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Preface

This Reprint explores the rapidly evolving domain of AI-driven image processing and analysis,

become central to modern technological innovation.

The scope of this Reprint spans fundamental research, algorithmic development, and applied

methodologies, highlighting how AI has transformed the way visual information is interpreted,

analyzed, and used across diverse scenarios. Particular attention is given to innovative AI-based

algorithms that operate effectively under real-world constraints such as limited data availability,

heterogeneous data quality, and the need for robust, adaptive solutions.

The motivation for compiling this Reprint arises from the growing demand for intelligent,

human-centric technologies that are reliable. By bringing together contributions from leading experts

and emerging researchers, this Reprint reflects both the maturity of established methods and the

creativity of novel approaches.

This Reprint is intended for a broad audience, including academic researchers, graduate

students, health/industry professionals, and policymakers interested in the current state and future

directions of AI-driven image processing and analysis in order to inspire further research and foster

interdisciplinary collaboration in fields such as medicine, agriculture, environmental monitoring, and

beyond.

Selene Tomassini and M. Ali Akber Dewan

Guest Editors
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Article

Transformer-Based Student Engagement Recognition Using
Few-Shot Learning

Wejdan Alarefah *, Salma Kammoun Jarraya * and Nihal Abuzinadah

Computer Science Department, Faculty of Computing and Information Technology, King Abdulaziz
University (KAU), Jeddah 21589, Saudi Arabia; nabuznadah@kau.edu.sa
* Correspondence: wabdullahalghamdi0002@stu.kau.edu.sa (W.A.); smohamad1@kau.edu.sa (S.K.J.)

Abstract: Improving the recognition of online learning engagement is a critical issue in
educational information technology, due to the complexities of student behavior and vary-
ing assessment standards. Additionally, the scarcity of publicly available datasets for
engagement recognition exacerbates this challenge. The majority of existing methods for
detecting student engagement necessitate significant amounts of annotated data to capture
variations in behaviors and interaction patterns. To address these limitations, we investi-
gate few-shot learning (FSL) techniques to reduce the dependency on extensive training
data. Transformer-based models have shown comprehensive results for video-based facial
recognition tasks, thus paving new ground for understanding complicated patterns. In
this research, we propose an innovative FSL model that employs a prototypical network
with the vision transformer (ViT) model pre-trained on a face recognition dataset (e.g.,
MS1MV2) for spatial feature extraction, followed by an LSTM layer for temporal feature
extraction. This approach effectively addresses the challenges of limited labeled data in
engagement recognition. Our proposed approach achieves state-of-the-art performance on
the EngageNet dataset, demonstrating its efficacy and potential in advancing engagement
recognition research.

Keywords: few-shot learning; vision transformer; student engagement recognition

1. Introduction

The use of online learning has become mainstream, and it has recently played a
key role in the educational field. Online learning helps students by taking advantage of
computer techniques, allowing teachers to provide lessons to students efficiently [1].

However, the recognition of e-learning engagement is a critical issue in educational
technology. Traditional methodologies are insufficient to assess engagement in all situations,
and student performance in online learning environments often suffers due to the limited
interaction between teachers and students [1]. In addition, due to the complexities of
student participation, as well as the influence of diverse definitions and standards, its
evaluation and measurement are also challenging. As a result, teachers are unable to assess
the level of student engagement; thus, methods for the efficient and automatic recognition
of students’ learning engagement are required.

Typical approaches for identifying and assessing engagement include (a) self-reporting,
(b) observational checklists and rating scales, and (c) automated measures that use technical
tools to detect students’ engagement, such as facial expression recognition [2] [3,4], body
gesture recognition [5], and head pose and eye gaze tracking [6].

The automated measurements are more objective than the other two methods [3].
Most of these measurements come from computer vision-based tools which have been

Computers 2025, 14, 109 https://doi.org/10.3390/computers14030109
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shown to be effective in detecting e-learners’ degrees of engagement [5]. Computer vision
methodologies have demonstrated greater appropriateness for online learning due to their
reduced distractibility for users, alongside the widespread availability and affordability
of the requisite equipment and software for data recording and evaluation [7]. One of
the biggest challenges in this field is the extremely limited number of datasets relating to
student engagement. The majority of existing methods for detecting student engagement
necessitate significant amounts of annotated data to capture variations in behaviors and
interaction patterns, which can be expensive at times [8]. Moreover, traditional supervised
learning methods demonstrated limited performance in the student engagement recogni-
tion task. However, few-shot learning techniques can be implemented in order to reduce
the amount of data used/required in training. Although few-shot learning approaches
have significantly advanced computer vision, to the best of our knowledge, they have not
yet been explored in the context of student engagement recognition in online learning.

In this research, we aim to investigate the appropriateness of few-shot learn-
ing for student engagement recognition using the dataset produced by [5] and the
EngageNet dataset [9].

Few-shot learning (FSL) is a meta-learning problem in which models are evaluated
through an N-way, K-shot classification problem [10], in which the model learns k samples
from N classes. The few-shot learning technique can identify novel classes using only a few
samples once it has been deployed [8]. The objective of FSL is to overcome the obstacles
faced by deep learning techniques, which include the rarity of samples, the high effort
required for collecting data, and the high cost of the computational process [8]. FSL is a step
on the way to mimicking human-like learning. Hence, FSL has been used in a wide range
of real-world applications, including computer vision, robotics, acoustic signal processing,
and natural language processing [8].

Vision Transformers (ViTs), as proposed in [11], have become a powerful feature
representation model and were recently used widely, including the following research
works: [11–13]. Vision Transformers provide comparable performance for understanding
video-based facial recognition context.

In this research, we propose an FSL model that employs a prototypical network with
the vision transformer (ViT) model pre-trained on a face recognition dataset (e.g., MS1MV2)
for spatial feature extraction, followed by an LSTM layer for temporal feature extraction.
We investigated the suitability of few-shot learning for recognition of student engagement
level and explored the accuracy achieved through utilizing the specific architecture on
the dataset collected in [5]. The novelty of our approach lies in the combination of Vision
Transformers and Few-Shot Learning to handle the challenges of limited labeled data in
engagement recognition, unlike traditional ML methods which rely hugely on the amount
of training data.

The rest of this paper is organized as follows: Section 2 reviews the related work on
student engagement recognition, few-shot learning, and Vision Transformers. Section 3
details the proposed methodology. Section 4 presents the experimental setup and results,
including the dataset and model architecture, and Section 5 concludes with a discussion
and future directions.

2. Literature Review

2.1. Student Engagement Recognition

In the context of online learning, many uncontrollable factors affect student engage-
ment, such as the learning environment and information interruption; therefore, teachers
must use a system that can recognize student engagement during online learning [1]. Vari-
ous studies have explored student engagement recognition in online learning, ranging from

2
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single-model to multi-model approaches [14]. Visual cues are used in computer vision-
based approaches, such as facial expressions [2–4], body gestures [5], and eye gaze [6].

Zhang et al. [3] used mouse movements from students’ facial expressions to improve
labeling accuracy. Later on, adaptive weighted Local Gray Code Patterns and quick
sparse representation techniques were employed for feature extraction and classification.
Altuwairqi et al. [2] carried out a number of investigations into the recognition of students’
engagement levels depending on their emotions; they linked each level of engagement
with specific emotions by computing the Matching-Score (MS) and Mis-Matching Score
(MisMS) for both matched and unmatched emotions at each engagement level.

The usability of convolutional neural networks (CNNs) has been investigated in
this field. Nezami et al. [4] proposed a CNN model that was adapted from the VGG-B
framework, and then they pre-trained the model on the FER-2013 dataset and fine-tuned
it using their engagement recognition dataset (ER). Khenkar et al. [5] investigated a deep
three-dimensional CNN model for the recognition of e-learners’ engagements based on
spatio-temporal features of micro-body gestures. The authors also used a transfer learning
approach to the 3D CNN model trained on the Sports-1M dataset. The resulting accuracy
shows the efficiency of using body gestures for engagement recognition. Another work [7]
used multiple CNN architectures, including All-Convolutional-Network (ALL-CNN),
Network-in Network (NiN-CNN), and Very-Deep-Convolutional-Network (VD-CNN). In
addition, motivated by these models, the authors proposed a model that achieved higher
accuracy for the students’ engagement classification. Kaur et al. [6] used a Multi-Instance
Learning (MIL) deep network for the prediction and localization of the learners’ eye gaze
movements and head pose characteristics, then passed these features through the LSTM-
based network and flattened the output. The resulting vector passed through three dense
layers and average pooling, producing a single regressed engagement value.

While Hasnine et al. [14] associated student emotions with engagement levels, their ap-
proach lacked validation with diverse datasets, which we address using few-shot learning
techniques. The developed model consists of four phases conducted in the following order:
the first phase involves face recognition using the OpenCV Library, emotion detection
using CNN, eye detection, and engagement recognition using the Concentration index.
The model was tested using videos captured from a web camera available on YouTube,
including eleven students; therefore, the validation of the model did not use an appropriate
dataset. While numerous machine learning and deep learning methodologies have been
explored for the recognition of student engagement, few-shot learning techniques have not
been thoroughly investigated for this purpose, to the best of our knowledge.

2.2. Few-Shot Learning Technique

Most deep learning methods are unable to learn from a few examples in real-world
scenarios where data are scarce, and they tend to overfit. Therefore, there is a large volume
of published studies describing the role of using only a few samples. A novel paradigm
shift known as few-shot learning allows for the development of models that can rapidly
learn a new category from a small number of training examples. Supervised machine
learning models, on the other hand, need a significant volume of data to be more accurate.
In few-shot learning, the model is trained using numerous training tasks (also called
episodes) [8]. Each task contains its own support set and query set that include N classes
and K samples (known as N-way, K-shot), as shown in Figure 1, and few-shot learning
is called “one-shot learning” when there is only one sample per class. In each task, the
model is trained on the support set and verified using the query set, after which the model
is evaluated using a test task that contains its own support and query sets that are not
included in the training [15]. In other words, once the few-shot learning model has been
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trained, it will be able to classify new classes using previously acquired information and
with the help of additional information (the support set) [16].

Figure 1. An example of a 2-way 3-shots classification task for few-shot learning.

According to Liu et al. [10], few-shot learning approaches based on meta-learning can
be categorized into metric-, optimization-, and model-based learning.

Metric-based learning mainly consists of three phases, as follows. The initial step is to
derive a metric space from a set of training samples using a network in which samples from
the same class are near together and samples from other classes are far apart [17]. After
the network has been trained, it can be regarded as an embedding function. The second
phase is to extract features from all the testing data set samples. The final phase involves
classifying the testing samples using similarity function (Euclidean or Cosine distance) [18].

Maddula et al. [17] introduced a Meta-Learning Approach to Recognize Emotions
(MLARE), utilizing a Siamese network alongside a binary cross-entropy loss mechanism
(BCE) combined with sigmoid activation as the loss function in order to improve accuracy.
The Prototypical Network [15] is another metric-based learning approach that uses a non-
linear neural network which maps the input into an embedding space and defines the
prototype of each class as the average of its support set within the embedding space. The
classification of an embedded query point is subsequently executed by locating the closest
class prototype.

Sung et al. [19] proposed Relation Network, a flexible metric-based model comprised
of two modules; first, the used embedding module concatenates the resulting feature vector
of each sample in the support set with the feature vector of the query sample, then feeds
them into the relation module, which calculates the relation score between the query sample
and each sample in the support set.

2.3. Vision Transformer

Transformers’ uncomplicated architecture enables the processing of a variety of modal-
ities (e.g., images, videos, text, and audio) with comparable processing blocks. Additionally,
it has the capability to efficiently replace the CNN models in deep neural networks since
the pioneering development of the Vision Transformer (ViT) [11], which introduced the
use of transformers for image classification tasks with minimal changes by dividing each
image into patches, embedding them, and concatenating the embeddings with positional
encodings before passing them to the transformer block. As illustrated in Figure 2, the
transformer block comprises a multi-head attention layer and a multi-layer perceptron
(MLP) layer, each preceded by normalization layers. Dosovitskiy et al. [11] trained the
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transformers on very large dataset, revealing that data-hungry models. Then, Touvron
et al. [20] produced the Data-efficient Image Transformer (DeiT) to demonstrate that trans-
formers can be trained with mid-size datasets (e.g., ImageNet-1k) by leveraging several
data augmentation methods and novel distillation techniques. The research [12] explored
that the ViT can perform well on smaller datasets in the field of face recognition through
employing patch-level data augmentation techniques.

Figure 2. The architecture of the Vision Transformer Encoder.

Some studies have investigated the use of transformers for recognizing student en-
gagement [13,16,21]. However, as previously stated, a major challenge in this field is the
extremely limited availability of data for recognizing student engagement levels.

Therefore, this research investigates the efficiency of applying few-shot learning
techniques to improve online learning methods. To the best of our knowledge, combining
Vision Transformers (ViTs) with LSTM layers in few-shot learning scenarios remains a
relatively unexplored area of research.

3. Proposed Architecture

The proposed few-shot learning model (see Figure 3) integrates a Vision Transformer
(ViT) with a Long Short-Term Memory (LSTM) network to extract spatio-temporal features
for engagement recognition in videos of students learning online. Additionally, it leverages
the episodic training approach with prototypical loss to improve the generalization capa-
bility when using limited labeled data. The first stage involves preprocessing videos by
extracting 16 frames from each, followed by normalization and resizing to 112 × 112 pixels.
The second stage involves the feature extraction model, and the last stage includes comput-
ing the prototypes and the losses.
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Figure 3. The overall architecture of our approach. We utilized the vision transformer model with
the SE module to enhance the extracted features, followed by a dimensionality reduction layer and
LSTM layer for temporal feature extraction; then, the prototypes were computed for classification.

Vision Transformer Backbone

We selected the TransFace ViT model [12] pre-trained on the MS1MV2 dataset, due to
its proven performance in facial recognition tasks, which are critical for detecting engage-
ment cues. Figure 3 shows how we integrate the TransFace model with the LSTM layer.

The Vision Transformer (ViT) processes each frame independently to extract spatial
features. We follow the typical Transformer formulation. Key operations in this module
include patch embedding, positional encoding, and transformer-based feature extraction.
Each frame is divided into P × P non-overlapping patches; then, each patch is flattened
and projected into an embedding space of dimension D. To retain spatial information, a
learnable positional encoding is added to the patch embeddings.

A stack of transformer blocks processes the token sequence. Each block consists
of normalization layers, a multi-head self-attention mechanism and a feed-forward
network (FFN).

H = A(Q, K, V) = so f tmax
(

QKT
√

d

)
V (1)

The self-attention mechanism A enhances the dot-product attention operation by
organizing three components: queries, keys, and values (q,k,v) into matrix structures
(Q,K,V). The mechanism for self-attention utilizes a softmax function to determine the
weights of attention for each value in V by calculating a dot product among all queries in
Q and all keys in K.

The output of the ViT for each frame is a high-dimensional feature vector, which is
flattened into a 1D representation for further processing. Next, each feature vector is scaled
using the squeeze and excitation module which highly improve the accuracy. Then, to
reduce the computational complexity and align the feature dimensions with the LSTM
input requirements, a linear layer is applied. The LSTM network processes sequences of
feature vectors to capture temporal dynamics.

The model is trained using prototypical loss in an episodic manner of training. For
each class c, a prototype Pc is computed as the mean of the support embeddings. We use
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Euclidean distance as a similarity function, and then the probability of the query be-longing
to class c is given by the softmax over distances, as follows:

P
(
y = c

∣∣ fquery
)
=

exp
(−d

(
fquery, Pc

))
∑ć exp

(−d
(

fquery, Pć
)) (2)

The prototypical loss minimizes the negative log-likelihood of the correct class:

Lproto = − 1
nquery

nquery

∑
i=1

log P
(
yi = ci

∣∣ fquery,i
)

(3)

4. Experimental Results

4.1. Dataset

To evaluate our approach, we employed two student engagement recognition datasets:
the Khenkar Dataset [5] for training and the EngageNet dataset [9] for testing to follow the
few-shot learning settings.

Khenkar Dataset [4]: The datasets in the field of student engagement recognition are
very limited, and one of the most reliable available datasets is the Khenkar Dataset [5],
which contains multi-class videos (High-, Medium-, Low-Engagement and Disengagement)
annotated by experts using the emotion-based affective model [2]. Over 2476 video clips are
included in the dataset. Each video clip ranges from 2 to 40 s long and was collected from
24 lectures involving five college students. The dataset was collected in an uncontrolled
setting and captured using built-in webcams, representative of the natural environment of
an e-learning student. We used the color jetter and horizontal flip augmentation techniques
to balance the unbalanced classes in the dataset. The final class distribution is shown in
Table 1. We then split the dataset as 70% for training and 30% for validation.

Table 1. The sample distribution on the Khenkar Dataset.

Engagement Level # of Samples

High engagement 2936
Medium engagement 2199

Low engagement 1890
Disengagement 1090

EnagageNet dataset [9]: The EngageNet dataset was utilized in the meta-testing stage
of our approach. Each clip contains 10 s of video at a frame rate of 30 frames per second
and a size of 1280 × 720 pixels. Four levels of engagement have been assigned to the
video records of the subjects: “Not Engaged”, “Barely Engaged”, “Engaged”, and “Highly
Engaged”. A subject-independent data split method was used to divide the dataset into
7983 samples for training, 1071 samples for validation, and 2257 samples for testing [9].
However, the testing data are not available to the public, so we used the validation set
to test our model. During the experiments, we observed a high overlap between classes
from the EngageNet dataset. We used Maximum Mean Discrepancy (MMD) [22], which
represents the distance between distributions as follows.

MMD2 =
∑i �=j K

(
Xi, Xj

)
n(n− 1)

+
∑i �=j K

(
Yi, Yj

)
m(m− 1)

− 2·∑i,j K
(
Xi, Yj

)
n·m (4)

The results of computing the MMD between the highly engaged class with the en-
gaged and barely engaged classes were 0.003 and 0.01, respectively. This indicates a very
small difference between their distributions. Therefore, we combined these three labels

7



Computers 2025, 14, 109

“Highly-engaged”, “Engaged”, “Barely-engaged”, into a single label, “Engaged”, while the
latter label, “Not-Engaged”, remained unchanged. This then yielded a binary classification
task, as outlined in Table 2. The testing process was episodic, and we selected relatively
equal samples from each class.

Table 2. Sample distribution among the combined classes in the EnagageNet dataset.

Before After # of Samples

Highly-Engaged
EngagedEngaged 130

Barely-Engaged

Not-Engaged Not-Engaged 130

4.2. Implementation Details

In this research, we incorporated the TransFace pre-trained model [12] in our frame-
work as a spatial feature extractor with an LSTM network for temporal features. We first
split the video clips into smaller clips ranging from 3 to 10 s in length, and the number
of samples in each class is shown in Table 1. Then, we used uniform sampling for frame
extraction, which involves selecting 16 frames at regular intervals from a video and then
normalizing and resizing each frame to be 112 × 112, which is the expected shape for the
ViT model. We trained our model for 100 epochs with 20 episodes. Adam was chosen as
the optimizer with a learning rate of 0.0001 and 0.001 as a weight decay. To optimize the
learning process and prevent overfitting during training, we employed the ReduceLROn-
Plateau learning rate scheduler. This scheduler adaptively reduced the learning rate when
validation loss plateaued, ensuring more efficient convergence.

The TransFace model was fine-tuned with 12 transformer blocks, each with eight
attention heads; see Table 3.

Table 3. The details of the proposed model.

Model

# of Frames/clip 16
Learning Rate 0.0001
Weight Decay 0.001

Epochs 100
Iterations/Episodes 20

Batch-Size 40
Transformer Blocks 12 each with 512 dim

Attention Heads 8
Optimizer ReduceLROnPlateau

Loss Prototypical Loss
Similarity Measure Euclidean Distance

We trained the framework with four classes: high-engagement, medium-engagement,
low-engagement, and disengagement classes. The proposed model achieved 97% train-
ing accuracy and 90% validation accuracy during the meta-training stage in a 4-way
5-shot scenario.

8
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4.3. Evaluation Metrics

To assess our results we employed multiple performance measures including Accuracy,
Precision, Recall, and F1-measure as follows:

Accuracy =
True Positives + True Negatives

Total Number o f Samples
× 100% (5)

Precision =
True Positives

True Positives + False Positives
(6)

Recall =
True Positives

True Positives + False Negatives
(7)

F1-measure = 2× Precision× Recall
Precision + Recall

(8)

These metrics were selected to provide a comprehensive evaluation of our model’s
performance in different aspects.

4.4. Results on the Unseen: EngageNet

Table 4 and Figure 4 present the testing results on the EngageNet dataset. Our results
are obtained over 10 runs, each consisting of 26 iterations, where each iteration includes
5 support samples and 5 query samples. The proposed model achieved an overall accuracy
of 73.62% ± 2.66% in the binary classification task, indicating a 95% confidence interval
(CI) between 70.96% and 76.28%. According to the confusion matrix shown in Figure 4,
the model correctly classified 75% (±4.9%) of Engaged instances (true positive rate) and
76% (±4.7%) of Not-Engaged instances (true negative rate). However, 25% of Engaged
instances were misclassified as Not-Engaged, while 24% of Not-Engaged instances were
misclassified as Engaged, suggesting challenges in differentiating subtle engagement cues.

Table 4. The few-shot evaluation with EngageNet dataset.

Metric

2-Way 5-Shot

TransFace ViT Swin ViT

Engaged Not-Engaged Avg. Engaged Not-Engaged Avg.

Precision 0.7495 ± 0.1153 0.7597 ± 0.1244 0.7546 0.5758 ± 0.15033 0.57615 ± 0.1412 0.5759

Recall 0.7251 ± 0.1527 0.7348 ± 0.1467 0.7299 0.5552 ± 0.1743 0.5819 ± 0.1740 0.5686

F1-Measure 0.7158 ± 0.1094 0.7235 ± 0.1077 0.7197 0.5445 ± 0.1385 0.5560 ± 0.1350 0.5503

Accuracy 0.7362 ± 0.0266 0.5686 ± 0.0231

The confusion matrix reveals higher misclassification rates for engaged students,
which is likely due to subtle differences between the ‘Engaged’ and ‘Not-Engaged’ classes
that the model struggles to differentiate. Additionally, due to the limited number of samples
in the ‘Not-Engaged’ class, some samples were repeated as part of the support set, while
the ‘Engaged’ class contained more diverse samples.

As illustrated in Table 4 and Figure 5, the Not-Engaged class has higher recall (0.76)
and a better F1 score (0.72) compared to the Engaged class (recall 0.74, F1 0.71). This
indicates that the model is better at detecting “Not-Engaged” examples.

Furthermore, we evaluated the inference speed to assess the model’s feasibility for real-
time applications. We utilized an end device equipped with an Intel Core(TM) i7-7500U
CPU (2.70 GHz) and 8 GB RAM, running python 3.10 with Pytorch 1.13. The proposed
approach achieves an average inference time of 36.5705 s per image with a 95% confi-
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dence interval of ±2.7354 s, indicating its potential for real-time engagement recognition
in classrooms.

Figure 4. Confusion matrix of the proposed TransFace ViT + LSTM model on EngageNet dataset.

To evaluate our results, we explore our approach with the Swin ViT model [23],
which is a benchmark backbone that demonstrated strong results in the field of image
classification due to its robust hierarchical feature extraction capabilities, making it suitable
for addressing challenges in engagement classification.

Figure 5. Comparison between the TransFace ViT model and the Swin ViT.

Under the same conditions, we combined the Swin ViT pre-trained model on the
ImageNet-1K dataset with the LSTM layer. The model was fine-tuned alongside the
remaining components using the same settings outlined in Table 2. The Swin ViT model
achieved 98% training accuracy and 92% validation accuracy.
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The TransFace ViT model outperforms the Swin ViT model with a significantly higher
accuracy of 74% compared to 57%. This demonstrates the effectiveness of the TransFace
ViT model in correctly classifying engagement levels. The results further confirm that the
TransFace ViT model is better suited for binary classification tasks involving engagement
recognition. While Swin ViT has shown success in image classification tasks, its perfor-
mance in engagement recognition is comparatively weaker, particularly in terms of recall
(0.57) compared to TransFace ViT’s (0.74) and F1-measure (0.55) compared to TransFace
ViT’s (0.73). The overall performance of the proposed approach with the TransFace ViT
model demonstrated consistent and promising results.

4.5. Comparison Performance

Table 5 compares various models that have been explored for student engagement
recognition, utilizing diverse methods. The deep learning approaches, such as the Effi-
cientNet B7 + LSTM model [24], and the transformer-based models, such as the Video
Vision Transformer (ViViT) [25] and the Vision Transformer + Temporal Convolutional
Network [16], have been implemented, and they, respectively, achieved 67.48%, 63.9%, and
65.58% improvements in temporal understanding. However, these methods face some
challenges in distinguishing engagement levels. Another work employed the VGG16
fine-tuned model [26] and achieved 74.9% accuracy. However, traditional convolutional
neural networks (CNNs) have been widely implemented but often require large amounts
of labeled data. The Temporal Convolutional Network with Autoencoder (TCN-AE) [27]
utilizes time-series data to capture behavioral and emotional cues, reporting an AUC ROC
of 0.7489.

Table 5. Comparison of previous engagement measurement approaches with the proposed approach
in this paper.

Ref Feature Extraction Method Task Type Accuracy

Mandia et al. [25] Detect faces using the
Multi-task Cascaded

Convolutional Network
(MTCNN)

Video Vision Transformer
(ViViT) based architecture

named Transformer
Encoder with Low

Complexity (TELC)

Multi-class 63.9%

Zhang et al. [16] Facial features Vision transformer +
Temporal convolutional

network

Multi-class 65.58

Selim et al. [24] CNN EfficientNet B7 + LSTM Multi-class 67.48%

Abedi et al. [27] Time-series data sequences
extracted from both the
behavioral feature and

emotional states

Temporal convolutional
network with autoencoder

TCN-AE

Binary (AUC ROC)
0.7489

Tieu et al. [26] CNN Fine-tune the VGG16 Binary 74.9%

(Proposed model) Vision transformer Proposed Model
(ViT + LSTM + FSL)

Binary 74%

The proposed model (ViT + LSTM + few-shot learning) outperforms binary classifica-
tion methods with 74% accuracy, demonstrating its effectiveness in student engagement
recognition and addressing the challenges of limited labeled data. Integrating Vision
Transformers for spatial feature extraction, LSTMs for temporal feature extraction, and
few-shot learning to generalize from limited samples, the model enhances engagement
recognition compared to traditional CNN- or LSTM-based methods. These findings suggest
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that leveraging transformer architectures with few-shot learning can significantly improve
engagement recognition in real-world educational settings.

5. Discussion

As the proposed few-shot learning model, which integrates a Vision Transformer
(ViT) with an LSTM layer, was trained on a limited set of video clips and generalizes
to unseen data with 75% accuracy, teachers can implement it in real classroom settings
to automatically assess student engagement levels from video recordings captured via a
webcam. This approach automates engagement recognition and helps educators adapt
their teaching strategies based on students’ responsiveness.

Our model showed lower classification rates on the Engaged students due to the
challenges regarding the engagement recognition of the data collected in a realistic setting
with diverse conditions and different participants’ ages. The participants were free to
move around and sometimes become far from their devices with no restrictions on lighting
or backgrounds. These factors contributed to increased variability, making engagement
recognition more complex.

To further investigate the results proposed by our model, we have utilized the t-SNE
(t-distributed Stochastic Neighbor Embedding) model to visualize the feature space learned
during the training. However, as shown in Figure 6, the t-SNE plot indicates that data points
from different engagement levels (i.e., “Engaged” vs. “Not-Engaged”) cluster closely in the
reduced dimensional space, suggesting substantial overlap in their underlying features.
Moreover, engagement is frequently a subtle, continuous cue rather than a precisely defined
category variable. Our t-SNE results highlight that certain “borderline” samples share
characteristics of both classes.

Figure 6. T-SNE visualization of extracted features from the EngageNet dataset.

Despite the model’s promising performance, certain constraints about the utilized
datasets must be noted. The Khenkar dataset, used for training, consists of only five
students with video clips collected from their devices under varying lighting conditions
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and camera angles. While this introduces some diversity, the small sample size may limit
the model’s ability to generalize to broader student populations. The EngageNet dataset,
with 127 participants aged 18 to 37 years, provides a wider range of engagement expressions
and was annotated by three expert observers. Both datasets include computer-based and in-
the-wild settings and were annotated using behavioral (facial and body cues) and cognitive
(self-reports) dimensions. However, a notable imbalance exists in the engagement labels,
with the ‘not engaged’ class being significantly smaller than the other categories, limiting
the number of test clips to 130. To improve generalizability, future work should explore the
model’s performance on larger and more diverse datasets, including different educational
settings, age groups, and cultural backgrounds.

6. Conclusions and Future Directions

We introduced a novel approach for recognizing student engagement in online learn-
ing environments, integrating few-shot learning with Vision Transformers (ViT) and Long
Short-Term Memory (LSTM) networks. The proposed model was combined with a proto-
typical loss in an episodic training approach to address the challenge of limited labeled
data. The experimental results indicate that the proposed model achieved highly promising
results on the EngageNet dataset. The results highlight the importance of incorporating
specialized models such as TransFace ViT for engagement classification tasks.

Future research directions involve investigating real-time deployment scenarios and
integrating additional few-shot learning techniques, such as optimization-based methods,
to enhance model performance. Moreover, to enhance the practicality of the proposed
model, future work should focus on improving inference speed and computational effi-
ciency for real-time classroom applications. We intend to benchmark latency, memory
usage, and energy consumption against existing models, addressing the trade-offs between
accuracy and resource constraints. Additionally, future research should incorporate multi-
modal data (audio features and physiological signals). Integrating these modalities with
the vision cue data will significantly enhance the model’s performance for recognizing
subtle features of engagement.
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Abstract: Considering precision agriculture, recent technological developments have sparked the
emergence of several new tools that can help to automate the agricultural process. For instance,
accurately detecting and counting apples in orchards is essential for maximizing harvests and ensur-
ing effective resource management. However, there are several intrinsic difficulties with traditional
techniques for identifying and counting apples in orchards. To identify, recognize, and detect apples,
apple target detection algorithms, such as YOLOv7, have shown a great deal of reflection and accuracy.
But occlusions, electrical wiring, branches, and overlapping pose severe issues for precisely detecting
apples. Thus, to overcome these issues and accurately recognize apples and find the depth of apples
from drone-based videos in complicated backdrops, our proposed model combines a multi-head
attention system with the YOLOv7 object identification framework. Furthermore, we provide the
ByteTrack method for apple counting in real time, which guarantees effective monitoring of apples.
To verify the efficacy of our suggested model, a thorough comparison assessment is performed with
several current apple detection and counting techniques. The outcomes adequately proved the effec-
tiveness of our strategy, which continuously surpassed competing methods to achieve exceptional
accuracies of 0.92, 0.96, and 0.95 with respect to precision, recall, and F1 score, and a low MAPE of
0.027, respectively.

Keywords: apple detection; depth estimation; multi-head attention mechanism; ByteTrack

1. Introduction

Apples are a major agricultural export across the world, contributing significantly
to agricultural economic growth. Recently, computer vision-based systems have been
employed in a wide range of applications, including biomedical [1,2], remote sensing,
agricultural and farming monitoring, multimedia, and so on. The study’s purpose is to
develop a deep learning-based technology for agricultural automation. However, expe-
rienced farmers continue to be the driving force behind agricultural production. Manual
labor wastes time and raises production costs, and workers with insufficient expertise
and experience are prone to errors [3]. The advent of smart agriculture has fueled the
integration of intelligence in orchards, which has emerged as a critical aspect in obtaining
exact product information [4]. A visual system with automatic recognition based on sup-
port vector machine was proposed to identify fruit in orchards for autonomous growth
evaluation, robotic harvesting, and yield calculation [5,6]. The vision system controlled the
end result of the robot collecting apples from trees by identifying and localizing the apples.
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As a result, detecting and tracking of apples is a critical challenge for these applications.
Conversely, effectively recognizing fruits in natural situations poses substantial hurdles.
Fruit detection can be inaccurate due to factors such as changing lighting conditions, over-
lapping shading, and similarities between distant little fruits and the backdrop. Many
overlapping occlusions, leaf occlusions, branch occlusions, and other issues have also been
identified, resulting in fruit target identification challenges that make fruits difficult to
detect, recognize, and identify with high accuracy. The data collection of apples from farm
fields is rather complex, as shown in Figure 1a–d.

Figure 1. (a) Fruits concealed by branches; (b) Fruits obscured by leaves; (c) Fruits occluded by trellis
wire; (d) Overlapping or bunched fruits.

In images, objects may overlap or be placed close together, with one object partially
concealing the other. Obscured objects cannot be completely identified or annotated if
occlusion is not handled correctly. Smaller or thinner objects, which have more of their
surface area blocked, are more severely affected by occlusion. The concrete way of handling
the problem would be to label the occlusion at the bounding box level to instruct the model
as to which areas of an item are hidden. Thus, when producing a detection prediction, the
model can then factor out the obscured characteristics. Also, image segmentation masks,
bounding box overlays, and other techniques can be used to artificially occlude dataset
objects. This demonstrates to the model how various items seem while partially obscured.
The likelihood of missing or incorrectly packaging or labeling these difficult-to-see items
is higher. Predicting the apple yield for a specific crop is a challenging task. For instance,
an existing method for optimal thresholding for automatic recognition of apple fruits [7]
claims that a low threshold of 0.2 has an extremely high recall. We face the possibility of
obtaining too many false positives, which is the drawback. Similarly, according to Bin
Yan et al. [8], a model will be extremely accurate with a threshold of 0.8, but the number
of unrecognized apples will significantly increase. The most logical starting point would
seem to be a threshold of 0.5 [9]. The detection of unidentified apples is much better with
a confidence threshold of 0.5. The traditional methods are dedicated to the maturity of
apples analyzed by the shape, size, and color of the apples [10,11] before detection and
harvesting. Bulanon et al. [12] used threshold segmentation to improve the color difference
of the red channel of the apple picture and extract the apple fruit target. The processing
recognition rate reached 88.0%; however, it was only 18.0% in the backlight environment.
Tian et al. [13] suggested a localization strategy based on depth information in pictures
to determine the circular center, match the shape, and increase identification accuracy
to 96.61%.

According to Lei Hu et al. [14], their proposed model offers an enhanced YOLOv5
algorithm for mature apple target detection in challenging situations. To improve accuracy
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and efficiency, it includes an adaptive scaling mechanism and a position focus loss function.
To categorize and correlate the apple targets, the method uses the concept of feature
information extraction and employs the position focal loss function. This helps to prevent
feature information loss while also improving the algorithm’s accuracy and efficiency.
The new algorithm displays an 8.1% improvement in accuracy and 3.9 frames per second
increase in pattern recognition speed through experimental examination of apple target
feature data under varied conditions. The suggested method provides a solution for
effectively detecting and locating ripe apples in complicated surroundings, which is useful
for apple-picking robots and other applications. In spite of this, the study does not go
into great depth about the adaptive scaling technique and position focus loss function
employed in the enhanced YOLOv5 method. The report does not specify which complicated
contexts were used to test and assess the new technique, nor does it compare the enhanced
algorithm’s performance to that of other current methods for detecting targets under
challenging situations.

The work proposed by Jiuxin et al. [15] on apple-picking robots provides a quick
technique for apple recognition and processing based on a modified version of the YOLOv5
algorithm. The enhanced model is easier to migrate and apply to hardware devices since it
is smaller (57% smaller) and faster (27.6% faster) at processing data. The target association
identification method increases efficiency by cutting the model selection process processing
time by 89%. When compared to previous deep networks, the enhanced YOLOv5 model
performs more quickly and accurately, making it a useful tool for apple recognition [16].

The lightweight MobileNetv2 network uses the inverted residual convolution mod-
ule in place of the YOLOv5 backbone standard convolution module. The least-squares
method is used to fix the model’s inaccurate data output findings, making it better suited
for distinguishing different apple forms. The approach of target association recognition is
introduced when developing multi-target picking pathways according to the correlation
among the confidence levels of the recognized targets. These methods are combined to
enhance YOLOv5s, the model size is reduced, and the detection speed is increased, making
it easy to migrate to and use in hardware devices. The suggested path planning method,
which is based on the enhanced YOLOv5 model, lowers computation costs and successfully
addresses the issues of processing massive volumes of information and repeating process-
ing that arise throughout the apple picking activity. The target recognition information
can be further utilized to provide suggestions for obstacle avoidance in the apple picking
process.

An automated vision system was created employing stereo cameras synced to a cus-
tomized LED strobe for on-tree measuring of apples in photos using excellent measurement
precision [17]. Faster R-CNN and Mask R-CNN, two deep neural network models, were
trained to find fruit candidates for size and extrapolate obscured fruit sections to enhance
size estimation. The stereo cameras’ spatial resolution and depth data were used to trans-
late the segmented fruit shapes into metric specific surface areas and diameters. The
camera system was used in monthly field tests from June to October to measure fruit size
in the range of 22 to 82 mm and compare them to ground truth diameters. To determine
the effect of fruit form on size estimation using images, a laboratory setting experiment
was carried out. The 2D surface of an apple in an image, calculated in metric units that
used the camera system, was used to describe fruit shape. In the experiment, altogether
100 apples (50 “Candy Crisp” and 50 “Rome”) were imaged in various orientations to
mimic field settings. In an analysis of the link between focal length, camera field-of-view,
and size accuracy, it was discovered that increasing the distance from the tree reduced the
pixel count and size accuracy. The imaging system delivered accurate measurements of
fruit size and weight, as demonstrated by in-field comparisons of the readings with ground
truth data. The study also included details on the dates and types of data acquired during
the field experiment, including monthly image capture, ground truth size measurements,
and fruit weight records. However, for fruit recognition and occlusion handling, the study
used a specific pair of models of deep neural networks (Faster R-CNN and Mask R-CNN),
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and the effectiveness of other models or techniques was not examined, similar to the few
traditional works on apple fields [18,19]. The use of stereo vision and machine learning
in agricultural imagery may have drawbacks or difficulties, which include issues with
illumination, image quality, and processing needs.

The YOLOv7-tiny-Apple model, which has been proposed as a lightweight small-
target apple recognition and counting tool, can be used for autonomous orchard manage-
ment, assisting in real-time apple detection and more efficient orchard management by
identifying and counting apples [20]. The model provides theoretical support for devel-
oping apple identification and counting models by providing new insights on hardware
installations and orchard yield estimation. It may be used in orchard management in real
time to improve labor efficiency, product quality, and agricultural operational efficiency.
The work makes use of the publicly available MinneApple dataset, which has been pro-
cessed to create a collection of photos with diverse weather conditions, such as scenarios
with fog and rain. The suggested detection algorithm is built on the updated YOLOv7-tiny
model, which includes skip connections to shallower features, P2BiFPN for multi-scale
feature fusion [21], and a lightweight ULSAM attention mechanism to minimize the loss
of small target features. The suggested model, YOLOv7-tiny-Apple, demonstrated better
detection accuracy with a mean average precision (mAP) of 80.4%, as well as a loss rate of
0.0316, which was 5.5% higher than the baseline model. The mean absolute error (MAE)
was 2.737 and the root mean square error (RMSE) was 4.220 in terms of counts [22], which
were 5.69% and 8.97% less than the original model, respectively. The amount of equipment
needed was decreased by 15.81% due to the smaller size of the model. The suggested model
showed improved generalization and resilience, making it appropriate for tiny target apple
detection in a natural context with complicated backdrops and shifting weather conditions.
The model needs to improve technological monitoring and management of smart orchards,
lightweight optimization, greater detection accuracy, and mobile device deployment.

However, the efficacy of all of these systems is compromised due to backdrop com-
plexity, motion blurriness, poor light, obstacle avoidance, and other factors. In this work,
we propose a novel deep learning strategy based on the YOLOv7 model to address these
concerns. In addition to this design, we have included a multi-head attention mechanism
(MAM) technique to deal with size changes and predict the depth of apples in the or-
chard field. The following are the primary innovations and authors contributions of the
proposed approach:

• To make our training dataset more effective, we included an attribute augmentation
approach to offset the issue of contextual data loss and a feature improvement model
that would enhance the representation of features and speed up inference.

• The YOLOv7 model is implemented on the augmented data for apple detection in live
apple orchard fields.

• A multi-head attention mechanism is integrated with YOLOv7 to compute the depth
of apples.

• The apples are tracked and counted using an enhanced ByteTrack technique.

The article is organized as follows: Section 2 deals with the proposed system in
which data acquisition and data augmentation are applied on the dataset of apples to
eliminate various factors of external sources that will affect the accuracy of the model.
The detection of apples is dealt with by the improved YOLOv7 on the pre-processed data
after data augmentation. A multi-head attention mechanism is applied to YOLOv7 to
find the depth of apples along with the detection accuracy. Collaborating with these, the
ByteTrack approach is finally used to track and count the number of apples. Section 3
presents the experimental results of the proposed methodology and a comparative analysis
to demonstrate the robustness of the suggested method in comparison to standard object
detection techniques. Section 4 clarifies the discussion of the methodologies and results
obtained. Finally, Section 5 gives the conclusion and future potential of this seamless apple
detecting and counting approach. By combining these elements, a complete system that
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can track and identify apples and comprehend the distance between apples and drones is
obtained, opening up a valuable application.

2. Proposed Methodology

The recommended approach deals with a complete introspection of apple detection,
finding the depth of apples and finally tracking and counting of the number of apples by
the drone based on live apple orchard videos.

2.1. Data Acquisition and Pre-Processing

For the drone-cantered apple identification structure to be trained and evaluated, a
refined custom dataset is required. The preparation process for data acquisition plays a
vital role in the overall accuracy of the model. Reflex, stereo cameras, and a drone were
used to gather the data on two distinct fields. The data collection was carried out in Val
di Non in Trento, Italy, where the apple fields are situated, as shown in Figure 2a,b. The
photos and videos were taken between the plants at a distance of 30 and 60 cm. The data
were collected by the drone on a day in September with a variety of weather conditions, as
shown in Figure 2c,d. There were no additional lights or artificial lighting used during the
flight. The drone settings were processed via the rtmp protocol, which connects the camera
to the drone’s backend storage. It has an interference-free maximum transmission range of
80 m and height of 50 m.

 

(a) (b) 

 
(c) (d) 

 

Figure 2. (a) Geomap location of the apple orchard; (b) Drone camera view of the apple field;
(c) Drone flying in the apple field; (d) Drone camera recording the apples.

A DJI Mavic mini 3 drone and a Stereo Labs ZED 2iw Polarizing Filter were used. It
has a 249 g ultra-light option and 5-kilometre HD video transmission, and it can record
high-resolution drone videos. The drone has GPS-precise hover and a vision sensor. With
streamlined recording and editing, the three-axis Gimbal 2688 × 1520 resolution camera
provides a detailed image. The camera’s field of vision is 44◦ in the vertical and 81◦ in
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the depth. To confirm the robustness of the model, additional material included different
lighting situations, angles, and orchard layouts.

(a) Annotations: A fraction of the image are captioned by labeling the apples for each
frame of the 10 GB entire footage, which is divided into many frames. Each apple has
a bounding box drawn around it, and the depth labels indicate how close it is to the
drone. The dataset is particularly confined to apples that are ready to harvest, and the
immature apples are curtailed during the first labeling effort. As a result, our trained
method will be able to distinguish only mature apples under varied environmental
conditions. The ground truth data from the annotations are used to train and test the
model’s accuracy.

(b) Dataset classification: A training dataset, a testing set, and a validation dataset are
created from the full dataset. A considerable portion of the images are from the
training set, while only 30% and 10% of the images are from the testing and validation
sets, respectively. The testing set evaluates the trained model’s performance.

2.2. Data Agumentations

In computer vision applications, data augmentation [23] is a critical part since many
elements must be taken into account when the data collected are affected by external
sources. We noticed that the distance between the camera and the trees fluctuated during
the process since several apple images were relatively small while others were pretty large.
There was a significant asymmetry in the original data. Also, applications that operate
in real time suffered from this sort of input data uncertainty. Hence, training with this
type of unbalanced data may result in over-fitting and reduce detection accuracy. In a
similar way, the apple image data collection mechanism faces same issues during image
capture. As a result, data augmentation becomes an essential duty in these sorts of tasks
where object sizes differ often. Hence, the following augmentation approaches were taken
into consideration:

Image radiance: In order to match the actual low light and bad illumination circum-
stances, the brightness is alternately increased and decreased. With the function “hsv2rgb”,
the image is first converted to HSV and then to RGB.

Flipping of Image: To help the image classifier recognize apples in various situations,
the vertical as well as horizontal pixels are mirrored.

Rotating the image: When the capturing angle is constrained, the drone angle is not
fixed. So the model needs to be trained to be capable of capturing and identifying the apple
from a variety of perspectives.

Image blur: The drone moves at various speeds, and the video frequently records
ambiguous information. The model can be trained using blurry images to help with
accurate detection standards.

Noisy image: Images are subjected to a standard 0.02 of Gaussian variance [24,25].
High heat and electronic circuit noise may be produced by the drone. By utilizing Gaussian
noise, this process would assist in creating a model of human motion with human qualities.

The cautiously improved dataset serves as the foundation for developing and testing
the suggested drone-based apple recognition system. It consists of annotated drone-taken
images of apples with corresponding depth labels.

2.3. YOLOv7 Architecture

The YOLOv7 model is a current-time object identification system for detecting apples
in pictures or videos. YOLOv7 is an improved variation of the popular You Only Look
Once (YOLO) approach, which estimates box boundaries and probabilities of classes for
each object in a picture [26–28]. The YOLOv7 algorithm provides the best accuracy of any
real-time object identification model while maintaining 30 frames per second or more. It
uses far less hardware than conventional neural networks and therefore can be trained
considerably more quickly on tiny datasets with no pre-learned weights. Researchers
have presented many approaches for detecting apples utilizing the YOLOv7 model. One
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study, for example, developed a better method built on the YOLOv7 model to solve the
poor performance of apple fruit detection due to the complex backdrop and occluded
apple fruit. Other research employed an updated YOLOv7 framework and multi-object
tracking algorithms to recognize and count apples in apple orchards [29,30]. The approach
dealt with transformers to determine apple ripeness from digitized photos of several
apple varieties.

In general, the YOLOv7 algorithm provides a robust tool for identifying apples in
various contexts, and researchers are always looking for new ways to increase its precision
as well as efficacy. The model design as well as the training method were optimized
using YOLOv7. In model architecture, YOLOv7 provides an expanded, adequate layers
aggregation network and scaling model skills. During the training phase, YOLOv7 replaces
the original module with model re-parameterized skills and employs a dynamic label
assignment technique to apply labels to distinct output layers. The standard YOLOv7
model’s architecture for detection of apples involves basic components such as the inputs,
backbone, neck, detection heads, and prediction output, as shown in Figure 3.

  

Figure 3. Basic description of YOLOv7 architecture.

The initial process in the procedure is to analyze the input image, which comprises
different variants of apples images that need to be identified. The selection of a proper
backbone network is essential for apple detection. The backbone network passes the input
image through a number of convolutional layers. Specific filters are applied with the
help of the convolution layer to the source images to capture varied features at diverse
spatial resolutions. For object boundary detection, the network will first learn to recognize
basic features like edges and colors in the first layers. The hierarchical feature learning
is processed by the backbone network deeper layers by picking up on more complicated
and abstract properties. At these deeper layers, features like texture, patterns, and ob-
ject portions are learned, enabling the network to comprehend the fine details of apples.
Higher-level semantic characteristics are extracted as the image is being processed through
the backbone.

To identify apples from other items, these traits encode characteristics about object
shape. One of the best features of the backbone is that it is made to be resistant to variations
in scale and rotation. As a result, the network is able to recognize apples in the input
image regardless of their dimension or orientation. The backbone network produces
feature maps that spatially map the learned features on the image. Subsequent layers
use these feature maps, which are packed with data about the input apple images, to
detect objects. The network neck receives the feature maps that were retrieved from the
backbone. The neck further enhances these features, frequently forming a feature pyramid
that aids in the detection of objects of various sizes. The detection head processes the feature
maps at the end and predicts the bounding box dimensions and class probabilities for the
discovered apples.

The neck’s role is to build a pyramid structure in which lower-resolution maps are
obtained from higher-resolution ones (having finer information). As apples can exist
in images in a variety of sizes, their pyramidal structure is crucial. The network can
efficiently detect both large and small apples since it has features at many scales. Further
feature fusion aids in capturing contextual data for apple detection. For instance, it enables
the network to recognize how an apple interacts with its environment, facilitating precise
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detection. The neck also deals with the contextual information. Apples can be distinguished
from other items and backgrounds using contextual information [31]. As an illustration,
the existence of leaves, branches, or specific colors around an apple can serve as helpful
detection cues. The neck network improves the semantic understanding by recognizing
the whole shape of apple roundness and other unique structural properties. The enhanced
and refined attributes from the neck are then handed to the head. These characteristics are
used by the detection head to forecast apple-specific bounding box dimensions and class
probabilities. The information from the neck is essential for the detection head to accurately
estimate the location of the apples in the input image. Accuracy, real-time performance,
good recognition efficiency, scalability, and effective hardware utilization are just a few
benefits of using YOLOv7 to detect apples. Because of these benefits, YOLOv7 is a good
choice for apple detection in a variety of applications, including monitoring systems and
automated vehicles.

2.4. Improved YOLOv7 Architecture with Multi-Head Attention Mechanism

The improved YOLOv7 architecture in this section deals with the integration of the
multi-head attention mechanism aimed at apple detection [32]. The modified framework
accurately predicts the depth of apples and their confined features. The architecture
diagram shown in Figure 4 depicts the addition of the multi-head attention mechanism
within the framework of YOLOv7.

Figure 4. Architecture of YOLOv7 with multi-head attention mechanism.

In the architecture, the CBS layer performs the convolution, normalization of batches,
and SiLU activation operations, which is the fundamental convolutional unit in the back-
bone. The feature map output of the ELAN (efficient layer aggregation network) layer is
divided into three sections and is composed of several CBS structures. Here, the channel di-
vides the feature map into two equal groups. The initial group then applies five convolution
processes to produce the first component, the second group applies one convolution process
to obtain the second one, and the third part is made up of the outputs of the first group’s
first convolution and third convolution. The feature map is divided into two groups by the
MP (Max Pool) layer. Maximum pooling is used by the first group to extract more crucial
information, and convolution is used by the second group to extract feature information.
The outcome is finally obtained by joining two groups [33]. The CSPNet (convolutional
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spatial pyramid) including an SPP (spatial pyramid pooling) block makes up the SPPCSPC
(spatial pyramid pooling and convolutional spatial pyramid pooling) layer. The CSPNet
is a particular kind of network that incorporates data from several scales and resolutions
to increase the detection precision. Spatial pyramid pooling, a technique used by the
SPP block to gather more contextual data, involves combining characteristics at several
measures. The REP layer is a revolutionary idea that uses structural re-parameterization
to modify the framework in inference to enhance the model performance. The REP layer
can obtain the output of the feature map in three sections during training. Convolution
and batch normalization are implemented in the first and second phases and only batch
normalization is implemented in the third phase Structural re-parameterization uses less
computational power, and model performance is enhanced as REP inference only keeps
the second portion of the structure.

Multi-Head Attention Mechanism

In the real-world scenario, tasks capturing long range dependencies and their respec-
tive contextual data often become crucial. So, integrating the YOLOv7 model, as shown in
Figure 5, with the multi-head attention mechanism offers a great advantage to deal with
such problems. Convolutional neural networks (CNNs) that have undergone prior training
can extract feature maps from input images. As an attention mechanism is incapable of
identifying the spatial relationships between pixels, positional encoding must be added to
the feature maps to provide the details about the positions of the image core components.
Techniques like 1 × 1 convolutions can be used to lower the dimensionality of the features.

Stereo Camera Images using ZED SDK 

Converted to RGB 

Figure 5. YOLOv7 architecture for apple detection and depth estimation.
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The stereo cameras used in this work can capture high-resolution 3D video footage of
apple orchards and determine depth by comparing the pixel displacement among the left
and right pictures. Their two eyes are spaced 6 to 12 cm apart [34,35]. For every pixel (X,
Y) in the picture, the ZED’s depth maps record a distance value (Z). Measuring from the
rear of the camera’s left eye to the scene object, the distance is given in metric units (meters,
for example). The ZED’s default depth-detecting mode is called standard. The standard
mode operates more quickly while maintaining distance metrics and shapes. We used
the ValidMeasure function to determine valid depth data. Additionally, the ultra-depth
mode provides computer vision-based techniques with the widest depth range and the best
retained Z-accuracy across the sensing range. A feature called depth stabilization merges
and filters the depth maps over many frames in a temporal manner. This makes it possible
to reduce jitter and enhance the accuracy of depth on stationary objects like apples. By
utilizing the ZED SDK’s positional tracking feature, depth stabilization is still effective
despite the fact that the camera is moving. To prevent merging the depth of dynamic
regions, it may also identify moving objects. The depth resolution of a stereo camera
varies across its range, and the formula Dr = Zˆ2*α describes how stereo vision employs
triangulation to infer depth from a disparity image, where Dr is the depth resolution, Z
is the distance, and α is a constant. The ZED SDK and accompanying tools are the only
programs that can read the proprietary SVO file format. Together with metadata like
timestamps and IMU (inertial measurement unit) data, it includes the camera’s raw photos.
Multiple file types can be created from SVO files for applications elsewhere. SVO may be
exported into several formats using the sample ZED_SVO_Export SDK.

The source feature maps are linearly altered into several sets of queries, keys, and
values. The input data maps are captured in a variety of ways by separately calculating
the scaled dot-product attention scores. A residual connection is added from the input to
the output of the multi-head attention. Also, a layer normalization is applied to make the
training process more stable and efficient. After multi-head attention, the feature maps
are trained over position-wise feed-forward neural networks. ReLU (rectified linear unit)
activations and fully connected layers make up these networks. The network can more
successfully capture the apples of different sizes because of multi-scale feature fusion. The
detecting head predicts object class probability, bounding box coordinates, and other data
required for object detection. Non-maximum suppression (NMS) is applied to exclude
repetitive detections and choose the most certain predictions [36,37]. The model gains the
ability to identify apples, forecast the bounding boxes, allocate class probabilities, and
calculate their depths by minimizing the gap between estimated parameters as well as the
ground truth labels.

The multi-head attention model is made up of the three components, query, key, and
value, as shown in Figure 6. These components allow the model to concentrate on different
input locations and collect relevant data. The concern is a representation of the area of
interest that requires attention. A single feature or a collection of features describing an
area in the feature maps connected to apples may be the query for apple detection. A query
vector is created and then applied to every position in the input sequence. When compared
to the key vectors, all query vectors are utilized to calculate the attention scores. Keys can
represent either specific features that assist the model to recognize context, such as features
from surrounding objects or regions, or features from the whole input image. To calculate
the resemblance between queries and keys, key vectors are employed. If there is a lot of
similarity, it means that the related portions of the data input need to be addressed.

The value, in accordance with the attention mechanism, refers to the properties that
have been weighed and aggregated. The context of apple detection may benefit from
the features that provide specific information about the recognized apples or their sur-
roundings. Each attention head in the multi-head attention mechanism is in charge of
mastering a different selective attention pattern or capturing a different aspect of the input
material [38–40]. According to the calculated attention scores, value vectors are combined.
Higher attention ratings indicate that the model places greater trust in the associated values
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when making predictions. Each attention head performs the computations for the query,
key, and value separately. The weighted sum of the associated value vectors is computed
using the attention results achieved from the SoftMax normalization. This weighted total,
which reflects the focused information, is the result of each query attention mechanism.
The model can determine which areas of the images are important for identifying apples
by employing attention techniques. For instance, the attention mechanism could assist
the model in focusing on the visible parts of an apple if the apple is partially obscured by
another object, increasing detection accuracy. In contrast, queries, keys, and values work
together to create a multi-head attention mechanism that allows the model to dynamically
focus on different elements of the input data. This feature is especially useful for detecting
apples in complex scenarios.

Figure 6. Components of multi-head model.

2.5. Box Prediction and Loss Function

The proposed YOLOv7 architecture neck module, which is defined above, is responsi-
ble of bounding box prediction. The ground truth of the bounding box is shown as W = (x1,
y1, x2, y2). With these coordinates [41], Equation (1) is applied to determine W boundaries,
as follows:

t x1 = log (sl(x+0.5)−x1)
rl

, t y1 = log (sl(y+0.5)−y1)
rl

,

t x2 = log (x2 −sl(x+0.5))
rl

, t y2 = log (y2 −sl(y+0.5))
rl

(1)

The ground truth boxes and projection coordinates are taken into account to calculate
the normalized offsets between the coordinates, where sl is the scaling factor, rl is the basic
scale, and the coordinates of the image (x, y) are subsequently mapped to the original picture
by applying down sampling. Using the log-space function at this point, we incorporate
regularization. Later, the loss function is trained using the smooth L1 loss function, and the
bounding box prediction is performed using Lreg. Through iterative optimization, the loss
function increases the accuracy of the target detection [42]. Classification and regression
are the two primary components of the target loss detector loss function. The classification
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loss Lcls is among confidence, whereas the regression loss is in between the normalized
border and regression target. The loss function is articulated as follows in Equation (2):

L({psl}, {tl}) = Lcls + Lreg
1

Ncls
∑1 Lcls (psl , pl) + λ 1

Nreg
∑1 pl Lreg(ti , tl)

where =
{

pi t f pi = 1
1− pi otherwise

, αs =

{
α i f pi = 1

1− otherwise
and C =

{
1
∣∣tij − tij

∣∣ < 1
0 otherwise

(2)

Here, α is utilized to correct the positive and negative sample imbalance that results
from the target image having fewer samples than the overall image, i.e., there are fewer
samples of apple images than there are of the complete images. As a result, the model
obtains accurate bounding boxes, which improves accuracy. The proposed focal loss
function aids in estimating the classification loss, and α function is utilized to balance
the effects of the proposed positive and negative loss functions. Additionally, it prevents
the samples from producing a dominant amount of classification loss. L1 loss is used for
estimating the regression loss in order to determine the bounding boxes, and β aids in
choosing the L1 or L2 loss function depending on the range of the loss. Furthermore, Nreg
and Ncls regularize these loss functions. In order to construct the final optimal model, the
overall loss L is propagated backward in a gradient way. In the process of apple detection,
YOLOv7 + MAM is trained to identify apples in pictures or videos. Bounding boxes and
class labels surrounding the identified apples, together with an estimate of their depth, will
be generated as output by the model.

2.6. ByteTrack

Multiple object tracking (MOT) is a vital computer vision task that involves recogniz-
ing how various apples move over time in a video clip acquired from a drone. The objective
is to identify, locate, and track every apple in the video, even when they are partially or
entirely occluded by other elements of the scene.

Typically, there are two processes involved in multiple object tracking, object detection
and object association, as shown in Figure 7. With object detectors like Faster-RCNN or
YOLO, object detection is the process of recognizing all possible objects of interest within
the present frame. Object association is the method of connecting tracklets or objects
found in the current frame with their corresponding tracklets from earlier frames. Despite
significant advancements, MOT is still a difficult task. There are some crucial problems
that have prevented high-quality performance and contributed as the foundation for
current methods.

Figure 7. Proposed structure of multi-head detection and tracking of apples.

The visual input itself may cause complications. For instance, a single object motion
and look can change significantly over the video sequence. Items in a scene can move
in a variety of directions and at varying speeds. They can also alter in shape or size, as
well as be completely or partially obscured by other objects. Several issues, such as object
ID swapping or assigning numerous tracklets to the same item, lead to MOT tracking
errors. Also, every apple object in the current frame must be consistently connected to its
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equivalent object in the previous frame, and the tracking system should be able to handle
these deviations. A practical problem is the video inference speed while performing live
video inference on apple orchards.

In our case, relying simply on a detection model makes counting unreliable because
there is a significant chance the model may record numerous counts of identical apples if
they occur in subsequent frames. Duplicate counts will lead to more false positive cases,
which will reduce the model effectiveness and dependability for commercial application.
The counting strategy should therefore be based on a method that is not only reliant on
detections. So, a reliable method is to use an object tracking mechanism to follow each
apple during the course of the video until the counter is incremented. According to the
tracking-by-detection paradigm, a multi-object tracker (MOT) keeps track of numerous
items of interest by detecting them in each time frame (t), connecting them to objects that
were present in the previous frame (t − 1), and predicting their position in the next frame,
(t + 1), thus tracking the items throughout time by repeating for each frame of the video
sequence. The state of the object is predicted and updated using a Kalman filter in basic
MOT methods like SORT [43], and the objects are associated using a Hungarian algorithm.
The result of the MOT is bounding boxes with an ID produced specifically for each object
to aid in object identification. However, these models may be prone to ID switching. As a
result, the multi-object tracking accuracy (MOTA) is measured to assess the MOT’s accuracy,
as shown in Equation (3):

MOTA = 1− ∑t FNt + FPt + IDSt

∑t GTt
(3)

In this case, the terms FN, FP, IDS, and GT, respectively, refer to false negative, false
positive, ID switch, and ground truth counts.

Building of ByteTrack

ByteTrack can resolve this issue by employing a motion model that controls a queue,
called tracklets, to store the objects being tracked and conducts tracking and matching
among bounding boxes having low confidence values. The main advancement of ByteTrack
is the retention of non-background low confidence detection boxes, which are generally
destroyed after the initial filtering of detections, and the use of these low-score boxes for a
subsequent association phase [44,45]. Occluded detection boxes typically have confidence
ratings that are below the threshold but still contain some information about the objects,
giving them a better confidence score than background-only boxes. So, throughout the
association phase, it is still important to maintain track of these low confidence boxes.

After the detection phase, the detected bounding boxes are filtered with preset upper
and lower thresholds into high level of confidence boxes, low level of confidence boxes,
and background boxes. After this procedure, background boxes are eliminated, but low-
and high-confidence detection boxes are preserved for subsequent association stages. The
detection accuracy boxes of present frames are matched with estimated boxes from previous
frame tracklets (using Kalman filter) [46,47], which contain all active tracklets and lost
tracklets from current frames, in a manner similar to normal association stages from other
algorithms. The feature embeddings are matched using a simple IoU score or cosine
similarity score (using feature extractors such as DeepSORT, QDTrack, etc.) using nearest
neighbor distance and the Hungarian method or matching cascade [48,49]. Only if the
similarity score exceeds a predetermined match threshold is the linear allocation among
groups of bounding boxes confirmed. In the real implementation, mismatched high-score
detection boxes are matched with tracklets that have updates from a single image before
even being assigned to a new tracklet, as shown in Figure 8.

In the next step of association, the leftover unmatched predicted boxes of earlier
frames are compared against low-score detection boxes. As it makes sense that obscured
boxes should be less well linked to boxes from earlier frames, the matching method is
the same as the first association step; however, the matching threshold is scaled lower.
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Unmatched detecting boxes are deleted, whereas unmatched prediction boxes are given
the label lost tracklets. Prior to Kalman filter prediction, the lost tracklets are stored for a
certain time of frames and added to the active tracklets. This enables the trackers to retrieve
certain tracklets that were lost as a result of objects briefly going completely missing for
a limited number of frames. The basic detector in the present work is YOLOv7. Users
can choose from a variety of matching measures among IoU and ReID, depending on the
characteristics of the datasets. The initial phase identification of high-score detections can
be performed using either IoU or ReID. ReID performs best on videos with low frame
rates or videos with noticeable frame-to-frame motion, whereas IoU is more trustworthy
in extreme occlusion situations when ReID characteristics are unreliable. Consequently,
second phase association should always employ IoU as the matching criterion since we can
expect that low-score detection boxes will contain occluded apples with ReID features that
might not be accurate depictions of the objects.

Figure 8. Proposed build of the model for detection and tracking of apples.

3. Results

The results of the suggested YOLOv7 + MAM architecture are shown in this section.
Using real-time videos and images of apple orchards, this model was tested. The suggested
method for apple tracking and detection was built with the Ubuntu 22.04 Linux operating
system with the aid of the PyTorch deep learning framework. The operating system was
installed with an Intel i7 processor, 24 GB of RAM, and an NVIDIA GeForce RTX 3090
linked to a 384-bit memory interface. The GPU operated at a rate of 1395 MHz. The Python
programming language was used to develop the entire model. This model used YOLOv7,
which was enhanced with a multi-head attention framework along with tracking using
ByteTrack, and each model’s performance was assessed with the aid of the CUDNN library
and CUDA toolkit. The entire experiment was run with an IoU threshold set at 0.75.

The processing time examined in the current study is the duration the algorithm takes
to analyze each frame of the drone-recorded input video stream. By contrast, memory
usage is the amount of GPU-enabled system memory required for algorithm execution.
The computational cost of our solution was calculated using a GPU-enabled computer
system. We built the algorithm in Python and used the OpenCV package to process images.
To determine the processing time, we measured the total execution time acquired by the
algorithm on the video frames. Using the Python ‘time’ package, we recorded the start and
end times of the processing pipeline and determined the average processing time per frame.
Memory usage was analyzed using the ‘memory_profiler’ Python library, which allowed

29



Computers 2024, 13, 83

us to monitor the algorithm’s memory consumption throughout execution. We measured
peak memory consumption and averaged it across numerous iterations for a representative
measure. Our computational cost evaluation revealed a 20 millisecond average processing
time per frame and 2 millisecond standard deviation. Peak memory utilization during
algorithm running was found to be around 300 MB.

3.1. Performance Assessment

The performance of the proposed approach was assessed using three indicators of
accuracy: precision, recall, and F1 score. The following Equation (4) was applied to compute
these parameters:

Pr =
TP

FP + TP
, Rec =

TP
TP + FN

, F1− score =
2PrRec

Pr + Rec
(4)

where TP, FP, and FN represents the true positive, false positive, and false negative values.

3.2. Performance of Apple Detection

The results of the suggested approach to identify each apple in the picture are provided
in this section. The performance that was attained was compared with that of the remaining
models. To demonstrate the resilience of the suggested approach, we have considered
several variables that impact system performance, like variations in illumination. We
employed the PIL library in Python to account for changes in illumination, assigning a
0.5 factor for images with low brightness and 1.5 factor for pictures with high definition.
The comparative study of the suggested method in terms of recall, precision, and F1
score for the original picture is shown in this section. The performance of the suggested
approach was compared to that of several existing systems, including Faster RCNN,
AlexNet With Faster RCNN, ResNet + FasterRCNN, YOLOv3, YOLOv5, YOLOv7, and
finally with YOLOv7 + MAM. Table 1 displays the comparison outcomes for the detection
performance.

Table 1. Performance comparison for the original images and under different lighting conditions.

Original Images Illumination Variations

Detection Method Precision Recall F1 Score Precision Recall F1 Score

Faster RCNN 0.84 0.78 0.80 0.68 0.72 0.71
AlexNet + Faster RCNN 0.88 0.83 0.86 0.69 0.75 0.71
ResNet + FasterRCNN 0.87 0.64 0.74 0.72 0.75 0.72

YOLOv5 0.82 0.86 0.84 0.71 0.77 0.73
YOLOv7 0.83 0.91 0.86 0.82 0.85 0.84

YOLOv5 + MAM 0.88 0.94 0.92 0.85 0.91 0.87
YOLOv7 + MAM 0.92 0.96 0.95 0.87 0.93 0.89

Figure 9a illustrates a comparison bar chart of original images with the different
available methods and Figure 9b illustrates a comparison bar chart of illuminated images
with the different available methods. The performance of the proposed methodology
in detecting apples in live orchards is depicted in Figure 10. Figure 10a illustrates a
straightforward frame of apples from an input video that was shot by a drone. Figure 10b
presents the results of the detection of apples with YOLOv5 along with the multi-head
attention mechanism. Figure 10c demonstrates the outcome of the improved detection of
apples using YOLOv7 with the multi-head attention mechanism.

In comparison between the YOLOv5 + MAM model and YOLOv7 + MAM model, as
shown in Figure 10, the number of apples identified by the proposed model was enhanced
by comparing the output images. A few apples were undetectable and unidentifiable by the
previous models. This problem was completely resolved by the proposed YOLOv7 + MAM
model. Every apple had its depth displayed, which made it easier for us to see how far
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apart the apples were from one another and from the drone’s spatial configurations. Taking
into account the depth, the basic three-dimensional image of the apple from a different
perspective would offer an estimate of apple yield. Increasing the localization accuracy
is feasible to deal with occlusions. The results of estimating depth and detecting every
potential apple are presented in the outputs. A few ground truth problems, such as
sunlight and shade, can be fixed by altering the confidence and non-maximum suppression
threshold. The model’s accuracy was tested under various illumination conditions, like low,
normal, and high illumination, and the proposed model accuracy was optimal under all
conditions, as shown in Figure 11. Each bar represents a distinct environmental condition
and the rise of the bar signifies the model’s improved accuracy under varied conditions.
The obtained performance was compared with the other models’ performances. The agility
of the proposed architecture was demonstrated by evaluating a number of factors that
affect system performance, including noise, light change, and blurry images. Using a kernel
of (3 × 3), the Gaussian blur method was used in the blurriness stage.

Figure 9. (a) Performance comparison bar graph of original images with existing models; (b)
Performance comparison bar graph of illumination variation images with existing models.

3.3. Performance of Apple Tracking

To evaluate the effectiveness of the multi-object tracking methods, we considered the
DeepSORT method and proposed the ByteTrack method for tracking and counting the
apples [50,51]. Regarding multi-object tracking, the approach suggested in this study used
deep learning. Therefore, it may be considered as an identical benchmark. In addition,
the effectiveness of multi-object tracking was evaluated by directly using the trained
YOLOv7 + MAM model for video detection. For the tracking and counting studies, three
apple videos were chosen, and the following Equation (5) for mean absolute percent error
(MAPE) was applied to compare the counting accuracy of the automated system with the
manually recorded results:

MAPE =
1
n∑n

i=1

∣∣∣∣∣X
i
t −Yi

t
Yi

t

∣∣∣∣∣ (5)

where Yi
t indicates the entire number of manually counted apples in the collected video

sequence, Xi
t shows the results of the apples counting process utilizing two multi-objective

tracking algorithms, n is the total number of videos that need to be recognized, and i
represents the current initial video. The choice of this indicator makes it feasible to observe
the general characteristics of the model visually. Table 2 presents the comparative results of
apple tracking and counting results using the methods DeepSORT and ByteTrack. The three
apple videos considered were apple video ID1, apple video ID2, and apple video ID3. The
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video lengths of live inference of apples were 2.51 min, 1.48 min, and 0.41 s, respectively.
After video detection with the proposed model, the detected results were forwarded to
tracking using the ByteTrack algorithm. We employed the ByteTrack implementation with
the developed YOLOv7 + MAM detection model. In this proposed execution, a tracker
class was initiated, and appropriate tracks of the tracker instances were updated for every
image in the video stream using the detections. Two formats were available for entering
the detection: [h1, g1, h2, g2, score] or [h1, g1, h2, g2, object_score, class_score, class_id]. A
set of active tracklets with attributes such as track_id, present frame bounding box, and
confidence score may be found in the output online targets. The performance comparison
is illustrated in Figure 12a,b with respect to the apple counting applied by the DeepSORT
and ByteTrack techniques.For unblemished transparency of the tracking count of apples,
only the count of tracking ID for each apple was displayed in the output, as shown in
Figure 13a–c. The output also displayed the count of the number of apples being tracked in
the left top corner of the video stream considered for the experiments at different intervals
of time.

 
(a) 

(b) 

(c) 

Figure 10. (a) Drone-centered image for apple detection in an apple orchard; (b) Inference of apple
detection in an apple orchard using YOLOv5 + MAM; (c) Inference of apple detection in an orchard
using proposed YOLOv7 + MAM.
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Figure 11. Model’s accuracy under various lighting conditions.

Figure 12. (a) Performance comparison graph of manual counting and DeepSORT tracking technique;
(b) Performance comparison graph of manual counting and proposed tracking technique.

Table 2. Obtained experimental MAPE results of counting apples in live video inference.

Apple Video
ID

Manual Apple
Counting

Tracking Methods
Employed after YOLOv7 + MAM

Count Time in
Seconds

Number of
Counts

MAPE

1 945
DeepSORT 182 996 0.053

Proposed Model + ByteTrack 170 964 0.026

2 550
DeepSORT 125 694 0.261

Proposed Model + ByteTrack 105 563 0.023

3 150
DeepSORT 45 280 0.866

Proposed Model + ByteTrack 30 164 0.093

All 1645
DeepSORT 352 1970 0.197

Proposed Model + ByteTrack 305 1691 0.027
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(a) 

 
(b) 

 
(c) 

Figure 13. (a) The apple tracking results of Video ID1 after applyingYOLOv7 + MAM + ByteTrack;
(b) The apple tracking results of Video ID2 after applying YOLOv7 + MAM + ByteTrack; (c) The
apple tracking results of Video ID3 after applying YOLOv7 + MAM + ByteTrack.
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4. Discussion

Based on the results mentioned in Table 1, we observed that YOLOv7+ MAM demon-
strated a significant increase in overall performance along with enhancements in precision,
recall, and F1 score. The results presented here imply that including an attention mecha-
nism improves the capacity to recognize apples using YOLOv5 and YOLOv7. Interestingly,
adding the multi-head attention mechanism did not significantly alter the model’s size
impact on running speed. YOLOv7, nevertheless, performed better overall compared to the
YOLOv5 network. Deep neural networks can combine fruit graphs with various feature
distributions to enhance overall generalization performance in light of migration learning.
As a result, the prediction model may be built using several factors discovered by local-
ized migration learning. This study revealed that the multi-head attention mechanism’s
inclusion had no appreciable impact on the model’s size scale. This could be because the
attention mechanism additional layer deepened the model’s understanding of small objects
while adding little to the overall complexity of the computation. As a result, the model’s
size remained relatively high. This could facilitate model deployment by allowing the
compression to concentrate primarily on the optimization aspect of backbone network
pruning rather than the structure’s overall compression [52]. The primary benefit of this
method is labeling the apple center and not the bounding box. This is quite beneficial in
dense orchards. In addition to using cutting-edge technologies, YOLOv5 performed more
accurately than previous models [53]. However, low light, motion blur, and complex back-
grounds can affect how well these systems operate. We developed a novel deep learning
mechanism based on YOLOv7 and a multi-head attention mechanism to address these
issues. To address size changes, we implemented an attribute extension model operation
on top of this architecture. In distinguishing between mature and immature apples, size
is a critical aspect. Mature apples have larger diameters than immature ones. During
training, the model learned to distinguish ripe apples based on the average size of their
bounding boxes in the training sample. Therefore, the model implicitly learned a limit or
range of permissible bounding box sizes for mature apples. When the model was applied
for inference on live videos, it used the previously learned criteria to assess if a detected
apple was likely to be a mature apple. If the bounding box associated with an object was
inside the learned threshold for matured apples, the model considered it a valid detection.
However, if the bounding box size was less than this criterion, signifying that the apple
detected was most likely an immature apple, the model did not consider it a valid detection.
Determining the three-dimensional location of every identified apple in the environment
is essential for apple detection, and here is where depth estimation comes into play. This
may be used to determine the distance between each apple and the camera. The YOLOv7
bounding boxes and depth information were linked to provide the three-dimensional
location data (x, y, z) for every detected apple. ByteTrack used the identified apples’ 3D
coordinates as the starting point for tracking objects.

The counting results depicted that our suggested YOLOv7 + MAM + ByteTrack
tracking approach outperformed the DeepSORT tracking method. Given that the suggested
machine learning model produced the least amount of error, it was regarded as an efficient
model and had the lowest MAPE [54,55]. The proposed model tracking experiment was
performed on three different videos, and the consolidated MAPE applying DeepSORT was
0.197 and our proposed model attained a low MAPE of 0.027. The DeepSORT [56] technique
also provided almost near results, but the duplication of apples and background apples that
were not measured for the series of sequence counts made the model vulnerable. However,
ByteTrack along with the recommended detection method categorized the apples in the
foreground and background and included only the targeted apples in the count. When
bounding boxes of apples were recognized, DeepSORT employed the ReID identifying
model to link them across frames. If an apple could not be connected, SORT used the
Kalman filter’s predicted bounding box movements to link it between frames. It included
only the bounding boxes with relatively high confidence. On the contrary, ByteTrack
tracked the apples between frames solely by predicting their movements, using bounding
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boxes that were computed using the Kalman filter, eliminating the need for ReID. As a
result, it shared technical similarities with DeepSort’s Sort process. Nevertheless, dividing
the processing into two stages, the first procedure aimed at the boundaries of the boxes
having high confidence values and the second one with low confidence values, enhanced
the performance.

To enhance the tracker performance, specific hyper parameters were utilized, such
as MIN_THRESHOLD, which was set to 0.001 to retrieve nearly all detections. Bounding
boxes, which were regarded as background boxes, were further filtered in the current model
by a hard-coded background threshold set at 0.1. We could adjust MIN_THRESHOLD to
values greater than 0.1 if we require more precision in our detection. However, this could
exclude critical occluded object detection. To determine whether the threshold chosen
offers the right quality, we should qualitatively review the situation.

It should also be emphasized that counting apples and recognizing their positions are
two independent problems in the context of apple detection and tracking. The detection
and tracking approaches also require different algorithms. The detection phase refers to
the physical coordinates or bounding box of each apple within an image or video frame.
This challenge requires recognizing the existence of apples and precisely determining their
locations. From a technical aspect, detecting positions demands the creation of object
identification algorithms capable of not only identifying objects but also providing precise
spatial localization data. In terms of detecting apple positions, the algorithm’s purpose is
to provide bounding box coordinates for each discovered apple. These coordinates define
the exact geographical location and size of each apple in the scene.

The counting refers to determining the total number of apples in a given scene or
image. This assignment often entails identifying each apple and then adding it to the
count of the total. The ID generated for each individual bounding box for each apple is not
repeated. Each object is recognized with a unique ID in the live video captured by drone.
The primary goal of the counting apples algorithm is to identify whether each observed
apple object correlates precisely with the incremented ID number and the number of apples
counted in the scene.

The comparative analysis illustrates that the proposed integrated approach achieved
optimum performance even under different lightening conditions. Table 3 shows the time
complexity for the YOLOv5 and YOLOv7 models combined with DeepSORT and ByteTrack
at an mAP of 0.5 accuracy, including CPU and GPU time. The proposed approach resulted
in the best accuracy, with low CPU and GPU time.

Table 3. Analyzing the performance of time complexity of tested models.

Models
Parameters
(Million)

Accuracy
(mAP 0.5)

CPU Time
(ms)

GPU Time
(ms)

YOLOv5 + MAM + DeepSORT 32.5 75.20 320 11.3
YOLOv7 + MAM + DeepSORT 24.6 79.32 220 9.1
YOLOv5 + MAM + ByteTrack 17.3 83.55 161 8.2
YOLOv7 + MAM + ByteTrack 11.5 92.35 71 6.4

To summarize the discussion, we found that the YOLOv7 + MAM detection head in
conjunction with the ByteTrack tracking algorithm produced the best experimental results.
The essential parameters for this approach are provided in Section 3. These findings suggest
that a multi-head attention mechanism can enhance the detector’s performance and that
processing images with ByteTrack can improve its efficacy in multi-object tracking. These
findings also provide a better framework for fruit counting research in the future. There
are a few factors that should be considered, like deployment of GPU in different farm fields
of apples that vary based on different geographical and growth environment conditions.
The research is low cost and the proposed systems are scalable, allowing monitoring of
orchards of all sizes, from small family farms to large commercial enterprises. Whether
tracking acres or thousands of hectares, the proposed model offers a versatile and scalable
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alternative for apple detection, depth estimate, and agricultural monitoring. The client
could obtain an exact count of the apples ready for harvest. Although color, shape, and size
are minimal factors as limitations, the speed of the drone and the detection and tracking
rate are major concerns that might affect the overall present fruit counting methodology. In
the future, we plan to integrate different attention mechanisms with the latest lightweight
models to attain a balance between speed and performance in fruit counting.

5. Conclusions

In this work, we proposed a YOLOv7 framework with a multi-head attention mecha-
nism integrated with a ByteTrack multi-object tracking system to detect and count apple
fruits in orchards. The results of our experiments demonstrated that the accuracy and
robustness of apple identification were significantly improved by combining YOLOv7
with a multi-head attention mechanism. Even with difficult lighting circumstances and a
variety of apple orientations, the model could successfully detect the apples along with
the depth estimation of each apple, which enabled determination of the distance between
each apple and the drone camera. Furthermore, ByteTrack for apple counting ensured
our system’s effectiveness. Apple counting was made simple and quick by seamlessly
integrating ByteTrack for apple detection and tracking. ByteTrack ensured that tracking
continued even if the apples moved, varied in appearance, or momentarily disappeared
from the drone’s vision. The method successfully dealt with occlusions and various sizes
of apples in the orchard, which helped to provide precise and accurate counting outcomes.
To verify the efficacy of our suggested model, we carried out comprehensive comparison
tests with many current detection and counting techniques. The outcomes demonstrated
how well the model performed in achieving the ideal balance between speed and precision,
which makes it an invaluable tool for precision agriculture. We believe that our work paves
the way for more developments in agricultural automation and establishes a solid basis for
future research on object recognition and counting in complicated contexts.
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Abstract: Japan faces a significant labor shortage due to an aging population, particularly
in the agricultural sector. The rising average age of farmers and the declining participa-
tion of younger individuals threaten the sustainability of farming practices. These trends
reduce the availability of agricultural labor and pose a risk to lowering Japan’s food self-
sufficiency rate. The reliance on food imports raises concerns regarding price fluctuations
and sanitation standards. Moreover, the challenging working conditions in agriculture and
a lack of technological innovation have hindered productivity and increased the burden
on the existing workforce. To address these challenges, “smart agriculture” presents a
promising solution. By leveraging advanced technologies such as sensors, drones, the In-
ternet of Things (IoT), and automation, smart agriculture aims to optimize farm operations.
Real-time data collection and AI-driven analysis play a crucial role in monitoring crop
growth, assessing soil conditions, and improving overall efficiency. This study proposes
enhancements to the YOLO (You Only Look Once) object detection model to develop an
automated tomato harvesting system. This system uses a camera to detect tomatoes and
assess their ripeness for harvest. Our objective is to streamline the harvesting process
through AI technology. Our improved YOLO model integrates two novel loss functions to
enhance detection accuracy. The first, “VSR”, refines the model’s ability to classify tomatoes
and determine their harvest readiness. The second, “SBCE”, enhances the detection of
small tomatoes by training the model to recognize a range of object sizes within the dataset.
These improvements have significantly increased the system’s detection performance. Our
experimental results demonstrate that the mean Average Precision (mAP) of YOLOv7-tiny
improved from 61.81% to 70.21%. Additionally, the F1 score increased from 0.61 to 0.71 and
the mean Intersection over Union (mIoU) rose from 65.03% to 66.44% on the tomato dataset.
These findings underscore the potential of our proposed system to enhance efficiency in
agricultural practices.

Keywords: object detection; YOLO; loss

1. Introduction

Recently, the labor shortage caused by Japan’s aging population has become a critical
issue. This challenge is particularly severe in the agricultural sector, where farmers struggle
with a significant workforce decline. The sustainability of farming practices is under threat,
primarily due to the aging population. According to data from the Ministry of Agriculture,
Forestry and Fisheries [1], the number of farmers has decreased from 1.302 million in 2020
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to 1.114 million in 2024. In addition, the average age of farmers has increased from 67.8 to
68.7 over the same period.

Furthermore, slow technological innovation has hindered productivity while increas-
ing workloads, which has exacerbated the labor shortage in agriculture. These factors
collectively contribute to the steady decline in the agricultural workforce. To address these
challenges, “smart agriculture” presents a promising solution. Smart agriculture leverages
advanced information technology and data analysis to optimize farming processes. This
includes using sensor technology, drones, the Internet of Things (IoT), and automation. For
instance, real-time data collection via sensors and AI-based analysis enables precise crop
growth and monitoring of soil conditions. Additionally, using Unmanned Aerial Vehicles
(UAVs) and automated tractors enhances workflow efficiency.

To further enhance agricultural productivity, AI is being implemented to automate
various tasks, such as visual inspection and condition checking [2–4]. In this study, we aim
to apply AI for agricultural products [5]. This paper focuses on developing an AI-based
system for detecting tomato leaf diseases. This system enables farmers to automatically
monitor crop conditions, reducing their workload and allowing for more efficient re-
source allocation.

We employ an AI model called “You Only Look Once” (YOLO) to automate the detec-
tion of tomato leaf diseases. YOLO is a widely recognized object detection model known
for its high detection speed, which makes it well suited for industrial applications. Its speed
enables the real-time inspection of large volumes of crops, while its lightweight design
reduces initial costs and power consumption compared to other AI models. Specifically,
we use YOLOv7, a model in the YOLO series that offers a balance of superior detection per-
formance and compact size. Our proposed improvements enhance YOLOv7’s effectiveness
for agricultural applications. This paper introduces two key enhancements to YOLOv7.
First, we propose an improvement to the object loss function (Lossobj) that trains the model
to better account for the distribution of object sizes in the dataset, placing more emphasis
on each object. Second, we introduce a novel classification loss function to train the model’s
classification head, thereby increasing the reliability of its predictions. By optimizing the
separation between class dimensions, this approach reduces classification errors.

These enhancements are integrated into YOLOv7 to improve the performance in
detecting tomato leaf diseases, as shown in Figure 1. We evaluate the effectiveness of our
proposed methods using the PASCAL VOC dataset, commonly used for benchmarking
object detection models. The results highlight the quantitative benefits of our approach,
underscoring its potential for improving agricultural efficiency.

Figure 1. Comparison between our proposal and base model (YOLOv7-tiny).
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In summary, the major contributions of this paper are as follows:

• Developing a new loss function to classify the condition of tomatoes more correctly.
• Developing a new loss function to detect small tomato leaf disease efficiently.

The remainder of this paper is structured as follows: Section 2 reviews related work
on the current state of tomato leaf disease detection. Section 3 introduces our proposed
loss function. Section 4 describes the dataset used in this study. Section 5 presents the
results, and Section 6 discusses their implications. Finally, Section 7 concludes this paper
and outlines directions for future research.

2. Related Work

This section explains the related works of this study.

2.1. Object Detection

Object detection is a key technology in image processing [6]. It identifies and classifies
objects within images, and unlike image recognition, it can detect multiple types of objects
in a single image. This versatility enables object detection models to be applied across
a wide range of scenarios [7]. For example, automated driving systems rely on onboard
cameras to detect pedestrians and vehicles, while manufacturing plants employ object
detection to automatically inspect products and parts for external damage.

Object detection models are generally categorized based on their detection workflows.
The first category is the two-stage detector, exemplified by models such as R-CNN [8]
and Faster R-CNN [9]. These models achieve high detection accuracy but often sacrifice
detection speed, making them less suitable for applications that require real-time perfor-
mance. The second category is the one-stage detector, represented by models like YOLO
and SSD [10]. These models prioritize high detection speed but typically offer slightly lower
detection accuracy than two-stage detectors. Choosing the appropriate model depends
on the specific use case and the dataset’s characteristics. Despite its advantages, object
detection has a significant drawback: the time-intensive process of creating training data.
Each image in the training dataset must be manually annotated with detection targets,
which requires substantial effort and time. This challenge makes generating large-scale
datasets suitable for training effective object detection models difficult.

2.2. You Only Look Once

YOLO (You Only Look Once) [11] is one of the most popular object detection models,
first introduced by Joseph Redmon in 2015. Compared to models such as R-CNN, Effi-
cientDet [12], and DETR [13], YOLO stands out for its lightweight architecture and faster
detection speed, making it well suited for real-time applications.

Over the past decade, researchers have continuously enhanced YOLO, resulting in
a series of improved versions [14–16]. Various techniques have been employed to refine
these models, including advanced feature extraction methods and modifications to training
targets. These improvements aim to optimize the training process and further enhance
YOLO’s detection accuracy, speed, and overall efficiency.

2.2.1. Training

YOLO extracts image features through convolution operations applied to the training
dataset. For example, Figure 2 shows the flow of YOLO’s object detection on one of
the person images of PASCAL VOC dataset. The backbone of YOLO is composed of
convolutional blocks that are responsible for extracting these features. These features,
known as feature maps, acquire a broader receptive field as the convolutional layers are
stacked. However, smaller features may be lost as the receptive field increases.
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Figure 2. YOLO uses image feature vector (x) and the parameter (W). x is made from the images
in the backbone and neck parts. W is the parameter of class representative vectors in the head part.
YOLO compares the similarity between these vectors.

To address this issue, the neck component of YOLO is designed to share information
among feature maps, combining them to generate feature maps that retain a variety of
information. Based on these enriched feature maps, YOLO calculates loss scores and
updates the model parameters iteratively. This constitutes the training procedure for
YOLO. YOLO employs three key loss functions as the foundation for parameter updates.

LIoU is a score that evaluates the model’s ability to predict the object’s shape. YOLO
predicts the shape of an object for each cell in an image divided into N × N grids. YOLO
assumes that each cell represents the center of an object and predicts the object’s height (h)
and width (w). To assess the accuracy of the predicted shape, YOLO uses a score called
the Intersection over Union (IoU), as shown in Figure 3. IoU is the ratio of the intersection
between the Ground Truth (GT) and the Prediction (Pr). IoU can be written as follows:

IoU =
n

∑
i=1

n

∑
j=1

Intersectionij

GT + Prij − Intersectionij
, (1)

LIoU can be written as follows:

LIoU = 1− IoU, (2)

Considering various information such as the aspect ratio, many methods are proposed
for IoU to predict more correctly [17–19].

Lobj is a score that evaluates the model’s ability to predict the presence or absence of
an object in the image. YOLO predicts the presence or absence of an object for each image
cell divided into N × N grids. YOLO predicts whether an object is present in the image by
determining whether a cell contains part of an object. Lobj is defined using Binary Cross
Entropy (BCE) with the Ground Truth (GT) of each cell and the model’s Prediction (Pr).
Lobj can be written as follows:

Lobj =
n

∑
i=1

n

∑
j=1
−(GTij ∗ log(Prij) + (1− GTij) ∗ log(1− Prij)), (3)

With various methods such as scaling, BCE is improved as a new Lossobj [20,21].
Lcls is a score that evaluates the model’s ability to classify objects. YOLO predicts

the object class for each image cell divided into N × N grids. YOLO receives the feature
map from the neck, and the head creates a vector x containing d dimensions per cell. The
head also has a vector W with d dimensions for each class. By calculating each cell’s class
information from these two vectors, the head predicts which objects are associated with
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each cell. Lcls is defined using Cross Entropy (CE) with the Ground Truth (GT) of each cell
and the model’s Prediction (Pr). Lcls is written as follows:

Lcls =
n

∑
i=1

n

∑
j=1

c

∑
k=1
−(GTij ∗ log(Pijk) + (1− GTij) ∗ log(1− Pijk)), (4)

Figure 3. About IoU .

2.2.2. Test

YOLO uses the optimized parameters obtained during training to calculate the final
results during testing. For object detection, YOLO combines two outputs, as shown in
Figure 4. The first output relates to classification and objectness, which are calculated using
the vectors x, the parameter W and the objectness score. YOLO computes this output for
each image cell divided into N × N grids. The second output pertains to the shape of the
object. By applying non-maximum suppression to combine the predictions, assuming each
cell as the object’s center, YOLO accurately predicts the object’s shape. By calculating and
integrating these outputs simultaneously, YOLO, as a one-stage detector, achieves faster
detection speeds.

Figure 4. YOLO’s output.

3. Method

In this paper, we propose two improvements to the loss function (Loss) to train YOLO-
based models. By incorporating these new loss components into the training process and
optimizing the training targets, our model achieves superior detection performance as an
industrial AI compared to baseline models.

In the agricultural sector, where tasks are often large-scale and resource-intensive,
smaller model sizes are essential for reducing installation costs and power consumption.
However, small AI models face challenges such as limited expressive power and lower
detection accuracy due to having fewer parameters. While larger models can enhance
expressive power by training on extensive datasets, achieving high accuracy with smaller
models requires optimal parameter tuning and advanced loss functions to enhance learn-
ing efficiency.
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In addition, industrial data sets, particularly in agriculture, are often imbalanced and
have limited images due to the challenges associated with data collection and preparation.
Training with such datasets presents unique challenges compared to training with large-
scale datasets. In this context, each back-propagation step becomes significantly more
impactful, highlighting the importance of designing loss functions and training strategies
to maximize the effectiveness of small, imbalanced datasets.

3.1. Vector Similarity Regularization

To solve this problem, the first one, referred to as “Vector Similarity Regulariza-
tion (VSR)”, incorporates head parameter into the loss function. As shown in Section 2,
the head classifies objects in images using the vectors x and the parameter W. Classifi-
cation is performed by comparing the similarity between these matrix. Therefore, the
parameter W is regarded as the representative class vector. In practice, YOLO compute
class probabilities for each N × N segmented cell of the image. The object’s shape and
classification are detected simultaneously by predicting which object each cell belongs to.
When the values of the parameter W are too similar across classes, the model’s classification
ability is weakened. Regularization is applied to impose certain constraints and guide the
learning process. Such studies have been proposed along with various constraints [22]. Our
proposal trains YOLO to improve classification (Precision) by eliminating the similarity
of the elements of the parameter W across classes. Cosine similarity, a widely adopted
measure for evaluating vector distances, is used to evaluate the similarity between the
vector x and the parameter W.

Cosine similarity can be written as follows:

cos(Wi, Wj) =
Wi ·Wj

‖Wi‖‖Wj‖ , (5)

An example of the calculation is shown in Figure 5. When the dataset contains three
classes and the head has three dimensions per representative class vector, VSR trains the
sum of θa, θb, and θc to increase. The cosine similarity cos(Wi, Wj) represents the similarity
between each pair of dimensions. Since the diagonal elements of a matrix are always 1, the
average of the off-diagonal elements is calculated.

Figure 5. Vector Similarity Regularization (VSR): VSR regards the parameter W as representative
class vectors. LVSR trains W to separate representative features between each class.

Algorithm 1 illustrates the flow for calculating LVSR. This proposal uses representative
class vectors, with one vector being compared for similarity to the others. The similarity
is calculated only for the corresponding dimensions. After computing all similarities, the
average of these values is used as the final score.
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Algorithm 1 Vector Similarity Regularization

Input: Wij: Head vectors per classes
Output: LVSR

1: l = []
2: for i in c do
3: for j in c do
4: if i �= j then
5: l.append(cos(Wi,Wj))
6: end if
7: end for
8: end for
9: LVSR = average(l) + 1

By training to minimize the cosine similarity between each vector toward −1, our
proposal eliminates the similarity of elements between class vectors. Since the loss function
requires a non-negative value, we add +1 to ensure that the minimum value is 0 and define
LVSR accordingly. LVSR can be written as follows:

LVSR = average(cos(Wi, Wj)) + 1. (6)

This proposal trains YOLO to learn a representative vector for each class, preventing
multiple vectors from being similar to vector x. Only one class vector is similar to an object,
which can improve classification accuracy. This proposal is classified as “Metric Learning”.
While various methods have been proposed in the field of “Image Recognition [23–25]”,
previous YOLO proposals do not adopt it. One reason for this is the training method used
in YOLO. YOLO calculates the loss per N × N cell within the image. Therefore, the entire
image feature cannot be treated at one time. This paper incorporates distance learning into
YOLO using head vectors instead of image feature vectors. The weights are defined as
“lossobj:losscls:lossiou(:lossaux) = 10:1:2(:1)” for the PASCAL VOC dataset. This ratio remains
in the open-source code. On the other hand, the lossaux ratio is defined by us. We set the
weights such that the auxiliary losses are small compared to the other losses. When this
loss is too large, the class information is broken, and detection will be difficult. To achieve
this, we carefully choose the weight ratios.

3.2. Scaled Binary Cross Entropy

The second one, referred to as “Scaled Binary Cross Entropy (SBCE)”, integrates object
size into Lossobj. Industrial datasets such as agricultural data often exhibit an imbalanced
distribution of object sizes, as shown in Figure 6. This imbalance must be addressed when
aiming to train AI models more efficiently. On the other hand, Binary Cross Entropy (BCE)
is used to calculate the loss regardless of object size. BCE can be written as follows:

BCE =
n

∑
i=1

n

∑
j=1
−(GTij ∗ log(Prij) + (1− GTij) ∗ log(1− Prij)), (7)

BCE is not suitable for training unbalanced and small data because it does not consider
an uneven distribution of object sizes. Also, excessive back-propagation with small datasets
should be avoided, as it can lead to overfitting. When a user implements AI into industries
such as agriculture, users often need to create custom datasets. These original datasets,
however, often suffer from imbalances in object size distribution. To address this issue, our
proposed Scaled Binary Cross Entropy (SBCE) method incorporates object size into the
loss function, emphasizing the importance of each object during training. Adapting the
training process to fit the characteristics of the dataset can help to mitigate data imbalance.
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As mentioned earlier, these original datasets often contain a large number of small objects.
Treating large and small objects equally under these conditions can negatively affect the
training process. To remedy this, SBCE scales Lossobj for small objects, prioritizing their
detection. Larger loss values lead to greater parameter adjustments, making it easier for
the model to detect small objects.

Figure 6. Examples of datasets with poor distributions for training.

SBCE can be written as follows:

SBCE =
n

∑
i=1

n

∑
j=1
−(GTij ∗ log(Prij)

r + (1− GTij) ∗ log(1− Prij)
r), (8)

To prioritize smaller objects during training, the SBCE scales the BCE using r. It
becomes bigger than 1 with sizes below a predefined threshold to scale Lossobj. The smaller
the object size, the larger the value of r, and the larger the value of Loss. Since larger values
of Lossobj lead to more significant parameter updates, r indicates the importance of that
object in training. To determine this threshold, SBCE needs to define M before training
as shown in Algorithm 2. M represents the maximum object size for which the Lossobj is
scaled. When YOLO adopts SBCE, the object sizes in the Ground Truth (GT) dataset must
be computed. The object size percentage in the images (w× h/W × H) is pre-calculated
and used during training. For GT objects with sizes larger than M, r is set to 1, and the
standard BCE is applied. In contrast, for GT objects smaller than M, r is set to a value
between 1 and 2, and Lossobj is scaled accordingly.

Algorithm 2 Scaled Binary Cross Entropy

Input: M:maxsize, GT:Ground Truth, Pr:Prediction
Output: Lobj

1: for image in Dataset do
2: get image width as W
3: get image height as H
4: imagesize = W ∗ H
5: for object in image do
6: get object width as w
7: get object height as h
8: objectsize = w ∗ h/imagesize
9: if objectsize < M then

10: r = 2− objectsize/M
11: else if M ≤ objectsize then
12: r = 1
13: end if
14: Lobj = SBCE(GT, Pr, r)
15: end for
16: end for
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The main advantage of the proposed method is the flexibility to adjust the scaling
range according to the characteristics of the dataset. In this paper, we define an appropriate
range for datasets that contain many small objects. When the dataset contains many large
objects and the user aims to detect larger objects, the suitable range can be specified for the
size of the object.

4. Dataset and Hyper-Parameter

In this study, we evaluate our proposed methods using two datasets. First, our model
is trained on the PASCAL VOC dataset, which is widely used for quantitative evaluation.
Additionally, we train our model on a tomato leaf disease dataset to demonstrate its
application in industrial AI.

4.1. PASCAL VOC Dataset

Our proposed methods are evaluated using the PASCAL VOC dataset [26], which
enables quantitative evaluation. The dataset contains 8069 training images and 997 test
images, providing a reliable basis for assessing the proposed methods. Additionally, the
dataset includes 20 object classes (e.g., airplane, person, dog, etc.) , as shown in Figure 7,
further supporting the quantitative evaluation of the proposed approaches.

Figure 7. PASCAL VOC dataset.

4.2. Tomato Leaf Disease Dataset

This dataset consists of images of diseased tomato leaves [27]. These diseases are
classified into six types (bacterial spot, black spot, early blight, late blight, leaf mold, and
target spot). Leaves without disease symptoms are labeled as healthy , as shown in Figure 8.
The model is trained using 645 images, with the results evaluated on 61 inference images
and 31 test images. All image sizes are 640× 640 pixels.
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Figure 8. Tomato leaf disease dataset.

4.3. Hyper-Parameter

YOLO has various hyper-parameters for training, which are determined based on the
size of the training data and the model. For the tomato leaf disease dataset, we set the
batch size to 8, the number of epochs to 400, and the input shape to 640× 640 pixels. For
the PASCAL VOC dataset, the batch size is set to 64, the number of epochs to 500, and the
input shape to 640× 640 pixels. The optimizer used is Adam, and weight decay is adjusted
from 1 × 10−3 to 1 × 10−5 using a cosine annealing function.

5. Results

In this paper, YOLOv7 is used as the baseline model due to its optimal dimensionality
for representing vectors. When the dimensionality is too large, the VSR may easily produce
a cosine similarity of −1. Conversely, when the dimensionality is too small, the VSR cannot
achieve a cosine similarity of −1 without distorting the vector. To achieve these conditions,
we balance YOLOv7.

As mentioned earlier, this paper trains and evaluates the proposed method on two
datasets: the PASCAL VOC dataset and the tomato leaf dataset. Table 1 presents the
evaluation results of the proposed method using the PASCAL VOC dataset.

Table 1. Results of PASCAL VOC dataset.

Model mAP50 (%) F1 mIoU (%)

YOLOv7-tiny 81.51 0.766 52.91
+VSR 83.53 0.802 54.32

+SBCEmaxobj 81.96 0.787 53.47
+VSR+SBCEmaxobj 83.53 0.806 54.24

YOLOv7 97.68 0.966 64.87
+VSR 97.71 0.967 64.77

+SBCEmaxobj 97.56 0.966 64.62
+VSR+SBCEmaxobj 97.57 0.965 64.83

Additionally, Tables 2 and 3 present the evaluation results of the proposed method
using the tomato leaf disease dataset. Table 2 defines the size of the largest object in the
dataset as M for SBCE. Table 3 also defines the largest object size as M for SBCE, focusing
on the detection of smaller disease symptoms that are more critical to identify, as shown
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in Figure 9. Tables 4 and 5 present the evaluation results between proposed method and
existing method on the tomato leaf disease dataset. Finaly, Table 6 present the ablation
study about wVSR, and Table 7 compares between our model and existing models on tomato
leaf disease dataset.

Table 1 shows that the loss improvement of our proposed methods is effective for the
PASCAL VOC dataset. Compared to the base model (YOLOv7-tiny and YOLOv7), VSR
improved the mAP of YOLOv7-tiny from 81.51% to 83.53% and the mAP of YOLOv7 from
97.68% to 97.71%. Additionally, SBCE improved the map of YOLOv7-tiny from 81.51%
to 81.96%. When both proposed methods are applied together, the mAP of YOLOv7-tiny
improved from 81.51% to 83.53%.

Table 2 demonstrates that the loss improvement achieved by the proposed method
is effective for the tomato leaf disease dataset. Compared to the base models (YOLOv7-
tiny and YOLOv7), VSR improved the mAP of YOLOv7-tiny from 61.81% to 68.16%.
Additionally, SBCE improved the mAP of YOLOv7-tiny from 61.81% to 68.55% and the
mAP of YOLOv7 from 70.60% to 74.27%. When both proposed methods are applied
together, the mAP of YOLOv7-tiny improved from 61.81% to 68.95%, and the mAP of
YOLOv7 improved from 70.60% to 73.24%.

Figure 9. The distribution of tomato leaf disease dataset.

Table 2. Results of tomato leaf disease dataset, which defines max object size as M.

Model mAP50 (%) F1 mIoU (%)

YOLOv7-tiny 61.81 0.61 65.03
+VSR 68.16 0.71 63.83

+SBCEmaxobj 68.55 0.64 65.80
+VSR+SBCEmaxobj 68.95 0.70 65.30

YOLOv7 70.60 0.66 65.98
+VSR 69.35 0.70 48.83

+SBCEmaxobj 74.27 0.75 64.58
+VSR+SBCEmaxobj 73.24 0.73 65.69

Table 3 demonstrates that the loss improvement achieved by the proposed method
is effective for the tomato leaf disease dataset. Compared to the base models (YOLOv7-
tiny and YOLOv7), VSR improved the mAP of YOLOv7-tiny from 68.16% to 61.81%.
Additionally, SBCE improved the mAP of YOLOv7-tiny from 63.16% to 61.81% and the
mAP of YOLOv7 from 70.60% to 71.95%. When both proposed methods are applied
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together, the mAP of YOLOv7-tiny improved from 61.81% to 70.21%, and the mAP of
YOLOv7 improved from 70.60% to 73.09%.

Table 3. Results of tomato leaf disease dataset, which defines max disease size as M.

Model mAP50 (%) F1 mIoU (%)

YOLOv7-tiny 61.81 0.61 65.03
+VSR 68.16 0.71 63.83

+SBCEmaxdis 63.16 0.58 65.67
+VSR+SBCEmaxdis 70.21 0.71 66.44

YOLOv7 70.60 0.66 65.98
+VSR 69.35 0.70 64.20

+SBCEmaxdis 71.95 0.74 65.47
+VSR+SBCEmaxdis 73.09 0.75 64.00

Figures 10 and 11 show the results of disease detection in the image. Our proposed
methods enable the detection of diseases on leaves in the background of the images, which
YOLOv7-tiny fails to detect.

Figure 10. Comparison of image results on YOLOv7-tiny.

Figure 11. Detection results on YOLOv7 with our proposal.
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As shown in Table 4, our proposed method achieves higher detection performance
compared to existing methods. While focal loss reduces the mAP from 61.81% to 49.42%,
our proposed method improves the mAP from 61.81% to 68.55%. Additionally, as shown in
Table 5, the detection accuracy for leaf mold is particularly improved with both SBCEmaxdis

and SBCEmaxobj on YOLOv7.

Table 4. Comparison results of tomato Leaf disease dataset with existing loss functions.

Model mAP50 (%) F1 mIoU (%)

YOLOv7-tiny 61.81 0.610 65.03
+Focal Loss 49.42 0.376 64.81
+SBCEmaxdis 63.16 0.580 65.67
+SBCEmaxobj 68.55 0.640 65.80

Table 5. Evaluation results of SBCEmaxobj and SBCEmaxdis on tomato leaf disease dataset.

Model Class AP50 (%) F1 Recall (%) Precision (%)

Bacterial Spot 50.00 0.67 50.00 100.00
Black Spot 59.68 0.50 35.71 83.33

Early Blight 84.33 0.86 84.85 87.50
YOLOv7 Healthy 100.00 1.00 100.00 100.00

Late Bright 80.21 0.73 60.00 92.31
Leaf Mold 30.00 0.40 33.33 50.00
Target Spot 90.00 0.89 100.00 80.00

Bacterial Spot 50.00 (±0) 0.67 (±0) 50.00 (±0) 100.00 (±0)
Black Spot 52.67 (−7.01) 0.55 (+0.05) 42.86 (+7.15) 75.00 (−8.33)

Early Blight 79.36 (−4.97) 0.79 (−0.07) 81.82 (−3.03) 77.14 (−10.36)
+SBCEmaxobj Healthy 100.00 (±0) 1.00 (± 0) 100.00 (±0) 100.00 (±0)

Late Bright 77.89 (−2.32) 0.78 (+0.05) 70.00 (+10.00) 87.50 (−4.81)
Leaf Mold 60.00 (+30.00) 0.73 (+0.33) 66.67 (+33.34) 80.00 (+30.00)
Target Spot 100.00 (+10.00) 0.73 (−0.16) 100.00 (±0) 57.14 (−22.86)

Bacterial Spot 50.00 (±0) 0.50 (−0.17) 50.00 (±0) 50.00 (−50.00)
Black Spot 52.77 (−6.91) 0.57 (+0.07) 42.86 (+7.15) 85.71 (+2.38)

Early Blight 82.99 (−1.34) 0.86 (±0) 81.82 (−3.03) 90.00 (+2.50)
+SBCEmaxdis Healthy 100.00 (±0) 0.92 (−0.08) 85.71 (−14.29) 100.00 (±0)

Late Bright 77.86 (−2.35) 0.78 (+0.05) 70.00 (+10.00) 87.50 (−4.81)
Leaf Mold 56.67 (+26.67) 0.73 (+0.33) 66.67 (+33.34) 80.00 (+30.00)
Target Spot 83.33 (−6.67) 0.80 (−0.09) 100.00 (±0) 66.67 (−13.33)

Table 6 presents the ablation results for the Laux weight. With a weight of 0.2, our
VSR achieves an mAP from 81.51% to 83.53% on the PASCAL VOC dataset. Other weight
values also achieve higher mAP, such as 82.42% and 82.20%. In addition, all weights show
a better mAP with SBCE on yolov7-tiny.

Table 7 presents the results of our proposed methods and existing YOLO series models.
When compared to other YOLO models with similar architectures, our proposed methods
achieve higher mAP and F1 scores.
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Table 6. Ablation study of Laux weight on PASCAL VOC dataset.

Model mAP50 (%) F1 mIoU (%)

YOLOv7-tiny 81.51 0.766 52.91

+VSR(w = 0.1) 82.42 0.786 54.29
+VSR(w = 0.1)+SBCE 82.71 0.804 54.05

+VSR(w = 0.2) 83.53 0.802 54.32
+VSR(w = 0.2)+SBCE 83.53 0.806 54.24

+VSR(w = 0.3) 82.20 0.770 52.78
+VSR(w = 0.3)+SBCE 82.60 0.794 53.47

Table 7. Comparison results of our proposed methods with existing models on PASCAL VOC dataset.

Model mAP50 (%) F1

YOLOX-tiny 64.57 0.548
YOLOX-nano 79.47 0.747
YOLOv7-tiny 81.51 0.766
YOLOv8-nano 79.73 0.768

YOLOv8-s 82.70 0.813

Ours (VSR+SBCE) 83.53 0.802

6. Discussion

Our proposed methods demonstrate improved performance on the PASCAL VOC and
tomato leaf disease datasets. As shown in Table 1, YOLOv7-tiny shows better performance
on the PASCAL VOC dataset with our proposed enhancements. However, applying SBCE
slightly reduces the performance of YOLOv7. This result suggests that, with sufficiently
large datasets and model sizes, YOLOv7 can achieve satisfactory performance without
additional training adjustments, such as head vector optimization using VSR. Furthermore,
the 20-class configuration of the PASCAL VOC dataset increases the complexity of VSR
training. For SBCE, the wide variation in object sizes within a single class, combined with a
large number of training samples, makes weighted back-propagation less effective. These
factors explain the limited improvements observed with our methods on the PASCAL
VOC dataset.

Conversely, as shown in Table 2, our proposed methods are highly effective when
applied to smaller datasets and models. Smaller models, such as YOLOv7-tiny, naturally
struggle with expressive power due to their limited number of parameters. However,
VSR facilitates the creation of more optimal parameters, compensating for this limitation.
Additionally, SBCE effectively weights back-propagation, which is especially beneficial
for datasets with limited training samples, where each back-propagation step carries
greater significance.

For these reasons, YOLOv7-tiny, with its smaller model size, achieved a significant
improvement in mean Average Precision (mAP) of 7.14%. Similarly, YOLOv7 also showed
an improvement in mAP of 2.64%. These results emphasize the efficacy of our proposed
methods, especially in scenarios involving small models and limited datasets.

Table 3 presents the results of adjusting the scaling range of SBCE from the maximum
object size in the dataset to the maximum disease size. Reducing the scaling range makes
the weighted values relatively more significant, which helps to clarify the training target
and leads to more efficient training. Compared to the results in Table 2, this adjustment
improved the mean Average Precision (mAP) for YOLOv7 from 68.95% to 70.21%.
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This improvement is likely influenced by inadequate annotations, as illustrated in
Figure 12. For example, detecting multiple diseases in a single annotated image, as shown
in the “Train Image” example, can lead to false positives, which negatively impact the
training process.

Figure 12. An example of poor annotation in tomato leaf disease dataset.

As shown in Table 4, our proposed methods achieve higher detection results compared
to existing methods. Focal loss is a method that considers confidence for training. However,
focal loss may not be suitable for training datasets that contain multiple similar classes,
such as different disease types.

Additionally, Table 5 compares the results across different classes. SBCE enhances Lobj,
allowing the model to detect more objects. However, the smaller scaling range and the lack
of scaling for the healthy (leaf) loss contribute to inadequate training and lower accuracy in
some cases. These challenges highlight the challenges of improving detection performance
with limited and unbalanced datasets.

Table 6 presents the ablation results of Laux weight. The results highlight the impor-
tance of selecting an appropriate value. Values that are too small reduce the effectiveness
of VSR, while values that are too high increase the difficulty of training VSR. Therefore, it
is crucial to define an optimal value for the Laux weight. To prevent parameter breakdowns
as shown in Figure 13 during YOLO training, this weight should be set to its optimal value.

Figure 13. When YOLO trains with high Laux weight like 0.50, head parameter become unstable.

Based on these findings, we conclude that our proposed method is most effective
when applied to YOLOv7-tiny, as shown in Table 7. This model benefits the most from the
optimized training process, leading to significant improvements in both detection efficiency
and accuracy.
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7. Conclusions

This paper proposes two loss improvement methods to enhance detection performance
on industrial datasets. Industrial datasets are often imbalanced and contain a limited num-
ber of images due to challenges in data preparation. Training on such datasets requires
careful optimization, as each back-propagation step is more significant than training on
large-scale datasets. Additionally, small AI models, favored for agricultural applications
due to their lower cost and energy requirements, have fewer parameters compared to
large-scale AI models. This limitation requires more precise parameter tuning to achieve
satisfactory performance. To address these challenges, we propose the following improve-
ments: “VSR” optimizes class classification by separating the head vector values for each
class, thereby reducing false positives and improving prediction accuracy; “SBCE” incor-
porates object size into the training process, ensuring that the training is appropriately
tailored to the specific characteristics of the dataset. This approach enhances the model’s
ability to detect objects of varying sizes in imbalanced datasets.

By integrating these improvements, our proposed method enhances the detection
accuracy of compact models on imbalanced industrial datasets, making it particularly
suitable for applications in agriculture and other industries where data constraints are
common. In future work, we plan to further validate the effectiveness of our methods
through quantitative comparisons across various model architectures and datasets. This
will provide deeper insights into the broader applicability of our approach.
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Abstract: In this paper, we describe the associative and commutative algebra or the (2,2)-
model of quaternions with application in color image enhancement. The method of alpha-
rooting, which is based on the 2D quaternion discrete Fourier transform (QDFT) is consid-
ered. In the (2,2)-model, the aperiodic convolution of quaternion signals can be calculated
by the product of their QDFTs. The concept of linear convolution is simple, that is, it is
unique, and the reduction of this operation to the multiplication in the frequency domain
makes this model very attractive for processing color images. Note that in the traditional
quaternion algebra, which is not commutative, the convolution can be chosen in many
different ways, and the number of possible QDFTs is infinite. And most importantly, the
main property of the traditional Fourier transform that states that the aperiodic convo-
lution is the product of the transform in the frequency domain is not valid. We describe
the main property of the (2,2)-model of quaternions, the quaternion exponential functions
and convolution. Three methods of alpha-rooting based on the 2D QDFT are presented,
and illustrative examples on color image enhancement are given. The image enhancement
measures to estimate the quality of the color images are described. Examples of the alpha-
rooting enhancement on different color images are given and analyzed with the known
histogram equalization and Retinex algorithms. Our experimental results show that the
alpha-rooting method in the quaternion space is one of the most effective methods of color
image enhancement. Quaternions allow all colors in each pixel to be processed as a whole,
rather than individually as is done in traditional processing methods.

Keywords: color image enhancement; quaternion convolution; quaternion Fourier
transform; alpha-rooting; quaternion pyramids

1. Introduction

In recent years, many articles have been published on color image processing, wherein
image enhancement plays an important role. Many color images are low quality and
require enhancement as the first stage of processing. [1–5]. Examples of such images can be
found among underwater images, thermal images, and medical images. Decades ago, we
divided methods of image enhancement into two classes, namely spatial and traditional, or
complex, frequency domains; now, a new class has been added to them. Here, we mention
methods of image enhancement in the quaternion algebras. Color and grayscale images
can be processed in the quaternion space with good results not only in image enhancement
but in filtration, face recognition, neural networks, and other applications. The first class of
methods includes contrast stretching techniques and logarithmic models [4] and the very
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effective and simple histogram equalization with its different modifications [6–10]. The
Retinex algorithm can also be classified into this class [11,12]. In the second class, we should
note the Fourier transform-based alpha-rooting [13], which is the most effective method for
enhancing grayscale and color images. The advantage of enhancing color images in the
quaternion space is in the fact that the primary colors plus the gray are processed as one
unit, not separately. Therefore, quaternion image processing does not introduce false color
artifacts [14].

In this paper, we focus on the commutative quaternion algebra, or the (2,2)-model. In
this model, the concepts of the 1D and 2D QDFT are considered, and their properties are
described. This model of quaternion uses the color image enhancement alpha-rooting by
the 2D QDFT. A comparison with the traditional quaternion algebra is also given.

The main contributions of this work are the following:

• The separable alpha-rooting method of color image enhancement;
• New two-parameter alpha-rooting methods of color image enhancement;
• The effectiveness of using the 2D QDFT-based alpha-rooting in the (2,2)-model;
• Illustrative examples showing the effectiveness of using the (2,2)-model in color

image enhancement.

The rest of the paper is organized in the following way. Section 2 describes two models
of quaternions, namely the (2,2)- and (1,3)-models. The first model is commutative, and
the second one is not. Section 3 describes the exponential functions of the (2,2)-model.
The concepts of the QDFTs are considered in Section 4 for both models. The methods
of alpha-rooting in these models are described in Section 5. The comparison of the 2D
QDFT-based alpha-rooting methods in the (2,2)- and (1,3)-models are given. Results and
illustrative examples of color images are presented in Section 6.

2. Quaternion Numbers: Two Arithmetics

In this section, we describe quaternion numbers in two algebras, non-commutative
and commutative. The concept of the quaternion, or quadruple of numbers (a, b, c, d), as a
vector in the 4-dimensional (4D) space was introduced by Gauss in 1819 [15]. As complex
numbers, quaternions have one real part and one imaginary part. Only the imaginary part
presents a triplet of numbers or a 3D vector. Therefore, quaternions can be considered as
an extension of complex numbers [16–18]. It is not possible for us to draw quaternions in
4D space, but we will show how such numbers can be embedded in geometric figures in
3D space. There are different types of arithmetic of quadruples of numbers, or quaternions,
because they define the main operation—multiplication—differently. We consider two
arithmetics, or models, in which the operation of multiplication is commutative and non-
commutative. The second arithmetic attracted much attention from researchers in the field
of signal and image processing. However, the fact that the multiplication of quaternions is
a non-commutative operation leads to large uncertainties in such important operations as
the convolution, correlation, and Fourier transform, especially in processing color images.
Therefore, we think it is necessary to pay more attention to the commutative operation of
the multiplication of quaternions and the corresponding arithmetic, or the commutative
algebra of quaternions.

2.1. The (1,3)-Model of Quaternions

Consider three units i, j, and k with the following multiplication laws:

ij = −ji = k, jk = −kj = i, ki = −ik = j, i2 = j2 = k2 = ijk = −1. (1)
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A quaternion is defined as the number q = a + bi + cj + dk with real numbers
a, b, c, and d. The number q′ = bi + cj + dk is the imaginary part q′ of the quaternion
and can be considered as the vector (a, b, c) in the 3D space. Therefore, we can write
q = a + q′ = a + (bi + cj + dk). This model of representation of quaternions as q = (a, q′)
is called the (1,3)-model [14]. A quaternion has one real part, a, and the three-component
imaginary part, q′. If the imaginary part a = 0, then the quaternion is called a pure quater-
nion number. If c = d = 0, the quaternion q = a + bi is a complex number. Similar to
the complex numbers, the conjugate of the quaternion q is defined as q = (a,−q′), or
q = a− q′ = a− bi− cj− dk.

The multiplication of two quaternions q1 = a1 + q′1 = a1 + (ib1 + jc1 + kd1) and
q2 = a2 + q′2 = a2 + (ib2 + jc2 + kd2) is defined according to the laws in Equation (1). Thus,
the quaternion q = q1q2 = (a + q′) is calculated by

a = a1a2 − [b1b2 + c1c2 + d1d2], and q′ = [a 1q′2 + a2q′1] +

∣∣∣∣∣∣∣
i j k

b1 c1 d1

b2 c2 d2

∣∣∣∣∣∣∣ (2)

It is important to note, that the number qq is real and non-negative,
qq = a2 + (b2 + c2 + d2); it is denoted by |q1|2. The number |q1| is called the length
of the quaternion.

The sum of quaternions is calculated component-wise, q1 + q2 = (a1 + a2) +
(
q′1 + q′2) .

In the multiplication of imaginary units, ij �= ji, jk �= kj, and ik �= ki. The multiplication in
the (1,3)-model is not commutative. That is, for different q1 and q2, the product q1q2 �= q2q1

or q1q2 = q2q1.
Considering the quaternions q1 and q2 as the 4D vectors, q1 = (a1, b1, c1, d1)

′ and
q2 = (a2, b2, c2, d2)

′, the above operation of multiplication can be written in the matrix form
as follows:

q = A1

⎡
⎢⎢⎢⎣

a2

b2

c2

d2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

a1 −b1 −c1 −d1

b1 a1 −d1 c1

c1 d1 a1 −b1

d1 −c1 b1 a1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

a2

b2

c2

d2

⎤
⎥⎥⎥⎦ (3)

The determinant of the matrix equals |q1|4 =
(
a2

1 + b2
1 + c2

1 + d2
1
)2

. For the case when
|q1| = 1, the matrix A1 is unitary and its determinant detA1 = 1. The coefficients of this
matrix are components of the quaternion q1. The first column of the matrix is the quaternion
q1. A similar matrix of multiplication can be defined by the components of the quaternion
q2 (for details, see [14]).

Unlike traditional arithmetic, where the exponential function is defined uniquely, in
the (1,3)-model, the number of such functions is infinite. Given a pure unit quaternion
μ = im1 + jm2 + km3, |μ| = 1, μ2 = −1, the quaternion exponential function at the angle x
is defined as eμx = cos x + μsin x. In the next sections, we will discuss the concept of the
quaternion discrete Fourier transforms, which are different analogues of the traditional
DFT. This transform is defined by the system of basis functions, which are calculated by the
single complex exponential function eix. In the (1,3)-model, we are faced with the problem
of which exponential function to use as the base function for the QDFT. In other words, if
in the traditional representation each signal or image has the unique representation in the
frequency domain, in the (1,3)-model, there are an infinite number of such representations.
How to choose, namely which quaternion number μ is best for the QDFT, is unknown
today. And it is this model that has been widely used in the last two decades in many
applications in signal and image processing [14,19–21].
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2.2. The (2,2)-Model of Quaternions

In this section, we consider the arithmetic of quaternions with the associative and
commutative operation of multiplication introduced by Grigoryan in 2022 [22]. This is the
so-called (2,2)-model of representation of quaternions.

In the (2,2)-model, the complex arithmetic is used in the following way. Given two
complex numbers a1 and a2, the quaternion q is considered to be a pair of them and is
written as

q = [a1, a2], a1 = (a1,1, a1,2), a2 = (a2,1, a2,2). (4)

Here, the numbers a1,1, a1,2, a2,1, and a2,2 are real. We use the round brackets for 2D
vectors a1 and a2, which represent the complex numbers (a1,1 + ia1,2) and (a2,1 + ia2,2),
respectively. In this model, the quaternion is a pair of two complex numbers, or the pair of
two 2-D vectors.

The quaternions include the complex and real numbers. Indeed, a quaternion q =

[a1, 0] is a complex number. If a complex number a1 = (a1,1, 0), that is, a1 is real, then
q = [a1, 0] =

[
(a1,1, 0), (0, 0)

]
is a real number. We call the quaternion numbers q = [0, a2]

the second complex numbers. Only complex numbers are used with the traditional unit i.
The conjugate of the quaternion q is the quaternion q = [a1, a2] = [(a1,1,−a1,2), (a2,1,−a2,2)].
One can see that the conjugates of the unit quaternions are e2 = −e2, e3 = e3, and e4= −e4.
The second conjugate

=
q = q.

The operation of sum of two quaternions q1 = [a1, a2] and q2 = [b1, b2] is defined
component-wise. That is, the sum q = q1 + q2 = [a1 + b1, a2 + b2]. The multiplication of
quaternions q1 and q2 is defined by

q = q1q2 = [a1, a2] [b 1, b2] � [a1b1 − a2b2, a1b2 + a2b1]. (5)

Here, the complex numbers are written as a1 = (a1,1, a1,2), a2 = (a2,1, a2,2),
b1 = (b1,1, b1,2), and b2 = (b2,1, b2,2). It should be noted that the similar operation over 4D
elements was described by Clyde Davenport [23]; the multiplication was defined by using
the complex conjugates as

q = q1q2 �
[

a1b1 − a2b2, a1b2 + a2b1

]
.

It directly follows from Equation (5) that if the quaternions are complex numbers,
q1 = [a1, 0] = a1 and q2 = [b1, 0] = b1, then the multiplication q = q1q2 is the multiplication
of complex numbers, that is,

q = q1q2 = [a1, 0] [b 1, 0] = [a1b1, 0] = a1b1.

The operation of multiplication in Equation (5) can also be written in the matrix
form. For this, we consider the quaternions as 4D vectors q1 = (a1,1, a1,2, a2,1, a2,2)

′ and
q2 = (b1,1, b1,2, b2,1, b2,2)

′. In the matrix form, the product q = q1q2 can be written as

q =

⎡
⎢⎢⎢⎣

q1,1

q1,2

q2,1

q2,2

⎤
⎥⎥⎥⎦ = M1

⎡
⎢⎢⎢⎣

b1,1

b1,2

b2,1

b2,2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

a1,1 −a1,2 −a2,1 a2,2

a1,2 a1,1 −a2,2 −a2,1

a2,1 −a2,2 a1,1 −a1,2

a2,2 a2,1 a1,2 a1,1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

b1,1

b1,2

b2,1

b2,2

⎤
⎥⎥⎥⎦. (6)
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As in the matrix A1 in the (1,3)-model, the first column of the matrix M1 is the quater-
nion q1. This matrix has a block structure, that is,

M1 =

[
A −B
B A

]
, A =

[
a1,1 −a1,2

a1,2 a1,1

]
, B =

[
a2,1 −a2,2

a2,2 a2,1

]
. (7)

Here, the matrices A and B are matrices of multiplication of complex numbers a1 and
a2, respectively. The matrix A1 also has the same block structure, but it is orthogonal, and
the matrix M1 is not orthogonal.

To compare these two algebras visually, namely the operations of multiplication, we
consider the following representation of quadruples of numbers in the 3D space. We call
this representation the 4-in-3 representation. Any 4D vector can be represented in the form
of four triplets, as follows:

q = (a, b, c, d)→ (a, b, c), (b, c, d), (c, d, a), (d, a, b).

The geometry of these four coordinates can be described by the quadrangular pyramid.
It is clear that not every pyramid can have such a quaternion representation. Therefore,
we will call such pyramids the quaternion pyramids (QP). As example, Figure 1 shows
the quaternion pyramid, QP(q), for the quaternion q = (1,−2, 8, 5) in part (a) and the
pyramid QP(q), for the conjugate quaternion q = (1, 2,−8,−5), in part (b), and the con-
jugate quaternion q = (1, 2, 8,−5) in the (2,2)-model in part (c). The first point (the
vertex) of each pyramid is marked as an asterisk, ’*’. The vertex of the pyramid should
be considered, that is, the QP(q) is the pyramid with the top point v = (a, b, c). There-
fore, we consider that QP(q) = QP(q; v). Otherwise, we need to introduce concepts of
equivalent pyramids. For instance, the figures of pyramids for four quaternion units,
1 = (1, 0, 0, 0), i = (0, 1, 0, 0), j = (0, 0, 1, 0), and k = (0, 0, 0, 1), are the same. Such a
vertex can also be considered the point (b, c, d), which corresponds to the imaginary part
of the quaternion, q′ = (bi + cj + dk). Quaternion pyramids can be added, subtracted,
multiplied, and divided, and the inverse pyramids exist. In other words, the set of all
quaternion-pyramids is the space with the complete arithmetic as the quaternions.

(a) (b) (c)

Figure 1. Quaternion-pyramids for (a) the quaternion q and its conjugates q in (b) the (1,3)-model
and (c) the (2,2)-model.

Figure 2 shows the following four pyramids. Two quaternions are considered,
q1 = (1, 2, 8, 4)/

√
85 and q2 = (−2, 1, 1, 2)/

√
10. The figure shows two pyramids

QP(q1) and QP(q2) together with two pyramids for the quaternion multiplications
q = q1q2. The first pyramid QP(q) is calculated in the non-commutative (1,3)-model,
g = q2(Aq1)

′ = (4,−23,−23, 4)/
√

850, and another QP(p) in the commutative (2,2)-model,
p = q2(Mq1)

′ = (−20, 9,−15,−12)/
√

850.
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Figure 2. Four quaternion-pyramids.

The following properties hold for the multiplication.

1. The multiplication is commutative, q1q2 = q2q1.
2. The multiplication unit is the quaternion e1 = [(1, 0), (0, 0)] = (1, 0) = 1. For this real

unit e1q = qe1 = q for any quaternion q.
3. The multiplication rules of four quaternion units e1, e2 = [(0, 1), (0, 0)],

e3 = [(0, 0), (1, 0)], and e4 = [(0, 0), (0, 1)] are given in Table 1. It should be noted that
for two quaternion units e2 and e3, the square is −e1 = −1. For the other two units e1

and e4, the square is e1 = 1.

Table 1. Multiplication table, T(e1, e2, e3, e4).

e1 e2 e3 e4

e1 e1 e2 e3 e4

e2 e2 −e1 e4 −e3

e3 e3 e4 −e1 −e2

e4 e4 −e3 −e2 e1

4. The multiplication is associative, that is, (q1q2)q3 = q1(q2q3), for any quaternions q1,
q2, and q3.

5. The multiplication is distributive, that is, q1(q2 + q3) = q1q2 + q1q3.
6. The zero quaternion q = 0 has “divisors.” For instance, the multiplication of two

quaternions q1 = (1 + e4) and q2 = (1− e4) is equal to q1q2 = 1− e2
4 = 0.

7. The inverse to the non-zero quaternion q1 = [a1, a2] is calculated by

q−1
1 =

[
a1

a2
1 + a2

2
,
−a2

a2
1 + a2

2

]
=

1
a2

1 + a2
2
[a1,−a2], if a2

1 + a2
2 �= 0. (8)
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8. The inverse operation exists for all q, except the quaternions of the form
q = a1(1± e4). For quaternion exponential numbers, the inverse exists. As men-
tioned in [24], the absence of some inverse numbers is not an obstacle when using
quaternions to process signals and color images.

9. The division q = q2/q1 of quaternions q2 = [b1, b2] and q1 = [a1, a2] is calculated by
q � q2q−1

1 .
10. The multiplication of a quaternion q on its conjugate q is equal to the

following quaternion:

qq = [a 1, a2][a1, a2] =
[
|a1|2 − |a2|2, 2a1·a2

]
(9)

11. In the general case, qq is not a real number and cannot be used to define the modulus
of the quaternion in the traditional sense. For example, e4e4 = e4(−e4) = −e4e4 = −1.

12. The length, or modulus, of the quaternion is defined as |q| = √E[q], where the energy
of the quaternion number q is calculated by

E[q] = E[a1] + E[a2] = |a1|2 + |a2|2 =
(∣∣∣a1,1|2+

∣∣∣a1,2|2
)
+
(∣∣∣a2,1|2+

∣∣∣a2,1|2
)

. (10)

Table 2 shows the main properties of quaternion numbers in the (1,3)- and (2,2)-models.

Table 2. Main operations and properties of quaternions in two quaternion models.

The (2,2)-Model The Traditional (1,3)-Model

Representation q1 = [a1, a2] = [(a1,1, a1,2), (a2,1, a2,2)] q1 = a1 + q′1 = a1 + (b1i + c1 j + d1k)

Multiplication q1q2 q1q2 = [a1b1 − a2b2, a1b2 + a2b1] [a 1q′2 + a2q′1] + a1a2 − q′1·q′2 + q′1 × q′2

Multiplication rules

e1 = 1 e2 e3 e4 1 i j k

e2 −1 e4 −e3 i −1 k −j

e3 e4 −1 −e2 j −k −1 i

e4 −e3 −e2 1 k j −i −1

Multiplication matrix

(a1 = a11, b1 = a12, c1 = a21, d1 = a22)

M1 =

⎡
⎢⎢⎣

a1 −b1 −c1 d1
b1 a1 −d1 −c1
c1 −d1 a1 −b1
d1 c1 b1 a1

⎤
⎥⎥⎦ A1 =

⎡
⎢⎢⎣

a1 −b1 −c1 −d1
b1 a1 −d1 c1
c1 d1 a1 −b1
d1 −c1 b1 a1

⎤
⎥⎥⎦

Orthogonality Not Yes

Commutativity Yes : q1q2 = q2q1 Not : q1q2 �= q2q1 or q1q2 = q2q1

Zero “divisors” Yes : (1 + e4)(1− e4) = 0 None : q1q2 = 0 → q1 = 0, or q2=0.

Conjugate q1 = [(a1,1,−a1,2), (a2,1,−a2,2)] q1 = a1 − b1i− c1 j− d1k,

Quaternion inverse q−1
1 = 1

a2
1+a2

2
[a1,−a2], a2

1 + a2
2 �= 0 q−1

1 = a1−b1 i+c1 j−d1k
|q1 |2

, q1 �= 0

Division
q = q1

q2

q = q2[a1,−a2]
1

a2
1+a2

2
, a2

1 + a2
2 �= 0.

q =
q2q1
|q 2 |2

(from left)

q =
q1q2
|q 2 |2

(from right)

3. The Quaternion Exponents in the (2,2)-Model

In this section, we describe the exponential functions in the (2,2)-model. For two
pairs of quaternions μ = ±e3 and ±e2, the square μ2 = −1. There are only two pairs of
quaternions with the square equal to −1. For each of these quaternions, the exponential
function is defined by the following series [22]:

eμϕ = 1 + μϕ + (μϕ)2

2! + (μϕ)3

3! + (μϕ)4

4! + (μϕ)5

5! + . . . + (μϕ)n

n! + . . .

=
[
1− ϕ2

2! +
ϕ4

4! − ϕ6

6! + . . .
]
+ μ
[

ϕ− ϕ3

3! +
ϕ5

5! − ϕ7

7! + . . .
]
= cos ϕ + μsin ϕ.

(11)
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Thus, there are four different exponential functions, or we can say two pair of quater-
nion exponential functions. The fundamental multiplicative property holds for these
exponents, that is,

exp(μ[ϕ + ϑ]) = exp(μϕ)exp(μϑ) (12)

Now, we consider these two pairs of quaternion exponents.
1. The first pair of exponents is defined for the conjugate quaternions

μ = ±e2 = [(0,±1), (0, 0)]. The quaternion exponents are the following
conjugate functions:

eμϕ = cos ϕ± e2sin ϕ = [(cos ϕ,± sinϕ), 0] = (cos ϕ,± sinϕ). (13)

In the matrix form, the multiplication of a quaternion q = [a1, a2] by the exponent
q1 = eμϕ is described as follows:

qq1 = qeμϕ = (cos ϕ,± sinϕ)q =

⎡
⎢⎢⎢⎣

c −s 0 0
s c 0 0
0 0 c −s
0 0 s c

⎤
⎥⎥⎥⎦q =

[
Rϕ 0

0 Rϕ

]
q. (14)

Here, we denote c = cos ϕ and s = ± sinϕ. With the operation of the Kronecker
product of matrices, the above matrix of multiplication can be written as Aq1 = I2 ⊗ Rϕ.
The matrix Rϕ is the matrix of elementary rotation by the angle ±ϕ. Thus, the operation
qeμϕ is reduced to separate rotations of two components of the quaternion, a1 and a2, by
the same angle.

2. The second pair of exponents is defined by the quaternion μ = ±e3 =

[(0, 0), (±1, 0)]. The corresponding pair of quaternion exponential functions is

eμϕ = exp (μϕ) = cos ϕ± e3sin ϕ = [(cos ϕ,0), (± sinϕ, 0)]. (15)

These two exponential functions are not conjugate but inverse to each other. The
inverse of the exponent is (eμϕ)−1 = [(cos ϕ,0), (− sinϕ,0)] = e−μϕ. In the matrix form, the
multiplication of the exponent q1 = eμϕ by a quaternion q can be written as follows:

qq1 = q1q = eμϕq =

⎡
⎢⎢⎢⎣

c 0 −s 0
0 c 0 s
s 0 c 0
0 −s 0 c

⎤
⎥⎥⎥⎦q. (16)

The matrix of the multiplication is the tensor product of the rotation matrix and the
identity matrix, Aq1 = Rϕ ⊗ I2.

It should be noted that if we consider the symmetric matrix P(1,2) of the permutation
(1,2), then the above two pairs of quaternion exponents can be derived from each as

[(cos ϕ,0), (± sinϕ,0)] = [(cos ϕ,± sinϕ), (0, 0)]

⎡
⎢⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎥⎦. (17)
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4. Quaternion Discrete Fourier Transforms

In this section, we consider the concept of the quaternion discrete Fourier transform
(QDFT) in the (1,3)- and (2,2)-models. In the first model, the N-point QDFT of the quater-
nion signal q = {qn; n = 0 : (N − 1)} is defined by

Qp =
N−1

∑
n=0

qnWnp
μ =

N−1

∑
n=0

qn

[
cos
(

2π

N
np
)
− μsin

(
2π

N
np
)]

, p = 0 : (N − 1). (18)

Here, μ is a pure quaternion unit number, such that μ2 = −1, |μ| = 1. As mentioned
above, the number of such quaternions is infinite. For instance, this number can be taken as
μ = i, j, k, and (i± j± k)/3. The multiplication is not commutative; therefore, this QDFT
is the left-sided transform. The right-sided QDFT is defined as the sum of Wnp

μ qn. The
inverse N-point QDFT is calculated by

qn =
1
N

N−1

∑
p=0

QpW−np
μ =

1
N

N−1

∑
p=0

Qp

[
cos
(

2π

N
np
)
+ μsin

(
2π

N
np
)]

, n = 0 : (N − 1). (19)

The fast algorithms to calculate the QDFT exist for both types of transform in the
1D and 2D cases. For 2D signals, the QDFT can be defined as the right-, left-, or both-
sided transform [14,24]. These transforms do not have one of the basic properties of the
traditional Fourier transform, namely, the cyclic convolution of signals is not reduced to the
operation of multiplication in the frequency domain. In the 1D case, the cyclic convolution
of two periodic quaternion signals qn = [ fn, gn] and hn = [h1,n, h2,n] is defined as

yn = qn � hn =
N−1

∑
k=0

qn−khk, n = 0 : (N − 1). (20)

Here, we need to consider that qn � hn �= hn � qn, because the products
qn−khk �= hkqn−k. Thus, in the (1,3)-model, two different linear convolutions can be used.

Now, we consider these concepts in the (2,2)-model with two pairs of quaternion
exponential functions, namely eμϕ, when μ = ±e2 and ± e3. Each pair of these functions is
used for the direct and inverse QDFTs. Thus, in the (2,2)-model there are only two pairs of
the direct and inverse QDFTs. The (2,2)-model is commutative; therefore, the transform of
the N-point quaternion signal [ fn, gn] is defined as

Qp =
N−1

∑
n=0

qnWnp
μ =

N−1

∑
n=0

Wnp
μ qn, Wμ = exp

(
−μ2π

N

)
e−μ 2π

N . (21)

Two different N-point QDFTs are described in the following way.

1. When the quaternion μ is e2 = [(0, 1), (0, 0)] and the angle is ϕ = 2π/N, the basis
exponential functions are

ψp(n) = Wnp
e2 = exp(−e2 ϕnp)[(cos npϕ,− sinnpϕ), (0, 0)]

[
e−inpϕ, 0

]
, (22)

p, n = o = 0 : (N − 1). The N-point direct QDFT is defined as

Qp =
N−1

∑
n=0

qnψp(n) =
N−1

∑
n=0

[ fn, gn][e−iϕnp, 0] =
N−1

∑
n=0

[
fne−iϕnp, gne−iϕnp

]
.

or

Qp =

[
N−1

∑
n=0

fne−iϕnp,
N−1

∑
n=0

gne−iϕnp

]
=
[
Fp, Gp

]
. (23)
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Here, Fp and Gp are the traditional N-point DFTs of the complex signal fn and
gn, respectively,

Fp =
N−1

∑
n=0

fne−iϕnp, Gp =
N−1

∑
n=0

gne−iϕnp, p = 0 : (N − 1).

This N-point QDFT is called the N-point e2-QDFT and it requires two N-point
DFTs [22]. The inverse N-point e2-QDFT is calculated by

qn = [ fn, gn] =
1
N

N−1

∑
p=0

QpW−np
μ =

1
N

N−1

∑
p=0

[
Fp, Gp

][
einpϕ, 0

]
, n = 0 : (N − 1). (24)

2. In the μ = e3 case, the basis exponential functions for the QDFT are

ψp(n) = Wnp
e3 = exp(−e3 ϕnp) = [(cos(npϕ), 0), (−sin(npϕ), 0)], p, n = 0 : (N − 1). (25)

The N-point QDFT which is called the N-point e3-QDFT is defined as [22]

Qp =
N−1

∑
n=0

[ fn, gn]W
np
e3 =

N−1

∑
n=0

[ fncos (ϕnp) + gnsin (ϕnp),− fnsin (ϕnp) + gncos (ϕnp)].

In the matrix form, this transform can be written with the rotation matrices as

Qp =
N−1

∑
n=0

[ fn, gn]Rϕnp =
N−1

∑
n=0

[ fn, gn]

[
cos (ϕnp) − sin(ϕnp)
sin (ϕnp) cos (ϕnp)

]
, p = 0 : (N − 1). (26)

The inverse N-point e3-QDFT Qp =
[
Ap, Bp

]
is calculated by

qn = [ fn, gn] =
1
N

N−1

∑
p=0

QpW−np
μ =

1
N

N−1

∑
p=0

[
Ap, Bp

]
R−ϕnp, n = 0 : (N − 1). (27)

Thus, in the (2,2)-model, we can work with only two N-point QDFT, namely, e2-QDFT
and e3-QDFT.

As an example, Figure 3 shows the color image ‘leonardo9.jpg’ of 744 × 526 pixels
in part (a) and the quaternion signal composed from column number 101 in part (b). The
signals bn, cn, and dn are the red, green, and blue channels of the image column, respectively.
The signal an is the average of these signals.

The e2-QDFT and e3-QDFT of this quaternion signal are plotted in absolute scale,
| Qp

∣∣, p = 0 : 733, in Figure 4 in parts (a) and (b), respectively. The difference between
these two plots is shown in part (c).

As shown in [22], in the (2,2)-model, the aperiodic convolution of quaternion signals
can be calculated by multiplying the QDFTs. This statement is valid for both types of
QDFT. The convolution of a periodic quaternion signal qn = [ fn, gn] with another one
hn = [h1,n, h2,n] is unique,

yn = qn � hn =
N−1

∑
k=0

qn−khk =
N−1

∑
k=0

qkhn−k, n = 0 : (N − 1). (28)

Here, the subscripts n− k are considered by modulo N. This convolution is calculated
by four complex convolutions as follows:

yn = [y 1,n, y2,n

]
, y1,n = fn � h1,n − gn � h2,n y2,n = fn � h2,n + gn � h1,n. (29)
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For k = 2 and 3, the N-point ek-QDFT of the convolution yn is calculated by
Yp = QpHp, p = 0 : (N − 1). Here, Qp and Hp are components of the corresponding
N-point ek-QDFT of signals qn and hn, respectively. What type of QDFT is used for comput-
ing the aperiodic convolution is irrelevant. We think that the calculation of the quaternion
convolution by the e2-QDFT is simple. According to the multiplication, the e2-QDFT of the
aperiodic convolution is calculated by

Yp = Qp Hp =
[
Fp, Gp

][
H1,p, H2,p

]
=
[
Fp H1,p − Gp H2,p, FpH2,p + GpH1,p

]
. (30)

Therefore, the task of calculating the quaternion aperiodic convolution in the frequency
domain is solved in the (2,2)-model. In the traditional (1,3)-model of quaternions, this
problem does not have such a simple solution—it is unsolvable. Table 3 summarizes the
above considerations.

(a) (b)

Figure 3. (a) The color image and (b) the quaternion signal of length 744 composed from one
image column.

(a) (b) (c)

Figure 4. The magnitude of (a) the e2-QDFT, (b) the e3-QDFT, and (c) the difference of these transforms.
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Table 3. Properties of aperiodic convolution and QDFT.

The (2,2)-Model The (1,3)-Model

Aperiodic convolution q = q1 � q2 = q2 � q1 q = q1 � q2 �= q2 � q1

Exponential functions Only two pairs Infinite number

The pair of the QDFT Only two Infinite number

Convolution property Qp(q1 � q2) = Qp(q1) ·Qp(q1) Qp(q1 � q2) �= Qp(q1) ·Qp(q1)

5. Processing Images in the (2,2)-Model

In this section, we describe the concept of the 2D QDFT of images, which will be used
in color image enhancement, namely, in the method which is called alpha-rooting. A color
image in the RGB model will be presented by the quaternion image qn,m = [ fn,m, gn,m]

and then transformed to the frequency domain. Let (rn,m, gn,m, bn,m) be components of
the primary colors, red (R), green (G), and blue (B), in the image of N × M pixels. To
compose the quaternion image qn,m, we add the real component an,m. Thus, qn,m =

(an,m, rn,m, gn,m, bn,m). The real part of this image is usually considered zero, an,m = 0, or the
gray-scale component an,m = (rn,m + gn,m + bn,m)/3 at each pixel (n, m). The brightness of
the image can also be considered, an,m = 0.3rn,m + 0.59grn,m + 0.11bn,m. In the (2,2)-model,
the quaternion image qn,m = [ fn,m, gn,m] is the pair of 2D data fn,m = (an,m, rn,m) and
gn,m = (gn,m, bn,m). In many applications, processing color images in quaternion space
is efficient, since at each pixel the color triplet (plus the gray) is treated as one number,
quaternion. Note that in the traditional approach, each color component of the image is
processed separately. And this causes many unwanted effects on colors in the processed
images [5,14].

The two-dimension N ×M-point QDFT in the frequency-point (p, s) is calculated by

Qp,s =
N−1

∑
n=0

M−1

∑
m=0

qn,mWnp
μ Wms

μ =
N−1

∑
n=0

M−1

∑
m=0

qn,mWnp+ms
μ , (31)

where p, s = 0, 1, . . . , (N − 1), (M− 1). In the (1,3)-model, two sums in this equation are
different transforms; the first one is called the separable right-sided 2D QDFT [21,24].

We consider the 2D QDFT, which is calculated by the 1D e2-QDFTs. This 2D transform
is called the 2D N × M-point e2-QDFT—the case when μ = e2 [22,25]. As in the 1D case,
the 2D e2-QDFT has a simple form, when compared with the 2D e3-QDFT. The 2D e2-QDFT
of the quaternion image qn,m = [ fn,m, gn,m] is calculated by

Qp,s =
N−1

∑
n=0

M−1

∑
m=0

[ fn,m, gn,m]W
np
N Wms

M =
[
Fp,s, Gp,s

]
. (32)

Here, Fp,s and Gp,s are the N × M-point 2-D DFTs of the complex components fn,m

and gn,m, respectively,

Fp,s =
N−1

∑
n=0

M−1

∑
m=0

fn,me−i 2π
N npe−i 2π

M ms, Gp,s =
N−1

∑
n=0

M−1

∑
m=0

gn,me−i 2π
N npe−i 2π

M ms.

Thus, the calculation of the N × M-point e2-QDFT is reduced to two 2D DFTs. The
inverse N ×M-point e2-QDFT is calculated by

qn,m = F−1[Q]n,m =
1

NM

N−1

∑
p=0

M−1

∑
s=0

[
Fp,s, Gp,s

]
W−np

N W−ms
M , n, m = 0 : (N − 1), (M− 1).
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5.1. Method of Alpha-Rooting by the 2D QDFT

The absolute value, or the module, of the quaternion Qp,s =
[
Fp,s, Gp,s

]
is defined as∣∣Qp,s

∣∣ = √∣∣Fp,s
∣∣2 + ∣∣Gp,s

∣∣2. In the alpha-rooting [26,27], the image is enhanced by changing
its absolute value at each frequency point to

∣∣Qp,s
∣∣→ ∣∣Qp,s

∣∣α , where the parameter α is
from the interval (0,1). Given value α, the 2D e2-QDFT of the quaternion image qn,m is
processed as follows:

qn,m → Qp,s → Vp,s = Qp,s

∣∣∣Qp,s|α−1︸ ︷︷ ︸→ (qα)n,m = F−1[Vp,s
]

n,m︸ ︷︷ ︸→ A[q α]n,m. (33)

Here, A > 1 is a necessary constant, since the alpha-rooting method reduces the
transforms in absolute scale.

The main steps of the algorithm:

1. Compose the quaternion image qn,m from the given RGB color image,
qn,m = (an,m, rn,m, gn,m, bn,m).

2. Calculate the 2D e2-QDFT of the quaternion image, Qp,s = F [q]p,s =
[
Fp,s, Gp,s

]
.

3. Calculate the module of the transform,
∣∣Qp,s

∣∣.
4. Process the transform modules by the alpha-rooting, Vp,s = Qp,s

∣∣Qp,s|α−1 .

Thus, the 2D e2-QDFT of the quaternion image changes by the non-negative coeffi-
cients c(p, s) =

∣∣Qp,s|α−1,

Qp,s =
[
Fp,s, Gp,s

]→ Vp,s = c(p, s)
[
Fp,s, Gp,s

]
=
[
c(p, s)Fp,s, c(p, s)Gp,s

]
. (34)

5. Calculate the inverse 2D e2-QDFT, (qα)n,m = F−1[V]n,m.
6. Multiply the image by the constant A > 1 to raise the range of the image.

The output of the alpha-rooting is the quaternion image (vα)n,m = A(qα)n,m. Round-
ing to integers is required.

7. Compose the new color image, (vc)n,m, as the three-component imaginary part of the
quaternion image (vα)n,m.

8. Extract the new grayscale image from the quaternion image (vα)n,m, as its real
part. Note that this grayscale image is not the gray or brightness of the new color
image (vc)n,m.

The new image vn,m is parameterized by α. Therefore, the question arises as to how to
choose the value of this parameter to better enhance the color image. As our preliminary
examples have shown, the choice of the best values of α for enhancing color and quaternion
images can be based on the known measure of color image enhancement (EMEC) [5,13].
This measure is used before and after image processing. The EMEC is the generalization of
the enhancement measure that was used for grayscale images.

A. Enhancement measures for grayscale images

To estimate the quality of grayscale images, we effectively developed and used the
concept of the quantitative estimated measure of enhancement (EME). This measure was
selected after analyzing the Weber and Fechner laws of the human visual system [28,29].
The measure is defined as the average of the range of image intensity in the logarithm scale
when it is divided by blocks of the same size L1 × L2, for example, 7× 7. Only the full
blocks are considered. Therefore, the number of blocks inside a discrete image f = { fn,m}
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of N ×M pixels is calculated as k1k2, where k1 = �N /L1�, k2 = �M /L2�, and �.� denotes
the rounding floor function. The EME of the image is

EME( f ) =
1

k1k2

k1

∑
k=1

k2

∑
l=1

20ln

⎡
⎣max

k,l
( f )

min
k,l

( f )

⎤
⎦ =

1
k1k2

k1

∑
k=1

k2

∑
l=1

20
[

ln max
k,l

( f )− ln min
k,l

( f )
]

. (35)

Here, inside the (k, l)th block, the maximum, maxk,l( f ), and minimum, mink,l( f ), of
the image fn,m are calculated. Thus, the EME of the image is estimated block-wise by using
the logarithm range of the image. If all values of the image in a block are 0, this block
can be removed from the measure calculation. To avoid such cases, EME( f + 1) can be
calculated instead. The change f → ( f + 1) does not change the quality of the image unless
it is binary.

Together with EME, other contrast measures also can be used, including [14]:

1. The estimated measure of enhancement entropy measure (EMEE)

EMEE( f ) =
1

k1k2

k1

∑
k=1

k2

∑
l=1

max
k,l

( f )

min
k,l

( f )
ln

⎡
⎣max

k,l
( f )

min
k,l

( f )

⎤
⎦. (36)

2. The Michelson enhancement measure (MEM)

MEM( f ) = − 1
k1k2

k1

∑
k=1

k2

∑
l=1

[MVRk,l( f )]ln[MVRk,l( f )], (37)

where the Michelson visibility ratio is calculated by

MVRk,l( f ) =

∣∣∣∣max
k,l

( f )−min
k,l

( f )
∣∣∣∣

min
k,l

( f ) + min
k,l

( f )
.

3. The signal-noise ratio (or the ratio of the mean of the image and standard deviation)

SNR( f ) =
E[ f ]√

E[ f 2]− E2[ f ]
=

1√
E[ f 2]/E2[ f ]− 1

, (38)

where

E[ f ] =
1

NM

N−1

∑
n=0

M−1

∑
m=0

fn,m and E
[

f 2
]
=

1
NM

N−1

∑
n=0

M−1

∑
m=0

f 2
n,m.

Our experimental results show that the EME and EMEE measures can be effec-
tively used in enhancing images. After processing the image, fn,m → gn,m , the EME
of the enhanced image is calculated and compared with the EME of the original im-
age. The range of the alpha-rooting image is usually smaller than [0,255]. Therefore,
the obtained image should be multiplied by a coefficient. The new image and its qual-
ity depend on the value of parameter α, i.e., g = gα and the measure is a function of a,
that is, EME(ga) = EME(α). The parameters of interest for alpha-rooting are in the range
R{α ∈ (0, 1); EME(α) > EME(gα) > EME( f )}. The degree of enhancement is determined
by the EME measure. The best or optimal values of the enhancement are considered to be
the values α0, for which EME(gα0) = max

a∈R
EME(gα) or min

a∈R
EME(gα).

To illustrate the introduced above measures of image enhancement, we consider the
image of 512× 512 pixels shown in Figure 5 in part (a). The histogram of the image is
given in part (b). The enhancement by the Fourier transform-based alpha-rooting was
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used when changing the parameter α in the interval [0,1] with a step of 0.01. The graph
of the measure of this image, EME = EME(α), as the function of α is shown in part (c).
Blocks of size 7× 7 were used to calculate the EME. For the original image, the measure
of enhancement equals 7.63. The maximum of the function EME(α) is at point α = 0.83
and equals EME(0.83) = 20.69. The image enhanced by the 0.83-rooting is shown in part
(d). It was multiplied by the coefficient 19 to scale the image. In parts (e) and (f), the graph
of the measure EMEE(α) and the enhanced image by the 0.83-rooting (and multiplied by
17) are shown, respectively. This measure has the maximum 1071.26 at point α = 0.84.
The measure of the original image equals EMEE(1) = 0.68. The best parameters α = 0.83
and 0.84 for these two measures are very close to each other, as well as the results of
the enhancement, which are shown in parts (d) and (f). The EME(α) function is much
smoother than the EMEE(α) measure, and its graph has a distinct peak. For other images,
the optimal values of the parameter α may be very different, but the smoothness of the
function EME(α) is preserved and easier to work with.

(a) (b)

(c) (d) (e) (f)

Figure 5. (a) The image ‘7.1.10.tiff’ (from http://sipi.usc.edu/database, accessed on 22 January 2025),
(b) the histogram of the image, (c) the EME function, (d) the enhanced image by the 0.83-rooting.
(e) The graph of the EMEE function and (f) the image enhanced by the 0.84-rooting method.

In Figure 6a, the image of 440× 750 pixels is shown, as well as the result of the histogram
equalization (HE) of the image in part (b). The graph of the enhancement measure EME(α),
when processing by the alpha-rooting, is given in part (c). The measure function EME(α)
was calculated by dividing the image by blocks of sizes 5 × 5 and 7 × 7. The parameter α

for the α-rooting method of enhancement varies in the interval [0.4,1] with a step of 0.005.
Two graphs of the enhancement measure EME have pikes at the point 0.84 and 0.855, for the
5 × 5 and 7 × 7 block sizes, respectively. These values are almost the same, and we consider
α0 = 0.855 for the best visual estimation of the enhancement. The EME of the original
image equals 8.30 and 25.76 for the 0.855-rooting enhancement, which is shown in part (d).
There, the enhancement can be estimated as EME(g0.855)− EME( f ) = 25.76− 8.30 = 17.46.
One can note the high quality of the 0.855-rooting image in comparison with the HE image
in part (b).
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(a) the original image (b) HE

(c) EME measures (d) 0.855-rooting

Figure 6. (a) The original grayscale image and (b) enhanced image by (b) histogram equalization.
(c) Two EME measures of alpha-rooting method, and (d) the 0.855-rooting of the image.

To estimate the quality of color images, we consider the color image enhancement
measure (EMEC). For a color image fn,m = (rn,m, gn,m, bn,m) after division by blocks of size
L1 × L2 each, for instance 7× 7, the measure is calculated by

EMEC( f ) =
1

k1k2

k1

∑
k=1

k2

∑
l=1

20log10

[
maxk,l(rn,m, gn,m, bn,m)

mink,l(rn,m, gn,m, bn,m)

]
. (39)

Here, k1k2 is the number of blocks, and maxk,l(. . .) and mink,l(. . .) are the maximum
and minimum values in the (k, l)-th image block, respectively.

B. Alpha-rooting components-wise

Color images in the RGB color model can be separately processed by red, green, and
blue colors. This is the traditional method of processing color images. In the alpha-rooting
enhancement, each color component can be processed by alpha-rooting with different or
the same values of parameters α1, α2, and α3. We call this method (α1, α2, α3)-rooting
of the color image For images in the HSI color model, with hue (H), saturation (S), and
intensity (I) components, only the last component, intensity, will be only processed by
alpha-rooting. The first two components, hue and saturation will stay the same.

To choose values of these parameters, we can use, for instance, the EME measure. As
an example, Figure 7 shows the 1516 × 2012-pixel underwater RGB image in part (a) with
EMEC of 38.77, which was calculated by blocks of size 5 × 7. In part (b), the graphs of
functions EME(α) of the red, green, and blue channels are shown. The parameter of α runs
the interval [0.2,1]. The maximum values of these functions are at points α = 0.94, 0.83,
and 0.84. The color image composed of 0.94-rooting of red, 0.83-rooting of green, and
0.84-rooting of blue components is shown in part (c). The enhancement measure of this
image equals EMEC = 44.08.
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(a) EMEC 38.77 (b) (c) EMEC 44.08

Figure 7. (a) The original image, (b) EMEs of red, green, and blue components, and (c) enhanced image.

Since the color components are processed separately, it is not possible to state that
the above (094,0.84,0.83)-rooting results in the highest enhanced image. It is possible to
select other triplets of the vector parameter α = (α1, α2, α3) and obtain images that we can
consider the best. As examples, Figure 8 shows two enhanced images together with the
graphs of the EMEs of three color channels, R, B, and B. The values of alpha parameters for
these channels are marked on the graphs. The case with equal EME for all color channels is
shown in part (a). The EMEC of the color image is of 59.62, which is the highest number
for all considered cases. Also, a good, enhanced color image is shown in part (b) for the
vector parameter (0.9,0.8,0.7).

(a) (0.92,0.75,0.80)-rooting (EMEC = 59.62) (b) (0.9,0.8,0.7)-rooting (EMEC = 55.71)

Figure 8. (a) and (b) Two enhanced images.

C. Comparison with HE and Retinex

The methods of histogram equalization (HE) [30–32] and Retinex [33–37] are widely
used in color image enhancement. We consider these methods together with the method of
alpha-rooting. The underwater RGB color image of 192 × 262 pixels is shown in Figure 9
in part (a). This image has a measured EMEC of 11.26, which was calculated by blocks 5 ×
5. The graphs of EME of three colors are given in part (b), with maximum values at points
0.85, 0.82, and 0.82, for the red, green, and blue channels, respectively. The corresponding
(0.85,0.82,0.82)-rooting of this image with an EMEC of 35.46 is shown in part (c). In part (d),
the (0.82,0.82,0.82)-rooting is shown with an EMEC of 36.37.

Figure 10 shows the result of the histogram equalization with a measured EMEC
of 44.29 in part (a). The result of image enhancement by the multi-retinex is shown in
part (b). The image was normalized, and sizes of the Gaussian filters were taken 7, 15, and
21 as suggested [33]. The retinex enhancement has an EMEC of 16.96. One can see that the
enhancement of the color image was not achieved in these two methods. For comparison, we
also add the result of the color image enhancement by the 0.82-rooting. The result is shown
in part (c). One can see good enhancement of the image; the color measure of enhancement
equals 33.50. Measures of EMEC and EME were calculated by blocks of 5 × 5 pixels.
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(a) EMEC 14.28 (b) (c) EMEC 35.46 (d) EMEC 36.37

Figure 9. (a) The original image, (b) EMEs of red, green, and blue components, and enhanced images
by (c) (0.85,0.82,0.82)-rooting and (d) (0.82,0.82,0.82)-rooting.

histogram equalization multiscale retinex 0.82-rooting

(a) EMEC 44.29 (b) EMEC 16.96 (c) EMEC 33.50

Figure 10. Color image enhancement by (a) histogram equalization (MATLAB’s version), (b) multi-
retinex algorithm (the original version [33]), and (c) method of 0.82-rooting.

The quaternion image enhancement (EMEQ) measure for a quaternion image
qn,m = (an,m, rn,m, gn,m, bn,m) is calculated similarly [27],

EMEQ(q) =
1

k1k2

k1

∑
k=1

k2

∑
l=1

20log10

[
maxk,l(an,m, rn,m, gn,m, bn,m)

mink,l(an,m, rn,m, gn,m, bn,m)

]
. (40)

This measure includes the real part of the quaternion image. The measure EMEQ is
calculated for the input quaternion image qn,m and the processed image vn,m. In most cases,
the best parameter for color enhancement is considered the value of α with a maximum of
EMEC(q) and EMEQ(v) (or minimum). Our experimental results show that the measures
EMEC and EMEQ are effective in selecting the best parameters to receive color images
with high quality [27]. Other measures for selecting the best values of α and estimating
color image quality after image processing can also be used. We mention the color image
contrast and quality measures [14].

As an example, Figure 11 shows the quaternion image of 877 × 1024 pixels in part
(a). The grayscale image is the real part, and the color image is the imaginary part of the
quaternion image. The graph of the EMEC measure as the function of α is shown in part (b).
The maximum of this function is at point 0.879. In part (c), the graphs of the measured EME
of the color channels are given. The point α = 0.82 was selected, at which these graphs
roughly intersect. The quaternion images after 0.879 and 0.82-rooting enhancements are
shown in parts (d) and (e), respectively.
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(a) (b) (c)

(d) (e)

Figure 11. (a) The quaternion fundus image, (b) the graph of the EMEC function calculated for
α-rooting by the 2-D QDFT, (c) the graphs of EME functions calculated for red, green, and blue
channels of the α-rooting. The enhanced quaternion after (d) 0.879-rooting and (e) 0.82-rooting.

5.2. The Separable Alpha-Rooting

The alpha-rooting method by the QDFT can be modified in the following two ways.

1. The separable 1-parameter alpha-rooting of the quaternion image qn,m = [ fn,m, gn,m] is
the method of processing the 2D e2-QDFT of the image as

Qp,s =
[
Fp,s, Gp,s

]→ [
Fp,s

∣∣∣Fp,s|α−1, Gp,s

∣∣∣Gp,s|α−1
]
, α ∈ (0, 1). (41)

2. The 2-parameter alpha-rooting of the quaternion image uses two parameters α1 and α2

from the interval [0, 1] to process the 2D e2-QDFT of the quaternion image as follows:

Qp,s =
[
Fp,s, Gp,s

]→ [
Fp,s

∣∣∣Fp,s|α1−1, Gp,s

∣∣∣Gp,s|α2−1
]
. (42)

In the α1 = α2 = α case, the 2-parameter alpha-rooting coincides with the 1-parameter
alpha-rooting.

5.3. Alpha-Rooting of Color Images and the (1,3)-Model

In the (1,3)-model, we consider one of the 2D QDFTs, namely, the separable right-sided
2D QDFT [27]. This transform of the quaternion image qn,m = (an,m, rn,m, gn,m, bn,m) is
calculated by

Qp,s =
N−1

∑
n=0

(
M−1

∑
m=0

qn,mWms
μ1

)
Wnp

μ2 , p, s = 0 : (N − 1), (M− 1). (43)

Here, μ1 and μ2 are pure quaternion units. The transform uses N 1D QDFTs by rows
and then M 1D QDFT by columns. Given quaternion signal qn = (an, rn, gn, bn) and a pure
quaternion μ = (0, m1, m2, m3), the 1D QDFT, Qp, with the basis exponential functions
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Wnp
μ = cos (2πnp/N)− μsin (2πnp/N) requires four traditional DFTs since it is calculated

by [14]

Qp = Re

⎡
⎢⎢⎢⎣

Ap

Rp

Gp

Bp

⎤
⎥⎥⎥⎦+ Mμ × Im

⎡
⎢⎢⎢⎣

Ap

Rp

Gp

Bp

⎤
⎥⎥⎥⎦ = Re

⎡
⎢⎢⎢⎣

Ap

Rp

Gp

Bp

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

0 m1 m2 m3

−m1 0 −m3 m2

−m2 m3 0 −m1

−m3 −m2 m1 0

⎤
⎥⎥⎥⎦Im

⎡
⎢⎢⎢⎣

Ap

Rp

Gp

Bp

⎤
⎥⎥⎥⎦. (44)

Ap, Rp, Gp, and Bp are the DFTs of the components an, rn, gn, and bn, respectively. Re(z) and
Im(z) denote the operations of real and imaginary parts of the complex number z, respectively. The
multiplication of the 4D vector by the matrix Mμ requires a maximum of 12 real multiplications.
In the case, when μ1 = (0, 0, 1, 0) = j and μ2 = (0, 0, 0, 1) = k, the exponential basis functions are
Wms

k = cos (2πms/M)−ksin(2πms/M) and Wnp
j = cos (2πnp/N)−jsin (2πnp/N). The matrices

of multiplication have simple forms,

Mj =

⎡
⎢⎢⎢⎣

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎤
⎥⎥⎥⎦ and Mk =

⎡
⎢⎢⎢⎣

0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

⎤
⎥⎥⎥⎦.

and the corresponding 1D QDFTs are calculated by

Qp =

⎡
⎢⎢⎢⎣

Re
(

Ap
)
+ Im(Gp)

Re
(

Rp
)
+ Im(Bp)

Re
(
Gp
)− Im(Ap)

Re
(

Bp
)− Im(Rp)

⎤
⎥⎥⎥⎦ and Qp =

⎡
⎢⎢⎢⎣

Re
(

Ap
)
+ Im(Bp)

Re
(

Rp
)− Im(Gp)

Re
(
Gp
)
+ Im(Rp)

Re
(

Bp
)− Im(Ap)

⎤
⎥⎥⎥⎦.

These N-point QDFTs require four 1D DFTs plus 4N additions. In this case, the right-sided 2D
QDFT of the quaternion image qn,m is calculated by

Qp,s =
N−1

∑
n=0

(
M−1

∑
m=0

qn,mWms
k

)
Wnp

j , p = 0 : (N − 1), s = 0 : (M− 1). (45)

A total of 4(N + M) 1D QDFTs plus 4(NM) + (4M)N = 8NM additions are used to calculate
the 2D QDFT. The inverse 2D right-sided QDFT is calculated by

qn,m =
1

NM

N−1

∑
p=0

(
M−1

∑
s=0

Qp,sW−ms
k

)
W−np

j , (46)

The complexity of the QDFTs in the (1,3) and (2,2)-models for images of N × N pixels is
described in Table 4.

Table 4. Complexity of the calculations for the two algebras.

Model Transforms
Number of 1D

DFTs
Number of Additional

Multiplications
Number of Additional

Additions

The (1,3)-model:

General case of μ 1D QDFT 4 (real) 12N 12N

2D QDFT 4(2N) = 8N 12N(2N) = 24N2 12N(2N) = 24N2

Case μ = j, k 1D QDFT 4 (real) - 4N

2D QDFT 4(2N) = 8N - 4N(2N) = 8N2

The (2,2)-model:

1D e2-QDFT 1D QDFT 2 (complex) - -

2D e2-QDFT 2D QDFT 2(2N) = 4N - -

The main steps of the algorithm for α-rooting in the (1,3)-model:
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1. Compose the quaternion image qn,m = (an,m, rn,m, gn,m, bn,m) from the color RGB image
(rn,m, gn,m, bn,m).

2. Calculate the right-sided 2D QDFT, Qp,s, of the quaternion image.
3. Given α ∈ (0, 1), calculate the coefficients c(p, s) =

∣∣Qp,s|α−1 .
4. Modify the 2D QDFT as Qp,s → Vp,s = c(p, s)Qp,s .
5. Calculate the inverse 2D QDFT vn,m = vn,m(α).
6. Select the best value α for color image enhancement by using the measures EMEQ or EMEC.

6. Experimental Results with Color Images

In this section, a few illustrative examples of the 2D QDFT-based alpha-rooting are presented.
Many color images of art in this paper are from Olga’s Gallery—Free Art Print Museum by address
https://www.freeart.com/gallery/ (accessed on 22 January 2025) with permission to use them in
our research. Figure 12 shows the RGB color image ‘rembrandt195.jpg’ in part (a) and the enhanced
image in part (b). The enhanced image was calculated by the alpha-rooting with e2-QDFT, when
the parameter α = 0.9143. This value of the parameter is considered optimal, or best, according
to the EMEC measure calculated by Equation (39) with block size 7 × 7. This measure as the
function EMEC(α) has a maximum of 36.54 at this point. The measure of the original image is
EMEC(1) = 34.74.

(a) (b) (c)

Figure 12. (a) The original image, (b) 2D e2-QDFT based 0.9143-rooting (with the scaling factor of
A = 4), and (c) the two curves of the EMEC.

Two EMEC functions are shown in Figure 12 in part (c); they are close to each other, and both
achieve the maximum at the same point. The first graph (which is a little higher than the other one)
was calculated by the 2D e2-QDFT-based alpha-rooting described in Section 5.1, when the transform
is modified as Qp,s =

[
Fp,s, Gp,s

] → ∣∣Qp,s|α−1[Fp,s, Gp,s
]

, α ∈ [0.7, 1]. The second graph is for the
EMEC measure calculated from the 1-parameter alpha-rooting described in Section 5.2, when the
e2-QDFT of the images is processed as follows: Qp,s =

[
Fp,s, Gp,s

] → [
Fp,s
∣∣Fp,s|α−1, Gp,s

∣∣Gp,s|α−1] ,
α ∈ [0.7, 1]. Figure 13 shows the enhanced image by 1-parameter 0.9143-rooting in part (a). For
comparison, the 0.9143-rooting of the image by the 2D QDFT in the (1,3)-model is shown in part (b).

Below are a few results of processing other color images by the alpha-rooting and separate
algorithms of the alpha-rooting in the commutative (2,2)-model. The results of image enhancement
by the alpha-rooting in the non-commutative (1,3)-model are also shown. Figure 14 shows the results
of the 0.92-rootings, when processing the image of San Antonio. The values of the color image
enhancement EMEC are shown.

Figure 15 shows the results of the same methods of the 0.92-rootings, when processing another
image of San Antonio. One can note that the images processed in the (2,2)-model have higher values
of EMEC.

Figure 16 shows the results of processing image ‘image13-2.jpg.’ The method of alpha-rooting
works well in both models for many images. It means that the (2,2)-model does not perform any
worse but in fact better than another model, that is, the (1,3)-model.
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(a) (b)

Figure 13. The enhanced images of the 0.9143-rooting: (a) in the (2,2)-model and (b) in the (1,3)-model.

The (2,2)-model of quaternions The (1,3)-model of quaternions

(a) EMEC = 15.2572 (b) EMEC = 18.9644 (c) EMEC = 18.6932 (d) EMEC = 18.6892

Figure 14. (a) The original color image. The enhanced images in the (2,2)-model by (b) the main
0.92-rooting and (c) separable 1-parameter 0.92-rooting. (d) The 0.92-rooting in the (1,3)-model.

The (2,2)-model of quaternions The (1,3)-model of quaternions

(a) EMEC = 8.4645 (b) EMEC = 16.5311 (c) EMEC = 16.5174 (d) EMEC = 16.5005

Figure 15. (a) The original color image. The enhanced images in the (2,2)-model by (b) the main
0.92-rooting and (c) separable 1-parameter 0.92-rooting. (d) The 0.92-rooting in the (1,3)-model.

The results of processing the well-known “flowers” image are shown in Figure 17 in
parts (a)–(d).

Now we apply the method of alpha-rooting in the (2,2)-model, when two parameters α1 and α2

are used and the 2D QDFT of the color image is processed as

Qp,s =
[
Fp,s, Gp,s

]→ [
Fp,s

∣∣∣Fp,s|α1−1, Gp,s

∣∣∣Gp,s|α2−1
]
, α1, α2 ∈ (0, 1]. (47)
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The (2,2)-model of quaternions The (1,3)-model of quaternions

(a) EMEC = 15.9245 (b) EMEC = 21.4756 (c) EMEC = 21.4686 (d) EMEC = 21.3373

Figure 16. (a) The original color image. The enhanced images in the (2,2)-model by (b) the main
0.92-rooting and (c) separable 1-parameter 0.92-rooting. (d) The 0.92-rooting in the (1,3)-model.

The (2,2)-model of quaternions The (1,3)-model of quaternions

(a) EMEC = 30.1495 (b) EMEC = 53.1765 (c) EMEC = 52.1416 (d) EMEC = 52.7501

Figure 17. (a) The original color image. The enhanced images in the (2,2)-model by (b) the main
0.92-rooting and (c) separable 1-parameter 0.92-rooting. (d) The 0.92-rooting in the (1,3)-model.

Figure 18 shows results of the color image enhancement processing by the 2-parameter alpha-
rooting with different sets of parameters α1 and α2. In part (b), the image of San Antonio was
processed by the parameters α1 = α2 = 0.92. The enhancement by parameters α1 = 0.92 and
α2 = 0.93 is shown in part (c).

(a) EMEC = 15.2572 (b) EMEC = 18.6932 (c) EMEC = 18.8947

Figure 18. (a) The original color image, and (b) the [0.92,0.92]-rooting, and (c) the [0.92,0.93]-rooting
in the (2,2)-model.

It should be noted that when processing color images in the quaternion models, the color image
is only the imaginary part of the quaternion image. The enhancement of quaternion image includes
two images, the color one and the gray one. They are processed together. The first component
of the quaternion image, which is referred to as the grayscale image is not the grayscale image of
the processed color image. The enhancement of quaternion image results in the enhancement of
both images. As examples, we consider a few color images processed in the (2,2)-model by the 2-D
e2-QDFT-based alpha-rooting.

Figure 19 shows the color image ‘raphael155.jpg’ in part (a), which was embedded in the
quaternion image as its imaginary part. The imaginary component (the new color image) of the
enhanced quaternion image by the 0.92-rooting is shown in part (b). The grayscale image of the
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original color image is shown in part (c). The real part of the processed quaternion image is shown in
part (d). This image is not the average of colors in the image in part (b). Thus, both grayscale and
color images were enhanced when processing the quaternion image.

Figure 19. (a) The original color image and (c) its grayscale image. The processed (b) imaginary and
(d) real components of the enhanced quaternion image by the e2-QDFT 0.92-rooting.

Figures 20 and 21 show the results of enhancement of the quaternion images when the color
images ‘leonardo9.jpg’ and ‘flowers’ were used, respectively.

Figure 20. (a) The original color image ‘leonardo9.jpg’ and (c) its grayscale image. The processed
(b) imaginary and (d) real components of the enhanced quaternion image by the e2-QDFT
0.92-rooting (×4).

Figure 21. (a) The original color flowers image and (c) its grayscale image. The processed
(b) imaginary and (d) real components of the enhanced quaternion image by the e2-QDFT 0.80-
rooting (×20).

7. Conclusions

New quaternion algebra, the (2,2)-model, was presented, and new methods of alpha-rooting
by the quaternion discrete Fourier transform (QDFT) were described and analyzed in this model.
The main properties of this model were considered. This model of quaternions is commutative and
associative and allows to calculate the aperiodic convolution of quaternion images in the frequency
domain. The results of the image enhancement of color images in this model were compared with the
alpha-rooting in the traditional (1,3)-model. The comparison with the known methods of histogram
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equalization and Retinex is also provided with examples. The preliminary experimental examples
show the effectiveness of the proposed methods for color image enhancement by the 2D QDFT. We
believe that the commutative (2,2)-model together with the non-commutative (1,3)-model can be
effectively used in color image enhancement, as well as other areas of color imaging. The proposed
methods of alpha-rooting are fast, because of fast 1D and 2D QDFTs, and do not require much
memory, as well as machine learning algorithms, which require much time and memory and do not
work well on many images presented in this work.
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Abstract: Machine learning applied to image-based number recognition has made sig-
nificant strides in recent years. Recent use of Large Language Models (LLMs) in natural
language search and generation of text have improved performance for general images, yet
performance limitations still exist for data subsets related to color blindness. In this paper,
we replicated the training of six distinct neural networks (MNIST, LeNet5, VGG16, AlexNet,
and two AlexNet modifications) using deep learning techniques with the MNIST dataset
and the Ishihara-Like MNIST dataset. While many prior works have dealt with MNIST,
the Ishihara adaption addresses red-green combinations of color blindness, allowing for
further research in color distortion. Through this research, we applied pre-processing to ac-
centuate the effects of red-green and monochrome colorblindness and hyper-parameterized
the existing architectures, ultimately achieving better overall performance than currently
published in known works.

Keywords: machine learning; optical character recognition (OCR); color blindness; Ishihara

1. Introduction

While there has been extensive research of character recognition in the field of Ma-
chine Learning (ML) in the past 30 years, most of the research has been centered around
creating and analyzing less than ideal datasets representing handwritten numbers and
letters [1]. This application has many uses, such as increasing performance with vision-
based systems, transcribing and understanding old texts, and using the combination of
steganography and cryptography to hide information within images [2]. A decent portion
of early optical character recognition (OCR) research was centered around using the Modi-
fied National Institute of Standards and Technology (MNIST) dataset in conjunction with
convolutional neural networks (CNNs) [3,4]. Examples of this work include expanding the
MNIST dataset in 2017 to letters [5] and creating a dataset around standard clothing items
(Fashion MNIST) [6].

In this paper, we present the idea, procedure, and results of ML-based evaluation
of red-green color blindness distortions similar to [7] that is intended to create and train
a neural network model that can succeed through the variations in human writing to
detect the visual character in a nonideal color distorted environment. Essentially, instead
of simply trying to detect characters with heavy distortion due to their writing style, this
research seeks to augment prior research by evaluating a distorted letter in an environment
that would cause the information to become more diluted. To do this, the Ishihara-Like
MNIST [8] dataset was used. This dataset comprises the characters from the MNIST dataset,
but they are placed inside an Ishihara circle. Ishihara circles [9], more commonly known

Computers 2025, 14, 34 https://doi.org/10.3390/computers14020034
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as color blindness circles, are used to detect which category of color deficiency a person
may possess. In this dataset, as opposed to MNIST, the characters are no longer cohesive
in nature as the entire circle is comprised of varying sized circles in different colors. In
comparison, a standard Ishihara circle has a near perfect character in the center. Examples
of a standard Ishihara circle and a MNIST Ishihara circle for the numbers 6 and 8 are shown
in Figures 1 and 2.

Figure 1. Standard Ishihara Circle [10].

Figure 2. MNIST Ishihara Circle [8].

1.1. Prevalence

Color blindness, or rather color vision deficiency, affects nearly 8% of men and 0.5%
of women, for a total of roughly 4% of the population [11]. This deficiency is caused by
the absence of one or more of the three types of cone cells (a type of photoreceptor cell)
in the retina of the eyes. These cells are responsible for our color vision as well as our
color sensitivity. Human eyes are comprised of approximately 6 million cones, wherein
60% are red sensing, 30% are green sensing, and 10% are blue sensing [12]. This deficiency
can be caused due to genetic disorders (most common), injury to the eyes, or cancer and
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tumors that affect the optical nerve [13]. Additionally, color blindness can be caused by
medications, the deterioration of the eyes from aging, and diseases such as Alzheimer’s or
Parkinson’s [14]. There is no known cure for color blindness, but mitigation techniques
exist in the form of special glasses and contact lenses or visual aids [13].

While there are seven official diagnoses of color deficiency, the most common is
red-green [11]. Red-green color deficiency encapsulates four of the seven diagnoses: deuter-
anomaly, protanomaly, protanopia, and deuteranopia. Deuteranomaly is the most common
and causes shades of green to appear more red, while protanomaly causes shades of red
to appear more green. Protanopia is the absence of red cones, while deuteranopia is the
absence of green cones. The next two deficiencies are blue-yellow: tritanomaly and tri-
tanopia. Tritanomaly makes it difficult to distinguish between blue and green and also
between yellow and red. This is due to malfunctioning blue cones. Tritanopia, on the other
hand, makes the patient unable to distinguish between blue and green, purple and red,
and yellow and pink. Due to this, all colors appear less bright. This deficiency is caused
by the lack of blue cones. The last type of color deficiency is known as monochromacy,
monocromacia, or Aachromatopsia. This is the lack of color cones entirely and causes all
color to appear in grayscale [15]. Figure 3 attempts to highlight the distinction between
the various types of color deficiency. While this image shows the comparison of the scale
of colors, it fails to show exactly how the world appears for those with a given deficiency.
Figure 4 shows the seven different deficiencies when considering a colorful image of fruit.

Name Color Scale Description of
effect

Percentage
of popu-
lation

Normal Normal vision 92%

Deuteranomaly Dull Green 4.6%

Deuteranopia No Green 1.27%

Protanomaly Dull Red 1.08%

Protanopia No Red 1.01%

Tritanomaly Blue = Green,
Yellow = Red

0.02%

Tritanopia Blue = Green,
Yellow = Pink,
Red = Purple

0.03%

Achromatopsia All Gray 0.0033%

Figure 3. Color Blindness Spectrum [11,15–17].
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Normal

Deuteranomaly (dull green) Deuteranopia (lack of green cones)

Protanomaly (dull red) Protanopia (lack of red cones)

Tritanomaly (blue similar to green and yellow similar
to red)

Tritanopia (blue similar to green, yellow similar to
pink, and red similar to purple)

Achromatopsia (all gray)

Figure 4. A normal color image followed by the image modified as to emulate the seven different
types of color blindness [18,19].

1.2. Motivation

This may seem like an arbitrary topic to model research after, but most models in
ML for color correction are based on the physiological models on how people with color
blindness perceive the world [20]. Most research in this field tends to focus on correcting the
images for those with the deficiency [21–24]. Therefore, we think it is important to explore
training a neural network model with images that have color distortion with the intent not
of modifying the image, but instead modifying the architecture of the model to bypass or
see through the distortion. In doing so, we may work towards a better understanding of
how the brain (or CNN) learns when presented with distorted data inputs.
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The real world application of this research is to create a model that processes an
image with heavy distortion in near real time such that the machine can read the image
but a human cannot. This is achieved by training on data that has heavy artificial color
distortion in the particular targeted color scheme. A significant amount of research has
been conducted to use color theory and color segmentation to help CV algorithms in
detection of characters. In [25,26], this research was used to correct the distortion that dirt
and fading has on traffic signs. Additionally, more research has been performed with color
transformation to increase the detection of the traffic sign as seen in [27]. The goal of this
paper is to use the theory behind research to use the color gradients in these images such
that they become indistinguishable to humans but clear to a machine. Additional work
could also be done in the realm of ML if models understand the information presented as
proposed in [28] because fragmented color filters could be used to hide more information.

1.3. Background

The basis for this research started with replicating [29], in which Solonko attempted to
modify traditional Ishihara circles to make them look more like MNIST. The goal was to
train a model on MNIST and then test it with his custom Ishihara circles, evaluating the
character in the center of the circle. However, to achieve high validation results, the images
underwent heavy image modification. This included median blurring, k-means clustering,
erosion, thresholding, and morphology [29]. All of these pre-processing techniques were
used to isolate the character inside the circle, essentially eliminating the distortion from
the background. By the end, only a white skeletonized version of the image on a black
background was left. An example of his process on the images can be shown in Figure 5.
It should be noted that before feeding the image into pre-processing, some processing
had already been performed, as the character in the foreground was separated from its
background in terms of color. To increase the reach in this research, we sought to limit the
modifications to the image.

Figure 5. The modifications the image undertook when pre-processing with Solonko’s work [29].

In 1998, the MNIST dataset was presented by LeCun et al. [3]. It comprised 60,000
training images and 10,000 testing images of handwritten digits from 0 to 9. These digits
were handwritten from 500 different writers (divided into two sets) and then shuffled
together. The first set was from high school students and the second set was from Census
Bureau employees. These handwritten digits were scanned into digital form, normal-
ized to 20× 20 pixels, converted to grayscale, and then padded to increase their size to
28× 28 [3,4,30]. Today, the original dataset is used mainly as a baseline for training OCR
models and CV models, similar to an ML-based “hello world” program [4]. Outside of
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research and construction of ML models, the original MNIST dataset is used in various
business sectors such as banks for reading checks, postal services when reading addresses
and zip codes, and documentation management for sorting hand written documents [31].
As previously stated, the MNIST dataset has since been expanded to many other areas. The
focus here is to encapsulate more domains into an MNIST-like form so that research can be
performed on those areas as well. Expansions within the realm of language include making
datasets similar to the original comprised of English letters instead of digits (EMIST) [5],
Kuzushiji (cursive Japanese) [32], and even ancient Sumerian characters [33]. Outside of
language, the Fashion-MNIST, for example, seeks to help train neural networks in recog-
nizing various clothing pieces such as shirts, blouses, dresses, and shoes. This dataset is
intended to be the modern replacement for MNIST [34]. Using these more detailed datasets
could help with the problem of overfitting in Deep Neural Networks (DNNs) as shown
in [35] and help with recognition of everyday objects as seen in [6]. Figures 6–8, show the
original MNIST with the indicated expansions. The images were created using the datasets
from Keras.

Figure 6. Original MNIST.

Figure 7. Fashion MNIST.

Figure 8. EMNIST.
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However, as pertaining to this research, the Ishihara-Like MNIST dataset was not
created for the purposes of character recognition. It was created and used for the exploration
of explainable AI, the notion that humans should be able to trust the evaluation of a
computer-based system for its validity. For this, an assessment framework was made for a
human-centric evaluation. To do this, Ishihara-Like MNIST circles were created and tested
on color blind individuals, wherein they would need an explanation to determine if their
interpretation of the images were correct. Therefore, they would have to rely on the validity
of a machine in that assessment [36]. With the current limitations of ML, this was a perfect
use for MNIST, where a non-biased question could be asked that most individuals could
not answer correctly. This provided for a uniform distribution of samples and would allow
for a control by using those that were not color blind.

To create these Ishihara circles, the following process was used. First, the original
MNIST images were loaded and the character was separated from its background. To
do this, the image was binarized and a monochrome reduction was applied. Once the
digit was extracted, the inner and outer outlines of the character were placed on a blank
background. While not explicitly stated in the documentation, the images were resized at
some point as the end result was a 128× 128 image. Using a Monte Carlo simulation, a
circle was then generated with varying circles inside it, and the extracted MNIST frame
was placed in the circle. Edge detection was used to correct the circles inside the digit and
the background to ensure all circles were fully formed. Then, coloring was applied to the
background and character according to the plate [36]. Figure 9 depicts this process.

Figure 9. The process to convert an MNIST character to an Ishihara-Like MNIST circle [36].

In 1917, Dr Shinobu Ishihara from the University of Tokyo created and introduced
the color blindness test [9]. This test consisted of a series of “plates” or images, usually
14, 24, or 38 at a time. The plates contained closely packed circles that varied in size and
color to hide a number. The patient who was being tested for color deficiency was given
these plates and asked to identify them correctly. The score of correct plates out of the total
number identified the severity of the deficiency. To distinguish the different types of color
blindness, the numerated plates held different meanings [37]. The Ishihara-Like MNIST
dataset comprises 8 of those plates (numerical 2–9) and one additional plate containing
random colors. Each folder of this dataset contains 10,000 training images and 2000 testing
images. While it is not explicitly shared what the breakdown of each plate contains, it is
stated that the generation of these plates “reasonable [sic] reproduces the themes of the
original Ishihara plates” [36]. By this statement, it is assumed the same nomenclature and
color scheming was followed. The only discrepancy stated is that plate 2 was the normal
plate instead of plate 1. In Figure 10, each image shows what the image should depict and
what red-green individuals see in the form of (actual answer, color deficient answer). It
should be noted that only red-green color blindness is covered in these images as the other
deficiencies are represented in plates greater than 9. Additionally, when researching this
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topic, there are some deviations in the listing of plates, wherein plates are out of order or
changed. Therefore, not every test had the images in the exact same order. Finally, plates
were created that only color blind individuals could see. Figure 11 shows an example of
one of these plates.

(74, 21) (42, 2 or 4) (6, 5)

Figure 10. Sample Ishihara plates from the Ishihara test. The first number inside the parenthesizes is
the correct number, followed by what an individual with red-green color blindness would see [38,39].

While many other fields have used the Ishihara circles in their research, no other
research or articles are known using this particular dataset without expert modification.
Other published work as seen in [40] use the standard Ishihara circles in the training and
evaluation of models. However, it should be noted that the images used in [40] were also
heavily modified to achieve a high validation accuracy and the characters inside the circle
were not handwritten variations. Similar types of research are also seen in [41], where a
model is trained on character images that were taken at obscure angles or with difficult
font styles, or in [42], where a model is trained on images taken of old documents or texts
where time has degraded the images. The goal of these two articles is to extrapolate the
character from the image despite the color distortion.

Figure 11. A plate that only red-green color-blind individuals can decipher. The value inside the
circle is 73 [38].

For this research, we used LeNet [43], VGG16 [44], Alexnet [45], and two modification
of the AlexNet architecture in evaluating the Ishihara circles. Since the Ishihara-Like MNIST
dataset was created using the original MNIST dataset, the standard model used to train
MNIST was also used. This sets a baseline to see if the original model used to train the
MNIST characters could be used to evaluate the circles. The reasoning behind the other
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previously mentioned models is because they were all significant improvements of the
original MNIST model and showed greater accuracy with OCR training [46,47]. While
more advanced models such as YOLO [48] could have been used, the goal was to optimize
a small architecture that would improve the amount of time required to train the model.
In testing, various permutations of the data were used. This included training and testing
the models on the color Ishihara-Like MNIST circles, training and testing on the Grayscale
Ishihara-Like MNIST circles, and cross-testing the two sets.

An example of a grayscale Ishihara-Like MNIST circle and its color counterpart is
shown in Figure 12. The color image in this figure was generated using matplotlib, wherein
the colors are not exactly as they should appear due to color mapping. The character inside
the circle is a “2”.

Figure 12. Grayscale (left) and Color MNIST Ishihara Circle (right).

1.4. Outline

Section 2 lays out the experimental design for this research. It begins in Section 2.1 by
stating the tools that were used to perform this research. Then in Section 2.2, the process
of how each of the datasets are loaded, processed, and ingested into the neural network
models is provided. In Section 2.3, the models used to evaluate the datasets, why they were
selected, and the modifications made are shown. In Section 2.4, the metrics by which these
models were judged for their effectiveness with the datasets are given. Then in Section 2.5,
the complete list of test cases performed are described. Finally, Section 2.5 ends with our
initial assumptions on how each test case would perform. Section 3 quantifies the results
of our research. This includes comprehensive tables showing the output of each test with
each tested metric. Included with these results is our analysis on how each test performed.
Additionally, confusion matrices are shown for the models that were trained and tested
with the entire MNIST-Like Ishihara dataset. Section 4 summarizes the results of our entire
research and concludes with our findings.

2. Experimental Design

In the following section, the methodology used for testing this research is described.
This includes the tools that were used for the creation of the Python script, the process by
which it was tested, the model selection, and how the evaluation was performed. Further-
more, the section lists the hardware that was used to perform the aforementioned tests.

2.1. Tools Used

This research used Python as the programming language, Keras and Tensorflow for
the ML aspects, and OpenCV for the image processing. These selections were mainly due
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to the compatibility with Solonko’s prior work. By using common tools, this allowed for
easy modification to the architecture for further testing.

2.2. Testing Process

To perform adequate testing, a program was constructed in Python with two parent
classes: the Data Loader and the Model Wrapper. These two wrappers served as the starting
point for selecting between the two different datasets and the four distinct models. The
Data Loader was broken into two pieces. One piece dealt with loading and processing the
Ishihara-Like MNIST set, and the other loaded and processed the MNIST dataset. While
the two parts operated in the same manner, they were separated due to the differences in
form between the two datasets. The Model Wrapper then uses the specified images and
labels and perform the training, testing, and evaluation.

MNIST was pulled directly from Keras through an API call in the form of an array.
While not necessary in testing, the ability to resize the MNIST dataset so that it matched
the size of the Ishihara set was implemented. Additionally, a function was implemented
using OpenCV to apply a color filter to the MNIST dataset to determine if adding color
had any effect on the training of the model. The possible color masks applied to the MNIST
dataset were as follows: viridis, magma, plasma, inferno, cividis, mako, rocket, and turbo.
An example of a modified MNIST image along with its original is displayed in Figure 13.

Figure 13. Original (left) and Colorized (right) version of an MNIST digit using the “inferno”
color mask.

The Ishihara-Like MNIST set was downloaded from Kaggle [49] and was provided as
a folder containing 9 sub-folders (or plates), each containing a Training and Testing set in
the form of Printer Command Language (.pcl) files. Each of these sub-folders contained
10 k training images and 2 k testing images. Due to the Ishihara set being stored in files,
these files had to be loaded, processed to tensors, and added to an array. To contain the
amount of memory required to run the program, the option to load a specific amount of
images or plates was implemented. Additionally, to test the images in grayscale, a color
modification was performed using OpenCV. It should be noted that the original color
scheme of these images was BGR, and not the standard RGB. Other than the conversion of
the images from color to grayscale, no other preprocessing techniques were applied.

Once the images were loaded and processed, the model was then built and training
began. Using a parent structure for model selection allowed each of the separate models
to share in using the built-in functions from Keras without the re-implementation of code.
When training the model, the amount of epochs to train on, the training accuracy threshold,
validation accuracy threshold, and the validation split could be set. By default, for each
of the datasets, a standard 80%/20% split was used for the separation of the training and
validation sets.

For each of the runs, the amount of epochs was defaulted to 50; however, the training
could stop if the training and validation accuracies were met. As a general notion, anywhere
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between 50 and 200 epochs are used for medium sized datasets, wherein medium is defined
as any set between 10 GB and 1 TB [50]. For our research purposes, this value was based
on the amount of epochs needed to stabilize training grayscale Ishihara in preliminary
training. For training/testing of MNIST, 99% was used for both training and validation
accuracy. Likewise, for color Ishihara and grayscale Ishihara, 99% was used for training
and testing. Figure 14 shows the dataflow and program operation.

Figure 14. Program Description.

2.3. Model Training and Selection

As previously stated, each of the following models were used due to their significance
in OCR. Specifically, each model was picked due to its significance in training on the
MNIST dataset. Given that the Ishihara-Like MNIST dataset was created from the original
MNIST dataset, a standard model architecture to train MNIST was used as the baseline for
this research. This model, as shown in [51], is a simple architecture that comprises of two
Conv2d layers and two Dense layers. In particular, the “ReLu” activation function was used
for its ability to speed up gradient computation and its ability to introduce non-linearity
to the dataset [52]. While this model does not have a formal name, we will refer to it
as the MNIST model for the remainder of this paper. For this model and the sequential
models listed, the “Adam” optimizer was used due to it being a leading adaptive stochastic
gradient descent optimizer. For loss, the “Sparse Categorical Cross Entropy” was used due
to how well it works for predicting models with multiple classes.

For the second model, LeNet5 was used. LeNet is a convolutional neural network that
was introduced by Yann LeCun and his colleagues at Bell Labs in 1998. It “is considered
the classic model that laid the foundation for deep learning” [43,53]. It was proposed to be
used for hand written images. Since the architecture is small, it is also easy and fast to run.
Given that this research runs the MNIST dataset and a derivative of MNIST, this model
was consistent with showing progress with a more efficient architecture. The difference in
this model and models used prior to its creation, outside of the number of parameters, was
the change from the “Sigmoid” to the “TanH” activation function. This change allowed for
higher gradient values when training neural networks [54].

While the first two models are relatively small in size, the third model dwarfs them
both and is much more heavily involved. VGG16 is a CNN that was introduced and
developed by K. Simonyan and A. Zisserman from the University of Oxford in 2014. It
gained notoriety because it achieved an accuracy of 92.7% on ImageNet, which was not
matched at the time. Additionally, this model started a change in newer architectures by
showing that a model could learn with a reduced size of the convolutional kernels to (3, 3)
as opposed to the (11, 11) used at the time [44,55]. Like the previous models, VGG16 is
used in image classification, image recognition, and object detection tasks. The potential
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downside to using this model is its size. VGG16 is composed of 13 convolutional layers,
5 max-pooling layers, and 3 fully connected layers. It should be noted that this is the model
that was used to train the Ishihara-Like MNIST. From their documentation, it appears
that [36] used the standard model without any modifications except for the addition of a
Batch Normalization after each Conv2d layer [36].

AlexNet was the fourth choice for a standard OCR model. AlexNet was introduced
by Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton at the university of Toronto in
2012. It was developed as a faster method for image recognition and classification tasks
than previous models. The purpose of this model was to rectify the previous issues of
Deep Learning by solving the gradient descent issue with Dropout, setting the activation
function from Tanh to ReLu, and allowing overlapping pooling of the layers [45,56].

On top of the four distinct models, we decided to branch off and modify the archi-
tecture of AlexNet to be more efficient in terms of its size. In initial research and training,
we found that AlexNet seemed to perform the best with the fewest amount of epochs and
time required to run on the Ishihara dataset. This allowed us to leverage the use of a much
smaller model than VGG16. In the fifth model, we reduced the size of AlexNet’s filters by
4, reduced the kernel size from (11, 11) to (5, 5), and reduced the dropout from 0.5 to 0.1. By
reducing the number of filters, the model size also decreases by this factor. With a smaller
kernel size, the model would hopefully be able to generalize features better. Finally, by
decreasing the dropout, less neurons are dropped out during training. In the remainder
of this paper, this model will be known as Custom 1. In the sixth model, we reduced the
filters by 8, but kept all of the other parameters the same. This model will be referred to
as Custom 2. The goal of these two models was to run faster than either VGG16 or the
original AlexNet, while minimizing the performance loss of using a smaller model. Table 1
shows a summary of each of the models chosen for this research. To allow for replication of
our process, the compiler and architectures of the two custom models in Python are shown
in Figures 15 and 16. For the other models (MNIST, LeNet5, and VGG16), the standard
architectures with the addition of a Batch Normalization layer after each Conv2D layer
were used.

Figure 15. Custom 1 model in Python.
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Figure 16. Custom 2 model in Python.

Table 1. A comparison of each of the models by number of parameters and model size.

Model Name
Number of Trainable

Parameters
Number of Layers Conv2d Layers Dense Layers

MNIST 2,416,330 8 3 2

Lenet 1,214,006 8 2 3

VGG16 50,415,434 22 13 3

AlexNet 23,357,514 19 5 3

Custom 1 1,469,466 19 5 3

Custom 2 371,154 19 5 3

2.4. Metrics of Success

To compare each of the models in their evaluation of the datasets, a quantitative basis
was made. For this basis, we used multiple metrics to determine which models performed
the best in each test case. For each of the models and test cases ran, the following metrics
were recorded for evaluation:

• Performance: the overall accuracy percentage the model achieved when predicting
new images. This is the value that matters the most. The goal is to have the model
evaluate with a high accuracy on images it has never seen before. This will be the
metric we compare to previous research.

• Precision: the percentage of correctly predicted positives out of all instances by the models.
• Recall (TPR): the percentage of actual positives that are correctly identified by the models.
• Training Time (in seconds): The amount of time it took for the model to train. Likewise

with the number of epochs, the goal is to run the model as quickly as possible.
• Evaluation Time (in seconds): the amount of time it took for the model to evaluate on

a new image or batch of images. In the real world, this is the value that matters the
most when incorporating the model in a OCR sensor.

It should be noted that [36] achieved a 99% performance accuracy using VGG16 on
the color Ishihara-Like MNIST. It was not stated what percentage of the dataset was used
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to train this model or how long it took to train. However, in our research, we will be
training with the color and grayscale versions of the dataset. When training and testing
these models, an NVIDIA A100 80GB PCIe GPU was used.

Before testing, our assumptions were that the MNIST dataset would perform well on
all of the models. Given that each of these models were trained on MNIST previously, we
would expect nothing less than 99% or 98% evaluation accuracy. With the Ishihara-Like
MNIST dataset, we expect that the accuracy could be significantly lower with the smaller
models (MNIST and LeNet) due to the complexity of the dataset but on par with MNIST
with the larger models (VGG16 and AlexNet). However, the grayscale version of the
Ishihara is expected to perform significantly worse than the colored version due to the
reduction of training information. For the cross testing of the datasets, it is presumed that
the models will perform on par with random guessing as the models are trained and tested
with two different datasets. However, our hope is that it will be slightly better than chance
due to the incorporation of MNIST in the Ishihara-Like MNIST dataset.

2.5. Test Cases

With each of the models above, we sought to try a few variations with testing. While
the end goal of this research was to find and perform better with the Ishihara-Like MNIST
dataset than previous research, we thought it would be enlightening to compare the
variations and analyze the output. By expanding the testing into two categories (color and
grayscale), and by cross-testing the two datasets, we hoped to understand what features
were being learned with these datasets. Additionally, if the datasets performed the same
with grayscale as they did with color, this would show that the expansion of information
from one channel to three had little or no effect on the ability of the neural networks to
learn and extract features from these datasets. The test cases performed on each of the
above models is shown in Figure 17.

Test Case Train on Test on Test Case Train on Test on
1 original MNIST original MNIST 5 gray MNIST gray Ishihara

2 color MNIST color MNIST 6 gray Ishihara gray MNIST

3 gray Ishihara gray Ishihara 7 color MNIST color Ishihara

4 color Ishihara color Ishihara 8 color Ishihara color MNIST

Figure 17. Test cases performed on the datasets.
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In the first two test cases, the goal is to see how MNIST trains on the architecture
which will provide initial assumptions on how well the Ishihara-Like MNIST will perform.
However, MNIST is a much simpler dataset to work with and has cohesive characters.
While the colored version of MNIST is not needed, we want to observe if there are any
changes in the training output of MNIST when expanded from one channel to three. The
next two test cases (Ishihara) are the crux of this research, wherein we will try to exceed
performance values of previous research. For test cases 5–8, we seek to determine if the
model has learned any feature extractions or feature spaces that will allow it to cross-test
on a completely different dataset. Even though the Ishihara-Like MNIST dataset was
created using the MNIST, the dataset is different enough that it is unlikely for the models
to perform extremely well.

3. Results

In the following section, the results from each of the tests are listed. In each table, the
performance accuracy, the precision of the model, the recall of the model, the time it took
for the model to train (in seconds), and the time it took for evaluation (in seconds) are listed
as (accuracy, epochs, training time, evaluation time). To note, the training time is the total
amount of time it took to train the model and the evaluation time is the amount of time
it took to correctly predict the amount of testing images. Therefore, to calculate the time
required to determine one image, divide the listed evaluation time by the total number of
testing images. Additionally, only the Ishihara tests have associated confusion matrices
since they are most pertinent to this research.

To set a baseline for the entire evaluation, the original MNIST dataset was trained and
tested against each of the models. As shown in Table 2, it performed reasonably well as
expected. We expected higher performance on the first two models (MNIST and LeNet5),
but this decline could have been due to the resizing of the original dataset from (28, 28,
1) to (112, 112, 1). The image resizing was performed so that the MNIST dataset was the
same size as the Ishihara-Like MNIST dataset. As shown in Table 3, injecting color in the
MNIST images seemed to have little effect on the performance of the models. To reiterate,
the performance was as expected, but slightly under the target value of 99% in half of
the models.

Table 2. For the above test, the original MNIST dataset was used to train and evaluate each model.

Test 1—Original MNIST (Accuracy, Precision, Recall Training Time, Evaluation Time)—60 k
Training Images, 10 k Testing Images

Model Results

MNIST (98.37%, 98.38%, 98.36%, 835 s, 6.33 s)

LeNet5 (98.21%, 98.21%, 98.20%, 820 s, 7.45 s)

VGG16 (99.14%, 99.13%, 99.15%, 493 s, 8.28 s)

AlexNet (99.22%, 99.23%, 99.22%, 221 s, 6.39 s)

Custom 1 (99.12%, 99.11%, 99.12%, 199 s, 6.69 s)

Custom 2 (99.21%, 99.21%, 99.20%, 333 s, 6.12 s)

In each of the models, the performance accuracy was within 1% or 2% of the others.
While these results are what was expected, the LeNet5 model performed the worst on both
versions of the dataset. We believe this is due to the “TanH” activation function being
used instead of the modern “Relu” function. The anomaly from these two tests is the
performance of Custom 1 and Custom 2 as compared to the MNIST and LeNet5 models.
Custom 1 and 2 were able to perform better than either of the other two models with
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less parameters. In the case of Custom 2, the architecture is roughly eight times smaller
than MNIST but was able to outperform it. We believe this is due to the addition of more
convolutional layers in conjunction with a larger kernel size.

Table 3. In this test, the colored version of the MNIST dataset was used to train and evaluate
each model.

Test 2—Color MNIST (Accuracy, Precision, Recall, Training Time, Evaluation Time)—60 k
Training Images, 10 k Testing Images

Model Results

MNIST (98.68%, 98.68%, 98.66%, 957 s, 6.12 s)

LeNet5 (97.90%, 97.91%, 97.87%, 938 s, 8.23 s)

VGG16 (99.10%, 99.10%, 99.09%, 566 s, 8.30 s)

AlexNet (99.24%, 99.26%, 99.23%, 276 s, 7.51 s)

Custom 1 (98.98%, 98.99%, 98.96%, 189 s, 10.00 s)

Custom 2 (99.16%, 99.17%, 99.16%, 247 s, 8.66 s)

Tables 4 and 5 show the results for training and evaluating on the Ishihara-Like MNIST
dataset with each of the models. Table 4 uses the grayscale version of the images and Table 5
uses the color version of the images. These tests were broken into several parts. First, each
plate was tested individually on each of the models wherein each plate contained 10 k
training images and 2 k testing images. It should be noted that we believe this is not an
adequate amount of images to use for the training phase of a model, however this was
the maximum amount of images per plate from [8]. For the last test, all of the plates were
combined into one array such that the array contained 90 k training images and 18 k testing
images. In the case where the models resulted in a 10% performance accuracy, this means
that the model performed on par with chance as there were ten classes in this dataset.

In the early phases of testing with this dataset, the first three models (MNIST, LeNet5,
and VGG16) performed very poorly with this dataset in both grayscale and in color. It
was only when testing with all 90k images together that better results were obtained. This
prompted further investigation given that VGG16 was used in the original training of
this dataset. After analyzing the difference between these three models and AlexNet, we
concluded that this was due to a lack of data normalization. Therefore, this was the reason
a Batch Normalization layer was inserted after each Con2d layer in each model. This theory
was further confirmed after reviewing [36], finding that they inserted this layer in their
training with VGG16. After the insertion of the layer, performance drastically increased.

As shown in Table 4, there is quite a variation in results between all of the models with
the grayscale version of the images. We believe the decrease in performance is due to the
small amount of training images and the reduction of information with one channel, as
opposed to three channels with color images. While VGG16 was the largest model with the
most parameters, it was not able to consistently perform better than the rest of the models
with the individual plates. AlexNet was able to consistently perform on average around
70–80% whereas VGG16’s performance dips quite heavily on plates four through eight.
When examining the reduction of size to AlexNet, it appears that this had a sizable effect
on the evaluation of the grayscale images as the performance accuracy was consistently
lower on average with Custom 1 and Custom 2. Even with this reduction in performance,
the results were still consistent and stable across all of the tests as was the case with the
original AlexNet model.

When all of the plates were combined, all of the models were able to perform signif-
icantly better. In the case of VGG16, this resulted in a substantially higher performance
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than every other model. We presume this is due to the increased size of the model that
allowed for the extraction of features that would not be picked up in the smaller models.
While we argue that a larger model is not the best pick for every dataset, it did perform
quite well with the lack of information in these images. Even with a reduced architecture,
AlexNet and the two custom architectures were able to achieve roughly 90% accuracy when
using all of the grayscale images. On the other end of the scale of performance, LeNet5
performed very poorly in almost every test in comparison to the other models, similarly as
it did with Tests 1 and 2. Given that the LeNet model is very similar to the MNIST model,
we attribute this failure to the “TanH” activation function. The results from the MNIST
model were in between that of LeNet5 and AlexNet, therefore resulting in no meaningful
conclusions. The one anomaly to this test was the results from VGG16 on the rand plate.
While the other models were able to adequately train on this plate on par with the other
plates, VGG16 was not able to be trained. It is unclear why this occurred. For this test,
it should be noted that these images are very hard for a human to read. Therefore, it is
promising that a ML model is able to correctly evaluate these images. Figure 18 shows the
performance accuracy for each plate for each of the models with the grayscale images. As
shown in this image, AlexNet has an overall higher evaluation than the other models while
also maintaining a relatively straight line resulting in more stable training. The “rand” or
random plate was removed from this graphic due to its low results.

Table 4. Training/Testing results of the grayscale Ishihara-Like MNIST images on each of the models
with each of the plates followed by a run with all of the plates combined.

Test 3: Grayscale Ishihara (Accuracy, Precision, Recall, Training Time, Evaluation Time)—10 k Training Images, 2 k Testing
Images Per Plate

Plate MNIST LeNet5 VGG16

2 (43.00%, 78.18%, 43.00%, 113 s, 0.74 s) (33.85%, 53.03%, 33.85%, 152 s, 0.84 s) (84.85%, 88.25%, 84.85%, 391 s, 1.44 s)

3 (65.35%, 78.47%, 65.35%, 149 s, 0.77 s) (42.00%, 64.12%, 42.00%, 153 s, 1.07 s) (93.65%, 94.15%, 93.65%, 388 s, 1.07 s)

4 (50.90%, 72.67%, 50.90%, 152 s, 0.92 s) (40.75%, 49.52%, 40.75%, 147 s, 0.90 s) (75.90%, 83.55%, 75.90%, 383 s, 0.85 s)

5 (41.50%, 73.07%, 41.50%, 148 s, 0.88 s) (25.95%, 57.72%, 25.95%, 151 s, 0.91 s) (78.35%, 85.23%, 78.35%, 383 s, 1.03 s)

6 (45.20%, 73.90%, 45.20%, 152 s, 0.90 s) (31.40%, 61.03%, 31.40%, 129 s, 0.87 s) (43.95%, 66.19%, 43.95%, 383 s, 1.11 s)

7 (42.50%, 62.24%, 42.50%, 151 s, 0.72 s) (32.45%, 61.74%, 32.45%, 151 s, 0.76 s) (75.50%, 82.82%, 75.50%, 362 s, 0.95 s)

8 (82.65%, 82.88%, 82.65%, 152 s, 0.80 s) (50.55%, 64.38%, 50.55%, 151 s, 0.59 s) (68.30%, 81.07%, 68.30%, 359 s, 0.90 s)

9 (82.40%, 82.92%, 82.40%, 151 s, 0.79 s) (41.20%, 62.24%, 41.20%, 149 s, 0.73 s) (91.60%, 91.93%, 91.60%, 384 s, 0.89 s)

rand (80.30%, 80.54%, 80.30%, 152 s, 0.72 s) (60.45%, 60.83%, 60.45%, 150 s, 0.71 s) (10.00%, 1.00%, 10.00%, 382 s, 0.95 s)

all 91.16%, 91.35%, 91.16%, 1238 s, 6.08 s) (78.43%, 78.55%, 78.43%, 1214 s, 5.84 s) (98.53%, 98.53%, 98.53%, 732 s, 7.49 s)

Plate AlexNet Custom 1 Custom 2

2 (57.70%, 77.69%, 57.70%, 177 s, 0.91 s) (81.00%, 85.56%, 81.00%, 166 s, 0.87 s) (55.35%, 76.27%, 55.35%, 173 s, 0.91 s)

3 (85.75%, 87.47%, 85.75%, 177 s, 0.80 s) (76.85%, 81.76%, 76.85%, 167 s, 0.93 s) (69.60%, 75.39%, 69.60%, 165 s, 0.82 s)

4 (87.05%, 89.04%, 87.05%, 174 s, 0.94 s) (69.70%, 80.16%, 69.70%, 172 s, 0.85 s) (61.10%, 76.24%, 61.10%, 167 s, 0.91 s)

5 (82.45%, 88.81%, 82.45%, 179 s, 0.89 s) (72.50%, 81.78%, 72.50%, 172 s, 0.89 s) (69.20%, 76.53%, 69.20%, 170 s, 0.88 s)

6 (83.55%, 87.31%, 83.55%, 177 s, 0.86 s) (67.10%, 79.72%, 67.10%, 175 s, 0.90 s) (74.60%, 77.64%, 74.60%, 172 s, 0.95 s)

7 (78.75%, 83.65%, 78.75%, 175 s, 0.70 s) (68.50%, 81.56%, 68.50%, 173 s, 0.74 s) (67.80%, 74.95%, 67.80%, 172 s, 0.75 s)

8 (85.00%, 86.97%, 85.00%, 174 s, 0.75 s) (68.85%, 77.39%, 68.85%, 172 s, 0.77 s) (66.65%, 74.87%, 66.65%, 170 s, 0.75 s)

9 (67.85%, 81.03%, 67.85%, 177 s, 0.70 s) (76.65%, 81.07%, 76.65%, 173 s, 0.69 s) (75.35%, 76.99%, 75.35%, 169 s, 0.68 s)

rand (78.25%, 81.50%, 78.25%, 175 s, 0.73 s) (72.50%, 75.84%, 72.50%, 169 s, 0.73 s) (68.30%, 74.57%, 68.30%, 169 s, 0.79 s)

all (89.84%, 90.9%, 89.84%, 1413 s, 5.81 s) (90.29%, 90.83%, 90.29%, 1391 s, 6.10 s) (88.06%, 88.67%, 88.06%, 1395 s, 5.94 s)
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Table 5. Training/Testing results of the color Ishihara-Like MNIST images on each of the models
with each of the plates followed by a run with all of the plates combined.

Test 4: Color Ishihara (Accuracy, Precision, Recall, Training Time, Evaluation Time)—10 k Training Images, 2 k Testing Images
Per Plate

Plate MNIST LeNet5 VGG16

2 (94.25%, 94.28%, 94.25%, 162 s, 1.44 s) (92.45%, 92.44%, 92.45%, 172 s, 1.42 s) (98.25%, 98.27%, 98.25%, 413 s, 1.60 s)

3 (94.30%, 94.31%, 94.30%, 172 s, 1.45 s) (93.35%, 93.38%, 93.35%, 166 s, 1.44 s) (97.75%, 97.83%, 97.75%, 406 s, 1.35 s)

4 (95.90%, 95.91%, 95.90%, 171 s, 1.42 s) (93.45%, 93.44%, 93.45%, 166 s, 1.38 s) (97.50%, 97.58%, 97.50%, 401 s, 1.60 s)

5 (94.60%, 94.63%, 94.60%, 174 s, 1.43 s) (92.25%, 92.32%, 92.25%, 171 s, 1.44 s) (97.95%, 97.99%, 97.95%, 403 s, 1.77 s)

6 (95.40%, 95.42%, 95.40%, 171 s, 1.41 s) (92.80%, 92.86%, 92.80%, 171 s, 1.47 s) (97.45%, 97.50%, 97.45%, 392 s, 2.79 s)

7 (96.45%, 96.45%, 96.45%, 171 s, 1.55 s) (93.00%, 93.01%, 93.00%, 169 s, 0.98 s) (99.00%, 99.00%, 99.00%, 402 s, 0.92 s)

8 (94.75%, 94.76%, 94.75%, 171 s, 1.00 s) (92.15%, 92.19%, 92.15%, 171 s, 1.03 s) (99.10%, 99.11%, 99.10%, 398 s, 1.17 s)

9 (95.15%, 95.16%, 95.15%, 170 s, 0.94 s) (92.80%, 92.83%, 92.80%, 168 s, 0.89 s) (98.55%, 98.56%, 98.55%, 401 s, 1.06 s)

rand (78.95%, 79.08%, 78.95%, 171 s, 1.19 s) (44.20%, 43.83%, 44.20%, 168 s, 1.21 s) (10.00%, 1.00%, 10.00%, 404 s, 0.92 s)

all (92.30%, 92.40%, 92.30%, 1328 s, 10.74 s) (82.26%, 83.68%, 82.26%, 1319 s, 8.85 s) (98.31%, 98.32%, 98.31%, 572 s, 11.73 s)

Plate AlexNet Custom 1 Custom 2

2 (94.10%, 95.10%, 94.10%, 194 s, 1.41 s) (95.75%, 95.95%, 95.75%, 191 s, 1.44 s) (95.95%, 96.01%, 95.95%, 190 s, 1.36 s)

3 (96.30%, 96.43%, 96.30%, 196 s, 1.50 s) (96.55%, 96.62%, 96.55%, 182 s, 1.51 s) (94.55%, 94.84%, 94.55%, 190 s, 1.43 s)

4 (89.95%, 91.19%, 89.95%, 190 s, 1.42 s) (96.85%, 96.92%, 96.85%, 190 s, 1.46 s) (96.40%, 96.45%, 96.40%, 188 s, 1.41 s)

5 (95.25%, 95.43%, 95.25%, 195 s, 1.44 s) (97.25%, 97.27%, 97.25%, 186 s, 1.46 s) (96.20%, 96.26%, 96.20%, 190 s, 1.45 s)

6 (96.85%, 96.89%, 96.85%, 196 s, 1.45 s) (96.65%, 96.84%, 96.65%, 190 s, 1.48 s) (97.10%, 97.13%, 97.10%, 182 s, 1.47 s)

7 (94.40%, 95.04%, 94.40%, 193 s, 0.86 s) (97.40%, 97.43%, 97.40%, 191 s, 0.94 s) (96.55%, 96.69%, 96.55%, 188 s, 0.89 s)

8 (93.70%, 94.49%, 93.70%, 195 s, 0.97 s) (95.75%, 96.05%, 95.75%, 192 s, 1.07 s) (96.20%, 96.33%, 96.20%, 192 s, 0.91 s)

9 (95.70%, 95.92%, 95.70%, 199 s, 0.85 s) (92.50%, 93.81%, 92.50%, 191 s, 0.94 s) (96.95%, 97.00%, 96.95%, 192 s, 1.46 s)

rand (83.70%, 85.24%, 83.70%, 196 s, 1.02 s) (76.50%, 78.74%, 76.50%, 194 s, 0.91 s) (76.20%, 77.45%, 76.20%, 194 s, 0.94 s)

all (96.77%, 96.78%, 96.77%, 1512 s, 9.07 s) (94.38%, 94.54%, 94.38%, 1484 s, 10.36 s) (90.81%, 90.92%, 90.81%, 1472 s, 9.48 s)

Figure 18. The performance accuracy for each of the models with the grayscale Ishihara plates. The
rand plate was not used in this graphic.

The confusion matrices from the training of the grayscale images are shown in Figure 19.
In each picture, the classes are listed from left to right and top to bottom. When reading
these pictures, the rows represent the ground truth labels while the column represent the
predicted labels. For example, in the first confusion matrix with the MNIST model, the
model predicted the image as the value “0” incorrectly four times when the correct label
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was actually “9” (this value is in the lower left-hand corner of the plot). In an ideal case,
the matrices would show a solid diagonal line (representing 100% performance accuracy).

Confusion Matrices for training/testing Grayscale Ishihara

MNIST model LeNet5 model

VGG16 model AlexNet model

Custom 1 model Custom 2 model

Figure 19. Confusion matrices for the Grayscale Ishihara-Like MNIST dataset showing the correct
evaluation of the 10 distinct classes. Each class contained 1800 testing images in these matrices.
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Examining the matrices from the grayscale testing shows results that are consistent
with errors in the evaluation of MNIST or standard OCR characters when the model’s
performance is sub-par. As shown, a few of the classes were misidentified as another class
due to their similarity. LeNet5 is able to show the results the most. In this case, it incorrectly
predicted a “9” as a “4” 5.61% , a “5” as an “8” 6.11%, and a “7” as a “9” 9.94% of the time.
Also it should be noted that it predicted the value “1” as an “8” 13.39% of the time. This is
an abnormal mis-classification.The next highest incorrect value is a “3” being predicted
an an “8” which is consistent with incorrect predictions in the numerical system with
handwritten numbers. Given that the Ishihara-Like MNIST dataset was created using the
original MNIST and MNIST was created using handwriting from many different people, it
is not uncommon for there to be many variations of each class potentially causing errors
in training.

As shown in Table 5, the models performed significantly better on the color versions
of the dataset. Given the expansion of data from one channel into three channels with
color, we anticipated that the training would fare significantly better. Even with the
individual plates, the models were able to extract enough features to distinguish the ten
distinct classes with only 10 k training images. In the case of using all of the images
together, each of the models performed in the upper decile except for LeNet5. Again, we
attribute the poor performance of LeNet5 to its activation function. When analyzing the
training and evaluation times, AlexNet was able to perform within 5% of VGG16 in almost
all cases but was able to train in half the required time and evaluate slightly faster. A
significant difference in this test is the combination of all of the plates into one set only
performed slightly better the the plates individually. Figure 20 shows the performance
accuracy for each plate on each of the models and Figure 21 shows the confusion matrices
for this test. When examining the matrices of the color version of the Ishihara images,
the results were on par with what was shown in the table above. In each model except
for LeNet5, the matrices resulted in at least a 93% accuracy for each of the ten classes
as expected.

Figure 20. The performance accuracy for each of the models with each of the colored Ishihara plates.
The rand plate was not used in this graphic.
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Confusion Matrices for training/testing Color Ishihara

MNIST model LeNet5 model

VGG16 model AlexNet model

Custom 1 model Custom 2 model

Figure 21. Confusion matrices for the Color Ishihara-Like MNIST dataset showing the correct
evaluation of the 10 distinct classes. Each class contained 1800 testing images in these matrices.
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In both grayscale and in color, the “rand” or random plate had an abnormal effect on
the ability of the models to train. This plate had a drastically lower performance on each of
the models than the rest of the plates. On each of the other plates with all of the models, the
results were in the upper decile with color but this plate caused as low as 10% evaluation
in the case of VGG16. While the difference in evaluation with the grayscale images is not
noticeable outside of VGG16, it becomes quite noticeable with the color images. To deduce the
reasoning behind this, we took a close look at the images. Figure 22 shows two examples
of images from this plate. After reviewing the images, it became abundantly clear why the
models had poor performance. The image on the left is a 7 and the image on the right is an
8. However, without the labels, we would not have been able to decipher the contents of
these two circles. Realizing this, it warranted a test case wherein each of the models are
trained on all of the color plates except the Random plate. Table 6 shows the results of this
training. As shown, without the inclusion of the Random colors plate in the combination
of all the other plates, the models were able to produce higher performance accuracy. In
this run, we were able to match the results with VGG16 with prior research. Therefore,
we conclude that the inclusion of this plate had a overall negative effect on the training of
these models. The confusion matrices for this test have been provided in Figure 23.

Figure 22. Sample images from the “random” Ishihara plate. The image on the left is 7 and the image
on the right is 8.

Table 6. This test trained each of the models with all of the plates combined except for the Random plate.

Ishihara Color—Test Case Without the Random Plate (Accuracy, Precision, Recall, Training
Time, Evaluation Time)

Model Results

MNIST (97.19%, 97.20%, 97.19%, 1395 s, 9.87 s)

LeNet5 (96.11%, 96.11%, 96.11%, 1382 s, 10.48 s)

VGG16 (98.88%, 98.89%, 98.88%, 640 s, 11.54 s)

AlexNet (98.55%, 98.56%, 98.55%, 493 s, 10.00 s)

Custom 1 (98.45%, 98.46%, 98.45%, 852 s, 11.49 s)

Custom 2 (98.09%, 98.11%, 98.09%, 1537 s, 9.28 s)

To further examine the reasoning behind decline in performance evaluation with this
plate, the confusion matrices from both the grayscale and color trainings of this plate have
been provided in Figures 24 and 25. In these matrices, only 200 images from each of the
10 distinct classes were evaluated upon. This was due to the limited number of images in the
rand plate. As shown with the Random plate, each of the models struggled to identify the
correct class for each of the ten classes in all of the matrices. This was likely the cause of the
low performance in the test with all plates combined for both grayscale and color. It should be
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noted that it is unclear why VGG16 was unable to train at all on this plate. When looking at
the training process, the training accuracy and validation accuracy did not rise above 10%.

Confusion Matrices for training/testing Color Ishihara without the Random plate

MNIST model LeNet5 model

VGG16 model AlexNet model

Custom 1 model Custom 2 model

Figure 23. Confusion matrices for the Color Ishihara-Like MNIST dataset without the Random plate
showing the correct evaluation of the 10 distinct classes. Each class contained 1800 testing images in
these matrices.
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Confusion Matrices for training/testing Grayscale Ishihara Random Plate

MNIST model LeNet5 model

VGG16 model AlexNet model

Custom 1 model Custom 2 model

Figure 24. Confusion matrices for the Grayscale Ishihara-Like MNIST Random plate showing the
correct evaluation of the 10 distinct classes. Each class contained 200 testing images in these matrices.
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Confusion Matrices for training/testing Color Ishihara Random Plate

MNIST model LeNet5 model

VGG16 model AlexNet model

Custom 1 model Custom 2 model

Figure 25. Confusion matrices for the Color Ishihara-Like MNIST Random plate showing the correct
evaluation of the 10 distinct classes. Each class contained 200 testing images in these matrices.

In Tables 7–10, the results from cross training the two sets is shown. In these test cases,
each of the models are trained on the first dataset and then evaluated on the second dataset.
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Our initial hopes were that the training of MNIST and evaluation on Ishihara-Like MNIST
would have performed slightly better but the results are not surprising given the difference
in the datasets. As shown, all of the models performed within the realm of chance for their
output. In some cases, the models performed worse than chance. To note, the MNIST and
LeNet5 models were able to perform better than chance when trained on the grayscale
version of the Ishihara dataset and evaluated with MNIST. It is unclear why these models
were able to perform 20–25% better than their counterparts. However with only a 20%
increase in a set of ten classes, we believe this does not warrant further research. In the case
where the models were trained on MNIST and evaluated on the Ishihara-Like MNIST, we
believe the performance would have been significantly better if the images underwent some
form of preprocessing. Such is the case with Solonko’s work wherein the images underwent
heavy modifications before they were evaluated by the neural network resulting in high
performance. However, there seems to be no correlation between these two models when
training with a neural network even though the latter was created using the first.

Table 7. Training each of the models with the original version of the MNIST dataset and then testing
on the grayscale version of the Ishihara-Like MNIST dataset.

Test 5—Original MNIST with Gray Ishihara (Accuracy, Precision, Recall, Training Time, Evaluation
Time)–60 k Training Images, 10 k Testing Images

Model Results

MNIST (10.00%, 1.00%, 10.00%, 805 s, 4.77 s)

LeNet (10.01%, 2.67%, 10.01%, 821 s, 5.55 s)

VGG16 (12.48%, 12.51%, 12.48%, 536 s, 7.83 s)

AlexNet (10.02%, 4.06%, 10.02%, 182 s, 5.35 s)

Custom 1 (9.95%, 4.56%, 9.95%, 158 s, 5.95 s)

Custom 2 (10.23%, 4.13%, 10.23%, 267 s, 6.26 s)

Table 8. Training each of the models with a colored version of the MNIST dataset and then testing
on the original version of the Ishihara-Like MNIST dataset.

Test 7—Color MNIST with Color Ishihara (Accuracy, Precision, Recall, Training Time, Evaluation
Time)–60 k Training Images, 10 k Testing Images

Model Results

MNIST (9.93%, 5.64%, 9.93%, 950 s, 8.65 s)

LeNet (10.49%, 2.22%, 10.49%, 934 s, 9.62 s)

VGG16 (10.00%, 19.12%, 10.00%, 523 s, 9.49 s)

AlexNet (10.06%, 5.05%, 10.06%, 209 s, 8.27 s)

Custom 1 (10.02%, 2.62%, 10.02%, 249 s, 10.36 s)

Custom 2 (10.06%, 7.17%, 10.06%, 246 s, 10.57 s)

Table 9. Training each of the models with the grayscale version of the Ishihara-Like MNIST dataset
and then testing on the original version of the MNIST dataset.

Test 6—Grayscale Ishihara with Original MNIST (Accuracy, Precision, Recall, Training Time, Evaluation
Time)–60 k Training Images, 10 k Testing Images

Model Results

MNIST (32.13%, 31.14%, 32.94%, 785 s, 5.84 s)

LeNet (35.81%, 51.21%, 35.46%, 819 s, 5.70 s)

VGG16 (9.84%, 11.98%, 10.02%, 1104 s, 6.56 s)

AlexNet (10.28%, 1.03%, 10.00%, 944 s, 5.34 s)

Custom 1 (9.68%, 1.59%, 9.94%, 959 s, 6.08 s)

Custom 2 (10.32%, 1.03%, 10.00%, 912 s, 6.63 s)
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Table 10. Training each of the models with the original version of the Ishihara-Like MNIST dataset
and then testing on the colored version of the MNIST dataset.

Test 8—Color Ishihara with Color MNIST (Accuracy, Precision, Recall, Training Time, Evaluation
Time)—60 k Training Images, 10 k Testing Images

Model Results

MNI sT (11.20%, 7.21%, 10.95%, 938 s, 7.04 s)

LeNet (25.55%, 55.60%, 24.57%, 901 s, 7.15 s)

VGG16 (11.48%, 13.30%, 10.13%, 1126 s, 7.80 s)

AlexNet (9.74%, 0.97%, 10.00%, 1058 s, 8.19 s)

Custom 1 (9.05%, 1.48%, 9.22%, 1029 s, 7.77 s)

Custom 2 (12.29%, 6.49%, 12.05%, 1026 s, 8.60 s)

4. Future Works

While only a small portion of the population are affected by color blindness, this re-
search could be used to understand how ML models interpret images with color distortion.
Additionally, the random plate and grayscale version of these images show that a ML
model can learn to extract features from images that are not human readable. We believe
there is still much work that could be completed with this dataset.

4.1. Improvements

Keras and Tensorflow are very good tools for ML, however if this project were to
be expanded, PyTorch would be used. This is due to its ability to create more complex
models. This would allow for a more systematic approach for adding more models to
test on. Additionally, in terms of performance and stability, using Pytorch would allow
more diagnostic tools to be implemented into the program to help determine why a
particular model was suffering in terms of accuracy and what improvements could be
made. Following this idea, more models like ResNet and Inception could be added to the
list of models above to analyze their performance in association with the other models.

As stated earlier, the Ishihara-Like MNIST dataset only reasonably recreated the
red-green plates from the color blindness test. This only included using 8 of the 39 plates
available. In future applications, we would like to follow the process of creating these circles
for the other forms of red-green color blindness and create plates for blue-yellow color
blindness. Given that each folder of this dataset only contained 10 k training images and 2 k
testing images, more images would allow for an easier training process. Additionally, this
generation of new images would include plates that are only able to be seen by individuals
with these deficiencies. Finally, this type of research could be used to determine how easily
readable a picture is for someone who is color blind or used to build a program that could
create an Ishihara circle from any image (not just MNIST).

4.2. Extensions

While our paper focused on the training of models with color distortion, future
applications of this research could use federated and split learning based-methods as seen
in [57]. This would allow for the analysis of images that have possible corruption wherein
the privacy or security of the dataset is a concern.

5. Conclusions

In this paper, we presented our research and findings with correctly identifying nu-
merical characters in images with color distortion. While much work has been performed
on this topic previously, we sought to use, expand, and improve upon the overall perfor-
mance of correctly identifying the Ishihara-Like MNIST dataset. While prior work has
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only analyzed performance on the color (original) versions of the images, we sought to
train models on the grayscale version as well. In our research, we did not perform any
preprocessing to the images other than conversion of color to grayscale. To do this analysis,
we performed our tests with a standard model architecture used to train MNIST, LeNet5,
VGG16, AlexNet, and two small custom modifications of AlexNet. In each model, we
trained the neural network models with each plate of images individually followed by a
combination of all of the images in one set.

In our findings, we concluded that all of the aforementioned models had lower than
expected performance accuracy when trained on the grayscale version of the Ishihara-Like
MNIST images (averaging around 60%). However, VGG16 was still able to perform the
overall better overall than the rest of the presented models. We believe this low performance
with the grayscale images is due to the lack of information found in a monotone image as
compared to the 3 channels in a color image. Therefore, a larger model is able to extract
more features from the images. Even though VGG16’s performance was good overall, the
results were not consistent with every plate whereas AlexNet provided stable results. To
examine this in the future, multiple runs of each model on each of the individual grayscale
plates would be required.

With the color version of the images, each of the models except LeNet5 performed
very well, achieving results on average above 90%. This occurred with the individual
plates and the test case where all of the plates were combined. During the evaluation of the
colored Ishihara images, we discovered that the rand plate (which is a randomly colored
Ishihara circle) had significantly lower performance than the other colored plates. After
analyzing the images, it was found that these images are very similar in their appearance to
the grayscale versions, thus resulting in a lower performance. In the case of the grayscale
images, the images are hard for humans to distinguish. With the rand plate, we found them
to be illegible.

We concluded that this dataset could be trained faster and perform nearly as well
using an architecture that is at least 100 times smaller than previously researched. While
not explicitly stated how VGG16 was trained, what percentage of the dataset was used, and
what steps were taken to pre-process the data in former research, we believe that our results
conclude with an overall increase in performance due to the reduction in size of the model
and an increase in evaluation time. Using a smaller model on a dataset of this size may
result in a small performance loss, but would allow the user to run the model significantly
faster. As shown in the performance graphs above, the reduction of size in AlexNet caused
a slight drop in performance in each test case but caused the models to become more stable
with their results. The curve of performance accuracy was more smooth with Custom 1
and Custom 2 than with the original AlexNet. With more hyper-tuning of the parameters
of the model, we believe that the performance of models like AlexNet and smaller could be
increased to match that of VGG16 while also maintaining the benefits of using a smaller
model. Additionally, we believe that by understanding how the distortion of color affects
images such as these, ML models could be improved to extract features more easily from
everyday images.
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Abstract: Image deraining holds great potential for enhancing the vision of autonomous
vehicles in rainy conditions, contributing to safer driving. Previous works have primarily
focused on employing a single network architecture to generate derained images. However,
they often fail to fully exploit the rich prior knowledge embedded in the scenes. Particularly,
most methods overlook the depth information that can provide valuable context about scene
geometry and guide more robust deraining. In this work, we introduce a novel learning
framework that integrates multiple networks: an AutoEncoder for deraining, an auxiliary
network to incorporate depth information, and two supervision networks to enforce
feature consistency between rainy and clear scenes. This multi-network design enables our
model to effectively capture the underlying scene structure, producing clearer and more
accurately derained images, leading to improved object detection for autonomous vehicles.
Extensive experiments on three widely used datasets demonstrated the effectiveness of our
proposed method.

Keywords: image deraining; AutoEncoder; prior knowledge; supervision networks; feature
consistency; depth information; autonomous driving

1. Introduction

Image deraining is a critical preprocessing step in computer vision applications due
to its significant impact on visual clarity and accuracy. Rain on images can obscure the
visibility of objects, leading to substantial degradation in image quality. This can adversely
affect the performance of object detection [1], recognition [2], and tracking algorithms [3],
which are essential in various domains such as surveillance and navigation. In autonomous
driving [4], clear vision is paramount for safety and robust decision making; rain-induced
artifacts can compromise the accuracy of perception systems, potentially leading to haz-
ardous situations. Therefore, effective image deraining techniques are vital to enhance the
reliability and functionality of vision-based systems.

In general, a rainy image can be represented as a superimposition of two layers: a
clean image layer and a rain layer. The rain layer encompasses various artifacts such
as rain streaks, raindrops, and fog, which make rain removal a challenging task. These
rain-induced artifacts obscure objects and scenes, not only blurring visual data but also
partially concealing critical features necessary for accurate image interpretation. Moreover,
spatial factors further complicate the process. For objects are closer to the camera, rain is
the primary occluding element, making its removal relatively easier. In contrast, distant
objects are more challenging to recover due to additional occlusions from fog and other
atmospheric conditions. This intricacy underscores the challenges of deraining in computer
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vision. Garg and Nayar [5] illustrated this phenomenon by demonstrating how the intensity
of rain effects transitions into fog as the distance to the scene increases. Recent deep
learning approaches for single-image rain removal have predominantly concentrated on
the removal of rain streaks, often neglecting the broader physical characteristics of rain itself.
The existing training datasets for rain removal typically include images featuring artificial
rain streaks, raindrops, or a combination of both, with some datasets even containing
indoor scenes. This limitation significantly hampers the effectiveness of these methods
when applied to real-world outdoor scenarios, where the intricate interplay between rain
patterns and environmental factors differs substantially from the synthetic conditions
represented in these datasets.

In this study, we proposes a novel method for the automatic removal of rain streaks,
raindrops, and fog in real-world photographs, with an emphasis on achieving real-time per-
formance. The primary objective is to improve image quality for environmental monitoring
and vision-based autonomous driving, thereby enhancing the accuracy and reliability of
these applications under challenging weather conditions. To achieve this, we introduce an
AutoEncoder model equipped with a consistent feature extraction module that processes
both rainy and clear images while incorporating depth information. This approach allows
the model to capture the underlying shared features between rain and clear images, thereby
preserving the essential scene information obscured by rain and fog. Furthermore, the inte-
gration of depth information enables the extraction of global image features, ensuring the
retention of key structural details across entire images.

In summary, this work provides the following contributions:

• Firstly, we constructed a Derain AutoEncoder (DerainAE) model to effectively handle
various rain-related artifacts and atmospheric disturbances.

• Secondly, we designed a consistent feature extraction module with a supervision
network during training to effectively capture shared features between rain and
clear images.

• Thirdly, we developed a depth network (DepthNet) to extract depth information,
which aids in capturing global structure of scenes. By leveraging these shared and
global features, our deraining model is capable of generating more accurate and
visually coherent results.

• Lastly, we conducted extensive experiments to evaluate our approach on various
outdoor datasets. The results showed that our method effectively removes rain
artifacts while preserving critical image details. The efficacy of our model was further
validated through its performance on an object detection task.

2. Related Work

Image deraining methods can be broadly categorized into model-based methods [6–8]
and deep learning methods [9–12]. Model-based methods often approach deraining as a
filtering problem, using various filters to restore a rain-free image. While this can effectively
remove rain effects, it also tends to eliminate important structures within the image. Many
model-based approaches develop various image priors based on the statistical properties
of rain and clear images. These methods include image decomposition [3], low-rank
representation [6,13], discriminative sparse coding [14], and Gaussian mixture models [15].
Although these techniques have achieved improved results, they still struggle to effectively
handle complex and varying rainy conditions.

In contrast, deep learning-based methods have significantly advanced image derain-
ing by learning data-driven representations of rain and clear images. These approaches
utilize powerful architectures and novel mechanisms to achieve superior performance.
Early works such as [16] demonstrated substantial improvements in rain removal across
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benchmark datasets using convolutional neural networks (CNNs). Generative adversarial
networks (GANs) [17] have also been employed to restore perceptually superior rain-free
images, as demonstrated by [18]. The introduction of transformers, such as [19], enabled
effective modeling of non-local dependencies, further enhancing image reconstruction
quality. Inspired by the success of recent diffusion models [20] in generating high-quality
images, diffusion-based approaches [21] have shown great potential in improving image
deraining performance across complex scenarios. Recent advancements include the integra-
tion of additional data modalities and novel priors into the learning process. For instance,
Hu et al. [22] introduced depth information via an attention mechanism, achieving promis-
ing results on synthetic rainy datasets. Zhang et al. [9] exploited both stereo images and
semantic information for improved image deraining performance. Guo et al. [23] proposed
the use of Fourier priors to improve model generalization in rain removal tasks.

In summary, model-based methods have historically provided a solid foundation for
image deraining, emphasizing handcrafted priors and optimization frameworks. However,
their limitations in handling complex rainy conditions and preserving image details have
led to a growing focus on deep learning approaches. Deep learning methods, driven by
CNNs, GANs, transformers, and diffusion models, continue to achieve state-of-the-art results
by leveraging large datasets, powerful architectures, and innovative priors. With the rapid
evolution of data-driven techniques, deep learning is poised to dominate future advancements
in image deraining, offering scalable solutions for complex and diverse real-world scenarios.

3. Methods

In this section, we introduce our multi-network approach for effective image derain-
ing, as depicted in Figure 1. The core of this framework is the Deraining AutoEncoder
(DerainAE), which serves as the primary network for the deraining task. To enhance its
performance, we introduce a supplementary Depth Network (DepthNet) that integrates
depth information to assist in rain removal. Additionally, we utilize pretrained networks
to provide supervisory signals, ensuring multiscale feature consistencies between clear and
rainy images. The detailed architecture and loss functions are discussed subsequently.

Figure 1. The overall architecture of our model. A pretrained VAE extracts clear features, while the
DerainAE and DepthNet modules handle rainy images. Latent space comparison between clear and
rainy features improves depth estimation and deraining images prediction.
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3.1. Network Architecture

For image deraining, the commonality between clear and rainy images lies in their
depiction of the same scene, meaning the depth map should remain consistent between
them. Apart from the rain artifacts, the feature map of the clear and rainy images should
also be identical. Therefore, our approach employs two forms of supervision: one from
the depth map and one from the feature map. This dual supervision ensures that the
model not only learns to remove the rain but also retains the intrinsic features of the scene,
leveraging the consistency between the depth and feature information to enhance the
deraining process.

Our DerainAE model (see Figure 2, left) adopts an AutoEncoder architecture to tackle
the image deraining task by learning both the latent representation and the restored de-
rained image. The AutoEncoder is designed to effectively capture the underlying structure
and intrinsic features of rain-affected images through an encoding–decoding process.
The encoder compresses the input image into a lower-dimensional latent space, extracting
critical high-level information necessary for rain removal while filtering out irrelevant
noise. The decoder then reconstructs the derained image from this latent representation,
ensuring the preservation of essential details and textures. This dual functionality enables
the model to efficiently map rain-degraded images to their rain-free counterparts.

To enhance the learning capacity of the DerainAE model and enable it to capture more
comprehensive scene information, we integrate a DepthNet (see Figure 2, right) that also
adopts an encoder–decoder architecture. Features from the DepthNet encoder are concate-
nated with the corresponding feature levels of the DerainAE encoder, establishing a shared
learning mechanism that effectively leverages depth information for improved deraining
performance. In our implementation, the DepthNet encoder employs the VGG16 architec-
ture, allowing the model to leverage depth information to better understand the spatial
structure and geometry of the scene, which is crucial for accurate rain removal. The decoder
employs transposed convolutions to progressively upsample the feature maps, restoring
them to the original input resolution. To preserve high-resolution details, skip connections
are implemented between the encoder’s convolutional blocks and their corresponding
layers in the decoder, following the design principles of the U-Net architecture. Addition-
ally, the decoder incorporates multiple convolutional layers to effectively fuse information
across different spatial resolutions. The network predicts disparity maps at multiple scales
and resolutions using convolutional layers with sigmoid activation functions.

During training, we use the DerainAE for image deraining while simultaneously lever-
aging the DepthNet to predict the depth maps of both clear and rainy images. The feature
maps from the DepthNet encoder are concatenated with the corresponding feature maps
in the DerainAE encoder, enabling depth-aware deraining. Additionally, a pretrained
Variational AutoEncoder (VAE) is used to obtain a latent vector of the clear image, which
serves as a supervisory signal during during training to ensure high-level feature consis-
tency. Feature consistency is further enforced at multiple levels via a pretrained VGG16.
Depth consistency is also maintained in the latent space of the DepthNet. During infer-
ence, our method requires only the rainy image as input, which is processed by DerainAE
and the DepthNet encoder to produce the derained output, where the DepthNet encoder
extracts depth information, which is then passed to the DrainAE encoder to aid in the
deraining process.
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Figure 2. An overview of our DepthNet and DerainAE architecture. Left: DepthNet, this model
employs a U-Net structure, with skip connections from each encoder layer to the corresponding
decoder layers. The network outputs two disparity maps with Disp0 used as the final predicted
depth map. Right: DerainAE; this model is a simple convolutional network with skip connections at
corresponding feature levels between the encoder and decoder.

3.2. Loss Function

To jointly train DerainAE and DepthNet, we introduce a composite loss function
that considers multiple complementary loss components. Building on the perceptual loss
Lperceptual proposed by Johnson et al. [24], we measure the discrepancy between clear
images and corresponding rain images in a manner more consistent with human visual
perception. Specifically, we utilize a pretrained VGG16 network to capture discrepancies at
various feature levels, which is computed by Equation (1).

Lperceptual = ∑
l

λl · |φl(y)− φl(ŷ)|22 (1)

where φl denotes the activation map of the l-th layer in VGG16.
We employ cosine similarity losses (Equations (2) and (3)) to measure the consistency

of latent representations of clear images and corresponding rain images for both DerainAE
and DepthNet.

Ldepth_consist = cos(DR, DC) (2)

Lderain_consist = cos(RL, CL) (3)

where cos(·, ·) denotes the cosine similarity function.
Additionally, we use mean squared error (MSE) losses for reconstruction of the depth

map D̂ and the derained image Ĉ:

Lderain = MSE(Ĉ, C) (4)

Ldepth = MSE(D̂, D) (5)
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The loss function used to train our model is a weighted sum of these individual loss
terms by Equation (6):

L = λ1Lperceptual + λ2Ldepth_consist + λ3Lderain_consist + λ4Lderain + λ5Ldepth (6)

where λ1, . . . , λ5 are hyperparameters that control the relative importance of each loss
component during training. This hybrid loss function enables the joint optimization of
DerainAE and DepthNet, ensuring robust performance across both deraining and depth
estimation tasks.

4. Experimental Results

In this section, we begin by introducing the datasets and evaluation metrics, which is
followed by a discussion of the implementation details and results. Ablation studies are
conducted to evaluate the contributions of key components. Additionally, the effectiveness
of our model is validated through an object detection task, highlighting the benefits of
deraining for enhanced vision.

4.1. Datasets and Evaluation Metrics

Due to the challenge of obtaining paired rain and clear images, various rain models
have been developed to synthetically generate rain streaks from clear images. In the
linear model proposed by [15], the observed rain image O ∈ R

M×N is represented as a
combination of a desired background layer B ∈ R

M×N and a rain streak layer R ∈ R
M×N ,

such that O = B + R. Building upon this model, ref. [25] proposed a more generalized
formulation: O = B + RR̃, where R̃ is a new region-dependent variable that indicates the
locations of individually visible rain streaks. The elements of R̃ take binary values, with 1
indicating rain regions and 0 indicating non-rain regions. Further, refs. [22,26] modeled a
rain image as a composite of a rain-free image, a rain layer, and a fog layer, formulating the
observed rain image as below,

O = B(1− R− F) + R + f0F

where F is a fog layer, and f0 is the atmospheric light, which is assumed to be a global
constant following [27].

RainKITTI2012 and RainKITTI2015 Datasets: These two synthetic datasets were cre-
ated by Zhang et al. [9] using Photoshop to introduce synthetic rain effects on the publicly
available KITTI stereo datasets 2012 and 2015 [28]. The RainKITTI2012 dataset consists of a
training set with 4062 image pairs and a testing set with 4085 image pairs, each having a
resolution of 1242× 375 pixels. Similarly, the RainKITTI2015 dataset contains 4200 pairs of
training images and 4189 pairs of testing images, all maintaining the same resolution.

RainCityScapes Dataset: This synthetic dataset, developed by Hu et al. [22], is based
on the Cityscapes dataset [29]. It is generated by the aforementioned rain models and
consists of a rain layer, a fog layer, and a rain-free image. It includes a training set of 9432
paired rainy and clear images, which is accompanied by ground truth depth information.
The testing set consists of 1188 images.

Evaluation Metrics: We use PSNR [30] and SSIM [31] as the evaluation metrics.

4.2. Implementation Details

In model training, we set the hyperparameters λ1, λ2, λ3, λ4, λ5 to [1, 0.5, 0.5, 10, 2],
respectively. For the pretrained Variational AutoEncoder (VAE) model, we adopt the VAE
component from the Stable Diffusion framework [20], employing Mean Squared Error
(MSE) as the loss function. The latent space of the VAE is sampled to produce a latent
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vector of the same size (length 150) as that used in our DerainAE model. During training,
we keep the VAE model weights frozen and only fine-tune the final output layer. For depth
reconstruction, we use the pretrained VGG16 model as the encoder, which is frozen dur-
ing training, and train the decoder from scratch. Our entire model is implemented in
PyTorch [32] and is trained on a workstation with an NVIDIA RTX A6000 GPU. All datasets
in our experiments share the same training configuration: a batch size of 4, and the ADAM
optimizer [33] with an initial learning rate of 5× 10−3 and a weight decay of 0.9.

4.3. Evaluation on Different Datasets

Table 1 presents the evaluation metrics for the three datasets. The SSIM demonstrates
that our model can restore most of the clear image’s information, while the PSNR indicates
better overall clarity in the predictions. Figure 3 shows results of exemplar images from the
RainCityScapes and RainKITTI2012 datasets. It is clear that besides rain streaks, the foggy
effect has been removed as well.

Rainy           Derained                       Rainy                 Derained                      

Figure 3. Visualization results of RainCityScapes and RainKITTI2012 dataset. The first two columns
are exemplar images from the RainCityScapes dataset and corresponding derained outputs; the last two
columns are exemplar images from the RainKITTI2012 dataset and corresponding derained outputs.

Table 1. Model evaluation on three outdoor datasets—RainCityScapes, RainKITTI2012 and
RainKITTI2015—Average (Ave), Maximum (Max), and Minimum (Min) values of PSNR and SSIM.

Datasets
PSNR SSIM

Ave Max Min Ave Max Min

RainCityScapes 28.45243 33.58215 19.07696 0.93726 0.97048 0.85108
RainKITTI2012 25.73460 29.70556 22.32341 0.87256 0.92983 0.80549
RainKITTI2015 26.33563 29.74982 22.95045 0.87402 0.91881 0.79097

4.4. Comparsion with Other Methods

We evaluate two additional deraining models, DID-MDN [34] and PReNet [10], on the
RainCityscapes testing dataset. For the DID-MDN model, we utilize the pretrained weights
provided by the authors on GitHub. Since the DID-MDN model accepts an input size of
512× 512, while RainCityscapes images are sized at 2028× 1024, we resize the RainCi-
tyscapes images to 512× 512 for processing and then resize the derained outputs back to
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the original resolution for evaluation. For PReNet, we leverage all the pretrained models
available for the Rain100H, Rain100L, and Rain1400 datasets, selecting the best-performing
results on the RainCityscapes testing dataset as the final outputs. As we can see in Table 2,
our model can perform better that other methods. Table 3 presents the running times of
DID-MDN, PReNet, and our method on an NVIDIA RTX A6000 GPU. As shown, our
method achieves greater efficiency compared to the other approaches, which is attributed
to its simpler backbone architecture.

Table 2. Comparsion results on the RainCityscapes testing dataset. We report the average, minimum
and maximum of PSNR and SSIM mertrics on PReNet, DID-MDN and our model.

Methods
PSNR SSIM

Ave Max Min Ave Max Min

DID-MDN 16.82741 24.30264 11.12157 0.77786 0.86142 0.65167
PRENET 15.75766 23.40013 10.55631 0.80006 0.94088 0.61976

OURS 28.45243 33.58215 19.07696 0.93726 0.97048 0.85108

Table 3. Comparison of inference times on RainCityscapes dataset (image size: 512 × 512).

Method Inference Time

DID-MDN 0.0322
PReNet 0.0899

Ours 0.0044

4.5. Ablation Studies

All ablation studies are performed on the RainCityscapes, RainKITTI2012, and
RainKITTI2015 datasets. To evaluate the effectiveness of our model architecture, we
calculate PSNR and SSIM on the respective testing sets. These metrics provide a quan-
titative assessment of the quality of the generated images with higher PSNR and SSIM
values indicating better image restoration and alignment with ground truth. By comparing
different configurations of our model, referred to as Settings A, B, C, D, E, and Full in
Table 4, we demonstrate the contributions of each component to the overall performance.

Table 4. Ablation settings (A–E). Compared to our full model, we conduct an ablation study by
removing component(s) to evaluate their respective contributions.

Component A B C D E Full

Depth Latent � � � � �
Derain Latent � � � � �

Ground Truth Depth � � � �
Concatenation of Depth Features � � � �

Loss Functions: To evaluate the impact of the depth latent and derain latent constraints
on our model’s performance, we conducted ablation studies on loss components. Table 1
presents the results of the full model, while Tables 5 and 6 show that where the depth latent
constraint and derain latent constraint are excluded, we observe a noticeable drop in both
PSNR and SSIM across all datasets.
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Table 5. PSNR and SSIM results of the model trained without depth latent constraint (WO depth
latent) on three outdoor datasets: RainCityScapes, RainKITTI2012, and RainKITTI2015.

Setting A PSNR SSIM

Datasets Ave Max Min Ave Max Min

RainCityScapes 25.17939 32.74820 12.38616 0.89550 0.95628 0.75533
RainKITTI2012 25.16171 28.75597 21.98756 0.87104 0.92994 0.80130
RainKITTI2015 25.62023 29.53999 22.13033 0.86560 0.91456 0.78444

Table 6. PSNR and SSIM results of the model trained without derain latent constraint (WO derain
latent) on three outdoor datasets: RainCityScapes, RainKITTI2012, and RainKITTI2015.

Setting B PSNR SSIM

Datasets Ave Max Min Ave Max Min

RainCityScapes 26.49246 30.54199 21.31583 0.92993 0.96342 0.80553
RainKITTI2012 24.80499 28.64988 21.50745 0.86331 0.92666 0.78119
RainKITTI2015 25.56248 29.41232 22.47581 0.87237 0.91106 0.80080

Ground Truth Depth: Table 7 shows the performance of the model when trained
without using the ground truth depth map (WO GT depth). The results reveal a moderate
drop in both PSNR and SSIM across all datasets when the ground truth depth information
is removed.

Table 7. PSNR and SSIM results of the model trained without the ground truth depth map (WO GT
depth) on three outdoor datasets: RainCityScapes, RainKITTI2012, and RainKITTI2015.

Setting C PSNR SSIM

Datasets Ave Max Min Ave Max Min

RainCityScapes 27.25449 32.11505 19.81718 0.93005 0.96428 0.84685
RainKITTI2012 24.04377 27.61285 21.22836 0.84602 0.91315 0.76548
RainKITTI2015 25.04490 28.21179 22.28209 0.85778 0.90852 0.77175

Depth Feature Concatenation: Table 8 shows the results of removing depth feature
connection between the DerainAE encoder and DepthNet encoder. We found that the
concatenation of depth features improves the performance.

Table 8. PSNR and SSIM results of the model trained without depth feature concatenation (WO
concatenation) on three outdoor datasets: RainCityScapes, RainKITTI2012, and RainKITTI2015.

Setting D PSNR SSIM

Datasets Ave Max Min Ave Max Min

RainCityScapes 21.09265 27.61965 15.57796 0.84027 0.93656 0.69801
RainKITTI2012 22.04879 25.26042 19.11878 0.79373 0.88923 0.68814
RainKITTI2015 21.74929 24.87100 19.52019 0.81088 0.86397 0.71841

GT Depth and Depth Feature Concatenation Table 9 presents the results when both
the ground truth depth map and depth feature concatenation are removed from the model
during training. The performance is notably impacted across all datasets, as reflected by
the lower PSNR and SSIM values compared to the full model.
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Table 9. PSNR and SSIM results of the model trained without both ground truth depth map and depth
feature concatenation (WO gt depth and concatenation) on three outdoor datasets: RainCityScapes,
RainKITTI2012, and RainKITTI2015.

Setting E PSNR SSIM

Datasets Ave Max Min Ave Max Min

RainCityScapes 24.52006 32.31414 14.92033 0.89442 0.95443 0.74023
RainKITTI2012 22.11384 25.00253 19.25391 0.78867 0.88489 0.68008
RainKITTI2015 23.69155 26.68006 21.29122 0.82113 0.87281 0.74432

4.6. Vehicle Detection

Image deraining can be integrated into outdoor vision systems to enhance object visi-
bility during complex weather conditions, which is particularly beneficial for autonomous
driving. By improving visibility, it can aid in critical tasks like vehicle detection and navi-
gation, making autonomous vehicles safer and more reliable, especially in regions prone
to heavy rainfall. For this evaluation, the focus is on detecting other vehicles in the scene.
We implemented YOLOv11 [35] on both rainy and derained images. Figure 4 shows that
derained images significantly improve vehicle detection accuracy on the RainKITTI2015
dataset. Similarly, Figure 5 demonstrates the ability of our model in enhancing vehicle de-
tection performance under more challenging rainy scenarios in the RainCityscapes dataset,
which closely approximate real-world rainy and foggy conditions. The vehicle detection
performance metrics, summarized in Table 10, show that our deraining model significantly
improves vehicle detection recall. It achieved a 67% improvement on recall (from 0.5415
to 0.9036) for the RainKITTI2015 dataset and a 19% improvement on recall (from 0.628 to
0.747) for the RainCityscapes dataset. This demonstrates enhanced visibility with signifi-
cantly reduced false negative (missed) detections, which is critical for the safe driving of
autonomous vehicles, particularly in low-visibility environments.

Detection on rainy images Detection on derained images

Figure 4. Vehicle detection results using YOLOv11 on the RainKITTI2015 dataset. Red bounding
boxes denote the detected vehicles.
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Figure 5. Vehicle detection results using YOLOv11 on the RainCityScapes dataset. Red bounding
boxes denote the detected vehicles.

Table 10. Vehicle detection results of RainKITTI2015 test dataset. We calculate mean precision and
mean recall on 4189 images. The results shows that our deraining model significantly improves object
detection recall.

RainKITTI2015 Mean Precision Mean Recall

Rainy Image 0.9685 0.5415
Derain Image 0.9533 0.9036

RainCityscapes Mean precision Mean recall

Rainy 0.823 0.628
Derain 0.840 0.747

5. Conclusions

In this study, we introduced a novel learning framework that integrates multiple
networks, including an AutoEncoder for deraining, an auxiliary network to incorporate
depth information, and two supervision networks to enforce feature consistency between
rainy and clear scenes. Our approach demonstrates that even with a design based solely on
simple convolutional layers, the integration of depth information and feature consistency
constraints enables the network to produce high-quality derained images. Our method was
evaluated on three public datasets with results demonstrating its efficacy and robustness
under diverse rainy conditions. Furthermore, applying our model to an object detection
task revealed significant improvement on recall when using derained images.

Despite the efficacy of our approach, we acknowledge several limitations that present
opportunities for future research. It is important to note that the primary focus of this study
was not on identifying the optimal model architecture but rather on examining the impact
of different supervisory signals and training strategies. Future efforts could explore more
advanced network architectures to further enhance the deraining performance. While our
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approach effectively removes rain steaks, it does not directly address other weather-related
challenges, such as raindrops on windshields or splashes from preceding vehicles, which
can also impair visibility. Expanding the scope to tackle these challenges would be another
valuable direction for future investigation.

Additionally, like most existing studies, this work focuses on single-image deraining.
Accounting for temporal dynamics across consecutive image frames, such as through
direct sequential frame modeling, holds great potential to further improve performance. Finally,
leveraging real-world driving datasets that capture a wide range of weather scenarios is expected
to enhance the robustness and adaptability of deraining models in practical applications.
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Abstract: Catheter ablation therapy, which is a treatment for atrial fibrillation (AF), has a higher
recurrence rate as AF duration increases. Compared to paroxysmal AF (PAF), sustained AF is known
to cause progressive anatomic remodeling of the left atrium, resulting in enlargement and shape
changes. In this study, we used contrast-enhanced computed tomography (CT) to classify atrial
fibrillation (AF) into paroxysmal atrial fibrillation (PAF) and long-term persistent atrial fibrillation
(LSAF), which have particularly different recurrence rates after catheter ablation. Contrast-enhanced
CT images of 30 patients with PAF and 30 patients with LSAF were input into six pretrained
convolutional neural networks (CNNs) for the binary classification of PAF and LSAF. In this study, we
propose a method that can recognize information regarding the body axis direction of the left atrium
by inputting five slices near the left atrium. The classification was visualized by obtaining a saliency
map based on score-class activation mapping (CAM). Furthermore, we surveyed cardiologists
regarding the classification of AF types, and the results of the CNN classification were compared
with the results of physicians’ clinical judgment. The proposed method achieved the highest correct
classification rate (81.7%). In particular, models with shallow layers, such as VGGNet and ResNet,
are able to capture the overall characteristics of the image and therefore are likely to be suitable for
focusing on the left atrium. In many cases, patients with an enlarged left atrium tended to have
long-lasting AF, confirming the validity of the proposed method. The results of the saliency map and
survey of physicians’ basis for judgment showed that many patients tended to focus on the shape of
the left atrium in both classifications, suggesting that this method can classify atrial fibrillation more
accurately than physicians, similar to the judgment criteria of physicians.

Keywords: atrial fibrillation; catheter ablation; classification; convolutional neural network; contrast-
enhanced computed tomography; deep learning

1. Introduction

The number of patients with atrial fibrillation (AF) is increasing annually, and this
trend is naturally related to the aging of the population [1]. In recent years, the aging
of patients with AF has brought to light clinical problems that were previously invisible.
The European Society of Cardiology (ESC) notes that six main problems are closely asso-
ciated with AF: mortality, stroke, hospitalization, reduced quality of life, left ventricular
dysfunction/heart failure, and cognitive decline/vascular dementia [2]. Therefore, the
early detection and treatment of AF are important to prevent complications. AF is a dis-
ease that gradually shortens the interval between attacks over time, eventually becoming
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persistent, long-lasting, and permanent. Thus, atrial fibrillation can be viewed as a disease
that progresses through various stages [3]. Catheter ablation therapy, which is a treatment
for AF, has been shown to be effective for paroxysmal atrial fibrillation (PAF). However, its
efficacy is not well established in non-pharmacological guidelines for persistent atrial fibril-
lation and long-standing persistent atrial fibrillation (LSAF), for which the recommended
level is Class IIa or Class IIb [4]. In other words, it is very important to determine which
patients with persistent atrial fibrillation will benefit from catheter ablation therapy based
on the results and possible complications of catheter ablation therapy for persistent AF, as
described above [5]. However, it is difficult to predict postoperative recurrence, and the
indications for catheter ablation therapy are currently determined based on the surgeon’s
empirical judgment and the patient’s self-reported AF duration.

AF recurrence after catheter ablation therapy and its predictors have been the subject
of many studies [6–9]. Njoku et al. showed that left atrial diameter predicts AF recurrence
after radiofrequency catheter ablation treatment in a meta-analysis of the difference in
left atrial volume between patients with and without recurrent AF after radiofrequency
catheter ablation [6]. Other factors, such as the duration of AF, structural changes in
the left atrium and pulmonary veins, and age, may also affect the outcome of catheter
ablation therapy.

In recent years, many methods have been reported to classify AF types [10,11], and
Nuria Ortigosa et al. proposed a method to classify AF subtypes with feature extrac-
tion from a general Fourier time-frequency transform using ECG waveforms and classi-
fication using a support vector machine [8]. The classification accuracy of the test data
was approximately 77%. However, classification using ECG waveforms is often lim-
ited by the possibility of significant changes in the waveform characteristics when other
diseases coexist.

Therefore, we attempted to classify AF types by extracting image features, such
as left atrial diameter and structural changes in pulmonary veins due to persistent AF,
from contrast-enhanced computed tomography (CT) images using convolutional neural
networks (CNNs), which have been applied in medical practice in recent years [12–18].
Although previous studies using electrocardiogram waveforms have been reported in
the classification of AF type, no method using contrast-enhanced CT images has been
proposed. Furthermore, although there are research papers on the relationship between
left atrial volume and AF type, there are no reported cases of applying that method
to the classification of the type of disease. In this study, we propose a clinically novel
method of classifying paroxysmal AF and long-term persistent AF on contrast-enhanced
CT images using conventional CNN models, focusing on structural remodeling changes
in the left atrium. The purpose of this study is to enable a standardized assessment using
a deep learning approach that considers the information physicians need to evaluate the
structural remodeling of the left atrium, including left atrial enlargement, poor contrast,
structural changes in the pulmonary veins, the presence of thrombi in the left atrium, and
coronary artery calcification. Based on this objective, contrast-enhanced CT imaging has
an advantage over other dynamic modalities in that it can accurately capture the shape
and focus on the structures around the left atrium. Furthermore, we hypothesize that
the method using contrast-enhanced CT images will enable standardized evaluation with
reduced subjective bias, even in cases in which the ECG waveform cannot detect sudden
attacks, such as paroxysmal AF, or when there are concomitant diseases that may affect
the ECG waveform. With the application of these systems to clinical workflows, it will be
possible to evaluate the load on the atrial muscle when AF is first detected and, if signs of
long-term persistence are confirmed, to begin treatment early.

In this study, we also compared the results of the CNN classification with those of
physicians’ clinical judgment by surveying cardiologists regarding AF type classification.
Physicians estimate the type of atrial fibrillation based on factors such as the size of the
left atrium, enlargement of the pulmonary veins, thrombus formation in the left atrial

129



Computers 2024, 13, 309

appendage, and fibrosis of the atrial septum. Focusing on these features, we looked at
images similar to those entered into the CNN to predict the corresponding disease type.

2. Materials and Methods

2.1. Outline

In this study, target slices were selected from contrast-enhanced CT images. The
number of images was increased using data augmentation and then input into a CNN
model. The output images were classified into two classes, PAF and LSAF, and the saliency
map, which emphasized the pixels that contributed to the classification result using score-
CAM according to their importance, was used to compare what each model focused on
in the image to make its judgment. Persistent atrial fibrillation was excluded because its
duration varies widely from 7 days to less than 1 year, making it difficult to accurately
identify through the evaluation of the left atrial shape. This study was conducted with
the approval of the ethics committee of the first author’s institution (approval number
HM22-095).

2.2. Image Dataset

This study included 60 patients with AF who underwent CE-CT at Fujita Health Uni-
versity Bantane Hospital between May 2021 and July 2022. A total of 162 contrast-enhanced
CT scans were performed during the period, including 116 patients with paroxysmal atrial
fibrillation and 46 patients with long-standing persistent atrial fibrillation. From these,
30 patients of each disease type were randomly selected, and only those patients who did
not undergo CT examinations due to contrast medium allergy or impaired renal function
were excluded. The patients’ disease types were diagnosed as defined in the guidelines [4].
Specifically, PAF was defined as AF that returns to sinus rhythm within 7 days of onset,
and LSAF was defined as AF that persists beyond 1 year. The percentages of PAF and
LSAF were each half of all patients. Basic patient information is shown in Table 1. An
Aquilion ONE CT system (Canon Medical Systems, Inc., Tochigi, Japan) was used to obtain
the images. The details of the imaging protocol are shown in Table 2. We used transaxial
images with a matrix size of 512 × 512 pixels and a pixel size of 0.625 mm. The images
were stored in DICOM format, and all images were converted to 8-bit PNG images with a
window level of 30HU and a window width of 1000 HU.

Table 1. Basic patient information.

Variables PAF(N = 30) LSAF(N = 30) p-Value

Age (years) (mean ± SD) 65.3 ± 12.4 69.5 ± 8.6 0.093
Gender (male, %) 19(63.3%) 25(83.3%) 0.082

Height (cm) (mean ± SD) 164.23 ± 10.2 168.2 ± 8.75 0.131
Body weight (kg) (mean ± SD) 63.7 ± 12.4 68.7 ± 11.1 0.104

BMI (mean ± SD) 23.5 ± 3.35 24.3 ± 3.42 0.309
Hypertension (cases, %) 13(43.3%) 14(46.7%) 0.799

Diabetes mellitus (cases, %) 5(16.7%) 5(16.7%) 1.000
Heart failure (cases, %) 3(10.0%) 12(40.0%) 0.007

Cerebral infarction (cases, %) 4(13.3%) 5(16.7%) 0.723

Table 2. Imaging protocols.

Parameter Value

Imaging protocols

kV 120 kV
mAs CT-AEC
Slice thickness 0.5 mm
Scan time 0.35 s
Scan method ECG gated volume scan
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Table 2. Cont.

Parameter Value

Reconstruction condition

Reconstruction method AIDR-3D
FOV 200 mm
Slice thickness 0.5 mm
Slice spacing 0.25 mm
Reconstruction function FC14
Reconstruction cardiac phase Systolic

Angiographic method
Iodine concentration 375 mgI/kg
Injection time 15 s
Imaging timing Bolus tracking

2.3. Atrial Fibrillation Type Classification Using Contrast-Enhanced CT Images

The flow of this study is shown in Figure 1, and the details of each process are
described below.

Figure 1. Process of this study.

2.3.1. Image Pre-Processing

Images centered on the slice, with the largest left atrium in the contrast-enhanced
CT image and located 5 and 10 mm above and below, were selected, and five images per
patient were used for analysis. If a bed was depicted in the image, it was removed by
manually setting the CT value of the bed area to −1000 HU.

2.3.2. Data Augmentation

Data augmentation is a method of increasing data by “transforming” image data
for training. For example, by rotating, flipping, shifting horizontally, scaling, distorting,
adjusting brightness and contrast, and adding noise to an image, various variations can be
created. In this study, the number of images increased nine times through data augmenta-
tion [19]. CT examinations are usually performed in the supine position; however, in some
facilities, the patient is positioned so that the heart, which is located on the left side of the
body, is centered in the FOV. In such cases, the curvature of the bed may cause the body to
rotate about 10◦. To simulate this, the heart was rotated by −10◦ and +10◦ for each image,
aligning the heart’s tilt to match that observed in the actual CT image. In contrast-enhanced
CT examinations, since the density of the contrast agent varies depending on the case,
we augmented the pixel values to be robust to changes in pixel values. The CT values of
the left atrium were observed across the entire dataset, and the window level (WL) and
window width (WW) were adjusted so that the CT values after augmentation fell within
the range of real CT images. As a result, in addition to the initial condition of WL = 30,
WW = 1000, two variations, including WL = −50, WW = 950 and WL = 160, WW = 1500,

131



Computers 2024, 13, 309

were added to increase the number of images threefold. An example of the created image
is shown in Figure 2.

Figure 2. Examples of an original image and images created using data augmentation.

2.3.3. Classification by CNN

In this study, we used six network models (VGG16, VGG19, Resnet50, DenseNet121,
DenseNet169, and DenseNet201). These networks were trained on 1.2 million images
across 1000 categories in the ImageNet database [20–22]. To adapt these networks to PAF
and LSAF classification, we removed the fully connected layers in each of the pretrained
network models and replaced them with three new fully connected layers (the final layer
being the output layer). The number of units in each layer was set to 1024, 256, and 2. In
this study, finetuning was employed. Finetuning is a method to perform transfer learning
using a different dataset for a different target task than the one used during pre-training
that involves using a network model that has been pretrained from a large dataset as
the initial parameters. Finetuning facilitates the learning of highly accurate models for
each task from small datasets by simply recalibrating pretrained CNNs. In this case, the
weights of the convolutional layer were initialized with the pretrained weights, and both
the convolutional and fully connected layers were retrained (finetuning) using real images.
The average of five continuous values obtained from the outputs of five slices output from
the CNN was used as the patient’s evaluation. In this evaluation, the cutoff value was fixed
at 0.5.

For the CNN training conditions, we used a learning coefficient of 0.000001, early
stopping (maximum number of epochs: 100) as the training frequency, a batch size of eight,
and Adam as the optimization algorithm. The categorical cross entropy was employed for
the loss function in the training of CNN. The training environment used was Windows 10
Pro OS, an AMD Ryzen 7 2700X CPU, and an NVIDIA TITAN RTX GPU.

2.4. Saliency Map

In this study, we used score-class activation mapping (CAM) to visualize the points of
interest by highlighting the pixels that contributed to the classification results according
to their importance. Score-CAM eliminates the dependence on gradients by obtaining the
weight of each activation map through its forward passing score on the target class; the
final result is obtained using a linear combination of weights and activation maps [23]. It
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visualizes the importance based on the results obtained by providing the generated images
to the CNN using the feature map obtained when the trained CNN infers a specific image.
The resulting feature map was enlarged to the size of the input, normalized to a value
between 0 and 1, and multiplied by the input image to generate a heatmap. The output of
CAM is shown as a heatmap overlaid on the image. This heatmap is called a saliency map
in CAM. The input and saliency map images are shown in Figure 3.

(a) (b)

Figure 3. An example of visualization of decision basis in CNN (score-CAM). (a) Input image;
(b) saliency map image.

2.5. Validation and Evaluation Metrics

In this study, cross-validation was used to assess the generalizability of the model.
We also increased the number of folds and chose 10-fold cross-validation to improve
generalization performance and reduce bias. The 10-fold cross-validation method divides
the dataset into 10 subsets, 70% of which are training data and 20% of which are validation
data, 10% of which are test data. Figure 4 shows a schematic of the 10-part cross-validation
method.

Figure 4. Data assignment in the 10-part cross-validation method.

Using this method, the prediction results were compared based on patient-specific
accuracy, sensitivity, specificity, and precision. The final classification performance evalua-
tion was performed by determining the overall accuracy rate using the CNN classification
results. The overall accuracy rate was calculated using the following Equation (1). TP,
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TN, FP, and FN are the numbers of true positives, true negatives, false positives, and false
negatives, respectively.

accuracy =
TP + TN

TP + TN + FP + FN
× 100[%] (1)

The ROC curve represents the relationship between the true positive fraction (TP/TP +
FN) and the false positive fraction (FP/FP + TN). It was created by plotting the false positive
rate on the horizontal axis and the true positive rate on the vertical axis and continuously
varying the cutoff value to separate positive and negative results. To smooth the ROC
curve, the false positive fraction (FPF) and true positive fraction (TPF) were plotted on both
normal probability papers to obtain an approximately straight line, and the curve depicted
the relationship between the two.

The CNN was trained and evaluated thrice for each model, with the median value
and standard deviation used as the final classification result. In this study, the slice with
the largest left atrium and the two slices above and below it were used for training and
evaluation to enable continuous evaluation of the left atrium in the direction of the body
axis. In addition, the number of images used for training increased with data augmentation.
To demonstrate the effectiveness of these methods, we performed an additional validation
using only one central slice for training and evaluation (Additional Study 1) and a validation
using an evaluation without data augmentation (Additional Study 2).

2.6. Classification by Physicians

In this study, we administered the same questionnaire to physicians regarding the
classification of atrial fibrillation types based on only five images entered into the CNN
classification, and the results were compared with the correct response rate and focus of
the CNN classification.

2.6.1. Participants

A questionnaire survey was conducted among physicians in the Department of Car-
diovascular Medicine at Fujita Health University Bantane Hospital, and responses were
obtained from 18 physicians. In this survey, we asked patients to evaluate the type of AF in
terms of structural changes around the left atrium. The purpose of this questionnaire was
to compare the results of this study’s classification with those of the physicians’ clinical
judgments.

2.6.2. Questionnaire Items

Questions included: (1) years of experience as a physician, (2) specialty, (3) number
of catheter ablation procedures performed per year, (4) whether preoperative CT imaging
could predict the efficacy of catheter ablation, and (5) type classification of atrial fibrillation
(20 cases) and the basis for decision.

(3) The number of catheter ablation procedures performed in a year and (4) whether
preoperative CT images could predict the efficacy of catheter ablation procedures were
optional answers for physicians performing catheter ablation procedures. For AF classifica-
tion (5), 10 cases of paroxysmal PAF and 10 cases of LSAF were randomly selected from
the cases used in the CNN classification, and the results were tabulated on a 6-point scale.
In addition, the basis for judgment was asked, e.g., “Please tell us the reason why you
answered that way”, for the answer of the disease type classification, and the answer was
left open-ended. This question aimed to compare the points of interest of the CNN with
those of physicians.
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3. Results

3.1. Classification Results by CNN

First, we describe the results of the AF type classification using a CNN. The classifica-
tion results and AUC for the six CNN models are listed in Table 3, and the ROC curves are
shown in Figure 5. ResNet50 exhibited the highest accuracy for all classification results.

Table 3. Classification results for each CNN model (proposed method).

Model Sensitivity Specificity Precision Accuracy AUC

VGG16 80.0 ± 1.56 63.3 ± 4.71 68.6 ± 3.28 71.7 ± 2.84 0.80 ± 0.03
VGG19 80.0 ± 1.56 76.7 ± 4.15 77.4 ± 2.54 78.3 ± 1.56 0.79 ± 0.00

ResNet50 83.3 ± 5.65 80.0 ± 4.15 80.6 ± 3.27 81.7 ± 3.60 0.88 ± 0.07
DenseNet121 76.7 ± 4.71 66.7 ± 3.16 69.7 ± 2.68 71.7 ± 3.45 0.80 ± 0.02
DenseNet169 80.0 ± 2.74 63.3 ± 4.15 68.6 ± 2.59 71.7 ± 2.08 0.76 ± 0.03
DenseNet201 83.3 ± 3.11 63.3 ± 4.16 69.4 ± 2.63 73.3 ± 2.36 0.82 ± 0.01

Figure 5. ROC curves of CNN models.

The results of the additional validation are presented in Tables 4 and 5. In addition,
Figure 6 shows a comparison of the classification correctness rate between the proposed
method and Additional Studies 1 and 2. When learning and evaluation were performed
on the central slice only (Additional Study 1), the classification correctness increased for
VGG16, VGG19, and ResNet50 but decreased for the other three DenseNet models. Without
augmentation of the training data (Additional Study 2), the accuracy remained the same or
decreased for models other than DenseNet169.
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Table 4. Classification results for evaluation of central slices only (Additional Study 1).

Model Sensitivity Specificity Precision Accuracy AUC

VGG16 76.7 ± 1.52 63.3 ± 4.71 67.6 ± 3.34 70.0 ± 2.84 0.75 ± 0.02
VGG19 70.0 ± 4.16 80.0 ± 1.56 77.8 ± 2.05 75.0 ± 2.36 0.78 ± 0.01

ResNet50 73.3 ± 3.16 76.7 ± 2.74 75.9 ± 1.39 75.0 ± 0.80 0.83 ± 0.01
DenseNet121 73.3 ± 1.56 80.0 ± 1.56 78.6 ± 1.27 76.7 ± 0.80 0.82 ± 0.01
DenseNet169 73.3 ± 2.74 76.7 ± 0.00 75.9 ± 0.69 75.0 ± 1.39 0.77 ± 0.01
DenseNet201 66.7 ± 3.11 83.3 ± 0.00 80.0 ± 0.71 75.0 ± 1.56 0.82 ± 0.02

Table 5. Classification results without data augmentation (Additional Study 2).

Model Sensitivity Specificity Precision Accuracy AUC

VGG16 66.7 ± 3.11 76.7 ± 4.15 74.1 ± 3.98 71.7 ± 2.81 0.75 ± 0.03
VGG19 63.3 ± 4.16 66.7 ± 6.27 65.5 ± 5.26 65.0 ± 4.08 0.70 ± 0.03

ResNet50 60.0 ± 5.43 83.3 ± 4.16 78.3 ± 2.11 71.7 ± 0.75 0.81 ± 0.01
DenseNet121 63.3 ± 1.56 70.0 ± 6.86 67.9 ± 6.19 66.7 ± 3.60 0.72 ± 0.04
DenseNet169 70.0 ± 2.69 76.7 ± 0.00 75.0 ± 0.73 73.3 ± 1.35 0.77 ± 0.02
DenseNet201 63.3 ± 4.16 83.3 ± 1.60 79.2 ± 2.50 73.3 ± 3.37 0.84 ± 0.02

Figure 6. Comparison of proposed method and additional study.

The images that were correctly classified by ResNet50 are shown in Figure 7, and those
that were incorrectly classified are shown in Figure 8.

Figure 9 shows the saliency map output when ResNet50 correctly classifies a case, and
Figure 10 shows the heatmap output when ResNet50 incorrectly classifies a case. Note that
the presented case is the same patient as the one presented in Figures 7 and 8.
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   (a)     (b)

Figure 7. Correctly classified cases. (a) PAF; (b) LSAF.

(a)      (b)

Figure 8. Incorrectly classified cases. (a) PAF; (b) LSAF.

(a)    (b)

Figure 9. Saliency maps of correctly classified cases. (a) PAF; (b) LSAF.
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(a)      (b)

Figure 10. Saliency maps of incorrectly classified cases. (a) PAF; (b) LSAF.

3.2. Classification Results by Physicians

Table 6 shows the number (%) of responses to each of the following questions: (1) years
of experience as a physician, (2) specialty, and (3) number of catheter ablation therapies
performed per year. In Case (2), all 18 physicians specialized in cardiovascular medicine.

Table 6. Survey results on years of experience as a physician and areas of specialization.

Experience (years) Responses (%) Specialty Responses (%)

5–10 3 (16.7) cardiovascular 18 (100)
11–15 4 (22.2)
16–20 7 (38.9)
21–25 2 (11.1)
26–30 1 (5.6)
31–35 1 (5.6)

Total 18 (100) Total 18 (100)

Six physicians responded to question (3), the number of catheter ablation therapy
performed in a year. The results are summarized in Table 7.

Table 7. Survey results of the number of catheter ablation therapies performed in a year.

Number of Treatments (Cases) Responses (%)

1–50 2 (33.3)
51–100 2 (33.3)

101–150 1 (16.7)
151–200 1 (16.7)

Total 6 (100)

Nine physicians responded to the question about (4) whether preoperative CT images
could predict the efficacy of catheter ablation therapy. Of these, eight physicians answered
that preoperative contrast-enhanced CT could predict the efficacy of catheter ablation
therapy.

Figure 11 shows the percentage of correct answers for the 20 cases used in the ques-
tionnaire classified by ResNet50, the percentage of correct answers for 18 physicians, and
the average percentage for all physicians. In addition, Figure 12 shows the ROC of the
physicians’ classification results, and Table 8 shows details of the physicians’ classification
accuracy and AUC. The mean accuracy was 73.6% and the median was 75%. The mean
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AUC was 0.802. The 20 cases used to evaluate ResNet50 were the same as those used in
the survey of physicians, and the overall correct response rate for physicians was widely
distributed, ranging from 55% to 90%; however, the average correct response rate was
73.6%, which was slightly lower than that of ResNet50.

Figure 11. Physicians’ classification results and comparison between CNN models.

Figure 12. ROC curves of physicians.
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Table 8. Physicians’ classification results.

Physician Accuracy(%) AUC Physician Accuracy(%) AUC

1 85.0 0.895 10 55.0 0.690
2 70.0 0.640 11 60.0 0.670
3 90.0 0.955 12 65.0 0.675
4 70.0 0.820 13 70.0 0.770
5 75.0 0.865 14 75.0 0.780
6 80.0 0.825 15 70.0 0.800
7 75.0 0.825 16 65.0 0.740
8 80.0 0.830 17 85.0 0.945
9 80.0 0.885 18 55.0 0.825

The respondents had diverse opinions based on their judgments. Generally, LSAF
is characterized by left atrial enlargement, roundness of the left atrium, coronary artery
calcification, left auricular enlargement, poor contrast, auricular thrombus closure, uneven
contrast density, retraction of the comb muscle, atrial wall thickening, and fibrosis of the
atrial septum. The most common finding of persistent atrial fibrillation is enlargement of
the left atrium.

4. Discussion

4.1. Comparison of CNN Models

In this study, six CNN models were evaluated on their performance in classifying
the AF types. ResNet50 performed the best in terms of overall accuracy, followed by
VGG19. The reason these CNN outperformed DenseNet121, 169, and 201 could be that the
number of layers in the network was shallow, which made it possible to extract features in
a localized region. The long-term persistence of AF results in structural remodeling, such
as left atrial shape changes and auricular enlargement, also affected the results. Therefore,
ResNet50 and VGG19 should focus on these localized areas for classification purposes.
The best overall correct response rate for ResNet50 was achieved because ResNet50 is
optimized using a residual function and performs batch normalization for each residual
block. We hypothesize that this resulted in stable learning without the gradient vanishing
problem.

In addition, Figure 6 shows a comparison of the classification correctness rate between
the proposed method and Additional Studies 1 and 2. In most cases, the proposed method
performs better than Additional Studies 1 and 2. The reason for the better accuracy rate
than that of Additional Study 1 is that the proposed method uses a total of five slices
(located 5 mm above and below) centered on the slice with the most enlarged left atrium
for training; therefore, it is possible to analyze information in the body axis direction, in
addition to the slice direction, and classification is more accurate than when only one
slice is used for evaluation. The reason for the higher rate of correct answers compared
to Additional Study 2 is thought to be that the data augmentation increased the number
of pseudo-variations because of the various body inclinations and CT values due to the
contrast agent and was able to respond to the effects on the image caused during imaging.
Furthermore, data augmentation increased the number of images used for training by a
factor of nine; therefore, it was assumed that efficient training was possible.

4.2. Insights from Saliency Map in CNN Classifications

Score-CAM was used to output a color map showing the pixels contributing to the
CNN classification results. In the heatmap output for the correct classification in Figure 8,
the left atrium and pulmonary veins tended to attract more CNN attention. In addition,
when attention was focused on structures other than the heart, which was often seen in
the heatmap output when the patient was incorrectly classified, as shown in Figure 10,
there was a tendency toward incorrect classification. Focusing on the left atrium, cases of
PAF were misclassified with findings of major LSAF, including an enlarged left atrium, the
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loss of comb-like muscular structures, and large rounded anterior and posterior structural
left atria. In the cases of LSAF, there was also a tendency to misclassify cases in which
the left atrium was not enlarged, especially when the anteroposterior diameter of the left
atrium was short. Based on these findings, CNN classification focuses on the shape and
surrounding structures of the left atrium and is considered a valid classification for the
findings of LSAF.

4.3. Comparison with Physician’s Results

In response to the physician’s description of the basis for judgment, enlargement of
the left atrium is a feature of LSAF in many cases. In the correctly classified cases shown
in Figure 7, (a) the PAF has a small, flat left atrial structure, whereas (b) the LSAF has a
large, rounded left atrial structure in the front and back. The CNN model is expected to
classify patients using the same criteria as physicians because the heatmap also shows
that the left atrium area attracts more attention. The cases in which the CNN model and
averaged results of the physicians’ responses differed are shown in Figure 13. Case (a)
involved LSAF, but the left atrium was relatively small (left), and there was no loss of the
pectinate muscle structure (right). The CNN model can classify these cases. However, it
was misclassified, even when the typical findings of LSAF in the size of the left atrium were
observed, as shown in (b). The possible reason is that by using the entire CT image as the
input image, information other than the left atrial region may have led to misclassification.
This problem could be improved by increasing the variation with more training data and
narrowing the field of view to the left atrial region alone.

(a)    (b)

Figure 13. LSAF cases with different results between physicians and the proposed method.
(a) Correctly classified only by CNN model; (b) correctly classified only by physician.

4.4. Comparison with Previous Studies

The results of this study showed a higher accuracy than those of the study by Ortigosa
et al. using ECG (classification accuracy rate 77.1%) [10]. Furthermore, the method of this
study has the advantage of being able to classify the pathology of AF using the assessment
of structural remodeling of the left atrium, even when other diseases that affect the ECG
waveform are present at the same time. AF is usually detected using an ECG, but we think
that the limitation of using an ECG is that the time of detection of an attack is considered
to be the moment of the first appearance of the attack. The advantage of this study using
contrast CT images is that it allows for an objective evaluation of the state of the atrium
regardless of the type of disease. We think that by evaluating the stress on the atrial muscle
when atrial fibrillation is first discovered and confirming long-term findings, it will be
possible to get closer to starting treatment at an earlier stage.

4.5. Practical Applications in Clinical Settings

We hypothesize that by using deep learning to classify AF types from CT images,
this study will facilitate a standardized assessment of structural remodeling of the left
atrium, which was originally determined subjectively by physicians, thereby reducing
subjective bias. By integrating these systems into clinical workflows, it will become possible
to evaluate the strain on the atrial muscle at the initial detection of AF. Additionally, if signs
of long-term persistence are confirmed, early treatment can be initiated. This approach
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could potentially reduce unnecessary catheter ablation procedures, allow for more tailored
treatment recommendations, and decrease healthcare costs. Furthermore, computational
resources and processing time need to be discussed for practical application. Although
model training requires substantial hardware resources and prolonged processing time
(2–5 h), we believe that once the model is trained, the prediction process can be completed
in under one minute, making it sufficiently feasible for clinical use because of the reduced
hardware requirements for inference.

4.6. Limitation of This Study

There are two limitations of this study. The first is that it is a small and single-facility
dataset. Furthermore, potential confounding factors, such as patient comorbidities, are not
discussed. When the number of data is increased and external validation is performed in
the future, comorbidities should be included in the analysis and evaluated. In addition,
contrast-enhanced CT provides a clearer image of the left atrium than simple CT, but
patients who cannot use contrast media and variations in contrast media and image quality
among facilities remain a challenge. We hypothesize that this challenge can be resolved
by using simple CT images or by preparing a dataset that includes images taken at other
facilities and performing data augmentation, as in this study. The second limitation is
that the classification does not include persistent AF, which we think does not allow for
continuous evaluation. The definition of the duration of persistent AF ranges from 7 days
to less than 1 year, making it difficult to accurately identify it through the assessment of
left atrial geometry. Therefore, persistent atrial fibrillation was excluded from classification
in this study and classified as paroxysmal and long-standing persistent; these cases have
predominantly different results in ablation therapy and can be evaluated for structural
remodeling based on imaging features. In the future, it is necessary to develop a method
to evaluate AF types continuously by adding cases of persistent AF. The use of left atrial
volume, dynamic modality information, additional machine learning models, and natural
language processing models is also possible and will be explored.

5. Conclusions

Catheter ablation therapy is a treatment for AF; however, its efficacy is not well
established due to the high recurrence rate in patients with PAF. In this study, we attempted
to classify AF types using a convolutional neural network based on features obtained from
contrast-enhanced CT images. As a result of the classification, ResNet50, which is a CNN
model, showed the best performance in terms of the overall correct response rate and AUC
value. The output of the heatmap and the survey of physicians’ judgment criteria indicated
that many patients tend to focus on the shape of the left atrium in both classifications,
suggesting that this method can classify AF types more accurately than physicians in a
manner similar to the physicians’ judgment criteria. In the future, we plan to address the
challenges of this study, such as using plain CT images, preparing a dataset that includes
images from other facilities, and conducting continuous evaluations that include persistent
AF. Furthermore, once these issues are resolved, this study can potentially be applied in
predicting the efficacy of catheter ablation therapy. A future direction is to predict the
efficacy of catheter ablation therapy in patients with atrial fibrillation based on contrast-
enhanced CT images with the goal of providing quality information for patients to choose
their treatment options.

Author Contributions: Conceptualization, H.K. and A.T.; formal analysis, H.K. and A.T.; method-
ology, H.K. and A.T.; data curation, T.O. and Y.S.; software, H.K. and A.T.; writing—original draft
preparation, H.K. and A.T.; writing—review and editing, T.O., Y.S., E.W., and H.F. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: This study was approved by the Ethical Review Committee
of Fujita Health University (HM22-095) and was carried out in accordance with the World Medical
Association’s Declaration of Helsinki.

142



Computers 2024, 13, 309

Informed Consent Statement: Informed consent was obtained in the form of an opt-out at Fujita
Health University Bantane Hospital, and all data were anonymized.

Data Availability Statement: The source code and additional information used to support the
findings of this study are available from the corresponding author upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Morillo, C.A.; Banerjee, A.; Perel, P.; Wood, D.; Jouven, X. Atrial fibrillation: The current epidemic. J. Geriatr. Cardiol. 2017, 14,
195–203. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5460066 (accessed on 9 December 2023). [PubMed]

2. Kirchhof, P.; Benussi, S.; Kotecha, D.; Ahlsson, A.; Atar, D.; Casadei, B.; Castella, M.; Diener, H.-C.; Heidbuchel, H.; Hendriks, J.;
et al. 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur. Heart J. 2016, 37,
2893–2962. [CrossRef] [PubMed]

3. Developed with the special contribution of the European Heart Rhythm Association (EHRA); Endorsed by the European
Association for Cardio-Thoracic Surgery (EACTS); Camm, A.J.; Kirchhof, P.; Lip, G.Y.; Schotten, U.; Savelieva, I.; Ernst, S.; Van
Gelder, I.C.; Al-Attar, N.; et al. Guidelines for the management of atrial fibrillation: The Task Force for the Management of Atrial
Fibrillation of the European Society of Cardiology (ESC). Eur. Heart J. 2010, 31, 2369–2429. [CrossRef]

4. Nogami, A.; Kurita, T.; Abe, H.; Ando, K.; Ishikawa, T.; Imai, K.; Usui, A.; Okishige, K.; Kusano, K.; Kumagai, K.; et al. 2018
Revised Guidelines for Non-Pharmacologic Treatment of Arrhythmia. Circ. J. 2021, 85, 1692–1700. [CrossRef] [PubMed]

5. Sultan, A.; Lüker, J.; Andresen, D.; Kuck, K.H.; Hoffmann, E.; Brachmann, J.; Hochadel, M.; Willems, S.; Eckardt, L.; Lewalter, T.;
et al. Predictors of Atrial Fibrillation Recurrence after Catheter Ablation: Data from the German Ablation Registry. Sci. Rep. 2017,
7, 16678. [CrossRef] [PubMed]

6. Njoku, A.; Kannabhiran, M.; Arora, R.; Reddy, P.; Gopinathannair, R.; Lakkireddy, D.; Dominic, P. Left atrial volume predicts
atrial fibrillation recurrence after radiofrequency ablation: A meta-analysis. EP Eur. 2018, 20, 33–42. [CrossRef] [PubMed]

7. Zhou, X.; Nakamura, K.; Sahara, N.; Takagi, T.; Toyoda, Y.; Enomoto, Y.; Hara, H.; Noro, M.; Sugi, K.; Moroi, M.; et al. Deep
Learning-Based Recurrence Prediction of Atrial Fibrillation After Catheter Ablation. Circ. J. 2022, 86, 299–308. [CrossRef]
[PubMed]

8. Kim, J.Y.; Kim, Y.; Oh, G.-H.; Choi, Y.; Hwang, Y.; Kim, T.-S.; Kim, S.-H.; Kim, J.-H.; Jang, S.-W.; Oh, Y.-S.; et al. A deep learning
model to predict recurrence of atrial fibrillation after pulmonary vein isolation. Int. J. Arrhythmia 2020, 21, 19. [CrossRef]

9. McGann, C.; Akoum, N.; Patel, A.; Kholmovski, E.; Revelo, P.; Damal, K.; Wilson, B.; Cates, J.; Harrison, A.; Ranjan, R.; et al.
Atrial Fibrillation Ablation Outcome Is Predicted by Left Atrial Remodeling on MRI. Circ. Arrhythmia Electrophysiol. 2014, 7, 23–30.
[CrossRef] [PubMed]

10. Ortigosa, N.; Cano, Ó.; Ayala, G.; Galbis, A.; Fernández, C. Atrial fibrillation subtypes classification using the General Fourier-
family Transform. Med. Eng. Phys. 2014, 36, 554–560. [CrossRef] [PubMed]

11. Alcaraz, R.; Sandberg, F.; Sörnmo, L.; Rieta, J.J. Classification of Paroxysmal and Persistent Atrial Fibrillation in Ambulatory ECG
Recordings. IEEE Trans. Biomed. Eng. 2011, 58, 1441–1449. [CrossRef] [PubMed]

12. Fujita, H. AI-based computer-aided diagnosis (AI-CAD): The latest review to read first. Radiol. Phys. Technol. 2020, 13, 6–19.
[CrossRef] [PubMed]

13. Suman, G.; Panda, A.; Korfiatis, P.; Goenka, A.H. Convolutional neural network for the detection of pancreatic cancer on CT
scans. Lancet Digit. Health 2020, 2, 453. [CrossRef] [PubMed]

14. Xiang, L.; Wang, Q.; Nie, D.; Zhang, L.; Jin, X.; Qiao, Y.; Shen, D. Deep embedding convolutional neural network for synthesizing
CT image from T1-Weighted MR image. Med. Image Anal. 2018, 47, 31–44. [CrossRef] [PubMed]

15. Teramoto, A.; Fujita, H.; Yamamuro, O.; Tamaki, T. Automated detection of pulmonary nodules in PET/CT images: Ensemble
false-positive reduction using a convolutional neural network technique. Med. Phys. 2016, 43, 2821–2827. [CrossRef] [PubMed]

16. Wang, Q.; Shen, F.; Shen, L.; Huang, J.; Sheng, W. Lung Nodule Detection in CT Images Using a Raw Patch-Based Convolutional
Neural Network. J. Digit. Imaging 2019, 32, 971–979. [CrossRef] [PubMed]

17. Liu, C.; Cao, Y.; Alcantara, M.; Liu, B.; Brunette, M.; Peinado, J.; Curioso, W. TX-CNN: Detecting tuberculosis in chest X-ray
images using convolutional neural network. In Proceedings of the 2017 IEEE International Conference on Image Processing
(ICIP), Beijing, China, 17–20 September 2017; Volume 23, pp. 14–18.

18. Rohini, A.; Praveen, C.; Mathivanan, S.K.; Muthukumaran, V.; Mallik, S.; Alqahtani, M.S.; Al-Rasheed, A.; Soufiene, B.O.
Multimodal hybrid convolutional neural network based brain tumor grade classification. BMC Bioinform. 2023, 24, 382. [CrossRef]
[PubMed]

19. Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 60. [CrossRef]
20. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd

International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015; pp. 11–14.
21. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

143



Computers 2024, 13, 309

22. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.

23. Wang, H.; Wang, Z.; Du, M.; Yang, F.; Zhang, Z.; Ding, S.; Mardziel, P.; Hu, X. Score-CAM:Score-Weighted Visual Explanations for
Convolutional Neural Networks. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 111–119.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

144



computers

Article

Modified Multiresolution Convolutional Neural Network for
Quasi-Periodic Noise Reduction in Phase Shifting Profilometry
for 3D Reconstruction

Osmar Antonio Espinosa-Bernal *, Jesús Carlos Pedraza-Ortega *, Marco Antonio Aceves-Fernandez,

Juan Manuel Ramos-Arreguín, Saul Tovar-Arriaga and Efrén Gorrostieta-Hurtado

Facultad de Ingeniería, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico;
marco.aceves@uaq.mx (M.A.A.-F.); jsistdig@yahoo.com.mx (J.M.R.-A.); saul.tovar@uaq.mx (S.T.-A.);
efrengorrostieta@gmail.com (E.G.-H.)
* Correspondence: oespinosa07@alumnos.uaq.mx (O.A.E.-B.); caryoko@yahoo.com (J.C.P.-O.)

Abstract: Fringe profilometry is a method that obtains the 3D information of objects by projecting a
pattern of fringes. The three-step technique uses only three images to acquire the 3D information
from an object, and many studies have been conducted to improve this technique. However, there is
a problem that is inherent to this technique, and that is the quasi-periodic noise that appears due to
this technique and considerably affects the final 3D object reconstructed. Many studies have been
carried out to tackle this problem to obtain a 3D object close to the original one. The application of
deep learning in many areas of research presents a great opportunity to to reduce or eliminate the
quasi-periodic noise that affects images. Therefore, a model of convolutional neural network along
with four different patterns of frequencies projected in the three-step technique is researched in this
work. The inferences produced by models trained with different frequencies are compared with the
original ones both qualitatively and quantitatively.

Keywords: quasi-periodic noise; frequency; convolutional neural network; 3D object; computer
vision; fringe profilometry; synthetic objects

1. Introduction

The fringe projection is one method without contact that permits to measure heights
from objects to generate 3D objects, and it is considered one of the most reliable for this
aim [1–3].

The acquisition of 3D information is very essential in many areas, e.g., computer vi-
sion [4–6], industrial applications [7–9], optics [10,11], and biomedical applications [12–14],
among others [15]. However, this method presents an inconvenience in the final 3D recon-
struction due to the quasi-periodic noise [16–20] that is produced during the acquisition of
images at the stage of phase unwrapping [21,22]. This stage of phase unwrapping recovers
the 3D information from the image capture depending on the number of images. In this
work, we apply the three-step technique [1,17], and therefore three images are required.
This quasi-periodic or Moire noise, as is also known, has the particularity of affecting the
shape of the 3D object [8,23–25], as it is shown in Figure 1, and it depends on the frequency
of the pattern employed in the projection. This number of frequencies affects the way the
noise appears in the images, as it is shown below in Figures 1 and 2.

The reduction or elimination in periodic or quasi-periodic noise, known as Moire
noise, began as soon as the first digital images could be obtained; however, it was not until
it was analyzed in terms of how much noise was produced that research began on ways
to attenuate or eliminate it from the images. Once the noise on the images was detected
and analyzed, it was found that it is formed in a repetitive pattern and in different ways.
Many studies have been conducted to reduce or eliminate such quasi-periodic noise, some
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processing the image in its spatial domain [18], others in its frequency domain [17]. In
recent studies, thanks to the advances in artificial intelligence, specifically in the field of
deep learning, images can be processed for different tasks, including image reduction
or restoration. Convolutional neural networks are networks composed of neurons and
are part of deep learning. They are composed of many layers of stacked neurons. These
networks are designed to process an image by convolution, which is a technique that infers
a pixel by calculating an average from information of neighboring pixels [26].

When all pixels of an image are completely processed, a complete image is produced by
a model that is trained for this specific task. Many tasks are carried out with convolutional
neural networks, such as classification [27,28], segmentation [29,30], restoration [31,32],
object detection [33,34], among other tasks [35–39].

In this work, we propose a convolutional neural network to restore images affected by
quasi-periodic noise in the process of 3D reconstruction by using the technique of fringe
projection in three steps. The trained model will act as an image pre-processor by reducing
the repetitive pattern present in the affected images, whose pattern appears like horizontal
fringes that affect the surface of an object, improving the speed of this stage and obtaining
an accurate 3D object. The convolutional neural network is based on the same architecture
proposed by Sun [40], namely the multiresolution convolutional neural network, for the
reduction in Moire patterns in digital images whose parameters will be described below.
Section 3 will describe the results and Section 4 will present the conclusions.

Figure 1. Three-dimensional reconstruction of an object, (a) affected by quasi-periodic noise, and
(b) original object. The image shows the deformation of the surface caused by the noise present in
images acquired by the fringe projection in three steps.

Figure 2. Cont.
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Figure 2. Images from the database with quasi-periodic noise at different frequencies: (a) quasi-
periodic noise at 4 frequencies, (b) quasi-periodic noise at 8 frequencies, (c) quasi-periodic noise at
16 frequencies, (d) quasi-periodic noise at 32 frequencies.

2. Materials and Methods

The software Blender (https://www.blender.org/) emulates a 3-step fringe profilome-
try system and the 3D object models used for generating the database were acquired from
platform Turbosquid and were free to use. Here, 75 different 3D models were used, and in
Figure 3 some examples of these models are shown.

In the simulated system, a lamp is used to project the fringes over objects; then,
pictures are acquired with four different patterns. For capturing the images, a camera with
a focal length setting of 28 mm [41] was selected and the size of the captured images was
512 × 512 pixels. With the simulation system, a database of 1350 images with different
objects at different positions was generated, but as four frequencies were applied to the
pattern projected over the object, the total images were 5400. Each scene was composed of
16 different pictures plus 12 more that correspond to the references −3 for each different
pattern projected shared by every scene. Figure 4 shows a complete set of all pictures of a
single scene that conform to the generated database [17,41].

Figure 3. Three-dimensional models acquired from platform Turbosquid.
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Figure 4. Set of images obtained from a single scene with a 3D model. (a) Ground-truth, (b) original
3D model, (c) region of interest, (d) 3D model with background, (e–g) images with object with 120º
shifting pattern projected composed of 4 frequencies, (h–j) reference images with a 4-frequency
composite pattern, (k–m) images with object with 120º shifting pattern projected composed of
8 frequencies, (n–p) reference images with a 8-frequency composite pattern, (q–s) images with
object with 120º shifting pattern projected composed of 16 frequencies, (t–v) reference images with
a 16-frequency composite pattern, (w–y) images with object with 120º shifting pattern projected
composed of 32 frequencies, (z,aa,ab) reference images with a 32-frequency composite pattern.

Figure 2 shows a single picture affected by four different patterns of quasi-periodic
noise, and the process to obtain such images is shown in Figure 5.

Figure 5. The methodology used to generate a database of images with quasi-periodic noise.

All images were obtained using a laptop with NVIDIA GeForce RTX 3060 graphic card
with 6 Gb of memory RAM, 16 Gb of memory RAM, and an I7-10750H processor @2.60 GHz.
The images for training were 90% of 1050 images, for validation 10% of 1050 images, and
300 additional images were used for the test set. All this was only used to train a model
with one single frequency, which was either 4, 8, 16, or 32. For the training of a model
with multiple frequencies, were combined images with all four frequencies, adding up to a
total of 4200 images, 90% for the training set, 10% for the validation set, and 1200 images
affected with the four different patterns for the test set. Figure 6 shows some images
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with quasi-periodic noise at different frequencies and their respective targets generated
by Blender.

Figure 6. Images from database created with Blender software: (a,c,e,g) images affected with quasi-
periodic noise at different frequencies, (b,d,f,h) ground-truth image.

The database of images generated with Blender includes three images of different 3D
models with a pattern of 4 different frequencies and shifting 120º degrees. Applying a phase
unwrapping algorithm (in this case, the PEARLS algorithm [21]) to obtain an absolute
phase image, results in the generation of an image with noise known as quasi-periodic
noise or Moire noise, as shown in Figure 2. Such noise is inherent in the technique of 3-step
fringe profilometry to obtain the heights of an object from images using a single camera and
affects the final 3D object reconstructed by altering its shape and losing 3D information.

When the stage to obtain the absolute phase of images pre-processed with the PEARLS
algorithm is finished, the images are used to generate a database. The algorithm called
PEARLS (Phase Estimation using Adaptive Regularization based on Local Smoothing) is
described in the following pseudocode:

1. Each pixel (x, y) in h ∈ H

(a) The zero-order phase ϕ̃h(x, y) estimate is calculated;
(b) Adaptive window size is applied to estimates ϕ̃h(x, y) to properly select a

window size h+(x, y);
(c) Compute first-order phase estimates with adaptive window size;
(d) end.

2. Unwrap the phase ˜ϕh+ using one of the procedures developed for noise-free data.

For further information, see [21].
The database is then used as the source for training a CNN to learn to reduce or

eliminate the quasi-periodic noise present in images that are affected by such noise. Finally,
the trained model is used in the stage of pre-processing to generate a 3D object as a filter of
noise. The process of the methodology to generate the images to train a model to reduce
the noise in images is shown in Figure 5.

Once the database of images is obtained, a convolutional neural network based on
Multiresolution-CNN proposed by Sun [40] is applied. The proposed model was modified
to have 9 layers after the down-sampling and up-sampling operation with 3 × 3 kernel
and 64 channels which were completely convolutional, contrary to the original one that
had 5 layers in this stage of the architecture. In addition to this change, a layer as input
and output of grayscale images or one channel was added as well. Figure 7 shows the
architecture developed and implemented.

The original Multiresolution-CNN model was developed to reduce the Moire noise
in color and white and black images. Therefore, the proposed model was modified to be
trained with images that contain both quasi-periodic and Moire noise and reduce such
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noise. The trained model to reduce such noise was finally used as part of pre-processing
images to generate a 3D object, improving the speed and the quality of the 3D objects
generated. The novelty of this paper relies on the proposal of a modified multiresolution
CNN in order to reduce the quasi-periodic noise on phase shifting profilometry at four
different frequencies to generate a more reliable 3D reconstruction of an object.

Figure 7. The architecture of convolutional neural network model developed and implemented.

The model was trained using a set of 1050 grayscale images with a size of 549 ×
540 but adjusted to a size of 512 × 512 before feeding the model, and five experiments
were carried out, one for every frequency present in the images. The last experiment was
carried out using the set of images of every frequency gathered in one set of 4200 images.
The projected frequency patterns were 4, 8, 16, and 32 fringes. Every experiment was
performed using the optimizer Adam() [42,43] and the MSELoss() function [44] to calculate
the training and validation loss. Internally, the algorithm took 10% of images randomly to
be used as validation set in every training.

The fringe profilometry method allows for obtaining information on object heights
through images. Therefore, a large number of images with a wide variety of shapes,
surfaces, and contours are required to remove this specific noise. Although there are
techniques to augment data and give them variety during the training of models for noise
reduction and image restoration, this first approximation was carried out without data
augmentation. This is performed in order to observe the results obtained and make the
corresponding improvements. However, since this is a specific noise to be reduced, we leave
some training techniques for future work. For now, we just add a large variety of objects to
have a model trained with enough data to generalize to the greatest number of possible
scenarios or objects to reduce or restore noise in images affected by quasi-periodic noise.

The selection of the neural network architecture is based on a previously published
article, wherein a comparative study between three different architectures was carried out
and the most appropriate neural network for this purpose was selected using performance
criteria [23].

2.1. Optimizer and Loss Function

The optimizer Adam() has the advantage of requiring little memory, and it is com-
putationally efficient and has an adaptive estimation to calculate moments of first and
second order.

mt = β1mt−1 + (1− β1)gt (1)

vt = β2vt−1 + (1− β2)g2
t , (2)
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gt evaluates the gradient in a timestep t, mt calculates the average of moving, vt is
the squared gradient, and β1 and β2 calculate the decay rates for every moment estimates.

Equation (3) calculates the MSELoss() function

l(x, y) = L = {l1, . . . , lN}T , ln = (xn − yn)
2, (3)

the batch-size is represented by N, x, and y which represent the dimensions that form a
matrix of a given size with n elements [42,43].

2.2. IMMSE

The inverse mean square error (IMMSE) is a metric used to evaluate the quality of
reconstructed images by comparing the original image with the generated image. The
IMMSE formula is based on the calculation of the mean square error (MSE), but is applied
in an inverse manner [45]. This equation is shown below

IMSSE =
1

mn

m

∑
i=1

n

∑
i=j

(I(i, j)− K(i, j))2 (4)

where I is the original image, K is the processed image, m number of rows, n number of
cols, and K(i, j) is the value of the corresponding pixel in the reconstructed image. The
IMMSE provides a measure of how similar the two images are, where higher values indicate
better quality.

2.3. PSNR (Peak Signal-to-Noise Ratio)

Peak Signal-to-Noise Ratio (PSNR) is a widely used metric to assess the quality of
compressed or reconstructed images. PSNR measures the ratio of the maximum power of
a signal (the original image) to the noise that affects the quality of its representation (the
reconstructed image) [45,46]. It is defined as follows:

PSNR( f , g) = 10log10(2552/MSE( f , g)) (5)

where

MSE( f , g) =
1

MN

M

∑
i=1

N

∑
j=1

( fij − gi,j)
2 (6)

A higher PSNR indicates that the reconstructed image is more similar to the original,
i.e., it has less noise. Typical PSNR values for high-quality images are in the range of
30–50 dB.

3. Results

The results were obtained by experimenting with different parameters and the pa-
rameters proposed by the author of the model, which were based on the model proposed
in [40]. These parameters are summarized in Table 1.

In addition to the parameters shown in Table 1, 50 epochs were set and, if the obtained
model had a better validation loss, it was saved as the best, but if a bad validation loss
was obtained, the model was penalized. After training the model, the results obtained
after every epoch were charted to show the evolution of the training and validation loss
and were scaled for a better appreciation of the loss. The graphs of the evolution of every
training are shown in Figure 8.

Figure 8 shows the training and validation loss of every model trained. The evolution
of training and validation loss shows a constant decline, which is consistent and shows that
the model is effectively “learning”, and it is also observed that the learning is performed
rapidly and at the end the rate of learning is very low.

The time of learning and the training and validation loss are shown in Table 2.
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Table 1. Parameters used during network training for comparison, trained with images affected by
quasi-periodic noise at four different patterns (4, 8, 16, and 32 frequencies), as seen in Figure 2.

Parameter
Pattern 1 (Number

of Fringes 4)
Pattern 2 (Number

of Fringes 8)
Pattern 3 (Number

of Fringes 16)
Pattern 4 (Number

of Fringes 32)

Pattern 5
(Multifrequency

Pattern)

Batch size 4 4 4 4 4

Initials weights

Gaussian random
(average = 0.0,

standard
deviation = 0.01)

Gaussian random
(average = 0.0,

standard
deviation = 0.01)

Gaussian random
(average = 0.0,

standard
deviation = 0.01)

Gaussian random
(average = 0.0,

standard
deviation = 0.01)

Gaussian random
(average = 0.0,

standard
deviation = 0.01)

Bias 0.0 0.0 0.0 0.0 0.0
Learning rate 0.007 0.007 0.007 0.007 0.007

Optimizer Adam() Adam() Adam() Adam() Adam()
Training loss MSELoss() MSELoss() MSELoss() MSELoss() MSELoss()

Validation loss MSELoss() MSELoss() MSELoss() MSELoss() MSELoss()
Test planing (train,

val) 90%, 10% 90%, 10% 90%, 10% 90%, 10% 90%, 10%

Images size
(Width, Height) 512× 512 pixels 512× 512 pixels 512× 512 pixels 512× 512 pixels 512× 512 pixels

Set train images 1050 1050 1050 1050 4200
Set validation

images 105 105 105 105 420

Set test images 300 300 300 300 300

Figure 8. Evolution of training and validation loss. Models train with noisy images affected by
different frequencies due to different patterns projected. (a) Images with 4 frequencies, (b) images
with 8 frequencies, (c) images with 16 frequencies (d) images with 32 frequencies, and (e) images
with multifrequencies (4, 8, 16, and 32).
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Table 2. Time employed to perform each training and training and validation loss reached during net-
work training for comparison using images with four different patterns (4, 8, 16, and 32 frequencies),
as seen in Figure 2.

Pattern 1
(Number of
Fringes 4)

Pattern 2
(Number of
Fringes 8)

Pattern 3
(Number of
Fringes 16)

Pattern 4
(Number of
Fringes 32)

Pattern 5
(Multifre-

quency
Pattern)

Training loss 0.10275 0.11939 0.09801 0.08825 0.12041
Validation loss 0.11187 0.10390 0.10042 0.09749 0.10443

Training time (HH:MM:SS) 0:59:37 1:08:49 0:58:12 1:00:16 5:20:22

According to the data obtained after performing the training of the models, these
trainings took around one hour to complete, while the training with the set that contains
all the images with the four frequencies lasted a bove five hours because its set contained
more than 4000 images. The training and validation loss reached values equal to or below
0.1, indicating a constant learning by the trained models.

3.1. Inferences Obtained from Images Affected with Quasi-Periodic Noise of 4 Frequencies

The inferences obtained from images affected by quasi-periodic noise composed of four
frequencies using all the trained models are shown in Figure 9, and the 3D reconstructions
are shown in Figure 10.

The profiles obtained from these inferences, the ground-truth image, and the original
image affected by quasi-periodic noise of four frequencies are compared and are charted in
Figure 11. The heights are normalized from 0.0 to 1.0 and the x-axis represents pixels.

The error between the inferences made by the models trained and the ground-truth
image is identified using the PSNR, SSIM, IMMSE, and the MSE Profile between the
inference and the ground-truth image. The measures obtained for the images affected by
quasi-periodic noise of four frequencies are summarized in Table 3.

Figure 9. Two-dimensional representation of an object Cat. (a) Image with quasi-periodic noise
produced by projection of a four-frequency pattern, inference obtained with models trained with
(b) four frequencies, (c) 8 frequencies, (d) 16 frequencies, (e) 32 frequencies, and (f) Multifrequencies.
(g) ground-truth image, and (h) original object.
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Figure 10. Three-dimensional representation of an object Cat. (a) Image with quasi-periodic noise
produced by projection of a four-frequency pattern, inference obtained with models trained with
(b) four frequencies, (c) 8 frequencies, (d) 16 frequencies, (e) 32 frequencies, and (f) Multifrequencies.
(g) ground-truth image, and (h) original object.

Figure 11. Profile comparison of 3D objects.

Table 3. Measures obtained with model trained with images affected by noise of four frequencies.

Inference IMMSE SSIM PSNR MSE (Profile)

1 0.022 0.871 64.676 0.064
2 0.017 0.879 65.767 0.048
3 0.033 0.828 62.900 0.089
4 0.046 0.793 61.547 0.124
5 0.012 0.873 67.263 0.034

3.2. Inferences Obtained from Images Affected with Quasi-Periodic Noise of 8 Frequencies

The inferences obtained from images affected by quasi-periodic noise composed of
8 frequencies using all the trained models are shown in Figure 12, and the 3D reconstruc-
tions are shown in Figure 13.
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Figure 12. Two-dimensional representation of an object Cat. (a) Image with quasi-periodic noise
produced by projection of an 8-frequency pattern, inference obtained with models trained with
(b) four frequencies, (c) 8 frequencies, (d) 16 frequencies, (e) 32 frequencies, and (f) Multifrequencies.
(g) ground-truth image, and (h) original object.

Figure 13. Three-dimensional representation of an object Cat. (a) Image with quasi-periodic noise
produced by projection of an 8-frequency pattern, inference obtained with models trained with
(b) four frequencies, (c) 8 frequencies, (d) 16 frequencies, (e) 32 frequencies, and (f) Multifrequencies.
(g) ground-truth image, and (h) original object.

The profiles obtained from these inferences, the ground-truth image, and the original
image affected by quasi-periodic noise of eight frequencies are compared and are charted
in Figure 14. The heights are normalized from 0.0 to 1.0 and the x-axis represents pixels.

The error between the inferences made by the models trained and the ground-truth
image is identified using the PSNR, SSIM, IMMSE, and the MSE Profile between the
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inference and the ground-truth image. The measures obtained in images affected by
quasi-periodic noise of eight frequencies are summarized in Table 4.

Figure 14. Profile comparison of 3D objects.

Table 4. Measures obtained with model trained with images affected by noise of 8 frequencies.

Inference IMMSE SSIM PSNR MSE (Profile)

1 0.017 0.882 65.838 0.048
2 0.012 0.889 67.488 0.031
3 0.025 0.846 64.224 0.063
4 0.036 0.813 62.561 0.095
5 0.007 0.878 69.646 0.018

3.3. Inferences Obtained from IMAGES Affected with Quasi-Periodic Noise of 16 Frequencies

The inferences obtained from images affected by quasi-periodic noise composed of
16 frequencies using all the trained models are shown in Figure 15, and the 3D reconstruc-
tions are shown in Figure 16.

The profiles obtained from these inferences, the ground-truth image, and the original
image affected by quasi-periodic noise of 16 frequencies are compared and are charted in
Figure 17. The heights are normalized from 0.0 to 1.0 and the x-axis represents pixels.

Figure 15. Cont.

156



Computers 2024, 13, 290

Figure 15. Two-dimensional representation of an object Cat. (a) Image with quasi-periodic noise
produced by projection of a 16-frequency pattern, inference obtained with models trained with
(b) four frequencies, (c) 8 frequencies, (d) 16 frequencies, (e) 32 frequencies, and (f) Multifrequencies.
(g) ground-truth image, and (h) original object.

Figure 16. Three-dimensional representation of an object Cat. (a) Image with quasi-periodic noise
produced by projection of a 16-frequency pattern, inference obtained with models trained with
(b) four frequencies, (c) 8 frequencies, (d) 16 frequencies, (e) 32 frequencies, and (f) Multifrequencies.
(g) ground-truth image, and (h) original object.

Figure 17. Profile comparison of 3D objects.
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The error between the inferences made by the models trained and the ground-truth
image is identified using the PSNR, SSIM, IMMSE, and the MSE Profile between the
inference and the ground-truth image. The measures obtained in images affected by
quasi-periodic noise of 16 frequencies are summarized in Table 5.

Table 5. Measures obtained with model trained with images affected by noise of 16 frequencies.

Inference IMMSE SSIM PSNR MSE (Profile)

1 0.014 0.886 66.517 0.043
2 0.009 0.903 68.549 0.025
3 0.017 0.897 65.771 0.050
4 0.028 0.872 63.609 0.082
5 0.005 0.914 71.465 0.011

3.4. Inferences Obtained from Images Affected with Quasi-Periodic Noise of 32 Frequencies

The inferences obtained from images affected by quasi-periodic noise composed of
32 frequencies using all the trained models are shown in Figure 18, and the 3D reconstruc-
tions are shown in Figure 19.

The profiles obtained from these inferences, the ground-truth image, and the original
image affected by quasi-periodic noise of 32 frequencies are compared and are charted in
Figure 20. The heights are normalized from 0.0 to 1.0 and the x-axis represents pixels.

The error between the inferences made by the models trained and the ground-truth
image is identified using the PSNR, SSIM, IMMSE, and the MSE Profile between the
inference and the ground-truth image. The measures obtained in images affected by
quasi-periodic noise of 32 frequencies are summarized in Table 6.

Figure 18. Two-dimensional representation of an object Cat. (a) Image with quasi-periodic noise
produced by projection of a 32-frequency pattern, inference obtained with models trained with
(b) four frequencies, (c) 8 frequencies, (d) 16 frequencies, (e) 32 frequencies, and (f) Multifrequencies.
(g) ground-truth image, and (h) original object.
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Figure 19. Three-dimensional representation of an object Cat. (a) Image with quasi-periodic noise
produced by projection of a 32-frequency pattern, inference obtained with models trained with
(b) four frequencies, (c) 8 frequencies, (d) 16 frequencies, (e) 32 frequencies, and (f) Multifrequencies.
(g) ground-truth image, and (h) original object.

Figure 20. Profile comparison of 3D objects.

Table 6. Measures obtained with model trained with images affected by noise of 32 frequencies.

Inference IMMSE SSIM PSNR MSE (Profile)

1 0.010 0.905 68.307 0.027
2 0.005 0.923 71.543 0.011
3 0.010 0.922 68.098 0.028
4 0.019 0.901 65.273 0.054
5 0.002 0.927 75.116 0.002

4. Discussion

The inferences obtained from each trained model with a different set of images affected
with quasi-periodic noise of different frequencies show, in every case, a better performance
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when the model is trained with a set that contains images affected with different frequencies
instead of using only a set of images with one frequency. Although an image affected with
quasi-periodic noise of only four frequencies appears to show a better similarity with the
ground-truth image, preserving better details of the object, it is difficult for the trained
models to obtain a better inference in quantitative terms. This is observed in the metrics
shown in the Tables 3–6. In quantitative terms, in the four inferences performed with 4, 8,
16, and 32 fringes, the IMMSE value is reduced in each inference compared to the original
model. In addition, it is observed that the inferences with model 5, which was trained with
multiple frequencies, presented a better performance in the SSIM, PSNR, and MSE (Profile)
metrics, compared to models 1 to 4.

At first glance at the images with quasi-periodic noise, it can be seen that those that
are affected by a lower frequency of such noise lose fewer details of the 3D object. However,
as the number of fringe frequencies in the projected patterns increases, this quasi-periodic
noise decreases, but only in size. It therefore merges and blends with the details of the 3D
object, making it almost impossible to determine what is noise and what is part of the 3D
information. Another effect shown by using a low fringe frequency in the projected patterns
is that the final height of the object inferred by the model better preserves the original height
of the object. This is clearly appreciated in the images that compare the profiles at each
frequency of the projected pattern analyzed, where the inferences represented as model 3
(fringe pattern with 16 frequencies) and model 4 (fringe pattern with 16 frequencies) are
always lower in normalized height.

It is expected that training using images affected by noise of the same frequency may
adequately restore images with similar noise present; however, it was found that perfor-
mance improved when using images affected by other frequencies. Therefore, training
was carried out wherein all the images affected by different frequencies were put together,
achieving better results. Although better results were obtained by generalizing the training
data more by combining affected images with different frequencies, another limitation
was the number of images. By increasing the number of images in the database, it may be
possible to further improve the results obtained.

Generating data using Blender allows us to obtain data in a way that is very similar to
real data. On the one hand, extensive methodologies must be followed, such as calibration
of cameras and objects that do not have restrictions of any kind, while synthetic data
save us time and can be used freely. Since models tend to mimic real-world objects, it is
possible to use them to represent even people or people’s faces roughly, but without the
inconvenience of having to obtain them from real people. Furthermore, one can include
images of objects captured from the real world, and carry out the 3D reconstruction process
at the testing stage.

These results show the difficulty of eliminating the quasi-periodic noise that affects
this particular fringe profilometry method for 3D reconstruction, even when trying with dif-
ferent frequencies. Trying different frequencies was found out that the speed of acquisition
of image by fringe profilometry of 3-step, while less the frequency pattern projected is faster
than with a high frequency. The next research will aim to improve the inferences obtained
by either increasing the number of images in the training set or trying other models of
convolutional neural networks or networks known as GAN.

5. Conclusions

The experiments performed using a set of images affected with quasi-periodic noise
of four different frequencies show how these frequencies affect the 3D object reconstructed
and the results obtained when an inference is generated after training a CNN model with
these images. Quantitative results show better performance when the model is trained with
a set of images that contains, in this case, a quasi-periodic noise pattern of four different
frequencies showing that images affected with a higher frequency are the ones that obtain
a better result and visually show greater similarity with the ground-truth image.
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On the other hand, using a model trained to reduce noise in images obtained in
PSP increases the speed of image pre-processing to obtain a 3D object. Trying different
frequencies to produce images with different kinds of noise helps to create a high variety of
such noise in datasets to train models of CNNs, generating good results both quantitatively
and qualitatively.

Author Contributions: Conceptualization, O.A.E.-B., J.C.P.-O., M.A.A.-F., S.T.-A., J.M.R.-A., and
E.G.-H.; methodology, O.A.E.-B.; software, O.A.E.-B.; validation, J.C.P.-O.; formal analysis, J.C.P.-O.;
investigation, O.A.E.-B.; data curation, O.A.E.-B.; writing—original draft preparation, O.A.E.-B.;
writing—review and editing, J.C.P.-O., M.A.A.-F., S.T.-A., J.M.R.-A., and E.G.-H.; supervision,
J.C.P.-O., M.A.A.-F., S.T.-A., J.M.R.-A., and E.G.-H. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author.

Acknowledgments: This work was supported in part by the Consejo Nacional de Humanidades,
Ciencias y Tecnologías (CONAHCYT), México, in the Postgraduate Faculty of Engineering by the
Universidad Autonoma de Querétaro, under Grant CVU 1099050. We also would like to thank
FONDO PARA EL FORTALECIMIENTO DE LA INVESTIGACIÓN, VINCULACIÓN Y EXTENSIÓN
(FONFIVE-UAQ 2024) for the support of this research.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
MSE Media Square Error
PEARLS Phase Estimation using Adaptive Regularization based on Local Smothing

References

1. Gorthi, S.S.; Rastogi, P. Fringe projection techniques: Whither we are? Opt. Lasers Eng. 2010, 48, 133–140. [CrossRef]
2. Feng, S.; Zuo, C.; Zhang, L.; Tao, T.; Hu, Y.; Yin, W.; Qian, J.; Chen, Q. Calibration of fringe projection pro-filometry: A comparative

review. Opt. Lasers Eng. 2021, 143, 106622. [CrossRef]
3. Hu, Y.; Chen, Q.; Feng, S.; Zuo, C. Microscopic fringe projection profilometry: A review. Opt. Lasers Eng. 2020, 135, 106192.

[CrossRef]
4. Frank Chen, G.M.; Mumin, S. Overview of three-dimensional shape measurement using optical methods. Opt. Eng. 2000, 39,

10–21.
5. Huang, L.; Idir, M.; Zuo, C.; Asundi, A. Review of phase measuring deflectometry. Opt. Lasers Eng. 2018, 107, 247–257. [CrossRef]
6. Chen, C.; Gao, N.; Wang, X.; Zhang, Z.; Gao, F.; Jiang, X. Generic exponential fringe model for alleviating phase error in phase

measuring profilometry. Opt. Lasers Eng. 2018, 110, 179–185. [CrossRef]
7. Land, W.S., II; Zhang, B.; Ziegert, J.; Davies, A. In-situ metrology system for laser powder bed fusion additive process. Procedia

Manuf. 2015, 1, 393–403. [CrossRef]
8. Li, B.; Xu, Z.; Gao, F.; Cao, Y.; Dong, Q. 3D reconstruction of high reflective welding surface based on binocular structured light

stereo vision. Machines 2022, 10, 159. [CrossRef]
9. Sun, B.; Zheng, G.; Zhang, X.; Bai, L. Research on aero-engine blade surface detection based on three datum points integrating

algorithm. AIP Adv. 2020, 10, 075305. [CrossRef]
10. Qian, J.; Feng, S.; Tao, T.; Hu, Y.; Liu, K.; Wu, S.; Chen, Q.; Zuo, C. High-resolution real-time 360 3d model reconstruction of a

handheld object with fringe projection profilometry. Opt. Lett. 2019, 44, 5751–5754. [CrossRef]
11. Song, K.; Hu, S.; Wen, X.; Yan, Y. Fast 3D shape measurement using Fourier transform profilometry without phase unwrapping.

Opt. Lasers Eng. 2016, 84, 74–81. [CrossRef]
12. Jiang, C.; Jia, S.; Xu, Y.; Bao, Q.; Dong, J.; Lian, Q. The application of multi-frequency fringe projection profilometry on the

measurement of biological tissues. Biomed. Mater. Eng. 2015, 26, S395–S403. [CrossRef] [PubMed]

161



Computers 2024, 13, 290

13. Chatterjee, A.; Dhanotia, J.; Bhatia, V.; Prakash, S. Non-destructive 3D profiling of orthopaedic titanium bone plate using fringe
projection profilometry and Fourier transform analysis. In Proceedings of the 2017 6th International Conference on Computer
Applications In Electrical Engineering-Recent Advances (CERA), Roorkee, India, 5–7 October 2017; pp. 389–392.

14. Chatterjee, A.; Singh, P.; Bhatia, V.; Prakash, S. Ear biometrics recognition using laser biospeckled fringe projection profilometry.
Opt. Laser Technol. 2019, 112, 368–378. [CrossRef]

15. Xing, H.Z.; Zhang, Q.B.; Braithwaite, C.H.; Pan, B.; Zhao, J. High-speed photography and digital optical measurement techniques
for geomaterials: Fundamentals and applications. Rock Mech. Rock Eng. 2017, 50, 1611–1659. [CrossRef]

16. Aizenberg, I.N.; Butakoff, C. Frequency domain medianlike filter for periodic and quasi-periodic noise removal. Image Process.
Algorithms Syst. 2002, 4667, 181–191.

17. Espinosa-Bernal, O.A.; Pedraza-Ortega, J.C.; Aceves-Fernández, M.A.; Martínez-Suárez, V.M.; Tovar-Arriaga, S. Adaptive Based
Frequency Domain Filter for Periodic Noise Reduction in Images Acquired by Projection Fringes. In International Congress of
Telematics and Computing; Springer International Publishing: Cham, Switzerland, 2022; pp. 18–32.

18. Aizenberg, I.; Butakoff, C. A windowed Gaussian notch filter for quasi-periodic noise removal. Image Vis. Comput. 2008, 26,
1347–1353. [CrossRef]

19. López-Torres, C.V.; Salazar Colores, S.; Kells, K.; Pedraza-Ortega, J.C.; Ramos-Arreguin, J.M. Improving 3D reconstruction
accuracy in wavelet transform profilometry by reducing shadow effects. IET Image Process. 2020, 14, 310–317. [CrossRef]

20. Wang, J.; Yang, Y. Phase extraction accuracy comparison based on multi-frequency phase-shifting method in fringe projection
profilometry. Measurement 2022, 199, 111525. [CrossRef]

21. Bioucas-Dias, J.; Katkovnik, V.; Astola, J.; Egiazarian, K. Absolute phase estimation: Adaptive local denoising and global
unwrapping. Appl. Opt. 2008, 47, 5358–5369. [CrossRef]

22. Bioucas-Dias, J.M.; Valadao, G. Phase unwrapping via graph cuts. IEEE Trans. Image Process. 2007, 16, 698–709. [CrossRef]
23. Espinosa-Bernal, O.A.; Pedraza-Ortega, J.C.; Aceves-Fernandez, M.A.; Martínez-Suárez, V.M.; Tovar-Arriaga, S.; Ramos-Arreguín,

J.M.; Gorrostieta-Hurtado, E. Quasi/Periodic Noise Reduction in Images Using Modified Multiresolution-Convolutional Neural
Networks for 3D Object Reconstructions and Comparison with Other Convolutional Neural Network Models. Computers 2024,
13, 145. [CrossRef]

24. Qian, J.; Feng, S.; Tao, T.; Hu, Y.; Li, Y.; Chen, Q.; Zuo, C. Deep-learning-enabled geometric constraints and phase unwrapping for
single-shot absolute 3D shape measurement. APL Photonics 2020, 5, 046105. [CrossRef]

25. Alvarado Escoto, L.A.; Ortega, J.C.P.; Ramos Arreguin, J.M.; Gorrostieta Hurtado, E.; Tovar Arriaga, S. The effect of bilateral
filtering in 3D reconstruction using PSP. In Telematics and Computing, Proceedings of the 9th International Congress, WITCOM
2020, Puerto Vallarta, Mexico, 2–6 November 2020; Proceedings 9; Springer International Publishing: Cham, Switzerland, 2020;
pp. 268–280.

26. Chollet, F. Deep Learning with Python; Manning Publications: Shelter Island, NY, USA, 2020.
27. Dhiman, P.; Kaur, A.; Balasaraswathi, V.R.; Gulzar, Y.; Alwan, A.A.; Hamid, Y. Image acquisition, preprocessing and classification

of citrus fruit diseases: A systematic literature review. Sustainability 2023, 15, 9643. [CrossRef]
28. Alkhatib, M.Q.; Al-Saad, M.; Aburaed, N.; Almansoori, S.; Zabalza, J.; Marshall, S.; Al-Ahmad, H. Tri-CNN: A three branch

model for hyperspectral image classification. Remote Sens. 2023, 15, 316. [CrossRef]
29. Yuan, F.; Zhang, Z.; Fang, Z. An effective CNN and Transformer complementary network for medical image segmentation.

Pattern Recognit. 2023, 136, 109228. [CrossRef]
30. Nasreen, G.; Haneef, K.; Tamoor, M.; Irshad, A. A comparative study of state-of-the-art skin image segmentation techniques with

CNN. Multimed. Tools Appl. 2023, 82, 10921–10942. [CrossRef]
31. Ali, A.M.; Benjdira, B.; Koubaa, A.; El-Shafai, W.; Khan, Z.; Boulila, W. Vision transformers in image restoration: A survey. Sensors

2023, 23, 2385. [CrossRef]
32. Wang, Q.; Li, Z.; Zhang, S.; Chi, N.; Dai, Q. A versatile Wavelet-Enhanced CNN-Transformer for improved fluorescence

microscopy image restoration. Neural Netw. 2024, 170, 227–241. [CrossRef]
33. Shah, A.; Shah, M.; Pandya, A.; Sushra, R.; Sushra, R.; Mehta, M.; Patel, K.; Patel, K. A comprehensive study on skin cancer

detection using artificial neural network (ANN) and convolutional neural net-work (CNN). Clin. eHealth 2023, 6, 76-84. [CrossRef]
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Abstract: This article emphasises the urgent need for appropriate communication tools for communi-
ties of people who are deaf or hard-of-hearing, with a specific emphasis on Arabic Sign Language
(ArSL). In this study, we use long short-term memory (LSTM) models in conjunction with MediaPipe
to reduce the barriers to effective communication and social integration for deaf communities. The
model design incorporates LSTM units and an attention mechanism to handle the input sequences of
extracted keypoints from recorded gestures. The attention layer selectively directs its focus toward
relevant segments of the input sequence, whereas the LSTM layer handles temporal relationships
and encodes the sequential data. A comprehensive dataset comprised of fifty frequently used words
and numbers in ArSL was collected for developing the recognition model. This dataset comprises
many instances of gestures recorded by five volunteers. The results of the experiment support the
effectiveness of the proposed approach, as the model achieved accuracies of more than 85% (individ-
ual volunteers) and 83% (combined data). The high level of precision emphasises the potential of
artificial intelligence-powered translation software to improve effective communication for people
with hearing impairments and to enable them to interact with the larger community more easily.

Keywords: deaf communication; sign language recognition; dynamic hand gestures; deep learning; LSTM
networks; attention mechanism; MediaPipe framework; human–computer interaction; multimodal
integration; assistive technology

1. Introduction

People with hearing loss and speech impairments are deprived of effective contact
with the rest of the community. According to the statistics of the International Federation
of the Deaf and the World Health Organisation (WHO), more than 5% of people around
the world are deaf and have severe difficulties communicating with those without hearing
impairments, which means approximately 360 million people. Deaf individuals use another
method to communicate instead of speech called sign language (SL) [1]. SL facilitates com-
munication between the deaf community and people who are either deaf or nondisabled.
SL is a visual communication system that encompasses both manual elements, such as
hand gestures, and nonmanual elements, such as facial emotions and body movements [2].
SL is a complicated style of communication based mostly on hand gestures. These gestures
are formed by different components, such as hand shape, hand motion, hand location, palm
orientation, the movement of the lips, facial expressions, and points of contact between
the hands or between the hands and other parts of the body, to express words, letters,
and numbers.

Many sign languages exist in the deaf community, roughly one per country, which
vary as much as spoken languages [3], e.g., Arabic Sign Language (ArSL), American Sign
Language (ASL), British Sign Language (BSL), Australian Sign Language (Auslan), French
Sign Language (LSF), Japanese Sign Language (JSL), Chinese Sign Language (CSL), German
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Sign Language (DGS), Spanish Sign Language (LSE), Italian Sign Language (LIS), Brazilian
Sign Language (LIBRAS), and Indian Sign Language, among others. Sign languages vary in
lexicon, grammar, phonology, gesture form, and nonmanual elements, as do alphabets and
words. Each language has its own unique features and regional variations, which reflect the
diverse cultural and linguistic backgrounds of deaf communities worldwide. This diversity
adds another difficulty, which is the lack of a unified sign language that serves universally
as a vital means of communication and cultural expression for deaf individuals. Therefore,
translating SL is indeed a necessary solution to bridge communication gaps between deaf
and hearing individuals [4,5]. The development of automatic sign language translation
systems reduces the reliance on human interpreters, lowers communication barriers, and
promotes social inclusion in the deaf community. Hand gesture recognition is essential for
automatic sign language translation systems. Researchers are increasingly interested in
hand gesture recognition to solve communication challenges for deaf individuals, along
with advances in gesture-controlled gadgets, gaming, and assistive technology [6].

Sign language recognition (SLR) systems focus on recognising and understanding
sign language gestures and translating them into text or speech [7,8]. SLR systems typically
involve artificial intelligence techniques to recognise and interpret the movements and
forms of hands, fingers, and other relevant body parts used in SL. Several studies on sign
language recognition (SLR) have attempted to bridge the communication gap between
deaf and hearing individuals by eliminating the need for interpreters. However, sign
language recognition systems have several obstacles, including a low accuracy, complex
movements, a lack of large and full datasets containing various signals, and the models’
inability to analyse them appropriately. Additionally, there are distinct indicators for each
language [4,9,10].

This study proposes a deep learning (DL)-based model that leverages MediaPipe
alongside RNN models to address the issues of dynamic sign language recognition. Medi-
aPipe generates keypoints from hands and faces to detect position, form, and orientation,
while LSTM models recognise dynamic gesture movements. Additionally, we introduce a
new Arabic Sign Language dataset that focuses on dynamic gestures, as existing datasets
predominantly feature static gestures in ArSL. In contrast, sensor-based solutions such as
glove usage are expensive and impractical for everyday use due to power requirements and
user annoyance. As a result, we abandoned this approach in favour of a more cost-effective
approach involving the use of smartphone cameras to acquire data. The contributions of
this study can be summarised as follows:

1. The DArSL50 dataset is a large-scale dataset comprised of 50 dynamic gestures in
Arabic Sign Language (ArSL), including words and numbers, resulting in a total of
7500 video samples. This extensive dataset addresses the lack of sufficient data for
dynamic gestures in ArSL and supports the development and evaluation of robust
sign language recognition systems.

2. The proposed model leverages long short-term memory (LSTM) units with an atten-
tion mechanism combined with MediaPipe for keypoint extraction. This architecture
effectively handles the temporal dynamics of gestures and focuses on relevant seg-
ments of input sequences.

3. The model’s performance was evaluated in the following two scenarios: individual
volunteer data and combined data from multiple volunteers. This dual evaluation
approach ensures that the model is tested for its ability to generalise across different
individuals and in different signing styles.

4. The proposed framework is validated for real-time performance.

The rest of this paper is organised as follows. Section 2 describes the methodology of
the proposed ArSL recognition system and includes details about the DArSL 50 dataset. The
experimental results are reported in Section 3, while an explanation of the results is presented
in Section 4. Section 6 concludes the discussion and outlines future research directions.
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The following two categories of sign language recognition systems can be distin-
guished according to the method used for data collection in the academic literature: sensor-
based and vision-based [11], as shown in Figure 1.
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Figure 1. Sign language recognition approaches.

In the sensor-based method, sensors and equipment are used to collect the position,
hand motion, wrist orientation, and velocity. Flex sensors, for instance, are used to measure
finger movements. The inertial measurement unit (IMU) measures the acceleration of
the fingers using a gyroscope and an accelerometer. The IMU is also used to detect wrist
orientation. Wi-Fi and radar detect variations in the intensity of communications in the
air using electromagnetic indicators. Electromyography (EMG) identifies finger mobility
by measuring the electrical pulse in human muscles and then decreasing the biosignal.
Other devices include haptic, mechanical, electromagnetic, ultrasonic, and flex sensors [12].
Sensor-based systems have an important advantage over vision-based systems, since gloves
can rapidly communicate data to computers [13]. The device-based sensors (Microsoft
Kinect sensor, Leap Motion Controller, and electronic gloves) can directly extract features
without preprocessing, which means that the device-based sensors can minimise the time
needed to prepare sign language datasets, data can be obtained directly, and a good
accuracy rate can be achieved in comparison with vision-based devices [14]. Figure 2
demonstrates the primary phases of the SL gesture data collection and detection utilising
the sensor-based system. The sensor-based approach has the issue of requiring the end-user
to have a physical connection to the computer, making it unsuitable. Furthermore, it is
expensive due to the use of sensitive gloves [13]. Despite the accuracy of the data that may
be obtained from these devices, whether they wear gloves or are coupled to a computer,
gadgets such as a Leap Motion or Microsoft Kinect device remain unpleasant [14].

Another option is the vision-based approach, which involves using a video camera to
capture hand gestures. This gesture-detection solution combines appearance information
with a 3D hand model. Key gesture capture technology in a vision-based technique was
developed in Ref. [13]. Body markers such as colourful gloves, wristbands, and LED lights
were used in this study, as well as active light projection systems that make use of the Kinect:
Manufactured by Microsoft Corporation, Redmond, WA, USA. and Leap Motion Controller
(LMC): Manufactured by Ultraleap Inc., San Francisco, CA, USA). A single camera might
be employed with a smartphone camera, a webcam, or a video camera, as well as stereo
cameras, which deliver rich information by using numerous monocular cameras. The
primary benefit of employing a camera is that it removes the need for sensors in sensory
gloves, lowering the system’s manufacturing costs. Cameras are fairly inexpensive, and
most laptops employ a high-specification camera due to the blurring effect of a webcam [13].
A simplified representation of the camera vision-based method for extracting and detecting
hand movements is shown in Figure 3.
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Figure 2. The main phases of recognising the SL gesture data using a sensor-based system [13].

Figure 3. The procedure of vision-based sign language recognition [13].

In the literature, many SLR systems use traditional machine learning algorithms to clas-
sify the features of images to recognise SL gestures. In addition, the former uses traditional
image segmentation algorithms to segment hand shapes from sign language images or
the video frames of sign language video and then uses a machine-learning approach (such
as SVM, HMM, or the k-NN algorithm). Using traditional machine learning algorithms
has disadvantages related to handicraft features, which have a limited representational
capability. It is difficult to extract representative semantic information from complex mate-
rial, and step-by-step gesture recognition performs poorly in real-time. Other researchers
have used deep neural networks to detect and recognise the gestures of SL. Deep neural
network models such as CNNs, RNNs, GRUs, long short-term memory (LSTM), and bidi-
rectional long short-term memory (LSTM) networks are used to address the issue of frame
dependency in sign movement. These models employ an object-detection neural network
to learn the video frame’s features, allowing it to find the hand while also classifying the
movements. Compared to traditional image processing and machine learning algorithms,
deep neural network-based target detection networks frequently achieve a higher accuracy
and recognition speed, as well as better real-time performance, and have become the main-
stream method of dynamic target detection. The advantage of deep learning is its ability to
automatically learn data representations directly from raw inputs. Deep learning models
can autonomously extract features and patterns from complex datasets without the need
for manual feature engineering [15].
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SLR studies can also be divided into static sign language recognition and dynamic
sign language recognition. The former performs gesture recognition by judging the hand
posture, and it does not contain dynamic information. The latter contains hand movements
and performs gesture recognition based on the video sequence, which is essentially a
classification problem. Dynamic sign language recognition is much more difficult to
implement than static sign language recognition, but it is more meaningful and valuable.

The following presents a review of SLR studies, including methods and datasets. In
Ref. [16], a recognition system was utilised as a communication tool between those who
are hearing-challenged and others who are not. This work describes the first automatic
Arabic Sign Language (ArSL) recognition system using hidden Markov models (HMMs).
A vast number of samples were utilised to identify 30 isolated terms from the standard
Arabic Sign Language. The recognition accuracy of the system was between 90.6 and
98.1%. In Ref. [17], ArSL was based on the hidden Markov model (HMM). They collected
a large dataset to detect 20 isolated phrases from the genuine recordings of deaf persons
in various clothing and skin hues, and they obtained a recognition rate of approximately
82.22%. In Ref. [18], the authors presented an ArSL recognition system. The scope of this
study includes the identification of static and dynamic word gestures. This study provides
an innovative approach for dealing with posture fluctuations in 3D object identification.
This approach generates picture features using a pulse-coupled neural network (PCNN)
from two separate viewing angles. The proposed approach achieved a 96% recognition
accuracy. Ref. [19] provided an automated visual SLRS that converted solitary Arabic word
signals to text. The proposed system consisted of the following four basic stages: hand
segmentation, tracking, feature extraction, and classification. A dataset of 30 isolated words
used in the everyday school lives of hearing-challenged students was created to evaluate
the proposed method, with 83% of the words having varied occlusion conditions. The
experimental findings showed that the proposed system had a 97% identification rate in
the signer-independent mode. Ref. [20] presented a framework for the field of Arabic Sign
Language recognition. A feature extractor with deep behaviour was utilised to address the
tiny intricacies of Arabic Sign Language. A 3D convolutional neural network (CNN) was
utilised to detect 25 motions from the Arabic Sign Language vocabulary. The recognition
system was used to obtain data from depth maps using two cameras. The system obtained
a 98% accuracy for the observed data, but the for fresh data, the average accuracy was
85%. The results might be enhanced by including more data from various signers. In
Ref. [21], a computational mechanism was described that allowed an intelligent translator
to recognise the separate dynamic motions of ArSL. The authors utilised ArSL’s 100-sign
vocabulary and 1500 video clips to represent these signs. These signs included static signs
such as alphabets, numbers ranging from 1 to 10, and dynamic words. Experiments were
carried out on our own ArSL dataset, and the matching between ArSL and Arabic text
was evaluated using Euclidian distance. The suggested way to automatically find and
translate single dynamic ArSL gestures was tested and found to work well and correctly.
The test findings revealed that the proposed system can detect signs with a 95.8% accuracy.
In Ref. [4], the authors generated a video-based Arabic Sign Language dataset with 20
signs generated by 72 signers and suggested a deep learning architecture based on CNN
and RNN models. The authors separated the data preprocessing into three stages. In
the first stage, the proportions of each frame decreased to reach a lower total complexity.
In the second stage, they sent the result to a code that subtracted every two consecutive
frames to determine the motion between them. Finally, in the third stage, the attributes
of each class were merged to produce 30 frames, with each unified frame combining 3
frames. The goal of stage three was to decrease the duplication while not losing any
information. The primary idea behind the proposed architecture was to train two distinct
CNNs independently for feature extraction, then concatenate the output into a single vector
and transmit it to an RNN for classification. The proposed model scored 98% and 92%
on the validation and testing subsets of the specified dataset, respectively. Furthermore,
they attained promising accuracies of 93.40% and 98.80% on the top one and top five
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rankings of the UFC-101 dataset, respectively. The study by Ref. [22] provides a computer
application for translating Iraqi Sign Language into Arabic (text). The translation process
began with the capture of videos to create the dataset (41 words). The proposed system
then employed a convolutional neural network (CNN) to categorise the sign language
based on its attributes to infer the meaning of the signs. The proposed system’s section
that translates the sign language into Arabic text had an accuracy rate of 99% for the sign
words.

Research on Arabic Sign Language recognition lacks common datasets available for
researchers. Despite the publication of two volumes of “A Unified Arabic Sign Language
Dictionary” in 2008, researchers in this field continue to face a lack of large-scale datasets.
As such, each researcher needed to create a sufficiently large dataset to develop the ArSL
recognition systems. Therefore, this study endeavoured to create a comprehensive dataset
that was explicitly tailored for Arabic Sign Language recognition. Subsequently, this
dataset serves as the foundation for the development of an accurate Arabic Sign Language
recognition system capable of recognising the dynamic gestures inherent in ArSL.

2. Materials and Methods

The suggested system for recognising dynamic hand gestures uses keypoints that
have been extracted. It is a neural network model that is constructed for learning from one
sequence to another. Figure 4 depicts the primary phases of the proposed framework for
recognising the dynamic gestures of Arab Sign Language.

 

Figure 4. The proposed sign language recognition framework for dynamic Arabic gestures.
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The model architecture incorporates both long short-term memory (LSTM) units and
an attention mechanism. The model received a series of extracted keypoints from recorded
gestures that indicate hand spatial configurations in a frame. The LSTM layer is responsible
for processing the input sequence, identifying the temporal dependencies, and encoding
the sequential information in its output sequence. The LSTM output sequence was also
improved with an attention layer that allows the model to focus on different parts of the
input sequence based on how relevant they are to the task at hand. The incorporation of
this attention mechanism enhanced the ability of the model to recognise significant temporal
patterns and spatial configurations within the sequences of gestures. Ultimately, the output
layer generates a probability distribution over the potential classes of hand gestures, enabling
the model to categorise the input sequences into predetermined gesture categories.

Anaconda Navigator (Anaconda3) and the free Jupyter Notebook Version 6.4.3 en-
vironment service were used to create the framework software package for the selected
models. By utilising the Open-Source Computer Vision Library (OpenCV) Version 4.5.3, a
specialised photo and video processing library that enables a wide range of tasks, including
image analysis, facial recognition, and the identification of sign language gestures, along
with the Mediapipe library, which extracts information from multimedia and which is the
main tool for tracking motion and video analysis, the MP-holistic model was put into action
along with some drawing functions. A dataset was recorded and gathered in which the
volunteer represented all of the gestures by recording 30 videos of 30 frames each. The next
stage was the conversion of frameworks from BGR to RGB colour coordination, because
MediaPipe prefers RGB and Open CV coordination prefers BGR colour coordination. For
the application of an activated model in each framework and the extraction of keypoint val-
ues, we created subvolumes under a major folder to store video clips for each class, where
a separate folder was created for each class and each video under this volume, and these
data were the data used to train the learning model to classify these classes. The dataset
was collected and recorded using a webcam, and analysed using the MediaPipe model.
The volunteer had to follow the criteria, which will be mentioned later, and then perform
them. The key values discovered from the multimedia library’s total model were extracted
and stored for training. Then, we started the pretreatment phase, which involved labelling
each class. A label was used to convert the correct name into a binary representation. For
example, in our search for 50 classes of (0–49), Class 1 will become [0, 1, 0] and Class 2
will become [1, 0, 0]. A sequential neural network model comprising LSTM layers and
fully linked layers was constructed for the classification. The training approach involved
utilising data and the “Adam” algorithm to optimise the weight parameters, while the
“categorical_crossentropy” function was employed to compute the loss during training.
The term “categorical accuracy” refers to the correctness of the categorisation and served
as a metric for evaluating the model’s performance. The subsequent step involved saving
the model, which could then be employed to recover the model and make predictions or to
conduct the training. The last phase involved evaluating and using the confusion matrix,
accuracy, and classification energy.

2.1. Dataset

In recent years, there has been tremendous development in the field of deep learning
algorithms in artificial intelligence (AI). The success of AI applications depends on the qual-
ity and quantity of training and testing data. To improve AI systems, vast datasets must be
collected and used. As far as we are aware, there is a lack of sufficient datasets for dynamic
signals in Arabic Sign Language, which impedes the progress of recognition systems. Thus,
it is crucial to create a large-scale dataset for dynamic signals in Arabic Sign Language.
Accordingly, we created a DArSL50 dataset with a wide range of Arabic Sign Language
dynamic motions. The DArSL50 dataset is comprised of 50 Arabic gestures representing
44 words and 6 digits. Each gesture was recorded by five participants. We selected signs
from two dictionaries, “����� �� 	
��� 
��� ���� 
� 	�� ����
�” (Sign Language Dictionary for Deaf

Children) and “���� ���� �� ��
���� ����
�” (The Arabic Sign Language Dictionary for the Deaf).
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Figure 5 displays a segment of the sign language database, which includes 50 dynamic
signals in the Arabic Sign Language (ArSL) database. Five volunteers recorded each sign,
with each participant performing each sign 30 times. Hence, the aggregate number of
videos reached 7500, which was calculated by multiplying 50 by 5 and then by 30. The
Video Capture function in OpenCV enabled the collection of data, which were then saved
in NumPy format for further analysis.

Figure 5. Images from the ArSL Words and Numbers dataset, which includes the lexicon for sign
language for children that are deaf and the Arabic Sign Language Dictionary.
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To collect the dataset, a series of processes were carried out. Initially, a collaboration
was formed with the Deaf Centre, ensuring access to resources and specialised knowledge
in Arabic Sign Language. Two dictionaries were examined to understand the signs. This
study focused on 50 frequently used words and numbers, with a particular emphasis on
those that may be expressed using only the right hand for the sake of simplicity. A group
of volunteers was enlisted to imitate the signs, with each sign being replicated 30 times to
capture variations. Data collection involved recording videos using a laptop camera, while
the OpenCV program analysed the video clips by extracting important characteristics and
preparing the data for additional analysis. This meticulous approach resulted in the creation
of a complete and representative dataset for the study of ArSL signs. Volunteers of diverse
demographics participated without limitations, ensuring inclusivity and diversity within the
dataset. In addition, it is important to guarantee that the volunteer’s body and all of their
movements fit within the camera frame. A consistent and unchanging background setting
should be ensured, with a particular emphasis on capturing volunteers’ hands and faces.
A robust camera tripod was used to generate crisp and dependable video recordings. In
addition, it is advisable to establish the duration and frame count of the clip before recording,
and to strive for a resolution of 640 × 480 or greater to achieve the best possible quality.

2.2. Feature Extraction Using MediaPipe

Google created MediaPipe, an open-source framework that allows developers to build
multimodal (video, audio, and time-series data) cross-platform applied ML pipelines.
MediaPipe contains a wide range of human body identification and tracking algorithms
that were trained using Google’s massive and diverse dataset. As the skeleton of the
nodes and edges, or landmarks, they track keypoints on different parts of the body. All
of the coordinated points are three-dimensionally normalised. Models built by Google
developers using TensorFlow lite facilitate the flow of information that is easily adaptable
and modifiable via graphs [23]. Sign language is based on hand gestures and stance
estimation, yet the recognition of dynamic gestures and faces presents several challenges
as a result of the continual movement. The challenges involved recognising the hands and
establishing their form and orientation. MediaPipe was used to address these issues. It
extracts the keypoints for the three dimensions of X, Y, and Z for both hands and estimates
the postures for each frame. The pose estimation approach was used to forecast and track
the hand’s position relative to the body. The output of the MediaPipe architecture was a
list of keypoints for hand and posture estimation. MediaPipe extracted 21 keypoints for
each hand [24], as shown in Figure 6. The keypoints were determined in three dimensions,
X, Y, and Z, for each hand. Therefore, the number of extracted keypoints for the hands is
determined as follows [25]:

keypoints in hand × Three dimensions × No. of hands = (21 × 3 × 2) = 126 keypoints.

For the pose estimation, MediaPipe extracted 33 keypoints [26], as shown in Figure 7.
They were calculated in three dimensions (X, Y, and Z), in addition to the visibility. The
visibility value indicates whether a point is visible or concealed (occluded by another
body component) in a frame. Thus, the total number of keypoints extracted from the pose
estimate is computed as follows [27]:

keypoints in pose × (Three dimensions + Visibility) = (33 × (3 + 1)) = 132 keypoints.

For the face, MediaPipe extracted 468 keypoints [28], as shown in Figure 8. Lines
linking landmarks define the contours around the face, eyes, lips, and brows, while dots
symbolise the 468 landmarks. They were computed in three dimensions (X, Y, and Z). Thus,
the number of retrieved keypoints from the face is computed as follows:

Key points in face × Three dimensions = (468 × 3) = 1404 keypoints.
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Figure 6. A total of 21 keypoints for the hand.

Figure 7. A total of 33 keypoints for the pose.

Figure 8. A total of 468 keypoints for the face.

The total number of keypoints for each frame was determined by summing the number
of keypoints in the hands, the pose, and the face. This calculation resulted in a total of
1662 keypoints. Figure 9 displays the keypoints retrieved from a sample of frames.
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Figure 9. Keypoints that were extracted from a sample of frames.

2.3. Model

To process the dynamic gestures, data were represented as a series of frames, with each
frame containing a collection of values representing the features of the hand posture in that
frame. A recurrent neural network, specifically long short-term memory (LSTM), was used
to process the resulting set of frames. LSTM is a well-known tool for encoding time series
by extracting latent sign language expressions [29]. The model used in this study combines
LSTM units with an attention mechanism. The model structure comprises the following
three primary layers: an LSTM layer, an attention mechanism layer, and an output layer.
The LSTM layer consists of 64 units, which contribute the most parameters to the model
because of its recurring nature and the related parameters for each unit. The attention
mechanism layer introduces a limited number of parameters, consisting of 10 units that
govern the attention weights. The output layer, which is responsible for predicting the
hand gesture classes, has a set of parameters that are dictated by the size of the context
vector generated by the attention mechanism and the number of classes that need to be
predicted. In total, the model consists of 89,771 parameters, with the LSTM layer accounting
for the largest proportion. This architecture was specifically designed to efficiently handle
sequential data, exploit temporal relationships, and dynamically prioritise essential sections
of the input sequence, ultimately facilitating precise hand motion detection. The choice of
the optimal parameter was pivotal for building these layers. Table 1 displays the utilised
model parameters. During the use of the model, the parameters of each layer can be
modified by picking values from Table 1 in preparation for the training phase.

Table 1. Model layer parameters.

Parameters Value

Model LSTM

Number of Nodes 64

Input Shape (timesteps, 1662)

Attention Units 10

Activation ‘softmax’

Optimiser ‘adam’

Epochs 40

The choice of 64 hidden units and the specific activation function (ReLU) was based
on preliminary experiments and established practices in similar research domains. An
LSTM model with 64 hidden nodes was used to balance the model complexity and compu-
tational performance. We wanted a model that could learn complex data patterns without
overfitting, which may occur with large networks. Experiments showed that 10 attention
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units offered enough attentional concentration without too much of a processing bur-
den. We used ‘SoftMax’ for the activation function because it is common for classification
tasks, especially multiclass problems. The LSTM model underwent training for a total of
40 epochs, with early stopping based on validation loss to prevent overfitting. The models’
inputs include the sequence length and total number of keypoints. The sequence length
is the number of frames contained in each clip. The total number of keypoints was 1662.
At this point, the model is ready to accept the dataset and begin the training phase using
the sequence of keypoints collected. Thus, the sign movement was examined and a hand
gesture label could be used. As a result, DArSL-50 could be accurately detected.

2.4. Experiments

This research collected data from five participants, resulting in two separate scenar-
ios. The first scenario involved creating the model by using the data from each volunteer
separately. In the second scenario, the data gathered from the volunteers were combined,
and then the suggested model was implemented. In Scenario 1, the dataset comprised
data from five volunteers, with each volunteer contributing 1500 data points. For the
training set, 1125 data points were selected, representing 75% of the total data, ensur-
ing a comprehensive representation of the variability within the dataset. The remaining
375 data points were allocated to the testing set, representing 25% of the total data. This
subset was reserved for evaluating the performance and generalizability of the trained
models, as shown in Table 2.

Table 2. Data size, training set, and test set for each volunteer.

Number of Volunteers Dataset Size Train Test Size Test

One volunteer 1500 1125 375 0.25

In Scenario 2, four datasets were generated by combining the volunteer data. Data-
I was composed of data collected from two volunteers, resulting in 3000 data points.
Subsequently, Data-II, Data-III, and Data-V were formed by merging the data from three,
four, and five volunteers, resulting in dataset sizes of 4500, 6000, and 7500 data points,
respectively. To evaluate the proposed model, the dataset was partitioned into training
and testing sets using a split ratio of 75–25 respectively. As a result, the training set
consisted of 3375, 4500, and 5625 data points, while the testing set contained 1125, 1500, and
1875 data points for the datasets with three, four, and five volunteers, respectively, as shown
in Table 3.

Table 3. Data size, training set, and test set for Scenario 2.

Dataset Number of Volunteers Dataset Size Train Size Test Size

Data-I Two volunteers 3000 2250 750

Data-II Three volunteers 4500 3375 1125

Data-III Four volunteers 6000 4500 1500

Data-IV Five volunteers 7500 5625 1875

The objective of integrating the dataset with data from numerous individuals was
to improve the reliability and applicability of the trained models across a wide variety of
signers and signing styles. By integrating the data from several individuals, the models
were enhanced to effectively manage variances in gestures and signing styles, resulting in
enhanced performance in real-world applications. This training and testing technique al-
lowed for a thorough assessment and validation of the models, ensuring their dependability
and efficacy in different settings and populations.
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2.5. Evaluation Metrics

Evaluation metrics, such as the accuracy, precision, recall, and F1 score, are commonly
used to evaluate the performance of classification models. These metrics provide crucial
information about how well the model is doing and where it may require improvement.

Accuracy is the most commonly used simple metric for classification. It represents the
ratio of the number of correctly classified predictions to the total number of predictions. A
high level of accuracy indicates that the model is making correct predictions overall. The
accuracy was calculated using Equation (1), as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision measures the proportion of true positive predictions among all positive
predictions.

Interpretation: A high precision indicates that, when the model predicts a positive
class, it is likely to be correct. The precision is calculated using Equation (2), as follows:

Precision =
TP

TP + FP
(2)

Recall measures the proportion of true positive predictions among all actual posi-
tive instances.

Interpretation: A high recall indicates that the model can identify most of the positive
instances. The recall is calculated using Equation (3), as follows:

Recall =
TP

TP + FN
(3)

The F1 score is the harmonic mean of the precision and recall, providing a balanced
measure between the two metrics. The F1 score considers both the precision and recall,
making it suitable for imbalanced datasets where one class dominates. The F1 score is
calculated using Equation (4), as follows:

F1− Score =
(2× Precision × Recall )
( Precision + Recall )

(4)

where:
The number of true positives (TPs) is the number of positive class samples correctly

classified by a model. True negatives (TNs) are the number of negative class samples correctly
classified by a model. False positives (FPs) are the number of negative class samples that were
predicted (incorrectly) to be of the positive class by the model. False negatives (FNs) are the
number of positive class samples that were predicted (incorrectly) to be of the negative class
by the model. The classification report provides the accuracy, recall, and F1 score for each
class, as well as the overall metrics. The assessment measures were used to determine how
well the trained models performed on the testing datasets. This showed how well, accurately,
and consistently they could recognise Arabic Sign Language gestures.

3. Results

The studies were carried out on a PC with an Intel(R) Core (TM) i7-10750H CPU
operating at a base frequency of 2.60 GHz, which has 12 cores and 16,384 MB of RAM. The
framework was developed using the Python programming language. The source code
for this study may be accessed at the following URL: https://drive.google.com/file/d/
1FcXudNQqXb_IzehsdMWb0tSBplcq-8LJ/view?usp=sharing (accessed on 10 June 2024).
The dataset was gathered by a team of five volunteers, including a total of
50 distinct categories. Every participant captured recordings for the dataset consisting of
50 classes, and the outcomes were examined using the DArSL50 dataset. The DArSL50
dataset was divided randomly, with 75% used for training and 25% used for testing in the
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experiment. The performance criteria, such as the accuracy, precision, recall, and F1 score,
were assessed under different situations to evaluate the functioning of the suggested system.
In the first scenario, we evaluated the classification model with a dataset that included five
participants’ recordings; each participant provided 1500 data points. A training set was
created from 1125 data points (representing 75% of the total), and a testing set was created
from 375 data points (representing 25% of the total). Table 4 indicates the performance
metrics obtained for each volunteer in Scenario 1.

Table 4. Results for Scenario 1.

Volunteer Accuracy Precision Recall F1 Score

Volunteer1 0.82 0.84 0.81 0.80

Volunteer2 0.83 0.83 0.83 0.82

Volunteer3 0.85 0.86 0.85 0.83

Volunteer4 0.83 0.84 0.85 0.83

Volunteer5 0.84 0.84 0.83 0.82

The data presented in Table 4 indicate that the third volunteer achieved the highest
accuracy, approximately 85%, while the first volunteer achieved the lowest accuracy, ap-
proximately 82%. Nevertheless, the dataset’s accuracy ratio for all volunteers was highly
similar, indicating a highly effective discrimination mechanism for each individual. The
results of Scenario 1 provide valuable insights into the model’s efficacy in categorising
hand movements using the given dataset. Through the evaluation of parameters such
as accuracy, precision, recall, and the F1 score, we can determine the model’s ability to
generalise across various volunteers and accurately recognise gestures. The model’s high
accuracy, precision, recall, and F1 score demonstrate its effectiveness in recognising hand
gestures from varied recordings. This indicates that the model is resilient and generalisable
across multiple volunteers and signing styles. Table 5 shows the findings of Scenario 2,
which included experiments to recognise dynamic hand gestures for four datasets. These
datasets represent a combination of volunteer data.

Table 5. The proposed framework results for Scenario 2.

Dataset Accuracy Precision Recall F1 Score

Data-I 0.83 0.83 0.83 0.82

Data-II 0.82 0.83 0.83 0.82

Data-III 0.80 0.82 0.80 0.80

Data-IV 0.80 0.82 0.80 0.80

The results presented in Table 5 indicate that the highest level of accuracy, reaching
83%, was achieved by Data-I, which represents the combined data of two participants.
However, Data-III and Data-IV achieved the minimum accuracy, which was approximately
80%. The accuracy of the four experiments varied between 83% and 80%, which is near
and relevant in terms of the precision and recall. The F1 score, a metric that combines
precision and recall using the harmonic mean, provides a well-balanced evaluation of the
models’ overall performance, with scores ranging from 0.82 to 0.80. By analysing Table 5,
it is clear that the best accuracy ever achieved after the merger of volunteers is almost
very close to the accuracy of the merger of the five volunteers, which suggests that the
system is good with discrimination and has a strong impact, depending on the multiple
people and the magnitude of the dataset. Overall, the models had good precision and
recall scores, indicating that they could make accurate predictions and successfully detect
positive events. These results show that the trained models are effective at recognising
Arabic Sign Language. Compared to Data-IV, Table 6 shows the performance metrics
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(precision, recall, and the F1 score) for recognising 50 different types of ArSL gestures.
Every row represents a particular class, and the metrics indicate the model’s performance
in accurately differentiating between gestures of that class.

Table 6. Results for the scenarios with classification reports for each class of Scenario 5.

Class Label Dynamic Arabic Gesture
English
Meaning

Precision Recall F1 Score

0 ���� Cough 0.71 0.75 0.73

1 �� 	� Common
cold 0.84 0.82 0.83

2 
�!�"# Measles 0.88 0.93 0.90

3 ��$� Be seen 0.73 0.84 0.78

4 %&'� Blind 0.83 0.67 0.74

5 �
(
���� Head 0.97 0.92 0.94

6 )*
!+,�
Takes a
shower 1.00 0.97 0.99

7 	-� 	!�� 
�� ��� 	� Cleaning
teeth 0.79 0.98 0.87

8 ���.,� Smell 0.86 0.65 0.68

9 / 
(
�$� Eat 0.69 0.81 0.75

10 0� �1�.,� Drink 0.76 0.77 0.76

11 	-�!� 	" 	' Anger 0.97 0.92 0.95

12 	-�'�#� Hungry 0.97 0.85 0.90

13 �$� � The father 0.97 0.88 0.92

14 �� The mother 0.90 0.72 0.80

15 23�
The
grandfather 0.86 1.00 0.92

16 
�23�
The
grandmother 0.91 0.94 0.93

17 
��� 	3 The uncle 0.96 0.72 0.83

18 � 	$ � I 0.87 0.84 0.85

19 )4 They 0.92 0.77 0.84

20 � 	!56� Our 0.92 0.87 0.89

21 �
��10 Ten number 0.71 0.75 0.73

22 �
��11
Eleven
number 0.81 0.65 0.65

23 �
��12
Twelve
number 0.65 0.65 0.67

24 �
��13
Thirteen
number 0.65 0.67 0.65

25 �
��14
Fourteen
number 0.65 0.68 0.65
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Table 6. Cont.

Class Label Dynamic Arabic Gesture
English
Meaning

Precision Recall F1 Score

26 �
��15
Fifteen
number 0.65 0.65 0.66

27 ��7 �+�� 
�8#�
North
direction 0.68 0.94 0.79

28 
9�1�.� � 
�8#� East direction 0.94 0.72 0.82

29 0� �	!:�;<� 
�8#�
South
direction 0.84 0.65 0.71

30 0� � 	��� 
�8#�
West
direction 0.79 0.89 0.84

31 )�	$ Yes 0.68 0.83 0.75

32 � No 0.74 0.89 0.81

33 )8 	
$� Understand 0.67 0.88 0.74

34 ����
	' Stupid 0.83 0.88 0.85

35 	-�	!:�= Crazy 0.90 0.74 0.81

36 
���+�� >� Goodbye 0.94 1.00 0.97

37 )8� Important 0.79 0.76 0.77

38 �? 	@ To grow 1.00 0.98 0.99

39 
A5��( 
A?BC)
Shut up
(silence) 0.88 0.88 0.88

40 ��3( 	-��) Immediately
(now) 0.71 0.89 0.79

41 	D$� 	�#( 
���E) Sad (tear) 0.97 0.91 0.94

42 �� 	"# Presence
(coming) 0.95 0.97 0.96

43 0� �4
	E To go 1.00 0.91 0.95

44 �4� Hello (con-
gratulations) 0.96 0.69 0.80

45 	F
��
$ To stop 0.88 0.94 0.91

46 
� 	$ ��� Honesty 0.92 0.70 0.71

47 %G'� To give 0.74 0.94 0.83

48 H64�(�I' ��	�
�) To destroy 0.69 0.88 0.77

49 	D� J6	:K
< To get rid of 0.91 0.91 0.91

Table 6 presents a comprehensive analysis of the performance metrics of the model for
each class in the classification report. Some classes demonstrate exceptional performance,
as seen by their high precision, recall, and F1 score levels. For instance, the classes “Takes a
shower”, “Our”, “The grandfather”, and “Understand” exhibit high scores in all measures,
indicating that the model accurately recognises these actions. However, specific classes ex-
hibit disparities in performance indicators. For example, the “Blind” class exhibits relatively
high precision but lower recall and F1 scores, suggesting that the model can accurately
detect certain instances of this gesture but may fail to detect certain actual occurrences.
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Classes such as “Common cold”, “Measles”, and “Stupid” consistently and effectively
display strong recognition abilities across all parameters, indicating their robustness in
gesture recognition. Conversely, classes such as “North direction”, “East direction”, and
“To grow” display different performance metrics, with higher precision but lower recall
values. This suggests that the model might have difficulty in accurately identifying all
occurrences of these gestures. Based on the categorisation report results, we discovered that
classes 11, 12, 13, and 14 (equivalent to classes 23, 24, 25, and 26, respectively) performed
relatively poorly compared to the other classes. This is due to the nature of the movement
in these classes, where the distinction between individual movements may be unclear. For
example, the movement could be a slight hand gesture with no substantial variations in
motion, or the difference between one movement and another may not be obvious enough,
making classification more difficult for these classes. High values of accuracy, precision,
recall, and the F1 score indicate successful model performance, while lower values may
signify areas for improvement in the model’s predictive capabilities.

To evaluate the system performance in real-time sign language detection, measurements
were made concerning the reading error rate at the first stage. Algorithm 1 presents the
approach used to measure the system performance metrics. Each letter was tested individually
with five participants, and 40 iterations were applied to each letter to determine the frequency
of the recognition. Consequently, the performance of the proposed system can be assessed
by calculating the recognition accuracy of each gesture, followed by the total accuracy of the
entire system, as shown in Algorithm 1. Errors in the results may be categorised as either
“misclassification” (incorrect recognition) or “gesture not recognised” (not detection). The
accuracy and error rates are determined using the equations provided below:

Accuracy% =
detected right

Num.of itration
× 100 (5)

Wrong recognise% =
detected wrong
Num.of itration

× 100 (6)

Not detected% =
not detected

Num.of itration
× 100 (7)

Algorithm 1 Inference procedures for real-time sign language detection.

Input: D—new data {perform dynamic gesture}
Output: M real-time sign language detection model performance metrics
1: Initialise I← 0, D← 0, Z← 0, E← 0 {Initialise counts}
2: while I < 40 do
3: gesture← CaptureGesture() {Capture the gesture}
4: if RecogniseGesture(gesture) == DesiredGesture then
5: D← D + 1 {Increment correct detection count}
6: Display(“Gesture is found”)
7: else
8: if gesture == “No detection”, then
9: Z← Z + 1 {Increment no detection count}
10: Display(“Gesture is not recognised”)
11: else
12: E← E + 1 {Increment misclassification count}
13: Display(“Misclassification: Wrong recognition”)
14: end if
15: end if
16: I← I + 1 {Increment iteration count}
17: end while
18: Display(“Total Correct Detections: ” + D)
19: Display(“Total Misclassifications: ” + E)
20: Display(“Total Nondetections: ” + Z)
21: Display(“Total Iterations: ” + I)
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The real-time results are summarised in Table 7, which shows the accuracy, error of
incorrect recognition, and error of not detecting each sign. The real-time performance
analysis of dynamic Arabic gesture recognition reveals high accuracy for gestures such
as “ 
���+�� >�” (Goodbye) and “ 	-� 	!�� 
�� ��� 	�” (Cleaning teeth), indicating the model’s profi-
ciency with distinct patterns. However, lower accuracy and higher error rates in gestures
such as “%&'�” (Blind) and “���.,�” (Smell) suggest difficulties in distinguishing these gestures,
highlighting areas for improvement.

Table 7. The Real-Time Performance Result.

Class Label
Dynamic
Arabic
Gesture

English
Meaning

Accuracy (%)
Err of Wrong
Detected (%)

Err of Not
Detected (%)

0 ���� Cough 75 17 8

1 �� 	� Common
cold 82 11 7

2 
�!�"# Measles 93 7 0

3 ��$� Be seen 84 0 16

4 %&'� Blind 72 12 16

5 �
(
���� Head 92 2 6

6 )*
!+,�
Takes a
shower 97 0 3

7 	-� 	!�� 
�� ��� 	� Cleaning
teeth 98 0 2

8 ���.,� Smell 75 5 20

9 / 
(
�$� Eat 81 10 9

10 0� �1�.,� Drink 77 16 7

11 	-�!� 	" 	' Anger 92 3 5

12 	-�'�#� Hungry 85 3 12

13 �$� � The father 88 3 9

14 �� The mother 72 10 18

15 23�
The
grandfather 100 0 0

16 
�23�
The
grandmother 94 0 6

17 
��� 	3 The uncle 72 8 20

18 � 	$ � I 84 13 3

19 )4 They 77 8 15

20 � 	!56� Our 87 0 13

21 �
��10 Ten number 75 20 5

22 �
��11
Eleven
number 65 22 13
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Table 7. Cont.

Class Label
Dynamic
Arabic
Gesture

English
Meaning

Accuracy (%)
Err of Wrong
Detected (%)

Err of Not
Detected (%)

23 �
��12
Twelve
number 65 25 10

24 �
��13
Thirteen
number 67 26 7

25 �
��14
Fourteen
number 68 28 4

26 �
��15
Fifteen
number 65 15 20

27 ��7 �+�� 
�8#�
North
direction 94 3 3

28 
9�1�.� � 
�8#� East direction 72 6 22

29 0� �	!:�;<� 
�8#�
South
direction 75 6 19

30 0� � 	��� 
�8#�
West
direction 89 2 9

31 )�	$ Yes 83 8 9

32 � No 89 4 7

33 )8 	
$� Understand 88 0 12

34 ����
	' Stupid 88 3 9

35 	-�	!:�= Crazy 74 0 26

36 
���+�� >� Goodbye 100 0 0

37 )8� Important 76 11 13

38 �? 	@ To grow 98 0 2

39 
A5��( 
A?BC)
Shut up
(silence) 88 6 6

40 ��3( 	-��) Immediately
(now) 89 0 11

41 	D$� 	�#( 
���E) Sad (tear) 91 3 6

42 �� 	"# Presence
(coming) 97 0 3

43 0� �4
	E To go 91 0 9

44 �4� Hello (con-
gratulations) 85 11 4

The results presented in Table 7 evaluate the real-time recognition proficiency of dynamic
Arabic gestures, which achieved an overall accuracy rate of 83.5%. The accuracy of dynamic
Arabic gestures indicates a generally high performance for many gestures, such as “ 
���+�� >�”
(Goodbye) and “ 	-� 	!�� 
�� ��� 	�” (Cleaning teeth), with a 100% and 98% accuracy, respectively,
and minimal errors. This reflects the model’s effectiveness in recognising distinct gestures.
Conversely, gestures such as “���.,�” (Smell) and “%&'�” (Blind) achieved a moderate accuracy,

with significant errors not detected (20% and 16%). Numeric gestures, particularly “�
��11”
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(Eleven number) and “�
��12” (Twelve number), provide lower accuracy and higher error rates,
suggesting challenges in distinguishing similar visual patterns. Figure 10 shows examples of
complex signs that achieved low accuracy due to similarity problems.

Figure 10. The similarity between the signs in ArSL.

4. Discussion

The evaluation of the model performance through the comparison of “macro-” and
“weighted” averages offers useful insights into how the distribution of classes affects
the accuracy of categorisation. While “macro-averages" provide a simple average over
all classes, “weighted” averages take into consideration class imbalance by assigning
weights to the average based on the number of instances in each class. Our investigation
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revealed that both types of averages showed similar patterns across different circumstances,
indicating the continuous impact of class distribution on the model results. Analysing
the outcomes of every scenario clarifies the connection between the model performance,
volunteer contributions, and dataset size. The best accuracy and F1 score were obtained in
Scenario 1, when each volunteer provided 1500 data points, demonstrating the potency of
the individual volunteer datasets. We observed a modest decline in the accuracy and F1
score in Scenario 2, as the dataset size rose with the merged data from several participants.
Larger datasets may have advantages, but adding a variety of volunteer contributions
could complicate things and impair the model performance according to this tendency.
Additional analysis of the classification report offers valuable information about the specific
difficulties faced by the model in distinct categories. Classes 10, 11, 12, and 13 demonstrated
worse precision, recall, and F1 scores than did the other classes, suggesting challenges
in successfully recognising these gestures. This difference highlights the significance of
analysing metrics relevant to each class to discover areas where the model may need more
refinement or training data augmentation to enhance its performance.

Several factors contribute to these classes’ inferior performance. First, the nature of the
movements within these classes may provide complexity that is difficult to fully determine.
For example, these movements may include subtle gestures or minor differences between
different signs, making it difficult for the model to distinguish between them efficiently.
Furthermore, the classification model may have problems catching the intricacies of these
movements, particularly if they include small fluctuations or sophisticated hand movements
that are difficult to identify precisely. Moreover, the minimal size and diversity of the dataset
for these classes may have contributed to the poor performance. A larger and more diversified
dataset would give the model a broader set of instances, improving its capacity to generalise
and identify these complex movements. To summarise, while the model’s overall perfor-
mance is acceptable, further modification and augmentation of the dataset, as well as the
model architecture, are required to enhance the classification accuracy for these hard classes.
This highlights the need for ongoing research and development efforts in the field of sign
language recognition to solve these unique issues while also improving the accessibility and
effectiveness of sign language recognition technology. The observed influence of an increasing
dataset size emphasises the need for data augmentation and the establishment of larger, more
diverse datasets in sign language recognition research. As part of the study’s objectives, the
goal was to create a comprehensive dataset exclusively for Arabic Sign Language recognition.
By expanding the dataset, the model can be trained on a broader collection of instances, boost-
ing its capacity to generalise and reliably identify sign language movements, especially in
difficult categories. This is consistent with the overall goal of improving the accessibility and
effectiveness of sign language recognition systems, ultimately leading to greater inclusivity
and accessibility for people with hearing impairments.

5. A Comparison with Previous Studies

This study focused on the recognition of dynamic gestures performed with a single
hand captured using a single camera setup. The primary goal was to recognise isolated
dynamic words and dynamic numbers expressed through sign language gestures. The
data collection process involved recording sessions where individuals performed these
gestures in front of the camera, ensuring that the dataset captured a diverse range of hand
movements and expressions, and by limiting the scope to dynamic gestures performed with
one hand. Table 8 provides a comparison with prior studies that align with our objectives.
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Table 8. Comparison with similar ArSL recognition systems.

Aspect Proposed Work Study [4] Study [23] Study [17]

Model Used

Long short-term
memory (LSTM) with
an attention
mechanism

Convolutional neural
network (CNN)

Convolutional neural
network (CNN)

Hidden Markov
models (HMMs)

Dataset Size 7500 7200 390 4045

Number of gestures
50 (30 simple,
20 complex) 20 (simple signs) 30 (simple signs) 30 (simple signs)

Gestures Words and numbers Words Words Words

Balanced data YES NO NO NO

Preprocessing
No need to convert the
frames into greyscale

Convert the frames into
greyscale

Convert the frames into
greyscale

Convert the frames into
greyscale

Feature Extraction
Method

MediaPipe framework
for hand and body
keypoints

An adaptive threshold
and adding a unique
factor to each class

Two convolution layers
with 32 and
64 parameters

Discrete cosine
transform
(DCT)

Best Accuracy
85% (individual
volunteers), 83%
(combined data)

92% 99.7% 90.6%

Real-World
Applicability

Verified Not verified Not verified Not verified

The dataset size in the proposed work is also significantly larger, at 7500 samples,
compared to 7200 in Ref. [4], 390 in Ref. [23], and 4045 in Ref. [17]. A larger dataset con-
tributes to better model generalizability and robustness, ensuring that the model performs
well on diverse and unseen data. Moreover, the proposed framework handles 50 gestures,
including both simple and complex signs, whereas the other studies focus primarily on
simple signs (20 in Ref. [4], 30 in Ref. [23] and Ref. [17]). This broader range of gestures,
which includes words and numbers, demonstrates the versatility and applicability of the
proposed model for more comprehensive sign language recognition tasks. The data used
in the proposed framework are balanced, ensuring that the model is trained on an equal
representation of all gesture classes, reducing bias and improving the overall performance.
In contrast, the datasets in Refs. [4,17,23] are not balanced, which could lead to skewed
results favouring more frequent classes. For data collection, the proposed framework uses
recorded videos with keypoint extraction using MediaPipe, a state-of-the-art framework
for extracting hand and body keypoints. This method captures more detailed motion data
than do the simpler approaches used in other studies, such as the smartphone videos in
Ref. [4] and OpenPose version 1.4 in Ref. [17]. In terms of preprocessing, the proposed
framework simplifies the process by not converting frames to greyscale, preserving more
information from the original videos.

The MediaPipe feature extraction method used in the proposed framework is more
advanced than methods, such as adaptive thresholding, convolution layers, and discrete
cosine transform (DCT), which have been used in other studies. The proposed framework
might not be as accurate as those used in other studies, but it is a strong and flexible solution
for sign language recognition because it can better handle complex gestures, has a larger
and more balanced dataset, uses advanced data collection and preprocessing methods, and
can evaluate performance in real-time.

6. Conclusions

In this study, we attempted to meet the pressing need for effective communication
tools for the deaf community by developing a model that can recognise dynamic hand
gestures from video recordings. This was accomplished by combining the attention mecha-
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nism with LSTM units developed on a new ArSL dataset, namely, the DArSL50_Dataset.
Keypoints were extracted from videos in the DArSL50 dataset using the MediaPipe frame-
work. Subsequently, the features were fed into the proposed LSTM model to detect gestures.
The results of our method were encouraging, with an average performance of 80–85%. The
proposed model architecture demonstrated robustness in classifying hand motions despite
variances in signing styles and recording conditions. The attention mechanism enhanced
the framework’s ability to recognise spatial arrangements and temporal relationships in
sign language gestures by selectively focusing on key parts of the input sequences. Our
research indicates that our method has considerable promise in enabling smooth commu-
nication between deaf and hearing populations. Future research could investigate other
model architectures, such as Bi-LSTM, one-dimensional convolutional neural networks,
convolutional recurrent neural networks, and transformer models. Additionally, there is
potential for the creation of a large-scale dataset encompassing a variety of sign language
gestures. Augmentation techniques could also be investigated to further enrich the dataset
and improve the model’s ability to generalise across various signing styles.
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Abstract: The automatic delineation and segmentation of the brain tissues from Magnetic Resonance
Images (MRIs) is a great challenge in the medical context. The difficulty of this task arises out of the
similar visual appearance of neighboring brain structures in MR images. In this study, we present
an automatic approach for robust and accurate brain tissue boundary outlining in MR images. This
algorithm is proposed for the tissue classification of MR brain images into White Matter (WM),
Gray Matter (GM) and Cerebrospinal Fluid (CSF). The proposed segmentation process combines
two algorithms, the Hidden Markov Random Field (HMRF) model and the Whale Optimization
Algorithm (WOA), to enhance the treatment accuracy. In addition, we use the Whale Optimization
Algorithm (WOA) to optimize the performance of the segmentation method. The experimental
results from a dataset of brain MR images show the superiority of our proposed method, referred to
HMRF-WOA, as compared to other reported approaches. The HMRF-WOA is evaluated on multiple
MRI contrasts, including both simulated and real MR brain images. The well-known Dice coefficient
(DC) and Jaccard coefficient (JC) were used as similarity metrics. The results show that, in many
cases, our proposed method approaches the perfect segmentation with a Dice coefficient and Jaccard
coefficient above 0.9.

Keywords: brain tissue segmentation; HMRF method; WOA; classification

1. Introduction

In the human body, the most complex organ is the brain. It is responsible for coordi-
nating and controlling many bodily activities and every process that regulates the body.
Alzheimer’s disease, epilepsy, encephalitis, meningitis, and brain abscesses and tumors are
different forms of brain disease [1].

In recent years, the manual examination and interpretation of images obtained from
various imaging modalities such as Radiography, Magnetic Resonance Imaging (MRI), and
Computed Tomography (CT) have become challenging and intensive processes. This under-
scores the fact that that automatic image analysis by several operations is a necessity [2–4].
MRI brain segmentation helps in detecting brain diseases, analyzing brain changes, identi-
fying pathological areas, and measuring and visualizing the anatomical structures of the
brain. Furthermore, brain segmentation is a difficult task due to the homogeneities and
correlations of image intensity among brain tissues. Nevertheless, many research method-
ologies have been proposed for brain tissue MR image segmentation. For example, Qaiser
Mahmood et al. [5] present a fully automatic unsupervised segmentation algorithm called
BAMS, where a combination of the Bayesian method and Adaptive Mean-Shift (BAMS)
are applied to real multimodal MR images to segment brain tissues into four regions:
White Matter (WM), Gray Matter (GM), Cerebrospinal Fluid (CSF), and background. In the
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last step, the authors used the voxel-weighted kmeans clustering algorithm to merge the
homogeneous regions obtained in the previous steps.

In another work, Henri A. Vrooman et al. [6] proposed a brain segmentation process
based on an automatically trained kNN classifier. This kNN classification method incorporates
voxel intensities from a T1-weighted MRI scan and a FLAIR sequence scan. In [7], the authors
introduced a hybrid approach based on techniques for brain MRI segmentation. The method
utilizes the Gabor transform for computing features of brain MRI. Subsequently, these features
are subjected to classification using various classifiers, including Incremental Supervised
Neural Network, K-NN, Probabilistic Neural Network (PNN), and Support Vector Machine
(SVM). A drawback of these approaches [5–7] is that they may give poor tissue classifications
in the presence of noise, and that they are computationally expensive.

In recent years, there has been more research in the field of brain tumor MR image
segmentation. For example, the study of Jalab H A et al. [8] presented and evaluated a novel
convolutional neural autoencoder designed for brain tumor segmentation using semantic
segmentation principles. The evaluation was conducted on a dataset consisting of 3064 T1-
weighted Contrast-Enhanced Magnetic Resonance Images. In [9], Hasan AM et al. used
three techniques to precisely pinpoint the area of pathological tissues in volumetric MRI
brain scans: the first one is a three-dimensional active contour model without boundaries,
the second one is a multi-layer perceptron neural network adopted as a classifier, and the
third one is a bounding box-based genetic algorithm. The most important limitations that
make brain tumor segmentation [8,9] a challenging task are the varieties of the shape and
intensity of tumors, along with the probability of inhomogeneity within tumorous tissue.

The Hidden Markov Random Field Model is a segmentation algorithm popularly
used in image segmentation, such as by Ahmadvand et al. [10], Jianhua et al. [11], Shah
Saurabh [12], and Mingsheng Chen [13]. A combination of fuzzy clustering and the MRF
model was presented by Mingsheng Chen et al., where the Fuzzy C-Means (FCM) algorithm
was combined with the MRF model to filter the effect of noise and to increase the integrity of
segmented regions. An additional work using the HMRF model for segmenting brain tissue
was presented by Alansary et al. [14], in which the authors proposed the unsupervised
learning of different brain structures from T1-weighted MR brain images, by using the
Maximum A posteriori Probability (MAP) estimate with a joint Markov–Gibbs Random
Field Model (MGRF). In [15], the authors proposed the optimization of the MRFM by
using the Broyden–Fletcher–Goldfarb–Shanno algorithm to segment brain tissues. In [16],
a generalization of the HMRF model with the Expectation Maximization (EM) method
was applied and tested on brain MRI data. These hybrid methods are used to significantly
decrease computational time in comparison to classical MRF. However, they often lack
accurate segmentation of MRI brain tissue.

Some other studies used a Fuzzy C-Means algorithm to improve the segmentation
accuracy of brain images. For example, in [17], the authors used an improved multi-view
FCM with an adaptive learning mechanism to segment brain images.

In some references, brain segmentation methods based on deep learning techniques
have been proposed in brain segmentation, such as by Zhao L et al. [18], Brudfors
Mikael et al. [19], and Bento M [20]. For example, Lee B et al. [21] introduced a non-
overlapping patch-wise U-net architecture to remedy the drawbacks of the conventional
U-Net with greater retention of local information. On the other hand, Renukadevi [22]
et al. proposed a medical image classification with a Histogram and Time–Frequency
Differential Deep Learning method using brain Magnetic Resonance Imaging. First, a
supervised training method was applied by an intensity-oriented Histogram to prepare the
feature extraction step. Then, time and frequency factors were applied to the pre-processed
features to obtain a set of features. These features are used in the Differential Deep Learn-
ing process. The main drawback of these approaches is their expensive computational
cost, as the training process needs to be repeated multiple times. Other researchers have
used hybrid approaches combining deep learning with fuzzy logic to segment MRI brain
tumors. For example, in [23], the authors propose a novel approach combining fuzzy
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logic-based edge detection and U-Net CNN classification for brain tumor detection. This
work demonstrates superior performance in identifying meningioma and non-meningioma
brain images, outperforming existing methods in terms of performance metrics. But the
analysis provided in this work lacks a detailed analysis of the drawbacks associated with
the fuzzy logic-based edge detection or U-Net CNN classification methods used for the
brain tumor detection process.

Among the optimization algorithms that have appeared in the 1980s used in images
segmentation, we can cite metaheuristics methods. In the study proposed in [24], a biologi-
cally inspired ant colony algorithm was proposed to optimize the thresholding technique
for MR brain image segmentation, but the thresholding methods faced some limitations
that decreased the overall accuracy of the segmentation method. On the other hand, Thuy
Xuan Pham et al. [25] presented an optimization method that combines metaheuristic
methods (cuckoo search and particle swarm optimization algorithms) and an HMRF model
to provide brain tissue segmentation. The authors of this work applied their model to
both simulated and real MR images. This method is limited by its tendency to increase
computational complexity due to the problem of selecting an appropriate value for the
parameter β, as well as the running time for both the ICS and IPSO algorithms.

On the other hand, many techniques have been proposed suggested to aid in detect-
ing brain lesions and diseases. The authors in [26] have proposed a pre-trained U-Net
encoder–decoder system to extract ischemic stroke lesions (ISLs), using image processing
techniques on brain MRI slices from the ISLES2015 database. This study achieved high
Jaccard, Dice, and accuracy values on a dataset of 500 images. However, the main limitation
of this approach is that the number of test images may not fully represent the variability
in ischemic stroke lesions and increasing the training dataset size may introduce biases
or artifacts in the segmentation process. Ramya, J et al. [27] present a novel method for
Alzheimer’s disease classification using MRI data. This method focuses on image process-
ing techniques such as 2D Adaptive Bilateral Filtering, the ECLAHE algorithm for image
enhancement, and feature extraction using GLCM and PCA. The paper lacks comparisons
with other advanced classification techniques, and the proposed method presents high
computational complexity. Rangaraju et al. [28] introduce a novel deep learning-based
method for automated Alzheimer’s disease detection using 3D brain MRI data, where the
authors used a Patch Convolutional Neural Network and Octave convolution for feature
identification and spatial redundancy reduction. The limitation of this method is that the
accuracy metric may not be adequate for evaluating the model’s efficacy if the dataset has
an uneven distribution of classes.

In this proposal, our concern is to solve the problem of segmenting brain MR images
into three tissues: GM, WM, and CSF, without apparent disease. To attain this objective,
the whale optimization algorithm (WOA) is employed to optimize the HMRF model,
offering an automated segmentation tool for brain MR images. Then, the proposed method
performance evaluation is achieved on ground truth images from the BrainWeb and Internet
Brain Segmentation Repository (IBSR) databases, using the Dice coefficient metric (DC)
and the Jaccard coefficient (JC).

The overall contributions of this paper are as follows:

- A new optimization method applied to MRI image segmentation.
- A novel technique using the combination of HMRF and the WOA is proposed.
- The proposed method improves the accuracy of segmenting brain images into three

tissues: GM, WM, and CSF.
- This manuscript primarily focuses on brain tissue segmentation to aid experts

and radiologists.

The efficacy of the HMRF-WOA is tested on six datasets with various parameters
collected from BrainWeb and the IBSR. The experimental results demonstrate remarkable
performance when segmenting different types of homogeneous and heterogeneous tissues.
By employing this architecture, our aim is to achieve improved accuracy, efficiency, and
reliability compared to existing state-of-the-art models.
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This paper is organized as follows: In Sections 2 and 3, we give a detailed explanation
of the HMRF model and Whale Optimization Algorithm. The algorithm design (HMRF-
WOA) is presented in Section 4, followed by the experimental results and discussions in
Section 5, and the conclusion in the last section.

2. Hidden Markov Random Field Model

The Hidden Markov Random Field model is a stochastic process whose state sequence
can be indirectly deduced from observations. The MRF includes a set of random variables.
Let y be the observed image (i.e., the image for segmentation) and x the hidden image (i.e.,
the resulting segmented image). Both images (y and x) are formed of L sites or positions
set; we note these sites as S = {s1, s2. . ., sL}.

So, we consider that y = {y1, y2,. . ., yL} is the image to be segmented, where ys is one of
the pixel values and x = {x1, x2,. . ., xL} is the resulting segmented image, where xs is one of
the pixel classes. We consider Ey = {0. . . 255} and Ex = {1. . . K} to be the gray-level intensity
space and the discrete space, respectively, where K denotes the number of homogeneous
zones in the image. In classification methods, pixels are organized based on these gray
levels. The random variables Y = (y1. . .,yL) and X = (x1,. . ., xL) adopt their values from Ey
and Ex, respectively.

We propose to use the HMRF model to segment the image y by searching for the
optimal realization x* of X by maximizing the posteriori probability value P[X = x/Y = y].

x* = argmax{P[X = x/Y = y]}, x ∈ Ex (1)

which is written by the law of Bayes:

P(X = x / Y = y) =
P(Y = y / X = x) .P(X = x)

P(Y = y)
(2)

where P(Y = y/X = x) indicates the probability distribution of Y = y; given that X = x has
occurred, it is called likelihood. P(X = x) is the preliminary probability of X = x based on
prior knowledge. The denominator P(Y = y) is the probability of Y = y occurring; it is called
the evidence.

For each site, we associated a descriptor which represents a gray level. Any family
V(s) possessing the following properties was labelled as a neighborhood system:

• Where s /∈ V(s)  , a site is not a neighborhood to itself.
• Where s ∈ V(t)  t ∈ V(s), the neighborhood relationship is symmetrical.

The most frequently used neighborhoods are either the four or the eight nearest
neighbors: they are referred to as the first- and second-order neighborhoods, respectively.
The neighborhood relationship between sites is the clique c ∈ C. (C represents the set of all
potential cliques.)

A Random Field X is identical to a Gibbs distribution (Hammersley–Clifford theo-
rem) [29] if the joined probability distribution is:

P(X = x) = W−1 exp(−H(X = x)) (3)

where W−1 = ∑x exp(−H(X = x)) is a normalization function, also called the partition
function, and H is a nearly constant energy which decomposes into the sum of potential Uc
functions associated with cliques c ∈ C.

H(X = x) = ∑c ∈ C U(XC ) (4)

Equation (3) becomes:

P(X = x) =
exp(U(XC))

∑c ∈ C exp(U(XC ))
(5)
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In the image space, we take the second-order neighborhood system as the interactions
system between pixels (i.e., 8 neighbors of each pixel), so we have 8 cliques for each pixel.
A pair of neighboring pixels (i, j), defined as a clique potential, is used as a factor in the
energy function U(Xc) of the Potts model [30]. In this Potts model, the energy function is
generally based on the interactions between neighboring pixels, and the formula for this
energy function for image segmentation using this Potts model is written as:

Uc(xi, xj
)
= β
(
1−V(xi , xj

))
(6)

where i and j are indices of the neighboring pixels.
β is a weight associated with the pair of neighboring pixels (a constant).
xi, xj are the classes assigned to pixels i, j, respectively.
V(xi, xj) is a function which equals 1 if the two pixels of the clique belong to the same

class and 0 otherwise.

V(xi , xj
)
=

{
1 i f xi = xj

0 i f xi �= xj
(7)

The fundamental assumption of the HMRF model is that for any configuration x of X,
the random variables Y are conditionally independent, and the distribution of the pixels
follows the normal law, i.e., there is an independence between classes, and the field of
observations can be modeled by the following function:

P(Y = y / X = x) = ∏s∈S P(Ys= ys /Xs = xs) (8)

Given that P(Ys= ys /Xs = xs) follows the Gaussian distribution, it can be written as:

P(Ys= ys /Xs = xs) =
1√

2πσ2
xs

exp

[
−(ys − μxs

) 2

2σ2
xs

]
(9)

where μxs is the mean and σxs is the standard deviation.
According to Equations (8) and (9), we obtain:

P(Y = y / X = x) = ∏s∈S
1√

2πσ2
xs

exp

[
−(ys − μxs

) 2

2σ2
xs

]

With

1√
2πσ2

xs

= exp

⎛
⎝ln

⎛
⎝ 1√

2πσ2
xs

⎞
⎠
⎞
⎠ and ln

⎛
⎝ 1√

2πσ2
xs

⎞
⎠ = −ln

(√
2πσ2

xs

⎞
⎠

Then, we obtain

P(Y = y / X = x) = ∏s∈S

(
exp
(
−ln
(√

2πσ2
xs

))
.exp

[
−(ys − μxs

) 2

2σ2
xs

])

P(Y = y / X = x) = ∏
s∈S

exp

(
−ln
(√

2πσ2
xs

)
−
(
ys − μxs

) 2

2σ2
xs

)

P(Y = y / X = x) =exp

[
−
[
∑s∈S

[
ln
(√

2πσ2
xs

)
+

(
ys − μxs

) 2

2σ2
xs

]]]

We come back to Bayes’ law in Equation (2), with P(Y = y) being the constant value C,
and obtain:
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P(X = x / Y = y) =
1
C

exp

[
−
[

∑
s∈S

[
ln
(√

2πσ2
xs

)
+

(
ys − μxs

) 2

2σ2
xs

]]]
.exp

[
β∑

c∈C

[
1− V(xi , xj

)]]

P(X = x / Y = y) = C′.exp

[
−
[

∑
s∈S

[
ln
(√

2πσ2
xs

)
+

(
ys − μxs

) 2

2σ2
xs

]]]
.exp

[
β∑

c∈C

[
1− V(xi , xj

)]]

P(X = x / Y = y)= C′.exp

[
−
[
∑s∈S

[
ln
(√

2πσ2
xs

)
+

(
ys − μxs

) 2

2σ2
xs

]]
+ β∑c∈C

[
1− V(xi , xj

)]]

⎧⎨
⎩

P(X = x / Y = y) = C′. exp(−ϕ(x, y))

ϕ(x, y) = ∑
s∈S

[
ln
(√

2πσ2
xs

)
+

(ys−μxs)
2

2σ2
xs

]
+ β ∑

c∈C

[
1− V(xi , xj

)]
where C′ is a positive constant and β is used to control the size of homogeneous regions
and the interaction between their sites. μxi

, σxi are the mean and standard deviation of the
class xi, respectively (i.e., the ith region Ωi = {s / xs = i} in the image). Then, μxi

, σxi are
described as follows: ⎧⎨

⎩
μi =

1
|Ωi| ∑s∈Ωi

ys

σi =
√

1
|Ωi|∑s∈Ωi

(ys − μi)
(10)

Once we know all the parameters of the HMRF model, we can perform the segmenta-
tion itself, i.e., find the value to maximize the probability P(X = x/Y = y), which is equivalent
in this context to minimize ϕ(x, y) such that x∗ = argmin { ϕ(x, y)}.

To seek a given pixel class xs, we can consider an approximation of the exact segmenta-
tion using optimization techniques. Furthermore, we can obtain the optimal segmentation
x∗(x1, . . . xs . . . xL) through μ∗ (μ1, . . .μi, . . . ,μk) by classifying ys into the same category of
the nearest mean μi of μ (i.e., xs = i if the nearest mean of ys is μi). We seek μ∗ instead of
x∗ and the optimal means value μ∗ as follows:

μ∗ = argmin{ϕ(μ)} (11)

where ϕ(μ) is defined as:

ϕ(μ) = ∑s∈S

[
ln
(√

2πσ2
xs

)
+

(
ys − μxs

) 2

2σ2
xs

]
+ β∑c∈C

[
1− V(xi , xj

)]
(12)

This objective function (Equation (12)) is simply a formula that can be applied in the
optimization process. Accordingly, in the section below, we will define the optimization
method applied in this work.

3. Whale Optimization Algorithm

The Whale Optimization Algorithm is among the latest bio-inspired optimization
algorithms. It is proposed for optimizing numerical problems [31]. Humpback whales
are among the largest and oldest animals in the world; they are highly intelligent animals
that feel emotion and never sleep [32–34]. This algorithm emulates the intelligent foraging
behavior of this animal. This hunting comportment is called the bubble net feeding method
and is an exclusive method of hunting that can only be observed in humpback whales.

In recent years, a large number of works in the literature have applied the WOA for
optimization in several fields, such as [35–39]. In order to perform optimization, including
the exploitation and exploration phases, the mathematical model is explained below. For
more details, please refer to [31,40].
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Step 1: Encircling Prey phase
When the prey’s location is identifiable, humpback whales start to circle their prey.

Then, the humpback whales create bubble nets to catch their prey. Xt
i =

(
xt

i,1 . . . xt
N,D

)
denotes the place of the ith whale at time t (iteration value), with i ∈ [1. . .N], where N
represents the whale population and D is the dimensions of the problem. In the search zone,
the whales consider the target prey or prey in the close vicinity as the optimal solution;
during this phase, other whales seek to come closer to the best search agent and update
their position using Equation (13).

D = |C.X∗(t)− Xi(t)| (13)

Xi(t + 1) = X∗(t)− A.D (14)

where t indicates the present iteration, the parameter Xi(t) denotes the position of each
individual i at the tth iteration, X*(t) signifies the optimal global position at the tth iteration,
and | | is the absolute value. Equations (15) and (16) are used to define the factor vectors A
and C, respectively:

A = 2ar− a (15)

C = 2r (16)

a = 2.
(

1− t
Tmax

)
(17)

The parameter (a) linearly declines over the course of the iteration from 2 to 0, and r is
a random value in [0, 1].

Step 2: Bubble-Net Attacking Method (Exploitation Phase)
Two mechanisms are designed to mathematically model the predation behavior of

humpback whales, which can be described as follows:

1. Shrinking encircling mechanism: According to Equation (15), the decrease in the value
of A depends on the decrease in the value of the control parameter a. Note that the
search agent approaches the current optimal solution when the value of the random
variable A is set in the range [−1, 1].

2. Spiral updating position: To capture food, humpback whales take a spiral-shaped
path around their prey. Equations (18) and (19) are used to reproduce the helix-shaped
movement of humpback whales and to calculate the distance between the whale and
the prey, respectively:

Xi(t + 1) = D′. ebl .cos (2π.l) + X∗(t) (18)

D′ = |X∗(t)− Xi(t)| (19)

where D′ is the distance between the whale and prey (the best solution obtained so far), b
is a constant that defines the logarithmic shape, and l is a random value in [−1, 1]. During
the iterations of the algorithm, the movement behavior of humpback whales is either
shrinking encircling or spiral movement. For this behavior, assuming a probability of 50%,
the mathematical model can be described as follows:

Xi(t + 1) =

⎧⎨
⎩

X∗(t)− A.D i f p < 0.5

D′. ebl .cos (2π.l) + X∗(t) i f p ≥ 0.5
(20)

where p is an arbitrary value in [0, 1].
Step 3: Search for Prey (Exploration Phase)
In the exploration phase, the search is performed randomly. First, one of the whales’

populations is selected randomly to allow the global search, then according to this randomly
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chosen population the position of the search is updated. In this phase, it is necessary to use
the random values of the parameter A higher than 1 or lower than −1 to obligate the search
agent to move far away from a reference whale. The model’s equations are expressed
as follows:

D = |C.Xrand − X | (21)

Xi(t + 1) = Xrand − A.D (22)

where Xrand represents a random position vector chosen from the available whales in
the population.

As mentioned earlier, the Whale Optimization Algorithm (WOA) is one of the lat-
est swarm-based algorithms and it showed high performance when addressing various
optimization problems, such as an analysis of medical image segmentation [41] and opti-
mization tasks [42]. Recently, the WOA gained significant attention from researchers due
to its ability to be quickly implemented and its requirement of only a few parameters to
fine-tune [43]. The simplicity of this method and its success in solving some optimization
problems attracted our attention to employ it to address MRI brain segmentation problems.

The WOA depends on the initial values of the population obtained by a set of random
solutions. First, the WOA takes the initial values randomly, whereas, during iterations, the
search agents optimize their positions accorded by the randomly selected search agent or
based on the current optimal solution. The current solution is calculated according to the
fitness function values as the optimal solution. To apply this algorithm and track its steps,
a new hybrid method was proposed to solve the optimization issues called HMRF-WOA, a
proposed hybrid algorithm that links the steps of the WOA with the HMRF model. The
HMRF-WOA is depicted in the next section.

4. HMRF and Whale Optimization Algorithm (HMRF-WOA)

This section explains the connection between the Hidden Markov Random Field
Model and the Whale Optimization Algorithm. As discussed in Section 2, MRF is one
of the most effective methods for achieving image segmentation of images using the
maximum a posterior (MAP) criterion. However, due to some problems such as noise,
overlapping regions, and low contrast in medical images, MRF seems to be inadequate.
Moreover, in order to accurately identify the class of a given pixel, we can consider an
approximation of the exact segmentation using optimization techniques. In addition, to
seek a given pixel class, we can consider an approximation of the exact segmentation using
optimization techniques. For these reasons, we employed WOA as an optimizing tool to
aid in segmenting MR brain images. WOA is utilized to define the optimal class of pixel in
brain MR images.

Therefore, by combining MRF- and WOA-based methods, we can leverage the advan-
tages of both techniques to significantly improve the accuracy of segmentation and also to
address issues related to low contrast in MRI images. Additionally, we can achieve optimal
segmentation by considering the mean and standard deviation of each class. So, pixels are
classified into the same category as the nearest mean, and during the algorithm iterations,
the best solution is selected based on the fitness function values (Equation (12)) referenced
in Section 2. This objective function serves to quantify the proximity of a solution to the
optimal solution.

Moreover, the brain tissue segmentation problem can be solved by the HMRF-WOA
method, where the objective function given in Equation (12) can converge or close in on
the optimal solution. The HMRF-WOA initiates using a random value of the populations
with predefined search elements (X1. . .Xi. . .Xn), and each one has a set of predefined value
of the initial locations Xi = (Xi1,. . . Xij. . .Xik). Through the iterations of the algorithm, we
calculated, for each search agent i, the new position by the fitness function, obtaining a set
of positions for all populations and conserving the best set of positions.

Let μi(t) = (μi1(t),. . ., μij(t),. . ., μik(t)) be the best location visited by the search agent i
until the time t calculated by the fitness function, which allows us to define its own resulting
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segmented image xi(t) = (xi1(t),. . .,xis(t),. . .,xiM(t)) by using its location μi(t), where xis(t) = j,
on the condition that the mean μij(t) is nearest to ys. After identifying the optimal search
element by its best position μi, other search elements will adjust their positions towards
the best search element. Consequently, the best position obtained by the population thus
far is μ = (μ1, . . . , μi, . . . μk).

Our proposed segmentation method of brain MRIs by the HMRF-WOA has the
following main steps (Algorithm 1).

Algorithm 1: The main steps of our proposed segmentation method of brain MRIs by the
HMRF-WOA.

Input: Initialize randomly a population Xi

1. Initialization of the search elements (agents Xi) and i = 1, 2. . .n.
2. For each element i, compute the fitness value by Equation (12).
3. X* designed the best search element.
4. Do while (t ≤ number of iterations) is true.
5. For each i in the population of the search agents
6. These parameters (a, A, C, l, and p) are updated.
7. If (p < 0.5)
8. If (|A| < 1)
9. The current search agent’s position is updated by Equation (14)
10. Else if (i.e., |A| ≥ 1)
11. A random search agent (Xrand) is selected.
12. The current search agent’s position is updated by Equation (22).
13. End if
14. Else if (i.e., p ≥ 0.5)
15. The current search agent’s position is updated by Equation (18).
16. End if
17. End for
18. Check that if any search agent exceeds the boundaries of the search space and make

the correction.
19. Recompute the fitness value of all the population (each search agent) by Equation (12).
20. Getting better solution, update X*.
21. Increment the iteration (t).
22. End while

Output: The optimal solution is X*.

5. Experimental Results

In this part of the manuscript, we will explain the segmentation method results in
detail. Our proposed method is a hybrid algorithm that links the HMRF model and the
WOA metaheuristic algorithm, called HMRF-WOA, and our goal is to classify each pixel
of the brain tissues into four categories: WM, GM, CSF, and background. To obtain this
result, firstly, we applied the median filter to reduce noise with a structure of [3 × 3]
and to improve the segmentation results to achieve a high quality. Then, we started our
proposed HMRF-WOA process to research each region in the image and obtain its optimal
mean intensity.

One of the most successful research approaches is acquiring appropriate data for
testing the proposed methods, which often presents a major challenge for researchers,
especially in studies related to the human body. BrainWeb provides a valuable resource for
the research community by offering a set of realistic simulated brain MR image volumes
(Simulated Brain Database, SBD) with reference data (ground truth). These databases
are particularly suitable for brain tissue research. For this reason, we have chosen these
datasets as they offer a sufficient amount of data for brain image segmentation and are
highly appropriate for our purpose.
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5.1. Datasets

In this experimental phase, we chose two datasets of the MR images, including both
T1-weighted simulated and real 2D MRI brain images. The Simulated Brain Database
(SBD) was downloaded from the BrainWeb database [44], which can be accessed at this
link (https://brainweb.bic.mni.mcgill.ca/brainweb/), accessed on 20 October 2022. On the
one hand, we have five BrainWeb databases with different input image parameters. Table 1
below contains all these parameters.

Table 1. The parameters of the databases used in the proposed method.

Databases Types Dimensions Noises (%) INU * (%) Voxels (mm)

1 Brainweb 181 × 217 × 181 0 0 1 × 1 × 1

2 Brainweb 181 × 217 × 181 3 20 1 × 1 × 1

3 Brainweb 181 × 217 × 181 5 20 1 × 1 × 1

4 Brainweb 181 × 217 × 181 7 20 1 × 1 × 1

5 Brainweb 181 × 217 × 181 9 40 1 × 1 × 1

6 IBSR 256 × 256 × 63 - - 1 × 3 × 1

* Intensity non-uniformity = INU.

On the other hand, the real MR images with T1-weighted modality, known as the
Internet Brain Segmentation Repository (IBSR), were collected from the 20 normal MR
brain datasets, which are available at (https://www.nitrc.org/projects/ibsr/), accessed on
20 October 2022, where the input image parameters were dimensions = 256 × 256 × 63 and
voxels = 1 × 3 × 1 mm. In totality, six datasets with various parameters were considered as
input data to apply our algorithm.

5.2. Performance Measures

With the purpose of interpreting the HMRF-WOA’s performance, this manuscript uses
two measures which are most often used in the evaluation of medical volume segmentation:
the Dice coefficient metric (DC) [45] and the Jaccard coefficient (JC) [46].

5.2.1. Dice Coefficient (Dice)

This is a metric based on overlap that directly evaluates the similarity between a
segmented image and a ground truth image. If the value of DC equals or is close to 1, this
indicates the best performance of the method.

Dice=
2. area o f overlap

total area
=

2.TP
2.TP + FP + FN

(23)

5.2.2. Jaccard Coefficient (JC)

JC is an evaluation index that summarizes the area of overlap between two groups
of binary segmentations. This metric is defined as the ratio of intersection over union of
the ground truth image and the resulting segmented image. A higher result of this metric
signifies a better result. The JC index is defined as follows:

JC =
area o f overlap
area o f union

=
TP

TP + FP + FN
(24)

where TP, FP, and FN are the true positive, the false positive, and the false negative,
respectively.

Furthermore, the parameter called β in the fitness function (Equation (12)) can influ-
ence the performance of the algorithm. In this case, it is necessary to fix the coefficient β
when the weights present a part of the energy of the model. We chose β = 1 in this work.
Table 1 defines the different databases used in our proposed method.
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5.3. Discussion

The accuracy of any segmentation method depends on several factors, including the
choice of the proposed technique, and a number of its parameters, such as the dataset, num-
ber of regions to be segmented or classified, the number of iterations, and the workstation
configuration. Within this framework, we have achieved superior segmentation results
compared to other methods (see Tables 2–4). This is due to the use of prior knowledge.

Table 2. Mean DC values of the simulated MR brain images (BrainWeb).

Tissue Method Database 1 Database 2 Database 3 Database 4 Database 5

GM

HMRF-WOA 0.982 0.974 0.953 0.955 0.935

HMRF-BFGS 0.973 0.942 0.918 NA * NA *

MV-FCM 0.885 0.876 0.866 0.854 0.836

Amiri et al. [47] 0.975 0.960 0.930 0.925 0.895

AWSFCM NA * 0.895 0.836 0.809 NA *

WMT-FCM NA * 0.9508 0.9219 0.8818 NA *

WM

HMRF-WOA 0.997 0.990 0.986 0.986 0.976

HMRF-BFGS 0.991 0.969 0.951 NA * NA *

IMV-FCM 0.952 0.950 0.938 0.929 0.918

Amiri et al. [47] 0.960 0.950 0.920 0.920 0.880

AWSFCM NA * 0.865 0.836 0.813 NA *

WMT-FCM NA * 0.9729 0.9550 0.9306 NA *

CSF

HMRF-WOA 0.979 0.977 0.951 0.952 0.968

HMRF-BFGS 0.960 0.939 0.919 NA * NA *

IMV-FCM 0.850 0.844 0.837 0.870 0.813

Amiri et al. [47] 0.970 0.960 0.940 0.930 0.925

AWSFCM NA * 0.692 0.672 0.658 NA *

WMT-FCM NA * 0.9628 0.9424 0.9090 NA *

* The performance of the method for this tissue was not reported.

Table 3. Mean JC values of simulated MR brain images from BrainWeb.

Tissue Method Database 1 Database 2 Database 3 Database 4 Database 5

GM

HMRF-WOA 0.966 0.944 0.925 0.916 0.879

HMRF-BFGS NA * NA * NA * NA * NA *

IMV-FCM 0.797 0.781 0.765 0.753 0.722

Amiri et al. [47] 0.959 0.920 0.880 0.860 0.820

AWSFCM NA * 0.787 0.742 0.726 NA *

WM

HMRF-WOA 0.995 0.987 0.977 0.973 0.953

HMRF-BFGS NA * NA * NA * NA * NA *

IMV-FCM 0.904 0.892 0.877 0.858 0.835

Amiri et al. [47] 0.925 0.915 0.870 0.850 0.800

AWSFCM NA * 0.760 0.743 0.721 NA *
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Table 3. Cont.

Tissue Method Database 1 Database 2 Database 3 Database 4 Database 5

CSF

HMRF-WOA 0.961 0.949 0.927 0.914 0.939

HMRF-BFGS NA * NA * NA * NA * NA *

IMV-FCM 0.707 0.679 0.670 0.675 0.718

Amiri et al. [47] 0.925 0.920 0.920 0.885 0.860

AWSFCM NA * 0.520 0.516 0.485 NA *

* The performance of the method for this tissue was not reported.

Table 4. Mean DICE coefficient values of MR brain images from the IBSR.

Tissue Method Mean Dice

GM

HMRF-WOA 0.916

hMRF-BFGS 0.859

PLA-SOM 0.780

Amiri et al. [47] 0.863

Gardens2 0.740

KPSFCM 0.80

WM

HMRF-WOA 0.856

hMRF-BFGS 0.855

PLA-SOM 0.740

Amiri et al. [47] 0.814

Gardens2 0.720

KPSFCM 0.81

CSF

HMRF-WOA 0.459

hMRF-BFGS 0.381

PLA-SOM 0.230

Amiri et al. [47] 0.423

Gardens2 0.230

KPSFCM 0.31

As mentioned before, the images of the first five datasets in Table 3 were used to
evaluate the performance of the HMRF-WOA. Figures 1–5 show some slices of a T1-
weighted image (slices: 84, 95, 105, 108, 120). These brain images correspond to the
slices under different types of conditions, such as database type, dimension image, noise
level, intensity non-uniformity level, and slice thickness (mm). In Table 1, rows 1 to 5
summarize the parameters of Figures 1–5, respectively. Figure 6 represents the ground
truth segmentation of slices 84, 95, 105, 108, and 120. In this figure, each column contains
the three tissues, GM, WM, and CSF, of each slice. Figures 7–11 show the segmentation
results, where the four tissues (BG, GM, WM, and CSF) are shown with different colors.
The yellow, red, and green colors represent the segmented regions of GM, WM, and CSF,
respectively. As we can also see from these figures, the resulting segmented images in
Figures 7–11 are almost close to the initial images in Figures 1–5.
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#84 #95 #105 #108 #120 

Figure 1. Slices with Noise = 0%, INU = 0% of database 1.

 
#84 #95 #105 #108 #120 

Figure 2. Slices with Noise = 3%, INU = 20% of database 2.

 
#84 #95 #105 #108 #120 

Figure 3. Slices with Noise = 5%, INU = 20% of database 3.

 
#84 #95 #105 #108 #120 

Figure 4. Slices with Noise = 7%, INU = 20% of database 4.
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#84 #95 #105 #108 #120 

Figure 5. Slices with Noise = 9%, INU = 40% of database 5.

GM 

WM 

CSF 

 #84 #95 #105 #108 #120 

Figure 6. Ground truth segmentation of the GM, WM, and CSF tissues.

 
#84 #95 #105 #108 #120 

Figure 7. Segmentation results of the slices illustrated in Figure 1.
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#84 #95 #105 #108 #120 

Figure 8. Segmentation results of the images illustrated in Figure 2.

 
#84 #95 #105 #108 #120 

Figure 9. Segmentation results of the images illustrated in Figure 3.

 
#84 #95 #105 #108 #120 

Figure 10. Segmentation results of the images illustrated in Figure 4.

 
#84 #95 #105 #108 #120 

Figure 11. Segmentation results of the images illustrated in Figure 5.

Hence, we have demonstrated the high performance of our method, despite existing
artifacts on the MR brain images. To evaluate the performances of the HMRF-WOA
more clearly, two criteria were used to compare the similarities between the manual (GT)
and automatic segmentations: DC and AC, which are described in the previous section.
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The results are summarized in Tables 2 and 3. Moreover, Figures 12–17 illustrate the
comparison of the DC and JC coefficients between five approaches: HMRF-BFGS, IMV-FCM,
Amiri et al. [47], AWSFCM [48], WMT-FCM [49], and HMRF-WOA. According to these
figures, the test results show that the present approach brings satisfactory results compared
with the literature methods for all brain tissues.

 

Databases 

Figure 12. Dice coefficient of GM (BrainWeb dataset) for each algorithm [47].

 

Databases 

Figure 13. Dice coefficient of WM (BrainWeb dataset) for each algorithm [47].

With regard to the T1-weighted MRI brain datasets, the performance of the HMRF-
WOA was evaluated for 20 normal subjects. Figure 18 shows some slices of one subject
(slices 20, 28, 32, 35, and 39); Figure 18a presents the initial slices images, (b) represents the
ground truth segmentation, and (c) shows the HMRF-WOA segmentation results.
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Databases 

Figure 14. Dice coefficient of CSF (BrainWeb dataset) for each algorithm [47].

 

Databases 

Figure 15. Jaccard coefficient of GM (BrainWeb dataset) for each algorithm [47].

 

Databases 

Figure 16. Jaccard coefficient of WM (BrainWeb dataset) for each algorithm [47].
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Databases 

Figure 17. Jaccard coefficient of CSF (BrainWeb dataset) for each algorithm [47].

(a) 

     

(b) 

    

(c) 

   
 slice #12-3/20 slice #12-3/28 slice #12-3/32 slice #12-3/35 slice #12-3/39 

Figure 18. Segmentation results of IBSR dataset: (a)—initial images; (b)—ground truth images;
(c)—segmentation results.

Table 4 below illustrates the Mean DC values of the MR brain images from the IBSR
obtained by our proposed method (HMRF-WOA) and the literature methods. In this
assessment, we have added other approaches, such as PLA-SOM [50], Gardens2 [51],
andKPSFCM [52], for GM, WM, and CSF segmentation. All the comparative methods
shown in this table use the same database images. So, this comparison shows that the
HMRF-WOA performed significantly better than the other methods.

The graphical presentation of the mean DC index for the three tissues (CSF, WM, and
GM) between our proposed method and the literature methods is shown in Figure 19.
This comparison shows that the average DC index of the GM and CSF segmentations is
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strongly improved in the IBSR dataset. On the other hand, the average DC indexes of the
WM segmentations between our method and hMRF-BFGS suggests that the improvement
is slight.

Figure 19. Mean DC of brain tissues in IBSR dataset [47].

As shown, these analyses confirmed the accuracy and the robustness of our automatic
method. In addition, the proposed method, called HMRF-WOA, outperforms the literature
methods used for our comparison.

The qualitative analysis provides a visual representation of the segmentation ap-
proaches. The visual comparison of the resulting images using the HMRF-WOA appears to
be more similar to the reference image (ground truth), where Figures 1–5 show the GM,
WM, and CSF tissue regions of the reference image with higher values of noise levels (3,
5, 7, and 9%) and intensity non-uniformity levels (20, 40%), whereas Figures 7–11 show
the subject images obtained using the proposed technique. However, this result shows
that with higher values of noise and intensity non-uniformity, the algorithm, with its
hyperparameters, is able to segment the tissue regions correctly.

Moreover, Figure 18 illustrates the segmentation results of the proposed algorithm
using MR brain images from the IBSR database. Figure 18a presents the slices of the
original brain image; Figure 18b is the ground truth slice images; and Figure 18c shows the
segmented brain MR images using the HMRF-WOA approach on the sample image of one
subject. GM is shown in yellow, WM in red, CSF in green, and the background in blue.

Therefore, these analyses confirmed the accuracy and the robustness of our automatic
method. In most cases, we achieved acceptable results using these brain datasets.

In this framework, the HMRF-WOA incorporates three hyperparameters:

1. The weight β associated with the pair of neighboring pixels is a positive constant
that controls the size of homogeneous regions. Also, increasing the value of the β

parameter e can increase the contribution of the neighboring sites in the estimation of
the class of a given pixel. So, we chose β = 1 as we obtained a good performance for
the segmentation method using this value.

2. The whale population size parameter represents the total number of whales used in
the WOA to optimize the MRI image segmentation. We have tested three values of
this parameter (10, 20, and 30). Using 20 search agents gave the best accuracy result
and a good computational cost compared to other values.

3. The number of iterations represents the number of loops used to evaluate the HMRF-
WOA process. We tested values ranging between 5 and 40 iterations. The best result
was obtained with 20 iterations.

The choice of these parameters shows its effect on the performance of the HMRF-WOA.
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Computational Complexity Analysis

Computing time serves as a crucial measure for justifying the computational effective-
ness of any method. Our proposed approach with these hyperparameters showed a good
efficiency and a better performance compared to other segmentation methods. However,
a notable drawback of this method is its computational complexity. A critical limitation
arises from the selection of hyperparameters, where the balance between computational
cost and accurate results must be carefully considered. Another limitation is that we have
not tested the algorithm’s performance to evaluate its generalizability on other MRI types
or imaging modalities.

In addition to this, the computational complexity of the algorithm is computed
as follows:

1. Initializing the whale population is O(N), where N is the size of the population.
2. Computing the fitness value of the initial population is O(N).
3. Obtaining the best solution is O(N2).
4. Iteration, updating whale population, and evaluating fitness are O(2N).
5. Iteration and obtaining the best solution are O(N2).

Therefore, the total time complexity of HMRF-WOA is:

O(2N) + O (N2) + maxiter (O (2N) + O(N2)) == (maxiter + 1) (O (N2 + 2N))

where maxiter is the maximum number of iterations used as the termination criteria for
the algorithm.

6. Conclusions

Efficient methods of segmentation and classification are some of the most challenging
tasks for physicians and radiologists. The automation of these methods thus occupies a
major proportion of research in the domain of medical imaging.

The motive of medical image processing for handling human organs is to precisely
segment or classify the tissue regions to make operations easier.

In this study, a novel combination of the HMRF model and a whale optimization
algorithm (WOA) are applied to segment the images of two well-known brain datasets:
BrainWeb and IBSR. We conclude that our HMRF-WOA outperforms all the other methods
or techniques compared in this study, where the assessment results of the segmented tissues
as illustrated in all the figures indicate that the HMRF-WOA can precisely segment the
brain tissues at different noise levels, despite the presence of the intense inhomogeneity
in the input images. Overall, comparing the proposed method with the results of other
techniques shows that the method can yield an acceptable result for GM, WM, and CSF
segmentation. The results are summarized in Tables 2 and 3.

This increased robustness and accuracy of our HMRF-WOA optimization method-
based MRI brain segmentation technique will hopefully help the application of MR image
segmentation techniques, such as measuring the anatomical structures measurement of the
brain, surgical planning, and image-guided interventions.

In the future, we would like to hybridize the WOA method with other techniques to
show their main benefits and to achieve higher performances in the treatment process.
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Abstract: We propose a monitoring system for detecting illicit and copyrighted objects in digital
manufacturing (DM). Our system is based on extracting and analyzing high-dimensional data from
blueprints of three-dimensional (3D) objects. We aim to protect the legal interests of DM service
providers, who may receive requests for 3D printing from external sources, such as emails or uploads.
Such requests may contain blueprints of objects that are illegal, restricted, or otherwise controlled in
the country of operation or protected by copyright. Without a reliable way to identify such objects,
the service provider may unknowingly violate the laws and regulations and face legal consequences.
Therefore, we propose a multi-layer system that automatically detects and flags such objects before
the 3D printing process begins. We present efficient computer vision algorithms for object analysis
and scalable system architecture for data storage and processing and explain the rationale behind the
suggested system architecture.

Keywords: computer vision; high-dimensional data; digital manufacturing; illicit object; copyright
object; illegal printing

1. Introduction

Almost any new technology, along with creating new possibilities, gives rise to im-
mediate attempts to misuse it. For example, the introduction of color printers enabled
attempts to print counterfeit currency [1], forge official documents, and so on. It was
difficult to conduct counterfeit investigations for illegal activities using color printing, and
almost impossible to find the person or people who performed it and the printer itself.
As a cybersecurity measure that facilitates the search for the offender, some color laser
printer manufacturers started including tracking information as part of the printout [2].
A similar problem emerged in additive manufacturing, or 3D printing, a technology that
enables the creation of physical objects from digital blueprints. However, these blueprints
can be stolen or tampered with. In addition to illegal 3D printing of counterfeits, another
cybersecurity challenge relates to producing 3D-printed weapons, explosives, etc. [3,4]. For
example, ghost guns are almost impossible to trace [5], and workshops conducting their
manufacturing are discovered mainly by chance [6].

There is an emerging need to detect the printing of objects (hereafter called con-
trolled objects or COs) that potentially infringe on laws, authorship rights, legal or other
constraints. We suggest detecting such objects before the 3D printing process begins to
avoid legal consequences for manufacturers. We cannot control digital manufacturing at
illegal workshops. Still, our approach could help “to keep honest people honest”, e.g.,
online 3D printing digital manufacturers (like Shapeways.com) with large volumes of
customers uploading parts for 3D printing. Our approach can prevent the printing of COs
and alleviate the accompanying legal and other challenges for an unsuspecting manufac-
turer. We could help to mitigate the risk to business owners of accidentally manufacturing
something forbidden.
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This paper proposes a monitoring system for detecting illicit and copyrighted objects
in digital manufacturing (DM). Our system is based on extracting and analyzing high-
dimensional data from blueprints of three-dimensional objects and can automatically detect
and flag such objects before the 3D printing process begins. The system employs efficient
computer vision algorithms for object analysis and scalable system architecture for data
storage and processing.

The paper is organized as follows: Section 2 discusses the legal issues of DM. Section 3
states the goals and objectives of our work and contains related prior art. Section 4 includes
a description of the main parts of our system. Section 5 discusses the results, performance
issues, and possible future directions. Section 6 finalizes the article.

2. Legal Framework for Digital Manufacturing and Physical Control at IP Protection

Three-dimensional printing allows the production of a wide variety of objects, ranging
from children’s toys to weapons, bringing new opportunities and security challenges.
In [7], the cybersecurity implications of additive manufacturing are described, and serious
concerns have been raised about the security of storage, transmission, and execution
of 3D models in digital networks and systems. The International Conference on 3D-
Printed Firearms [8] addressed the latest challenges law enforcement faces in tackling the
digital manufacturing threat. The Peace Research Institute Frankfurt (PRIF) 2017 report [9]
describes the potential of this new technology and analyzes its possible risks concerning the
proliferation of small arms, major weapons systems, and even weapons of mass destruction.

Besides the printing of dangerous objects, there are concerns about the 3D printing
of counterfeit products, which could be a severe copyright issue [10]. Printing 3D objects
without permission is illegal if the original design is protected under copyright law [11,12].
If a 3D model is protected by copyright, copyright holders can use technical protection
measures to safeguard patented property. Circumvention of such protection measures is
expressly prohibited by the World Intellectual Property Organization (WIPO) [13].

Several theoretical approaches for IP protection in 3D printing have been proposed,
in addition to legal measures and prohibitions. In [14], for example, it is offered to tag an
object and its associated 3D printing file with a unique identifier to track usage. However,
an engineering solution for the implementation was not provided. Similarly, partnering
with sharing platforms that make 3D files public can help limit unauthorized use. In [15],
proposals were made to incorporate blockchain into the 3D printing process, providing
creators with an additional layer of legal protection with copyright information and a
watermark. To reduce the illegal use of 3D printers, ref. [16] proposed a method for
extrusion manufacturing to trace the origin of printed objects. When a 3D printer has an
extruder that pushes the building material through, the hot end of the extruder melts the
material and places it on the print platform to create the model. Each extruder’s hot end has
unique properties, affecting how the 3D model is built. These thermodynamic properties
can be used to identify a particular extruder and, therefore, a 3D printer model as unique
as a human fingerprint or “ThermoTag”. Thus, the model’s buyer can be traced for using
the printer to make an illegal copy.

The existing solutions for IP protection in 3D printing to combat 3D-printed counter-
feiting and forgery are mainly focused on controlling the original production. For example,
embedding NFC tags and QR codes in genuine products helps consumers validate their
authenticity [17,18]. In [19], it was proposed to use specially placed nanorods in the final
product, which do not affect the integrity of the material but could be a compliance “water-
mark” to distinguish it from a counterfeit, the same way as the watermark is applied to
detect fraudulently printed documents.

The control of original production cannot decrease the production of counterfeits
using 3D custom printing, which remains and will be the main issue. Along with the
violation of trademarks, patents, and other intellectual rights, illegally printed parts could
result in severe or even fatal consequences, e.g., due to incorrect materials being utilized or
substandard production [20].
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3. Problem Statement and the Related Works

Our starting point was to analyze the following situation: There is a 3D printing
facility (automated or semi-automated) which receives requests for 3D printing. There is a
chance to receive an order to print a controlled object. To avoid legal consequences [4,5],
detecting such objects before the 3D printing process begins is recommended. Nowadays,
manufactured objects without official permission or license can only be discovered by
human inspection, and this process is prone to errors. To the best of our knowledge,
currently, there are no existing supporting technical systems, and the enforcement of law
mainly relies on the legal bodies’ operational activities and information from the public.
The introduction of automated tools could be an initial step, allowing at least primary
automated law enforcement for 3D printing.

Hereafter, we propose the concept of an automated system for pre-scanning COs in 3D
printing, along with the algorithms for the extraction and analysis of high-dimensional data
from blueprints of 3D objects. In general, all printable 3D objects can be considered either
technical or decorative. The structure and extent of the technical objects are considered
fixed. Otherwise, its functionality will be compromised. Currently, we do not consider
cases when the specific technical part could be heavily modified aesthetically without
changing functionality, nor is there the possibility of including large-scale features that can
be easily removed in post-processing.

At first glance, restricting unauthorized objects from printing boils down to checking
if two 3D objects represented by blueprints are the same or different. The existing methods
for 3D-object matching can be categorized into three groups: shape-based, view-based, and
hybrid [21].

3.1. Shape-Based Methods

In the shape-based category, features are extracted from 3D shape representations
(such as polygons, voxels, graphs, etc.) and later used for similarity measurement. The
descriptor of the shape is found using some algorithm that characterizes the geometric
properties of the object. Statistical descriptors employ histograms to encapsulate the
distributions of shape features. While they are efficient and quick to compute, their ability
to discriminate is limited, as they do not adequately capture the local characteristics of the
object’s shape. In this category of methods, we mention the following descriptors:

• A 3D shape spectrum descriptor [22] is related to the first and second principal
curvature along the object’s surface.

• A D2 descriptor [23,24] takes samples of distances between two points on the model’s
surface and then creates a distance distribution histogram that serves as the model’s
shape descriptor.

• A descriptor [25] compares the similarity of two 3D objects by generating distance
histograms and determining the appropriate alignment of the two objects.

• A graph-based approach [26] utilizes hierarchical structures to represent 3D objects,
accompanied by graph-matching techniques.

• A spherical function-based descriptor [27] suggests using a volumetric representation
of the Gaussian Euclidean Distance Transform for a 3D object, expressed by the norms
of spherical harmonic frequencies.

3.2. View-Based Methods

View-based methods are becoming increasingly popular due to the progress in 2D-
3D reconstruction. The primary concept in visual representation for 3D model retrieval
involves initially converting the 3D model into a 2D projection image. Subsequently,
various image processing techniques are employed to extract diverse features from this
image [28]. For example:

• Ansary et al. [29] selected optimal 2D views of a 3D model and created K-mean
clustering of views. Then, the similarity between pairwise 3D objects was measured
by applying Bayesian models.
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• Wang et al. [30] solved the retrieval problem using group sparse coding. The query
object was constructed again by the view sets of each shape; then, the restoration error
was considered the similarity measurement for retrieval.

• In [31], it was proposed to project a 3D object to a 2D space and use multi-views. These
view-based methods combine a trainable system with 2D projection attributes adopted
by the Convolutional Neural Networks (CNNs).

• Ref. [32] introduced a 3D shape descriptor known as the spherical trace transform,
which generalizes the 2D trace transform. This approach involves calculating a range
of 2D features for a collection of planes that intersect the volume of a 3D model.

3.3. Hybrid Methods

The hybrid methods involve fusing various 3D shape features to improve retrieval ac-
curacy [33]. According to [34], a 3D shape representation incorporating more shape features
tends to excel in retrieving more relevant models. In a study by Papadakis et al. [35], a novel
hybrid 3D model shape descriptor called PANORAMA was introduced. PANORAMA re-
lies on a set of panoramic views of a 3D model. This approach involves projecting an object
onto three perpendicular cylinders and, for each projection, calculating the corresponding
2D Discrete Fourier Transform and 2D Discrete Wavelet Transform.

4. System Architecture

The lack of a universally accepted and consistently effective solution is evident from
the multitude of methods available. One of the main requirements for an industrial system
is stable, error-free work, and one of the ways to improve reliability is by combining existing
approaches and using them in the ensemble.

For a real-life proof of concept system, besides comparing two 3D objects, many other
issues should be considered, such as:

• How to store COs securely without unauthorized leakage of their blueprints.
• How to represent the objects in the database of controlled objects.
• How to evaluate objects-in-question quickly and provide a fast search of this informa-

tion to keep up with 3D printing operations.

We need to address three problems:

1. How to describe controlled objects in a compact way that is good for comparison
and storage: Confidentiality Preserving Descriptors (CPDs) should be used for object
feature representation. Even if a descriptor of a CO is leaked, it cannot be used to
manufacture COs.

2. How to keep a Database of Controlled Objects (DCO) containing the descriptions of
the controlled objects: this database should be maintained by the authorities, who
decide which objects should be controlled.

3. How to compare an object to be manufactured (an object-under-analysis, OUA) to
controlled objects from the DCO in rapid, reliable, and efficient ways.

4.1. Storing of Controlled Objects

The decision of what is forbidden and what should be considered controlled objects
should be decided by some authority. It might depend on the country and local laws, and
local authorities and enforcement organizations should maintain this information.

The information about forbidden and controlled objects (e.g., in airport security) can
be kept today in the following forms:

• Human knowledge (a border control officer can recognize a forbidden item).
• Databases of 2D photographs for camera/video recognition.
• In a neural network (NN) for photo/video recognition. This NN should first be trained

on many cases to extract the patterns typical for the specific class (classes) of objects
to recognize.
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These forms cannot be directly utilized for our 3D recognition project. For exam-
ple, human knowledge cannot be embedded into a device for automation and checks
before manufacturing. Two-dimensional photos do not show the internal architecture, so
non-functional replicas of the controlled object (for example, a 3D-printed foam gun for
hobbyists for play) could be identified as a CO. The usage of a NN could be questionable
as sometimes there is only one sample of a controlled object. It does not represent any class,
so extracting common patterns from this unique object is pointless.

Both the visual appearance and the object’s internal structure should be analyzed to
make an informed decision. Furthermore, we do not like to constrain the CO’s geometry.
COs may have the following: (a) complex geometry with embedded surfaces and structures
(this is a unique feature of 3D printers (3DPs) when several objects can be printed at the
same time, and some objects may be embedded into others, e.g., a sphere in a hollow
cube); (b) a topology with holes and many fine-grain details; and (c) various curvatures
with/without edges at the surface, etc.

To date, there are no 3D DCOs or prohibited blueprints in the public domain. If such
databases existed, they would be an excellent source for illegal manufacturing and would
encourage a proliferation of illicit items, for example, ghost guns. An open-access DCO
would substantially increase the scope of attack, so a real DCO (with guns, explosives, etc.)
could be created only by relevant government agencies and supervisory authorities and be
securely kept out of public access. This consideration sets high-security requirements for a
DCO, as the DCO itself would be a target for attacks to extract COs.

One more consideration relates to the question of where to keep the DCO. We assume
there should be a centralized DCO, and we propose keeping the local copy of this DCO at
the edge (at the printing facility) and keeping both options to perform validation locally at
the facility, or as part of a cloud service.

Each edge device subscribes to a centralized DCO (in the cloud) and fetches the latest
updates on controlled objects, creating a local DCO copy in-device. The gains from this
could be the following:

• Local validation provides performance benefits; large 3D design files do not need to
be uploaded through the Internet.

• A deployment model where designs are pre-validated by a cloud service is possible,
assuming design owners are ready to get their designs pre-approved from authority
services. In some cases, in-device validation could be beneficial as it limits design
exposure service. To ensure the confidentiality of designs-to-be-produced, there may
be a requirement not to move the blueprint out of the 3D printer to protect intellectual
rights and provide secure printing operations.

• Additive manufacturing factories (or devices) could be operating offline.
• A DCO will store information about 3D objects in the form of CPDs.

4.2. Confidentiality Preserving Descriptors: Describing CO

At the system core, there are CPDs—a set of “fingerprints” for 3D objects.
The concept behind CPDs is as follows:

• Each of these descriptors describes a distinctive feature of 3D objects. It could [36–38]
be the number of holes in the object, volume of the object, area of the surface, volume
of the convex hull, surface- or boundary-based centroid, center of mass, principal
axes, convexity, aspect ratios, sphericity, mean radius, ellipsoidal variance, EGI [39],
spherical harmonic coefficients [27], etc. Multiple CPDs are used as an ensemble to
facilitate rapid object identification.

• Three-dimensional objects are encoded by their feature vector. Each object’s CPDs
contain essential information about the shape of the 3D object in a compressed and
low-dimensionality form, sufficient for object identification.

• Descriptors must be lossy and nonreversible, making the restoration of original blueprints
from CPDs impossible even if the 3DP device is breached and fully disassembled.
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• Descriptors need to be computationally light/fast for in-device processing. We assume
k = 102–103 physical objects per 3DP job, so using object-per-object comparison will
require k times the number of controlled objects for comparisons. This processing
should not create a “bottleneck” for the primary 3D printing process by demanding
too many resources.

• At least some descriptors should be able to capture the internal structure of the 3D
object, not only the appearance.

• Descriptors could be efficiently stored in the DCO and allow effective comparison
of descriptors.

• As objects in the 3DP job may be rotated for better packing of objects in the printing
volume, the descriptors should either provide the same output when the 3D objects
are rotated and translated or the most efficient method to compare the descriptors of
the rotated and translated objects should be known.

4.3. Identification Process

The objective of the identification process is to analyze the object in a 3D printing
(3DP) job as being a CO before printing. CPDs are computed for each object in a 3DP
job (for each OUA) and compared to CPDs of controlled objects from the DCO before
allowing manufacturing to commence. This identification process should be time- and
resource-efficient and include the analysis of the internal structure of the 3D object, not
only the surface.

One possible option during the analysis is that the CO in the 3DP job may be rotated
and translated for better packing of objects in the printing volume. Assuming that the
technical OUA has an established and (almost) unchangeable geometry, its mesh could still
be modified to change the number of vertices/triangles (and keep the original geometry
and topology) in the blueprint. Such a modification is one of the simplest methods to make
the object misidentified if the recognition of the object is based on the number of vertices
and triangles of the original blueprint.

We assume that most objects to be printed at the facility are non-controlled. This
brings us to a two-level architecture, where at the first level we would like to identify
the non-controlled objects as fast as possible and leave only the suspicious objects to be
controlled. We use more time-consuming but high-accuracy approaches at the second level
to check if the object is a CO.

The error of the first type (the allowed object is considered controllable) will annoy
the customer of the 3D printer as the legitimate order will be rejected. This event will
likely negatively affect customer satisfaction and future usage of the manufacturing facility.
The error of the second type (the controlled object is considered as allowed) could cause
severe consequences for the facility owner/operator for breaking the law. For example,
per Singapore law, the operator of the printing facility is responsible for printing illegal
objects [4].

The proposed two-layer system can be considered a two-factor authentication (2FA)
system, where the printable object is checked and authenticated by distinctively different
methods at each stage.

This 2FA system is a cascade of classifiers:

• The decision making about object identification is performed as a cascade of classifiers,
i.e., in a hierarchical manner.

• The probability of encountering a CO is low, so we must filter out non-COs quickly
and efficiently.

• We start from low-complexity discriminative algorithms to reject the object as being a
CO as fast as possible (e.g., it is too small, too “square”, has no holes, etc.).

• Then, at later stages, we progress to complex, computationally expensive, and accurate
determination algorithms.

• All objects (models) from a 3D print job should pass through a hierarchy of classifiers
(it could be imagined as a set of sieves with smaller and smaller chances to make an
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inaccurate decision due to being more computationally expensive at each consequent
level); refer to Figure 1.

• We aim to identify (eliminate) most objects by the least computationally expensive
classifier.

• Ideally, it is expected that identification aims for 100% accuracy within an accept-
able time.

• Different methods have different complexity and accuracy (usually, the more complex
the approach, the longer the calculations and the better the final accuracy).

• Some models could take a long time to process to reach high-accuracy results.
• The acceptable level of object identification accuracy may depend on the object type.

We might need to weigh the importance of correctly identifying the object against the
time spent on decision making and the type of the object itself.

Figure 1. The sieve system is used to identify a CO in a 3DP job.

The method of object identification should be immune to:

• Rotation in R3 (any degree) and translation (as objects in a 3D printing job could be
moved to be better packed in the printing volume).

• Remeshing of 3D object mesh.

Many descriptors for the first layer can be found in [36–38]. We can apply these
descriptors according to a decrease in complexity (and an increase in speed) and calculate
some descriptors in parallel. The calculation and comparison of different descriptors can
be separated into several levels (Figure 1).

We can choose all the descriptors available to perform the object’s comparison. How-
ever, there is a more advanced way. In [40], different sets of descriptors were analyzed
for their usage for object “fingerprinting” and for their efficacy and efficiency. A small
set of four descriptors was found to describe and compare 3D objects efficiently. These
descriptors are also efficient for information retrieval from the big database of 3D objects.
One of the sets of the champion CPDs consists of the convex hull area of the 3D object, con-
vex hull volume, modified extended gaussian image (which is the energy of the spherical
harmonics corresponding to the extended gaussian image [39,41] of the 3D object), and
the central moment of inertia of the surface of the object calculated relative to the centroid
of the 3D object [40]. These CPDs were chosen based on their computational simplicity
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and the power of feature extraction, and their efficacy is the same as for the much more
comprehensive set of descriptors.

The specialized algorithm called Discriminative Base Comparison (DBC) was used for
the second layer. Following Kazhdan’s [27] approach, it cuts the 3D object into concentric
spheres (shells) and then finds the intersection of the object by each shell. A sequence of
spherical harmonic coefficients represents the resulting indicator function for each shell,
and then the corresponding energies for each degree and shell are calculated. The valuable
property of energies is that an energy is not changed by any rotation in R3 around the
center of mass (or centroid) and does not depend on the object’s translation.

In a concentric manner, shell-by-shell and degree-by-degree, the energies of the spher-
ical coefficients are compared for the OUA and COs from the DCO. If a correspondence is
found, the object similar to the CO is identified. DBC is a non-iterative and non-gradient
method of searching for similarity.

The computational complexity of this method is much higher than the complexity for
calculations of the simple descriptors at the first layer of the process. That is why the OUA
is first tested by fast and simple descriptors, which provide quick rejection of non-similar
objects, and only after passing this sieving-out do we apply the more complex check. Let
us recall that most of the objects in the 3DP job are assumed to be non-controllable, so the
first layer efficiently identifies and rejects non-COs, leaving only the cases where extra
investigation is required.

The overall workflow is depicted in Figure 2. The OUA is represented in the form of a
set of descriptors and is compared with the descriptors of the COs from the DCO using the
sieve system (Figure 1).

Figure 2. The overall workflow.

5. Results and Discussion

The current developed proof of concept demonstrates its functionality and verifies a
principal concept of usage of CPDs for object “fingerprinting” and identification (Figure 3).
We also developed an initial prototype that allows for the visualization of how the system
will function; there is a working interactive model that gives an idea of the functionality,
design, navigation, and layout (Figure 3).

To test the software for the identification of COs, we used several standard internet
datasets that contain 3D polygonal models collected from the World Wide Web:

• The ShapeNet dataset (The Princeton Shape Benchmark (PSB), Version 1) [42].
• The Engineering Shape Benchmark (ESB, Purdue University) dataset [43].
• Princeton ModelNet40 [44].
• Free downloadable models from different Internet websites.

All in all, we collected more than 14,000 models and placed them in the database.
These 3D objects represented potential objects of interest with unique features.

Our approach was tested in the following way: We took every object from the database
(considered as our DCO), then randomly rotated, translated, and re-meshed them, and
then performed a database search using our two-layer approach. The first layer checked
the correspondence of features of two objects; if the objects are scaled versions of each other,
they will be considered as non-matching (as they have, for example, different volumes).
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In case we needed to identify the scaled objects as matching, then before the analysis, we
additionally needed to scale the objects to the same standard size.

Figure 3. Application interface for comparison of object-under-printing against the DCO objects.

The result showed that, using the architecture suggested and the CPDs described, it
was possible in all cases (100% accuracy, 0% false positive/false negative) to successfully
identify the models from the database. These identified models could comprise duplicates
or mirror images of the OUA, or objects found in the database that possess a slight variation
of the surface of the OUA.

The second experiment conducted to check our method used the ESB [34,43] as a DCO.
The set of 3D models input to check against the DCO included transformed and re-meshed
models from ModelNet40 [44] (a set of unprotected objects) and ESB (protected objects).
Our descriptor-based approach correctly identified whether the input model was contained
in the DCO with 100% accuracy; shifted, rotated, and mirrored objects, and objects with
minor modifications were identified correctly.

The ultimate validation of the proposed method of CO identification could be accom-
plished by using a real DCO (with guns, explosives, etc.) To our knowledge, there is no
existing open-access database of controlled (prohibited) blueprints, and even keeping a
controlled blueprint on a computer without official permission is a criminal offense in
some countries, including, for example, Singapore. The existence of such a database would
be a significant security threat, and the creation and maintenance of such a DCO should
be developed only by relevant government agencies and supervisory authorities. Hence,
real-life experiments could be conducted only after the appearance of such a DCO and only
by the appointed people.

The system proposed is not a panacea, and expecting the same 100% accuracy in a
real-life situation would be really naive. Currently, it can only identify technical objects with
(almost) unchangeable geometry. The objects’ scaling, rotation, translation, and remeshing
do not affect the identification results. This system would mainly help when attempting to
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print a known controlled object without significant modification. By analogy, in Internet
cyberattacks where people try to use a vulnerability discovered by some pioneer hacker,
we hope that most attackers (people who would try to print COs) would use the blueprints
found on the Internet without modifications.

We see a rapid adoption of 3D printing technology for manufacturing illegal or
counterfeit objects. Wikipedia provides a list of 3D-printed weapons and parts [45] which
consists of 50 individual designs printed in metal and plastic. For comparison, only
five to six designs were available two years ago. As a result, laws and regulations were
rapidly introduced to prohibit/restrict 3D printing, identify legally guilty parties, and
introduce penalties. Finding people/organizations illegally printing counterfeit objects
and proving that the objects were illegally printed will be an enforcement nightmare for
patent holders and relevant law enforcement authorities. Incorporating constraints in 3D
printing will allow manufacturers to satisfy current and future legal requirements and
enable programmable control for printing unauthorized/copyrighted 3D objects.

Zero-day attacks and different (from those considered above) types of attempts to
print COs should be addressed when these new attacks are detected. This is the same
never-ending attack and defense game we see for viruses and antiviruses.

One of the types of attacks presently challenging to detect involves modifying the
surface of a 3D object in a way that does not impact its functionality but alters the object’s
shape. Establishing local surface correspondences with the CO could shield them from this
attack, and the authors are currently working on this idea. This approach requires time
to develop to make it practical (to work in real time and to be accurate and robust under
possible modifications).

5.1. Efficiency of Search in a Big Database of Controlled Objects

A potential bottleneck could appear for efficient data retrieval from a big database
(~1 M controlled objects and more). A set of CPDs represents each object; hence, for the
fast retrieval of an object from a database, we need to find a “good” subset of CPDs to
discriminate the database objects efficiently. Next, we need to index and filter the database
using the subset of CPDs found. If the database is modified (the number of records is
growing), the “good” set of descriptors for fast retrieval might also change. It poses the
question: how do you find a quick and efficient method of information retrieval for a
database of, say, 1 million or 1 billion records?

The distribution of object features in a database appears to have colossal information
“inertia”. The distribution does not change a lot when the database grows. It is the same
concept as for public opinion surveys: there is no need to ask everyone, and there is a need
to choose a representative subset. Statistically representative results for a database of up to
1 million records require a sample size of fewer than 400 records to be analyzed (with a
95% confidence level and 5% margin of error). We conducted experimental checks of the
claim as it sounds counterintuitive and found that the statistical approach (unlike intuition)
is correct. We can, therefore, discover optimal filtering for a big database based on samples
from this database.

5.2. Possible Future Directions

There are a lot of interesting future continuations for this project. For example:

• Making the identification of a CO possible even if no blueprint for this CO is available.
This could be done by scanning the object and representing it as a point cloud.

• Identifying a CO even if an intentional change in the design (to escape detection) is
made. We assume that this design change does not affect the object’s functionality.

• Verifying that the blueprint object was not modified during printing (parts of the
blueprint should not be changed during manufacturing due to a malicious attack).

• Performing modeling of attacks and countering attacks.
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• Incorporating ML/DL techniques to detect similarity to the class of COs even if we
have a limited number (or even one only) of class representatives (e.g., the object looks
like a known CO) using one-shot learning.

6. Conclusions

There is a clear need for new solutions in intellectual property protection and the
production of controlled objects in the emerging world of 3D printing. In this world, the
proliferation of 3D manufacturing of fake spare parts and real weapons is the upcom-
ing reality.

Preventing counterfeiting and printing of controlled objects promises to be a growth
market (the same as 3D additive manufacturing) with several clearly defined stakeholders.
The incorporation of constraints before the 3D printing process starts might benefit:

• Patents, copyrights, and trademarks holders;
• Three-dimensional manufacturers (this could help address current and future regula-

tory challenges for the production of COs);
• Law enforcement organizations (to tighten controls for high-risk items).

We have proposed a system architecture for the fast, efficient, and secure identifi-
cation of whether a design-to-be-produced inside a 3D printing system is a controlled
object. The computer vision algorithms developed analyze the features of 3D objects
in multi-dimensional space. This project is currently in the process of building a proto-
type. Pre-screening software could indemnify a 3D printer owner from liability related
to the unintentional printing of a controlled object. This technology could help protect
manufacturers and rights owners from unscrupulous customers and insider threats (e.g.,
“after-hours manufacturing”, (un)intentional oversight, etc.).

Copyright/trademark holders could protect their intellectual rights, e.g., by subscrib-
ing to a service that prevents (prohibits) the reproduction of protected objects through 3D
printing at additive manufacturing facilities.
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Abstract: This paper provides a comprehensive review of the YOLO (You Only Look Once) framework
up to its latest version, YOLO 11. As a state-of-the-art model for object detection, YOLO has
revolutionized the field by achieving an optimal balance between speed and accuracy. The review
traces the evolution of YOLO variants, highlighting key architectural improvements, performance
benchmarks, and applications in domains such as healthcare, autonomous vehicles, and robotics. It
also evaluates the framework’s strengths and limitations in practical scenarios, addressing challenges
like small object detection, environmental variability, and computational constraints. By synthesizing
findings from recent research, this work identifies critical gaps in the literature and outlines future
directions to enhance YOLO’s adaptability, robustness, and integration into emerging technologies.
This review provides researchers and practitioners with valuable insights to drive innovation in
object detection and related applications.
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1. Introduction

Object detection, a core task in computer vision, has seen remarkable advancements in
recent years due to the ongoing development of more efficient and accurate algorithms [1,2].
One of the most significant breakthroughs in this field is the You Only Look Once (YOLO)
framework, a pioneering one-stage object detection algorithm that has drawn widespread
attention for its ability to achieve real-time detection with high precision [3,4]. YOLO’s
approach simultaneously predicting bounding boxes and class probabilities in a single for-
ward pass sets it apart from traditional multi-stage detection methods [5–7]. This capability
makes YOLO exceptionally well-suited for applications requiring rapid decision-making,
such as autonomous driving, medical diagnostics, and surveillance systems [8,9]. The evo-
lution of object detection methods has paved the way for YOLO, offering a novel solution
to the longstanding challenge of balancing speed and accuracy in detection tasks [10,11]. Its
real-time performance, coupled with its flexibility across a wide range of domains, has ce-
mented YOLO as a leading algorithm in both academic research and practical applications.
As object detection continues to evolve, a deeper understanding of YOLO’s architecture and
its extensive applicability becomes increasingly important, particularly as newer versions
introduce significant architectural improvements and optimizations [12].

This review provides a comprehensive exploration of the YOLO framework, beginning
with an overview of the historical development of object detection algorithms, leading
to the emergence of YOLO [13]. The subsequent sections delve into the technical details
of YOLO’s architecture, focusing on its core components, the backbone, neck, and head,
and how these elements work in unison to optimize the detection process. By examining
these components, we highlight the key innovations that enable YOLO to outperform
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many of its counterparts in real-time detection scenarios. A central theme of this review
is the versatility of YOLO across diverse application domains. From detecting COVID-19
in X-ray images to enhancing road safety under adverse weather conditions [14], YOLO
has demonstrated its ability to address complex challenges across fields such as medical
imaging, autonomous vehicles, and agriculture. In each of these domains, YOLO’s ability to
process high-resolution images quickly and accurately has driven substantial improvements
in detection efficiency and accuracy.

Throughout this review, we address several key research questions, including the
major applications of YOLO, its performance compared to other object detection algo-
rithms, and the specific advantages and limitations of its various versions. We also consider
the ethical implications of using YOLO in sensitive applications, particularly regarding
privacy concerns, dataset biases, and broader societal impacts. As YOLO continues to
be deployed in applications such as surveillance and law enforcement, these ethical con-
siderations become increasingly critical to responsible AI development. Therefore, this
review synthesizes insights from various domains to provide a holistic understanding of
the YOLO framework’s contributions to the field of object detection. By highlighting both
the strengths and limitations of YOLO, this paper offers a foundation for future research
directions, particularly in optimizing YOLO for emerging challenges in the ever-evolving
landscape of computer vision.

This paper is structured to provide a holistic understanding of the YOLO framework,
beginning with an overview of its fundamental architecture and evolutionary advance-
ments. It then delves into a benchmark-based evaluation of various YOLO versions, offering
critical insights into their performance across diverse datasets and scenarios. The discussion
extends to YOLO’s extensive applications across multiple domains, such as healthcare,
autonomous systems, agriculture, and industrial automation, highlighting its transfor-
mative impact in real-world settings. Finally, the paper addresses ethical considerations
associated with YOLO’s deployment, including privacy concerns, societal implications,
and the need for responsible use. This comprehensive approach aims to provide readers
with a well-rounded perspective on the technical capabilities, practical applications, and
ethical dimensions of YOLO, serving as a valuable resource for researchers, practitioners,
and policymakers alike.

2. Literature Search Strategy

Conducting a comprehensive literature review of the YOLO framework requires a sys-
tematic and methodologically rigorous approach. This study employed a well-structured
strategy to navigate the extensive and multidisciplinary body of literature on YOLO, ensur-
ing a thorough and representative selection of the most relevant and impactful studies.

2.1. Search Methodology

To ensure an exhaustive review, we focused on reputable and high-impact sources such
as IEEE Xplore, SpringerLink, and key conference proceedings, including CVPR, ICCV, and
ECCV. In addition, we utilized search engines like Google Scholar and academic databases,
leveraging Boolean search operators to construct detailed queries with phrases such as
“object detection”, “YOLO”, “deep learning”, and “neural networks”. This approach
allowed us to capture the latest research and most significant papers across disciplines
related to computer vision and machine learning.

The search covered an array of top-tier publications, including but not limited to
the following:

• IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI);
• Computer Vision and Image Understanding (CVIU);
• Journal of Machine Learning Research (JMLR);
• International Journal of Computer Vision (IJCV);
• Journal of Artificial Intelligence Research (JAIR).

224



Computers 2024, 13, 336

The search results yielded an initial pool of 53,200 articles. To manage this large
collection, a two-step screening process was applied:

1. Title Screening: The titles were reviewed to eliminate papers not directly related to
YOLO or object detection methodologies.

2. Abstract Screening: Abstracts were thoroughly examined to assess the relevance of
each article in terms of its focus on YOLO’s architectural innovations, applications, or
comparative analysis.

2.2. Selection Criteria

We applied stringent inclusion and exclusion criteria to refine the literature pool:

• Inclusion Criteria:

� Studies providing in-depth analysis of YOLO architecture and methodologies.
� High-impact and widely cited papers.
� Research papers offering empirical results from YOLO-based applications in

various domains.
� Articles that address both the strengths and limitations of YOLO.

• Exclusion Criteria:

� Articles that merely mention YOLO without exploring its methodologies or
applications.

� Research papers lacking substantive contributions to the development or appli-
cation.

� Duplicate or redundant publications across multiple conferences or journals.

This process refined the literature pool to 135 articles, which were selected for a full-
text review. The chosen articles span a wide range of topics, including YOLO’s architectural
developments, training and optimization strategies, and its application across diverse
domains such as medical imaging, autonomous vehicles, and agriculture.

2.3. Coding and Classification

The selected articles were further categorized based on specific features of the YOLO
framework. Each article was coded according to the following dimensions:

• Architectural Innovations: Backbone, neck, and head components, and innovations
across YOLO versions (e.g., YOLOv3, YOLOv4, YOLOv5, YOLOv9).

• Training Strategies: Data augmentation, transfer learning, and optimization techniques.
• Performance Metrics: Evaluation metrics such as mAP (mean Average Precision), FPS

(Frames Per Second), and computational cost (FLOPs).
• Applications: Medical imaging, autonomous driving, agriculture, industrial applica-

tions, and more.

Table 1 provides a detailed breakdown of the different versions of YOLO, their ar-
chitectural innovations, and methodological approaches. For each version, we analyzed
training strategies, loss functions, post-processing techniques, and optimization methods.
This systematic classification allows for a nuanced understanding of YOLO’s progression
and its practical applications.

Table 1. YOLO framework version and research methodologies.

YOLO Version Architectural Innovations Training Strategies Optimization Techniques

YOLOv1 Simplified CNN backbone, basic
bounding box prediction

Geometric transformations,
hue jitter

Stochastic gradient descent,
non-maximum suppression
(NMS)

YOLOv2 DarkNet-19 backbone, K-means
clustering for anchor box refinement

Fine-tuning, pre-trained
weights

SGD with momentum,
hyperparameter tuning, Adam
optimizer
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Table 1. Cont.

YOLO Version Architectural Innovations Training Strategies Optimization Techniques

YOLOv3 DarkNet-53, multi-scale detection,
residual connections

Mix-up, data augmentation,
noise

Non-maximum suppression,
thresholding, multi-scale object
detection

YOLOv4 CSPDarkNet-53, PANet, mosaic data
augmentation

Transfer learning, knowledge
distillation

Generalized IoU, focal loss,
dynamic quantization

YOLOv5 CSPNet, dynamic anchor refinement,
lightweight architecture

Mosaic, CutMix, early
stopping

Post-training quantization, filter
pruning, low-rank
approximation

YOLOv6 PANet, CSPDarkNet53 Adversarial training,
domain-specific augmentation

IoU loss, confidence
thresholding, multi-scale fusion

YOLOv7 EfficientRep backbone, dynamic label
assignment

Fine-tuning, adversarial patch
detection

NAS, quantization, gradient
clipping

YOLOv8 Path Aggregation Network, Dynamic
Kernel Attention

Adversarial training, data
augmentation

Momentum and Adam
optimizer, post-training
quantization

YOLOv9 Multi-level auxiliary feature extraction Fine-tuning, domain-specific
augmentation

GELAN module, deep
supervision for
resource-constrained systems

YOLOv10
Lightweight classification head and
separate spatial and channel
transformations

NMS free training, dual label
assignment

Distinct spatial and channel
transformations to increase
overall efficiency during down
sampling stage

YOLOV11
Introduced C3k2 block in backbone and
used C2PSA to enhance spatial
attention

Fine-tuning, mix-up,
augmentation, adaptive
gradient clipping

Quantization, stochastic
gradient descent (SGD)

3. Single-Stage Object Detectors

3.1. Understanding Single-Stage Detectors in Object Detection: Concepts, Architecture,
and Applications

Single-stage object detectors represent a class of models designed to detect objects
in an image through a single forward pass of the neural network [15]. Unlike two-stage
detectors, which involve separate steps for region proposal and object classification, single-
stage detectors perform both tasks simultaneously, streamlining the detection process [16].
This approach has gained popularity due to its simplicity, computational efficiency, and
real-time processing capabilities, making it particularly well suited for applications that
demand quick inference, such as autonomous vehicles and surveillance systems [17].

A typical single-stage detector directly predicts object class probabilities and bounding
boxes without the need for a region proposal network (RPN) [18]. Several key concepts
define single-stage object detectors:

1. Unified Architecture: These detectors employ a unified neural network architecture
that predicts bounding boxes and class probabilities simultaneously, eliminating the
need for a separate region proposal phase [19].

2. Anchor Boxes or Default Boxes: To accommodate varying object scales and aspect
ratios, single-stage detectors use anchor boxes (also referred to as default boxes) [20].
These predefined boxes allow the network to make adjustments to better fit objects of
different shapes and sizes.

3. Regression and Classification Head: Single-stage detectors consist of two main compo-
nents: a regression head for predicting bounding box coordinates and a classification
head for determining object classes. Both heads operate on the feature maps extracted
from the input image [15].
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4. Loss Function: The model’s training objective involves minimizing a combination of
three losses: localization loss (for accurate bounding box predictions), confidence loss
(for object presence or absence), and classification loss (for class label accuracy) [21].

5. Non-Maximum Suppression (NMS): After predicting multiple bounding boxes, non-
maximum suppression is applied to filter out low-confidence and overlapping predic-
tions. This ensures that only the most confident and non-redundant bounding boxes
are retained [22,23].

6. Efficiency and Real-time Processing: One of the primary advantages of single-stage
detectors is their computational efficiency, making them suitable for real-time process-
ing. The absence of a separate region proposal step reduces computational overhead,
allowing for rapid detection [24].

7. Applications: Single-stage detectors find applications in various domains, including
autonomous vehicles, surveillance, robotics, and object recognition in images and
videos. Their speed and simplicity make them particularly well-suited for scenarios
where real-time detection is crucial. These applications are supported by numerous
studies that highlight the efficiency and effectiveness of single-stage detectors in
dynamic environments, especially in autonomous driving and pedestrian detection
scenarios [25–28]. The effectiveness of single-stage detectors in surveillance systems
enables continuous monitoring and quick response, which is essential for security
applications [29]. In robotics, these detectors assist in real-time object recognition,
facilitating navigation and interaction with the environment [30]. Therefore, the versa-
tility and performance of single-stage detectors have made them a critical component
in various modern technology applications.

These characteristics make single-stage detectors a critical tool in object detection,
providing a balance between speed and accuracy while supporting a wide range of real-
world applications. The flowchart of a single-stage detector’s operation is depicted in
Figure 1 in which there are convolutional layers of different scales followed by FC layers.

 
Figure 1. Overview of single-stage detectors.

3.2. Typical Single-Stage Object Detectors

Several single-stage detectors have been developed over the years, each with unique
innovations and optimizations. Below is an overview of key single-stage detectors, their
architectures, and contributions to the field of object detection.

3.2.1. SSD (Single Shot Detectors)

Introduced by Liu et al. in 2016 [31], the Single Shot MultiBox Detector (SSD) leverages
a Convolutional Neural Network (CNN) as its backbone for feature extraction. SSD utilizes
multiple layers from the base network to generate multi-scale feature maps, allowing it to
detect objects at various scales. For each feature map scale, the SSD assigns anchor boxes
with different aspect ratios and sizes, simultaneously predicting object class scores and
bounding box offsets. After predictions are made, non-maximum suppression is applied to
remove duplicate bounding boxes and retain the most confident detections. The overall
architecture of an SSD is illustrated in Figure 2. The architecture of an SSD is a combination
of convolutional layers that form the backbone and then the SSD head, which performs
detection, and the head is composed of a few convolutional layers.
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Figure 2. Flow diagram of SSD architecture.

3.2.2. DenseBox

DenseBox [32], developed by Huang et al., integrates object localization and clas-
sification within a single framework. Unlike other models that rely on sparse anchor
boxes, DenseBox densely predicts bounding boxes across the entire image, improving
localization accuracy. The model employs a deep CNN for feature extraction, followed
by non-maximum suppression to refine object detections. DenseBox’s dense prediction
mechanism allows for enhanced performance in detecting small and closely packed objects
Figure 3 shows the detailed architecture of DenseBox. The whole architecture consists of
16 convolutional layers, the initial 12 layers of which are used VGG19 for initialization.

 
Figure 3. Detailed architecture of DenseBox.

3.2.3. RetinaNet

RetinaNet [33], introduced by Lin et al., addresses the issue of class imbalance com-
monly found in object detection tasks. The architecture incorporates a Feature Pyramid
Network (FPN) for multi-scale feature extraction and employs a novel focal loss function
to give higher priority to harder-to-detect objects during training. This loss function helps
mitigate the imbalance between foreground and background classes, making RetinaNet
particularly effective in scenarios with sparse object occurrences. The workflow of Reti-
naNet is shown in Figure 4. From the figure below, it can be seen that RetinaNet uses
both top-down and bottom-up approaches to extract features at different scales and this
technique helps in obtaining enriched feature space.

3.2.4. RFB Net

The RFB Net (RefineNet with Anchor Boxes) [34], developed by Niu and Zhang,
builds upon the basic RefineNet architecture. RFB Net introduces anchor boxes of varying
sizes and aspect ratios to improve detection performance, particularly for small objects.
This model applies a series of refinement stages that iteratively enhance both localization
accuracy and classification confidence. The architecture of RFB Net is shown in Figure 5. A
significant difference between the RFB net and SSD is that RFB net uses VGG as a backbone;
otherwise, it is architecturally close to SSD.
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Figure 4. Detailed workflow of RetinaNet.

 

Figure 5. The workflow diagram of RFB Net.

3.2.5. Efficient Det

EfficientDet [35], proposed by Tan and Le, introduces a compound scaling approach
to simultaneously increase network depth, width, and resolution while maintaining com-
putational efficiency. EfficientDet uses a BiFPN (Bidirectional Feature Pyramid Network)
for efficient multi-scale feature fusion, balancing model size and performance. This design
achieves state-of-the-art object detection results with reduced computational complexity,
making it ideal for resource-constrained applications. The architecture of EfficientDet is
shown in Figure 6. EfficientDet uses EfficientNet as its backbone architecture and uses
repeated layers of Bidirectional Feature Pyramid Network (BiFPN) in the neck part.

Figure 6. The architectural overview of EfficientDet.

3.2.6. YOLO

The YOLO framework, pioneered by Joseph Redmon, revolutionized real-time object
detection by introducing a grid-based approach to predict bounding boxes and class
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probabilities simultaneously [36]. This innovative design facilitates a highly efficient
detection process, making YOLO particularly suitable for applications needing real-time
performance.

Since its inception, the YOLO architecture has undergone continuous evolution, with
each version from YOLOv1 through to the latest YOLOv9 introducing enhancements in
accuracy, speed, and efficiency [37]. Significant advancements include the introduction of
anchor boxes, which improve the model’s ability to detect objects of varying shapes and
sizes, as well as new loss functions aimed at optimizing performance. Additionally, each
YOLO iteration features optimized backbones that contribute to faster processing times
and better detection capabilities.

The evolution of the YOLO framework from 2015 to 2023 showcases the iterative
enhancements made in response to emerging challenges in object detection [38]. Each
revision has made strides in minimizing latency while maximizing detection accuracy
central goals in the continuing development of real-time object detection technologies
Figure 7. illustrates the timeline of YOLO’s evolution from 2015 to 2023.

 

Figure 7. Timeline of YOLO models starting from 2015 to 2023.

To quickly and accurately identify objects, YOLO divides an image into a grid and
predicts both bounding boxes and class probabilities simultaneously. Bounding box co-
ordinates and class probabilities are generated by convolutional layers, following feature
extraction by a deep Convolutional Neural Network (CNN). YOLO improves the detection
of objects at varying sizes using anchor boxes at multiple scales. The final detections
are refined using Non-Maximum Suppression (NMS), which filters out redundant and
low-confidence predictions, making YOLO a highly efficient and reliable method for ob-
ject detection.

Each YOLO variant introduces distinct innovations aimed at optimizing both speed
and accuracy. For example, YOLOv4 and YOLOv5 integrated advanced backbones and loss
functions such as Complete Intersection over Union (CIoU) to improve object localization.

The basic loss function for the YOLO model introduced by Redmon et al. [39] is
presented in equation below:
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function, we can see that only the classification error and bounding box coordinate error
are penalized. Table 2 below provides an overview of the loss functions used across YOLO
variants, highlighting their contributions to classification and bounding box regression.

Table 2. Overview of loss function in YOLO variants.

Model Bounding Box Regression Classification

YOLOv1 Mean Squared Error (MSE) Binary Cross Entropy (BCE)

YOLOv2 Sum Squared Error BCE

YOLOv3 GIoU/DIoU Cross Entropy (CE)

YOLOv4 CIoU BCE/Focal Loss

YOLOv5 CIoU Focal Loss

YOLOv6 CIoU/DFL VariFocal Loss

YOLOv7 CIoU BCE

YOLOv8 CIoU/DFL CE

YOLOv9 L1 Loss BCE

YOLOv10 Coordinate loss and confidence loss Cross Entropy (CE)

YOLOv11 IoU based loss BCE/Focal Loss + CloU

Note: Mean Squared Error (MSE), Generalized Intersection over Union (GIoU), Distance based Intersection
over Union (DIoU), Binary Cross Entropy (BCE), Cross Entropy (CE), Complete Intersection over Union (CIoU),
Distributed Focal Loss (DFL).

3.3. The YOLO Architecture: Backbone, Neck, and Head

The three primary components of the YOLO architecture backbone, neck, and head
undergo significant modifications across its variants to enhance performance:

• Backbone: Responsible for extracting features from input data [40], the backbone is
typically a CNN pre-trained on large datasets such as ImageNet. Common backbones
in YOLO variants include ResNet50, ResNet101, and CSPDarkNet53.

• Neck: The neck further processes and refines the feature maps generated by the
backbone. It often employs techniques like Feature Pyramid Networks (FPN) and
Spatial Attention Modules (SAM) [41] to improve feature representation.

• Head: The head processes fused features from the neck to predict bounding boxes and
class probabilities. YOLO’s head typically uses multi-scale anchor boxes, ensuring
effective detection of objects at different scales [42].

Table 3 provides a comparison of the strengths and weaknesses of various YOLO
variants, showcasing the tradeoffs between speed, accuracy, and complexity.

Table 3. Strengths and weakness comparisons of YOLO variants.

Model Strengths Weaknesses

YOLOv1 Fast performance, real-time detection Lower accuracy compared to two-stage detectors

YOLOv2 Better performance with anchor boxes Still suffers from accuracy issues

YOLOv3 Improved accuracy with Darknet-53 backbone Increased complexity, slower than earlier versions

YOLOv4 Adaptable with various heads and backbones Less user-friendly

YOLOv5 Faster training and more accurate than YOLOv3 Less adaptable than YOLOv4

YOLOv6 Fewer computations and parameters Less research and resource availability

YOLOv7 Accuracy and speed improvements over YOLOv6 Higher complexity, risk of overfitting

YOLOv8 Lighter and faster compared to YOLOv7 Case-specific optimizations

YOLO-NAS Good balance of accuracy and speed Less widely adopted

YOLOv9 Reduced model size, ideal for real-time applications Focuses too much on specific objects, ignoring the rest
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4. Investigation, Evaluation with Benchmark

YOLO’s real-time detection capabilities and versatility have revolutionized object
detection across numerous domains. In cultural heritage, YOLO is employed to detect and
classify artifacts in archaeological studies, aiding in the preservation of cultural history
and restoration of structural defects in heritage sites [43,44]. In environmental monitoring,
YOLO assists in tracking endangered species and identifying deforestation patterns through
satellite imagery [45]. In healthcare, YOLO excels in automating critical tasks, such as
detecting tumors in medical imaging and monitoring surgical tools during procedures [46].
In autonomous agriculture, YOLO plays a pivotal role in precision farming by identifying
pests, diseases, and nutrient deficiencies, thereby enhancing crop yields and optimizing
resource efficiency [47]. In industrial automation, YOLO improves defect detection on
production lines, ensuring quality control in manufacturing processes [48]. Additionally,
YOLO is a powerful tool in surveillance and security, powering facial recognition systems
to enable real-time tracking of individuals in sensitive environments such as airports and
banks [49]. The application of YOLO is widespread, making it challenging to enumerate all
its use cases. Therefore, we have selected a few representative applications with publicly
available datasets to conduct an in-depth investigation into the performance of YOLO
models. This analysis thoroughly examines the architectures implemented by various
researchers and evaluates their corresponding results. YOLO models are particularly
popular in real-time applications due to their single-shot detection framework, which
enables both speed and efficiency. In our comprehensive comparison study, we examined
how YOLO models perform in key domains such as medical imaging, autonomous vehicles,
and agriculture. Additionally, we provided an overview of the suitability of these models
based on evaluation metrics such as accuracy, speed, and resource efficiency, highlighting
their effectiveness across a diverse range of fields.

4.1. Medicine

The YOLO framework has revolutionized medical image analysis with its ability to
efficiently and accurately detect, classify, and segment medical images across a range of
applications [50]. The core principles behind YOLO’s success in medical image analysis can
be divided into three main categories: object detection and classification, segmentation and
localization, and compression and enhancement. Each of these frameworks offers unique
capabilities to address specific challenges in medical imaging.

4.1.1. Object Detection and Classification Frameworks

YOLO’s object detection and classification frameworks focus on the accurate identifi-
cation and categorization of objects within medical images. These applications streamline
the detection of key features, abnormalities, and pathologies, reducing the time required
for manual analysis and minimizing the risk of human error. By automating object classifi-
cation, YOLO enables quicker and more precise medical diagnoses.

Breast Cancer Detection in Mammograms: YOLOv3 has been successfully imple-
mented to detect breast abnormalities in mammograms, using fusion models to enhance
the accuracy of classification. This model provides reliable detection of early-stage breast
cancer, significantly aiding radiologists in making timely and accurate diagnoses [51].

Face Mask Detection in Medical Settings: YOLOv2 has been adapted to detect face
masks in hospital and clinical environments, achieving an mAP of 81% [52]. This applica-
tion was particularly important during the COVID-19 pandemic, ensuring that healthcare
facilities maintained proper protective measures [53].

Gallstone Detection and Classification: YOLOv3 has demonstrated high accuracy
(92.7%) in detecting and classifying gallstones in CT scans, making it a valuable tool in
radiology for diagnosing gallbladder diseases quickly and accurately [54].

Red Lesion Detection in Retinal Images: YOLOv3 has been used to detect red lesions
in RGB fundus images, achieving an average precision of 83.3% [55]. This early detection is
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critical for preventing vision loss in patients suffering from diabetic retinopathy or other
retinal diseases [56,57].

4.1.2. Segmentation and Localization Frameworks

Segmentation and localization frameworks extend YOLO’s capabilities beyond ob-
ject detection to identifying specific regions of interest, such as tumors, and delineating
their boundaries. This is particularly useful for medical image analysis, where precise
localization of pathologies is critical for treatment planning [58].

Ovarian Cancer Segmentation for Real-Time Use: YOLOv5 has been applied for the
segmentation of ovarian cancer, providing accurate identification of tumor boundaries [59].
The model’s real-time capabilities allow it to be used during surgical procedures, giving
doctors valuable information to guide their interventions [60].

Multi-Modality Medical Image Segmentation: YOLOv8, when combined with the
Segment Anything Model (SAM), has shown strong results across multiple modalities,
including X-ray, ultrasound, and CT scan images [61]. This integration enables more
precise segmentation and classification, enhancing the diagnostic capabilities of radiologists
and surgeons.

Brain Tumor Localization Using Data Augmentation: YOLOv3, paired with data
augmentation techniques like 180◦ and 90◦ rotations, has proven effective in brain tumor
detection and segmentation. The use of data augmentation strengthens the model’s ability
to identify tumors in complex orientations, leading to better treatment planning [62,63].

4.1.3. Compression, Enhancement, and Reconstruction Frameworks

YOLO’s application in medical image compression and enhancement helps address
challenges in transmitting, storing, and reconstructing high-quality medical data. In
telemedicine and secure medical data sharing, preserving image fidelity is critical for
ensuring accurate diagnoses. YOLO’s capabilities in this area provide efficient solutions for
compressing medical images without compromising their quality.

Medical Image Compression and Encryption: YOLOv7 has been utilized to compress
medical images while maintaining high-quality reconstructions during transmission [64].
In one notable application, liver tumor 3D scans were encrypted and reconstructed with
a PSNR of 30.42 and SSIM of 0.94, ensuring that sensitive medical information remains
secure and accurate during remote consultations or telemedicine applications [65].

Secure Medical Data Transmission and Image Reconstruction: YOLOv7 has also been
applied to enhance the transmission and reconstruction of encrypted medical data, which
is especially useful for maintaining data integrity in telemedicine. The chaos and encod-
ing methods used in YOLOv7 ensure that high-quality images are transmitted securely
across networks.

Table 4 summarizes various studies in medical research, showcasing the capabilities
of different YOLO architectures.

Table 4. Applications of YOLO in medical image analysis.

YOLO Version Performance Metrics Observations/Results Image Domain

YOLO v7 [66] mAP
Proposed a unique 2D to 3D bounding box adaptation
method using NMS for 3D image analysis. Achieved
mAP of 82.10%.

Ultrasound Videos

YOLO v3 [67] F1-Score, Accuracy,
Precision, AUC, Recall

Fusion model accurately identified and categorized
breast abnormalities in mammograms. Breast Cancer

YOLO v2 [68] mAP Achieved 81% mAP for medical face mask detection. Face Mask

YOLO v3 [69] Recall, Precision, Accuracy Detected and classified gallstones with an average
accuracy of 92.7%. Radiology
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Table 4. Cont.

YOLO Version Performance Metrics Observations/Results Image Domain

YOLO v8 [70] Precision, recall, mAP50
Performed comparative analysis of various YOLOv8
variants to perfrom detection and classification using
ultrasound images

Ovarian Cancer

YOLO v3 [71] mAP Best performance in medical imaging with data
augmentation techniques, 180◦ and 90◦ rotations. Brain Tumor

YOLO v3 [72] Accuracy, Specificity,
Sensitivity

Introduced a label-free method for cellular analysis
using 2D light scattering and neural networks. Oncology

YOLO v8 [73] Dice Score, Precision,
Recall, F1-Score

YOLO v8 combined with SAM achieved high scores
on X-ray, ultrasound, and CT scan data.

X-Ray, Ultrasound,
CT-Scan

YOLOv3 [55] Average Precision

In the proposed work, they used YOLOv3 to detect
red lesion in images and predicts bounding boxes and
does classification using logistic regression. They
achieved an average precision of 83.3%.

RGB Fundus Images

YOLOv7 [74]
Peak-signal-to-noise-ratio
(PSNR), structural
similarity index (SSIM)

They did image compression using YOLOv7 while
preserving information in the images. They used
chaos and encoding to encrypt the input images and
performed reconstruction at the receiver. They
achieved PSNR of 30.42 and SSIM of 0.94

Liver Tumor 3D
scans

4.2. Autonomous Vehicles

The application of YOLO models in the field of autonomous vehicles has proven
transformative, particularly for enhancing real-time object detection capabilities [75]. As
self-driving technology advances and autonomous vehicles become more prevalent, there
is an increasing demand for robust computer vision systems capable of accurately detecting
and classifying objects in diverse and often challenging environmental conditions [76]. This
capability is essential to ensure the safety and reliability of autonomous driving systems.

4.2.1. Challenges in Real-Time Object Detection for Autonomous Vehicles

One of the primary challenges faced by autonomous vehicles is maintaining accurate
object detection under various weather conditions, such as fog, snow, and rain. These
adverse conditions can distort images and interfere with navigation, making it difficult for
the vehicle to accurately discern critical environmental factors like road signs, pedestrians,
and other vehicles. The ultimate objective of integrating YOLO models into autonomous
vehicle systems is to develop a reliable detection framework that ensures safe and efficient
operation, regardless of external conditions.

YOLO’s single-shot detection framework, known for its rapid inference time, makes it
particularly well-suited for real-time applications. This is critical for autonomous vehicles,
which must make quick decisions in dynamic environments. Moreover, advancements in
YOLO’s architecture, such as improvements in attention mechanisms, backbone networks,
and feature fusion techniques, have further increased its accuracy and speed, allowing it to
detect objects of varying sizes even smaller objects like pedestrians and distant vehicles [77].

4.2.2. YOLO’s Advancements for Harsh Weather Conditions

Real-time object detection in harsh weather is one of the most critical areas of research
in autonomous vehicle systems. Weather conditions like snow, fog, and heavy rain can
obscure visibility, making object detection challenging [78]. YOLO’s rapid processing
capabilities have been enhanced with architectural improvements to handle these condi-
tions effectively. For instance, a study using YOLOv8 applied transfer learning to datasets
captured under adverse weather conditions, including fog and snow. The model achieved
promising results, with mAP scores of 0.672 and 0.704, demonstrating YOLO’s adaptability
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to real-world challenges and making it a strong candidate for deployment in autonomous
driving systems.

4.2.3. Small Object Detection in Autonomous Driving

Detecting small objects at various distances is another significant challenge for au-
tonomous vehicle systems [79]. Small objects, such as pedestrians, cyclists, or road debris,
can often be difficult to detect, but they are critical for safe driving. Enhanced versions
of YOLO models, particularly YOLOv5, have introduced techniques like structural re-
parameterization and the addition of small object detection layers to improve performance.
These improvements have been shown to significantly increase the mAP for detecting smaller
objects, especially in urban environments where small, fast-moving objects are common.

For example, WOG-YOLO, a variant of YOLOv5, exhibited significant improvements
in detecting pedestrians and bikers, increasing the mAP for each by 2.6% and 2.3%, re-
spectively. This focus on small object detection makes YOLO models particularly suitable
for urban driving scenarios, where vehicles must detect various obstacles quickly and
accurately to ensure safe navigation.

4.2.4. Efficiency and Speed Optimizations for Autonomous Vehicles

In addition to improved accuracy, YOLO models have been optimized for speed and
efficiency, making them ideal for edge computing applications in autonomous vehicles,
where computational resources are often limited. Lightweight versions of YOLO, such
as YOLOv7 and YOLOv5, have incorporated various architectural optimizations such as
lightweight backbones, neural architecture search (NAS), and attention mechanisms to
improve inference time without sacrificing accuracy.

For instance, YOLOv7 has been enhanced with a hybrid attention mechanism (ACmix)
and the Res3Unit backbone, significantly improving its performance, achieving an AP
score of 90.8% on road traffic data [80]. These optimizations ensure that YOLO models can
deliver real-time performance in dynamic environments, a key requirement for autonomous
vehicles operating in various conditions.

4.2.5. YOLO’s Performance Across Different Lighting Conditions

Another critical challenge in autonomous vehicle systems is detecting objects un-
der varying lighting conditions, such as nighttime driving. YOLO models, particularly
YOLOv8x, have demonstrated strong performance in low-light environments, utilizing ad-
vanced feature extraction and segmentation techniques to improve object detection accuracy.

In one study, YOLOv8x outperformed other YOLOv8 variants, achieving precision,
recall, and F-score metrics of 0.90, 0.83, and 0.87, respectively, on video data captured
during both day and night. This capability ensures that autonomous vehicles can operate
safely across different lighting conditions, a vital feature for real-world deployment [81].

Table 5 provides a summary of key studies that highlight YOLO’s effectiveness in
autonomous vehicle applications. Various YOLO versions, including YOLOv5, YOLOv7,
and YOLOv8, have been employed to enhance object detection performance across different
datasets and conditions, showcasing YOLO’s flexibility and adaptability to the unique
challenges of autonomous driving.

Table 5. Application of YOLO in the field of autonomous vehicles.

YOLO Version Performance Metrics Observations Image Domain

YOLOv7 [80] AP
Proposed modifications including ACmix for hybrid attention,
RFLA for feature fusion, and Res3Unit backbone, achieving 89.2%
AP.

Road traffic data

YOLOv5 [82] mAP Added structural re-parameterization and small object detection
layers, achieving 96.1% mAP.

KITTI Dataset
(8 classes)
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Table 5. Cont.

YOLO Version Performance Metrics Observations Image Domain

YOLOv2,
YOLOv3 [83] mAP, Precision, Recall Complex YOLO outperformed Tiny-YOLO with a mean Average

Precision of 0.217. KITTI Dataset

YOLOv5 [84] mAP WOG-YOLO showed improvements in detecting small objects,
increasing mAP by 2.6% for pedestrians and 2.3% for bikers. Self-built dataset

YOLOv5,
YOLOv7 [85] mAP

Evaluated on different activation functions. YOLOv7 with SiLU
achieved an mAP of 94%, while YOLOv5 with LeakyReLU
reached 88%.

Sandy weather
data

YOLOv3 [86] Accuracy, Recall The RES-YOLO network improved vehicle detection accuracy
and reduced background noise. Vehicle dataset

YOLOv8 [87] mAP Transfer learning applied to hard weather datasets improved
object detection, achieving mAP scores of 0.672 and 0.704.

Fog, snow, and
hard weather
datasets

YOLOv8 [88] Precision, Recall,
F-score

YOLOv8x outperformed other variants, with precision, recall,
and F-score of 0.90, 0.83, and 0.87, respectively.

Video road data
for day and night

YOLOv8 [89] Accuracy A five-stage model using YOLOv8 for detection and Deep Belief
Network for classification achieved 95.6% accuracy.

Aerial imagery
dataset

YOLOv8,
YOLOv7,
YOLOv5,
YOLOv4 [90]

mAP YOLOv7 performed the best with mAP50 scores when deployed
on edge devices for real-time inference. Road dataset

YOLOX [91] mAP Combined ShuffDet backbone and attention mechanism to
achieve 92.20% mAP while reducing parameters by 34%.

KITTI dataset for
road traffic

YOLOv4 [92] mAP, F1-score, Recall YOLOv4 was trained on a custom dataset for object detection,
achieving an mAP of 74.6%, F1-score of 0.70, and recall of 0.81.

Custom vehicle
dataset

4.3. Agriculture

YOLO has transformed agricultural practices by enabling fast, accurate detection of
crops, pests, and environmental factors affecting crop health. One of its most significant
applications is crop monitoring, where YOLO’s real-time object detection helps identify
issues such as pests, diseases, and nutrient deficiencies early, enabling timely interventions
that improve yields. In precision farming, YOLO helps distinguish crops from weeds,
allowing selective herbicide application. This reduces chemical usage, lowers costs, and
minimizes environmental impact, supporting sustainable agriculture. YOLO’s integration
with UAVs further enhances its utility, providing large-scale monitoring and detailed
insights that would be difficult and time-consuming to gather manually. Beyond crop
monitoring, YOLO is applied to tasks such as fire detection, livestock management, and
environmental monitoring. By automating these processes, YOLO contributes to efficient
farm management and improved resource use.

Table 6 summarizes notable applications of YOLO in agriculture.

Table 6. Application of YOLO in agriculture.

YOLO Version Performance Metrics Observations Image Domain

YOLOv5 [93] Precision, Recall UAV-based detection system for forest
degradation, effective even in snowy conditions. UAV imagery of trees

YOLOv5 [94] Precision, F1-Score, mAP,
Recall

DeepForest with YOLO, mAP of 82%,
outperformed other models.

Apple trees in UAV RGB
images

YOLOv5s,
YOLOv5x [95]

IoU, Recall, Precision,
mAP

Lightweight YOLOv5s ideal for embedded
systems. RGB forest images
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Table 6. Cont.

YOLO Version Performance Metrics Observations Image Domain

YOLOv3 [96] F1-Score Modified YOLOv3, F1-score of 0.817, used for
apple detection.

Apple images from
orchards

YOLOv5 [97] F1-Score, mAP YOLOv5 ensemble technique for real-time forest
fire detection, F1-score of 93%.

FLAME dataset from
UAVs

YOLOv3 [98] IoU YOLOv3 achieved 91.80% average precision for
bird detection. UAV aerial images

YOLOv4 [99] mAP YOLOv4 for cherry ripeness detection, increased
mAP by 0.5%.

Cherry ripeness
detection

YOLOv8s [100] mAP Lightweight YOLOv8s model with mAP of 93.4%,
suitable for small devices. Tomato image data

Ag-YOLO [101] F1-Score Ag-YOLO for crop monitoring and spraying,
F1-score of 0.9205.

UAV imagery of palm
trees

4.3.1. Crop Health Monitoring and UAV Integration

One of the most critical applications of YOLO in agriculture is the continuous mon-
itoring of crop health [102]. With the integration of YOLO models and UAV systems,
farmers can now scan large-scale agricultural areas, detecting early signs of pest infesta-
tions, diseases, or nutrient deficiencies. This proactive approach helps prevent crop loss
and optimize farm productivity.

A noteworthy study employed YOLOv5 integrated into UAVs for detecting forest
degradation. The model performed impressively, identifying damaged trees even in
challenging conditions such as snow [103]. This advancement has far-reaching implications,
allowing farmers and environmental researchers to monitor vast landscapes, particularly
in remote or difficult-to-access areas, with unprecedented accuracy and speed [104].

4.3.2. Precision Agriculture and Weed Management

YOLO plays a pivotal role in precision agriculture by facilitating accurate crop and
weed differentiation. In precision farming, herbicides can be applied selectively to target
weeds without affecting crops [105,106]. This method not only reduces the use of chemicals,
lowering the cost of farming, but also minimizes environmental damage, leading to more
sustainable agricultural practices.

A modified version of YOLOv3 was deployed to monitor apple orchards, achieving
an F1-score of 0.817 [107]. The model utilized DenseNet for improved feature extraction
and performed exceptionally well at detecting apples at various developmental stages.
This level of precision is invaluable for farmers managing orchards, as it enables better
decision-making regarding harvesting and pest control [108].

4.3.3. Real-Time Environmental Monitoring and Fire Detection

YOLO has also been applied to monitor environmental hazards, such as forest
fires [109,110]. In a study using an ensemble of YOLOv5 and other detection models
like DeepLab and LightYOLO, researchers developed a real-time fire detection system
mounted on UAVs. The system outperformed conventional models, achieving an F1-score
of 93% and mAP of 85.8%. This real-time capability is crucial in mitigating the spread of
fires and protecting valuable forest and agricultural resources [111].

4.3.4. Application in Livestock Management and Other Areas

While YOLO’s application in crop monitoring remains a primary focus, it has also
been applied to livestock management [112]. UAVs equipped with YOLO models can
monitor livestock across large grazing areas, providing real-time updates on animal health
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and location. This technology is instrumental in reducing the risk of disease outbreaks and
improving overall farm management [113].

Furthermore, YOLO’s flexibility extends to various agricultural operations. A notable
example is Ag-YOLO, a lightweight version of YOLO developed for Intel Neural Compute
Stick 2 (NCS2) hardware, which was designed for crop and spray monitoring. Ag-YOLO
achieved an F1-score of 0.9205, proving to be an efficient, cost-effective solution for farmers
operating in resource-constrained environments [101].

4.4. Industry

In industrial applications, YOLO (You Only Look Once) has become one of the most
widely used real-time object detection models due to its high-speed processing and efficient
object identification capabilities. The single-stage architecture of YOLO allows it to detect
and classify objects in a single pass through the neural network, making it particularly
suitable for environments that require rapid decision-making, such as production lines,
automated quality control, and anomaly detection. Its adaptability to a wide range of
tasks across different industries, from food processing to construction, has made YOLO a
versatile tool.

In manufacturing and production, YOLO is used to improve the accuracy and effi-
ciency of automated systems. Whether it’s detecting defects in products or monitoring
safety in real-time, YOLO contributes to higher-quality outcomes and reduced operational
costs [114]. For instance, in food processing, YOLO can be employed to ensure quality
control by detecting defects in packaged goods, while in construction, it can help identify
safety issues, such as the use of protective gear like helmets [115].

YOLO’s implementation in logistics and warehousing has also streamlined processes
such as package tracking, inventory management, and equipment monitoring. Robotic
systems using YOLO for object detection and identification can automate repetitive tasks,
improve safety, and increase production throughput. Despite certain challenges, such as
lower accuracy when detecting. Table 7 summarizes various industrial applications of
YOLO, showcasing its versatility and effectiveness across different tasks.

Table 7. Applications of YOLO in industry.

YOLO Version
Performance
Metrics

Observations Image Domain

YOLOv5 [116] mAP
Combined YOLO with transformers to detect small-scale
objects and defects. Proposed a bidirectional feature
pyramid network, achieving an mAP of 75.2%.

Grayscale imagery of
surface defects

YOLOv5 [117] mAP
PG-YOLO was developed as a lightweight version for
edge devices in IoT networks. Improved inference speed
without sacrificing accuracy, achieving an mAP of 93.3%.

RGB images of
safety-helmet wearing
(SHWD)

YOLOv3 [118] mAP
For detecting weld defects in vehicle wheels, this model
achieved an mAP of 98.25% and 84.36% on AP 75 and AP
50, respectively. Environment-specific model.

RGB images of vehicle
wheel welding

YOLOv5 [119] mAP, GFLOPS
ATT-YOLO, inspired by transformers, performed well on
surface detection tasks in electronic manufacturing,
achieving an mAP of 49.9% with 21.8 GFLOPS.

Laptop surface images

YOLOv3,
YOLOv5 [120] mAP

YOLO models used for process flow tracking in Industry
4.0. Models were applied to datasets with distortions and
achieved final mAP scores of 80% (YOLOv3) and
70% (YOLOv5).

Colorful objects in
industry setting

YOLO [121] Precision,
Accuracy, mAP

Introduced a deep learning-based system for real-time
packaging defect detection. The system achieved 81.8%
precision, 82.5% accuracy, and an mAP of 78.6%.

Images of damaged and
intact boxes
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Table 7. Cont.

YOLO Version
Performance
Metrics

Observations Image Domain

YOLOv5s [122] Precision, Recall,
mAP

An upgraded YOLOv5s model used for real-time
identification and localization of production line
equipment, including robotic arms and AGV carts.
Achieved precision of 93.6%, recall of 85.6%, and mAP
of 91.8%.

Real-time data from
simulated production
line

YOLOv5 [123] mAP

Enhanced YOLOv5 for detecting workpieces on
production lines. Improved mAP on COCO dataset by
2.4% and on custom data by 4.2% using ghost bottleneck
lightweight deep convolution.

Images of bolts

YOLOD [124] Average Precision

YOLOD, a unique model addressing uncertainty in object
detection, used Gaussian priors in front of YOLOX
detection heads. Improved bounding box regression and
achieved an AP of 73.9%.

Power line insulator
images

4.4.1. Applications of YOLO in Industrial Manufacturing

One of the most impactful uses of YOLO in industry is in manufacturing, where
its real-time detection capabilities are leveraged for automated quality control, defect
detection, and production optimization. YOLO’s speed and accuracy allow manufacturers
to identify issues on the production line quickly, reducing downtime and minimizing faulty
outputs [125].

Surface Defect Detection: YOLOv5, combined with transformers, was used to detect
small defects on surfaces in grayscale imagery, improving detection efficiency. The bidirec-
tional feature pyramid network proposed in this study significantly enhanced the model’s
ability to identify minor defects, achieving an mAP of 75.2% [126].

Wheel Welding Defect Detection: YOLOv3 was applied to the specific task of detecting
weld defects in vehicle wheels, achieving impressive results with mAP scores of 98.25%
and 84.36% at different thresholds. While this model was highly effective in its target
environment, it was noted that it may not generalize well to other real-time detection tasks
without further adaptation [127].

Workpiece Detection and Localization: Another notable application is workpiece
detection on production lines, where YOLOv5 was enhanced with lightweight deep convo-
lution layers to improve detection accuracy. The model showed significant improvements,
increasing mAP by 2.4% on the COCO dataset and 4.2% on custom industrial datasets [128].

4.4.2. Applications in Automated Quality Control and Safety

YOLO’s role in quality control systems is crucial for maintaining the consistency and
safety of products in industries like packaging, construction, and electronics. By automat-
ically identifying defects or inconsistencies in real-time, YOLO allows manufacturers to
catch problems early in the production process.

Real-Time Packaging Defect Detection: In one study, YOLO was used to develop
a deep learning-based system for detecting packaging defects in real-time. The model
automatically classified product quality by detecting defects in boxed goods, achieving a
precision of 81.8%, accuracy of 82.5%, and mAP of 78.6%. Such systems can be deployed to
monitor quality across high-speed production lines, reducing the risk of shipping faulty
products to customers [129].

Safety-Helmet Detection in Construction: Safety in construction is another critical
area where YOLO has proven its worth. A lightweight version of YOLOv5, known as PG-
YOLO, was specifically developed for edge devices in IoT networks, improving inference
speed while maintaining accuracy. The model achieved an mAP of 93.3% for detecting
workers wearing safety helmets in construction sites, helping ensure compliance with
safety regulations [130].
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4.4.3. Industrial Robotics and Automation

In logistics and warehouse management, YOLO’s ability to detect and identify ob-
jects in real-time is a key asset for automating routine tasks, improving both safety and
efficiency. YOLO is integrated into robotic systems that handle object detection for sorting,
transporting, and monitoring inventory.

Production Line Equipment Monitoring: YOLOv5s was enhanced with a channel
attention module, slim-neck, decoupled head, and GSConv lightweight convolution to
improve real-time identification and localization of production line equipment, such as
robotic arms and AGV carts. This system achieved precision rates of 93.6% and mAP scores
of 91.8%, showcasing its effectiveness in automating production line processes [122].

Power Line Insulator Detection: In another study, YOLOD was developed to address
uncertainty in object detection by placing Gaussian priors in front of the YOLOX detection
heads. This model was applied to power line insulator detection, improving the robustness
of object detection by using calculated uncertainty scores to refine bounding box predictions.
YOLOD achieved an AP of 73.9% [131].

5. Evolution and Benchmark-Based Discussion

5.1. Evolution

The YOLO family has undergone considerable evolution, with each new iteration ad-
dressing specific limitations of its predecessors while introducing innovations that improve
its performance in real-time object detection. YOLOv6, YOLOv7, and YOLOv8 represent
key advancements in the early evolution of this framework, each contributing signifi-
cantly to the landscape of object detection in terms of speed, accuracy, and computational
efficiency.

YOLOv6: Enhanced Speed and Practicality. YOLOv6 was designed with a focus
on speed and practicality, particularly for real-world applications requiring fast and ef-
ficient object detection. It introduced modifications in network structure that enabled
faster processing while maintaining a decent level of accuracy. YOLOv6 was particularly
impactful for lightweight deployment on edge devices, which have limited computing
power, making it an attractive option for applications in fields such as surveillance, robotics,
and automated inspection systems. However, while YOLOv6 improved efficiency, it faced
challenges in complex scenarios involving small or overlapping objects, leading to the need
for more advanced versions.

YOLOv7: Improving Accuracy and Feature Extraction. YOLOv7 introduced signifi-
cant architectural changes that enhanced accuracy and feature extraction capabilities. One
of the key advancements in YOLOv7 was the integration of cross-stage partial networks
(CSPNet), which improved the model’s ability to reuse gradients across different stages,
allowing for better feature propagation and reducing the model’s overall complexity. This
improvement translated into better performance in detecting smaller objects or objects
within cluttered environments. YOLOv7 also introduced the concept of extended path
aggregation, which helped in merging features from different layers to provide a more
detailed and robust representation of the input image. These advancements made YOLOv7
more suitable for applications in industries like medical imaging, autonomous driving,
and aerial surveillance, where high accuracy in challenging environments is paramount.
However, even with these improvements, YOLOv7 was not immune to the problem of
vanishing gradients a common issue in deeper neural networks that leads to poor training
outcomes due to the weakening of signal propagation as it moves through multiple layers.
This was particularly problematic in cases where high-resolution image data required more
sophisticated feature extraction.

YOLOv8: Streamlining for Resource Efficiency. YOLOv8 further refined the archi-
tecture, focusing on achieving better resource efficiency without sacrificing accuracy. One
of the most notable advancements in YOLOv8 was its ability to scale efficiently across
different hardware configurations, making it a flexible tool for both low-power devices and
high-performance computing environments. YOLOv8 streamlined the training process
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and introduced optimizations that improved its ability to generalize across a wide range
of object detection tasks. YOLOv8 also enhanced the handling of multi-object detection
scenarios, where multiple objects of different sizes and shapes appear in a single frame.
Despite these improvements, YOLOv8 faced challenges in deeper architectures, particularly
with convergence issues. These issues arose from the model’s struggle to balance the com-
putational complexity required for deeper networks with the need for real-time inference.
As a result, YOLOv8’s performance on complex datasets, especially those involving small,
overlapping, or occluded objects, was not always consistent.

Addressing Limitations: The Road to YOLO-NAS and YOLOv9. The limitations
observed in YOLOv6 through YOLOv8 such as vanishing gradients and convergence
problems were the catalysts for the development of more sophisticated models like YOLO-
NAS and YOLOv9. These models aimed to not only enhance speed and accuracy but also
tackle the deeper challenges inherent to neural network architectures, such as gradient
management and efficient feature extraction.

5.1.1. YOLO-NAS: A Major Turning Point

Before the introduction of YOLOv9 [132], YOLO-NAS [133] developed by Deci AI
marked a significant shift in the evolution of the YOLO framework. As object detection
models became more widely deployed in real-world applications, there was a growing
need for solutions that could balance accuracy with computational efficiency, especially
on edge devices that have limited processing power. YOLO-NAS answered this call by
incorporating Post-Training Quantization (PTQ), a technique designed to reduce the size
and complexity of the model after training [134]. This allowed YOLO-NAS to maintain high
levels of accuracy while reducing its computational footprint, making it ideal for resource-
constrained environments like mobile devices, embedded systems, and IoT applications.

PTQ enabled YOLO-NAS to deliver minimal latency, which is a crucial factor for
real-time object detection, where every millisecond counts. By optimizing the model
post-training, PTQ made YOLO-NAS one of the most efficient object detection models for
real-time applications, especially in industries where computational resources are scarce,
such as autonomous vehicles, robotics, and smart cameras for security systems. The ability
to reduce inference time without sacrificing performance positioned YOLO-NAS as a
go-to model for developers looking to deploy sophisticated object detection systems on
low-power devices.

YOLO-NAS introduced two significant architectural innovations that set it apart from
previous models in the YOLO family:

1. Quantization and Sparsity Aware Split-Attention (QSP): The QSP block was designed
to enhance the model’s ability to handle quantization while still maintaining high
accuracy. Quantization often leads to a degradation of model precision because the
model is forced to operate with reduced numerical precision (e.g., moving from
floating-point to integer operations). QSP mitigated this accuracy drop by using
sparsity-aware mechanisms that allowed the model to be more selective in how it
used and stored information across different layers. This helped preserve important
features, even in a quantized environment.

2. Quantization and Channel-Wise Interactions (QCI): The QCI block further refined
the process of quantization by focusing on channel-wise interactions. It enhanced
the way features were extracted and processed in the network, ensuring that key
information was not lost during the quantization process. By intelligently adjusting
how information is passed between channels, QCI ensured that YOLO-NAS could
maintain high precision in its predictions, even when the model was reduced to a
lightweight architecture. This made it particularly useful for edge applications that
require smaller model sizes but cannot afford to lose accuracy.

These innovations were inspired by frameworks like RepVGG and aimed to address
the common challenges associated with post-training quantization, specifically the loss
of accuracy that typically accompanies such optimization techniques [135]. The combi-
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nation of QSP and QCI allowed YOLO-NAS to achieve a high level of precision while
retaining a small model size, making it an efficient tool for real-time object detection on
constrained hardware.

Despite the impressive advancements introduced in YOLO-NAS, the model did face
challenges in handling high-complexity image detection tasks. In scenarios where objects
were occluded or had intricate patterns, YOLO-NAS struggled to maintain the same level of
accuracy as it did in simpler object detection tasks. For example, applications in agriculture,
where leaves and crops often occlude one another, or in medical imaging, where subtle
variations in texture and shape are critical, highlighted the limitations of YOLO-NAS. The
model’s performance often dipped when faced with these complex visual environments,
underscoring the need for further architectural improvements.

While YOLO-NAS was an excellent solution for resource-efficient detection in straight-
forward real-time applications, it required additional improvements to handle the nuances
of more complex datasets. These limitations laid the groundwork for the development
of future models like YOLOv9, which aimed to address these issues through more ad-
vanced gradient handling, better feature extraction, and the use of more sophisticated
network architectures.

5.1.2. YOLOv9: Groundbreaking Innovations

In response to the challenges encountered by earlier models, YOLOv9 introduced
several groundbreaking techniques designed to improve gradient flow, handle error ac-
cumulation, and facilitate better convergence during training. These innovations allowed
YOLOv9 to extend its applicability to a broader range of real-world object detection tasks.

The key innovations in YOLOv9 include:

1. Programmable Gradient Information (PGI): PGI was designed to tackle the issue
of vanishing gradients by enhancing the flow of gradients throughout the model.
YOLOv9’s PGI ensured smoother backpropagation across multiple prediction branches,
significantly improving convergence and overall detection accuracy. PGI is composed
of three key components. (a) Main Branch: Responsible for inference tasks. (b) Auxil-
iary Branch: Manages gradient flow and updates the network parameters. (c) Multi-
level Auxiliary Branch: Handles error accumulation and ensures that the gradients
propagate effectively across all layers [132]. By addressing gradient backpropaga-
tion across complex prediction branches, PGI allowed YOLOv9 to achieve better
performance, particularly in detecting multiple objects in challenging environments.

2. Generalized Efficient Layer Aggregation Network (GELAN): The GELAN module
was another major innovation in YOLOv9. By drawing from CSPNet [136] and
ELAN [137], GELAN provided flexibility in integrating different computational blocks,
such as convolutional layers and attention mechanisms. This adaptability allowed
YOLOv9 to be fine-tuned for specific detection tasks, from simple object recognition to
complex multi-object detection, making it a versatile tool for a wide array of real-time
detection applications.

3. Reversible Functions: To ensure information preservation throughout the network,
YOLOv9 utilized reversible functions. The formula used for this is: X = vζ (rψ(X)),
rψ(X) represents the transformation of input data through a reversible function, and
vζ applies an inverse transformation to recover the original input. These reversible
layers allowed YOLOv9 to reconstruct input data perfectly, minimizing information
loss during forward and backward passes. The reversible functions allowed for
more precise detection and localization of objects, especially in high-dimensional and
complex datasets.

5.1.3. Evolution to YOLOv10 and YOLOv11

Following YOLOv9, YOLOv10 and YOLOv11 brought further refinements to the
YOLO framework, making significant strides in both speed and accuracy.
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YOLOv10 introduced groundbreaking innovations that enhanced performance and
efficiency, building on the strengths of its predecessors while pushing the boundaries of
real-time object detection. A key advancement in YOLOv10 was the introduction of the
C3k2 block, an innovative feature that greatly improved feature aggregation while reducing
computational overhead [138]. This allowed YOLOv10 to maintain high accuracy even
in resource-constrained environments, making it ideal for deployment on edge devices.
Additionally, the model’s improved attention mechanisms enabled better detection of
small and occluded objects, allowing YOLOv10 to outperform previous versions in tasks
such as facemask detection and autonomous vehicle applications. Its ability to balance
computational efficiency with detection precision set a new standard, with a final mAP50
of 0.944 in benchmark tests.

YOLOv11 further advanced the framework with the introduction of C2PSA (Cross-
Stage Partial with Spatial Attention) blocks, which significantly enhanced spatial awareness
by enabling the model to focus more effectively on critical regions within an image [139].
This innovation proved especially beneficial in complex scenarios, such as shellfish moni-
toring and healthcare applications, where precision and accuracy are crucial. YOLOv11 also
featured a restructured backbone with smaller kernel sizes and optimized layers, which im-
proved processing speed without sacrificing performance. The inclusion of Spatial Pyramid
Pooling-Fast (SPPF) enabled even faster feature aggregation, solidifying YOLOv11 as the
most efficient and accurate YOLO model to date. It achieved a final mAP50 of 0.958 across
multiple benchmarks, making YOLOv11 a leading choice for real-time object detection
tasks across industries ranging from healthcare to autonomous systems.

5.2. Benchmarks

With the introduction of YOLOv9, the benchmarks for performance have shifted. We
conducted a comprehensive evaluation of YOLOv9, YOLO-NAS, YOLOv8, YOLOv10, and
YOLOv11 using well-established datasets like Roboflow 100 [140], Object365 [141], and
COCO [142]. These datasets offer diverse real-world challenges, allowing us to assess the
models’ strengths and weaknesses under different conditions.

5.2.1. Benchmark Findings

Our results consistently showed that YOLOv9 outperformed both YOLO-NAS and
YOLOv8, particularly in complex image detection tasks where objects are occluded or
exhibit detailed patterns. However, with the introduction of YOLOv10 and YOLOv11, the
benchmark shifted even further. YOLOv10 introduced new feature aggregation techniques,
and YOLOv11’s spatial attention mechanisms greatly improved object detection, especially
in challenging datasets.

For instance:

• Shellfish Monitoring: In tasks such as shellfish monitoring, which involve complex
patterns and occlusions, YOLO-NAS and YOLOv8 struggled to maintain accuracy.
While YOLOv9 demonstrated greater adaptability, handling the intricate challenges
more effectively, YOLOv10 and YOLOv11 pushed the performance further with their
superior spatial attention and feature extraction capabilities. YOLOv11 achieved a
final mAP50 of 0.563, the highest among the tested models.

• Medical Image Analysis: On medical image datasets, particularly for tasks such as
blood cell detection, YOLOv9 outperformed YOLO-NAS and YOLOv8. However,
the architectural advancements in YOLOv10 and YOLOv11 resulted in even better
performance, with YOLOv11 achieving an mAP50 of 0.958. This demonstrates its
superior capability to detect small and detailed features within cluttered or noisy data,
which is critical for applications in medical diagnostics.

These results are summarized in Table 8, highlighting the mAP50 (mean average
precision at 50% intersection over union) scores across several datasets.
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Table 8. Performance of YOLOv11, YOLOv10, YOLOv9, YOLO-NAS and YOLOv8 on multiple datasets.

Datasets YOLOv9 YOLO-NAS YOLOv8 YOLOv10 YOLOv11

Facemask Detection 0.941 0.9199 0.924 0.950 0.962

Shellfish Monitoring 0.534 0.469 0.466 0.542 0.563

Forest Smoke Detection 0.865 0.7811 0.911 0.925 0.945

Human Detection 0.812 0.7145 0.816 0.829 0.854

Pothole Detection 0.78 0.7265 0.745 0.793 0.815

Blood Cell Detection 0.933 0.9041 0.93 0.944 0.958

5.2.2. Performance Insights

Facemask Detection: All models performed well on this dataset, with YOLOv11
dominating, achieving an mAP50 of 0.962. The improved spatial attention mechanisms in
YOLOv11 allowed it to detect subtle variations in facemask patterns, making it the best-
performing model in this domain. YOLOv10 also showed improvements over YOLOv9,
reaching an mAP50 of 0.950.

Shellfish Monitoring: This dataset presented complex challenges with occluded and
overlapping objects. Both YOLO-NAS and YOLOv8 struggled, achieving relatively low
mAP50 scores of 0.469 and 0.466, respectively. YOLOv9 demonstrated better adaptability
with 0.534, while YOLOv10 and YOLOv11 further improved on these results, reaching
0.542 and 0.563, respectively, thanks to their advanced spatial attention mechanisms.

Forest Smoke Detection: YOLOv8 performed particularly well in detecting smoke pat-
terns, achieving an mAP50 of 0.911, while YOLOv9 closely followed with 0.865. However,
YOLOv10 and YOLOv11 both improved on this with scores of 0.925 and 0.945, respectively.
The improvements in feature extraction and attention mechanisms in YOLOv11 gave it a
slight edge over previous versions in detecting subtle smoke patterns.

Human Detection: For human detection, YOLOv9 outperformed YOLO-NAS but was
only marginally better than YOLOv8. YOLOv10 reached 0.829, and YOLOv11 achieved
the highest mAP50 at 0.854, benefiting from its optimized backbone and better handling of
occlusions in complex scenes.

Pothole Detection: YOLOv9 demonstrated superior performance in detecting potholes
on road surfaces, achieving an mAP50 of 0.780. However, YOLOv10 and YOLOv11 demon-
strated further advancements, reaching 0.793 and 0.815, respectively, making them more
reliable for this specific detection task.

Blood Cell Detection: In medical image analysis, YOLOv9 showed great precision with
an mAP50 of 0.933. However, YOLOv10 and YOLOv11 set a new standard for this dataset,
achieving 0.944 and 0.958, respectively. The enhanced gradient flow and feature extraction
capabilities in these models contributed to their superior performance in detecting minute
and complex patterns, crucial in medical diagnostics.

5.2.3. Training Considerations: Extended Epochs for Model Optimization

In our benchmark study, the YOLO models (YOLOv9, YOLO-NAS, YOLOv8, YOLOv10,
and YOLOv11) were trained for 20 epochs, providing a baseline for performance evaluation.
However, it is evident that this limited number of training cycles does not fully tap into
the models’ potential. Extended training, involving more epochs, would likely result in
smoother learning curves and allow the models to achieve even higher levels of accuracy,
especially in tasks that involve complex datasets and intricate object patterns.

Extended training is essential for performance improvement across several aspects of
object detection models:

1. Refined Feature Extraction: Each epoch allows the model to update and refine its
internal feature representations. Models like YOLO-NAS, which are optimized for
resource efficiency, benefit from longer training cycles, as this gives the model more op-
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portunities to fine-tune its performance on challenging examples like occluded objects
or those with non-standard shapes. YOLOv10, with its enhanced feature aggregation
blocks, could further refine its detection capabilities with extended epochs, improving
accuracy in both resource-constrained environments and complex scenarios.

2. Improved Convergence: While 20 epochs are sufficient for initial insights into perfor-
mance, convergence when a model reaches its lowest possible error rate often requires
more iterations. YOLOv9, YOLOv10, and YOLOv11, featuring more intricate archi-
tectures, benefit from prolonged training to reach optimal convergence. Specifically,
YOLOv9’s use of Programmable Gradient Information (PGI) and Generalized Efficient
Layer Aggregation Networks (GELAN) would see further improvements with more
epochs, helping the model stabilize gradient flow and improve detection accuracy in
environments with occluded or complex objects. YOLOv11, with its C2PSA blocks,
would also benefit from more iterations, as this would allow better spatial awareness
and feature extraction for difficult detection tasks.

3. Avoiding Overfitting: One concern with prolonged training is overfitting, where
the model becomes too tuned to the training data, losing its generalization ability.
However, this risk can be mitigated by using early stopping techniques or cross-
validation. For models like YOLO-NAS and YOLOv8, incorporating regularization
methods such as dropout layers or weight decay would allow them to benefit from
extended training epochs without falling prey to overfitting. YOLOv11, with its
spatial attention mechanisms, could particularly benefit from extended training, as
more iterations would enhance its ability to focus on the most critical regions of
the image.

4. Fine-Tuning for Specialized Tasks: In applications like medical imaging, autonomous
driving, or industrial automation, where precision is critical, additional training
epochs combined with fine-tuning can make a noticeable difference in model perfor-
mance. YOLOv10, with its enhanced feature aggregation techniques, could greatly
benefit from fine-tuning to optimize its performance in specific tasks such as pothole
detection or shellfish monitoring. YOLOv11, with its cutting-edge spatial attention
blocks, would further improve in complex, specialized tasks like forest smoke detec-
tion or health monitoring, where accurate object localization is paramount.

5. Learning Rate Scheduling: As the number of epochs increases, adjusting the learning
rate becomes essential. Models like YOLOv9, YOLOv10, and YOLOv11 would benefit
from learning rate schedulers that gradually decrease the learning rate during train-
ing, ensuring stable convergence and preventing the model from overshooting its
optimal parameter values. Adaptive optimization techniques, such as AdamW or RM-
SProp, could further enhance training performance in extended epochs, particularly
in models with complex architectures like YOLOv10 and YOLOv11.

The Specific Impacts on YOLO-NAS, YOLOv9, YOLOv10, and YOLOv11 are as follows:

• YOLO-NAS: Given that YOLO-NAS uses Post-Training Quantization (PTQ), additional
epochs would help solidify its quantization strategy, improving performance on both
low-resource and high-complexity tasks. The Quantization and Sparsity Aware Split-
Attention (QSP) and Quantization and Channel-Wise Interactions (QCI) blocks would
benefit from extended training, leading to better feature selection and processing
even with quantization. Longer training would also help the model adapt to complex
detection tasks that require precision, like health monitoring or industrial automation.

• YOLOv9: YOLOv9’s architectural advancements, such as PGI and GELAN, would see
improved performance with more training epochs, especially in scenarios involving
multiple prediction branches. Extended training would stabilize its gradient flow and
error management, improving performance in complex environments like forest smoke
detection or medical imaging. Additionally, YOLOv9’s reversible functions could
further benefit from extended epochs, ensuring that input reconstruction becomes
more robust, ultimately enhancing detection precision in real-time applications.
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• YOLOv10: As a major advancement over previous versions, YOLOv10 introduced
the C3k2 block for more efficient feature aggregation. Extended training would refine
its ability to balance computational efficiency and detection precision, particularly
for resource-constrained tasks on edge devices. Additional epochs would enable
YOLOv10 to improve its performance on specialized tasks like pothole detection and
autonomous vehicle applications, achieving better convergence and stability.

• YOLOv11: The most recent and advanced YOLO model, YOLOv11, introduced the
Cross-Stage Partial with Spatial Attention (C2PSA) blocks, greatly enhancing spatial
awareness. Prolonged training would allow the model to fine-tune these blocks for
better detection of small or occluded objects, especially in complex tasks such as
shellfish monitoring or industrial safety detection. The use of Spatial Pyramid Pooling-
Fast (SPPF) for feature aggregation would also improve with more epochs, enabling
YOLOv11 to excel in real-time detection tasks with a final mAP50 score that sets it
apart from earlier models.

As we look toward further optimizing the YOLO family models, a comprehensive
training regimen that includes extended epochs, dynamic learning rates, and fine-tuning
techniques will be crucial in extracting the best performance from these models. Expanding
the datasets to include even more diverse real-world scenarios will allow the models to
generalize better across different applications, ensuring they maintain top-tier performance
in both simple and complex detection tasks.

While our 20-epoch benchmark provided valuable performance insights, longer
training cycles combined with the right optimization techniques would likely unlock
even greater accuracy and generalization potential for YOLOv9, YOLO-NAS, YOLOv8,
YOLOv10, and YOLOv11, particularly in challenging real-time object detection tasks.

5.2.4. Performance Analysis of YOLO Variants on Benchmark Datasets

The mAP50 charts in Figure 8 illustrate how YOLOv11, YOLOv10, YOLOv9, YOLO-
NAS, and YOLOv8 perform across a range of benchmark datasets. These plots provide an
in-depth comparison of the models over 20 training epochs, offering key insights into how
each model handles different detection tasks. The inclusion of YOLOv10 and YOLOv11
further emphasizes the advancements made in real-time object detection, particularly in
complex datasets that challenge earlier models. In this study, mAP50 is employed as the pri-
mary metric for evaluating and comparing the performance across different YOLO versions.
The choice of mAP50 simplifies the benchmarking process by focusing on straightforward
detection tasks, providing a consistent and accessible measure of model effectiveness. By
setting a fixed IoU threshold of 50%, mAP50 highlights the models’ capabilities in iden-
tifying objects with acceptable localization accuracy, making it particularly suitable for
general-purpose evaluations and less complex detection scenarios. This approach ensures
a balanced comparison, especially when dealing with diverse datasets and varying levels
of object detection difficulty.
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Figure 8. Cont.
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Figure 8. mAP50 plots of YOLO11, YOLO10, YOLOv9. YOLO-NAS and YOLOv8 on benchmark
datasets. (1) shows the performance of various YOLO models on Blood Cell detection task. (2) il-
lustrates the perfoamnce of YOLO models on Face mask detection task. (3) Represents the results
on human detection problem. (4) shows the results on pothole detection task for autonomous ve-
hicles. (5) shows the results for shellfish health monitoring task and (6) shows results for smoke
detection task.

• YOLOv11 and YOLOv10 take the lead: Across almost all benchmarks, YOLOv11
consistently outperforms its predecessors, demonstrating the effectiveness of its C2PSA
(Cross-Stage Partial with Spatial Attention) blocks, which allow the model to focus
more accurately on important regions within the image. YOLOv10 follows closely
behind, benefiting from its C3k2 blocks that optimize feature aggregation and balance
computational efficiency with accuracy.

� Blood cell detection: YOLOv11 achieved the highest mAP50 of 0.958, followed
by YOLOv10 at 0.944. Both models surpass YOLOv9 (0.933), YOLO-NAS
(0.9041), and YOLOv8 (0.93). The C2PSA and C3k2 blocks in YOLOv11 and
YOLOv10 allowed these models to detect intricate patterns, such as those found
in medical imaging, more effectively than previous iterations.

� Facemask detection: YOLOv11 also dominated the facemask detection dataset,
achieving a mAP50 of 0.962, compared to YOLOv10’s 0.950. This was higher
than YOLOv9 (0.941), YOLOv8 (0.924), and YOLO-NAS (0.9199), indicating
that the newer models are better suited for precise feature extraction in tasks
with clear object boundaries, such as facemask detection.

� Human Detection: In human detection, YOLOv11 scored a mAP50 of 0.854,
with YOLOv10 at 0.829. Although YOLOv9 closely followed at 0.812, YOLOv11
and YOLOv10 demonstrated more stability across the 20 training epochs,
thanks to their ability to handle occlusions and dynamic backgrounds.

• Real-Time Applications and Edge Device Suitability

While YOLO-NAS is known for its efficiency in real-time applications, it was outper-
formed by YOLOv11 and YOLOv10 in tasks requiring more intricate feature extraction.
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However, YOLO-NAS’s architecture still proves effective for simpler tasks, such as face-
mask detection, where it recorded a mAP50 of 0.9199. YOLOv10 and YOLOv11 offer a
strong balance between accuracy and computational efficiency, making them suitable for
deployment on edge devices that require fast, resource-efficient models.

• Performance on Autonomous Vehicle and Industrial Tasks

In tasks like pothole detection, which are critical for autonomous vehicles, YOLOv11
again led the models with a mAP50 of 0.815, followed by YOLOv10 at 0.793 and YOLOv9
at 0.78. The newer YOLO models consistently improved over time, showing that their
architectures are more adaptable to dynamic, real-time environments. This is crucial in
applications such as road safety, where detecting subtle features like potholes in various
lighting and weather conditions is essential.

• Handling Complex Data: Shellfish and Smoke Detection

Complex datasets, such as shellfish monitoring and smoke detection, present unique
challenges due to the overlapping and occluded objects within the images. YOLOv11 stood
out in these tasks, with a mAP50 of 0.563 in shellfish monitoring and 0.945 in smoke detec-
tion. YOLOv10 also performed well, with scores of 0.542 and 0.925, respectively. In contrast,
YOLOv9, YOLO-NAS, and YOLOv8 struggled more with these datasets, particularly in
shellfish monitoring, where YOLOv9 only achieved a mAP50 of 0.534, and YOLO-NAS fell
behind at 0.469.

In smoke detection, YOLOv8 initially performed better than YOLOv9, with a mAP50
of 0.911 compared to YOLOv9’s 0.865. However, YOLOv11 surpassed both models, making
it the top performer by the end of the training epochs. YOLO-NAS, while still competitive,
recorded a mAP50 of 0.7811, highlighting its limitations in handling more dynamic tasks
that require detailed motion analysis and fine-grained object detection.

• Training Epochs: The Importance of Extended Training

As illustrated in the mAP50 charts, extending the training epochs beyond 20 could
further enhance the performance of all models, particularly YOLOv10 and YOLOv11. Both
models showed a strong upward trajectory throughout the 20 epochs, suggesting that addi-
tional training could further improve their ability to handle complex object detection tasks.
YOLO-NAS, while designed for efficiency, exhibited earlier flattening in its performance,
indicating that its architectural limitations may prevent it from reaching the same level of
accuracy in high-complexity tasks.

Therefore, the addition of YOLOv10 and YOLOv11 has shifted the performance stan-
dards in real-time object detection. While YOLO-NAS remains a strong candidate for
resource-constrained environments, and YOLOv8 continues to deliver adaptable perfor-
mance, YOLOv11 has emerged as the most versatile and accurate model across a range of
challenging datasets. Whether in medical imaging, autonomous driving, or industrial moni-
toring, YOLOv11’s ability to handle complex patterns, occlusions, and dynamic environments
makes it the preferred choice for tasks requiring high precision and model stability.

In Table 9, we present the results of testing YOLO variants on a facemask dataset. The
objective was to evaluate the performance of older YOLO versions (YOLOv5, YOLOv6, and
YOLOv7) to understand their capabilities in handling relatively simple image classification
tasks like facemask detection.

Table 9. Results of different YOLO variants on facemask data.

Model Type mAP50

YOLOv7 0.927

YOLOv6 0.6771

YOLOv5 0.791
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YOLOv7 achieved the highest mAP50 (mean average precision at 50% Intersection
over Union (IoU) threshold) score of 0.927, outperforming both YOLOv6 and YOLOv5. This
higher score suggests that YOLOv7 is particularly well-suited for simple object detection
tasks involving clear and distinguishable objects. YOLOv7’s efficiency and architectural
simplicity enabled it to outperform even newer models like YOLO-NAS in tasks with fewer
complexities, where lighter architectures excel.

• YOLOv7’s performance highlights its capability to handle real-time detection while
balancing precision, making it suitable for applications such as facemask detection.

• On the other hand, YOLOv6 and YOLOv5 underperformed relative to YOLOv7, with
mAP50 scores of 0.6771 and 0.791, respectively. YOLOv6 and YOLOv5, while capable
of decent performance in general object detection, require further optimization, in-
cluding additional epochs of training and fine-tuning of model parameters to improve
their accuracy in specialized tasks like facemask detection.

The results show that older models like YOLOv5 and YOLOv6 could still be relevant
with appropriate adjustments, but for tasks that prioritize high speed and accuracy on
relatively simple datasets, YOLOv7 stands out as the optimal choice.

These results underscore the importance of selecting models based on the complexity
of the dataset and task. While newer models may offer advanced features for handling
complex image detection, older, simpler architectures can still perform optimally when the
task at hand involves more straightforward detection.

5.3. Discussions
5.3.1. Limitations, Challenges, and Integration of YOLO with Emerging Technologies

Despite its broad applicability and success, YOLO faces several significant limitations
that constrain its performance in certain scenarios. A major challenge is its difficulty in de-
tecting small objects, particularly in cluttered or complex environments. Small objects often
lack sufficient feature representation in YOLO’s grid-based framework, as the resolution of
feature maps tends to diminish with increasing model depth [143]. This limitation becomes
critical in applications such as traffic monitoring, where distinguishing between distant
vehicles and pedestrians is essential, or in medical imaging, where small anomalies like
microcalcifications in mammograms can go undetected. Overlapping or occluded objects
exacerbate this issue, as YOLO relies on anchor boxes and non-maximum suppression for
object localization, which can lead to false negatives and overlooked detections.

Another limitation is YOLO’s computational demands, which hinder its deployment
on resource-constrained devices like IoT sensors, mobile platforms, and drones [144]. While
lightweight variants such as YOLOv5s address this issue to some extent, they often sacri-
fice accuracy for efficiency, making them unsuitable for tasks that require high precision.
The high computational cost also limits YOLO’s usability in real-time applications where
latency is a critical factor, such as autonomous vehicles and emergency response systems.
Additionally, YOLO’s fixed input size requirement may necessitate resizing images, poten-
tially leading to loss of important details or distortions in object shapes, further degrading
performance in scenarios where fine-grained detail is crucial.

Domain adaptability is another pressing challenge for YOLO. The model’s perfor-
mance tends to degrade significantly in domains with irregular or noisy data, such as
low-light environments, underwater imaging, or thermal imagery [145]. These domains
often present unique challenges that YOLO’s conventional architecture is not optimized
to address, resulting in reduced detection accuracy and robustness. For example, in un-
derwater exploration, YOLO may struggle to distinguish objects due to variable lighting
conditions, reflections, and distortions caused by water. Similarly, in medical imaging,
variations in resolution, contrast, and texture can negatively impact YOLO’s ability to gen-
eralize across datasets, necessitating extensive domain-specific tuning and pre-processing.

A further challenge is YOLO’s vulnerability to adversarial attacks, which can manipu-
late the model by introducing imperceptible perturbations to input images [146]. These
attacks can cause YOLO to misclassify objects, leading to potentially disastrous conse-
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quences in high-stakes applications such as security, defense, or healthcare. For instance,
an adversarial attack on a surveillance system powered by YOLO might result in failing
to detect a weapon or misidentifying a harmless object as a threat. This vulnerability
underscores the need for robust defenses, such as adversarial training, input filtering, and
enhanced feature extraction mechanisms. Additionally, ethical concerns related to privacy
and dataset biases present another layer of challenges. YOLO’s deployment in surveillance
and facial recognition systems often raises privacy issues, while biases in training datasets
can result in unfair or inaccurate detections, especially in diverse populations or underrep-
resented environments. These challenges highlight the importance of not only technical
advancements but also ethical considerations in YOLO’s design and application.

5.3.2. Advancing YOLO Through Integration with AI Tools and Emerging Technologies

To address the challenges faced by YOLO, researchers are exploring innovative trends
to enhance its adaptability and performance. Few-shot learning has emerged as a promising
approach, enabling YOLO to operate effectively even with limited labeled data by lever-
aging transfer learning and meta-learning techniques [147]. This reduces the dependency
on large-scale datasets, making YOLO more accessible for specialized applications where
data scarcity is common. Another advancement is the development of dynamic detec-
tion models, which allow YOLO to adapt to evolving criteria in real-time scenarios [148].
Applications such as robotics, where conditions change rapidly, or personalized retail
systems, which require tailored recommendations, greatly benefit from this adaptability.
Additionally, extending YOLO to handle 3D object detection has become a critical focus
area [149,150]. By incorporating technologies like LiDAR, depth maps, and volumetric anal-
ysis, YOLO is now applied in advanced fields such as autonomous vehicles and AR/VR
systems [151], where spatial precision and contextual understanding are paramount [152].
These innovations not only address existing limitations but also open new opportunities
for YOLO in emerging technologies and complex real-world environments.

The integration of YOLO with advanced AI tools, particularly Edge AI, has trans-
formed the landscape of real-time object detection by significantly enhancing efficiency and
functionality [153]. Leveraging hardware accelerators such as FPGAs and TPUs enables
YOLO to achieve faster inference with reduced power consumption, making it ideal for
deployment on resource-constrained devices such as IoT systems, drones, and mobile
platforms. Lightweight YOLO models handle initial detection on edge devices, while more
complex computations are offloaded to cloud infrastructure, creating a hybrid system that
optimizes resource usage and minimizes latency. This architecture is particularly valuable
for large-scale, real-time applications, including smart homes, wearable technologies, and
industrial monitoring systems, where speed and efficiency are critical.

Integration with contextual AI frameworks, such as Vision Transformers, further
enhances YOLO’s ability to operate in dynamic environments [154]. This combination
allows YOLO to incorporate spatial and temporal context into its predictions, improving
accuracy and reliability in scenarios such as crowded public spaces or rapidly changing
industrial sites. Such advancements streamline real-time analytics, making it possible to
process large volumes of data for applications like traffic management, crowd monitoring,
and safety systems in smart cities. By providing actionable insights derived from real-
time data, this integration empowers informed decision-making and enhances operational
efficiency across various sectors.

These synergistic advancements have unlocked transformational applications across
numerous domains. In autonomous vehicles, YOLO integrated with Edge AI ensures
reliable, real-time object detection even under resource constraints, improving safety and
navigation. In agriculture, UAVs equipped with YOLO and Edge AI enable large-scale
crop monitoring, identifying pests, nutrient deficiencies, and other yield-impacting factors,
reducing manual interventions and optimizing efficiency. In industrial automation, these
systems perform real-time defect detection on production lines, maintaining consistent qual-
ity control. Additionally, YOLO’s integration with multimodal AI, such as combining visual
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and auditory data, has expanded its utility to innovative areas like assistive technologies
and advanced surveillance systems. Together, these advancements redefine the boundaries
of intelligent detection and decision-making across diverse, real-world applications.

6. Ethical Considerations in the Deployment of YOLO: A Deeper Examination

The YOLO (You Only Look Once) framework, with its transformative real-time object
detection capabilities, has significantly reshaped a broad range of industries. Its efficiency
and speed have enabled breakthroughs in fields such as healthcare, autonomous driving,
agriculture, and industrial automation. However, as with any disruptive technology, the
widespread use of YOLO raises profound ethical questions. These issues extend beyond
basic concerns of privacy or fairness and tap into deeper societal, philosophical, and
environmental considerations. To responsibly harness YOLO’s potential, we must delve
into these ethical challenges with a nuanced understanding.

6.1. The Erosion of Privacy and the Threat of Surveillance Dystopias

As YOLO continues to enhance surveillance capabilities, we face the risk of creating
a society where individuals are constantly monitored without their consent. Beyond the
simple argument of privacy violations, YOLO-enabled systems threaten to embed a culture
of surveillance into the fabric of daily life. The rapid pace of technological innovation is
outpacing legislative and ethical frameworks, leading to a world where the omnipresent
eye of cameras, drones, and smart devices can track and analyze human behavior in
granular detail.

The ethical challenge here is not just about balancing security and privacy; it is about
safeguarding the very concept of autonomy and freedom. In an environment where every
action is logged and analyzed by real-time object detection systems, individuals may begin
to self-censor or alter their behavior to avoid suspicion. This normalization of constant
surveillance can lead to a dystopian future where free expression and individuality are
compromised, and dissenting voices are stifled.

6.2. Bias and the Reinforcement of Social Inequalities

YOLO models, like many AI technologies, are only as fair as the data on which they
are trained. However, the bias problem runs deeper than simple data misrepresentation.
The use of YOLO in critical systems such as predictive policing, healthcare diagnostics,
or hiring processes can reinforce systemic inequalities. By automating decision-making
processes, we risk entrenching the biases present in historical data and perpetuating
discriminatory practices.

In healthcare, for example, biased YOLO models could lead to unequal diagnostic
outcomes across different racial or socioeconomic groups, where misdiagnosis or delayed
detection could be life-threatening. In law enforcement, biased models might dispropor-
tionately target certain communities, leading to over-policing and further marginalization.
The ethical dilemma lies in how we reconcile the tension between technological advance-
ment and social justice. It is not enough to train YOLO on more diverse datasets; we must
rigorously interrogate how the algorithms themselves make decisions, ensuring that they
do not replicate or amplify existing biases.

6.3. Accountability in an Age of Automated Decision-Making

One of the most complex ethical issues surrounding YOLO’s deployment is account-
ability. As these systems become increasingly autonomous, the line between human and
machine responsibility blurs. When a YOLO-powered system makes a wrong decision
whether in diagnosing a disease, misidentifying a pedestrian, or flagging an innocent
person as a security threat who is accountable for the consequences?

The issue of accountability goes beyond merely ensuring transparency in the devel-
opment of YOLO models. It extends into legal and moral territory, where developers,
deployers, and users must navigate an intricate web of responsibility. If a YOLO-powered
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autonomous vehicle is involved in an accident, who should be held responsible the devel-
oper who designed the model, the organization that deployed it, or the user who trusted
it? As we integrate YOLO into critical decision-making systems, we must establish clear
ethical and legal frameworks for accountability, ensuring that responsibility is distributed
appropriately across all stakeholders.

6.4. The Ethical Dilemmas in Medical and Life-Critical Applications

YOLO’s application in healthcare particularly in diagnostics, surgery, and patient
monitoring holds immense promise, but it also raises high-stakes ethical questions. Errors
in object detection in these domains can have life-or-death consequences. A misdiagnosis
caused by an incorrect detection of a tumor or a missed abnormality in a critical scan can
lead to delayed treatments or improper medical interventions.

This challenges the trust between healthcare professionals and AI systems. While
YOLO can assist in increasing the accuracy of medical assessments, it should not undermine
the authority and expertise of healthcare professionals. Ensuring that YOLO remains a
tool that complements human judgment, rather than replaces it, is vital. The ethical debate
extends to questions about the humanization of care how much reliance on automated
systems is acceptable before the personal touch of medical practitioners is lost?

6.5. Environmental Sustainability and the Hidden Cost of Automation

One of the overlooked ethical issues with YOLO is its environmental impact. The
growing demand for AI and machine learning models has led to significant increases in
energy consumption, particularly in training and deploying large-scale YOLO models.
While the technology itself is seen as cutting-edge, the infrastructure required to support its
deployment is resource-intensive, contributing to the carbon footprint of AI technologies.

This ethical concern goes beyond efficiency in training and into the realm of sustain-
ability. As YOLO models are integrated into a broader range of industries, the need for
high-performance computing resources grows. Data centers, GPUs, and cloud computing
infrastructures essential for training large-scale models consume vast amounts of energy.
Therefore, it is essential that we focus on developing greener AI technologies and optimiz-
ing YOLO variants for energy efficiency. This includes prioritizing lightweight models
that maintain performance while minimizing environmental harm, as well as exploring
renewable energy sources for data centers.

6.6. The Social Impact of YOLO and the Displacement of Human Labor

The automation potential of YOLO extends beyond its technical capabilities and
into societal concerns. As industries adopt YOLO for object detection and automation,
particularly in manufacturing, agriculture, and logistics, the displacement of human labor
becomes a significant ethical concern. The technology that drives efficiency in industrial
settings often comes at the cost of jobs, particularly in sectors reliant on manual labor for
tasks such as quality control and monitoring.

The ethical challenge here is twofold. First, there is a need to address the potential
economic disruption caused by widespread automation. Policymakers, businesses, and
technology developers must collaborate to create strategies for retraining and upskilling
displaced workers. Second, there is the broader philosophical question about the value
of human labor in an automated society. As machines take over more tasks, how do we
ensure that humans are not rendered obsolete? A society that over-automates without
regard for the social consequences risks creating deep divides between those who benefit
from automation and those who are left behind.

6.7. Ethical Frameworks for Responsible YOLO Deployment

The rapid pace of YOLO’s evolution demands the parallel development of ethical
frameworks that guide its responsible use. These frameworks should prioritize human
dignity, fairness, privacy, and sustainability. At the core of this endeavor is the commitment
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to responsible AI development, where transparency, accountability, and inclusivity are
foundational principles.

Developers and organizations must adopt stringent ethical guidelines for training,
deploying, and monitoring YOLO-powered systems. These guidelines should include
considerations of data fairness, model interpretability, privacy protections, and energy
efficiency. By embedding ethical principles into the development lifecycle, we can ensure
that YOLO is deployed in ways that benefit society without compromising fundamental
rights or causing harm.

7. Conclusions

This paper has examined the remarkable evolution of the YOLO (You Only Look
Once) family of object detection models, from earlier versions like YOLOv6, YOLOv7, and
YOLOv8, through to groundbreaking innovations such as YOLO-NAS, YOLOv9, and the
most recent releases, YOLOv10 and YOLOv11. Each iteration has brought advancements
in speed, accuracy, and computational efficiency, solidifying YOLO’s role as a dominant
framework in real-time object detection. YOLO’s single-stage detection architecture has
enabled rapid, efficient object identification across diverse and time-sensitive fields, such
as healthcare, autonomous driving, agriculture, and industrial automation.

YOLO-NAS introduced a key innovation with Post-Training Quantization (PTQ), opti-
mizing the model for resource-constrained environments without compromising accuracy.
YOLOv9 further enhanced performance by introducing features like Programmable Gradi-
ent Information (PGI) and Generalized Efficient Layer Aggregation Networks (GELAN),
allowing the model to tackle more complex detection tasks, including those with occlusions
and intricate patterns.

The recent developments in YOLOv10 and YOLOv11 have further pushed the bound-
aries of performance. YOLOv10’s C3k2 blocks and YOLOv11’s Cross-Stage Partial with
Spatial Attention (C2PSA) blocks significantly improved the models’ ability to detect small
and occluded objects while maintaining computational efficiency. In particular, YOLOv11
emerged as the most accurate and efficient model in benchmark tests, outperforming pre-
vious versions in tasks such as facemask detection, blood cell analysis, and autonomous
vehicle applications.

Comprehensive benchmarks across datasets like Roboflow 100, Object365, and COCO
have demonstrated the distinct advantages of YOLOv9, YOLOv10, and YOLOv11, particu-
larly in complex object detection scenarios. Among these, YOLOv11 consistently achieved
the highest performance, confirming its status as the current gold standard for real-time de-
tection tasks in applications that require high precision, such as healthcare, environmental
monitoring, and autonomous systems.

However, with these technological advancements come important ethical considera-
tions. YOLO’s ability to enable real-time object tracking and identification raises concerns
about privacy and the potential for intrusive surveillance, which could threaten individual
freedoms and civil liberties. Additionally, the automation of tasks previously performed
by humans, especially in industries such as manufacturing and agriculture, could lead
to job displacement. Therefore, the need for stringent ethical frameworks and guidelines
becomes crucial to ensure that YOLO’s powerful capabilities are used responsibly and for
the benefit of society.

Therefore, YOLO has demonstrated itself as a highly adaptable and powerful tool
for real-time object detection across multiple domains. As research continues to refine its
performance, particularly through the development of lightweight and energy-efficient
models, YOLO will undoubtedly remain at the forefront of object detection technology.
However, ensuring its responsible and ethical deployment will be essential in maximizing
its potential while safeguarding societal values.

This research provides a comprehensive review of the YOLO framework, emphasiz-
ing its evolution and transformative applications across diverse domains. By analyzing
performance benchmarks for YOLO versions from YOLOv8 to YOLOv11, the study sheds
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light on key technical advancements, such as improved feature aggregation and attention
mechanisms, and their implications for real-time object detection. It offers domain-specific
insights into YOLO’s effectiveness in areas such as precision farming, healthcare diagnos-
tics, and autonomous systems, demonstrating its adaptability and utility. Furthermore, the
discussion of ethical considerations addresses critical issues like privacy, bias, and societal
impact, offering a holistic perspective on the responsible deployment of YOLO models.
This work serves as a resource for researchers and practitioners by synthesizing innovations
and applications in the YOLO framework while pointing toward future research directions.

Despite its breadth, this review has certain limitations. The performance benchmarks
rely heavily on open-source datasets, limiting validation with real-world samples. The anal-
ysis focuses primarily on YOLO’s internal evolution rather than comparing it extensively
with other object detection frameworks. Additionally, models were evaluated using a fixed
number of training epochs, which might not fully capture their optimal performance poten-
tial. Finally, dataset biases inherent to publicly available data may influence the reported
outcomes and generalizability of the results. These limitations highlight areas for further
research, including extended training and validation with practical, real-life scenarios.
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Abstract: Object tracking is one of the most important problems in computer vision applications
such as robotics, autonomous driving, and pedestrian movement. There has been a significant
development in camera hardware where researchers are experimenting with the fusion of different
sensors and developing image processing algorithms to track objects. Image processing and deep
learning methods have significantly progressed in the last few decades. Different data association
methods accompanied by image processing and deep learning are becoming crucial in object tracking
tasks. The data requirement for deep learning methods has led to different public datasets that allow
researchers to benchmark their methods. While there has been an improvement in object tracking
methods, technology, and the availability of annotated object tracking datasets, there is still scope
for improvement. This review contributes by systemically identifying different sensor equipment,
datasets, methods, and applications, providing a taxonomy about the literature and the strengths and
limitations of different approaches, thereby providing guidelines for selecting equipment, methods,
and applications. Research questions and future scope to address the unresolved issues in the object
tracking field are also presented with research direction guidelines.

Keywords: object tracking; computer vision; image processing; data association; deep learning

1. Introduction

Object tracking using computer vision is one of the most important functions of
machines that interact with the dynamics of the real world, such as autonomous ground
vehicles [1], autonomous aerial drones [2], robotics [3], and missile tracking systems [4].
For machines to operate and adapt according to real-world dynamics, it is essential to
monitor changes. These changes are usually the motions that must be sensed through
different sensors, followed by the machines responding according to these changes [4].
Computer vision mimics the human ability to observe these changes. Humans intuitively
understand the change in their environment due to different senses, which helps them
navigate their world. Vision is one of the primary senses that allow humans to navigate
their environment. To design autonomous machines that perform human tasks such as
driving [1,3,5–10], fishing [11], agricultural activities [2], and medical diagnoses [12–16],
computer vision can help increase productivity. The inclusion of computer vision in human–
computer interaction, robotics, and medical diagnoses provides humans with better tools
for completing tasks efficiently and making decisions with better insights. Therefore, it is
essential to investigate different methods, tools, and potential applications to evaluate their
limitations and future scope for object tracking problems in computer vision to improve
work efficiency and develop an autonomous system that works well with humans.

Different insights can be gained by looking at a holistic view of object tracking in
computer vision that complements various aspects of the problem. Therefore, this re-
view synthesises and categorises information regarding different aspects, such as sensors,
datasets, approaches, and applications of object tracking problems in computer vision. The
main contributions of this review are as follows:
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• A systemic literature review in object tracking based on hardware usage, datasets,
image processing and deep learning methods, and application areas.

• Recommendations and guidelines for selecting sensors, datasets, and application
methodologies based on their advantages and limitations.

• A taxonomy for sensor equipment and methodologies.
• Research questions and future scope to address unresolved issues in the object track-

ing field.

This review highlights the development of object tracking methods in computer
vision over the last ten years. The review takes major journal articles published since
2013 in object tracking in computer vision and aims to outline the progress made in this
field. This review highlights the different approaches, methods, equipment, datasets, and
object tracking applications. By highlighting current development, the review consolidates
the data on methods, applications, and types of vision sensors, enabling engineers and
software developers to make informed choices while developing their systems for different
applications. Furthermore, this review identifies different limitations in current methods
and proposes future developments to help push the boundaries of object tracking.

In this paper, Section 2 outlines different reviews performed in object tracking and
distinguishes this review from these previous reviews. Section 3 discusses the types of
equipment for different vision sensors and how they impact development. Section 4 pro-
vides the overview of available datasets for benchmarking object tracking results. Section 5
lays out the different approaches and methods used in object tracking. Section 6 lists the
different areas where object tracking in computer vision is deployed. Section 7 provides
a discussion of object tracking methods and datasets. Section 8 provides limitations and
future work along with the research questions and recommendations to address them.
Section 9 outlines the conclusion of this study. Figure 1 shows the structure of the review.

Figure 1. Structure of the review.

261



Computers 2024, 13, 136

2. Previous Reviews

There has been a considerable development in object tracking using computer vision.
Previous review articles and surveys focus on a niche area of the object tracking problem.
A review focusing exclusively on a subarea of the research field is often beneficial in
investigating specific gaps in the literature. However, widening the scope of the literature
review helps to identify whether a particular approach has an advantage over the others.
Furthermore, a review of the field of research provides a roadmap for researchers and
engineers to investigate the problem further according to the needs of the application. This
section identifies different reviews covering different aspects of the object tracking problem
and distinguishes this review from these previous reviews. This section also outlines the
main contribution of each review, which acts as a roadmap for different research niches in
the object tracking literature.

2.1. Appearance Model

Any object, such as circles, squares, cylinders, and triangles, can be deconstructed to
its basic geometry. Identifying these geometric features can assist in detecting the objects
in an image frame. These types of visual appearance form object descriptors, which use
different features of the object, such as edges and corners, to construct a mathematical
model for object identification.

In their survey of appearance models, Li et al. [17] reviewed the literature on visual
representation as per their feature-construction mechanism. Since object tracking methods
have problems handling complex object appearance changes due to illumination, occlusion,
shape deformation, and camera motion, Li et al. [17] concluded that it was essential to
effectively model the 2D appearance of tracked objects for successful visual tracking.
Their survey focused on the detection methods as a precursor to the tracking-by-detection
approach. While appearance models are advantageous in object detection, they are still
handcrafted to particular object detection. Handcrafted feature models for face detection
will differ from human body detection. While that survey proposed learning techniques
such as support vector machines and particle filtering, their learning is dependent upon
the training sample selection.

2.2. Multi-Cue

Since the publication of the review by Li et al. [17] in 2013, there have been signif-
icant improvements in deep learning methods, which have proven effective in object
detection [18,19]. In their survey, Kumar et al. [19] identified the research in multi-cue
object tracking that used appearance models in traditional and deep learning approaches.
Multi-cue methods rely on multiple cues in the image, such as colour, texture, contour, and
object features, to develop descriptors to identify the object. They surveyed methods that
used handcrafted features integrated with deep learning-based models to provide robust
tracking algorithms.

2.3. Deep Learning

There was a surge in the review of deep learning methods for object tracking, with two
reviews in 2021 and three reviews in 2022. Park et al. [20] reviewed the evolution of multiple-
object tracking in deep learning by categorising the previous multiple object tracking
algorithm in 12 approaches. They also reviewed the benchmark datasets and standard
evaluation methods. Kalake et al. [21] reviewed deep learning-based online multiple-object
tracking and ranked the networks on different public benchmark datasets. Mandal et al. [22]
provided an empirical review of the state-of-the-art deep learning methods for change
detection by categorising the existing approaches into different deep learning methods.
Furthermore, they provided an empirical analysis of the evaluation settings adopted by
existing deep learning methods. Guo et al. [23] reviewed deep learning methods for
multiple-object tracking in autonomous driving. Their review categorised the algorithms
based on tracking by detection, joint detection and tracking, and transformer-based tracking.
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They identified multiple-object tracking datasets and provided an experimental analysis
and future research direction in deep learning. While it is important to examine deep
learning methods in isolation to identify the best methods according to the solution, it is
also important to consider traditional appearance-based and statistical models for certain
types of applications. Therefore, studying and reviewing traditional and deep learning
methods can provide insights into method selection based on hardware and applications.

2.4. Applications-Based

Recent reviews have looked into detection-based multiple-object tracking [24], data
association methods [25], long-term visual tracking [26], and methods used in ship track-
ing [27]. Dai et al. [24] introduced a taxonomy of multiple-object tracking and provided a
detailed summary of the results of algorithms on popular datasets. Liu et al. [26] reviewed
long-term tracking algorithms while describing existing benchmarks and evaluation pro-
tocols. Rocha et al. [27] reviewed datasets and state-of-the-art algorithms for single and
multiple-object tracking with the view of applying them to ship tracking. Furthermore,
they provided insights into developing novel datasets, benchmarking metrics, and novel
ship-tracking algorithms. These reviews are focused on specific applications, such as single-
or multiple-object tracking, and provide direction for research in their respective fields.

2.5. Trend in Reviews

Different approaches, such as appearance models, data association, and long-term
tracking, were reviewed from previous reviews over the last ten years. A summary of
reviews works on object tracking is provided in Table 1. Figure 2 shows the number of
reviews covering different areas of object tracking from 2013 to 2023. A trend is noticed in
Figure 2 where there is a peak of interest in object tracking in 2022, with five papers, out
of which three focus exclusively on deep learning methods. The exclusive nature of the
literature surveyed in recent reviews necessitates a comparative evaluation of the different
approaches. Also, hardware equipment and hardware constraints in the application require
investigating different types of sensors and their corresponding methods, applications,
and scopes. Furthermore, based on an overview of the object tracking field, guidelines,
and recommendations for the methods will contribute to the decision-making process for
specific applications. Therefore, this survey aims to investigate different sensor equipment,
datasets, approaches and methods, and object tracking applications in computer vision.

Figure 2. Trend in reviews from 2013 to 2023.
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Table 1. Summary of the review works on object tracking.

Paper Year Topic Main Contributions

[17] 2013 Appearance models in visual
object tracking

• Review of visual representation according to their feature-construction mechanism.
• Existing statistical modelling schemes for tracking by detection.

[19] 2020 Multi-cue-based visual tracking
• Categorisation of multi-cue object tracking based on the exploited appearance model

into traditional architecture and deep learning-based tracker.

[20] 2021 Multiple object tracking in deep
learning approach.

• Categorisation of previous MOT algorithms into 12 approaches and discussion of the
main procedures for each category.

• A review of the benchmark datasets and standard evaluation methods for evaluating
MOT.

[21] 2021
Deep learning approaches in
real-time multiple-object
tracking

• Review of deep learning-based online MOT methods and networks that rank highest in
the public benchmark.

[22] 2022 Deep learning frameworks for
change detection

• Model design-based categorisation of the existing approaches.
• Presentation of empirical analysis of evaluation settings for deep learning.
• Future directions for change detection.

[23] 2022

Deep learning-based visual
multiple-object tracking
algorithm for autonomous
driving

• Detailed review of object tracking methods: tracking by detection (TBD), joint detection
and tracking (JDT), and transformer-based tracking.

[24] 2022 Detection-based video
multiple-object tracking

• Taxonomy based on the MOT problem.
• Summary of the results of 40 algorithms on popular datasets.

[25] 2022 Data association in
multiple-object tracking

• Review of data association techniques via uniquely defined similarity functions and
filters for multiple-object tracking.

• Taxonomy of data association methods.

[26] 2022 Long term visual tracking
• Thorough review of long-term tracking, summarising the long-term tracking algorithms

from framework architectures, and utilisation of intermediate tracking results’
perspective.

[27] 2023 Ship tracking

• Review of datasets and state-of-the-art tracking algorithms for single- and
multiple-object tracking.

• Provides insights for developing novel datasets, benchmarking metrics, and novel
ship-tracking algorithms.

Ours 2024 Object tracking in computer
vision

• Systemic literature review on hardware usage, datasets, image processing and deep
learning methods, and application areas.

• Recommendations and guidelines for selecting sensors, datasets, and application
methodologies based on their advantages and limitations.

• Taxonomy for the sensor equipment and methodologies.
• Research questions and future scope to address unresolved issues in the object

tracking field.

3. Sensor Equipment

The development and implementation of object tracking methods begin with the
sensor input. The choice of sensor equipment depends upon different constraints of
the problem, such as depth requirement [10,28,29], tracking objects from multiple view-
points [30], or intercepting the object following a certain trajectory [4]. Based upon the
different problem constraints, different types of vision sensors such as monocular, stereo,
depth-based camera, and hybrid vision sensors are used. Figure 3 shows the taxonomy of
sensor equipment studied in the literature. The following sections categorise the research
based on the types of vision sensors.

264



Computers 2024, 13, 136

Figure 3. Taxonomy of sensor equipment.

3.1. Monocular Cameras

Monocular cameras are widely used in object tracking. A monocular camera refers
to a single camera in a computer vision system, where the system relies on extracting
information from a single image form the camera. While it is difficult to estimate the depth
from a single image, some researchers incorporate multiple monocular cameras with the
principles of stereoscopy that give the 3D position of the target object [30]. Considering the
advantages and limitations of monocular vision, different methods are developed based
on the information available from the single image or a modified system that incorporates
multiple monocular cameras [30], eventually becoming uncalibrated stereo vision [31].
Since the cost and availability of cameras are important considerations in some applications,
monocular cameras become a suitable option.

The camera setup is important for developing application-specific datasets. Kwon
et al. [4] used a monocular camera to acquire images from a moving camera. Their approach
for using a monocular camera was to derive homography matrices in estimating the pose
of a target in six DOFs. Their proposed methods were to be used in a missile application,
where the camera of the missile tracks a target missile as a moving object for interception.
Their approach for overcoming depth and size information was to use the image sequences
from the moving camera on the missile. The motion estimator used these images to estimate
the rotational and translation motion of the free-moving target. Their research focused
on deriving homography matrices for estimating the motion of a moving target using a
monocular camera, and a practical simulation was designed. However, the performance
of their methods depended upon accurate feature matching. Thus, any high-resolution
monocular camera could be used to apply their methods.

Zarrabeitia et al. [16] used a single and two monocular cameras to detect the trajectories
of a water droplet. Two monocular cameras allowed them to construct a stereo system for
3D trajectories. Yan et al. [32] used four fixed monocular cameras for handover problems
in computer vision to track a skater as the skater escapes the field of view (FOV) of one
camera to another. Gionfrida et al. [13] used a single monocular camera to capture the
participant’s images to develop a markerless hand motion capture system. They developed
the ground truth for the hand movement with a marker-based approach using an eight-
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camera Qualisys motion capture system. They compared the motion obtained from a
markerless monocular camera system with the ground truth. Huang et al. [33] developed a
setup consisting of an overhead crane trolley, a camera, a spherical marker, a computer with
a GUI connected to a motion control system, and a vision computer to process images and
track the motion of a payload. The setup was designed in the lab, but it had the potential
to be applied on outdoor overhead handling cranes.

The monocular camera setups have a unique application that solves a particular prob-
lem; however, the methods developed using these setups often require some modifications
if the constraints of the problems change. The advantage of constructing a monocular
camera setup is that multiple camera views can be used, which helps detect depth and
address occlusion. Furthermore, multiple cues become accessible in the image by using
different types of monocular cameras, such as infrared and RGB, on a setup. However, the
disadvantage of such a system could be that a thorough calibration must be performed.
Also, the delay in sequentially triggering multiple monocular cameras must be addressed
since the data could be lost due to a delay in image capture in a dynamic environment.
Knowing the capability and application is essential before selecting the appropriate camera
system. Table 2 summarises the different types of camera systems used in literature with
their depth estimation capability provided by the methods in the paper and their respective
applications. Therefore, monocular camera setups are often developed when the problem
has a unique requirement.

Table 2. Summary of monocular camera systems.

Paper Camera System Depth Estimation
Depth Estimation

Method
Application

[4] Moving camera � Homography
matrices Missile interception

[16] One or two
cameras � Stereo

reconstruction
Bloodletting events

(medical)

[32] Four cameras x - Tracking skaters
(sports)

[13] Single camera x -
Biomechanical

assessment
(Medical)

[33] Single camera x - Overhead crane

3.2. Depth-Based Cameras

Depth-based cameras provide images of the scene along with depth information.
Stereo and RGB-D (RGB-Depth) cameras are the two types of depth-based cameras used in
the object tracking literature. A stereo camera system comprises two or more monocular
cameras, often as a single unit such as Bumblebee2 [10,28,29] or built from multiple monoc-
ular cameras [30]. RGB-D cameras such as Microsoft’s Kinect sensor collect RGB images
and depth information using an infrared (IR) projector and camera based on the principle of
structured light [34]. Object tracking methods are developed by setting up the depth-based
camera [12,28] or by using a public dataset [35] as in the case of monocular camera data.
Since depth information is vital for machines to interact with their environment and know
the location of the object in the real world, it is important to consider different depth-based
camera setups for object tracking.

Stereo cameras are widely used in applications where depth measurement is required.
Garcia et al. [36] developed a prototype of a stereo camera by using two static low-cost
cameras. That stereo camera could be overhead in different urban environments with
constant lighting. With the constraint of constant lighting conditions, the system was
designed to track the movement, size, and height of the people passing under the camera.
The system could be adjusted to operate at different heights depending on the urban
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environment by adjusting the system parameters to comply with the average height of the
people and the camera location from the ground. Chuang et al. [11] used a stereo camera
with six LED strobes, batteries, and computer housing for underwater operation. Their
camera could have 4-megapixel images, and the data transfer rate was five frames per
second using an Ethernet cable. Hu et al. [37] used two AVT F-504B cameras to construct
a binocular stereo camera mounted on a tripod. They calibrated the camera using the
calibration toolbox [38] in MATLAB. Yang et al. [15] used a binocular stereo placed in front
of a person to collect data for hand gestures. Sinisterra et al. [29] mounted a Bumblebee2
stereo camera on top of an unmanned surface vehicle that was used for chasing a moving
marine vehicle. Busch et al. [2] mounted their stereo camera on a manipulator arm attached
to a drone for tracking tree branch movement. During the experimental procedures, they
placed the stereo camera in front of the tree branch on an actuation system capable of
performing sway action. Wu et al. [39] also developed a stereo camera mounted on a
quadcopter with an NUC computer to detect and track a target. Richey et al. [12] used a
stereo camera to track breast surface deformation for medical applications. Their setup
consisted of an optical tracker, ultrasound, guidance display, and pen-marked fiducial
points on the skin whose ground truth was collected by an optically tracked stylus. The
depth information measured with the help of the stereo-matching process helps in the
respective applications. Czajkowska et al. [14] used a stereo camera setup and a stereoscopic
navigation system called Polaris Vicra to evaluate ground truth. Since a binocular stereo
camera can be constructed by aligning two cameras or purchased as a single unit, the stereo
setup is becoming popular when depth information is required.

RGB-D is another depth-based camera with an infrared projector and collector system
to measure depth along with the RGB channels of the image [34]. The depth value relative to
the position of the camera is collected for every pixel in the RGB-D camera. Kriechbaumer
et al. [28] used RGB-D data for developing their methods; however, their methods were
adapted to stereo later. Similarly, Rasoulidanesh et al. [40] used the RGB-D Princeton
pedestrian dataset [41]. The use of RGB-D for tracking in the literature has been limited
to public datasets developed using RGB-D cameras and in the indoor environment, as
outlined by Kriechbaumer et al. [28]. An RGB-D camera has certain limitations when the
object is far away, making it difficult for applications to track objects using drones [42].
Therefore, while RGB-D cameras have advantages in the indoor environment, they may
not be suitable for outdoor applications due to their limited sensor range, which misses
faraway objects.

Depth-based cameras are useful for localising the tracking object in a 3D space relative
to the depth camera. Table 3 summarises the different types of depth-based vision sensors
used in the surveyed literature. The table categorises cameras based on “Off the shelf”
and “Constructed”. As the name suggests, off-the-shelf cameras are purchased as a single
unit, while constructed cameras use different components, such as two monocular cameras,
to construct a stereo camera. The advantage of using off-the-shelf products is that they
often come with a software development kit that allows the user to use pre-built tools
such as calibration, depth detection, disparity map, and point cloud map generation. The
constructed camera would have an advantage where the problem constraint requires
a custom baseline or camera lens, which may not be part of the off-the-shelf product.
Furthermore, other aspects such as depth calculation methods, frames per second (FPS),
and resolution play an important role in depth measurement accuracy and are often
constraints on applications. Therefore, a depth-based camera has an advantage over a
monocular camera as it provides all the information obtained from monocular (RGB image)
and depth estimation capability.
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Table 3. Summary of depth-based cameras.

Paper Type Off the Shelf Constructed Camera
Depth

Calculation
Method

Application FPS Resolution

[36] Stereo x � Two static
cameras

Epipolar
geometry

Pedestrian
tracking 30 320 × 240

[11] Stereo � x Cam-trawl Stereo
triangulation Tracking fish 5 2048 × 2048

[37] Stereo x � AVT F-504B Epipolar
geometry

Pedestrian
tracking 25.6 1360 × 1024

[29] Stereo � x Bumblebee2
Stereo

matching using
SAD

Tracking ship 15 320 × 240

[2] Stereo � x ZED 3D point cloud Tree branch
tracking 30 1920 × 1080

[39] Stereo � x Mynteye Stereo
matching

Air and ground
target tracking 25 752 × 480

[12] Stereo � x Grasshopper Stereo
matching

Fiducial
tracking for

surgical
guidance

5 1200 × 1600

[28] Stereo � x Bumblebee2 Stereo
triangulation

Autonomous
ship

localisation
8.2 1024 × 768

[40] RGB-D � x KinectV2 Time of flight Pedestrian
tracking 30 1920 × 1080

3.3. Hybrid Sensors

In applications with uncertainties in vision data collection, additional sensors whose
data can complement that of the vision data are used. These sensor setups are classified as
hybrid sensors as they incorporate multiple sensors, which is important in the development
of the method. Cesic et al. [10] mounted a stereo camera and radar on a moving vehicle
in urban scenarios. Similarly, Ram et al. [43] also used radar and a monocular camera for
autonomous cars, while Feng et al. [5] used a combination of monocular camera with an
inertial measurement unit (IMU). Persic et al. [3] used a combination of stereo, monocular,
and motion capture systems, monocular and radar, and monocular and LiDAR systems
mounted on a car for autonomous driving. Kriechbaumer et al. [28] based their system on a
platform on a survey vessel consisting of a Bumblebee2 stereo camera, an inertial measure-
ment unit (IMU) fused with tri-axial MEMS gyroscope, accelerometer and magnetometers,
a GPS receiver, a 360-degree prism, and a total station, which is an equipment used for
land surveying. Contrary to detecting targets using drones, Zheng et al. [42] developed
a panoramic stereo camera system on the ground to detect flying drones. Their platform
comprised four stereo cameras mounted on a stand with a computer, IMU, router, and
GPS module. The IMU and GPS were located on the ground node and used to measure
the attitude and position of each sensing node in a global coordinate frame. Since the
KITTI [35] dataset consists of different types of sensors, the research in [1,5,8,9,44] using
this dataset also fit under hybrid sensors with the primary goal of localising a vehicle. Ta-
ble 4 summarises the sensors based on primary sensors and a vision sensor along with the
secondary sensor that complements the primary sensor. From the applications of different
methods, hybrid sensors are used where the risk and uncertainties are high, such as in
autonomous vehicles and drones. Therefore, for outdoor applications, combining vision
sensor data with other sensor data to create a hybrid system is beneficial for high-risk
applications.
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Table 4. Summary of hybrid camera systems.

Paper Primary Sensor Secondary Sensors Application

[10] Stereo camera • RADAR Autonomous driving

[43] Monocular camera • RADAR Autonomous driving

[5] Monocular camera • IMU Autonomous driving

[3] Stereo camera
• Motion capture systems
• RADAR
• LiDAR

Moving target tracking

[28] Stereo camera

• IMU
• Gyroscope
• Accelerometer
• Magnetometer
• GPS

Autonomous ship tracking

[42] Stereo camera • IMU
• GPS Drone tracking

3.4. Recommendations for Sensor Selection for Applications

The sensor equipment is the first step to consider based on the type of object tracking
application. The correct selection process for the sensor equipment is essential as it relies
upon the capabilities of the sensor. Table 5 summarises the category of papers reviewed in
the literature in this section. While application plays an important role in selecting a sensor
type, other constraints, such as computing and hardware cost, must also be considered.
This subsection aims to summarise, compare, and suggest guidelines for selecting sensors.

Monocular cameras, such as webcams, are accessible and less expensive than depth-
based cameras. A high-resolution webcam can provide more details in terms of pixel
density. However, the higher the resolution, the higher the computation cost to process the
images. Furthermore, monocular cameras cannot provide depth information in the scene,
but the depth information can be obtained using multiple monocular cameras [16] or a
moving camera [4] along with the principles of stereography.

From the insights derived from the literature review, the following guidelines can be
used to determine when monocular cameras are sufficient:

• If the tracking application does not require depth information.
• If the system does interact with its environment, such as tracking in sports [32], a

biomechanical assessment [13], or observing pedestrian movements, a monocular
camera is sufficient.

• If depth information is required, uncalibrated stereo methods can be used with either
a moving camera [4] or multiple monocular cameras [16].

Depth-based cameras are more expensive compared to monocular cameras. The
advantage of using depth-based cameras such as stereo cameras or RGB-D is that they
provide depth information about objects relative to the position of the camera. This is
beneficial information for localising a target object in the 3D space. Off-the-shelf depth-
based cameras often have the advantage of proprietary software or a software development
kit (SDK) provided by the manufacturer. The software provides functionality such as
camera calibration, disparity map generation, and point cloud generation. An SDK often
comes with the option of multiple programming languages, which provides pre-built code
packages. These camera code packages, with features such as depth detection and point
cloud generation, can be integrated within projects without the need to develop code from
scratch for the camera input processing. Some of the functionalities of the SDK, such as
real-time point cloud generation, often require high computer hardware specifications
such as a GPU [2]. However, alternative software libraries such as OpenCV can be used to
develop methods that do not require GPUs for image processing.
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The following guidelines are recommended for selecting depth-based cameras
for applications:

• Depth-based cameras are ideal if the depth information of the target object is needed.
• Stereo cameras are better than RGB-D ones in outdoor settings since an RGB-D camera

relies on structured light, which may not be suitable for outdoor environments.
• RGB-D cameras are a better option than stereo cameras for indoor applications as the

depth accuracy will be higher due to the structured light.
• A constructed stereo setup is a better option for a custom baseline, and the focal length

of the lens is required for applications such as in panoramic stereo systems [42].

Hybrid sensors provide additional data for the overall application. For highly critical
applications, such as autonomous vehicles, more data that can benefit the dynamic system,
such as a moving vehicle in a dynamic environment, are essential. Sensors like IMUs,
gyroscopes, and accelerometers can help maintain the stability of the dynamic system, while
GPS helps localise it in 3D space. It is important to consider the stability of autonomous
vehicles, their localisation in the environment, and other moving objects such as pedestrians
and other vehicles.

The following are the recommendations for deciding on a hybrid system:

• Hybrid sensors are the best choice for a dynamic system interacting with a dynamic
environment such as an autonomous vehicle [5,10,28,43].

• GPS as an additional sensor with the camera helps localise the camera system in the
real world, thereby allowing the localisation of target objects.

• An IMU, accelerometer, and gyroscope provide additional data that can help the
control system of the dynamic system for stability while tracking objects.

Table 5. Categorisation of papers based on the vision sensors.

Vision Sensor Papers

Monocular [4,13,16,32,33]
Depth-based [2,6,11,12,14,15,29,36,37,39]
Hybrid [3,5,10,28,42,43]

4. Datasets

Datasets are essential for evaluating methods and setting standards which cover a
wide variety of scenarios. A diverse dataset is helpful to develop methods that can be
evaluated before they are deployed in real-world systems. Some public datasets such as
HumanEVA [45] and KITTI [35] cover various data catering to specific applications. In
contrast, some others [7,42,43,46] develop their datasets for general tracking applications.
Researchers who create an in-house dataset are looking for specific scenarios for their
applications. The dataset is used for machine learning and deep learning methods to train
a classifier for detection and tracking. Therefore, the availability of a dataset is essential
for benchmarking the methods and training a machine learning or deep learning model to
accomplish the tasks.

4.1. Object Tracking Datasets in Autonomous Vehicles

Research on autonomous driving has significantly increased in the past few years [47].
The KITTI dataset [35] is widely used for benchmarking the methods in autonomous
driving applications. The KITTI dataset consists of high-resolution colour and greyscale
stereo images, laser scans, GPS, and IMU data. Several researchers [1,5,8,9,44] developed
their object tracking methods using the KITTI dataset in the application of autonomous
driving. Deepambika and Rahman [9] also used the DAIMLER dataset [48], a pedestrian
dataset, to evaluate their methods for autonomous driving. The DAIMLER dataset consists
of stereo images captured from a calibrated stereo camera mounted on a vehicle in an
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urban environment. The pedestrian cutout is comprised of 24-bit PNG format images, float
disparity maps, and ground truth shapes.

The Multivehicle Stereo Event Camera (MVSEC) dataset [49] is another stereo image
dataset for event-based cameras developed for autonomous driving cars. The MVSEC
dataset consists of greyscale images along with IMU data. The stereo camera was con-
structed from two Dynamic Vision and Active Pixel Sensors (DAVIS) cameras. A Visual
Inertial (VI) sensor [50] was mounted on top of the stereo camera. This setup was mounted
on a motorcycle handlebar along with GPS. A Velodyne LiDAR system was used to get the
ground-truth depth information.

HCI [51] is a synthetic dataset comprising 24 designed scenes with the ground truth
of a light field. The dataset comprises four images for three scenes: stratified, test, and
training. These scenes consist of patterns and household images with their ground truth.
They provide an additional 12 scenes with their ground truth in the dataset, which is
not used for official benchmarking. Shen et al. [7] created their dataset for developing
their methods by building on the HCI dataset for a potential application in autonomous
driving. An autonomous driving dataset is often accompanied by additional sensor data
such as GPS, IMU, and stereo camera images. Autonomous navigation is treated as an
object tracking problem, and the dataset’s availability can help benchmark the methods
before deploying them for autonomous cars to avoid dynamic obstacles by tracking them
in real time.

4.2. Single-Object Tracking Datasets

Single-object tracking (SOT) is the research area where a single object, as opposed
to multiple objects, is the subject of the tracking. There have been different versions of
Visual Object Tracking (VOT) datasets from its inception in 2013, with the latest being
VOT2022 [52] as a part of the VOT Challenge. The VOT dataset consists of monocular
images and is used to benchmark the methods for visual object tracking. Unlike MOT
datasets, VOT datasets are for single object tracking.

In VOT2022 [52], the following evaluation protocols were used:

• Short-term tracker :

– Target is localised and reported in each frame.
– For the target that goes out of frame or gets occluded, there is no target re-

detection from these trackers.
– The information on the target object is not retained when the object is occluded.

• Short-term tracking with conservative updating:

– Similar to the short-term tracker, the target is localised in each frame, and there is
no re-detection of the target.

– Tracking robustness is increased by a selective updating of the visual model based
on the estimation confidence.

– The tracking reliability relies on the confidence estimation, which is based on the
object detection confidence, thereby performing a detection operation when the
tracking estimation confidence is low.

• Pseudo-long-term tracker:

– When the target position is predicted to be “not visible” due to occlusion or when
the target is out of the image frame, it is not reported.

– There is no explicit tracking re-detection, which means that when the object is
occluded, the detection failure is reported, and there are no further efforts to
search the object in the image frame.

– There is an internal mechanism to identify tracking failure where the failure could
be due to low confidence in the estimation, object detection, or both.

• Re-detecting long-term tracker:

– Target position is not reported when the target prediction is “not visible”.
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– Unlike a pseudo-long-term tracker, there is an explicit search over the image
frame when the object is lost during tracking.

– Object detection techniques can be employed to detect the object in the entire
image frame.

– Upon re-detection, the tracking is continued from the new location.

Object Tracking Benchmark (OTB) [53] is another single-object tracking dataset. OTB-
50, consisting of 50 difficult target objects out of 100 targets from OTB [53], was used by
Yan et al. [32] to evaluate their trackers. OTB has annotations consisting of 11 attributes:
illumination variation, scale variation, occlusion, deformation, motion blur, fast motion,
in-plane rotation, out-of-plane rotation, out-of-view, background clutters, and low resolu-
tion [53]. The Rigid Pose dataset [54] is a single-object tracking dataset created synthetically.
Along with tracking, the dataset can also be used to evaluate methods for occlusion. The
dataset consists of four objects from public KIT object model data [55]. These object models
are placed on the image and manually manipulated to record the trace, which is used as
ground truth.

Zhong et al. [56] used the Rigid Pose dataset for their evaluation. Furthermore, the
ACCV14 dataset [57], an RGB-D dataset, was used for their evaluation. The Princeton [41]
dataset is an RGB-D dataset used by Rasoulidanesh et al. [40] for evaluating their method
for tracking the object along with depth. The Princeton dataset comprises 100 video clips
with RGB and depth information and manually annotated bounding boxes as ground truth.
Microsoft’s Kinect 1.0 sensor was used for data collection with a depth range between 0.5
and 10 m. The Princeton dataset consists of three types of targets, with each scene having a
different level of clutter in the background and occlusion.

HumanEva [45] is a multi-view synchronised motion capture dataset consisting of
40,000 frames for each camera. The HumanEva dataset is a pose estimation dataset of four
human subjects performing six predefined actions. The ground truth for the motion was
captured with ViconPeak, a commercial motion capture system.

Web crawling to download publicly available images on different websites has become
more relevant [58]. The Stanford Cars Dataset [59] uses 16,185 images of 196 classes of cars.
This dataset was used by Mdfaa et al. [46] to train a classifier for the moving-object class
such as a car, and the Describable Textures Dataset (DTD) [60] was used for the non-moving
class, such as buildings, in their application of tracking using a drone in a simulated urban
environment. Stanford’s car images dataset [59] was collected by web crawling popular
websites. Then, a deduplication process was applied using perceptual hashing [61] to
ensure distinct images belonged to a class. Then, Amazon Mechanical Turk was used to
crowdsource the annotations. The DTD [60] consists of 5640 texture images annotated with
47 describable attributes. Like the Stanford dataset, DTD was also downloaded online
instead of collecting images in the lab. Although both the Stanford and describable texture
datasets are not developed for object tracking, they were used by Mdfaa et al. [46] for
training a classifier that would be used for tracking by a detection approach. To evaluate
their tracking methods, they used Visual Object Tracker (VOT) benchmarks [62–65]. Thus,
a large dataset was available for training.

4.3. Multiple-Object Tracking Datasets

Multiple-object tracking (MOT) is a method in which multiple objects are tracked
simultaneously in a given scene. Several datasets have been developed to benchmark the
methods where multiple objects are present in a crowded environment. Pedestrian tracking
is one such example where the video from a CCTV can be tracked over time. However,
any problem in detecting and tracking multiple objects can be classified as an MOT-based
problem. MOT [66] is a widely used dataset for evaluating multiple object problems. The
MOT dataset, a part of MOTChallenge, has had several versions (MOT15 [67], MOT16 [68],
MOT17 [68], and MOT20 [69]) over the years. The images in these datasets are a collection
of images from publicly available datasets with standardised annotations. Luo et al. [70]
reviewed the MOT tracking methods that outlined the collection of different MOT datasets.
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The evaluation metrics are different for multiple object tracking. MOT20 [66] provided
the following evaluation metrics:

• Tracker to target assignment:

– No target re-identification.
– Target object ID is not maintained when the object is not visible.
– Matching is not performed independently but by a temporal correspondence in

each consecutive video frame.

• Distance measure:

– The Intersection over Union (IoU) is used to detect similarity between target and
ground truth.

– The IOU threshold is set to 0.5.

• Target-like annotations:

– Static objects such as pedestrians sitting on a bench or humans in a vehicle are
not annotated for tracking; however, the detector is not penalised for tracking
these objects.

• Multiple-Object Tracking Accuracy (MOTA):
MOTA combines three sources of error: false negatives, false positives, and mis-
match error.

MOTA = 1− ∑t(FNt + FPt + IDSWt)

∑t GTt
(1)

– t is the video frame index.
– GT is the number of ground-truth objects.
– FN and FP are false negatives and false positives, respectively.
– IDSW is the mismatch error or identity switch.

• Multiple-Object Tracking Precision (MOTP):
MOTP is the measure of localisation precision, and it quantifies the localisation accu-
racy of the detection, thereby providing the actual performance of the tracker.

MOTP =
∑t,i dt,i

∑t ct
(2)

– ct is the number of matches in frame t
– dt,i is the bounding box’s overlap of target i with the ground truth object

• Tracking quality measures:
Tracking quality measures how well the object is tracked over its lifetime.

– The target is mostly tracked for successful tracking for at least 80% of its lifetime.
– The target is mostly lost for successful tracking of less than 20% of its lifetime.
– The target is partially tracked for the rest of the tracks.

Caltech’s Pedestrian [71] dataset consists of a video recorded from a car comprising
low-resolution images and occluded pedestrians. Wang et al. [72] used the first 1000 frames
of the Caltech dataset for their Centretown sequence. Caltech’s dataset consists of 10 h
of video in traffic in an urban area taken from a vehicle. The dataset consists of 250,000
images along with 350,000 bounding boxes with labels and 2300 unique pedestrian an-
notations. Caltech’s dataset also considered occlusion in their annotation, where they
annotated the image frame with a bounding box even when the object was occluded.
Three sequences were included in the data. MOT challenges keep improving upon their
datasets by including different conditions in the image dataset for future development of
MOT methods.

Different datasets were used to evaluate the object tracking methods over different
applications. A diverse dataset helps evaluate the methods in different scenarios, improving
their potential for adaptability to different real-world circumstances. For the pedestrian
tracking problem, the PETS2009 sequence [73] was used. The PETS2009 sequence consists
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of an image sequence and its ground truth from the footage recorded outdoors in different
weather conditions of people performing different behaviours [73]. The PETS2009 dataset
was used by Gennaro et al. [30] and Wang et al. [72] for pedestrian tracking application. The
region-based object tracking (RBOT) [74] dataset is a monocular RGB dataset developed
to determine the pose, such as translation and rotation, of the objects. These are known
objects, and their pose is relative to the camera.

4.4. Miscellaneous Datasets

Different from the public datasets, some researchers create their in-house datasets.
The reason for creating a dataset is either the unavailability of the data for an application or
the application of their methods in a niche case where public datasets are insufficient.

Several datasets were developed using stereo or multiple cameras to detect the 3D
location of an object. Zheng et al. [42] developed a stereo vision dataset for tracking
unknown MAVs. Yan et al. [32] built a dataset of skaters where the movements of the
skaters were tracked over four different monocular cameras as a part of the handover
problem in computer vision. Busch et al. [2] collected a dataset using a stereo ZED camera
of a pine tree branch. The pine tree branch was mounted on an actuator system to simulate
the movement of the branch when capturing the images. Hu et al. [37] build a fully labelled
dataset of seven sequence pairs and 20 objects using a calibrated binocular camera. They
annotated their dataset with similar attributes to that of OTB [53]. Cesic et al. [10] developed
a radar and stereo vision-based dataset for an application in autonomous driving and MOT.
The data were collected by mounting the sensors on a car driving in the centre of a three-
way street. Kriechbaumer et al. [28] collected more than 15,000 images on a 50 m long reach
of the river for the application of tracking surface vehicles. Most of these datasets are either
private or available upon request. The use of multiple cameras helps in the localisation and
tracking of an object in 3D space.

Datasets developed on monocular cameras are also helpful in 2D tracking. These
types of datasets are often accompanied by additional sensor data such as radar or IMU
data. Ram et al. [43] created a dataset using a monocular camera and radar equipment for
automotive target tracking. Gionfrida et al. [13] developed a labelled dataset for monocular
2D tracking. Garcia and Younes [75] developed a dataset with 8746 images of a mock
drogue for the automatic refuelling application of unmanned aircraft. Monocular camera-
based datasets are useful when the object’s 3D information is not required. However, they
are often accompanied by additional sensor data for 3D tracking.

The data collection process is not feasible for some applications, such as aerospace
and different illumination conditions. Therefore, researchers create synthetic datasets
generated using mathematical models or computer-generated designs. Kwon et al. [4]
developed a simulated dataset based on a mathematical model for the applications of
missile interception. Biondi et al. [76] developed simulated data by exploiting mathematical
models of a smooth Keplerian motion of the target. The Keplerian motion of the target
was assumed to describe the equation that provides the position of the centre of mass of
the target object and chaser vehicle in the earth-centred inertial frame of reference. They
also included the occlusion period in their dataset. While synthetic datasets are readily
available to test different methods, they must be evaluated to ensure their authenticity
for application.

4.5. Recommendations for Dataset Selection

There are several public datasets available for evaluating methods. The public datasets
used for developing and testing object tracking methods are mentioned in Table 6. Devel-
oping more datasets by addressing the lack of diversity in current datasets is helpful for
the research community in developing better methods.

While the two main categorisations of datasets are single-object tracking and multiple-
object tracking, they are further categorised based on their applications. Different uncer-
tainties must be taken into account for autonomous driving, such as self-localisation, safe
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navigation, obstacle avoidance, and pedestrian detection. Therefore, while autonomous
vehicles can be classified as a multiple-object detection problem, they deserve their own
category due to their complexity and the research area dedicated to the application of
autonomous navigation. Since autonomous vehicles include a range of vehicles, such as
automobiles, ships, and aerial vehicles, different datasets cater to each type of application.
This dataset is often developed with the help of hybrid sensors because they can provide
multiple types of data for high-risk operations.

Single- and multiple-object detection datasets are similar with one exception: their
names suggest that they track single or multiple objects. The approach to developing the
datasets for single and multiple objects differs from its application and evaluation metrics.
Miscellaneous datasets do not fit in either the SOT or MOT categories and were developed
by researchers to solve particular problems. The trackers developed for these datasets are
limited to the application for which the datasets were developed.

The following are the recommendations for selecting the datasets:

• SOT datasets are sufficient for indoor environments where the tracker is focused on
one object.

• MOT datasets are ideal for any outdoor applications where multiple objects are tracked,
and their trajectories need to be remembered by the tracker.

• A dataset can be developed and annotated manually or crowd-sourced using platforms
like Mechanical Turk [59].

• A simulated or synthetic tracking dataset such as Kwon et al.’s [4] can be developed
for applications where the data collection process is not feasible.

Table 6. Datasets used for developing and evaluating object tracking methods.

Dataset Description Sensor Type Data Type Used by Links +

KITTI [35]
High-resolution colour and
greyscale stereo images, laser
scans, GPS, IMU

Stereo + hybrid MOT [1,5,8,9,44] https://www.cvlibs.net/
datasets/kitti/

PETS2009 [73]
RGB images from the real
world with multiple
synchronised cameras

Monocular MOT [30,72]
ftp://ftp.cs.rdg.ac.uk/pub/
PETS2009/Crowd_PETS09_
dataset/a_data/

RBOT [74] Semi-synthetic dataset with
6-DOF pose tracking Monocular SOT [77] https://github.com/

henningtjaden/RBOT

MVSEC [49] Event-based stereo images with
IMU and GPS data Stereo + hybrid + event-based MOT [6] https://daniilidis-group.

github.io/mvsec/

VOT [62–65] Visual object tracking dataset Monocular SOT [46] https:
//www.votchallenge.net/

MOT (MOT15 [67], MOT16 [68],
MOT17 [68], and MOT20 [69])

Collection of publicly available
dataset Monocular MOT [78–80] https://motchallenge.net/

Rigid Pose [54]
Synthetic dataset with varying
objects, background motion,
occlusions, and noise.

Stereo SOT [56] http://www.karlpauwels.
com/datasets/rigid-pose/

Princeton [41]
Video clips along with depth
information with manually
annotated bounding boxes.

RGB-D SOT [40] http:
//tracking.cs.princeton.edu

DAIMLER [48] Pedestrian dataset with a single
object class Stereo MOT [9]

http://www.gavrila.net/
Datasets/Daimler_Pedestrian_
Benchmark_D/daimler_
pedestrian_benchmark_d.html

Caltech pedestrian [71] Pedestrian dataset with ten
hours of footage Monocular MOT [72] https://data.caltech.edu/

records/f6rph-90m20

HumanEva [45] Human subjects performing
predefined actions Monocular + motion sensor SOT [81] https://github.com/mhd-

medfa/Single-Object-Tracker

+ The links to the datasets were accessed on 27 February 2024.

5. Approaches and Methods

Computer vision problems are being addressed with two main approaches: classical
image processing and deep learning. Since object tracking is also a computer vision problem,
these two approaches address this problem. Object tracking problems in computer vision
are often divided into two steps: first, the object of interest is detected and then tracked
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over a sequence of images. The tracking is further divided into different approaches, such
as tracking by detection, where the target object is detected in each image frame, and joint
tracking, where the detection and tracking happen simultaneously. The tracking can be
performed only when the input is a sequence where the object is within the image frame.
There are instances where the object disappears because it goes out of the field of view of
the camera or is obstructed by other objects. Keeping track of these objects in the middle of
the video when they partially disappear has created a class of problems called occlusion.
Different filtering and morphological operations are performed in the image processing
methods to develop a model for detection and tracking [11,15].

Deep learning models use training data to develop a classifier that detects and locates
the object [82–84]. After detecting the objects, both approaches involve using statistical or
data association methods to track them. Some researchers aim to develop an end-to-end
deep learning model using attention mechanisms to learn a classifier that can track the
objects [40].

Apart from tracking by detection, joint detection methods detect the object in a frame
and connect the location of the object for every subsequent frame in the video sequence.
Another approach is detection by tracking where the objects are located in the first frame of
the video. Then, statistical methods predict the future location, and the confidence score is
increased further by detection [8,15,44].

Figure 4 gives the taxonomy of the approaches and methods used for object tracking
that classifies the approach and categorises the methods in each approach. The following
subsections also highlight the strengths and limitations of each approach. This section
categorises the methods that rely solely on image processing and deep learning detection
methods. Each of the tracking procedures and type of problem, such as MOT and SOT, are
outlined in each category.

Figure 4. Taxonomy of approaches and methods for object tracking.

5.1. Detection and Localisation Methods

The first step in most tracking problems is detecting and localising the object. Detecting
features and tracking those features using image processing has been an approach in many
research studies for a long time. However, deep learning methods are becoming more
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prominent due to their higher accuracy and the use of end-to-end networks for localising
and classifying objects. This section categorises and reviews the detection and localisation
problems into image processing and deep learning approaches.

5.1.1. Classical Approaches

The classical approach encompasses the methods built using different image process-
ing operations and algorithms. Since the operations and algorithms are tailored to fit the
applications and datasets, no standard sets of operations are generalised for all the use
cases. Furthermore, kernel size and threshold values are often empirically selected for
different filtering and morphological operations in image processing [85]. Despite the
tailored approach to solving the detection and tracking problem, some generalised steps
are often used in many research approaches. However, researchers tweak the parameters to
fit into their applications to find the optimal values that work with different operations and
algorithms. The classical approach can be grouped by the methods that dominate these
approaches. This paper further categorises the classical detection approaches into feature
matching, morphological operation-based, and marker-based detection.

A. Using feature matching
Image matching deals with identifying features in the image and then matching
them with the corresponding features on other images [86]. Kriechbaumer et al. [28]
developed two algorithms for visual odometry for aquatic surface vehicles in a
GPS-denied location. The first algorithm was based on image matching of sparse
features [87] from the left and right input of the stereo camera along with consec-
utive stereo image frames where the input was a rectified greyscale image from a
calibrated stereo camera. Additionally, a Kalman filter [88] was used for smoothing
the estimated trajectory. The second algorithm was an appearance-based algorithm
modified from the methods [89] developed for RGB-D cameras where the input of
depth information was provided. Their experimental results were evaluated using
ground-truth data collected using an electronic theodolite integrated with an elec-
tronic distance meter (EDM) and a total station, which is the equipment used in land
surveying. Visual odometry enhances navigational accuracy on different types of
surfaces. The position error with the feature-based technique was smaller than the
appearance-based algorithm with a mean of ±0.067 m, under the permitted limit of
1 m considered accurate. They performed a linear regression analysis that revealed
that the error depended on the movement of the ship and the image features of the
scene. Thus, the methods for environment surveying required further modifications
depending on the type of application for river monitoring.
Jenkins et al. [90] developed methods for fast motion tracking by developing a fast
compressive tracking method. They implemented a template matching technique
using weighted multi-frame template matching and similarity metrics to detect
the objects in consecutive video frames. They aimed to address problems such
as occlusion, motion blur, and tracker offset. A bounding box with a confidence
score was incorporated over the object detected with template matching over the
image sequences. Overall, they developed a robust method to identify and keep
track of the object in real time at an operating speed upwards of 120 FPS with
minimal computation time. This was still dependent on the frame-by-frame template
matching, and there was a potential of missed object detection in an image frame in
case of occlusion.
Busch et al. [2] developed a method for detecting the branch of a pine tree by using
the depth information from the stereo camera. They mounted the camera on a drone,
and after calculating the depth of the features of the pine tree, they set a threshold
of 0.6 metres to identify the ROI. The 0.6-metre threshold was arbitrarily selected
as it would be the closest distance between the branch and the drone during the
application. The distance threshold was used to generate a mask to isolate the ROI.
They used a brute-force feature matching for the stereo matching operation from the
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OpenCV [91] software library to calculate a 3D map of the tree branch to generate a
point cloud of the branch. This detection approach was only limited to the pine tree
branch detection.

B. Morphological operation
Morphological operations are a set of image processing operations that apply a struc-
turing element that changes the structure of the features in the image. Two common
types of morphological operations are erosion, where an object is reduced in size,
and dilation, where the object is increased in size. A generalised way of approaching
object tracking problems is tracking by detection. In tracking by detection, the focus
is on detection operation in every image frame of a video sequence. Figure 5 shows a
generalised diagram of tracking by detection, where the target object is detected, and
the location information is stored and tracked for each video frame. The location of
the object detected in each image frame of the video sequence is the tracking location
of the object. Using stereo images, Chuang et al. [11] tracked underwater fish as an
MOT problem. Their method included image processing steps such as double local
thresholding, which includes Otsu’s method [92] for object segmentation, histogram
back-projection to address unstable lighting conditions underwater, the area of the
object, and the variance of the pixel values within the object region. They developed
a block-matching algorithm that broke the fish object down into four equal blocks
and matched them using a minimum sum of the absolute difference (SAD) crite-
rion. This detection process had too many morphological operations with varied
parameters, such as kernel sizes and threshold values. Furthermore, the block-sized
stereo-matching approach was innovative in reducing computation. However, it
may not be a generalised solution to detect other aquatic life for applications in the
fishing industry.

Figure 5. A generalised diagram of tracking by detection.

Yang et al. [15] developed a process for 3D character recognition with a potential
for medical applications such as sign language communication or human–computer
interaction in medical care by using binocular cameras. Their hand detection process
involved converting the image from the RGB to YCbCr colour space and then apply-
ing morphological operations such as erosion [85] to eliminate small blobs not part of
the hand. Then, they used Canny edge detection [93] to calculate the minimum and
maximum distance of the edges in the image frame to determine the centre of the
hand and then calculate the finger position, which would be the maximum distance
from the centre. The tracking process relied on detecting the hand in each video
sequence frame. The validity of hand gestures was determined by calculating the
distance between the centre and the outermost feature. The distance value helped
to know if the hand was not in a fist position and therefore, ready to be tracked.
They further used stereo distance computing methods to track the feature in 3D
space. Their method had several limitations, such as the hand needing to be the only
skin exposed during the recording because if the face was visible, it would have
been difficult to eliminate it during morphological operation, and it would have
led to confusion regarding the location of the hand. Since the tracking relied upon
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detection, object location data were lost for any false negatives. The morphological
operations could cause a loss of the exact location of the fingertip. Also, multiple
processing stages in detection and tracking meant that the overall robustness of the
system relied upon each stage working efficiently. Due to these reasons, there is a
need for improvement in these methods for a robust implementation.
Deepambika and Rahman [9] developed methods for detecting and tracking vehicles
in different illumination settings. They addressed motion detection using a sym-
metric mask-based discrete wavelet transform (SMDWT). Their system combined
background subtraction, frame differencing, SMDWT, and object tracking with dense
stereo disparity-variance. They used the SMDWT instead of the convolution or
finite impulse response (FIR) filter method, as these lifting-based [94] methods are
good in terms of computation cost. They used background subtraction and frame
differencing, binarization and logical OR operations, and morphological operations
for motion detection. Background subtraction allows the detection of moving objects
from the present frame based on a reference frame. The output from the background
subtraction and frame differencing was binarized for the thresholding operation to
eliminate the noise in the image. Morphological operations could eliminate other
undesired pixels. The next step was to obtain a motion-based disparity mask to
extract the ROI for the object. Furthermore, the disparity map was constructed using
SAD [95], a useful component for depth detection and stereo matching.
Czajkowska et al. [14] used a set of image processing steps to detect a biopsy needle
and estimate its trajectory. They began by performing needle puncture detection.
The detection algorithm applied a weighted fuzzy c-means clustering [96] technique
to identify ultrasonic elastography recording before the needle touched the tissue.
The needle detection was performed using the Histogram of Oriented Gradients
(HoG) [97] detector.

C. Marker-based
Some detection methods use predefined markers. Markers are physically known
objects the vision system has prior knowledge about. These markers are relatively
easier to detect than markerless detection, which relies on feature extraction and
comparison with the features of the target object. Huang et al. [33] developed a
detection method for tracking the payload swing attached to an overhead crane. The
payload detection was performed using the spherical marker attached to the payload.
Similarly, Richey et al. [12] used a marker-based approach to detect breast surface
deformations. Their marker-based detection approach used alphabets with specific
ink colour and KAZE feature [98] detection for stereo matching. Using a marker-
based approach reduces the computation cost in detection because the features to be
detected in the image are known beforehand. However, the marker-based approach
has certain problems, as object tracking only works for known objects in a controlled
indoor environment. These methods are not ideal for tracking objects in the outdoor
environment where the markers may be compromised due to external environmental
factors such as wind or rain.

5.1.2. Deep Learning Approaches

Object detection uses a Convolutional Neural Network (CNN), a deep learning
method. The primary use of CNNs in object tracking methods is to extract features
for further template matching. Any deep learning methods capable of localisation and
classifying the object in the image frame can be deployed in the object detection stage. This
section investigates the different deep learning methods used to detect objects within the
context of object tracking.

A. R-CNN
R-CNN [99] is an object localisation and classification method. R-CNN performs
localisation and classification in two steps. First, different regions of the images are
extracted and passed through a CNN for classification. If the object is detected in
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these extracted regions, it is localised in the image. Fast R-CNN [84] and its variants,
such as Mask R-CNN [100] and Faster R-CNN [101] are other prominent object
detection methods used within the context of object tracking for the detection stage.
Meneses et al. [79] used R-CNN [99] to extract the detection features. Garcia and
Younes [75] used Faster R-CNN [101] for object detection, where they trained the
network on 8746 images of a mock drogue for its application to detecting a beacon.
Li et al. [1] used Mask R-CNN [100] for object segmentation for segmenting vehicles
in the application of autonomous driving. They developed the DyStSLAM method,
which modified SLAM [102] to work in dynamic environments.
R-CNN [99] is beneficial for the localisation and classification of objects in an image.
Detection windows of different sizes scan the image to extract small regions that
are passed through the CNN for classification. This process ensures that different
scales of objects are detected. However, the problem with this approach is that
scanning multiple times over the images with different window sizes and passing
each extracted region to classify the object is time-consuming. For the tracking-by-
detection approach, the object detection process will be time-consuming for each
image frame of a video sequence. Therefore, using R-CNN may not be ideal for
real-time applications.

B. Single-shot detection methods
Single-shot detection methods such as Single-Shot Multibox Detector (SSD) [103] and
You Only Look Once (YOLO) [82] can perform localisation and classification. These
methods use default bounding boxes with different aspect ratios within the image to
classify objects. The bounding boxes with higher confidence scores are responsible
for object detection. YOLO [82] and its subsequent versions identified in the review
by Terven et al. [104] have significantly improved object localisation, classification,
pose estimation, and segmentation.
In the object detection for tracking, Aladem and Rawashdeh [8], Zhang et al. [80],
Ngoc et al. [44], Wu et al. [39] used YOLOv3 [83], while Zheng et al. [42] used
YOLOv5 [105]. Xiao et al. [78] used a Fast YOLO [106] network to localise a pedestrian
object in each video frame and at the same time, they used the MegaDepth [107]
CNN for the depth estimation.
The advantage of SSD [103] or YOLO [82] over R-CNN [99] is that both the local-
isation and classification process happen in a single pass through the CNN. Due
to the single-pass detection, these methods are better than R-CNN for real-time
applications. SSD and YOLO require a large dataset and computational power to
train. Also, the detection is limited to the training images used to train the network.
Therefore, it is important to consider if the target object class is present in the training
dataset for these networks before deploying these methods for tracking.

C. Other CNN methods
Yan et al. [32] used CNN as a feature extractor and used these features in the template
matching approach. Mdfaa et al. [46] used a CNN whose architecture was designed
with the augmentation of SiamMask [108] and MiDaS [109] architectures where each
of them was trained separately. ResNet18 [110] was used for binary classification, and
two datasets, the Stanford Cars Dataset and Describable Textures Dataset (DTD) [60],
were used for training. Gionfrida et al. [13] used OpenPose [111] to detect the
hand pose for further tracking. DyStSLAM helps localise an autonomous vehicle
by extracting dynamic information from the scene. The deep learning methods
incorporated in detection are used or developed based on the applications. Faster
detection methods are helpful when the applications are on a real-time system like
autonomous driving. Thus, deep learning methods should be evaluated on these
datasets with the development of new datasets. If the results are not accurate enough,
they will motivate the development of new methods.
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5.2. Tracking Methods

The tracking process takes place after object detection. The tracking method keeps
track of the movement of the object over multiple video sequence frames. This subsection
highlights the tracking methods based on the image processing framework, while iden-
tifying their strengths and weaknesses. Approaches towards tracking methods use the
multi-step image processing approach or end-to-end deep learning methods. In image
matching, the standard procedure is to identify the features of the object and match them
in consecutive video frames. The image matching technique is often accompanied by data
association methods that help to keep track of the object. The deep learning methods often
use end-to-end networks trained on image sequences. Deep learning can also be a two-step
approach where detection occurs before tracking, and the network tracks the features in
the subsequent frames. The literature outlines the two approaches used for object tracking.

5.2.1. Tracking by Detection

Tracking-by-detection (TBD) methods involve detecting objects in each image frame
without prior knowledge or estimation of their future state. The object is associated with
the previous detection [23].

A. Data association
Data association is the process of using previously known information about the
object pose, movement, and change in appearance and comparing it with the newly
identified objects and tracking movements of the object [25]. Data association is one
of the most used methods for tracking and it is often modified as per the specifications
of the applications. Chuang et al. [11] developed tracking for low-frame-rate video
to track live fish. Their method used stereo matching by dividing the fish object
into four blocks of equal size. The four blocks were formed by taking four equal
column widths of the object’s bounding box. These blocks in each of the left and right
images of the stereo were matched using the sum of absolute difference (SAD). The
stereo-matching process was followed by feature-based temporal matching, where
four cues, such as vicinity, area, motion direction, and histogram distance, were
considered. They further modified the Viterbi data association used in single-target
tracking to multiple tracking, using the Viterbi algorithm [112] for tracking. Since
the video had low contrast and a low frame rate, the Viterbi data association process
helped track the object in multiple frames.
Feng et al. [5] used 3D bounding boxes generated by an object detector [113]. These
bounding boxes were the basis for a multilevel data association method and a
geometry-based dynamic object classification method, enabling robust object track-
ing. The system also introduced a sliding window-based tightly coupled estimator
that optimised the poses of the ego vehicle with the sensors mounted on it, IMU
biases, and object-related factors that formed different features of the dynamic ob-
jects. This approach allowed for the optimisation of both the vehicle and object
states. These tracking methods used visual odometry data for self-localisation and
object detection to know the position of the object relative to the vehicle. Their
approach required further development for tracking non-rigid objects and testing
their methods in real-world applications.
Zhang et al. [80] proposed a Multiplex Label Graph based on graph theory. This
graph was developed so that each node stored information about multiple detec-
tors. A CNN generated these detectors from the Part-Based Convolution Baseline
(PCB) [114] network that was trained on the Market-1501 dataset [115]. They treated
the object tracking in the frame as a graph optimisation problem where the goal is to
find the path of a detector in multiple image frames of a video sequence. To achieve
this, they broke down the video frames into a group of images called “window”
and detected the object within each successive frame in the window. They tested
different window sizes on MOT16 and MOT17 [68] datasets and determined that
a window size of 20 was the optimal value that increased tracking accuracy. Then,
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a data association was performed with certain threshold functions that identified
whether the nodes in the successive frames were associated. The distance between
the nodes in the successive frames checked that association.

B. Template matching
Template matching is a process of identifying small parts of the target image that
match the features using cross-correlation methods to a template image of the object
by scanning the target image [116]. Jenkins et al. [90] developed their methods
to track different types of objects available in the tracking dataset [117]. For this
purpose, they implemented a template matching technique using weighted multi-
frame template matching to detect the objects in consecutive video frames. The
weighted multi-frame template approach was tested using similarity metrics such
as normalised cross-correlation and cosine similarity. The results of the similarity
metrics showed a significant increase in accuracy on their chosen evaluation dataset.
Overall, they developed a robust method to identify and keep track of the object
in real time with minimal computation time. Tracking robustness depended upon
frame-by-frame template matching, which may pose problems during the detection
of any false negatives during the tracking stage.
Yang et al. [15] developed tracking methods for tracking the movement of hands in
medical applications. The tracking process was performed by detection. They used
hand gestures to automate the decision-making process regarding the beginning and
end of the tracking process. They further used stereo-matching methods to compute
the distance between the camera and the hand, allowing them to track the hand in
3D space. Their method relied on detection, which means that tracking information
would be lost for any false negative detection.
Richey et al. [12] developed tracking methods for breast deformation while the
patient was supine, and the video frames were collected using stereo cameras during
the hand movement of the patient. The labelled fiducial points, with the alphabet
written in blue ink on the breasts, were tracked over the video frame. The labels were
propagated through a camera stream by matching the key points to previous key
points. The features obtained from these fiducial points leveraged the ink colours
and adaptive thresholding, which were tracked using KAZE [98] feature matching.
The features were stored in order to be tracked over the sequences of images. This
method relied upon detecting all 26 English alphabets written on the breast; therefore,
a detection failure may disrupt the tracking process.
Zheng et al. [42] tracked drones from a ground camera setup. They proposed a
trajectory-based Micro Aerial Vehicle (MAV) tracking algorithm that operated in two
parts: individual multi-target trajectory tracking within each sensing node based on
its local measurements and the fusion of these trajectory segments at a central node
using the Kuhn–Mumkres [118] matching matrix algorithm. This research introduced
an MAV monitoring system that effectively detected, localised, and tracked aerial
targets by combining panoramic stereo cameras and advanced algorithms.

C. Optical flow
Optical flow deals with the analysis of the moving patterns in the image due to the
relative motion of the objects or the viewer [119]. Czajkowska et al. [14] developed
a tracking method for needle tracking. The detection step provided information
about the position of the needle. The tracking of needle tips focused on the single-
point tracking technique. Methods like Canny edge detection [93] and Hough
transform [120] were used for the trajectory detection. To implement the tracking
process in real time with low computation resources, they considered using the
Lucas–Kanade [121] approach that helped solve the optical flow equation using
the least square method. Finally, they used the Kanade–Lucas–Tomasi (KLT) [122]
algorithm that introduces the Harris corner [123] features. Furthermore, the pyramid
representation of the KLT algorithm was combined with minimum eigenvalue-based
feature extraction to avoid missing the tracking point of the needle. The two paths
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used for tracking were helpful in addressing both cases of fully and partially visible
needles with ultrasonic images. Their method had a low computational cost in
tracking, so it could be used in real time.
Wu et al. [39] designed and implemented a target tracking system for quadcopters
for steady and accurate tracking of ground and air targets without prior information.
Their research was motivated by the limitations of existing unmanned aerial vehicle
(UAV) systems that failed to track targets accurately in the long term and could not
relocate targets after they were lost. Therefore, they developed a vision detection
algorithm that used a correlation filter, support vector machines, Lucas–Kanade [121]
optical flow tracking, and the Extended Kalman Filter (EKF) [124] with stereo vision
on a quadcopter to solve the existing detection problems in UAVs. Their visual track-
ing algorithm consisted of translation and scale tracking, tracking quality evaluation
and drift correction, tracking loss detection, and target relocation. The target position
was inferred from the correlation response map of the translation filter. Based on the
target position, the target scale was predicted by a scale filter [125]. Then, the drift of
the target position was corrected with an appearance filter that detected if the target
was lost and allowed the tracking quality evaluation, which had a similar structure
to that of the translation filter. Furthermore, the tracking quality was evaluated by
the confidence score, composed of the average peak-to-correlation energy (APCE)
and the maximum response of the appearance filter. If the confidence score exceeded
the re-detection threshold, the target was tracked successfully, and the translation
and scale filters were updated. Otherwise, the SVM classifier was activated for target
re-detection. They made improvements on the Lucas–Kanade [121] optical flow and
Extended Kalman filter algorithms to estimate the local and global states of the target.
Their simulation and real-world experiments showed that the tracking system they
developed was stable.

D. Descriptor-based
Descriptors are the feature vectors of the object that capture unique features that help
to classify a particular object [126]. Aladem and Rawashdeh [8] used the YOLOv3
detector as a tool to create an elliptical mask by using a bounding box to extract
the features for a feature detector such as Shi–Tomasi’s [127] for feature matching.
The feature matching process was followed by Binary Robust and Oriented Features
(BRIEF) [128] for matching between the consecutive frames. Their method was
for the odometry data evaluated on the KITTI [35] dataset. There were certain
limitations, such as losing the objects and being unable to detect them. When the
same objects reappeared, they were classified as new objects. They suggested that
using a Kalman filter [88] in the future would help to deal with the missing object
problem during detection.
Ngoc et al. [44] used the features from YOLOv3 [83] for tracking. The features ex-
tracted within the bounding box of this object detector were used in the particle filter
algorithm [129]. These particles were tracked in the subsequent frames of the KITTI
dataset [35]. While solving this problem, they also focused on identifying multiple
objects when the camera was in motion. They took a hybrid approach, using stereo
and IMU data for target tracking. Their method also took into account the camera
movement. Their method had a future scope of application in mobile robotics.

E. Kalman Filter
Kalman filtering is an algorithm that uses prior measurements or states and produces
estimates for future states over a time period [88]. The Kalman filter has a wide range
of applications where the future state estimate of the object of interest is required ,
such as guidance, navigation, and control of autonomous vehicles. Since the target
object in a video sequence shows the same property of moving states where state
estimates are required, the Kalman filter is applied in object tracking problems.
Busch et al. [2] tracked the movement of a pine tree branch. They tested different
types of feature descriptors such as SIFT [130], SURF [131], ORB [132], FAST [133],
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and Shi–Tomasi [127]. Their results showed that FAST-SIFT and Shi–Tomasi combi-
nations performed best at 1 m and a camera perspective of 0 degrees. These numbers
indicated the optimal position and orientation of the camera on the drone for collect-
ing the pine tree branch data. These features were further filtered and mapped to 3D
space to create a point cloud. The principal component analysis method was used
to detect the direction of the branch. A developed Kalman filter [88] was derived
that improved the intercept point estimation of the pine tree branch, which was the
point at 75 mm from the tip of the branch. This developed Kalman filter reduced the
intercept point error, which was helpful when determining the intercept point as the
sway parameter.
Huang et al. [33] developed a method where a Kalman filter initially predicted the
target position [88]. The tracking ball area was obtained through mean shift iteration
and target model matching. Since mean shift has problems with tracking fast objects,
combining it with a Kalman filter offers stability in detection since a Kalman filter is
useful in estimating the minimum mean square error in the dynamic system. Then,
the minimum area circular method was integrated to identify the position of the
tracking ball correctly and quickly. The recognition part was more robust when an
auxiliary module that pre-processed the area determined by the mean shift iteration
was proposed. Geometric methods obtained the swing angle for the ball mounted
on the crane payload. Their method was tested on an experimental overhead crane
with a swing payload setup. Therefore, the methods may need further modification
when the vision tracking system is applied to an outdoor overhead traveling crane
with background disturbances and unexpected outdoor environmental factors such
as wind and illumination.

5.2.2. Joint Detection and Tracking

Different from tracking by detecting, joint tracking methods are end-to-end trainable
networks where tracking and detection are performed in a single network [23]. Different
research groups have experimented with available CNN architectures, with more research
literature being added. With the development of more methods, the deep learning approach
can be further classified based on their methods. In this section, deep learning approaches
for tracking are categorised based on CNN-based, R-CNN-based, YOLO, and other neural
network-based methods. Deep learning methods for tracking are investigated by different
reviews [21–23] that focus on MOT methods and their application for autonomous driving.
In this subsection, the deep learning approach is classified based on the primary methods
used for localisation for tracking by detection and joint tracking.

A. CNN-based approaches
Convolutional Neural Network-based approaches involve using deep learning meth-
ods for feature extraction to track these features in consecutive video frames. Rasoul-
idanesh et al. [40] developed a tracking method with an RGB and depth frame input.
The spatial attention network extracted a glimpse from these data as the part of the
frame where the object of interest was probably located. Then, the features of the
object were extracted from the glimpse using a CNN with the first three layers of
AlexNet [18]. The glimpse could extract two types of features: ventral and dorsal.
The former extracted appearance-based features, while the latter aimed to compute
the foreground and background segmentation. These features were then fed to an
LSTM [134] network and fully connected neural networks to give a bounding-box
correction. The bounding-box correction was fed back to the spatial attention section
to compute the new glimpse and appearance for the next frame to improve object
detection and foreground segmentation. They showed that adding depth increased
accuracy, especially in more challenging environments. Their results showed that the
depth-based models could perform accurate tracking with only depth information,
without RGB.
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Zhong et al. [56] used an encoder–decoder network. They proposed to combine
a learning-based video object segmentation module with an optimisation-based
pose estimation module in a closed loop. After solving the current object pose, they
rendered the 3D object model generated on a computer to obtain a refined, model-
constrained mask of the current frame. It was then fed back to the segmentation
network for processing the next frame, closing the whole loop. To detect the occluded
object, they designed a novel six-DOF object tracking pipeline based on a mutual
guidance loop of video object segmentation along with six-DOF object pose estima-
tion and combining learning and optimisation methods. They presented a robust
six-DOF object pose tracker that could handle heavy occlusions. The experiments
showed that their method could achieve competitive performance on non-occluded
sequences and significantly better robustness on occluded sequences.
Yan et al. [32] developed a tracking method for the handover problem. They proposed
a tracking algorithm that improved the tracking accuracy based on the MDNET [135],
which is a multi-domain network. The target state in the initial frame of the video
sequence was given, and the tracking was started. Then, the target handover began
when the target crossed the field of view (FOV) line of the camera. The target feature
extracted by a CNN was used for template matching. When the target handover
was completed, the target was tracked in the next camera. In their research, they
mainly improved the accuracy of target tracking and target handover. In terms
of tracking, they improved on the original MDNET algorithm. In addition, they
combined perspective transformation with features extracted by a CNN to realise
the target handover.

B. R-CNN-based approaches
Meneses et al. [79] used R-CNN to extract features. The data association method
used these features to track the object. They developed SmartSORT, which modelled
the frame-by-frame association between new detections and existing targets as an
assignment problem. They considered neural networks trained with the backpropa-
gation algorithm as the regression model. Thus, given that the feature vector from
R-CNN was related to the detection and the target, the regression model calculated
their association cost. Once the regression model had computed every association
cost, it optimally solved the assignment problem via the Hungarian method [136],
which is an optimisation method that selects the best possible cost for a combination
of activities, in this case, the tracking path over the frame of images.
Garcia and Younes [75] developed a tracking system that worked by capturing an
image with a Kinect camera sensor, which acted as an input to a deep learning object
detector using Faster R-CNN [101], which output the bounding box around each
of the eight beacons on a drogue used to refuel an aircraft. Then, the navigation
algorithms that used non-linear least squares and collinearity equations were used to
find the position and orientation of the drogue, thereby allowing the aircraft to align
with the beacon for refuelling. They performed their experiments on a mock drogue
and verified their solution using the VICON motion tracking system. There were
issues with the trained detectors with the inference time being too large. Also, they
made several assumptions regarding using a mock drogue, and their image dataset
was too small for training with limited augmentation.

C. YOLO and other neural network-based approaches
Mdfaa et al. [46] developed methods that used depth information and training data
to train a Siamese network [137] to track an object. Since their application involved
tracking a moving object using an aerial drone, they developed a system in which
the drone kept following the object until it reached its location or the moving object
stopped. In this type of tracking, there are two sub-tasks: identifying the tracked
object and estimating its state, which is its position and orientation. The objective
of the tracking mission is to automatically predict the state of the moving object
in consecutive frames given its initial state. Their proposed framework combined
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2D SOT with monocular depth estimation (RGB-D) to track moving objects in 3D
space. Using this information, the Siamese network tracked the target object, which
produced a mask, a bounding box, an object class, and an RPN score for the object.
Xiao et al. [78] used Fast YOLO [106] and MegaDepth [107] for detection and depth
estimation. The results from these two networks were used as features for object
detection and tracking using a Kalman Filter [88]. They proposed an algorithm
that helped them track the pedestrian object in the video frame and developed
data association rules regarding remembering the objects in case of occlusion. They
developed a method that tracked the movement of multiple objects in 3D space on a
video. However, their real-time tracking needed improvement for a dynamic system
that interacts with the environment.
Yang et al. [6] developed the Self-Attention Optical Flow Estimation Network (SA-
FlowNet) for applications on event-based cameras. SA-FlowNet independently
uses crisscross and temporal self-attention mechanisms that help capture long-range
dependencies and efficiently extract the temporal and spatial features from the event
stream. Their proposed network used an end-to-end learning method to adopt a
spiking-analogue neural network architecture. It gained significant computational
energy benefits, especially for Spiking Neural Networks (SNNs) [138]. Their network
architecture was based on a deep spike-analogue neural network architecture that
combined event cameras for energy-efficient optical flow estimation. Their network
could achieve higher performance and save energy consumption. It could also be
used for object detection, motion segmentation, and challenging scenery tasks in dim
light, occlusions, and high-speed conditions.

5.3. Recommendations for Approaches and Methods for Applications

The methods for object tracking in computer vision rely on object detection followed
by tracking the detected object. The reliance on object detection before tracking ensures
that object detection methods are studied and improved. This review outlines a detailed
study of the detection methods incorporated into the object tracking literature over the last
ten years.

Based on the insights gained from the literature survey and the identification of ad-
vantages and limitations of different methods as presented in Tables 7 and 8, the following
recommendations are made for the selection of object detection methods:

• The classical approach is helpful when the target object can be identified by its geome-
try and where the computation resources and annotated datasets are limited to train a
deep learning model.

• Deep learning approach in detection for tracking applications is helpful for objects
with no standard geometry where the annotated dataset and computational resources
are available.

The object tracking process involves keeping track of the detected objects over different
video frames. Some methods detect objects in each video frame and then use association
techniques to match the detection. This process of detecting objects in each image frame
and later connecting the tracks is called tracking by detection (TBD). A different approach
to tracking involves joint detection and tracking (JDT), where an end-to-end framework is
used with estimation techniques to predict the objects in the next frame by using object
features from the previous frame. Figure 6 shows a generalised diagram of end-to-end
tracking using prior knowledge.
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Figure 6. A generalised diagram of end-to-end tracking using prior knowledge.

Table 7. Summary of classical approaches for detection.

Paper Key Methods Advantages Limitations

[28] Sparse feature image matching, Kalman filter
Enhances navigational accuracy using visual
odometry techniques, particularly useful in
GPS-denied environments.

Relies on accurate feature matching and may not
be ideal for objects without known feature
geometries.

[90] Template matching, weighted multi-frame
template, confidence scoring

Provides a fast and robust method for object
tracking in real-time video streams.

Template matching methods may not be suitable
for different environmental conditions.

[2] Depth-based feature matching, thresholding,
point cloud generation

Effective for detecting specific objects in complex
environments using depth information.

Limited to applications where depth information
is available and may not generalise well to
scenarios with different types of objects or
backgrounds.

[9] Morphological operations, wavelet transform,
object tracking

Robust approach for vehicle detection and
tracking in varying illumination conditions.

Accurate motion detection and further tests are
required to address fast-moving uncertain
objects.

[14] Fuzzy clustering, HoG feature detection Effective for detecting and tracking biopsy
needles in medical applications.

Requires accurate needle puncture detection and
feature extraction. Further tests are needed to
ensure higher performance in scenarios with
complex tissue structures or noisy ultrasound
images.

[33] Marker-based detection, geometric methods Provides a reliable method for tracking payload
swing in overhead cranes.

The methods were tested on a prototype in the
laboratory setting, and the results of real-world
data would confirm the robustness of the
methods.

[12] Marker-based detection, KAZE feature matching
Effective for detecting breast surface
deformations using markers and stereo
matching.

Using alphabets as markers sets the marker
limits to 26 markers based on the English
alphabet. A different marker identification
system is required to overcome this limitation.
Also, the method is suitable for detecting
markers with a particular ink colour.

[11] Stereo matching, block matching, Otsu’s
thresholding

Enables tracking of underwater fish using stereo
image processing techniques.

The block stereo matching helps detect the fish.
Morphological operations with arbitrary
threshold values are used. The block-matching
approach is not general enough to detect a
variety of aquatic life.

[15] Morphological operations, feature detection,
stereo tracking

Provides a method for 3D character recognition
and tracking using stereo vision.

The hand must be the only skin exposed during
the recording because if the face is visible, it
would be difficult to eliminate it during
morphological operation, and it would lead to
confusion regarding the location of the hand.

From the insights in terms of advantages and limitations of different methods and
approaches presented in Tables 9 and 10, the following are the recommendations for the
selection of tracking approaches:
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• The tracking-by-detection method is useful to track multiple objects when the objects
are not often occluded.

• Using data association methods is useful to track the trajectories of the target objects.
• Joint detection and tracking is useful when a dataset for tracking for a specific ap-

plication and the computational resources are available to develop an end-to-end
framework.

Table 8. Summary of deep learning approaches for detection.

Paper Key Methods Advantages Limitations

[1,75,79] R-CNN, Faster R-CNN for object detection,
Mask R-CNN for object segmentation

Effective for object localisation, classification,
and segmentation. Widely used in various
applications like beacon detection and
autonomous driving.

Time-consuming due to scanning multiple
regions with different window sizes for each
image frame and may not be suitable for
real-time applications. Requires extensive
training on target-specific datasets.

[8,39,42,44,78,80] YOLOv3, YOLOv5, Fast YOLO for object
detection

Performs localisation and classification in a
single pass through a CNN; suitable for
real-time applications. Efficient object
detection for tracking without prior
information.

Requires large datasets and computational
power for training. Detection limited to
classes present in the training dataset and
may misclassify untrained class of object.

[32,46] Custom CNN architecture for feature
extraction, object detection

Combines deep learning features with
traditional approaches. Incorporates multiple
architectures for improved object detection
performance.

Resource-intensive training process. Requires
large datasets and computational power.

[13] OpenPose for hand pose detection Provides accurate hand pose detection for
further tracking applications.

Dependent on the quality of the input data
and the performance of the OpenPose model.

Table 9. Summary of tracking-by-detection methods.

Paper Key Methods Advantages Limitations

[11] Stereo matching, feature-based temporal
matching, Viterbi data association

Effective for low-frame-rate video tracking,
integrates stereo matching and feature-based
matching for robust tracking.

Viterbi data association may introduce
computational cost and may not perform
optimally in scenarios with high object occlusions.

[5] Multilevel data association, geometry-based
dynamic object classification

Robust tracking based on 3D bounding boxes and
dynamic object classification.

Further development is needed for tracking
non-rigid objects and testing in real-world
applications.

[80] Multiplex Label Graph based on graph theory,
CNN-based object detectors

Offers a novel approach to object tracking using
graph optimisation techniques.

Computational complexity may be high, and
optimisation parameters may require tuning for
different scenarios.

[90] Weighted multi-frame template matching Robust template matching technique for real-time
object tracking.

Relies on accurate template matching in
consecutive frames, and it may suffer from
computational complexity in scenarios with high
frame rates.

[15] Stereo matching, 3D tracking Enables 3D tracking of hands in medical
applications using stereo matching.

Tracking relies on accurate detection, may lose
tracking information for false negative detections.

[12] Feature extraction, fiducial tracking, KAZE
feature matching

Tracks fiducial points on the breast for
deformation analysis using stereo cameras.

Relies on accurate fiducial detection and may face
challenges with detection in scenarios with
complex backgrounds or lighting conditions.

[42] Trajectory-based tracking, Kuhn–Mumkres
matching matrix algorithm

Effective for tracking MAVs using panoramic
stereo cameras and trajectory optimisation
algorithms.

The method may face challenges with fast-moving
objects or environments with limited visual cues.

[14] Lucas–Kanade optical flow, KLT algorithm Provides real-time needle tracking using optical
flow and feature matching techniques.

Requires robust feature extraction and matching
algorithms, and the accuracy may be affected in
scenarios with rapid motion or complex
backgrounds.

[39] Correlation filter, SVM classifier, Lucas–Kanade
optical flow, EKF

Stable and accurate target tracking system for
UAVs using a combination of visual detection
algorithms.

Complex algorithmic pipelines may introduce
computational overhead and require fine-tuning
for different UAV platforms or tracking scenarios.

[8] YOLOv3 object detection, Shi–Tomasi feature
matching, BRIEF descriptor

Efficient tracking using YOLOv3 features and
robust feature matching techniques.

Relies on accurate object detection and feature
matching, and robustness may be affected in
scenarios with object occlusions or cluttered
backgrounds.

[44] YOLOv3 object detection, particle filter Hybrid approach for object tracking using
YOLOv3 features and particle filtering.

Parameter tuning may be required, and
computational cost will increase in scenarios with
large numbers of objects.
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Table 9. Cont.

Paper Key Methods Advantages Limitations

[2] SIFT, SURF, ORB, FAST, Shi–Tomasi feature
descriptors, Kalman filter

Provides accurate tracking of pine tree branches
using a combination of feature descriptors and
Kalman filtering.

Requires careful selection and tuning of feature
descriptors and may face challenges in complex
branch motion or occlusion scenarios.

[33] Mean shift, Kalman filter, geometric methods Effective for tracking crane-mounted objects using
mean shift and Kalman filtering.

There is a possibility of reduced robustness in
outdoor environments with unpredictable factors
such as wind or lighting changes.

Table 10. Summary of joint detection and tracking methods.

Paper Key Methods Advantages Limitations

[40] Use of depth information for tracking accuracy
enhancement

Improved accuracy, especially in challenging
environments

Depth-based models may require additional
hardware or sensors, increasing complexity and
cost

[56] Combination of video object segmentation and
pose estimation in a closed loop

Robust tracking performance, particularly in
handling occlusions

Complexity of closed-loop system may increase
computational overhead

[32] Integration of CNN features for template
matching and perspective transformation Improved accuracy for handover tracking tasks

The method is specific to handover tracking
tasks and may not generalise well to other
tracking scenarios

[79] R-CNN features for frame-by-frame association Accurate frame-by-frame association for tracking
objects

Computational complexity may increase with the
use of R-CNN features, potentially limiting
real-time performance

[75] Implementation of Faster R-CNN for object
detection and navigation algorithms

Accurate object detection and navigation for
aircraft refuelling

Issues with large inference time and limited
training data may hinder real-world applicability

[46] Integration of Siamese networks with depth
information for 3D object tracking

Capability to track objects in 3D space, useful for
applications like drone surveillance

Depth information may not always be available
or reliable, limiting the applicability of the
method

[78] Usage of Fast YOLO and MegaDepth for
pedestrian tracking

Efficient pedestrian tracking with consideration
of occlusions

Real-time performance may be impacted by the
computational demands of YOLO and
MegaDepth networks

[6] Introduction of SA-FlowNet for energy-efficient
optical flow estimation

Reduced energy consumption and improved
performance for object detection and motion
segmentation

Specific to event-based cameras, may not be
directly applicable to conventional camera
systems

6. Applications

The main reason for developing different methods and datasets is to ensure they are
applied to solve real-world problems. Each real-world scenario and problem is different,
and each has its constraints. In object tracking using computer vision, each problem,
depending upon the environmental conditions such as indoor or outdoor applications,
available computational resources, and the cost of the system, can become a constraint. This
section outlines the different domains in which the object tracking methods are applied.
Table 11 categorises different papers based on their applications studied in this review.
Some of the papers in Table 11 overlap the application domains, such as multiple-object
tracking (MOT) application methods that can be applied to detect multiple pedestrians
for surveillance applications. The following subsections are grouped by their primary
applications, and Figure 7 shows the structure of the categorisation of the application.
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Figure 7. Structure of primary applications of object tracking.

6.1. Medical

Computer vision is preferred in medical applications where non-intrusive diagnoses
are required. Non-intrusive diagnoses involve imaging and computational methods that
elaborate results to help medical practitioners better diagnose patients. Richey et al. [12]
used object tracking to track marked fiducial points for breast conservation surgery. Gion-
frida et al. [13] used hand-pose tracking in the clinical setting to study hand kinematics
using pose with a potential application in rehabilitation. Czajkowska et al. [14] developed
processes for tracking a biopsy needle. Zarrabeitia et al. [16] applied their method for
tracking 3D trajectories of droplets, which has a potential application in medicine for
bloodletting events. Yang et al. [15] developed the 3D character recognition methods by
tracking hand movement, which has an application in physical health examination and
communicating using sign language. The results from object tracking provide insights
into the operation procedure, providing greater details to the practitioners to make in-
formed decisions. Thus, object tracking has a wider scope of application in numerous
medical fields.

6.2. Autonomous Vehicles

An accurate object tracking solution is required in fields with a lot of dynamic move-
ment, and autonomous driving is a primary example. Several types of research focus on
detecting objects that could be observed in potential driving scenarios, thereby creating
evaluation datasets of cars [35] and pedestrians [48] in the autonomous driving context.
Different methods [1,3,5–10] have been proposed for applications in autonomous driving
for detecting objects. Object tracking in autonomous driving involves detecting all moving
objects, such as cars and pedestrians, from the sensor systems of the car. The datasets [35,49]
collected for autonomous driving come with different attributes such as GPS, IMU, radar,
and images. Yet, the scope of object detection for autonomous driving applications is
limited to the few attributes in the dataset, such as radar, IMU, and images.

Similar to autonomous driving, water surface vehicle applications [28,29] face similar
problem constraints. These attributes help detect objects and compute their trajectories in
3D space from the relative position of the vision system mounted on the vehicle. Knowing
the movement of different objects around the autonomous vehicle, a future aim is to use
this information for cruise control.
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Autonomous aerial vehicles need to be aware of the dynamic environment around
them. There are multiple applications in the field of aerial vehicles. Some applications track
objects using sensors mounted on the aerial vehicle, while others track the flying aerial
vehicle from the ground. Regarding tracking flying drones, Zheng et al. [42] applied their
methods to develop a panoramic stereo to track rogue drones. Mdfaa et al. [46] developed
a single-object tracker to be mounted on an aerial vehicle. Garcia and Younes [75] applied
their method in automatically refuelling unmanned aerial vehicles using a drogue. Busch et
al. [2] developed object tracking for the application of drones in agriculture. Wu et al. [39]
applied target tracking on a quadcopter. The wide range of applications of unmanned
aerial vehicles indicates that there are different niche cases to consider in aerial applications,
which demand more datasets and methods. Figure 8 provides an overview of object
tracking methods and their application to autonomous vehicles.

Figure 8. Overview of object tracking in autonomous vehicles.

6.3. Surveillance

Human movement tracking is one of the methods that is used in surveillance and
sports. It is important to track the path of human movement in the scene and detect and
track it over a longer period using multiple cameras. The application of human move-
ment tracking also has to consider the problem of occlusion [56]. Yan et al. [32] tracked
human skaters over multiple cameras to solve the object handover problem. Multiple
methods [30,36,37,72,78,80,139,140] were developed for their applications in human pedes-
trian tracking. Along with human movement, pose estimation is another problem that
fits well with action tracking. Different methods [13,77,81] were developed for pose esti-
mation, which has applications in human action tracking and robotics [3,8]. The action
tracking methods have different applications in surveillance, pose estimation, and robotics.
Further development in these methods will have a wider scope for human–computer
interaction problems.

6.4. Robotics

In robotic applications, a robot is an example of a dynamic system that interacts and
manoeuvres itself autonomously within its environment. A robot needs to localise itself
and the objects around it. Different sensors provide environmental input data to the robot,
helping it accomplish its goals and operate safely without breaking itself, damaging nearby
objects, or harming humans. Vision sensors on robots provide fine-grained data of the
objects of interest, enabling the robots to perceive their surroundings. Busch et al. [2] used
an object tracking method on aerial robots to investigate the movement of tree branches.
Similarly, Wu et al. [39] also deployed a vision-based target-tracking method on aerial
robots to track both ground and aerial objects. Therefore, using robots in object tracking
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applications is essential when the environment is too hostile or fast-paced for humans to
operate, such as examining tree tops [2] or tracking aerial vehicles [39].

Persic et al.’s [3] method has an application in autonomous vehicles and robotics. Since
their method focused on moving target tracking, it has a potential application in mobile
or industrial robotics where there are different moving objects with higher uncertainty of
object collisions. Similarly, Aladem and Rawashdeh [8] also developed their methods for
safe navigation for mobile robots.

The field of robotics can benefit from object tracking as it allows the robots to perceive
their environment while ensuring safe operation and preventing harm to humans. There is
further potential for the application of object tracking methods in human–robot interaction,
where the robots track human actions to work together to achieve a common goal.

6.5. Agriculture

Object tracking has potential in agriculture applications. Collecting information about
plants and trees constantly swaying due to environmental factors such as wind and rain is
important in agriculture. Busch et al. [2] applied object tracking to identify the swaying
motion of a pine tree branch. Their motivation for developing tracking methods for tree
branches was to allow researchers in the forestry industry to select trees for breeding,
analyse genetics, and monitor plant diseases. The use of aerial vehicles with computer
vision to examine tree branches outdates the use of ladders or manually climbing trees
with a rope. In their application, they mounted their camera on an unmanned aerial vehicle
with a manipulator arm to collect data on pine tree branches. Their proposed application
has the potential to be used in the forestry industry to improve the efficiency of collecting
tree data and thus maintain healthy forests.

Using an autonomous system in fishing is an important application in the fishing
industry. Chuang et al. [11] developed methods for tracking live fish underwater. Tracking
the movement of fish underwater is beneficial as it improves the efficiency of fishing
operations. Knowing the positions of the fish, an autonomous system can deploy a trawl
to catch fish. Furthermore, a computer vision system with object detection and tracking
algorithms can lead to sustainable fishing techniques without damaging the ecosystem.
Drawing inspiration from these applications, many more potential applications can be
developed in agriculture using object tracking and computer vision.

6.6. Space and Defence

Object tracking has been applied to space and defence applications. Tracking space
debris is an important application in the space industry. The damage caused by space
debris could lead to the loss of space shuttles and human lives. Tracking space debris is
essential for safer space flight, and thus, the space debris must be removed. Biondi et al. [76]
developed their method to estimate the dynamic rotational state of space debris. Using
computer vision to track space debris could lead to potential unmanned space missions to
clear the space debris for safer space flights.

Defence applications are also using computer vision for object tracking tasks. Kwon
et al. [4] developed a method for tracking and intercepting missiles with applications in
defence technology. Their method aimed to solve the problem where both the target and
the camera are moving. Thus, the method had potential applications in mobile robotics
and unmanned aerial vehicles.

Garcia and Younes [75] developed methods for applications in autonomous aerial
refuelling of aircraft. In the aerial refuelling task, a tanker aerial vehicle provides a refuelling
probe to the drogue of the receiving aircraft and the refuelling is performed mid-air. In
their research, their vision system, comprising a monocular camera on an unmanned aerial
vehicle, used object detection to track the refuelling drogue in mid-flight and automatically
refuel without human intervention. The refuelling task accounted for turbulence, and both
the camera system and refuelling drogue were in motion.
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The above-mentioned applications are reported based on computer simulation or
experimental tests only. Further development will need to be conducted before they can be
reliably deployed to real-world and critical applications.

Table 11. Categorisation of papers based on applications.

Application Papers

Medical [12–16]
Aerial vehicles [2,39,42,46,75]
SOT [33,40,46]
MOT [11,44,76,79]
Human action tracking [30,32,36,37,56,72,78,80,139,140]
Pose estimation [13,77,81]
Autonomous driving [1,3,5–10]
Aquatic surface vehicle [28,29]
Robotics [3,8]
Agriculture [2,11]
Space/Defence [4,76]

7. Discussion

Despite extensive research, object tracking using computer vision is still an active
research area. The different solutions proposed to solve the tracking problem emerge
from the constraints of the problem regarding resources and applications. The application
of object tracking in different domains drives the development of the datasets, methods,
and evaluation processes. Object tracking methods have several potential applications in
different industries and research domains. The development of methods to address the
problem constraints has evolved the approach from a set of image processing steps to using
end-to-end deep learning models. While significant progress has been made in the last
ten years in object tracking using computer vision, there is still room for improvement in
addressing issues such as developing generalised procedures or frameworks, addressing
lighting conditions, tracking fast-moving objects, and occlusion.

7.1. Methods

Despite the lack of a formal generalised procedure or framework for object tracking,
the closest generalisation of procedure in the literature is first object detection and then
object tracking. While this generalised tracking procedure is becoming more common, the
dependency on multiple processing steps during the detection affects the overall robustness
of the method. These image processing steps are developed iteratively, adjusting their pa-
rameters empirically or using statistical methods based on the results. When the algorithm
receives the least error, it is ready for deployment. However, the method’s accuracy is set
based on the dataset upon which it was evaluated. Therefore, the two-step detection and
tracking process can be combined into a single end-to-end deep learning framework.

Deep learning detection methods also incorporate an iterative process; however, since
different architectures are already evaluated on a large and varied detection dataset with
multiple classes, they become useful out of the box for detection. The object detection
community is incrementally improving the detection method to be faster in real time [83].
Yet, these efficiency improvements come at higher computation costs. Classification and
localisation can be performed simultaneously in real time with the detection architectures,
such as YOLO [82] and subsequent versions. This dual functionality of deep learning
methods to localise and classify in real time has led to a considerable leap in multiple-
object tracking problems. However, in unique applications where the network was not
trained to include a class of objects, the network needs to be trained either from scratch or
using transfer learning [141] methods. Training a deep network requires computational
resources; the image processing steps are preferred where such resources are unavailable.
However, image processing methods in recent years have declined due to the availability of
computational resources and pre-trained deep network architectures for detection. Apart
from detection, very few methods use deep learning architecture for tracking. Tracking
objects is still performed using estimation methods such as data association and Kalman
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filter. Using methods such as LSTM has helped create an end-to-end detection process in
deep learning.

One of the important reasons for developing object tracking methods is for the ma-
chines to interact with their dynamic environment. This problem falls under the domain
of ego-based problems where the sensors are mounted on machines such as robots or
autonomous vehicles [5]. For ego-based problems, the objects are localised and tracked
from the point of view of the machines. At the same time, the machines must also be able
to localise themselves in the dynamic environment to function in a complex environment
such as traffic or manufacturing. Therefore, there is a future scope for developing methods
and procedures to adapt these vision systems on robots or autonomous vehicles to make
an adaptive system in a dynamic environment.

Autonomous aerial vehicles such as unmanned drones are being used to track vehi-
cles [39,46] and in the agricultural sector [2]. Since the range of vision sensors is limited,
these drones often have to fly closer to the target, which can interfere with the object’s
natural state, such as vegetation, or distract humans in a crowded environment. Also,
tracking drones from the ground station is an important application, and the distance from
the ground station to the drone impacts the localisation and tracking of the drones [42].
Furthermore, in space applications for tracking debris, it is essential to track a fast-moving
object at a faraway distance [76]. The range of measuring distance using a stereo camera
depends upon the stereo camera parameters, such as the baseline between the two cameras.
Zheng et al. [42] calculated the effective sensing range of the entire system of panoramic
stereo reached 80 metres. Therefore, progress in increasing the current range of a state-of-
the-art system will be significant progress in detecting faraway objects. Therefore, there is
further scope for developing vision sensors and methods to track faraway objects.

7.2. Datasets

The applications of object tracking in diverse domains, from medical applications to
autonomous navigation, have led to the creation of datasets catering to specific domains.
The availability of the dataset ensures that all possible conditions of applications are
considered. Since consistently testing on real-world applications can be expensive, the
datasets can often simulate the real world to test the applications. In this case, the data
can be manually collected from the real world or generated synthetically. However, if
the methods are only evaluated on the dataset, it leaves further questions about their
applicability in real-world dynamic situations.

In the iterative development process, real-world scenarios may often not be considered,
and the method may be more accurate than the dataset. Still, it may not perform well in
real-world applications. The most widely used odometry dataset, KITTI [35], consists of
different sensor data types that help localise autonomous driving. Researchers combine
different object detection datasets and develop methods to cater to real-world applications
in a dynamic driving environment. The methods are developed on simulated datasets since
some applications are particular, such as space applications [4,76]. For such applications, it
is difficult to obtain real datasets and to experiment on such systems, which is an expensive
process. While the ground truths often consist of object location, it will be helpful to
have additional ground truths about tracking in different situations, such as variations in
illumination, at high speed, and with occlusions.

While it is important to develop vision sensors and methods for detecting and tracking
faraway objects, developing the dataset for training a deep learning network and evalu-
ating methods is equally important. For applications such as missile tracking or missile
intercepting systems [4], collecting data can be a cumbersome process. An alternative in
this situation is to generate a synthetic dataset that imitates the real-world application.
However, this synthetic dataset needs to be validated before the methods and equipment
are developed for the applications. Therefore, researching approaches to create synthetic
datasets and evaluating their validity for complex applications such as faraway object
detection can be an important research focus.
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Several problems in object tracking incorporate the use of multiple cameras [30,32]. A
class of problem that uses multiple cameras is the handover problem [32] in object tracking,
where the object disappears from the field of view of a camera and appears in the field of
view of the next camera. A large-scale dataset can be generated using multiple cameras
with ground truths that track objects over multiple cameras.

8. Limitations and Future Work

As computer vision systems are being incorporated into different engineering domains,
these systems’ ability to interact with the dynamic world relies on tracking objects in real
time. New problems are encountered in object tracking as new applications are investigated.
While developing a generalised method is often the researchers’ goal, addressing all the
issues encountered in object tracking in one method is challenging. Therefore, the scope for
developing methods in object tracking using computer vision is wide, and several areas
can be further investigated to address each problem.

The literature review in this paper raised significant questions about the future scope
of research. The research questions, along with recommendations, are outlined as follows:

Q1 Could an end-to-end deep learning approach be developed to detect, classify, esti-
mate the pose, and track the object in a 3D space?
Recommendation: There is significant development in object detection and classifica-
tion methods such as YOLO [82], R-CNN [99], and Fast R-CNN [84]. Since methods
such as YOLO [105] can localise, classify, segment objects, and estimate object pose,
it will be worth investigating if the additional feature of tracking can be incorporated
in this deep learning framework over video frame sequence. A sequence of video
frames could act as an input to these networks, and post-processing steps such as
estimating the tracks and stereo matching can be incorporated to detect and track
objects. Methods such as SA-FlowNet [6] use a sequence of images for event-based
cameras to track objects over time. Spatial attention networks [40] address the track-
ing using a sequence of video frames for depth estimation using RGB-D sensors.
These methods can be further investigated for both calibrated and uncalibrated
stereo cameras for depth estimation using a deep CNN.

Q2 Could the range of 3D tracking for faraway objects be extended?
Recommendation: Object tracking is being incorporated in applications of aerial
vehicles where the long-range for depth estimation is important. The current state-
of-the-art system uses a DS-2CD6984F-IHS/NFC HIKVISION camera and achieves
a tracking range of 80 metres using panoramic stereo on a ground station for drone
detection [42]. The range may be enhanced by using cameras with a higher zoom fac-
tor to construct a similar panoramic system. However, it will be worth investigating
whether changing the camera parameters will significantly impact the results using
the same methods or if the current state-of-the-art method will require modifications
to track faraway objects.

Q3 How can object tracking be implemented on adaptive systems in a dynamic environment?
Recommendation: Robotics is an example of an adaptive system where the robots
are subjected to a dynamic environment with moving objects. In this environment,
robots need to know the position of the moving objects relative to their position
and estimate their location with respect to their trajectory to avoid a collision. This
problem may be addressed by developing methods in robots that monitor their
environment in real time. The tracking process used in the present methods is
performed as a post-processing method where the entire video sequence is available.
This creates a limitation in a real-time system, where future information about the
environment is unavailable. A predictive tracking algorithm will be helpful for the
robot to avoid collision with moving objects. Therefore, for applications in adaptive
systems, object tracking accompanied with tracking prediction will have a wider
scope for robotics application.

Q4 What improvements are required in the current datasets for object tracking?
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Recommendation: The datasets currently used for object tracking, as highlighted
in Section 4, were developed for their respective applications. Datasets such as
KITTI [35] are specific for autonomous driving, which consist of not only stereo
camera video data but also IMU, GPS, and laser scan data. Other datasets such
as pedestrian tracking [48,71] were developed for surveillance applications. These
datasets are specific to their applications, and their limitation is that they are not
generalised enough for a wider application in multiple scenarios.
To develop a dataset for 3D object tracking, stereo camera data of diverse objects
similar to ImageNet [142] or MS COCO [143] with their ground truth will provide
a common ground to evaluate the performance of object tracking methods. Along
with a wider range of object classes, this dataset should also consider the 3D position
of the object with respect to the camera. Therefore, an object-tracking dataset may
consist of the following attributes:

• Stereo camera video sequence;
• Object classes in each video frame;
• Object location with its bounding-box coordinates in each video frame;
• Ground truth for object tracks for each video sequence;
• Ground truth for object’s 3D position relative to the camera.

Generating such a dataset may require extensive effort. However, some data collec-
tion processes could be automated, such as using ultrasonic sensors and structured
light sensors such as RGB-D [34] to collect ground truth for distance where possible,
and the annotation for the dataset could be crowd-sourced using Amazon Mechani-
cal Turk as used by Stanford’s dataset [59]. Therefore, there is a scope for developing
methods and processes for data collection and benchmarking the dataset for object
tracking in computer vision.

Q5 Should hybrid sensors be used for object tracking, or should object tracking com-
pletely rely on computer vision?
Recommendation: Having more sensor data when possible is always beneficial. In the
case of the KITTI [35] dataset, multiple sensor data are available to the user. Since the
application is focused on autonomous driving, using a variety of sensors helps this
type of adaptive system make better decisions based on its dynamic environment.
There are systems where having more sensors could create an additional payload
on the mechanical system. Aerial drones and industrial robots are examples of
adaptive systems where the additional payload can create functional problems.
Having a single vision sensor on these devices, such as a stereo or RGB-D camera,
could reduce their weight, thereby reducing the additional power requirement for
operation. In these situations, relying on computer vision is beneficial. Thus, there
is a requirement for better methods that address the diverse scenarios where these
systems are deployed.

9. Conclusions

Object tracking is still an ongoing research area, and there is no standardised approach
to solving it. Many approaches are developed using different hardware, datasets, and
application methodologies. This paper conducted a synthesised review to group these
methods according to the hardware and datasets used, the methodologies adopted, and
the application areas for object tracking.

In particular, we divided the literature according to the type of cameras used, such as
monocular, stereo, depth, and hybrid sensors. The datasets were grouped according to their
focused research applications, such as autonomous driving, single-object tracking, multiple-
object tracking, and other miscellaneous applications. We also classified the existing
literature according to the methodologies used. The application of object tracking is also
grouped based on their area of focus, such as medical, autonomous vehicles, single-object
tracking, multiple-object tracking, surveillance, robotics, agriculture, space, and defence.
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The contribution of this review is the systemic categorisation of different aspects of the
object tracking problem. This review highlighted the trends and interest in object tracking
research over the last ten years, thereby contributing to the detailed literature review on
hardware, datasets, approaches, and applications. Furthermore, tabulated information
summarised different tools and methods to develop an object tracking system. A taxonomy
was provided for the methods, while identifying the advantages and limitations of different
approaches and methods. The review also recommended when the equipment, datasets,
and methods can be used. Also, from the review of the literature, different research
questions were identified with a recommended approach to address these questions.
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Abbreviations

The following abbreviations are used in this manuscript:

APCE Average peak-to-correlation energy
CNN Convolutional Neural Networks
DTD Describable Textures Dataset
EDM Electronic distance meter
FIR Finite impulse response
FOV Field of view
GUI Graphical User Interface
HCI Heidelberg Collaboratory for Image Processing
HoG Histogram of Oriented Gradients
IMU Inertial measurement unit
JDT Joint detection and tracking
KITTI Karlsruhe Institute of Technology and Toyota Technological Institute
LiDAR Light Detection and Ranging
MEMS Micro-Electromechanical System
MOT Multiple-object tracking
MVSEC Multivehicle Stereo Event Camera
NUC Next Unit Computing
R-CNN Regions with CNN features
RBOT Region-based object tracking
RPN Risk Priority Number
SAD Sum of absolute difference
SMDWT Symmetric mask-based discrete wavelet transform
SNN Spiking Neural Networks
SOT Single-object tracking
SSD Single-Shot Multibox Detector
TBD Tracking by detection
VI Visual Inertial
VOT Visual object tracking
YOLO You Only Look Once
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Abstract: Quantum computing has emerged as a transformative paradigm, with revolutionary poten-
tial in numerous fields, including quantum image processing and compression. Applications that
depend on large scale image data could benefit greatly from parallelism and quantum entanglement,
which would allow images to be encoded and decoded with unprecedented efficiency and data
reduction capability. This paper provides a comprehensive overview of the rapidly evolving field
of quantum image compression, including its foundational principles, methods, challenges, and
potential uses. The paper will also feature a thorough exploration of the fundamental concepts of
quantum qubits as image pixels, quantum gates as image transformation tools, quantum image
representation, as well as basic quantum compression operations. Our survey shows that work is still
sparse on the practical implementation of quantum image compression algorithms on physical quan-
tum computers. Thus, further research is needed in order to attain the full advantage and potential of
quantum image compression algorithms on large-scale fault-tolerant quantum computers.

Keywords: quantum computing; quantum image compression; quantum image processing

1. Introduction

In recent years, in accordance with Moore’s law [1], the computing ability of elec-
tronic computers has exponentially increased. However, the growth in power of CPUs
has plateaued in over the last few years due to various constraints, prompting the search
for alternative methods to boost computational performance. In 1982, Richard Feynman,
an American theoretical physicist, introduced the concept of quantum computing. This
innovative model leverages quantum mechanics principles like superposition and entangle-
ment to enhance data storage, processing, and transmission capabilities far beyond those of
traditional computers [2]. The potential of quantum computing was further underscored
by Peter Shor’s introduction of a quantum algorithm for prime number factorization in
1994 [3], and by Lov Grover’s quantum search algorithm in 1996 [4].

As the field of digital image processing evolves, it faces the challenge of handling
an ever-growing volume and complexity of images, propelled by advances in pattern
recognition, image understanding, and the development of sophisticated image sensors.
Traditional image processing algorithms, foundational to numerous applications within
information science, are inherently parallel in nature, demanding extensive computational
resources for execution. The surge in image quantity and resolution has rendered these
classical algorithms increasingly time-consuming and hardware-intensive. In response to
these challenges, the integration of quantum computing into image processing emerges as
a promising solution. Quantum computing utilizes qubits for data storage and leverages
the properties of quantum physics, such as superposition and entanglement, to offer
unparalleled parallel processing capabilities. This shift in paradigm provides a significant
improvement in efficiency for tasks related to image processing.

The quantum approach to image processing significantly reduces the computational
complexity associated with storing and manipulating large sets of image data. While a
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classical computer requires exponential resources O(n × 2n) to store sequences of n-bit
length, a quantum computer can achieve this with linear complexity O(n) [5]. Moreover,
operations that are inherently sequential and resource-intensive on classical computers,
such as bitwise inversion, can be executed more efficiently on quantum computers. This
is due to the quantum computer’s ability to perform operations on entangled qubits in
parallel, dramatically reducing the time and resources needed for complex image processing
tasks. This innovative method of leveraging quantum computing for image processing
not only accelerates classical algorithms but also paves the way for the development of
novel quantum image processing algorithms. These improvements have the potential to
completely transform the field by greatly decreasing time it requires to analyze data and
the amount of hardware needed. This will allow for the development of more advanced
image processing applications that need a lot of resources. Hence, how can we use the
quantum computing technique for image processing is crucial for surpassing the constraints
of conventional computational techniques. This advancement presents a novel opportunity
to efficiently and effectively process digital images.

To process images in quantum state, we need to follow three steps as Figure 1,
(i) prepare the image and store it into quantum state, (ii) process quantum image, (iii) processed
digital image from quantum state. The quantum image compression and encryption tech-
niques lie in the preparation of the image into quantum state. Similar to the traditional
digital image compression, the quantum image compression methods have lossy and
lossless compression.

Figure 1. The processing steps of quantum image processing, converting the image from classical
state to quantum state, then processing in quantum state, next convert the processed image from
quantum to classical state as output.

The early 21st century witnessed several pivotal advancements aimed at enhancing
the efficiency and quality of image compression techniques. In 2002, Lewis et al. introduced
a method that utilized a two-dimensional orthogonal wavelet transform for compressing
digital images. This innovative approach enabled the decomposition of images into coeffi-
cients that are localized both spatially and spectrally, offering a nuanced balance between
preserving image quality and achieving substantial compression [6]. Another notewor-
thy development came in the form of an advanced bit plane coding strategy specifically
designed for quantizing discrete cosine transform (DCT) coefficients [7]. This technique
was lauded for its ability to deliver superior decoding quality compared to the JPEG2000
standard [8], which was the benchmark at the time. Kouda et al. introduced a hierarchical
quantum neural network-based image compression scheme, assessing the utility of large
quantum neural networks in tackling complex image compression scenarios [9]. This
approach underscored the potential of quantum computing to revolutionize traditional
practices by offering novel solutions that could outperform conventional algorithms in
both efficiency and effectiveness. A significant challenge in image compression has always
been the time-consuming nature of traditional image coding methods. To address this
issue, Yang R. introduced a cutting-edge algorithm that employed a quantum BP (back-
propagation) network for image compression [10]. This method not only accelerated the
encoding process but also enhanced the quality of the reconstructed images, showcasing
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the synergy between quantum computing and neural network methodologies in improving
computational processes. In 2016, Yuen et al. unveiled an algorithm that combined discrete
cosine transform (DCT) with the Secure Hashing Algorithm (SHA-1) for both compressing
and encrypting images [11]. This dual-purpose algorithm highlighted the growing need
for secure and efficient image processing techniques in an increasingly digital and intercon-
nected world. In the same year, based on hyper-chaotic system Zhou et al. proposed an
image encryption-compression scheme [12]. The same authors also published image en-
cryption and compression scheme based on Mellin transform and compressive sensing [13].
In 2018, an image compression–encryption algorithms by combining hyper-chaotic system
with discrete fractional random transform was introduced by Gong et al. [14].

While the above work is on the traditional images, as the field of quantum computing
is advancing rapidly many of these classical techniques have been expanded to encompass
the quantum realm. In this paper, we will focus on the quantum image processing and will
discuss about the recent advancements in the field of quantum image compression. We
start in Section 2 with a brief introduction to quantum computing. Readers already familiar
with these fundamental concepts can skip Section 2 and proceed directly to Section 3.

2. Brief Introduction to Quantum Computing

2.1. Vector

Quantum states are mathematically expressed as vectors in a complex vector space
called Hilbert space. Hilbert space is a fundamental framework in quantum mechanics
because it can effectively capture the probabilistic and superpositional characteristics
of quantum systems. The nomenclature used to represent vectors in Hilbert space is
a distinctive and sophisticated formalism, generally known as Dirac notation, or more
informally, the “bra-ket” notation [15].

|ψ〉 =

⎡
⎢⎢⎢⎣

a1
a2
...

an

⎤
⎥⎥⎥⎦, (1)

In Dirac notation, a vector (representing a quantum state) in Hilbert space is sym-
bolized by a ket, denoted as |ψ〉, where |·〉 signifies the ket and ψ is a label that identifies
the specific quantum state. The ket is a column vector that encompasses all the essential
information required to completely explain the quantum state within the mathematical
framework of quantum mechanics. Complementary to the ket is the bra, denoted as 〈φ|,
where 〈·| represents the bra, and φ is a label for the vector. The bra is essentially the
conjugate transpose of the ket. In more concrete terms, if the ket represents a column
vector, then the bra represents a row vector, with its complex elements conjugated. The
usage of this bra vector is essential in the construction of quantum mechanical algorithms,
particularly in the computation of probabilities and expectation values, which are key
aspects of quantum mechanics.

The implementation of bra-ket notation brought about a significant transformation in
the mathematical handling of quantum mechanics, providing a potent and intuitive mecha-
nism for managing the abstract concepts essential to the theory. It simplifies the depiction of
quantum processes, such as measurements and transformations, and offers a standardized
framework for discussing and evaluating quantum states. It also enables the succinct defi-
nition of quantum mechanical processes, such as unitary transformations and observables.
In summary, the bra-ket notation encapsulates the abstract and counterintuitive nature of
quantum mechanics in a mathematically rigorous yet accessible language, enabling the
exploration and exploitation of quantum phenomena for computational purposes.
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2.2. Tensor Products

The tensor product is a mathematical operation that combines vector spaces to create
a bigger vector space.

1. Assume, we have a scaler α. |v〉 is an element in V space and |w〉 is an element in W
space. Then we can write:

α(|v〉⊗|w〉) = (α|v〉⊗|w〉)=|v〉 ⊗ α(|w〉), (2)

2. Now if we have two elements, |v1〉, |v2〉 in V space and an element |w〉 in W space

(|v1〉+ |v2〉)⊗ |w〉 = |v1〉 ⊗ |w〉+ |v2〉 ⊗ |w〉 (3)

3. Similarly, |v〉 in V space and |w1〉 and |w2〉 in W space

|v〉 ⊗ (|w1〉+ |w2〉) = |v〉 ⊗ |w1〉+ |v〉 ⊗ |w2〉 (4)

We can find the tensor product of two matrices X (dimension m× n) and Y (dimension
i × j) as

X⊗Y =

⎡
⎢⎢⎢⎣

x11Y x12Y · · · X1nY
x21Y x22Y · · · x2nY

...
...

. . .
...

xm1Y xm2Y · · · xmnY

⎤
⎥⎥⎥⎦ (5)

2.3. Quantum Bit

In a classical computer bit is the core component, which functions inside a binary
system, alternating between two distinct states: 0 and 1. The binary system serves as the
foundation for classical computing architectures, allowing for the representation, manipu-
lation, and retention of data. Quantum computing, in contrast, presents a sophisticated
and intricate alternative to the classical bit, known as the quantum bit or qubit. Qubits are
fundamental units that encapsulate the laws of quantum physics, forming the essential
foundation for both the theoretical and practical aspects of quantum computing. Qubits,
unlike traditional bits, exist inside a mathematical domain that is more flexible and abstract,
rather than being limited to the binary certainties of 0 and 1. This abstraction enables the
conceptualization and advancement of quantum computing theory without being limited
by the physical implementation in specific hardware platforms. Qubits, being very versatile
mathematical entities, allow for extensive study of the potential of quantum computing,
without being restricted by the limits of physical systems.

A qubit is characterized by its capacity to exist in states that extend beyond the binary
values of 0 and 1. The ability to simultaneously exist in several states is demonstrated by
the phenomenon called quantum superposition, in which a qubit occupies a state that is a
combination of |0〉 and |1〉. Mathematically, the superposed state can be represented as:

|ψ〉= α|0〉+β|1〉 (6)

where α and β denote the probability amplitudes. The amplitudes represent the probability
of the qubit collapsing into either the |0〉 or |1〉 state when measured. A qubit’s state is
represented as a vector in a two-dimensional complex vector space, with |0〉 and |1〉 being
the basis states used for computation. The basis states constitute an orthonormal basis set,
serving as a structured framework for the definition and manipulation of qubits.

The superposition principle grants qubits the ability to exist in several states simulta-
neously, which is in striking contrast to the binary restriction of conventional bits. Quantum
computers have the ability to process and interpret data in ways that are fundamentally
distinct from traditional computing methods due to their multi-state nature. When a
measurement is performed on a superposed qubit state |ψ〉, it collapses into one of its
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component states, either |0〉 or |1〉. The probability of each event is defined by the square
of the associated probability amplitude (|α|2 for |0〉 and |β|2 for |1〉). The stochastic
character of qubit measurement forms the basis for the quantum mechanical phenomena
that quantum algorithms utilize for purposes such as encryption, search optimization, and
simulation of quantum systems. Also,

|α|2 + |β|2 = 1 (7)

In quantum computing, |0〉 is expressed as:

|0〉 =
[

1
0

]
(8)

In quantum computing, |1〉 is expressed as:

|1〉 =
[

0
1

]
(9)

|ψ〉 = α|0〉+ β|1〉 =
[
α

β

]
(10)

Let us consider a pair of qubits. From a classical perspective, a pair of bits has the
capability to represent four unique values (00, 01, 10, 11) simultaneously. However, within
a quantum system, two qubits have the ability to simultaneously exist in a superposition
of all four of these states. Consequently, the two-qubit system can be characterized by a
state vector that encompasses this superposition, denoting a quantum state that is a linear
combination of its four fundamental states: |00〉, |01〉, |10〉, and |11〉. So, the quantum
state for two qubit system can be written as:

|ψ〉 = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉 (11)

where
|α00|2 + |α01|2 + |α10|2 + |α11|2 = 1 (12)

These four states can be represented as:

|00〉 = |0〉 ⊗ |0〉 =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ (13)

|01〉 = |0〉 ⊗ |1〉 =

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦ (14)

|10〉 = |1〉 ⊗ |0〉 =

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ (15)

|11〉 = |1〉 ⊗ |1〉 =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ (16)
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2.3.1. Qubit Measurements and Unit Circle Theory

The basic states of a qubit in quantum computing are represented by the states |0〉
and |1〉 in quantum physics. In a two-dimensional coordinate system, where the state |0〉
aligns with the X-axis and the state |1〉 aligns with the Y-axis, these states can be visually
depicted. Every state has a basis vector: the vector for |0〉 is [1 0]T, indicating that it is a
unit vector along the X-axis; the vector for |1〉 is [0 1]T, indicating that it is a unit vector
along the Y-axis.

We can take into consideration additional vectors that create different angles with the
X-axis in order to investigate the idea of superposition. For example, the vector [1/

√
2

1/
√

2]T can be used to represent a vector that forms a 45-degree angle with the X-axis.
According to this vector, there is an equal chance that this qubit will be measured and found
in the states of |0〉 or |1〉. This indicates that the quantum state is an equal superposition
of |0〉 and |1〉. In addition, another vector that forms a 60-degree angle with the X-axis can
be represented by the column vector [1/2

√
(3/2)]. This vector represents a quantum state

that is not an equal superposition of |0〉 and |1〉. Instead, it has distinct probabilities for
being observed in each state, with a greater likelihood for the state |1〉 due to the larger
coefficient in the vector representation.

Thus, a qubit can be mathematically described as a unit vector within a two-dimensional
complex vector space (Figure 2). When we apply this principle to the geometric model
known as the “Bloch sphere”, the state |0〉 correlates to the X-axis, whereas the state |1〉
aligns with the Y-axis on this sphere. It is crucial to emphasize that any point on the surface
of the Bloch sphere represents a qubit in a state of superposition, which is a weighted com-
bination of the states |0〉 and |1〉. In the practice of quantum measurement, two primary
approaches are utilized. The first is the measurement in the standard basis, also known as
the computational basis, which corresponds precisely to the previously mentioned states
|0〉 and |1〉. The second methodology incorporates measurements taken on an arbitrary
basis, enabling the evaluation of the qubit’s state across various Bloch sphere orientations.
The selection of these arbitrary bases is not obligatory and can be chosen to accommodate
particular quantum computing tasks or algorithms, thereby offering a versatile structure
for the assessment and application of quantum states.

Figure 2. Unit circle representation on various angles. The vector [1/
√

2 1/
√

2]T can be used to
represent a vector that forms a 45-degree angle with the X-axis and there is an equal chance that
qubit will be measured and found in the states of |0〉 or |1〉. Another vector that forms a 60-degree
angle with the X-axis can be represented by the column vector [1/2

√
(3/2)]. This vector represents a

quantum state that is not an equal superposition of |0〉 and |1〉.

2.3.2. Measuring on Standard Basis

Let us assume, state |S〉 has an angle θ with |0〉 state in X axis. The figure is drawn in
a 2D real space (Figure 3), and all of its amplitudes are real.

|S〉 = a|0〉+ b|1〉 =
(

cos θ
sin θ

)
(17)
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Figure 3. Projection on standard basis states. State |S〉 has an angle θ with |0〉 state in X-axis. Then
the angle of |S〉 with |1〉 state would be (π/2 − θ).

From the figure, the state |0〉 has the probability cos2 θ and state |1〉 has the probability
sin2 θ, which can be written as cos2 (π/2 − θ). Thus, depending on the stated above
probabilities, the state S is projected onto either the |0〉 state or |1〉 state.

2.3.3. Measuring on Arbitrary Basis

In this case, measurement is completed on any orthogonal basis rather than onto |0〉
and |1〉 basis. From Figure 4, state |S〉 is measure using |u〉 and |u′〉 basis. Here |u〉 has
the probability cos2 θ and |u′〉 has the probability sin2 θ. The amplitude of |u〉 and |u′〉
given by:

|u〉 = 1√
2
|0〉+ 1√

2
|1〉 (18)

|u′〉 = − 1√
2
|0〉+ 1√

2
|1〉 (19)

Figure 4. Projection onto arbitrary orthogonal basis states. State |S〉 is measured with respect to |u〉
and |u′〉. |u〉 and |u′〉 is measured with probability of cos2 θ and sin2 θ, respectively.

These concepts will come in handy when we will talk about the FRQI (flexible repre-
sentation of quantum images) representation of quantum images where rotation operation
will be required.

2.4. Circuit and Gates

Logic gates are essential components in traditional digital circuits, responsible for ma-
nipulating and transforming information. They serve as the fundamental building blocks
for complicated computing functions. Similarly, quantum circuits utilize a distinct set of
logic gates that are specifically intended to function based on the principles of quantum me-
chanics. Quantum logic gates enable the manipulation of quantum information by applying
unitary transformations to quantum states, allowing for the execution of logical operations.
The mathematical description of these changes is commonly conveyed by matrices, which
accurately capture the specific operation being applied to the quantum state.

One significant category of quantum logic gates is the single quantum gate (Figure 5).
As the name implies, it only requires the participation of one qubit to perform its action. In
contrast, multi-qubit gates are capable of performing quantum operations and interactions
that are more intricate, as they involve two or more qubits. Quantum circuits employ
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horizontal lines to represent qubits in their graphical depiction. The lines depicted in
the schematic of a quantum circuit, commonly known as wires, represent the pathway
through which quantum information travels. The symbol “U” is used to represent a single
quantum gate on these wires. This symbol indicates the unitary operation that the gate
performs on the qubit it interacts with. When |ψ〉 state is used as an input to this gate it
gives U|ψ〉 as an output. Unitary transformations play a crucial role in the functioning
of quantum gates. These transformations are invertible and maintain the norm of the
quantum state, a necessity for quantum operations based on the principles of quantum
physics. The utilization of a matrix representation for a quantum gate offers a potent
means of comprehending and formulating quantum algorithms, as it enables the accurate
computation of the gate’s impact on a certain quantum state.

Figure 5. Single quantum gate.

The single quantum gate can be expressed in a matrix form:

|ψ〉 =
[
α

β

]
, U =

[
a b
c d

]
(20)

U|ψ〉 =
[

a b
c d

][
α

β

]
=

[
aα+ bβ
cα+ dβ

]
(21)

It is impossible to overstate the significance of single quantum gates in quantum
computation. Although they are the most basic form of quantum gates, single quantum
gate executes critical operations that are indispensable for quantum computation, including
the initialization, manipulation, and preparation of measurements of qubits. The Pauli
gates (X, Y, Z), which alter the state of a qubit in multiple dimensions, and the Hadamard
gate, which generates superposition states, are both instances of single quantum gates.
These gates function as the quantum equivalents of classical logic gates such as NOT and
XOR, albeit within a domain where quantum states can be superimposed and entangled.

Hadamard gate:

H =

[ 1√
2

1√
2

1√
2
− 1√

2

]
=

1√
2

[
1 1
1 −1

]
(22)

Applying the Hadamard gate to |0〉 state or |1〉 state:

H|0〉 = 1√
2

[
1 1
1 −1

][
1
0

]
=

1√
2
|0〉+ 1√

2
|1〉 = |+〉 (23)

H|1〉 = 1√
2

[
1 1
1 −1

][
0
1

]
=

1√
2
|0〉 − 1√

2
|1〉 = |−〉 (24)

So, by using the Hadamard H gate, the state |0〉 and |1〉 can be convert into a
superposition state. The new state is known as |+〉 state and |−〉 state, respectively.

Pauli-X:

X =

[
0 1
1 0

]
(25)

The Pauli-X gate has the ability to change the state of a single qubit. That is why this
gate is also called bit-flip or Not gate.

Table 1 shows some common single quantum gates.
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Table 1. Example of some single quantum gates.

Gate Name/Operator Circuit Diagram Matrix Representation

Hadamard H = 1√
2

[
1 1
1 −1

]

Pauli-X X =

[
0 1
1 0

]

Identity I =
[

1 0
0 1

]

Within the sophisticated realm of quantum computing, in addition to the simplicity
and grace of individual quantum gates, there exists a more intricate category of quantum
gates that require the participation of several qubits for their functioning. Multi-qubit
quantum gates enhance the complexity and functionality of quantum circuits, allowing
for a wider range of computational operations that exploit the distinct characteristics of
quantum mechanics, such as entanglement and superposition, to perform tasks that are
beyond the capabilities of single-qubit gates.

One prominent example of multi-qubit gates is the Controlled-NOT (CNOT) gate,
which represents the idea of quantum control dynamics. The CNOT gate functions by
manipulating two qubits, with one qubit acting as the control and the other as the target.

CNOT =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ (26)

The CNOT gate operates by flipping the state of the target qubit, changing it from
|0〉 to |1〉 or vice versa, only when the control qubit is in the state |1〉 as shown in the
Equations (27)–(30). The conditional operation described here is the quantum equivalent
of the conventional XOR gate. It showcases how quantum computing may imitate and
expand upon traditional logic operations within a quantum context.

CNOT|00〉 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ = |00〉 (27)

CNOT|01〉 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦ = |01〉 (28)

CNOT|10〉 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ = |11〉 (29)

CNOT|11〉 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ = |10〉 (30)
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Expanding on the concept of conditional operations, the quantum computing also has
the 0-Controlled-NOT (0CNOT) gate. This gate inverts the target qubit only when the con-
trol qubit is in the state |0〉. This gate expands the spectrum of quantum logic operations.

The Toffoli gate, also referred to as the CCNOT gate, is a significant expansion of the
CNOT gate. It involves the use of two control qubits and one target qubit. The Toffoli
gate performs a bit-flip operation on the target qubit exclusively when both control qubits
are in the state |1〉. The significance of this gate in quantum computing lies in its ability
to facilitate reversible computation, which is essential for the development of universal
quantum computers. Also, as we explore farther into the domain of multi-qubit operations,
the idea of scalability becomes apparent with the introduction of the n-CNOT gate. The
gate expands the concept of conditional operation to n control qubits, providing a flexible
method for coordinating intricate quantum processes that may be customized to meet the
specific needs of advanced quantum algorithms.

Another important example of multi-qubit gate is the Swap gate. It facilitates the
exchange of states between two qubits. The function of this gate is crucial in quantum
algorithms as it allows for the reorganization of qubit states without impacting the overall
quantum state of the system. This facilitates operations that necessitate particular qubit
configurations.

Table 2 shows some common multiple quantum gates.

Table 2. Example of multiple quantum gates and their matrix representation.

Gate Name/Operator Circuit Diagram Matrix Representation

CNOT or CX
 CNOT =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦

0CNOT
 0CNOT =

⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

Toffoli or CCX

Toffoli =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Swap
swap =

⎡
⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦

Having a basic understanding of these gates and how these work is very important
because these gates are useful to build a quantum circuit. For instance, if we are working
with the FRQI representation of quantum images, we need to understand the use of
the Hadamard gate, Identity gate, Pauli-X gate, CNOT gate [16], etc. Another popular
quantum image representation technique is NEQR (short for Novel Enhanced Quantum
Representation) in which an image can be defined as:

|I〉 = 1
2n

2n−1

∑
y=0

2n−1

∑
x=0

q−1

∏
i=0

∣∣∣ci
yx

〉
|yx〉 (31)
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To implement this, we need to use Hadamard gate, Toffoli gate, Swap gate [17], etc.
We discuss this technique in detail in the next section. So, before jumping into the image
processing part, knowing the basic concept of these gates are important because these will
be required to represent the images in quantum state.

3. Quantum Image Representations

Before we delve into quantum image compression, we need to understand how an
image can be represented in quantum state, since a number of quantum image representa-
tions have been proposed. The first attempt to represent an image in quantum system was
proposed after introducing Qubit Lattice in 2003 [18]. Then in 2005 quantum superposition
was introduced in Real Ket [19] to represent image. In 2010, Venegas et al. proposed
entangled image which used quantum entanglement [20]. Le et al. also published their
work FRQI or flexible representation of quantum images [16] in the same year. Here, they
utilized an n-qubit sequence to represent the coordinate information. To store the color
information of the image they used angle. An image in FRQI model can be represented as
follows [16]:

|I(θ)〉 = 1
2n

22n−1

∑
i=0

(cosθi|0〉+ sinθi|1〉)⊗ |i〉 (32)

θi ∈
[
0,

π

2

]
, i = 0, 1, . . . , 22n − 1 (33)

Here, |i〉 (=0, 1, . . ., 22n − 1) are 22n computational basis quantum states and θ = (θ0,
θ1, . . ., θ2

2n − 1) is the vector of angles encoding colors. Here the coordinate information is
represented with |i〉 and the grey scale information is represented using cosθi |0〉 + sinθi
|1〉. This model can represent the greyscale information as well as the coordinate system of
an image in quantum state properly.

This FRQI model was extended further in the following year and a new model called
Multi-Channel Representation for Quantum Image (MCRQI) [21] was proposed, which
also consider the RGB space. This model represents images as follows:

|I(θ)〉 = 1
2n+1

22n−1

∑
i=0

∣∣∣ci
RGBα

〉
⊗ |i〉 (34)

∣∣ci
RGBα

〉
= cos θRi|000〉+ cos θGi|001〉+ cos θBi|010〉+ cos θαi|011〉

+ sin θRi|100〉+ sin θGi|101〉+ sin θBi|110〉+ sin θαi|111〉 (35)

As we can see, in MCRQI to store RGB channels and opacity, three qubits are required.
Here, θRi, θGi, θBi vectors represent the RGB colors and θαi represents the channels.

In FRQI scheme while encoding the image pixels, normalized superposition state is
utilized, allowing simultaneous operations on all pixels, thereby addressing the need for
real-time processing in image applications. A number of algorithms have been introduced
based on this principle. However, FRQI’s restriction to one qubit per pixel for grayscale
information makes certain complex color operations challenging.

The NEQR model for digital images representation, was introduced in 2013 by Zhang
et al. [17], uses entangled qubit sequences to encode an image’s grayscale and spatial
information in a quantum superposition. This method converts grayscale values into binary
using q qubits, improving simplicity and accessibility. The binary-encoded grayscale data
are stored in a q-qubit sequence, whereas the coordinates for a 2n-by-2n pixel image are
retained in a 2n-qubit sequence. To better illustrate the algorithm, let us consider a 2-by-2
image as shown in Figure 6. In order to apply NEQR to an image, first q + 2n qubits
needs to be initialized to the |0〉 state. This is followed by applying identity (I) gates and
Hadamard (H) gates to this initial state. Subsequently, the grayscale values for all pixels
are established using 2n-CNOT gates. So, in the figure, to store the coordinate information
H-gate needs to be applied to two of the ten |0〉 qubits. Then, 2-CNOT gates need to be
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used to store the grayscale information. The quantum circuit for the NEQR preparation is
shown in Figure 7.

Figure 6. A 2-by-2 example image where (240)10 and (11110000)2 is the intensity of pixel in decimal
and binary at position 00. Same goes for other three pixels.

Figure 7. A 2-by-2 image represented in a quantum circuit by using the NEQR scheme.

The NEQR model is a substantial improvement over the FRQI model. NEQR requires
more qubits than FRQI but solves the problem of reliably measuring grayscale information
with a limited number of measurements. NEQR simplifies color operations, giving it a more
practical and often useful framework in quantum image processing. However, both NEQR
and FRQI have a constraint in that they are designed to store images that are strictly square
because their horizontal and vertical coordinate lengths are equal. This limitation presents
an issue for depicting images that are not square or rectangular, which are prevalent. To
address this issue, the improved novel enhanced quantum representation (INEQR) [22]
was introduced in 2015 by Jiang et al. INEQR allows for storing and processing rectangular
images by supporting uneven horizontal and vertical coordinates. This improvement
broadens the applicability of quantum image representations, making them more suitable
for real-world scenarios where images may not have square dimensions.

GQIR or Generalized Quantum Image Representation was presented to represent
non-square, rectangular images of arbitrary dimension by utilizing logarithmic coordi-
nates [23]. Despite its versatility, GQIR adds redundancy to the representation process. The
Novel Quantum Representation for Log-Polar Images (QUALPI) offers a framework for
image representation in polar coordinates, diverging from conventional Cartesian-based
methods [24]. In 2014, Li et al. introduced a new encoding approach for multi-dimensional
color images called the n-qubit normal arbitrary superposition state (NASS). This method
creatively encodes grayscale values using quantum states’ angles and assigns certain states
to represent different dimensions, enabling the compression of multi-dimensional color
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images on a quantum computer [25]. In 2016, the FRQI method was improved, and a
new model called the FRQCI or Flexible Representation for Quantum Color Image, which
improved the management of color in quantum image representations [26]. Sang et al.
developed the Novel Quantum Representation of Color Digital Images (NCQI) by integrat-
ing enhancements from MCRQI and NEQR within a similar period [27]. The new model
modifies the qubits in NEQR from q to 3q to symbolize the RGB color channels, making
color operations, such as intricate color transformations, much simpler to perform. Yet, a
downside of the NCQI paradigm is the heightened need for qubits.

In 2018, Liu et al. introduced an Optimized Quantum Representation for Color Digital
Images (OCQR) to tackle this problem [28]. OCQR requires fewer qubits, about one-third of
what NCQI uses, to hold pixel values, while having a similar time complexity for preparing
quantum pictures. OCQR optimizes computational resources by minimizing qubit usage
and improves the efficiency of specific color changes. In 2017, the NEQR model was
expanded to include Red–Green–Blue (RGB) color schemes by creating the Quantum Multi-
Channel RGB Representation (QMCR) [29]. Although this new method demands more
qubits than the MCRQI model, it streamlines the picture preparation process and allows
for accurate image retrieval. In the same year, Jiang et al. introduced a new framework
for three-dimensional imaging in the quantum realm, called the quantum point cloud [30].
This novel approach expands quantum image processing to 3D visual data, providing new
opportunities for manipulating and analyzing digital images in quantum computing.

In the following year, BRQI (Bitplane Representation of Quantum Images) was pub-
lished by Li et al. [31], which allows for altering color complements, reversing, and trans-
lating bitplanes within the BRQI framework. This BRQI method divides the grayscale
values into eight different binary bits, converting a grayscale image into eight distinct bit
planes. It requires three qubits to express the bitplane index, while n qubits are assigned to
encode the spatial coordinates of the image. Moreover, Wang et al. in 2019, published a
model where a bitplane is used to represent color digital images. They named this model
QRCI [32]. An improved FRQI model called FRQCI was proposed by Li et al. [33]. Interest-
ingly, in this model they talked about some image processing operators for pixel coordinate
information and color representation. Khan explored FRQI and NEQR model further
and came up with an improved flexible representation of quantum images (IFRQI) [34].
In this model, every pair of bits was represented using angle, enabling single qubit to
store information equivalent to 2-bit grayscale values. This method significantly enhances
the precision in retrieving the original image data. In the following year Grigoryan et al.
published a new algorithm to store the images in quantum state by using Fourier transform
representation [35]. In the same year, Wang et al. came up with a method called DQRCI
(double quantum color images encryption scheme) in which two color images are stored
into quantum superposition state simultaneously [36].

4. Quantum Image Compression

In this section, we provide a review of the literature in quantum image compression.
To make it understandable for the readers this section is divided into two subsections. In
the first subsection we talk about the papers focusing on direct methods and algorithms
for compressing images using quantum computing techniques. These typically involve
novel quantum algorithms that enhance or replace classical compression methods. In the
second one, we give an overview of the papers that explore not only the quantum image
compression technique but also quantum image representation, storage and retrieval.

4.1. Quantum Image Compression Techniques

In 2006, Yang et al. proposed a quantum vector quantization encoding algorithm for
image compression [37]. This study presents a hybrid quantum-classical vector quanti-
zation (VQ) encoding algorithm that is more efficient than the pure quantum version. It
requires fewer than

√
N (N = number of pixels) operations for most images and achieves

close to a 100% success rate. The same group also published another work on image
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compression by using the quantum discrete cosine transform (QDCT) [38]. The proposed
algorithms for 1-D and 2-D DCT decrease the time complexity to O(

√
N) for 1-D and O(N)

for 2-D, in contrast to the classical complexities of O(N log2N) for 1-D and O(N2 log2N) for
2-D. it also expands Grover’s algorithm, known for its effectiveness in quantum searching,
to tackle more complex unstructured search problems.

Nodehi et al. in 2009, proposed an image compression method for fractal images
based on Functional Sized population Quantum Evolutionary Algorithm (FSQEA) [39].
The Quantum Evolutionary Algorithm (QEA) represents an emerging optimization tech-
nique that adopts probabilistic solution representation, proving to be especially effective
for combinatorial challenges such as the Knapsack problem. Given that fractal image
compression falls under the NP-Hard category, genetic algorithms (GAs) have traditionally
been the go-to approach for such issues. However, the application of QEA to fractal im-
age compression remains unexplored territory. In the paper, not only FSQEA for fractal
image compression is proposed but also optimized by fine-tuning different parameters to
enhance the performance, where it was shown that the PSNR of the proposed algorithm
is better, i.e., 27.44 dB instead of 27.27 dB for GA. Notably, the time complexity of the
FSQEA mirrors that of the original QEA, attributed to the fact that the average popula-
tion size for the FSQEA is equivalent to that of the conventional QEA, and the number
of function evaluations remains constant across both algorithms. Given the inherently
time-intensive nature of fractal image compression, and the need for multiple iterations
to ascertain optimal parameters, the study utilizes benchmark functions as a preliminary
step. However, the temporal complexity of the FSQEA is similar to that of the original QEA
because the average population size and the number of function evaluations are the same
in both algorithms.

Qi et al. proposed an algorithm that uses Quantum Backpropagation (QBP) for image
compression [40]. They showed a quantum neuron model that uses a combination of
quantum gates, especially phase-shift and controlled-NOT gates as the basic building
block for the operation. Incorporating the principles of traditional backpropagation (BP)
they showed that the QBP network outperforms its classical BP counterpart. The work
demonstrates a quicker learning rate (η = 0.09 compared to QNN with η = 3.6) as well as
superior image compression capabilities (with a compression rate of R = 0.16 compared to
QNN with 0.15).

Another work on fractal image compression (FIC) was presented by Du et al. in
2015 [41]. Grover’s quantum search algorithm (QSA) was applied to accelerate the encoding
process of FIC. Both theoretically and experimentally they showed that substantial amount
of speedup was achieved by this method over the traditional FIC. Additionally, in terms
of preserving the quality of retrieved images, the proposed QAFIC outperforms other
contemporary FIC methods. A quantum image compression scheme based on JPEG
was proposed by Jiang et al. in 2017 [42]. Figure 8 depicts the workflow of the JPEG
based quantum image compression algorithm. As depicted in the workflow, first, the
image is quantized, then the quantized JPEG coefficients are inputted into qubits and
finally converted into pixel values. Compared with the Boolean expression compression
(BEC) method, this scheme is less complicated and faster (with a running time of 0.164 s
compared to 5.54 h in BEC), with high compression ratios (84.66% for the “cameraman”
image compared to 69.07% in BEC).

 

Figure 8. Workflow of JPEG based quantum image compression algorithm.

Pang et al. proposed a signal and image compression technique using the quantum
discrete cosine transform (QDCT) [43]. In order to compress images and signals, this study
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introduces a quantum algorithm for the discrete cosine transform (DCT) that is specifically
engineered to be computationally more efficient than its classical counterpart. This is ac-
complished by the algorithm calculating the DCT coefficients concurrently and identifying
the most significant coefficients. The conventional Grover’s iteration is improved through
the incorporation of a novel iteration method called the quantum DCT iteration (GDCT),
which is specifically designed for DCT operations and compression tasks.

The construction of the 1D-DCT using this method demonstrates an O(
√

N) com-
plexity for a vector of size N. Conversely, the 2D-DCT computation for an N-by-N matrix
manifests an O(N) complexity. The quantum DCT algorithm was developed by taking
advantage of two inherent properties of the DCT: its energy conservation capability and
the fact that numerous DCT coefficients are insignificant and can therefore be excluded
with minimal degradation to the quality of the reconstructed image. A study by Dai et al.
introduces a quantum technique that utilizes the quantum DCT along with a 4-dimensional
hyper chaotic Henon map to compress multiple images simultaneously [44]. Using QDCT,
this method combines four grayscale images into a single quantum image, resulting in an
efficient compression ratio that reduces the requirements for data transmission. Encryption
involves using the 4D hyper-chaotic Henon map to manipulate the quantum image, uni-
formly spreading pixel values to create a large key space for increased security. A logistic
map-guided quantum image cycle shift technique is used to scatter pixel data for improved
encryption. The authors also showed by simulation that their model seems to be efficient
with lower computational complexity (O(n)) than traditional picture encryption approaches
(O(n23n) and O(26n)).

In 2023, Ma er al. proposed a scheme to apply compression to quantum RGB images
by using the quantum Haar wavelet transform (HQWT) and iterative quantum Fibonacci
transform (IQFT) [45]. They converted multiple RGB images into a unified hybrid image.
This hybrid image then undergoes compression at varying ratios using a measurement
matrix built from Hadamard gates. The compressed image is then encrypted by using the
Generalized Inverse Quantum Fourier Transform (IQFT), resulting in a compacted image
form. The proposed scheme has total computation complexity of O(n3). In the following
year, Wang et al. published a quantum version of autoencoder based on parameterized
quantum circuits for image compression [46]. They combined quantum image processing
with the machine learning, especially the autoencoder to apply image compression on the
quantum images. Ji et al. proposed an image compression and reconstruction algorithm
by leveraging the quantum network (QN) in 2024 [47]. QN is a network structure where
the fundamentals of quantum mechanics are used to transmit and process information.
In their approach, first the image is converted to a quantum state from classical state.
Then this quantum state is used as an input for the quantum compression network. The
measurements of the output state are converted into compressed image which are utilized to
train the QN based on the gradient descent algorithm. Lastly, the simulation of compression
of grayscale images is realized by this quantum algorithm. Haque et al. proposed a
block-wise lossy SCMNEQR (state connection modification novel enhanced quantum
representation) compression scheme for quantum gray-scale images [48]. Their algorithm
was able to minimize the total computational time by 99.66% and 7.36% compared to JPEG
and DCT-EFRQI (Direct Cosine Transform Efficient Flexible Representation of Quantum
Image) approaches, respectively.

4.2. Quantum Image Storage, Representation, Compression, and Retrieval Techniques

In 2011, one of the pioneering works on quantum image processing was published
by Le et al. [16]. A flexible representation of quantum images (FRQI) was proposed in
this paper. Quantum image compression (QIC) aims to decrease the quantum resources
necessary for preparing and reconstructing quantum images by lowering the number of
simple quantum gates needed, which is crucial in both the theoretical and practical realms
of quantum computing, as seen in the FRQI model, where simplifying basic gates such as
controlled rotation gates is critical.
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A way is suggested to combine these gates with identical rotation angles by leveraging
the limited ability of the human visual system to differentiate between numerous colors,
which enables a distinct range of color values for representation. Grouping controlled
rotation operators with the same angles and combining their conditions can greatly decrease
the required number of gates. We can consider an 8 × 8 pixel image as shown in Figure 9
with only two colors: blue and red. This image would need 64 C6(·) controlled-rotation gates
for its initial quantum state preparation. Here the dot (·) in these notations is a placeholder
indicating that the gate can be applied to any arbitrary target gate. Categorizing these gates
into two groups based on color can significantly decrease the total number. The 64 gates
can be simplified to 4 as shown in Figure 10, resulting in a 93.75% reduction, by using
simpler gates such as one C1(·) and two C2(·) gates for the red locations.

Figure 9. Two color 8 × 8 pixel image, 8 blue pixels and 56 red pixels.

Figure 10. Minimized circuit for a two-color 8 × 8 pixel image. Here, X is the Pauli-X gates, θ is the
vector of angles encoding colors (two in this case) and Ry(2θi) is the controlled-rotation gate.

The controlled-rotation gate is given by the following equation:

Ry(2θi) =

(
cos θi −sin θi
sin θi cos θi

)
(36)

A key step in this process involves translating binary strings that represent pixel
positions into Boolean minterms. Each binary digit is treated as a Boolean variable, with
“1” represented by the variable (x) and “0” represented by its negation (x). After organizing
the gates by color, we can condense them by merging the binary strings of each color group
into a unified Boolean expression. This phrase includes all the necessary conditions for the
controlled-rotation gates of that group. An 8-position group in the blue color category as
shown in Figure 11, which would have needed 8 individual gates, can be depicted by a
single term in a simplified Boolean expression. This suggests that replacing the original
eight gates with a single controlled-rotation gate can simplify the quantum circuit and
decrease the quantum resources required for image representation.

319



Computers 2024, 13, 185

 
Figure 11. Boolean expression and its minimized expression for an 8-position group.

The QIC algorithm aims to decrease the number of controlled rotation gates within
color groups by minimizing their Boolean expression, as depicted in Figure 12. The
process begins with identifying places within the group of similar color and concludes with
simplified Boolean expression.

Figure 12. Quantum image compression flow chart.

In 2013, Li et al. proposed a method to store, retrieve and compress images in a
quantum system [49]. More specifically, the authors proposed a compression algorithm
where they achieve a lossless compression ratio of 2.058. In this algorithm, to compress an
image, termed “newImage”, we first determine the number m of unique colors the image
contains. Each color relates to a quantum state from the QSMC set, and these states are lined
up in a quantum queue. The compression procedure involves scanning the “newImage” in
a certain direction as shown in Figure 13, either row-wise starting from the second pixel
of the first row (1,2) or column-wise starting from the second row’s first pixel (2,1). We
record only the initial pixel of each continuous sequence of pixels with identical colors as
we scan. When the scan encounters a pixel of a different color, it stops to record the color
and sequence length before continuing from the last pixel of the uniform sequence. s is the
length of the longest sequence of pixels with matching color. n is the number of pixels in
the compressed “newImage”.

 
Figure 13. Scanning a 3-color 8 × 8 image by rows (indicated by the purple line) starting from the
second pixel of the first row (1,2), and by columns (indicated by the yellow line) starting from the
second row’s first pixel (2,1).
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Next, a bijective function is created as:

F4 : posNum � γ, (37)

where posNum = {1, 2, . . ., m, m + 1, m + s} and γ = {γ1, γ2, . . ., γm+s}(γi = π(i−1)
2(m+s−1) , i ε {1, 2,

. . ., m + s}). Ry(2γi), which is rotation operator given by Equation (38), converts state |0〉 to
m+s states.

Ry(2γi) =

[
cos γi −sin γi
sin γi cos γi

]
, (i = 1, 2, . . . , m + s) (38)

{ |ωi〉 = cos γi|0〉+ sin γi|1〉, iε{1, 2, . . . , m}
|xi〉 = cos γm+i|0〉+ sin γm+i|1〉, iε{1, 2, . . . , m} (39)

Here
∣∣ω j
〉

is the jth position of queue Q1 and |xi〉 represents an integer i.
∣∣ψi
〉

represents the ith pixel and can be defined as:

∣∣ψi
〉
=

⎧⎪⎪⎨
⎪⎪⎩
∣∣ω j
〉⊗ |ux〉, i = 1, |ux〉εQSNC, xε{1, 2, . . . , N}∣∣ω j
〉⊗ ∣∣uy

〉
, i = n,

∣∣uy
〉
εQSNC, yε{1, 2, . . . , N}∣∣ω j

〉⊗ |xk〉, iε{2, 3, . . . , n− 1}, k ≥ 2∣∣ω j
〉
, iε{2, 3, . . . , n− 1}, k = 1

(40)

where ux is the coordinate of the first pixel and uy is the coordinate of the last pixel of the
newImage, k represents consecutive pixels of same color depending on the direction of
the scanning. After that

∣∣ψi
〉

is stored in another quantum queue Q2 and the process is
repeated. Suppose three colors in Figure 13 are represented, respectively, by |υr〉, |υg〉,
|υb〉 and saved in Q1. Q2 has five states as follows:

∣∣ψ1
〉
= |ω1〉⊗|u1〉,

∣∣ψ2
〉
= |ω1〉⊗|x8〉,∣∣ψ3

〉
= |ω2〉,

∣∣ψ4
〉
= |ω3〉⊗|x53〉,

∣∣ψ5
〉
= |ω3〉⊗|u120〉. The compressed image stored in Q1

and Q2 is shown in Figure 14.

 
Figure 14. The compressed image stored in Q1 and Q2.

Another milestone in quantum image processing was the NEQR model [17] proposed
in 2013 by Zhang et al., in which 15X compression ratio on quantum images was achieved.
While FRQI relies on one qubit per pixel to store grayscale data, which restricts compression
to areas with consistent grayscale values, NEQR stores grayscale data by distributing it
among a series of qubits, enabling optimization of each qubit separately. By employing
Boolean expression minimization, NEQR can obtain higher compression ratios for quantum
images by simplifying the preparation of each qubit individually. An operation set Φ
consists of all the quantum operations of quantum image preparation can be expressed as

φ =
2n−1⋃
Y=0

2n−1⋃
X=0

q−1⋃
i=0

φi
YX , φi

YX ∈ {I, 2n−CNOT} (41)
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where φi
YX represents the quantum operation for the ith qubit. These operations can be

categorized into q groups as shown in the following equation:

φ =
2n−1⋃
Y=0

2n−1⋃
X=0

q−1⋃
i=0

φi
YX =

q−1⋃
i=0

(
2n−1⋃
Y=0

2n−1⋃
X=0

φi
YX

)
=

q−1⋃
i=0

φi (42)

Depending on the value of Ci
YX, the style of the operation φi

YX will change such that,
when Ci

YX = 0, φi
YX will be the identity gate I. Otherwise, it will be 2n − CNOT qubit gate.

This will invert the ith qubits in the color qubit sequence when the pixel position is (Y, X).
Thus φ can be written as:

φ =
2n−1⋃
Y=0

2n−1⋃
X=0

φi
YX

φ =

⎛
⎝2n−1⋃

Y=0

2n−1⋃
X=0, Ci

YX=0
I

⎞
⎠ ∪

⎛
⎝2n−1⋃

Y=0

2n−1⋃
X=0, Ci

YX=1
(2n− CNOT)YX

⎞
⎠ (43)

The identity operation will not affect the quantum state; hence, the operation can be ig-
nored from the first part in the ith group of quantum operation. The espresso algorithm [50]
which is used in the second part of the operation, compresses the control information of
controlled not gates. The espresso algorithm is a program use to reduce the complexity of
digital logic gate circuits by using heuristic and specific algorithms.

2n−1⋃
Y=0

2n−1⋃
X=0, Ci

YX=1

YX
→

Espresso
⋃
Ki

Ki (44)

The expression builds a new quantum controlled-not gates
⋃
Ki

Ki − CNOT for the new

ith group φ′i by providing the equivalent and compact control information sets
⋃
Ki

Ki. So,

the new circuit will be given by,

φ′ =
q−1⋃
i=0

φ′i =
q−1⋃
i=0

⋃
Ki

Ki − CNOT (45)

Figure 15 shows the workflow for image compression in the NEQR algorithm.

 
Figure 15. Workflow of image compression in the NEQR algorithm.

A study from 2014 shows the multidimensional color image compression based on
quantum amplitudes and phases [25]. Both the lossless and lossy quantum image com-
pression algorithms were developed. About 72.6 compression ratio was achieved by this
algorithm. For lossless compression, the process is divided into two steps. The first step is
dimensionality reduction and sorting algorithm for a k-dimensional color image (called
DRS). In the second step, the lossless compression algorithm was applied for quantum
images (LCQI). For lossy image compression Quantum Fourier Transform (QFT) was used
to generate a NASS (n-qubit normal arbitrary superposition state) state |ψA〉. About 1.4
quantum compression ratio was achieved in this case. They also applied QWT (Quan-
tum Wavelet Transform) instead of QFT and achieved 1.5 quantum compression ratio.
In 2022, Amankwah et al. published a paper that introduced quantum compression for
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N-dimensional images [51]. They applied their algorithm to prepare an FRQI state, which
reduced the number of necessary gates by up to 90%, without lowering the image qual-
ity. Haque et al. published a peper on quantum image representation and compression
technique using DCT-EFRQI (Direct Cosine Transform Efficient Flexible Representation
of Quantum Image) in 2023 [52]. Both experimental and theoretical results showed that
the proposed DCT-EFRQI had better compression ratio compared with EFRQI (Efficient
Flexible Representation of Quantum Image). For example, for the “cameraman” image,
the proposed algorithm had compression ratio of 8.4543:1 compared to 2.5864:1 for EFRQI.
The work showed that DCT-EFRQI provided twice as much compression on medium-size
images (512 × 512) than on large-size images (1024 × 1024).

5. Conclusions

Quantum image compression applies the laws of quantum mechanics to improve the
effectiveness of image data reduction and compression. It utilizes qubits to encode image
data by taking advantage of superposition and entanglement to process and compress
images in a way that the classical algorithms cannot match. By leveraging quantum paral-
lelism, these methods can theoretically achieve compression tasks at speeds unattainable by
classical computers, with potentially higher compression ratios and lower losses of quality.
Moreover, the inherent properties of quantum systems, like the ability to handle vast
amounts of data simultaneously, make quantum image compression particularly suited
for high-resolution and high-dimensional imaging applications, such as medical imaging,
satellite imagery, and large-scale video data. However, the practical application of quantum
image compression is still in its nascent stages. The field faces substantial challenges that
stem primarily from the limitations of current quantum technology. These include the
instability of quantum states (decoherence), the high error rates of quantum operations, the
complexity of quantum circuit design, and the need for robust quantum error correction
methods. We believe that rapid advances in quantum systems and hardware in the coming
years will help address these constraints. Moreover, there are plenty of opportunities to
conduct further research on quantum algorithms that mimic the classical transform coding
methods like Fourier transforms or wavelet transforms, where we utilize the properties of
quantum bits to perform quantum-specific transformations on quantum states representing
images. This could lead to more efficient transformations, reducing the time and resources
needed for encoding and decoding images. Moreover, if quantum entanglement can be
utilized to compress correlated regions within an image by entangling qubits that represent
similar or related image features (like colors or edges), it might be possible to reduce the
overall number of qubits needed to represent an image, effectively compressing the image
data. Furthermore, quantum machine learning models can be designed to learn optimal
compression strategies based on the image content. These models could identify patterns
and features in image data that classical algorithms might overlook and use these insights
to compress images more effectively. Also, a hybrid algorithm can be developed where the
initial stages of image processing and feature extraction are performed using classical tech-
niques, and the heavy lifting of actual data compression is conducted on quantum hardware.
This could make quantum image compression more practical and accessible with current
technology. But it is needless to say, the development of scalable quantum computers that
can handle real-world image compression tasks remains a significant hurdle. Work is still
sparse on the practical feasibility in the implementation of quantum image compression
algorithms on physical quantum computers, where a huge of amount of quantum gates will
present challenges on achieving fidelity by dealing with noise and decoherence [53]. Ac-
cording to IBM’s quantum road map “https://www.ibm.com/roadmaps/quantum/2024/
(accessed on 14 July 2024)”, in about ten years or so, quantum computers will be able
to support 2000 qubits working in a distributed 100,000-qubit machine, with distributed
software tools that enable noise-free quantum computations working seamlessly with
classical computations. While there seems to be a long way to go before we can attain
the full advantage and potential of the many algorithms we have discussed above, the
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future of quantum image compression is bright as we are entering into the new age of
quantum-centric computing.
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