cities from 2006-2019 and
using a spatial Durbin model, the study provides empirical evidence that intensive land use can
significantly promote low-carbon transition in neighboring and economically linked cities (especially
in eastern cities, large and medium-sized cities, and veteran economic circles). Tests introducing
exogenous policy shocks further confirm the robustness of the findings. In addition, industrial
structure transformation and technology spillovers are identified as the dual mechanism channels of
intensive land use for low-carbon transition in China, and the spatial driving effect on neighboring
cities attenuating with geographic distance is also confirmed.

Keywords: intensive land use; low carbon transformation; industrial structure transformation;
technology spillovers; national and regional policy; land space planning

1. Introduction

Global warming caused by greenhouse gas (GHG) emissions seriously threatens the
natural and social environments on which human beings depend for survival [1,2]. The
series of chain reactions across ecosystems triggered by greenhouse gases has become a
massive challenge for all humanity [3,4]. The International Energy Agency (IEA) estimates
that global energy-related carbon dioxide (CO;) emissions will grow by 0.9% in 2022, reach-
ing a record high of over 36.8 Gt [5]. Among them, carbon dioxide emissions from energy
combustion and industrial processes account for 89% of total energy-related greenhouse
gas emissions; methane from energy combustion, leakage, and venting accounts for 10%.
They are all mainly from onshore o0il and gas field operations and the production of coal
for power. Compared to 1880, 2022 is also the fifth hottest year globally, fraught with
extreme weather events [6,7]. As the country with the most rapid economic development
in the 20th century, China has become the world’s largest emitter of carbon dioxide since
2007, with carbon emissions rising from 8.83 billion tons in 2011 to 9.90 billion tons in
2020 [8]. As the urbanization rate of the population rises (to 64.72% in 2021), large-scale
migration and the concentration of human activities will result in continued land expansion
and land carbon emissions. China is actively taking on the corresponding obligations to
mitigate global warming, noting that it should effectively promote carbon peaking and
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carbon-neutral actions. In this context, China urgently needs to find breakthrough solutions
to accelerate economic activities’ low-carbon transition to control the increasingly severe
climate problem [9].

Since the 19th century, land use has influenced terrestrial ecosystem carbon balance
through changes in land cover status and the human activities it hosts [10]. It has been
recognized as an essential factor influencing regional carbon source/sink patterns [11].
From 1750 to 2011, an estimated 180 Gt has been released globally due to deforestation
and other land use changes [12]; more than 66% of energy and 80% of carbon emissions
may be related to the scale and productivity of land use [13], and the loss of carbon
stocks in terrestrial ecosystems due to the occupation of forest resources worldwide is the
second largest source of carbon emissions [14]. The loss of ecosystem carbon stocks will be
exacerbated by unintentional land expansion, and the overconcentration of human activities
brought about by expansion will also generate high consumption and emissions [15]. As
the world’s largest carbon emitter, land use carbon emissions have become an essential
source of carbon emissions in China, reaching 3.2 x 10° t in 2015, an increase of about
2.45 times compared with 1999. As of 2020, China’s land-use carbon emissions will remain
high (see Figure 1). Assuming that the 1.5 °C global temperature control target of the
Paris Agreement is to be achieved, further attention needs to be paid to the critical role
of intensive land use in the low-carbon transition of the economy. China is implementing
policy elements of intensive land utilization to promote a low-carbon transition in economic
development. In particular, since the promulgation of the Regulations on the Economical
and Intensive Utilization of Land in 2014, land regulation for carbon emission reduction has
become an important means of promoting grassroots efforts to achieve carbon neutrality
targets. The regulation encourages small-scale centralized and intensive land use and
emphasizes green and livable land use [16]. Zhao (2021) assessed the carbon emission
reduction contribution of the Outline of China’s Overall Land Use Plan (2005-2020). Based
on 2005, optimizing the land use structure will contribute 27.6% to the achievement of
the target of carbon emission reduction of 40% to 45% per unit of GDP in 2020 [17]. In
the context of the country’s emphasis on coordinated “economic-ecological” development,
intensive land use is crucial for China to achieve the goal of “carbon neutrality” and
low-carbon transition.

N
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Figure 1. Land use carbon emissions for 31 provinces in China in 2020.

In China, fiscal revenue from land concessions has long been local governments’
primary income source. To solve the fiscal balance gap, some local governments have been
keen to attract industrial investment by taking advantage of their resource endowment
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and geographic location [18], dramatically expanding industrial scale while promoting
development. This process has not only resulted in massive waste of urban land and
rapid urbanization but also led to differences in the spatial pattern of land use carbon
emissions [19]. With China’s coordinated economic development strategy deepening,
the flow of technology, personnel, capital, and other factors between regions has further
accelerated. The spatial correlation of economic development, energy consumption, and
agricultural activities has broken through the limitations of geographic location. The spatial
correlation of land-use carbon emissions will also be further complicated. Under the spatial
differences in population distribution and economic resources, the differences in land
carbon emissions of each province in China are apparent; carbon emissions are high in the
eastern coastal areas (Figure 1). In this context, it is significant to carry out a study on the
spatial differences in carbon emissions from land use for the synergistic emission reduction
of regional land use.

As land is essential for population, industry, transportation, buildings, and energy
use, can improved intensive land use help promote China’s low-carbon transition? More-
over, in what ways does it achieve “economic-ecological” synergistic development? Given
China’s goal of achieving carbon neutrality by 2050, these questions’ conceptual and ap-
plied consequences are critical to assess. Existing studies have intensely discussed the
relationship between land use and carbon emissions. First, some scholars have expressed
the hidden concern that land expansion may lead to increased carbon emissions in earlier
studies [20,21], arguing that these crude features are an essential cause of higher envi-
ronmental costs and unsustainable problems [22,23]. Some scholars have also tested the
relationship between land use structure and carbon emissions [24]. It is pointed out that
the structural imbalance of ecological land, agricultural land, and urban land [25], as well
as the increase in the proportion of urban built-up areas [26,27], will lead to a more obvious
greenhouse effect. Then, some scholars explored the environmental benefits of optimizing
land use. For example, Xie et al. (2018) pointed out that improving industrial land use
efficiency at the national level contributes 37.52% to the total CO, emission reduction, in
which R&D investment in intensive land use is the most effective way to promote emission
reduction [28]. Additionally, Goh et al. (2018) concluded that decarbonizing land use
can be an effective method of reducing carbon emissions [29]. These conclusions are also
recognized by scholars such as Peng et al. (2022) [30] and Zhang et al. (2023) [31]. However,
some scholars, such as Zhu et al. (2022), believe that China’s current land use optimiza-
tion has caused a greater degree of carbon emissions [32]. Scholars have only analyzed
the impact of optimized land use on the intensity and efficiency of carbon emissions in
isolation, and their views have not yet reached a consensus. Therefore, despite the intense
academic discussion and research on these issues so far, there still exists a vast research
space, such as the characteristics of spatial distribution, direct and spillover effects, and
impact mechanisms, which constitute the initial motivation of this study.

Based on the consideration of breaking through the limitations of the existing literature,
we decided to identify and assess the driving effect of land intensification on China’s low-
carbon transition from a spatial perspective and evaluate the mechanism of its action in
terms of both green upgrading of industries and clean technology spillovers (Figure 2). The
possible marginal contribution consists of the following three points. Firstly, we constructed
a framework for the relationship between land use intensification and low carbon transition
considering both direct and spatial driving effects and numericized land use intensification
and low carbon transition in the form of multiple composite indicators. Compared with
traditional studies, we provide a more comprehensive analysis from a spatiotemporal
perspective (i.e., spatial distribution, spatial autocorrelation, evolution, spillover effects,
spatial decay, and spatial heterogeneity). Secondly, compared with the traditional single
research method, we adopt the exogenous policy shock test to support the conclusion of
the driving effect and examine the dual channels of influence of land intensification and
low-carbon transition from the dual perspectives of green transformation of industrial
structure and clean technology spillovers, which expands the empirical research in related
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fields. Finally, we provide practical policy recommendations for policymakers regarding
the efficiency of low-carbon economies and the focus on green, livable, and efficient living
and production environments in emerging countries such as China.

Introduction
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2. Mechanism and Research Hypothesis

ILU is a critical way to build an urban ecological civilization, focusing on conservation,
efficiency, and ecology. Economic green transformation is the primary way to realize the
goal of sustainable development, focusing on economic efficiency and carbon reduction [33].
Compared with traditional land use, ILU embodies the concept of scientific and clean
development. Whether it is to reduce emission sources or increase carbon sink absorption,
ILU plays an important role [34]. The mechanism between ILU and China’s low-carbon
transition can be analyzed in economic and ecological systems.

2.1. Promoting Effect of Intensive Land Use on Low-Carbon Transition

First, we consider the economic growth effect. ILU is to increase the input of factors
such as capital, labor, and technology on the urban land stock and improve land use
efficiency through rational layout and optimization of land use structure to promote
sustainable development [35]. According to the law of increasing and decreasing land
remuneration, before reaching the highest point of remuneration, the more capital and
labor force invested in the land per unit area, the higher the economic output obtained,
that is, the higher the intensity of land use and development, the higher the contribution to
economic growth [36].

Second, we consider the carbon emission reduction effect. At the ecosystem level, ILU
corresponds to the impact of land use change on soil carbon stock and vegetation carbon
stock. According to the land use classification, construction land is the primary carbon
source, while ecological and agricultural land are essential sources of carbon sinks. ILU
effectively reduces the conversion of agricultural and ecological land, such as garden land,
forest land, and grassland, to construction land and increases carbon sink absorption within
the ecosystem [37]. In addition, at the economic system level, with the strengthening of land
use constraints, low energy-consuming technologies, enterprises, and industrial chains will
be “squeezed out”, thus reducing carbon emissions. Compact land space pattern facilitates
public transportation use and reduces infrastructure construction waste [38]. It helps to
improve the efficiency of centralized energy supply and utilization and reduces the growth
of carbon sources from land construction.

2.2. Spatial Spillover Mechanism

According to the theory of agglomeration effect, the increased density and spatial
proximity of economic activities on land contribute to the economies of scale in production
and transactions and resulting spillovers on a local scale [39]. Considering that carbon
emissions are mainly influenced by socioeconomic drivers such as the stage of economic
development, energy resource endowment, and consumption patterns. Land use mode,
scale, structure, and intensity are closely related to industrial development status and tech-
nological progress [40]. Therefore, intensive land use affects the low-carbon transformation
of neighboring cities mainly by influencing the socioeconomic constitutive factors reflected
in industrial development and technological progress [41,42].

The mediating role of industrial structure transformation. On the one hand, as the
land use pattern constrains the industrial layout, the crude land approach is challenging
to promote the automatic transformation of industry. The theoretical connotation of ILU
includes the principles of “structural optimization” and “market allocation.” Conversely,
ILU encourages the development of resource-saving and environment-friendly industries,
which helps cities establish a modernized industrial system characterized by low energy
consumption and emissions [40]. On the other hand, due to market competition and
the price mechanism, industrial agglomeration forces enterprises to improve production
technology and techniques and promotes upgrading the industrial chain layout [43]. As a
result, with the gradual withdrawal of resource-intensive enterprises, the utility of energy
utilization has been enhanced. The booming development of high-tech enterprises and
service industries is conducive to easing resource dependence and environmental pressure.
This transformation of industrial structure promotes the diversified division of labor
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among enterprises, which helps the low-carbon production links and industrial clusters
among cities to generate symbiosis, complement each other, and promote the low-carbon
transformation and development of neighboring cities [44].

The intermediary role of technology spillover. The agglomeration economy formed
by ILU makes cities accumulate innovative resources and also promotes technological
overflow from cities. The theory of ILU includes the principles of “conservation first”
and “reform and innovation,” which help accelerate the R&D, innovation, and application
of production, environmental protection, and energy-saving technologies and generate
technological factor overflows from the region to neighboring or related regions. The
overflow accelerates the learning and disseminating of green technologies and innovation
among cities. Neighboring cities at this time can realize imitation and secondary innovation
with the help of technological overflow, thus promoting green transformation.

Overall, spatial spillovers from economic systems and ecosystems diffuse the effects
of NTUs on local industrial restructuring and technological spillovers to neighboring
regions, which ultimately manifests itself in the diffusion of local ILUs" driving effects
on neighboring regions” LCT. The above spillover mechanisms accumulate layer by layer,
forming the total effect of ILU on the overall regional LCT.

Hypothesis (H1). Intensive land use drives low-carbon transition and can promote neighboring
cities to achieve low-carbon transition goals.

Hypothesis (H2). Intensive land use can promote low-carbon transition through industrial
structure transformation and technology spillover.

2.3. Spatial Decay Mechanism

Most studies recognize that spillover effects are characterized by spatial decay. It is
because the cost of logistics and information exchange will rise with increased geographical
distance and the restriction of administrative boundaries. As a result, the spatial spillover
effect of ILU may show a specific attenuation pattern and boundary effect as the possibility
of factor spillover decreases.

First, we consider the role of geographic distance. Studies have confirmed that infor-
mation dissemination shows the law of attenuation with increased geographical distance.
As the distance between neighboring cities and knowledge-center cities increases, the
efficiency of information dissemination decreases [45]. Furthermore, increased geographic
distance leads to interfirm transaction costs, transportation costs, and risk control. This
former is a function of the geographic distance between the cooperating parties [46,47],
and the latter is reflected in the increased risk of breach of contract and the reduced level
of trust, among others. These are not conducive to inter-city technology, exchange, and
cooperation, leading to spatial limitations in the spillover effects of ILU on low-carbon
transitions in neighboring cities.

Second, we consider the role of administrative boundaries. Local governments in
China can deeply participate in the urban economic growth model, which provides many
administrative and financial resources needed to promote urban development. However,
this model may cause local governments to ignore the big picture of policies and hinder
the joint promotion of inter-city policies. Specifically, local governments may impose
explicit or implicit administrative restrictions on factor mobility to protect local markets.
Without an effective inter-regional coordination mechanism, it is not easy to realize the
effective interconnection of cross-regional infrastructure. It will not be conducive to the
optimal allocation of resources and the dissemination of advanced technologies, hindering
interregional cooperation in production links and industrial synergistic development and
causing the spatial spillover of ILU to form a specific border effect.

Hypothesis (H3). Influenced by geographic distance and administrative boundaries, there is
spatial attenuation in the spillover effect of intensive land use on low-carbon transition.
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3. Materials and Methods
3.1. Data Sources

This paper takes Chinese prefecture-level cities as the research object. After deleting
the samples with missing severe data, we selected 283 prefecture-level cities in China
(except Tibet, Hong Kong, Macao, and Taiwan) from 2006 to 2019 as the research sample.
Variable data were obtained from China Urban Statistical Yearbook (2007-2020), China Sta-
tistical Yearbook (2007-2020), and statistics published by the National Bureau of Statistics.
Green patent authorizations were obtained from the China Research Data Service Platform
(CNRDS). In addition, we verified all data obtained to ensure accuracy, and some missing
values were supplemented by interpolation. Some key variables were logarithmized to
ensure consistent statistical caliber.

3.2. Research Method
3.2.1. Spatial Autocorrelation Test

We refer to the study of Elhorst (2014) [48] for the first step of testing the applicability
of the spatial measurement model to determine the spatial correlation of the variables. We
choose Moran’s I index, which is more common in the existing literature, to determine
whether the spatial autocorrelation of low-carbon transition exists in each city. In addition,
we also chose to use Geary’s C index to conduct the spatial autocorrelation test from a global
perspective. It is more sensitive than Moran’s I index in the localized test (a value less than
1 indicates a positive correlation).

Moran's I = f f Wi (X — X) (X, — X)/szf f Wi (1)
i=1j=1 i=1j=1
Geary's C = (n—1) ¥, ¥ Wy(X; - X]->2/z<i > wl-,-> [ (%= %))
i=1 j:nl i=1 j:ln )
L=y (X,-X)/n; X=1yx
i=1 i=1

a2

where X; and X; are the actual observed values of regions “i” and “j”, respectively. W; is
the spatial weight matrix. n represents the total number of geography units that refers to
the sample cities.

"
1

3.2.2. Spatial Econometric Models

First, we construct neighborhood spatial weights (W), inverse distance spatial
weight matrix (Wyjs), economic spatial weight matrix (Weeon), and economic distance spatial
weight matrix (Weep4is) from two perspectives: geographic distance and economic distance,
respectively. For the geographic distance spatial weight matrix, the closer the distance, the
greater the influence of the neighborhood. For the economic distance spatial weight matrix,
cities with higher economic levels significantly influence the neighborhood more than cities
with lower economies.

W — 0 (urban area i, j are not adjacent) 3)
af = 1 (urban area i, j are adjacent)
_ G#j) .
Wais = . . d;; is the distance between two urban centers 4)
& (=5
ij

0 i#
Wecon = { % 1 7] (i i ]]))/ X is the economic aggregate, measured using GDP  (5)
i~

Wecondis = AWais + bWecon, a=b=05 (6)
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Spatial econometric model was used to identify and verify the spatial spillover effects
of ILU on low-carbon transition. The spatial econometric model is constructed as follows:

N N
LCTy = a+p 12,#. w;iLCTj 4 PXit + 9‘21 wijXije + @i + Vi + €t
j=Lj#i =

N
gr =9 L wijr + i it ~ N(0,021)

j=1j#i

@)

where LCT denotes the urban low-carbon transition variable; X is each explanatory variable,
including ILU; w is the spatial weight matrix; p is the coefficient of the effect of the local
explanatory variable on the explanatory variables in other urban areas. When p > 0, it
indicates the spatial spillover effect between adjacent regions; when p < 0, it indicates
the spatial negative effect between adjacent regions. f, § are the parameter estimates of
X explanatory variables; ¢ and v denote the area effect and time effect, respectively; ¢
denotes the spatial correlation between residuals; ¢ is the random error term; i, t are the
area individual and time dimensions.

In Equation (7), if p =0, 8 =0, ¢ = 0, then Equation (7) is the spatial lag model (SLM),
ifp=0,0=0,9 # 0, then it is the spatial error model (SEM), if p #£ 0, 8 # 0, =0, then it is
the spatial Durbin model (SDM). In this paper, the Wald test and LR test are used to screen
SLM, SEM, and SDM. If the tests both reject the original hypothesis of setting Hy: § = 0 and
Hy: 6 + p =0, SDM is selected, and one of the original hypotheses is accepted, then the
choice is made between SLM and SEM.

When the spatial Durbin model (SDM) was selected for the model, the direct, indirect,
and total effects proposed by LeSage & Pace (2010) were used to further examine the spatial
effects of the impact of ILU on urban low-carbon transition [49]. Using Y; to represent the
LCT vector, the SDM model is rewritten into the following vector form.

Yi = (1— W) H(BX: + OWX,) + (1— pW) iy ®)

In Equation (8), we derive the partial differential matrix by taking the k explanatory
variable as the independent variable. The mean of the diagonal elements represents the
average effect of the change in the explanatory variables on the explanatory variables of
local areas, which is the direct effect. The mean of the non-diagonal elements represents the
average effect of the change in the explanatory variables on the variables of the explanatory
variables in other urban areas, which is the indirect effect.

Br WiV ... WINVg
oY oY } | wavk  Pr ... wWaNVk
| = (1= oW } ) ) )
[axm OXNk |4 1=eW) : :
WN1Vk WN2VE ... .Bk

3.2.3. Spatial Difference-in-Differences Model

According to the guideline of the Ministry of Land and Resources of China, the
economic and intensive use of land is a strategic choice for new urbanization. Land-
use intensification is an important policy tool in promoting the implementation of new
urbanization. Therefore, this paper considers the new urbanization contention policy a
proxy variable for ILU. In this study, we combine the difference-in-differences model (DID)
with the spatial econometric model and relax the original assumption that the experimental
group will not affect individuals in the control group. As a result, we construct the spatial
difference-in-differences model (SDID) as follows:

N N N
CEEjt = v+ p1 Z w;iCEEj; + y1policyj; + 61 Z wijpolicy;j + y2Control; + 922 w;jControlij + @; + vt + ¢ (10)
J=Lj# j=1 j=1
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where policy denotes the exogenous policy shock of “new urbanization”; y; denotes the im-
pact coefficient of policy on local low-carbon economic transition; #; denotes the estimated
coefficient of policy on low-carbon economic transition in neighboring areas; the rest of
variables are explained in the same way as Equation (7).

3.3. Research Method
3.3.1. Explained Variable

Low-carbon transition (LCT) is the target explanatory variable. Considering the low-
carbon transition (LCT) should balance carbon dioxide emission reduction and economic
development [50], which can obtain the maximum economic output with the least fac-
tor input and the lowest carbon emission. Therefore, this paper uses the efficiency tool
to represent the urban low-carbon transition. Stochastic frontier analysis utilizing the
“input-output” paradigm can effectively deal with efficiency issues. In this study, specific
indicators are selected with reference to existing studies [51]. Among them, input indicators
include energy, labor, and capital, using the urban electricity consumption to measure the
electricity input, the total urban employment to measure the labor input [52], and the urban
capital stock based on the perpetual inventory method to measure the capital input [53].
Output indicators include desired output and non-desired output, and the urban GDP is
used to measure the desired output of the city. The indicator system is shown in Table 1.

Table 1. Indicator system of low-carbon transition.

Indicator Variable Description

Urban total social electricity consumption

Electricity (Unit: 10,000 kw-h)

Input Labor Total employment in the city (Unit:
10,000 persons)
Capital Urban capital deposit (Unit: 10,000 yuan)
Desired output Economic efficiency output Urban GDP (Unit: 10,000 yuan)
Non-desired Carbon dioxide emissions Urban CO, emissions (Unit: 10,000 tons)

output

We also refer to the IPCC 2006 methodology to measure the undesired urban output
using the carbon emissions generated during the consumption of natural gas, liquefied
petroleum gas, electricity, and thermal energy for the whole city community [54]. Combined
with the methodology of Tone and Tsutsui (2010) [55], we measure CCE using an excess

efficiency model (EBM).
w; s; witst wh—gh—
L 0 — ¢ m [ + 5 r°r q PP 11
r mm( € lel o ) /|lo+¢e (Zr_l ” + P 7%0 (11)
27:1 xl-]-)\]-—i-s; :le'o (IZ 1,2,1’71)
St Z;l:lyrj/\]_sj :eyro (1’2 1,2...,5) (12)

Z;Z:lup]’)\j—FS;:Gupo (p:1,2...,q)
/\]-ZO;si_,sj,s; >0

In Equation (11), r* represents the optimal efficiency value of the LCT measured by the
super total factor productivity model. There are m + 1 parameters in this model. x, y and u
represent the inputs, expected outputs, and unexpected outputs of DMUQ, respectively, 0 is
the radial efficiency value; s represents the input slack vector. ¢ is a core parameter that
determines the importance of the non-radial part of the computation of the efficiency value
of r*, and it takes the value in the range of [0, 1]. When € = 0, it is equivalent to the radial
model, and when taking the value of 1, it is equivalent to the SBM model. In Equation (12),
A denotes the weight coefficient.

29



Land 2023, 12, 1578

3.3.2. Core Explanatory Variables

According to the different construction bases and standards of the evaluation index
system, the evaluation index system mainly includes the “input-output”, the “economic-
social-ecological”, and the “intensive-efficient-coordinated” index system. In selecting
indicators, many scholars believe that the number of indicators is lower than possible
but should be reasonably screened. Evaluation methods mainly include multiple single-
indicator methods, factor synthesis evaluation methods, fuzzy synthesis evaluation meth-
ods, ideal value correction models, etc. Considering that intensive land use is a dynamic
process, the degree of intensification can be effectively enhanced by improving the land
use intensity and optimizing the land output efficiency and land use structure within a
certain period. Based on the principle of dominant factors and local conditions, this paper
selects indicators according to the evaluation system of “economy-society-ecology.” Specific
indicators and their measurement methods are shown in Table 2.

Table 2. Indicator system of intensive land use.

Primary Indicators Description (Unit) Indicator Attributes
Built-up area/total urban area (%) Negative
Capital stock/built-up area (yuan/KM?) Positive
Road area/built-up area (m?/KM?) Positive
Land use density House area/built-up area (m?/KM?) Positive
Urban population /built-up area (10,000 people/KM?) Positive
Employment/built-up area (person/KM?) Positive
GDP /built-up area (yuan/KM?) Positive
Non-agricultural industry output value/built-up area .
(yuan JKM2) Positive
Economic and social General income c()f flsca}II?;l/[gl;get/ built-up area Positive
efficiency . . yuan : .
Disposable income of urban residents/built-up area .
by Positive
(yuan/KM?)
Built-up area/urban resident population (m?/person) Negative
Per capita green area (m? /person) Positive
Ecological Green coverage rate of urban built-up areas (%) Positive
benefits Industrial sewage discharge per capita (ton/person) Negative

In this paper, the TOPSIS model is chosen to measure the ILU composite indica-
tors. TOPSIS model is an effective method in multi-objective decision analysis. It is a
ranking method close to the ideal solution, which ranks the indicators by detecting the
distance between the evaluation object and the optimal solution and the worst solution. In
the calculation process, it is necessary to normalize the positive and negative indicators
separately.

(Zainj — Zij)*)  (13)

s

G = Z (Zminj - Zij)z/( Z (Zmaxj - Zij)2 +

j=1 j=1 j=1

—_

_ | v _ 1 2
Zij = Xz]/ ig Xlzj or Z,‘]' = XT]/ Z ()T)

=1\
Zt = (Zmaxl Zmax2Zmax3 - - - Zmaxm)
VANES (Zminl Zmin2Zmin3 - - - Zminm)

where 7 is the number of cities participating in the evaluation; m is the number of evaluation
indicators. C; denotes the proximity of evaluation object i to the optimal solution, and
finally, the comprehensive evaluation results of ILU in Chinese cities are obtained by sorting
them according to the size of C;.

(14)
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3.3.3. Control Variables

In this study, other factors that may affect the low-carbon urban transition are included
in the empirical model in order to mitigate omitted variable bias as much as possible. The
main ones include. For environmental regulation (ER), we choose three indicators: sulfur
dioxide removal rate (industrial sulfur dioxide removal/industrial sulfur dioxide genera-
tion), industrial soot removal rate (industrial soot removal/industrial soot generation), and
comprehensive industrial solid waste utilization rate (comprehensive industrial solid waste
utilization/(comprehensive industrial solid waste generation + comprehensive utilization
of previous years’ storage)), and use the entropy value method to calculate the intensity
of environmental regulation. For the annual average temperature (TEM), we used the
cumulative daily temperature average to represent this variable. Openness to foreign
investment (OPEN), we use the annual real foreign investment (converted to RMB based
on the average RMB exchange rate) as a share of GDP. Government intervention (GOV), we
use the share of fiscal expenditure net of science and education in total fiscal expenditure.
In industrial agglomeration (AGG), we use the Location Quotient method to calculate
the manufacturing agglomeration status of each city. Marketization (MARK), which we
measure using the share of self-employment and private employment in total employment.
Financial development (FIAN), which we measure using the year-end loan balance as a
share of GDP.

3.3.4. Other Variables

1. Instrumental variable

In this study, we will further examine the implementation effect of the new urbaniza-
tion pilot policy (Policy) in the robustness test. In 2013, China established a new “people-
oriented” urbanization policy. In 2015 and 2016, China’s National Development and Reform
Commission (NDRC) announced three batches of comprehensive national pilot projects
for new urbanization. Since then, Chinese government departments have continued to
improve the program and expand the pilot project scope into developing replicable and
replicable experiences. This study assigns a value of 1 to the approved pilot cities (ex-
perimental group) and 0 to the unapproved non-pilot cities (control group), denoted as
Treated;. Among the pilot cities, this study assigns a value of 1 to the year in which the pilot
cities are approved and subsequent years and 0 to the remaining years. All year’s corre-
sponding to the non-pilot cities are assigned a value of 0 and denoted as Time;. In this case,
Policy; = Treated; * Timey.

2. Channel variables

Based on the theoretical analysis in the previous subsections, the two key mechanism
variables for channel analysis are industrial structure transformation (IS) and technology
spillover (TS).

Industrial structure transformation (IS). The upgrading of industrial structures to-
wards cleanliness is the key to realizing the goal of green development. The current
indicators for industrial structure upgrading mainly use internal structure change, energy
consumption per unit GDP of industry, and product sales of pollution-intensive industries.
We utilize the entropy value method to determine the degree of cleaner transformation of
industrial structure. In this paper, we refer to Zhang et al. (2023) to construct the indicator
system from two aspects of clean energy consumption and clean production [31]. Clean
energy consumption is measured by the ratio of total industrial energy consumption to
industrial added value; clean production is expressed by the ratio of regional industrial
added value to carbon emissions. Through the dimensionless quantization of the indicators,
the entropy value method is then used to identify the degree of cleaner transformation of
the industrial structure.

Technology spillover (TS). Generally speaking, due to China’s imperfect patent guar-
antee mechanism and relatively backward R&D capability, it is difficult for enterprises
to convert R&D inputs into green innovation outputs. In contrast, the number of green
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patents can reflect the actual innovation outputs more objectively. We use the number of
green patent acquisitions obtained in one year as a proxy variable for technology spillovers.
The results of descriptive statistics for each variable are shown in Table 3.

Table 3. Descriptive statistics of variables.

Variable Mean N SD Min p25 p50 P75 Max
LCT 0.500 3962 0.150 0.130 0.400 0.480 0.580 1.160
ILU 0.0800 3962 0.0700 0.0100 0.0500 0.0600 0.100 0.630

ER 0.610 3962 0.200 0.0600 0.460 0.660 0.760 0.990
TEM 14.60 3962 5.100 —1.090 10.91 15.54 17.90 25.68
OPEN 1.900 3962 1.980 0 0.460 1.280 2.690 15.32
GOV 0.800 3962 0.0400 0.610 0.780 0.800 0.830 0.980
AGG 0.860 3962 0.480 0.0200 0.520 0.770 1.140 3.050
MAK 0.480 3962 0.140 0 0.380 0.480 0.580 0.940
FIAN 0.880 3962 0.560 0.0800 0.540 0.710 1.010 9.620

4. Results

4.1. Baseline Regression Analysis
4.1.1. Spatial Autocorrelation Test and Spatio-Temporal Distribution

We calculated the spatial correlation of LTC in China using ArcGis 10.2 software. As
shown in Appendix A Table A2, the spatial correlation indices were significant for all years.
Among them, the global Moran’s I value are all greater than zero, and the Geary’s C values
are all within the interval [0, 1]. It indicates a significant positive spatial correlation of LCT
at the four-city level in China. In the time dimension, the global Moran’s I index increases
yearly, revealing that the spatial correlation of low carbon transition among cities has been
strengthened year by year in recent years.

4.1.2. Baseline Result

We first performed the Wald and LR tests, and the results showed that both passed
the 1% significance test. This result rejects the original hypothesis of using the SLM or SEM
model, indicating that the spatial error and lag terms exist simultaneously. Therefore, we
use the spatial Durbin model for the empirical analysis. The Hausman test results pass the
1% significance test, indicating that the selection of the fixed-effects model is consistent
with the model set. Table 4 reports the regression results of the spatial Durbin model for
the four spatial weight matrices (regression results of Equation (7)). First, the coefficient
of the effect of ILU on urban low-carbon transition is significantly positive under all four
weights. It indicates a significant positive relationship between ILU and urban low-carbon
efficiency.

Second, the results from the decomposition coefficients are shown. The results in
column (2) of Table 4 show that the estimated coefficient of the indirect effect of ILU is
1.995 under the neighboring weights, which is significantly positive at the 1% statistical
level. It indicates that ILU contributes to the local low-carbon transition and has a significant
positive spatial spillover effect on the low-carbon transition of cities adjacent to the local
one. The results from column (5) show that the indirect effect of ILU under geographical
weight is 8.195 and passes the significance level test at the 1% level. The results in columns
(8) and (11) show that the indirect effect of ILU under the economic weight is 3.710, and
the indirect effect of ILU under the economic distance weight is 8.224. Both coefficients are
significant at the 1% level. Specifically, ILU has a significant positive spillover effect on
urban low-carbon transition regardless of the spatial weights used.

Finally, in terms of coefficient magnitude, the indirect effect of ILU on urban low-
carbon transition shows a consistent feature across all four spatial weights, i.e., the indirect
effect coefficient is higher than the direct effect coefficient. It indicates that we need to test
the relationship between ILU and urban low-carbon transition based on the perspective of
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spatial spillover. This facilitative spillover effect has a stronger explanatory power in the
total effect.

Table 4. Results of spatial spillover effects.

Panel A: Results of Adjacent Space Weights and Distance Spatial Weights.

Wudj (Model 1)

W_is (Model 2)

Variable (6)) ) ®) @ (5) 6)
LR_Direct LR_Indirect LR_Total LR_Direct LR_Indirect LR_Total
ILU 0.6155 *** 1.9447 *** 2.5602 *** 0.5692 *** 8.1948 *** 8.7640 ***
(—4.54) (—8.983) (—11.114) (—4.192) (—4.726) (—5.102)
ER —0.0363 ** 0.0779 ** 0.0416 —0.0395 ** 0.7691 *** 0.7296 ***
(—2.226) (—2.439) (—1.215) (—2.438) (—2.833) (—2.683)
TEM —0.0108 —0.0155 —0.0263 *** —0.0086 —0.0402 —0.0489
(—=0.971) (—1.311) (—4.250) (—0.923) (—1.110) (—1.627)
OPEN —0.0032 * —0.0016 —0.0048* —0.0043 ** 0.0317 * 0.0274 *
(—1.726) (—0.526) (—1.753) (—2.449) (—1.932) (—1.718)
GOV —0.4000 *** 0.3100 ** —0.09 —0.3665 *** —0.011 —0.3775
(—4.669) (—2.311) (—0.668) (—4.290) (—0.013) (—0.461)
AGG —0.0260 *** 0.0162 —0.0098 —0.0326 *** 0.1029 0.0703
(—3.490) (—1.215) (—0.741) (—4.406) (—1.28) (—0.887)
MAK 0.0301 0.0093 0.0394 0.0159 0.3887 0.4046
(—1.206) (—0.201) (—0.79) (—0.64) (—1.061) (—1.102)
FIAN —0.0383 ***  —(0.0549 ***  —0.0932 ***  —0.0324 ***  —0.4038 ***  —(.4362 ***
(—5.824) (—4.227) (—7.246) (—4.928) (—4.248) (—4.628)
City FE YES YES YES YES YES YES
Year FE YES YES YES YES YES YES
Observations 3962 3962 3962 3962 3962 3962
R-squared 0.542 0.572 0.572 0.445 0.673 0.491

Panel B: Results of Economic Spatial Weights and Economic Distance Spatial Weights.

Wecon (Model 3)

Wecandis (Model 4)

Variable @ ®) © (10) (50 (12)
LR_Direct LR_Indirect LR_Total LR_Direct LR_Indirect LR_Total
ILU 0.4631 *** 3.7100 *** 4.1732 *** 0.5688 *** 8.224(0 *** 8.7928 ***
(3.532) (8.331) (8.967) (4.189) (4.730) (5.105)
ER —0.0452 *** 0.1454 ** 0.1002 —0.0395 ** 0.7717 *** 0.7323 ***
(—2.791) (2.473) (1.562) (—2.435) (2.835) (2.686)
TEM —0.0246 *** 0.0446 ** 0.0200 —0.0087 —0.0399 —0.0485
(—4.495) (2.326) (0.946) (—0.931) (—1.096) (—1.612)
OPEN —0.0025 —0.0189 ***  —0.0214 ***  —0.0043 ** 0.0320 * 0.0277 *
(—1.538) (—3.008) (—3.189) (—2.445) (1.942) (1.728)
GOV —0.2572 **  —0.9358 ***  —1.1930 ***  —0.3656 *** —0.0158 —0.3814
(—3.249) (—3.884) (—4.579) (—4.280) (—0.019) (—0.465)
AGG —0.0230 ***  0.0713 *** 0.0483 * —0.0327 *** 0.1036 0.0709
(—3.244) (2.692) (1.750) (—4.411) (1.285) (0.893)
MAK 0.0255 -0.0119 0.0136 0.0159 0.3878 0.4037
(1.031) (—0.150) (0.155) (0.639) (1.057) (1.098)
FIAN —0.0493 *** 0.0067 —0.0426 **  —0.0324 ***  —0.4051 ***  —0.4376 ***
(=7.795) (0.341) (—2.043) (—4.928) (—4.247) (—4.625)
City FE YES YES YES YES YES YES
Year FE YES YES YES YES YES YES
Observations 3962 3962 3962 3962 3962 3962
R-squared 0.470 0.309 0.498 0.527 0.559 0.558
Note: The numbers in parentheses are robust t-statistics. ***, ** and * represent significance levels of 1%, 5% and
10%, respectively.

Regarding the effects of other control variables: Environmental regulation (ER) shows
consistent characteristics across the four spatial weights. Its direct effect coefficient (effect
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on local low-carbon transition) is significantly negative yet. However, the indirect effect
coefficient (effect on the low-carbon transition of neighboring and associated cities) is
significantly positive. The possible reason for this is that environmental regulation policies
emphasize the role of regulation, which reduces the total local pollution index while
also impacting the development of local industries, thus showing a negative effect on
low carbon efficiency. Further, under a more stringent environmental regulation policy,
polluting industries in cities are at risk of closing down. It can force the development of
local clean technologies. With the spillover of knowledge and technology, neighboring
or associated cities can promote low-carbon transition development through secondary
innovation and technology imitation. The indirect effect of government intervention
(GOV) is significantly positive (0.310) with the neighboring weights and significantly
negative (0.936) with the economic weights. The possible reason is that geographical
proximity increases the “demonstration effect” of urban areas. The prosperity of local
economic development can lead to technological progress and knowledge accumulation
in neighboring cities, thus promoting the low-carbon transition of neighboring cities.
Regarding economic distance, the development of local cities tends to eliminate pollution-
intensive industries and make them move to cities with higher economic connectivity.
It causes an increase in carbon emissions in the receiving region, which harms its green
transformation. Financial development (FIAN) shows a significant indirect effect under the
neighborhood, geographic, and economic geography weight. Moreover, it has a negative
sign of the coefficient. Further deepening of financial development may have a siphoning
effect on the neighboring areas’ financial resources and human capital. This effect is not
conducive to the expansion of production of the plot industries in the neighboring and
associated cities nor to the updating and R&D of clean technologies. It will eventually lead
to the inhibition of their low-carbon transition.

4.2. Robustness Tests

We first conduct a parallel trend test to analyze whether policy evaluation can be
conducted using the double difference approach. After the results showed that this im-
portant test was passed, we proceeded to model estimation. Table 5 reports the regression
results of the spatial difference-in-differences model for the four spatial weight matrices
(regression results of Equation (10)). As we can see from Table 5, the indirect effects of the
ILU (“New Urbanization” pilot policy dummy variables) are significant at different spatial
weight matrices, and the coefficients of the variables are positive. It implies that the ILU
construction will significantly promote the low-carbon transformation of the surrounding
and associated cities. It also indicates a non-negligible spatial correlation in the error term
of the model, and if not taken into account, the regression results will produce biased
estimates. Using spatial econometric models in this paper is necessary.

In particular, there are some characteristics of Models 1-4 results based on spatial
weights of different geographical elements. As can be seen, the coefficient of distance spatial
weights (W5, 0.342) and the coefficient of e economic distance spatial weights (W,congis,
0.343) are higher than the coefficient of an indirect effect of economic, spatial weights
(Wecon, 0.112) and higher than the coefficient of neighboring spatial weights (W, 0.051).
It may be because the pilot cities have made more efforts to promote low-carbon, green,
inclusive, and intelligent cities. The demonstration effect and the economic correlation
effect on the neighboring cities and associated cities exemplify the positive effect on the
low-carbon transition of the cities. Furthermore, the size of the coefficient indicates that
this role-modeling effect is more likely to be constrained by geographical distance.

4.3. Mechanism Verification
4.3.1. Channel Mechanism of Industrial Structure Transformation

Model 1 in Table 6 shows the impact of intensive land use on industrial structure
upgrading, and it can be seen that the impact is positive and significant, indicating that
ILU promotes China’s low-carbon transformation through the IS influence mechanism.
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Specifically, ILU, as a long-term national policy, will constrain the disorderly expansion of
enterprise land use and promote the economization of enterprise production and operation
in the coming period. In addition, the objective constraints of ILU on urban space will
limit the entry of highly polluting and low-value-added industries. Therefore, in cities
with intensive land utilization, industries can obtain green development and regulate
the industrial layout by regulating the proportion of clean industries, thus promoting
low-carbon development.

Table 5. Robustness test results of exogenous shock.

Panel A: Results of Adjacent Space Weights and Distance Spatial Weights.

Wadj (Model 1) Wdis (Model 2)
Variable 1) 2 3) @) (5) (6)
LR_Direct LR_Indirect LR_Total LR_Direct LR_Indirect LR_Total
ILu 0.0051 0.0510 *** 0.0561 *** —0.0073 0.3422 *** 0.3349 ***
(0.507) (3.500) (4.082) (—0.731) (3.702) (3.723)
ER —0.0500 *** 0.0425 —0.0075 —0.0427 *** 0.6401 ** 0.5975 *
(—3.046) (1.263) (—0.206) (—2.614) (2.062) (1.919)
TEM —0.0117 —0.0120 —0.0237 *** —0.0098 —0.0382 —0.0481
(—1.048) (—0.999) (—3.663) (—1.048) (—0.938) (—1.389)
OPEN —0.0030 —0.0083 *** —0.0113 *** —0.0053 *** —0.0002 —0.0055
(—1.628) (—2.637) (—4.000) (—2.975) (—0.013) (—0.321)
GOV —0.4750 *** 0.0111 —0.4639 *** —0.4279 *** —0.7720 —1.1999
(—5.595) (0.083) (—3.450) (=5.117) (—0.828) (~1.310)
AGG —0.0255 *** 0.0113 —0.0141 —0.0309 *** 0.1323 0.1014
(—3.389) (0.820) (~1.015) (—4.162) (1.416) (1.095)
MAK 0.0294 —0.0105 0.0190 0.0100 0.0321 0.0420
(1.165) (—0.218) (0.362) (0.399) (0.076) (0.099)
FIAN —0.0388 *** —0.0567 *** —0.0955 *** —0.0311 *** —0.4983 *** —0.5294 ***
(—5.884) (—4.224) (—7.054) (—4.715) (—4.233) (—4.516)
City FE YES YES YES YES YES YES
Year FE YES YES YES YES YES YES
Observations 3962 3962 3962 3962 3962 3962
R-squared 0.475 0.440 0.433 0.587 0.502 0.588
Panel B: Results of Economic Spatial Weights and Economic Distance Spatial Weights.
Wecon (Model 3) Wecondis (Model 4)
Variable (7) (8) 9) (10) 1) 12)
LR_Direct LR_Indirect LR_Total LR_Direct LR_Indirect LR_Total
ILU 0.0179 ** 0.1121 *** 0.1300 *** —0.0073 0.3438 *** 0.3365 ***
(2.008) (3.555) (3.826) (—0.735) (3.707) (3.727)
ER —0.0534 *** 0.1415 ** 0.0881 —0.0426 *** 0.6422 ** 0.5996 *
(—3.257) (2.267) (1.292) (—2.613) (2.063) (1.920)
TEM —0.0207 *** 0.0664 *** 0.0457 ** —0.0099 —0.0377 —0.0476
(—3.747) (3.300) (2.059) (—1.058) (—0.922) (—1.371)
OPEN —0.0045 *** —0.0317 *** —0.0362 *** —0.0052 *** —0.0001 —0.0054
(—2.804) (—4.866) (—5.227) (—2.970) (—0.006) (—0.313)
GOV —0.3906 *** —1.5333 *** —1.9239 *** —0.4269 *** —0.7834 —1.2102
(—5.038) (—6.378) (~7.540) (—5.105) (—0.838) (~1.319)
AGG —0.0226 *** 0.0578 ** 0.0352 —0.0310 *** 0.1334 0.1024
(—3.145) (2.068) (1.203) (—4.167) (1.423) (1.103)
MAK 0.0101 —0.0701 —0.0601 0.0099 0.0286 0.0386
(0.404) (—0.839) (—0.654) (0.397) (0.067) (0.090)
FIAN —0.0458 *** 0.0243 —0.0215 —0.0311 *** —0.4998 *** —0.5309 ***
(—7.197) (1.168) (—0.974) (—4.715) (—4.227) (—4.508)
City FE YES YES YES YES YES YES
Year FE YES YES YES YES YES YES
Observations 3962 3962 3962 3962 3962 3962
R-squared 0.533 0.552 0.522 0.455 0.662 0.431
Note: The numbers in parentheses are robust t-statistics. ***, ** and * represent significance levels of 1%, 5% and

10%, respectively.
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Table 6. Channel mechanism verification.

I T
Variable 5 s
Model 1 Model 2
. 0.022 ** 0.071 ***
[LU (Main) (2.11) (5.18)
0.156 *** 4.966 ***
fLu-w (4.94) (2.99)
Control YES YES
City FE YES YES
Year FE YES YES
Observations 3962 3962

Note: The numbers in parentheses are robust t-statistics. *** and ** represent significance levels of 1% and
5%, respectively.

4.3.2. Channel Mechanism of Technology Spillover

As shown in Model 2 in Table 6, the effect of intensive land use on technology spillovers
is significant, indicating that ILU promotes China’s low-carbon transition through the
influence mechanism of TS. Specifically, ILU’s land use restrictions on enterprises can first
force enterprises to increase investment and research in green products and new materials.
Second, compared with the standardized and large-scale production of the secondary
industry, the knowledge, and technology-intensive tertiary sector tends to have higher
value-added, lower energy consumption, and is more in line with the need for intensive
land use. It means cities with intensive land utilization have built a good platform for
technology R&D and dissemination. Third, the positive psychological effect of ILU on
the low-carbon development of industries should not be ignored. Positive public opinion
encourages regional industrial enterprises and regional enterprises to imitate each other
and technological innovation, thus promoting the low-carbon transformation of the region.

4.4. Test of Spatial Attenuation Boundary

In order to examine the regional boundaries of ILU on urban low-carbon transition,
this section uses threshold inverse distance spatial weights for multiple spatial Durbin
model estimation analysis, and the weights are specifically set as follows:

1
% (z;é]and dy<di]‘<dl) (15)

g

0 (i=jordy>djordj>d
wi]':

In Equation (15), d;; represents the distance between city i and city j regions, d, is
the lower limit of spatial threshold distance, and d; is the upper limit of spatial threshold
distance, whose values are set autonomously. When the distance between two cities
is within the spatial threshold range, the spatial relationship between the two cities is
considered to exist, and the weight value is the inverse of the distance between the two.
Below or above this range, it is considered that there is no spatial relationship between the
two cities, and its weight value is 0. Thus, we derive the spatial weight matrix of distances
in different distance ranges and re-estimate the spatial Durbin model to measure the spatial
spillover effects of ILU affecting urban low-carbon transition in different distance ranges
(as shown in Table 7 and Figure 3).

The relationship between the local effect, spillover effect, and the corresponding
distance threshold of ILU on urban low-carbon transition is shown in Figure 3. The effect of
ILU on local low-carbon transition is relatively stable. However, the spillover effect exhibits
an inverted “U” shape concerning the increase of distance threshold. It indicates that
although ILU can promote the low-carbon transformation of neighboring and associated
cities across space with their demonstration effects, their spillover effects have geographical
peaks and decay boundaries due to the limitations of industrial development, infrastructure
coverage, and administrative division. Moreover, the coefficient of the spillover effect peaks

36



Land 2023, 12, 1578

at 250 km and then decays, while the indirect effect at 450 km is not significant. It implies
that the ILU has the highest facilitation effect at 250 km. This radiation range is close to
the radius of the regional scope of Chinese provinces, indicating that strengthening the
ILU cooperation among regional urban clusters will help promote regional low-carbon
transition.

Table 7. Spatial attenuation coefficients.

Distance (KM) LR_Direct LR_Indirect LR_Total
0.7916 *** 0.1158 ** 0.9073 ***
50 (6.033) (2.239) (6.583)
0.6747 ** 0.4863 *** 11611
100 (5.066) (4.274) (7.150)
0.5934 *** 1.3236 1.9170
150 (4.439) (7.235) (9.276)
0.6166 *** 1.7716 ** 2.3882 ***
200 (4.633) (7.057) (8.862)
0.6151 *** 2.0986 *** 2.7137 #*
250 (4.622) (7.318) (8.965)
0.6511 ** 0.7324 ##* 1.3835
s (4.671) (3.002) (5.638)
0.6601 ** 0.7008 *** 1.3609 ***
350 (4.740) (2.784) (5.417)
0.6847 ** 0.6299 ** 1.3146 ***
400 (4.927) (2.427) (5.060)
0.7149 ** 0.5342 ** 1.2491 **
450 (5.155) (1.970) (4.588)
0.7441 ** 0.3775 1.1216 ***
500 (5.351) (1.355) (4.054)
0.7544 ** 0.3050 1.0594 ***
550 (5.426) (1.059) (3.704)
0.7519 #* 0.3038 1.0557
600 (5.412) (1.044) (3.656)
0.7449 #* 0.3561 1.1010 **+
630 (5.370) (1.178) (3.658)
0.7509 *+* 0.3165 1.0674
700 (5.415) (1.044) (3.538)
0.7632 ** 0.2695 1.0327
750 (5.510) (0.888) (3.423)
Note: The numbers in parentheses are robust t-statistics. *** and ** represent significance levels of 1% and 5%,
respectively.
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Figure 3. Regional boundary of spatial spillover effects.
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4.5. Heterogeneity Tests
4.5.1. Heterogeneity at the ILU Dimension

In the previous section, we designed a comprehensive indicator to represent ILU
based on the connotation of “intensive land use”. The indicator contains three dimensions:
density of land use, economic and social efficiency, and ecology benefits. In order to
further analyze the influence mechanism of ILU on neighboring and associated towns, we
conducted empirical tests on each of the three dimensions of ILU. The regression results
are shown in Table 8.

Table 8. Heterogeneity test results of the ILU dimension.

UCR UCR UCR
Variable 1) ?) 3)
LR_Direct LR_Indirect LR_Total
density of land use 0.3838 23.2338 *** 23.6175 ***
(1.096) (4.245) (4.299)
economic and social 0.8405 *** 20.7071 *** 21.5477 *+
efficiency
(2.894) (3.656) (3.797)
ecology benefits 4.1700 *** 75.0155 *** 73.8306 ***
(10.986) (3.301) (3.208)
Control YES YES YES
City FE YES YES YES
Year FE YES YES YES
Observations 3962 3962 3962

Note: The numbers in parentheses are robust t-statistics. *** represent significance levels of 1%, respectively.

The density of land use provides a good impetus to the low-carbon transition of
cities (direct effect of 0.384 and indirect effect of 23.234). However, the direct effect is not
significant. This suggests that the density of land has a better demonstration effect on
neighboring and associated cities, but attention needs to be paid to the local low-carbon
transition. ILU in the land, social and ecological dimensions have significant positive spatial
spillover. It shows that the rational and efficient use of land, increased social inclusion,
and strengthened ecological constraints can form positive spillover to neighboring and
associated cities. Among them, the coefficient of ecological dimension is the highest,
at 75.016.

4.5.2. Spatial Heterogeneity

We further examine the spatial heterogeneity of the spillover effects of ILU on the
low-carbon transformation of cities. We specifically focus on three perspectives: geographic
location, city level, and city circle (economic location). Since this part of the test mainly
considers the effect of spatial heterogeneity, we use geographic weights for estimation.

Cities with different geographic locations. As for the natural location of the province,
different regions have distinct economic development goals, land use regulations, and
contaminant pressure. Accordingly, the impact of IER may be affected by the geographical
location, so we have divided the sample into three sample subgroups, including eastern,
western, and central regions. The results are shown in Panel A of Table 9. In the eastern
region, the spillover effect of ILU on urban low-carbon transition is 5.132, and this coefficient
is positive and significant. The spillover effect of ILU on low-carbon transition for cities in
the central region is also greater than 0 (coefficient of 3.824) but not significant. The results
are different in the western region, where the spillover effect coefficient is negative and
insignificant (—0.961). This result indicates that the ILU affects urban low-carbon transition
differently depending on the geographical location. It plays an important driving role only
in the eastern region.
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Table 9. Results of spatial heterogeneity test.

Panel A: Geographic Location.

. UCR UCR UCR
Variable
LR_Direct LR_Indirect LR_Total
East 0.3455 ** 5.1323 *** 5.4778 ***
(—1.962) (—7.386) (8.276)
Central 1.6698 *** 3.8238 5.4937
(—4.304) (—1.093) (1.534)
West 0.5520 ** —0.9605 —0.4085
(—2.066) (—0.435) (—0.191)
Panel B: City Level.
. UCR UCR UCR
Variable
LR_Direct LR_Indirect LR_Total
Extra Large 2.4806 *** 7.9541 *** 7.9253 ***
(—3.913) (—3.021) (3.065)
Large 0.1135 5.8359 *** 5.9494 ***
(—0.634) (—4.801) (4.901)
Moderate 0.367 —0.8509 1.6297
(—1.240) (—0.657) (1.395)
Small —0.0288 —7.4345 ** —7.0676 **
(—0.078) (—2.167) (—2.020)
Panel C: City Circle.
. UCR UCR UCR
Variable
LR_Direct LR_Indirect LR_Total
Yangtze River Delta 0.9410 * 0.2061 1.1471
(—1.753) (—0.108) (0.625)
Beijing-Tianjin—
Hebei City 5.3022 *** 2.8549 8.1571 ***
Circle
(—7.842) (—0.960) (2.619)
Middle Yangtze River 2.8349 ¥+ —2.1027 0.7322
Economic Belt
(—3.767) (—0.754) (0.251)
Pearl River Delta —1.1533 *** 2.7095 1.5562
(—3.996) (—1.546) (0.825)
Chengdu-Chongging 8.1728 *** —4.4565 3.7163
City Circle
(—5.553) (—0.533) (0.417)
Note: The numbers in parentheses are robust t-statistics. ***, ** and * represent significance levels of 1%, 5% and
10%, respectively.

The cities are of different sizes. We use the year-end population of the city district as
a proxy variable for city size. Given the frequent changes in the administrative divisions
of city districts in many cities, we use the city size division criteria published by China in
2014 to select cities. Based on the total year-end population of city municipal districts, the
283 city samples can be categorized into four groups: extra-large cities (more than 5 million
people), large cities (1 million to 5 million people), moderate cities (half a million to 1
million people), and small cities (less than half a million people). Among all the cities in
the sample, there are 13 extra-large cities, 127 large cities, 98 moderate cities, and 45 small
cities. As shown in Panel B of Table 9: The indirect effects for medium-sized and large
cities are 7.954 and 5.836, respectively, and are significant at the 1% level. It indicates that
the ILU of extra-large and large cities has a positive spillover effect on the low-carbon
transition of neighboring cities. The indirect effect coefficient of moderate and small cities is
negative, and small cities are significant at the 5% level. It implies that moderate and small
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cities in China have caused some degree of pollution to the development of neighboring
cities in promoting ILU. In addition, extra-large cities significantly promote local green
transformation, with a coefficient value of 2.486.

We also test the spillover effects of ILU in different economic circles on urban low-
carbon transformation separately according to the current policies of building urban circles
implemented in China. Panel C of Table 9 shows that the ILU of the Yangtze River Delta,
Beijing—Tianjin—-Hebei urban circle, and Pearl River Delta cities form positive spillover
to the low-carbon transition of neighboring cities. The middle reaches of the Yangtze
River Economic Belt and Chengdu—Chongqing City Circle form a negative spillover. The
coefficients of the indirect effects of the above five urban areas do not pass the significance
test. It indicates that the ILU in China’s urban areas did not significantly affect the low-
carbon transition of neighboring cities in the promotion process. However, the ILU of
the five urban areas all play a significant role locally. Only the ILU in the Pearl River
Delta inhibits the local low-carbon transition, while the other four urban areas effectively
promote the local low-carbon transition.

5. Discussion

In order to comply with the global low-carbon development trend, the Chinese govern-
ment has proposed two significant goals of achieving “carbon peak” by 2030 and “carbon
neutrality” by 2060, as well as the goals of promoting pollution reduction and carbon
neutrality. Comprehensively promoting green and low-carbon transformation is an impor-
tant strategic direction for economic and social development in the coming period. The
baseline regression results in this paper verify that ILU has a significant positive spillover
effect on low-carbon transformation, providing ideas for promoting ILU development to
realize low-carbon urban transformation and carbon neutrality. This result is consistent
with the findings of Shang et al. (2022) [56], but we go a step further by considering the
influence of spatial factors and drawing conclusions about spillover effects and spatial
boundaries. In addition, our findings further confirm the greenness and sustainability
of China’s ILU policy and urban spatial optimization [57]. China has implemented and
is implementing integrated land use policies (e.g., Provisions on Saving and Intensive
Land Use (2014) [16].As the spatial mainstay of economic development, land use intensi-
fication, while emphasizing the principles of “structural optimization” and “prioritizing
conservation,” has green, livable, and ecologically friendly connotations that contribute
to the sustainable development of China’s economy and the construction of an ecological
civilization.

The existence of spatial boundaries provides some empirical evidence for local gov-
ernments in China to break down inter-provincial administrative barriers and promote
the articulation of urban spatial planning and ecological governance mechanisms between
provinces. According to the division of China’s administrative boundaries, 450 km is the
average distance between China’s provincial capital cities, and 250 km is the average radius
of China’s provinces. While the spillover effect of ILU on low-carbon city transformation
can reach as far as 450 km, the peak of the spillover effect’s coefficient is around 250 km.
The driving force of ILU can reach as far as across China’s provincial boundaries to affect
the low-carbon urban transition in other provinces. However, local governments also need
to be aware that the benefits are more significant in neighboring areas of the province.

The results on the heterogeneity of ILU dimensions and different spatial weights
reflect the parts of the ILU policy promotion process that need attention and improvement.
One of them is the need to pay attention to the goals of ILU policy promotion. According
to the results of the four spatial weights, it can be found that ILU creates a driving effect
on the low-carbon transition of neighboring and economically linked cities. It suggests
cities which committed to promoting ILU can exert targeting, demonstration, and economic
linkage effects. Considering that the driving effect of ILU is stronger in large cities, local
governments can use large cities as their hinterland to play a “point-surface” driving
role and thus promote the realization of the overall low-carbon transformation goals of
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Chinese cities. Second, it is essential to emphasize the means of ILU policies. Compared
to ecological carbon sink improvement and land use efficiency, the increase in land use
density cannot significantly promote the local low-carbon transition. This result is similar
to that of Baur et al. (2015) [58] based on data from European cities. Considering that
land use density is related to the city’s actual built-up area and the population’s carrying
capacity. This situation may arise because the current land intensification in China is still in
the stage of capital intensification [59]. The most important vehicle for urban development
is the construction land, and capital investment is concentrated in construction land. In this
case, an increase in land use density will increase infrastructure and energy investment.
Therefore, decisions about urban folding, spatial planning, and urbanization development
need to be implemented prudently.

To promote China’s low-carbon transition, paying attention to the spatial differences
and regional cooperation in the environmental benefits of ILU policies is essential. This
is consistent with the findings of current research in other countries [60,61]. First, it is
necessary to pay attention to geographic location differences. The results of the heterogene-
ity regression show that only the cities in the eastern region can implement ILU policies
while generating positive spillover effects on the low-carbon transition of neighboring
cities, and the results in the central and western regions are not significant. In fact, the
land carbon emissions of the eastern region, including Beijing, Tianjin, Shanghai, Jiangsu
Province, Zhejiang Province and other provinces, account for a high proportion of the
national emissions (see Figure 1); however, eco-efficiency and energy use efficiency are also
higher in the eastern coastal region than in the central and western regions [62,63]. Taken
together, although the eastern region faces more substantial pressure to reduce emissions,
it has developed a more inclusive green land use system over the years and has experience
in urban spatial planning and low-carbon environmental management, thus creating a
demonstration effect on neighboring cities. These achievements may be related to the
greater concentration of talent, technology, and innovation in the eastern region, which
could receive further attention. On the contrary, the central and western regions, such
as Sichuan, Hubei, Henan, and other provinces, are all in rapid economic development,
with large populations and high pressure on land use carbon emissions. Promoting ILU in
cities in the central and western regions is more challenging and requires more advanced
experience from the eastern regions. Secondly, it is necessary to pay attention to urban-level
differences. The positive spillover effect of ILU on urban low-carbon transition is not
evident in small and medium-sized cities and urban circles. These findings reflect two
aspects: small and medium-sized cities have weaker governance capacity and may face
more difficult ecological governance and spatial layout adjustment [57]. The second is that
administrative barriers within the city region have not yet been broken down [64], and
there is less willingness to cooperate between city clusters [65], which limits the direct and
spillover effects of ILU policies in the city region on the low-carbon transition. The above
conclusions provide ideas for future synergistic promotion of low-carbon transformation
in Chinese cities.

Although this study complements the shortcomings of the studies related to ILU and
urban low-carbon transition, it also provides a theoretical reference for the study of urban
low-carbon transition at the spatial level. However, there are still certain shortcomings
in this study that need to be improved. First, the low-carbon transition of cities mainly
includes two components of low-carbon and economic development. In the future, we
will continue exploring the low-carbon land use in the low-carbon transition of cities and
further enrich the urban environment-related research. Second, limited by data availability,
the measurement of ILU still needs to be improved. Meanwhile, the connotation of ILU is
constantly being improved and has likewise changed regarding green and blue infrastruc-
ture construction. We expect to expand on these two aspects in the subsequent study to
improve the measure of ILU. Third, the research questions and scope can be extended to
other developing countries.
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6. Conclusions and Policy Implications
6.1. Conclusions

This study incorporates China’s ILU policy and low-carbon transition into a unified
analytical framework from the perspective of spatial spillover. The spatial autocorrelation,
evolution, spillover effects, spatial decay, and spatial heterogeneity of the intensive land
use construction in China’s low-carbon transition are investigated based on theoretical and
empirical analyses. Many valuable conclusions are drawn as follows:

(1) intensive land use has significant spatial spillover effects on the low-carbon transi-
tion of cities. It not only plays a positive role for neighboring cities but also promotes the
low-carbon transformation of economically related cities. The exogenous shock test of the
pilot cities of new urbanization also verifies this result. Furthermore, the spillover effect of
new urbanization exists in the range of 0—450 km and peaks at about 250 km.

(2) The results of mechanism validation indicate that industry transfer and technology
spillover are dual mechanism channels for intensive land use for low-carbon transition
in China.

(3) intensive land use plays a catalytic role in the low-carbon transition of surrounding
cities through three dimensions: the density of land use, economic and social efficiency,
and ecology benefits, among which the ecological dimension has the most potent effect. In
contrast, land use density does not contribute to the local low-carbon transition.

(4) As an essentially urban development strategy, the intensive land use in the eastern
region and large-sized cities can significantly contribute to the low-carbon transition of
neighboring cities. However, intensive land use in urban economic zones cannot perform
the radiation effect to drive the low-carbon transformation of neighboring cities.

On average, the obtained results are broadly consistent with the existing literature.
At the same time, it provides more novel and convincing evidence on the effectiveness of
intensive land use and the importance of clean technology development and production
transformation for carbon neutrality in emerging countries such as China. It will help
promote Chinese government departments to promote and implement ILU policies and
action plans for dual carbon goals in a targeted manner and also help provide theoretical
and empirical references for developing countries to promote environmentally friendly
and coordinated development.

6.2. Policy Implications

We propose the following policy recommendations mainly from the perspective of
developing countries choosing governments as facilitators.

First, the government should increase ILU through specific measures to ensure that it
plays an active role in the low-carbon transition of the city. The government needs to focus
on formulating economic, social, and ecological policies. Quality improvement should
not be neglected in favor of economic growth, and excessive “accumulation” of factors of
production on land will ultimately lead to lower efficiency and higher emissions. At the
same time, the government should control the increase of land and explore the land stock,
coordinate the safeguarding of development and the protection of resources, optimize the
allocation of factors through industrial upgrading, strengthen the control of urban growth
boundaries, rationally allocate land resources, and enhance the intensive level of urban
land use.

Second, the government needs to use the technical means of regional integration to
optimize the intensive use of urban land in the city circle. Integrating national economic and
social development planning, land use master planning, land improvement planning, area
development planning, ecological environment planning, and enterprise access catalogs are
important designs worth trying by local governments. This top-level design can strengthen
the long-term mechanism of land use optimization under the control and integration
of multiple regulations and cultivate the concept of regional integration. As a result, it
will enhance the synergistic and consistent mechanism for optimizing the allocation of
land resources.
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Thirdly, the local government should use land-space constraints on economic activities
to promote a cleaner transformation of the industrial structure and the process of promot-
ing green technologies. Transforming the existing unreasonable and unclean industrial
structure is essential for developing an intensive and efficient economic growth mode.
On the one hand, local governments need to protect patented technologies and promote
enterprises” green technology research and development process. On the other hand,
the government needs to promote the cleanliness of the energy structure and strengthen
the rational allocation of industrial development and energy structure. In addition, the
government should play an organizing and guiding role in promoting green and healthy
production methods such as recycling, high efficiency, and emission reduction and improve
the city’s scientific and technological innovation capacity and technology spillover effect.
In this way, a virtuous green circular economy can be formed within and among cities.

Finally, local governments should choose and implement ILU policy tools according
to local conditions. The government needs to form a differentiated idea of intensive land
use. Specifically, the government can build a differentiated control system for intensive
land use based on the zoning of land intensive use evaluation results, zoning of resource
and environmental carrying status, and zoning of dominant industries, and from the
perspective of economic development priority and resource and environmental utilization
and protection priority.
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Appendix A

Table Al. Summary table of acronyms.

Acronyms Description
LCT Low-carbon transition
ILU Intensive land use
ER Environmental regulation
TEM annual average temperature
OPEN Openness to foreign investment
GOV Government Intervention
AGG Industrial agglomeration
MAK Marketization
FIAN Financial development
IS Industrial structure transformation
TS Technology spillover
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Table A2. Results of spatial autocorrelation test.

Year Moran’s 1 Geary’s C

2006 0.076 *** (3.137) 0.919 *** (—2.697)
2007 0.082 *** (3.359) 0.912 ** (—2.942)
2008 0.117 *** (4.765) 0.880 *** (—4.013)
2009 0.124 (5.035) 0.879 *** (—4.074)
2010 0.125 *** (5.049) 0.874 ** (—4.241)
2011 0.138 *** (5.558) 0.855 *** (—4.890)
2012 0.127 *** (5.160) 0.860 *** (—4.661)
2013 0.133 *** (5.358) 0.863 *** (—4.674)
2014 0.099 *** (4.040) 0.904 *** (—3.258)
2015 0.134 *** (5.399) 0.863 *** (—4.696)
2016 0.164 *** (6.596) 0.843 *** (—5.500)
2017 0.061 ** (2.535) 0.962 (—1.353)
2018 0.158 *** (6.351) 0.850 *** (—5.250)
2019 0.202 *** (8.097) 0.816 *** (—6.303)

Notes: *** p <0.01, ** p < 0.05. Z-values in parentheses.
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Abstract: The synergistic greenhouse gas (GHG) emission reduction of the crop production (CP) and
livestock farming (LF) sectors is of great significance for food security and low-carbon development,
especially for China, the world leader in agricultural production. In this paper, the GHG emissions
from the CP and LF sectors are accounted for and compared, and the spatial econometric model is
adopted for comparative study based on the panel data from 1997 to 2021. The results show that:
(1) The total amount and intensity of GHG emissions from both sectors showed obvious spatial
heterogeneity and spatial dependence, and the spatial distribution pattern was relatively stable.
(2) The influence of each factor on the GHG intensity and spatial characteristics of CP and LF varies
widely. For the CP sector, economic development (local effect —0.29, adjacent effect +1.13), increased
urbanization rate (—0.24, +0.16), agricultural structure (—0.29, +0.05), and urban-rural disparity
(—0.03, +0.17) all reduce the GHG intensity of local region, while increasing the GHG intensity of
its adjacent areas, signifying leakage. The economic structure (+0.06, +0.16), agricultural finance
support (+0.02, +0.26), mechanization level (+0.05, +0.03), and land occupancy rate (+0.54, +0.44)
all play a role in increasing the GHG intensity of CP in the local region and its adjacent areas. The
disaster degree (—0.03, —0.03) also reduced the GHG intensity of CP. For the LF sector, economic
structure (+0.08, +0.11), urban-rural disparity (+0.11, +0.21), agricultural development level (+0.03,
+0.50), and increased land occupancy rate (+0.05, +0.01) can improve the GHG intensity of the one
region and adjacent areas. Economic development (+0.03, —0.15), urbanization rate (+0.04, —0.30),
agricultural structure (+0.09, —0.03), and disaster degree (+0.02, —0.06) can increase the GHG intensity
of the local region while reducing the GHG intensity of adjacent areas. Based on the results, under
the background of carbon peaking and carbon neutralization(dual-carbon) goals, this study first
puts forward collaborative emission reduction measures for CP and LF, respectively, then further
rises to sector synergy and regional synergy, and constructs the countermeasure system framework
of collaborative emission reduction from three levels, to provide guidance and reference for the
realization of dual goals of agricultural GHG reduction and food security.

Keywords: crop production GHG emission; livestock farming GHG emission; spatial dependence;
influencing factors; spatial Durbin model; synergetic measures

1. Introduction

The rapid development of agriculture is inevitably accompanied by the deterioration
of the environment and the emergence of a series of ecological problems, especially green-
house gas (GHG) emissions. This issue has been widely concerning due to the increasing
climate change [1]. Agriculture has become one of the major emitters of GHG, producing
about 14% of global GHG emissions and 58% of global non-carbon (CHy, NoO) GHG emis-
sions [2,3]. Moreover, if effective measures are not taken as soon as possible, the agricultural
GHG is expected to increase by 30% by 2050 [4], making it hard to realize the emissions
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reduction target of the Paris Agreement. As a world leader in agriculture production,
China feeds 20% of the world’s population with only 8% of global cropland [5,6]. Since
the launch of the reform and opening up policy, China has made remarkable and rapid
achievements in agriculture; the output of grain, meat, and aquatic products in 2017 has
reached 1/5,1/4, and 1/3 of world supplies after a 2-fold, 10-fold, and 14-fold increase
since 1978, respectively [7]. However, great achievements in agriculture have come at the
cost of large amounts of GHG emissions. China’s agricultural GHG have accounted for
17% of the national emissions [8], of which agricultural CH4 and N>O emissions are much
higher than other industries; agricultural CHy emissions accounted for 50.15% of the total
emissions, and N,O accounted for 92.43% of total emissions [9,10].

Unlike other sectors, agriculture is more dependent on region-specific factors, such as
topography, soil, and climate [11], as well as on socioeconomic factors, including mecha-
nization, irrigation, and the supply-demand situation of agricultural products. Therefore,
the differences among region-specific factors have led to heterogeneity in agriculture,
which may have caused spatial variations in agricultural GHG emissions. China has a
vast territory and a wide distribution of agriculture. Due to significant differences in
agricultural production conditions and resource endowments among provinces, there are
large disparities in the agricultural development level and its structure. Extensive research
has been conducted on these regional disparities using various indicators, such as total
agricultural GHG emissions [12-14], agricultural GHG intensity [15,16], net agricultural
GHG [17], and agricultural GHG efficiency(productivity) [16,18,19]. These indicators all
show obvious regional heterogeneity in agricultural GHG emissions. However, most of the
related studies used the concept of “agriculture” to account for GHG emissions, treating
crop production (CP) and livestock farming (LF) as one whole subject. A small number of
studies separately examine GHG emissions from LF and find significant spatial significance
in both the total amount and intensity of GHG emissions. When it comes to the factors
influencing GHG, researchers have found that the level of economic development [20,21],
urbanization [20], technological development [22], agricultural economic level [23], agri-
cultural structure [20,24], level of agricultural mechanization [22], agricultural human
resources [25], and agricultural disaster severity [20] are the main factors influencing agri-
cultural GHG emissions and their spatial heterogeneity. Additionally, there is a certain
degree of spatial spillover effect, meaning that the agricultural GHG emissions of one
province are not independent but are influenced by its surrounding provinces [23,26,27].

Although there have been studies on the spatial heterogeneity of agricultural or
livestock GHG emissions, the majority of these studies included LF GHG emissions in
agriculture. However, the distribution of the CP and LF sectors varies across provinces
in China, resulting in spatial distribution heterogeneity for CP and LF GHG emissions.
Treating them as a whole in research would hide or weaken the spatial heterogeneity at a
more micro level. It would also mask the specific mechanisms of certain influencing factors,
leading to a significant discount in the targeted formulation of GHG reduction policies.
Moreover, the CP and LF sectors have strong complementarity, as CP provides feed for LE,
and LF provides organic fertilizers for CP sector. The synergetic action between the two
can theoretically achieve win-win benefits and GHG emissions reduction. Furthermore,
there is currently limited literature on the spatial spillover effects of agricultural GHG
emissions, and the existing studies mainly focus on the existence of spillover effects, paying
less attention to the magnitude and direction of these effects.

Therefore, this research aims to fill the gap by following aspects. First of all, the paper
innovatively divides agriculture into CP and LF, investigates the spatial distribution of
GHG emissions for each sector, respectively, and explores the mechanisms of their respec-
tive interactions with relevant factors. Then, the spatial heterogeneity and influencing
mechanisms of certain factors can be presented more specifically at a more micro level.
Secondly, the research further examines spatial spillover mechanisms of both sectors. The
spillover effect of agricultural GHG among provinces is widespread [23,26,27], while lim-
ited studies have explored it in depth. Last but not least, a strategic system for coordinated
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emission reduction in both sectors is designed based on the empirical results, which is a
breakthrough in the research of agricultural GHGs. In the context of China’s dual-carbon
goals, this study has both theoretical value and practical significance.

The rest of this paper is organized as follows (Figure 1). In Section 2, we present the
accounting process of GHG emissions from CP and LF and the theoretical aspects of the
spatial Durbin model (SDM). In Section 3, the spatial variation of GHG emissions from
CP and LF is firstly demonstrated from the scale and intensity, followed by the results
and discussion of SDM results. Synergic measures were put forward in Section 4, and we
concluded in Section 5.
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Figure 1. Methodology and process of this study.

2. Materials and Methods
2.1. GHG Accounting

The agricultural GHG accounting system based on the life cycle assessment (LCA)
method has been well-developed. The current system mainly includes the CO;, N,O,
and CH, emissions generated throughout the entire production process, including soil
emissions, energy input, and material input [28-30] (Table 1). Specifically, the agricultural
GHG encompasses four main parts: (a) N,O emissions from crop production. This mainly
refers to N,O emissions during soil tillage, and the emission coefficients (Table A1) per
unit area of different crops vary [20]. (b) Indirect emissions from agricultural inputs:
This mainly includes the indirect GHG generated by the use of pesticides, plastic films,
electricity, fertilizers, diesel, and other agricultural inputs during the production process
(Table A2). (c) CHy emissions from paddy fields. This refers to the direct CH,; emissions
generated by paddy fields. The emission coefficients (Table A3) per unit area vary due
to the hydrological, climatic, and soil conditions of different provinces, as well as the
rice planting season (early-, middle-, or late-season rice) [1]. (d) GHG emissions from
livestock. This includes the CH,; and N,O emissions generated by manure management
and ruminant activities of herbivorous animals (Table A4). The sum of emissions from
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a, b, and c represents the GHG emissions from crop cultivation, while d represents the
emissions from livestock breeding. The accounted N,O and CH,4 emissions are converted
into CO, equivalents using the conversion factors for greenhouse gases provided by the
IPCC. The CO; equivalent values are divided by the output value of crop cultivation and
livestock breeding, respectively, to obtain the GHG intensities of crop cultivation and
livestock breeding for each province in different years.

Table 1. GHG accounting process and data sources.

GHG Types GHG Sources

Accounting Process and Data Sources

a. N O from crop cultivation

The planting area of different crops such as rice, wheat
(spring and winter wheat), soybean, maize, vegetables,
sorghum, millet, potato, and peanut are multiplied by their
respective N, O emission coefficients and then converted
into the CO; equivalent. The planting area of various crops
comes from the China Statistical Yearbook and the China
Agricultural Yearbook.

b. Indirect emissions from

GHG from crop production agricultural inputs

The quantity of different inputs such as chemical fertilizer,
diesel, pesticide, agricultural film, machinery power, and
irrigation area is multiplied by the emission coefficients to
obtain the quantity of CO, emission. The data on various
types of agricultural inputs come from the China
Agricultural Yearbook and New China Agriculture 60
Years Statistics.

c. CHy emissions from paddies

CHj, emissions from early, late, and mid-season rice
(single-cropping late rice, winter paddy field, and wheat
stubble rice) in different provinces were obtained by
multiplying the planting areas with respective emission
coefficients and then converted into CO, equivalent. The
area data of various types of paddy fields come from the
China Agricultural Yearbook.

d. CH4 and NO; from ruminant

GHG f livestock f i e .
rom fivestock farming activities and manure management

After converting the sales quantity and stock quantity of
pigs, cattle, sheep, horses, donkeys, and mules into the
annual average feeding quantity, the CH,; and N,O
emissions obtained by multiplying the annual average
feeding quantity of different animals with the emission
coefficients are converted into CO, equivalent. Data on the
number of animals sold out and the number of animals in
stock are from the China Agricultural Yearbook.

2.2. Model Setting

Given the spatial correlation and spatial heterogeneity of GHG emission intensities
in CP and LF, this study adopts a spatial econometric model to explore the spatial hetero-
geneity effects and its influencing factors. To validate the rational selection of the model,
the spatial autocorrelation of GHG intensities in both sectors needs to be tested before
entering the spatial econometric model. Spatial autocorrelation can be divided into global
autocorrelation and local autocorrelation [31], which respectively investigate whether there
is a spatial correlation among all spatial units as a whole and the specific form of correla-
tion between individual spatial units and their surrounding units. In this study, only the
global spatial autocorrelation of CP and LF GHG intensity is verified to demonstrate the
scientific and rational application of the spatial econometric model. The commonly used
indicator for testing global autocorrelation is Moran’s I, and the formula for calculation is as
follows [21,32]:
nyiy Y Wij(xi — %) (x; — X)

! 1
L (i = X)L X Wy v

Moran’s I =
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where 7 represents each province, x; represents the GHG intensity of province i, X represents
the average GHG intensity of all provinces and W;; represents the spatial matrix between
provinces i and j. Considering the model test results and the province-level agricultural
situation, after systematic comparison and reference to similar literature, this study uses a
simple and classical binary adjacency matrix, where two regions with a common boundary
are considered adjacent [31,33]. The values on the main diagonal are set to 0, and Wj; for
adjacent provinces is set to 1; otherwise, it is set to 0 (Hainan is considered adjacent to
Guangdong). Moran’s I ranges between —1 and 1, where a value greater than 0 indicates
positive spatial correlation and clustering of GHG intensity among provinces, a value less
than 0 indicates discrete distribution, and Moran’s I = 0 indicates random distribution. The
larger the absolute value of Moran’s I, the greater the spatial correlation of GHG intensity
among provinces.

Spatial econometric models effectively address the limitations of traditional regression
models that assume spatial homogeneity, making them more reliable when applied to
research subjects involving spatial autocorrelation [31]. Spatial econometric models can be
divided into the spatial error model (SEM), spatial lag model (SLM), and SDM [33]. Among
them, the SEM focuses on analyzing the differences in the form of interactions between
different regions, and the SLM is commonly used to study the spillover effects of variables
on regions outside the focal region. The SDM can be seen as a synthesis of the SLM and
the SEM, which can be simplified to a SEM or a SLM under certain conditions [33]. The
theoretical form of the SDM is as follows:

Yi=06xWx Y+ B+ X, +Bo*W Xy + 1y (2)

In the Equation (2), Y; represents a 31 x 1 vector of GHG intensity in each province at time
t (number of provinces), X; represents a 31 x K matrix of exogenous explanatory variables,
where K is the number of selected explanatory variables, W represents a 31 x 31 spatial weight
matrix, which is also based on geographical adjacency, W * X; represents the interaction term
between the spatial weight matrix and the exogenous explanatory variables, and J,  represents
the corresponding coefficients to be estimated. If B, is zero, the SDM can be simplified to a SLM,
and if B + J * B1 = 0, the SDM can be simplified to a SEM. The theoretical form of the SDM,
further simplified by removing the subscript ¢, is as follows:

Y = (I—0W) 5 (BIW + BoWX) + (I — 6W) 3)

Taking the partial derivative of Y with respect to the k-th explanatory variable of the
i-th province yields:

aaﬁ . aayl Bk wipPor o wiNPok
X1k XNk
PTS  CH ) DUPRPY 1 YA
0x1) axNk - . T, . - N . : . .
N .. 9uN : : :
9x1k XNk wNn1Bok WN2B2u 0 Pk

= (I—6W) " (BuIn + BuW)

The direct effects of the SDM represent the average change in the dependent variable
(GHG emission intensity) in a province caused by the explanatory variable of that province,
which is the average of the diagonal elements of Equation (4) (d denotes the average of the
diagonal elements of the matrix):

direct effects = {(IN - 5W)_1(,31kIN + ﬁzkw)f ®)

The indirect effects of the SDM refer to the average change in the dependent variable
(GHG emission intensity) in neighboring provinces caused by the explanatory variable of a
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province, which is the average of the off-diagonal elements of Equation (4) (rsum denotes
the average of the off-diagonal elements of the matrix):

indirect effects = [(IN — W) (Bl + BuW) ©)

:| rsum

The total effect is the sum of the direct effects and indirect effects [33]. As for whether
the SDM in this study can be simplified to a SEM or a SLM, as well as the choice of fixed
effects or random effects models, they can be determined through the Wald test, LR test,
and Hausman test to select the most suitable model form. The model testing and empirical
analysis in this study were conducted using the Stata 15.0.

2.3. Variable Definition

In this study, the dependent variables are the GHG intensity of the CP and LF sectors.
When selecting the independent variables, we try to choose variables that could potentially
affect both the CP and LF sectors in order to compare the different mechanisms of the same
variable on the GHG intensity of both sectors. Based on relevant studies on the factors influ-
encing agricultural production and GHG emissions [34—40], two categories of 10 indicators are
chosen as explanatory variables (Table 2). The first category represents the macro development
of each province, including economic development level, economic structure, urbanization
rate, and urban-rural disparity, totaling four indicators. The second category represents the
agricultural development situation of each province, including agricultural structure, agri-
cultural financial support, disaster degree, agricultural development level, mechanization
level, and arable land occupancy rate, totaling six specific indicators. It is worth noting that in
the process of calculating these indicators, data such as output value and value-added have
been adjusted to constant prices in 1997. For some provinces and years, rural population data
were missing, and the annual changes were minimal. Therefore, the moving average method
was used to fill in the missing data. Before entering the empirical model, all indicators were
standardized. Furthermore, before the regression analysis, we first tested the multicollinearity.
The variance inflation factor (VIF) index of all the selected variables was less than 10, indicat-
ing that there was no significant collinearity between them. The meanings and descriptive
statistics of each indicator are shown in Table 2.

Table 2. Model variables.

Variable

Variable Name Description Max Min. Mean SD
Type
Independent CP GHG intensity GHG emissions/crop production value 0.3827 0.0172 0.0966 0.453
variable LF GHG intensity GHG emissions/livestock production value 1.9294 0.0080 0.2045 2.952
Economic development level Per capita GDP 33.04 221 826 0.546
Economic structure Proportion of added value of primary industry ~ 37.840 0.360 13.426 7.448
Urbanization rate Urban population/total population 0.896 0.149 0.481 0.163
Urban-rural disparity Urban/rural consumption level 8900 1.500 3.036 0.829
Agricultural structure Output value of crop production/output value of 5y 603 5124 (775
Explanatory livestock farming
variable Ao ricultural financial support The proportion of financial support for 0190 0021 0.092 0.033
agriculture in total financial expenditure

Disaster degree Disaster-affected area/crop planting area 0.936 0.000 0.257 0.163
Agriculture development level Agricultural added value/rural population 1354 0.133 0.510 0.268
Mechanization level Agricultural machinery power/rural population 10.845 0.026 1.196 0.810
Land occupancy rate Arable land area/rural population 10.301 0.634 2.228 1.678

3. Results

3.1. Spatial Distribution of GHG Emissions for CP and LF Sectors
In terms of the national total, the agricultural GHG emissions in 1997, 2009, and 2021

reached 256.24 million tons, 282.74 million tons, and 293.19 million tons, respectively (Figure 2).
The total agricultural carbon emissions show an increasing trend at the beginning, but the
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growth rate has slowed down sharply and is even showing signs of a peak point. Actually,
some studies have shown a peak in China’s agricultural GHG emissions in recent years [21,41].
Comparing the GHG emissions from the CP and LF sectors of each province (Figure 2), it can
be seen that provinces with a strong tradition of agriculture have higher total GHG emissions,
and in most provinces, GHG emissions from the CP sector are higher than those from the LF
sector. Provinces in the northwest such as Qinghai, Tibet, Ningxia, and Inner Mongolia, which
are mainly focused on the LF sector, have relatively low total GHG emissions, but the GHG
emissions from the LF sector are significantly higher than those from the CP sector. Yunnan,
Sichuan, and other provinces also have slightly higher GHG emissions from the LF sector
compared to the CP sector. The comparison of the CP and LF GHG emissions reflects the spatial
pattern of CP and LF production in each province. Furthermore, the total agricultural GHG
emissions and the proportion of GHG emissions from the CP and LF sectors have remained
relatively stable over the years, indicating that the structure of the CP and LF industries in each
province is relatively stable.

[ LF GHG [ CP GHG

(b) 2009 (c) 2021
Shanghai
Hainan
Qinghai
Tibet

Shanxi
Chongqing
Gansu
Shaanxi

Jilin
Liaoning
Guizhou
Fujiang
Xinjiang
Inner Mongolia
Zhejiang
Yunnan
Heilongjiang
Jiangxi
Hebei
Guangdong
Guangxi
Sichuan
Hubei

Anhui
Hunan
Jiangsu
Henan
Shandong

GHG (million tons)

Figure 2. The comparison of total GHG emissions from the CP and LF sectors in each province in
(a) 1997, (b) 2009, and (c) 2021.

Individually, looking at the GHG intensity of the CP sector (Figure 3), traditional
grain-producing provinces such as Hubei, Hunan, Jiangxi, and Guangxi generally have
higher GHG intensity. Among the above provinces, southern ones have higher GHG
intensity than those in the northern part. This is mainly because of the higher proportion
of rice in the crop structure of southern provinces. The GHG footprint of rice in China is
3.3 times that of maize and 2.1 times that of wheat [20]. In terms of GHG intensity in the
LF sector, provinces such as Tibet, Qinghai, Inner Mongolia, and Xinjiang are significantly
higher than other provinces, and they also have higher GHG emissions from livestock
compared to provinces with high livestock GHG emissions, such as Henan and Sichuan.
This is because these provinces have a higher proportion of ruminant animals, such as
cattle and sheep, in their LF sector, and these animals have much higher GHG intensity
due to the CHy emissions from rumination.
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Figure 3. The comparison of GHG intensity from the CP and LF sectors in each province in (a) 1997,
(b) 2009, and (c) 2021.

Comparing the carbon intensity of the CP and LF sectors, it can be seen that the GHG
intensity in the LF sector is much higher than that in the CP sector in all provinces, further
confirming the viewpoint that the GHG footprint of livestock is higher than that of crop
production [42]. Looking at the trends over the years (Figure 3), the GHG intensity of
CP and LF sectors in each province has decreased significantly, owing to the substantial
improvement in agricultural production efficiency in China in recent years [5]. However,
the distribution pattern of GHG intensity in the CP and LF sectors remains relatively stable.
The LF GHG intensity is still high in provinces such as Qinghai, Tibet, Ningxia, and Inner
Mongolia, which focus on LF, while the CP GHG intensity in provinces such as Hunan and
Jiangxi has also been consistently higher than that in other provinces.

3.2. Spatial Autocorrelation Test

A spatial autocorrelation test on the GHG emission intensity of the CP and LF sectors
is conducted to explore whether provinces with similar GHG emission intensity show
spatial clustering and some degree of spatial heterogeneity.

During the entire study period, the p-values and z-values of Moran’s I for LF GHG
intensity passed the test, and Moran’s I for every year were greater than 0, indicating
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significant spatial autocorrelation and strong spatial clustering of LF GHG intensity. For CP
GHG intensity, most years also showed spatial autocorrelation, but a few years (2012-2017)
did not pass the test (Figure 4). Nevertheless, this still suggests the presence of spatial
autocorrelation and spatial clustering in the CP GHG intensity. The main reason is that
the calculated Moran’s I is based on a simple binary geographic adjacency matrix, which
assumes that if spatial units are not adjacent, they do not influence each other, and even
if they are adjacent, it assumes equal influence, which cannot fully explain the spatial
clustering of GHG intensity. For example, in 2017, Sichuan Province had a crop-to-livestock
output ratio of 2.4, while the ratios of Chongqing and Guizhou in the eastern neighbor-
hood were 1.9 and 3.2, respectively, and the ratios of Qinghai and Tibet in the western
neighborhood are only 1.1 and 1.6.
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Figure 4. The Moran’s I of GHG intensity of the (a) CP and (b) LF sectors. *** means p < 0.01, and
accordingly, ** means p < 0.05, * means p < 0.1.

The spatial autocorrelation is relatively stable in the historical trends, especially for
Moran’s I of LF GHG emission intensity. The Moran’s I of LF GHG intensity shows a
downward trend over time (Figure 4), which indicates that in the context of significantly
improved overall agricultural production efficiency in China [5], the provinces that orig-
inally had high GHG emission intensity experienced a gradual decrease in production
efficiency improvement. The gap between them and provinces with low emission intensity
is gradually narrowing. It should be noted that Moran’s I aims to prove the existence of
spatial spillover effect and is only the first step to verifying the rationality of SDM [43-45].
The following steps, such as the Hausmann test, LM test, and LR test, will be conducted to
show the existence of spatial effect and prove the suitability of spatial econometric models.
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3.3. Model Test

A Lagrange multiplier (LM) test was conducted to further examine the suitability of
the spatial econometric models. According to the criteria proposed by Anselin (1991) and
the LM test results (Table 3), it is found that the CP GHG intensity is better suited for a
SEM, while the LF GHG intensity is better suited for a SDM. Subsequently, the Hausman
test results (Table 4) indicate that the CP GHG intensity should use a fixed effects model,
while the LF sector is better suited for a random effects model. It can be seen from the
likelihood ratio (LR) test that both the time fixed effects and individual fixed effects are
significant. Therefore, the appropriate model for the CP sector is the time-individual fixed
effects model. The Wald test and LR test results (Table 5) reject the hypothesis that the SDM
can degenerate into the SEM and the spatial autoregressive model at a 1% significance.
To summarize, the CP GHG emission intensity is best analyzed using an individual-time
fixed effects spatial Durbin model, while the LF sector is more suitable for a random effects
spatial Durbin model.

Table 3. LM test statistics and significance.

LM Test CP Sector LF Sector
Spatial error model L?{glsngteLmultlpher 213.494 257.791
obust Lagrange 128.813 ** 14.577 **
multiplier
3 3 EE EE
Spatial lag model Lail{glsngteLmultlpher 85.530 321.804
obust ragrange 0.849 78.590 ***
multiplier

Note: **p < 0.01.

Table 4. Hausmann test results.

Variable Classification Statistic p-Value
CP GHG intensity 10.59 0.5646
LF GHG intensity 486.05 0.0000

Table 5. Results of Wald test and LR test.

Test Types Variables Can SDM Be Can SDM Be
P Simplified to SAR?  Simplified to SEM?
R CP GHG intensity 41.70 40.07 ***
test LF GHG intensity 86.61 *** 157.55 *+*
Wald CP GHG intensity 33.26 *** 40.88 ***
ald test LF GHG intensity 87.90 **+ 150.10 ***

Note: **p <0.01.

3.4. Results of SDM

The regression results of the SDM (Table 6) show that the autoregressive coefficients of the
CP and LF emission intensity pass the test at the 10% and 1% confidence levels, respectively.

From the regression coefficients and their significance, it can be observed that for the
CP sector, factors such as economic development level, urbanization level, agricultural
structure, and agricultural development level can locally reduce GHG intensity. In particu-
lar, the inhibitory effect of agricultural development level is the most significant. On the
other hand, the mechanization level and land occupancy rate increase CP GHG emission
intensity, with the latter having a larger impact. In terms of spatial effects, factors such
as economic development level, rural-urban disparity, agricultural financial support, and
land occupancy rate can increase the GHG intensity of neighboring areas, with economic
development level having the most significant influence.
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Table 6. SDM estimation results.

CP GHG Intensity

LF GHG Intensity

Explanatory Variables
Main Effects (Main)  Spatial Effects (Wx) ~ Main Effects (Main)  Spatial Effects (Wx)
Economic development level —0.315 % 1053 0.0422 ~0.101
(0.113) (0.304) (0.0504) (0.107)
Economic structure 0.0638 0.117 0.0767 *** 0.0285
(0.0544) (0.135) (0.0242) (0.0361)
Urbanization rate —0.244 *** 0.169 0.0545 ** —0.202 ***
(0.0552) (0.124) (0.0264) (0.0560)
Urban-rural disparity —0.0360 ** 0.158 ** 0.0915 *** 0.0808 ***
(0.0297) (0.0685) (0.0137) (0.0230)
Agricultural structure —0.296 *** 0.0719 0.0859 *** —0.0516
(0.0436) (0.0871) (0.0196) (0.0323)
Agricultural financial support 0.0141 0.234 —0.0728 = —0.158
& PP (0.0400) (0.0898) (0.0182) (0.0272)
Disaster degree —0.0255 ** —0.0260 ** 0.0214 ** —0.0426 **
(0.0189) (0.0382) (0.00939) (0.0179)
Agriculture development level —0.636 " —0.148 ~0.00245 0.294 "
& P (0.0643) (0.141) (0.0294) (0.0519)
Mechanization level 0.0464 ** 0.0210 —0.0346 *** —0.0148
(0.0235) (0.0504) (0.0114) (0.0216)
Land occupancy rate 0.533 *** 0.345 * 0.0530 ** —0.0165
(0.0814) (0.181) (0.0360) (0.0678)
Constant (200(1)22)7
0.113* 0.440 ***
e (0.0594) (0.0458)
R? 0.6158 0.6578
Log-likelihood —927.1855 —927.1855

Note: ***p < 0.01, ** p < 0.05, * p < 0.1; Values in parentheses are the standard deviations.

For the LF sector, the mechanization level and financial support for agriculture play a
certain inhibitory role in the region, although their effects are relatively weak. On the other
hand, economic structure, urbanization rate, rural-urban disparity, agricultural structure,
and disaster degree contribute to increased LF GHG emissions. Rural-urban disparity
and agricultural development level can promote GHG intensity in neighboring provinces,
while urbanization rate, agricultural financial support, and disaster degree can inhibit GHG
intensity in adjacent areas.

After determining whether various factors have an impact on the GHG intensity of
the CP and LF sectors in the local and neighboring areas, the direct effects, indirect effects,
and total effects of these factors are discussed to distinguish the effects of each factor more
accurately (Figure 5). It can be observed that there are significant differences in the effects
of various factors on the GHG intensity of the CP and LF sectors, whether in the local
or adjacent areas. Although the regression coefficients of some factors’ direct effects or
indirect effects are not significant, the magnitude and direction of these effects on the GHG
intensity of the CP and LF sectors can still be observed to some extent.

Firstly, for the CP sector, factors such as economic development level (direct effect
—0.29; indirect effect +1.13), urbanization level (—0.24; +0.16), rural-urban disparity (—0.03;
+0.17), and agricultural structure (—0.29; +0.05) can reduce the GHG intensity in the local
area while increasing the GHG intensity in neighboring areas, with the increasing effect
of economic development level being particularly significant. Economic structure (+0.06;
+0.16), agricultural financial support (+0.02; +0.26), mechanization level (+0.05; +0.03), and
land occupancy rate (+0.54; +0.44) can increase the GHG intensity of the CP sector in both
the local and adjacent areas, while the disaster degree (—0.03; —0.03) can reduce the GHG
intensity in both areas.
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Figure 5. Comparison of regression coefficients between GHG intensity and variables in the (a) CP
and (b) LF sectors. The dotted line in the figure indicates the variable with an insignificant regression
coefficient. The total effect is the sum of direct and indirect effects.

For the LF sector, factors such as economic structure (+0.08; +0.11), rural-urban dis-
parity (+0.11; +0.21), agricultural development level (+0.03; +0.50), and land occupancy
rate (+0.05; +0.01) can increase the GHG intensity in both the local and adjacent areas,
although the increasing effect of land occupancy rate is small. Economic development level
(+0.03; —0.15), urbanization level (+0.04; —0.30), agricultural structure (+0.09; —0.03), and
disaster degree (+0.02; —0.06) have an increasing effect on GHG intensity in the local area
but reduce the GHG intensity in adjacent areas, with urbanization level having the most
significant effect on reducing the LF GHG intensity in adjacent areas. Both agricultural
financial support (—0.10; —0.31) and mechanization level (—0.04; —0.05) factors can reduce
the carbon emission intensity of the livestock sector in both the local and adjacent areas,
but the regression coefficient former factor is much larger than that of mechanization level.

In summary, the mechanisms of various factors on the GHG intensity of the CP and
LF sectors are significantly different. In terms of the magnitude of their effects on both
sectors, factors such as economic development level, agricultural development level, and
land occupancy rate have a greater impact on the GHG intensity of the CP sector while
having a smaller impact on the GHG intensity of the LF sector. In terms of the direction
of their effects on both sectors, factors such as economic development level, urbanization
level, agricultural structure, agricultural financial support, agricultural development level,
and mechanization level show completely opposite effects, i.e., while increasing the GHG
intensity of the CP sector, they can reduce the GHG intensity of the LF sector, and vice
versa. It is generally believed that an increase in per capita arable land will improve
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production efficiency due to the scale effect of agricultural production, thereby reducing
agricultural GHG emissions. However, this study found that per capita arable land has a
certain increasing effect on the GHG intensity of the CP sector after separating the CP and
LF sectors. This may be because provinces with a higher per capita arable land are mainly
grain-producing areas, such as the northeast provinces, compared to other provinces
producing cash crops, which have relatively lower value-added products, resulting in
relatively higher GHG intensity (GHG emissions per unit of value-added).

4. Construction of a Synergistic GHG Reduction System

As agriculture plays a fundamental role in food supply, emission reduction measures
in the CP and LF sectors should ensure a coordinated and comprehensive approach. It
is necessary to guarantee food security while reducing GHG emissions in the production
process, contributing to the achievement of the carbon reduction goals. In the context of
dual-carbon goals, based on the differences in spatial distribution and influencing mech-
anisms of the CP and LF sectors, this study first proposes specific emission reduction
measures tailored to each sector. Then, based on the synergy of multiple measures, it
further progresses to the coordination of crop-livestock integration and regional coordina-
tion, proposing a strategic framework for coordinated emission reduction at three levels
(Figure 6). This framework aims to provide guidance and reference for achieving dual
goals of agricultural GHG reduction and food security.
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Figure 6. Framework for coordinated emission reduction measures at three levels.

4.1. Synergistic Measures

Because of the significant differences in the spatial distribution and influencing mecha-
nisms of the CP and LF sectors, specific emission reduction measures need to be formulated
for each sector. For the CP sector, while ensuring food supply, measures such as improv-
ing nitrogen fertilizer efficiency, optimizing irrigation patterns, developing nitrification
inhibitors, and exploring new nitrogen fertilizer technologies can reduce emissions of
NO from fertilizer sources [46]. Measures such as precise fertilizer regulation, optimizing
cultivation practices, implementing organic matter return, and optimal water management
can help reduce CHy emissions from paddy fields. Implementing plans to reduce inputs
and increase the efficiency of agrochemicals such as fertilizers, pesticides, and agricultural
films can indirectly achieve GHG reduction by improving agricultural eco-efficiency and
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reducing input quantities. In addition to emissions reduction, the carbon sequestration
capacity of soil should not be overlooked. By promoting the development of technologies
related to soil organic carbon, emission reduction, and carbon sequestration can be achieved
in coordination. For the LF sector, the main sources of GHG emissions are enteric fermenta-
tion and manure management. Measures such as precision feeding, rapid CH4 monitoring,
and optimizing feeding structures can be implemented to reduce CH, emissions from
enteric fermentation. Regarding manure management, measures such as manure return
to fields, biogas utilization, and inhibition of GHG synthesis can be adopted to reduce
emissions. Furthermore, promoting standardized and ecological farming practices and
optimizing the structure of LF can be effective means of reducing GHG emissions.

4.2. Crop-Livestock Integration

Continued efforts should be made to promote the transformation of agricultural pro-
duction towards a circular “resources—products—renewable resources—products” mode
and accelerate the development of integrated crop-livestock circular agriculture. This
approach will achieve overall economic, ecological, and social benefits greater than the
sum of its parts. Promoting the recycling of crop straws is an important step. Establishing
a sound system for straw collection, storage, and transportation, promoting the utilization
of straw as feed, and popularizing technologies such as straw silage, baling, ammoniza-
tion, and pellet production can serve as a linkage for driving integrated crop-livestock
systems. Additionally, the utilization of livestock manure for biogas production, through
the construction of biogas digesters, can tightly connect the livestock and crop sectors,
achieving the integrated development of crop-livestock systems and biogas industries. This
can effectively reduce agricultural GHG emissions and achieve energy substitution for
energy savings and emission reductions in other sectors.

4.3. Regional Coordination

Given the spatial heterogeneity of the CP and LF sectors and their different mecha-
nisms of factors, regional synergy in agricultural GHG reduction should be implemented
from three aspects: (a) Measures need to be tailored to local conditions. Considering
varying economic, social, and agricultural conditions, each province or region should
formulate GHG reduction policies in the CP and LF sectors that are tailored to their specific
circumstances. For example, agricultural financial support policies can increase CP GHG
emissions intensity for both local provinces and neighboring provinces, but for the LF sector,
it can significantly reduce GHG intensity in the local provinces and surrounding provinces.
Therefore, using agricultural financial support policies to achieve GHG emissions reduction
goals is only applicable to major livestock-producing provinces, while traditional major CP
provinces may need to rely on other measures. (b) Regional collaboration is crucial. Both
the CP and LF sectors have evident spatial spillover effects on GHG intensity. One single
factor that reduces local GHG intensity may also affect or even increase GHG intensity
in neighboring areas. This “domino effect” necessitates increased cooperation among
provinces when formulating relevant GHG reduction measures. Joint exploration of GHG
reduction technologies and improved agricultural resource utilization efficiency should be
pursued. (c) Top-down coordination is necessary. At the national level, a unified strategy
should be employed, considering overall grain supply and food security. This involves
coordinating and optimizing the production layout of the CP and LF sectors.

5. Conclusions

Broadly defined, GHG emissions in agriculture include both the CP and LF sectors.
However, studying them as a whole may obscure or weaken the micro-level spatial charac-
teristics and specific mechanisms of factors. This study separates the CP and LF sectors
from the macro “agriculture” and conducts separate research on their GHG emissions
characteristics. Spatial econometric models are used to explore and compare the spa-
tial characteristics and mechanisms of factors of both sectors. A system of coordinated
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measures, integrated crop-livestock production, and regional collaboration for emissions
reduction is then proposed. The main conclusions and policy implications are as follows.

The spatial distribution of GHG emissions in the CP and LF sectors is consistent
with the spatial patterns in each province. Because the GHG emission intensity of LF is
much higher than that of the CP sector, and the GHG intensity of rice planting is higher
than that of other planting, the GHG emission intensity of all provinces shows obvious
spatial heterogeneity. The growth rate of total agricultural GHG has slowed down sharply
and is even showing signs of an inflection point in recent years due to the significant
drop in intensity for both sectors caused by the increase in agricultural productivity. Ata
critical time when agricultural GHG is approaching the peak point and with the need for
carbon neutrality, further improvement in agricultural productivity is necessary. However,
agriculture is a prerequisite for human survival and development, and the GHG reduction
in this field must be made only if food supplies are met.

The magnitude of the impact of different factors on GHG intensity in the CP and LF
sectors also varies dramatically. Traditionally, the increase of agricultural financial support
and mechanization level are all important policy tools to boost agricultural productivity.
However, our more specific empirical research showed that the increase in agricultural
financial support and mechanization level can increase the GHG intensity of the CP sector
while decreasing the GHG intensity in the LF sector. Other factors also affect both CP
and LF sectors at different magnitudes and directions, indicating that agricultural GHG
reduction policies need to be tailored to specific sectors. The spatial spillover effects of both
sectors also have important policy implications. When formulating a certain policy tool to
reduce local GHG emissions, its increasing effect on the GHG of neighboring areas must be
considered comprehensively, which requires the coordination of higher-level authorities.
Provinces with higher CP GHG intensity are often the main food-supplying regions that
play a strategic role in the whole country or even worldwide, so when considering GHG
reduction, their contribution to food security should be emphasized.

This study has certain inadequacies, which require further research in the future.
Although a more detailed study than previous research was conducted, the classification
of the sectors still needs to be more specific. Research on specific crop species or animal
types is necessary. Furthermore, our investigation focuses on a provincial perspective. In
the future, the following research should deepen the research to a more microscopic level.
The research at the county level is of greater significance to the micro-level GHG emission
mechanism and GHG reduction policies.
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Appendix A

Table A1. Coefficients for N,O from crop cultivation.

Sources Emission Coefficients (kg-hm~—2)

Rice 0.24
Spring-season wheat 0.4

Winter-season wheat 1.75
Soybean 2.29
Maize 2.532
Vegetables 4.944
Other dryland crops 0.95

Table A2. Coefficients for indirect emissions from agricultural inputs.

GHG Sources Emission Coefficients
Pesticide 4.9341 kg-kg ™!
Chemical fertilizer 0.8956 kg-kg 1
Agricultural film 5.18 kg-kg !
Agricultural irrigation 266.48 kg-hm—2
Agricultural machinery 0.18 kg-kW!
Agricultural energy(diesel) 0.5927 kg-kg !

Table A3. Coefficients for CH4 emissions from paddies.

Provinces Early-Season Rice Mid-Season Rice Late-Season Rice
Beijing 0 13.23
Tianjin 0 11.34 0
Hebei 0 15.33 0
Shanxi 0 6.62 0
Inner Mongolia 0 8.93 0
Liaoning 0 9.24 0
Jilin 0 5.57 0
Heilongjiang 0 8.31 0
Shanghai 12.41 53.87 27.5
Jiangsu 16.07 53.55 27.6
Zhejiang 14.37 57.96 34.5
Anhui 16.75 51.24 27.6
Fujian 7.74 4347 52.6
Jiangxi 15.47 65.42 45.8
Shandong 0 21 0
Henan 0 17.85 0
Hubei 17.51 58.17 39
Hunan 14.71 56.28 34.1
Guangdong 15.05 57.02 51.6
Guangxi 12.41 47.78 49.1
Hainan 13.43 52.29 49.4
Chonggqing 6.55 25.73 18.5
Sichuan 6.55 25.73 18.5
Guizhou 5.1 22.05 21
Yunnan 2.38 7.25 7.6
Tibet 0 6.83 0
Shaanxi 0 12.51 0
Gansu 0 6.83 0
Qinghai 0 0 0
Ningxia 0 7.35 0
Xinjiang 0 10.5 0

62



Land 2023, 12, 1787

Table A4. Coefficients for GHGs from ruminant activities and manure management.

Sources CHj4 from Ruminant Activities CH, from Manure Management NO; from Manure Management
(kg per Year) (kg per Year) (kg per Year)
Non-dairy cattle 51.4 1.5 1.37
Dairy cattle 68 16 1

Horses 18 1.64 1.39
Donkeys 10 0.9 1.39
Mules 10 0.9 1.39
Pigs 1 3.5 0.53
Sheep 5 0.16 0.33
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Abstract: As one of the most densely populated, economically developed, and outwardly open
urban agglomerations in China, the Pearl River Delta (PRD) urban agglomeration is a key player
in achieving China’s carbon peak and carbon neutrality targets. This study analyzes low-emission
development by examining the evolutionary patterns of carbon dioxide (CO;) emissions and the
decoupling relationship between economic growth and CO, emissions, using the latest available data
from 2000 to 2020. Here are the main findings: (1) We found a significant fluctuation in the decoupling
statuses between economic advancements and CO, emissions within the PRD domain. Predomi-
nantly, a weak decoupling scenario was observed, where economic proliferations were paralleled by
nearly equivalent increments in CO, emissions. (2) The growth rate of carbon emissions increased
significantly relative to economic expansion during 2015-2020, especially pronounced in cities such
as Guangdong, Zhuhai, Foshan, and Dongguan. This delineates the persistent challenges in steering
towards a pathway of energy conservation and emission abatement in the region. (3) Furthermore, a
differential role of elasticity factors was noted across cities: Guangzhou and Shenzhen witnessed a
significant influence of energy-saving elasticity in fostering a decoupling between economic surge and
CO, emissions, whereas in other cities, the emphasis shifted towards emission-reduction elasticity as
a more vital determinant. The results of this study are of great significance for guiding policy makers
and stakeholders in urban clusters across China and in similar regions globally to achieve low carbon
development goals.

Keywords: CO, emissions; decoupling; tapio indicator; urban agglomeration; China

1. Introduction

The flourishing development of the global economy and acceleration of urbaniza-
tion and industrialization have led to a significant increase in irreversible fossil energy
consumption and an unprecedented rise in carbon dioxide (CO,) emissions [1-3]. Global
warming is now a serious worldwide public environmental concern [4,5]. China, being the
largest CO, emitter globally, has set emission-reduction targets to reach an emission peak
before 2030 [6]. Achieving this ambitious goal will require region-level efforts, particularly
in urban carbon reduction. Urban agglomeration has emerged as a key issue in reducing
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emissions, and China has implemented policy measures to promote the development of
urban agglomeration and use its effects to reduce emissions.

The formation, development, and expansion of urban clusters are clearly the next
major trend in urban spatial organization, in the dual processes of global urbanization
and economic globalization. According to the 2015 Sustainable Competitiveness of Cities
Worldwide Report by the United Nations Habitat Assembly, the world’s giant cities have
begun to merge into super-giants or super-urban clusters [7]. Because urban economic
activity accounts for approximately 80% of global gross domestic product (GDP) values,
66% of energy consumption, and a staggering 70% of carbon emissions [8], this trend clearly
indicates that urban clusters will become one of the most important geographical units for
reducing emissions. Therefore, it is essential to focus on sustainable development strategies
in urban clusters to reduce their impact on the environment and promote a low-carbon
future. China has undergone industrialization and urbanization at a pace and scale that
surpasses any other country in the world, with many new cities emerging and growing in
the process [9-11]. Among them, the Pearl River Delta (PRD) Urban Agglomeration is a
world-class urban agglomeration in China [12]. The PRD Urban Agglomeration, located
in the central-southern part of Guangdong Province. It covers approximately 54,000 km?
and comprising nine cities, this region encapsulates a mere 20% of Guangdong’s land
area but contributes over 80% to the provincial GDP [13,14]. This dynamic urban cluster,
which contributed 8.65% to the nation’s GDP in 2022, not only supports the economic
spine of the province but also plays a pivotal role in China’s One Belt, One Road (Belt and
Road) Initiative.

Despite its economic prowess, the PRD’s growth model has leaned heavily on resource
consumption, manifesting a high reliance on fossil fuels and a notable environmental
toll [15]. The region’s transformation of nonurban land into urban spaces to facilitate its
growth has been at the expense of natural ecosystems, farmland, and water bodies. The
current socio-economic structure, centered on resource consumption, poses a significant
obstacle to the transition towards a green and low-carbon urban development, with limited
synergistic benefits observed in terms of resource environment, economic development,
and social well-being at this stage.

As China navigates the era of low-carbon economies, the PRD stands at the forefront
of efforts aiming for sustainable development and emission reduction, notably under the
Greater Bay Area project. Addressing greenhouse gas emissions here is not just impera-
tive but holds the promise of showcasing a model of sustainable development in China.
However, to truly materialize this vision, understanding and addressing the CO, emissions
intricacies within the PRD is vital. In this context, previous studies that concentrated primar-
ily on regional CO, emission differences appear to have missed the nuanced developmental
disparities across cities within the PRD. This leaves a significant gap in our understanding
of regional CO, emissions and their underlying complexities [16]. Furthermore, overlook-
ing developmental differences within the city cluster can hinder the targeted control of
CO; emissions, leading to unbalanced regional environmental development. Considering
the imbalance in regional development, it is beneficial to formulate emission-reduction
policies suitable for the development of different cities rather than using a one-size-fits-all
approach. Therefore, this study focuses on analyzing CO, emissions in the PRD from the
perspective of regional development imbalances and proposes targeted emission-reduction
measures for the region.

The complex nexus between regional economic development, energy consumption,
and carbon emissions has held a prominent place in scholarly and policy dialogues globally,
serving as a critical determinant in shaping sustainable developmental strategies [17-19].
This relationship, often convoluted, brings forward a multi-faceted interaction where the
aggressive pursuit of economic growth sometimes translates into escalated levels of energy
consumption and heightened carbon footprints, affecting climate change patterns and
environmental stability.
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Globally, a myriad of studies has ventured deep into understanding these interlinkages,
unfolding varying dynamics across different nations and regions. For instance, Chontanawat
et al. (2008) embarked on a systematic analysis encompassing over a hundred countries,
thereby presenting an elaborate canvas that allows for international comparison and policy
crafting [20]. Complementing this, Bella et al. (2014) further analyzed the relationship
within OECD countries, examining the interdependencies between CO, emissions, elec-
trical power consumption, and GDP, which offers insightful inputs into understanding
the dynamics in developed nations [21]. Furthermore, the collective work of Ntanos et al.
(2015) charted the global trends in energy consumption and CO, emissions, presenting an
encompassing view that helps to dissect the global patterns and implications [22].

In this ever-expanding urban landscape marked by relentless industrialization, cities
globally are grappling with escalating carbon emissions, which in turn place an enormous
strain on the environment. This forms a critical backdrop for the intensified scholarly and
policy focus on the decoupling of economic growth from resource consumption and envi-
ronmental degradation. As cities witness rapid expansion and the continuation of indus-
trialization, there has been an increasing trend in carbon emissions, exerting a substantial
burden on the environment. In this context, the decoupling of economic growth from
resource consumption and environmental pollution emerges as a pivotal and pressing
topic of exploration. In recent years, the theory of decoupling has served as a vital tool in
assessing and scrutinizing the relationship between economic growth and CO, emissions.
Initially rooted in the field of physics to measure disruptions or disconnections between
physical quantities, it has evolved to encompass the intricate interplay between the econ-
omy and the environment. To mitigate the challenges brought forth by urban expansion,
the Organization for Economic Co-operation and Development (OECD) introduced the
concept of decoupling, aiming to sever the links between economic growth, resource con-
sumption, and environmental degradation. Using the OECD decoupling theory, de Freitas
and Kaneko [23] investigated the complete decoupling of Brazil’s energy consumption,
CO; emissions, and economic growth rate from 2004 to 2009. Tapio’s decoupling elasticity
method [24] used the European transportation industry to examine the relationship be-
tween economic growth and CO, emissions, indicating a weak decoupling between CO,
emissions in the transportation industry and GDP. Since then, Tapio’s elasticity decou-
pling theory has gained widespread application in various fields [8,25,26]. For example,
Raza and Lin [27] used Tapio’s decoupling method to estimate the decoupling status and
mitigation potential of CO, emissions from the transport sector in Pakistan for 1984 to
2018. Lin et al. [28] employed the OECD and Tapio decoupling analysis to evaluate the
relationship between CO, emissions and GDP in South Africa from 1990 to 2012. The
findings indicated that South Africa experienced expansive negative decoupling between
CO; emissions and GDP during 1990 to 1994, followed by weak decoupling between 1994
and 2010, and achieved strong decoupling from 2010 to 2012.

The examination of the decoupling relationships between energy consumption, eco-
nomic growth, and CO, emissions has been extensively studied through various research
models. Notwithstanding, the majority of these investigations have been conducted at
national or interprovincial scale [29-31], leaving a noticeable gap in literature concerning
the urban scale. Moreover, these research models predominantly focus on total CO, emis-
sions, offering an overly macroscopic view and neglecting the pivotal aspects of energy
conservation and emission reduction elasticity.

In light of the existing literature and methodologies employed, our study ventures to
fill this research void by introducing a nuanced approach to the decoupling analysis. We
innovatively decompose decoupling elasticity into two distinct facets: emission reduction
elasticity and energy-saving elasticity. This methodological innovation permits an in-
depth exploration of the primary factors influencing the decoupling of CO, emissions
from economic growth, extending the understanding of decoupling dynamics at the urban
agglomeration level.
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This study presents several noteworthy contributions to the existing body of literature.
Firstly, it pioneers in spotlighting the disparities in CO, emissions within the PRD urban
agglomerations, offering a fresh and critical lens to scrutinize emission reduction strategies.
This nuanced approach potentially sets a precedent for similar analyses in other urban
agglomerations, fostering a more comprehensive understanding of urban-scale decoupling
phenomena. Secondly, it enhances the existing decoupling theory which has been primarily
applied at broader scales like national, regional, or sectoral levels, by zooming in on the
intricacies of urban agglomerations. By meticulously dissecting the decoupling index into
emission-reduction and energy-saving elasticity components, this study not only sheds
light on the multifaceted nature of decoupling processes but also paves the way for crafting
more targeted and effective strategies for sustainable urban development.

2. Data and Methods
2.1. Tapio Decoupling Method

The OECD defined decoupling as breaking the link between economic growth and
environmental degradation, and developed a method for calculating decoupling that has
been widely used since then [23]. However, the OECD decoupling index is too sensitive to
the choice of the base period, and thus the stability of its calculation results is poor [32].
Based on the OECD decoupling model, Tapio introduced the concept of decoupling elastic-
ity to construct the decoupling index, which addressed the difficulties in choosing the base
period in the OECD decoupling model [33]. Tapio’s decoupling theory provides reasonable
decoupling positions for eight possible combinations of environmental pollution variables
and economic variables, and is currently the most widely used method to study decoupling
relationships [8].

_ %AC _ @/
E(c, cpp) = /% GDP — (GDPLGDPO)/GDP" @)

2.2. Decoupling Decomposition Method

In expanding upon the Tapio decoupling method, this study conceptualizes a frame-
work for analyzing the relationships among economic activities, energy consumption, and
carbon emissions. The approach integrates insights from the Tapio decoupling model with
the Economy-Energy—Environment (3E) system theory to foster a deeper understanding of
the interactions between these elements.

In this analysis, energy consumption is introduced as a mediating decomposition
variable in the decoupling model between economic growth and CO, emissions. Thus, a
causal chain for the decoupling model is formulated as shown in Equation (2):

%AC %AEC (Ct =) /co (EC' — Ec?)/c?
E, cpp) = X = X (2)
’ %AEC %AGDP (EC[ _ ECO)/ECO (GDPt _ GDPO) /GDPO

%AC . s .

where %AGDP represents the decoupling elasticity between economic growth and CO,

emissions; % indicates the emission-reduction elasticity between energy consumption
. . . %AEC - . .. .

and CO; emissions; and s zx5p is the energy-saving elasticity between economic growth

and energy consumption.

2.3. Data Sources

The CO; emission data used in this paper are based on those provided by the China
Carbon Accounts and Datasets (CEADs) (https:/ /www.ceads.net/data/county/, accessed
on 10 June 2023), which are derived from the inversion of Defense Meteorological Satellite
Program/the Operational Linescan System (DMSP/OLS) and National Polar-orbiting
Partnership/Visible Infrared Imager Radiometer Suite (NPP/VIIRS) nighttime lighting
data provided by the National Geomatics Center of China (NGCC) from 1997-2017. The
two sets of DMSP/OLS and NPP/VIIRS sensors can finely capture low-intensity nighttime
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light sources produced by urban centers or even by small-scale residential land or traffic,
which provides an ideal data source for estimating energy consumption from human
activities [34]. In the calibration of nighttime lighting data, Chen et al. [35] adopted the
particle swarm optimization-back propagation (PSO-BP) algorithm to unify DMSP/OLS
and NPP/VIIRS satellite images, which resulted in high-quality, stable nighttime light data
with long time span, wide coverage, and uniform aperture. This data is not only useful for
remote sensing, but also for population distribution, urban expansion, GDP prediction, and
pollutant estimation [36]. This data is publicly available in the China Carbon Accounting
Database, which has been widely used in academic CO, emission-related studies [15].

3. Results and Discussion
3.1. Spatiotemporal Characteristics of Energy Consumption and CO, Emissions

Figure 1 shows the CO, emission structure of the PRD urban agglomeration from
2000 to 2020. The share of carbon emissions from non-PRD cities in the province increased
by 10.92% in 2020 relative to the base period of the study as a result of accelerated eco-
nomic development and urbanization. However, the PRD is still the main area affecting
changes in the carbon emission levels in Guangdong Province. Among the cities in the
PRD, Guangzhou's total carbon emissions are significantly higher due to the influences
of population size, economic growth, industrial manufacturing, and industrial structure.
The total carbon emissions of Foshan and Dongguan are just behind those of Guangzhou.
This is mainly because these two cities have been influenced by industrial transfers in
Hong Kong, Macao, Guangzhou, and Shenzhen in recent years. Shenzhen has knowledge-,
technology-, and capital-intensive industries as its pillar industries, among which high-tech,
cultural and creative, and financial industries have large shares. Therefore, Shenzhen is
less dependent on energy, and even though it has the largest GDP, its carbon emission level
is not the highest among the PRD cities.
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Figure 1. CO, Emissions of cities in the Pear] River Delta (PRD) urban agglomeration, 2000-2020.

The per capita CO, emissions and CO, intensity indicators exclude the influences
of city size and total economic volume; thus, they can more objectively compare the
environmental pressures brought by socioeconomic activities (Figure 2). The overall CO,
intensities of PRD cities show fluctuating declines from 2000 to 2020, indicating that
the environmental pressure brought by economic development has decreased. and the
development mode gradually changed from high emissions and high pollution to low-
carbon and efficient development. The CO; intensities of Guangzhou, Shenzhen, and
Foshan cities declined more slowly than those of the other six PRD cities. However, the
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effect of energy consumption due to technological progress may have caused the CO,
intensity of cities such as Jiangmen, Zhaoqging, Dongguan, and Foshan to rebound after
2018. As of 2020, Guangzhou and Shenzhen have reached low levels of carbon emission
intensity at 0.32 t per million yuan and 0.16 t per million yuan, respectively. This indicates
that these two cities have reduced carbon emissions through efficient use of energy and
application of carbon-reducing technologies while experiencing steady economic growth.
Zhaogqing is at the highest level in the PRD region with 1.12 t per million yuan.
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Figures 3 and 4 depict the spatial and temporal evolutions of the total CO, emissions,
per capita CO, emissions, and CO, intensities of the PRD from 2000 to 2020. The gaps
among the total CO, emissions of the cities in the PRD have widened significantly, and the
polarization is more serious by 2020 (Figure 3). The overall spatial distribution revolves
around the three cities of Guangzhou, Foshan, and Dongguan, presenting a high center
and low periphery pattern indicating a close correlation between carbon emissions and the
level of urban economic development with central aggregation.
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Figure 3. Spatiotemporal evolution of total CO; emissions in the Pearl River Delta (PRD) urban
agglomeration, 2000-2020.

2.2000 b.2005 ¢.2010

d.2015 €.2020

CO; intensity (t/10* yuan)
[1<o0s5
[J0.5-1.0
[ 1.0-1.5
B 1.5-2.0
B 2.0-25
B 2.5-3.0
B 3.0-35

Figure 4. Spatiotemporal evolution of CO; intensity in the Pearl River Delta (PRD) urban agglomera-
tion, 2000-2020.
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The spatial distribution of carbon emission intensity (Figure 4) is opposite to that of
the total carbon emissions, with low values in the center and high values on the periphery.
Comparing the spatial distribution patterns of 2000 and 2020, this depression-like feature
tends to weaken, indicating a narrowing of regional differences in carbon emission intensity
and a more balanced impact of economic development on environmental pressure within
the region.

3.2. Decoupling Statuses of Economic Growth from CO, Emissions

In recent years, the topic of regional economic development and its correlation with
carbon emissions has become a focal point of research. This study undertakes a profound
investigation into the decoupling statuses and their transformations over the period of
2000-2020, shedding light on the dynamics and underlying factors steering the decoupling
trajectory in the PRD region.

Our analysis, encapsulated in Table 1, reveals marked fluctuations in the decoupling
statuses between the PRD’s economic development and CO, emissions over the study
period. This trend of fluctuating decoupling statuses resonates with other research, in-
cluding a study by Zhao et al. (2017) [37], which also identified variations in decoupling
states across different time spans in China. Within the study period of 2000-2020, both
weak decoupling and strong decoupling can be observed between economic growth and
CO, emissions. The majority of years experienced weak decoupling, indicating insufficient
decoupling between CO; emissions and economic development. These fluctuations can
be traced back to various factors such as high urbanization, policy shifts favoring rapid
industrialization, which sometimes heightened CO; emission [38], and strides in techno-
logical advancements and renewable energy adoption contributing to phases of strong
decoupling [26].

Table 1. The decoupling of CO, emissions from economic development and the trend of decoupling
elasticity in the whole Pearl River Delta (PRD) region.

Time Period AC/C AGDP/GDP AEC/EC Ec, gpp Decoupling State Ec, kc Egc, gpP
The whole PRD region

2000-2005 0.105 0.171 2.097 0.614 Weak decoupling 0.050 12.286
2006-2010 0.025 0.094 0.379 0.271 Weak decoupling 0.067 4.055
2011-2015 —0.031 0.041 0.078 —0.769 Strong decoupling —0.402 1.912
2016-2020 0.012 0.028 0.195 0.442 Weak decoupling 0.064 6.938

The years 2011-2015 notably demonstrated strong decoupling, a positive indication of
a shift towards a more sustainable economic model, less reliant on energy-intensive indus-
tries. This transformation hints at a burgeoning commitment to sustainable practices within
the region, spurred by technological innovations and policy directives aimed at fostering
energy efficiency and curtailing carbon footprints. Comparative analysis with preceding
studies illustrates a consistent pattern of evolving towards a more sustainable model, a
critical step in mitigating the adverse effects of economic growth on the environment.

However, the progress appears somewhat stalled in the period 2016-2020, where a
reversion to weak decoupling was observed. This transition signals persistent challenges
in sustaining energy conservation and emissions reduction efforts, warranting a deeper
scrutiny of the underlying causal factors. The period saw a resurgence in the reliance on
energy-consuming industries, dampening the gains achieved in the previous years.

In general, the decoupling of carbon emissions from economic development in the
PRD improved during 2000-2015, followed by a slight deterioration during 2016-2020.
Specifically, strong decoupling marked the period of 20112015, as carbon emissions de-
creased under economic growth. This indicates that during this period, the economic
development of the PRD region has reduced its dependence on energy-intensive and
carbon-intensive industries and has transformed towards a low-carbon and sustainable
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economic development model. However, during the 20162020, the relationship between
CO; emissions and economic development transformed from strong decoupling in the
previous period to weak decoupling. This suggests that energy conservation and emissions
reduction in the PRD are still challenging.

The trends of energy-saving elasticity and emissions reduction elasticity show a signif-
icant gap. Energy-saving elasticity has high volatility, with a particularly sharp decrease
in 2010-2015. Compared with the period of 2000-2015, the energy-saving elasticity has
picked up in recent years, indicating that the industry in the PRD is still heavily reliant
on energy consumption, and energy efficiency should increase. Expansive negative de-
coupling dominated the emissions reduction elasticity during all periods, indicating that
the economic growth of the PRD city cluster still relies on extensive energy consumption
at the cost of environmental degradation. However, during the study period, the emis-
sions reduction elasticity has decreased, indicating that the PRD cities are placing greater
emphasis on social and economic development while seeking a more low-carbon and
environmentally friendly development path. They are improving energy efficiency through
technological innovation.

There is significant heterogeneity in the decoupling statuses among the nine cities
within the PRD (Table 2). From 2011 to 2015, seven out of nine cities in the PRD achieved
strong decoupling, indicating that economic development had the least environmental pres-
sure, and an increase in economic output was accompanied by a decrease in CO, emissions.
This phenomenon was particularly marked in cities experiencing rapid urban expansion,
where strategies to mitigate environmental impacts were more pronounced. However, with
further technological advances, a rebound effect has begun to appear, in which the growth
rate of the economy was larger than the increase in CO, emissions, leading to a worsening
decoupling status from strong decoupling in 2016-2020 to weak decoupling (or expansive
negative decoupling) in 20162020 in Guangdong, Zhuhai, Foshan, and Dongguan. This
reiterates the persistent challenge of maintaining an environmental equilibrium amidst
booming economic growth, a focal point of discussion in numerous previous analyses [39].

Further, the analysis of the energy-saving elasticity revealed an encouraging trend of
decreased dependency on energy consumption for economic development, a sentiment
echoed in other contemporary studies focusing on China’s sustainable urban development
trajectory [40]. Particularly in cities like Guangzhou and Shenzhen, the significant role
of energy-saving elasticity in fostering sustainable economic development has been high-
lighted, showcasing similar patterns to other metropolises globally, where energy efficiency
has emerged as a linchpin for sustainable growth [29].

The patterns of decoupling statuses observed within the PRD region serve as a signifi-
cant indicator of the larger narrative of China’s rapid urbanization and strategic regional
development. This era of swift urban expansion is marked by an ambitious drive towards
economic growth, intricately coupled with sustainable environmental practices. Within the
context of the PRD region, the nuanced interplay between escalating urbanization rates,
expanding city sizes, intricacies of the social system, and the pace of technological progress
serves as central determinants steering both economic and environmental developments.

Within this landscape, cities like Guangzhou and Shenzhen have emerged as fron-
trunners, exemplifying how advancements in energy efficiency can spearhead sustainable
growth, a trend echoed in other global metropolises. The variances in decoupling statuses
across different cities within the PRD region underscore the necessity for nuanced ap-
proaches in policy formulation and implementation, adapting to the unique characteristics
and developmental phases of each city.

Looking forward, the trajectory of the PRD region will be significantly influenced by
the intertwining forces of technological advancements and green policy initiatives. The
challenge lies in harnessing these dynamic forces effectively to pave a path towards a more
sustainable urban development, where economic growth harmonizes with environmental
conservation. Thus, leveraging the insights gained from the fluctuations in decoupling
statuses, it is incumbent upon policymakers and urban planners to craft strategies that
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synergize economic growth objectives with sustainable environmental practices, fostering
a future where prosperity and ecology exist in harmony.

Table 2. The decoupling of CO, emissions from economic development and the trend of decoupling
elasticity in the nine cities of the Pearl River Delta (PRD) urban agglomeration.

AC/C AGDP/GDP AEC/EC EC, GDP Decoupling State EC, EC EEC, GDP
Guangzhou
2000-2005 0.144 0.160 1.935 0.897 Expansive coupling 0.074 12.088
2006-2010 0.010 0.052 0.200 0.188 Weak decoupling 0.048 3.872
2011-2015 —0.039 0.027 —0.016 —1.436 Strong decoupling 2412 —0.595
2016-2020 0.005 0.018 0.166 0.301 Weak decoupling 0.032 9.387
Shenzhen
2000-2005 0.084 0.083 1.804 1.013 Expansive coupling 0.047 21.679
2006-2010 0.020 0.062 0.307 0.314 Weak decoupling 0.064 4.944
2011-2015 —0.111 0.013 —0.180 —8.466 Strong decoupling 0.619 —13.681
2016-2020 0.006 0.009 —0.040 0.640 Strong decoupling —0.145 —4.416
Zhuhai
2000-2005 0.053 0.105 1.713 0.500 Weak decoupling 0.031 16.295
2006-2010 0.032 0.095 0.772 0.337 Weak decoupling 0.041 8.130
2011-2015 —0.012 0.030 0.222 —0.422 Strong decoupling —0.056 7.515
2016-2020 0.003 0.003 0.037 0.992 Expansive coupling 0.087 11.464
Foshan
2000-2005 0.086 0.162 1.329 0.530 Weak decoupling 0.065 8.203
20062010 0.024 0.095 0.279 0.252 Weak decoupling 0.086 2.948
2011-2015 —0.026 0.045 0.084 —0.567 Strong decoupling —0.306 1.855
2016-2020 0.017 0.034 0.130 0.490 Weak decoupling 0.129 3.797
Huizhou
2000-2005 0.094 0.203 3.870 0.460 Weak decoupling 0.024 19.039
2006-2010 0.029 0.145 1.132 0.200 Weak decoupling 0.026 7.822
2011-2015 —0.007 0.071 0.497 —0.097 Strong decoupling —0.014 7.039
2016-2020 —0.035 0.052 0.541 —0.676 Strong decoupling —0.065 10.326
Dongguan
2000-2005 0.098 0.284 2.024 0.345 Weak decoupling 0.049 7.117
2006-2010 0.014 0.134 0.099 0.108 Weak decoupling 0.146 0.743
2011-2015 —0.045 0.063 —0.035 —0.720 Strong decoupling 1.274 —0.565
2016-2020 0.077 0.063 0.299 1.216 Expansive negative 55 4756

decoupling

Zhongshan
2000-2005 0.074 0.242 2.366 0.305 Weak decoupling 0.031 9.761
2006-2010 0.011 0.110 0.296 0.098 Weak decoupling 0.036 2.689
2011-2015 —0.030 0.044 0.056 —0.688 Strong decoupling —0.538 1.279
2016-2020 —0.010 0.045 0.217 —0.224 Strong decoupling —0.046 4.866
Jiangmen
2000-2005 0.117 0.273 2.503 0.427 Weak decoupling 0.047 9.162
2006-2010 0.049 0.186 0.917 0.263 Weak decoupling 0.053 4.925
2011-2015 0.012 0.096 0.763 0.121 Weak decoupling 0.015 7.912
2016-2020 —0.019 0.047 0.377 —0.399 Strong decoupling —0.050 8.049
Zhaoging
2000-2005 0.157 0.429 6.504 0.367 Weak decoupling 0.024 15.169
2006-2010 0.096 0.347 3.834 0.276 Weak decoupling 0.025 11.063
2011-2015 0.008 0.175 1.104 0.048 Weak decoupling 0.008 6.313
2016-2020 0.059 0.089 0.370 0.668 Weak decoupling 0.161 4157

4. Conclusions and Policy Implications
4.1. Conclusions

This study estimated the imbalances of CO, emissions and emission intensity in the
PRD urban agglomeration from 2000 to 2020, and discussed the decoupling states between
CO, emissions and economic growth. Urban agglomerations play important roles as
China’s regional economic development engines and are an important geographical unit
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driving coordinated regional development, as well as a key node in China’s low-carbon
sustainable transition development. This work provides a reference for regional emission-
reduction policies and low-carbon development. The main conclusions are as follows.

Firstly, the unbalanced development of the PRD urban agglomeration is a major
concern, as it leads to significant disparities in economic development and CO, emissions.
The spatial pattern of total CO, emissions is high in the center and low on the periphery,
indicating that urban areas in the center of the region emit more CO; than those on the
outskirts. In contrast, CO; intensity is lower in the center and higher on the periphery.

Secondly, the decoupling analysis show that there is significant volatility in the decou-
pling of economic development and CO, emissions in the PRD. Weak decoupling occurred
in most years, indicating economic growth leading to an increase in CO, emissions. Overall,
the decoupling between CO, emissions and economic development in the PRD shows an
improving trend from 2000 to 2015, meaning that economic growth and growth in carbon
emissions are becoming less correlated, but the decoupling then worsens slightly from 2016
to 2020, especially in Guangdong, Zhuhai, Foshan, and Dongguan. This indicates that the
PRD region still faces challenges in energy conservation and emission reduction.

Thirdly, a detailed examination of energy-saving and emission-reduction elasticities
underscore a clear divergence in trends. The energy-saving elasticity has high volatility,
with an especially significant decline from 2010 to 2015. Compared with 2000-2015, the
energy-saving elasticity has rebounded in recent years, indicating that the dependence of
industries in the PRD region on energy consumption is still high, and energy efficiency
needs to improve. Emission-reduction elasticities have declined over the study period,
indicating that the PRD cities are emphasizing social and economic development while
seeking a low-carbon and environmentally friendly development path. In Guangzhou
and Shenzhen, the trends of energy-efficiency elasticity and decoupling elasticity are the
same, indicating that energy-efficiency elasticity plays a more critical role in decoupling
economic development from carbon emissions. In other cities, the decoupling elasticity is
more important than the energy-efficiency elasticity.

Given the dynamic and multi-faceted nature of economic and environmental devel-
opments, future research can take a deeper dive into analyzing the intricate relationship
between CO; emission decoupling and various influential variables such as urbanization
rate, city size, social system, and technological progress. In addition, it would be immensely
beneficial to verify the findings of this study through the application of regression models.
Such analytical approaches can provide a more granular understanding of the factors
influencing decoupling statuses in the PRD region, aiding in the creation of more nuanced
and effective policies. Furthermore, studies could explore the potential synergies between
technological innovations and urban policies in fostering sustainable growth, drawing
from a wider pool of data that encompasses recent developments and trends in the region.

4.2. Policy Implications

To forge a resilient and sustainable path for urban agglomerations, it is critical to focus
on actionable strategies that can significantly influence the trajectory of environmental
sustainability while fostering economic growth.

Firstly, the establishment of a data-driven policy-making framework would serve as
a cornerstone in crafting policies that are sensitive to regional discrepancies [41-44]. This
involves not only monitoring but also leveraging insights from a centralized database that
keeps track of environmental parameters across various cities. This dynamic repository
can foster intelligent decision-making, enabling cities to adapt strategies that focus on
economic agglomeration effects and industrial restructuring based on real-time data and
trends. Furthermore, it can serve as a blueprint for other cities in identifying sectors ripe
for low-carbon transformations.

Secondly, in fostering collaboration, the creation of regional knowledge platforms can
be a vital asset [45—47]. Regular forums and dialogue platforms can be institutionalized
to foster a culture of knowledge exchange and collaboration. These platforms should be

75



Land 2023, 12, 1804

equipped to facilitate technical know-how exchange, and sharing of successful case studies,
thereby fostering a culture of collaborative growth and learning.

Thirdly, to streamline regional cooperation, a regional coordination entity should be
established, tasked with the orchestration of collaborative projects, overseeing efficient
resource allocation, and maximizing synergies [48-50]. This entity could act as a nerve
center, standardizing tools and methodologies for monitoring and management of carbon
emission initiatives across various regions, promoting a cohesive approach to sustainable
development.

Lastly, policy formulation should be fine-tuned to the unique attributes of individual
cities within urban conglomerates, taking into cognizance their respective economic stages,
energy consumption patterns, and carbon emission levels. Governments could develop
comprehensive guidelines and training programs to aid local policy-makers in crafting poli-
cies that resonate with both local conditions and overarching regional emission-reduction
objectives, fostering a harmonized approach to sustainable development.
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Abstract: The land-use, land-use change and forestry (LULUCF) sector is receiving increasing
attention in climate change mitigation and greenhouse gas (GHG) emission offsetting. The sector
itself and measures applied to mobilize this sector in order to tackle climate change are dominant
in nationally determined contributions under the Paris Agreement as well as in national strategies,
as in the case of Lithuania. Lithuania has set the goal of becoming a carbon-neutral country in
2050, reducing GHGs by 80% compared to 1990 and offsetting the remaining 20% through the
LULUCE sector. Therefore, this paper aims at analyzing historical land-use changes in 1990-2021, as
reported for the United Nations Framework Convention on Climate Change (UNFCCC) secretariat,
and LULUCF’s potential to achieve climate change mitigation goals, taking into account different
land-use change scenarios (business as usual, forest development, forest development + additional
measures and forest land 40% + additional measures) for 2030 and 2050 in Lithuania. The scenarios
are based on historical and potential future policy-based land-use changes. Projections of GHG
emissions/removals for different scenarios are prepared according to the Good Practice Guidance and
Uncertainty Management in National Greenhouse Gas Inventories (2006) by the Intergovernmental
Panel on Climate Change (IPCC). The results indicate that land-use changes over the period 1990-2021
remained rather stable, with some increases in forest area and grassland at the expense of cropland.
The whole LULUCEF sector acted as a carbon sink in most cases, forests being a key category for
removal. However, reaching climate neutrality in 2050 might be challenging, as the goal to offset 20%
of remaining GHG emission compared to 1990 through LULUCF would not be met in any of the
scenarios analyzed, even the scenario of maximal forest-area development and additional measures.
Considering the high historical GHG-removal fluctuations and the uncertainties of the sector itself,
caution should be taken when relying on LULUCF’s potential to reach the set goals.

Keywords: LULUCF; climate change; mitigation; policy; forestry; GHG

1. Introduction

In 2021, pursuing the global sustainability agenda [1], particularly goal 13 on climate
action, and in line with the Paris Agreement [2] as well as the European Union aims
on climate neutrality [3], Lithuania adopted the National Climate Change Management
Agenda [4], setting ambitious goals for GHG reduction in the short term and the long term.
Compared to 1990, the national agenda foresees reduction of national net GHG emissions
by 70% by 2030 and reduction of net GHG emissions by 100% by 2050 [4]. Both goals
strongly rely on the LULUCEF sector and its carbon removals: the 2030 reductions include
absorption in the LULUCEF sector (no specific target in the national agenda, but according
to EU Regulation 2023/839 [5], removal should amount at least to 4.633 million t CO; eq
for Lithuania); the 2050 goals anticipate an 80% reduction due to various climate change
mitigation measures applied in different economic sectors, while the remaining 20% will
be offset by the LULUCEF sector [4]. It means that 9.558 million t CO, eq must be absorbed
by the LULUCEF sector in 2050 in Lithuania.
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Lithuania is not the only country to rely significantly on the LULUCF sector while
aiming at carbon neutrality. Under the Paris Agreement, countries were required to
undertake national commitments for greenhouse gas (GHG) emissions reduction, known
as nationally determined contributions (NDC), and prepare long-term low greenhouse
gas emission development strategies to achieve climate change policy goals. A recent UN
report [6] on NDC indicates that most of the countries included the LULUCEF sector and
corresponding mitigation measures in their NDC. Most often, this covers afforestation,
reforestation and revegetation (48%). Such reliance on the LULUCEF sector is supported by
a number of studies showcasing high historical carbon removals [7-9] and/or potential net
carbon removal [10-12] particularly by forests. For example, Finnish forests could outweigh
carbon emissions from the other sectors no later than 2040, as indicated by Kallio et al. [13].
It is also estimated that forest expansion alone could contribute from 6% to 10% of the EU
GHG emission reduction target [14]. In addition, the forestry sector plays a role in GHG
emission reduction via sequestration not only in biomass but also in forest products due to
both storage and substitution effects [15-20]. For example, it is suggested [13] that use of
wood for bioenergy would significantly reduce emissions and play an important role in
reaching Finland’s 80% emission-reduction target by 2050. Nevertheless, the results of a
study performed for European forests [21] indicate that to achieve climate neutrality, the
EU forests” net carbon removals should increase about 25%, while the combined EU + UK
forest sink is projected to decline; therefore, additional efforts are needed.

Hence, next to the forest related measures, other measures might also be significant
for carbon removal in the LULUCEF sector. Usually, wetland restoration, soil carbon seques-
tration, bioenergy with carbon capture and storage (BECCS) and agroforestry are analyzed
as important land management measures for GHG removals [22,23]. Still, forest-related
measures cover the largest share of mitigation potential, followed by peatland restoration
and soil organic carbon enhancement on agricultural lands (cropland and grassland) [23].
In general, it is estimated that land-use-based measures have the potential to contribute
approximately 20-30% to the 1.5° temperature target before 2050 [24-27]. Though policies
and measures in land-use-related sectors in 2009-2019 have contributed only to 0.5% of
total emission reduction [23], reliance on the LULUCEF sector might even increase, especially
if GHG reductions in other sectors fail to be achieved [23,26]. It may also be the case that a
focus on LULUCEF will decrease efforts to reduce emissions in other sectors [28].

Lithuania has not provided a separate NDC but is represented in the EU’s joint
NDC [29]. As mentioned, national climate neutrality goals are set in the National Climate
Change Management Agenda [24], setting GHG reduction targets for 2030 and 2050, which
include LULUCF GHG removals. To ensure the implementation of these commitments,
measures for different sectors, including LULUCE, are listed in Policies and Measures and
Projections of Greenhouse Gas emissions in Lithuania [30]. Measures for the LULUCF sector
include biomass sink enhancement, such as afforestation and reforestation, restoration
of damaged forests and redevelopment of shrubs as well as various soil carbon stock
enhancement measures: wetland restoration, grassland management in locations with
organic soils, promotion of perennial crops, promotion of cultivation of cover crops, and
promotion of no-tillage agricultural practices. To date, the main factors and drivers of
land-use-related GHG emissions and removals in Lithuania are considered to be land-use
changes due to political and economic factors. Land-use changes were induced by the
restructuring of the agricultural sector after the restoration of independence, followed by
support allocated for rural development after joining the EU, intensive afforestation of
abandoned land or land not suitable for agriculture [31,32], strict governmental control of
deforestation and preservation of domestic forest resources [33,34].

Therefore, the main research questions of this paper are (i) whether Lithuania can rely
on LULUCEF and (ii) whether foreseen measures are sufficient to increase GHG removals in
the LULUCE sector to reach desirable levels. For that purpose, historical land-use changes
and net removals/emissions by the LULUCEF sector in Lithuania in 1990-2021 are analyzed,
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and based on land-use scenarios and planned measures, the potential of the sector to
contribute to the climate change mitigation goals for 2030 and 2050 is estimated.

The paper is structured as follows. The Section 2 introduces the time frames and data
sources as well as descriptions of selected land-use scenarios and measures included in the
estimations of LULUCF’s GHG removal potential. Section 3 presents the main findings
on land-use changes, the sector’s net GHG emissions and its potential to contribute to the
national climate change mitigation goals in the long run. The paper closes with a discussion
and conclusions.

2. Methods
2.1. Land-Use Changes and National GHG Emissions

Historical analysis of land-use changes covers 1990-2021 period and is based on the
data collected by the State Forest Service in executing the National Forest inventory (NFI),
which serves as the main database for national greenhouse gas inventory and provides data
on annual area and its changes covering all land uses—forest land, cropland, grassland,
wetlands, settlements and other land. A matrix of land-use changes is developed from the
monitoring of more than 16,000 sampling plots on the 4 x 4 km grid of the NFI, covering
the whole country area and all land uses, including afforestation, which considers national
criteria for forest land—minimum area, height of trees (at maturity), crown cover, etc. [35].
Each sampling plot represents nearly 400 ha of country area. National sectoral emissions,
including those of the LULUCF sector, also cover the 1990-2021 period and are obtained
from national greenhouse gas inventory (as of 2023) [36] prepared according to the IPCC
Good Practice Guidelines [36].

2.2. Projections of Greenhouse Gas Emissions and Removals under Different Scenarios

Projections of GHG emissions and removals are calculated using the same methodol-
ogy as for the national GHG inventory under the United Nations Framework Convention
on Climate Change requirements, applying IPCC Good Practice Guidelines [37]. GHG pro-
jections are estimated according to 4 different land-use scenarios for the period of 2021-2025
and the years 2030 and 2050, taking into account the LULUCF accounting rules provided
in the LULUCF Regulation No EU 2018/841 [38] and its amendment No. EU 2023/839 [5]
for 2021-2025. Land-use area changes are projected according to either historical changes
or policy documents and established goals related to land-use change (Table 1). Analyzed
scenarios include the following:

e  The business-as-usual (BAU) scenario (scenario I) contains the assumption that the
recently observed forest area will increase to reach 34.4% forest-area coverage in 2030
and 34.5% forest-area coverage in 2050 (3200 ha annually) according to the national
forestry sector development plan for 2012-2020 [39];

e  The forestry development scenario (scenario II) includes the assumption of a significant
forest-area increase (from 34.1% in 2021 to 35.1% in 2030 and 35.3% in 2050)—8000 ha
annually, including both human-induced afforestation and natural forest expansion,
as indicated in Policies and Measures and Projections of Greenhouse Gas Emissions in
Lithuania [30];

e  The forestry development + additional measures scenario (scenario III) makes addi-
tions to scenario II, including preliminary measures for increasing GHG removals and
decreasing GHG emissions from the LULUCEF sector as indicated in the Integrated
National Energy and Climate Plan [40] and Policies and Measures and Projections
of Greenhouse Gas Emissions in Lithuania [30]. All additional measures under this
scenario are dedicated to the cropland, wetland and grassland categories (Table 2);

e  The forest area 40% + additional measures scenario (scenario IV) takes into consider-
ation a more pronounced afforestation rate according to the project of the National
Forest Agreement [41], aiming at 40% forested land to be achieved by 2050 and the
same measures as in scenario III (Table 2). This nonbinding forest-land expansion
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could be achieved with a 13,200 ha annual forest-land increase and represents more
ambitious employment of the LULUCEF sector for climate neutrality goals.

To project GHG emissions and removals for forest land, projections of growing stock
volume, increment and mortality on forest land remaining forest land as prepared by State
Forest Service and applied in the Policies and Measures and Projections of Greenhouse Gas
Emissions in Lithuania [30] are used. The aforementioned projections by the State Forest
Service consider the age-class distribution in Lithuanian forests in the future and, due to
the relatively large share of old forest stands, foresees a nearly 3% decrease in the growing
stand volume increment in 2050, as well as an 8% increase in forest harvests in 2030 and 10%
in 2050 [30]. These ratios of change are applied for projecting GHG emissions/removals
for forest land and for estimation of carbon-stock changes in harvested wood products.
To project growing stock volume changes in afforested land, areas are multiplied by the
annual growing stock volume change, according to the function applied in the National
GHG Inventory (as of 2021) [42].

The same criteria for the areas that could be converted to forest land in all scenarios
are used. They include the fertility rate of agricultural areas (only nonfertile or abandoned
agricultural areas can be afforested), limitations regarding existing drainage systems in
agriculture, etc. [43].

Table 1. Description of scenarios.

Land-Use Category

Forest Land 40% +
Additional Measures

Forestry Development

BAU + Additional Measures

Forestry Development

Forest land (remaining)

2.25 x 10° ha in 2030; 2.29 x 10° ha in 2030; 2.34 x 10° ha in 2030;
2.30 x 10° ha in 2050 2.45 x 10° ha in 2050 2.59 x 100 ha in 2050

Growing stock increment: 19.76 x 10° m3 in 2030, 19.48 x 10® m? in 2050;
Growing stock change: 4.95 x 10° m? in 2030, 5.05 x 10° m3 in 2050;
Felling: 11.38 x 10° m3 in 2030, 11.54 x 10® m? in 2050
Policies and Measures and Projections of Greenhouse Gas emissions in Lithuania [30]

Land converted to
forest land

6 kha annually from
cropland to forest land;
7.2 kha annually from
grassland to forest land

3.2 kha annually from
grassland to forest land

4 kha annually from grassland to forest land;
4 kha annually from cropland to forest land

Cropland (remaining)

16.25 kha of perennial cropland (as of 2019);
2.29 kha annual increase in certified organic
cropland (2010-2019 average);

4.29 kha annual increase in no-tillage cropland
(2010-2019 average)

Additional measures, covering perennial, certified
organic and no-tillage cropland, as described in
Table 2

Land converted
to cropland

33.74 kha annually from grassland to cropland (2010-2019 average)

Grassland (remaining)

Organic drained soils comprise 6.2% of total grassland area [42]

Land converted
to grassland

36.66 kha annually from cropland to grassland Additional measures, covering cropland
(2010-2019 average) conversions to grassland, as described in Table 2

Wetlands (remaining)

13.83 kha of peat extraction (as of 2019)

Land converted
to wetlands

Additional measures, covering cropland

No new conversions projected . . .
pPro) conversion to wetlands, as described in Table 2.

Settlements (land
converted to
settlements)

0.4 kha annually from grassland to settlements
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Table 1. Cont.

Land-Use Category

Forestry Development

BAU + Additional Measures

Forestry Development

Other land (land

converted to

No new conversions projected

other land)

Harvested wood
products

wood-based panels and paper products

Harvested wood products (HWPs) are projected by applying a first-order decay
function, as specified in the IPCC Guidelines [44], meaning that all wood products (sawn
wood, wood-based panels, paper and paperboard), once produced, enter the HWP pool as
an input (whole amount of CO; sequestered) and then gradually decay each subsequent
year. The half-period of decay is 35 years for sawn wood, 25 years for wood-based panels
and 2 years for paper products, meaning that each subsequent year after production,
1/35 of (remaining) sawn wood’s CO,, 1/25 of (remaining) wood-based panels’ CO, and
Y5 of paper products’ CO; is released back to the atmosphere. HWP carbon stock change is
a balance between CO, input (with new products) and output (from the decay of previous
products). HWP input includes both domestically consumed and exported products (sawn
wood, wood-based panels, paper and paperboard) produced from domestically harvested
wood; exported roundwood is not included in the calculations. The carbon stock balance
in HWP for all 4 scenarios is projected by applying the same ratio among harvested wood
products as in 2019 and considering projections of harvested wood volume. According
to FAQO [45], harvested wood products in Lithuania in 2019 consisted of 1.27 x 10® m? of
sawn wood (56%), 0.85 x 10® m® of wood-based panels (37%) and 0.16 x 10° m? of paper
products (7%) produced from a total of 6.67 x 10° m® of roundwood.

According to the IPCC Guidelines [37], conversion from one land use to another is
considered to be effective for 20 years; therefore, at a certain time, the result of measures
shifts from, for example, afforested land to managed forest land. A 20-year transition
period is applied for all changes in the land-use categories in the projections; therefore, the
effect of measures applied to increase carbon stocks might decline if new conversions are
not projected.

Table 2. Additional measures included in projections of GHG emissions under scenarios III and IV,
according to the Policies and Measures and Projections of Greenhouse Gas Emissions in Lithuania [30].

Affected Land-Use

Forest Land 40% +
Additional Measures

8% increase by 2030, 10% increase by 2050; same ratio as in 2019 among the categories of sawn wood,

Description of Measure Category Annual Area Period Affected
Promotion of no-tillage crop Cropland Gradually increasing to ~ 2021-2050, with the same ratio of area
management p 800,000 ha in 2040 increase applied to 2041-2050
Restoration of wetlands on Gradually increasing to
arable peatlands and Cropland. wetlands 20,000 ha in 2040 2021-2050, with the same ratio of area
protection of perennial p ! Cropland converted increase applied to 2041-2050
grass cover to wetlands
Promotion of perennial crops Cropland Gradually increasing to ~ 2021-2050, the same ratio of area increase
(shrubs and trees) P 26,300 ha in 2040 applied to 2041-2050
Promotion of perennial g%‘égi;};;nzcézgsmg to 2021-2050, the same area of grasslands
grassland management on Cropland, grassland ! on organic soils (converted from
oo Cropland converted . .
organic soils cropland) as in 2040 applied to 2041-2050
to grassland

. . Gradually increasing to

Eﬁﬂ?ﬁﬁ?ﬁiﬁfﬁﬁ bel:ig;g 178,000 ha in 2040 (10%  2021-2050, the same area of grasslands
& P & Cropland, grassland of arable land) (converted from cropland) as in 2040

of landscape elements on
agricultural land

Cropland converted
to grassland

applied to 2041-2050
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Projected GHG emissions and removals are compared to the 2030 and 2050 GHG
reduction targets as set in EU regulation (EU 2023/839) and the Lithuanian Climate Change
Management Agenda [4]. It should be acknowledged that economic growth and other
factors, such as the influence of climate change, are not addressed in the analysis. Potentially
increasing biomass consumption due to bioeconomy development is partly covered in the
projections in the form of increased harvest volume in 2030 and 2050, projected by the State
Forest Service [30].

3. Results
3.1. GHGs Emissions, Remouvals and Land-Use Changes in 1990-2021

Over the period under analysis, overall GHG emissions in Lithuania decreased signifi-
cantly (Figure 1). This more than double decrease has been mainly the result of significantly
dropped energy consumption due to transitional decline, reforms and market restructuring
after the country regained independence in 1990 [46]. In 1995, emissions reached 43% of
the 1990 level. However, afterwards, the trend of national emissions shows no significant
reductions, and a rather stable level of GHG emissions should be acknowledged.

As in the beginning of the analyzed period (67%), energy-related GHGs continued
to constitute the largest share, though a decreasing share, of total countrywide GHG
emissions over the period (in 2021—61%). There are some reasons behind this. First,
until the pandemic situation and the energy crisis, final energy consumption had trended
slightly upwards since the last economic crisis. Second, while the share of renewable
energy sources increased from 17.2% in 2004 to 26.8% in 2020 in Lithuania [47], GHG
emissions related to the energy sector decreased only 4.4% in the same period, mostly due
to significantly increasing emissions from transport. From 2004 to 2020, transport GHG
emissions increased by 55.5%, transport being the largest source of emissions in the energy
sector—54.1% [36]. According to Eurostat data, renewables account for 21.28% of electricity
and 46.63% in heating and cooling, but in the transport sector, renewables amount to only
6.46% as of 2021.
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Figure 1. GHG emissions/removals in the LULUCEF sector and total emissions in Lithuania during
1990-2021, million tons CO; eq (based on data from National GHG Inventory Report 2023).

The LULUCEF sector has been a net sink of greenhouse gas emissions in Lithuania
for almost the whole reporting period (1990-2021), except for 1996 and 1997, when, due
to adverse natural conditions, LULUCF was recorded to be a net source of emissions
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Land-use area

(Figure 1). Emissions in 1996 and 1997 are the result of repetitive droughts and consequent
invasion by pests (e.g., Ips Typographus), which caused massive damage and death of spruce
stands in Lithuania and therefore biomass losses from its forest land [42]. In addition to
this, high emissions due to the drainage of organic soils (especially in cropland) also had an
impact on the overall sector’s net emissions. Emissions from drained organic soils varied
from 1.9 in 1990 to 1.5 million tons of CO; eq in 2021 [36] due to conversions between
land uses and different emissions factors (EFs) applied for different land uses. Though a
sector’s removal potential generally varies according to the natural conditions, economic
factors are also of importance as they drive afforestation rates and use of agricultural
land, as well as the volume of harvested wood products. Hence, an increasing area
of grasslands converted from croplands increased GHG removals (starting after 2005);
changing harvesting levels had an impact on both increasing and decreasing GHG removals,
while an increasing growing stand volume increment, to some extent, compensates for
the impact of increasing harvest levels. Though, in general, growing stand volume and
harvest showed increasing trends over the analyzed period, the pattern of changes was
different. Growing stock volume increased by 21.5% from 2007 to 2012, while afterwards,
only 3.4% growth (2012-2020) was observed. The harvest level decreased by 16.8% from
2007 to 2012 and afterwards increased by 28.3% until 2020. Currently, 36% of wood is used
for energy and 64% for materials (estimated from data in the National Greenhouse Gas
Inventory [42] and FAO [45]).

The biggest change in the land-use categories was recorded for croplands (Figure 2),
whose share shrank from 37% in 1990 to 31% in 2021. Correspondingly, forest area increased
from 31% to 34% and grassland from 20% to 23%. Hence, land-use changes indicate
some higher potential for GHG removal, as the area of cropland, which usually acts as a
source, has decreased, initially due to the abandonment of cropland areas (which were
gradually converted to grassland) after the restoration of independence and the subsequent
economic recession.
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Figure 2. Land-use changes in Lithuania in 1990-2021 (based on data from National GHG Inventory
Report 2023).

During the whole period of analysis, cropland acted as a source of GHGs, consti-
tuting 81% of the sector’s GHG emissions at the beginning and 30% at the end of the
period (Figure 3). The decrease in GHG emissions from cropland is related to the shift
from traditional intensive agricultural practice to larger areas of no tillage crop practice,
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organic agriculture, which is reported to increase soil organic carbon due to reduced soil
disturbance and increased input of organic matter [36]. Decreasing overall emissions from
cropland are partially outweighed by increasing emissions from wetlands, settlements
and other land. The results also show the significance of the forest land category, as it
provides the highest share of removals in the overall LULUCF balance (Figure 3). The
forest category counterbalances emissions from cropland, wetlands and settlements and
provides the potential to counterbalance other sectors” emissions altogether with harvested
wood products (HWPs) and grassland. In 1990, forests accounted for 89% of the sector’s
removals; in 2021, 77%. The total amounts reached a maximum in 2011 with removal of
some 10.173 million tons of CO, eq Though forests dominate removals, over the period
of analysis, the share of grassland and harvested wood products in GHG removals also
slightly increased.

If the years 1996 and 1997 are excluded, the land-use-related sector in Lithuania
absorbed some 11-46% of the country’s yearly emissions in 1990-2021 (Figure 1). This
indicates that the LULUCEF sector’s foreseen offsetting potential (9.558 million tons of CO,
eq), as needed for 2050, has been reached already in 2010, 2011 and 2012. Even bearing in
mind the sector’s uncertainties, this suggests some possibilities to reach the target set.
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Figure 3. LULUCF GHG balance in 1990-2021 (million tons of CO; eq) (based on data from National
GHG Inventory Report 2023).

3.2. GHG Projections for the 2021-2025 Period According to the Different Land-Use Scenarios

Though historical removals look favorable, after the EU LULUCF accounting rules (EU
Regulation 2023/841 and its amendment 2023/839) [5,38] are applied, this aforementioned
offsetting looks less promising. The maximum LULUCEF credit allowance for Lithuania
equals 6.5 million tons of CO; eq for 2021-2030 (EU Regulation 2023/857)) [48] (Table 3);
however, only removals accounted for in 2021-2025 can be used for this purpose [5].

In the case of the BAU scenario (scenario I), 2.33 million tons of CO; eq in accounted-
for removals by the LULUCEF sector could be generated in 2021-2025, which is only 35.8%
of the removals allotted to offset other sectors” GHG emissions. Accounted-for removals
from LULUCEF sector could amount to 2.41 and 4.53 million tons of CO, eq in the forest
development (scenario II) and forest development + additional measures (Scenario III)
scenarios during 2021-2025, correspondingly. It is evident that additional measures in-
cluded in scenario III could have a significant impact on the accounted-for LULUCF GHG
balance in 2021-2025. However, even in scenario III, the achieved accounted-for removals
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are not sufficient to offset the desired amount of GHG emission from the other sectors.
Furthermore, in this case, LULUCF could provide only some 70% of the amount allowed
for offsetting, even considering that the amount allocated for offsetting (6.5 million tons
of CO; eq) seems quite low—it is less than average annual sector’s removals during the
last 10 years of inventory. In addition, according to the unpublished data of the Ministry
of the Environment of Lithuania, a shortage of approximately 6 million tons of CO; eq of
annual emission allocations (AEAs) is expected in 2021-2030 if no additional measures for
GHG emission reduction in non-ETS sectors are applied [49]. Hence, the results indicate
that LULUCF might play a crucial role, despite being insufficient, for the implementation
of climate change mitigation goals in the case of Lithuania in the short term to conform to
the EU level commitments.

In addition, it is apparent that the LULUCEF sector’s contribution to climate change
mitigation target achievement is significantly determined by the managed forest land
category (Table 3), since the estimated managed forest reference level (—5164 kt CO, eq
annually and —25,820 kt CO, eq for 5 years) for Lithuania [50] is higher than the projected
forest land remaining forest land removals in 2021-2025. Therefore, application of the
reference level leads to the accounted-for GHG emissions from this category in 2021-2025.
Despite that, the afforested land category balances emissions with net removals in forest
land (Table 3). The forest land 40% + measures scenario (scenario IV) shows that if the
National Forest Agreement [41] were implemented, the LULUCEF sector could provide
additional GHG removals even in the short term (73.5% of the allowed offsetting). However,
the greatest potential lies in the future. Afforestation plays a crucial role not only due to
its high GHG removal potential but also because all GHG removals by afforestation can
be accounted for as removals for offsetting (EU Regulation 2018/841 and its amendment
2023/839) [5,37] until the end of the conversion period of 20 years, when afforested areas
are shifted to the managed forest land category. However, afforestation rates may be limited
by the Nature Restoration Regulation [51] in areas where different land-use restoration
may be required; thus, reported and accounted-for GHG removals from afforested land
could be smaller.

Table 3. Reported and accounted-for 2021-2025 GHG emissions/removals (per EU Regulation
2023/839) [5] and LULUCEF flexibility limit for 2021-2030 (per EU Regulation 2018 /842 and its amend-
ment 2023/857) [48,52], kt CO, eq (“IE”: included elsewhere—in managed forest land reference level).

: Reference Values BAU Forestry Development Forestry Development + Forest Land 40% +

Accounting Category (Annual) Scenario Scenario Measures Scenario Measures Scenario
2021-2025 2021-2025 2021-2025 2021-2025

Managed forest land —5164.64 —24,716.13 —24,530.24 —24,530.24 —24,530.24
Afforested land - —5417.84 —5668.39 —5668.39 —5906.76
Deforested land - 590.67 590.67 590.67 590.67
Managed cropland 841.9653 4249.97 4237.89 2119.67 2119.67
Managed grassland —1210.13 —837.05 —833.12 —843.28 —865.84
Managed wetlands 791.9271 4083.10 4083.10 4087.50 4087.50
Harvested wood IE —3988.86 —3988.86 —3988.86 —3988.86
products
Balance
(accounted-for GHG) —2331.73 —2404.54 —4528.52 —4778.93
Limit for offsetting —6500 —6500 —6500 —6500

3.3. GHG Projections until 2030 and 2050 According to the Different Land-Use Scenarios

To assess the potential of LULUCEF for climate mitigation in Lithuania until 2030 and
2050, projections based on the LULUCF reporting guidelines set forth in the IPCC Good
Practice Guidelines [37] and the LULUCF accounting rules set forth by the EU in LULUCF
Regulation [5,38] were carried out.

The results (Table 4) show that projections of GHG balance vary significantly and are
sensitive to land-use changes, except for harvested wood products. Since forest stands in
newly afforested areas will not reach maturity for harvest until 2050, projected forest land
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expansion does not have an impact on carbon sequestration in harvested wood products.
It is evident that newly afforested areas (due to afforestation and natural forest expansion)
not only constitute a significant sink but also play a significant role in offsetting emissions
from agricultural land uses. It could be stated that if Lithuania is able to maintain a stable
land-use change pattern as observed in recent years (small areas of deforestation, large
afforested /reforested areas (32,000 ha annually) and increased conversion from cropland
to grassland), a total of 5.74 and 6.31 million tons of CO, eq could be sequestered in the
LULUCE sector correspondingly in 2030 and 2050. This could ensure compliance with and
overachievement of the EU target for 2030 but could only partly (66%) reach the national
target for 2050. In 2050, those numbers could amount to 7.70 and 8.1 million tons of CO, eq
correspondingly in the forest development and forest development + additional measures
scenarios. The latter implies that the amount expected to be offset by the LULUCF sector in
2050 would be closer to the target only if the additional measures included in scenarios II
and III were applied (81% and 85% respectively). Meanwhile, the 2030 LULUCEF targets
would be exceeded in all four scenarios (Table 4).

Table 4. Projected GHG emissions/removals (kt CO, eq) and targets for 2030 (per Regulation
2023/839 (EU)) [5] and 2050 (per Lithuania’s National Climate Change Management Agenda [4]).

Forestry Development Forestry Development +

Forest Land 40% +

Land-Use Category BAU Scenario Scenario Measures Scenario Measures Scenario
2030 2050 2030 2050 2030 2050 2030 2050
Forest land —6403.0 —7531.8 —6466.2 —8907.9 —6466.2 —8907.9 —6681.7 —9865.5
Cropland 9124 1351.7 904.3 1327.5 83.3 1045.8 80.5 1034.9
Grassland —623.9 —583.4 —621.7 —575.8 —628.9 —749.2 —636.3 —754.4
Wetlands 816.6 816.6 816.6 816.6 836.7 878.7 836.7 878.7
Settlements 324.4 131.2 329.9 133.3 329.9 133.3 329.9 133.3
Other land 12.3 0.0 12.3 0.0 12.3 0.0 12.3 0.0
Harvested wood ~7794  —4973 7794 —497.3 ~779.4 —497.3 ~779.4 —497.3
products
Balance —5740.7 —6312.9 —5804.2 —7703.6 —6612.3 —8096.7 —6838.0 —9070.3
Target —4633 —9558 —4633 —9558 —4633 —9558 —4633 —9558
% of the target 124 66 125 81 143 85 148 95

Although the targets for 2050 will be not reached, in all scenarios, higher total removals
will be achieved in the long run (2050) except in the cropland category, where higher
emission reduction will be achieved in the short term, and in the harvested wood product
category, with declining removals in the long term (Table 4). The most significant effect
of the measures applied can be observed in the cropland and grassland categories in 2030
(Table 4). Conversion of conventional agricultural land to no-tillage crops will be the most
intense until 2030, therefore causing the most significant effect on carbon sequestration
(in soils) until 2030. In addition, restoration of wetlands will result in a slight decrease
in emissions for the cropland category at the expense of restored drained areas but will
contribute to the wetland GHG source. Restoration of wetlands via CH, would additionally
result in 25 kt CO, eq in 2030 and 62 kt CO, eq in 2050. This suggests that measures
should be thoroughly accounted for and considered before implementation, also taking
into account different time perspectives regarding LULUCF’s climate change mitigation
potential. It should also be considered that the growing stock increment in mature stands is
shrinking, and the areas of mature stands will increase in upcoming decades. The declining
sink in old forest stands and the remaining high emissions from drained forest organic
soils will be counterbalanced by significant removals in young forests—areas recently
shifted from land converted to forest land to forest land remaining forest land. Therefore,
expected afforestation might be not enough, and additional measures (or an increase in their
volumes) for increasing carbon sinks or reducing emissions in other land-use categories
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(where available) are needed to rely fully on the sector’s potential for 2050. This is clearly
seen in the case of scenario IV (forest land 40% + measures), which indicates that, at least,
much more pronounced afforestation levels are needed to reach higher removals in the
LULUCEF sector by 2050 to approach the climate neutrality target. If the National Forest
Agreement were implemented [41], it could be expected that some 95% of the target for
LULUCF GHG removals would be achieved (Table 4). Hence, even in the case of the most
significant forest expansion, a shortage of approximately 0.5 million tons of CO; eq in
GHG removals (Figure 4) in the LULUCEF sector is expected compared to what would be
necessary to reach the climate neutrality goal. In all cases, this shortage must be covered
either by the sector itself taking additional measures or with more pronounced reductions
of GHG emissions in the other sectors.

0.00
BAU scenario Forestry development Forestry development + Forest land 405 scenario

scenario additional measures
—0.50
-0.49

-1.00
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Figure 4. Shortage of GHG removals (million tons of CO, eq) in LULUCF in 2050.

4. Discussion

Since 1990, Lithuania has reduced its national GHG emissions more than 60%, but
the challenge remains to meet the intended goals for 2050. Most of the decrease in GHGs
resulted from a transformational decline in 1990-1994 after the fall of the Eastern Bloc,
as energy consumption dropped more than twofold [46]. It should be admitted that not
much more action has been taken than general EU regulations and market pressure have
demanded. International and other commitments regarding GHGs have been achieved
without significant efforts due to the very high emissions in the reference year. Hence,
reducing GHGs in so-called non-ETS sectors remains the most problematic. The transport
sector prevails as the most complicated one with the largest share in energy consumption
and GHG emissions in Lithuania [36], with only 6.5% renewables (Eurostat data) and a
relatively old car fleet in the EU [53].

In addition to the other economic sectors to be addressed to reduce GHGs, according
to the National Climate Change Management Agenda [4], it is expected that LULUCF will
remove at least 6.5 million tons of CO; eq over the period 2021-2030 and, in 2050, will
offset 20% of the other sectors’ remaining emissions compared to 1990. Historical trends
provide some optimistic perspectives, as, over the total period of the analysis, LULUCF
acted as a sink for 26% of national CO, eq emissions on average annually. However, though
removals by the LULUCEF sector are accounted for in all scenarios for 2021-2025 to offset
emissions from the other sectors, application of the EU accounting rules results in much
lower GHG removal potential for offsetting. According to the different scenarios, accounted-
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for removals can reach only up to 36%, 37%, 70% and 74% of total amount allowed for
offsetting by EU Regulation 2023/857 for 2021-2030. The role of accounting rules and
the cap in achieving climate change goals also is acknowledged by other scholars [13,54],
and the need for substantial changes in accounting rules is discussed [55]. Schlamadinger
et al. [56] suggest that a fixed cap for forest-management accounting does not encourage
countries to improve forest management unless a country is below the cap or faces such
a risk. Considering that a significant share of Lithuanian forest stands are relatively old
or will become old in the very near future, higher harvest rates are obvious; hence, the set
forest reference level is not favorable in the case of Lithuania, as it encourages a reduction
in harvest intensity (at least for 2021-2025, as set in EU Regulation 2018/841) [38] in order
to preserve larger GHG removals in forest biomass. On one hand, a lower harvest rate
would be preferable for forest-land carbon sink enhancement. On the other hand, it could
be a solution for the short term only, since old forest stands have lower GHG removal
potential due to their lower yield [57] or might even become a GHG source in the future.
Therefore, the newest updates in the rules (EU Regulation 2023/839) [5], maintaining no
specific accounting categories or reference values since 2026 and setting an overall GHG
removal goal for the LULUCEF sector for the first time, seems to be more beneficial for
Lithuania. The results show that the 2030 mitigation targets could even be exceeded, and
Lithuania could rely on LULUCEF at least until 2030.

However, reaching the 2050 target remains more challenging. Lithuania would achieve
only some 81% and 85% of the desirable 20% offsetting of 1990’s GHG levels via LULUCF
in 2050 in the forest development and forest development + measures scenarios. Hence,
additional measures or changes in their volumes are still needed either to increase LULUCF
potential or reduce emissions more significantly from the other economic sectors. The effect
and the continuity of the measures proposed should be considered to yield a substantial
number of credits in the future because the given measures might have different results
in the short and long term, as our results indicate. Additionally, different environmental
goals might intervene, such as wetlands restoration and climate change mitigation.

Forest land is the main reporting category for carbon removal in Lithuania. It could
play a more pronounced role in climate mitigation if the National Forest Agreement [41] is
implemented and forest land area reaches 40% of country area by 2050. Projections show
a significant input of afforestation for climate change mitigation. The scenario including
more extensive forest development (40% of total country area) indicates that, in this case,
climate mitigation goals for 2050 could be achieved by 95% for LULUCF in Lithuania.
Hence, potentially more ambitious goals for afforestation should be set instead of the
current 3200 ha or 8000 ha planned annually. Other studies also report the significant
influence of afforestation on carbon sequestration (for e.g., [11]). Nevertheless, taking into
account the recently decreasing ratio of forest expansion (both natural forest expansion
and afforestation) in Lithuania, the business-as-usual scenario may also be challenging
to maintain. Natural forest expansion has been the most important source of the forest
coverage increase in Lithuania, and according to the results of the State Audit [58], there
are still large areas of natural forest expansion that are not included under forest land and
are at risk of being clear-felled and used again for agricultural purposes. In addition, as
historical trends indicate, natural disturbances or economic factors might also influence
forest development and the potential to remove GHGs.

Climate change and bioeconomic inconsistencies might also play an important role
in reliance on the LULUCEF sector’s climate mitigation potential. Trade-offs between
bioeconomy (forest biomass harvesting) and carbon sequestration [59] should be considered
in the light of climate mitigation goals, as an increase in biomass removals might lead to
forests becoming a carbon source rather than a sink in the future [60]. Nevertheless, Kauppi
et al. [61] suggest that timber harvesting and carbon sequestration can be aligned if proper
management of forests is applied. Though the influence of bioeconomic development is not
analyzed in detail in this paper, results show that a projected 10% harvest removal increase
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will have no negative impact on GHG removals as growing stand volume is still increasing
in the case of Lithuania.

Some other uncertainties within the sector also should be considered [62], and satu-
ration of sequestration capacity and the vulnerability of the sector should be taken into
account when relying solely on forests and LULUCEF in general [13]. For example, the forest
management cycle [63] and other forest and agroecosystem management decisions [64]
may have an impact on carbon sequestration and, thus, climate change mitigation potential
in the LULUCEF sector as well. Forests’ climate change mitigation potential might also be
affected negatively by climate change (see, for example, [65]), and forests might become
carbon sources instead of sinks [66,67].

5. Conclusions

Despite this sector’s vulnerability to natural disturbances and uncertainties, the LU-
LUCEF sector in Lithuania shows significant potential for carbon sequestration, with most
of the removals occurring in forest land, followed by harvested wood products and se-
questration in grassland. GHG removals by forest land not only ensure this large sector’s
removal potential but also ensure its ability to counterbalance other sectors” emissions.
Though the “no debit” rule set in LULUCF regulations is to be met and it will even be
possible to generate accounted-for removals in the LULUCEF sector during 2021-2025 as
well as the 2030 target for LULUCE, reaching carbon neutrality in 2050 will be challenging
for Lithuania. Along with afforestation, the analyzed measures for increasing LULUCF
potential are insufficient and must be considered while taking into account the benefits in
the short and long term—additional measures in line with planned forestry development
could achieve only some 85% of the needed GHG removals for 2050. In addition, even
rather ambitious afforestation goals (an increase in forest land to 40% of total country area)
are not enough and, with other measures applied, could ensure only 95% of the national
climate neutrality target for LULUCE. Moreover, afforestation rates could be limited by
the lack of areas suitable for afforestation due to national criteria. Additionally, the re-
quirements set by Nature Restoration Regulation (2022) might influence land-use change
patterns and the GHG balance of the LULUCEF sector or separate land-use categories. Hence,
reconsideration of afforestation targets and of other measures is needed if LULUCF is to be
relied on for climate neutrality implementation. In addition, the sector’s peculiarities and
uncertainties are of importance and must be considered by policy makers while pursuing
national climate neutrality and climate change mitigation in general.
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Abstract: Urbanization has significantly altered the carbon cycle of the terrestrial environment, partic-
ularly in relation to net primary productivity (NPP). Gaining a more comprehensive comprehension
of how NPP is affected by urbanization is crucial for obtaining fresh perspectives on sustainable
urban landscape design and decision making. While there is a significant body of research examining
the geographical and temporal patterns of NPP supply capacity, there are only a few studies that
have investigated the spatial relationships between NPP and urbanization, particularly at the grid
scale. This research investigated the temporal and geographical features and patterns of NPP and
their impact mechanisms. In order to estimate NPP and the level of urbanization in the Yangtze River
Delta Urban Agglomeration (YRDUA), we used a combination of different models and datasets. To
evaluate the geographical correlations and dependence between NPP and urbanization, we utilized
local bivariate autocorrelation methods and spatial regression models to describe and visualize
these relationships. The findings revealed that there was a consistent negative relationship between
NPP and urbanization on a global scale from 1990 to 2020. However, when examining the local
scale, the geographical correlations could be classified into four distinct categories: areas with both
low NPP and low urbanization, areas with high NPP and high urbanization, areas with low NPP
and high urbanization, and areas with high NPP and low urbanization. Our analysis showed that
spatial regression models are more suitable for quantifying the spatial relationship between NPP
and urbanization due to their ability to include the impacts of spatial Moran’s I techniques. Due
to the growing urbanization, the highest NPP value was recorded in 2005, followed by 2000, 2020,
and 2010. Conversely, the smallest association was observed in 2015. Examining the geographical
connection between NPP and urbanization offers theoretical and practical insights for urban planning
that prioritizes human needs and promotes sustainable development. It also aids in the development
of reasonable methods for organizing ecological functional systems.

Keywords: NPP; urbanization; spatial dependence; spillover effects; urban agglomeration

1. Introduction

Urban agglomerations have caused the conversion of natural ecosystems into ecosys-
tems that are either dominated by humans or closely connected to human activities [1].
The process of urbanization is primarily driven by population concentration, economic
growth, and urban expansion. These factors are recognized as the key drivers of changes in
NPP within urban agglomerations [2]. Urbanization often leads to transformations in land
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use and land cover (LULC), affecting not just metropolitan areas but also their surround-
ing regions. For instance, the substitution of vegetation areas and the implementation of
urban greening may directly change the composition of local terrestrial ecosystems [3,4].
Furthermore, urbanization has significantly impacted the environment for plant growth,
including factors such as temperature, soil texture, and atmospheric conditions. Net pri-
mary production (NPP) is a common consequence of urbanization and has always been a
subject of significant study interest [5]. Vegetation NPP refers to the total amount of organic
matter produced by photosynthesis, minus the organic matter consumed by respiration; it
represents the total amount of organic matter accumulated by vegetation per unit area and
per unit time [6]. The dynamic changes in NPP, as a key parameter of terrestrial ecological
processes and an important indicator reflecting the regional ecological conditions, can
reflect the impact of climate change and human activities on ecosystems [7]. Studying the
spatial-temporal patterns and driving factors of vegetation NPP is of great significance
for the protection of regional ecological environments and sustainable development [8].
Human activities have a significant role in ecological management, since actions such
as irrigation, pruning, and tree cutting may have substantial impacts [9]. In addition,
urbanization may significantly alter terrestrial ecosystems, particularly the carbon cycle
systems within them, due to the aforementioned effects [10]. Over the last several decades,
there has been a significant increase in urbanization worldwide, making it a crucial aspect
of global transformation [11]. Gaining a deeper understanding of how urbanization affects
NPP of terrestrial ecosystems is crucial in this specific context [12].

Ecosystem services refer to all the benefits that humans derive from ecosystems, which
are categorized into four distinct groups: supply services (such as providing food and
pure water), regulatory services (such as controlling floods and diseases), cultural services
(such as entertainment and cultural benefits), and support services (such as maintaining
nutrient cycling) [13,14]. The regulatory services act as a conduit that links the NPP of the
environment with the welfare of humans. It mostly pertains to the functions of climate
control, such as carbon fixation, oxygen release, and cooling impacts. The global NPP relies
on regulatory services as a crucial component and essential connection, which contribute
significantly to the overall global carbon equilibrium [15]. Hence, within the framework
of global climate change, investigating alterations in vegetation NPP has immense im-
portance in comprehending the interplay between variations in plant productivity and
climate [16,17]. Historically, the study of NPP has mostly relied on quantitative methods,
such as biometric assessments including sample surveys and field measurements [18].
Nevertheless, these conventional measures conducted in the field often require a signifi-
cant amount of time and effort, making them challenging to implement on a large scale
to estimate NPP. Models have been extensively used in recent decades to obtain more
precise NPP estimates on broader temporal and spatial scales; these models include statis-
tical [19], process-based [20], and light energy utilization [21] models. Researchers have
used NPP simulation models to study the effects of urbanization and LULC changes on
NPP. Imhoff et al. used the Carnegie Ames Stanford Approach (CASA) model to examine
the consequences of urban land conversion in the United States. Their findings indicate
that urbanization has significantly and detrimentally affected NPP [22]. Paz-Kagan et al.
used NPP as a measure to evaluate the impact of land-use changes on the ecosystems in
semi-arid regions of Israel [23]. In China, many scholars have used the CASA model to
assess the temporal and geographical NPP patterns and the influence of urban growth on
NPP [24-26].

The changes in NPP in terrestrial ecosystems are a clear indicator of the impact of
both human activities and global climate change on vegetation. These changes have a
significant effect on the global carbon cycle and climate change. The capacity of the earth
to support life and the sustainable evolution of terrestrial ecosystems can be evaluated by
using this indicator [27]. Zhao et al. utilized the Moderate Resolution Imaging Spectrometer
MOD13A2 Enhanced Vegetation Index (EVI) product to quantify the changes in NPP and
found that plant growth in most Chinese cities saw substantial improvements as a result of
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indirect factors [28]. This improvement offset approximately 40% of the losses resulting
from direct effects. Peng et al. used spatial regression to quantify the linear correlation
between NPP changes and the three indicators of urbanization. They also identified the
threshold at which NPP changes respond to these indicators [29]. Su et al. used the spatial
lag model (SLM) to enhance the visualization of the non-stationary correlation between
environmental services and urbanization [30]. While these studies attempted to examine
the correlation between NPP and urbanization, several elements remain unexplored. There
is a lack of consideration for the spatial relationship between NPP and urbanization,
particularly at the regional level. Hence, other statistical methods must be used to address
spatial autocorrelations. Furthermore, the previous research mostly concentrated on a
single urban area, often using administrative districts to represent spatial entities. This
level of study is insufficient to capture the spatial phenomena occurring at the meso or
macro level, such as those occurring in towns, counties, and cities. This might restrict the
practical feasibility of incorporating the NPP impact into comprehensive regional landscape
design and the industrial arrangements of urban agglomerations.

The YRDUA is one of China’s three main urban agglomerations and has the greatest
economic growth rate and population density in the country. Over the last several decades,
urbanization has caused significant changes in the land-cover conditions in the YRDUA,
altering the structure and function of its terrestrial ecosystems. This process has significantly
impacted the carbon budget of the area [31]. Hence, it is crucial to conduct more research
on the impact of urbanization in the YRDUA on its NPP. The MOD17A3HGF V061 data
products obtained from the data distribution system of the National Aeronautics and
Space Administration (NASA) website offer NPP datasets with a resolution of 500 m.
These datasets cover the period from 2000 to 2020 and fulfill the requisite criteria for both
temporal duration and spatial precision.

The purpose of this study was to (1) use various models and multi-source data to quan-
tify and map the degree of comprehensive urbanization, and analyze its
spatial-temporal evolution pattern; (2) examine the relationship between urbanization and
NPP using bivariate global and local Moran’s I approaches; and (3) investigate the geo-
graphical relationship between urbanization and NPP, as well as other relevant parameters,
using spatial regression models such as ordinary least squares (OLS) regression models
and geographic weighted regression (GWR) models.

2. Materials and Methods
2.1. Study Area

Our study chose 16 prefecture-level cities as the research object, which are the core
area of the YRDUA (Figure 1). The Lower Yangtze River, which borders both the East
China Sea and Yellow Sea, is home to the central region of the YRDUA, which is located at
118° E-123° E, 28° N-33° N, and has an area of 167 thousand km?, accounting for 1.74%
of the total national land area. It is a segment of the alluvial plain near the point where
the Yangtze River flows into the ocean, with an altitude of more than 10 m and low hills
scattered between 200 and 300 m. The gross domestic product (GDP) of the 16 cities in the
YRDUA's central area reached CNY 9.47 trillion in 2020 or 11.43% of the country’s GDP.
At this time, there were 119 million people living there, making up 9.68% of the entire
population of the country. According to statistics data, the energy consumption of the
16 prefecture-level cities in the YRDUA core region surpassed 6869 Mt in 2020, constituting
15.92% of the overall energy usage in China.

2.2. Data Sources

We combined a variety of data sources that were diverse in nature, including both
geographical and statistical feature data, into our analysis. More precisely, the datasets used
were (1) yearly net primary production (NPP) data from the MOD17A3HGF V061 products
with a spatial resolution of 500 m, obtained from the National Aeronautics and Space
Administration (NASA) (https:/ /lpdaac.usgs.gov/, accessed on 10 February 2021) [32];
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(2) Land-use/land-cover (LULC) data from 1990 to 2020, compiled using a conventional
interpretation method that analyzed Landsat Thematic Mapper (TM) and Landsat 8 OLI
remote-sensing imagery with a 30 m resolution. The LULC data were derived from
Landsat scenes covering path/row designations 118-120 and 3740, and they achieved
a classification accuracy of over 95% based on confusion matrix and Kappa coefficient
testing [33,34]; (3) Gridded datasets of GDP and population at a 1 km spatial resolution,
obtained from the Resource and Environment Science and Data Center (RESDC) of the
Chinese Academy of Sciences (https://www.resdc.cn/, accessed on 12 June 2021) [35];
(4) Meteorological datasets including annual air temperature and annual rainfall from
1990 to 2020, interpolated to a 1 km grid from observations at 83 weather stations situated
across and around the Yangtze River Delta Urban Agglomeration (YRDUA) region. These
meteorological data were acquired from the China Meteorological Data Service Center
(http:/ /data.cma.cn, accessed on 18 August 2021) [36]; (5) Digital elevation model (DEM)
data at 90 m resolution, resampled to 1 km resolution, obtained from the Geospatial
Data Cloud platform of the Computer Network Information Center, Chinese Academy of
Sciences (https:/ /www.gscloud.cn/, accessed on 18 April 2021) [37].
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Figure 1. Map of the study area. Top left panel: the national boundary of China (green area is the
location of the YR Economic Belt in China); bottom left panel: the administrative boundary of the YR
Economic Belt (green area is the YRDUA in the YR Economic Belt); bottom right panel: the adminis-
trative boundary of the YRDUA (administrative districts); and top right panel: a representative city
(Shanghai) in the YRDUA.

2.3. Data Analyses and Methods

The process of determining the NPP response to urbanization mainly included the
following three steps: (1) quantitative characterization of the degree of comprehensive
urbanization; (2) spatial correlation analysis between the changes in NPP and urbanization;
and (3) spatial regression analysis of NPP and urbanization. A flow chart of the procedure
is shown in Figure 2.
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Figure 2. The process for determining the spatial relationship between NPP and urbanization.

2.3.1. Urbanization Assessment

The urbanization process can be generally characterized by the growth of the popu-
lation, increase in the total economy, continuous improvement in the quality of life, and
rapid growth of urban construction areas. In view of the fact that social urbanization data
are not easy to collect and the indicators are relatively complex, we did not consider these
data here; thus, the degree of urbanization was measured through the three other aspects.
More precisely, population density (PD) was used as a metric to quantify the degree of
urbanization in terms of population, gross domestic product density (GDPD) was selected
to reflect the economic development level, and urban land percentage (ULP) was utilized
to gauge the extent of urbanization in terms of land usage. Due of the high similarity in the
geographical patterns of PD, GDPD, and ULDP, these three variables were combined into a
single indicator known as comprehensive urbanization level (CUL). The various indices
were subjected to range standardization in order to convert their values into a uniform
range of 0 to 1. These standardized values were then averaged to obtain the CUL value.
The range standardization method (Equation (1)) and CUL calculation (Equation (2)) are
as follows:

Uij= g — — M
uI,max uz,mzn
CUL; = (PD;+GDPD; +ULP;)/3 2)

where Ul j represents the normalized value of U; ;; U ; is the i-th urbanization indicator (PD,
GDPD, or ULP) in the j-th raster, relative to the original value; U; ,,,, and U; ,,;,, represent
the highest and lowest values, respectively, of the i-th urbanization indicator over all
grids; C ULj represents the urbanization level of the i-th grid; and PD i GDPD]-, and LILPj
represent the population density, GDP density, and urban land proportion, respectively, of
the j-th grid after standardization. The rationale for using Equation (2) to calculate the CUL
is that it provides a balanced and holistic measure of urbanization by equally weighting
the three key aspects [38].

2.3.2. Spatial Correlation Measure

The bivariate Moran’s I statistic was utilized to identify any geographical cluster-
ing or discontinuous link between the comprehensive urbanization level (CUL) and
vegetation net primary production (NPP). Global and local bivariate Moran’s I are two
strategies that can be used for this purpose. The formulae that were used are as follows
(Equations (3a) and (3b)):
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Iy =2Y ) Wy, (3b)

, (3a)

cu —

Here, I, and I/, are the global and local bivariate Moran’s I of NPP and CUL, re-
spectively, and N represents the aggregate number of spatial grid cells. In the model,
the parameters obtained are W;;, which represents an N x N weighted matrix that was
used to detect the correlation between the i-th and j-th grids. The spatial unitis a 4 x 4
matrix generated based on the first-order neighborhood in the weight adjacent to the
queen [39]. The input data were z; and z;’ ; z represents the i-th standardized NPP grid
value obtained by using Equation (1), and z]”.‘ represents the j-th standardized CUL unit

value calculated using Equation (1) [40,41]. The output result is I, /I, where the range of
values for I,/ I/, is —1 to 1. The computed p-value for the regional connection between
the NPP impact and CUL was below 0.05, indicating statistical significance [42]. NPP
and CUL were readjusted to a 1 x 1 km raster map using the mean value approach in
ArcGIS 10.5. Next, the NPP and CUL data of all grids were entered into GeoDa 1.12
(https:/ / geodacenter.github.io/, accessed on 16 August 2021) for execution, and spatial
correlation analyses were conducted [43].

Bivariate spatial autocorrelation can determine whether two variables are spatially
correlated and evaluate the strength and direction of the correlation. It can help us in
exploring the laws of geographical phenomena and spatial distributions, providing a
scientific basis for decision making [44]. However, bivariate spatial autocorrelation analysis
also has some limitations, since it is sensitive to data distribution biases, spatial scale effects,
spatial connections, and causal relationships. Therefore, we should take these limitations
into consideration when interpreting the results [45,46].

2.3.3. Spatial Regression Test

1. Analysis of global spatial regression

Ordinary least squares (OLS) can generate predictions when performing global linear
regression, or model a dependent variable and a set of explanatory variables to detect the
influence relationship. Anselin provides the general form of the spatial regression equation
for raster data, taking into account the spatial correlation between independent variables
and dependent variables [47] (Equations (4) and (5)):

Y =pWiY+XB+e¢, 4)

€= )\WZ +u,p N(O/ Q)/ Qii = hi(za)/ (5)

where p represents the coefficient of the geographical lag variable W;Y; 3 represents the
k x 1 parameter vector associated with the independent variable X; ¢ is the vector represent-
ing the random error term; the weight matrix Wy represents the geographical pattern of the
variable; the order weight matrix W, represents an n x n matrix; the normal distribution is
denoted by N; the exogenous variable is represented by z, while () denotes the variance
matrix, its diagonal elements are (), h; is the functional relationship, and the constant
term is represented by a; and the spatial autonomy is denoted by A. The coefficients of the
regression structure W, should generally be 0 < p <1,0 <A <1, and p is a random error
vector of a normal distribution. The regression equation of the whole grid data space is
subject to 3 parameters: p, A, and a.

2. Analysis of local spatial regression

Spatial regression technology was used to study the spatial dependence of the effect of
urbanization on NPP (that is, how NPP changes in response to the process of urbanization).
Geographically weighted regression (GWR) is a type of regression that adds regional
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ordinary least squares (OLS) to improve the model [48]; the expression of the model is as
follows (Equation (6)):

ZFIG; = Bolui, v;) + Y 4y Xufi(its, 0) + €, 6)

where B, (u;,v;) is a constant term; B;(u;, v;) is the characteristic elastic coefficient of the
i-th sample point. The elastic coefficient of every point (u;,v;) in the sample region is
determined using a weighted least square multiplication method; the calculation formula
is as follows (Equation (7)):

B(u;,vj) = (ﬁp(”i/vi)/Bf(uirvi)"'fﬁ’y(”ifvi))T = (X"W(u;,0)X) T XTW(u;,0)ZEIG;  (7)

where X represents the matrix of independent variables and W (u;, v;) represents the spatial

weight matrix. The spatial weight matrix is constructed using a monotonically decreasing
function that calculates the geographical distance between the location to be estimated and
the surrounding observation sites. Different function forms can be used. Our study used
the Gauss kernel function; its expression is as follows (Equations (8) and (9)):

W (uj,v;) = diag(K(djo /), K(dir /1)--, K(dir /1)), 8)
1 1
K(t) mexp(—it ), )

where d; is the Euclidean distance between each sample point and / is the optimal band-
width, which can be determined using the cross-determination method to minimize h
(Equation (10)).

" . 2
CV(h) = %Zizl (ZF]GZ- —ZFIG(_y (h)), (10)

where ZF]G(_i)(h) is the simulated predicted value of the NPP at point i obtained by
simulation after the i-th observation value is discarded under h, and ZFJG; is the actual
observed value of the NPP at point i.

3. Results
3.1. Spatial CUL Patterns in the YRDUA

According to the analysis of Figures 3 and 4 and Supplementary Materials, from
1990 to 2000, the comprehensive urbanization level of the YRDUA showed a predominant
pattern of circular expansion around the major cities. During the two five-year periods
from 1990 to 1995 and 1995 to 2000, Shanghai, as the main city in the urban agglomera-
tion, saw significant urbanization development. The comprehensive urbanization level
increased from 67.37 to 105.75, with growth rates of 6.05% and 12.22%, respectively. The
comprehensive urbanization level developed slowly in the YRDUA.

After 2000, the YRDUA achieved axial expansion, i.e., expansion of the circle around
core cities. The urbanization level of the growth poles and key cities on the Nanjing—
Hangzhou Expressway increased significantly. The growth pole city Hangzhou had an
added value of urbanization of 130.86, with a growth rate of 67.11%. The comprehensive
urbanization growth values of key cities such as Ningbo, Huzhou and Shaoxing were 66.21,
21.55, and 51.73, and the growth rates were 120.32%, 41.66%, and 87.43%, respectively. The
process of urbanization developed rapidly.

After 2010, as the development of urban agglomerations continued to increase, cities
within urban agglomerations gradually obtained their own independent development
space. The linear connection mode was gradually replaced by the expand-around mode,
and the evolution of urban agglomerations was transformed into a network mode. Due
to the changes in macro policy and concept aspects, such as adjusting industry structures
and promoting upgrades, Shanghai and Hangzhou have maintained a steady growth rate
due to the development of their emerging high-tech industries [49]. The added values of
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urbanization were 104.78 and 73.93, respectively, with growth rates of 9.35% and 17.39%;
thus, the urbanization process has grown steadily.

comprehensive urbanization level (CUL)
N o004 .

I 004-0.15 \,

[Toi6-036 %

. [ o037-068 .

% s 05 et
4 water

Figure 3. Spatial pattern of comprehensive urbanization level (CUL) in the YRDUA from 1990 to 2020.
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Figure 4. Comparison of comprehensive urbanization level (CUL) across the 16 cities in the YRDUA
during 1990-2020.
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3.2. Geographical Links between Urbanization and NPP

Moran’s I analysis revealed a notable negative geographical association between the
NPP and urbanization, irrespective of the year (Figure 5). It is known that the growth
of built-up land led to a decline in NPP at the global level. Nevertheless, the extent of
the negative association varies depending on the various phases of urban agglomeration
growth. Here, the association between NPP and urbanization was the strongest in 2010
(Moran’s I: —0.2492), followed by 2020 (Moran’s I: —0.1937), 2015 (Moran’s I: —0.1841),
1990 (Moran’s I: —0.1685), 2000 (Moran’s I: —0.1685), and 2005 (Moran’s I: —0.1470). The
weakest correlation was in 1995 (Moran’s I: —0.1234). The results of the global spatial
autocorrelation analysis, to some extent, showed a spatial correlation between NPP and
CUL, and overall, the negative correlation increased over time.
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Figure 5. Spatial-temporal correlations between NPP and CUL (global bivariate Moran’s I autocorrelation).

Local bivariate spatial autocorrelation is a statistical method used to analyze the
spatial correlation between two variables at the local level; it introduces the spatial concept
into the autocorrelation analysis, allowing us to determine whether two variables are
spatially correlated and the strength and direction of the correlation, which are usually
represented by the local indicators of spatial association (LISA) [50]. The LISA diagram
shows the four possible geographical correlations that exist between urbanization and NPP
(Figure 6): the high-high (HH) type represents the clustering of high NPP and high CUL
values; the low-low (LL) type represents the clustering of low NPP and low CUL values;
the low-high (LH) clustering represents the clustering of low NPP and high CUL values;
and the high-low (HL) clustering represents the clustering of high NPP and low CUL
values [51]. Using a seven-year sample, we saw distinct similarities in the way NPP and
urbanization were clustered in different regions. The places with the highest elevation are
mostly located in the central regions of the urban land of the YRDUA. With the expansion
of urban land, HH areas also increased. The LH regions were mostly dispersed over the
whole HH region and concentrated around the HH areas. The low-high regions were
mostly concentrated in the northern region of the urban agglomeration, whereas low-high
regions were absent from the southern region. The HL area occupied a large area in the
south, concentrated in the mountains in southwest Hangzhou and the lush vegetation areas
in the southern mountainous areas of Taizhou, Ningbo, and Shaoxing, which had relatively
low levels of urbanization due to being restricted by natural conditions such as topography
and landforms. The LL area did not show any changes in its spatial pattern over time. In
2005, 2015, and 2020, the LL areas appeared in the coastal areas of Hangzhou, Shaoxing,
and Ningbo, while in the other four years, the LL areas did not show any obvious spatial
characteristics or LL areas did not appear.
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Figure 6. Spatial-temporal correlations between NPP and CUL (LISA diagram).

3.3. Spatial NPP Pattern Dependence on Urbanization

Changes in the ecosystem are fundamental impacts of climate change; therefore,
climatic factors (including temperature, precipitation, and digital elevation models (DEM))
were analyzed in order to reveal the driving factors affecting the regional NPP. The results
simulated by the OLS model showed that the regression coefficients of precipitation in all
years were positive, indicating that precipitation and the NPP were positively correlated
(Table 1). Except for the regression coefficients of PD in 2000 and ULP in 2005 that showed
positive correlations, all factors from 1990 to 2020 were negatively correlated with NPP.
From 1990 to 2010, the absolute value of the regression coefficient of the CUL was always
greater than that of the other factors (PD: —0.48; GDPD: —0.61; ULP: —0.53; TEM: —0.86;
PRE and DEM: —0.56). GDPD ranked second in 1990 and 2000, with coefficients of —0.55
and —0.48, and PD in 1995 and 2005 ranked second with coefficients of 0.27 and —0.61,
respectively. As the pace of urbanization stabilized, the population and economic growth
in the YRDUA reached a state of relative saturation, and the influence of urbanization
factors on the NPP diminished. In 2010, the coefficients of temperature and precipitation
were relatively large at —0.56 and 0.36. In 2020, the regression coefficients of PD, GDPD,
ULP, and CUL continued to decrease compared with 2015 and 2010, and they were still
smaller than the meteorological factors, showing a relatively weak degree of influence.

Table 2 shows the R?, adjusted R?, AIC, and Moran’s I values from the OLS and
GWR models. The R? (adjusted Rz) values for the GWR model ranged from 0.42 to 0.53,
surpassing those of the OLS model. Meanwhile, Moran’s I and AIC from the GWR model
surpassed those from the OLS model, suggesting that the GWR model is superior to the
OLS model in examining the variables influencing the NPP. GWR is more appropriate for
spatial regression analyses than OLS. Since the CUL regression coefficient is the largest, we
analyzed the regional differences and evolution trend of the CUL regression coefficients
and residual and explored whether CUL increasingly affects the spatial pattern of the NPP.
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Table 1. OLS model analysis results of NPP-influencing factors from 1990 to 2020.

Standard

Year Variable Coefficient Deviati t/z Value p-Value (>1tl)
eviation
(Intercept) 0.23 0.03 19.79 0.00 **
PD 0.02 017 0.09 093 *
GDPD —055 0.14 393 0.00
" ULP 0.35 0.12 2.83 0.01 **
90 CUL —048 034 316 0.01 #*
TEM —037 0.04 ~10.23 0.00 **
PRE 0.36 0.02 22,05 0.05 **
DEM 0.35 0.06 14.20 0.00 **
(Intercept) 027 0.03 19.08 0.00 ***
PD 027 0.12 226 0.02*
GDPD ~0.05 0.17 ~6.03 0.00
ULP 0.10 0.10 1.10 027
1995 CUL —0.61 021 282 0.01 *+*
TEM —037 0.04 —9.78 0.00 **
PRE 032 0.02 1837 0.05 #*
DEM 025 0.03 9.42 0.00 ***
(Intercept) 0.24 0.03 21.00 0.00 **
PD 0.22 013 173 0.08 *
GDPD —048 0.15 32 0.00
ULP 012 0.09 0.02 0.98
2000 CUL ~053 022 247 0.01 *+*
TEM ~043 0.04 ~12.08 0.00 **
PRE 033 0.02 20.20 0.00 #*
DEM 0.41 0.05 11.02 0.00 %
(Intercept) 0.38 0.03 24.73 0.00 ***
PD —0.61 0.24 _255 0.01 #*
GDPD ~036 0.07 ~528 0.00 **
ULP 0.17 0.08 2.0 0.04 **
2005 CUL ~0.86 0.17 ~519 0.00 **
TEM 042 0.04 1177 0.00 ***
PRE 0.22 0.02 14.07 0.00 ***
DEM 0.51 0.06 1028 0.00 **
(Intercept) 0.29 0.02 25.28 0.00 ***
PD —015 0.10 —148 0.14*
GDPD 032 0.17 24 0.02 *+
ot ULP ~0.20 0.15 133 0.08 *
010 CUL ~046 025 ~0.66 0.11*
TEM ~056 0.03 ~13.91 0.00 **
PRE 0.36 0.02 23.02 0.00 #**
DEM 042 0.01 1635 0.00 ***
(Intercept) 0.25 0.02 25.25 0.00 ***
PD ~0.13 0.13 ~1.00 032
GDPD —013 0.05 271 0.01 #*%
ULP —0.09 0.05 172 0.08 *
2015 CUL ~0.29 0.13 ~1.40 0.16*
TEM —041 0.03 ~12.83 0.00 ***
PRE 0.23 0.02 1051 0.00 **
DEM 0.49 0.05 9.24 0.00
(Intercept) 031 001 2213 0.00 ***
PD ~0.11 025 ~1.03 028
GDPD ~0.15 0.08 234 0.01 **
ULP ~016 0.06 ~165 0.059 *
2020 CUL ~032 0.11 ~158 0.14*
TEM —052 0.04 —1154 0.01 **
PRE 031 0.01 1036 0.00 ***
DEM 052 0.06 8.87 0.00 #**

Note: *, **, and *** indicate significance at 90%, 95%, and 99% confidence levels, respectively. Abbreviations:
population density (PD); GDP density (GDPD); urban land percent (ULP); comprehensive urbanization level
(CUL); temperature (TEM); precipitation (PRE); digital elevation model (DEM).

Figure 7 shows the spatial impact (regression coefficients and residual) of CUL on NPP
from 1990 to 2015. In 2000, the regression coefficient of CUL was roughly centered on the
western part of Hangzhou, the regression coefficient becomes smaller as it goes outward,
and the influence of comprehensive urbanization level (CUL) on NPP gradually decreases.
In 1995, the regression coefficient for both the high-value area and low-value area shifted
slightly northward towards the traffic line connecting Shanghai and Nanjing, compared to
1990. This indicates that Hangzhou's e-commerce, Internet development, and other tertiary
industries gradually influenced the surrounding areas such as Shanghai and Nanjing [52].
The spatial pattern of the regression coefficients in 2000 was basically the same as that in
2005. The areas of Taizhou and Wenling in the southeast corner changed from median
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regression coefficients to high values. This is because the degree of urbanization in Taizhou

and Wenling was strengthened and it had begun to have a greater impact on the spatial
NPP pattern.

Table 2. OLS and GWR model results of NPP-influencing factors from 1990 to 2020.

Parameter Model 1990 1995 2000 2005 2010 2015 2020
ors —179451 —1499.15 ~1892.90 —1484.85 122041 ~1592.63 —1975.63
AlC GWR —1880.94 ~1619.63 —2063.51 _1648.74 ~1311.01 —1687.76 _1653.41
@ oLS 0.46 0.43 0.48 0.47 0.50 0.42 0.46
GWR 0.30 0.48 0.55 0.54 0.55 0.46 0.43
Adjusted R? OLS 0.45 0.42 047 047 050 042 0.44
GWR 0.49 0.47 0.53 0.52 0.53 0.45 0.50
) oLS —0.04 ~0.06 ~0.03 ~0.05 ~001 ~0.03 ~0.02
Moran’s I GWR —016 ~0.17 ~015 ~0.17 ~0.18 —0.17 —0.14

Legend
CUL coefficient

45 27 .19 14 -0 07 04 0 04 08

Figure 7. Regression coefficient and standard residual distribution of CUL from 1990 to 2020.
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4. Discussion
4.1. Geographical Spillover Consequences in the Correlation between Urbanization and NPP

Geographical spillovers occur when the proximity of one unit to its nearby units influ-
ences its benefits or costs [53]. Statistically significant bivariate global Moran’s I values were
observed in all cases (Figure 5). This suggests that there was a significant spillover effect on
the geographical correlation between urbanization and NPP in the YRDUA. Additionally,
all bivariate global Moran’s I values were negative, indicating that urbanization resulted
in negative externalities for NPP. The findings of the bivariate LISA analysis (Figure 6)
indicate that the spatial spillover process was not spatially independent. Furthermore,
the transmission of the spatial spillover impact across grid cells was severely limited by
the regional context [54]. In other words, when a grid is next to a highly urbanized grid,
there is a higher likelihood of its NPP dropping. Conversely, when it is next to a grid
with low urbanization, the reverse scenario occurs. The bivariate LISA analysis revealed
distinct clustering patterns of high-high and low-low associations, indicating the need for
more investigation into the relationship between NPP and urbanization. It is important to
include other characteristics such as plant cover, water cover, terrain, and soil, since these
may also have an impact. These variables, in conjunction with urbanization, influenced the
alterations in the regional NPP [55].

The bivariate LISA diagram displays many conspicuous characteristics (Figure 6).

1. Examining the correlation between NPP and urbanization, it was evident that from
1990 to 2020, the geographical arrangement of regions deemed as not significant
remained consistent. These areas are mostly located on the outskirts of metropolitan
agglomerations. This is due to the fact that, compared to the Shanghai, Suzhou-Wuxi-
Changzhou, and Nanjing metropolitan areas, these places exhibited a lower level of
urbanization activities, such as population concentration, economic investment, and
land development. Hence, urbanization is not the primary influence on NPP on the
outskirts of metropolitan agglomerations;

2. In 2010, the geographical correlations of NPP and urbanization were highest in the
high-high and low-high areas. The regions at the highest elevations are mostly
located in the inner region, while the regions at lower elevations are found around the
urban built-up areas. Prior to 2010, the rate of urban expansion exhibited a consistent
and steady increase. Since 2010, there has been a growing awareness at both the
national and regional levels of the rapid expansion of urban agglomerations and
the environmental pollution issues associated with economic development and high-
energy-consuming industries. These factors have significantly contributed to global
climate change and the degradation of the ecological environment. Consequently,
regulations have been implemented to regulate the unrestricted expansion of urban
areas and reconfigure energy-intensive businesses in order to transition and enhance
the use of clean energy sources. Hence, starting in 2015, the association between NPP
and urbanization seemed to diminish;

3. The geographical distribution patterns of NPP and urbanization in 2000 and 2010
exhibited a significant degree of similarity. This outcome aligns with the findings
of Qiu’s study. He discovered that the decade spanning from 2000 to 2010 had the
highest rate of urbanization and the greatest stability for the urban agglomeration
of the Yangtze River Delta. During this time, the urban agglomeration underwent a
phase of creation and development, with a consistent and continuous increase in the
level of urbanization [56]. Simultaneously, the decline in NPP failed to attract attention
and recognition for its effect and repercussions. The decline in NPP and the rise in
anthropogenic carbon emissions are not being effectively managed and regulated. NPP
and urbanization exhibited a strong geographical correlation, indicating a consistent
pattern of spatial clustering.
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4.2. NPP and CUL Spatial Link Implications for Urban Agglomeration Development Programs

Using an OLS model, our research quantitatively analyzed the influence mechanism
of the spatial-temporal evolution of NPP in the YRDUA. The findings indicate that the
impact of different variables on the spatial-temporal development of NPP varied across
different time periods, and the influence of CUL on NPP showed an inverted “U” pattern.
Coordinating regional development, adapting measures to local conditions, maximizing
the benefits of regional development, and achieving a balanced, coordinated, and sus-
tainable urban agglomeration regional development model are important goals for the
progress of the YRDUA region. Prioritizing the low-NPP areas that are most vulnerable
to urbanization is crucial when embarking on urban development projects. Any region
exhibiting a substantial NPP should be designated as an ecological reserve to prevent or
limit urban expansion [57,58].

The regression analysis of the CUL in 2015 revealed that the regions with high regres-
sion coefficients were concentrated in the western border region of the urban agglomeration,
as seen from the distribution patterns of Shanghai and Hangzhou. This is mostly due to the
urbanization growth of the urban agglomeration, which has started expanding towards the
west. As a result, it has begun to link with and influence the urbanization process of the
western strip region of the urban agglomeration [59]. As far as the actual situation is con-
cerned, in the “Yangtze River Delta Urban Agglomeration Development Plan (2015-2030)",
10 prefecture-level cities under the jurisdiction of Anhui Province, which is close to Jiangsu,
have also been assigned to the YRDUA, so that the YRDUA has a more solid development
foundation and geographical space, which can better realize the improvement of quality
and efficiency and the integrated development of large regions [60].

The study findings can more accurately align with the current state of development
in the YRDUA. Additionally, the research conclusions may serve as a foundation for the
creation of regional development policies for the YRDUA. The analytical framework not
only emphasizes the application of new methods but also pays attention to the dynamic
space of regional cooperation and its interconnections [61]. It aims to provide support for
further coordinating regional balanced development and strengthening regional exchanges
and cooperation by identifying and quantifying the spillover effect between regions. This
research approach can also provide new research ideas and methods for other domestic
regional economic development research [62].

4.3. Limitations of the Applied Method

However, there are still some limitations in this study. One problem is that the
R? values are relatively low for both the OLS and GWR models, suggesting that other
factors affecting NPP were not fully explored. Further research should develop improved
models based on the characteristics of the study area to analyze the spatial-temporal
evolution of NPP, such as spatiotemporal weighted regression (STWR) models. The STWR
model is characterized by using a novel “time distance” for weighting to capture fine
spatiotemporal heterogeneity, as opposed to the traditional geographically and temporally
weighted regression (GTWR) approach [63]. These advanced spatiotemporal modeling
techniques could help to better elucidate the relationship between NPP and its driving
factors, including the role of past carbon storage data to determine the relationship between
social behavior and natural resources. Another issue is that the geospatial data layer
should be further refined in future research. It is worth noting that the assessment of
ecosystem services depends on the choice of proxy indicators. In our study, the NPP
indicator, which characterizes carbon fixation and oxygen release, was selected to reflect
the regulatory function of ecosystem services. If the NPP data based on MODIS data cannot
be accurately spatially predicted, or the collected data do not have sufficiently high spatial
and temporal resolutions, there may be errors in the results of the correlation analyses and
regression fittings. This issue also arises in proxies used for evaluating urbanization, and
all three levels have inherent issues concerning the quality and accuracy that may impact
the study’s findings.
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The findings indicate that GWR outperforms the standard regression method (OLS)
in explaining the relationship between urbanization and the responsiveness of ecosystem
services, especially for NPP. The results derived from the methodologies used in this
investigation are very reliable and satisfactory, indicating that spatially explicit modeling
approaches could be valuable for decision making and policy formulation. If the data used
in this investigation can be gathered for other geographical areas, the technique could
be applied in those areas to evaluate indicators of urbanization and NPP and perform a
geographical examination of the interconnections between these two aspects. The purpose
of this research is to assist governments in making informed choices that will contribute
to the long-term sustainability of urban agglomeration areas, including the economic,
environmental, and sociocultural aspects.

5. Conclusions

Our research investigated the relationship between ecosystem services (with NPP
representing regulatory functions) and urbanization from a geographical standpoint, taking
into account the spatial correlations and dependencies. The findings of our investigation
led to the following conclusions: (1) The bivariate global Moran’s I of urbanization and
NPP from 1990 to 2020 exhibited negative values, suggesting a global negative connection
between the two variables. From a local standpoint, there was a geographic disparity
in the correlations between CUL and NPP. The bivariate LISA approach identified and
presented four different types of local correlations (namely, high-high, high-low, low-high,
and low-low) between NPP and urbanization. (2) The spatial regression analysis revealed
that urbanization and other influencing variables have varying effects on NPP. Due to the
growing urbanization, NPP reached its peak in 2005, with 1995 and 2010 following closely
after. The correlation was lowest in 2015. (3) Aside from urbanization, environmental
services are also influenced by other variables such as climate and geography. When
accounting for spillover effects in the regression analysis, the influence of urbanization
on ecosystem services showed a steady increase from 1990, followed by a gradual decline
after 2010, in contrast to the findings obtained using the OLS method. However, our study
has certain limitations. First, we used NPP as a proxy for ecosystem services, which may
not fully capture all aspects of regulatory functions. Second, the spatial regression models
employed may not account for all potential confounding factors and complex interactions.
Third, our analysis focused on the national scale, and finer-scale local variations may exist.
Despite these limitations, our findings offer practical implications for urban planning and
industrial site selection, highlighting the importance of considering spatial dependencies
and trade-offs between urbanization and ecosystem services. Future research could explore
alternative measures of ecosystem services, incorporate additional explanatory variables,
and conduct multi-scale analyses to further refine our understanding of this complex
relationship. We recommend that urban planners and policymakers consider the spatial
patterns and correlations identified in our study when developing urbanization strategies
and industrial zoning plans. Balancing economic growth with ecosystem conservation
requires a holistic approach that accounts for geographic variations and spatial spillover
effects. Integrating these considerations into decision-making processes can promote
sustainable urban development and environmental stewardship.
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from 1990 to 2020.
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Abstract: Intensive economic and human activities present challenges to the carbon storage capacity
of terrestrial ecosystems, particularly in arid regions that are sensitive to climate change and eco-
logically fragile. Therefore, accurately estimating and simulating future changes in carbon stocks
on the northern slope economic belt of Tianshan Mountains (NSEBTM) holds great significance
for maintaining ecosystem stability, achieving high-quality development of the economic belt, and
realizing the goal of “carbon neutrality” by 2050. This study examines the spatiotemporal evolution
characteristics of the NSEBTM carbon stocks in arid regions from 1990 to 2050, utilizing a combination
of multi-source data and integrating the Patch-generating Land use Simulation (PLUS) and Inte-
grated Valuation of Ecosystem Services and Trade-offs (InVEST) models. Additionally, an attribution
analysis of carbon stock changes is conducted by leveraging land use data. The findings demonstrate
that (1) the NSEBTM predominantly consists of underutilized land, accounting for more than 60% of
the total land area in the NSEBTM. Unused land, grassland, and water bodies exhibit a declining
trend over time, while other forms of land use demonstrate an increasing trend. (2) Grassland
serves as the primary reservoir for carbon storage in the NSEBTM, with grassland degradation being
the leading cause of carbon loss amounting to 102.35 t over the past three decades. (3) Under the
ecological conservation scenario for 2050 compared to the natural development scenario, there was
a net increase in carbon storage by 12.34 t; however, under the economic development scenario
compared to the natural development scenario, there was a decrease in carbon storage by 25.88 t.
By quantitatively evaluating the land use change in the NSEBTM and its impact on carbon storage
in the past and projected for the next 30 years, this paper provides scientific references and precise
data support for the territorial and spatial decision making of the NSEBTM, thereby facilitating the
achievement of “carbon neutrality” goals.

Keywords: scenario simulation; carbon storage; spatiotemporal evolution; InVEST model; northern
slope economic belt of Tianshan mountains

1. Introduction

Globally, nations have set a goal of achieving “net zero carbon emissions” in 2021.
Enhancing carbon storage in terrestrial ecosystems represents a pivotal approach to miti-
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gating carbon dioxide emissions, thus constituting one of the foremost strategies [1]. The
United Nations report on the 2030 Agenda for sustainable development underscores the
imperative of safeguarding, rehabilitating, and sustainably harnessing ecosystems in order
to advance sustainable development goals. Human activities and the process of economic
development lead to modifications in land cover, resulting in consequential alterations to
factors such as the land, climate, and environment. These changes subsequently impact
global terrestrial carbon storage ecosystem processes [2]. Given the escalating concerns
regarding land use, urban expansion, and climate change in the foreseeable future, they
pose persistent threats to the sustainable development of terrestrial ecosystems and have
garnered global attention [3,4]. Carbon stocks in terrestrial ecosystems are primarily af-
fected by climate change and human-induced alterations in land use and cover, which is
widely recognized [5]. On one hand, human activities and LUCC changes are substantial
contributors to the rise in global temperatures through carbon emissions [6,7]. Controlling
the global carbon cycle and climate change requires carbon storage, a key measure of the
health of terrestrial ecosystems [8,9]. LUCC is the second major factor contributing to the
significant rise in global carbon emissions, as multiple studies have demonstrated that they
have a direct impact on terrestrial ecosystems’ ability to store carbon [10,11]. On the other
hand, human activities play a constructive role in carbon sequestration within arid regions
through their influence on land use and vegetation cover dynamics. Purposeful human
intervention and the implementation of ecological restoration policies have the potential to
augment vegetation coverage and enhance greenery [12]. Hence, it is evident that land use
change not only represents a prominent aspect of global surface environmental alterations
but also serves as a focal point for investigating variations in carbon storage within terres-
trial ecosystems. Consequently, accurately evaluating the impact of land use change on
carbon storage and establishing harmonious, sustainable, and high-quality human-land
relationships are imperative to accomplish the mission and objectives of achieving global
“carbon neutrality” by 2050.

At present, there are three main approaches to studying carbon storage in terrestrial
ecosystems: conducting field surveys, utilizing remote sensing technology, and employing
model simulations. For instance, utilizing data from various carbon pools along with
spatial-temporal visualization capabilities enables the effective calculation of carbon stor-
age using models like InVEST [13]. The model is simple to operate, flexible in terms of
parameters, and yields accurate results [14]. The In'VEST model, when combined with GIS
technology, has successfully addressed the limitations of traditional methods for estimating
carbon storage. These limitations include extended sampling periods and intensive labor.
In addition, the InVEST model offers the benefits of simplified parameter acquisition and vi-
sually presented results. As a result, it is extensively utilized in various applications [15-18].
Research has shown that the InVEST model, combined with geographic information map-
ping, was used to simulate carbon storage in the Poyang Lake basin [19]. In addition,
some scholars have also used land use types in conjunction with the InVEST model to
quantitatively assess the impact of LUCC conversion on ecosystem carbon storage [20].
Many researchers use models such as SD, FLUS, CA-Markov, ANN-CA, and logistic-CA
to predict LUCC changes and have coupled these models with the InVEST model to re-
veal the spatial distribution characteristics of carbon storage under different future LUCC
scenarios. The utilization of the Flus model and the InVEST model has yielded favor-
able validation outcomes in simulating carbon storage in the arid regions of northwest
China [21]. Additionally, the CA-Markov model has demonstrated strong applicability in
the Sariska Tiger Reserve in India. The utilization of the future land use prediction models
can effectively explore the dynamic changes in carbon storage within the research area,
thereby providing valuable support for informed decision making on land management
by local departments and governments [22]. Among the abovementioned models used
for future LUCC predictions, the PLUS model effectively elucidates the underlying causes
of the diverse LUCC changes and accurately simulates spatial transformations in various
small-scale regions. It facilitates the incorporation of prospective spatial policy elements

114



Land 2024, 13, 608

and enables a more scientifically rigorous simulation of the future LUCC alterations under
distinct policy scenarios [23,24].

The north slope economic belt of Tianshan Mountains (NSEBTM) is located in a strip-
shaped oasis at the foot of the northern slope of Tianshan Mountains, on the northwest
border of China [25]. Due to its inland location, distance from the sea, and scarce pre-
cipitation, it belongs to China’s arid region with fragile ecosystems and harsh climatic
conditions [12]. The NSEBTM, endowed with abundant energy resources and strategi-
cally located, functions as a convergence zone propelled by the China—Central Asia—West
Asia economic Corridor, the China—Russia-Mongolia economic Corridor, and the China—
Pakistan economic Corridor. It assumes a pivotal role as an important strategic support
point along the Silk Road economic belt and serves as a crucial bridge for China’s west-
ern opening-up endeavors. In line with China’s comprehensive opening-up strategy and
modernization efforts, the NSEBTM holds significant strategic importance. In this scenario,
the NSEBTM has emerged as the region with the highest level of urbanization and popu-
lation density in Xinjiang [26]. However, in this resource-constrained and economically
active arid region, the inherent contradiction between fragile ecosystems and high-quality
economic and social development has persistently plagued the area. On one hand, there
is an urgent imperative to achieve global “carbon neutrality” by 2050; on the other hand,
compared to other regions in China, this particular region is situated within an arid zone
where its environmental vulnerability exhibits heightened sensitivity to fluctuations in
human-environment interactions [27]. As the pivotal region of the Belt and Road Initiative,
the economic development and establishment of the NSEBTM as a free trade experimental
zone will inevitably induce land use transformations, which in turn will have profound
implications for carbon storage ecosystems [28]. Therefore, it is imperative to address
these scientific inquiries. Presently, domestic and international research on the NSEBTM
primarily concentrates on urbanization, urban spatial structure morphology, and land-
scape remote sensing monitoring, among other facets. However, further investigations
are warranted to elucidate the underlying mechanisms governing the historical and fu-
ture variations in carbon storage within the NSEBTM against the backdrop of achieving
“carbon neutrality” by 2050. The mechanisms underlying the spatiotemporal variations in
carbon storage within the NSEBTM region remain uncertain in the context of ecological
engineering and urbanization.

In light of this, leveraging long-term time series remote sensing data products, this
study employs the InNVEST model to quantitatively analyze the spatiotemporal dynamics of
carbon storage in the NSEBTM amidst land use change from 1990 to 2050. Additionally, the
PLUS model is employed to construct multiple scenario simulations for natural, sustainable,
and economic development by 2050. The objective is to investigate the future trends in
carbon storage evolution and underlying impact mechanisms, thereby providing a decision-
making foundation for well-organized urbanization and territorial spatial planning in the
NSEBTM. Therefore, this study aimed to accomplish the following: (1) use LUCC data from
1990 to 2020 as well as LUCC data predicted using the PLUS model for disparate scenarios
in 2050 and couple them with the InVEST model to analyze the spatiotemporal changes
in LUCC and carbon storage in the NSEBTM from 1990 to 2050, (2) quantitatively assess
the impact of LUCC changes on carbon storage in the NSEBTM by coupling LUCC data
with the InVEST model, and (3) quantitatively assess the impact of ecological engineering
construction and economic development strategies on LUCC change types, and their
consequent effects on carbon storage dynamics in the NSEBTM. These studies will provide
reliable data support for the NSEBTM LUCC management and decision making, filling the
gap in research on the spatial and temporal changes in carbon storage under the background
of LUCC change in the NSEBTM region, and providing a reference for achieving “carbon
neutrality” goals in the NSEBTM and even China as a whole.

115



Land 2024, 13, 608

2. Materials and Methods
2.1. Study Area

The NSEBTM (40°52’ N~47°14’ N, 79°53' E~96°23' E) is situated in the Eurasian hin-
terland, deep within the inland region of northwest China (Figure 1). This region exhibits
significant spatial heterogeneity in its natural conditions [25]. Encompassing an area of
approximately 3.96 x 10° km?, it constitutes 23.8% of Xinjiang’s total landmass. Being
distant from the ocean, this area experiences a typical temperate continental climate influ-
enced by the westerly circulation and moisture from the Arctic Ocean, resulting in limited
precipitation but high evaporation rates accompanied by ample sunshine. The elevation
in this region varies from —153 to 4814 m, with the Tianshan Mountain range exhibiting
relatively higher altitudes while the surrounding basins display lower elevations [29]. The
natural vegetation is sparsely distributed, predominantly comprising grasslands and desert
flora. As a result of the “warm-wet transformation” of climate and the implementation of
ecological restoration projects, Xinjiang’s vegetation has gradually exhibited a discernible
trend towards increased greening. Over the past decade, there has been an incremental
rise in the Normalized Difference Vegetation Index (NDVI) at a rate of 0.005/10a [12].
According to previous research, the NSEBTM range mainly includes cities such as the
Urumgi City, Karamay City, Turpan City, Hami City, Changji City, Fukang City, Kuitun City,
Wausu City, Tacheng City, Bole City, Alashankou City, Shihezi City, Wujiaqu City, Huyanghe
City, Shuanghe City, and Xinxing City [25]. In the past few years, with the progress of
China’s economy and the advancement of urbanization towards a phase of superior quality
expansion, constructive human endeavors and initiatives for ecological restoration have
had a notable impact on the field of ecological engineering in this particular area [12,30,31].
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Figure 1. NSEBTM of Xinjiang, China. (Drawing review number: GS (2019) No. 1822. There is no
modification to the base map, which is the same below).

2.2. Data and Methods
2.2.1. Data Source

The data utilized in this study encompassed provincial administrative boundaries,
land use and land cover change (LUCC), socioeconomic factors, climate factors, and terrain
data (Table 1). Among them, the provincial administrative boundary data are in vector
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format. The LUCC data were obtained from the first Landsat-derived annual China
land cover dataset (CLCD); these datasets were derived from Landsat images available
on Google Earth Engine [32]. The team first collected training samples through visual
interpretation, combining China’s land-use/cover datasets (CLUDs), satellite time series
data, and samples extracted from Google Earth and Google Maps. They then constructed
multiple temporal dimensions using Landsat images on GEE and applied a random forest
classifier to obtain classification results. Finally, a spatiotemporal post-processing method
was proposed to further improve the consistency of the spatiotemporal CLCD. The overall
accuracy of CLCD reached 79.31%. To ensure consistency with other studies, we reclassified
these LUCC types into six categories: farmland, forest, grassland, water, built-up land,
and unused land. We selected LUCC data for 1990, 2000, 2010, and 2020 primarily to
analyze changes in LUCC patterns as well as simulate carbon storage under different
LUCC scenarios.

Table 1. Data types and sources.

Type Data Resolution Data Source
Provincial administrative . Chinese Academy of Sciences Resource and
. Research area boundaries Vector data . .
boundaries Environmental Science and Data Center
LUCC CLCD 30 m Wuhan University
GDP 1 km Chinese Academy of Sciences Resource and
Population 1 km Environmental Science and Data Center
Distance from the city Vector data
Soci i« fact Distance from the road Vector data OpenStreetMa
octoeconomic factors Distance from the water Vector data P P

Distance from the train station =~ Vector data

National Oceanic and Atmospheric

Nighttime lighting data Tm Administration of the United States
A 1 ipitati 1k
. fua; precipiiation m Chinese Academy of Sciences Resource and
Climate and Annual temperature 1 km Environment Science and Data Center
environmental factors Soil type 1km
NDVI 1km National Aeronautics and Space Administration
DEM 30m Geospatial data cloud
Topographic data 1
pograp lz ope 30m Based on ArcGIS
spect 30m

The driving factor data include socioeconomic factors and terrain data. The socioeco-
nomic factors include the Gross Domestic Product (GDP), population data, and distance
data to cities, roads, water bodies, and stations. The terrain data include digital elevation
model (DEM) data, slope, and aspect data obtained through surface analysis using DEM
data in ArcGIS 10.8.1 software with a resolution of 30 m. The nighttime light data are used
to characterize the urbanization process in the study area, while other driving factor data
are mainly used for simulating future LUCC changes.

The climate and environmental factors include annual precipitation, temperature data,
the number of soil types, and Normalized Difference Vegetation Index (NDVI) data. The
NDVI data are used to represent the progress achieved in ecological restoration projects in
the study area, while other climate and environmental factor data are used to adjust carbon
density. The soil type data will also be involved in predicting the future LUCC data.

Considering the inconsistent spatial resolutions of the above data and the size of the
study area, we standardized all the data to a spatial resolution of 500 m.

2.2.2. Human Activity Data Processing

Because of the different sensors used for the 2000 and 2020 nighttime light data, it
was necessary to perform a data uniformity correction. First, the relative invariant target
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area method was used to perform relative correction on the 1992-2013 NSEBTM DMSP-
OLS images, combined with saturation and continuity correction after the radiometric
calibration of the reference images. Simultaneously, noise processing and logarithmic
transformation were used to correct the NPP-VIIRS images from 2012 to 2020. A significant
correlation was found between the DN values of the DMSP-OLS images and the radiance
values of the NPP-VIIRS images after index transformation. The BiDoseResp function
model was then selected to perform a consistency correction on the DMSP-OLS and NPP-
VIIRS images [33], ultimately obtaining a long-term time series of the nighttime light image
datasets for the NSEBTM from 1997 to 2020.

Furthermore, because of the inconsistency in the DMSP-OLS data from different
sensors for the same year, to fully utilize the image data obtained by different sensors,
continuity correction was performed on the images after mutual and saturation correction.
The continuity correction is divided into sensor and time-series continuity corrections. In
this study, Equation (1) was used to perform sensor correction on the DMSP-OLS data,
while Equation (2) was used to perform time-series continuity correction on both the
DMSP-OLS andNPP-VIIRS data [34].

0, DN(j; =0 and DN{, =0
PNGj) =9 (DNt £ DNP.)/2, other @
(i1) i)/ "=
DN(; ;) is the DN value of the jth pixel in the corrected image in the ith year; DH?ij) and

DH f’l. ;) Tepresents the DN value of the jth pixel in the images obtained from two different
sensors before correction.
DN_1:, DNg_q1 > DNy ;
= (i=1j)r (i=1j) (@)
DN, { DN(;j), other 2

DN(; ;) and DN(;_, j represent the DN values of the jth pixel in the images corrected for
saturation and multi-sensor continuity in the ith and i-1th year, respectively.

2.2.3. Carbon Storage Estimation Method

This study utilized the carbon storage sub-module of the INVEST model to calculate
the carbon storage changes corresponding to LUCC changes over time for each remote
sensing pixel. It simulates ecosystem carbon storage and carbon source/sink changes
under different LUCC types and future land development scenarios [35]. To calculate
ecosystem carbon storage, we used the carbon stock method to simulate carbon storage,
which involves using carbon density data for aboveground, belowground, soil, and dead
litter, multiplying the corresponding area by the carbon density data to calculate the storage
data for each carbon pool, and then adding them together to obtain the total ecosystem
carbon storage for a certain area [17]. The formula for calculation is presented below:

Cz = Cabove + Czbelow + Cz—soil + Co—dead (3)
n
Ci=)Y C.xS; 4)
i=1

C. is the total carbon density (+-hm~2) of land-use type; Cx_spoves Cz-pelow Cz-soil, and
Cz-dead Tepresent the aboveground carbon density, belowground carbon density, soil carbon
density, and dead organic matter carbon density of LUCC type, respectively(t-hm~2). C;
is the total carbon stock of the ecosystem (t); S; is the area (hm?) of LUCC type; n is the
number of LUCC types (in this study, n is 6).

2.2.4. Selection and Correction of Carbon Density

The carbon density data for different LUCC types were obtained from the National
Ecological Data Center’s Resource Sharing Service Platform (http:/ /www.nesdc.org.cn/,
accessed on 10 February 2024), supplemented with relevant information from related re-
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search studies. Initially, we focused on selecting pertinent studies in the NSEBTM and
then expanded our search to include studies conducted in the arid and semi-arid regions
of Xinjiang. Previous investigations have demonstrated that regional climate and soil
type factors can significantly influence carbon density. Temperature exhibited a positive
correlation with biomass, soil organic carbon density, and precipitation, while it displayed
a negative correlation with them as well. To address this issue, we applied a correction
method proposed by Alam et al. [36] to adjust the relationships between annual precipita-
tion, biomass, and soil carbon density. The relationship between annual temperature and
biomass carbon density was corrected using methods described by Giardina and Ryan [37]
and Chen et al. [38]. Therefore, this approach was employed to rectify the carbon density
data for various LUCC change categories within the study area, thereby obtaining localized
carbon density data for the investigation region (Table 2). The specific approach is outlined
as follows:

Csp = 3.3968 x MAP + 3996.1 )
CBP = 6.798 X 80.0054><MAP (6)
Cpr = 28 x MAT + 398 7)

Csp represents the soil carbon density corrected for annual precipitation; Cgp represents
the biomass carbon density corrected for annual precipitation; Cpr represents the biomass
carbon density corrected for annual temperature; MAP represents the mean annual precipi-
tation (mm); MAT represents the mean annual temperature (°C).

C! C!
Kpp = C/il?PKBT = CET 8)
BP BT
Kpp Csp
Kp = Ks = i (9)
’ Ker Csp

Kpp is the precipitation correction factor for biomass carbon density; Kpr is the temperature
correction factor for biomass carbon density; Kp is the correction factor for biomass carbon
density; Kg represents the correction factor for soil carbon density; C’ and C" are the carbon
density data for the NSEBTM and the whole country, respectively.

Table 2. Carbon density variation among different LUCC types in NSEBTM.

LUCC Cabove Chelow Csoil Ciead References
Farmland 4.18 3.38 80.22 0 [20,21,39]
Forest 44.51 3.37 137.12 0 [20,21,39]
Grassland 8.49 2.61 73.93 0 [20,21,39]
Water 0.92 0 0 0 [20,21,39]
Built-up 3.26 2.09 0 0 [20,21,39]
Unused 0.65 1.25 15.99 0 [20,21,39]

2.2.5. Scenario Simulation

When simulating the future LUCC map, three scenarios were set: natural growth,
ecological protection, and economic development. (1) Natural growth scenario: this
scenario is considered the baseline scenario, maintaining the historical trend of LUCC
development and simulating future LUCC based on this trend. (2) Ecological protection
scenario: in this scenario, ecological protection is strengthened, economic growth is slowed
down, and the conversion of forests and grasslands into other land types is restricted.
(3) Economic development scenario: This scenario focuses mainly on economic growth
and neglects the protection of resources and the environment. Therefore, it restricts the
conversion of built-up land to other land types, while increasing the probability of the
other LUCC types being converted to built-up land.
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The PLUS model was initially used to convert the LUCC data formats for 2010 and
2020. The LEAS module incorporated various driving factors to extract the expansion
of initial LUCC to final land use. To assess the development potential of the different
LUCC types and investigate the relationship between these driving factors and LUCC
expansion, we employed the random forest classification algorithm, which determined the
contribution of each driving factor to LUCC expansion [40]; among them, the sampling
rate of random forest was set to 0.01, and the running parameter was set to 5. The Markov
chain method was used to predict future LUCC demand, and simulated patches were
generated in the CARS module to obtain a simulated future LUCC map, among them,
the default value within the domain range was set to 3, with 5 parallel threads, a decay
coefficient of 0.9 for the decrement threshold, and a diffusion coefficient of 0.1. Based
on adherence to the actual development situation in the research area and the transfer
matrix law of land use area, three typical scenarios were set for each type of land’s cost
matrix (Table 3), where a value of “1” represented allowed conversion and a value of “0”
represented otherwise [41-43]. The domain weights are shown in Table 4.

Table 3. Transition cost matrix for three land use scenarios.

Land Use Scenarios Land Use Types  Farmland Forest  Grassland  Water Built-up

Unused

Natural growth scenario

—
o
[
o
o

Farmland
Forest
Grassland
Water
Built-up
Unused

)

Ecological protection scenario

Farmland
Forest
Grassland
Water
Built-up
Unused

Economic development scenario

Farmland
Forest
Grassland
Water
Built-up
Unused

OO OO OO | PP PRPOOR | POR PP PEF
OO0 RO | R RFRFEFERER OO OC -
O OO R OO | R R RFERRR| RORRFERO
OO R OO0 O | R R R OOR | R RFERRERFEO
el el el = === N e i
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Table 4. Neighborhood weight settings.

Land Use Type Farmland Forest Grassland Water  Built-up Unused
Neighborhood Weight 0.27 0.03 0.39 0.11 0.06 0.14

The evaluation of the PLUS model’s simulation performance was conducted by mea-
suring two metrics: overall accuracy (OA) and Kappa coefficient. The Kappa coefficient
was computed according to the following formula:

Kappa = Po—Pe (10)
Pp = Pc
where Kappa is the simulation accuracy index, P, is the actual simulation accuracy,
P, is the expected simulation accuracy under random conditions, and Pp is the simu-
lation accuracy under ideal conditions. Generally, when the Kappa value is greater than
0.75, the simulation accuracy is high; a value between 0.4 and 0.75 means that the simula-
tion accuracy is moderate; and when it is less than 0.4, the simulation accuracy is poor. The
Kappa coefficient of the simulation accuracy in this study was 0.86, the OA was 0.93, and
the simulation results met the research requirements.
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This research was conducted in three stages: (a) historical LUCC data from 2010
and 2020 were utilized along with the PLUS model to forecast LUCC data for 2050, with
separate predictions made for three scenarios; (b) carbon density data were adjusted based
on temperature and precipitation information; and (c) the InVEST model was employed
to estimate carbon storage by combining historical and projected LUCC data with carbon
density data from 1990 to 2050. The methodological process is illustrated in Figure 2.

Database LUCC data processing

=

I\

LUCC
GDP

Population

Distance data

Soil types
PLUS Model
Carbon density
. correction Carbon stocks
Carbon density
[ﬁ F.;\ndw&l)‘:‘n [ :Mm Cuan 1Coind Dynamicsofhistorical
emperature N carbon stocks(1990-2020)
(i‘m»l;\nd :4‘0' z;ﬂ ‘133.“‘3- 0 InVEST &
G o Vater 092 0 0 0 nteg of

k / Unused 065 125 1599 0 = carbon stocks(2020-2050)

Figure 2. Methodology flowchart for this study.

3. Results
3.1. LUCC Dynamics in NSEBTM from 1990 to 2050
3.1.1. LUCC Dynamics from 1990 to 2020

In terms of spatial arrangement, owing to differences in terrain, landforms, and
climatic conditions, the LUCC distribution characteristics of the NSEBTM show obvious
spatial heterogeneity. As shown in Figure 3, arable land is mainly distributed in the
southeastern part of the Tacheng region, Huyanghe City, and Karamay City. There are also
scattered distributions in the central part of Hami City and the western part of the Turpan
City. Forest land is relatively dispersed, mainly found in the sporadic areas of the Tianshan
Mountains. Grassland is primarily distributed in the northwestern and southern parts
of the Tacheng region, Shuanghe City, Urumgqi City, as well as the central regions of the
Hami City and Turpan City. Water bodies are mainly located in the western region of the
Ili Kazakh Autonomous Prefecture. Construction land is predominantly distributed within
urban clusters and their surrounding areas. Unused land is mostly found in large portions
of the Hami City, Turpan City, and Changji Prefecture.
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Figure 3. Spatial distribution map of LUCC in the NSEBTM from 1990 to 2050 and the proportion of
LUCKC types (S1 represents a natural development scenario; S2 represents an ecological protection
scenario; S3 represents an economic development scenario).

The unused land area in the NSEBTM accounted for 63.59%, 63.25%, 62.12%, and
63.02% of the total area in 1990, 2000, 2010, and 2020, respectively, and was the most
important LUCC type in the NSEBTM (Figure 3), with a much higher proportion than
the national average (27.9%) [44]. Grassland and farmland were the next most important,
accounting for 26.55-29.59% and 4.76-7.24%, respectively, with the proportion of farmland
being much lower than that of the national average (14.3%) [44]. Water bodies, forest
land, and built-up land had the smallest area, accounting for 1.13-1.25%, 0.84-1.40%, and
0.09-0.55% of the total area, respectively, with the proportion of built-up land being lower
than the national average (4%) [44].

To clearly describe the changes in LUCC in the NSEBTM, we quantitatively expressed
the conversion relationships between the different LUCC types using a Sankey diagram.
The findings indicate that there have been diverse transformations in the LUCC categories
in the NSEBTM during the last three decades (Figure 4). The area of unused land, which
had the highest proportion, experienced an annual decrease. Specifically, 7394.17 km?,
3744.89 km?2, 717.61 km?, 9 km?2, and 718 km? were transformed into grassland, farmland,
built-up land, forest land, and water bodies, respectively. Grassland also showed a de-
creasing trend every year, with 9558.73 km?, 643.08 km?2, 2201.26 km?2, 342.45 km?, and
9479.47 km? being converted to farmland, built-up land, forest land, water bodies, and
unused land, respectively. However, it is worth noting that the area of farmland increased
every year, with 2718.41 km?, 463 km?, 11 km?2, 98 km?2, and 100 km? being converted
from grassland, built-up land, forest land, water bodies, and unused land, respectively.
However, over the past 30 years, the areas converted from grassland, forest land, water
bodies, and unused land to farmland were 9558.73 km?, 8 km?, 38 kmZ2, and 3744.89 km?,
and conversion into farmland far exceeded conversion from farmland. Forest land also
showed an increasing trend, mainly being converted from grassland, farmland, water
bodies, and unused land with areas of 2201.26 km?2, 11 kmZ, 26 km?2, and 9 km?, respectively.
The main factor contributing to alterations in all types of LUCC was the unused land. The
area of water bodies has remained stable over the past 30 years, with areas of 12,584.20 km?
and 10,315.19 km? being converted from and to, respectively.
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Figure 4. Dynamic changes in LUCC types in NSEBTM from 1990 to 2020.

3.1.2. LUCC Dynamics from 2020 to 2050

The validated PLUS model was employed to forecast the spatial distribution of LUCC
change in 2050 under various scenarios, based on the LUCC data for the study area in
2020 (Figure 3e—g). Under the natural change scenario, the predominant LUCC type in
2050 is still unused land, accounting for 63.25% of the total area (Figure 3e), followed by
grassland and farmland, accounting for 24.79% and 8.62%, respectively. Water bodies,
forests, and built-up areas accounted for smaller proportions of the area (0.95%, 1.64%, and
0.76%, respectively). Grassland and water bodies continued to show decreasing trends,
with cumulative areas decreasing by 6940.98 km? and 1010.38 km?, respectively. Farmland,
forests, built-up, and unused land are areas that showed cumulative increases in area
of 5324.29 km?, 942.03 km?, 32.08 km?, and 975.75 km?, respectively. In terms of LUCC
change direction (Figure 5a), all LUCC types showed trends of mutual transformation, with
unused land being the main contributor to conversion to other LUCC types (8300.19 km?,
1167.21 km?, 378.43 km?2, 19 km?2, and 814.44 km? were converted to grassland, farmland,
built-up areas, forests, and water bodies, respectively). Unused land remained the main
contributor to LUCC change for the next 30 years.
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Figure 5. Dynamic changes in LUCC types in the NSEBTM in 2050 under different scenarios and the
proportion of LUCC types. (S1 represents a natural development scenario; S2 represents an ecological
protection scenario; S3 represents an economic development scenario).
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Under the ecological protection scenario, the proportions of unused land, grassland,
farmland, water bodies, forests, and built-up areas in the NSEBTM for 2050 were 63.17%,
27.15%, 6.70%, 0.98%, 1.65%, and 0.35%, respectively (Figure 3f). Compared to 2020,
farmland, water bodies, and built-up land showed decreasing trends, with decreases of
2257.17 km?, 874.93 km?, and 792.40 km?, respectively. Forests, grassland, and unused
land showed increasing trends, with increases of 991.43 km?, 2402.6 km?2, and 653.26 km?,
respectively. In terms of LUCC change direction (Figure 5b), all LUCC types showed
similar trends of mutual transformation, with the increase in forest land mainly coming
from the conversion of farmland to forests, and the increase in grassland mainly coming
from the conversion of farmland, built-up land, and unused land. Overall, compared
to the natural development scenario, the proportion of grassland increased from 24.79%
to 27.15%, while the proportion of forests remained relatively stable, mainly because of
the conversion of forests to grassland covering a larger area of 2669.87 km?. There was
relatively less conversion to other LUCC types.

In the context of economic development, it is projected that by 2050, the NSEBTM will
have a distribution of unused land (63.16%), grassland (26.25%), farmland (6.89%), water
bodies (0.98%), forest land (1.43%) and built-up land (1.30%) (Figure 3g). Compared with 2020,
farmland, grassland, and water bodies showed significant decreases in area of 1509.66 km?,
1151.62 km?, and 865.42 km?, respectively. The extent of built-up and unused land exhibited
substantial increases, measuring 2938.08 km? and 611.74 km?, respectively. However, there
was a slight decline in the forested area. In terms of LUCC conversion (Figure 5c¢), all LUCC
types showed a trend of mutual conversion, with conversion to built-up land being the most
significant. Specifically, the areas of grassland, farmland, forest land, water bodies, and unused
land that converted to built-up land were 1312.47 km?Z, 1902.76 km?2, 8 km?, 513.78 km?, and
393.43 km?, respectively. The primary driver of LUCC change in the economic development
scenario was an increase in built-up land. In comparison to the natural development scenario,
all other LUCC types experienced significant decreases, except for the proportion of built-up
land which increased from 0.76% to 1.30%.

3.2. Dynamics of Carbon Storage in NSEBTM from 1990 to 2050

The InVEST model was employed to compute carbon storage in the NSEBTM from
1990 to 2050. However, the spatial distribution of carbon storage in the NSEBTM exhibited
no significant changes (Figure 6). In general, high carbon reserves are mainly distributed in
the central regions of the Tacheng City, Shuanghe City, Huyanghe City, Shihezi City, and
Urumgi City. The highest values are found in scattered areas of the Tianshan Mountains.
It is worth noting that the desert areas surrounding Hami City, Turpan City, and Changji
Prefecture also store carbon reserves.

In order to enhance the clarity of illustrating the spatial changes in carbon storage in
the NSEBTM, we conducted raster subtraction operations on the maps depicting carbon
storage distribution during different time periods (Figure 7). According to the actual
distribution of carbon storage, the areas were divided into carbon sink areas, balance areas,
and carbon source areas, with values of 0 values and values close to 0 (—500 to 500 tons)
being classified as balance areas [21]. From 1990 to 2000, 2000 to 2010, and 2010 to 2020,
over 95% of the area did not show obvious changes in carbon storage, indicating that
LUCC in most areas of the NSEBTM was minimally disturbed by human activities and
did not undergo significant changes (Figure 7a—c). From 1990 to 2020, more than 3.60% of
the total area showed an increase in carbon storage, indicating an enhancement in carbon
sequestration capacity due to changes in LUCC, which led to an increase in carbon sink
intensity. More than 3.18% of the area showed a decrease in carbon storage, indicating
a weakening of the carbon sequestration capacity of the underlying surface, which turned
into a carbon source area (Figure 7d). In general, the NSEBTM has maintained a relatively
stable level of carbon storage over the past three decades, with approximately 95% of the
region experiencing a balanced state between carbon storage gain and loss.
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Figure 6. Spatial distribution of carbon storage in the NSEBTM from 1990 to 2050. (S1 represents
a natural development scenario; S2 represents an ecological protection scenario; S3 represents
an economic development scenario).
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Figure 7. Spatial distribution changes in carbon storage in the NSEBTM from 1990 to 2050.
(S1 represents a natural development scenario; S2 represents an ecological protection scenario;
S3 represents an economic development scenario).

We also simulated carbon storage scenarios for the three development scenarios
for 2050. Compared with 2020, in the natural development scenario, the areas with in-
creased carbon storage exceeded 3.89%, the areas with decreased carbon storage exceeded
4.02%, and nearly 92.09% of the areas maintained a relatively stable carbon storage status
(Figure 7e). In the ecological conservation scenario, areas with increased carbon storage
exceeded 4.26%, areas with decreased carbon storage exceeded 3.60%, and over 92.14% of
these areas maintained relatively stable carbon storage status (Figure 7f). Compared to the
scenario of natural development, the ecological conservation scenario showed an increase
in the area that absorbs carbon dioxide and a decrease in the area that emits carbon dioxide,
while maintaining a relatively stable balance area. In the economic development scenario,
areas with increased carbon storage exceeded 3.87%, areas with decreased carbon storage
exceeded 5.20%, and nearly 91.74% of the areas were in a state of carbon balance (Figure 7g).
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In the context of economic development, carbon sequestration decreases and the carbon
source area expands compared to natural development, while the area of equilibrium
remains relatively stable.

3.3. Revisions in Carbon Storage Resulting from LUCC Change

Based on the data presented in Table 5, the carbon storage contribution of various
LUCC change types to the overall carbon storage can be ranked from highest to lowest as
follows: grassland, unused land, farmland, forest land, water bodies, and built-up land.
From 1990 to 2020, despite a declining trend in grassland areas (Figure 3) and a reduction
of 102.35 t in carbon storage, it still constituted over 55% of the total carbon storage, thereby
establishing itself as the predominant carbon sink. The area and carbon storage of unused
land exhibited a declining trend, with a reduction of 4.05 t in carbon storage, constituting
over 25% of the total carbon storage and positioning it as the second largest carbon sink
within the region. The farmland area carbon storage exhibited a consistent annual increase,
contributing to approximately 15% of the overall carbon storage. Over the past three
decades, forest land witnessed a continuous growth in carbon storage, with an increment
of 41.44 t. Although the forest land area constituted a relatively small proportion of the
NSEBTM's total area, its share of carbon storage increased from 3.66% to 6.05%. Overall, the
degradation of grasslands over the past three decades has been a significant contributing
factor to carbon loss.

Table 5. Changes in carbon storage of LUCC types in NSEBTM from 1990 to 2050.

LUCC Carbon Storage/t
1990 2000 2010 2020 2050 S1 2050 S2 2050 S3
Farmland 165.33 183.65 239.69 252.75 299.49 232.93 239.50
Forest 61.20 81.20 93.55 102.64 120.07 120.95 104.47
Grassland 995.93 976.99 945.24 893.58 834.65 914.10 883.87
Water 0.41 0.41 0.46 0.44 0.35 0.36 0.36
Built-up 0.18 0.43 0.80 1.17 1.62 0.75 2.75
Unused 450.40 447.95 439.94 446.35 448.09 447.52 447 44

We also calculated the carbon storage of each LUCC type in 2050 under the three devel-
opment scenarios. Under the scenario of natural development, grassland and water bodies
experienced a decrease in carbon storage by 58.93 t and 0.09 t, respectively, compared to
2020. Meanwhile, unused land, farmland, forest land, and built-up land saw an increase in
carbon storage by 1.74 t,46.74 t,17.43 t, and 0.45 t, respectively. Under the ecological protec-
tion scenario, grassland and forest land exhibited an increase in carbon storage by 79.45 t
and 18.31 t, respectively, compared to the levels observed in 2020. Conversely, farmland,
built-up land, and water bodies experienced a decrease in carbon storage by 19.82 t, 0.42 t,
and 0.08 t correspondingly. In the context of economic development, a significant increase
in carbon storage was observed on developed land compared to the levels recorded in 2020,
with an increment of 1.58 t, while the changes in the carbon storage of the other LUCC
types were relatively inconspicuous. Overall, in the three development scenarios for 2050,
grassland remained the most important carbon sink in the NSEBTM, and the increase or
decrease in the grassland area mainly affected the carbon balance in the NSEBTM.

Changes in LUCC type significantly affected changes in carbon storage. Based on the
changes in LUCC transformation as well as differences in soil and vegetation density from
1990 to 2050, the impact of LUCC changes on carbon storage in the NSEBTM was calculated.
As shown in Figure 8, the changes in carbon storage from 1990 to 2020 were mainly caused
by the conversion between grassland and unused land. From 1990 to 2020, the conversion
from grassland resulted in a decrease of 7.17 x 10 t in the region’s carbon storage, and there
was an increase of 2.20 x 107 t in carbon storage from conversion to forest land, a decrease
of 2.88 x 10° t from conversion to water bodies, a decrease of 5.12 x 10° t from conversion to
built-up land, and a decrease of 6.37 x 107 t from conversion to unused land. This decrease
was much greater than the increase, indicating that conversion from grassland was not
conducive to increasing regional carbon storage. The conversion of a substantial amount of
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unused land into farmland and grassland resulted in respective increases of 2.62 x 107 tand
4.97 x 107 t in carbon storage. A minor conversion between unused land and water bodies
resulted in a basic balance between the increase or decrease in carbon storage. Similarly,
the bidirectional conversion between unused land and grassland resulted in a “balance
between gains and losses” in the regional carbon storage. In the natural progression
from 2020 to 2050, there was a net decrease of 6.15 x 10 t in carbon storage due to the
transformation of grassland into unused land. Conversely, the conversion of this unused
land into forest resulted in an increase of 3.59 x 107 t in carbon storage. Additionally, there
was a significant boost of 5.57 x 107 t in carbon storage when converting unused land back
into grassland, and a further increase of 8.16 x 10° t when transforming it into farmland. In
the context of ecological conservation, between 2020 and 2050, the transition from grassland
to forest land resulted in a carbon storage increase of 3.65 x 10 t. Similarly, converting
water bodies to grassland and unused land led to respective increments of 3.73 x 10° t and
2.02 x 10° t in carbon storage. Furthermore, transforming built-up land into farmland
and grassland contributed to an additional carbon storage of 4.29 x 10° t and 5.66 x 10° t
respectively. Notably, there were significant increases in carbon storage by converting
unused land into farmland (6.99 x 10° t) and grassland (5.85 x 107 t). In terms of carbon
storage decrease, the conversion from farmland to unused land resulted in a reduction
of 6.53 x 10° t in carbon storage. The conversion from forest land to grassland led to
a substantial decline of 2.67x 107 t in carbon storage. Similarly, the transformation from
grassland to water bodies and unused land caused significant decreases of 1.51 x 10° t and
5.91 x 107 tin carbon storage, respectively. Overall, in the ecological protection scenario,
the increase in carbon storage resulting from land type conversion was much greater than
the decrease, the main manifestation was the conversion of other LUCC types to grassland,
resulting in a stronger regional carbon storage capacity. Under the economic development
scenario, the main conversion was between grassland and unused land, and the increases
and decreases in carbon storage were generally balanced. The conversion of farmland and
grassland into built-up land resulted in reductions of 1.57 x 107 tand 1.05 x 10 t in carbon
storage, respectively. Overall, under the economic development scenario, the decrease in
carbon storage exceeded the increase, mainly due to the conversion of other LUCC types to
built-up land, leading to a net loss of approximately 1.79 x 107 t
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Figure 8. Changes in carbon stock caused by LUCC type changes in NSEBTM from 1990 to 2050.
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4. Discussion
4.1. Implications of Human Actions on Changes in LUCC

The NSEBTM, located on the western frontier of China, has a large regional area and is
one of the most sparsely populated areas in China’s geographical space [12]. The NSEBTM
is deep inland and far from the sea with a closed terrain, which makes it difficult for marine
moisture to reach the region. It is controlled by continental air masses throughout the
year, with scarce precipitation and an arid climate [45], which pose significant challenges
to vegetation growth in the region. The main LUCC types in the NSEBTM are unused
land, grassland, and farmland. Although the forest land area is relatively sparse, it is
particularly important in LUCC planning, especially in the ecologically fragile areas of
the NSEBTM. In 1979, China planned to implement the “Three-North Shelterbelt Project”,
which has a planned duration of 73 years, is divided into eight phases, and aims to establish
large-scale artificial forestry. As an important part of northwest China, the NSEBTM has
made substantial progress in ecological engineering construction under the Three-North
Shelterbelt Policy [46]. By 2020, the fifth phase of the “Three-North Shelterbelt Project” in
China was almost completed, and the forest area in the NSEBTM increased from 3307.17
km? in 1990 to 5546.42 km? in 2020 (Figure 3). NDVI data can characterize vegetation
coverage; therefore, we established a spatial correlation between the NSEBTM NDVI
data and the carbon storage data simulated using the InVEST model (Figure 9a). The
graph reveals a distinct correlation between NDVI and carbon storage, particularly in
the Huyanghe City, Karamay City, and Yili Prefecture. Taking the central region of the
Yili Prefecture as an illustrative example from 2000 to 2020, there has been a notable
augmentation in vegetation coverage within this area. Consequently, the expansion of
vegetation coverage has led to a concurrent increase in carbon storage (Figure 9b,c).
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Figure 9. Changes in NDVI and corresponding variations in carbon storage. (a) Correlation between
carbon stock and NDVI; (b) spatial distribution of NDVI and carbon stock in local areas in 2000;
(c) spatial distribution of NDVI and carbon stock in local areas in 2020.

From 1990 to 2020, the farmland area in the NSEBTM increased from 18,832.5 km?
in 1990 to 28,791.71 km?2. In 2021, the Xinjiang Uygur Autonomous Region issued the
“14th Five-Year Plan for the Protection and Development of Land Resources in Xinjiang
Uygur Autonomous Region”, which mentioned the management policy for farmland:
strengthening the protection of farmland, focusing on curbing the “non-agriculturalization”
and preventing the “non-foodization” of farmland, and strictly observing the red line and
bottom line of farmland. The overall LUCC plan issued by the Xinjiang Uygur Autonomous
Region (2006-2020) also emphasized the effective protection of farmland, which plays
a very important role as the third largest carbon sink in the NSEBTM. Over the past
30 years, the grassland area in the NSEBTM has shown a decreasing trend, and under
our predicted natural development scenario for 2050, the grassland area will continue to
decrease without human intervention. Conversely, under the ecological protection scenario,
which adheres to the policy of protecting forests and grasslands, the grassland area will
continue to increase. Overall, LUCC types in the NSEBTM are strongly influenced by

128



Land 2024, 13, 608

human activities, which means that in the future, it will be necessary to reasonably restrict
human activities to protect the ecological land in the NSEBTM.

4.2. Impact of Urbanization on Carbon Storage in NSEBTM

The findings of the research indicate that the process of rapid urbanization and eco-
nomic growth has significantly expedited land degradation [47]. The expansion of urban-
ized land area signifies the process of urbanization, and it is crucial not to underestimate
the conversion from non-built-up land to built-up land, as it results in a reduction in
carbon storage. Therefore, we used nighttime light remote sensing data to characterize the
changes in built-up land types in the NSEBTM. According to the statistics of the NSEBTM's
illuminated area (Figure 10(b-3,b-4,c-3,c-4)), the illuminated area expanded four-fold from
2000 to 2020, increasing from 2.42% in 2000 to 7.20% in 2020. The spatial distribution of
nighttime light data shows that built-up land has expanded to surrounding areas based on
the original area, unlike the increase in light intensity in coastal areas. Urbanization in the
inland areas of the NSEBTM is manifested by the expansion of nighttime lighting areas.
The increase in nighttime lighting areas contributed to a reduction in carbon storage. With
the development of urbanization in the NSEBTM, three central cities will be built, driving
the joint development of the Urumgqi metropolitan area, northern Xinjiang urban belt, and
southern Xinjiang urban cluster. It is evident that, under the guidance of urbanization
policies in Xinjiang, from 2000 to 2020, there has been an obvious increase in built-up land
in the NSEBTM (Figure 10b,c), corresponding to a decrease in carbon storage.
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Figure 10. The relationship between built-up land change and carbon storage. (a) Spatial changes in
carbon storage in the NSEBTM from 2000 to 2020, The black boxes in Figure (a) correspond to Figure
(b) and Figure (c), respectively; (b,c) the distribution map of urban built-up land, and the spatial
distribution map of light remote sensing data.

Research has shown that the level of urbanization in China has increased obviously
from 2000 to 2019, and industrialization has accelerated obviously. Urban development
requires more built-up land, and the continuous expansion of built-up land areas means
that more energy and industrial production activities will occur, leading to a loss of carbon
storage [48]. Numerous studies have quantitatively demonstrated that an increase in urban
built-up land leads to a loss of carbon storage, such as the 8.64 Tg loss of carbon storage
in the Chang-Zhu-Tan urban agglomeration due to the urban expansion from 1995 to
2009 [49]. In addition, numerous studies have shown that an increase in urban land will
lead to a large amount of artificial greening and landscaping activities, which, although
helpful in increasing urban green coverage, will also have adverse effects on soil quality and
soil carbon storage capacity [50,51]. Furthermore, an increase in urban land will lead to an
increase in traffic and industrial pollution, which will adversely affect soil and vegetation,
further reducing carbon storage [52].
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4.3. Implications of Different Scenarios of Carbon Storage Results for Future Planning

Our findings demonstrate that, under the ecological protection scenario for 2050, there
was a significant increase in carbon storage by 12.34 t compared to the natural development
scenario (Table 5). Notably, grasslands emerged as the primary carbon reservoirs in the
NSEBTM, contributing over 55% of the total carbon storage (Figure 6). The degradation
of grassland in the NSEBTM has been identified as the primary factor contributing to
the loss of carbon storage, resulting in a significant decline of 102.35 t over the past three
decades. The NSEBTM has abundant grassland resources and a variety of grassland
types and species [53]; therefore, in future planning, it is necessary to strengthen the
protection and rational utilization of grassland and steppe resources to increase carbon
storage. Unused land was the main LUCC type in the NSEBTM, with deserts being the
predominant LUCC type. Deserts are an important part of terrestrial ecosystems, and their
contribution to carbon storage cannot be ignored. Gulnur et al. [54] explained that the
Gurbantunggut Desert is a carbon sink during the vegetation growing season. Similarly,
the Taklimakan Desert in southern Xinjiang is also an important carbon sink, sequestering
148.85 x 10* tons a~! of carbon annually [55]. Our study confirms this conclusion, with
unused land accounting for over 25% of the total carbon storage in the NSEBTM, making
it the second largest carbon reservoir among the NSEBTM's land types. Therefore, given
the NSEBTM’s unique geographical location and climatic conditions, it is important to
develop desert ecological projects that effectively increase land carbon storage. In future
plans, investments in desert ecological projects should be increased to enhance carbon
storage. Additionally, it is worth noting that forests and farmland are important sources
of carbon storage in terrestrial ecosystems. Although the forests and farmlands in the
NSEBTM occupy relatively small areas and are dispersed, their contribution to carbon
storage should not be overlooked. Studies have shown that extensive logging and grazing
activities reduce the carbon stored in shrubs, trees, roots, litter, and dead plants [56]. In
related studies on farmland carbon storage, researchers have shown through 40 years of
field cultivation data that fallow farming can increase soil organic carbon storage in the
Yellow River Delta farmland [57]. Therefore, it is necessary to plan the use of forest and
farmland resources in a rational manner to increase carbon storage.

Our study also shows that, compared to natural development scenarios, economic
development scenarios resulted in a loss of 25.88 t of carbon storage (Table 5). Urbanization
leads to an expansion of built-up land, resulting in a reduction in vegetation cover and
subsequently diminishing carbon storage capacity. Furthermore, urbanization induces
alterations in land use patterns, such as the conversion of farmland or forests into developed
areas, leading to a decline in carbon storage. In the future process of economic development,
it will be necessary to strengthen urban greening and ecological construction, protect and
restore vegetation cover around cities, and increase urban green space and forest cover to
increase urban carbon storage. In addition, it is necessary to strengthen urban planning
and management, rationally use land resources, protect farmland and forest resources, and
reduce the impact of land development on carbon storage.

In conclusion, based on the impact of LUCC changes on carbon storage in different
scenarios, our findings provide a scientific basis and reference for LUCC planning and can
help the government and relevant departments better formulate future LUCC policies and
plans, promote ecological protection and sustainable development, and achieve a virtuous
cycle of ecological environment and economic development.

4.4. Potential Applications and Limitations

The novelty of this study lies in the comprehensive analysis of the spatiotemporal
variations in the NSEBTM carbon storage under past and future 30-year land use change sce-
narios using the PLUS model and InVEST model. By combining NDVI data and nighttime
light remote sensing data, it reflects the changes in the NSEBTM carbon storage under the
background of ecological engineering and urbanization. The advantage of the PLUS model
over other land use prediction models is its application of a new analytical strategy that
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includes a new multi-seed growth mechanism coupled with multi-objective optimization
algorithms, which can better support planning policies for sustainable development. The
high accuracy of the future LUCC simulation results conforms to the development patterns
under different scenarios for the NSEBTM, thus providing an approach to simulate the
regional LUCC and carbon storage, serving as an example and reference for carbon storage
research in other regions, and promoting the sustainable development of the NSEBTM.

This study also has certain limitations. The future LUCC patterns of the NSEBTM will
change due to factors such as climate change, natural disasters, and policies. As the “warm-
wetting” trend intensifies in northwest China [58], the LUCC patterns will also undergo
changes, which will increase the uncertainty of the LUCC predictions. Additionally, carbon
density will also change over time. Future research will establish models that will capture
the relationship between carbon density and time to predict data that will align with
future periods.

5. Conclusions

We conducted an analysis using the PLUS and InVEST models to examine how LUCC
and carbon storage in the NSEBTM have changed over the past three decades, as well
as projected changes for the next 30 years. Additionally, we performed a quantitative
assessment to determine the factors contributing to variations in carbon storage under
different scenarios. Our findings indicate that between 1990 and 2020, unused land was
the primary type of LUCC change observed in the NSEBTM, followed by grassland. By
2050, different development scenarios will induce alterations in land use; nevertheless,
unused land will remain the dominant category. Over the past three decades, grasslands
have served as a crucial carbon sink in the NSEBTM with substantial carbon sequestration
capacity compared to other types of land such as unused land. Notably, the degradation of
grasslands has been identified as a key driver behind the declining carbon storage levels
within this region. Under diverse development scenarios for 2050, ecological conservation
initiatives are expected to contribute towards energy savings along with reduced emissions
while simultaneously enhancing terrestrial carbon stocks; however, urban expansion par-
ticularly under economic development scenarios may result in diminished carbon storage
capacities. Therefore, it is imperative to strategically plan future LUCC considering eco-
nomic development objectives alongside tailored management strategies for distinct LUCC
types aiming at mitigating the potential losses of carbon storage within the NSEBTM.
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Abstract: Industrialization has increased global carbon emissions, necessitating effective climate
change mitigation measures. China, the most populous developing nation, faces the challenge of
strategizing emissions to meet national carbon neutrality objectives. However, research on specific
regions’ carbon emissions drivers and causal factors is limited, particularly across prefectural-level
cities. This study estimates the spatial and temporal patterns of carbon emissions across China’s
prefectural cities and utilizes both OLS regression and stepwise regression models to analyze the
impact of various factors influencing carbon emissions in these cities. Results reveal the following:
(1) The country’s overall 20-year carbon emissions continue to grow from 3020.29 Mt in 2001 to
9169.74 Mt in 2020, with an average annual growth rate of 5.71%; the eastern region has seen a

gradual deceleration in emissions, whereas the western region continues to experience an increase.

Carbon emissions in cities within each subregion consistently rise. (2) Carbon emissions in Chinese
prefectural-level cities exhibit strong spatial autocorrelation and clustering (Z > 1.96, p < 0.05), with

hot spots primarily in the eastern coastal areas and cold spots in the northwest to southwest regions.

(3) Economic and demographic factors significantly increase carbon emissions, while climate and
urbanization effects are more complex and variable. Economic growth and population increase are
the most significant influencing factors, but regional variances exist in carbon emissions determinants
in subregional prefectural cities. These insights provide valuable insights into national emission
dynamics at the prefectural level, providing a theoretical basis for enhancing carbon emission

strategies across various jurisdictions.

Keywords: carbon neutrality; carbon emissions; spatiotemporal pattern; attribution analysis; urbanization

1. Introduction

Global climate change is attracting increasing international attention as it is causing
a range of environmental problems [1-3]. According to the Sixth Assessment Report of
the Intergovernmental Panel on Climate Change (IPCC), the burning of fossil fuels and
inequitable and unsustainable energy and land use have led to a steady increase in global
temperatures over the past century, resulting in an increase in the frequency and intensity
of extreme weather events, putting nature and people at increasing risk in all regions of the
world [4]. It has also been pointed out that, globally, the increase in carbon emissions is
mainly driven by industry, transport and energy supply, while residential and commercial
buildings, forestry/deforestation, and agriculture also contribute significant amounts
of carbon dioxide, methane, and other greenhouse gases [5-7]. In terms of the impact
of economic growth on carbon emissions, China is one of the world’s fastest-growing
economies, and its energy consumption and carbon emissions have increased prominently
in recent decades [8,9]. From 1980 to 2007, GDP of China grew at an average annual rate
of over 9%, primary energy consumption increased by about 340%, and carbon dioxide
emissions increased dramatically by about 352% [10]. As the world’s largest developing
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country, China must assume the role of a major power, and the Chinese government has
made its dual carbon target, i.e., to achieve carbon peak by 2030 and carbon neutrality
by 2060 [11-13]. Achieving carbon neutrality in China means absorbing the CO, emitted
directly and indirectly by human activities in a given period (usually one year) through
carbon capture and storage or sequestration techniques, such as planting trees and forests,
to achieve “zero emissions” of CO; [14,15]. Compared with the historical process of Europe,
the United States and other developed countries, China is facing the severe challenge of
time constraints and heavy tasks to achieve the goal of carbon neutrality and needs to
implement a larger amount of carbon neutrality in a shorter period of time than developed
countries [16].

The accelerated growth of urbanization has made cities a crucial element in the
reduction of carbon emissions [17-19]. City clusters, as a pivotal area for carbon emissions
and regional economic development, are connected through close economic ties, creating a
spatial connection between diverse urban areas [20-23]. China’s CO, emissions exhibit a
typical pattern of spatial intensity and high emission levels in the prefectures. While there
was no significant change in this pattern from 2007 to 2012, the results indicate that there
was a 3% relaxation in intensity during this period. Furthermore, the results indicated that
the total CO, emissions had increased by 33.5% during the same period. This emission
pattern also reflected the impact of the typical urbanization process in China [24].

In recent years, numerous studies have investigated carbon emissions within specific
urban regions, including the Beijing-Tianjin—-Hebei area, the Yangtze River Delta, and
the Chengdu-Chonggqing area, employing various methodologies. For instance, Zeng
et al. [25] selected the Chengdu—Chongqing urban agglomeration to analyze the spatial
and temporal evolution pattern of carbon emissions. They employed the ridge regression
model and the STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and
Technology) model to explore the influence of key factors on carbon emissions in the
Chengdu—Chonggqing urban agglomeration. Luo et al. [26] used data from Xi’an as an
example to establish a spatial simulation and prediction model of carbon emissions, with
the aim of providing references for the regional planning of carbon emission reduction and
the implementation of carbon emission reduction technologies. Some scholars [27] chose to
start from the land use to assess the impact of land use patterns on carbon emissions under
the Yellow River Delta region, providing a theoretical framework for sustainable land use.
Additionally, other studies on national and regional carbon emissions are predominantly
based on estimation and analysis of carbon emissions based on data such as the nighttime
lighting index [28-30] or focus on the relationship between carbon emissions and the
economic level [31]. Despite existing research on urban carbon emissions, there is a
notable lack of detailed studies on the spatial correlation and key factors influencing carbon
emissions across prefecture-level cities nationwide. Understanding the distribution and
determinants of these emissions is crucial for aligning regional economic development
with high-quality, sustainable growth in China’s new era [32,33]. Such knowledge will aid
in crafting more targeted and effective carbon reduction policies. In the current research in
this direction, the analysis of spatial and temporal patterns focuses on methods such as
spatial autocorrelation analysis [34-36], kernel density estimation [36], and center of gravity
transfer trajectory [37], among others. The methods of attribution analysis have also gone
through the process of developing from simple linear [38] to non-linear machine learning
methods [39,40], and the process models have gradually developed from single-factor to
multi-factor [41,42] and multi-modal large model simulations [43,44], etc.

Therefore, this paper tries to contribute to achieving China’s carbon peak and carbon
neutrality goals by selecting the association between prefecture-level cities and carbon
emissions for analysis. First, it aims to analyze the spatial and temporal distribution
patterns of carbon emissions across prefecture-level cities in various subregions from 2001
to 2020. Second, it seeks to identify the factors influencing carbon emissions using stepwise
and OLS regression models, exploring the extent of each factor’s impact and their variations
across space and time (Figure 1). The results of this study can provide a foundational and
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scientific reference for China’s future strategies on carbon emission reduction and for the
planning and development of urban economies.
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Figure 1. Flowchart of the study route (Note: Stepwise regression analysis is firstly used as an
exploratory regression to initially screen the factors and obtain some of the results to show the
characteristics of each factor and to be able to verify the feasibility of the impact of the selected factors
on carbon emissions, and the OLS regression presents a more detailed picture of the changes in
the impact on carbon emissions among the influencing factors. The two regression methods work
together to serve the final result and ascertain the systematic conclusion of the attribution analysis).

2. Materials and Methods
2.1. Study Area

This study describes and analyses the spatial and temporal evolution of carbon emis-
sions in 329 prefectural administrative units (including prefectural cities, counties, au-
tonomous prefectures, and leagues) across China. The temporal evolution of carbon
emissions is expressed at the scale of provincial administrative regions, whereas in analyz-
ing changes in the spatial distribution pattern and spatial correlation of carbon emissions,
it is expressed at the scale of municipal administrative regions. Data from the Tibet Au-
tonomous Region (TAR), Taiwan Province, Hong Kong Special Administrative Region
(HKSAR), and Macau Special Administrative Region (MSAR) are excluded from the cal-
culations to ensure data consistency, completeness, and accuracy. The provinces in China
have been reorganized into subregions as follows: The South Central Region (CS) includes
Henan, Hubei, Hunan, Guangxi Zhuang Autonomous Region, Guangdong, and Hainan.
The Eastern Region (E) comprises Shanghai, Shandong, Jiangsu, Anhui, Zhejiang, Fujian,
and Jiangxi. In the Northern Region (N), Beijing, Tianjin, Hebei, and Shanxi are grouped
together. The Northeastern Region (NE) encompasses Heilongjiang, Jilin, Liaoning, and
the Inner Mongolia Autonomous Region. The Northwest Region (NW) consists of Shaanxi,
Gansu, Qinghai, Ningxia Hui Autonomous Region, and Xinjiang Uygur Autonomous
Region. Lastly, the Southwest Region (SW) is made up of Chongqing, Yunnan, Sichuan,
and Guizhou (Figure 2).
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Figure 2. Regional Divisions of China.

2.2. Data Sources

The 20012020 carbon emission data used in this paper are collected from the China
Carbon Accounting Database [45], and the decomposition of the carbon emission influenc-
ing factors includes the details of the year-end total GDP, year-end resident population,
cumulative precipitation, average temperature, sunshine hours, the proportion of use of
the natural environment land type, the proportion of use of the urban land type, and the
proportion of use of the non-natural environment land type (agricultural land). The source

is indicated in Table 1.

Table 1. Sources of data on impact factors.

Category Name

Source

Economic factors Total GDP

Demographic factors Year-end resident population

GDP, population and other socioeconomic data
were compiled using the China Urban Statistical
Yearbook [46], related urban statistical yearbooks,
and the China Energy Statistical Yearbook [47]
(2001-2020).

Cumulative annual precipitation, Average annual

Climatic factors .
temperature, Average annual sunshine hours

China National Meteorological Center (CNMC)

Land use percentage of natural environment land
types, Land use percentage of urban land types,
Land use percentage of non-natural environment
(agricultural land)

Land use factors

Co-authored by Professors Jie Yang and Xin
Huang of Wuhan University, “30 m annual
landcover and its dynamics China from 1990 to
2019” (now updated to 2020)

2.3. Research Methodology
2.3.1. Analysis of Spatial Distribution Pattern

We use Global Moran’s I and Local Moran’s I. The former is a measure of spatial auto-

correlation developed by Patrick Alfred Pierce Moran;

as well as a global autocorrelation,

followed by a local autocorrelation, the local Moran’s I is the one that will show where
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the outliers or where the agglomeration occurs. Global Moran’s I > 0 indicates positive
spatial correlation; the larger the value, the more spatially clustered the regional carbon
emissions are; Moran’s I < 0 indicates negative spatial correlation; the smaller the value, the
more significant the difference between the regional carbon emissions and the surrounding
region; Moran’s I = 0 indicates that there is no spatial correlation and the regional carbon
emissions are spatially randomly distributed; the absolute value represents the strength
of the autocorrelation. The absolute value reflects the strength of the autocorrelation. The
significance of I was tested by the standardized Z-value, Z > 1.96, and passed the 5% sig-
nificance level test (p < 0.05), indicating the existence of significant spatial correlation; the
correlation formula was referenced from the literature [48]. As for the local autocorrelation,
the local spatial distribution characteristics of carbon emissions in urban agglomerations
under different zones are analyzed by ArcGIS using the spatial linkage local indicator
LISA [49]. The LISA graph is used for visualization, and the spatial agglomeration units
with significance are classified into high and high agglomeration type areas (H-H), low
and low agglomeration type areas (L-L), high and low agglomeration type areas (H-L), low
and high agglomeration type areas (L-H), and the rest are insignificant areas [50]. Based on
the previous high/low clustering analysis, the obtained Z-score and p-value were used to
calculate the Getis—Ord Gi* statistic for each element in the dataset to obtain the location of
hot and cold spots where spatial clustering occurs [51], which is used as a result to further
explain the relationship between the spatial distribution pattern and carbon emissions of
prefecture-level cities.

2.3.2. Attribution Analysis

Two regression modelling methods, stepwise regression and OLS regression, are
used to analyze the changes in the impact of different factors on carbon emissions. The
idea is that stepwise regression is first used as an exploratory regression, which can first
demonstrate the characteristics of each factor, initially screen the factors, and verify the
feasibility of research and analysis of the impact of its selected factors on carbon emissions.
Then OLS regression is selected to further analyze the change in influence on carbon
emissions between each influence factor and the systematic attribution analysis of carbon
emissions, and to obtain a comprehensive conclusion in time and spatial area.

Stepwise regression is a process of screening variables in regression analysis. It allows
for the construction of a regression model from a set of candidate variables, with the system
automatically identifying influential variables [52]. The stepwise approach to regression
was selected, whereby, following the introduction of a variable, the first step is to ascertain
whether this variable significantly alters the model (F-test). If this is the case, a t-test is
then performed on all variables. The original variable is retained if it is not deemed to be
significant due to the introduction of variables at a later stage. If the variable is no longer
significant due to the introduction of variables that are added later, it is excluded to ensure
that the regression equations contain only significant variables before the introduction
of new variables. This process is repeated until there are neither significant explanatory
variables selected nor significant explanatory variables in the regression equations. Until
the regression equation contains neither significant explanatory variables nor insignificant
explanatory variables, an optimal set of variables is finally obtained [53].

The application of stepwise multiple regression necessitates the selection of a model
(i.e., the determination of which regressor variables should be included in the final MAM)
through the use of parametric inference (i.e., the testing of whether the parameters are
significantly different from zero). This process, however, can potentially lead to the in-
troduction of bias in the parameters, the occurrence of overfitting, and the execution of
incorrect significance tests. To illustrate this point, a simple example involving a single pa-
rameter is presented. A linear model of the observations y; as a function of the parameters
o and (3, the predicted values x;, and the error «:

yi=a+ Py te M
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A stepwise approach can be employed to ascertain whether the model represented by
Equation (1) is more efficacious than a simpler alternative:

yi=a+g )

A straightforward approach is to calculate an estimation of 3 (referred to as b) prior to
determining whether b is demonstrably different from zero.

In this study, carbon emission was employed as the dependent variable, with economic,
demographic, climatic, and land use factors selected as independent variables. Regression
analyses were conducted from 2001, 2010, and 2020 to identify significant changes between
the three years under different subregions. Additionally, more calculation formulas were
referenced from the literature [54-56].

OLS (ordinary least squares) regression is employed primarily for parameter estima-
tion in linear regression [57]. The underlying principle is to identify a value that minimizes
the sum of squares of the difference between the actual value and the model valuation,
which will be used as the parameter estimate. The optimal function match for the data
is determined by minimizing the sum of squares of the error. The least squares method
facilitates the identification of unknown data and the minimization of the sum of squares
of the errors between these data and the actual data. The least squares method can be
employed for curve fitting, and it can also be used to express optimization problems in
terms of minimizing energy or maximizing entropy.

Influence factor analysis is conducted based on the least squares linear regression
model (OLS), as illustrated in Equation (3):

P P
yi=PBo+ Y Brexk+ Y Bjxj + €k 3)
k=1 =1

In Equation (3), y; represents the carbon emission evaluation index; i denotes a specific
evaluation index; xj denotes an explanatory variable; Xi denotes a control variable; 3¢, By,
and B; denote the linear regression parameters; and ¢y ; denotes the value of the random
error of linear regression.

It has been shown that multicollinearity does not affect the effect before using the
OLS regression model. The model was employed with carbon emissions as the dependent
variable and economic, demographic, climatic, and land use factors as independent vari-
ables. These variables collectively constructed OLS models for urban clusters in different
regions at three time points: 2001, 2010, and 2020. The objective of this approach was to
illustrate the specific extent of the influence of each factor on regional carbon emissions,
both temporally and spatially. Further details on the calculation formulas can be found in
References [58,59].

3. Results
3.1. Temporal Evolution of Carbon Emissions in Prefectural-Level Cities across the Country

Overall linear regression and segmented linear regression of trends were used sep-
arately for each subregion, with 2010 as the node, and divided into two segments over
a 20-year period (2001-2010, 2010-2020) to analyze whether there was significant trend
variability in different regions. As illustrated in Figure 3, the changes in carbon emis-
sions across each subregion (Figure 3a—f) demonstrate an upward trajectory from 2001 to
2020. The growth rates of carbon emissions in each subregion were found to be 2.37a~!
(Figure 3a), 1.25a~! (Figure 3b), 1.52a~! (Figure 3c), 1.19a~! (Figure 3d), and 2.01a~! (Fig-
ure 3e), respectively, with a flat growth rate of 0.88a"! (Figure 3f). The overall growth of
carbon emissions in all regions was found to be flat, with an inflection point occurring
in the period of 2010-2014. Following this, there were different decreasing trends. The
carbon emissions of the Northwest, Southwest, and South Central Regions increased after
2016; also, all three regions have achieved 20 years of sustained increases in average annual
carbon emissions by 8.54%, 5.51%, and 6.05%. In contrast, the carbon emissions of the
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North, Northeast, and East Regions slowed down or showed a weak slowing down trend.
The three regions have declined from their historical highs to 2020 by 3.63%, 6.95%, and

9.92%.
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Figure 3. Evolutionary trend of carbon emission changes in prefectural cities in China by subregion,
2001-2020. (Note: (a—f) show the changes in carbon emissions by subregion from 2001 to 2020;
(g-1) shows the share of carbon emissions within each subregion from 2001 to 2020).
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At the national level, carbon emissions grow from 3020.29 Mt in 2001 to 9169.74 Mt in
2020, with an average annual growth rate of 5.71%. From the perspective of the evolution
of carbon emissions’ total proportion in prefectural-level cities across different regions,
from 2001 to 2020, in the Northern Region, when viewed from the provincial level, Tianjin
Municipality (a directly administered municipality) had the highest proportion. Its share
of carbon emissions increased from 39.93% to 56.47%. Conversely, Beijing Municipality
(a directly administered municipality) exhibited a decline in its proportion, with a gradual
decrease from 32.91% to 11.12%. The proportion of carbon emissions in prefectural-level
cities within Shanxi Province and Hebei Province remained relatively stable over the
20-year period (Figure 3g). In the Northeast Region, only prefecture-level cities in the Inner
Mongolia Autonomous Region continue to increase their share of carbon emissions over
the 20-year period, from 25.69% to 45.08%. In contrast, the share of carbon emissions of
Heilongjiang, Liaoning, and Jilin Provinces decreases slowly, which is probably related to
the national policies and reforms (Figure 3h). In the eastern region, Shanghai (municipality
directly under the central government) is the leading economic hub and has the highest
share of carbon emissions. However, it has experienced a decline over the past two decades,
from 63.56% to 49.60%. In contrast, other prefectural-level cities in other provinces have
experienced an increase in their share of carbon emissions. For instance, Jiangsu province
has risen from 8.70% to 13.72%, while Shandong province has risen steadily from 9.30%
to 12.35% (Figure 3i). In the northwestern region, the carbon emission share of Gansu
Province and Qinghai Province exhibits relatively stable fluctuations, while that of Ningxia
Province rises from 22.77% to 35.27%, and that of Shaanxi Province and Xinjiang Uygur
Autonomous Region rises at a gradual pace before declining at a similar rate (Figure 3j).
In the Southwestern Region, the share of carbon emissions in Chongging Municipality
(a directly administered municipality) is the highest, but the change is only 3.84%. This
situation is also observed in other provinces, such as within Yunnan Province, which is the
highest. A similar situation exists in other provinces, such as Yunnan Province, where the
share of carbon emissions of prefecture-level cities only changed by 2.11% (Figure 3k). In
the South Central Region, Guangdong Province, the share of carbon emissions of prefecture-
level cities decreased from 21.85% to 16.53%, with a smaller downward trend, and a similar
change was observed in Hubei Province and Henan Province. Conversely, the proportion of
carbon emissions in Hainan Province, Guangxi Zhuang Autonomous Region, and Hunan
Province is gradually increasing. For instance, in Hunan Province, the figure has risen from
14.83% to 19.34% (Figure 31).

3.2. Changes in the Spatial Distribution Pattern and Spatial Correlation of Carbon Emissions in
Prefecture-Level Cities across the Country

In order to investigate the spatial dynamics of carbon emissions within the context of
national prefecture-level cities, data on carbon emissions for these cities across four time
periods (2001-2005, 2006-2010, 2011-2015, and 2016-2020) were processed. The first step is
to analyze the spatial autocorrelation of carbon emissions of the national prefecture-level
city group. This allows for us to judge whether there is aggregation or isolation of carbon
emissions of prefecture-level city groups under the national division in space, and to make
a judgement on the aggregation trend in space. The results of the analysis are shown in
Table 2.

Table 2. Results of global spatial autocorrelation analysis of carbon emissions of prefecture-level
cities in China.

Year I z p
2001-2005 0.207 12.539 <0.05
2006-2010 0.250 14.821 <0.05
2011-2015 0.234 13.685 <0.05
2016-2020 0.202 11.802 <0.05
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As illustrated in Table 2, the global spatial autocorrelation analyses of carbon emissions
of the national urban agglomerations in 2001-2005, 2006-2010, 2011-2015, and 2016-2020
passed the significance test (Z > 1. 96, p < 0.05), indicating that there is a significant spatial
autocorrelation of carbon emissions of the national prefectural agglomerations in the spatial
context. Over the past two decades, the I and Z values have exhibited a general trend
of increasing and then decreasing, indicating an overall spatial aggregation of carbon
emissions among prefecture-level cities across the country. However, over the 20-year
period, the highest level of agglomeration is observed in the 2006-2015 period, with the
level of agglomeration in the 2016-2020 period being approximately equivalent to that
observed in the 2001-2005 period.

In order to gain further insight into the spatial distribution of carbon emissions within
the national prefecture-level city cluster, this study selects the carbon emissions of the
national prefecture-level city cluster in the four time periods of 2001-2005, 2006-2010,
2011-2015, and 2016-2020 to further analyze the local spatial correlation, as illustrated in
Figure 4. On a national scale, the spatial clustering of China’s overall carbon emissions over
the past 20 years has been relatively stable (Figure 4). The (H-H) high-concentration area
refers to the region with high carbon emissions and its neighboring municipalities, which
are mainly concentrated in the Eastern and Northern Regions, including Beijing, Tianjin,
and Hebei, and Shandong, Jiangsu, Zhejiang, and Shanghai, while the (H-L) high- and low-
concentration area refers to the region having high carbon emissions, but its neighboring
municipalities having low carbon emissions, which is consistently reflected in Chongqing,
Chengdu, and Kunming in the Southwestern Region, Lanzhou in the Northwestern Region,
Nanning in the South Central Region, and Nanchang in the Eastern Region; Kashgar
changes from a low—low to a high—low agglomeration in the period 20162020, Xi’an is of
this type in the period 2006-2010, and the rest are non-significant areas, as is Panzhihua
in the period 2001-2005; Wuhan changes from a non-significant area at the beginning to a
persistent high-low agglomeration, and Changsha, on the other hand. (L-H) Low-high
agglomerations, where carbon emissions are low in the region but high in the neighboring
prefectures, are embedded in high-value agglomerations with consistently low emissions
compared to neighboring high-value cities, such as Yangquan, Shuozhou, and Chengde in
the north; Chaoyang City in the northeast; Rizhao and Huzhou City in the east; and Puyang
City in the South Central Region. In this 20-year period, there are cities that have changed
from insignificant regions to this type, such as Daxinganling and Jiaozuo; there are also
prefecture-level cities that have changed in the opposite direction, such as Maanshan and
Xuancheng; and there are also cities that have changed to high-value agglomerations, such
as Ulangab and Chuzhou, etc. The (L-L) low-value agglomeration area is defined as an area
with low carbon emissions and its neighboring prefectures. It is primarily located in the
Western Region of China in a linear shape around several prefectures and cities, specifically
in the Southwestern Region, around Kunming City, Chengdu City distribution; in the South
Central Region is the distribution of Nanning City as the center; lastly, it is dispersed with
Lanzhou City serving as the center in the northwest. During the period 2016-2020, there
was a proliferation of low-value agglomerations of prefecture-level cities in the northeast
of the Northeast Region (the east of Heilongjiang Province). These included Jixi, Jiamusi,
and Shuangyashan. In addition, the low-value prefecture-level city area that used to be
centered on Nanchang City is also diminishing over time, becoming a non-significant area.

In light of the findings of the local autocorrelation analysis presented in the above
section, the carbon emission data of the national prefecture-level cities in the four time
periods of integrated 2001-2005, 20062010, 2011-2015, and 2016-2020 are selected to
further calculate the Getis—Ord Gi* statistic. This allows for the identification of high and
low agglomerations of values within each geographic unit and its domains, which in turn
enables the determination of spatiotemporal hotspots (Table 3 and Figure 5). The spatial
distribution of carbon emission cold and hotspots exhibits aggregation characteristics, with
the majority of the hotspots concentrated at the municipal scale. To analyze the national
carbon emissions in four segments from 2001 to 2020, the hotspot area spreads from Beijing,
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Tianjin, and Hebei to coastal cities such as Jiangsu, Zhejiang, and Shanghai. These cities
are considered the overall core, with the surrounding prefectures radiating outward. In
contrast, the hot spot range in the Eastern Region has been reduced in the period from
2016 to 2020. Conversely, the cold spot area is centered on the prefectures in the Northwest
Region of Qinghai and Gansu Province, and gradually spreads to the Southwest Region.
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Figure 4. LISA distribution of carbon emissions of prefecture-level cities in China by time period.
(Note: The distribution of Lisa cluster maps with spatial autocorrelation for 2001-2005, 2006-2010,
2011-2015, and 2016-2020 is represented by (a—d), respectively).

Table 3. Results of high/low cluster analysis of carbon emissions in prefecture-level cities across
the country.

Year zZ 4
2001-2005 7.470 <0.05
2006-2010 7911 <0.05
2011-2015 6.851 <0.05
2016-2020 5.908 <0.05
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Figure 5. Distribution of carbon emission cold /hot spots in prefecture-level cities across the country
by time period. (Note: The distribution of cold hotspots for 2001-2005, 2006-2010, 2011-2015, and
2016-2020 and the degree of rank are represented by (a-d), respectively).

3.3. Analysis of the Influential Factors of Carbon Emission in Prefecture-Level Cities in China
3.3.1. Stepwise Regression Exploratory Analysis with Regression Analysis of Carbon
Emission Impact Factors and Model Fitting Analysis

Stepwise regression can assist in determining the significance of the factors influencing
carbon emissions in prefecture-level cities within each region, while also evaluating the
feasibility of analyzing the impact factors. The results are presented in Figure 6, which
compares the significance changes of the factors in 2001, 2010, and 2020.

The analysis of CO, emissions, as detailed in Figure 6, employs stepwise regression to
discern the impacts of various influencing factors across different regions over the years
2001, 2010, and 2020. The findings consistently show that GDP and population have a
significant positive impact on CO; emissions across all regions. In contrast, the effects of
climatic factors and land use ratios are marked by complexity and instability, reflecting
their less predictable influence on emissions.

The OLS regression model was employed on three occasions, in 2001, 2010, and 2020,
in order to further ascertain the impact of economic, demographic, climatic, and land
use factors on carbon emissions. Moreover, the absence of multicollinearity between the
influencing factors, as indicated by a VIF of less than 10, was demonstrated prior to the
application of the OLS analysis (see Appendix A, Table A1). The results of the calculations
are presented in Table 4.
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Figure 6. Stepwise regression results of carbon emission influencing factors in sub-districts of

prefecture-level cities nationwide.

Table 4. Overall OLS regression results of carbon emission influencing factors in prefecture-level cities
across the country (Note: the coefficients and p-values (*replaced) explain the degree of influence
and significance of each independent variable on the dependent variable; the t-values in parentheses
reflect the difference between the coefficient estimates and zero, divided by the standard error, the
absolute value of which also reflects the degree of significance of the coefficients; the R?> measures
the degree of fit of the model, ranging from 0 to 1, and indicates the percentage of variation in the
dependent variable that the model explains; and the F-statistic is used to test the significance of the

entire model, * p < 0.1, ** p < 0.05, ** p < 0.01).

2001 2010 2020
CO, CO, CO,
InGDP 3.020 *** 8.797 *** 6.051 ***
(6.24) (8.58) (5.59)
Inhabitants 0.019 *** 0.041 *** 0.040 ***
(11.29) (13.40) (12.32)
Cumulative precipitation 0.001 —0.004 ** —0.010 ***
(0.51) (—2.22) (—4.63)
Average temperatures —0.413 *** —0.571 *** —0.699 ***
(—3.16) (—2.95) (—=3.10)
Hours of sunshine 0.001 0.004 * —0.000
(1.02) (1.93) (—0.07)
Cities and towns 47.307 *** 52.154 *** 14.618
(4.95) (3.54) (1.19)
Natural environment 6.328 *** 11.737 *** 4.271
(3.81) (3.59) (1.07)
_cons —43.636 *** —136.963 *** —70.169 ***
(—6.11) (—8.54) (—4.02)
N 329.000 329.000 329.000
R? 0.692 0.781 0.640
F 102.954 163.736 81.480
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Table 4 illustrates the exclusion of the indicator non-natural environment from the
analysis, due to its high covariance characteristics with the other variables. This table clearly

shows the impact of the different factors on carbon emissions at the three points in time.

The data from 2001, 2010, and 2020 indicates that GDP has a significant positive effect on
CO;. Furthermore, the indicator is the largest in 2010, and all of them are significant at the
1% level. In terms of the resident population, the larger the resident population, the higher
the CO, emission. This evidence supports the hypothesis that the resident population
exerts a positive and significant effect on CO,, with the highest level observed in the 2010
data. In terms of other variables, cumulative precipitation has a negative effect on CO,
emissions in 2010 and 2020; average temperature has a negative effect in all three years;
sunshine hours has a positive effect in 2010 but no significant effect in 2020; urbanization
and natural environment have unstable effects on CO, emissions, with urbanization being
significant in 2001 and 2010, and natural environment having a significant positive effect in
all three years. Furthermore, the effects of urbanization and the natural environment on
CO; emissions can be elucidated by examining the scatterplots presented in Appendix B,
Figures A1-A3. These plots illustrate the linear relationship between each factor and
carbon emissions, thereby providing a more comprehensive understanding of the overall
regression results.

3.3.2. Quantitative OLS Regression Analysis of Local Carbon Emission Impact Factors

In the above section, stepwise regression and OLS regression analyses were conducted
using two dummy variables, year and region. This allowed for an overall analysis of the
data at the national level over time. In this section, the carbon emission impact factor of
prefectural cities at the subregion are calculated and analyzed through OLS regression
at the whole and individual level over three years. The specific results are presented in
Tables 5-8.

Table 5. Localized regression results of carbon emission influencing factors in prefecture-level cities
across China. (Note: * p < 0.1, ** p < 0.05, ** p < 0.01).

CS E N NE NW SW
CO, CO, CO, CO, CO, CO,
InGDP 7.739 *** 6.881 *** 14.375 *** 13.926 *** 5.795 *** 5.223 ***
(13.85) (7.21) (3.28) (11.94) (8.67) (6.22)
Inhabitants 0.015 *** 0.048 *** 0.007 0.011* 0.013* 0.037 ***
(6.28) (15.02) (0.71) (1.68) (1.68) (15.84)
Cumulative precipitation 0.001 0.002 —0.006 —0.019 *** —0.016 *** 0.010 **
(0.81) (0.85) (—0.15) (—4.44) (—2.85) (2.23)
Average temperatures —0.420 * —0.849 * 0.803 0.693 —0.542 —0.497
(—1.80) (—1.78) (0.50) (1.50) (—1.50) (—1.31)
Hours of sunshine —0.000 —0.005 ** —0.005 —0.002 —0.000 0.001
(—0.37) (—2.16) (—0.92) (—1.00) (—0.12) (0.43)
Cities and towns 0.897 69.024 *** 48.417 —24.693 82.134 % 27.129 %
(0.10) (3.68) (0.87) (—0.86) (1.87) (1.90)
Natural environment —4.462 4.686 —5.899 11.623 *** —2.646 13.568 ***
(—1.50) (0.96) (—0.34) (2.61) (—0.39) (3.34)
_cons —102.701 *** —98.020 *** —192.608 *** —188.044 *** —60.016 *** —91.540 ***
(—11.63) (—6.65) (—3.19) (—10.17) (—4.27) (—6.46)
N 246.000 231.000 72.000 144.000 153.000 141.000
R? 0.746 0.814 0.652 0.691 0.509 0.818
F 100.027 139.314 17.114 43.511 21.514 85.543

Specifically, Table 5 illustrates the regional impacts. In the Northern Region, economic
growth and population size significantly increase CO, emissions. Climatic factors such as
cumulative precipitation, average temperature, and sunshine hours show no significant
effects. Urbanization and the natural environment also exert minimal and statistically
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insignificant impacts. Similar trends are observed in the Northeast and Northwest Regions,
although cumulative precipitation reduces emissions in the Northwest during 2010. In the
Southwest, while economic drivers and population continue to increase emissions, climatic
effects remain inconsistent, and urbanization along with natural environmental factors
display significant impacts under specific conditions.

Table 6. Localized regression results of carbon emission impact factors in prefecture-level cities across
the country in 2001. (Note: * p < 0.1, * p < 0.05, *** p < 0.01).

(6] E N NE NwW SW
CO, CO; CO, CO, CO; CO,
InGDP 5.707 *** 5.044 *** 6.427 3.935 *** 2.532 #** 1.924
(7.02) (3.72) (1.47) (3.91) (5.43) (1.51)
Inhabitants 0.002 0.019 *** 0.014 0.012 ** 0.002 0.020 ***
(0.87) (4.38) (1.49) (2.58) (0.48) (8.32)
Cumulative precipitation —0.003 0.004 0.020 -0.012 % 0.012* 0.010 **
(—1.56) (0.70) (0.65) (—1.88) (1.99) (2.40)
Average temperatures 0.594 —1.283 —4.793 ** 0.604 ** 0.086 —0.899 **
(1.39) (—1.61) (—2.44) (2.24) (0.45) (—2.06)
Hours of sunshine 0.001 —0.026 *** —0.048 ** —0.010 0.007 ** 0.002
(0.66) (—3.88) (—2.86) (—=1.59) (2.56) (1.05)
Cities and towns 15.203 * 118.095 *** 58.419 20.199 97.147 *** 352.002 **
(1.69) (3.80) (0.92) (0.92) (2.93) (2.31)
Natural environment 0.223 —0.854 2.810 2.115 -1.232 4.804
(0.10) (—0.14) (0.24) (0.83) (—0.50) (1.08)
_cons —86.836 *** —15.311 74.311 —24.002 —52.126 *** —32.741*%
(—6.84) (—0.66) (1.12) (—0.98) (—4.15) (—=1.97)
N 82.000 77.000 24.000 48.000 51.000 47.000
R? 0.761 0.759 0.865 0.780 0.733 0.851
F 33.617 31.047 14.708 20.256 16.830 31.897

Table 7. Localized regression results of carbon emission impact factors in prefecture-level cities across
the country in 2010. (Note: * p < 0.1, ** p < 0.05, *** p < 0.01).

(&) E N NE NwW SW
CO, CO, CO, CO, CO, CO,
InGDP 12.903 *** 11.230 *** 21.805 * 17.117 *** 7.219 *** 6.500 **
(6.81) (4.26) (2.02) (5.83) (5.16) (2.26)
Inhabitant 0.011 ** 0.052 *** 0.003 0.010 0.008 0.039 ***
(2.01) (7.64) (0.16) (0.86) (0.73) (8.13)
Cumulative precipitation —0.000 0.002 —0.057 0.010 —0.015 0.024 **
(—0.05) (0.28) (—1.15) (0.88) (—1.24) (2.29)
Average temperatures —0.513 —2.523 ** 1.469 —0.914 —0.200 —1.574*
(—1.17) (—2.10) (0.36) (—0.95) (—0.35) (—2.02)
Hours of sunshine 0.009 —0.027 * 0.000 0.031 ** —0.006 0.010 **
(1.62) (=1.79) (0.00) (2.12) (—0.65) (2.07)
Cities and towns —5.158 123.778 *** 75.759 —24.589 56.176 475.451 ***
(—0.36) (2.90) (0.70) (—0.49) (0.89) (3.22)
Natural environment —0.464 6.654 0.352 10.280 2.735 13.056
(—0.09) (0.71) (0.01) (1.42) (0.35) (1.54)
_cons —195.891 *** —103.644 * —307.016 —328.507 *** —76.690 ** —124.174 ***
(—6.32) (—1.89) (—1.60) (—5.64) (—2.32) (=2.72)
N 82.000 77.000 24.000 48.000 51.000 47.000
R? 0.811 0.867 0.837 0.745 0.667 0.898
F 45.413 64.401 11.777 16.672 12.280 49.160
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Table 8. Localized regression results of carbon emission impact factors in prefecture-level cities across
the country in 2020. (Note: * p < 0.1, ** p < 0.05, *** p < 0.01).

CS E N NE NW SW
CO, CO, CO, CO, CO, CO,
InGDP 12.053 *** 7.406 *** 40.444 * 24,397 *** 3.012* 5.875
(4.09) (3.06) (1.93) (4.90) (2.00) (1.59)
Inhabitant 0.014 * 0.051 *** —0.033 —0.008 0.032 ** 0.045 ***
(1.99) (9.49) (—0.93) (—0.41) (2.12) (7.83)
Cumulative precipitation —0.003 0.003 0.403 —0.024 ** —0.034 *** 0.008
(—0.83) (0.86) (1.50) (—2.50) (—3.24) (0.99)
Average temperatures -0.197 —0.642 —5.532 0.436 0.198 —0.071
(—=0.52) (—-1.29) (—0.91) (0.46) (0.25) (—0.13)
Hours of sunshine 0.001 —0.001 —0.006 —0.001 0.004 0.000
(0.29) (—0.44) (—0.60) (—0.49) (1.01) (0.03)
Cities and towns —28.271*% 38.433 * —114.774 —58.302 —1.599 29.424 *
(—1.83) (1.92) (—1.04) (—1.24) (—0.02) (1.87)
Natural environment —9.252 —2.852 —91.085 * 13.293 —25.227 18.021 **
(—1.44) (—0.47) (—1.95) (1.46) (—1.42) (2.41)
_cons —171.724 *** —116.523 *** —714.300 * —348.010 *** —5.144 —113.062 *
(—3.53) (—2.79) (—2.07) (—4.51) (—0.16) (—1.91)
N 82.000 77.000 24.000 48.000 51.000 47.000
R? 0.707 0.891 0.620 0.729 0.463 0.892
F 25.487 80.350 3.725 15.374 5.306 46.033

Table 6 elaborates on the partial regression results from 2001, where economic devel-
opment consistently elevates CO, emissions, often reaching statistical significance at the
1% or 5% levels. The population’s effect is similarly significant, especially in the Eastern
and Southwest Regions, which are notable at the 1% significance level. However, the
influence of cumulative precipitation and sunshine hours varies, showing both positive
and negative impacts that are not always statistically significant. The variability extends to
urbanization and natural environment effects, which range from positive to negative, with
no consistent pattern.

Further analysis in Table 7 indicates that the coefficients for economic development in
2010 are considerably larger than those in 2001, with GDP showing a significant positive
effect across all regions, predominantly at the 1% significance level. The influence of
population is also more pronounced in 2010, with significant impacts in multiple regions.

Finally, Table 8 focuses on the 2020 data, revealing that economic development remains
a major driver of emissions in the Northern Region, maintaining the trends observed in
earlier years. The impact of population and non-natural environmental factors in 2020
is also more substantial compared to previous assessments. Notably, urbanization in the
CS region shows a significant negative correlation with emissions, diverging from earlier
data, while the natural environment’s role in reducing emissions becomes more evident,
particularly with its significant negative effect in the Northern Region and a significant
positive effect in the Southwest.

4. Discussion

In terms of the changes in carbon emissions and the share of each region between 2001
and 2020, it can be observed that the more developed economy in the Eastern Region of
China has led to a faster growth in carbon emissions, which reached its peak and then grad-
ually slowed down in accordance with the requirements of the national situation [60]. On
the other hand, in the Northwest, Southwest, and South Central Regions, where more cities
with relatively backward economies are struggling to develop, all have achieved 20 years
of sustained upward mobility, and their average annual carbon emissions have increased
by 8.54%, 5.51%, and 6.05%. This is exemplified by the phenomenon of urbanization, which
is occurring at a more rapid pace in these cities, and the pursuit of economic growth in
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order to catch up with the relatively more developed regions. In addition, over this 20-year
period, carbon emissions have made overall progress in an upward trend. The carbon
emissions from the country’s prefectural cities continue to grow, reflecting the country’s
rising level of development and the gradual realization of a carbon neutrality policy on that
basis. In analyzing the changes in China’s carbon emissions, it is also possible to add to
and compare the content of studies involving global carbon emissions [61]. The continued
growth of carbon emissions in China as a developing country is different from the changes
in carbon emissions in the developed countries of Europe, where we can see that Europe
is undergoing an energy transition to meet its carbon reduction targets, which the more
developed regions of eastern China could emulate [62]. Moreover, the cross-border impacts
of carbon emissions in China are more related to economic trade and ecological changes.
For example, cross-border co-operation will help EU exporters to mitigate the adverse
impacts of the EU Carbon Emission Rights Act and play a key role in global coordination
of emission reduction actions. In addition, in the long run, in regions with fragile environ-
ments and high per capita incomes, high carbon emission industries are not conducive to
the development of the regional economy and industry and the introduction of foreign
investment by the regional government, and this will force the regional government to pay
attention to environmental regulation and promote the long term sustainable development
of the local industry [63,64]. The carbon emissions vary and change at the provincial scale
in different regions, which in turn is closely related to factors such as the level of economic
development, policy implementation, and industrial structure of the specific region.

Over time, the carbon emissions of prefecture-level city clusters in China have ex-
hibited a clear spatial autocorrelation, with an overall clustering trend. The clustering
of carbon emission cold and hotspots in China has been expanding and becoming more
tightly clustered simultaneously. Conversely, the addition or reduction of cold and hotspots
can also demonstrate the differences and continuity of carbon emissions within the country.
The types of carbon emissions clustering in different regions have varied over time, but
on the whole they show a certain degree of stability. The absence of H-H type high-value
agglomerations in cities in the Pearl River Delta region may be related to the decentralized
industrialization and urbanization in the region [65]. Meanwhile, the distribution of carbon
emissions in China exhibits an east-west dichotomy, exemplified by the spatial pattern
of “hot in the east and cold in the west”. The concentration of hot spots is evident in
the eastern coastal areas, while cold spots are primarily distributed in the Northwest to
Southwest Regions. However, the scope of their agglomeration is expanding and becoming
closer simultaneously. At this juncture, the spatial distribution of carbon emissions in China
exhibits a growing tendency towards positive autocorrelation. Low-carbon emission cities
should prioritize addressing their own challenges, leveraging the insights of neighboring
efficient cities, driving the restructuring of their own economy and industry, proactively
exploring avenues for carbon emission reduction, and enhancing the efficiency of carbon
emission. This is consistent with the findings of Huang et al. [65], which help to elucidate
the spatial and temporal CO, distribution of carbon emissions in China and provide a
scientific basis for the formulation of targeted carbon emission reduction policies.

In terms of influencing factors, economic and population growth can lead to signif-
icant increases in carbon emissions. The increase in carbon emissions due to economic
development can be derived from changes in affluence or technological development [66].
On the other hand, the impacts behind population growth can be understood from other
studies, where population growth, through its impact on demographic processes such
as urbanization, population density, age structure, and household size, has an indirect
impact on emissions/energy consumption [67]. Taken together, it is found that the economy
and population are inextricably linked, implicating the level of consumption as well as
the impact of GDP per capita, with an increase in population leading to an increase in
consumption demand, which exacerbates the level of carbon dioxide emissions from both
production and consumption [68]. The influence of climate factors and urbanization on
CO;, emissions is more complex and unstable. In addition to local policy reasons, there
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are also a number of unknowns that may affect carbon emissions. Further research is
therefore needed to understand the mechanism of its influence. However, with the steady
development of the economy and the current slowdown in China’s population growth,
China’s carbon emissions in the future will be more successful in realizing the established
national policy requirements.

The analysis of carbon emission impact factors in the national subregional prefecture-
level cities revealed that, although there are differences between different regions, the
general trend is that the impact of economic development and population growth on CO,
emissions is generally positive. At the same time, some studies also pointed out [69]
that its effect has weakened over time, but economic growth is the most critical factor
driving the growth of carbon emissions. From 2005-2010, 2010-2015, and 2015-2020,
the carbon emissions driven by economic growth are 5835.51 metric tons, 4735.38 metric
tons, and 3137.13 metric tons, respectively. Population growth plays a relatively limited
role, contributing 203.48 Mt, 355.45 Mt, and 278.71 Mt in 2005-2010, 2010-2015, and
2015-2020, respectively. The industrial structure of the NWT may favor energy-intensive
industries, such as heavy industry or coal mining, which typically generate significant CO,
emissions [70]. Therefore, with economic expansion and population growth, the expansion
of these industries will directly lead to an increase in CO, emissions. The significant
negative effect of cumulative precipitation may be due to the fact that higher precipitation
reduces the operational efficiency of industries such as thermal power plants, which reduces
CO; emissions. Additionally, higher precipitation may also promote vegetation growth
that absorbs carbon dioxide, thereby reducing atmospheric CO, concentrations. There are
some differences between different regions that need to be further studied and explored.

The regression analyses from 2001 to 2020 reveal a consistent correlation between
economic development, population growth, and increased CO, emissions, especially in
the E and SW Regions. This view is consistent with the findings of previous studies that
urbanization leads to the migration of rural populations, which provides human resources
for urban development, but also generates large amounts of carbon emissions [71,72]. More-
over, this trend underscores the urgent need for integrated policies that simultaneously
address economic expansion and environmental sustainability. The variable impacts of
climatic factors on emissions highlight the complex interactions within environmental
systems and the necessity for models to better incorporate regional climatic variations
for more effective emission management. Urbanization’s growing influence on emissions
emphasizes the dual challenge of fostering urban growth while minimizing environmental
degradation. Promoting sustainable urban practices, such as green consumption and sup-
port for eco-friendly industrial transformations, is crucial. The significant economic changes
in Region N in 2020, driven by the introduction of new industries, underscore the profound
environmental impacts of economic shifts. Additionally, the dynamic interplay between
urban planning and demographic changes, particularly in the CS region as discussed by
Xu et al. [73], calls for a reevaluation of urbanization strategies to align with sustainable
development goals. Moreover, the importance of region-specific approaches, such as those
adopted in the Southwest to enhance ecological protection and land use efficiency [74],
illustrates the need for adaptive strategies that respect local economic, political, and climatic
conditions. This holistic understanding can inform policymakers in designing strategies
that not only promote economic growth but also ensure environmental preservation.

These findings underscore the dominant influence of economic activities and demo-
graphic growth on CO, emissions, while highlighting the variable and often unpredictable
effects of climatic and environmental factors across different regions and time periods.

5. Conclusions

In this paper, we analyzed and evaluated CO, emissions at the scale of prefecture-
level administrative units in China. This study initially examined the changes in carbon
emissions and discovered that carbon emissions are rapidly increasing in the economically
developed Eastern Region of China, while the less developed Western Region of the country
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is catching up through accelerated urbanization and economic growth; the spatial and
temporal distribution of carbon emissions exhibits a pattern of “hot in the east and cold in
the west”. Economic expansion and population growth remain the main drivers of carbon
emissions growth in each region, while the effects of climatic factors and urbanization
are complex and volatile. In the future, the Eastern Region will require a focus on the
issues of urbanization progress and population efficiency, while achieving a gradual energy
transition. In contrast, the Western Region will need to strengthen ecological protection
and improve land use efficiency in order to balance the environmental change caused by
carbon emissions. The results and relevant conclusions can serve as a foundation or offer
recommendations for China’s regional carbon policy formulation and modification.

The limited availability of data poses a significant challenge for the refinement and
effectiveness of evaluation index systems, since the carbon emissions data used in this
study are the sum of energy-related CO, emissions and CO, emissions/sequestration from
the land use sector, excluding non-CO; greenhouse gases, etc. In future studies, the classifi-
cation and detailed localization of data could greatly enhance the foundational datasets,
thereby improving the robustness and relevance of the index system. Such enhancements
could involve categorizing sources of carbon emissions, documenting local policy shifts in
specific years, and conducting targeted research on climate data. Additionally, expanding
the analysis to include more comprehensive comparisons across these variables could
significantly enhance our understanding of the factors influencing carbon emissions. This
approach would facilitate the identification of critical links that drive regional and temporal
differences in emission patterns, providing valuable insights for targeted environmental
policy and action.
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Appendix A

Table A1l. VIF certificate.

2001 2010 2020

VIF 1/VIF VIF 1/VIF VIF 1/VIF
4.960 0.202 3.190 0.313 2.480 0.403
4.120 0.242 3.090 0.324 2.170 0.460
3.580 0.279 2.970 0.337 2.090 0.478
2.970 0.336 2.910 0.344 2.060 0.486
2.940 0.340 2.800 0.357 1.990 0.503
2.650 0.378 2.520 0.397 1.930 0.519
2.390 0.419 2.470 0.404 1.050 0.950
3.370 2.850 1.970
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Figure A1. Scatterplot of regression of factors affecting carbon emissions in prefecture-level cities
nationwide in 2001. (Note: Scatterplot of linear relationship between factors and carbon emissions, the
following data has been collated for the purposes of this study: CO, (million tons), InGDP (million
yuan), Inhabitant (ten thousand people), Cumulative precipitation (mm), Average temperature
(degrees Celsius °C), Hours of sunshine (hours), Percentage of cities and towns (%), Percentage of
natural environment (%)).
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Figure A2. Scatterplot of regression of factors influencing carbon emissions in prefecture-level

cities across China in 2010. (Note: Scatterplot of linear relationship between factors and carbon

emissions, the following data has been collated for the purposes of this study: CO, (million tons),

InGDP (million yuan), Inhabitant (ten thousand people), Cumulative precipitation (mm), Average

temperature (degrees Celsius °C), Hours of sunshine (hours), Percentage of cities and towns (%),

Percentage of natural environment (%)).
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Figure A3. Scatterplot of regression of factors affecting carbon emissions in prefecture-level cities
across China in 2020. (Note: Scatterplot of linear relationship between factors and carbon emissions,
the following data has been collated for the purposes of this study: CO, (million tons), InNGDP (million
yuan), Inhabitant (ten thousand people), Cumulative precipitation (mm), Average temperature
(degrees Celsius °C), Hours of sunshine (hours), Percentage of cities and towns (%), Percentage of
natural environment (%)).
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Abstract: Coupling solar-induced chlorophyll fluorescence (SIF) with gross primary productivity
(GPP) for ecological function integration research presents numerous uncertainties, especially in
ecologically fragile and climate-sensitive arid regions. Therefore, evaluating the suitability of SIF data
for estimating GPP and the feasibility of improving its accuracy in the northern region of Xinjiang
is of profound significance for revealing the spatial distribution patterns of GPP and the strong
coupling relationship between GPP and SIF in arid regions, achieving the goal of “carbon neutrality”
in arid regions. This study is based on multisource SIF satellite data and GPP observation data
from sites in three typical ecosystems (cultivated and farmlands, pasture grasslands, and desert
vegetation). Two precision improvement methods (canopy and linear) are used to couple multiple
indicators to determine the suitability of multisource SIF data for GPP estimation and the operability
of accuracy improvement methods in arid regions reveal the spatial characteristics of SIF (GPP).
The results indicate the following. (1) The interannual variation of GPP shows an inverted “U”
shape, with peaks values in June and July. The cultivated and farmland areas have the highest peak
value among the sites (0.35 gC/m?/month). (2) The overall suitability ranking of multisource SIF
satellite products for GPP estimation in arid regions is RTSIF > CSIF > SIF_OCO2_005 > GOSIF.
RTSIF shows better suitability in the pasture grassland and cultivated and farmland areas (R? values
of 0.85 and 0.84, respectively). (3) The canopy method is suitable for areas with a high leaf area
proportion (R? improvement range: 0.05-0.06), while the linear method is applicable across different
surface types (R? improvement range: 0.01-0.13). However, the improvement effect of the linear
method is relatively weaker in areas with high vegetation cover. (4) Combining land use data, the
overall improvement of SIF (GPP) is approximately 0.11%, and the peak values of its are mainly
distributed in the northern and southern slopes of the Tianshan Mountains, while the low values
are primarily found in the Gurbantunggut Desert. The annual mean value of SIF (GPP) is about
0.13 mW/m?/nm/sr. This paper elucidates the applicability of SIF for GPP estimation and the
feasibility of improving its accuracy, laying the theoretical foundation for the spatiotemporal coupling
study of GPP and SIF in an arid region, and providing practical evidence for achieving carbon
neutrality goals.
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Keywords: solar-induced chlorophyll fluorescence (SIF); gross primary productivity (GPP); applicability;
accuracy improvement; spatial features

1. Introduction

Gross primary productivity (GPP) is the comprehensive product of vegetation fixing
CO, through photosynthesis [1]. As an important factor in terrestrial carbon cycle research,
it plays a crucial role in the biosphere [2]. Under the goal of “carbon neutrality”, achieving
a precise measurement and estimation of GPP is not only of profound significance for
understanding the mechanisms of the carbon cycle [3,4], but also plays an important role
in determining the comprehensive response of CO; to climate change. Currently, the main
methods for measuring and estimating GPP include model simulations, ground-based
observations, and satellite-based remote sensing. Model simulations primarily refer to
methods based on light use efficiency (LUE) models [5,6]. Due to differences in underly-
ing surfaces, variations in vegetation structure, and the comprehensive impact of climate
change, the structure and related parameters of LUE models are difficult to accurately
construct and quantify, resulting in certain limitations in this method. Ground-based obser-
vations primarily refer to the eddy covariance (EC) measurement technique [7]. The EC
method measures the net ecosystem exchange (NEE) through flux towers [8], and then de-
composes NEE into GPP and ecosystem respiration (Reco) [9]. Due to the limited coverage
area of EC measurements, the EC method needs to use related approaches to upgrade the
measurement scale when conducting large-scale GPP estimate [10,11]. The upscaled GPP
also has certain limitations, such as incomplete driving factors, excessive parameters, and
constraints from the original EC flux towers. Therefore, to achieve a precise measurement
and estimation of GPP and to promote the realization of the “carbon neutrality” goal, it is
necessary to further explore other GPP measurements or alternative methods.

Chlorophyll fluorescence is a light signal produced when chlorophyll molecules move
from a low-energy state to a high-energy state and then return to the low-energy state. The
wavelength of this fluorescence is approximately in the range of 650-800 nm, which is also
referred to as solar-induced chlorophyll fluorescence (SIF). SIF encompasses the spectra
contributed by both Photosystem I and Photosystem II. Compared with traditional vegeta-
tion indices, SIF can better reveal the dynamic changes and carbon cycling processes of GPP.
SIF has become one of the hot research topics in the field of vegetation remote sensing [12].
For example, Gao et al. [13] conducted linear and spatiotemporal analyses using real-time
tower-measured GPP from FLUXNET in 2015 and two types of SIF (CSIF and GOSIF),
demonstrating that both showed a positive correlation across different spatiotemporal
scales. Wang et al. [14] applied SIF and GPP to characterize the spatiotemporal features and
regulatory factors of terrestrial ecosystems in China from 2007 to 2018. They compared the
spatiotemporal consistency of SIF and GPP between arid and nonarid regions by analyzing
different climatic zones. Qiu et al. [15] characterized the response changes of SIF and GPP
to drought processes under arid conditions. Wei et al. [16] coupled SIF and GPP satellite
products and applied multiple indicators to demonstrate the reduced lag effect of GPP in
grasslands in arid regions. Liu et al. [17] demonstrated the advantages of using SIF and GPP
data with multiple indicators to represent the water storage sensitivity of desert vegetation
in arid and semi-arid regions. Wang et al. [18] integrated remote sensing data with multiple
indicators and showed that SIF is more effective in representing the GPP of various systems
in arid areas than normalized difference vegetation index and vegetation optical depth.
However, given the increasingly important role that SIF satellite products play in GPP
estimation, many scholars have begun using models, machine learning, and other meth-
ods to generate SIF satellite products with different spatiotemporal characteristics from
different platforms. The satellite platforms mainly include Orbiting Carbon Observatory-2
(OCO_2), Sentinel-5P, MODIS, and GOME-2, and the products mainly include CSIF [19,20],
RTSIF [21,22], GOSIF [23], SIF_OCO2_005 [24], and others. With the generation of various
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SIF satellite products, the comparative analysis of the applicability of different products
for GPP estimation in different ecosystems has become a new research topic. However,
existing studies mostly focus on single ecosystems. For instance, An et al. [25] assessed
the consistency of five SIF satellite products for rubber plantation ecosystems on Hainan
Island. Dang et al. [26] verified the feasibility of using SIF instead of GPP to explore the
mechanisms affecting humid, arid, and semi-arid regions. Furthermore, because SIF itself
only accounts for 2-3% of solar radiation [27], it is necessary to reduce spatial resolution to
eliminate certain noise during measurement, resulting in a relatively low spatial resolution
of existing SIF satellite products. For instance, MetOp-A /B sensors mounted on the GOME-
2 satellite can only obtain monthly scale SIF data with a resolution of 0.5° [28]. Therefore,
although SIF can serve as an effective substitute for vegetation photosynthesis and be used
for GPP estimation, the overall applicability of multisource SIF satellite products in GPP
estimation across different regions and ecosystems requires further comparative validation.
The feasibility of improving the accuracy of SIF satellite products (considering various
influencing factors, such as different underlying surfaces) and achieving effective GPP
estimation requires further comparative research, especially in typical ecosystems in arid
regions of China.

The Xinjiang Uygur Autonomous Region is located in the inland northwest of China,
far from the ocean, with extremely low precipitation, making it part of China’s arid region.
It encompasses typical ecosystems such as pasture grasslands, cultivated and farmlands,
and coniferous forests. As well as fragile ecosystems like desert vegetation, natural sand
dunes, and desert—oasis transition zones, making it exceptionally sensitive to climate
change on both a national and global scale. As a typical arid region, which SIF satellite
product is most suitable for estimating GPP in this area? Which improvement method can
effectively enhance the progress of SIF satellite products in this region? Do the improved
SIF satellite products conform to the comprehensive variation characteristics of GPP in
arid regions? The resolution of this series of questions is crucial for achieving the “carbon
neutrality” goal in arid regions. Unfortunately, these questions have not yet received
clear answers.

Given this, this study takes the northern region of Xinjiang as the research area and
utilizes indirectly observed GPP data from three typical ecosystems in this region (cultivated
and farmlands, pasture grasslands, and desert vegetation). Spatial characteristics, linear
regression parameters, GPP sensitivity to influencing factors, and GPP/SIF values under
different weather conditions are selected as evaluation criteria. These criteria are used
to comprehensively assess the overall applicability of four continuously updated SIF
satellite products (CSIF, RTSIE, GOSIF, SIF_OCO2_005) for GPP estimation in typical
arid ecosystems. Subsequently, the feasibility of employing canopy and linear accuracy
improvement methods to enhance the accuracy of the most suitable SIF satellite product
for GPP estimation is verified. Finally, the changes in spatial characteristics of SIF data
before and after improvement are revealed, indirectly reflecting the spatial distribution
patterns of GPP in arid regions. These studies will provide reliable empirical evidence for
the applicability and accuracy improvement of SIF satellite products for GPP estimation in
arid regions. Moreover, they fill the gap in the coupling research of SIF satellite products
and GPP in this localized arid region of northern Xinjiang, laying a theoretical foundation
for further research on GPP influencing mechanisms in Xinjiang and the entire arid region.

2. Data and Methods
2.1. Study Area

The Xinjiang Uygur Autonomous Region (35°~50° N, 73°~96° E) (Figure 1a) is located
in northwest China. Its north end is located in the Altay Mountains, its south end is located
in the Kunlun Mountains, and its central area has the Tianshan Mountains running through
it. It covers a total area of 1.6649 million km? [29,30] and is part of China’s arid region. Due
to the region being far from the ocean and surrounded by mountains, the areas have a large
temperature difference and are dry with little rain. The annual average temperature is about
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—4.9~14.9 °C [31]. The rivers and lakes in the region (such as the Tarim River and Abi Lake)
mainly come from glacial meltwater. Owing to its unique geographical location, the region
has diverse land surfaces, including desert vegetation, pasture grasslands, cultivated and
farmlands, coniferous forests, and other underlying surfaces, the ecosystem is very typical.
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Figure 1. (a) Specific locations of the Tianshan Mountains, Ulan Usu Station, Ulastai Station, and
Kelameili Station in Xinjiang. (b) Schematic representation of the elevations of the study area.
(c) Schematic representation of the land use types at the study area.

This study focuses on the northern region of Xinjiang as the research area. Three
typical ecosystems in this region (cultivated and farmlands, pasture grasslands, and desert
vegetation) are selected for the analysis of the coupling between SIF satellite products and
GPP in arid regions.

2.2. Data Sources
2.2.1. Site Data

The situ observation data for this study were obtained from the Land-Atmospheric
Interaction Observation Stations constructed by the Institute of Desert Meteorology, China
Meteorological Administration, Urumgqi. There were three stations (Table 1), each equipped
with EC systems, radiation observation systems, and gradient tower systems.
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Table 1. Basic information of different observation stations.

Station Name Abbreviation Coordinates Elevation Region Underlying
Surface
Ulan Usu Land- . . 44°16/59" N The nor.thern slope Cultivated and
Atmosphere Interaction Ulan Usu Station oAalnntl 406.9 m of Tianshan
. . 85°49°00" E . farmland area [32]
Observation Station Mountains
Central Tianshan Land- Ulastai 43°28'55" N _ The central Pasture grassland
Atmosphere Interaction Station 87°12/50" E 2036 m hinterland of the area [33,34]
Observation Station Tianshan Mountains !
Kelameili Land- .
. e 45°14’00" N Gurbantunggut Desert vegetation
Atmosphere Interaction Kelameili Station 87°35/00" E 531 m Desert area [35,36]

Observation Station

The EC system consisted of an open-path CO,/H,0 infrared gas analyzer (LI7500, Li-
Cor, Lincoln Nebraska, IA, USA) and an ultrasonic three-dimensional anemometer (CSATS3,
Campbell Scientific, Logan, UT, USA). The Ultrasonic anemometer can accurately measure
pulsating wind speed and acoustic virtual temperature in three different directions, with
measurement accuracies of £4.0 cm/s and 2.0 cm/s. The data acquisition frequency is
10 Hz/20 Hz and the data output interval is 30 min.

The open-path LI7500 infrared gas analyzer provides accurate measurements of CO,
concentration and water vapor density in the atmosphere, with measurement accuracies of
£0.01 mmol/mol and £0.15 mmol/mol. The data output interval is also 30 min.

The data used in this study were continuous observation data in 2020, with observation
times synchronized to the local time. All measured data were output through a data
collector (CR3000, Campbell Scientific, Logan, UT, USA) at time frequencies of 10 s, 1 min,
30 min, and 1 h. The acquisition frequency of the radiation and gradient observation
systems was 1 Hz, whereas that of the EC covariance system was 10 Hz.

2.2.2. Satellite Data

By comprehensively comparing the SIF satellite products that are currently the most
widely used and have been proven to have good applicability [13,16-18,25], we have
preliminarily selected the SIF satellite product generated based on the two most widely
used satellite platforms (OCO_2 and Sentinel-5P). These SIF satellite products have a
complete time cycle, time/spatial resolution, and coverage range, which can perfectly
match the research area and time period. It mainly includes four satellite products as
follows: CSIF [19,20], RTSIF [21,22], GOSIF [23], and SIF_OCO2_005 [24] (Table 2).

The leaf area index (LAI) data for this study were obtained from the HIQ-LAI satellite
product data set on the Google Earth Engine platform. This data set was created by Yan
et al. [37], using the spatiotemporal informative component analysis (STICA) algorithm,
which reanalyzed nearly 22 years of MODIS C6.1 LAI products. The data set has an 8-day
temporal scale, and each year includes 46 TIFF format files at a resolution of 500 m.

The land use data for this study were sourced from the Chinese Academy of Sciences
Resource and Environment Science Data Registration and Publishing System. This data set
was produced by Xu et al. [38], through manual visual interpretation of Landsat 8 remote
sensing images to generate the data set. The data set comprises 25 secondary types and
offers raster data at resolutions of 1000 m, 100 m, and 30 m, with this study utilizing data
at a resolution of 30 m.

This study used the observation data from the aforementioned satellites products
in 2020.
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Table 2. Basic information on four widely used SIF satellite products.

Product Name Generation Temporal Spatial Time Acquisition
Method Resolution Resolution Period Platform
Based on the combination of SIF from
OCO_2 and calibrated MODIS BRDF
seven-band surface reflectance,
CSIF trained artificial ne.ural networks 4 days 0.05° 2001-2020 National Tibetan
(ANNSs), applying ANNSs, Plateau Data
incorporating weather conditions, Center (http:
and employing machine learning //data.tpdc.ac ' n
algorithms to generate. accessed on 18
Generated through machine learning September 2023)
reconstruction of TROPO spheric o
RTSIF Monitoring Instrument (TROPOMI) 8 days 0.05 2000-2020
on Copernicus Sentinel-5P mission.
Generated using
data-driven methods o Earth System
GOSIF based on SIF from OCO_2, MODIS, 8 days 0.05 2000-2022 Research Center
and meteorological reanalysis data.
Utilizes SIF from OCO_2 and
calibrated MODIS BRDF seven-band
SIF OCcOp 005~ Surface reflectance, trained artificial 16 days 0.05° 2014-2020  Earth Data Center

neural networks (ANNSs), applying
ANNSs, incorporating MODIS
reflectance, and land cover to predict.

2.2.3. Other Auxiliary Data

To improve the accuracy of the SIF data based on the canopy method, various auxiliary
parameter data sets were applied concurrently (Table 3).

Table 3. SIF data accuracy improvement auxiliary parameter data set.

Parameter Name Value Reference
L Canppy confinuous Derived from the RTSIF sensor -
radiation intensity
05 Solar zenith angle Atmospheric effects Yv1.thm the SIF s.atelhte [39]
spectrum range are negligible and considered as 0
G(0) Geometric mean 0.5 [40]
w Absorption value of chlorophyll in the  The change in w in this spectrum range is minimal [41,42]
743-758 nm spectrum range and considered as a unit value of 1 ’
Solar irradiance of 2
E 743-758 nm 1277.3 mW/m#*/nm [43]
I Clumping index Determine from He L global products based on the [44]

type of underlying surface in the research area

2.3. Data Processing
2.3.1. Site Data Processing

The final data collection frequency for EC used in this study is 10 Hz, with a time
output frequency of 30 min. The data collection frequency for radiation and gradient
observations is 1 Hz, with a time output frequency of 30 min. All original flux observation
data are initially in the TOB1 format, which can be converted to the TOB3/5 format for
preliminary operations by the LoggerNet software4.0 (Campbell Scientific, Logan, UT,
USA). Subsequently, EddyPro7.1 software was employed for data processing, including
outlier removal [45], time lag correction [46], coordinate sequence rotation [47], frequency
response correction [48], sonic virtual temperature, and density correction [49], thereby
obtaining flux data with a time step of half an hour.
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Owing to uncontrollable factors such as instrument damage and abrupt weather
changes, the preliminary processed flux data may still suffer from issues, such as missing
or discontinuous data. Therefore, it is necessary to further comprehensive interpolation
using the Max Planck online interpolation tool, which was performed on the half-hourly
flux data. Through comprehensive processing, high-quality and continuous half-hourly
flux data can be obtained. (The tool was developed by the Max Planck Institute for
Biogeochemistry and can be obtained at: https:/ /www.bgc-jena.mpg.de/bgi/index.pHp/
Services/REddyProcWeb, accessed on 18 September 2023).

In the data processed by comprehensive interpolation, the CO; flux data represents
NEE, while GPP and Reco [50] need to be calculated using nighttime and daytime data-
splitting methods [7,51]. The calculation formula is as follows:

GPP = NEE — Reco 1)

Due to SIF being the total product of photosynthesis, it is necessary to finally remove
the nighttime value from the GPP half-hourly flux data based on local sunshine time, and
convert it into an average energy value GPP data set over 8-day intervals. The ultimate
unit for this data set is gC/m?/day. (The sunshine time acquisition can be obtained
at: https:/ /richurimo.bmcx.com/xinjiangweiwuerzizhiqu__time_ 2020_02__richurimo/,
accessed on 18 September 2023).

The unit conversion formula is as follows:

12

-2 -1y 48 2
GPP(gem™“day )_Zizl GPP(cop/m*s) x 1800 x 7 )

2.3.2. Satellite Data Processing

Due to the differences in temporal cycles, temporal/spatial resolutions, coverage, and
storage formats of each satellite product, comprehensive processing is required. Firstly,
the ArcGIS10.8 software iterator tool was used for batch format conversion to create TIFF
format satellite product data sets. Secondly, the ArcGIS10.8 software iterator tool was
used for mask clipping to obtain coverage consistent with the study area. Subsequently,
the ArcGIS10.8 software was used for resampling to obtain a 2020 satellite product data
set with consistent spatial resolution (0.05°) in the study area. Finally, the ArcPy10.8 tool
and MATLABR2022a software were used for batch extraction of the SIF satellite product
raster attribute values corresponding to each site. We set that the SIF satellite products are
suitable for arid regions if the spatial attributes of SIF in each ecosystem are reasonable and
exhibit annual averages close to the measured GPP.

2.4. Research Methods
2.4.1. Method for Applicability Verification

To verify the applicability of multisource SIF satellite products for GPP estimation in
arid regions, linear regression fitting analysis is conducted using measured GPP data from
each site and their corresponding SIF data. Our data used for comprehensive calculations
have complete and stable time series, with a clear number of variables and the exclusion of
outliers and outliers. The adjusted R? is used for comprehensive verification and evaluation,
which avoids the irrationality, overfitting, bias, and inconsistency of model predictions. We
set the suitability of SIF satellite products for arid regions when R? is greater than 0.6 in
desert vegetation areas and greater than 0.8 in the cultivated and farmland and pasture
grassland areas. The parameter calculation formula is as follows:

1 o X
RMSE = \/ ~ Y Wi 7;)° ®)
1
MB =% (yi—9) @)
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SD = \/111 Yo (xi— ) ®)
R =1- (Z?ﬂ (yi = 9%/ Z?:l (vi = 7)) ©)

where 7 represents the number of samples, y; represents the observed values, j; represents
the predicted values, and the predicted value was calculated comprehensively based on
the slope and intercept.

2.4.2. Method for Response Degrees Verification

To verify the responsiveness of the multisource SIF satellite products to the main
influencing factors of GPP in arid regions, Pearson correlation analysis was used to calculate
their correlation, and t-tests were performed to determine the confidence level. Our data
used for comprehensive calculations have complete and stable time series, with a clear
number of variables and the exclusion of outliers and outliers, which avoids bias and
inconsistency in comprehensive analysis. We set the SIF satellite product to be applicable
in arid regions when it exhibits a high correlation with influencing factors under different
ecosystems. The parameter calculation formula is as follows:

i (% = %) (yi — Y)
r= i=1 7)
VI (- 22/ (- 9)

t:r/\/(l—rZ)/(n—Z) (8)

where 1 represents the sample size, x; represents the satellite values, and y; represents the
observed values of influencing factors.

2.4.3. Method for GPP/SIF Verification

To verify the changes in light distribution—sensitive diagnostic indicators (GPP/SIF)
under different weather conditions, the Clear Sky Index (CI) method proposed by Gu
et al. [52] was used to calculate the weather index of the study area in 2020. Subsequently,
the weather conditions were comprehensively classified using the weather condition classi-
fication standard proposed by Okogue et al. [53] (Table 4). Finally, the GPP/SIF method
derived by Yang et al. [54] was used to calculate the light distribution—sensitive diagnostic
values. We set the suitability of SIF satellite products for arid regions when the GPP/SIF ra-
tio in each ecosystem shows fluctuations around the 1:1 line without major abrupt changes.
The parameter calculation formula is as follows:

CI=Rs/Rg ©)
Ry = Rsc(1+0.33 cos(360d/365)) sin B (10)
sinf =sin¢ - sind + cos ¢ - cosé - cos w (11)

where R, is the solar constant, 8 is the solar zenith angle, ¢ is the latitude of the study area,
¢ is the solar declination angle, and w is the hourly angle.

Table 4. Study area weather division results.

Weather Conditions Criteria for Division Kelameili Station Ulastai Station Ulan Usu Station
Cultivated and Farmland Area Pasture Grassland Area Desert Vegetation Area
Sunny Day 06<CI<1 191d 177 d 178 d
Cloudy Day 0<CI<03 75d 69d 96 d
Overcast Day 03<CI<0.6 100d 120 d 92d
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2.4.4. Method for SIF Precision Improvement

To further explore the optimal accuracy of SIF data in three typical ecosystems in arid
regions, we employed two methods to improve the precision of RTSIF satellite products,
and then repeated the linear regression fitting analysis process.

Method 1: Accuracy improvement method based on canopy. This method decomposes
the incident sunlight into three parts as follows: zero-order canopy transmittance (denoted
as tp), canopy interception rate (denoted as iy), and escape probability (denoted as fesc).
Among them, a portion of the sunlight intercepted by the canopy is absorbed (denoted as a)
and a portion is scattered (denoted as s). When scattering occurs, collisions occur between
the canopies, resulting in a recollision rate (denoted as p). Based on the relationships
between these factors and incorporating other parameters (Table 3), the accuracy of SIF
data is improved using the following formula:

a+s+tg=1 (12)

P=n—-1/n x w (13)

Rops =7 x L/(E x cosfs) (14)

Le = LAI x CI (15)
ip=1—EXP(—G(6)) x Le x m x L/ cosb; (16)
fese = Rops /g X w X A (17)
SIFimproved = SFpefore improved X w X 10/ Rops (18)

where n represents the average number of interactions between the solar radiation and
leaf surfaces, R, is the canopy spectral bidirectional reflectance, and A is the wavelength.
Other parameter information can be found in Table 3.

Method 2: The linear deviation accuracy improvement method [55,56]. This method
uses the slope (1) and intercept (b) of the best regression-fitting equation (y = ax + b)
between the measured GPP and SIF satellite data to comprehensively eliminate bias,
thereby improving the accuracy of the SIF data. The calculation formula is as follows:

SIFimproved = SIFbefore improved — [(u - 1)GP P+ b] (19)

3. Results
3.1. GPP Various on the Site

From Figure 2, it can be seen that the monthly average GPP of each site exhibited a
changing trend of initially increasing and then decreasing during the growing season (March
to October), whereas the period outside the growing season showed a relatively flat trend.
The overall interannual variation manifested an inverted “U” shape, and the monthly average
GPP of each site during the year was sorted according to the underlying surface conditions as
follows: cultivated and farmland area > pasture grassland area > desert vegetation area.

Among these, the minimum monthly average GPP value (0.0003 gC/m?/month) of
Ulan Usu Station (cultivated and farmland area) occurred in December, followed by a sharp
increase due to the cultivation, after reaching a peak (0.35 gC/m?/month) in July, then
the monthly average GPP value decreased year-on-year. The overall growth rate ranks
first among all sites. The monthly average growth rate of GPP at Ulastai Station (pasture
grassland area) is second. The overall trend of GPP monthly average change at this station
is similar to that of Ulan Usu station, with peak values (0.14 gC/m?/month) also occurring
in July. However, the Ulastai Station is located in the hinterland of Tianshan Mountains,
with a relatively high altitude (2036 m) and a relatively low temperature. This results in
its annual monthly GPP being slightly lower than the Ulan Usu Station, and its minimum
value (0.011 gC/m?/month) appears in December.
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Figure 2. Interannual variation of monthly average GPP at each site in 2020 (excluding nighttime values).

In addition, the annual variation trend of the monthly average GPP at the Kelameili
Station (desert vegetation area) with relatively low vegetation coverage is consistent with
the above stations. However, due to the short growth cycle of short-lived vegetation, the
interannual monthly average GPP at the desert vegetation area is significantly lower. The
overall monthly average GPP ranks at the end of each station, with the minimum value
(0.0018 gC/m?/month) occurring in January and a peak (0.057 gC/m?/month) occurring
in July.

3.2. Analysis of GPP Estimation Using Multisource SIF Satellite Products
3.2.1. Analysis of Applicability

From Figure 3, it can be seen that there are differences in the linear regression fit
between the RTSIF (Figure 3a), CSIF (Figure 3b), SIF_OCO2_005 (Figure 3c), and GOSIF
(Figure 3d) satellite products and their corresponding station GPP data in arid regions.
In the pasture grassland area, RTSIF demonstrated the highest R? fitting value (0.85),
followed by CSIF (0.84), and GOSIF shows the lowest (0.41). The order of R? fitting values
was the same for the cultivated and farmland area. In the desert vegetation area, the
highest R? fitting value was for RTSIF (0.62), and the lowest was for SIF_OCO2_005 (0.36).
Additionally, there are also differences in the RMSE and SD among the satellites in different
underlying surfaces. RTSIF showed the smallest RMSE and SD in the pasture grassland
area (0.01 and 0.11, respectively), followed by CSIF (0.01 and 0.13, respectively), and GOSIF
showed the largest (0.01 and 24.46, respectively). In the cultivated and farmland area and
the desert vegetation area, the order of the RMSE and SD was the same as that in the
pasture grassland area.

Furthermore, by comparing the R? fitting values of the four satellite products on three
typical underlying surfaces with the linear regression optimal value (optimal value is 1),
it was found that the difference between the R? fitting value and the optimal value was
less than 0.38 for RTSIF, less than 0.41 for CSIF, less than 0.49 for SIF_OCO2_005, and
less than 0.64 for GOSIFE. This indicates that there are differences in the applicability of
multisource SIF satellite products for GPP estimation in arid regions. The overall ranking
of their applicability is RTSIF > CSIF > SIF_OCO2_005 > GOSIF, with RTSIF having an
overall significance greater than 0.5 and a confidence interval of 95%, indicating that RTSIF
satellite products have the best suitability.
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Figure 3. (a) The linear regression fitting of 2020 GPP data from three site with corresponding
site data of CSIF satellite products. (b) The linear regression fitting of 2020 GPP data from three
site with corresponding site data of RTSIF satellite products. (c) The linear regression fitting of
2020 GPP data from three site with corresponding site data of SIF-OCO-005 satellite products. (d) The
linear regression fitting of 2020 GPP data from three site with corresponding site data of GOSIF

satellite products.

3.2.2. Analysis of Spatial Features

From Figure 4, it can be seen that there are differences in the spatial distribution
characteristics of the annual average values of RTSIFE, CSIF, SIF_OCO2_005, and GOSIF
satellite products in arid regions. The RTSIF, CSIF, and SIF_OCO2_005 satellite products
exhibited reasonably distributed spatial patterns with distinct attribute features. The
highest values are predominantly distributed in regions with high vegetation cover, such
as the Altai Mountains and the northern and southern slopes of the Tianshan Mountains,
whereas the lowest values are found in areas with low vegetation cover, such as the
Gurbantunggut Desert and the eastern Gobi Desert. Specifically, in the pasture grassland
area, the annual mean values are 0.10 mw/m?/nm//sr (RTSIF), 0.12 mw/ m?/nm/sr (CSIF),
and 0.13 mw/m?/nm/sr (SIF_OCO2_005). In the cultivated and farmland area, the values
are 0.26 mw/m?/nm/sr (RTSIF), 0.18 mw/m?/nm/sr (CSIF), and 0.24 mw/m?/nm/sr
(SIF_OCQO2_005). In the desert vegetation area, the values are 0.03 mw/ m?/nm/sr (RTSIF),
0.01 mw/m?/nm/sr (CSIF), and 0.04 mw/m?/nm/sr (SIF_OCO2_005). The annual mean
values of RTSIF satellite products are closer to the observed GPP data at the stations.

In contrast, the spatial distribution of the GOSIF satellite products is unreasonable in
arid regions, with indistinct attribute features and an overall overestimation tendency. The
rationality of the attribute features of these products in arid regions is ranked as follows:
RTSIF > CSIF > SIF_OCO2_005 > GOSIF. The RTSIF satellite products most effectively
reflects the spatial features of GPP in the study area.
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Figure 4. The spatial distribution characteristics of annual mean values of multisource SIF satel-

lite products.

3.2.3. Analysis of the Impact Factor Responsiveness

From Figure 5, it can be seen that the responsiveness of RTSIF, CSIF, SIF_OCO2_005,
and GOSIF satellite products to the main influencing factors (photosynthetically active
radiation (PAR), soil temperature (Tsoil), air temperature (Tair)) of GPP varies in different
ecosystems in arid regions. In the desert vegetation area (Figure 5a), RTSIF exhibited the
highest responsiveness to Tsoil, PAR, and Tair, followed by CSIF, and GOSIF showed the
weakest response. In the pasture grassland area (Figure 5b), RTSIF showed the highest
responsiveness to PAR, followed by SIF_OCO2_005, while GOSIF exhibited the weakest
response. For Tsoil and Tair, the highest responsiveness is observed for SIF_OCO2_005,
followed by RTSIF, with GOSIF showing the weakest response. In the cultivated and
farmland area (Figure 5c), the highest responsiveness to PAR and Tair was observed for
RTSIE, followed by SIF_OCO2_005, with GOSIF exhibiting the weakest response. For Tsoil,
the highest responsiveness was observed for SIF_OCO2_005, followed by RTSIF, with

GOSIF exhibiting the weakest response.
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Figure 5. Responsiveness of multisource SIF satellite products to major influencing factors of GPP

(** indicates significance at the 0.5 level). (a) Kelameili Station, desert vegetation area. (b) Ulastai

Station, pasture and grassland area. (c) Ulan Usu Staion, cultivate land and farmland area.
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These results indicate that the responsiveness of the four satellite products in arid
regions to the main influencing factors varies greatly among different ecosystems. The
overall responsiveness to Tsoil is ranked as follows: SIF_OCO2_005 > RTSIF > CSIF >
GOSIF. While the overall responsiveness to Tair and PAR is ranked as follows: RTSIF >
SIF_OCO2_005 > CSIF > GOSIF. RTSIF shows an overall significance greater than 0.5 with
influencing factors in different ecosystems, indicating that RTSIF satellite products have
the highest overall responsiveness.

3.2.4. Analysis of GPP/SIF Values under Different Weather Conditions

From Figure 6, it can be seen that there are differences in GPP/SIF values in the study area
under different weather conditions and ecosystems. In the desert vegetation area (Figure 6a),
SIF_OCO2_005 and GOSIF exhibited severe overestimation under clear, overcast, and cloudy
conditions, while CSIF showed greater overestimation under clear conditions and greater un-
derestimation under overcast and cloudy conditions. RTSIF fluctuated around the 1:1 line, in-
dicating reasonably accurate values. In the pasture grassland area (Figure 6b), SIF_OCO2_005,
GOSIF, and CSIF all demonstrated significant overestimation under clear, overcast, and cloudy
conditions, whereas RTSIF remained relatively close to the 1:1 line. In the cultivated and
farmland area (Figure 6c), SIF_OCO2_005 generally exhibited significant underestimation
under clear, overcast, and cloudy conditions, while GOSIF tended to overestimate, and CSIF
showed a balance between overestimation and underestimation across different weather
conditions. RTSIF maintained fluctuations around the 1:1 line.
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Figure 6. Differences in GPP/SIF values under different weather conditions. (a) Kelameili Station,
desert vegetation area. (b) Ulastai Station, pasture and grassland area. (c¢) Ulan Usu Staion, cultivate
land and farmland area.

These results indicate that the GPP/SIF values of the four SIF satellite products
were overestimated or underestimated differently under different ecosystem and weather
conditions in arid regions. SIF_OCO2_005 and CSIF showed varying degrees of severe
overestimation and underestimation, whereas GOSIF demonstrated significant overesti-
mation, and RTSIF maintained relatively reasonable values. The GPP/SIF values ranked
overall as follows: RTSIF > CSIF > SIF_OCO2_005 > GOSIFE. The RTSIF satellite products
exhibited the highest overall rationality in GPP/SIF values.
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3.3. SIF Data Accuracy Improvement Analysis

A comparison between multisource SIF satellite products and site data revealed that
RTSIF satellite products performed better in estimating GPP than other satellite products
in arid regions, but there is still considerable room for improvement in the applicability of
RTSIF across different ecosystems. In order to advance research on GPP in arid regions, it
is necessary to further refine RTSIF data. Therefore, we applied two correction methods to
improve the RTSIF data in arid regions, and evaluated their applicability of two methods
across the three ecosystems. Ultimately, the optimal improvement method for different
ecosystems is determined, revealing the overall spatial distribution characteristics of SIF in
arid regions and indirectly elucidating the spatial characteristics of GPP.

3.3.1. Analysis of Canopy-Based Accuracy Improvement

From Figure 7, it can be seen that the R? fitting values after improvement (based on
the canopy improvement method) at each site are sorted by underlying surface conditions
as follows: cultivated and farmland area (Figure 7a) = pasture grassland area (Figure 7b),
with values equal to 0.90, maximizing close to the optimal value. The overall significance is
greater than 0.5 with a confidence interval of 95%. Compared to before improvement, the R?
values after improvement of each underlying surface increased by 0.06 (pasture grassland
area) and 0.05 (cultivated and farmland area), respectively. Additionally, the overall
improvement ranges of the MB, RMSE, and SD at each site were between 0.0009~0.0013,
0.0012~0.0065, and 0.0348~0.0864, respectively. The overall fitting parameter errors were
improved to varying degrees, with the cultivated and farmland area showing the largest
overall improvement and the pasture grassland area having the smallest improvement.
This indicates that the canopy method has good applicability in areas with high vegetation
coverage in arid regions.
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Figure 7. Linear fitting graph of 2020 GPP data and RTSIF corresponding station data for each station
after improving based on the canopy method. (a) Ulastai Station, pasture and grassland area. (b) Ulan

Usu Staion, cultivate land and farmland area.

However, owing to the short growth cycle and small leaf area of short-lived vegetation
on the underlying surface of the Kelameili Station (desert vegetation area), the LAl in some
areas during the corresponding time period cannot be accurately measured, resulting in the
inability of the canopy method to accurately achieve the SIF data accuracy improvement for
this type of underlying surface. This indicates that the canopy method is highly applicable
in areas with dense vegetation in arid regions, whereas its applicability is weaker in areas
with sparse vegetation, indicating certain limitations overall.

3.3.2. Analysis of Linear-Based Accuracy Improvement

From Figure 8, it can be seen that the R? fitting values after improvement (based on
the linear improvement method) at each site are sorted by underlying surface conditions
as follows: pasture grassland area (Figure 8b) > cultivated and farmland area (Figure 8c)
> desert vegetation area (Figure 8a), with the corresponding values are 0.87, 0.85 and 0.75,
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respectively. All values were greater than 0.70 and close to the optimal value, indicating
that 70% of the dependent variable variability in the underestimated desert vegetation area
can be explained by the linear method. In addition, compared with before the improvement,
the R? fitting values of the cultivated and farmland area, the pasture grassland area, and the
desert vegetation area increased by 0.01, 0.02, and 0.13, respectively, showing a significant
overall improvement effect.
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Figure 8. Linear fitting diagram between the 2020 GPP data of each station and the corresponding
RTSIF station data after improving based on the linear method. (a) Kelameili Station, desert vegetation
area. (b) Ulastai Station, pasture and grassland area. (c) Ulan Usu Staion, cultivate land and

farmland area.

In addition, the overall improvement ranges of the MB, RMSE, and SD at each site
ranged from 0.0001 to 0.0011, 0.0003 to 0.0146, and 0.0126 to 0.0799, respectively. Various
fitting parameters showed different degrees of enhancement, with the greatest improve-
ment observed in the desert vegetation area, and relatively minor improvements in the
cultivated and farmland area and the pasture grassland area, the enhanced SIF data can
further reflect the characteristics of GPP changes.

Overall, compared to before the improvements, SIF data are now more closely aligned
with the measured GPP data. The parameters in the underestimated desert vegetation area
showed the greatest overall improvement due to the linear method, whereas the cultivated
and farmland area and the pasture grassland area exhibited a relatively smaller overall
improvement. This suggests that while the linear method is applicable across different
ecosystems, there are limitations when applying this method to improve the accuracy of
SIF data in arid regions.

3.3.3. Comparative Analysis of Accuracy improvement Based on Canopy and
Linear Methods

From Figure 9, it can be seen that the linear accuracy improvement method can
enhance the accuracy of RTSIF data across different ecosystems in arid regions, with overall
R? values exceeding 0.75 after improvement. However, the canopy accuracy improvement
method is only applicable to areas with a higher leaf area index in arid regions, and it cannot
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achieve improvement in regions with low vegetation cover. Interestingly, the R fitting
values decrease overall for the pasture grassland area and cultivated and farmland area
after improvement using the linear method, with decreases of 0.03 and 0.05, respectively.
This indicates that while the linear method is suitable for various ecosystems in arid regions,
its effectiveness in areas with high vegetation cover is not as pronounced as that of the
canopy method.
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Figure 9. The R? fitting values for various sites based on two accuracy improvement methods: canopy

and linear.

The differences in the error fitting parameters after improvement based on both
methods are listed in Table 5. Compared to the canopy method, for the pasture grassland
area and the cultivated and farmland area using the linear improvement method results
in increased MB, RMSE, and SD errors, with error increases ranging between 0~0.0021,
0.0009~0.0211, and 0.0065~0.0671, respectively. Conversely, for the desert vegetation area,
using the linear improvement method results in relatively small MB, RMSE, and SD errors,
with error values of 0.0002, 0.0029, and 0.0110, respectively, and the improvement effect is
relatively significant. This further emphasizes that while the linear method has broader
applicability than the canopy method in arid regions, its effectiveness is relatively weaker
in areas with a higher leaf area index.

Table 5. The difference in error fitting parameters for various sites based on two improvement methods.

Station Parameter RMSE IMB | SD

Canopy improvement value 0.0915 0.0002 0.3054
Ulan Usu Station Linear improvement value 0.1126 0.0021 0.3725
Difference 0.0211 0.0019 0.0671
Canopy improvement value 0.0058 0.0001 0.0242
Ulastai Station Linear improvement value 0.0067 0.0001 0.0307
Difference 0.0009 0 0.0065

Canopy improvement value - - -
Kelameili Station Linear improvement value 0.0029 0.0002 0.0110

Difference - - -

In summary, the linear method can enhance the accuracy of SIF data across different
ecosystems in arid regions and further reduce errors between parameters after improve-
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ment. However, its effectiveness in areas with high vegetation cover is slightly weaker
than that of the canopy method. Therefore, the canopy method can be utilized to improve
the accuracy of SIF data in regions with high vegetation cover in arid regions, whereas
the linear method can be used, as a supplement, to enhance the accuracy of SIF data for
other types of underlying surfaces.After careful verification, we found that the title did
not express it clearly, which was due to our negligence. We deeply apologize for this. We
have rephrased the title, and the revised title is clear and reasonable. We have marked the
modified content in red.

3.4. Spatial Analysis of SIF Data Accuracy Improvement before and after

The spatial characteristics of the average values of RTSIF satellite data before improve-
ment for each quarter (March to May are spring, etc.) are shown in Figure 10 (left column).
High values of SIF data are primarily distributed in the cropland area on the northern and
southern slopes of the Tianshan Mountains, as well as in the pasture grassland area of the
Tianshan and Altai Mountains. Conversely, low values are predominantly found in regions
with a smaller leaf area index, such as the Gurbantunggut Desert (desert vegetation area)
and the eastern Gobi Desert.

Combining land use data with two precision improvement methods, the final precision
improvement results achieved by the RTSIF satellite are shown in Figure 10 (right column).
The overall improvement in the mean values of the SIF data for each quarter was 0.11%
(0.037% for cultivated and farmland area, 0.028% for pasture grassland area, 0.016% for
desert vegetation area, and 0.025% for other area). The most significant improvement was
observed in the spring and summer seasons (improvement rate of 0.071%). Specifically, in
spring, as snow begins to melt, vegetation (including short-lived vegetation) begins to grow,
the contribution of SIF has increased. Which is coherent with the overall enhancement of
SIF attributes in the study area after improvement. In particular, significant improvements
were observed in regions with a higher leaf area index, such as the northwestern part of
the Altai Mountains and both slopes of the Tianshan Mountains. The attributes of the
Gurbantunggut Desert also showed a synchronized enhancement, with results falling
within a reasonable attribute range for arid regions [57,58].

In summer, most regions have completed snowmelt, and vegetation continues to grow
as solar radiation increases. The contribution of the SIF further increases, which is consistent
with the overall enhancement of SIF attributes in the study area after improvement. In
particular, regions with higher vegetation cover, such as the Altai Mountains and both
slopes of the Tianshan Mountains, experience a further increase in the enhancement rate.
The attributes in desert areas and similar regions remain within a reasonable range for arid
regions [59-61].

In autumn and winter, snow begins to accumulate in most regions, and vegetation
growth slows as the overall solar radiation decreases, the contribution of SIF decreases, and
the overall change is not significant. This aligns with the overall lower and relatively less
pronounced enhancement of the SIF attributes in the study area after improvement. The
western part and both slopes of the Tianshan Mountains are areas where the enhancement
of SIF attributes is more pronounced during the autumn and winter.

Additionally, after improvement, the annual average SIF (GPP) data for vari-
ous underlying surfaces in the northern region of Xinjiang was 0.13 mw/m?/nm/sr
(0.26 mw/ m?2/nm/sr for cultivated and farmland area, 0.14 mw/m?/nm/sr for pasture
grassland area, 0.034 mw /m? /nm/sr for desert vegetation area, and 0.11 mw/m?/nm/sr
for other area).
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Figure 10. Changes in spatial characteristics of quarterly average values before and after the im-
provement of SIF satellite product data. (al-d1) The spatial variation characteristics of the mean
values of each season before improvement, (al) for spring, and so on. (a2-d2) The spatial variation
characteristics of the mean values of each season after improvement, (a2) for spring, and so on.

4. Discussion
4.1. Analysis of the Applicability of Multisource SIF Data in Estimating GPP

The overall applicability of using multisource SIF to comprehensively evaluate GPP
data in arid regions shows that the overall ranking of the applicability of the four satellites
for GPP estimation is as follows: RTSIF > CSIF > SIF_OCO2_005 > GOSIF (based on spatial
characteristics, responsiveness to GPP influencing factors, GPP/SIF values under different
weather conditions, and other standards). The significance of RTSIF is greater than 0.5,
with a confidence interval of 95%. This is because the sensors and generation principles of
the four SIF satellite products are different. Among them, CSIF, GOSIFE, and SIF_OCO2_005
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all come from OCO_2 sensors. This sensor has an early launch time and a narrow spectral
band (757-775 nm) [62], leading to a lack of certain physiological and physical significance
in the generated satellite data.

However, RTSIF is derived from the TROPOMI sensor on Sentinel-5P, which was
launched later and has a more comprehensive spectral band (735-785 nm) [21,22], lead-
ing to a more refined understanding of various mechanisms in the obtained SIF data set.
Furthermore, CSIF, GOSIF, and SIF_OCO2_005 all utilize the MODIS data set, but MODIS
exhibits a noticeable lag effect [63], resulting in a significant deviation from GPP, thus reduc-
ing its inversion accuracy to some extent. In contrast, on the basis of the complete sensor
band, RTSIF comprehensively considers different weather conditions to generate [21,22],
which to some extent improves the inversion accuracy.

Additionally, the applicability of RTSIF in GPP estimation varied across the three
ecosystems in the study area. The pasture grassland area exhibits the highest R? value of
0.85, with a significance greater than 0.5 and a confidence interval of 95%, indicating the
best suitability for GPP estimation. This is attributed to the relatively stable growth cycle of
the grassland in Xinjiang, where the green-up period occurs between days 110 and 150 each
year, the growing season falls between days 140 and 160, and senescence appears between
days 270 and 290. The overall growth cycle of the grassland is stable, with no significant
interannual fluctuations in SIF contribution and relatively stable attribute characteristics.
Consequently, the suitability of SIF data for GPP estimation in this area was slightly higher
than that of the cropland area with a larger leaf area index. This finding is consistent
with the conclusions of Dong Tong’s [64] research, who utilized machine learning and
model construction methods to study the spatiotemporal and phenological characteristics
of grasslands in Xinjiang over the last 20 years. In the cultivated and farmland area, such as
those cultivating maize and cotton, GPP and SIF are much higher than those of forests and
grasslands, with an overall high measurability. However, because of their shorter growth
cycle and significant reduction in SIF contribution during the nongrowing season, their
suitability for GPP estimation using SIF data is relatively lower than that of the pasture
grassland area with an R? fitting value of 0.84, but with a significance also greater than 0.5
and a confidence interval of 95%. This is consistent with the conclusion of Chen Xin [65],
who used multiple crops for global farmland GPP estimations.

The carbon sink in the desert vegetation area is primarily generated through non-
photosynthetic processes, with complex controlling factors and trends. This conclusion
is drawn from research by Yang Fan et al. [66], who utilized comparative experiments to
demonstrate CO, characteristics in the Taklimakan Desert. This indicates that the overall
measurability of SIF in the desert vegetation area is relatively low, thus resulting in a weaker
applicability of SIF data for GPP estimation on these underlying surfaces. In this study, in
the desert vegetation area (Gurbantunggut Desert), the GPP during the growing season of
short-lived vegetation shows a trend of increasing initially and then decreasing. Outside
the growing season, the interannual variation of GPP shows an inverted “U” shape and
indicates a carbon sink. The interannual variations of GPP and SIF are relatively complex,
with small overall accumulations of GPP and contributions of SIE. This further validates the
aforementioned research conclusion and is consistent with the findings of Gulinur et al. [67]
regarding CO; fluxes in the Gurbantunggut Desert.

This study validated the applicability of SIF data for GPP estimation in arid regions,
the findings of this research are crucial for subsequent comprehensive estimation and
feature analysis of GPP in Xinjiang and even the entire arid region based on SIF data.

4.2. Analysis of GPP Estimation Accuracy Based on Improving SIF

The results of precision improvement of SIF data for arid regions indicate that the lin-
ear methods can enhance SIF data accuracy for different underlying surfaces (R? increased
values for the cultivated and farmland area, the pasture grassland area, and the desert
vegetation area were 0.01, 0.02, and 0.13, respectively). However, canopy methods are only
applicable to regions with a higher leaf area (R? increased values for the cultivated and
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farmland area and pasture grassland area were 0.06 and 0.05, respectively), and cannot
be improved for areas with low vegetation cover. The adaptability of canopy methods
was validated in a study by Yin Yueqiang [68], who considered the canopy as a factor
for global SIF data precision improvement, ultimately reconstructing six sets of SIF data
at different resolutions. The adaptability of linear methods was confirmed in a study by
Wang Yu et al. [69], where linear methods were used to improve the precision of five solar
radiation reanalysis data sets in the eastern Gobi Desert in Xinjiang, eliminating the impact
of errors in the reanalysis data on radiation assessments. In addition, in areas of desert
vegetation, the error reduction values of MB, RMSE, and SD based on the linear improve-
ment method were 0.0001, 0.0007, and 0.0126, respectively. However, using the linear
method to improve the areas of the pasture grassland and cultivated and farmland, except
for a decrease in the R? fitting value, other fitting parameters, on the contrary, increased
overall, with the error increase ranges of the MB, RMSE, and SD between 0.0006~0.0011,
0.0003~0.0146 and 0.0323~0.0799, respectively. This further indicates that the linear method
has a wider applicability than the canopy method in arid regions, but the improvement
effect is relatively weak in areas with high vegetation coverage. Therefore, the canopy
and linear improvement methods can be alternately used to improve the accuracy of SIF
satellite products, then the two methods can be integrated to ultimately achieve a precision
improvement of SIF data in arid regions.

Furthermore, in conjunction with land use data, SIF data improvement was conducted
using the canopy and linear methods, with an overall improvement rate of 0.11% (0.037%
for cultivated and farmland area, 0.028% for pasture grassland area, 0.016% for desert
vegetation area, 0.025% for other area). After improvement, areas with higher vegetation
cover, such as cropland on the northern and southern slopes of the Tianshan Mountains
and pasture grassland in the Tianshan and Altai Mountains, exhibited the highest attribute
values. Conversely, lower values were mainly distributed in areas with smaller proportions
of the leaf area index, such as the Gurbantunggut Desert (desert vegetation area) and the
eastern Gobi Desert.

Additionally, the postimprovement annual average SIF (GPP) values for various
underlying surfaces in the northern region of Xinjiang are 0.13 mw/m?/nm/sr. Serving
as effective proxies for GPP, the spatial distribution of improved SIF better reflects the
GPP distribution characteristics in arid regions and further reveals the strong coupling
relationship between the GPP and SIF in these areas. The rationality of the attribute values
after improvement aligns with the conclusions of numerous scholars studies in arid regions.
For example, Li Yue et al. [70] conducted remote sensing monitoring of grassland GPP
on the Mongolian Plateau based on SIF data, showing that the annual average values for
various grasslands range from 0.11 to 3.48 gC/m? (0.14 mw/m?/nm/sr in this study);
Yan Zhirong et al. [71] conducted a study on the spatiotemporal distribution of vegetation
GPP in China from 2007 to 2018 based on SIF data, indicating that the annual average
values for the desert vegetation area (based on latitude and longitude division) range
from 0 to 0.1 gC/m? (0.034 mw /m?/nm/sr in this study); and Song Lian [72] conducted
a comparative study on the high-temperature stress mechanisms of crops based on SIF
data, showing that the annual values for various crops range from 0.22 to 4.42 gC/m?
(0.26 mw/m?/nm/sr in this study).

4.3. Innovation, Limitations, and Prospects

The innovation of this study lies in coupling multiple evaluation indicators (linear re-
gression parameters, satellite spatial characteristics, GPP influencing factor responsiveness,
and GPP/SIF values under different weather conditions) to comprehensively compare
and analyze the applicability of four commonly used SIF satellite products for GPP esti-
mation in arid regions, and identify which SIF satellite product is most suitable for GPP
estimation in arid regions. Additionally, it verifies the feasibility of canopy and linear
accuracy improvement methods for SIF accuracy improvement in arid regions based on
the most suitable SIF satellite product. By integrating land use data, it also reveals the

178



Land 2024, 13, 1222

spatial distribution patterns of SIF (GPP) in arid regions. These results have not been clearly
demonstrated in previous studies, thus our research fills the gap in the coupling studies of
SIF and GPP in arid regions and lays a theoretical foundation for achieving the “carbon
neutrality” goal in these areas.

The limitation of this study is that the climate change in Xinjiang is complex and
there are some uncontrollable influencing factors, which may have a certain impact on the
comprehensive assessment of applicability. Other methods for improving the accuracy of
SIF satellite products in arid regions need to be further developed and validated. There
are often biases and uncertainties in data measurement, which result in some abnormal
and outlier data, as well as incomplete and nonstationary time series data. These data
have a certain impact on the operability of statistical analysis, reasonable estimation of
parameters, and effective analysis of dependent variables. Although we have comprehen-
sively processed these data in detail and reasonably, there are still subtle impacts that are
inevitable. Additionally, the research results may also be influenced by the limitations
of data resolution and remote sensing technology, requiring careful consideration in the
application of the results.

Based on the current research results, we will further explore models suitable for GPP
inversion in arid regions in the future, coupling the improved SIF with these models to
achieve GPP inversion in arid regions, thus analyzing the spatial and temporal patterns of
GPP in arid regions. Additionally, we will use measured data of influencing factors such as
PAR, Tair, and Tsoil, along with satellite data, to comprehensively analyze the spatial and
temporal characteristics of GPP influencing factors/mechanisms in arid regions.

5. Conclusions

This study comprehensively evaluated the applicability of multisource SIF satellite
products for GPP estimation in arid regions using various indicators, adopted multiple
methods to improve the accuracy of SIF satellite products that are most suitable for GPP
estimation in arid areas, and comprehensively analyzed the spatial characteristics of GPP
indirectly reflected by SIF data before and after improvement. The final research conclusions
are as follows:

(1) The interannual variation of the monthly mean GPP in arid regions shows an inverted
“U” shape, with peaks occurring in June and July. During the growing season (March
to October), GPP first increases and then decreases, while in the nongrowing season
(November to February), GPP fluctuations are not significant.

(2) The overall suitability ranking of multisource SIF satellite products for GPP estimation
in arid regions is as follows: RTSIF > CSIF > SIF_OCO2_005 > GOSIE. This has a
profound significance for revealing the spatial and temporal patterns of the terrestrial
ecosystem carbon cycle in arid regions by coupling multiple factors and provides new
approaches for constructing carbon reduction policies in arid regions.

(3)  When improving the accuracy of SIF satellite products in arid regions, both the
canopy improvement method and the linear improvement method need to be used in
combination. This provides practical theory for achieving a more comprehensive and
higher accuracy analysis of carbon source/sink spatial and temporal characteristics in
arid region terrestrial ecosystems, which is of great significance for achieving “carbon
neutrality” in arid regions.

(4) Based on land use data, the spatial characteristics of SIF data in arid regions achieved
through the two methods showed a high correlation with vegetation coverage, with
the annual mean value of SIF data for each surface after improvement being approxi-
mately 0.13 mw/m?/nm/sr.

6. Practical Applications

Based on the research conclusions, the practical applications of this study in arid
regions are mainly reflected in the following aspects:
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(1) By revealing the interannual variation characteristics of GPP in arid regions, relevant
theories can be directly referenced in the subsequent construction of the carbon cycle
system in arid regions, thereby avoiding unreasonable interannual variations.

(2) By revealing the most suitable SIF satellite products for GPP estimation in arid regions,
the relevant satellites can be directly applied in subsequent analysis of the spatial and
temporal patterns of carbon storage in arid regions based on GPP, an important factor
of carbon source/sink, thus avoiding repeated comparative validation.

(3) By revealing the methods for improving the accuracy of SIF satellite products in arid
regions, these methods can be directly applied in subsequent accuracy improvement
of other SIF satellite products in arid regions, thus avoiding repeated exploration
and analysis.

(4) By revealing the spatial characteristics of GPP indirectly reflected by SIF in arid
regions, accurate carbon reduction policies can be directly constructed based on
the spatial patterns to achieve “carbon neutrality” in arid regions, thus avoiding
discrepancies between practice and reality.
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Abstract: Exploring the low-carbon transition in China can offer profound guidance for governments
to develop relevant environmental policies and regulations within the context of the 2060 carbon neu-
trality target. Previous studies have extensively explored the promotion of low-carbon development
in China, yet no studies have completely explained the mechanisms of the low-carbon transition
in China from the perspective of per capita carbon emissions (PCEs). Based on the statistics and
carbon emissions data of 367 prefecture level cities in China from 2000 to 2020, this study employed
markov chain, kernel density analysis, hotspots analysis, and spatial regression models to reveal
the spatiotemporal distribution patterns, future trends, and driving factors of PCEs in China. The
results showed that China’s PCEs in 2000, 2010, and 2020 were 0.72 ton/persons, 1.72 ton/persons,
and 1.91 ton/persons, respectively, exhibiting a continuous upward trend, with evident regional
heterogeneity. PCEs in northern China and the eastern coastal region were higher than those of
southern China and the central and southwestern regions. The PCEs in China showed obvious spatial
clustering, with hot spots mainly concentrated in Inner Mongolia and Xinjiang, while cold spots were
mainly in some provinces in southern China. The transition of PCEs in China exhibited a strong
stability and a ‘club convergence’ phenomenon. A regression analysis revealed that the urbanization
level and latitude had negative effects on PCEs, while the regional economic development level,
average elevation, average slope, and longitude showed positive effects on PCEs. These findings have
important implications for the promotion of the low-carbon transition and the effective achievement
of the “dual carbon” goal.

Keywords: low-carbon transition; driving mechanisms; spatial autocorrelation; spatial regression;
per capita carbon emissions; China

1. Introduction

The phenomenon of global warming, coupled with the melting of glaciers and a
series of extreme weather events, has a significant impact on human survival and social
activities, thereby posing ongoing challenges to social development [1,2]. The acceleration
of CO, emissions has been unequivocally demonstrated as the dominant contributing
factor to global warming [3,4]. Climate change has been induced by the explosive growth
of greenhouse gases, primarily carbon emissions (CEs). How to tackle climate issues is the
biggest environmental challenge in the world [5]. According to Climate Watch (2024) [6],
China was the leading contributor to greenhouse gas emissions in 2020, accounting for
27%. In the ranking, the United States accounted for 11%, India accounted for 7%, while
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the European Union accounted for 6% of the emissions. The achievement of the Paris
Agreement in 2015 has accelerated the global shift towards a low-carbon economy, thereby
prompting significant transformations across various aspects of the world economy and
society [7]. The Intergovernmental Panel on Climate Change reports underscore the
importance of integrating renewable energy, enhancing energy efficiency, and fostering
sustainable urban development. Initiatives such as the Global Carbon Project and the
International Energy Agency’s sustainable development scenarios provide pathways and
policy recommendations for achieving low-carbon transformation. As the most rapidly
developing country in the world, China has become the largest emitter of CEs globally. In
2022, China’s CO; emissions reached 12.1 billion tons, accounting for 30% of the world,
placing the country under severe pressure to reduce CEs. Although China ranks first in
total CEs, the United States has the highest per capita carbon emissions (PCEs). Reducing
CO, emissions has become a common goal for all countries [8]. In response, China is
making efforts to carry forward low-carbon transition to reduce CO, emissions.

The evolution of CEs has been the subject of the existing research. Examining CEs
from a per capita perspective is particularly important for understanding the unequal
distribution. China exhibits significant differences across regions in terms of natural
conditions, economic development, and population density. By approaching CEs from a per
capita perspective, we can achieve a more precise measurement of regional contributions
and responsibilities in CEs, reflecting the intensity and efficiency of CEs in each region.
Hickel (2020) highlighted that China, despite its significant contribution to cumulative
emissions, has four times the population of the United States [9]. If this difference is taken
into account, the United States should be more responsible for CEs than China. Matthews
(2016) quantified climate debts by the principle of atmospheric commons from a per capita
perspective between 1960 (or 1990) and 2013 and determined whether countries” PCEs are
above or below the global average [10]. It was observed that if a country’s PCEs exceed the
global average, it can be considered to be in debt. Conversely, if a country’s PCEs are below
the global average, it can be considered to be in credit. Therefore, exploring CEs from a per
capita perspective is based on fairness and equity. Thus, it is imperative to elaborate the
spatio-temporal patterns and driving mechanism of PCEs in China, which would provide
significantly insights for understanding the low-carbon transition and formulating effective
action plans to achieve “dual carbon” targets.

The reduction in CEs has emerged as a key area of interest and investigation. The
primary focuses of current research concerning CEs are on three aspects: CEs measure-
ment [11-13], spatial distribution patterns and discrepancy [14,15], and driving mecha-
nisms [16-18]. The degree of CEs output has been widely measured in many fields, such
as the energy [19,20], manufacturing [21], service [22], tourism [23], and transportation
industries [24]. The study of CEs has been progressively integrated with that of land
use [25], thereby significantly enhancing the depth and breadth of research into CEs. In
terms of scale, this research has included countries [26,27], urban agglomerations [28],
river basins [29], provinces [30], and counties [31]. Moreover, there is a growing trend in
researching spatial patterns and heterogeneity related to CEs. Scholars employed quan-
titative methods to quantify spatial autocorrelation and discrepancies, such as Moran’s
I, the Theil index, and Dagum’s Gini index [32,33]. Moran’s [ is extensively applied to
quantitatively describe spatial autocorrelation [8,34]. For example, Chen et al. (2022) con-
firmed that building CEs had a positive spatial autocorrelation [35]. Wang et al. (2022)
argued that the distribution of PCEs demonstrated self-reinforcing agglomeration in spatial
distribution [36]. Furthermore, the spatio-temporal patterns and disparities were assessed
using the Theil index and Dagum’s Gini coefficient. For example, Ma et al. (2022) employed
Dagum Gini coefficient to assess the PCEs of commercial buildings in different regions,
revealing that intra-regional disparities were smaller than inter-regional disparities [37].

The investigation of the driving factors contributing to CEs has been a topic of con-
siderable interest and debate, drawing upon both theoretical deduction and empirical
evidence. Existing academic studies have discussed the impacts of influencing factors,

185



Land 2024, 13, 1421

such as financial development [38], economic development [39,40], foreign direct invest-
ment [41], urbanization level [42], high-speed railways [43], and environmental policies [44].
The findings of previous studies indicated that factors such as economic development,
population growth, and traffic congestion were positively associated with CEs. In addition,
economic growth may also induce the unintended consequence of environmental pollution,
thus resulting in higher CEs [45]. In the early stage, the conventional economic model
resulted in a considerable amount of CEs. The process of urbanization has been identified
as a significant driver of CEs [46]. As a consequence of urbanization, the rising demand
for clothing, food, shelter, and transportation leads to different lifestyles, consequently
increasing CEs. From this perspective, the process of urbanization inevitably increases
CEs [47].

Meanwhile, when analyzing which factor exerts the greatest influence on CEs, a variety
of analytical techniques are available for this purpose, including structural decomposition
analysis (SDA) [48], Stochastic Impacts by Regression on Population, Affluence and Tech-
nology (STIRPAT), the logarithmic mean Divisia index (LMDI), and spatial econometric
methods. For instance, Xu et al. (2021) took Guangdong province in China as the research
object, and revealed that the factors of consumption structure, per capita consumption,
and population caused the largest increase in CEs [48]. Yu et al. (2023) used the STIRPAT
method to analyze the factors of household CO; emissions and identified that the total
population, household size, unemployment rate, and urbanization level were the most
significant factors [49]. Using a spatial econometric model, Liu et al. (2023) revealed that
rapid economic growth and traditional industrial structure transform had promotion effects
on CEs, while government expenditure, population clustering, and scientific innovation
had inhibitory effects on CEs [50].

By the way of conclusion, previous research has provided a comprehensive exami-
nation of CEs, establishing a robust theoretical and empirical foundation. However, the
previous research is not without limitations. Few studies have completely explained the
mechanisms of the low-carbon transition in China from the perspective of PCEs. Further-
more, the study of how geographical factors influence PCEs has received only sporadic
attention to date. To bridge the research gaps, this study aimed to analyze the spatiotempo-
ral diversification of PCEs across different regions in China from 2000 to 2020, identify the
trends and spatial autocorrelation in PCEs, assess the impact of economic and geographical
factors on PCE levels in various regions, and provide insights into effective strategies for
regional low-carbon transitions. So, we aimed to construct a framework to characterize the
spatio-temporal patterns of PCEs, thereby expanding the depth and scope of research on
PCEs. Secondly, we aimed to analyze the dynamic evolution of PCEs, recognizing that the
CEs varied significantly across regions due to different influencing factors. Therefore, it
is essential to explore this spatial heterogeneity, which can be visualized through spatial
patterns. Finally, we attempted to explore the driving factors from both socio-economic
and natural perspectives. While previous studies have identified various driving factors
affecting CEs, there has been a tendency to focus on socio-economic factors, with relatively
little attention paid to the role of natural and geographical factors. However, there is
evidence that these factors exert a significant influence on CEs. Therefore, we integrated
the effects of the urbanization rate, gross domestic product (GDP) density, average slope,
average digital elevation model (DEM), latitude, and longitude factors to explore the effects
on CEs. Revealing their driving mechanisms will help us to uncover the primary factor
affecting China’s low-carbon transition, thereby contributing to achieving the goals of
carbon peaking and neutrality.

2. Materials and Methods
2.1. Study Area

This study analysed 367 units at the prefecture level and above in mainland China
(including a few county-level administrative districts; data for Hong Kong, Macao, and
Taiwan were not yet available), including 4 municipalities directly under the central gov-
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ernment, 293 prefectural-level cities, 7 districts, 30 autonomous prefectures, 3 leagues,
and 30 provincial-level direct-administration units, for a total of 367 computational units
(Figure 1). To scientifically reflect the socio-economic development of different regions in
China, this study area was divided into four major economic subregions: Northeast, Central,
Western, and Eastern China. The northeastern region mainly included the municipal units
of Liaoning, Jilin, and Heilongjiang provinces; the eastern region includes the municipal
units of Beijing, Tianjin, Hebei, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong,
and Hainan provinces; the central region includes the municipal units of Shanxi, Anhui,
Jiangxi, Henan, Hubei, and Hunan provinces; and the rest is the western region.

Western China
[ Northeastem China
[ Cenual China
I Fosem China
[ NoData

Hu-line
0 500 km
I

Figure 1. Study area.

2.2. Data Sources

This study selected 367 cities in China as the research sample, covering 30 provinces,
municipalities, and autonomous regions. The CE data were derived from the Center for
Global Environmental Research (https://db.cger.nies.go.jp/dataset/ODIAC/, accessed on
2 August 2024). The population data were mainly derived from the main data bulletins
of the fifth, sixth, and seventh national censuses in 2000, 2010, and 2020, respectively. The
land use data, DEM, and slope were derived from EPS data platform (https:/ /www.epsnet.
com.cn/index.html#/Index, accessed on 2 August 2024) and Data Center for Resources
and Environmental Sciences (https://www.resdc.cn/, accessed on 2 August 2024). The
GDP data were derived from the Statistical Yearbooks. In addition, for areas within the
Xinjiang Uygur Autonomous Region where the seventh census data was unavailable, this
study supplemented the missing values using linear regression.

2.3. Per Capita Carbon Emissions

In this context, PCEs represent the ratio of CEs to population [51-53]. The calculation
equations were as follows:

PCE = CEs/Population (1)
PCEC = CESQ/ - CES“/ @)
Population Populationy

where PCEC represents the change in PCEs; CEs;; and CEs;; represent CEs of a unit at time
t1 and #2, and Populationy; and Population;, represent the population of a unit at time #1
and #2.
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2.4. Markov Chain

The markov chain provides a mechanism for explaining how the probability distribu-
tion of transitions from one state to another eventuates [54]. Due to its steady-state analysis,
the markov chain can be utilized to predict the long-term patterns and trends of geographic
phenomena with a high degree of accuracy. In this study, we used markov chain to predict
the trend of PCEs in each region, and the probabilistic transfer model constructed by the
markov chain explaining the PCE conversion state in each region, reflecting the future
interconversion of the values of different magnitudes. In general, the state type of PCEs at
moment ¢ is represented by a 1 x k state probability vector as Et = [E1t, E2,t, .. ., Ekt], and
the transition process of PCE state types can be represented by a k x k Markov transition
matrix M. Based on the similar counts for each type of county, PCEs at the county level
were categorized into four types using quartiles (0.25/0.5/0.75), labeled as k =1, 2, 3, and
4, respectively.

2.5. Kernel Density Analysis

As one kind of nonparametric estimation, kernel density estimation was characterized
by relative smoothness and unbiasedness, which can accurately describe the distribution of
random variables [55,56]. The calculation equations were as follows:

18 (Di—D
)= ok (257) ®
K(t) = ——¢ @)

V2n

where K(x) is the kernel function; D; is the independent and equally distributed observed
values; D is mean value; n is the number of observed values; and & is the bandwidth.
This study used Gaussian kernel function to effectively explore the changing law of PCEs
in various regions so as to reflect the heterogeneity and the dynamic trend of PCEs in
each region.

2.6. Hotspots Analysis

This study intended to use the Moran’s I index to reveal the spatial autocorrelation
characteristics of PCEs. To further reflect the spatial agglomeration of PCEs and changes in
PCEs, the Getis-Ord Gi* index was used to measure the statistically significant hot and cold
spots of PCEs [35]. The Getis-Ord Gi* index can be used for measuring the spatial clustering,
which can test whether variables exhibit the feature of high-value cluster or low-value
cluster, thereby identifying the locations of hot and cold spots, and spatial outliers [57,58].

2.7. Spatial Regression

Spatial autocorrelation is a common phenomenon among geographical elements, and
non-spatial models may overlook the spatial dependence between factors, which may lead
to potential biases in identifying underlying influencing factors. To illustrate, an element
is influenced not only by the level of the element in the study unit, but also by the level
of the element in adjacent or distant units. Based on this, this study intended to use the
least squares method (OLS), the spatial lag model (SLM), and spatial error model (SEM) to
reveal the mechanism of China’s low-carbon transition [59]. The cross-sectional benchmark
model was expressed as Equation (5):

PCE; = ag + a1 LUI; + apGDPD; + a3 ASLO; + 0y ADEM; + a5 LAT; + agLON; +¢; (D)

where i represents a city, and LUI is the development and utilization intensity of land [60,61],
which represents the land urbanization level. The function, intensity, and efficiency of
CEs are influenced by important driving forces such as land urbanization and associated
human activities [62]. GDPD is GDP density, representing economic growth, which is
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an important factor. GDP promotes PCEs, while this effect weakens with the growth of
GDP [63,64]. ASLO represents average slope, and ADEM represents average DEM. These
two factors represent the topographic elements [20,51]. The ASLO and ADEM factors exert
notable effects on CEs by influencing urban expansion [65,66]. In this study, we also added
longitude (LON) and latitude (LAT) factors to reveal the rules of CEs in terms of latitude
and longitude.

SLM was expressed as shown in Equation (6):

PCE; = p) ", W;; x PCE; + BX; + ¢ (6)

where p is the spatial autoregressive coefficient, Wj; is the spatial weight matrix, 3 is a
vector of coefficients X;, and X; represents the set of independent variables.
SEM was expressed as shown in Equation (7):

PCE; = BX; +¢j, ¢ = /\2;;1 Wijei + ¢i @)

where A is the spatial autocorrelation coefficient of the error term.
By combining multiple methods, this study aimed to evaluate the influencing factors
to provide a reference for integrated regional green development (see Figure 2).
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Figure 2. Research design.
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3. Results
3.1. PCEs in China

China’s PCEs in 2000, 2010, and 2020 were 0.72 ton/persons, 1.72 ton/persons, and
1.91 ton/persons, respectively. These figures demonstrated a continuous increasing trend,
with notable regional variations in PCEs. The PCEs were the highest in the northeast and the
lowest was in the central region with values of 0.53 ton/persons in 2000, 1.23 ton/persons in
2010, and 1.43 ton/persons in 2020. Additionally, the PCEs southeast of Hu-line were was
lower than those in the northwest. Specifically, in 2000, 2010, and 2020 the PCEs southeast of
Hu-line were 0.72 ton/persons, 1.63 ton/persons, and 1.81 ton/persons, respectively, while
that northwest of Hu-line were 1.09 ton/person, 2.81 ton/persons, and 3.06 ton/persons,
respectively (Figure 3). From the perspective of spatial distribution, the PCEs in southern
China were obviously lower than those in northern China. Also, the eastern coastal areas
had higher PCEs than central and southwest China. Seeing the change from 2010 to 2020,
the PCEs in different regions exhibited an increasing tendency (Figure 4).
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Figure 3. PCEs in different regions in 2000, 2010, and 2020.

NoData
0.00 - 1.00
1.01 -3.00

[ 301-6.00
I 601 -20.00
I - 200

0 1000 2000 km

Figure 4. PCEs in China in 2000, 2010, and 2020.
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3.2. Spatiotemporal Dynamics of PCEs

The markov transfer probability matrix was employed to predict future PCEs with
a time span of 10 years (Table 1). In overall spatial terms, PCEs were expected to exhibit
stable growth over the next 10 years, with PCEs showing a tendency to converge to higher
values. Specifically, this tendency was particularly pronounced in the northeast, followed
by the central region. It was also observed that, with the exception of the northeast and the
east, the shift probabilities on the main diagonal were higher than those off the diagonal,
indicating relatively stable PCE levels. The probability of shifting from high to higher
values in the northeast and eastern regions suggested that higher growth rates in PCEs
exist in these regions.

Table 1. Markov transfer probability matrix of PCEs.

Variables Spatial Extent Time Span  Type L ML MH H Number
L 0.720 0.274 0.004 0 211
Chi 10 ML 0.011 0.655 0.327 0.005 180
na MH 0 0.016 0.661 0.322 183
0 0 0.025 0.975 160
L 0.724 0.241 0.034 0 58
. Chi 10 ML 0.035 0.482 0.428 0.053 56
astern China MH 0 0.060 0.460 0.480 50
0 0 0.100 0.900 40
L 0.714 0.285 0 0 49
, ML 0 0.553 0.446 0 47
PCE Central China 10 MH 0 0.026 0.736 0.236 38
0 0 0 1 40
L 0.581 0.383 0.034 0 86
. ML 0 0.686 0.313 0 67
Western China 10 MH 0 0.014 0.720 0.264 68
0 0 0.046 0.953 65
L 0.545 0.409 0.045 0 22
_ ML 0 0.473 0.526 0 19
Northeastern China 10 MH 0 0 0.350 0.650 20
H 0 0 0 1 11

Notes: L stands for low-level type; ML stands for medium-low-level type; MH stands for medium-high-level
type; and H stands for high-level type.

3.3. Kernel Density

The changes in the study elements over the course of the study can be encapsulated in
the contour plots of the kernel density of the normalized PCEs. The contour lines should
remain close to the 45° diagonal if no drastic changes have occurred. Figure 5a,b,d showed
the kernel density of PCEs over a 10-year time span for northeast, eastern, and central
China, respectively, and it was found that there were shifts to higher or lower values of
PCEs in these regions, with a more pronounced shift towards higher values in eastern
and central China. Figure 5c shows the trend of the shift in western China over a 10-year
time span, revealing that the PCEs shifted to higher values, while in some regions with
higher values, the PCEs shifted to lower values. The changes in PCEs in China, as shown in
Figure 5e, indicated that some peaks of the kernel density contours were basically located
near 45°, showing that there was some degree of stability in PCEs, as well as shifts from
low to high and from high to low.
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Figure 5. Kernel density contour map of PCEs.

3.4. Change in PCEs in China

From 2000 to 2010, the number of cities with a reduction in PCEs accounted for
0.544%, and only a small proportion of prefecture-level cities achieved a decreases in
PCEs during that period. Correspondingly, a large number of prefecture-level cities had
an evident increase in PCEs. For example, the proportion of prefecture-level cities with
PCEs increasing by more than 1 ton/persons was 40.871%. However, the number of cities
with a decrease in PCEs from 2010 to 2020 was 10.354%, which was higher than that of
the previous decade. It is noteworthy that the proportion of cities with an increase in
PCEs greater than 1 ton/persons was 1.907%, which was evidently lower than that in the
previous decade. Most cities (29.700%) had PCEs increases of less than 1 ton/persons,
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indicating that China has undergone a drastic transition in terms of PCEs, and there has
been remarkable progress towards the low-carbon transition (Figure 6).
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Figure 6. Change in PCEs in China during 2000-2020.

To gain further insight into the distribution of PCEs, we calculated the Moran’s |
indexes of PCEs, which were 0.258, 0.316, and 0.316 in 2000, 2010, and 2020, respectively,
and the p-value was significant at the level of 0.001, obviously showing a significant spatial
agglomeration pattern in PCEs. The specific spatial distribution characteristics can be
obtained from the hot spot distribution map. We found that the hot spots were mainly
distributed in Inner Mongolia and Xinjiang, while the cold spots were primarily distributed
in some provinces of southern China (e.g., Sichuan, Chongqing, Guizhou, Hubei, Hunan,
Jiangxi, and Hainan). From 2000 to 2020, it is evident that the PCE hot spots gradually
expanded eastward into Inner Mongolia and northeastern China (Figure 7).
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Figure 7. Hotspots of PCEs in China during 2000-2020.
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To further reveal the hotspots of changes in PCEs, we calculated the spatial autocorre-
lation index of PCE changes during 2000-2010 and 2010-2020. The spatial autocorrelation
indexes of PCE changes during 2000-2010 and 2010-2020 were 0.354 and 0.179, respec-
tively, and the p-value was significant at the level of 0.001. The hot spot analysis results
demonstrated that the hot spots of PCE changes during 2000-2010 were distributed in
Inner Mongolia, Northern Xinjiang, and Northern Qinghai Province. The cold spots of PCE
changes were distributed in southern China, showing a similar pattern to those of the PCEs.
The cold spots of PCE changes in China during 2010-2020 were distributed in the west of
Xinjiang and the Pearl River Delta, while the hot spots were distributed in northeast China
(Figure 8).
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Figure 8. Hotspots of PCE changes in China during 2000-2020.

3.5. Driving Mechanism of Low-Carbon Transition

To reveal the driving mechanism of the low-carbon transition in China, the OLS, SEM,
and SLM were employed in this study. This study first carried out OLS model (Table 2) to
diagnose. The coefficients of LUI in 2000, 2010, and 2020 were —3.239, —8.440, and —7.027,
respectively, which indicated that the LUI had a significant negative impact on PCEs. The
coefficients of GDPD in 2000, 2010, and 2020 were 26.842, 44.587, and 4.659, which indicated
that GDPD had a significant positive impact on PCEs. Higher GDPD typically indicates
more economic activity and a greater population density, thus leading to higher energy
consumption and CEs. The coefficients of ASLO in 2000, 2010, and 2020 were —1.209,
—2.707, and —2.993, respectively, indicating that the ASLO had a significant negative
impact on PCEs. Steeper slopes may limit large-scale agricultural or construction activities,
potentially leading to lower levels of energy consumption and CEs. The coefficients of
ADEM in 2000, 2010, and 2020 were —2.076, —3.205, and —3.131, illustrating that the ADEM
had a negative impact on PCEs. Regions with higher DEM, characterized by mountainous
and hilly landscapes, were less suitable for extensive agricultural and industrial operations,
leading to a reduction in energy consumption and CEs. The coefficients of LAT in 2000,
2010, and 2020 were 0.068, 0.152, and 0.156, respectively, indicating that the LAT had a
significant positive impact on PCEs. Higher latitudes often have colder climates, which may
lead to increased energy consumption for heating, thus increasing PCEs. The coefficients of
LON in 2000, 2010, and 2020 were —0.043, —0.066, and —0.056, respectively, indicating that
the LON had a negative impact on PCEs. This is largely because that the eastern regions
were the most economically developed areas in China, boasting advanced technological
levels that were conducive to reducing CEs. The results showed that the Moran’s I indexes
of PCEs in 2000, 2010, and 2020 were 3.225, 4.291, and 4.341, respectively, and the p-
value was significant at the level of 0.05. Therefore, the results obtained using the OLS
regression model cannot fully and scientifically explain the relationship between them.
When considering spatial lag and spatial error terms, the SLM and SEM performed better.

The coefficient of LUI was negative, indicating that the urbanization promotes low-
carbon transition (Table 3). The coefficient of the GDPD was positive, but it was significant
only in the SEM and SLM models of 2010. The coefficient of the ASLO was negative, but
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it was significant only in the SEM model of 2010 and the SLM and SEM models of 2020.
The coefficient of the ADEM was negative in all models, indicating that PCE decreases
with increasing altitude. PCEs in China increased significantly with rising latitude, while
PCEs decreased significantly with rising longitude. In addition, PCEs were influenced
not only by their own unit factors but also by those of adjacent units, as indicated by the
spatial lag terms being significant at the 0.001 level. An average 1% increase in PCEs in
surrounding areas in 2000, 2010, and 2020 would result in increases of 0.238%, 0.290%,
and 0.304% increases in PCEs in their own units. In addition, the spatial error terms were
also statistically significant at the 0.001 level, indicating that PCE changes were not only

influenced by the aforementioned factors, but also by other factors.

Table 2. Regression results of OLS.

Variables 2000 2010 2020
LUI —3.239 *** —8.440 *** —7.027 ***
(0.950) (1.818) (1.816)
26.842 * 44 587 *** 4.659 *
GDPD (13.565) (11.510) (2.115)
—1.209 * —2.707 * —2.993 **
ASLO (0.578) (1.109) (1.127)
—2.076 *** —3.205 ** —3.131 **
ADEM (0.574) (1.120) (1.143)
0.068 *** 0.152 *** 0.156 ***
LAT (0.010) (0.020) (0.020)
—0.043 *** —0.066 *** —0.056 ***
LON (0.008) (0.016) (0.016)
C 5.883 *** 10.269 *** 8.721 ***
onstant (1.029) (2.033) (2.088)
Moran’s I (error) 3.225 ** 4.2971 *** 4.3471 ***
LM (lag) 8.744 ** 16.081 *** 16.967 ***
Robust LM (lag) 1.946 2.522 3.339
LM (error) 7.324 ** 13.865 *** 14.408 ***
Robust LM (error) 0.526 0.305 0.779
LM (SARMA) 9.271 ** 16.387 *** 17.747 ***
Measures of fit
Log likelihood —607.080 —846.958 —853.786
AIC 1228.160 1707.920 1721.570
SC 1255.500 1735.250 1748.910
R-Squared 0.248 0.272 0.262
N 367 367 367
Notes: ***p < 0.001, ** p < 0.01, * p < 0.05. Standard deviation is shown in parentheses.
Table 3. Regression results of SLM and SEM.
SLM SEM SLM SEM SLM SEM
Variables
2000 2010 2020
LUI —2.470 ** —2.468 * —6.279 *** —6.749 ** —5.061 ** —5.034 **
(0.937) (1.109) (1.795) (2.163) 1.771) (2.153)
GDPD 21.547 19.399 34.852 ** 38.262 ** 3.428 3.013
(13.206) (13.780) (11.219) (12.964) (2.032) (2.162)
ASLO —0.988 —1.200 —2.105 —2.639 * —2.299 * —2.818 *
(0.565) (0.656) (1.075) (1.288) (1.090) (1.319)
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Table 3. Cont.

SLM SEM SLM SEM SLM SEM
Variables
2000 2010 2020
ADEM 1.858 ** 2316 2814 ** —3.76* —2716* 3641 %
(0.574) (0.685) (1.098) (1.387) (1.116) (1.434)
AT 0.055 *** 0.072 *** 0.114 % 0.162 *** 0.115 *** 0.167 ***
(0.011) (0.013) (0.022) (0.027) (0.022) (0.027)
LON —0.038 *** —0.051 *** —0.058 *** —0.085 *** —0.050 ** —0.075 ***
(0.009) (0.010) (0.016) (0.021) (0.016) (0.022)
c 5.085 *** 6.259 *** 8.599 *++ 11.161 #*+ 7.322 #*+ 9.366 ***
onstant (1.067) (1.297) (2.062) (2.708) (2.075) (2.826)
Soatial lns term 0.238 *** 0.290 *** 0.304 **
P & (0.070) (0.068) (0.067)
Soatial error term 0.257 *** 0.310 *** 0.326 ***
P (0.071) (0.069) (0.068)
Measures of fit
Log likelihood —602.400 —602.588 —839.089 ~839.433 —845.333 —845.680
AIC 1220.800 1219.18 1694.180 1692.870 1706.670 1705.360
sC 1252.040 1246.510 1725.420 1720.210 1737.910 1732.700
R-Squared 0.275 0.276 0.315 0315 0.309 0.309
N 367 367 367 367 367 367

Notes: ***p < 0.001, ** p < 0.01, * p < 0.05. Standard deviation is shown in parentheses.

The OLS regression analysis results (Table 4) indicated that the Moran’s I indexes
of the 2000, 2010, and 2020 settlements in the eastern region were 4.070, 2.709, and 3.959,
respectively, with a significant p-value at the 0.01 level, which indicated that the model’s
settlements in the eastern region had a strong spatial autocorrelation, so the spatial lag
and spatial error terms were considered, and the SLM and SEM were used to improve
the goodness of fit (Tables 5 and 6). The SLM and SEM regression results analysis in
Tables 5 and 6 indicated that the main factors affecting PCEs varied across the four regions
of China. In the western region, LUI and GDPD were the main factors significantly impact
on PCEs. LUI exhibited a significant negative effect, while GDPD had a significant positive
effect. The reason was that urbanization often led to a shift from high-carbon-emission
industries and agriculture to low-energy-consuming service and high-tech industries,
thereby resulting in reduced PCEs. However, economic growth often lead to increased
energy consumption and production, which can result in higher CEs. In the northeastern
region, LUI and ASLO were the main factors, which both had significant negative effects on
PCEs. This can be attributed to the abundant forest resources in northeastern China. The
steep areas with dense vegetation act as carbon sinks, absorbing CO, from the atmosphere
and thereby reducing the overall carbon footprint. In the central region, LUl and GDPD
were the main factors which had significant effect on PCEs. LUI had a significant negative
effect, while GDPD had a significant positive effect. In the eastern region, GDPD and LON
were the main factors, which both had significant positive effects on PCEs.

196



Land 2024, 13, 1421

"sasaujuared ur UMOYS ST UOTRIASD PIepue)S ‘G0'0 > @ 4« “T00 > @ s ‘T00°0 > d s *SIION

201 201 201 /8 /8 /8 9¢ 9¢ 9¢ epl 54! 4! N
0S20 6¥€°0 GeT0 6570 $0S°0 8050 $92°0 S1€0 $62°0 92¢0 61€0 2520 pazenbg-y
1£9°%8¢ 19°€9¢ 986’46  PIS06C  S6049C  9FTSCT  C0S6CL  LFTLIL I€G0S  8PS008 800108  €58/79 S
96299  SETSHT 11964  TSS'€LC  €€8°6FC  G8640T  SITSIT 791901 [Fre€  80864L  89T08Z  SIT°Z09 DIV
SFT9CT— QI9GIT—  G08'CE— 9/L6C1— LI6ZTT—  T66'9F—  80TTS—  T180°9F—  €C4TI— F06C8¢— FET'E8E—  £SG 96— pooyra 307
..—E wo SaINSEI\
#x CC8'6 #6419 4 ISTTI €487 8T 9€T'e 699°F 068°¢ $8¢°¢ [¥8°1 97¢T 609'T (VINIVS) IN'T
86C'T G/9°0 1000 I8€°T 12€°0 €08'T SI¢T 00T°0 $00°0 £re0 652°0 8420 (10119) T 3SNQOY
#xx 86G°6 GZs¢e owm.% 6250 €6T1 Ghs0 « 6ETF 660°¢ G90°¢ £60°1 00T 00S'T (10113) IN'T
€920 ¥99°¢C 1161 ¥90°C 8200 165C 6250 162°0 81€°0 0S2°0 Feet 60T°0 (Sep) INT 3SNq0Y
#xx VTGS €05°S mim*w 611 0960 €ee'T €6e°¢ +064°€ 6£°€ F0S'T 1961 I€CT (Sep) W1
245 6G6°C 52 604°C 8891 «T8TC 9041 YO 1— 000'T— Ge0'T— 1121 9/9°1 GI6'1 (10119) | S, URION
(6z8¢) (108°€) (ze9'1) (606°2) (£689) (6£0°€) (09%°6) (9%¢'8) (6¥2°¢) (1%1°9) (911°9) (z022) Jueysuor)
QTFT— F19C  «0S€F  «01491—  $STEI— 820°0 [296— 9T 0T— [39T— 791 [84°€ 89G°¢
(£20°0) (820°0) (110°0) (82£0°0) (690°0) (620°0) (S11°0) (001°0) (8€0°0) (2S0°0) (250°0) (620°0) NOT
G200 #CLO0  5x €00 5k 64T0  5xx 1CTO0 5 €IT0 ¥100— 2000 800  5xx8TT0  sx €1T0 e S60°0
(9€0°0) (€€0°0) (¥10°0 (£290°0) (850°0) (920°0) (2000 (290°0) (#20°0) (G0°0) (€00 (020°0) IV
190°0 9000 620'0— «FET0 «€CT0 ¢ITo 0%1°0 «SET°0 9¢0°0 2000 L100— 8€0°0—
(62%) (528°¢) (669°T) #92%) (29£°¢) (299°1) (Fet'6) (¥28°9) (Cizald) (6£8°1) (1£8'1) (166°0) WNAAV
60€°0 LETE— 09¢°¢— 8T¢¢ 96T'S 120C 166T— H0 201°C GeT e~ 860¢— «FS6T—
(£6£°1) (¢6G°1) (0z2°0) (0%1°2) (¥98°1) (028°0) (zog Q) (067'%) (FeL1) (80072) (8202) (660°T) OISV
G96'C— 9T C—  «SLTO0— 69TE€— K LVTT—  «669T— 0TF'S— G29'9— 909'T— CeTT— 1181~ FeTT—
(6%6°0) (295°9) (9¢5%) (¢802)  (919%2)  (9294¢)  (98¢60)  (€8¢TS)  (6£96%)  (L¥S08) (FSOSIT)  (S86'8TC)
. E2 3 . . KKK . . . . . *¥ . DﬂHQU
8860 95957 00841  «SOT'ST P 026'€S 590°C 06699 1906 «x 90906 o0 00€°0S
(€00°€) (€962 (#8T'1) (189°¢) (9£T°¢) (86€°T) (£99°9) (99%°%) (8¢2'1) (95%'%) (Z6£%) (0852
o e EX3S e *% e e 0 ‘A * * o HD,I—
GLLT ¥29°g czpr  *S106 gorop— *0S°€ 008°'S 1€4°9 £99°0 9U90T—  8960T— 68T
020¢ 0102 0002 020¢ 0102 0002 0202 0102 0002 0202 0102 0002
SI[qeLIeA
NQMSU urajseyq NQMSU ~MH—=@U NQMSU Euwummpﬁﬁuoz NEMSU WId)SOM

“BUTD) JO SUOT3AI JUSISJJTP 10J SO JO SIMNSAI UOTSSAIZY 'F d[qEL

197



Land 2024, 13, 1421

‘sasajuared ur UMOYs St uoneIAdp Prepuels ‘60°0 > 4« “T0°0 > @ xx ‘10070 > d s [SOION

701 201 201 /8 /8 /8 9¢ 9¢ 9¢ ol ol ol N
0%€0 90l 19€°0 IS7°0 €150 61G°0 170 £0S°0 8/¥°0 8€€°0 1€€°0 0420 parenbg-y
97087  8TIT9C 06768  L66'C6C  1TS0LC  T0E'STL 19°9CT 19°€IT 9094y LL4€08  90TF08  IST'TE9 DS
997'65C  STII¥C 167°89 LTVLT W6L0ST  SLG801  TEE'SIL  TF6001 8e6FE L0084  €0S°08Z  8L¥L09 oIV
€COTTI—  F9STII—  SHT9C— SEU'6TI—  L6SLIT—  /ST9Y—  1L6'SP— 0LV Th— 697'6— LE0TSE— TSTTEE—  6EL°S6T— pooyreI| S0
11J JO saInsea|\

(601°0) (T1T°0) (660°0) (¥1°0) (€%1°0) (9%1°0) (T120) (€0z°0) (112°0) (601°0) (601°0) (11T°0)
/8€°0 91€0 GEF 0 7810 091°0 681°0 - o o 091°0 091°0 €91°0 wiio) Sef [eneds

* €6L0— €94°0— vL0—

(06%°¢) (¥15°¢) (zsv1) (ze82) (028'9) (946'7) (608°2) (1%£'9) (T80 (046'%) (676'%) (5290

65T— 024 10€°€  9TFI—  SICTI— [VTE— * * - 29€T c9T¥ 80¥°€ JHRISHO
¥ Q9T6I—  TTLLI— £66'9—

(620°0) (£z070) (010°0) (€80°0) (€20°0) (z€00) (¥60°0) (280°0) (1€0°0) (£580°0) (960°0) (0€0°0) NOT

G100 #7900 w2000 s« IFTO  «TOL0  +x 9600 ¥020°0 €200 8000  sx 1610 sxx 6410 4800
(€€0°0) (1€0°0) (€10°0) (90°0) (£50°0) (#20°0) (850°0) (8%0°0) (610°0) (#£0°0) (¥€0°0) (610°0) IV

6£0°0 200°0— 610°0— GIT0 801°0 ¥200  #xx8IT0  5xx00T0 s 190°0 G00°0— ¥200— ££0°0—
(£28°¢) (6857¢) (66%'T) (120'%) (029°¢) (965°T) (S1€2) (€¥59) (8162 (0%8'1) (ge81) (£26°0) WNAAV

0F¥0 GI8°CT— €08'T— o\ aré 6VET 196°1 V7 v — €06T— 041 G88T— 08°CT— 0641~
(€79°1) (F8%°1) (6£9°0) (§9072) (S18°1) (96£°0) (61T°%) (c¥¥¢) (9¢¢1) (166'1) (126'1) (990°1) OISV

[TTT— P8V 1— 1020— 6CLT—  «SSLE— Yoy 1— CI€9—  «TITL— HeT— 996'T— G/9'T— LUT—

(G58°0) (6£2°9) (S10%) (¥29)  (e60%2)  (eh4G9e)  (00£CT)  (¥88'62)  (299'8¢)  (3es60)  (S6'T11)  (T6€71T0)
. E2 3 E3 2 . KKK . . _ . . . *¥ . DﬂHDU

1050 6691 el *8LUTL b6/ 16975 9/TTL 0v9°Te L6V6Y €698 goccoe v1L€C

(1220 (9520 (9¢T'1) (909°¢) (65T°€) (99¢'1) (¥0¥'%) (90%°¢) (1%¢'1) (gzed) (6£2%) (L9%2)
N1

19¢°T— L6TF— L00C—  «SLT'S— och mw* #9ST°€— G987 — €5F9— €86°0—  «68T6— % 0SE6— v/8°0—

020T 0T0¢ 0002 0202 010T 0002 0202 0102 0002 0202 0102 0002
SI[qeLIeA

eunp) urajseq euny) [enua) eU) WId)SLIYON eUID UId)SIM

“BUTY) JO SUOT3SI JUSISJJTP 10J ]IS JO SINSII UOTSSaI3Y °G d[qeL

198



Land 2024, 13, 1421

‘sasapuared ur UMOYS ST UOHRIASD PIEPURIS ‘G0'0 > d 4 ‘T00 > @ 4s TO0'0 > d s [SOION

201 201 201 /8 /8 /8 9¢ 9¢ 9¢ erl 54! ¢hl N
$9¢°0 £6€°0 08¢0 SH0 L1670 €150 S¥S0 6Gs0 felereni] ££€°0 0€€0 620 pazenbg-y
1€6°€LT 99485 8ITFS  91T°06C 71999 S€9FCT LES6IL LSS 'SOT L8907 6£066Z  T10966Z  £S9°GT9 S
9G1'G5C  16€0¥C €78'69  $G6'TLT 168%C  ¥LEZ0T  TSHS0T UTT6 €696  66C8LL 1988/ L16F09 DIV
8/G°0CT— G6TCIT—  1C6'ST— V61—  SLTZIT—  989°9F—  9TC/F—  9€C0F— 9L L— 6VTT8E— 0€FT8E—  8SFS6C— pooyreI 0]
..—@ mo SaINSEI\

(¥01°0) (STT°0) (960°0) (951°0) (6¥1°0) (961°0) (€6T°0) #1270 (661°0) I10) (T1T°0) (011°0)
6¥70 9¢€°0 €150 €10 €170 €10 o o 891°0 910 2020 o} 10139 [efeds

EZ 2 *% *k¥ ﬁ ﬂ ﬁ hm00| OHwO| mN®O|

(£8¢€°9) (8224%) (¥8¢2) #re'9) (¥eL L) (9%T€) (9¢6'%) (€89°%) (108°'1) (008°S) (09£°9) (991°¢)
o . . x or e x o x . . . uesuos

€20'S [F0°1 16T g vLE €1 L16°¢ Pp— 8TL'8 P 780C GHH¥ 92L°¢
(€€0°0) (ze0'0) ¥10°0 (6£0°0) (1£0°0) (0€0°0) (22000 (#90°0) (#20°0) (850°0) (860°0) (€€0°0) NOT

€200 650°0 L2000 sxx68C0  xxx8ETO sk LZITO £90°0— S20°0— 1000 s 0EC0 €170  «x 6600

(160°0) (€%0°0) (zz070) (120°0) (990°0) (£20°0) (5€0°0) (1€0°0) (110°0) (0%0°0) (6£0°0) (€20°0)
IV

100 G100 T100— €10 o £T00 5429910 4xx 0ST0  ssx SO0 0100— Hmo.%u *» 9500~
(288°¢) (989°¢) (ges1) (982%) (£98°¢) (TL9°1) (9¢¥°9) (807°9) (096'1) (7072) (€€02) (orT'm) WNAAV

0640 129°CT— 78T~ €89°C LETT LT 0€8°¢— 168~ 68SC 1CCe— 8GT'¢— 8/0C—
(#96'1) (s12°71) (692°0) (¥91°2) (¥e6'1) (628°0) (029°€) (800°¢) (61T°1) (21172 (821°2) (z21°1) OISV

029°¢— €80°C— S08°0— 690°¢— G88'¢C— /86 T— €€09—  «0STL— < SVLT— TUET— 9GT'C— 0TF 1—

(T¥8°0) (€08°9) (¥08°¢) (268°9) (80677)  (889°9¢)  (£79°07)  (680TE)  (zg56¢)  (02962) (0TTerl)  (4647CTT)

ada

G0€0 76 SH CLOTL  wIVEFL e SETL6 GeF'eS 090 TC— I g— G/SHE  «xGES8  «x€89/T  60SST— o

(2960) (6662) (8sT'1) (269°€) (09¢°€) (€0¥'1) (892°¢) (G11°9) (161°T) #¥SF) (£zs¥) (€990
N1

¥eTT— wry— SH0C—  «SET6— o1 B.S*w* #1166~ 645 ¢— 7956~ WI0—  «8168— & 1IC6— S/T0—

020¢ 0102 0002 020¢ 0102 0002 0202 0102 0002 0202 0102 0002
SI[qeLIeA

eunp) uiadjseq euny) [enua) eUn) WId)SLaYON eUID UId)SIM

“BUTY) JO SUOT3SI JUSISJJTP 10J NHS JO SINSII UOTSSaI3Y 9 d[qeL

199



Land 2024, 13, 1421

4. Discussion
4.1. Interpretation of Findings

Theoretical and empirical research on PCEs made a significant contribution to the
promotion of China’s low-carbon transition. In this research, we analyzed the various
spatiotemporal patterns and projected future state of PCEs. Our findings revealed an
upward trend in China’s PCEs, with northern China’s PCEs being significantly higher than
those of southern China, and the east coastal region’s PCEs exceeding that of the central and
southwestern regions. With economic growth, an increasing number of individuals have
migrated to urban areas, which has subsequently resulted in a rise in CEs [67]. Northern
China is currently the largest energy base, and energy consumption and greenhouse gas
emissions have been rising sharply due to the rapid development of energy-intensive
and polluting industries. For instance, Xue et al. (2011) confirmed that fossil energy
production regions produce significantly more CEs than other regions [68]. Wang et al.
(2022) demonstrated that the PCE level was positively correlated with the geographical
and scale distribution of cities [69]. Compared to other regions, the eastern region has
higher PCEs and CEs, demonstrating a connection between the region’s economic level
and PCE level.

In the markov transition probability matrix, the highest probability was found in
the H-type, reaching 97.5%, with an average stability probability of 75.27%, indicating
that China’s PCEs were stable and exhibited a “club convergence” phenomenon. At the
same time, the low-level (0.720) and high-level (0.975) convergence probabilities were
greater than the medium-low-level (0.655) and medium-high-level (0.661) convergence
probabilities, indicating that low- and high-level regions tended to stabilize at their own
levels, while medium-low and medium-high levels tended to transfer to low and high
levels. From the perspective of probability values, the probabilities of downward transfer
were 32.7% and 32.2%, while those of upward transfer were 1.10% and 1.60%, indicating
that the types with lower and higher intensities showed a good trend of downward transfer.
The result obtained was consistent with the findings of Cui et al. (2022), Liu et al. (2023),
and Wang et al. (2019) [16,50,52]. A dynamical procedure underlying the transition matrix
showed that a discernible “Matthew effect” was observed in PCEs, whereby cities with
both low and high emissions exhibited tendencies to maintain their initial state throughout
the transfer process. This illustrated that the region may become trapped in a development
path locked into specific trajectories, making it challenging to swiftly reduce PCEs through
technological means.

By conducting a comprehensive review on China’s CEs, we can clearly identify the
differences between this study and previous research. These differences primarily focus
on the following three main aspects. (1) Regional level. Previous studies may focus on
the disparities in CEs across different regions. This study analyzed 367 municipal units
at the prefecture level. There were presently many studies in the literature on different
regions. Jin et al. (2024) [70] took the urban agglomeration of the Yangtze River Economic
Belt’s as the study areas of CEs. Bei et al. (2024) [71] conducted the study of CEs at Wuhan.
Yan et al. (2023) [72] considered 30 provincial units (provinces, cities, and autonomous
regions) in mainland China as their basic research units. (2) Research methods. This study
used markov chain, kernel density, and spatial economic regression analyses. Feng et al.
(2024) [73] and Chen and Bi (2022) [74] used Geodetector models to empirically analyze
the driving mechanisms of CEs. Li et al. (2024) [75] used the LMDI model to investigate
each province’s CEs drivers. Chen et al. (2023) [76] used kernel density estimation, a
spatial autocorrelation analysis, and the spatial-temporal LMDI model to explore the
spatiotemporal patterns and driving mechanism of CEs. (3) Driving factors. This study
utilized a spatial economic model to explore the driving factors of CEs. Wei et al. (2021) [77]
verified that GDP was the dominant factor affecting CEs efficiency. Wang et al. (2023) [78]
revealed that technology and population size played important roles in CEs reductions.
Jiang et al. (2024) [79] deduced that the scale of urban construction presented different
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promoting or inhibiting effects in different regions. Zhang et al. (2024) [80] demonstrated
that technological progress was the main factor influencing CEs.

4.2. Driving Mechanisms of Low-Carbon Transition

Based on the results of the OLS, SLM, and SEM, we revealed the driving mechanism of
China’s low-carbon transition and explored how socioeconomic and geographical factors
that have significantly influenced low-carbon transition. The LUI was proven to have a
significantly negative impact on PCEs, which indicated that the increase in urbanization
promoted the low-carbon transition, which was inconsistent with previous studies showing
increasing CEs due to urbanization [81]. It is a widely accepted hypothesis that the LUI
can increase PCEs. On the contrary, some studies have pointed out that urbanization
can indeed lead to a reduction in CEs [82,83]. The reason for this was that urbanization
promoted the transformation of industrial structures and thus contributes to CE efficiency.
The coefficients of the LUI affecting PCEs were —3.239, —8.440, and —7.027 in 2000, 2010,
and 2020, which showed that urbanization was more crucial to the reduction in PCEs in
2010 and 2020 than in 2000. In the early stage, due to the problem of blindly pursuing
quantity rather than quality under the traditional urbanization and economic model, the
reduction in CEs has been inhibited [84]. However, as urbanization levels increased and
shifted towards equity, a green economy, and efficiency as core objectives have contributed
to the reduction in CEs. Moreover, several studies have corroborated the assertion that
urbanization can result in a reduction in CEs, albeit with notable spatial heterogeneity.
For instance, Li et al. (2023) [85] revealed that a higher level of urbanization reduced the
CEs intensity and explored the significant implications of urbanization on the low-carbon
transition by promoting green technological innovation. GDPD was also proven to be
positively correlated with CEs. This is because economic growth was usually accompanied
by the development of industrialization and manufacturing, which often required more
energy, especially fossil fuels, thereby releasing large amounts of CEs [86]. Many scholars
have found that economic growth inevitably promoted CEs, leading to global warming
and glacier melting, which posed serious challenges to sustainable economic development.
For example, Guo and Fang (2023) [87] revealed that CEs was positively correlated with
economic growth but present a fluctuating trend. Similarly, Li et al. (2022) [88] concluded
that there was a positive effect on GDP per capita and total CO,. The difference of this
study was investigating the impact of GDPD on PCEs, with GDP being categorized by
land area.

The regression results also demonstrated that the low-carbon transition was driven by
the joint action of socio-economic systems and natural systems, rather than being solely
influenced by either socio-economic factors or geographical factors. This finding under-
scores the comprehensiveness of the driving mechanism and emphasized the importance
of formulating region-specific policies. The European Union emissions trading system
(EU ETS) was launched in 2005, which has demonstrated significant success in reducing
greenhouse gas emissions across 31 countries, accounting for over 40% of the EU’s total
greenhouse gas emissions. The EU ETS has led to substantial emission reductions while
increasing the regulated firms’ revenues and fixed assets, as verified by Dechezleprétre
et al. (2023) [89]. The Regional Greenhouse Gas Initiative (RGGI) in the United States
was officially implemented in 2009 and established a cap-and-trade program for CEs in
the power sector. The RGGI not only achieved significant emission reductions but also
generated economic benefits by reinvesting auction proceeds into energy efficiency and
renewable energy projects. However, the RGGI has caused significant emissions reductions
within regulated states and emissions leakages in nearby unregulated states (Yan, 2021) [90].
In future research, we would like to explore this driving mechanism by taking China’s
environmental policy into consideration.
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4.3. Policy Implications of Low-Carbon Transition
4.3.1. Promoting the Low-Carbon Transition

A significant proportion of prefecture-level cities exhibited a noticeable increase in
PCEs. China’s CEs have remained high level due to the decision that was made for
its economic development mode. As rising CEs contributed to global warming, China,
as the biggest developing country, is enacting a low-carbon transition and has made
remarkable achievements in curbing the growth of CEs. New-type urbanization is the
strategic fulcrum of future development, which is crucial for promoting the low-carbon
transition. New urbanization has the potential to establish a favorable policy environment
and offer significant scientific and technological support, which can facilitate the low-
carbon transition. Throughout the progress of new urbanization [91,92], it is of paramount
importance to underscore the significance of enhancing the quality of urbanization [93].

4.3.2. Focusing on the Spatial Agglomeration Effects of PCE

PCEs showed a relatively obvious distribution pattern of spatial agglomeration, and
the degree of this continued to strengthen. The PCEs of each city were susceptible to
influences from neighboring cities. Therefore, it is crucial for each city to not only pri-
oritize its own PCEs but also to collaborate with neighboring cities. By establishing
regional cooperation mechanisms, cities can share information and technology related
energy and environmental protection, jointly implement emission reduction measures,
as well as collectively assume the responsibility of promoting coordinated economic de-
velopment and environmental protection. Considering the differences across regions, for
provinces such as Chonggqing, Sichuan, Guizhou, Anhui, and Jiangxi, which are experi-
encing rapid economic growth, it is recommended to optimize their industrial structure,
support low-energy consuming and clean industries, and promote the shift from high-
speed to high-quality economic development. For resource-rich provinces such as Inner
Mongolia and Xinjiang, which have resource-endowed advantages, it is suggested that
these governments appropriately increase their carbon allowances and set higher thresh-
olds for their high-energy-consuming enterprises, thereby promoting the introduction of
high-energy-efficiency technologies from the east to the west.

4.3.3. Coordinating Economic Growth and CEs

In terms of driving factors, economic growth acts as a “double-edged” sword, not only
increasing CEs but also providing momentum for the low-carbon transition. The contradic-
tion between the increase in GDP and CEs still exists. However, with the improvement of
quality, economic progress can stimulate technological innovation and accelerate emission
reductions. Enhancing the quality of economic growth quality would inevitably result in a
reduction in CEs and the promotion of the low-carbon transition. Economic growth should
leverage the advantages of agglomeration effects and scale effects.

4.3.4. Formulating Differential Strategy

Based on the different regions of CEs and their spatial-temporal characteristics, we
proposed a targeted strategy to reduce PCEs. At the national level, the focus should be
on improving the efficiency of fossil energy use and replacing fossil energy with non-
fossil energy sources, such as developing hydropower, wind power, and solar power.
Additionally, carbon sinks can be increased by using trees or other plants to absorb the
carbon dioxide emitted into the atmosphere. At the regional level, for the eastern and
central regions, the priority should be to strengthen green technology upgrades, leverage
their advantages in low-carbon technology research and development, and actively explore
innovative systems and mechanisms for low-carbon economic development. For the
northeastern regions, it is essential to promote the transformation of resource-depleted cities
and the adjustment of old industrial bases in conjunction with the development of a low-
carbon economy. Considering the reality that the northeastern region has more per capita
arable land and forestry resources, agriculture and forestry should play a significant role
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in the low-carbon economic development in this region. For the western region, the focus
should be on reducing CEs in resource development, distinctive industry development,
and infrastructure construction. In terms of increasing carbon sinks, efforts should be
made to strengthen carbon sink construction in ecological functional zones, integrating
the construction of carbon sinks in the western region with the establishment of a national
ecological security barrier.

5. Conclusions

This study aimed to investigate the distribution patterns, future trends, and driving
factors of PCEs in 367 cities in China. The results revealed that the PCEs presented
a continuous upward trend, with obvious differences across regions. Therefore, CEs
reduction policies should be formulated based on a per capita perspective and regional
differences. The PCEs also showed obvious spatial clustering, with hot spots mainly
concentrated in Inner Mongolia and Xinjiang, while cold spots were mainly distributed in
some provinces in southern China. Meanwhile, China’s low-carbon transition has achieved
noteworthy outcomes, with the majority of prefecture-level cities (29.700%) having PCEs
of less than 1 ton/persons. The overall PCE level in China remained stable despite the
dynamic changes observed over the ten-year period. In particular, the shift of the PCEs of
eastern and central China to higher values was obvious. The regression analysis indicated
that China’s PCEs undergone changes due to a confluence of factors. The LUI and latitude
had negative effects on PCEs in prefecture-level cities, and regional economic development,
elevation, slope, and longitude had positive effects. The results can serve as a basis for
developing CEs policies, which are of strategic importance for promoting sustainable
development and formulating rational CE reduction policies.

However, this study still has several limitations. First, we acknowledge that it is
insufficient to use data from 2000, 2010, and 2020 to explore the distribution patterns, future
trends, and driving factors of China’s PCEs. This is because the PCE calculations were
based on data extracted from the bulletins of the fifth, sixth, and seventh national censuses,
which covered a ten-year period. In future studies, we will use annual data to supplement
or verify the findings of the studied ten-year period. Second, although this study verified
the importance of natural geographical factors and socioeconomic factors in influencing
the low-carbon transition, due to data availability limitations, other driving forces, such as
the digital economy and trading policies, were not taking into account. In the future, we
will consider more driving factors to analyze the mechanism.

Author Contributions: Conceptualization, X.Z. and Y.Z.; Methodology, X.Z. and Y.Z.; Software, X.Z.,
Y.Z. and W.C,; Resources, Y.Z. and W.C.; Data curation, X.Z. and G.Z.; Writing—original draft, X.Z.
and Y.Z.; Writing—review and editing, S.P. and ED.; Supervision, X.Z. and ED. All authors have read
and agreed to the published version of the manuscript.

Funding: This study was supported by the Innovative Research Group Project of the National
Natural Science Foundation of China (Grant number: 42121001). This study was also supported by
the Natural Science Foundation of China (Grant numbers: 72364027; 42371258; 72164030). This study
was supported in part by the China Postdoctoral Science Foundation (Grant number: 2023M733466),
the Social Science Foundation of China (Grant number: 22VMZ013), the Natural Science Foundation
of Inner Mongolia (Grant No. 2023QN07008), and the Social Science Foundation of Inner Mongolia
(Grant No. 2024EY51).

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding authors.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Bakhtyar, B.; Ibrahim, Y.; Alghoul, M.A.; Aziz, N.; Fudholi, A.; Sopian, K. Estimating the CO, abatement cost: Substitute price of
avoiding CO, emission (SPAE) by renewable energy’s feed in tariff in selected countries. Renew. Sustain. Energy Rev. 2014, 35,
205-210. [CrossRef]

203



Land 2024, 13, 1421

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Gokmenoglu, K.; Taspinar, N. The relationship between CO, emissions, energy consumption, economic growth and FDI: The
case of Turkey. J. Int. Trade. Econ. Dev. 2016, 25, 706-723. [CrossRef]

Allen, M.R.; Frame, D.J.; Huntingford, C.; Jones, C.D.; Meinshausen, N. Warming caused by cumulative carbon emissions towards
the trillionth tonne. Nature 2009, 458, 1163-1166. [CrossRef] [PubMed]

Hohne, N.; den Elzen, M.; Rogelj, J.; Metz, B.; Fransen, T.; Kuramochi, T.; Olhoff, A.; Alcamo, J.; Winkler, H.; Fu, S.; et al.
Emissions: World has four times the work or one-third of the time. Nature 2020, 579, 25-28. [CrossRef] [PubMed]

Meinshausen, M.; Meinshausen, N.; Hare, W.; Raper, S.C.; Frieler, K.; Knutti, R.; Frame, D.J.; Allen, M.R. Greenhouse-gas emission
targets for limiting global warming to 2 C'. Nature 2009, 458, 1158-1162. [CrossRef]

Climate Watch. Historical GHG Emissions. 2024. Available online: https:/ /www.climatewatchdata.org/ghg-emissions (accessed
on 26 August 2024).

Soderholm, P; Hildingsson, R.; Johansson, B.; Khan, J.; Wilhelmsson, F. Governing the transition to low-carbon futures: A critical
survey of energy scenarios for 2050. Futures 2011, 43, 1105-1116. [CrossRef]

Wang, S.B.; Liu, H.M.; Pu, H.X,; Yang, H. Spatial disparity and hierarchical cluster analysis of final energy consumption in China.
Energy 2020, 197, 117195. [CrossRef]

Hickel, J. Quantifying national responsibility for climate break down:an equality-based attribution approach for carbon dioxide
emissions in excess of the planetary boundary. Lancet Planet. Health 2020, 4, e399—-e404. [CrossRef]

Matthews, H.D. Quantifying historical carbon and climate debts among nations. Nat. Clim. Chang. 2016, 6, 60-64. [CrossRef]
Adriana, D.B.; Michela, G.; Nicolo, S.; Baccelli, O.; Croci, E.; Molteni, T. Impact of circular measures to reduce urban CO,
emissions: An analysis of four case studies through a production- and consumption-based emission accounting method. J. Clean.
Prod. 2022, 380, 134932.

Ali, U; Guo, Q.B.; Zhanar, N.; Nurgazina, Z.; Sharif, A.; Kartal, M.T,; Depren, S.K.; Khan, A. Heterogeneous impact of
industrialization, foreign direct investments, and technological innovation on carbon emissions intensity: Evidence from
Kingdom of Saudi Arabia. Appl. Energy 2023, 336, 120804. [CrossRef]

Wang, Z.; Zeng, Y.; Wang, X.; Gu, T.; Chen, W. Impact of urban expansion on carbon emissions in the urban agglomerations of
Yellow River Basin, China. Land 2024, 13, 651. [CrossRef]

Shi, Y.; Han, B.; Han, L.; Wei, Z. Uncovering the national and regional household carbon emissions in China using temporal and
spatial decomposition analysis models. J. Clean. Prod. 2019, 232, 966-979. [CrossRef]

Huo, T.; Xu, L.; Feng, W.; Cai, W.; Liu, B. Dynamic scenario simulations of carbon emission peak in China’s city-scaleurban
residential building sector through 2050. Sci. Total Environ. 2021, 159, 112612.

Wang, S.J.; Huang, Y.Y. Spatial spillover effect and driving forces of carbon emission intensity at city level in China. Acta Geogr.
Sin. 2019, 74, 1131-1148. (In Chinese) [CrossRef]

Li, S.L.; Wang, Z.Z. The effects of agricultural technology progress on agricultural carbon emission and carbon sink in China.
Agriculture 2023, 13, 793. [CrossRef]

Chen, C.H.; Luo, Y.Q.; Zhou, H.; Huang, ].B. Understanding the driving factors and finding the pathway to mitigating carbon
emissions in China’s Yangtze River Delta region. Energy 2023, 278, 127897. [CrossRef]

Wang, S.; Xie, Z.; Wu, R.; Feng, K. How does urbanization affect the carbon intensity of human well-being? A global assessment.
Appl. Energy 2022, 312, 118798. [CrossRef]

Zhou, Y.Q.; Zou, S.; Duan, W.L.; Chen, Y.N.; Takara, K.R.; Di, Y.F. Analysis of energy carbon emissions from agroecosystems in
Tarim River Basin, China: A pathway to achieve carbon neutrality. Appl. Energy 2022, 325, 119842. [CrossRef]

Huang, Y.M.; Zhang, Y.N. Digitalization, positioning in global value chain and carbon emissions embodied in exports: Evidence
from global manufacturing production-based emissions. Ecol. Econ. 2023, 205, 107674. [CrossRef]

Wang, S.J.; Fang, C.L.; Wang, Y. Spatiotemporal variations of energy-related CO, emissions in China and its influencing factors:
An empirical analysis based on provincial panel data. Renew. Sustain. Energy Rev. 2016, 55, 505-515. [CrossRef]

Ehigiamusoe, K.U.; Shahbaz, M.; Vo, X.V. How Does Globalization Influence the Impact of Tourism on Carbon Emissions and
Ecological Footprint? Evidence from African Countries. J. Travel. Res. 2023, 62, 1010-1032. [CrossRef]

Jan, S.; Liu, Y,; Stefan, S. Carbon emissions from European land transportation: A comprehensive analysis. Transp. Res. Part D
Transp. Environ. 2023, 121, 103851.

Zhang, C.Y.; Zhang, H.T.; Chen, M.N.; Fang, R.Y.; Yao, Y.; Zhang, Q.P;; Wang, Q. Spatial-temporal characteristics of carbon
emissions from land use change in Yellow River Delta region. China Ecol. Indic. 2022, 136, 108623. [CrossRef]

Dogan, E.; Turkekul, B. CO, emissions, real output, energy consumption, trade, urbanization and financial development: Testing
the EKC hypothesis for the USA. Environ. Sci. Pollut. Res. 2016, 23, 1203-1213. [CrossRef]

Erdogan, S. Dynamic nexus between technological innovation and building sector carbon emissions in the BRICS Countries. J.
Environ. Manag. 2021, 293, 112780. [CrossRef] [PubMed]

Chen, X.L.; Di, Q.B.; Jia, W.H.; Hou, Z.W. Spatial correlation network of pollution and carbon emission reductions coupled with
high-quality economic development in three Chinese urban agglomerations. Sustain. Cities Soc. 2023, 94, 104552. [CrossRef]
Wu, H.; Yang, Y,; Li, W. Analysis of spatiotemporal evolution characteristics and peak forecast of provincial carbon emissions
under the dual carbon goal: Considering nine provinces in the Yellow River basin of China as an example. Atmos. Pollut. Res.
2023, 14, 101828. [CrossRef]

204



Land 2024, 13, 1421

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.
59.

Fan, J.J.; Wang, ].L.; Qiu, ].X; Li, N. Stage effects of energy consumption and carbon emissions in the process of urbanization:
Evidence from 30 provinces in China. Energy 2023, 276, 127655. [CrossRef]

Liu, Q.F,; Song, ].P; Dai, T.Q.; Shi, A.; Xu, ].H.; Wang, E.R. Spatio-temporal dynamic evolution of carbon emission intensity and
the effectiveness of carbon emission reduction at county level based on nighttime light data. J. Clean. Prod. 2022, 362, 132301.
[CrossRef]

Liu, H.; Lei, J. The impacts of urbanization on Chinese households’ energy consumption: An energy input-output analysis. J.
Renew. Sustain. Energy 2018, 10, 015903. [CrossRef]

Wang, S.J.; Liu, X.P. China’s city-level energy-related CO, emissions: Spatiotemporal patterns and driving forces. Appl. Energy
2017, 200, 204-214. [CrossRef]

Zhang, Y.J.; Hao, ].F; Song, J. The CO, emission efficiency, reduction potential and spatial clustering in China’s industry: Evidence
from the regional level. Appl. Energy 2016, 174, 213-223. [CrossRef]

Chen, W.X,; Chi, G.Q. Ecosystem services trade-offs and synergies in China, 2000-2015. Int. ]. Environ. Sci. Technol. 2022, 20,
3221-3236. [CrossRef]

Chancel, L. Global carbon inequality over 1990-2019. Nat. Sustain. 2022, 5, 931-938. [CrossRef]

Ma, T,; Liu, Y.S.; Yang, M. Spatial-temporal heterogeneity for commercial building carbon emissions in China: Based the dagum
gini coefficient. Sustainability 2022, 14, 5243. [CrossRef]

Tao, M.M.; Sheng, M.S.; Wen, L. How does financial development influence carbon emission intensity in the OECD countries:
Some insights from the information and communication technology perspective. J. Environ. Manag. 2023, 335, 117553. [CrossRef]
Jebli, M.B.; Kahia, M. The interdependence between CO, emissions, economic growth, renewable and non-renewable energies,
and service development: Evidence from 65 countries. Clim. Chang. 2020, 162, 193-212. [CrossRef]

Akram, R.; Umar, M.; Gan, X.L.; Chen, F. Dynamic linkages between energy efficiency, renewable energy along with economic
growth and carbon emission. A case of MINT countries an asymmetric analysis. Energy Rep. 2022, 8, 2119-2130. [CrossRef]
Nasir, M.A.; Huynh, T.L.D.; Tram, H.T.X. Role of financial development, economic growth & foreign direct investment in driving
climate change: A case of emerging ASEAN. |. Environ. Manag. 2019, 242, 131-141.

Chen, W.X.; Wang, G.Z.; Xu, N.; Ji, M.; Zeng, ]. Promoting or inhibiting? New-type urbanization and urban carbon emissions
efficiency in China. Cities 2023, 140, 104429. [CrossRef]

Tang, Z.P.; Wang, L.H.; Wu, W. The impact of high-speed rail on urban carbon emissions: Evidence from the Yangtze River Delta.
J. Transp. Geogr. 2023, 110, 103641. [CrossRef]

Wang, KK.; Su, X.W.; Wang, S.H. How does the energy-consuming rights trading policy affect China’s carbon emission intensity?
Energy 2023, 276, 127579. [CrossRef]

Li, R;; Wang, Q.; Liu, Y,; Jiang, R. Per-capita carbon emissions in 147 countries: The effect of economic, energy, social, and trade
structural changes. Sustain. Prod. Consum. 2021, 27, 1149-1164. [CrossRef]

Yu, M.; Meng, B.; Li, R. Analysis of China’s urban household indirect carbon emissions drivers under the background of
population aging. Struct. Chang. Econ. Dynam. 2022, 60, 114-125. [CrossRef]

Ahmed, M.; Shuai, C.; Ahmed, M. Influencing factors of carbon emissions andtheir trends in China and India: A machine learning
method. Environ. Sci. Pollut. Res. 2022, 29, 48424-48437. [CrossRef]

Xu, WH,; Xie, Y.L.; Xia, D.H.; Ji, L.; Huang, G.H. A multi-sectoral decomposition and decoupling analysis of carbon emissions in
Guangdong province, China. J. Environ. Manag. 2021, 298, 113485. [CrossRef] [PubMed]

Yu, Y; Dai, Y.Q.; Xu, L.Y;; Zheng, H.Z.; Wu, W.H.; Chen, L. A multi-level characteristic analysis of urban agglomeration
energy-related carbon emission: A case study of the Pearl River Delta. Energy 2023, 263, 125651. [CrossRef]

Liu, X.J.; Jin, X.B.; Luo, X.L.; Zhou, Y.K. Quantifying the spatiotemporal dynamics and impact factors of China’s county-level
carbon emissions using ESTDA and spatial econometric models. J. Clean. Prod. 2023, 410, 137203. [CrossRef]

Chen, W.X,; Zeng, ].; Li, N. Change in land-use structure due to urbanisation in China. J. Clean. Prod. 2021, 321, 128986. [CrossRef]
Cui, Y;; Khan, S.U.; Deng, Y.; Zhao, M. Spatiotemporal heterogeneity, convergence and its impact factors: Perspective of carbon
emission intensity and carbon emission per capita considering carbon sink effect. Environ. Impact Assess. Rev. 2022, 92, 106699.
[CrossRef]

Wang, M.; Feng, C. Tracking the inequalities of global per capita carbon emissions from perspectives of technological and
economic gaps. J. Environ. Manag. 2022, 315, 115144. [CrossRef]

Wu, S.; Zhang, K. Influence of urbanization and foreign direct investment on carbon emission efficiency: Evidence from urban
clusters in the Yangtze River Economic Belt. Sustainability 2021, 13, 2722. [CrossRef]

Wang, X.; Wang, C.X.; Shi, J.L. Evaluation of urban resilience based on Service-Connectivity-Environment (SCE) model: A case
study of Jinan city, China. Int. |. Disaster Risk Reduct. 2023, 95, 103828. [CrossRef]

Yang, L.Y.; Fang, C.L.; Chen, W.X,; Zeng, J. Urban-rural land structural conflicts in China: A land use transition perspective.
Habitat. Int. 2023, 138, 102877. [CrossRef]

Getis, A.; Aldstadt, J. Constructing the Spatial Weights Matrix Using a Local Statistic. Geogr. Anal. 2004, 36, 90-104. [CrossRef]
Getis, A.; Griffith, D.A. Comparative spatial filtering in regression analysis. Geogr. Anal. 2002, 34, 130-140. [CrossRef]

Chen, W.X.; Wang, G.Z.; Zeng, ]. Impact of urbanization on ecosystem health in Chinese urban agglomerations. Environ. Impact
Assess. Rev. 2023, 98, 106964. [CrossRef]

205



Land 2024, 13, 1421

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

Felipe-Lucia, M.R,; Soliveres, S.; Penone, C.; Fischer, M.; Ammer, C.; Boch, S.; Boeddinghaus, R.S.; Bonkowski, M.; Buscot, E.;
Fiore-Donno, A.M,; et al. Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proc. Natl.
Acad. Sci. USA 2020, 117, 28140-28149. [CrossRef]

Xu, F; Chi, G.Q. Spatiotemporal variations of land use intensity and its driving forces in China, 2000-2010. Reg. Environ. Chang.
2019, 19, 2583-2596. [CrossRef]

Zhou, Y.; Chen, M.X,; Tang, Z.P.; Mei, Z. Urbanization, land use change, and carbon emissions: Quantitative assessments for
city-level carbon emissions in Beijing-Tianjin-Hebei region, Sustain. Cities Soc. 2021, 66, 102701. [CrossRef]

Wang, W.Z.; Liu, L.C.; Liao, H.; Wei, Y.M. Impacts of urbanization on carbon emissions: An empirical analysis from OECD
countries. Energy Policy 2021, 151, 112171. [CrossRef]

Zhang, HM.; Xu, L.; Zhou, P.,; Zhu, X.D. Coordination between economic growth and carbon emissions: Evidence from 178 cities
in China. Econ. Anal. Policy 2024, 81, 164-180. [CrossRef]

Braimoh, A.K.; Onishi, T. Spatial determinants of urban land use change in Lagos, Nigeria. Land Use Policy 2007, 24, 502-515.
[CrossRef]

Liu, X,; Xu, H.Z.; Zhang, M. The effects of urban expansion on carbon emissions: Based on the spatial interaction and transmission
mechanism. J. Clean. Prod. 2024, 434, 140019. [CrossRef]

Li, K,; Lin, B.Q. Impacts of urbanization and industrialization on energy consumption/CO, emissions: Does the level of
development matter? Renew. Sustain. Energy Rev. 2015, 52, 1107-1122. [CrossRef]

Xue, B.; Li, C,; Liu, Z.; Geng, Y.; Xi, F. Analysis on CO, emission and urbanization at global level during 1970-2007. Clim. Chang.
Res. 2011, 7, 423-427.

Wang, S.J.; Wang, Z.H.; Fang, C.L. Evolutionary characteristics and drivers of carbon emission performance of Chinese cities. Sci.
Sin. Terrae 2022, 52, 1613-1626.

Jin, Y.Z.; Zhang, K.R.; Li, D.Y.; Wang, S.Y.; Liu, W.Y. Analysis of the spatial-temporal evolution and driving factors of carbon
emission efficiency in the Yangtze River economic Belt. Ecol. Indic. 2024, 165, 112092. [CrossRef]

Bei, L.; Yang, W.; Wang, B.; Gao, Y.W.; Wang, A.N.; Lu, T.F; Liu, H.T.; Sun, L.S. Characteristics of residents” carbon emission and
driving factors for carbon peaking: A case study in Wuhan, China. Energy Sustain. Dev. 2024, 81, 101471. [CrossRef]

Yan, D.S,; Liu, C.G.; Li, PX. Effect of carbon emissions and the driving mechanism of economic growth target setting: An empirical
study of provincial data in China. . Clean. Prod. 2023, 415, 137721. [CrossRef]

Feng, X.H.; Wang, S.S.; Li, Y.; Yang, ].Y.; Lei, K.G.; Yuan, W.K. Spatial heterogeneity and driving mechanisms of carbon emissions
in urban expansion areas: A research framework coupled with patterns and functions. Land Use Policy 2024, 143, 107209.
[CrossRef]

Chen, C.Y; Bi, L.L. Study on spatio-temporal changes and driving factors of carbon emissions at the building operation stage-A
case study of China. Build. Environ. 2022, 219, 109147. [CrossRef]

Li, S.Y;; Yao, L.L.; Zhang, Y.C.; Zhao, Y.X.; Sun, L. How do driving factors of carbon emissions and scenario forecasting differ
across provinces in China? Investigation and analysis. Environ. Sustain. Indic. 2024, 22, 100390.

Chen, H.D.; Du, Q.X.; Huo, T.F; Liu, PR.; Cai, W.G.; Liu, B.S. Spatiotemporal patterns and driving mechanism of carbon emissions
in China’s urban residential building sector. Energy 2023, 263, 126102. [CrossRef]

Wei, W.; Zhang, X.; Zhou, L.; Xie, B.; Zhou, J.; Li, C. How does spatiotemporal variations and impact factors in CO, emissions
differ across cities in China? Investigation on grid scale and geographic detection method. J. Clean. Prod. 2021, 321, 128933.
[CrossRef]

Wang, Z.; Shao, H.-A.-O. Spatiotemporal differences in and influencing factors of urban carbon emission efficiency in China’s
Yangtze River Economic Belt. Environ. Sci. Pollut. Res. 2023, 30, 121713-121733. [CrossRef] [PubMed]

Jiang, H.; Yin, J.; Wei, D.; Luo, X,; Ding, Y.; Xia, R. Industrial carbon emission efficiency prediction and carbon emission reduction
strategies based on multi-objective particle swarm optimization-backpropagation: A perspective from regional clustering. Sci.
Total Environ. 2024, 906, 167692. [CrossRef] [PubMed]

Zhang, N; Sun, F; Hu, Y. Carbon emission efficiency of land use in urban agglomerations of Yangtze River Economic Belt, China:
Based on three-stage SBM-DEA model. Ecol. Indic. 2024, 160, 111922. [CrossRef]

Xu, J.H; Li, Y.Y;; Hu, F; Wang, L.; Wang, K.; Ma, W.H.; Ruan, N.; Jiang, W.Z. Spatio-temporal variation of carbon emission
intensity and spatial heterogeneity of influencing factors in the Yangtze River Delta. Atmosphere 2023, 14, 163. [CrossRef]
Adams, S.; Nsiah, C. Reducing carbon dioxide emissions: Does renewable energy matter? Sci. Total Environ. 2019, 693, 133288.
[CrossRef] [PubMed]

Kwakwa, PA.; Adzawla, W.; Alhassan, H.; Oteng-Abayie, E.F. The effects of urbanization, ICT, fertilizer usage, and foreign direct
investment on carbon dioxide emissions in Ghana. Environ. Sci. Pollut. Res. Int. 2023, 30, 23982-23996. [CrossRef] [PubMed]
Pan, ].N.; Huang, ].T.; Chiang, T.F. Empirical study of the local government deficit, land finance and real estate markets in China.
China Econ. Rev. 2015, 32, 57-67. [CrossRef]

Li, X.Q.; Zheng, Z.].; Shi, D.Q. New urbanization and carbon emissions intensity reduction: Mechanisms and spatial spillover
effects. Sci. Total Environ. 2023, 905, 167172. [CrossRef] [PubMed]

Abraham, D.; Huseyin, O.; Mehdi, S. The effect of GDP, renewable energy and total energy supply on carbon emissions in the EU
27: New evidence from panel GMM. Environ. Sci. Pollut. Res. 2023, 30, 28206-28216.

206



Land 2024, 13, 1421

87.

88.

89.

90.

91.

92.

93.

Guo, X.M.; Fang, C.L. How does urbanization affect energy carbon emissions under the background of carbon neutrality? |.
Environ. Manag. 2023, 327, 103851.

Li, WY Ji, Z.S.; Dong, EG. Spatio-temporal evolution relationships between provincial CO; emissions and driving factors using
geographically and temporally weighted regression model. Sustain. Cities Soc. 2022, 81, 103836. [CrossRef]

Dechezleprétre, A.; Nachtigall, D.; Venmans, F. The joint impact of the European Union emissions trading system on carbon
emissions and economic performance. J. Environ. Econ. Manag. 2023, 118, 102758. [CrossRef]

Yan, J.C. The impact of climate policy on fossil fuel consumption: Evidence from the Regional Greenhouse Gas Initiative (RGGI).
Energy Econ. 2021, 100, 105333. [CrossRef]

Zhang, W.S.; Xu, Y; Lei, ].; Streets, D.G.; Wang, C. Direct and spillover effects of new-type urbanization on CO, emissions from
central heating sector and EKC analyses: Evidence from 144 cities in China. Resour. Conserv. Recy. 2023, 192, 106913. [CrossRef]
Zhang, W.S.; Xu, Y.; Streets, D.G.; Wang, C. Can new-type urbanization realize low-carbon development? A spatiotemporal
heterogeneous analysis in 288 cities and 18 urban agglomerations in China. J. Clean. Prod. 2023, 420, 138426. [CrossRef]

Guo, X.M,; Fang, C.L.; Mu, X.E; Chen, D. Coupling and coordination analysis of urbanization and ecosystem service value in
Beijing-Tianjin-Hebei urban agglomeration. Ecol. Indic. 2022, 137, 108782.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

207



. land ﬁw\o\w

Article

Response of Hydrothermal Conditions to the Saturation Values
of Forest Aboveground Biomass Estimation by Remote Sensing
in Yunnan Province, China

Yong Wu 12 Binbing Guo 12 Xjaoli Zhang 12 Hongbin Luo L2 7Zhibo Yu 12, Huipeng Li 12 Kaize Shi 3,
Leiguang Wang 14, Weiheng Xu 1*# and Guanglong Ou -%*

Key Laboratory of State Administration of Forestry and Grassland on Biodiversity Conservation in Southwest
China, Southwest Forestry University, Kunming 650233, China; yongwu@swfu.edu.cn (Y.W.);
guobinbing@swfu.edu.cn (B.G.); karojan@swfu.edu.cn (X.Z.); luohongbin@swfu.edu.cn (H.L.);
yuzhibo@swfu.edu.cn (Z.Y.); lhp@swfu.edu.cn (H.L.); leiguangwang@swfu.edu.cn (L.W.);
xwh@swfu.edu.cn (W.X.)

Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China,
Ministry of Education, Southwest Forestry University, Kunming 650233, China

‘Yunnan Institute of Forest Inventory and Planning, Kunming 650051, China; niejing@swfu.edu.cn

Institute of Big Data and Artificial Intelligence, Southwest Forestry University, Kunming 650224, China

*  Correspondence: 0lg2007621@swfu.edu.cn; Tel.: +86-139-0885-7108

Abstract: Identifying the key climate variables affecting optical saturation values (OSVs) in forest
aboveground biomass (AGB) estimation using optical remote sensing is crucial for analyzing OSV
changes. This can improve AGB estimation accuracy by addressing the uncertainties associated
with optical saturation. In this study, Pinus yunnanensis forests and Landsat 8 OLI imagery from
Yunnan were used as case studies to explain this issue. The spherical model was applied to determine
the OSVs using specific spectral bands (Blue, Green, Red, Near-Infrared (NIR), and Short-Wave
Infrared Band 2 (SWIR2)) derived from Landsat 8 OLI imagery. Canonical correlation analysis
(CCA) uncovered the intricate relationships between climatic variables and OSV variations. The
results reveal the following: (1) All Landsat 8 OLI spectral bands showed a negative correlation
with the Pinus yunnanensis forest AGB, with OSVs ranging from 104.42 t/ha to 209.11 t/ha, peaking
in the southwestern region and declining to the lowest levels in the southeastern region. (2) CCA
effectively explained 93.2% of the OSV variations, identifying annual mean temperature (AMT) as
the most influential climatic factor. Additionally, the mean temperature of the wettest quarter (MTQ)
and annual precipitation (ANP) were significant secondary determinants, with higher OSV values
observed in warmer, more humid areas. These findings offer important insights into climate-driven
OSV variations, reducing uncertainty in forest AGB estimation and enhancing the precision of AGB
estimations in future research.

Keywords: optical saturation variations; Pinus yunnanensis; climate; aboveground biomass estimation;
Landsat 8 optical imagery

1. Introduction

Forests are among the most significant terrestrial ecosystems, playing a fundamental
role in climate regulation, managing the carbon cycle, and controlling water resources [1,2].
The carbon cycle is at the forefront of global climate discussions, and the accurate estima-
tion of forest aboveground biomass (AGB) is essential for evaluating carbon storage and
emissions [3,4]. Traditional methods for estimating forest AGB are focused on localized
studies and specific ecological assessments [5]. By contrast, remote sensing technologies
enable broader application across large and topographically challenging areas, offering
comprehensive coverage, high spatial and temporal resolution, and the ability to monitor
ecosystem changes dynamically [6,7]. These advanced technologies provide crucial insights
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into forest AGB at a macro scale, deepening our understanding of ecosystem functions and
their influence on global carbon cycles.

Despite the numerous benefits of using remote sensing techniques in forest AGB
estimation, uncertainty continues to be a critical challenge in improving AGB estimation
accuracy, arising from factors such as remote sensing data, estimation models, forest
heterogeneity, and the data saturation problem [6,8,9]. The issue of saturation is especially
prominent when using optical imagery for forest AGB estimation in regions with high forest
heterogeneity [10]. This occurs when spectral reflectance values become less responsive
to further increases in AGB after surpassing a certain threshold, a challenge first noted in
the literature in 1968 [11]. Research has shown that this saturation is largely caused by
the decreased sensitivity of the red band, which is absorbed by chlorophyll as the canopy
density increases [12,13]. Furthermore, studies demonstrate that the near-infrared (NIR)
band shows a linear reduction in reflectance as stand age and AGB increase [14]. This issue
is compounded by mature vegetation, where spectral indices like the NDVI struggle to
estimate AGB with precision, particularly at the peak of the growing season [15]. However,
utilizing seasonal NDVI time series instead of single NDVI measurements has been shown
to enhance AGB estimation accuracy and mitigate saturation issues [16].

Notably, the application of the short-wave infrared band (SWIR2) of Landsat TM in
Zhejiang province, using a spherical model, allowed for the precise estimation of AGB
across various vegetation types. This approach not only significantly reduced residual
errors, but also improved the accuracy of optical saturation value (OSV) estimations, which
were found to vary considerably across different forest types [17]. These findings have
spurred increased research efforts aimed at reducing the uncertainty associated with the
saturation problem and identifying OSVs across diverse ecosystems and geographical
regions [6,10]. However, despite these advances, the underlying variation patterns of OSVs
and the environmental factors influencing OSVs remain insufficiently explored. Recent
studies have demonstrated that climate factors provide greater explanatory power than soil
and topography in accounting for the variations in OSVs, as evidenced by research on oak
forests in Yunnan Province [18]. Nevertheless, the extent to which climate factors drive OSV
variability across broader forest ecosystems has yet to be fully elucidated. This underscores
the need for further investigation into the relationship between climate dynamics and OSV
variations, which could provide critical insights into the climatic controls of saturation
thresholds in forest AGB estimation.

Climate is a fundamental driver of vegetation distribution and biomass allocation,
particularly within forest ecosystems [19]. These climatic forces exert profound influence
over the growth, survival, and spatial arrangement of plant species, with temperature, pre-
cipitation, and solar radiation acting as the primary regulators of photosynthetic processes
and biomass accumulation [19,20]. Optimal climatic conditions enhance photosynthetic
efficiency, thereby promoting the accumulation of forest AGB, while fluctuations in temper-
ature or moisture availability can lead to significant variations in vegetation structure and
biomass distribution [21,22]. For instance, shifts in seasonal precipitation and temperature
patterns, driven by climatic variability, can substantially alter forest composition, species
distribution, and biomass storage [23]. Thus, a comprehensive understanding of climatic
role is essential for boosting the precision of AGB estimations, particularly in regions with
high climatic variability. Beyond influencing vegetation dynamics, climate notably impacts
the accuracy of AGB estimates obtained through remote sensing. Changes in temper-
ature and precipitation modify the spectral reflectance characteristics of forests, which
consequently affect OSVs estimation, a crucial element in minimizing uncertainty in forest
AGB assessments [24]. As forest ecosystems adapt to fluctuating climatic conditions, the
resulting OSV variability underscores the necessity for models tailored to specific regions,
addressing climate-related differences in biomass distribution [18]. Therefore, elucidating
the relationship between climate and OSV variability is imperative for refining forest AGB
estimation models across diverse forested landscapes.
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Yunnan province, located in southwestern China, offers an ideal natural setting for
investigating the influence of climate on AGB estimation. It is renowned as the Kingdom
of Plants due to its exceptional biodiversity, with a vast range of vegetation spanning
from tropical to temperate ecosystems [25]. Pinus yunnanensis trees are widely distributed
and the indigenous evergreen coniferous trees in Yunnan [26,27]. The region’s complex
topography and diverse climatic conditions make it a crucial focal point for forest AGB
research. However, these characteristics, particularly the high variability in terrain and
forest heterogeneity, present significant challenges to accurately estimating AGB through
remote sensing [28]. The optical saturation problem emerges as a key source of uncertainty
in such heterogeneous forests, complicating the relationship between spectral data and
biomass estimates [18]. Thus, gaining insights into how Yunnan’s unique climate interacts
with OSV variations is crucial for enhancing the precision of remote sensing models in this
area. By analyzing the climatic factors driving OSV variability, this study seeks to improve
AGB estimation methods in Yunnan, offering findings that may apply to other regions with
complex ecological and climatic conditions [29-31].

Opverall, it is essential to elucidate the relationship between climatic factors, particularly
the various temperature and precipitation variables, and OSVs in order to identify the key
climatic drivers influencing OSV variations. In this study, the Pinus yunnanensis forests, located
in different vegetation sub-regions of Yunnan, were selected as the research focus. Landsat
8 OLI imagery was employed to estimate the OSVs of these forests using a spherical model.
Furthermore, the spatial distribution patterns of OSVs were analyzed, and the key climatic
variables influencing OSV variations were identified. The aims of this research are as follows:

To explain the OSV variation patterns for Pinus yunnanensis forest AGB estimation.

To determine the key climatic factors driving OSV variations.

2. Materials and Methods

This study adhered to the methodological flowchart shown in Figure 1, with the
following steps: (1) obtaining data on the distribution of Pinus yunnanensis forests from
the Forest Management Inventory (FMI); (2) calculating the Pinus yunnanensis forests’
AGB across eight sub-regions classified by the Yunnan flora system; (3) collecting and
processing Landsat 8 OLI imagery along with relevant climate data; (4) extracting the
original spectral bands; (5) analyzing the correlation between forest AGB and the original
bands; (6) applying the spherical model to calculate OSVs; (7) examining OSV variations in
response to climatic factors; and (8) identifying the key climatic variables that influence
OSV variations.
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Figure 1. Methodological flowchart for estimating and analyzing OSV distribution patterns and
variations.
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2.1. Study Area

Yunnan Province, located in southwestern China, extends between latitudes 21°8’ N

and 29°15" N and longitudes 97°31’ E to 106°11’ E, encompassing a total area of 394,000 km?
(Figure 2). It is in the region where the plateau and mountainous areas intersect, character-
ized by a complex and diverse topography including high mountains, canyons, hills, and
plains. Its geographical location and complex terrain contribute to the high heterogeneity
of climate, vegetation, and so on [26,32]. It exhibits a range of climatic types, including
subtropical, temperate, and alpine climates. The altitude ranges from 76.4 m to 6740 m,
while the precipitation varies between 500 mm and 2700 mm [18]. Meanwhile, the favor-
able climate in Yunnan provides optimal growth conditions for Pinus yunnanensis forests,
enabling it to flourish in various ecological habitats, including subalpine forests, montane
forests, and mixed evergreen—deciduous forests [33].
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Figure 2. Overview of vegetation sub-regions and Pinus yunnanensis forests distribution: (a) illustrates
the geographic location of Yunnan Province within China; (b) presents the spatial distribution of
Pinus yunnanensis forests within Yunnan; and (c) shows Landsat 8 OLI imagery and eight sub-regions
(I to VIII) within Yunnan.

2.2. Vegetation Sub-Regions

The Yunnan flora system was utilized to divide the Yunnan province into 8 sub-regions
using ArcGIS 10.8, which was produced by combining the relationships between the distri-
bution and phylogenetics of seed plant genera in 1983 [34,35]. This segmentation facilitated
the alignment of climate and Pinus yunnanensis forest AGB data, enabling the derivation and
comparative analysis of OSVs across sub-regions to investigate their variations (Figure 2).
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2.3. Forest Aboveground Biomass Data

The distribution of Pinus yunnanensis forests was obtained from the 2016 FMI data for
Yunnan province. The AGB per unit area of Pinus yunnanensis forests was calculated using
the biomass conversion method based on a total of 175,511 selected sub-compartments [36].
The biomass conversion parameters are shown in Figure 3. The formula used for AGB
calculation is as follows:

B =V xSVD x BEF (1)

where B refers to the AGB for the sub-compartment (t/ha), V indicates the volume of
storage per unit area in the sub-compartment (m3/hm?), SVD stands for the basic wood
density (t/m3), and BEF is the biomass conversion coefficient (dimensionless).
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Figure 3. The parameters using the biomass conversion factor method.

All sub-compartments of Pinus yunnanensis forests were selected to estimate OSVs,
providing a thorough estimation of the forest’s spatial arrangement and AGB properties.
The statistical metrics for each sub-region, including sample size, AGB range, mean AGB,
and standard error, are detailed in Table 1. These values reveal significant variability
in AGB across sub-regions. The standard error further underscores this heterogeneity,
with sub-region I exhibiting marked variability (SE = 36.74 t/ha), while sub-region VI
shows more consistency (SE = 18.33 t/ha). Such findings emphasize the need to ac-
count for regional differences in AGB and OSV estimations, given their sensitivity to
local environmental dynamics.

Table 1. The statistical parameters of each sub-region for Pinus yunnanensis forest AGB.

Sub-Regions n AGB Range (t/ha) Mean (t/ha) SE (t/ha)
I 45,409 2.35-332.70 56.77 36.74
II 2478 1.64-373.09 39.68 18.49
I 11,085 3.05-433.93 64.35 35.45
v 39,569 2.58-485.41 42.47 23.59
v 11,826 1.01-485.41 43.03 26.52
VI 16,547 3.56-264.20 37.13 18.33
Vil 23,766 2.84-339.98 65.91 28.35
VIII 21,939 1.89-220.48 40.56 22.10

2.4. Remote Sensing Data

The original bands of Landsat 8 OLI data were used to derive the OSVs, with a spatial
resolution of 30 m. The 29 Landsat 8 OLI images from 2016 in Yunnan were acquired from
a website (http:/ /www.gscloud.cn/ (accessed on 1 April 2023)). A substantial portion of
the images had a cloud cover of less than 6.00%. Subsequent image preprocessing included
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radiometric calibration, atmospheric correction using FLAASH, topographic correction,
and geographic alignment to ensure reliable and consistent land cover and surface property
analysis, utilizing ENVI 5.3 software [37,38]. Finally, simultaneous Landsat 8 OLI images
with the forest AGB data from 2016 were mosaicked to produce a seamless image.

2.5. Climate Data

The climate data were obtained from the WorldClim database (http:/ /www.worldclim.
org/ (accessed on 1 April 2023)), with a spatial resolution of 1 km x 1 km, containing 19
bio-climatic variables (Table 2). The climate data were georeferenced in ENVI 5.3 to align
with the Pinus yunnanensis distribution and sub-regional boundaries and resampled to
30 x 30 m resolution for compatibility with the Landsat 8 imagery.

Table 2. The overview of climate variables.

Variables Descriptions Variables Descriptions
AMT Annual mean temperature (°C) PRD Precipitation in the driest quarter (mm)
MDR Temperature diurnal range (°C) PRS Precipitation seasonality (mm)
1SO Isothermality (%) PWQ Precipitation in the warmest quarter (mm)
MCQ Mean temperature in the coldest quarter (°C) PCQ Precipitation in the coldest quarter (mm)
MTW Temperature in the warmest month (°C) PWM Precipitation in the wettest month (mm)
MTC Temperature in the coldest month (°C) PDM Precipitation in the driest month (mm)
TAR Temperature annual range (°C) TES Temperature seasonality (°C)
MWQ Mean temperature in the warmest quarter (°C) PRW Precipitation in the wettest quarter (mm)
MTD Mean temperature in the driest quarter (°C) ANP Mean of annual precipitation (mm)
MTQ Mean temperature in the wettest quarter (°C)

2.6. Optical Saturation Values Obtainment

The study validated that the spherical model based on the semi-variance function
provides highly accurate estimates for calculating OSVs both in Landsat TM [17] and
Landsat 8 OLI imagery [18]. In this study, the spherical model was employed to estimate the
OSVs using 5 bands, including Blue, Green, Red, NIR, and SWIR?2, derived from Landsat 8
OLI imagery. The correlation between these bands and forest AGB was rigorously analyzed,
with statistically significant correlations at the 0.01 level being selected. Subsequently, the
OSVs were calculated across 8 sub-regions, allowing for a comprehensive analysis of OSV
variations. The spherical model can be represented by the following equation:

2BS3

3
y(AGB) = 4 %0+ (358" — 955) 0 < AGB < BS "
¢+ ¢ AGB > BS

where y(AGB) denotes the value of spectral reflectance; cy denotes the reflectance when
biomass is zero; ¢ stands for the rate of change in reflectance; cy + ¢ signifies the maximum or
minimum reflectance value when biomass reaches saturation; BS corresponds to the spectral
OSV for the specific bands. By setting by = co, by = 3¢/2BS, by, = —c/2BS%, x = AGB,
the AGB value can be derived through least squares regression. Through the application of
least squares fitting to Equation (3), the parameters for Equations (4) and (5) are obtained,
enabling the calculation of OSVs by incorporating parameters b; and b, from Equation (6).

y = by + byx + bpx® 3)

3¢ C
bi+b2 = 5557 ~ 20578 @)
c— gosv « by )

_ by
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2.7. Optical Saturation Values” Variation Analyses

It was crucial to find the key variables affecting the OSV variations by clarifying the
relationship between the OSVs and climatic variables. Canonical correlation analysis (CCA)
is a statistical approach used to examine and quantify the linear relationships between two
multivariate datasets [39,40]. Its advantages include revealing the correlations between
multiple variables, dimensionality reduction, integration and interpretation of multiple
datasets, and application in prediction and classification tasks [40,41]. Thus, CCA was
applied to investigate the relationship between OSVs and climatic variables. The key factors
influencing OSV variations were identified using the vegan package in R4.4.1 software as
part of this study. Firstly, 19 climatic variables were standardized to ensure the variables
were comparable across scales or units of measure, and we then eliminated the inequitable
effects due to differences in the scales of variables [41]. Subsequently, standardized climatic
variables and OSVs across 8 sub-regions underwent CCA, elucidating climate-responsive
OSV variations and identifying key climatic determinants.

3. Results
3.1. Relationship between Forest Aboveground Biomass and Original Spectral Bands

Pearson correlation analysis was utilized between the Pinus yunnanensis forest AGB
and five original bands, and the results show that all the original bands were significant at
the 0.01 level. As shown in Figure 4, all the original bands were negative with the Pinus
yunnanensis forest AGB in each sub-region, and the Red band showed the best performance,
with all the absolute values of correlation coefficients greater than 0.2.
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Figure 4. Relationship between Pinus yunnanensis forest AGB and the 5 original bands, with all
original bands showing significance at the 0.01 level across the 8 sub-regions.

A significance test was applied to assess the correlation between Pinus yunnanensis
forest AGB and the five original spectral bands, aiming to determine if there were notable
differences in how each band contributed to the estimation of OSVs for forest AGB esti-
mation. As shown in Figure 5, most bands were not statistically significant, with only a
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few exceptions (* p < 0.05, ** p < 0.01). This indicates that no single band significantly out-
performed the others in estimating OSVs. Consequently, all five bands were incorporated
into the final analysis to compute OSVs for each sub-region. In a more detailed sense, it
illustrates that the correlations across the bands were quite similar, with minor variations.
While the NIR and Red bands displayed slightly stronger negative correlations, these
differences were not pronounced enough to prioritize one band over the others. Therefore,
utilizing all five bands provided a more comprehensive and robust approach to estimating
saturation values across the different regions.
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Figure 5. The significance test of the correlations between five original bands and Pinus yunnanensis
forest AGB. Double asterisks (**) indicate significance at the 0.01 level (p < 0.01), while a single asterisk
(*) denotes significance at the 0.05 level (p < 0.05).

3.2. OSV Variation Analysis

The OSVs in each vegetation sub-region displayed significant differences when using
the same band (Figure 6), though similar OSVs were observed across sub-regions with
different bands. Additionally, the OSVs for Pinus yunnanensis forests in Yunnan Province
ranged from 104.42 t/ha to 209.11 t/ha. The highest OSV (209.11 t/ha) was recorded in
sub-region VII using the Red band, while the lowest OSV (104.42 t/ha) was observed in
sub-region VIII using the Green band. Then, most sub-regions, such as I, II, I1I, and V, were
approximately 180 t/ha. Overall, the variations of OSV in Pinus yunnanensis forests were
extremely noteworthy in Yunnan, showing a trend of lowest in the southeast and highest
in the southwest.
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to the values obtained from the Blue, Green, Red, NIR, and SWIR2 bands.

3.3. The OSV Variations Response to the Climate

As shown in Figure 7, the OSV variations in response to climate were clarified through
CCA. The results reveal that the first axis accounted for 88.3% of the OSV variations, while
the second axis explained 4.9%, making a total of 93.2% of the OSV variations attributed to
climatic factors. Additionally, annual mean temperature (AMT) contributed the most to
the CCA, highlighting temperature as a key factor influencing OSV variations. The mean
temperature during the wettest quarter (MTQ) had the largest impact on the first axis,
whereas annual average precipitation (ANP) made the highest contribution on the second
axis. These findings demonstrate that both temperature and precipitation were the primary
factors driving OSV variations. It was observed that the first axis favored temperature
changes, while the second axis was more influenced by precipitation. Furthermore, the
OSV variations were notable in groups A, B, C, and D, with the order of OSVs being D > C
> B > A. In the four groups, the area of group A was warmer but the driest, the areas of
group B were warmer and drier, the areas of group C were colder and wetter, and the areas
of group D were the warmest and the wettest. Therefore, these indicators show that the
OSV variations were mainly affected by the temperature and humidity.
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Figure 7. Analysis of the impact of climate variables on OSV variations using CCA: (a) relationship
between OSVs and climate variables; (b) rates of contribution of climate variables to OSV variations.
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4. Discussion
4.1. Original Bands

In this study, the original spectral bands exhibited a negative correlation with Pi-
nus yunnanensis forests” AGB, indicating a heightened capacity for light absorption and
scattering in the forest vegetation [42]. This phenomenon resulted in greater light ab-
sorption within areas of dense forest cover, leading to correspondingly lower reflectance
values [10,43]. Conversely, sub-regions characterized by lower biomass, such as bare
ground or grasslands, exhibited higher reflectance [44,45]. This resulted in substantial
differences in reflectance among various sub-regions within the Pinus yunnanensis forests.
This observation is consistent with previous findings [46], yet it provides further validation
of the pronounced light reflectance variability inherent in highly heterogeneous landscapes
like Yunnan. Areas of higher biomass, especially those dominated by tree species such
as Pinus yunnanensis, display significantly enhanced light absorption due to their dense
canopy structure, offering valuable contributions to the use of spectral imaging technology
in such complex ecosystems [47]. These results underscore the critical need to incorporate
spatial variability into modeling efforts, thereby enhancing the precision of AGB estimation
in other similarly heterogeneous forest systems [48].

The Red band exhibited the strongest performance among the original spectral bands,
which can be attributed to the fact that chlorophyll in the leaves efficiently absorbs red light
for photosynthesis. Chlorophyll has a pronounced absorption peak in the red waveband,
enabling plants to capture red light with exceptional efficiency for energy conversion [49,50].
This absorption of red light by chlorophyll not only drives photosynthesis, but also stimu-
lates increased plant growth and biomass accumulation [51,52]. The dense canopies and
high tree density in Pinus yunnanensis forests, characterized by an extensive leaf area index
due to their numerous clustered leaves, further enhance this effect [53]. Consequently, a
higher concentration of chlorophyll is required in regions with substantial AGB, absorbing
more red light to fuel photosynthesis and promote the synthesis of organic compounds.
This contributes to the greater AGB observed in Pinus yunnanensis forests in Yunnan, which,
in turn, further reduces overall reflectance [54,55]. These findings offer novel empirical
support for understanding how spectral characteristics, particularly red light absorption,
directly influence biomass accumulation in high-biomass vegetation types such as Pinus
yunnanensis [56]. This relationship holds significant potential for refining remote sensing
models that address biomass saturation challenges in highly heterogeneous regions [57].
Moreover, our study suggests that Red band reflectance could serve as a robust indicator
for biomass estimation in other dense forest ecosystems, providing valuable insights for
enhancing global biomass monitoring efforts [58].

4.2. OSV Variations

In this study, the largest OSV was 208.31 t/ha in sub-region VII, while the smallest OSV
was 107.45 t/ha in sub-region VIII, with a mean OSV of 165.11 t/ha when assessing OSVs
derived from the SWIR2 band. Comparatively, the OSVs across different vegetation types
varied between 100 t/ha and 159 t/ha in Zhejiang Province, with pine forests reaching an
OSV of 159 t/ha [17]. Notably, the average OSV for Pinus yunnanensis forests in Yunnan
surpassed that of the pine forests in Zhejiang, likely due to the mountainous plateau
topography, complex stand structure, and heightened forest heterogeneity in Yunnan [59].
High forest heterogeneity and complex stand structures were identified as the primary
contributors to the saturation issue [6]. In comparison, an associated study examining
OSVs for oak forests in Yunnan reported a range from 104 t/ hm? to 182 t/hm? [18]. The
disparity in OSV ranges between these studies can largely be attributed to the intrinsic
structural and physiological differences between coniferous forests, like Pinus yunnanensis,
and broadleaf forests, such as oak. Coniferous species typically have denser canopies with
narrower leaves, affecting light absorption and scattering, whereas broadleaf species, with
their larger and more complex leaves, generally exhibit higher photosynthetic activity and
greater biomass accumulation, which may contribute to distinct OSV patterns across these
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forest types [60,61]. This study is among the first to offer a quantitative analysis of how
complex topography and forest heterogeneity influence OSV variations in Pinus yunnanensis
forests. It reveals that OSVs are notably higher in highly heterogeneous and mountainous
regions, providing important theoretical support for understanding the role of topography
in biomass saturation. These findings suggest that similar effects of heterogeneity may be
observed in other diverse forest ecosystems, emphasizing the need for region-specific OSV
models that account for topographical complexity [62].

Moreover, it was observed that OSVs varied across different sub-regions, regardless of
which original bands were used, indicating that OSV variation patterns exist inherently
to some extent. A discernible trend emerged for Pinus yunnanensis forests in Yunnan,
with the highest OSV recorded in sub-region VII, higher OSVs in sub-regions I, 1, IIL, 1V,
and V, and lower OSVs in sub-region VI, with the lowest value in sub-region VIII. This
pattern suggests that OSVs for Pinus yunnanensis forests in Yunnan are the highest in the
southwestern regions and lowest in the southeastern areas. The systematic analysis of OSV
differences across these sub-regions not only highlights the spatial variability of OSVs, but
also provides novel insights into how OSVs respond to geographical and climatic influences.
This finding underscores the necessity of developing predictive models that accurately
capture the spatial variability of OSVs, particularly in heterogeneous environments like
Yunnan [63]. Additionally, these results highlight the potential for designing targeted
biomass management strategies that consider specific OSV variation patterns across diverse
forest ecosystems.

4.3. The Key Climatic Variables Affecting OSV Variations

The OSV variations were highly responsive to climatic conditions, with 93.2% of the
variation explained by climatic variables through CCA. Among these, the AMT made the
greatest contribution on the first axis, indicating that temperature is one of the primary
factors influencing OSV variations. Temperature affects the absorption of red and other
visible light by influencing plant photosynthesis, which in turn impacts plant growth and
contributes to a more complex stand structure [64,65]. Additionally, the MTQ and ANP
made the highest contributions on the first and second axes, respectively. MTQ is crucial as
it reflects the temperature conditions during the peak growing season, when precipitation
is at its highest, significantly impacting physiological processes such as photosynthesis and
respiration. Favorable temperatures enhance plant growth, nutrient uptake, and photosyn-
thetic activity, ultimately increasing species heterogeneity [66,67]. ANP plays a vital role in
determining water availability within an ecosystem [68]. Sufficient precipitation is essential
for plant growth, as it provides the necessary water for photosynthesis and other metabolic
processes. Conversely, inadequate rainfall leads to water stress, limiting plant productiv-
ity [69], and resulting in a lower leaf area index (LAI) and higher band reflectance, which,
in turn, lowers biomass saturation values. On the other hand, higher ANP creates optimal
conditions for plant growth, allowing for increased LAI and reduced band reflectance [70],
which leads to higher saturation values. This comprehensive examination of the climatic
influence on OSV variability provides profound insights into the climatic determinants
of forest AGB and addresses the issue of saturation. By systematically examining the
influence of key variables such as temperature and precipitation, this study advances our
understanding of how climatic factors shape the distribution and OSVs of forest AGB,
providing a robust framework for future climate-based biomass models [71]. Moreover,
our findings suggest that the interplay between temperature and precipitation could serve
as a key predictor for monitoring forest AGB in similarly forested regions worldwide,
contributing to more accurate AGB estimations under varying climatic conditions.

The results indicate that OSV variations were primarily influenced by temperature
and humidity, as demonstrated through CCA. This can be explained by the pivotal role tem-
perature plays in regulating various biochemical and physiological processes in plants [72].
Temperature affects the efficiency of photosynthesis, the rate of metabolic reactions, and
the overall growth and development of vegetation [73]. Similarly, humidity is closely

218



Land 2024, 13,1534

tied to water availability, which is crucial for plant growth and survival [74]. Adequate
humidity levels provide sufficient moisture for root absorption, facilitating the transport
of nutrients and energy, promoting leaf development, and reducing band reflectance [75].
In contrast, insufficient humidity can lead to water stress and diminished plant produc-
tivity [76]. The climate in Yunnan, characterized by significant variability in temperature
and humidity due to geographical location, elevation, and seasonality [77], has shaped
the region’s complex stand structure, diverse tree species composition, and heightened
forest heterogeneity [9,78-80]. These findings enhance our understanding of the roles
temperature and humidity play in shaping forest structural complexity and species di-
versity. This study’s comprehensive examination of the relationship between climate and
OSV variability advances the discourse on climate-driven processes in forest ecosystems,
offering valuable theoretical and practical insights for improving AGB estimation models
in heterogeneous environments [81]. Furthermore, by highlighting the intricate interre-
lationships between temperature, humidity, and the saturation problem, this research
underscores the importance of developing integrative models that incorporate multiple
climatic variables across diverse ecological contexts [82]. Numerous studies have demon-
strated that the saturation problem and its variations are primarily driven by complex
forest stand structures, diverse species composition, and high forest heterogeneity [6,10,83].
Accordingly, the OSV variations in Pinus yunnanensis forests were interpreted in response
to climate and key climatic variables, with temperature and humidity identified as the
primary factors influencing OSV variability. This study not only corroborates prior research
on the significance of forest structure and heterogeneity in OSV variation, but also offers a
comprehensive analysis of the climatic factors that govern these variations. By identifying
the critical role of temperature and humidity, this work deepens our understanding of
the intricate interplay between climatic conditions and saturation problems in forest AGB
estimation using optical imagery.

4.4. Limitations and Future Research

This study leveraged Landsat 8 OLI imagery to quantify OSVs in Pinus yunnanensis
forests across Yunnan. While this sensor offers valuable spectral data and an extensive
historical archive, it has inherent limitations that may introduce uncertainties in estimating
OSVs. The 30 m spatial resolution, although effective for large-scale forest monitoring, may
fall short in capturing the fine-scale heterogeneity of forests, particularly in regions like
Yunnan, where diverse forest structures and complex terrain are prevalent. This limitation
can result in mixed pixels, where signals represent multiple land cover types, thereby
diminishing the accuracy of OSV estimates [84]. Meanwhile, its lower spectral resolution
compared to high-resolution sensors like WorldView-3 or hyperspectral platforms may
result in the inadequate detection of subtle vegetation variations, potentially causing
biomass overestimation or underestimation, especially in high-biomass areas susceptible to
saturation effects [85]. Then, this study highlighted the limitations of using year-round data,
which, while comprehensive, do not differentiate between the growing and non-growing
seasons. Since vegetation productivity and spectral reflectance tend to peak during the
growing season, this may impact OSV estimates [86]. We should explore seasonal data
separation to better account for variations in vegetation dynamics across different times of
the year in future research. Furthermore, other research found that the OSV was 192 t/ha
using the Landsat 8 OLI, 247 t/ha using the Worldview-3, and 204 t/ha using Sentinel-2
MSI images [87], indicating that various remote sensing data had different saturation
values [10]. Therefore, it is essential to investigate alternative remote sensing sources,
including Sentinel-2, SPOT, MODIS, and QuickBird, for use in estimating forest AGB and
OSV variations, particularly in areas of high forest heterogeneity.

Despite these sensor limitations, this study identified key climatic variables influencing
OSV variations, with AMT emerging as the most significant factor using CCA. However,
whether the inclusion of these climatic variables can enhance AGB estimation accuracy
using Landsat 8 OLI remains an open question for future research. The observed OSV
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variations were also responsive to temperature and humidity, underscoring the need for
further exploration into how OSV dynamics interact with climatic and environmental
factors across diverse tree species and regions. It is crucial to explore the responses of the
OSV variations using optical images of other tree species to climate and other environmental
factors correspondingly.

5. Conclusions

This study analyzes how climatic factors influence OSV variations and identifies the
key variables affecting these variations in Pinus yunnanensis forests using Landsat 8 OLI
imagery. OSVs were analyzed across eight sub-regions of Yunnan Province, China, and
CCA was used to determine the main climatic drivers. The results show that the Red
band of Landsat 8 OLI had the strongest performance, with OSVs ranging from 104.42
t/ha to 209.11 t/ha, peaking in the southwest and being the lowest in the southeast.
The CCA revealed that 93.2% of the OSV variation could be explained by climate, with
temperature and humidity emerging as the most significant factors. The AMT was the
highest-contributing variable of 19 climate variables, and the MTQ and ANP made the
highest contributions in the first and second axes, respectively. Ultimately, it was found
that the hydrothermal conditions were the main factors affecting the OSV variations at the
general level, and the OSVs were larger in the warmer and wetter sub-regions.
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Abstract: Soil-based emissions from land conversions are often overlooked in climate planning. The
objectives of this study were to use quantitative data on soil-based greenhouse gas (GHG) emissions
for the state of Georgia (GA) (USA) to examine context-specific (temporal, biophysical, economic,
and social) climate planning and legal options to deal with these emissions. Currently, 30% of the
land in GA has experienced anthropogenic land degradation (LD) primarily due to agriculture
(64%). All seven soil orders were subject to various degrees of anthropogenic LD. Increases in overall
LD between 2001 and 2021 indicate a lack of land degradation neutrality (LDN) in GA. Besides
agricultural LD, there was also LD caused by increased development through urbanization, with
15,197.1 km? developed, causing midpoint losses of 1.2 x 10! kg of total soil carbon (TSC) with a
corresponding midpoint social cost from carbon dioxide (CO,) emissions (SC-CO;) of USD $20.4B
(where B = billion = 10%, $ = U.S. dollars (USD)). Most developments occurred in the Metro Atlanta
and Coastal Economic Development Regions, which indicates reverse climate change adaptation
(RCCA). Soil consumption from developments is an important issue because it limits future soil or
forest carbon (C) sequestration potential in these areas. Soil-based emissions should be included
in GA’s carbon footprint. Understanding the geospatial and temporal context of land conversion
decisions, as well as the social and economic costs, could be used to create incentives for land
management that limit soil-based GHG emissions in a local context with implications for relevant
United Nations (UN) initiatives.

Keywords: carbon; damage; decarbonization; gas; greenhouse; land use

1. Introduction

Climate change affects many facets of society (e.g., social, economic, etc.) and requires
context-specific climate planning (Figure 1). In general, “context is defined as the interrelated
conditions in which something exists or occurs” [1]. For example, soil-based emissions occur
because of economic activity and biophysical changes from land conversions leading
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to damages, which can be described in terms of societal costs (e.g., social costs of CO,
emissions, SC-CO, [2]) (Figure 1). Most states in the United States of America (USA)
do not have climate change preparation and adaptation plans, and the very few states
that have plans often overlook soil-based emissions (https://www.georgetownclimate.
org/adaptation/plans.html (accessed on 15 March 2024)) [3]. The omission of soil-based
emissions can lead to the underestimation of a state’s carbon footprint and can harm overall
climate change mitigation efforts. Understanding emissions patterns provides important
geospatial and temporal information about land and soil consumption patterns. Soil
consumption from developments is an important issue because it limits future soil or forest
C sequestration potential in these areas. Understanding the context of land conversion
decisions, as well as the social and economic costs, could be used to create mechanisms to
incentivize land use decisions that limit soil-based greenhouse gas (GHG) emissions within
a local context [4].

Temporal

Context-
specific
climate

planning

(e.g., social costs)

(e.g., past, present, future)

Figure 1. Examples of different contexts which can be used in context-specific climate planning.

The state of Georgia (GA) currently does not have climate change preparation and
adaptation plans. However, GA conducted research for the state’s climate action using
an approach developed specifically for GA, which is called “Drawdown GA” (https://
www.drawdownga.org/carbon-reduction-visualizer/ (accessed on 16 August 2024)) [5-7].
This GHG reduction framework evaluates the baseline emissions for GA and identifies
and examines possible emission reduction options [6]. This research evaluated 20 “high
impact” carbon reduction strategies but assumed there was no change in soil-based C
sequestration [7]. A companion interactive website, “Drawdown GA,” further explores the
impact of the proposed reductions and includes the concept of “Climate Smart Agriculture,”
which can use agronomic conservation practices to increase C sequestration, as well as the
assumption that land is only a sink of GHG emissions. Soil-based emissions because of
land conversions are not accounted for in the “Drawdown GA” framework [5]. Brown et al.
(2021) [7] stress the importance of “place” and “context” in developing climate action plans.
In addition to these GA research initiatives, on July 14, 2023, the EPA granted the state of
GA $3 million ($, USD) to develop its first-ever climate plan as a part of the United States
(US) Congressional Inflation Reduction Act (IRA) of 2022 [8-10].

The omission of soil-based emissions from land conversions in GA climate change
preparation and adaptation plans can lead to the underestimation of emissions from
the state as well as an inability to reduce future potential emissions through sustainable
land and soil management. The soil-based emissions potential from land conversions is
dependent on many factors, including the inherent soil quality of soil types found in GA
(Figure 2). The inherent SQ of GA is dominated by strongly weathered Ultisols (77%) with
lower SQ status (Figure 2) [11]. All other soil orders have limited presence in the state
(Table 1). Citizens of GA have selected the State Soil as Tifton (soil order: Ultisols) because
it is among the most extensive soils in the state [12]. Soils of GA provide a wide range of
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ecosystem services (ES) (cultural, provisioning, regulation/maintenance) to the economic
development regions for GA (Figure 2, Table S1) [11]. Regulating ES provided by GA soils
is particularly relevant to the state’s climate change planning, especially concerning soil C
storage and the potential for C loss because of disturbance, which results in the oxidation
of soil organic matter (SOM) and subsequent release of carbon dioxide gas (CO;) [11]. The
knowledge of soil C stocks is relevant to the GA climate change plan; however, it should
be noted that this stock was already significantly depleted during the state’s land and soil
use history [13]. As of 2021, the remaining estimated total mid-point storage for TSC for
GA was 1.4 x 10'2 kg C with an estimated total mid-point monetary value of $244.2B (i.e.,
$244.2B billion U.S. dollars (USD), where B = billion = 10° in social costs of C (SC-CO,) [2]
(Table 1)). From these total estimates, SOC was 60% of the total value (1.3 x 10! kg C,
$220.4B), and SIC represented 40% of the total value (1.4 x 101 kg C, $23.8B). We have
previously reported that the state of GA ranked 15th for SOC [14], 34th for SIC [15], and
26th for TSC [16] for the SC-CO, values among the 48 contiguous US states. Soil orders
with the highest midpoint monetary value and storage for TSC were Ultisols (8.0 x 10!!
kg C, $135.1B), Histosols (2.2 x 10" kg C, $37.2B), and Entisols (1.6 x 10!! kg C, $26.9B)
(Table 1). Counties in GA having the highest midpoint TSC values included Charlton (1.1
x 101 kg C, $18.6B), Ware (1.1 x 10 kg C, $18.6B), and Clinch (3.5 x 10!° kg C, $5.9B)
(Table 1). Estimated values of the remaining TSC storage and its social costs estimate the
potential C footprint of GA soils upon disturbance with its variability (minimum, midpoint,
and maximum) reported in the Supplemental Materials (Table S2).

State of Georgia

Legend

Economic development regions

1. Northwest .

Soil Orders:

2. Northeast [T Alfisols

3. Metro Atlanta m Entisols

4. West Central B Histosols

5. East Central I inceptisols

6. Middle B Mollisols

7. East || Spodosols

8. West Ultisols

9. South ] \
o, Southeat | Vertisols Kilometers

. _ | Water bodies/ No data 0 40 80 160 240 —

11. Southeast % Capital city

12. Coastal

Figure 2. State of Georgia (GA) (USA) soil map (30° 35" N to 35° N; 80° 50’ W to 85° 36’ W) derived
from the SSURGO soils database [17] with boundaries of economic development regions [18]. The
inherent soil quality (soil suitability) of GA is dominated by strongly weathered Ultisols (77%) with
lower inherent soil quality status.
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Table 1. Distribution of inherent soil quality and soil carbon regulating ecosystem services in the

state of Georgia (GA) (USA) by soil order (photos courtesy of USDA /NRCS [19]).

Soil Regulating Ecosystem Services in the State of Georgia (USA)

Degree of Weathering and Soil Development (Inherent Soil Quality)

Slight (17%) Moderate (3%) Strong (80%)
Entisols Inceptisols Histosols Alfisols Mollisols Spodosols Ultisols
8% 8% <1%

1%

3%

77%

Aty

AT

R
b

Midpoint storage and social cost of soil organic carbon (SOC): 1.3 X 10

9.9 x 1019 kg 1.0 x 10" kg 2.2 x 101 kg 2.8 x 1010 kg 3.8 x 107 kg 6.1 x 1010 kg 8.0 x 10! kg
$16.8B $17.0B $36.6B $4.7B $0.6B $10.2B $135.1B
8% 8% 17% 2% <1% 5% 61%
Midpoint storage and social cost of soil inorganic carbon (SIC): 1.4 x 10! kg C, $23.8B

6.0 x 1010 kg 5.8 x 1010 kg 3.7 x 10 kg 1.6 x 1019 kg 3.2 x 107 kg 3.0 x 10” kg 0
$10.2B $9.8B $0.6B $2.7B $5.4M $0.5B $0
43% 41% 3% 11% <1% 2% 0%
Midpoint storage and social cost of total soil carbon (TSC): 1.4 x 10'? kg C, $244.2B
1.6 x 10! kg 1.6 x 10! kg 2.2 x 10" kg 4.4 x 10" kg 7.0 x 107 kg 6.4 x 100 kg 8.0 x 101 kg
$26.9B $26.8B $37.2B $7.4B $12M $10.7B $135.1B
11% 11% 15% 3% <1% 4% 55%
Sensitivity to climate change
Low Low High ‘ High High ‘ Low Low
SOC and SIC sequestration (recarbonization) potential
Low Low Low ‘ Low Low ‘ Low Low

Note: Entisols, Inceptisols, Alfisols, Mollisols, Spodosols, and Ultisols are mineral soils. Histosols are mostly
organic soils. M = million = 10%; B = billion = 10%; $ = U.S. dollars (USD). See Supplementary Materials Table S2
for minimum and maximum values.

Previously, Brown et al. (2021) [7] claimed that GA lands serve as a sink for GHG
emissions with only the potential to increase GHG sequestration and not as a contributor
to emissions. However, this assumption does not consider past, current, and future soil-
based emissions from land conversions. This study hypothesizes that it is possible to
quantitatively evaluate soil-based greenhouse gas (GHG) emissions for the state of GA
within temporal, biophysical, economic, and social contexts to enable climate planning and
to help use either existing or new legal strategies to limit and provide greater responsibility
and accountability for damages from these emissions.

The primary objectives of this study were to use satellite-based remote sensing (Multi-
Resolution Land Characteristics Consortium (MRLC) [20]) and soil spatial databases (Soil
Survey Geographic Database (SSURGO) [17,21], and the State Soil Geographic Database,
(STATSGO) [22]) to examine soil-based emissions from land conversions in GA in biophysi-
cal, economic, and social contexts. Sub-objectives include: (1) quantifying the total area of
anthropogenic land degradation (LD) and potential land for nature-based solutions (NBS)
disaggregated by type of LD and soil type; (2) quantifying the total area of past (prior to
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and through 2021) and recent (2001-2021) developments in GA by soil type; (3) quantifying
the total soil C loss as a result of the past and recent developments based on information
provided by Guo et al. (2006) [23]; (4) estimating the social cost of C [2] loss from past and
recent developments; (5) presenting results in both tabular and spatial formats (e.g., maps)
to identify emission hotspots for climate change planning and (6) discussing the use of
existing or novel legal strategies to provide greater accountability for emission damages in
GA and worldwide.

2. Materials and Methods

This study used an accounting framework (Table S3) to examine soil-based emissions
in biophysical, economic, and social contexts and their temporal changes in GA. The
biophysical analyses involved calculating soil organic, inorganic, and total carbon stocks
(kg), the area (km?), and proportion (%) of LD and LDN by soil type, land cover type, and
administrative unit (state, county). Land cover analysis using classified satellite remote
sensing data (30-m) provided by the Multi-Resolution Land Characteristics Consortium
(MRLC) [20] allowed the evaluation of LD based on NLCD class legend and descriptions
between 2001 and 2021 (Figure S1). To combine the land cover data with high-resolution
soil spatial layers (SSURGO) [21], the data were converted to vector from the original raster
format and then unioned with the soil data. This combined dataset of land cover and soil
information was analyzed using ArcGIS Pro 2.6 [24] to examine the soil types associated
with various land cover types and changes.

The economic analysis focused on calculating monetary damages from LD within
various administrative units. The soil spatial analysis was combined with values provided
by Guo et al. (2006) [23] to estimate soil C contents for SOC, SIC, and TSC (kg m2) by
administrative unit (e.g., county) and soil order (Table S3, Table S4). For the economic
analysis, these calculated soil contents were used to calculate the C that was likely lost
through CO, emissions as the social cost of carbon (SC-CO,) (Table S4) in monetary terms.
These calculations relied on the EPA SC-CO; valuation of $46 per metric ton of CO,, which
serves as a damage estimate from CO; release but underestimates the true costs and impacts
associated with climate change damage [2]. Monetary values ($ m~2) were determined
for each area using Equation (1), while totals were calculated by summing within the
polygon boundary (with SC = soil carbon and a metric tonne equal to 1 megagram (Mg) or

1000 kilograms (kg)):
$USD kg 1Mg _ 44MgCO, $46USD
m? <SCC°“tem’ m2> * 10%kg ~ 12MgSC * MgCO, @

As a calculation example for areas with Alfisols soil order, Guo et al. (2006) [23]
provided a midpoint estimate of 7.5 kg m~2 for SOC content (2-m soil depth; Table S4).
This reported soil content is then used in Equation (1) to calculate an area-normalized SOC
value of $1.27 m~2 (Table S4). The SOC content with its area-normalized value for that area
is subsequently multiplied by the area of Alfisols within GA (3699.0 km?) to create an SOC
stock estimate of 2.8 x 10'Y kg and a $4.7B monetary value of SC-CO,.

3. Results
3.1. Biophysical Context
3.1.1. Total Area of Anthropogenic Land Degradation (LD) and Potential Land for
Nature-Based Solutions (NBS) Disaggregated by Type of LD and Soil Type

As of 2021, almost 30% of the land in GA experienced anthropogenic land degradation
(LD) primarily due to agriculture (64%) (Figure 3, Table 2, Figure S2). All seven soil orders
were subject to varying degrees of anthropogenic soil degradation and LD: Ultisols (35%),
Mollisols (30%), Alfisols (20%), Entisols (13%), Spodosols (13%), Inceptisols (13%), and
Histosols (0.1%). Increases in soil and LD between 2001 and 2021 (+3.7%) indicated a lack of
land degradation neutrality (LDN) in GA (Table 3). Almost 44% of GA is covered by mixed,
deciduous, and evergreen forests, which are primarily found in soils classified as Ultisols
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because of their high susceptibility to soil erosion and leaching [12]. Land degradation in
GA has a long history since European settlers changed the natural soils in GA with various
agricultural uses (e.g., corn, cotton, tobacco, soybeans, etc.), and these soils now require
modern technologies to support their fertility status because the underlying material of
these soils has low native fertility [25]. Only 8.8% of the land in GA is potentially available
for NBS (Figures S3 and S4), the availability of which is further complicated by the high
amount of private land ownership (90.3%) in the state [26]. Most of the potential land
for NBS belonged to the soil order of Ultisols (79.5%) with inherently low SQ and high

susceptibility to erosion (Table 3).
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Figure 3. State of Georgia (GA) (USA) 2021 land cover map (30° 35’ N to 35° N; 80° 50’ W to 85° 36’ W)
(using data from Multi-Resolution Land Characteristics Consortium (MRLC) [20]).

Table 2. Land use/land cover (LULC) by soil order in Georgia (GA) (USA) in 2021.

Degree of Weathering and Soil Development (Inherent Soil Quality)
NLCD La&dU(I:,%‘;?r Classes Arze(;zl:;lﬂgt[?}“ c . Slig.ht . . Moderate ' Strong .
Soil Health Continuum (km?) Entisols Inceptisols Histosols Alfisols Mollisols Spodosols Ultisols
2021 Area by Soil Order (km?)

Woody wetlands 24073.8 5009.2 41432 1515.0 662.3 0.3 857.7 11886.1
Shrub/Scrub 6051.0 408.2 176.4 0.4 174.3 0.1 604.7 4686.8
Mixed forest 9544.6 610.0 1175.9 0.1 279.3 0.6 11.1 7467.8
Deciduous forest 18518.2 879.4 2795.8 0.0 503.6 0.4 6.1 14332.9
Herbaceous 6579.4 487.6 182.0 15 173.9 0.2 348.8 5385.5
Evergreen forest 35692.0 1824.6 1321.5 41 1124.0 0.5 2414.6 29002.7
Emergent herbaceous wetlands 2561.1 1561.6 1433 31.3 30.8 0.0 78.6 715.6
Hay/Pasture 10192.7 451.6 534.2 0.1 376.0 0.5 96.0 8734.3
Cultivated crops 17879.5 447.1 207.8 0.0 65.1 0.2 83.7 17075.6
Developed, open space 7992.8 369.0 4109 0.9 168.6 0.0 235.6 6807.8
Developed, low intensity 4629.3 192.1 162.9 0.2 85.2 0.0 133.5 4055.3
Developed, medium intensity 1899.9 96.3 74.7 0.1 34.5 0.0 494 1644.8
Developed, high intensity 675.0 39.3 26.0 0.0 12.7 0.0 14.3 582.8
Barren land 309.4 553 13.4 0.0 8.9 0.0 14.0 217.8
Totals 146,598.9 12,431.4 11,367.9 1553.8 3699.0 2.8 4948.0 112,596.0

Note: Entisols, Inceptisols, Alfisols, Mollisols, Spodosols, and Ultisols are mineral soils. Histosols are most often

organic soils.
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Table 3. Anthropogenic land degradation status and potential land for nature-based solutions by soil
order for the state of Georgia (GA) in the United States of America (USA) in 2021. Percent changes
in area from 2001 to 2021 are shown in parentheses. Reported values have been rounded; therefore,

calculated sums and percentages may exhibit minor discrepancies.

Total Area Anthropogenically Types of Anthropogenic Degradation P"It\le;ﬁ:lj;?::: dfor
Soil Order Degraded Land Barren Developed Agriculture Solutions
(km?) (%) (km?) (km?) (km?) (km?) (km?)
Slightly Weathered Soils
25,353 17.3 3082 (+5.9) 68 (—3.4) 1372 (+24.7) 1641 (—5.7) 1325 (+5.3)
Entisols 12,431 8.5 1651 (+5.9) 55 (—0.2) 697 (+22.2) 899 (—3.8) 951 (+9.2)
Inceptisols 11,368 78 1430 (+5.8) 13 (—14.7) 674 (+27.4) 742 (~7.9) 372 (~3.9)
Histosols 1554 1.1 1(+22.9) 0(0) 1(+20.4) 0(0) 2 (+151.6)
Moderately Weathered Soils
3701 2.5 752 (+2.4) 9(—4.4) 301 (+25.1) 442 (—8.8) 357 (+9.2)
Alfisols 3699 25 751 (+2.4) 9 (—4.5) 301 (+25.1) 441 (-8.8) 357 (+9.2)
Mollisols 3 0 1(+6.1) 0(0) 0(0) 1(+5.0) 0(0)
Strongly Weathered Soils
117,544 80.2 39,745 (+3.3) 232 (—10.6) 13,524 (+26.6) 25,990 (—5.3) 11,258 (+19.8)
Spodosols 4948 3.4 626 (+27.6) 14 (+93.2) 433 (+16.7) 180 (+59.5) 967 (+24.0)
Ultisols 112,596 76.8 39,118 (+3.3) 218 (—13.5) 13,091 (+26.9) 25,810 (—5.5) 10,290 (+19.4)
All Soils
Totals 146,599 100.0 43,579 (+3.7) ‘ 309 (—8.9) ‘ 15,197 (+26.4) 28,072 (—5.3) 12,940 (+17.8)

Note: Entisols, Inceptisols, Mollisols, Spodosols, Ultisols, and Alfisols are mineral soils. Histosols are mostly
organic soils. Anthropogenically degraded land was calculated as a sum of degraded land from agriculture
(hay/pasture, and cultivated crops), from development (developed, open space; developed, low intensity;
developed, medium intensity; developed, high intensity), and barren land. Developed land includes categories:
developed, open space; developed, low intensity; developed, medium intensity; developed, high intensity.
Agriculture includes categories: hay/pasture; and cultivated crops. Potential land for nature-based solutions
(NBS) is limited to barren land, shrub/scrub, and herbaceous land cover classes, to provide potential land areas
without impacting current land uses. Change in the area was calculated as follows: ((2021 Area — 2001 Area) /
2001 Area) x 100%.

3.1.2. Biophysical Losses and Damages to Ecosystem Services

Anthropogenic LD is a dynamic process that causes various damages to ecosystem
services (ES) (cultural, regulation/maintenance, provisioning), which need to be quantified
both spatially and temporally. Table 4 shows anthropogenic LD trends by soil type in
GA from 2001 to 2021, which demonstrates an increase in developments in place of more
land-conserving LULC (e.g., mixed forest, deciduous forest, etc.). As an example, devel-
opments within the state of GA caused loss and damage (L&D) to regulating ES because
of the loss of land that could potentially be used for soil carbon (C) sequestration with
a sum of 15,197.1 km? of land area converted to developments before and through 2021
(Table 3). The largest area losses from developments were found in Gwinnett (741.7 km?),
Cobb (577.9 km?), and Fulton (441.2 km?) counties (Table S5). Between 2001 and 2021,
new developments led to a total of 3564.9 km? of land being converted to developments
(Table S5). The areas with the largest losses from development were found in Gwinnett
(208.8 km?), Fulton (149.1 km?), and Henry (117.0 km?) counties (Table S5). Most develop-
ments occurred adjacent to the Atlanta urban area and came at the expense of cultivated
and forest areas (Figure 4). This analysis determined that between 2001 and 2021, land
developments mainly occurred near existing urban and coastal areas. Georgia is domi-
nated by the soil order of Ultisols, which have inherently low C sequestration potential.
Projected urbanization increases will likely cause a future reduction in land available for
C sequestration. Another example of L&D is from soil carbon (C) loss and the associated
emissions from the land conversion process to create developments in GA (USA) (Figure 5).
These losses that occurred before and up to 2021 resulted in an estimated midpoint total
of 1.2 x 10" kg of C losses (Table S6). The largest soil C losses were seen in Gwinnett
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(5.8 x 10° kg C), Cobb (4.3 x 10 kg C), and Fulton (3.4 x 10 kg C) counties (Table S5). All
these counties are in proximity to the urban center of Atlanta. New development activity
between 2001 and 2021 caused a total of 6.5 x 10'° kg in C losses (Table S7). The highest
soil C losses were seen in Gwinnett (5.3 x 10° kg C), Fulton (3.4 x 10° kg C), and Chatham
(2.2 x 10° kg C) counties (Figure 5, Table S5).

Table 4. Land use/land cover (LULC) change (%) by soil order in Georgia (USA) from 2001 to 2021.

Degree of Weathering and Soil Development (Inherent Soil Quality)

NLCD Land Cover Classes Change in Area, Slight Moderate Strong
(LULC), 2001-2021
Soil Health Continuum (%) Entisols Inceptisols Histosols Alfisols Mollisols Spodosols Ultisols
Change in Area, 2001-2021 (%)

Woody wetlands 0.7 1.1 0.8 13 0.9 19 2.3 0.2
Shrub/Scrub 55.9 244 3.9 44.6 45.0 400.0 97.4 58.5
Mixed forest —4.0 -9.2 0.2 -32.9 -19 -3.0 —44.5 —4.1
Deciduous forest —13.2 —15.5 —3.8 —51.0 -12.0 -79 —83.3 —14.6
Herbaceous —2.7 0.1 —9.6 218.9 —12.0 100.0 —25.3 —0.4
Evergreen forest -2.3 -0.8 —2.4 —18.6 1.0 —27.2 —11.6 -17
Emergent herbaceous wetlands 14.8 17 22.6 —28.2 416 52.9 334 574
Hay/Pasture —11.3 —8.0 -11.5 29.8 —11.2 —6.6 121.6 —121
Cultivated crops -1.5 1.0 2.7 714 7.8 42.6 20.7 -1.8
Developed, open space 5.0 —0.1 9.8 6.1 43 —28.9 —5.6 54
Developed, low intensity 37.7 382 39.2 73.6 427 —6.3 35.6 37.6
Developed, medium intensity 154.4 129.2 1719 126.0 159.1 1000.0 192.3 154.2
Developed, high intensity 122.6 99.2 1449 150.0 118.0 0.0 143.1 123.1
Barren land -89 —0.2 —14.7 216.7 —4.5 0.0 93.2 —13.5

Note: Entisols, Inceptisols, Alfisols, Mollisols, Spodosols, and Ultisols are mineral soils. Histosols are most often
organic soils. Change in the area was calculated as follows: ((2021 LULC Area — 2001 LULC Area) / 2001 LULC

Area) * 100%.
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Figure 4. Loss and damage (L&D) because of loss of land for potential soil carbon (C) sequestration
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from (a) past developments (prior and through 2021), and (b) land developments that occurred in
time interval (2001-2021) for Georgia (GA) (USA).
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Figure 5. Loss and damage (L&D) because of soil carbon (C) loss with associated emissions from
(a) past land developments (through 2021), and (b) more recent land developments (2001-2021) in
Georgia (GA) (USA). Note: M = million = 10°; B = billion = 10°.

3.2. Economic Context
3.2.1. Anthropogenic Land Degradation (LD) as a Proxy for Economic Development

Anthropogenic LD in GA is closely associated with past and current economic activi-
ties in the state, with a high degree of spatial variability between counties and economic
development regions (Table 5, Figure 6). There were 68 counties below the value of 29.7%
anthropogenic LD for the state as a whole and 91 counties at or above this value. Southwest
(48.5%) and Metro Atlanta (42.5%) economic development regions had the highest propor-
tions of anthropogenic LD in the state (Table 5) compared to 29.7% of anthropogenic LD for
the whole state. Table 5 shows anthropogenic LD status in 2021 but likely does not account
for historical anthropogenic LD or most inherent LD. Metro Atlanta (+18.3%) and Coastal
(+11.0%) economic development regions experienced the highest increase in development
between 2001 and 2021. Among GA counties, Cobb (71.8%), Gwinnett (71.6%), and Clayton
(65.4%) had the highest anthropogenic LD proportions. All three counties are in the Metro
Atlanta economic development region. Counties with the lowest anthropogenic LD were
McIntosh (5.1%) (in the Coastal economic region), Charlton (5.2%), and Clinch (6.5%) (both
in the Southeast economic development region).

It should be noted that 29.7% of the current level of anthropogenic LD does not account
for historic anthropogenic LD, where as much as 95% of the forests in GA were removed
by the 1920s for agriculture and had to be subsequently reforested after agricultural uses
collapsed [27]. The rapid development of the area in and around Atlanta has led to the
rapid loss and fragmentation of forests [28] in concert with the increase in LD. This loss of
forest habitat has likely caused a range of ecological and habitat damages [28], as well as
loss of above-ground C with forest removal. A study by Obata et al. (2020) [29] examined
forest disturbance between 1987 and 2016 and found that 29.2% of the state was disturbed,
noting the difference between forestry cycles and urbanization.
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Table 5. Land degradation (LD) status and trends in economic development regions of Georgia (GA)
(USA). Percent changes in area from 2001 to 2021 are shown in parentheses. Reported values have
been rounded; therefore, calculated sums and percentages may exhibit minor discrepancies. This
table shows anthropogenic LD status in 2021 but likely does not account for historical anthropogenic
LD as well as most inherent LD.

Land Degradation (through 2021)
Georgia Economic Area (Change from Proportion from Total
Development Regions 2001 to 2021) Region Area
(km?, %) (%)
Metro Atlanta 3665.5 (+18.3) 425
Northwest 3728.4 (+3.3) 28.5
Southeast 5162.5 (+4.3) 30.9
Coastal 2299.6 (+11.0) 23.1
Northeast 2606.8 (+7.8) 22.0
South 4700.9 (+0.1) 25.6
East Central 3045.0 (+1.9) 25.8
East 3054.1 (-0.7) 31.9
Southwest 7116.2 (+0.9) 48.5
Middle 2143.2 (+4.5) 27.7
West Central 2345.5 (+0.3) 23.7
West 3711.0 (+1.0) 259
Overall State Total 43,578.7 (+3.7) 29.7 (State)

L

Proportion of anthropogenically degraded land (%) in 2021 Change in anthropogenic land degradation (2001-2021) (%)
[ <20% [1<-1.5%
[ 20% to < 30% [CJ-1.5% to < 2.0%
[ 30% to < 40% [ 2.0% to < 10.0%
[ > 40% [ > 10.0%
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0 25 50 100 150 200 0 25 50 100 150 200
(a) (b)

Figure 6. Maps of (a) the proportion (%) by county of anthropogenically degraded land in 2021,
(b) more recent land degradation (%) between 2001 and 2021 in Georgia (GA) (USA). Land subject
to anthropogenic degradation was calculated as a sum of developed land (developed, open space;
developed, high intensity; developed, medium intensity; developed, low intensity), agriculture
(cultivated crops, and hay/pasture), and barren land.
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3.2.2. Global Social Cost of Soil-Based Emissions Associated with Economic Development

Loss and damage from land conversions associated with developments extend beyond
the boundaries of GA, which can be quantified as the “realized” social costs of soil carbon
(C) (SC-COy) [2] released from land conversion because of soil organic matter decomposi-
tion and other disturbances [11]. The SC-CO; is a fixed, non-market-based value intended
to monetize damages to society from a metric tonne of CO, emissions [30], which is often
used only for government purposes. The SC-CO; from land conversions to developments
before and into 2021 within the state of GA (USA) results in a total midpoint value of
$20.4B SC-CO; (Table S6). The highest social costs were found in Gwinnett ($983.8M),
Cobb ($732.7M), and Fulton ($580.4M) counties, which are all located in the Metro Atlanta
economic development region. From 2001 to 2021, new developments caused $11.0B in
SC-CO;. The highest costs were found in Gwinnett ($904.2M) and Fulton ($582.7M), which
are also located in the Metro Atlanta region and Chatham ($375.9M) in the Coastal eco-
nomic development region (Figure 7). For economic development regions, the highest
“past” and “recent” SC-CO, values were associated with Metro Atlanta (past: $3.9B; recent:
$3.1B), Northwest ($2.3B; $1.7B), and Coastal ($1.8B; $1.3B) economic development regions
(Table 6). It should be pointed out that SC-CO, values are calculated from the developed
areas and soil types within these areas, and values of SC-CO; can be quite different even if
the developed areas are the same in size because of the variability in soil C content between
soil types (Table 6). For example, even though the Coastal economic development region
has a smaller area (km?) than the Northeast economic development region, it has more
SC-CO; from developments because of the higher soil C content in soils for these developed
areas (Table 6). Potential solutions to negative externalities associated with damages from
developments can include market-based payments in proportion to these damages [31].
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Figure 7. Loss and damage (L&D) can be measured as “realized” social costs of soil carbon (C)
(SC-CO,) from (a) past developments (prior and through 2021), and (b) recent land developments in
the state of Georgia (GA) (USA) from 2001 to 2021. Note: M = million = 10°, B = billion = 107, $ = U S.
dollars (USD).
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Table 6. Past and recent loss and damages (L&D) from developments by economic development
regions, Georgia (GA) (USA).

. . Past Developments (through 2021) Recent Developments (2001-2021)
Georgia Economic
Development Area Midpoint Midpoint Area Midpoint Midpoint
Regions (km2) TSC loss SC-CO, (km2) TSC loss SC-CO,
(kg) (%, USD) (kg) ($, USD)
Metro Atlanta 3025.6 2.3 x 1010 $3.9B 871.1 1.8 x 1010 $3.1B
Northwest 1634.0 1.4 x 1010 $2.3B 433.1 1.0 x 1010 $1.7B
Southeast 1257.1 1.1 x 1010 $1.8B 193.3 2.8 x 10° $478.1M
Coastal 1120.7 1.1 x 1010 $1.8B 349.8 7.4 % 10° $1.3B
Northeast 1345.1 1.0 x 1010 $1.7B 352.5 5.8 x 10° $980.4M
South 1160.8 9.0 x 10° $1.5B 138.8 2.0 x 10° $335.1M
East Central 1133.8 8.4 x 10° $1.4B 321.5 5.0 x 10° $849.3M
East 915.0 7.0 x 10° $1.2B 160.5 2.3 x 10° $382.9M
Southwest 980.1 7.2 x 10° $1.2B 137.2 1.9 x 10° $316.8M
Middle 829.5 6.5 x 10° $1.1B 215.4 3.1 x 10° $522.1M
West Central 880.6 6.5 x 10° $1.1B 221.3 3.5 x 107 $595.3M
West 908.6 7.0 x 10° $1.2B 170.4 2.8 x 10° $467.1M
Overall State Total 15,190.8 1.2 x 101 $20.4B 3564.9 6.5 x 1010 $11.0B

Note: TSC = total soil carbon; SC-CO, = social costs of carbon dioxide emissions; M = million = 10°;
B = billion = 10%; $ = U.S. dollars (USD).

3.2.3. Reverse Climate Change Adaptation (RCCA) Linked to Economic Development

Increased GHG emissions in GA and worldwide have contributed to sea level rise
which threatens the GA coast. Eleven out of GA’s 159 counties are potentially impacted by
projected sea level rise (Figure 8, Table 7). All these 11 counties experienced increases in
development between 2001 and 2021 (Table 7), resulting in loss of land for C sequestration
and RCCA.

Sea level rise (3.2 cm per decade) is already occurring along the GA coast and appears
to be 30% higher than global averages [32,33] because of the regional land subsidence of the
GA coastal plain [34]. Future flood modeling predicts increases in coastal flooding for GA,
with an increase to more than 8 days of flooding within approximately 125 events each year
by 2060 [32]. The largest economic impact from flooding caused by extreme weather events
is seen in the GA coastal communities because coastal buildings and infrastructure have
high risks from sea level rise and proximity to storm surges [35]. The economic impact
of these extreme weather events is exacerbated by the 300% increase in coastal property
value between 1980 and 2000 [36], which has likely continued to increase to the present day.
While a recent study has found some reduced property value (3.1%) for homes at high flood
risk [37], this is nearly insignificant when looking at the overall value of coastal property
subject to risk from these natural disasters. Therefore, there are few negative incentives
for coastal development (e.g., increased insurance cost or even uninsurability) that could
serve to disincentivize development that caused LD and the associated social costs while
also putting additional homeowners at risk from climate-change-related extreme weather
events. Government-supported insurance for coastal developments may further aggravate
the problem of RCCA by providing incentives that result in increased development in these
hazard-prone areas [38]. An unanswered question is what the economic cost would be of
relocation of property and people who currently live in coastal areas, which will not be
habitable because of the increasing disaster risk. It should be noted that flooding risk in
GA is not only limited to the coastal areas, but other parts of the state as well. Ferguson
and Ashley (2017) [39] conducted a spatiotemporal analysis of residential flood risk in the
Atlanta metropolitan area and concluded that an increase in developments contributes to
greater flood risks.
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Figure 8. Projections of future sea rise and land loss due to climate change in some coastal counties
of the state of Georgia (GA) (USA).

Table 7. Selected county area changes in the developed area (2001-2021) and county area loss (%) due
to sea rise in the state of Georgia (GA) (USA) (based on original ArcGIS Pro 2.6 [24] analysis of data
from the National Oceanic and Atmospheric Administration (NOAA) [40]).

Counties Change in County Area Loss due to Sea Rise (%)
(Affected by Sea Rise) Developed 2 0

Area (2001-2021) (km?, %) 1 foot 3 feet 6 feet 9 feet

Brantley 8.3 (+14.5) 0.0 0.0 0.1 0.3
Bryan 20.2 (+31.5) 0.0 0.0 14.6 18.7
Camden 21.0 (+22.7) 214 28.8 344 44.6
Charlton 5.0 (+9.3) 1.0 1.9 39 62
Chatham 81.2 (+55.8) 37.3 43.2 50.4 60.3
Effingham 35.3 (+46.9) 27 3.2 3.8 44
Glynn 27.0 (+25.0) 27.7 35.1 48.1 63.0
Liberty 21.1 (+25.4) 14.0 17.9 21.8 26.3
Long 9.2 (+20.1) 0.0 0.0 0.0 0.1
McIntosh 3.8(+9.2) 34.2 39.6 46.5 54.7
Wayne 10.2 (+9.3) 0.0 0.0 0.3 0.7

Note: 11 out of Georgia’s (USA) 159 counties are potentially affected by the projected sea level rise.
1 foot = 0.3048 meters.

3.3. Social Context
3.3.1. Significance of the Results for Georgia’s Soil Health Legislation

Georgia passed a soil health-related Bill No. 391-1-6 (https:/ /rules.sos.ga.gov/gac/39
1-1-6?urlRedirected=yes&data=adminé&lookingfor=391-1-6 (accessed on 8 July 2024) [41].
This bill, “Georgia Conservation Tax Credit Program,” provides income tax credits for land
that is accepted into the program in return for agreeing to a permanent conservation of
various types of lands. This includes the protection of streams, lakes, wetlands or rivers,
wildlife habitats, cultural sites, and lands used for outdoor recreation. Additionally, this
program can be used to protect prime forestry or agricultural lands, with a stipulation
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requiring the use of forestry or agricultural best management practices (BMPs). For agri-
cultural lands, the program requires the use of the Georgia Soil and Water Commission
BMPs [42], which encourage but do not require the use of conservation tillage, which can
improve soil organic matter (SOM), as well as various practices that can reduce soil erosion.
While this program can protect land from development, it is not specifically focused on
improving soil health and C sequestration. Another program in GA also incentivizes
maintaining forest, agricultural, and environmentally sensitive areas by reducing the tax
rate on lands in the Conservation Use Valuation Assessment (CUVA) system [43]. This
reduces the property taxes for land that is maintained in the specified land uses (forest,
agricultural, and environmentally sensitive areas) for ten years, with financial penalties
for breaking the conservation agreement. This CUVA program has been extensively used
in north Georgia [44] and likely serves to reduce some development but does not require
soil conservation or improvement. While these types of programs may reduce LD and the
associated social cost of emissions, they may not be the most efficient approach because they
do not directly target incentives to prevent LD or GHG emissions that land use conversions
cause (e.g., soil-based emissions from land development), which vary based on the type of
disturbance and soil type.

3.3.2. Importance of the Results for Georgia’s Climate Change

Despite the ongoing impacts of climate change on GA, there are no completed state-led
climate change preparation and adaptation plans (https:/ /www.georgetownclimate.org/
adaptation/plans.html (accessed on 8 August 2024) [3]. Georgia has been experiencing
a variety of impacts from climate change: rising atmospheric temperatures [45,46] and
precipitation, more severe floods [46] and droughts, sea level rise [32,33] and sinking
coastline [34], and many others [47]. Droughts often decrease soil available water, making
soils drier in most of GA, which can result in reduced agricultural output and forest
cover [47]. Our study shows that GA had an increase (+13.3%) in developments associated
with impervious surfaces, which will only aggravate the problem of flooding and urban
heat islands [48].

Results of our study show that the state of GA experienced LD and associated GHG
emissions, which can be mapped and quantified using geospatial techniques. These
GHG emissions go beyond the state of GA boundaries and should be accounted for (e.g.,
“polluter-pays-principle” [49], etc.) in the global loss and damage (L&D) accounting.
Increases in developments in coastal counties of GA between 2001 and 2021 most likely
indicate reverse climate change adaptation with potentially detrimental consequences to
property and human life (Table 7). These coastal developments should not be further
incentivized by providing federal assistance to support property insurance or repair and
recovery of properties in coastal areas at high risk from future climate risks.

3.4. Temporal Context

Temporal context plays an important role in climate change planning. Our study likely
underestimates soil-based emissions from past land conversions because of the history
of deforestation and subsequent agriculture that was prevalent in GA and the Southeast
region of the US in the 19 century, which has now largely returned to forest cover in
many areas. This LD caused gullies due to soil erosion, with the most extreme example
being evident at Providence Canyon State Park, also known as Georgia’s “Little Grand
Canyon,” where historic LD (Figure 9a) is still evident after reforestation (Figure 9b) [50].
Government intervention was necessary for land restoration and the resulting economic
hardship caused by failed agricultural activity [51], and it is unknown if the reforestation
efforts were sufficient to compensate for the past GHG emissions caused by the combination
of deforestation and agriculture.

The present context is demonstrated by our study, which documents patterns of ongo-
ing LD and development very often following historic patterns of past LD and development
(“business as usual”). Technological advances, including the advent of soil spatial data and
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satellite-based LULC analysis, allow us to quantify spatial patterns and trends in emissions.
Also, the realization that GHG emissions contribute to climate change damages with real
social costs necessitates new methods to understand and track the physical and economic
impacts of anthropogenic land conversions.

In terms of future context, our study offers a methodology to quantify and understand
how the impact of land management decisions can be modeled so that governments can
provide incentives that minimize LD and emissions by optimizing the decision-making
process. Future advances in high-resolution remote sensing technologies, combined with
automated artificial intelligence classification and prediction techniques, will track land
conversions and predict future potential LULC changes [52] that cause LD and soil GHG
emissions. This may help optimize land planning by providing the opportunity to disin-
centivize developments with significant negative impacts.

Figure 9. Degraded land caused by human activity in the Providence Canyon State Park, Stew-
art County, Georgia (USA) (https://gastateparks.org/ProvidenceCanyon) (accessed on 16 August
2024) [53]: (a) an oblique photo of eroded soil in 1937 from the Library of Congress (control number:
2017775702) [54], and (b) a modern aerial photo showing these erosion features (from 2023 National
Agriculture Imagery Program (NAIP) aerial photography [55]).

3.5. Legal Context

In the legal literature, an important distinction exists between the “law as written”
and the “law in context.” The distinction is between the law as written in a statute or court
decision, on the one hand, and the law as actually applied in an actual society, on the
other [56]. According to Selznick (2003) [56]: “[T]he phrase ‘law in context” points to the many
ways legal norms and institutions are conditioned by culture and social organization.” That is,
“[wle see . .. how much the authority and self-confidence of legal institutions depend on underlying
realities of class and power; how legal rules fit into broader contexts of custom and morality”.
Indeed a whole movement has developed that recognizes the importance of understanding
the law as it exists within a society’s specific economic and moral context. The founding
principle of the Law and Society movement, with its Law and Society Association, is that
identical written laws could lead to fundamentally different outcomes in societies with
different conditions. This contextual approach has become commonplace in the teaching
and application of law [57].

Legal scholars have recognized that the societal context is vitally important to whether
a state or country will successfully address climate change. According to Osofsky (2003) [58],
first, the success of a state’s efforts to control climate change will depend on pressures from
above and below: “vertical pressures from ‘above’ (international negotiations for the post-2012
regime) and ‘below’ (state and local efforts)”. An important influence from above would be
the United Nations. Success will also depend on horizontal influences, “namely climate
change litigation and executive policy, as well as advocacy efforts by a range of nongovernmental
actors” [58]. For example, studies of household-level adaptation to flooding indicate the
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profound impacts of the context of prior experience with flooding, “the influence of the media
or the behavior of others, and demographic factors such as age or education” [59].

Whether our results will prove fruitful in contributing to appropriate measures to
address climate change in GA will require both understanding the local context in which
such efforts will occur and also working to influence that context [60]. Georgia has tradi-
tionally been a conservative state with powerful agricultural and business interests. Efforts
to address climate change in GA must recognize this context and propose measures that
align with it. First, the context can be altered by distributing the information from our
paper that land disturbance can be a major source of GHG; a main reason why GA has not
taken measures to address this danger is that most people do not know about it.

Second, as much as possible, measures to address excessive land disturbance and cli-
mate change should be crafted to align contextually with existing interests and preferences.
In the contexts of other states, it might be sufficient to motivate change by invoking the
dangers of increases in sea levels. In these other states, reports or agreements from the
UN or other groups might prove persuasive. In contrast, in a proudly independent state
such as GA, change in the state’s context might be presented as promoting business and
agricultural interests: limiting land disturbance not only reduces climate change but also
reduces soil erosion.

4. Significance of Results in a Broader Context

The methodology used by the UNCCD leverages Trends.Earth 2.1.17 cloud-based
software to evaluate LD by using a range of datasets at various spatial resolutions to
evaluate the SDG 15.3.1 sub-indicators of land productivity (LP), land cover (LC) change
and SOC stocks [61]. A recent study evaluated this methodology to identify LD in the
European Union and found that degraded land that was identified using the Trends.Earth
software had poor agreement with low C and highly eroded soils, which is an alternative
way to identify areas with LD [62]. Recommendations for improving the accuracy of LD
analysis included identifying a baseline of prior LD status, increasing the spatial resolution
of datasets to better contextualize changes in LC and LP, and incorporating local-scale
datasets, including soil surveys, to better understand the relationship between LC change
and LD [62]. The present study for the state of GA is innovative because it uses higher
resolution (30 m) classified imagery than the UNCCD standard method to more accurately
identify LC to developments. Zimba et al. (2024) [63] found that using 30-m Landsat-
derived land cover maps was much more accurate, particularly in the development and
cropping categories, than the standard land cover maps used in the Trends.Earth analysis,
which has a spatial resolution of 300 m. This study is also innovative in its use of high-
resolution soil survey maps to link LC change to soil types to better link soil capacity
and soil C contents to land conversions for LD analysis. High-resolution soil survey data
(e.g., SSURGO) is likely the most accurate way to account for landscape soil C, because it
is unrealistic to obtain the density and coverage of soil samples necessary to accurately
characterize impacts for land cover change over large areas [64]. There is a realization that
higher-resolution data are needed to properly understand LD [65]; however, this study
and related studies do not incorporate detailed soil spatial data to help contextualize LD.
Econometric models can link practices to CO, emissions on a global scale [66]; however,
they do not typically provide the spatial information necessary to understand the local
context and impact of land use change. Also, we account for TSC because there are potential
CO; emissions from both SOC and SIC from land development.

This study’s relevance to multiple UN initiatives includes Sustainable Development
Goals (SDGs), adopted in 2015 [67], and many other UN initiatives (e.g., UN Convention to
Combat Desertification [68,69]; UN Convention on Biological Diversity [70]; UN Kunming-
Montreal Global Biodiversity Framework [71]; Ramsar Convention on Wetlands [72-75],
etc.) because GA is a state in the contiguous US. The UN suggests disaggregating indicators
whenever possible. Therefore, this study linked soil and land use relationships to UN SDGs
to better direct land management to meet UN SDGs, because country-level analysis can
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easily mask differences within states and regions [67]. This study’s results are essential for
UN initiatives and goals for the following reasons:

There was an overall decrease in cultivated crops (—1.5%) and hay/pasture (—11.3%)
between 2001 and 2021 in GA (Table 5). This may indicate a reduction in available
farmlands overall, as well as the conversion of hay/pasture to more destructive land
uses. (Relevant for UN SDG 2: Zero Hunger);

For the state of GA, this study found a spatial link between high soil-based GHG
emissions areas and likely vulnerability to climate change. The projected GA land
losses from expected sea level rise (Table 7) will impact several highly populated areas
as well as areas with high-value real estate, causing potential human displacement
and damage to infrastructure and buildings. Table 7 also shows an increase in develop-
ments in the GA counties impacted by the rising sea level, which can be an indication
of reverse climate change adaptation (RCCA). (Relevant for UN SDG 11: Sustainable
Cities and Communities);

Land conversions that occurred across all of the seven soil orders found in GA were
caused by land development at the expense of mixed (—4.0%), deciduous (—13.2%),
and evergreen (—2.3%) forests (Table 5). Land development occurred on soils with
high agricultural productivity (e.g., Alfisols and Mollisols), while C-rich Histolsols
were also developed in place of mixed forest (—32.9%), deciduous forest (—51.0%) and
evergreen forest (—18.6%) (Table 5). This shows that C-sequestering and productive
soils were impacted by land development. (Relevant for UN SDG 12: Responsible
Consumption and Production);

No climate change plans for GA’s preparation and adaptation have been completed
(https:/ /www.georgetownclimate.org/adaptation/plans.html (accessed on 8 August
2024) [3]. The state of GA was awarded a $3 million noncompetitive planning grant
to develop a climate action plan, which intends to generate a Priority Climate Action
Plan (PCAP) by March 1, 2024, a Comprehensive Climate Action Plan (CCAP) by June
30, 2025, and a status report, due at the close of the 4-year grant period, which ends in
2027 [8,9]. Data from this study that estimates soil-based GHG emissions from land
developments can support the development of a future plan. This study’s quantitative
soil-based GHG emissions estimates are from both past and recent land conversions
and the resulting monetary social C cost (SC-CO;) values. Also, this research quan-
tified the area no longer available for C sequestration in GA. Prior to and before
2021, GA lost an area of 15,197.1 km? to developments with a midpoint of 1.2 x 10!}
of total soil carbon (TSC) losses and midpoint values of $20.4B (where B = billion
=10%, $ = U.S. dollars (USD)) in SC-CO,. “New” land developments (3564.9 km?)
that occurred from 2001 to 2021 likely caused a loss of midpoint 6.5 x 10'° kg of TSC,
causing a midpoint of $11.0B SC-CO,. There is very little land (8.8% of total land area)
available for nature-based C sequestration (e.g., 0.2% barren land, 4.1% shrub/scrub,
4.5% herbaceous) (Table 2). Georgia’s soils typically have low inherent potential for C
sequestration because they are dominated by low-fertility and highly leached Ultisols.
Projected levels of sea level rise and expected urbanization will likely reduce land
availability for C sequestration further. (Addressing UN SDG 13: Climate Action);
Nearly 30% of GA’s land area has had anthropogenic LD, mainly due to agriculture
(64%) before and through 2021. All seven soil orders received varying degrees of
anthropogenic LD: Ultisols (35%), Inceptisols (13%), Mollisols (30%), Entisols (13%),
Spodosols (13%), Alfisols (20%), and Histosols (0.1%). Recent trends (2001-2021)
showed a +3.7% increase in anthropogenic LD and an increase of +26.4% in the
developed type of LD in the state, which was not balanced by the potential NBS land.
Development has resulted in a reduction of soil resources because of LULC change
between 2001 and 2021 for nearly all 159 counties and 12 economic development
regions in GA (Table 3, Table S5). There were decreases in the total areas of deciduous
(—13.2%), mixed (—4.0%), and evergreen (—2.3%) forests, hay/pasture (—11.3%),
herbaceous (—2.7%) land covers needed for atmospheric pollution reduction and
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C sequestration (Table 5). (Addressing UN SDG 15: Life on Land; UN Convention to
Combat Desertification; UN Convention on Biological Diversity; UN Kunming-Montreal
Global Biodiversity Framework);

At the international level, there is renewed attention on preserving ecosystem re-
silience and integrity, as shown by the agreement from the UN’s fifteenth meeting of
the conference of the parties (COP 15), which adopted the UN Kunming-Montreal
Global Biodiversity Framework [71]. This framework includes the goal (Goal A) of
maintaining, enhancing, and restoring the resilience, connectivity, and integrity of all
ecosystems and includes the target (Target 11) to both restore as well as maintain and
enhance ecosystem functions and services (e.g., air, water, soil health, and regulation
of climate). This study shows that GA did not reach LDN between 2001 and 2021,
with developments occurring in all soil orders, including the agriculturally important
soil orders of Alfisols and Mollisols and the C-rich Histosols soil order. The creation of
these new developments likely decreased biodiversity through the loss of pedodiver-
sity (soil diversity). This study’s techniques can guide decision-making by providing
methods to create the best possible data, which supports Target 21, which focuses on
the importance of data development to support equitable governance. (Relevant to
UN Kunming-Montreal Global Biodiversity Framework).

The Ramsar Convention on Wetlands was adopted in 1971 with a focus on the con-
servation of wetlands, especially as they relate to habitat for waterfowl [72-74]. The
United States joined the Ramsar Convention on Wetlands in 1986 and currently has 41
designated Ramsar sites that contain critical wetlands areas, including the Okefenokee
National Wildlife Refuge (designated as a wetland of international importance), which
is both in the states of GA and Florida (FL) [75]. As part of the agreement, the United
States supports the Wetlands for the Future (WFF) initiative, which funds training and
is focused on wetland management and conservation as part of the development pro-
cess [72]. Key to the Ramsar Convention is the concept of the “wise use” of wetlands
to maintain the “ecological character (of wetlands) . . . within the context of sustainable
development.” This convention also obligates the US to work to conserve all wetlands,
including those wetlands outside of the designated sites [73]. Initiatives from the U.S.
government in 1989 and 1993 promoted the concept of no net loss of wetlands [73]. A
more recent resolution from the Ramsar Convention noted the significance of some
wetland types for C storage in relation to climate change [74]. Our study leverages
satellite change analysis, combined with soil spatial databases, to identify changes
in LULC related to wetlands (e.g., emergent herbaceous wetlands) and related soil
types (e.g., Histosols) in GA. One way to evaluate if wetland areas had no net loss
is to use satellite land cover data over time. Table 5 shows this analysis for the state
of GA between 2001 and 2021, which indicates that there was a net gain in overall
wetlands. However, further analysis reveals that there was a loss within Histosols
(-28.2%) in wetland areas, which indicates the loss of C-rich soils and wetlands to
development or other LULC conversions. Future analysis should use soil spatial
data to help understand and disaggregate LULC analysis to quantify wetland change.
Changes in wetland areas that contain Histosols can have a much larger impact on
soil C emissions because of their much higher C contents compared to other soil types.
Histosols account for only 1% of soils in GA, but these soils are a significant source
(“hotspot”) of SOC (17% of the total SOC of GA) and TSC (15% of the total TSC
of GA) (Table 1). There was an overall reduction in Histosols in the state of GA of
-28.2% between 2001 and 2021 (Table 5). In this period of time, 0.2 km? of Histosols
were converted to developments, which resulted in the loss of 29.4M kg of TSC and
corresponding SC-CO; in the amount of $5.0M USD. This type of analysis can aid the
recent resolution from a Ramsar Convention to quantify wetland changes in C storage
in relation to climate change. In addition, in the case of GA (USA), the counties that
contain the Okefenokee National Wildlife Refuge [74] saw reductions between 2001
and 2021 in the amount of emergent herbaceous wetlands: Charlton (-9.5%), Clinch
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(-3.2%), and Ware (-16.7%). Furthermore, this analysis can provide additional details
concerning which soils were impacted at the county level and showed a reduction in
Histosols within the emergent herbaceous wetlands LULC: Charlton (-10.49%), Clinch
(-77.46%), and Ware (-17.48%). Histosols are C-rich soils commonly associated with
wetlands. There were also large increases in development in these three counties:
Charlton (+9.3%), Clinch (+4.1%), and Ware (+9.9%), which is likely related to the
wetland and Histosols identified losses. Methods used in our study can also estimate
the CO; release and SC-CO; associated with the development of Histosols in wetlands,
which demonstrates why it is important to preserve wetlands and protect these C-rich
soils. (Relevant to Ramsar Convention on Wetlands).

e  The Revised World Soil Charter, which was endorsed by member states of the Food
and Agriculture Organization (FAO), provides guidelines to ensure that “soils are
managed sustainably and that degraded soils are rehabilitated or restored” [76]. This
Charter calls for the limiting of soil degradation to preserve soil ecosystem services
and support LDN. Our study shows that the state of GA has experienced an increase
in both LD and soil degradation, as indicated in Table 4, with an overall +3.7% increase
in LD between 2001 and 2021. Land and soil degradation occurred across all soil
types during this study period primarily due to the rise in developments. The state
of GA was not LD neutral, as indicated by the data in Table 4. This case study in
GA is an important contribution to the ongoing research on climate governance [77],
which should include soil governance as well [78-80]. (Relevant to The Revised World
Soil Charter).

5. Conclusions

This study reveals that the current assumption that land and soil in GA only serve
as a GHG emissions sink is unlikely to be true. Our results show that the state of GA
(USA) experienced significant historical and present LD and soil degradation, which are
(were) accompanied by GHG emissions with corresponding social costs, which are (were)
not accounted for in the business activities responsible for these LD and soil degradation.
This research most likely underestimated the GHG emissions because only areas subjected
to developments were considered, and it was not possible to calculate emissions from
agriculture and other non-development-related land cover changes. This is an important
finding because past and future land use decisions have impacted and will impact soil-
based GHG emissions. Also, the social costs calculated likely underestimate the true
impact of soil-based emissions, both because agricultural and other land use conversions
were not considered and because the social costs were calculated using standard methods
that are based on fixed, non-market values. Study limitations include potential errors
associated with satellite image classification. However, the resolution of remote sensing
data used for this study (30 m) is higher than the land cover data used for most LD analyses.
Also, our study compared land cover data over twenty years (2001 to 2021), which only
documented the overall change and not the yearly change and other LULC cycles that
occurred within those dates (e.g., forestry and agricultural practices). Future studies could
leverage yearly or even more fine-scaled land cover data to more quickly identify critical
changes and relationships.

Despite the limitations of our study, the results are useful for future climate planning
efforts in GA (USA) because they provide a technique to monitor LULC changes and to
account for soil-based emissions from the rapid development of GA. The analysis has sev-
eral direct benefits for the planning process, including spatial analysis of soil type-specific
emissions from developments, which also show development patterns, including areas
that are susceptible to sea level rise leading to reverse climate change adaptation. Also, soil-
based emissions were driven by developments linked to high-value economic development
regions, including Metro Atlanta and Coastal economic development regions. Considering
that the state of GA is in the process of using context-specific climate change planning, these
soil-based emissions can also be examined using a context-specific framework, which could

242



Land 2024, 13, 1669

be used to develop regulatory or incentive-based methods to account for the past soil-based
emissions and reduce future soil-based emissions tied to LD and soil degradation. Our
study demonstrated how soil-based emissions can be understood in temporal, biophysical,
economic, and social contexts, which can be used for existing or novel legal strategies to
provide greater responsibility and accountability for emissions damages in the state of
GA (USA) and worldwide. Potential solutions to negative externalities associated with
damages from developments can include market-based payments in proportion to damages
from LD and developments. To achieve success in GA, new policies must recognize GA’s
specific context. Accordingly, policies should be crafted to appeal not just to the broad
worldwide virtues of addressing climate change but also to the benefits of such policies to
GA itself.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/1and13101669/s1, Table S1: Soil diversity (pedodiversity) is
expressed as taxonomic diversity at the level of soil order in the state of Georgia (GA) (USA) [11];
Table S2: Distribution of soil carbon regulating ecosystem services in the state of Georgia (GA) (USA)
by soil order; Table S3: An overview of the accounting framework used by this study (adapted from
Groshans et al. (2019) [15]) for the state of Georgia (GA) (USA); Table S4: Area-normalized content
(kg m~2) and monetary values ($ m~2) of soil organic carbon (SOC), soil inorganic carbon (SIC), and
total soil carbon (TSC = SOC + SIC) by soil order using data developed by Guo et al. (2006) [23] for
the upper 2-m of soil and an avoided social cost of carbon (SC-CO;) of $46 per metric ton of CO;,
applicable for 2025 (2007 U.S. dollars with an average discount rate of 3% [2]); Table S5: Anthropogenic
land degradation status and potential land for nature-based solutions in the state of Georgia (GA)
in the contiguous United States of America (USA) in 2021. Percent changes in area from 2001 to
2021 are shown in parentheses. Reported values have been rounded; therefore, calculated sums and
percentages may exhibit minor discrepancies. This table shows the anthropogenic land degradation
status in 2021 but most likely does not account for historical anthropogenic land degradation as well
as most of the inherent land degradation; Table S6: Developed land and potential for realized social
costs of carbon (C) due to complete loss of total soil carbon (TSC) of developed land by soil order in
the state of Georgia (GA) (USA) prior to and through 2021; Table S7: Increases in developed land
and potential for realized social costs of carbon (C) due to complete loss of total soil carbon (TSC) of
developed land by soil order in the state of Georgia (GA) (USA) from 2001 to 2021; Figure S1: High-
resolution aerial photos showing examples of land classes (LULC) which were used to determine
anthropogenically degraded land (LD) in the state of Georgia (GA) (USA) by assuming that degraded
lands are represented by the land classes (LULC) for agriculture (hay/pasture, and cultivated
crops), development (developed, open space; developed, low intensity; developed, medium intensity;
developed, high intensity) and barren lands. Representative examples were located using a land cover
map of Georgia for 2021 (based on data from the Multi-Resolution Land Characteristics Consortium
(MRLC) with detailed descriptions of the land classes [20]); Figure S2: Maps of (a) anthropogenically
degraded land in 2021 (km?2) and (b) more recent land degradation (km?) between 2001 and 2021
in Georgia (GA) (USA). Land subject to anthropogenic degradation was calculated as a sum of
developed land (developed, open space; developed, high intensity; developed, medium intensity;
developed, low intensity), agriculture (cultivated crops, and hay/pasture), and barren land; Figure S3:
Maps of (a) potential land area (km?) for nature-based solutions (NBS) in 2021 and (b) change in
potential land area (km?) for nature-based solutions (NBS) between 2001 and 2021 in Georgia (GA)
(USA). Potential land for NBS is limited to barren land, shrub/scrub, and herbaceous land cover
classes, to provide potential land areas without impacting current land uses; Figure S4: Maps of (a)
the proportion of potential nature-based solutions (NBS) land over the total land area (%) in 2021
and (b) the change in potential land (%) for nature-based solutions (NBS) between 2001 and 2021 in
Georgia (GA) (USA). Potential land for NBS is limited to barren land, shrub/scrub, and herbaceous
land cover classes, to provide potential land areas without impacting current land uses.
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Glossary

B Billion

CCA Climate Change Adaptation

CO, Carbon dioxide

EPA Environmental Protection Agency

FAO Food and Agriculture Organization

GA Georgia

GHG Greenhouse gases

LD Land degradation

LDN Land degradation neutrality

L&D Loss and damage

LULC Land use/land cover

M Million

MRLC Multi-Resolution Land Characteristics Consortium
N North

NBS Nature-based solutions

NLCD National Land Cover Database

NOAA National Oceanic and Atmospheric Administration
NRCS Natural Resources Conservation Service
RCCA Reverse climate change adaptation
SC-CO, Social cost of carbon emissions

SDGs Sustainable Development Goals

SIC Soil inorganic carbon

SOC Soil organic carbon

SSURGO  Soil Survey Geographic Database
STATSGO  State Soil Geographic Database

TSC Total soil carbon

UN United Nations

UNCCD United Nations Convention to Combat Desertification
USDA United States Department of Agriculture

W West
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Abstract: This study investigates the spatiotemporal variation characteristics and influ-
encing factors of an ecosystem’s carbon sequestration rate (CSR) in the Ningxia region
from 2001 to 2023, providing scientific evidence for assessing the regional carbon seques-
tration capacity and formulating carbon neutrality policies. Based on ground observation
data and multimodal datasets, the optimal machine learning model (EXT) was used to
invert a 30 m high-resolution vegetation and soil carbon density dataset for Ningxia from
2000 to 2023. Annual variation analysis and geographical detector methods were em-
ployed to assess the spatiotemporal distribution characteristics of the CSR from 2001 to
2023 and identify the primary influencing factors. The results show that from 2001 to
2023, the CSR of the Ningxia ecosystem exhibits a spatial distribution pattern character-
ized by higher values in the south and lower values in the north, with a mean value
of 21.95 gC-m~2, and an overall fluctuating increasing trend, with an annual growth
rate of 0.53 gC-m~2 a~!. Significant differences in the CSR exist across different ecolog-
ical regions. In terms of land use types, the ranking of carbon sequestration capacity
is forest > farmland > grassland > barren, while the ranking of the carbon sequestration
enhancement capacity is farmland > forest > grassland > barren. Among land use change
types, the carbon sequestration enhancement capacity significantly increased when grass-
land was converted to forest or shrubland, farmland to forest-grassland, and bare land
to forest—grassland, with increases of 42.9%, 9.2%, and 34.6%, respectively. The NDVI is
the primary driver of CSR spatiotemporal variation, while the interaction between the
Enhanced Vegetation Index (EVI) and soil bulk density has a more significant explana-
tory power for CSR spatial differentiation. This study shows that ecological restoration
projects, such as the conversion of cropland to forest (or grassland) and protective farmland
measures, play a significant role in enhancing the carbon sequestration capacity in Ningxia.

Keywords: carbon sequestration rate; spatio-temporal; Ningxia

1. Introduction

The carbon sequestration rate (CSR) is an important indicator for measuring the
ecosystem carbon sink function [1], which has attracted increasing attention, particularly
in the context of intensifying global climate change. It is estimated that global terrestrial
ecosystems sequester approximately 2.4 billion tons of carbon per year, absorbing around
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30% of the CO, emissions caused by human activities [2], thus playing a crucial role in
combating climate change and maintaining ecosystem health. However, the differences in
natural geographic conditions and human activities lead to significant spatial heterogeneity
in the regional CSR, particularly in Ningxia, a semi-arid region with a fragile ecological
environment, low vegetation cover, and a high susceptibility to climate conditions and
human activities [3]. Therefore, CSR estimates based on fixed values are unable to accu-
rately reflect the carbon sequestration status in different regions, thereby increasing the
uncertainty of the results.

In recent years, with the implementation of a series of ecological restoration projects,
vegetation conditions in Ningxia have improved; however, systematic research on the
spatiotemporal variation characteristics of its CSR is still lacking [4]. Therefore, an in-depth
study of the CSR in the Ningxia region will provide scientific support for more accurate
carbon sequestration accounting and the implementation of ecological protection and
restoration projects. Currently, methods for estimating CSR mainly include traditional
approaches based on ground-based measurements and process models or atmospheric
inversion methods based on remote sensing data [5]. Traditional methods primarily rely
on long-term observational data from ground-based sampling points. While they can
provide relatively accurate CSR information, their application on large scales is limited
by the number and spatial distribution of the sampling points [6]. With technological
advancements, methods such as the eddy covariance technique [7] and ecosystem process
models (e.g., CENTURY and Biome-BGC models) [8] have gradually become important
tools for assessing the CSR. In recent years, the application of remote sensing technology
has provided new perspectives for the large-scale monitoring and assessment of ecosystem
carbon stocks [9,10]. For example, Feng et al. (2013) used remote sensing technology to
quantitatively assess carbon sink changes from 2000 to 2008 in the Grain for Green project
on the Loess Plateau, finding that the total carbon sink in the region was approximately
96.1 Tg [11].

Significant progress has been made in CSR research both domestically and interna-
tionally. For example, Lin demonstrated that forests have a higher CSR potential due
to their rich biomass [12]. Mitsch, by comparing the CSR of different types of wetlands
(e.g., marshes, peatlands, and mangroves), concluded that wetlands, particularly peat-
lands, have a high carbon sequestration capacity [13]. Lal and Aubrey, among others, have
demonstrated the importance of soil carbon sequestration in agricultural lands for global
climate change and food security [14,15]. Building on this, CSR research has gradually
focused on the synergistic effects of various influencing factors. For instance, Mekonnen
et al. demonstrated that climate change is a key factor affecting the CSR [16]. Moisa et al.
indicated that human activities, such as land use changes and urbanization, significantly
impact the CSR, with large-scale land reclamation and vegetation destruction reducing
the carbon storage capacity of ecosystems [17]. Topographic factors (elevation, slope, and
aspect), soil factors (the soil organic matter content, fertility, and pH), and vegetation types
have all been shown to significantly affect the CSR [18-20]. Bu et al.’s study indicated that
from 2000 to 2015, Ningxia’s wetland restoration project led to an increase of 204,900 tons
of carbon storage [2]. Although previous studies have provided some theoretical support
for Ningxia’s carbon sequestration capacity, most existing research focuses on the effects of
single ecosystem types or specific factors, lacking a spatiotemporal dynamic analysis of
the CSR across the entire terrestrial ecosystem at the regional scale under the influence of
multiple factors. Research has mainly focused on regional-scale studies, with less attention
given to the spatial heterogeneity of the CSR within the region, and limited studies on the
current CSR status in Ningxia.
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Therefore, this study proposes to utilize extensive ground-based data, combined with
long-term remote sensing data, topographic and soil data, and machine learning techniques
to generate vegetation and soil carbon density datasets for the period 2000-2023. The
dataset will be further used to derive a 30 m high-resolution CSR dataset for 2001-2023,
which will be analyzed for spatial heterogeneity and dynamic characteristics across different
ecological regions of Ningxia. This will reveal the evolution of the CSR in Ningxia and
provide scientific support for achieving the region’s dual carbon goals. At the same time,
this study will assess the impact of different land use types on the regional CSR, providing
decision-making references for optimizing the land use structure and the rational layout
of vegetation restoration projects. This will contribute to the promotion of ecological
environment construction in Ningxia and support the achievement of carbon neutrality
goals, offering practical value and scientific support for regional sustainable development.

2. Materials and Methods
2.1. Study Area

The Ningxia Hui Autonomous Region (104°17'-107°39" E, 35°14'-39°23' N) is located
in the upper reaches of the Yellow River in northwestern China, covering an area of
approximately 66,400 square km(Figure 1). The region has a continental semi-humid,
semi-arid climate, characterized by dryness and low precipitation. The annual average
temperature ranges from 6.9 °C to 11.5 °C, increasing from south to north. Precipitation is
mainly concentrated in the summer, with annual rainfall decreasing from south to north.
The southern part receives 350-600 mm of rainfall, while the northern part receives only
about 200 mm. The terrain is complex and diverse, with elevations ranging from 1000 to
3500 m. Based on topography, landforms, and soil erosion characteristics, the region can be
divided into seven typical ecological zones: Helan Mountain water erosion zone, Potential
wind erosion area of Yinchuan Plain zone, Hill platform arid grassland geomantic erosion
staggered zone, Liupan Mountain water erosion zone, Water erosion area of Loess hilly and
gully residual tableland zone, Loess hilly and gully water erosion zone, and Loess hilly and
gully water wind erosion staggered zone. Due to severe climate aridity, soil erosion, and
desertification, which have led to significant vegetation degradation, vegetation restoration
and the enhancement of the region’s carbon sink function are of great significance for
achieving ecological restoration and carbon neutrality goals in Ningxia.
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Figure 1. Geographical location of the study area.
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2.2. Data Sources and Preprocessing
2.2.1. Field Survey Data

In 2019, Xu [21] compiled a carbon density dataset for China’s terrestrial ecosystems,
sourced from 1,036 relevant studies and the author’s field survey plot data. The data were
collected between 2004 and 2014 and cover major ecosystems such as forests, grasslands,
farmlands, wetlands, and shrub. The shared dataset includes vegetation total biomass
(aboveground and belowground) carbon density (VTCD) data and soil organic carbon
density (SOCD) data for depths of 0-100 cm. This study extracted all available plot data
within Ningxia Hui Autonomous Region from this dataset, including 92 vegetation total
biomass density plots and 67 soil carbon density plots(Figure 2). From 28 November
to 4 December 2023, a VICD and SOCD survey and field sampling were conducted in
Ningxia Autonomous Region. Considering factors such as the proportion of area under
restoration measures, accessibility, plot spacing (5-10 km), and a minimum restoration
area of 10,000 m2, 200 survey plots (30 m x 30 m) were selected. Within each plot, three
sub-plots with high, medium, and low coverages (50 cm x 50 cm) were selected. All
herbaceous vegetation aboveground and belowground biomass within each sub-plot was
harvested, dried, weighed, and used to calculate VTCD. Information on tree species and
total number of each tree and shrub species was recorded. Diameter at breast height (DBH),
height, and crown width were measured using a tape measure and laser hypsometer. The
allometric equations for tree and shrub species developed by previous studies [22] were
used to estimate aboveground and belowground biomass, which were multiplied by an
empirical coefficient to calculate VTCD. Three sampling points were evenly selected within
each plot. Soil samples were collected to a depth of 100 cm using a soil auger, and the
samples were sent to the laboratory for analysis. Soil organic carbon content was measured
and converted into SOCD density.

Share data Observed data

Vegetation
2002
2004
2009
2010
2011
0 60

[ [T ron 2012

Figure 2. Spatial distribution of carbon density measurement data: (a) Shared dataset SOCD and
VTCD Field Survey data; (b) Vegetation and soil manual measurement sampling points.
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2.2.2. Multimodal Datasets

The detailed dataset is shown in Table 1. In this study, the Landsat SR (https://
developers.google.com/earth-engine/datasets/catalog/landsat (accessed on 5 May 2024))
product was used to obtain surface reflectance, covering six bands: blue, green, red, near-
infrared, shortwave infrared 1, and shortwave infrared 2. Based on these band data, several
vegetation indices were calculated, including the Normalized Difference Vegetation Index
(NDVI) [23], Enhanced Vegetation Index (EVI) [24], Normalized Difference Moisture Index
(NDMI) [25], and Ratio Vegetation Index (RVI) by using GIS (ArcMap 10.8) software. [26].
For meteorological data, rainfall data were provided by the NCEP product from the
National Centers for Environmental Prediction (https:/ /www.noaa.gov/jetstream/ncep
(accessed on 10 May 2024)), while temperature data were obtained from the ERA5 product
of the European Center for Medium-Range Weather Forecasts (https://www.ecmwf.int/
en/forecasts/dataset/ecmwf-reanalysis-v5 (accessed on 9 May 2024)). For topographic
features, the AW3D30 (https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30_
e.htm (accessed on 6 May 2024)) product was used to obtain the Digital Elevation Model
(DEM), from which slope aspect, slope, topographic index, and soil erosion slope-length
factor were extracted. The Terrace dataset (https://figshare.com/articles/dataset/unet_T_
d_1_89_LP_tif/17121941 (accessed on 11 May 2024)), based on the distribution map of the
Loess Plateau (TDMLP), was developed by the Institute of Geography, Chinese Academy
of Sciences (1.89 m) [27]. Additionally, soil type and property data were obtained from the
So0ilGrids 250m product (https:/ /soilgrids.org/ (accessed on 10 May 2024)). Land use data
were sourced from the Yellow River Conservancy Commission’s YRCC_LPLC product
(https:/ /doi.org/10.5281/zenodo.10225564 (accessed on 11 May 2024)) [28].

Table 1. Detailed information about raster dataset used in this study.

Data Subcategory Data Name Product Spatial Resolution Temporal Duration
DEM AW3D30 30 m 2010
Slope - 30m 2010
Topography Aspect - 30m 2010
Terrace TDMLP 1.89 m 2021
LS - 30 m 2010
Topographic index - 30m 2010
. Precipitation NCEP 0.25° 2000-2023
Climate Temperature ERA5 0.25° 2000-2023
Surface reflectance Landsat SR 30 m 2000-2023
NDVI - 30 m 2000-2023
Vegetation index EVI - 30m 2000-2023
NDMI - 30 m 20002023
RVI - 30 m 2000-2023
Bulk density SoilGrids 250 m 2021
Soil properties Clay content SoilGrids 250 m 2021
Sand SoilGrids 250 m 2021
Slit SoilGrids 250 m 2021

2.3. Remote Sensing Inversion Methods for Carbon Density

Taking into account the influence of climate, soil properties, topography, terraces,
and vegetation on the spatial-temporal distribution of carbon density [29,30], a total
of 16 features were used to estimate VICD and SOCD, including DEM, slope, aspect,
temperature, precipitation, terrace, LS, topographic index, bulk density, clay content,
sand, silt, NDVI, EVI, NDMI, and RVI. This study used six machine learning algorithms—
Random Forest (RF) [31], Artificial Neural Network (ANN) [32], Support Vector Machine
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(SVM) [33], Light Gradient-Boosting Machine (Light GBM) [34], eXtreme Gradient Boosting
(XGBoost) [35], and Extra Tree Regressor (EXT)—to construct vegetation and soil carbon
density inversion models. Various spread values were tested until the mean square error or
the number of neurons met the required criteria, optimizing the network parameters to
determine the best carbon storage model for each algorithm.

2.4. Carbon Sequestration Rate Calculation

The carbon sequestration rate refers to the change in carbon storage over a unit
of time, typically calculated on an annual basis. This study uses the “next year minus
previous year” method, based on the 2000-2023 carbon storage dataset, to calculate the
carbon sequestration rate in Ningxia from 2001 to 2023. The specific calculation formula is
as follows:

Crr1 — G
CSR = ——— 1
(t+1)—t @
where C;11 and C; represent the carbon storage in the following year and the previous year,
respectively. The CSR is the change in carbon storage over a unit of time (year).

2.5. Trend Slope Analysis

Combining the Ningxia CSR data from 2000 to 2023, the trend slope analysis method
was used to calculate the long-term trend of carbon sequestration rate changes in Ningxia.
The formula for calculating the linear slope is as follows:

n X ):;‘1:11' x Xj— Z?:l iz;‘l:1 X;
. 2
nx Yy i?— (X 1)

Slope = 2)
where X; is the carbon sequestration rate for year i and # is the total number of years. When
the slope > 0, the CSR shows an increasing trend; when the slope < 0, the CSR shows a
decreasing trend.

2.6. Geographical Detector

This study employed factor detectors and interaction detectors to reveal the relation-
ships between the carbon sequestration rate of the Ningxia ecosystem and its key driving
factors [36]. The factor detector measures the explanatory power of each influencing factor
on the spatial differentiation of ecosystem carbon storage by calculating the g-value. The
formula is as follows:

L
g—1- Bl i ®
where g represents the explanatory power of factor X; C =1, 2, 3. . .L are the partitions of
explanatory variable X, N and N represent the number of sub-zones and the total number
of units in the whole region, respectively, and D. and D represent the variance of Y values
in the sub-zones and the whole region, respectively. The g-value ranges from [—1,1], with
higher values indicating stronger explanatory power for the spatial differentiation of CSR.

The interaction detector is used to analyze whether there is an interaction between
different driving factors and assess how this interaction affects the spatial differentiation
of CSR. Specifically, the interaction detector compares the g-values of individual factors
Xj and X, with their interaction g-value g(X; N X3) to determine the relationship between
the driving factors. It indicates that the combined effect of the two factors on CSR is
greater than the sum of their individual effects, implying a synergistic effect. This study
used the geographical detector to calculate the explanatory power of each factor and their
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interactions on the long-term average CSR, thereby analyzing the main influencing factors
of the spatial changes in CSR in Ningxia from 2000 to 2023.

3. Results
3.1. Carbon Density Inversion Result Accuracy Verification

The field observation dataset was randomly divided into a training set (2/3) and a test
set (1/3), and prediction models for the VTCD and SOCD were constructed. The best carbon
density model was selected by comparing the performance of different machine learning
algorithms in the carbon density prediction. The results for vegetation and soil training sets
are shown in Figure 3a,b, respectively. All models exhibited a good fitting performance,
with the coefficient of determination (R?) for VTCD prediction generally above 0.8, and the
root mean square error (RMSE) controlled at a low level. The comparison results for the test
set are shown in Figure 3c,d. In the VICD test set (Figure 3c), the Extreme Random Tree
(EXT) model exhibited the best prediction performance (R? = 0.71, RMSE = 0.56 Kg C m 2,
MSE = 0.31 Kg C m~2), followed by the XGBoost model, while the Artificial Neural
Network (ANN) showed relatively lower prediction accuracy. For the SOCD test set
(Figure 3d), the EXT model also performed excellently (R? = 0.70, RMSE = 1.61 Kg C m 2,
MSE = 2.6 Kg C m~2), followed by the Support Vector Regression (SVR) model, while
the XGBoost model showed the poorest prediction performance. Considering both the
model performance indicators and prediction stability, the EXT model showed the best
performance for both the VICD and SOCD, thus it was chosen as the optimal carbon
density model for Ningxia.
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Figure 3. Accuracy evaluation of VICD (a,c) and SOCD (b,d) inversion results based on the validation
sample dataset.
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Based on the accuracy metrics of the validation sample dataset, the EXT model was
selected to perform the pixel-by-pixel inversion of the vegetation and soil carbon density
across Ningxia, generating the 2000-2023 vegetation and soil carbon density dataset. The
final inversion dataset was re-extracted using all sample data and compared with measured
values to perform accuracy validation (Figure 4). From the scatter plot distribution, a good
linear relationship between predicted and measured values is observed, with the points
closely aligned to the 1:1 line, indicating high reliability of the model’s predictions.
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Figure 4. Accuracy validation of the EXT model prediction results based on the entire sample dataset:
(a) VICD and (b) SOCD.

The EXT model was used to perform the pixel-by-pixel inversion of the vegetation
and soil carbon density in the Ningxia region, generating a carbon density dataset from
2000 to 2023. The final inversion dataset was then re-extracted using all sample data,
and compared with measured values to generate accuracy validation scatter plots for the
vegetation and soil carbon density (Figure 4a,b). From the scatter plot distribution, the
predicted values show a strong linear relationship with the measured values, with points
tightly clustered around the 1:1 line, indicating high prediction accuracy. Both models
exhibit high coefficients of determination (R? = 0.92) and a low root mean square error
(RMSE) and mean square error (MSE), further confirming the reliability of the EXT model
in the carbon density prediction.

3.2. Spatial Variation Characteristics of CSR in Ningxia

The average CSR values for Ningxia in 2001, 2011, and 2023 were 13.37, 22.59, and
25.41 gC-m 2, respectively. As shown in Figure 5a—c, the carbon sequestration rates in the
southern and northwestern regions of Ningxia have significantly increased. The percentage
of areas with CSR < 4 gC-m_2 in Ningxia was 8.8%, 3%, and 1.8% in 2001, 2011, and
2023, showing a decreasing trend year by year. In contrast, the percentage of areas with
CSR > 40 gC-m~2 increased from 2% in 2001 to 10.6% in 2011 and 17.6% in 2023. From 2001
to 2023, the average CSR for the Ningxia ecosystem exhibited a spatial distribution pattern
of decreasing values from south to north, as shown in Figure 5d, with the average CSR
of 21.95 gC-m~2. Low CSR values are primarily concentrated in the northern region of
the Helan Mountain water erosion area and the western region of the Hill platform arid
grassland geomantic erosion staggered area. High CSR values are mainly distributed in
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the Liupan Mountain water erosion zone, the water erosion area of Loess hilly and gully
residual tableland, and the southern region of the Loess hilly and gully water erosion zone.
As shown in Figure 5e, the Liupan Mountain water erosion zone has the highest CSR, with
an average value of 46.51 gC-m~2, followed by the Loess hilly and gully water erosion
zone, with an average CSR of 37.92 gC-m~2. The Helan Mountain water erosion zone has

the lowest average CSR, at 11.34 gC-m 2.
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Figure 5. Spatial Distribution of CSR in Ningxia for 2001 (a), 2011 (b), and 2023 (c), and the average

(d) and CSR statistics for different ecological zones (e).

According to Figure 6, the CSR changes in Ningxia and its different ecological zones
exhibit significant spatial differentiation. Overall, the carbon sequestration rate in the
southern regions of Ningxia has increased significantly, especially in zones V (the Loess
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hilly and gully residual tableland water erosion zone) and VI (the Loess hilly and gully
water erosion zone). A large proportion of land in these regions showed significant increases
in the CSR, with growth rates in the range of 0.7-1.2 gC-m2-a~! and 1.2-7.9 gC-m2.a~ !
accounting for about 90%. However, in the northern part of Ningxia, particularly in zones I
(the Helan Mountain water erosion zone) and II (the Yinchuan Plain potential wind erosion
zone), some areas showed a downward trend in the CSR. Specifically, in zone II, about
24% of the area showed negative growth in the CSR, indicating a weakening of the carbon
sequestration capacity of the ecosystem in that region. Overall, the spatial distribution
characteristics of the CSR in Ningxia indicate that the carbon sequestration capacity has
significantly increased in the southern regions, while in some northern areas, particularly
in the Yinchuan Plain, the carbon sequestration function has weakened.

v
on
=
'E :—
Y
N
]
=
8
CSR trend =
(gC'm%a™) u -
B -4.7-0
[Jo0-03 .
[Jo3-07
Eo7-1.2
- 12-7.9 Ningxia
L Ecological zonin; T T T T T ]
20 40 60 80 100
0 60 120 Area percentage/%
[y

Figure 6. Spatial distribution of Ningxia CSR trend: (a) Spatial distribution of CSR trend; (b) Statistical
proportions of different CSR trend levels within each ecological region.

3.3. Temporal Changes in CSR (2001-2023)

Between 2001 and 2023, the CSR in Ningxia and its seven different ecological zones
showed an overall fluctuating increase, peaking in 2019. As shown in Figure 7, the carbon
sequestration capacity of the overall Ningxia region has significantly increased, with an
average annual growth rate of 0.53 gC-m~2-a~!. Among the ecological zones, the CSR
growth rates vary significantly. Zone V (the water erosion area of Loess hilly and gully
residual tableland zone) exhibited the most significant increase, with an average annual
growth rate of 1.16 gC-m~2-a~!. The CSR variations in zones IV (the Liupan Mountain
water erosion zone), VI (the Loess hilly and gully water erosion zone), and VII (the Loess
hilly and gully water wind erosion staggered zone) were also relatively large, all exceeding
the overall level in Ningxia. In contrast, the CSR changes in zones I (the Helan Mountain
water erosion zone), Il (the potential wind erosion area of Yinchuan Plain zone), and III
(the hill platform arid grassland geomantic erosion staggered zone) were relatively stable.
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Figure 7. Interannual variation trends of CSR from 2001 to 2023 in Ningxia and its 7 ecological
regions. I (the Helan Mountain water erosion zone), II (the potential wind erosion area of Yinchuan
Plain zone), III (the hill platform arid grassland geomantic erosion staggered zone), IV (the Liupan
Mountain water erosion zone), V (the water erosion area of Loess hilly and gully residual tableland
zone),VI (the Loess hilly and gully water erosion zone), and VII (the Loess hilly and gully water wind
erosion staggered zone).

3.4. Influence of Land Cover Types on Ecosystem CSR

Based on land cover products from 2000 to 2020, land use changes in Ningxia were
analyzed, as shown in Figure 7. The results show that approximately 68.64% of land use
remained unchanged, with arable land, grassland, barren, and forest areas remaining
stable, occupying 32.26%, 28.17%, 7.13%, and 1.08% of the total area, respectively. It is
noteworthy that the forest coverage rate is the lowest, mainly distributed in the southern
Liupan Mountain water erosion zone of Ningxia. In contrast, barren land is primarily
distributed in the western region of the Hill platform arid grassland geomantic erosion
staggered area. Land use change accounts for approximately 30.83% of the total area, with
the largest change being barren to forest-grassland (16.15%), followed by C-Fg (13.68%).
The conversion rate of G-F is the lowest, at only 1%. This indicates that Ningxia has
undergone significant land cover changes over the past two decades.

Based on the 2001-2023 CSR, its trend over the years, and land cover-type products,
the CSR and carbon accumulation capacities (CSR trend) of different land cover types in
Ningxia were calculated, as shown in Figure 8. According to Table 2, the average CSR
ranking for unchanged land use types is as follows: forest > cropland > grassland > barren,
indicating that forests have the highest carbon sequestration capacity, while barren land
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has the lowest. The average CSR for forests is 56.53 gC-m~2, significantly higher than that
of cropland, grassland, and barren land. The total carbon sequestration amount ranks as
follows: cropland > grassland > barren > forest. Although forests have the highest per-unit
carbon sequestration capacity, cropland has the highest total carbon sequestration due to
its larger area, reaching 622.91 Gg C. The CSR growth trends are the highest for cropland
and forests, with rates of 0.65 gC-m~2-a~! and 0.62 gC-m~2-a~!, respectively. In particular,
cropland shows the highest carbon sequestration increase rate, reaching 13.92 Gg C-a~!,
indicating that the promotion of conservation tillage and organic agriculture in Ningxia
has significantly enhanced cropland’s carbon sequestration potential.
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Figure 8. Chart of CSR (a) and CSR trend (b) for the land cover types.

Table 2. Statistical table of carbon sequestration capacity and carbon sequestration enhancement
capacity for different land cover types.

tandUse  CsRigem 2 S Gecan Contribution Ratelt
Forest 56.53 40.54 0.62 0.44 1.26%
Grassland 19.70 368.49 0.49 9.17 26.04%
Crop 29.08 622.91 0.65 13.92 39.56%
Barren 9.09 43.03 0.26 1.23 3.50%
G-F 61.40 40.77 0.70 0.46 1.32%
C-Fg 24.34 221.09 0.71 6.45 18.32%
B-Fg 12.93 138.66 0.35 3.75 10.66%

The ranking of the CSR for land use change types is as follows: G-F > C-Fg > B-Fg.
The ranking of the CSR amount is C-Fg > B-Fg > G-F. The total carbon sequestration
amount for C-Fg is 221.09 Tg C, far higher than that of other types, while B-FG reaches
138.66 Gg C. Compared to grassland, cropland, and barren land, the conversion of G-F,
C-Fg, and B-Fg can, respectively, enhance the carbon sequestration capacity by 42.9%,
9.2%, and 34.6%. After cropland is converted to forest—grassland, although the soil carbon
sequestration capacity increases, the improvement is less pronounced than the conversion
of grassland to forest-shrub due to the relatively higher carbon sequestration capacity of
the cropland itself.

In summary, significant differences exist in the carbon sequestration and enhancement
capacities across different land cover types in the Ningxia region. Through scientific
land management measures and the optimization of the land-use structure, the carbon
sequestration capacity in Ningxia can be effectively improved, contributing to sustainable
ecological development.
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3.5. Influencing Factors on CSR in Ningxia

Figure 9 shows the weight and interaction of the CSR’s influencing factors from 2001
to 2023. A univariate analysis shows that the NDVI, with the highest correlation of 0.69,
plays a dominant role in the carbon sequestration process. Other vegetation indices such as
the EVI, NDMI, and RVI also show a significant influence, reflecting the importance of the
vegetation condition on the CSR. Soil property factors such as the bulk density, clay content,
sand, and slit also have relatively high g-values of 0.41, 0.36, 0.36, and 0.21, respectively,
indicating that these soil characteristics also play a significant role in the CSR. The q-
values for DEM, precipitation, and temperature are around 0.25, indicating that elevation
and rainfall are also important influencing factors. The interactions between influencing
factors exhibit characteristics of two-factor reinforcement or nonlinear amplification. The
interaction between the EVI and bulk density has the strongest explanatory power at 0.78,
followed by the interaction between the NDMI and bulk density at 0.77. This further
confirms the core role of vegetation indices in the CSR.
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Figure 9. Weights and interactions of CSR influencing factors in Ningxia from 2001 to 2023.

4. Discussion
4.1. Uncertainty Analysis

Different methods and data sources in various studies lead to discrepancies in the
CSR results. This study combines remote sensing inversion with ground observation data
to more accurately assess the carbon sequestration capacity in Ningxia, using data with
a relatively low spatial resolution to reduce estimation errors. However, this estimation
still carries some uncertainty. First, the spatial and temporal resolution of remote sensing
data limits the precise capture of small-scale carbon density changes, especially in areas
with a complex topography. Related studies have shown that this uncertainty is not an
isolated case. For example, Yu et al. (2024) [37] pointed out that remote sensing data can
lead to biases in CSR estimates for local areas. Secondly, the insufficient distribution of
ground observation points, particularly in the arid regions of northern Ningxia, limits the
representativeness of the estimates for this area [38,39]. Therefore, future studies should
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consider incorporating higher-resolution remote sensing data and expanding the coverage
of observation points to reduce these uncertainties [40,41].

Overall, the estimation of the carbon density using remote sensing technology still
faces numerous challenges, including insufficient sample sizes, limitations in the accuracy
of remote sensing data, constraints on the applicability of research methods, and uncertain-
ties and biases in data sources. These issues significantly affect the accuracy and reliability
of CSR estimates. Therefore, it is urgently necessary to expand the coverage and improve
the precision of field observation data to provide more comprehensive and high-quality
validation data. Simultaneously, enhancing the accuracy of remote sensing products, im-
proving algorithms, and adopting advanced data fusion techniques are critical for reducing
uncertainties. Additionally, optimizing simulation methods to enhance their applicability
across different ecosystems and spatial scales is crucial. Future research should also focus
on the potential of more advanced remote sensing technologies, the further integration of
ground-based measurements and multi-source information, and an in-depth exploration of
the mechanisms by which various variables influence CSR estimates. These advancements
are of great significance for accurately characterizing the spatiotemporal dynamics of the
CSR, uncovering its driving mechanisms and providing scientific support for ecosystem
management and carbon neutrality policy formulation.

4.2. Comparison with Other MODIS Products

This study estimates a 30 m high-resolution CSR dataset for the Ningxia region
and compares it with the net primary productivity (NPP) from the MODIS product
MOD17A3HGF(V006), as shown in Figure 10. This comparison reveals the impact of
different remote sensing data sources and resolutions on CSR estimation results. As shown
in the figure, the 30 m resolution CSR data provide a higher level of spatial detail, offering
the better capture of small-scale changes in the carbon sequestration process. This high
resolution is particularly important for areas with a complex terrain and diverse vegetation
types, as it more accurately reflects the characteristics of local ecosystems. While the 500 m
resolution NPP has advantages in terms of the coverage and data acquisition frequency,
its lower resolution may fail to capture micro-scale changes within the region, leading
to reduced accuracy in carbon sequestration estimation. In conclusion, future research
could consider combining both approaches to leverage their respective advantages, im-
proving the accuracy and timeliness of carbon sequestration estimates and providing more
comprehensive support for ecosystem management.

Figure 10. Comparison of Ningxia CSR dataset with details from other MODIS products.
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4.3. Spatial Heterogeneity of CSR in Ningxia and Its Driving Factors

In recent years, Ningxia has implemented large-scale ecological conservation projects
such as reforestation, grassland restoration, and protective farming practices, significantly
increasing the vegetation coverage and enhancing the CSR function of the ecosystem [42].
The research results indicate that the CSR in Ningxia shows clear spatial heterogeneity,
particularly a decreasing trend from south to north [4], which is closely related to regional
precipitation, vegetation coverage, and soil fertility. Specifically, the CSR benefits in the
southern, more humid regions are significantly higher than those in the northern, arid
areas. Precipitation is a crucial climatic factor affecting the CSR, as the higher rainfall in the
southern regions promotes plant growth and biomass accumulation, thereby enhancing the
carbon storage capacity [43]. At the same time, the increase in vegetation coverage directly
improves the soil’s carbon storage capacity, creating a positive CSR effect [44].

Additionally, soil fertility is a key factor influencing the CSR’s spatial heterogene-
ity [45]. In areas with good vegetation coverage, the soil fertility is typically higher, which
aids in plant growth and carbon accumulation [46,47]. In contrast, in areas with poor
or severely eroded soils, the CSR remains limited despite moderate precipitation, which
further explains why the carbon sequestration capacity is lower in the northern arid regions.

Topographic factors also play an important role in the CSR. Areas with steeper slopes
often experience severe soil erosion, leading to a decline in soil fertility and a reduction in
the soil carbon storage capacity [48]. This topographic effect exacerbates the CSR differences
between regions, suppressing the carbon sequestration capacity in certain areas. Therefore,
the combined effects of the climate, topography, and vegetation indices contribute to the
spatial heterogeneity of the CSR in Ningxia. Future research could further explore the
interactions between these factors to gain a more comprehensive understanding of the
driving mechanisms behind the regional carbon sequestration capacity. This will provide
more effective management strategies to enhance the regional CSR capacity and promote
the sustainable development of ecosystems. By integrating data from climate, vegetation,
soil, and topography, targeted measures can be developed to better promote ecological
restoration and the CSR in Ningxia.

5. Conclusions

This study, based on ground observation data and multimodal datasets, employs
the EXT optimal machine learning model to invert a 30m resolution VICD and SOCD
dataset for Ningxia from 2000 to 2023. It further evaluates the spatiotemporal distribution
characteristics of carbon sequestration rates (CSR) from 2001 to 2023 and reveals the
associated influencing factors. The results indicate that:

(1) During 2001-2023, the CSR of Ningxia’s ecosystems exhibited a spatial distribution
characterized by higher values in the south and lower values in the north. The mean
CSR was 21.95 gC-m 2, with an overall fluctuating upward trend and a growth rate
of 0.53 gC-m~2.a~ L.

(2) The CSR means significantly differ across different ecological regions. The Liupan
Mountain water erosion area had the highest carbon sequestration capacity with a
mean of 46.51 gC-m~2, while the Helan Mountain water erosion zone had the lowest
CSR mean of 11.34 gC-m~2. The carbon sequestration rate in the Water Erosion Area
of Loess Hilly and Gully Residual Tableland showed the most significant increase,
with an annual growth rate of 1.16 gC-m~2-a~ L.

(3) For land use types with unchanged coverage, the carbon sequestration capacity is
ranked as forest > cropland > grassland > barren, while the enhancement capacity is
ranked as cropland > forest > grassland > barren. In terms of land-use change types,
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the CSR ranking is as follows: G-F > C-Fg > B-Fg. The enhancement capacity ranking

is C-Fg > G-F > B-Fg.

Compared to grassland, cropland, and barren land, the transitions of G-F, C-Fg, and
B-Fg can enhance carbon sequestration capacity by 42.9%, 9.2%, and 34.6%, respectively.

(4) Among the individual influencing factors, the NDVI is the primary driver of the
spatiotemporal dynamics of the CSR in Ningxia’s ecosystems. However, the two-
factor interaction between the EVI and Bulk Density provides a more significant
explanatory power for the CSR.

This study demonstrates that ecological restoration projects such as returning farmland
to forest (grassland) and conservation tillage play a significant role in enhancing the regional
carbon sequestration capacity. Future carbon-neutral policies for Ningxia should prioritize
the implementation of vegetation restoration measures and further optimize the design
and management of restoration projects across different ecological regions to maximize
their carbon sequestration benefits.
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