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Preface

This reprint gathers recent advances in fractional differential equations and nonlocal modeling

across discrete and continuous settings, united by a common theme: memory and long-range effects

as first-class citizens in analysis, computation, and applications. The works here develop new objects

(from fractional sequences to nonlocal Schrödinger dynamics), prove well-posedness under weak

assumptions, and design numerics capable of honoring history dependence.

We begin at the discrete–analytic interface. One chapter introduces fractional Pell and Pell–Lucas

numbers via Grünwald–Letnikov operators of various orders. Closed forms, characteristic equations,

and a fractional silver ratio emerge, alongside numerical schemes, tiling interpretations, and a

MATLAB implementation—illustrating how fractional “long memory” enriches classical integer

sequences and their geometry.

From arithmetic to epidemiology, another chapter proposes a fractional SIR model with a

power-Caputo fractional derivative and density-dependent recovery, unifying Caputo–Fabrizio and

Atangana–Baleanu cases. The authors establish positivity, boundedness, and uniqueness (via a

recursive sequence and Banach’s fixed point theorem), derive the basic reproduction number, and

conduct sensitivity and stability analyses. Calibrated to COVID-19 data, simulations show how the

fractional order controls peak timing and severity, underscoring memory and healthcare capacity as

key drivers of epidemic trajectories.

A medical modeling study develops a short-memory, interval-based framework for human

liver disease, allowing model structure and derivative type to change across subintervals (classical

vs. fractal–fractional order). Existence results follow from Banach and Krasnosel’skii fixed-point

theorems; Hyers–Ulam stability is analyzed; and an extended Adams–Bashforth–Moulton scheme

provides visual simulations across fractional orders.

On the discrete fractional side, a chapter treats nabla difference equations with two

Riemann–Liouville-type orders. The authors build the related Green’s function, split the theory

into two regimes of orders, and—using Guo–Krasnosel’skii—prove conditions guaranteeing positive

solutions. Worked examples highlight the novelty and suggest directions for further study.

Public-health dynamics returns in a chapter modeling smoking with five interacting classes

(susceptible smokers, ingestion, unusual, regular, ex-smokers) and four optimal controls (education,

gum, anti-nicotine drugs, public restrictions). Using Bernoulli-wavelet operational matrices and

ABM time stepping, the work illustrates how fractional-order analysis exposes hidden couplings and

guides strategy design for reducing smoking prevalence.

Signal processing and nonlinear dynamics meet in a study of a fractional-order multi-wing

chaotic system for weak-signal detection. By scanning the fractional order, the authors chart

transitions between double- and four-wing chaos (via phase/bifurcation/complexity diagrams),

then exploit these regimes: a detection array leverages noise robustness to recover amplitudes

(with deep-learning image classification of wing counts), while MUSIC with chaotic synchronization

estimates frequencies—linking fractional calculus, chaos theory, and modern learning.

Spectral theory appears twice. One chapter analyzes nonlocal fractional Sturm–Liouville

problems, identifying eigenvalue properties under varied boundary conditions, including geometric

multiplicity for non-Dirichlet cases and continuous dependence on the potential for Dirichlet data.

Another establishes existence and uniqueness for mixed Riemann–Liouville/Caputo differential

equations with measurable coefficients and sign-indefinite leading terms, both for initial-value and

two-point boundary problems; notably, solutions are square-integrable on finite intervals under

ix



transparent fractional-order conditions.

Another chapter looks at random walks on a lattice (a grid) and develops a family of “fractional”

operators that blend the identity with the random-walk step in a graded way. The authors pin down

exactly when these operators exist, can be inverted, and have square-summable kernels (so they

behave well on the grid); work out their long-distance behavior using classical limit theorems for

random walks; build and analyze random fields on the lattice that are driven by white noise and

filtered by those fractional operators, including their large-scale limits; and illustrate the theory with

concrete cases that act like fractional versions of the lattice Laplacian and the lattice heat operator.

Finally, quantum transport on constrained geometries is addressed through a generalized

Schrödinger equation on a comb-like structure with nonlocal and fractional potentials in time and

space. Using Green’s functions, the authors solve four scenarios—time-nonlocal, space-nonlocal,

space–time memory kernels, and fractional spatial derivatives—and uncover distinct spreading

regimes shaped by the type of nonlocality and fractional operator, broadening the theory of quantum

dynamics on backbone-like media.

Taken together, these contributions demonstrate how fractional operators, nonlocal interactions,

and discrete analogs furnish a unified language for memory, heterogeneity, and scale

interaction—and how careful analysis (fixed-point theory, Green’s functions, spectral methods) can

sit comfortably alongside efficient numerics (ABM schemes, wavelets) and data-facing applications

(epidemics, physiology, control, detection). The result is a toolkit equal parts rigorous and practical,

ready to inform the next wave of models where yesterday’s state still shapes today.

Angelo B. Mingarelli, Leila Gholizadeh Zivlaei, and Mohammad Dehghan

Guest Editors
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Abstract: In this paper, we provide existence and uniqueness results for the initial value problems
associated with mixed Riemann–Liouville/Caputo differential equations in the real domain. We
show that, under appropriate conditions in a fractional order, solutions are always square-integrable
on the finite interval under consideration. The results are valid for equations that have sign-indefinite
leading terms and measurable coefficients. Existence and uniqueness theorem results are also
provided for two-point boundary value problems in a closed interval.

Keywords: Riemann–Liouville; Caputo; Sturm–Liouville; fractional; existence; uniqueness

MSC: 34B24; 34A12; 26A33

1. Introduction

There has been keen interest of late in the area of fractional differential equations
that are defined in terms of a combination of a left- and/or right-Riemann and/or Caputo
differential operators. The reason for this is that it appears as if that, when the operators
are defined appropriately, they may be a complete analog of the Sturm–Liouville theory,
which is a fractional theory that generalizes equations of the form

(p(x)y′)′ − q(x)y = 0, x ∈ [a, b], (1)

as well as the eigenvalue problems associated with them such as

(p(x)y′)′ + (λw(x)− q(x))y = 0, x ∈ [a, b]

where, p, q, and w are real, or are complex-valued and continuous (although these condi-
tions can be relaxed tremendously (see below and e.g., [1])).

In this paper, we consider the basic existence and uniqueness questions for equations
of the form

Dα
b (pDα

a y)(x) + q(x) y(x) = 0, (2)

where 0 < α < 1, Dα
b is a right-Caputo differential operator and Dα

a is a left-Riemann–Liouville
differential operator (see Section 2). The advantage of this formulation is that (2) includes
(1) upon taking the limit as α → 1.

The recent results dealing with the existence and uniqueness of solutions of some
fractional differential equations (but not including those considered here) can be found
in [2]. Equations of the form (2) have been considered previously in recent papers such
as [3–5] (and the references therein) under the assumption that these solutions actually exist
and are unique in some suitable spaces. In [6], the question of the existence of eigenvalues
and an expansion theorem was considered, whereas the variational characterization of the
eigenvalues was given in the papers [7,8]. In [9], the new idea of Fuzzy-Graph-Kannan
contractions were used to estimate the solutions of fractional equations.

Fractal Fract. 2024, 8, 148. https://doi.org/10.3390/fractalfract8030148 https://www.mdpi.com/journal/fractalfract1
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Applications of fractional differential equations are now widespread. Among them,
we cite some current ones such as [10–13] in a list that is far from exhaustive. We encourage
the readers to look at these and the references therein for more insight.

To the best of our knowledge, the question of the actual existence and uniqueness of
solutions to initial value problems associated with (2), let alone such problems where p(x)
is sign-indefinite, has not yet been considered. This is our main purpose herein.

Indeed, in this paper, we relax the continuity and sign conditions on p, q in (2) to a
mere Lebesgue measurability over [a, b], along with other integral conditions. In addition,
we show that we retain the existence and uniqueness of continuous (specifically absolutely
continuous) solutions over [a, b]. This is the main contribution of this paper, i.e., to address
the fact that the existence and uniqueness of its solutions in appropriate spaces has been
seemingly overlooked by authors who have considered equations of the form (2). In so
doing this, we fill the gaps in regarding the presentations of such papers outlined in the
references below where solutions are assumed to exist.

Our methods make use of the fixed-point theorem of Banach–Cacciopoli [14,15],
(which is sometimes simply called the Banach fixed-point theorem). This latter result is
a generalization of the classical sequence of Picard iterations in the study of solutions of
differential equations. Its advantage lies in the fact that, in a normed space, the iterates,
Tn, of the contraction map T itself must satisfy the relation ||Tnx − xo|| < kn||x − xo||,
where xo is the fixed point in question (i.e., Txo = xo ) and k < 1 is the contraction constant.
As a result of this exponential decay in the error as the number of iterations increases,
we can obtain excellent approximations to the solutions of (2) themselves. Insofar as
there are numerical approximations to the solutions of fractional differential equations, we
cite [16,17] among the current ones.

2. Preliminaries

For the sake of convenience, we adopt the following notation. In the sequel, Caputo
(resp. Riemann–Liouville) derivatives will be denoted by boldface (i.e., upper case) letters,
while the ordinary derivative has only superscript in the form of an integer. For the sake of
brevity, we shall omit the obvious ± subscripts in expressions such I1−α

a+ y(x), which will be
written as I1−α

a y(x), and Dα
b−y(x) will be written as Dα

b y(x), etc. (this includes expressions
involving Caputo derivatives). The following abbreviations will also be used from time
to time: (pDα

a y)(x) for p(x)Dα
a y(x) if p is continuous but otherwise it has a meaning of its

own (as the quantity will still exist even if the coefficients are merely measurable); and
Iα
b (qy)(x) for Iα

b (q(x)y(x)). In addition, Caputo derivatives will be written with a bold face
D. Thus, Dα

a and Dα
b denote the left- and right-Caputo derivatives, respectively, while Dα

a
and Dα

b will refer to the left- and right-Riemann–Liouville derivatives. Ordinary derivatives
of order n and j will be denoted by Dn and Dj, respectively, etc.

We recall some of the definitions from fractional calculus and refer the reader to
standard texts such as [18–20] for further details.

Definition 1. The left- and the right- Riemann–Liouville fractional integrals Iα
a and Iα

b of the order
α ∈ R+ are defined by

Iα
a f (t) :=

1
Γ(α)

∫ t

a

f (s)
(t− s)1−α

ds, t ∈ (a, b], (3)

and

Iα
b f (t) :=

1
Γ(α)

∫ b

t

f (s)
(s− t)1−α

ds, t ∈ [a, b), (4)

respectively, where Γ(α) is the usual Gamma function and I0
a ( f ) = f , I−n

a ( f ) = f (n) is the
ordinary nth derivative of f [21]. The following properties may be found in any textbook on
fractional calculus, see e.g., [18,20].

2
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Definition 2. The left- and the right-Caputo fractional derivatives Dα
a and Dα

b are defined by

Dα
a f (t) := I1−α

a ◦ D f (t) =
1

Γ(1− α)

∫ t

a

f ′(s)
(t− s)α

ds, t > a, (5)

and

Dα
b f (t) := −I1−α

b ◦ D f (t) = − 1
Γ(1− α)

∫ b

t

f ′(s)
(s− t)α

ds, t < b, (6)

respectively, where f is assumed to be differentiable and that the integrals exist.

Definition 3. Similarly, the left- and the right-Riemann–Liouville fractional derivatives Dα
a and

Dα
b are defined by

Dα
a f (t) := D ◦ I1−α

a f (t) =
1

Γ(1− α)

d
dt

∫ t

a

f (s)
(t− s)α

ds, t > a, (7)

and

Dα
b f (t) := −D ◦ I1−α

b f (t) = − 1
Γ(1− α)

d
dt

∫ b

t

f (s)
(s− t)α

ds, t < b, (8)

respectively, where f is assumed to be differentiable and that the integrals exist.

Property 1. If y(t) ∈ L1[a, b] and I1−α
a y, I1−α

b y ∈ AC[a, b], then

Iα
a Dα

a y(t) = y(t)− (t− a)α−1

Γ(α)
I1−α
a y(a),

Iα
b Dα

b y(t) = y(t)− (b− t)α−1

Γ(α)
I1−α
b y(b).

Property 2 (See [18], p. 71).

Dα
a

(
(x − a)β

)
=

{
0, if α− β− 1 ∈ N = {0, 1, . . .},

Γ(β+1)
Γ(β−α+1) (x − a)β−α, otherwise.

Property 3. If y(t) ∈ AC[a, b] and 0 < α ≤ 1, then

Iα
a Dα

a y(t) = y(t)− y(a),

Iα
b Dα

b y(t) = y(t)− y(b).

Property 4 ([20], p. 44, [18], p. 77). For 0 < α < 1 and f ∈ L1[a, b], we have

Dα
a Iα

a f (t) = f (t), and, Dα
b Iα

b f (t) = f (t).

Property 5. The semi-group property holds, i.e., for any α > 0, β, we have

Iα
a Iβ

a f (t) = Iα+β
a f (t), D(Iα+1 f )(t) = Iα f (t),

are the case whenever all quantities are defined.

Property 6 ([18], p. 71, Property 2.1). For α, β > 0 there holds

Iα
a ((t− a)β−1)(x) =

Γ(β)

Γ(α + β)
(x − a)α+β−1.

3
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3. Existence and Uniqueness

In this section, we derive an integral equation that will be used later to prove the
existence and uniqueness of solutions to (9) and (10) as follows:

Dα
b (pDα

a y)(x) + q(x) y(x) = 0, (9)

which is subject to a set of conditions of the form

I1−α
a y(a) = K1 and given (pDα

a y)(a) = K2, (10)

where the Ki are the constants, either real or complex. This is relevant to the case where
p(x) = 1, q(x) = 0 on [a, b] was considered, in part, in [3]. The analysis in the remaining
pages will show that there are two types of solutions. Specifically, solutions that are
continuous in [a, b] if I1−α

a y(a) = 0, and are—in actuality—absolutely continuous and so
are in L2[a, b], as well as those solutions that are in L2[a, b] and are continuous on (a, b], if
I1−α
a y(a) �= 0. In either case, the solutions are always in L2[a, b], and so in L1[a, b], regardless

of the value of the initial condition I1−α
a y(a).

Proceeding formally from (9) and applying Iα
b to both sides (see Property 3), we find

(pDα
a y)(x)− (pDα

a y)(b) + Iα
b (qy)(x) = 0, (11)

i.e.,

Dα
a y(x)− 1

p(x)
(pDα

a y)(b) +
1

p(x)
Iα
b (qy)(x) = 0. (12)

Now, by applying Iα
a to both sides of (12) and using Property 1 we obtain the general

integral equation

y(x) =
(x − a)α−1

Γ(α)
I1−α
a y(a) + Iα

a

(
1
p

)
(x)(pDα

a y)(b)

−Iα
a

(
1
p

Iα
b (qy)

)
(x).

(13)

The relationship between (pDα
a y)(a) and (pDα

a y)(b) is given by (11), which is evalu-
ated at x = a, i.e.,

K2 = (pDα
a y)(b)− 1

Γ(α)

∫ b

a

q(s) y(s)
(s− a)1−α

ds dt.

Thus, any solution of the initial value problem (9) and (10) must satisfy the equation

y(x) = K1
(x − a)α−1

Γ(α)
+ K2 Iα

a

(
1
p

)
(x) + Iα

b (qy)(a) Iα
a

(
1
p

)
(x)

−Iα
a

(
1
p

Iα
b (qy)

)
(x).

(14)

When dealing with (14), there will be two separate cases here, namely one where
K1 = I1−α

a y(a) = 0, i.e., a homogeneous Dirichlet type condition is set at x = a, and the
other where I1−α

a y(a) �= 0. Each case leads to different types of solutions (more on this in
the following sections).

3.1. Solutions in C[a, b]

Let p, q be complex-valued Lebesgue measurable functions on [a, b] and let 0 < α < 1.
Here, we show that continuous solutions exist and are unique under various assumptions.

We will always assume that, for every α, 0 < α < 1, we have

c1 ≡ sup
x∈[a,b]

Iα
a

(
1
|p|

)
(x) < ∞, (15)

4
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and
c2 ≡ sup

x∈[a,b]
Iα
b (|q|)(x) < ∞. (16)

Observe that there are no sign restrictions on the coefficients p, q other than Lebesgue
measurability and the integrability conditions (15) and (16). As a result, we will obtain that
solutions of (9) and (10), which are not only continuous, but are also absolutely continuous
on [a, b]. The condition that K1 = 0 is necessary in order that the solutions be continuous at
x = a. In the next section, we will review the case where K1 �= 0.

Theorem 1. Let p, q be complex-valued and satisfy (15) and (16), as well as |p(x)| < ∞ a.e. on
[a, b]. If

2c1c2 < 1, (17)

then the initial value problem (9) and (10) with K1 = 0 and K2 is arbitrary, has a unique solution
of y ∈ AC[a, b].

Proof. Consider the complete normed space (X, || · ||∞) of the real valued continuous
functions that are defined on [a, b]. Note that K1 = I1−α

a y(a) = 0 is in force in (14). We can
define a map T on X by setting

Ty(x) = K2 Iα
a

(
1
p

)
(x) + Iα

b (qy)(a) Iα
a

(
1
p

)
(x)− Iα

a

(
1
p

Iα
b (qy)

)
(x). (18)

By (15), the first term in (18) is the integral of an absolutely integrable function and so
it is, itself, absolutely continuous. On the other hand, since y ∈ X and q satisfies (16), the
second term is also finite and absolutely continuous. Finally, since y ∈ X and there holds
(16), |Iα

b (qy)(x)| ≤ ||y||∞ c2 over [a, b] so that this, combined with (15), shows that the third
term is also absolutely continuous in [a, b] and is thus continuous. Therefore, TX ⊂ X.

Next, we show that T is a contraction. Observe that

|Ty(x)− Tz(x)| ≤ Iα
b (|q(y− z)|)(a)Iα

a

(
1
|p|

)
(x)

+ Iα
a

(
1
|p| Iα

b (|q||y− z|)
)
(x)

≡ A + B. (19)

The first term, A, in (19), is estimated using (15) and (16), i.e.,

A ≤ sup
x∈[a,b]

Iα
b (|q|)(x) ||y− z||∞ Iα

a

(
1
|p|

)
(x) ≤ c1 c2 ||y− z||∞. (20)

On the other hand, the second term, B, satisfies

B ≤ ||y− z||∞ Iα
a

(
1
|p| Iα

b (|q|)
)
(x) ≤ c1 c2 ||y− z||∞. (21)

Through combining (19) with (20) and (21), we obtain

‖Ty− Tz‖∞ < 2 c1 c2 ‖y− z‖∞, (22)

such that T is a contraction on X provided there holds (17). The fixed-point theorem of
Banach–Cacciopoli now implies the existence of a unique fixed-point y ∈ X that satisfies

y(x) = K2 Iα
a

(
1
p

)
(x) + Iα

b (qy)(a) Iα
a

(
1
p

)
(x)− Iα

a

(
1
p

Iα
b (qy)

)
(x). (23)

5
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As inferred from above, since all integrands appearing in (23) are in L1(a, b), it follows
that, in fact, y ∈ AC[a, b]. Finally, we can observe that both initial conditions in (10) are
automatically satisfied (once the various properties in Section 2 are used).

Remark 1. The condition (17) is not sharp and can be readily verified in the case where α = 1
(the theorem is clearly also true in that case). By setting p ≡ 1, q ≡ 1, and [a, b] = [0, 1], we can
obtain c1 = c2 = b− a, such that (17) is violated, yet the classical problem y′′ + y = 0, y(a) = 0,
y′(a) = K2 always has a solution that exists and is unique on [0, 1]. In this example, our theorem
only gives the existence and uniqueness of solutions on [0, b], where b <

√
2/2. Closed-form

solutions in the case where α < 1 are generally difficult to find.

Corollary 1. Let p, q ∈ C[a, b] and p(x) > 0 on [a, b]. If

2 (b− a)2α

Γ(α + 1)2 ||1/p||∞ ||q||∞ < 1, (24)

then the initial value problem (9) and (10) with K1 = 0 and K2 is arbitrary, has a unique solution
y ∈ AC[a, b].

Proof. Note that

c1 ≤ ||1/p||∞ sup
x∈[a,b]

Iα
a (1)(x) ≤ 1

Γ(α)
||1/p||∞ sup

x∈[a,b]

(x − a)α

α
≤ ||1/p||∞ (b− a)α

Γ(α + 1)
.

Similarly,

c2 ≤ ||q||∞ (b− a)α

Γ(α + 1)
.

Together, these two inequalities imply (17) on account of (24). The above result then
follows.

Corollary 2. In addition to the conditions on p, q in Theorem 1, let f be measurable, complex-valued,
and for every 0 < α < 1 satisfy

sup
x∈[a,b]

Iα
b (| f |)(x) < ∞. (25)

Then, the initial value problem (9) and (10) (with K1 = 0 and K2 being arbitrary) for the
forced equation

Dα
b (pDα

a y)(x) + q(x) y(x) = f (x) (26)

has a unique solution in AC[a, b].

Proof. The map T defined by

Ty(x) = K2 Iα
a

(
1
p

)
(x) + Iα

b (qy)(a) Iα
a

(
1
p

)
(x)

−Iα
a

(
1
p

Iα
b (qy)

)
(x) + Iα

a

(
1
p

Iα
b ( f )

)
(x)

(27)

is a contraction on X as it is easily verified by the method of Theorem 1 and TX ⊂ X. The
result follows by the contraction mapping principle.

However, the next result, Theorem 2 below, is classical in the case of ordinary deriva-
tives. It is unusual in the case we consider our differential operators as a composition of
left-Riemann–Liouville and right-Caputo derivatives. Thus, initial conditions are normally
at either the left- or right-endpoint of the interval under consideration, i.e., not in the
interior as they are here. Still, we have a uniqueness result.

6
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Theorem 2. Let p, q satisfy the conditions in Theorem 1. In addition, let x0 ∈ (a, b] be

Iα
a

(
1
p

)
(x0) �= 0,

as well as assume that (17) is satisfied. Then, the only solution of the initial value problem (9)
satisfying

I1−α
a y(x0) = 0, (pDα

a y)(x0) = 0, (28)

that is continuous on [a, b] is the trivial solution.

Proof. From Theorem 1, a solution that is continuous on [a, b] must satisfy I1−α
a y(a) = 0.

As a result, there holds (18), where K2 = (pDα
a y)(a). By substituting the first of (28) and

using the semi-group property, i.e., Property 5, we obtain the form

y(x) = c Iα
a

(
1
p

)
(x)− Iα

a

(
1
p

Iα
b (qy)

)
(x), (29)

where

c =
I1
a

(
1
p Iα

b (qy)
)
(x0)

Iα
a

(
1
p

)
(x0)

.

By applying Property 4 to (29), we obtain (pDα
a y)(x) = c − Iα

b (qy)(x), such that the
second of (28) implies that c = Iα

b (qy)(x0). Thus, the solution of (9) that satisfies both of
(28) must look like the solution of the integral equation

y(x) = Iα
b (qy)(x0)Iα

a

(
1
p

)
(x)− Iα

a

(
1
p

Iα
b (qy)

)
(x). (30)

We now show that (30) can only have the zero solution as a continuous solution. This,
however, is similar to the proof of Theorem 1 above with minor revisions, which we now
describe. On the space (C[a, b], || · ||∞), we define the map

Ty(x) = Iα
b (qy)(x0)Iα

a

(
1
p

)
(x)− Iα

a

(
1
p

Iα
b (qy)

)
(x).

As in the proof of Theorem 1, TX ⊂ X, and we also note that

Ty(x)− Tz(x) = Iα
b (q(y− z))(x0)Iα

a

(
1
p

)
(x)− Iα

a

(
1
p

Iα
b (q(y− z)

)
(x),

such that

|Ty(x)− Tz(x)| ≤ Iα
b (|q(y− z)|)(x0)Iα

a

(
1
|p|

)
(x) + Iα

a

(
1
|p| Iα

b (|q(y− z)|
)
(x)

≤ ||y− z||∞
(

Iα
b (|q|)(x0)|Iα

a

(
1
|p|

)
(x) + Iα

a

(
1
|p| Iα

b (|q|)
)
(x)

)
≤ ||y− z||∞ (c2 c1 + c2 c1)

= 2 c1 c2 ||y− z||∞. (31)

Thus, T is a contraction on account of (17). The above result then follows.

3.2. Solutions in L2[a, b]

We now consider the initial value problem for (9) where K1 �= 0. Of course, in this
case, there is a singularity at x = a, thus we can only expect continuity on (a, b], but we
will show that nevertheless solutions exist and are unique when considered in the Hilbert
space, L2[a, b].

7
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Theorem 3. Let p, q be measurable complex-valued functions on [a, b], |p(x)| < ∞ a.e., and let
1
2 < α < 1. Assume further that, for every α ∈ (1/2, 1), we have

c4 ≡ sup
t∈[a,b]

∫ b

t

q2(s)
(s− t)2−2α

ds < ∞, (32)

c5 ≡ sup
x∈[a,b]

Iα
a

(
1
|p|

)
(x) < ∞, (33)

and
2c5

√
c4
√

b− a
Γ(α)

< 1. (34)

Then, the initial value problem (9) with

I1−α
a y(a) = K1 �= 0 and (pDα

a y)(a) = K2 (35)

has a unique solution y ∈ L2[a, b]. In addition, the solutions are locally absolutely continuous.

Proof. Note that since 1
2 < α < 1, the Riemann–Liouville integrals Iα

a , Iα
b of L2-functions

exist by the Schwarz inequality; therefore, they are absolutely continuous functions of the
variable in question.

On the complete normed vector space, X =
(

L2[a, b], || · ||2
)
, for K1 �= 0, and where

|| · ||2 is the usual norm, define a map T on X by (see (14))

Ty(x) = K1
(x − a)α−1

Γ(α)
+ K2 Iα

a

(
1
p

)
(x) + Iα

b (qy)(a) Iα
a

(
1
p

)
(x)

−Iα
a

(
1
p

Iα
b (qy)

)
(x).

(36)

Observe that the first term in (36) is L2[a, b] since α > 1/2. The second term is
square-integrable by hypothesis (33), while the third term in (36) is also square-integrable
by a combination of (32) and (33). The square integrability of the last term in (36) is a
consequence of the hypotheses and the Schwarz inequality. Specifically, for y ∈ X, we have∣∣∣∣Iα

a

(
1
p

Iα
b (qy)

)
(x)

∣∣∣∣ ≤ Iα
a

(
1
|p| Iα

b (|qy|)
)
(x)

=
1

Γ2(α)

∫ x

a

1/|p(t)|
(x − t)1−α

(∫ b

t

|q(s)| |y(s)|
(s− t)1−α

ds
)

dt

≤ 1
Γ2(α)

∫ x

a

1/|p(t)|
(x − t)1−α

(∫ b

t

|q(s)|2
(s− t)2−2α

ds
)1/2

×
(∫ b

t
|y(s)|2 ds

)1/2

dt

≤ 1
Γ(α)

√
c4 ||y||2 Iα

a

(
1
|p|

)
(x)

≤ c5

Γ(α)
√

c4 ||y||2. (37)

Since the right side of (37) is independent of x and the interval [a, b] is finite, we obtain
that the fourth term in (36) is also in L2[a, b]. There follows that TX ⊂ X.

8
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We now show that T is a contraction on X. For y, z ∈ X, we have, as before (see (36))

|Ty(x)− Tz(x)| ≤ Iα
b (|q(y− z)|)(a) Iα

a

(
1
|p|

)
(x) + Iα

a

(
1
|p| Iα

b (|q(y− z)|)
)
(x)

≡ A + B. (38)

We estimated A and B separately. (Recall that the norm under consideration is the
L2[a, b]-norm.) Thus (see the calculation leading to (37)), we have

A = Iα
a

(
1
|p|

)
(x) Iα

b (|q||y− z|)(a)

=

(
1

Γ(α)

∫ x

a

1/|p(s)|
(x − s)1−α

ds
)(

1
Γ(α)

∫ b

a

|q(s)| |y(s)− z(s)|
(s− a)1−α

ds
)

≤ c5

Γ(α)

∫ b

a

|q(s)| |y(s)− z(s)|
(s− a)1−α

ds,

≤ c5
√

c4

Γ(α)
||y− z||2. (39)

The estimate for B was obtained exactly as in the details leading to (37) with y replaced
by y− z. Hence,

B ≤ c5
√

c4

Γ(α)
||y− z||2. (40)

By combining (39) and (40), we obtain

|Ty(x)− Tz(x)| ≤ 2c5
√

c4

Γ(α)
||y− z||2

i.e.,

||Ty− Tz||2 ≤ 2c5
√

c4
√

b− a
Γ(α)

||y− z||2. (41)

As such, the result eventually follows from (34) as T is a contraction on X.

Corollary 3. Let p, q ∈ C[ a, b], p(x) > 0 for all x ∈ [a, b], and let 1/2 < α < 1. If

2
||1/p||∞||q||∞
Γ(α)Γ(α + 1)

(b− a)2α

√
2α− 1

< 1, (42)

then the initial value problem (9) subject to

I1−α
a y(a) = K1 �= 0 and (pDα

a y)(a) = K2, (43)

has a unique solution y ∈ L2[a, b]. In addition, the solutions are at least absolutely continuous in
(a, b].

Proof. This is a straightforward consequence of Theorem 3 once the quantities (32) and
(33) are estimated trivially and (34) is applied.

Remark 2. The constants appearing in both (24), (34), and (42) are not intended to be precise.

Theorem 4. Let p, q be complex-valued and measurable on [a, b], |p(x)| < ∞ a.e. on [a, b], and
let 1/p ∈ L1[a, b]. Assume further that, for every α ∈ (1/2, 1), we have

c4 ≡ sup
t∈[a,b]

∫ b

t

q2(s)
(s− t)2−2α

ds < ∞, (44)

9
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and, for every α ∈ ( 1
2 , 1), there holds

c5 ≡ sup
x∈[a,b]

Iα
a

(
1
|p|

)
(x) < ∞, (45)

as well as
κ < 1

where

κ =
2

Γ(α)

(
(b− a)2α−1

2α− 1
+

2
α
(b− a)α + b− a

)1/2

c5
√

c4.

Then, for α ∈ (1/2, 1) and for x0 ∈ (a, b], the only solution of the initial value problem
(9) that satisfies

I1−α
a y(x0) = 0, (pDα

a y)(x0) = 0, (46)

and that is in L2[a, b], is the (a.e.) trivial solution.

Proof. The case x0 = a is contained in Corollary 3; as such, we consider x0 ∈ (a, b]. From
(14), we know that every solution of (9) satisfies

y(x) = K1
(x − a)α−1

Γ(α)
+ K2 Iα

a

(
1
p

)
(x) + Iα

b (qy)(a) Iα
a

(
1
p

)
(x)

−Iα
a

(
1
p

Iα
b (qy)

)
(x),

(47)

where now K1 and K2 are to be determined such that (46) is satisfied for a given x0. By
applying the operator I1−α

a to both sides of (47)—as well as by then using both Properties 5
and 6, and setting everything equal to zero for x = x0—we can obtain the relation

I1−α
a y(x0)

= K1 + (K2 + Iα
b (qy)(a)) I1

a

(
1
p

)
(x0)− I1

a

(
1
p

Iα
b (qy)

)
(x0)

= 0.

(48)

Next, by applying the operator Dα
a to both sides of (47) and using both Properties 2

and 4, we can obtain

pDα
a y(x) = K2 + Iα

b (qy)(a)− Iα
b (qy)(x).

From this, the use of the second condition in (46) gives

K2 = Iα
b (qy)(x0)− Iα

b (qy)(a). (49)

By substituting (48) and (49) back into (47) and simplifying it, we obtain

y(x) = K1
(x − a)α−1

Γ(α)
+ Iα

b (qy)(x0) Iα
a

(
1
p

)
(x)− Iα

a

(
1
p

Iα
b (qy)

)
(x), (50)

where

K1 = I1
a

(
1
p

Iα
b (qy)

)
(x0)− Iα

b (qy)(x0) I1
a

(
1
p

)
(x0),

and K1 is a constant. Thus, (50) represents the form of a solution of (47) that satisfies both
conditions (46).

10
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This now allows us to define a map T on X = L2[a, b] that is endowed with the usual,
i.e, the L2-norm by, when y ∈ X,

Ty(x) =
(x − a)α−1

Γ(α)

(
I1
a

(
1
p

Iα
b (qy)

)
(x0)− Iα

b (qy)(x0) I1
a

(
1
p

)
(x0)

)
+ Iα

b (qy)(x0) Iα
a

(
1
p

)
(x)− Iα

a

(
1
p

Iα
b (qy)

)
(x).

(51)

By construction, a fixed point of T will be a solution of (47) that satisfies conditions
(46). To this end, we used the contraction mapping principle. For y ∈ X, α ∈ ( 1

2 , 1)—as
well as p, q satisfying (44) and (45), and using the proof of Theorem 3—we can now verify
that each integral appearing in (51) exists and is finite for all x ∈ [a, b]. As such, we have
TX ⊂ X.

Next, we show that T is a contraction. For y, z ∈ X, x ∈ [a, b], we have

Ty(x)− Tz(x) =

(x − a)α−1

Γ(α)

(
I1
a

(
1
p

Iα
b (q(y− z))

)
(x0)− Iα

b (q(y− z))(x0) I1
a

(
1
p

)
(x0)

)
+ Iα

b (q(y− z))(x0) Iα
a

(
1
p

)
(x)− Iα

a

(
1
p

Iα
b (q(y− z))

)
(x),

such that

|Ty(x)− Tz(x)| ≤
(x − a)α−1

Γ(α)

(
I1
a

(
1
|p| Iα

b (|q(y− z)|)
)
(x0) + Iα

b (|q(y− z)|)(x0) I1
a

(
1
|p|

)
(x0)

)
+ Iα

b (|q(y− z)|)(x0) Iα
a

(
1
|p|

)
(x) + Iα

a

(
1
|p| Iα

b (|q(y− z|))
)
(x),

≡ A + B + C,

(52)

where

A ≡ (x − a)α−1

Γ(α)

(
I1
a

(
1
|p| Iα

b (|q(y− z)|)
)
(x0) + Iα

b (|q(y− z)|)(x0) I1
a

(
1
|p|

)
(x0)

)
, (53)

B ≡ Iα
b (|q(y− z)|)(x0) Iα

a

(
1
|p|

)
(x), (54)

and

C ≡ Iα
a

(
1
|p| Iα

b (|q(y− z|))
)
(x). (55)

Now, A = A1 + A2, where

A1 ≡ (x − a)α−1

Γ(α)
I1
a

(
1
|p| Iα

b (|q(y− z)|)
)
(x0)

and

A2 ≡ (x − a)α−1

Γ(α)
Iα
b (|q(y− z)|)(x0) I1

a

(
1
|p|

)
(x0).

We estimate A1 first using the calculations leading to (37). Thus,

A1 =
(x − a)α−1

Γ(α)2

∫ x0

a

1
|p(s)|

∫ b

s

|q(y− z)|(t)
(t− s)1−α

dt ds

≤ (x − a)α−1

Γ(α)
c5
√

c4||y− z||2.

(56)

11
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Similarly,

A2 ≤ (x − a)α−1

Γ(α)
c5
√

c4||y− z||2. (57)

By combining (56) and (57), we obtain

A ≤ 2(x − a)α−1

Γ(α)
c5
√

c4||y− z||2. (58)

The estimate for B is similar to the estimate for A2 but without all the terms involving
α, i.e.,

B ≤ c5
√

c4

Γ(α)
||y− z||2. (59)

Finally, C is estimated as in the B-term in (38), i.e.,

C ≤ c5
√

c4

Γ(α)
||y− z||2. (60)

Therefore, (58)–(60) yield

|Ty(x)− Tz(x)| ≤ k(x) ||y− z||2 (61)

k(x) = 2
(
(x − a)α−1 + 1

Γ(α)

)
c5
√

c4.

Then, it follows that
||Ty− Tz||2 ≤ κ ||y− z||2,

where κ = ||k||2 is given by

κ =
2

Γ(α)

(
(b− a)2α−1

2α− 1
+

2
α
(b− a)α + b− a

)1/2

c5
√

c4.

Thus, T is a contraction on X provided κ < 1. The conclusion then follows.

In the case where p, q are (real-valued) continuous and p(x) > 0, a similar though
more extensive argument gives a different bound for uniqueness. This is our next result.

Theorem 5. Let p, q ∈ C[ a, b], p(x) > 0 for all x ∈ [a, b], and let α > 1/2. Thus, let

c1

(
(b− a)c2

2 + 2c2c3
(b− a)α

α
+ c2

3
(b− a)2α−1

2α− 1

)1/2

< 1, (62)

where

c1 = 2
||q||∞||1/p||∞
Γ(α)2

√
2α− 1

,

c2 =
(b− a)2α−1/2

α
,

and
c3 = (b− a)α+1/2.

Then, for x0 ∈ (a, b], the only solution of the initial value problem (9) that satisfies

I1−α
a y(x0) = 0, (pDα

a y)(x0) = 0, (63)

and which is in L2[a, b] is the (a.e.) trivial solution.

12
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Proof. The case of x0 = a is contained in Theorem 3, such that we can consider x0 ∈ (a, b].
From (14), we know that every solution of (9) satisfies

y(x) = K1
(x − a)α−1

Γ(α)
+ K2 Iα

a

(
1
p

)
(x) + Iα

b (qy)(a) Iα
a

(
1
p

)
(x)

−Iα
a

(
1
p

Iα
b (qy)

)
(x).

(64)

pDα
a y(x) = K2 + Iα

b (qy)(a)− Iα
b (qy)(x).

By using the proof of Theorem 4, we have

Ty(x) =
(x − a)α−1

Γ(α)

(
I1
a

(
1
p

Iα
b (qy)

)
(x0)− Iα

b (qy)(x0) I1
a

(
1
p

)
(x0)

)
+ Iα

b (qy)(x0) Iα
a

(
1
p

)
(x)− Iα

a

(
1
p

Iα
b (qy)

)
(x)

(65)

and

|Ty(x)− Tz(x)| ≤
(x − a)α−1

Γ(α)

(
I1
a

(
1
p

Iα
b (|q(y− z)|)

)
(x0) + Iα

b (|q(y− z)|)(x0) I1
a

(
1
p

)
(x0)

)
+ Iα

b (|q(y− z)|)(x0) Iα
a

(
1
p

)
(x) + Iα

a

(
1
p

Iα
b (|q(y− z|))

)
(x),

≡ A + B + C,

(66)

respectively. We estimated B using the same technique that was used in Theorem 3 and
Corollary 3, except that a was replaced by x0 in the latter, thus leading to minor changes in
the estimate. This gives

B ≤ ||1/p||∞||q||∞(b− a)α

αΓ(α)2

∫ b

x0

(s− x0)
α−1 |y(s)− z(s)| ds

≤ ||1/p||∞||q||∞(b− a)α

αΓ(α)2
(b− x0)

α−1/2
√

2α− 1
||y− z||2,

≤ ||1/p||∞||q||∞(b− a)2α−1/2

αΓ(α)2
√

2α− 1
||y− z||2.

(67)

Now, C is estimated as in Theorem 3, i.e.,

C ≤ ||1/p||∞||q||∞
α Γ(α)2

(b− a)2α−1/2
√

2α− 1
||y− z||2. (68)

Finally, A in (66) consists of two terms, and we can write A = A1 + A2 as before,
which is where the associations should be clear. Then, we have

A1 =
(x − a)α−1

Γ(α)
I1
a

(
1
p

Iα
b (|q(y− z)|)

)
(x0)

=
(x − a)α−1

Γ(α)2

∫ x0

a

1
p(s)

∫ b

s

|q(y− z)|(t)
(t− s)1−α

dt ds

≤ (x − a)α−1

Γ(α)2 ||q||∞
∫ x0

a

1
p(s)

∫ b

s
(t− s)α−1 |y(t)− z(t)| dt ds

≤ ||1/p||∞||q||∞
Γ(α)2

(b− a)α−1/2
√

2α− 1
(x − a)α−1(x0 − a) ||y− z||2.

(69)

13
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Of course, (69) may be strengthened by a bound that is independent of x0, i.e., one
such as

A1 ≤ ||1/p||∞||q||∞
Γ(α)2

(x − a)α−1
√

2α− 1
(b− a)α+1/2||y− z||2. (70)

Similarly,

A2 ≤ ||1/p||∞||q||∞
Γ(α)2

(x − a)α−1
√

2α− 1
(b− a)α+1/2||y− z||2. (71)

By combining (70) and (71), we obtain

A ≤ 2
||1/p||∞||q||∞

Γ(α)2
(x − a)α−1
√

2α− 1
(b− a)α+1/2 ||y− z||2. (72)

Thus, through using (67), (68) and (72) together with (66), we obtained the bound

|Ty(x)− Tz(x)| ≤
2 ||1/p||∞||q||∞
Γ(α)2

√
2α− 1

{
(b− a)2α−1/2

α
+ (b− a)α+1/2(x − a)α−1

}
||y− z||2,

≡ c1 {c2 + c3 (x − a)α−1} ||y− z||2,

(73)

where the definitions of the various constants c1, c2, and c3 in (73) should be clear from the
display. Using (73), we can now obtain

∫ b

a
|Ty(x)− Tz(x)|2dx

≤ c2
1||y− z||22

∫ b

a
{c2

2 + 2c2c3(x − a)α−1 + c2
3(x − a)2α−2} dx

≤ c2
1||y− z||22

(
(b− a)c2

2 + 2c2c3
(b− a)α

α
+ c2

3
(b− a)2α−1

2α− 1

) (74)

or

||Ty− Tz|| ≤ c1

(
(b− a)c2

2 + 2c2c3
(b− a)α

α
+ c2

3
(b− a)2α−1

2α− 1

)1/2

||y− z||2. (75)

From (75), we find that T is a contraction on X provided that

c1

(
(b− a)c2

2 + 2c2c3
(b− a)α

α
+ c2

3
(b− a)2α−1

2α− 1

)1/2

< 1. (76)

The fixed-point theorem guarantees the existence of a unique fixed point, which—of
course—must be the (a.e.) zero solution.

4. Two-Point Boundary Problems

We show that the analysis in the previous sections extends naturally to the study of the
so-called two-point boundary value problems on an interval [a, b]. In other words, the initial
conditions are placed at two points (usually the end points a and b of the interval under
consideration), and then one seeks solutions to the problem at hand with those conditions
imposed. As such, now we consider the problem

Dα
b (pDα

a y)(x) + q(x) y(x) = 0, (77)

which is subject to a set of conditions of the form

I1−α
a y(a) = K1 and given (pDα

a y)(b) = K2, (78)

14
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where the Ki are both the given constants, i.e., a Dirichlet-type condition at x = a and a
Neumann-type condition at x = b. Note that the quantity (pDα

a y)(x) is now evaluated
at x = b in lieu of x = a. This change leads to a two-point boundary value problem
where solutions of (77) are now sought that satisfy both conditions in (78). The techniques
from the previous sections led us to formulate the existence and uniqueness results for the
solutions of such two-point boundary value problems, i.e., (77) and (78). As will be noted,
the problem in this section is actually a little easier to solve than the initial value problem
(9) and (10) that were considered earlier.

As before, we proceed formally from (77), except that we now apply Iα
b to both sides

(see Property 3) to find

(pDα
a y)(x)− (pDα

a y)(b) + Iα
b (qy)(x) = 0, (79)

i.e.,

Dα
a y(x)− 1

p(x)
(pDα

a y)(b) +
1

p(x)
Iα
b (qy)(x) = 0. (80)

This time, by applying Iα
a to both sides of (80) and using Property 1, we can obtain

(when compared with (13))

y(x) =
(x − a)α−1

Γ(α)
I1−α
a y(a) + Iα

a

(
1
p

)
(x)(pDα

a y)(b)

−Iα
a

(
1
p

Iα
b (qy)

)
(x).

(81)

As before, there are two different cases: the case where I1−α
a y(a) = 0, and the one

where I1−α
a y(a) �= 0. The conditions leading to the existence and uniqueness of solutions

to the problems at hand are identical, however. Once again, we do not assume any sign
restrictions on the leading coefficient p. The proofs are sketched as they lead to no new
methods.

Theorem 6. Let p, q be complex-valued measurable functions on [a, b], |p(x)| < ∞ a.e. on [a, b],
which also satisfy (15) and (16). If c1 c2 < 1, then the two-point boundary value problem (77)
which is subject to (78) with K1 = 0, and where K2 is arbitrary has a unique solution y ∈ AC[a, b].

Proof. Once again, we considered the normed space (X, || · ||∞) of the real valued continu-
ous functions defined on [a, b]. Note that I1−α

a y(a) = 0 is in force in (81). We can define a
map T on X by setting

Ty(x) = Iα
a

(
K2

p

)
(x)− Iα

a

(
1
p

Iα
b (q y)

)
(x). (82)

Then, any fixed point of T will satisfy both the first and the second of (78). The proof
of Theorem 1 shows that all quantities appearing in (82) are continuous such that TX ⊂ X.
Next, let y, z ∈ X. Then, we obtain

|Ty(x)− Tz(x)| ≤ Iα
a

(
1
|p| Iα

b (|q (y− z)|)
)
(x).

The term on the right above corresponds to the term denoted by B in Theorem 1.
Hence, by that discussion, we have |Ty(x)− Tz(x)| ≤ c1c2||y− z||∞, from which we can
obtain

||Ty− Tz||∞ ≤ c1 c2||y− z||∞.

As such, T is a contraction on X if c1 c2 < 1. The above result then follows.
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The case of continuous coefficients and p(x) > 0 are covered as a special case, as
was expected.

Corollary 4. Let p, q ∈ C[ a, b], p(x) > 0 for all x ∈ [a, b]. If

(b− a)2α

Γ(α + 1)2 ||1/p||∞ ||q||∞ < 1, (83)

then the two-point boundary value problem (77) that is subject to (78), with K1 = 0 and K2 being
arbitrary, has a unique solution y ∈ AC[a, b].

Proof. Using the definitions, it is easy to show that

c1 ≤ (b− a)α

Γ(α + 1)
||1/p||∞

and

c2 ≤ (b− a)α

Γ(α + 1)
||q||∞.

Thus, (83) implies that c1c2 < 1; thus, the theorem applies and gives the conclusion.

We will now review the case where K1 �= 0. It is covered similarly but we also now
seek solutions in L2[a, b].

Theorem 7. Let p, q be complex-valued measurable functions on [a, b], |p(x)| < ∞ a.e. on [a, b],
which also satisfy (32) and (33). Let 1/2 < α < 1. If

c5
√

c4
√

b− a
Γ(α)

< 1 (84)

then the two-point boundary value problem (77) that is subject to (78), with K1 �= 0 and K2 being
arbitrary, has a unique solution y ∈ L2[a, b].

Proof. Let X =
(

L2(a, b), || · ||2
)
, and let us define a map T on X by (see (81)). We thus

have

Ty(x) =
(x − a)α−1

Γ(α)
K1 + Iα

a

(
K2

p

)
(x)− Iα

a

(
1
p

Iα
b (qy)

)
(x). (85)

TX ⊂ X is a consequence of the discussion in Theorem 3. Next, we have

|Ty(x)− Tz(x)| ≤ Iα
a

(
1
|p| Iα

b (|q(y− z)|)
)
(x) ≤ c5

√
c4

Γ(α)
||y− z||2,

by the estimate (37). Hence, we have

||Ty− Tz||2 ≤ c5
√

c4
√

b− a
Γ(α)

||y− z||2,

which shows that T is a contraction on X provided that

c5
√

c4
√

b− a
Γ(α)

< 1.

The result then follows as before.
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Corollary 5. Let p, q ∈ C[ a, b], p(x) > 0 for all x ∈ [a, b], and let 1/2 < α < 1. If

k
α Γ2(α)

(b− a)2α

√
2α− 1

< 1, (86)

where k = ||1/p||∞||q||∞ > 0, then the two-point boundary value problem (77) that is subject to

I1−α
a y(a) = K1 �= 0 and (pDα

a y)(b) = K2 (87)

has a unique solution y ∈ L2[a, b].

Proof. In using the definitions and the continuity assumptions, we obtain

c4 ≤ ||q||2∞
∫ b

t
(s− t)2α−2 ds ≤ ||q||2∞(b− a)2α−1

2α− 1

and (see the proof of Corollary 1)

c5 ≤ ||1/p||∞(b− a)α

Γ(α + 1)
.

With these estimates, it is a simple matter to see that (86) implies (84), and that this
completes the proof.

Remark 3. We have shown that, under some mild assumptions, the mixed Riemann–Liouville–Caputo
fractional differential equation defined as in (77) and (78) always possesses two types of solutions.
Either all the solutions are continuous in [a, b] (if I1−α

a y(a) = 0 and 0 < α < 1 ), or they are
continuous in (a, b] but are still in L2(a, b) (if I1−α

a y(a) �= 0 and 1/2 < α < 1).

5. Conclusions

In this article, we have stated and proved the existence and uniqueness theorems for
fractional differential equations of the form

Dα
b (pDα

a y)(x) + q(x) y(x) = 0,

where 0 < α < 1, Dα
b is a right-Caputo differential operator and Dα

a is a left-Riemann–Liouville
differential operator under very general conditions on the coefficients of p, q, which involve
measurability and no sign conditions on either p or q. The advantage of this formulation
is that our equation includes the classical Sturm–Liouville equation upon taking the limit
as α → 1. We have shown that the initial value problem, when properly formulated and
under suitable conditions on p, q, will always have its solutions in L2[a, b]. We have also
given conditions under which the two-point boundary problem

I1−α
a y(a) = K1 and given (pDα

a y)(b) = K2

that is associated with the above equation has a unique solution in some suitable spaces
depending on whether K1 is or is not zero.
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Abstract: In this manuscript, we study a class of equations with two different Riemann–
Liouville-type orders of nabla difference operators. We show some new and fundamental
properties of the related Green’s function. Depending on the values of the orders of the
operators, we split our research into two main cases, and for each one of them, we obtain
suitable conditions under which we prove that the considered problem possesses a positive
solution. We consider the latter to be the main novelty in this work. Our main tool in
both cases of our study is Guo–Krasnoselskii’s fixed point theorem. In the end, we give
particular examples in order to offer a concrete demonstration of our new theoretical
findings, as well as some possible future work in this direction.

Keywords: nabla fractional difference equations; Green’s function; positive solutions;
fixed-point theorems

MSC: 26A33; 34A08; 39A27

1. Introduction

Lately, fractional differential and difference equations and their applications have
generated much attention [1–4]. One of the main reasons for this is the fast development
of the theories of fractional and discrete fractional calculus, since they are widely used in
biology, chemistry, mechanics and medicine. More precisely, some examples of models
in environmental science, uncertainty, approximation or control theory, stability analysis,
quantum physics or astrophysics, signal and image processing and many others can be
found in [5–8]. Moreover, various real-life models can be modeled by both fractional
operators of the Riemann–Liouville type or the Liouville–Caputo type [9–13]. We also
refer the reader to some important and some very recent results about both fractional delta
difference operators [14–17] and fractional nabla difference equations [18–21].

In particular, nabla problems provide a powerful tool for describing the nonlocal
memory of different viscoelastic materials. The clear physical background of these studies
opens up a new directions of scientific research, including both theoretical analysis and nu-
merical methods. And while in the last few years different solvers for systems of fractional
boundary value problems with boundary or initial conditions have been developed, the
analysis of the existence and uniqueness of solutions to the fractional difference equations
concerning boundary value problems is still paramount in comprehending discrete frac-
tional calculus. Thus, all being said, finding new positive solutions to fractional problems
is an undoubtedly important task.

Fractal Fract. 2025, 9, 131 https://doi.org/10.3390/fractalfract9020131
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Recently, in [22], the author studied the two-point nabla fractional problem(
∇α

d1
u
)
(�) + h(�) = 0, 1 < α < 2, � ∈ N

d2
d1+2,

u(d1) =
(
∇β

d1
u
)
(d2) = 0, 0 ≤ β ≤ 1

and managed to obtain a Lyapunov-type inequality for it.
Inspired by this work, we continue this research as we consider

−
(
∇ν

ρ(d1)
u
)
(�) = λ f (�)g(u(�)), � ∈ N

d2
d1+2, (1)

u(d1) =
(
∇μ

ρ(d1)
u
)
(d2) = 0, (2)

where f : N
d2
d1+2 → (0, ∞) and g : [0, ∞) → [0, ∞) are continuous functions, while

0 ≤ μ ≤ 1 < ν < 2, ∇ν
ρ(d1)

and ∇μ

ρ(d1)
are νth- and μth-order nabla difference oper-

ators of the Riemann–Liouville type, respectively. Here, we use the standard notation
N

f
e = {e, e + 1, e + 2, . . . , f } for any real numbers e and f such that f − e ∈ N.

Our aim is to extend the findings given in [22]. We shall use some of the results from
there and we shall deduce new fundamental properties of the related Green function. Then,
using our new findings, we are going to obtain existence and nonexistence results for
the considered problem (1) and (2). To the best of our knowledge, this has never been
carried out so far in the existing literature, which we consider to be the main novelty of
this manuscript.

The rest of this paper is structured as follows: In Section 2, we deduce the exact
expression and we recall some of the properties of the Green function that is related to the
linear problem. Then, we split our study into two main cases depending on the values of ν

and μ. In each one of them, we impose some suitable conditions on the right-hand side of
our problem, in order to obtain existence results, presented in Sections 3 and 4, respectively.
To validate our theoretical results, some numerical examples are given in Section 5. Finally,
in Section 6, we finish with a summary of our results and some possible future directions
for expanding this research.

2. Preliminaries

In this section, we recall some previous results that we will extend in the next sections
and a classical theorem, which will be our main tool for establishing our new results. Let
us consider the following linear problem:

−
(
∇ν

ρ(d1)
u
)
(�) = h(�), � ∈ N

d2
d1+2, (3)

u(d1) =
(
∇μ

ρ(d1)
u
)
(d2) = 0. (4)

Here, 0 ≤ μ ≤ 1 < ν < 2 and h : Nd2
d1+2 → R are continuous functions.

For any α, β ∈ R, we denote the generalized rising function as

αβ =
Γ(α + β)

Γ(α)

and for ν ∈ R \ {. . . ,−2,−1}, the νth-order nabla fractional Taylor monomial is denoted as

Hν(α, β) =
(α− β)ν

Γ(ν + 1)
.

Recall the following theorem:
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Theorem 1 (Theorem 3.9 in [22]). The linear boundary value problem (3) and (4) has a unique
solution given in the form

u(�) =
d2

∑
s=d1+2

W(�, s)h(s), � ∈ N
d2
d1

,

where

W(�, s) =

⎧⎨⎩W1(�, s), � ∈ N
ρ(s)
d1

,

W2(�, s), � ∈ N
d2
s ,

(5)

with

W1(�, s) =
Hν−1(�, d1)Hν−μ−1(d2, ρ(s))

Hν−μ−1(d2, d1)

and
W2(�, s) = G1(�, s)− Hν−1(�, ρ(s)).

Moreover, the maximum of the nonnegative Green function W(�, s) defined in (5) is given by

max
(�,s)∈Nd2

d1
×N

d2
d1+2

W(�, s) =

⎧⎪⎨⎪⎩
max

s∈Nd2
d1+2

W(s− 1, s), 0 ≤ μ ≤ ν− 1,

max
s∈Nd2

d1+2
W(s, s), ν− 1 < μ < 1.

Based on the findings in the above theorem, we will split our study of the existence
of positive solutions of (1) and (2) into two main cases. Our main tool for both will be the
classical Guo–Krasnoselskii fixed point theorem in cones [23].

Theorem 2. Let B = (B, ‖ · ‖) be a Banach space, and let K ⊆ B be a cone. Assume that Ω1 and
Ω2 are bounded open subsets contained in B such that 0 ∈ Ω1 and Ω1 ⊆ Ω2. Assume further that
T : K ∩ (

Ω2 \ Ω1
) → K is a completely continuous operator. Here, either

(1) ‖Ty‖ ≤ ‖y‖ for y ∈ K ∩ ∂Ω1, and ‖Ty‖ ≥ ‖y‖ for y ∈ K ∩ ∂Ω2; or
(2) ‖Ty‖ ≥ ‖y‖ for y ∈ K ∩ ∂Ω1, and ‖Ty‖ ≤ ‖y‖ for y ∈ K ∩ ∂Ω2.
Then, T has at least one fixed point in K ∩ (

Ω2 \ Ω1
)
.

3. Case I: 0 ≤ μ < ν − 1

First, let us study the case 0 ≤ μ ≤ ν − 1. Following the idea given in [14], we have
the next result.

Lemma 1. There is γ1 ∈ (0, 1) such that W(�, s) given in (5) has the following property:

min
d1+2≤�≤d2

W(�, s) ≥ γ1W(s− 1, s) for all s ∈ N
d2
d1+2.

Proof. In this case,

W(�, s)
W(s− 1, s)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(�− d1)

ν−1

(s− d1 − 1)ν−1
, � ∈ N

ρ(s)
d1

,

(d2 − s + 1)ν−μ−1(�− d1)
ν−1 − (d2 − d1)

ν−μ−1(t− s + 1)ν−1

(d2 − s + 1)ν−μ−1(s− d1 − 1)ν−1
, � ∈ N

d2
s .

For � ∈ N
ρ(s)
d1+1, we find that

W(�, s)
W(s− 1, s)

=
(�− d1)

ν−1

(s− d1 − 1)ν−1
≥ 2ν−1

(d2 − d1 − 1)ν−1
. (6)
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For � ∈ N
d2
s , we know that W(�, s) is decreasing with respect to �, which implies that

W(�, s)
W(s− 1, s)

=
(d2 − s + 1)ν−μ−1(�− d1)

ν−1 − (d2 − d1)
ν−μ−1(�− s + 1)ν−1

(d2 − s + 1)ν−μ−1(s− d1 − 1)ν−1

≥ (d2 − s + 1)ν−μ−1(d2 − d1)
ν−1 − (d2 − d1)

ν−μ−1(d2 − s + 1)ν−1

(d2 − s + 1)ν−μ−1(s− d1 − 1)ν−1
.

Denote

ϕ(s) =
1

(s− d1 − 1)ν−1

[
(d2 − d1)

ν−1 − (d2 − s + 1)ν−1(d2 − d1)
ν−μ−1

(d2 − s + 1)ν−μ−1

]
.

One can check that
(d2 − s + 1)ν−1(d2 − d1)

ν−μ−1

(d2 − s + 1)ν−μ−1

is decreasing for d1 + 2 ≤ s ≤ d2 + 1. Then,

ϕ(s) ≥ 1

(s− d1 − 1)ν−1

[
(d2 − d1)

ν−1 − (d2 − d1 − 1)ν−1(d2 − d1)
ν−μ−1

(d2 − d1 − 1)ν−μ−1

]

≥ 1

(d2 − d1)
ν−1

[
(d2 − d1)

ν−1 − (d2 − d1 − 1)ν−1(d2 − d1)
ν−μ−1

(d2 − d1 − 1)ν−μ−1

]
.

The last inequality, combined with (6), shows us that for each s ∈ N
d2
d1+2,

min
d1+2≤�≤d2

W(�, s) ≥ γ1W(s− 1, s),

where

γ1 = min

{
1

(d2 − d1)
ν−1

[
(d2 − d1)

ν−1 − (d2 − d1 − 1)ν−1(d2 − d1)
ν−μ−1

(d2 − d1 − 1)ν−μ−1

]
,

2ν−1

(d2 − d1 − 1)ν−1

}
.

Moreover, it is clear from the above expression that γ1 < 1.

Define the Banach space B by

B =
{

y : Nd2
d1+2 → R : y(d1) =

(
∇μ

ρ(d1)
y
)
(d2) = 0

}
,

coupled with
‖y‖ = max

�∈Nd2
d1+2

|y(�)|.

Set the cone

K1 =

{
y ∈ B, y(�) ≥ 0, min

d1+2≤�≤d2
y(�) ≥ γ1‖y‖, � ∈ N

d2
d1+2

}
and the operator Tλ : K1 → B by

(Tλy)(�) = λ
d2

∑
s=d1+2

W(�, s) f (s)g(y(s)).
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By using Lemma 1, we have

min
d1+2≤�≤d2

(Tλy)(�) ≥ λ
d2

∑
s=d1+2

min
d1+2≤�≤d2

W(�, s) f (s)g(y(s))

≥ λγ1

d2

∑
s=d1+2

max
d1+2≤�≤d2

W(�, s) f (s)g(y(s))

≥ γ1‖Tλy‖,

which gives us Tλ : K1 → K1.

3.1. Positive Solutions

Here, we will establish some suitable conditions that will allow us to confirm that (1)
and (2) has a positive solution.

Let us assume the following conditions about function g:
(G1) lim

y→0+
g(y)

y = 0 and lim
y→+∞

g(y)
y = +∞;

(G2) lim
y→0+

g(y)
y = +∞ and lim

y→+∞
g(y)

y = 0.

Define
W∗ = max

(�,s)∈Nd2
d1
×N

d2
d1+2

W(�, s) = max
s∈Nd2

d1+2

W(s− 1, s).

Then, for 0 ≤ μ < ν− 1,
W∗ = W(s∗ − 1, s∗), (7)

where

s∗ =
⌊
(d2 + 1)(ν− 1) + (d1 + 2)(ν− μ− 1)

2(ν− 1)− μ

⌋
.

For μ = ν− 1,
W∗ = W(d2 − 1, d2). (8)

In particular,

W(s− 1, s) =
Hν−1(s− 1, d1)Hν−μ−1(d2, ρ(s))

Hν−μ−1(d2, d1)
=

Ψ(s)Γ(d2 − d1)

Γ(ν)Γ(d2 − d1 + ν− μ− 1)
,

with

Ψ(s) =
Γ(s− d1 + ν− 2)Γ(d2 − s + ν− μ)

Γ(d2 − s + 1)Γ(s− d1 − 1)
.

Consider, for s ∈ N
d2
d1+3,

(∇Ψ)(s) =
((1− ν + μ)(s− d1 − 2) + (ν− 1)(d2 − s + 1))Γ(s− d1 + ν− 3)Γ(d2 − s + ν− μ)

Γ(d2 − s + 2)Γ(s− d1 − 1)
.

Then, the equation
(∇Ψ

)
(s) = 0 has a unique solution, and so we set s∗ as the critical point

of Ψ. If s ≤ s∗, the term

(d2 + 1)(ν− 1) + (d1 + 2)(ν− μ− 1)
2(ν− 1)− μ

is positive, and thus Ψ is increasing. On the other hand, if s ≥ s∗, the same term is negative,
and thus Ψ is decreasing. As a result, we obtain (7).

If μ = ν−1, Γ(s− d1 + ν−3) > 0, since (1− ν+μ)(s− d1−2)+ (ν−1)(d2− s+1) > 0,
then

(∇Ψ
)
(s) > 0 implies that Ψ is increasing. Thus, we obtain (8).
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Also, take
F∗ = min

�∈Nd2
d1+2

f (�) and F∗ = max
�∈Nd2

d1+2

f (�).

Our first main result in this section is as follows:

Theorem 3. Let condition (G1) hold. Moreover, if there is a sufficiently small positive constant ε

and a sufficiently large constant C1, F∗ε < C1F∗ holds. Then, for each

λ ∈
(
(C1(d2 − d1 − 1)F∗W∗)−1, ((d2 − d1 − 1)F∗W∗ε)−1

)
,

the boundary value problem (1) and (2) has at least one positive solution.

Proof. From the first limit in (G1), there is r1 > 0 and a sufficiently small constant ε > 0
satisfying g(y) ≤ εr1 for all y ∈ (0, r1]. Thus, for any y ∈ K1 with ‖y‖ = r1,

(Tλy)(�) ≤ λW∗
d2

∑
s=d1+2

f (s)g(y(s)) ≤ λ(d2 − d1 − 1)W∗F∗εr1 ≤ r1 = ‖y‖.

Therefore, if we set Ω1 = {y ∈ B : ‖y‖ < r1}, the above inequality implies

‖Tλy‖ ≤ ‖y‖ for y ∈ K1 ∩ ∂Ω1.

Moreover, from the second limit in condition (G1), one can show that there is r2 > r1 > 0
and a sufficiently large constant C1 satisfying g(y) ≥ C1r2

γ2
1

for every y ≥ r2. Set r∗2 = r2
γ1

> r2

and Ω2 = {y ∈ B : ‖y‖ < r∗2}. Hence, for every y ∈ K1 with ‖y‖ = r∗2 ,

min
d1+2≤�≤d2

y(�) ≥ γ1‖y‖ = γ1r∗2 = r2.

As a result, one can verify

(Tλy)(�) = λ
d2

∑
s=d1+2

W(�, s) f (s)g(y(s)) ≥ λ(d2 − d1 − 1)γ1W
∗F∗

C1r2

γ2
1

≥ r∗2 = ‖y‖.

This gives us
‖Tλy‖ ≥ ‖y‖ for y ∈ K1 ∩ ∂Ω2.

From Theorem 2, we find that the operator Tλ possesses a fixed point y ∈ K1 ∩
(
Ω2 \ Ω1

)
with r1 ≤ ‖y‖ ≤ r∗2 .

Our second main existence result states the following:

Theorem 4. Let (G2) hold. Furthermore, if there is a sufficiently large constant C2 such that
F∗ < C2F∗ holds, yhen, for each

λ ∈
(
(C2(d2 − d1 − 1)F∗W∗)−1, ((d2 − d1 − 1)F∗W∗)−1

)
,

problems (1) and (2) possess at least one positive solution.
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Proof. From the first limit in (G2), there is r3 > 0 and a sufficiently large constant C2 > 0
satisfying g(y) > C2r3

γ1
for y ∈ (0, r3). If we choose Ω1 = {y ∈ B : ‖y‖ < r3}, for each

y ∈ Ω1,

(Tλy)(�) = λ
d2

∑
s=d1+2

W(�, s) f (s)g(y(s)) ≥ λ(d2 − d1 − 1)γ1W
∗F∗

C2r3

γ1
≥ r3 = ‖y‖,

which gives us
‖Tλy‖ ≥ ‖y‖ for y ∈ K1 ∩ ∂Ω1.

Next, we consider two cases in order to set Ω2.
Case 1. Let g be bounded. In other words, there is some R1 > r3 such that g(y) ≤ R1

for y ∈ K1. Hence, for y ∈ K1 with ‖y‖ = R1,

(Tλy)(�) ≤ λW∗
d2

∑
s=d1+2

f (s)g(y(s)) ≤ λW∗(d2 − d1 − 1)F∗R1 ≤ R1 = ‖y‖.

Case 2. On the other hand, if g is unbounded, there is some R2 and a sufficiently small
ε2 with g(y) ≤ ε2y for y ≥ R2. Set R = max{R1, R2} and Ω2 = {y ∈ B : ‖y‖ < R}. Hence,
g(R) ≤ ε2R and λ < 1

ε2(d2−d1−1)F∗W∗ . As a consequence,

(Tλy)(�) ≤ λW∗
d2

∑
s=d1+2

f (s)g(y(s)) ≤ λW∗(d2 − d1 − 1)F∗ε2R ≤ R = ‖y‖,

which means that in both cases, we have

‖Tλy‖ ≤ ‖y‖ for y ∈ K1 ∩ ∂Ω2.

Thus, Theorem 2 ensures us that the operator Tλ has a fixed point y ∈ K1 ∩
(
Ω2 \ Ω1

)
with

r3 ≤ ‖y‖ ≤ R.

3.2. Nonexistence

Now, we will establish some sufficient conditions that will allow us to show when
problems (1) and (2) do not possess any positive solutions.

Suppose that the following conditions are satisfied:
(G3) lim

y→0+
sup g(y)

y = g0, lim
y→+∞

sup g(y)
y = g∞,

(G4) lim
y→0+

inf g(y)
y = g∗0 , lim

y→+∞
inf g(y)

y = g∗∞.

Theorem 5. Suppose that (G3) holds. Moreover, assuming that both g0 < +∞ and g∞ < +∞, then
there is a λ1 such that for each λ ∈ (0, λ1), problems (1) and (2) do not possess any positive solutions.

Proof. From g0 < +∞ and g∞ < +∞, it follows that there are some positive m1, m2, r4 and
r5 such that r4 < r5, g(y) ≤ m1y for y ∈ [0, r4] and g(y) ≤ m2y for y ∈ [r5,+∞). Choose

m = max
{

m1, m2, max
r4≤y≤r5

g(y)
y

}
.
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Hence, g(y) ≤ my. Now, let y1 be a positive solution of (1) and (2). In other words,
Ty1(�) = y1(�) for � ∈ N

d2
d1+2 and

‖y1‖ = ‖Ty1‖ ≤ λW∗F∗
d2

∑
s=d1+2

g(y1(s)) ≤ λW∗(d2 − d1 − 1)F∗my1 < ‖y1‖,

which is a contradiction if we choose λ1 = 1
W∗(d2−d1−1)F∗m . Therefore, (1) and (2) have no

positive solutions for every λ ∈ (0, λ1).

Theorem 6. Let (G4) hold. Furthermore, if g∗0 > 0 and g∗∞ > 0, then there is a λ2 such that for all
λ > λ2, the boundary value problem (1) and (2) has no positive solution.

Proof. From g∗0 > 0 and g∗∞ > 0, it follows that there are positive numbers m3, m4, r6, r7 such
that r6 < r7, g(y) ≥ m3y, for y ∈ [0, r6], and g(y) ≥ m4y, for y ∈ [r7,+∞). This time, choose

m = min
{

m3, m4, max
r6≤y≤r7

g(y)
y

}
.

We have g(y) ≥ my for all y > 0. Suppose y2 is a positive solution of (1) and (2). Then,
Ty2(�) = y2(�) for � ∈ N

d2
d1+2 and

‖y2‖ = ‖Ty2‖ ≥ λ
d2

∑
s=d1+2

W(�, s) f (s)g(y2(s)) ≥ λ(d2 − d1 − 1)γ1W
∗F∗my2 > ‖y2‖,

which is a contradiction if we set λ2 = 1
W∗(d2−d1−1)F∗m . Therefore, (1) and (2) have no

positive solutions for every λ > λ2.

4. Case II: ν − 1 < μ ≤ 1

In the considered case, we will prove the existence of positive solutions of the following
more general equation:

−
(
∇ν

ρ(d1)
u
)
(�) = λ f (�, y(�)), � ∈ N

d2
d1+2, (9)

coupled with boundary conditions (2), where f : N
d2
d1+2 × R → R is continuous and

f (�, y) ≥ 0 for all � ∈ N
d2
d1+2 and y ≥ 0. We know that in this case

M = max
(�,s)∈Nd2

d1
×N

d2
d1+2

W(�, s) = max
s∈Nd2

d1+2

W(s, s).

In particular,

W(s, s) =
Hν−1(s, d1)Hν−μ−1(d2, ρ(s))

Hν−μ−1(d2, d1)
− 1 =

ψ(s)Γ(d2 − d1)

Γ(ν)Γ(d2 − d1 + ν− μ− 1)
− 1,

with

ψ(s) =
Γ(s− d1 + ν− 1)Γ(d2 − s + ν− μ)

Γ(d2 − s + 1)Γ(s− d1)
.

Consider, for s ∈ N
d2
d1+3,

(∇ψ)(s) =
((1− ν + μ)(s− d1 − 1) + (ν− 1)(d2 − s + 1))Γ(s− d1 + ν− 2)Γ(d2 − s + ν− μ)

Γ(d2 − s + 2)Γ(s− d1)
.
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Thus, (∇ψ)(s) > 0, implying that

max
s∈Nd2

d1+2

ψ(s) = ψ(d2).

Consequently,

M = max
s∈Nd2

d1+2

W(s, s) = W(d2, d2) =
Γ(d2 − d1 + ν− 1)Γ(ν− μ)

Γ(ν)Γ(d2 − d1 + ν− μ− 1)
− 1.

Moreover, since W(�, s) is increasing for � ∈ [d1 + 1, s− 1] and decreasing for � ∈
[s + 1, d2], one proves that

m = min
(�,s)∈Nd2

d1+1×N
d2
d1+2

W(�, s) = min
s∈Nd2

d1+2

{W(d1 + 1, s),W(d2, s)}.

In particular,

min
s∈Nd2

d1+2

W(d1 + 1, s) =
Hν−μ−1(d2, a + 1)

Hν−μ−1(d2, d1)
=

d2 − d1 − 1
d2 − d1 + ν− μ− 1

and

min
s∈Nd2

d1+2

W(d2, s) =
Γ(d2 − d1 + ν− 1)Γ(ν− μ)

Γ(d2 − d1 + ν− μ− 1)Γ(ν)
− Γ(d2 − d1 + ν− 2)

Γ(d2 − d1 − 1)Γ(ν)
.

Therefore,

m = min
{

d2 − d1 − 1
d2 − d1 + ν− μ− 1

,
Γ(d2 − d1 + ν− 1)Γ(ν− μ)

Γ(d2 − d1 + ν− μ− 1)Γ(ν)
− Γ(d2 − d1 + ν− 2)

Γ(d2 − d1 − 1)Γ(ν)

}
.

Define a different cone than before, namely

K2 =
{

y ∈ B, y(�) ≥ 0, min y(�) ≥ m
M
‖y‖, � ∈ N

d2
d1+2

}
,

and an operator Aλ : K2 → B,

(Aλy)(�) = λ
d2

∑
s=d1+2

W(�, s) f (s, y(s)).

Lemma 2. If y ∈ K2, then Aλy ∈ K2.

Proof. Indeed, let y ∈ K2. From the definition of the operator and from (5), we deduce that
Aλy ≥ 0 for all � ∈ N

d2
d1+2. Moreover,

min
�∈Nd2

d1+2

Aλy(�) ≥ λm
d2

∑
s=d1+2

f (s, y(s)) ≥ λ
m
M

d2

∑
s=d1+2

max
�∈Nd2

d1+2

W(�, s) f (s, y(s)) =
m
M
‖Aλy‖.

Now, our first existence result for this case is

Theorem 7. Let f0(�) and f∞(�) be nonnegative functions for all � ∈ N
d2
d1+2, and there is

0 < r < R such that for � ∈ N
d2
d1+2,
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f (�, s) ≤ s f0(�) for s ∈ [0, r] and f (�, s) ≥ s f∞(�) for s ≥ R

and

M2
d2

∑
s=d1+2

f0(s) ≤ m2
d2

∑
s=d1+2

f∞(s).

Then, for each
M

m2 ∑d2
s=d1+2 f∞(s)

≤ λ ≤ 1

M ∑d2
s=d1+2 f0(s)

, (10)

problem (9) and (2) possess a positive solution y. Moreover, for all � ∈ N
d2
d1+2,

mr
M

≤ y(�) ≤ MR
m

. (11)

Proof. Let λ be such that (10) holds, and let y ∈ K2 with ‖y‖ = r. For s ∈ [0, r], one can
deduce that

Aλy(�) ≤ λM
d2

∑
s=d1+2

f (s, y(s)) ≤ λM
d2

∑
s=d1+2

y(s) f0(s) ≤ λM‖y‖
d2

∑
s=d1+2

f0(s) ≤ ‖y‖.

As a result, we prove that ‖Aλy‖ ≤ ‖y‖ for y ∈ K2 ∩ ∂Ω1, with Ω1 = {y ∈ B, ‖y‖ < r}.
Next, set R1 = MR

m and Ω2 = {y ∈ B, ‖y‖ < R1}. It is easy to verify that for y ∈ K2∩ ∂Ω2,

min
�∈Nd2

d1+1

y(�) ≥ m
M
‖y‖ =

m
M

R1 = R.

Hence,

Aλy(�) ≥ λm
d2

∑
s=d1+2

f (s, y(s)) ≥ λm
d2

∑
s=d1+2

y(s) f∞(s) ≥ λ
m2

M
‖y‖

d2

∑
s=d1+2

f∞(s) ≥ ‖y‖.

In other words, ‖Aλy‖ ≥ ‖y‖ for y ∈ K2 ∩ ∂Ω2. Using Theorem 2, it follows that A has a
fixed point in y ∈ K2 ∩

(
Ω2\Ω1

)
, which is a solution of (9) and (2) satisfying (11).

Corollary 1. Suppose that

lim
s→0+

f (�, s)
s

= f0(�) and lim
s→+∞

f (�, s)
s

= f∞(�) for � ∈ N
d2
d1+2,

and

M2
d2

∑
s=d1+2

f0(s) < m2
d2

∑
s=d1+2

f∞(s).

Hence, for each
M

m2 ∑d2
s=d1+2 f∞(s)

< λ <
1

M ∑d2
s=d1+2 f0(s)

,

problem (9) and (2) has at least one positive solution y.

Proof. Suppose that λ is the interval stated above and set as ε > 0 such that

M

m2 ∑d2
s=d1+2( f∞(s)− δ(s))

≤ λ ≤ 1

M ∑d2
s=d1+2( f0(s) + ε)

,
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with δ(s) = min{ε, f∞(s)}. Hence, for this choice of δ, there is 0 < r < R such that

f (�, s) ≤ s( f0(�) + ε) for s ∈ [0, r], and f (�, s) ≥ s( f∞(�)− δ(�)) for s ≥ R.

Having these conditions, one can use Theorem 7 in order to verify that there is a positive
solution y for (9) and (2).

Our second main existence result states the following:

Theorem 8. If f0(�) and f∞(�) are nonnegative functions for all � ∈ N
d2
d1+2 and there is 0 < r <

R such that for � ∈ N
d2
d1+2,

f (�, s) ≥ s f0(�) for s ∈ [0, r], and f (�, s) ≤ s f∞(�) for s ≥ R

and

M2
d2

∑
s=d1+2

f∞(s) ≤ m2
d2

∑
s=d1+2

f0(s).

Then, for each
M

m2 ∑d2
s=d1+2 f0(s)

≤ λ ≤ 1

M ∑d2
s=d1+2 f∞(s)

,

problem (9) and (2) has at least one positive solution y such that for all � ∈ N
d2
d1+2, we have

mr
M ≤ y(�) ≤ MR

m .

Proof. One can easily verify this result using similar arguments as the ones given for the
proof of Theorem 7.

Corollary 2. Suppose that

lim
s→0+

f (�, s)
s

= f0(�) and lim
s→+∞

f (�, s)
s

= f∞(�) for � ∈ N
d2
d1+2

and

M2
d2

∑
s=d1+2

f∞(s) ≤ m2
d2

∑
s=d1+2

f0(s).

Then, for each
M

m2 ∑d2
s=d1+2 f0(s)

< λ <
1

M ∑d2
s=d1+2 f∞(s)

,

we find that (9) and (2) possesses a positive solution y.

Proof. We omit it, as it follows from Theorem 8.

5. Examples

Now, we are going to establish three numerical examples to validate our theoreti-
cal findings.

Example 1. Let us study (1) and (2) with d1 = 0, d2 = 5, ν = 1.5, μ = 0.5, g(u) = u2 and
f (�) = �. Clearly, g satisfies condition (G1). Then, F∗ = 2 and F∗ = 5, so

W∗ = (d2 − d1 − 1)Γ(d2 − d1 + ν− 2)Γ(ν− μ)

Γ(ν)Γ(d2 − d1 + ν− μ− 1)
=

2Γ(4.5)
Γ(1.5)

= 26.25.
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If we choose ε = 1
2 and C1 = 3, then F∗ε < C1F∗ is true. Thus, by Theorem 3, for each

λ ∈
(

1
630

,
1

262.5

)
,

we deduce that (1) and (2) possess a positive solution.

Example 2. Consider (1) and (2) with d1 = 0, d2 = 5, ν = 1.5, μ = 0.5, g(u) = ue−u and
f (�) = �. Clearly, g satisfies condition (G3) with g0 = 1 < +∞ and g∞ = 0 < +∞. Then,
m = 1, F∗ = 2, F∗ = 5, and W∗ = 26.25, so

λ1 =
1

525
.

Therefore, by Theorem 5, for all λ ∈ (0, λ1), problem (1) and (2) have no positive solutions.

Example 3. Consider (9) and (2) with d1 = 0, d2 = 5, ν = 1.5, μ = 0.75, and f = u(e−� + e−u).
Hence,

f0 = e−� + 1 and f∞ = e−�.

Also,

M =
Γ(5.5)Γ(0.75)
Γ(1.5)Γ(4.75)

− 1 = 3.3636

and

m = min
{

(4)
(4.75)

,
Γ(5.5)Γ(0.75)
Γ(1.5)Γ(4.75)

− Γ(4.5)
Γ(4)Γ(1.5)

}
= 0.8421.

Furthermore,

(3.3636)2
5

∑
s=2

e−s ≤ (0.8421)2
5

∑
s=2

(e−s + 1).

Thus, by Corollary 2, for each

3.3636
(0.8421)2 ∑5

s=2(e−s + 1)
< λ <

1
(3.3636)∑5

s=2 e−s
,

that is,
λ ∈ (1.1266, 1.4144),

problem (9) and (2) has at least one positive solution.

6. Conclusions

In this work we were able to deduce new important properties of the Green’s function
related to the considered problem (1) and (2). Depending on the values of ν and μ, we
studied two cases, and for each one of them, we obtained suitable conditions, under which
we have shown some existence results. In the end, we were able to show the applicability
of these theoretical findings with some particular examples. As far as we know, this is the
first research study where such results are established for this problem.

According to us, the above-mentioned results can be extended in some future works,
where the authors may study both cases, and using different methods, they may obtain
different existence results or multiplicity.
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Abstract: In this paper, we investigate the eigenvalue properties of a nonlocal Sturm–Liouville
equation involving fractional integrals and fractional derivatives under different boundary
conditions. Based on these properties, we obtained the geometric multiplicity of eigenval-
ues for the nonlocal Sturm–Liouville problem with a non-Dirichlet boundary condition.
Furthermore, we discussed the continuous dependence of the eigenvalues on the potential
function for a nonlocal Sturm–Liouville equation under a Dirichlet boundary condition.

Keywords: nonlocal Sturm–Liouville problem; fractional derivative; fractional integral;
continuous dependence of eigenvalues; two-parameter method

1. Introduction

This paper discuss the nonlocal Sturm–Liouville problem

−y′′ + q(x)y + μ(Dα
1− Iα

0+ + Iα
1−Dα

0+)y = λy (1)

subject to
y(0) = 0 = y(1) + dy′(1), (2)

where Dα
0+ (Dα

1−) denotes the left-sided (right-sided) Riemann–Liouville fractional deriva-
tives of order α, and Iα

0+(Iα
1−) represents the left-sided (right-sided) Riemann–Liouville

fractional integrals of order α, whose definitions are given later. Here, 0 < α < 1,
q(x) ∈ L2(0, 1) is a real-valued potential function, μ and d are real constants, and λ is the
spectral parameter.

From the eigenvalue properties of a class of nonlocal Sturm–Liouville problems in [1],
it is known that for 0 < α < 1/2{

−y′′(x) + q(x)y(x) + μ(Dα
1− Iα

0+ + Iα
1−Dα

0+)y(x) = λy(x) on (0, 1),
y(0) = 0 = y(1).

(3)

has real algebraic simple and discrete eigenvalues under certain conditions. These eigen-
values satisfy

−∞ < λ1(μ) < λ2(μ) < · · · < λn(μ) < · · · , λn(μ) ∼ π2n2, n → ∞, (4)

where λn(μ) is the n-th eigenvalue of (3). Additionally, the associated eigenfunctions form
a complete orthogonal basis. Furthermore, [1] discusses the number of zeros present in the
eigenfunctions, as well as the characteristics of solutions to the nonlocal Sturm–Liouville
equation under specific initial conditions.

Fractal Fract. 2025, 9, 70 https://doi.org/10.3390/fractalfract9020070
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Nonlocal Sturm–Liouville problems, which incorporate both left-sided and right-sided
fractional derivatives, arise from the field of nonlocal continuum mechanics (please refer
to [2–5] for more details). In reference [4], the equilibrium equation governing an elastic bar
of finite length, L, which includes long-range interactions among non-adjacent particles,
can be expressed as

d2u(x)
dx

− η

E
Dαu(x) = − f (x)

E
.

Here, u(x) denotes the axial displacement of the bar at position x, while f (x) represents
the longitudinal force per unit volume and η is an opportune constant of proportionality. E
signifies the longitudinal modulus, and Dα = Dα

0+ + Dα
1−, where Dα

0+ and Dα
1− correspond

to the left and right Riemann–Liouville fractional derivatives of order α, respectively.
Generally, a nonlocal Sturm–Liouville problem is characterized as a Sturm–Liouville-

type problem that contains both integer and fractional derivatives, a topic that was the
subject of extensive investigation in [6–10]. The form explored in [6–10] can be summarized
as follows:

−y′′ + q(x)y + μTαy = λy,

where Tα is a self-adjoint fractional differential operator with both left-sided and right-sided
fractional derivatives, such as Tα = Dα

0+ + Dα
1−, or Tα = Dα

0+
cDα

1−.
Additionally, the fractional Sturm–Liouville problem, which is closely related to the

nonlocal Sturm–Liouville problem, is often obtained by replacing the integer derivative
operators in a classical Sturm–Liouville problem, −(p(x)y′)′ + q(x)y = λω(x)y, by the
fractional derivative operators, such as

Lαy + q(x)y = λω(x)y,

where Lα = cDα
b−(p(x)Dα

a+), or Lα = Dα
a+(p(x)cDα

b−). For more details, please refer
to [11–23] and reference therein. In [23] the authors employ a change of variables to
transform cDα

b−(p(x)Dα
a+) + q(x)y = λω(x)y into a modified version of a differential

equation with a principal term structured in the classical form −(p(x)z′)′ + D1−α
b− ((q(x)−

λω(x))D1−α
a+ z) = 0. Thereafter, the resulting equation is similar to the one considered in

this manuscript.
In this study, we present novel findings on the eigenvalue properties of (1)–(2). We

first consider the eigenvalue problem of (1)–(2) with d �= 0 in Section 3. We obtained results
showing that the eigenvalues of (1)–(2) with d �= 0 are real values, and the corresponding
eigenfunctions are orthogonal. Moreover the geometric multiplicity of the eigenvalues is
simple. Then we discuss the eigenvalue problem of (1)–(2) with d = 0 in Section 4. We
introduced an auxiliary two-parameter nonlocal Sturm–Liouville problem in Section 4.1.
With the aid of the eigenvalue properties of this two-parameter nonlocal Sturm–Liouville
problem, we obtained the continuous dependence of eigenvalues on the potential function
in Section 4.2.

2. Preliminaries

In this section, we give some preliminary knowledge from such topics as fractional
calculus and the spectral theory of nonlocal Sturm–Liouville problems, which will be used
later. More detailed information can be found in [1,24].

We denote by AC[0, 1] the set of all the absolutely continuous, complex-valued func-
tions on [0,1]. Let L2 = L2(0, 1) be the Hilbert space, with the usual inner product 〈 f , g〉
and the norm || f || = 〈 f , f 〉1/2.
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Definition 1. (c f . [24] p. 69) The Riemann–Liouville fractional integrals Iα
0+ f and Iα

1− f of order
α ∈ C (R(α) > 0) are defined by

(Iα
0+ f )(x) =

1
Γ(α)

∫ x

0

f (t)
(x − t)1−α

dt, x ∈ (0, 1]; (Iα
1− f )(x) =

1
Γ(α)

∫ 1

x

f (t)
(t− x)1−α

dt, x ∈ [0, 1),

where Γ(α) is the Gamma function. These integrals are called the left-sided and the right-sided
fractional integrals.

Definition 2. (c f . [24] p. 70) Let 0 < α < 1, D = d/dx. The left-sided and right-sided
Riemann–Liouville derivatives of order α are defined by (when they exist)

(Dα
0+ f )(x) = D(I1−α

0+ f )(x) =
d

dx

(∫ x
0

f (t)
(x−t)α dt

)
Γ(1− α)

, x ∈ (0, 1];

(Dα
1− f )(x) = (−D)(I1−α

1− f )(x) =
− d

dx

(∫ 1
x

f (t)
(t−x)α dt

)
Γ(1− α)

, x ∈ [0, 1).

Proposition 1. (c f . [1] Theorem 4.1) If |μ| < Γ(2−α)Γ(1+α)

e
∫ 1

0 |q(t)|dt(1+6e
∫ 1

0 |q(t)|dt)
, then the nonlocal initial

value problem{
−y′′(x) + (q(x)− λ)y(x) + μ(Dα

1− Iα
0+ + Iα

1−Dα
0+)y(x) = 0, y ∈ D,

y(0) = k1, y′(0) = k2,
(5)

has, at most, one solution, where μ, k1, k2, and λ > 0 are real constants, and D = {y ∈ L2 :
y, y′ ∈ AC[0, 1]}.

Proposition 2. (c f . [1] Theorem 3.11) There exists μ0 > 0, such that for |μ| < μ0, all the
eigenvalues of −y′′ + q(x)y + μ(Dα

1− Iα
0+ + Iα

1−Dα
0+)y = λy subject to y(0) = 0 = y(1) are

simple and satisfy

−∞ < λ1(μ) < λ2(μ) < · · · < λn(μ) < · · · , λn(μ) ∼ π2n2, n → ∞. (6)

Definition 3. (c f . [25] p.375) Let C(X, Y) denote the set of all closed operators from X to Y. A
family, T(κ) ∈ C(X, Y), defined for κ in a domain D0 of the complex plane, is said to be holomorphic
of type (A) if

(i) D(T(κ)) = D is independent of κ;
(ii) T(κ)u is holomorphic for κ ∈ D0 for every u ∈ D.

Proposition 3. (c f . [25] Theorem 2.6) Let T be a closable operator from X to Y, with D(T) = D.
Let T(n), n = 1, 2, · · · be operators from X to Y with domains containing D, and let there be
constants a, b, c ≥ 0 such that

‖T(n)u‖ ≤ cn−1(a‖u‖+ b‖Tu‖), u ∈ D, n = 1, 2, · · · (7)

Then the series
T(κ)u = Tu + κT(1)u + κ2T(2)u + · · · , u ∈ D

defines an operator, T(κ), with domain D for | κ |< 1/c. If | κ |< 1
b+c , T(κ) is closable and the

closures T̃(κ) for such κ form a holomorphic family of type (A).
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3. Eigenvalue Problem with Non-Dirichlet Boundary Condition and
0 < α < 1

In this section, we consider the eigenvalue problem{
−y′′(x) + q(x)y(x) + μ(Dα

1− Iα
0+ + Iα

1−Dα
0+)y(x) = λy(x) on (0, 1),

y(0) = 0 = y(1) + dy′(1),
(8)

where d �= 0 is a real constant, and 0 < α < 1.
The fractional operator T̃, associated with (8), is defined by

T̃y = −y′′ + qy + μTαy, Tαy := (Dα
1− Iα

0+ + Iα
1−Dα

0+)y, y ∈ D(T̃),

D(T̃) := {y ∈ L2 : y, y′ ∈ AC[0, 1], y(0) = 0 = y(1) + dy′(1)}. (9)

Proposition 4. For y1, y2 ∈ D(T̃), it holds that

∫ 1

0
y1(x) · T̃y2(x)dx =

∫ 1

0
y2(x) · T̃y1(x)dx. (10)

Proof. If y1, y2 ∈ D(T̃), by the definition of operator T̃, we have y1(0) = 0 = dy′1(1)+ y1(1)∫ 1

0
y1(x) · T̃y2(x)dx =

∫ 1

0
y1(x) · [−y′′2 (x) + q(x)y2(x) + μTαy2(x)]dx

= y1(0)y′2(0)− y1(1)y′2(1) +
∫ 1

0
y′1(x)y′2(x)dx +

∫ 1

0
q(x)y1(x)y2(x)dx + μ

∫ 1

0
y1(x)Tαy2(x)dx

= dy′1(1)y
′
2(1) +

∫ 1

0
y′1(x)y′2(x)dx +

∫ 1

0
q(x)y1(x)y2(x)dx + μ

∫ 1

0
y1(x)Tαy2(x)dx

and ∫ 1

0
y2(x) · T̃y1(x)dx =

∫ 1

0
y2(x) · [−y′′1 (x) + q(x)y1(x) + μTαy1(x)]dx

= dy′2(1)y′1(1) +
∫ 1

0
y′2(x)y′1(x)dx +

∫ 1

0
q(x)y2(x)y1(x)dx + μ

∫ 1

0
y2(x)Tαy1(x)dx.

It follows from y1, y2 ∈ D(L) that y1(0) = 0 = y2(0). By integrating by parts and
exchanging the order of integration, we get∫ 1

0
y1(x)Tαy2(x)dx = − 1

Γ(α)Γ(1− α)

∫ 1

0
y1(x)

d
dx

(∫ 1

x
(t− x)−α

∫ t

0

y2(s)
(t− s)1−α

dsdt
)

dx

+
1

Γ(α)Γ(1− α)

∫ 1

0
y1(x)

(∫ 1

x
(t− x)α−1 d

dt

∫ t

0

y2(s)
(t− s)α

dsdt
)

dx

=
1

Γ(α)Γ(1− α)

∫ 1

0

(∫ t

0
(t− s)α−1y2(s)ds

)(∫ t

0
(t− x)−αy′1(x)dx

)
dt

+
1

Γ(α)Γ(1− α)

∫ 1

0

(∫ t

0
(t− x)α−1y1(x)dx

)(∫ t

0
(t− s)−αy′2(s)ds

)
dt

=
∫ 1

0
y2(x)Tαy1(x)dx,

for y1, y2 ∈ D(T̃), which proves (10).

Theorem 1. The eigenvalues of the nonlocal Sturm–Liouville eigenvalue problem (8) are
real numbers.

36



Fractal Fract. 2025, 9, 70

Proof. Let λ be an eigenvalue for (8) corresponding to eigenfunction y. Then for y and its
complex conjugate y, we obtain

T̃y = λy, y(0) = 0 = y(1) + dy′(1), (11)

and

T̃y = λy, y(0) = 0 = y(1) + dy′(1). (12)

Multiplying two sides of (11) by y and integrating on the interval [0, 1], we get

∫ 1

0
y(x)T̃y(x)dx = λ

∫ 1

0
y(x)y(x)dx. (13)

A similar method for (12) leads to the relation

∫ 1

0
y(x)T̃y(x)dx = λ

∫ 1

0
y(x)y(x)dx. (14)

Using Proposition 4, the following identity is worked out using (13) and (14),

(λ− λ)
∫ 1

0
y(x)y(x)dx = (λ− λ)

∫ 1

0
|y(x)|2dx = 0.

Since y is a nontrivial solution, ||y||2 > 0. Then λ = λ implies that the eigenvalue of (8) is a
real number.

Theorem 2. The eigenfunctions of the nonlocal Sturm–Liouville eigenvalue problem (8) corre-
sponding to the distinct eigenvalues are orthogonal on the interval [0, 1].

Proof. Let λ1 and λ2 be two distinct eigenvalues and y1 and y2 be the corresponding
eigenfunctions. Then we obtain

T̃y1 = λ1y1, (15)

and

T̃y2 = λ2y2. (16)

Multiplying both sides of (15) by y2 and (16) by y1 implies the identity

y2(x)T̃y1(x)− y1(x)T̃y2(x) = (λ1 − λ2)y1(x)y2(x). (17)

Integrating (17) on the interval [0, 1], we obtain the relationship

∫ 1

0
(y2(x)T̃y1(x)− y1(x)T̃y2(x))dx = (λ1 − λ2)

∫ 1

0
y1(x)y2(x)dx.

According to Proposition 4, the Formula (10) leads to the equation

(λ1 − λ2)
∫ 1

0
y1(x)y2(x)dx = 0,

which implies that
∫ 1

0 y1(x)y2(x)dx = 0 as λ1 �= λ2. This is exactly what we want
to prove.
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The following theorem obtained the geometric multiplicity of the eigenvalues for the
nonlocal Sturm–Liouville problem (8).

Theorem 3. The eigenvalues of the nonlocal Sturm–Liouville eigenvalue problem (8) are simple for
|μ| < 1

7 Γ(2− α)(1 + α) and λ > 0.

Proof. Let ψ1(x) and ψ2(x) be the two eigenfunctions of the eigenvalue problem (8), with
the corresponding eigenvalue being λ0.

Denote
ψ(x) = ψ1(x)− cψ2(x),

where c is an arbitrary constant.
It follows from (8) that ψ(0) = 0. One can check that ψ′(x) = ψ′

1(x)− cψ′
2(x).

Now we need to show that ψ′
2(0) �= 0. If not, then ψ2(x) is a solution of the initial

value problem (5), with k1 = k2 = 0. Hence, through Proposition 1, we conclude that
ψ2 ≡ 0, which is a contradiction.

Choose c =
ψ′1(0)
ψ′2(0)

. It follows that ψ′(0) = 0. That is, ψ satisfies the fractional initial
value problem (5) with k1 = k2 = 0.

According to Proposition 1, if |μ| < Γ(2−α)Γ(1+α)

e
∫ 1

0 |q(t)|dt(1+6e
∫ 1

0 |q(t)|dt)
< 1

7 Γ(2− α)(1 + α), one sees

that ψ(x) ≡ 0 on (0, 1), which implies that ψ1(x) and ψ2(x) are linearly dependent on (0, 1),
which completes the proof.

4. Eigenvalue Problem with Dirichlet Boundary Condition and
0 < α < 1/2

Due to the limited results of the initial value theory for nonlocal Sturm–Liouville
problems (1), it is not possible to study the continuous dependence of eigenvalues on
potential functions using the initial value theory, as in references [26–28]. We will use the
two-parameter method to conduct research below.

4.1. Eigenvalue Properties of a Two-Parameter Nonlocal Sturm–Liouville Problem

In this section, we discuss the properties of the eigenvalues of the following two-
parameter nonlocal Sturm–Liouville problem{

−y′′(x) + q(x)y(x) + γ(q1(x)− q(x))y(x) + μ(Dα
1− Iα

0+ + Iα
1−Dα

0+)y(x) = λy(x),
y(0) = 0 = y(1),

(18)

where 0 < α < 1/2, q1, q ∈ L2(0, 1), γ ∈ [0, 1], λ is the spectral parameter, μ ∈ (−μ0, μ0)

is fixed, and μ0 is defined as in Proposition 2. These properties are important to get the
continuous dependence of the eigenvalues on the potential function.

Define the fractional operator, T, by

Ty = −y′′ + qy + μTαy, Tαy := (Dα
1− Iα

0+ + Iα
1−Dα

0+)y, y ∈ D, (19)

where

D := {y ∈ L2(0, 1) : y, y′ ∈ AC[0, 1],−y′′ + qy ∈ L2(0, 1), y(0) = 0 = y(1)}. (20)

For fixed μ ∈ (−μ0, μ0), assume that λn(0) and n ≥ 1 are the eigenvalues of the
nonlocal Sturm–Liouville problem, Ty = −y′′ + q(x)y + μTαy = λy, y(0) = 0 = y(1), y ∈
D, which satisfies (6):

−∞ < λ1(0) < λ2(0) < · · · < λn(0) < · · · , λn(0) ∼ π2n2, n → ∞.
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Denote by T(γ) the operator given in (18) as

T(γ)y := Ty + γT1y = Ty + γ(q1(x)− q(x))y, y ∈ D, γ > 0.

Let λn(γ) and n ≥ 1 be the eigenvalues of the two-parameter nonlocal Sturm–
Liouville problem

T(γ)y = Ty + γT1y = λy, y(0) = 0 = y(1). (21)

Theorem 4. Let μ ∈ (−μ0, μ0) be fixed. There exists γ0 > 0, such that for 0 < γ < γ0, all the
eigenvalues of (21) are simple and satisfy

−∞ < λ1(γ) < λ2(γ) < · · · < λn(γ) < · · · , λn(γ) ∼ π2n2, n → ∞. (22)

Proof. By virtue of Definition 3, Proposition 3, and discussions similar to Theorem 3.8
in [1], we can prove that {T(γ), γ ∈ R} is a self-adjoint holomorphic family of type (A).
Then for fixed μ ∈ (−μ0, μ0), there exists exactly one simple eigenvalue λn(γ) of T(γ) near
each unperturbed eigenvalue λn(0) for suitably small γ, since λn(0) is simple. Moreover,

||T1y|| ≤ ‖q1 − q‖‖y‖.

Therefore, the perturbation expansion near each λn(0) has a positive convergence
radius, ρn.

According to (4.74) in ([25], p. 406), the following inequality holds

ρn ≥
(

2(a + b|λn|)
dn

+ 2b
)−1

. (23)

Then we obtain
ρn ≥ dn

2‖q1 − q‖ . (24)

Here a = ‖q1 − q‖, b = 0, and dn is the isolation distance of the eigenvalue λn(0), defined as

dn = min{|λn(0)− λn−1(0)|, |λn+1(0)− λn(0)|}. (25)

Then, if γ < ρn, there exists exactly one eigenvalue λn(γ) of T(γ), such that

|λn(γ)− λn(0)| < dn/2.

Now we will prove that there exists γ0 > 0, such that ρn ≥ γ0 for all n ≥ 1. According
to Proposition 2, we have λn(0) ∼ n2π2 as n → ∞. Hence,

dn ∼ (2n− 1)π2, n → ∞, (26)

ρn ≥ cn :=
dn

2‖q1 − q‖ ∼
(n− 1

2 )

‖q1 − q‖π2.

Let γ < δ1, where δ1 = π2

4‖q1−q‖ . Then there exists N, such that for n > N,

ρn ≥ cn > δ1 > γ.

Therefore, there exists exactly one simple eigenvalue λn(γ) of T(γ), such that

|λn(γ)− λn(0)| < dn/2, n > N.
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For 1 ≤ n ≤ N, we choose

dn = min{|λj(0)− λk(0)| : 1 ≤ j �= k ≤ N} := d. (27)

By (24), we have

ρn ≥ d
2‖q1 − q‖ := δ2, 1 ≤ n ≤ N.

Set γ0 = min{δ1, δ2}. Then
ρn ≥ γ0 for all n ≥ 1.

Denote by On the disc|λ − λn(0)| < dn/2, n ≥ 1. If γ < γ0, then each On contains
exactly one simple eigenvalue of T(γ) for n ≥ 1.

Let A = ∪∞
n=1On. We need to prove that A contains all the eigenvalues of T(γ).

Set Ã = C \ A. We will prove that for γ < γ0, Ã ⊂ P(T(γ)), where P(T(γ)) is the
resolvent of T(γ).

Suppose λ ∈ Ã. If λ /∈ R, it follows from Theorem 3.8 in [1] that

λ ∈ P(T(γ)).

If λ ∈ R, then for some n ≥ 1, the following inequality holds

λ < λ1(0)− d1/2, or λn(0) + dn/2 < λ < λn+1(0)− dn+1/2,

where dn is defined as in (25) for n > N, and as in (27) for 1 ≤ n ≤ N.
We now prove λ ∈ P(T(γ)).
Suppose, to the contrary, that λ is an eigenvalue of T(γ). By Theorem 4.21 ([25], p. 408),

there exist 0 < δ < γ0 and k ∈ N, such that if γ < δ, the inequality |λ − λk(0)| < dk/2
holds, which implies that there exists k ∈ N such that λ ∈ Ok.

Each Ok contains exactly one simple eigenvalue of T(γ) for k ≥ 1. Therefore, we obtain
a contradiction. Hence, λ ∈ P(T(γ)).

For γ < γ0, we obtain

−∞ < λn(γ) < λn+1(γ), n ≥ 1.

By (25) and (27), we have
λn(γ) ∼ n2π2.

4.2. The Continuous Dependence of the Eigenvalues on the Potential Function

In this section, by the aid of the two-parameter method, we investigate the continuous
dependence of the eigenvalues of{

−y′′(x) + q(x)y(x) + μ(Dα
1− Iα

0+ + Iα
1−Dα

0+)y(x) = λy(x) on (0, 1),
y(0) = 0 = y(1).

(28)

where 0 < α < 1/2, q ∈ L2(0, 1), λ is the spectral parameter, μ ∈ (−μ0, μ0) is fixed, and μ0

is defined as in Proposition 2.
When γ = 0, equation

−y′′(x) + q(x)y(x) + γ(q1(x)− q(x))y(x) + μ(Dα
1− Iα

0+ + Iα
1−Dα

0+)y(x) = λy(x)
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degenerates into equation

−y′′(x) + q(x)y(x) + μ(Dα
1− Iα

0+ + Iα
1−Dα

0+)y(x) = λy(x),

and when γ = 1, equation

−y′′(x) + q(x)y(x) + γ(q1(x)− q(x))y(x) + μ(Dα
1− Iα

0+ + Iα
1−Dα

0+)y(x) = λy(x)

can be transformed into

−y′′(x) + q1(x)y(x) + μ(Dα
1− Iα

0+ + Iα
1−Dα

0+)y(x) = λy(x).

Therefore, the continuous dependence of the eigenvalue of−y′′(x)+ q(x)y(x)+μ(Dα
1− Iα

0++

Iα
1−Dα

0+)y(x) on the potential function q(x) can be transformed into the continuous de-
pendence of the eigenvalue of −y′′(x) + q(x)y(x) + γ(q1(x) − q(x))y(x) + μ(Dα

1− Iα
0+ +

Iα
1−Dα

0+)y(x) = λy(x) on the parameter γ.

Theorem 5. Let μ ∈ (−μ0, μ0), n ≥ 1, and q0 ∈ L2(0, 1) be fixed. For any ε > 0, there exists
δn > 0, such that if ||q1 − q0|| ≤ δn for any q1 ∈ L2(0, 1), then |λn,q1 − λn,q0 | < ε, where λn,qi

(i = 0, 1) are the n-th eigenvalue of −y′′ + qiy + μTαy = λy subject to y(0) = 0 = y(1).

Proof. For two-parameter nonlocal Sturm–Liouville problem

−y′′(x) + q0(x)y(x) + γ(q1(x)− q0(x))y(x) + μTαy(x) = λy(x), y(0) = 0 = y(1), (29)

λn(γ)(n ≥ 1) are corresponding eigenvalues.
It suffices to show that for any ε > 0, there exists δn > 0, such that for any q1 ∈ L2(0, 1),

if γ < δn, then |λn(γ)− λn(0)| < ε.
For the sake of simplicity in writing, we dropped the variable x and the subscript

n. By Theorem 4, each eigenvalue λ(γ) is simple on (0, γ0). Choose 0 < |Δ| � 1, such
that 0 < γ + Δ < γ0. Assume λ(γ) and λ(γ + Δ) are different eigenvalues of (29). Let
eigenfunctions ϕ(γ) and ϕ(γ + Δ) denote the corresponding normalized eigenfunctions of
λ(γ) and λ(γ + Δ), respectively. Then we obtain{

−ϕ′′(γ) + q0(x)ϕ(γ) + γ(q1(x)− q0(x))ϕ(γ) + μTα ϕ(γ) = λ(γ)ϕ(γ),
ϕ(0, γ) = 0 = ϕ(1, γ)

(30)

and

−ϕ′′(γ + Δ) + q0(x)ϕ(γ + Δ) + (γ + Δ)(q1(x)− q0(x))ϕ(γ + Δ) + μTα ϕ(γ + Δ)
= λ(γ + Δ)ϕ(γ + Δ), ϕ(0, γ + Δ) = 0 = ϕ(1, γ + Δ).

(31)

(31)×ϕ(γ)−(30)×ϕ(γ + Δ), and integrating on [0, 1], we have

(λ(γ + Δ)− λ(γ))
∫ 1

0
ϕ(γ)ϕ(γ + Δ) (32)

= Δ
∫ 1

0
(q1(x)− q0(x))ϕ(γ)ϕ(γ + Δ) + μ

∫ 1

0
(ϕ(γ)(Tα ϕ(γ + Δ))− ϕ(γ + Δ)(Tα ϕ(γ))).

Moreover, we obtain∫ 1

0
ϕ(γ)(Tα ϕ(γ + Δ)) =

∫ 1

0
ϕ(γ + Δ)(Tα ϕ(γ)).

41



Fractal Fract. 2025, 9, 70

Therefore,

λ′(γ) = lim
Δ→0

λ(γ + Δ)− λ(γ)

Δ
=

∫ 1

0
q̃ϕ2(γ), (33)

where q̃(x) := q1(x)− q0(x).
Define

Q̃(x) =
∫ x

0
q̃(t)dt, x ∈ [0, 1], Q̃0 = max

x∈[0,1]
{|Q̃(x)|},

Q(x) =
∫ x

0
q0(t)dt, x ∈ [0, 1], Q0 = max

x∈[0,1]
{|Q(x)|}.

Since ||ϕ(γ)|| = 1, ϕ(1, γ) = ϕ(0, γ) = 0, then we obtain

|
∫ 1

0
q̃ϕ(γ)|2 ≤ ||ϕ′(γ)||2

4γ
+ 4Q̃2

0γ, |
∫ 1

0
q0 ϕ(γ)|2 ≤ ||ϕ′(γ)||2

4
+ 4Q2

0, (34)

and

|
∫ 1

0
q̃ϕ(γ)|2 ≤ ||ϕ′(γ)||2

4
+ 4Q̃2

0, (35)

Because Tαy = (Dα
1− Iα

0+ + Iα
1−Dα

0+)y, by Definitions 1 and 2, we get the relationship

Tαy = Mα

⎛⎜⎝
∫ 1

0
y(s)

(1−s)1−α ds

(1− x)α
−

∫ 1

x

∫ t
0

d
ds y(s)

(t−s)1−α ds

(t− x)α
dt +

∫ 1

x

∫ t
0

d
ds y(s)
(t−s)α ds

(t− x)1−α
dt

⎞⎟⎠,

where Mα = 1
Γ(α)Γ(1−α)

. Therefore,

‖ Tαy ‖ ≤ Mα

⎛⎜⎝‖ ∫ 1

x

∫ t
0

d
ds y(s)

(t−s)1−α ds

(t− x)α
dt ‖ + ‖

∫ 1

x

∫ t
0

d
ds y(s)
(t−s)α ds

(t− x)1−α
dt ‖ + ‖

∫ 1
0

y(s)
(1−s)1−α ds

(1− x)α
‖

⎞⎟⎠

= Mα

⎛⎜⎝∫ 1

0

∣∣∣∣∣∣
∫ 1

x

∫ t
0

y′(s)
(t−s)1−α ds

(t− x)α
dt

∣∣∣∣∣∣
2

dx

⎞⎟⎠
1/2

+ Mα

⎛⎜⎝∫ 1

0

∣∣∣∣∣∣
∫ 1

x

∫ t
0

y′(s)
(t−s)α ds

(t− x)1−α
dt

∣∣∣∣∣∣
2

dx

⎞⎟⎠
1/2

+Mα

⎛⎜⎝∫ 1

0

∣∣∣∣∣∣
∫ 1

0
y(s)

(1−s)1−α ds

(1− x)α

∣∣∣∣∣∣
2

dx

⎞⎟⎠
1/2

.

Denoted by

C1 =

⎛⎜⎝∫ 1

0

∣∣∣∣∣∣
∫ 1

x

∫ t
0

y′(s)
(t−s)1−α ds

(t− x)α
dt

∣∣∣∣∣∣
2

dx

⎞⎟⎠
1/2

, C2 =

⎛⎜⎝∫ 1

0

∣∣∣∣∣∣
∫ 1

x

∫ t
0

y′(s)
(t−s)α ds

(t− x)1−α
dt

∣∣∣∣∣∣
2

dx

⎞⎟⎠
1/2

,

C3 =

⎛⎜⎝∫ 1

0

∣∣∣∣∣∣
∫ 1

0
y(s)

(1−s)1−α ds

(1− x)α

∣∣∣∣∣∣
2

dx

⎞⎟⎠
1/2

.

It follows that
‖ Tαy ‖≤ Mα(C1 + C2 + C3).
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Utilizing the Cauchy–Schwarz inequality in conjunction with the integration by parts
formula many times yields the following results

C2
1 ≤

∫ 1

0

(∫ 1

x
(t− x)−αdt

)⎛⎜⎝∫ 1

x

∣∣∣∫ t
0

y′(s)ds
(t−s)1−α

∣∣∣2
(t− x)α

dt

⎞⎟⎠dx,

≤ 1
1− α

∫ 1

0

(∫ t

0
(t− x)−αdx

)∣∣∣∣∫ t

0

y′(s)
(t− s)1−α

ds
∣∣∣∣2dt

≤ 1
α(1− α)2

∫ 1

0

∫ t

0

|y′(s)|2
(t− s)1−α

dsdt ≤ 1
α2(1− α)2 ‖ y′ ‖2

C2
2 ≤

⎛⎜⎝∫ 1

0

(∫ 1

x
(t− x)α−1dt

)⎛⎜⎝∫ 1

x

∣∣∣∫ t
0

y′(s)ds
(t−s)α

∣∣∣2
(t− x)1−α

dt

⎞⎟⎠dx

⎞⎟⎠
1/2

≤ 1
α2(1− α)

∫ 1

0

∫ t

0

|y′(s)|2
(t− s)α

dsdt ≤ 1
α2(1− α)2 ‖ y′ ‖2

C3 =

(∫ 1

0
(1− x)−2αdx

)1/2∣∣∣∣∫ 1

0

y(s)
(1− s)1−α

ds
∣∣∣∣

=
1√

1− 2α

∣∣∣∣∫ 1

0

y(s)
(1− s)1−α

ds
∣∣∣∣

≤ ‖ y′ ‖
α
√

1− 2α
.

Hence,
‖ Tαy ‖≤ Mα(C1 + C2 + C3) ≤ Cα ‖ y′ ‖,

where Cα = 1−α+2
√

1−4α2

Γ(1+α)Γ(2−α)
√

1−4α2 .

By calculation, we find that

| 〈Tα ϕ(γ), ϕ(γ)〉 |≤ Cα ‖ ϕ′(γ) ‖‖ ϕ(γ) ‖≤ 1
4|μ| ‖ ϕ′(γ) ‖2 +|μ|C2

α ‖ ϕ(γ) ‖2 . (36)

By (30), we have

||ϕ′(γ)||2 +
∫ 1

0
q|ϕ(γ)|2 + γ

∫ 1

0
q̃|ϕ(γ)|2 + μ〈Tα ϕ(γ), ϕ(γ)〉 = λ(γ). (37)

By means of (34), (36), and (37), we obtain

||ϕ′(γ)||2 ≤ 4(λ(γ) + 4Q2
0 + 4Q̃2

0γ2 + |μ|2C2
α). (38)

A combination of (33), (35), and (38) gives that

|λ′(γ)| = |
∫ 1

0
q̃ϕ(γ)|2 ≤ ||ϕ′(γ)||2

4
+ 4Q̃2

0 ≤ λ(γ) + c, (39)

where c = 4Q2
0 + 4Q̃2

0γ2 + |μ|2C2
α + 4Q̃2

0. Solving the differential inequality (39), we have

λ(γ) + c ≤ eγ(λ(0) + c).
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Therefore,
|λ′(γ)| ≤ eγ(λ(0) + c).

Hence, for any ε > 0, and for any q1 ∈ L2(0, 1), if |γ| < δn = min{γ0, ε
eγ(λ(0)+c)}, we have

|λ(γ)− λ(0)| = |
∫ γ

0
λ′(t)dt| ≤ |γ|eγ(λ(0) + c) < ε,

which completes the proof.

5. Conclusions

In this paper, we considered a nonlocal Sturm–Liouville problem (1)–(2) with fractional
integrals and fractional derivatives. We obtained that the eigenvalues of (1)–(2) with d �= 0
are real values, and the corresponding eigenfunctions are orthogonal; see Theorems 1 and 2.
In Theorem 3, based on these properties, we obtained results that show the geometric
multiplicity of the eigenvalues is simple. Thereafter, we discussed the eigenvalue problem
of (1)–(2) with d = 0. We led into an auxiliary two-parameter nonlocal Sturm–Liouville
problem (18). In Theorem 4, we derived that the corresponding eigenvalue problem consists
of a countable number of real eigenvalues, and the algebraic multiplicity of each eigenvalue
is simple. With the aid of the eigenvalue properties of this nonlocal problem, we came to
the conclusion that the eigenvalues are continuous with respect to the potential function;
see Theorem 5.
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Abstract: The mathematical theories and methods of fractional calculus are relatively mature, which
have been widely used in signal processing, control systems, nonlinear dynamics, financial models,
etc. The studies of some basic theories of fractional differential equations can provide more under-
standing of mechanisms for the applications. In this paper, the expression of the Green function as
well as its special properties are acquired and presented through theoretical analyses. Subsequently,
on the basis of these properties of the Green function, the existence and uniqueness of positive
solutions are achieved for a singular p-Laplacian fractional-order differential equation with nonlocal
integral and infinite-point boundary value systems by using the method of a nonlinear alternative of
Leray–Schauder-type Guo–Krasnoselskii’s fixed point theorem in cone, and the Banach fixed point
theorem, respectively. Some existence results are obtained for the case in which the nonlinearity
is allowed to be singular with regard to the time variable. Several examples are correspondingly
provided to show the correctness and applicability of the obtained results, where nonlinear terms
are controlled by the integrable functions 1

π(ln t)
1
2 (1−ln t)

1
2

and 1
π(ln t)

3
4 (1−ln t)

3
4

in Example 1, and

by the integrable functions θ, θ and ϕ(v), ψ(u) in Example 2, respectively. The present work may
contribute to the improvement and application of the coupled p-Laplacian Hadamard fractional
differential model and further promote the development of fractional differential equations and
fractional differential calculus.

Keywords: Hadamard fractional; singular nonlinear term; coupled differential system; positive
solution; integral and infinite-point boundary condition

MSC: 26A33; 34A37

1. Introduction

The p-Laplacian differential equation was first introduced by Leibenson [1] when he
studied the turbulent flow in a porous medium. Later, differential equations containing p-
Laplace operators have been widely used in many fields such as non-Newtonian mechanics,
cosmic physics, plasma problems and elasticity theory [1–6]. The p-Laplacian operator Lp

is defined as Lp(s) = |s|p−2s, p, q > 1, 1
p + 1

q = 1. For recent developments in this regard,
see [7–11].

Recently, more and more researchers have dedicated their research to the existence and
number of solutions of fractional differential equations and the corresponding nonlinear
deformation, flexural wave and vibration, and the coupled problem, which can be referred
to in [2,4,12–21]. There are many approaches to studying fractional differential equations,
such as the mixed monotone operator method [10], Banach’s fixed point theorem [22], Leray–
Schauder’s alternative method [23,24], Hussein–Jassim’s method [25], the comparison
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principle method [26] and so on. In recent years, some scientists have devoted themselves
to studying the Hadamard fractional differential equation as well as related nonlinear
dynamical differential systems [6,22,26–33]. The Hadamard fractional derivative of ν(ν > 0)
order of a continuous function Ψ : (0, ∞) → R1

+ is given by

HDν
1+ h̄(t) =

1
Γ(n− ν)

(
t

d
dt

)n ∫ t

1

Ψ(s)

s
(
ln t

s
)ν−n+1 ds,

where n = [α] + 1, [α] denotes the integer part of the number α, provided that the right-
hand side is pointwise defined on (0, ∞). The Hadamard fractional integral of ν(ν > 0)
order of a function Ψ : (0, ∞) → R1

+ is given by

H Iν
1+ h̄(t) =

1
Γ(ν)

∫ t

1
(ln

t
s
)ν−1 Ψ(s)

s
ds.

In order to better guide the practice, a large number of workers are devoted to the
basic theoretical research of fractional differential equations, among which the structure
of Hadamard fractional differential equations is one of them. It has been noticed that
some of the structure of fractional differential equations is based on Hadamard fractional
differential equations. In [18], the authors discussed the following Hadamard fractional
equations:

H Dq
1+u(t) +F (t, u(t), v(t)) = 0, 1 < t < e,

H Dq
1+v(t) +F (t, u(t), v(t)) = 0, 1 < t < e,

with the following multi-point boundary conditions:

u(1) = δu(1) = 0, u(e) =
m−1

∑
j=1

aju(ξ j),

v(1) = δv(1) = 0, v(e) =
m−1

∑
j=1

bju(ηj),

where q ∈ (2, 3] is a real number, and H Dq
1+u is the standard Hadamard fractional deriva-

tive. ai, bj ≥ 0, ξi, ηj ∈ (1, e) with ∑m−1
i=1 ai(log ξi)

q−1 ∈ [0, 1), and ∑m−1
j=1 bj(log ηj)

q−1 ∈
[0, 1); F , F ∈ C([1, e] × R+ × R+ × R+,R+)(R+ = [0,+∞)). The authors obtained a
triple positive solution and a nontrivial solution by a fixed point theorem and through the
relationship between nonlinear and linear operators. Ardjouni [15] studied the following
Hadamard fractional differential equations:

H Dα
1+u(t) + φ(t, u(t)) =H Dβ

1+ ϕ(t, u(t)), 1 < t < e,

with integral boundary conditions:

u(1) = 0, u(e) =
1

Γ(α− β)

∫ e

1
(log

e
s
)α−β−1g(s, x(s))

ds
s

,

where 1 < α ≤ 2, 0 < β ≤ α − 1, ϕ, φ : [1, e]× [0, ∞) → [0, ∞) are given as continuous
functions, φ does not require any monotone assumption and ϕ is non-decreasing on x. The
authors obtained the existence and uniqueness of the positive solution by the method of
upper and lower solutions and Schauder and Banach fixed point theorems. In [34], we
consider the following singular Hadamard fractional differential equation:

H Dα
1+

(
ϕp

(
H Dγ

1+u
))

(t) + h̄(t, u(t),H Dμ
1+u(t)) = 0, 1 < t < e,
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with the infinite-point boundary condition:

u(j+μ)(1) = 0, j = 0, 1, 2, . . . , n− 2;H Dr1
1+u(e) =

∞

∑
j=1

ηH
j Dr2

1+u(ξ j),

H Dγ
1+u(1) = 0; ϕp(

H Dγ
1+u(e)) =

∞

∑
j=1

ζ j ϕp(
H Dγ

1+u(ξ j)),

where α, γ, μ ∈ R+ = [0,+∞); 1 < α ≤ 2, n < γ ≤ n + 1(n ≥ 3); r1, r2 ∈ [2, n− 2]; r2 ≤ r1;
the p-Laplacian operator ϕp is defined as ϕp(s) = |s|p−2s, p, q > 1, 1

p + 1
q = 1, 0 < μ ≤

n − 2 and 0 < ηi, ζi < 1, 1 < ξi < e(i = 1, 2, . . . , ∞); h̄ ∈ C((1, e) × R1
+ × R1

+)(R
1
+ =

[0,+∞)) and may be singular at t = 1, e; and H Dα
1+u,H Dγ

1+u,H Dμ
1+u, H Dri

1+u(i = 1, 2)
are the standard Hadamard fractional derivatives. The existence of positive solutions is
investigated by spectral analysis by us. For the portion of the research results that include
the fractional differential systems and the corresponding nonlinear deformation, flexural
wave and vibration, please refer to [4,15–21,35].

Motivated by the excellent results above, we consider the following Hadamard frac-
tional differential system (HFDS):

Lp1(
H Dν

1+u(t)) +F (t, v(t),H Dς
1+v(t)) = 0, 1 < t < e,

Lp2(
H Dι

1+v(t)) +F (t, u(t),H Dς
1+u(t)) = 0, 1 < t < e,

(1)

with nonlocal integral and infinite-point boundary conditions:

u(i)(1) = 0, i = 0, 1, 2, . . . , n− 2, u(e) =
∞

∑
j=1

ηju(ξ j) +
∫ e

1
h(t)u(t)dB(t),

v(j)(1) = 0, i = 0, 1, 2, . . . , m− 2, v(e) =
∞

∑
j=1

η jv(ξ j) +
∫ e

1
h(t)v(t)dB(t),

(2)

where n− 1 < ν ≤ n, m− 1 < ι ≤ m, 0 < ς < max{ν− 1, ι− 1}; the p-Laplacian operator
Lpi is defined as Lpi (s) = |s|pi−2s, pi, qi > 1, 1

pi
+ 1

qi
= 1(i = 1, 2); ηj, η j ≥ 0, 1 < ξ j < e,

1 < ξ j < e (j = 1, 2 · · · ) are parameters; B, B are functions of bounded variation;
h(t), h(t) ∈ L1(1, e)

∫ e
1 h(t)u(t)dB(t) and

∫ e
1 h(t)v(t)dB(t) denote the Riemann–Stieltjes in-

tegral with respect to B(t) and B(t); F , F ∈ C((1, e)× (0,+∞)2, R1
+)) and F (t, x1, x2),

F (t, x1, x2) have singularity at t = 1, e; and H Dν
1+u,H Dι

1+u are the standard Hadamard
fractional derivatives.

In this paper, we investigate the existence of positive solutions for a singular infinite-
point coupled p-Laplacian boundary value system. Compared with [18,19], the nonlinear
term is singular in regard to time variable in this study, fractional derivatives are involved
in the nonlinear terms and infinite point is involved in boundary conditions for HFDS (1)
and (2). However, the nonlinear term is continuous in the studies [18,19] and the nonlinear
terms of reference [18,19] do not contain derivative terms. Compared with [19,36,37], the
equation in this paper is a p-Laplacian boundary value system which is a great extension
from the general fractional differential equation. Compared with the references, on the
one hand, the equations we study are complex and the singular form of nonlinearity can
simulate more complex systems; on the other hand, we obtain the existence and uniqueness
of the solutions to the equations.

This paper is organized as follows: In Section 1, we explain the research background
and necessity of studying such a fractional differential equation in the Introduction section.
In Section 2, we introduce some definitions and lemmas which will be used later, and give
the expression of the theorem of the Green function, provide the nature of the theorem of
Green function, and prove the continuity and total continuity of operators. In Section 3, we
obtain the main results by using the method of a nonlinear alternative of Leray–Schauder-
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type, Guo–Krasnoselskii’s fixed point theorem in cone and the Banach fixed point theorem,
respectively. In Section 4, we list three examples to illustrate the validity of the proposed
theories. Finally, we summarize some conclusions with the current shortcomings and
future research plans in Section 5.

2. Preliminaries and Lemmas

With respect to some essential definitions and lemmas of fractional calculus of the
Hadamard type, the reader may consult the recent bibliography such as those in [5,38,39].
Only the parts are listed here.

For convenience in terms of presentation, we list herein some conditions to be used
throughout the paper.

(H0): F , F : (1, e)×R+ ×R+ → R+, and there exists a function θ(t), θ(t) : (1, e) →
R+ such that F (t, x0, x1) ≤ θ(t), F (t, x0, x1) ≤ θ(t) for ∀(x0, x1) ∈ E× E, and∫ e

1
Lq1(ϑ(s))

ds
s

< +∞,
∫ e

1
Lq2

(
ϑ(s)

)ds
s

< +∞.

(H1) ∫ e

1
h(t)(ln t)α−1dB(t) < +∞,

∫ e

1
h(t)(ln t)β−1dB(t) < +∞.

Lemma 1 ([3,5]). If ν, ι > 0, then

H Iν
1+(ln x)ι−1 =

Γ(ι)
Γ(ι + ν)

(ln x)ι+ν−1,H Dν
1+(ln x)ι−1 =

Γ(ι)
Γ(ι− ν)

(ln x)ι−ν−1.

Lemma 2 ([3]). Suppose that ν > 0 and Ψ ∈ C[0, ∞) ∩ L1[0, ∞), then the solution of Hadamard
fractional differential equation HDν

1+Ψ(t) = 0 is

Ψ(t) = κ1(ln t)ν−1 + κ2(ln t)ν−2 + · · ·+ κn(ln t)ν−n, κi ∈ R(i = 0, 1, · · · , n), n = [ν] + 1.

Lemma 3 ([3]). Suppose that ν > 0, ν is not a natural number, Ψ ∈ C[1, ∞) ∩ L1[1, ∞), then

Ψ(t) =H Iν
1+

HDν
1+ h̄(t) +

n

∑
k=1

κk(ln t)ν−k,

for t ∈ (1, e], where κk ∈ R(k = 1, 2, · · · , n), and n = [ν] + 1.

Lemma 4. Let E be a real Banach space, and P ⊂ E be a cone. Let Ω1, Ω2 be two bounded
open subsets in E such that θ ∈ Ω1 and Ω1 ⊂ Ω2. Let the operator T : (Ω2\Ω1) ∩ P → P be
completely continuous. Suppose that one of the conditions is as follows:

(i) If ‖Tx‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂Ω1, ‖Tx‖ ≥ ‖x‖ for all x ∈ P ∩ ∂Ω2;
(ii) If ‖Tx‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂Ω1, ‖Tx‖ ≤ ‖x‖ for all x ∈ P ∩ ∂Ω2 holds, then T has a fixed

point in (Ω2\Ω1) ∩ P.

Lemma 5. Let E be a Banach space and Ω ⊂ E be closed and convex. Assume U is a relatively open
subset of Ω with θ ∈ U, and let operator A : U → Ω be a continuous compact map. Then, either
one of the following occurs:

(1) A has a fixed point in U;
(2) There exists u ∈ ∂U and ϕ ∈ (0, 1) with u = ϕAu.

Lemma 6 ([40], Theorem 1.2.7). Let Θ ⊂ C1[J, E], then Θ is a relatively compact set if and
only if the following are true:

(a) Θ′ is equicontinuous and Θ′(t) is a relatively compact set for any t ∈ J on E;
(b) There exists t0 ∈ J such that Θ(t0) is a relatively compact set on E.

49



Fractal Fract. 2024, 8, 682

Now, we consider the following linear fractional differential equations.

Theorem 1. Given y, y ∈ L1(1, e) ∩ C(1, e), then the liner HFDE problems⎧⎪⎨⎪⎩
Lp1(

H Dν
1+u(t)) + y(t) = 0, 1 < t < e,

u(j)(1) = 0, j = 0, 1, 2, · · · , n− 2; u(e) =
∞

∑
j=1

ηju(ξ j) +
∫ e

1
h(t)u(t)dB(t),

(3)

⎧⎪⎨⎪⎩
Lp2(Dι

1+v(t)) + y(t) = 0, 1 < t < e,

v(j)(1) = 0, j = 0, 1, 2, · · · , m− 2; v(e) =
∞

∑
j=1

η jv(ξ j) +
∫ e

1
h(t)v(t)dB(t)

(4)

have integral representation

u(t) =
∫ e

1
G (t, s)

ϕq1(y(s))
s

ds,

v(t) =
∫ e

1
H (t, s)

ϕq2(y(s))
s

ds,
(5)

where
G (t, s) = G1(t, s) + G2(t, s),

H (t, s) = H1(t, s) +H2(t, s),

in which

G1(t, s) =
1

Γ(ν)

⎧⎪⎨⎪⎩
P(s)Γ(ν)(ln t)ν−1(ln

e
s
)ν−1 − Δ(ln

t
s
)ν−1, 1 ≤ s ≤ t ≤ e,

P(s)Γ(ν)(ln t)ν−1(ln
e
s
)ν−1, 1 ≤ t ≤ s ≤ e,

(6)

G2(t, s) =
(ln t)ν−1

Δ1

∫ e

1
h(t)G1(t, s)dB(t), (7)

Δ1 = Δ−
∫ e

1
h(t)(ln t)ν−1dB(t), Δ = 1−

∞

∑
i=1

ηj(ln ξ j)
ν−1,

P(s) =
1

Γ(ν)
− 1

Γ(ν)

∞

∑
j=1

ηj

(
ln ξ j − ln s
ln e− ln s

)ν−1

,

H1(t, s) =
1

Γ(ι)

⎧⎪⎨⎪⎩
(ln t)ι−1(ln

e
s
)ι−1 − Δ(ln

t
s
)ι−1, 1 ≤ s ≤ t ≤ e,

(ln t)ι−1(ln
e
s
)ι−1, 1 ≤ t ≤ s ≤ e,

(8)

H2(t, s) =
(ln t)ι−1

Δ1

∫ e

1
h(t)H1(t, s)dB(t), (9)

Δ1 = Δ−
∫ e

1
h(t)(ln t)ι−1dB(t), Δ = 1−

∞

∑
i=1

η j(ln ξ j)
ι−1,

P(s) =
1

Γ(ι)
− 1

Γ(ι)

∞

∑
j=1

η j

(
ln ξ j − ln s
ln e− ln s

)ι−1

.

Proof. By using Lemma 3, Equation (3) can be reduced to an equivalent integral equation:

u(t) = −H Iν
1+ Lq1(y(t)) + κ1(ln t)ν−1 + κ2(ln t)ν−2 + · · ·+ κn(ln t)ν−n,
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for some κ1, κ2, · · · , κn ∈ R1. Via u(1) = 0 of (2), one has κn = 0, then

u′(t) = −H Iν−1
1+ Lq1(y(t)) + κ1(ν− 1)(ln t)ν−2 1

t
+ κ2(ν− 2)(ln t)ν−3 1

t
+ . . . ,

by means of u′(t) = 0, one obtains κn−1 = 0; by the same means, one arrives at κ2 = κ3 =
. . . = κn−2 = 0, and then

u(t) = −
∫ t

1

(ln t
s )

ν−1

Γ(ν)
Lq1(y(s))

s
ds + κ1(ln t)ν−1. (10)

By simple calculation, we have

u(e) = −H Iν
1+ Lq1(y(e)) + κ1. (11)

Substituting (11) into u(e) = ∑∞
j=1 ηju(ξ j) +

∫ e
1 h(t)u(t)dB(t), we have

κ1 −H Iν
1+ Lq1(y(e)) =

∞

∑
i=1

ηj

(
C1(ln ξ j)

ν−1 −H Iν
1+ Lq1(y(ξ j))

)
+

∫ e

1
h(t)u(t)dB(t),

then

κ1 =
∫ e

1

(ln e− ln s)ν−1

Γ(ν)Δ
Lq1(y(s))

ds
s
−

∞

∑
j=1

ηj

∫ ξ j

1

(ln ξ j − ln s)ν−1

Γ(ν)Δ
Lq1(y(s))

ds
s

+
1
Δ

∫ e

1
h(t)u(t)dB(t)

=
∫ e

1

(ln e− ln s)ν−1P(s)
Δ

Lq1(y(s))
ds
s
+

1
Δ

∫ e

1
h(t)u(t)dB(t).

(12)

Incorporating (12) into (10), one has

u(t) =− 1
Γ(ν)

∫ t

1
(ln

t
s
)ν−1 Lq1(y(s))

s
ds

+ (ln t)ν−1
1

Γ(ν)

∫ e
1 (ln

e
s )

ν−1 Lq1 (y(s))
s ds−∑∞

i=1 ηj
1

Γ(ν)

∫ ξ j
1 ln(

ξ j
s )

ν−1 Lq1 (y(s))
s ds

Δ

+
(ln t)ν−1

Δ

∫ e

1
h(t)u(t)dB(t)

=
∫ e

1
G (t, s)

Lq1(y(s))
s

ds +
(ln t)ν−1

Δ

∫ e

1
h(t)u(t)dB(t).

(13)

Multiplying Equation (13) by h(t) and the Riemann–Stieltjes integral from 1 to e, one
arrives at ∫ e

1
h(t)u(t)dB(t) =

∫ e

1
h(t)

[∫ e

1
G (t, s)Lq1(y(s))

ds
s

]
dB(t)

+

∫ e
1 h(t)(ln t)α−1dB(t)

Δ

∫ e

1
h(t)u(t)dB(t);

hence, ∫ e

1
h(t)u(t)dB(t) =

Δ
Δ1

∫ e

1
h(t)

[∫ e

1
G (t, s)Lq1(y(s))

ds
s

]
dB(t),
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and then,

u(t) =
∫ e

1
G1(t, s)Lq1(y(s))

ds
s
+

(ln t)ν−1

Δ
Δ
Δ1

∫ e

1
h(t)

[∫ e

1
G (t, s)Lq1(y(s))

ds
s

]
dB(t)

=
∫ e

1
G1(t, s)Lq1(y(s))

ds
s
+

∫ e

1
G2(t, s)Lq1(y(s))

ds
s

=
∫ e

1
G (t, s)Lq1(y(s))

ds
s

,

where G (t, s), G1(t, s), G2(t, s), Δ, Δ1 are as (5)–(7). Moreover, by simple calculation, one
arrives at

H Dς
1+G (t, s) =H Dς

1+G1(t, s) +
Γ(ν)

Δ1Γ(ν− ς)
(ln t)ν−1−ς

∫ e

1
h(t)G1(t, s)dB(t), (14).

and

H Dμ
1+G1(t, s) =

1
ΔΓ(ν− μ)

⎧⎪⎨⎪⎩
P(s)Γ(ν)(ln t)ν−1−ς(ln

e
s
)ν−1 − Δ(ln

t
s
)ν−1−ς, 1 ≤ s ≤ t ≤ e,

P(s)Γ(ν)(ln t)ν−1−ς(ln
e
s
)ν−1, 1 ≤ t ≤ s ≤ e.

Similarly, when one has (8) and (9), we omit the detail here. Moreover, one arrives at

H Dς
1+H (t, s) =H Dς

1+H1(t, s) +
Γ(ι)

Δ1Γ(ι− ς)
(ln t)ι−1−ς

∫ e

1
h(t)H1(t, s)dB(t), (15)

and

H Dς
1+H1(t, s) =

1
ΔΓ(ι− ς)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(ln t)ι−1−ς(ln

e
s
)ι−1 − Δ(ln

t
s
)ι−1−ς,

1 ≤ s ≤ t ≤ e,

(ln t)ι−1−ς(ln
e
s
)ι−1, 1 ≤ t ≤ s ≤ e.

Theorem 2. The functions G (t, s), H Dς
1+G (t, s), H (t, s), and H Dς

1+H (t, s) given by (5) have
the following properties:

(1) G (t, s), H Dς
1+G (t, s), H (t, s), and H Dς

1+H (t, s) are uniformly continuous on [1, e]×
[1, e];

(2)
G (t, s) ≤ G1(e, s)Υ, G (t, s) ≥ (ln t)ν−1G1(e, s)Υ,

H Dς
1+G (t, s) ≤H Dς

1+G1(e, s)Υ,H Dς
1+G (t, s) ≥ (ln t)ν−ς−1H D1+

ςG1(e, s)Υ,

where
Υ = 1 +

1
Δ1

∫ e

1
h(t)dB(t), Υ = 1 +

1
Δ1

∫ e

1
h(t)(ln t)ν−1dB(t);

(3)
H (t, s) ≤ H1(e, s)Ξ, H (t, s) ≥ (ln t)ι−1H1(e, s)Ξ,

H Dς
1+H (t, s) ≤H Dς

1+H1(e, s)Υ,H Dς
1+H (t, s) ≥ (ln t)ι−ς−1H D1+

ςH1(e, s)Υ,

where

Ξ = 1 +
(ln t)ι−1

Δ1

∫ e

1
h(t)dB(t), Ξ = 1 +

1
Δ1

∫ e

1
h(t)(ln t)ι−1dB(t).

Proof. (1) It is easy to check whether G (t, s), H Dς
1+G (t, s), H (t, s) and H Dς

1+H (t, s) have
uniformly continuous properties on [1, e]× [1, e].

52



Fractal Fract. 2024, 8, 682

(2) By a similar method with [41], for t, s ∈ [1, e], we obtain

(ln t)ν−1G1(e, s) ≤ G1(t, s) ≤ G1(e, s);

hence, we have

G (t, s) = G1(t, s) + G2(t, s)

≤ G1(e, s) +
(ln t)α−1

Δ1

∫ e

1
h(t)G1(e, s)dB(t)

= G1(e, s)(1 +
(ln t)α−1

Δ1

∫ e

1
h(t)dB(t)) = G1(e, s)Υ,

G (t, s) = G1(t, s) + G2(t, s)

= G1(t, s) +
(ln t)ν−1

Δ1

∫ e

1
h(t)G1(e, s)dB(t)

≥ (ln t)ν−1G1(e, s) +
(ln t)ν−1

Δ1

∫ e

1
h(t)(ln t)ν−1G1(e, s)dB(t)

≥ (ln t)ν−1G1(e, s)(1 +
1

Δ1

∫ e

1
h(t)(ln t)ν−1dB(t))

= (ln t)ν−1G1(e, s)Υ.

By the same method, for t, s ∈ [1, e], we have

H Dς
1+G (t, s) ≤H Dς

1+G1(e, s)Υ,H Dς
1+G (t, s) ≥ (ln t)ν−ς−1H D1+

ςG1(e, s)Υ,

and

H Dς
1+H (t, s) ≤H Dς

1+H1(e, s)Ξ,H Dς
1+H (t, s) ≥ (ln t)ν−ς−1H D1+

μH1(e, s)Ξ.

Let E = Cς[1, e], and

‖u‖ = max{‖u‖0, ‖H Dς
1+u‖0}, ‖v‖ = max{‖v‖0, ‖H Dς

1+v‖0},

where
‖v‖0 = max

t∈[1,e]
|v(t)|, ‖H Dς

1+v‖0 = max
t∈[1,e]

|H Dς
1+v(t)|,

‖u‖0 = max
t∈[1,e]

|u(t)|, ‖H Dς
1+u‖0 = max

t∈[1,e]
|H Dς

1+u(t)|.

Then, (E, ‖ · ‖) is a real Banach space, and E× E is a Banach space with the norm ‖(u, v)‖ =
max{‖u‖, ‖v‖}. Define P0 = {u ∈ E : u(t) ≥ 0,H Dς

1+u(t) ≥ 0, ∀t ∈ (1, e)}, and let P be a
cone on E× E and

P = {(u, v) ∈ E× E|u ∈ P0, v ∈ P0, t ∈ (1, e)}.

The vector (u, v) is a solution of system (1) and (2) if and only if (u, v) ∈ C(1, e)×
C(1, e) is a solution of the following nonlinear integral equation system:

{
u(t)

v(t)

}
=

⎧⎪⎪⎨⎪⎪⎩
∫ e

1
G (t, s)Lq1

(
F (s, v(s),H Dς

1+v(s)
)ds

s∫ e

1
H (t, s)Lq2

(
F (s, u(s),H Dς

1+u(s)
)ds

s
,

⎫⎪⎪⎬⎪⎪⎭ =

{
A1(v)(t)

A2(u)(t)

}
,
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for ∀u, v ∈ P, t ∈ (1, e).

{H Dς
1+u(t)

H Dμ
1+v(t)

}
=

⎧⎪⎪⎨⎪⎪⎩
∫ e

1

H D1+
ς
G (t, s)Lq1

(
F (s, v(s),H Dς

1+v(s)
)ds

s∫ e

1

H D1+
ςH (t, s)Lq2

(
F (s, u(s),H Dς

1+u(s)
)ds

s
,

⎫⎪⎪⎬⎪⎪⎭ =

{H Dς
1+ A1(v)(t)

H Dς
1+ A2(u)(t)

}
.

Now, an operator A : P → P is defined as follows:

A(u, v)(t) = (A1(v)(t), A2(u)(t)), (u, v) ∈ P, t ∈ (1, e).

Next, we show that the operators Ai : P → P(i = 1, 2) and A : P → P are three completely
continuous operators.

Theorem 3. Let (H0) and (H1) hold, then the operators A1 and A2 are continuous, that is, A is
continuous.

Proof. At first, by the properties of G , H and (H0), we have

A1(v)(t) =
∫ e

1
G (t, s)Lq1

(
F (s, v(s),H Dς

1+v(s)
)ds

s

≤ (
1

Γ(ν)
+

1
Γ(ν)Δ1

∫ e

1
h(t)(ln t)ν−1dB(t))

∫ e

1
Lq1

(
F (s, v(s),H Dς

1+v(s)
)ds

s

≤ (
1

Γ(ν)
+

1
Γ(ν)Δ1

∫ e

1
h(t)(ln t)ν−1dB(t))

∫ e

1
Lq1(ϑ(s))

ds
s

< +∞, (v, u) ∈ P, t, s ∈ [1, e],

(16)

A2(u)(t) =
∫ e

1
H (t, s)Lq2

(
F (s, u(s),H Dς

1+u(s)
)ds

s

≤ (
1

Γ(ι)
+

1
Γ(ι)Δ1

∫ e

1
h(t)(ln t)ι−1dB(t))

∫ e

1
Lq2

(
F (s, u(s),H Dς

1+u(s)
)ds

s

≤ (
1

Γ(ι)
+

1
Γ(ι)Δ1

∫ e

1
h(t)(ln t)ι−1dB(t))

∫ e

1
Lq2

(
ϑ(s)

)ds
s

< +∞, (v, u) ∈ P, t, s ∈ [1, e],

(17)

so, we determine that A(u, v)(t) = (A1(v)(t), A2(u)(t)) is well defined on P.
Since G (t, s),H Dς

1+G (t, s), H (t, s),H Dς
1+H (t, s) are uniformly continuous, there ex-

ists a large Υ > 0 such that

max{G (t, s),H Dς
1+G (t, s), H (t, s),H Dς

1+H (t, s)} ≤ Υ, t, s ∈ [1, e]. (18)

Now, we show that A : P → P is continuous; let (vn, un) → (v, u), (H Dς
1+vn,H Dς

1+un) →
(H Dς

1+v,H Dς
1+u), which means that vn → v,H Dς

1+vn →H Dς
1+v, un → u,H Dς

1+un →H

Dς
1+u in Cς[1, e]. Since vn → v,H Dς

1+vn →H Dς
1+v, un → u,H Dς

1+un →H Dς
1+u, there exists

a large enough Π > 0 such that ‖(vn, un)‖ ≤ Π, ‖(HD
ς
1+vn,H D

ς
1+un)‖ ≤ Π (n = 1, 2, · · · ),

and then ‖(v, u)‖ ≤ Π, ‖(HD
ς
1+v,H D

ς
1+u)‖ ≤ Π, that is ‖v‖ < Π, ‖HD

ς
1+v‖ < Π, ‖u‖ <

Π, ‖HD
ς
1+u‖ < Π.

Furthermore, by (H0) and (18), we have∣∣∣∣∫ e

1
G (t, s)Lq1

(
F (s, vn(s),H Dς

1+vn(s))
)ds

s

∣∣∣∣ < Υ
∣∣∣∣∫ e

1
Lq1(θ(s))

ds
s

∣∣∣∣ < +∞, (19)

∣∣∣∣∫ e

1

H Dς
1+G (t, s)Lq1

(
F (s, vn(s),H Dς

1+vn(s))
)ds

s

∣∣∣∣ < Υ
∣∣∣∣∫ e

1
Lq1(θ(s))

ds
s

∣∣∣∣ < +∞, (20)
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∣∣∣∣∫ e

1
H (t, s)Lq2

(
F (s, un(s),H Dς

1+un(s))
)ds

s

∣∣∣∣ < Υ
∣∣∣∣∫ e

1
Lq2

(
θ(s)

)ds
s

∣∣∣∣ < +∞. (21)∣∣∣∣∫ e

1

H Dς
1+H (t, s)Lq2

(
F (s, un(s),H Dς

1+un(s))
)ds

s

∣∣∣∣ < Υ
∣∣∣∣∫ e

1
Lq2

(
θ(s)

)ds
s

∣∣∣∣ < +∞. (22)

By (H0), we know that Lq1(θ(s)), and Lq2

(
θ(s)

)
is integrable. Hence, for any t ∈ [1, e],

n > N, by (19)–(22) and the Lebesgue control convergence theorem, we obtain

|(A1vn)(t)− (A1v)(t)|
=

∣∣∣∣∫ e

1
G (t, s)Lq1

(
F (s, vn(s),H Dς

1+vn(s)
)ds

s

−
∫ e

1
G (t, s)Lq1

(
F (s, v(s),H Dς

1+v(s)
)ds

s

∣∣∣∣
≤ε,

|H Dς
1+(A1vn)(t)−H Dς

1+(A1v)(t)|
=

∣∣∣∣∫ e

1

H Dς
1+G (t, s)Lq1

(
F (s, vn(s),H Dς

1+vn(s)
)ds

s

−
∫ e

1

H Dς
1+G (t, s)Lq1

(
F (s, v(s),H Dς

1+v(s)
)ds

s

∣∣∣∣
≤ε,

and
|(A2un)(t)− (A2u)(t)|

=

∣∣∣∣∫ e

1
H (t, s)Lq2

(
F (s, un(s),H Dς

1+un(s)
)ds

s

−
∫ e

1
H (t, s)Lq2

(
F (s, u(s),H Dς

1+u(s)
)ds

s

∣∣∣∣
=

∣∣∣∣∫ e

1
H (t, s)

(
Lq2

(
F (s, un(s),H Dς

1+un(s)
)

−Lq2

(
F (s, un(s),H Dς

1+un(s)
)ds

s

∣∣∣∣
≤ε,

|H Dς
1+(A2un)(t)−H Dς

1+(A2u)(t)|
=

∣∣∣∣∫ e

1

H Dς
1+H (t, s)Lq2

(
F (s, un(s),H Dς

1+un(s)
)ds

s

−
∫ e

1

H Dς
1+H (t, s)Lq2

(
F (s, u(s),H Dς

1+u(s)
)ds

s

∣∣∣∣
=

∣∣∣∣∫ e

1

H Dς
1+H (t, s)

(
Lq2

(
F (s, un(s),H Dς

1+un(s)
)

−Lq2

(
F (s, un(s),H Dς

1+un(s)
)ds

s

∣∣∣∣
≤ε,

and hence, we obtain ‖A1vn − A1v‖0 → 0, ‖H Dς
1+(A1vn)−H Dς

1+(Av1)‖0 → 0, ‖A2un −
A2u‖0 → 0, ‖H Dς

1+(A2un) −H Dς
1+(A2u)‖0 → 0 (n → ∞). That is, ‖A1vn − A1v‖ →

0, ‖A2un − A2u‖ → 0, (n → ∞), namely A is continuous in the space E.

Theorem 4. Let (H0) and (H1) hold, then the operators A1, A2 and A are completely continuous.
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Proof. From Theorem 2, we have (Au)(t),H Dμ
1+(Au)(t), (Av)(t),H Dμ

1+(Av)(t) ≥ 0, t ∈
[1, e], and thus, A(P) ⊂ P.

Now, we will prove that AV is relatively compact for bounded V ⊂ P. Since V
is bounded, there exists D > 0 such that for any (v, u) ∈ V, ‖(v, u)‖ ≤ D. For t ∈
[1, e], (v, u) ∈ V, we have

A1(v)(t) =
∫ e

1
G (t, s)Lq1

(
F (s, v(s),H Dς

1+v(s)
)ds

s

≤
(

1
Γ(ν)

+
1

Γ(ν)Δ1

∫ e

1
h(t)(ln t)ν−1dB(t)

) ∫ e

1
Lq1

(
F (s, v(s),H Dς

1+v(s)
)ds

s

≤
(

1
Γ(ν)

+
1

Γ(ν)Δ1

∫ e

1
h(t)(ln t)ν−1dB(t)

) ∫ e

1
Lq1(ϑ(s))

ds
s

=

(
1

Γ(ν)
+

1
Γ(ν)Δ1

ı
)

j < +∞, (v, u) ∈ P, t, s ∈ [1, e],

(23)

H Dς
1+ A1(v)(t) =

∫ e

1

H Dς
1+G (t, s)Lq1

(
F (s, v(s),H Dς

1+v(s)
)ds

s

≤
(

1
Γ(ν− ς)

+
1

Γ(ν− ς)Δ1

∫ e

1
h(t)(ln t)ν−1dB(t)

) ∫ e

1
Lq1

(
F (s, v(s),H Dς

1+v(s)
)ds

s

≤
(

1
Γ(ν− ς)

+
1

Γ(ν− ς)Δ1

∫ e

1
h(t)(ln t)ν−1dB(t)

) ∫ e

1
Lq1(ϑ(s))

ds
s

=

(
1

Γ(ν− ς)
+

1
Γ(ν− ς)Δ1

ı
)

j < +∞, (u, v) ∈ P, t, s ∈ [1, e],

(24)

where ı =
∫ e

1 h(t)(ln t)ν−1dB(t), j =
∫ e

1 ϕq1(ϑ(s))
ds
s . Similarly, for t ∈ [1, e], (v, u) ∈ V,

we derive

A2(u)(t) =
∫ e

1
H (t, s)Lq2

(
F (s, u(s),H Dς

1+u(s)
)ds

s

≤
(

1
Γ(ι)

+
1

Γ(β)Δ1

∫ e

1
h(t)(ln t)ι−1dB(t)

) ∫ e

1
Lq2

(
F (s, u(s),H Dς

1+u(s)
)ds

s

≤
(

1
Γ(ι)

+
1

Γ(ι)Δ1

∫ e

1
h(t)(ln t)ι−1dB(t)

) ∫ e

1
Lq2

(
ϑ(s)

)ds
s

=

(
1

Γ(ι)
+

1
Γ(ι)Δ1

ı
)

j < +∞, (v, u) ∈ P, t, s ∈ [1, e],

(25)

H Dμ
1+ A2(u)(t) =

∫ e

1

H Dς
1+H (t, s)Lq2

(
F (s, u(s),H Dς

1+u(s)
)ds

s

≤
(

1
Γ(ι− ς)

+
1

Γ(ι− ς)Δ1

∫ e

1
h(t)(ln t)ι−1dB(t)

) ∫ e

1
Lq2

(
F (s, u(s),H Dς

1+u(s)
)ds

s

≤
(

1
Γ(ι− ς)

+
1

Γ(ι− ς)Δ1

∫ e

1
h(t)(ln t)ι−1dB(t)

) ∫ e

1
Lq2

(
ϑ(s)

)ds
s

=

(
1

Γ(ι− ς)
+

1
Γ(ι− ς)Δ1

ı
)

j < +∞, (u, v) ∈ P, t, s ∈ [1, e],

(26)
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where ı =
∫ e

1 h(t)(ln t)ι−1dB(t), j =
∫ e

1 Lq2

(
ϑ(s)

) ds
s , which shows that AV is bounded.

Next, we will verify that H Dς
1+(AV) is equicontinuous. Let t1, t2 ∈ [1, e], t1 < t2, (v, u) ∈ V,

we obtain

|H Dς
1+(A1v)(t2)−H Dς

1+(A1v)(t1)|
=
∣∣∣ ∫ e

1

H Dς
1+G (t2, s)Lq1

(
F (s, v(s),H Dς

1+v(s)
)ds

s

−
∫ e

1

H Dς
1+G (t1, s)Lq1

(
F (s, v(s),H Dς

1+v(s)
)ds

s

∣∣∣
=|(ln t2)

ν−1−ς − (ln t1)
ν−1−ς|

∫ e

1
Lq1

(
F (s, v(s),H Dς

s+v(s)
)ds

s

+ |(ln t2)
ν−1−ς − (ln t1)

ν−1−ς|Γ(ν)
∫ e

1 h(t)G(t, s)dB(t)
Δ1Γ(α− μ)

∫ e

1
Lq1

(
F (s, v(s),H Dς

1+v(s)
)ds

s

+
1

Γ(ν− μ)

∫ t1

1

∣∣∣(ln t1 − ln s)ν−1−ς − (ln t2 − ln s)ν−1−ς
∣∣∣Lq1

(
F (s, v(s),H Dς

1+v(s)
)ds

s

+
∫ t2

t1

(ln t1 − ln s)ν−1−ςLq1

(
F (s, v(s),H Dς

1+v(s)
)ds

s

≤
∣∣∣(ln t2)

ν−1−ς − (ln t1)
ν−1−ς

∣∣∣ 1
Γ(ν− ς)

∫ e

1
Lq1(ϑ(s))

ds
s
+

∫ t2

t1

(ln t− ln s)ν−1−ςLq1(ϑ(s))
ds
s

+
1

Γ(ν− ς)

∫ t1

1
|(ln t1 − ln s)ν−1−ς − (ln t2 − ln s)ν−1−ς|Lq1(ϑ(s))

ds
s

,

∣∣∣H Dς
1+(A2u)(t2)−H Dς

1+(A2u)(t1)
∣∣∣

=

∣∣∣∣∫ e

1

H Dς
1+G (t2, s)Lq2

(
F (s, u(s),H Dς

1+u(s)
)ds

s

−
∫ e

1

H Dς
1+G (t1, s)Lq2

(
F (s, u(s),H Dς

1+u(s)
)ds

s

∣∣∣∣
=|(ln t2)

ι−1−μ − (ln t1)
ι−1−ς|

∫ e

1
Lq1

(
F (s, u(s),H Dς

1+u(s)
)ds

s

+ |(ln t2)
ι−1−ς − (ln t1)

ι−1−ς|Γ(ι)
∫ e

1 h(t)H(t, s)dB(t)
Δ1Γ(ι− ς)

∫ e

1
Lq2

(
F (s, u(s),H Dς

1+u(s)
)ds

s

+
1

Γ(ι− ς)

∫ t1

1
|(ln t1 − ln s)ι−1−ς − (ln t2 − ln s)ι−1−ς|Lq2

(
F (s, u(s),H Dς

1+u(s)
)ds

s

+
∫ t2

t1

(ln t1 − ln s)ι−1−ςLq2

(
F (s, u(s),H Dς

1+u(s)
)ds

s

≤
∣∣∣(ln t2)

ι−1−ς − (ln t1)
ι−1−ς

∣∣∣ 1
Γ(ι− ς)

∫ e

1
Lq2(ϑ(s))

ds
s
+

∫ t2

t1

(ln t− ln s)ι−1−ς ϕq2(ϑ(s))
ds
s

+
1

Γ(ι− ς)

∫ t1

1

∣∣∣(ln t1 − ln s)ι−1−ς − (ln t2 − ln s)ι−1−ς
∣∣∣Lq2(ϑ(s))

ds
s

+ |(ln t2)
ι−1−ς − (ln t1)

ι−1−ς|Γ(ι)
∫ e

1 h(t)H(t, s)dB(t)
Δ1Γ(ι− ς)

∫ e

1
Lq2

(
ϑ(s)

)ds
s

.

From the above and the uniform continuity of (ln t)ν−1−ς, (ln t− ln s)ν−1−ς,(ln t)ι−1−ς, (ln t−
ln s)ι−1−ς, and together with Lemma 6, we can derive that AV is relatively compact in
C(μ)[1, e], and so, we determine that A : P → P is completely continuous.

3. Main Results

Theorem 5. Suppose that (H0) and (H1) hold, and there exist t0 ∈ (0, 1) and two positive
constants ρ, ξ, ρ > ξ; further, suppose the following are true:

57



Fractal Fract. 2024, 8, 682

(i) For ∀(t, x, y) ∈ [1, e]× [0, ξ]× [0, ξ],

Lq1(F (t, v(t),H Dς
1+v(t))) ≥ξ max

{
1

(ln t0)ν−1Υ

(∫ e

t0

G1(t0, s)
ds
s

)−1
,

1
(ln t0)ν−ς−1Υ

(∫ e

t0

H D1+
ς
G1(t0, s)

ds
s

)−1
}

,

Lq2(F (t, u(t),H Dς
1+u(t))) ≥ξ

{
1

(ln t0)ι−1Ξ

(∫ e

t0

H1(t0, s)
ds
s

)−1
,

1
(ln t0)ι−ς−1Ξ

(∫ e

t0

H D1+
μ
H1(t0, s)

ds
s

)−1
}

.

(ii) For ∀(t, x, y) ∈ [1, e]× [0, ρ]× [0, ρ], we have

F (s, v(s),H Dς
1+v(s)) ≤ θ(s)ρ

1
q1−1 , F (s, u(s),H Dς

1+u(s)) ≤ θ(s)ρ
1

q2−1 ,

∀(t, x0, x1) ∈ [1, e]× [0,+∞)× [0,+∞),

and
Υ
∫ e

1
max{G (e, s),H Dς

1+G (e, s)}Lq1(θ(s))
ds
s

< 1,

Ξ
∫ e

1
max{H (e, s),H Dς

1+H (e, s)}Lq2(θ(s))
ds
s

< 1.

Then, BVPs (1) and (2) have at least one positive solution.

Proof. Let Ω1 = {(u, v) ∈ P|‖u‖ < ξ, ‖v‖ < ξ} such that 0 < u(t), v(t) ≤ ξ for any
(u, v) ∈ P ∩ ∂Ω1 and for all t ∈ [1, e]. By condition (i) and Theorem 2, we have

A1v(t0) =
∫ e

1
G (t0, s)Lq1

(
F (s, v(s),H Dς

1+v(s)
)ds

s

≥
∫ e

t0

G1(e, s)(ln t0)
ν−1Υ

ds
s

ξ

(ln t0)ν−1Υ

(∫ e

t0

G1(t0, s)
ds
s

)−1

=ξ,

H Dς
1+ A1v(t0) =

∫ e

1

H Dς
1+G (t0, s)Lq1

(
F (s, v(s),H Dς

1+v(s)
)ds

s

≥
∫ e

t0

(H Dς
1+G1(e, s)(ln t0)

ν−ς−1Υ
ds
s

ξ

(ln t0)ν−ς−1Υ

(∫ e

t0

(H Dς
1+G1(t0, s))

ds
s

)−1

=ξ,

A2u(t0) =
∫ e

1
H (t0, s)Lq2

(
F (s, u(s),H Dς

1+u(s)
)ds

s

≥
∫ e

t0

H1(e, s)(ln t0)
β−1Ξ

ds
s

ξ

(ln t0)β−1Ξ

(∫ e

t0

H1(t0, s)
ds
s

)−1

=ξ,

H Dς
1+ A2u(t0) =

∫ e

1

H Dς
1+H (t0, s)Lq2

(
F (s, u(s),H Dς

1+u(s)
)ds

s

≥
∫ e

t0

H D1+
ς
H1(e, s)(ln t0)

ι−ς−1Ξ
ds
s

ξ

(ln t0)ι−ς−1Ξ

(∫ e

t0

H D1+
ς
H1(t0, s)

ds
s

)−1

=ξ.
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Hence,
‖A1v‖ = max{‖A1v‖0, ‖H Dς

1+ A1v‖0} ≥ ξ,

‖A2u‖ = max{‖A2v‖0, ‖H Dς
1+ A2v‖0} ≥ ξ, ∀(u, v) ∈ P ∩ ∂Ω2.

So,
‖A(u, v)‖ = max{‖A1v‖, ‖A2u‖} ≥ ξ = ‖(u, v)‖.

Let Ω1 = {(u, v) ∈ P|‖u‖ < ρ, ‖v‖ < ρ}, where ρ > ξ. For any (u, v) ∈ P ∩ ∂Ω2, t ∈
[1, e], we have 0 < u(t), v(t) ≤ ρ. By condition (ii) and Theorem 2, we have

A1v(t) =
∫ e

1
G (t, s)Lq1

(
F (s, v(s),H Dς

1+v(s)
)ds

s

≤
∫ e

1
G1(e, s)ΥρLq1(θ(s)

ds
s

= ρΥ
∫ e

1
G (e, s)ϕq1(θ(s))

ds
s

≤ρ,

H Dς
1+ A1v(t) =

∫ e

1

H Dς
1+G (t, s)Lq1

(
F (s, v(s),H Dς

1+v(s)
)ds

s

≤
∫ e

1

H Dς
1+(G1(e, s)ΥρLq1(θ(s))

ds
s

= ρΥ
∫ e

1

H Dς
1+G (e, s)Lq1(θ(s))

ds
s

≤ρ,

A2u(t) =
∫ e

1
H (t, s)Lq1

(
F (s, u(s),H Dς

1+u(s)
)ds

s

≤
∫ e

1
H1(e, s)ρΞLq2(θ(s))

ds
s

= Ξρ
∫ e

1
H1(e, s)Lq2(θ(s))

ds
s

≤ρ,

H Dς
1+ A2u(t) =

∫ e

1

H Dμ
1+H (t, s)Lq1

(
F (s, u(s),H Dς

1+u(s)
)ds

s

≤
∫ e

1

H Dς
1+H1(e, s)ρLq2(θ(s))

ds
s

= Ξρ
∫ e

1

H Dς
1+H1(e, s)Lq2(θ(s))

ds
s

≤ρ,

then we have
‖A1v‖ = max{‖A1v‖0, ‖H Dς

1+ A1v‖0} ≤ ρ,

‖A2u‖ = max{‖A2u‖0, ‖H Dς
1+ A2u‖0} ≤ ρ, ∀(u, v) ∈ P ∩ ∂Ω2.

Hence, ‖A(u, v)‖ = max{‖A1v‖, ‖A2u‖} ≤ ρ = ‖(u, v)‖. According to Theorem 4, opera-
tor A : P → P is completely continuous; thus, by Lemma 4, the proof is finished.

Theorem 6. Suppose that (H0) and (H1) hold, and there exist the functions θ(t), θ(t) and the
non-decreasing functions ϕ, ψ : [0,+∞) → (0,+∞) such that
(iii)

F (s, v(s),H Dς
1+v(s)) ≤ θ(s)ϕ

1
q1−1 (v), F (s, u(s),H Dς

1+u(s)) ≤ θ(s)ψ
1

q2−1 (u),

∀(t, x0, x1) ∈ [1, e]× [0,+∞)× [0,+∞);

(iv) and there exists an r > 0, such that

r
max{ϕ(r)), ψ((r)|)} > max

{∫ e

1
G1(e, s)ΥLq1(θ(s))

ds
s

,
∫ e

1
H1(e, s)ΥLq2

(
θ(s)

)ds
s

}
.

Then, the BVPs (1) and (2) have a positive solution.
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Proof. Let U = {(u, v) ∈ P|‖(u, v)‖ < r}, then U ⊂ P. According to Theorems 3 and 4, we
determine that operator A : U → P is completely continuous. If there exists (u, v) ∈ ∂U
and λ̃ ∈ (0, 1), we obtain (u, v) = λ̃A(u, v), and then, by (iii) for t ∈ [1, e], we have

v(t) = λ̃A1v(t) =λ̃
∫ e

1
G (t, s)Lq1

(
F (s, v(s),H Dς

1+v(s)
)ds

s

<
∫ e

1
G (t, s)Lq1

(
F (s, v(s),H Dς

1+v(s)
)ds

s

<
∫ e

1
G (t, s)Lq1

(
θ(s)L

1
q1−1 (v)

)
ds
s

≤ϕ(‖v‖)
∫ e

1
G1(e, s)ΥLq1(θ(s))

ds
s

≤ϕ(‖(u, v)‖)
∫ e

1
G1(e, s)ΥLq1(θ(s))

ds
s

;

hence,

‖v‖ ≤ ϕ(‖(u, v)‖)
∫ e

1
G1(e, s)ΥLq1(θ(s))

ds
s

,

that is,
‖v‖

ϕ(‖(u, v)‖) ≤
∫ e

1
G1(e, s)ΥLq1(θ(s))

ds
s

.

Similarly,
‖u‖

ψ(‖(u, v)‖) ≤
∫ e

1
H1(e, s)ΥLq2

(
θ(s)

)ds
s

.

Hence,
‖(u, v)‖

max{ϕ(‖(u, v)‖), ψ(‖(u, v)‖)}
≤ max

{∫ e

1
G1(e, s)ΥLq1(θ(s))

ds
s

,
∫ e

1
H1(e, s)ΞLq2

(
θ(s)

)ds
s

}
.

By (iv), we have ‖(u, v)‖ �= r, which means (u, v) �∈ ∂U. Then, by Lemma 5, a fixed point
(u, v) ∈ U is obtained. Hence, the BVPs (1) and (2) have a positive solution.

In this section, we consider the equation under the condition of F (s, x1, y1) and
F (s, x1, y1) being continuous.

Theorem 7. Assume that functions F (s, x1, y1) and F (s, x1, y1) are continuous, and there exist
functions θ(t), θ(t) and non-decreasing functions ϕ, ψ : [0,+∞) → (0,+∞) such that

|Lq1(F (s, x1, y1))− Lq1(F (s, x2, y2))| ≤ L1θ1(s)|x1 − x2|+ L2θ2(s)|y1 − y2|,

|Lq2(F (s, x1, y1))− Lq2(F (s, x2, y2))| ≤ L1θ1(s)|x1 − x2|+ L2θ2(s)|y1 − y2|,
and

1
Γ(ν)

Υ(L1θ1(s) + L2θ1(s)) < 1,

1
Γ(ι)

Ξ
(

L1θ1(s) + L2θ1(s)
)
< 1.

Then, the BVPs (1) and (2) have a unique solution. In addition, we can obtain the unique solution
by constructing an iterative sequence and error estimate.
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Proof. In this section, we will use the Banach fixed point theorem. For ∀t ∈ [1, e], v1, v2, u1, u2 ∈
E, we have

|A1v2(t)− A1v1(t)|
=|

∫ e

1
G (t, s)Lq1

(
F (s, v2(s),H Dς

1+v2(s)
)ds

s
−

∫ e

1
G (t, s)Lq1

(
F (s, v1(s),H Dς

1+v1(s)
)ds

s
|

=
∫ e

1
G (t, s)|Lq1

(
F (s, v2(s),H Dς

1+v2(s)
)
− Lq1

(
F (s, v1(s),H Dς

1+v1(s)
)
|ds

s

≤
∫ e

1
G1(t, s)Υ(L1θ1(s)|v2(s)− v1(s)|+ L2θ1(s)|H Dς

1+v2(s)−H Dς
1+v1(s)|)

≤ 1
Γ(ν)

‖v2 − v1‖Υ(L1θ1(s) + L2θ1(s)),

|A2u2(t)− A2u1(t)|
=|

∫ e

1
H (t, s)Lq2

(
F (s, u2(s),H Dς

1+u2(s)
)ds

s
−

∫ e

1
H (t, s)Lq2

(
F (s, u1(s),H Dς

1+u1(s)
)ds

s
|

=
∫ e

1
H (t, s)|Lq1

(
F (s, u2(s),H Dς

1+u2(s)
)
− Lq1

(
F (s, u1(s),H Dς

1+u1(s)
)
|ds

s

≤
∫ e

1
H1(e, s)Ξ(L1θ1(s)|u2(s)− u1(s)|+ L2θ2(s)|H Dς

1+u2(s)−H Dς
1+u1(s)|)

≤ 1
Γ(ι)

|u2(s)− u1(s)|Ξ
(

L1θ1(s) + L2θ1(s)
)

≤ 1
Γ(ι)

‖u2 − u1‖Ξ
(

L1θ1(s) + L2θ1(s)
)
.

Hence, we have

max
t∈[1,e]

|A(u2, v2)− A(u1, v1)|

= ‖A(u2, v2)− A(u1, v1)‖ = ‖(A1v2, A2u2)− (A1v1, A2u1)‖
= ‖(A1v2 − A1v1, A2u2 − A2u1)‖ ≤ L̃‖(v2 − v1, u2 − u1)‖,

where

L̃ =max
{

1
Γ(ν)

Υ(L1θ1(s) + L2θ1(s)|), 1
Γ(ι)

Ξ
(

L1θ1(s) + L2θ1(s)|
)}

< 1.

BVPs (1) and (2) have a unique solution in E by the contraction mapping principle.

4. Examples

Example 1. Consider the following boundary value problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L3

(
H D

5
2
1+u

)
(t) +F (t, v(t),H Dς

1+v(t)) = 0, 1 < t < e,

L2

(
D

5
2
1+v

)
(t) +F (t, u(t),H Dς

1+u(t)) = 0, 1 < t < e,

u(1) = u′(1) = 0, u(e) =
∞

∑
j=1

ηju(e
1
j2 ) +

∫ e

1
h(t)u(t)dB(t),

v(1) = v′(1) = 0, v(e) =
∞

∑
j=1

η jv(e
1
j2 ) +

∫ e

1
h(t)v(t)dB(t),

(27)
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where α = 5
2 , β = 5

2 , ηj = η j = 1
2j3 , ξ j = ξ j = e

1
j2 , p1 = 3, q1 = 3

2 , p2 = 2, q2 = 1
2 ,

h(t) = h(t) = (ln t)
1
2 ,

B(t) = B(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, t ∈ [0,

e
2
],

4, t ∈ [
e
2

,
3e
4
],

1, t ∈ [
3e
4

, e],

and

F (t, v(t),H D
1
2
1+v(t)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

4π(ln t)
1
2 (1− ln t)

1
2
(v2 + (H D

1
2
1+v)2)2,

(t, v,H D
1
2
1+v) ∈ (1, e)× [0, 1]× [0, 1],

4992

4π(ln t)
1
2 (1− ln t)

1
2

,

(t, v,H D
1
2
1+v) ∈ (1, e)× (1,+∞)× (1,+∞),

F (t, u(t),H D
1
2
1+u(t)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

4π(ln t)
3
4 (1− ln t)

3
4
(u2 + (H D

1
2
1+u)2)2,

(t, u,H D
1
2
1+u) ∈ (1, e)× [0, 1]× [0, 1],

4992

4π(ln t)
3
4 (1− ln t)

3
4

,

(t, u,H D
1
2
1+u) ∈ (1, e)× (1,+∞)× (1,+∞).

Now, let us simplify the expression of F to F (t, x, y) = 1

4π(ln t)
1
2 (1−ln t)

1
2
(x2 + y2) for (t, x, y) ∈

(1, e)× [0, 1]× [0, 1], and draw Figures 1 and 2 in order to reveal the influence of F .

Figure 1. The first nonlinear function with singularity at points 1 and e (taking x = 1).
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Figure 2. The first nonlinear function with singularity at points 1 and e (taking y = 0.5).

Figures 1 and 2 show a visualization of singular nonlinear terms of F ; note that F is
similar with F , hence we omit the impact of F here. It is found that the nonlinearity is
singular at t = 1 and e. Although the nonlinear term has significant singularity, it can be
controlled by an integrable function, so the solutions of the equation are still stable and
robust. By a simple calculation, we have

Δ = Δ = 1−
∞

∑
i=1

ηj(ln ξ j)
α−1 = 1−

∞

∑
i=1

1
2j3

1
j3

= 1− 1
2

π6

945
≈ 0.4913,

Δ1 = Δ1 = Δ−
∫ e

1
h(t)(ln t)β−1dB(t)

= Δ−
∫ e

1
h(t)(ln t)α−1dB(t) = Δ−

∫ e

1
(ln t)2dB(t)

= 0.4913− [4× (ln
e
2
)2 − 3× (ln

3e
4
)2] ≈ 1.6369,

Υ = 1 +
1

Δ1

∫ e

1
h(t)dB(t) = 1 +

1
1.6369

∫ e

1
(ln t)

1
2 dB(t)

= 1 +
1

1.6369
(4× (ln

e
2
)

1
2 − 3× (ln

3e
4
)

1
2 ) ≈ 0.8067,

and apparently,

F (t, v(t),H D
1
2
1+v(t)) ≤ 1

π(ln t)
1
2 (1− ln t)

1
2
= θ(t),

F (t, v(t),H D
1
2
1+v(t)) ≤ 1

π(ln t)
3
4 (1− ln t)

3
4
= θ(t).

Taking ξ = 3
4 , t0 = 5

4 , then for (t, x, y) ∈ [1, e]× [0, 3
4 ]× [0, 3

4 ],

L3(F (t, v(t),H Dμ
1+v(t))) → +∞ ≥ ξ

(ln t0)α−1Υ

(∫ e

t0

(G1(t0, s)
ds
s

)−1
,

L2(F (t, u(t),H Dς
1+u(t))) → +∞ ≥ ξ

(ln t0)β−1Ξ

(∫ e

t0

(H1(t0, s)
ds
s

)−1
.
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Moreover, for (t, x, y) ∈ [1, e]× [0, ρ]× [0, ρ](ρ > 3
4 ),

Υ
∫ e

1
max{G (e, s),H Dς

1+G (e, s)}Lq1(θ(s))
ds
s

=Υ
∫ e

1
max{G (e, s),H Dς

1+G (e, s)} 1

π
1
2 (ln s)

1
4 (1− ln s)

1
4

ds
s

≤ 1
Γ(ν)

Υ
1

π
1
2

∫ e

1

1

(ln s)
1
4 (1− ln s)

1
4

ds
s

=
0.8067
Γ(ν)

1

π
1
2

B(
5
4

,
5
4
) ≈ 0.2116 < 1,

Ξ
∫ e

1
max{H (e, s),H Dς

1+H (e, s)}Lq2(θ(s))
ds
s

=Ξ
∫ e

1
max{H (e, s),H Dς

1+H (e, s)} 1

π
1
2 (ln s)

3
8 (1− ln s)

3
8

ds
s

≤ 1
Γ(ι)

Ξ
1

π
1
2

∫ e

1

1

(ln s)
3
8 (1− ln s)

3
8

ds
s

=
0.8067

Γ(ι)
1

π
1
2

B(
11
8

,
11
8
) ≈ 0.1682 < 1.

Hence, all the conditions of Theorem 5 are satisfied. Therefore, Equation (27) has at least
one positive solution.

Example 2. Consider the following boundary value problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L3

(
H D

5
2
1+u

)
(t) +F (t, v(t),H Dς

1+v(t)) = 0, 1 < t < e,

L2

(
D

5
2
1+v

)
(t) +F (t, u(t),H Dς

1+u(t)) = 0, 1 < t < e,

u(1) = u′(1) = 0, u(e) =
∞

∑
j=1

ηju(ξ j) +
∫ e

1
h(t)u(t)dB(t),

v(1) = v′(1) = 0, v(e) =
∞

∑
j=1

η jv(ξ j) +
∫ e

1
h(t)v(t)dB(t),

(28)

F (t, v(t),H D
1
2
1+v(t)) =

1

4π(ln t)
1
2 (1− ln t)

1
2
(v2 + (H D

1
2
1+v)2)2,

F (t, u(t),H D
1
2
1+u(t)) =

1

4π(ln t)
3
4 (1− ln t)

3
4
(u2 + (H D

1
2
1+u)2)2.

Apparently,

F (s, v(s),H Dς
1+v(s)) ≤ θ(s)ϕ

1
q1−1 (v), F (s, u(s),H Dς

1+u(s)) ≤ θ(s)ψ
1

q2−1 (u),

∀(t, x0, x1) ∈ [1, e]× [0,+∞)× [0,+∞),

where
θ(t) =

1

4π(ln t)
1
2 (1− ln t)

1
2

, θ(t) =
1

4π(ln t)
3
4 (1− ln t)

3
4

,

ϕ(v) = v2 + (H D
1
2
1+v)2, ψ(u) = u2 + (H D

1
2
1+u)2;
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hence, (iii) holds. Taking r = 1 > 0,

r
max{ϕ(r)), ψ((r)|)} = 1 > max

{∫ e

1
G1(e, s)ΥLq1(θ(s))

ds
s

,
∫ e

1
H1(e, s)ΥLq2

(
θ(s)

)ds
s

}
= 0.1682,

so, (iv) holds. Hence, all the conditions of Theorem 6 hold, which implies that Equation (28) has at
least one positive solution.

Example 3. Consider the following boundary value problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L3

(
H D

5
2
1+u

)
(t) +F (t, v(t),H Dς

1+v(t)) = 0, 1 < t < e,

L2

(
D

5
2
1+v

)
(t) +F (t, u(t),H Dς

1+u(t)) = 0, 1 < t < e,

u(1) = u′(1) = 0, u(e) =
∞

∑
j=1

ηju(ξ j) +
∫ e

1
h(t)u(t)dB(t),

v(1) = v′(1) = 0, v(e) =
∞

∑
j=1

η jv(ξ j) +
∫ e

1
h(t)v(t)dB(t),

(29)

where
F (t, v(t),H D

1
2
1+v(t)) = 4π(ln t)

1
2 (1− ln t)

1
2 (v + 2(H D

1
2
1+v) + 1)2,

F (t, u(t),H D
1
2
1+u(t)) = 4π(ln t)

3
4 (1− ln t)

3
4 (u + 2(H D

1
2
1+u) + 1)2.

By some calculations, we have

|Lq1(F (s, v1(s),H D
1
2
1+v1(s))− Lq1(F (s, v2(s),H D

1
2
1+v2(s))|

=|4π(ln t)
1
2 (1− ln t)

1
2 (v1 + 2(H D

1
2
1+v1) + 1)− 8π(ln t)

1
2 (1− ln t)

1
2 (v2 + 2(H D

1
2
1+v2) + 1)|

≤4π
1
3
(ln t)

1
2 (1− ln t)

1
2 |v1 − v2|+ 8π

1
3
(ln t)

1
2 (1− ln t)

1
2 |H D

1
2
1+v1 −H D

1
2
1+v2|

≤L1θ1(s)|x1 − x2|+ L2θ2(s)|y1 − y2|,

where L1 = 1, L2 = 2, θ1(s) = 1
3 4π(ln t)

1
2 (1− ln t)

1
2 , θ2(s) = 8

3 π(ln t)
1
2 (1− ln t)

1
2 ,

|Lq2(F (s, u1(s),H D
1
2
1+u1(s))− Lq2(F (s, u2(s),H D

1
2
1+u2(s))|

=|4π(ln t)
1
2 (1− ln t)

1
2 (u1 + 2(H D

1
2
1+u1) + 1)− 8π(ln t)

1
2 (1− ln t)

1
2 (u2 + 2(H D

1
2
1+u2) + 1)|

≤4π
1
3
(ln t)

1
2 (1− ln t)

1
2 |v1 − v2|+ 8π

1
3
(ln t)

1
2 (1− ln t)

1
2 |H D

1
2
1+v1 −H D

1
2
1+v2|

≤L1θ1(s)|x1 − x2|+ L2θ2(s)|y1 − y2|,

|Lq2(F (s, x1, y1))− Lq2(F (s, x2, y2))| ≤ L1θ1(s)|x1 − x2|+ L2θ2(s)|y1 − y2|,
where L1 = 1, L2 = 2, θ1(s) = 1

3 4π(ln t)
3
4 (1− ln t)

3
4 , θ2(s) = 8

3 π(ln t)
3
4 (1− ln t)

3
4 , and

1
Γ(ν)

Υ
(

L1θ1(s) + L2θ1(s)
1

Γ(ς + 1)

)
=

1
Γ( 5

2 )

1
3
× 0.8067(1 + 2

1
Γ( 3

2 )
) ≈ 0.6588 < 1,

1
Γ(ι)

Ξ
(

L1θ1(s) + L2θ1(s)
1

Γ(ς + 1)

)
1

Γ( 5
2 )

1
3
× 0.8067(1 + 2

1
Γ( 3

2 )
) ≈ 0.6588 < 1.

Hence, all the conditions of Theorem 7 hold, which implies that Equation (29) has one unique solution.
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It is worth mentioning that in this study, the nonlinear terms in the fractional-order
differential equations exhibit a singularity that is one of the main innovations of the
present research. Although singular nonlinear terms pose analytical difficulties, they can
be controlled by an integrable function, which is why the solutions of the considered
Hadamard fractional differential model are still stable and robust. Of course, in the future,
we will strengthen the research on singular factors in practical engineering applications,
especially in terms of solution stability or robustness.

5. Conclusions

The existence and uniqueness for positive solutions of a singular p-Laplacian Hadamard
fractional-order differential equation with nonlocal integral and infinite-point boundary
conditions are investigated. The methods used are a nonlinear alternative of Leray–
Schauder-type Guo–Krasnoselskii’s fixed point theorem in cone and the Banach fixed
point theorem, respectively. First, we derive the expression of the Green function, and then
determine some properties of the developed Green function. Subsequently, we demon-
strate the existence of solutions of Hadamard fractional differential equation with nonlinear
singular conditions by Leray–Schauder-type Guo–Krasnoselskii’s fixed point theorem,
respectively. Finally, we prove the uniqueness of the positive solution using Banach’s fixed
point theorem. The existence results of Theorems 5 and 6 are obtained under the condition
of singular nonlinearity, while the nonlinear term is continuous in much of the previous
literature (e.g., see [15,18]), which is one of the main contributions of the present study.
Of course, there are also some limitations to this study, such as the absence of complete
numerical solutions. We plan to conduct further research on numerical solution examples
on this type of equation. Additionally, we will explore more complex boundary conditions,
such as extending the present interval from (1, e) to (1,+∞) or extending the study to other
types of fractional differential equations, including Caputo–Hadamard, Atangana–Baleanu
Caputo, and so on.
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Abstract: We consider fractional integral operators (I − T)d, d ∈ (−1, 1) acting on functions
g : Zν → R, ν ≥ 1, where T is the transition operator of a random walk on Zν. We obtain the
sufficient and necessary conditions for the existence, invertibility, and square summability of kernels
τ(s; d), s ∈ Zν of (I − T)d. The asymptotic behavior of τ(s; d) as |s| → ∞ is identified following
the local limit theorem for random walks. A class of fractionally integrated random fields X on Zν

solving the difference equation (I − T)dX = ε with white noise on the right-hand side is discussed
and their scaling limits. Several examples, including fractional lattice Laplace and heat operators, are
studied in detail.

Keywords: fractional differentiation/integration operators; tempered fractional operators; fractional
random field; random walk; limit theorems; long-range dependence; negative dependence;
conditional autoregression

1. Introduction

Classical fractional differentiation/integration operators (I − T)d, d ∈ (−1, 1), d �= 0 act-
ing on functions g : Z→ R, where (I − T)g(t) = g(t)− g(t− 1) is a ‘discrete derivative’ with
respect to ‘time’ t ∈ Z, are defined through the binomial expansion (1− z)d = ∑∞

j=0 ψj(d)zj,
z ∈ C, |z| < 1, viz.:

(I − T)dg(t) :=
∞

∑
j=0

ψj(d)Tjg(t) =
∞

∑
j=0

ψj(d)g(t− j), t ∈ Z (1)

with the coefficients

ψj(d) :=
Γ(j− d)

Γ(j + 1)Γ(−d)
, j ∈ N. (2)

Here, Γ denotes the gamma function Γ(z) :=
∫ ∞

0 tz−1e−tdt, z > 0, and Γ(z) := z−1Γ(z+1),
−1 < z < 0. Also, see the end of this section for all unexplained notation. The asymptotics

ψj(d) ∼ Γ(−d)−1 j−d−1 (j → ∞), 0 < |d| < 1 (3)

(which follows by application of Stirling’s formula to (2)) determines the class of functions
g and the summability properties of (1).

Fractional operators in (1) play an important role in the theory of discrete-time stochas-
tic processes—in particular, time series (see, e.g., the monographs [1–5] and the references
therein). The autoregressive fractionally integrated moving-average ARFIMA(0, d, 0) pro-
cess {X(t); t ∈ Z} is defined as a stationary solution of the stochastic difference equation

(I − T)dX(t) =
∞

∑
j=0

ψj(d)X(t− j) = ε(t), t ∈ Z (4)

Fractal Fract. 2024, 8, 353. https://doi.org/10.3390/fractalfract8060353 https://www.mdpi.com/journal/fractalfract69
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with white noise (a sequence of standardized uncorrelated random variables (r.v.s)) {ε(t);
t ∈ Z}. For d ∈ (−1/2, 1/2), the solution of (4) is obtained by applying the inverse
operator, viz.:

X(t) = (I − T)−dε(t) =
∞

∑
j=0

ψj(−d)ε(t− j), t ∈ Z. (5)

Since (3) implies ∑∞
j=0 ψj(d)2 < ∞ (|d| < 1/2), (5) is a well-defined stationary process

with zero mean and finite variance. The ARFIMA(0, d, 0) process is the basic parametric
model in statistical inference for time series with a long memory property (also referred to
as long-range dependence) (see [1–3,5,6] for a discussion of the ARFIMA(0, d, 0) and its
generalization ARFIMA(p, d, q) models). We note that the ARFIMA(0, d, 0) process has an
explicit covariance function and the spectral density

f (x) = (2π)−1|1− e−ix|−2d, x ∈ Π := [−π, π]

which explodes or vanishes at the origin x = 0 as (2π)−1|x|−2d, depending on the sign of d.
In this paper, we extend fractional operators in (1) to functions g on a regular ν-dimensional

lattice Zν, ν ≥ 1. Whereas generalization of our construction to irregular lattices or more
abstract index sets is an interesting and challenging open problem, our choice of Zν fol-
lows the traditional approach in random field theory, which heavily relies on the Fourier
transform and spectral representation. We consider a rather general form of the operator T:

Tg(t) = ∑
u∈Zν

g(t + u)p(u) = Eg(S1 + t), t ∈ Zν,

where {Sj; j ≥ 0} is a random walk on Zν starting at S0 = 0 with (1-step) probabilities
p = {p(u) := P(S1 = u); u ∈ Zν}. We assume that p(0) < 1, i.e., the random walk is
non-degenerate at 0. Clearly, Tjg(t) = ∑u∈Zν g(t + u)pj(u) = Eg(Sj + t), t ∈ Zν, where
pj(u) := P(Sj = u), u ∈ Zν are the j-step probabilities, j = 0, 1, 2, · · · with p0(u) = I(u = 0).
Similarly to (1), we define fractional operators (I − T)d,−1 < d < 1, d �= 0 acting on
g : Zν → R by

(I − T)dg(t) =
∞

∑
j=0

ψj(d)Tjg(t) = ∑
u∈Zν

τ(u; d)g(t + u), t ∈ Zν

with coefficients

τ(u; d) :=
∞

∑
j=0

ψj(d)pj(u), (6)

expressed through the binomial coefficients ψj(d) and random walk probabilities pj(u).
Let us describe the content and results of this paper in more detail. The main result of

Section 2 is Theorem 1, which provides the sufficient condition∫
Πν
|1− p̂(x)|−2|d|dx < ∞ (7)

for invertibility (I − T)d(I − T)−d = I and the square summability of fractional coefficients
in (6), in terms of the characteristic function p̂(x) := E exp{i〈x, S1〉} (the Fourier transform)
of the random walk. Section 2 also includes a discussion of the asymptotics of (6) as
|u| → ∞, which is important in limit theorems and other applications of fractional inte-
grated random fields. Using classical local limit theorems, Propositions 1 and 2 obtain
‘isotropic’ asymptotics of (6) for a large class of random walk {Sj}, showing that τ(u; d)
decay as O(|u|−ν−2d); hence, ∑u∈Zν |τ(u;−d)| = ∞ (d > 0). The last fact is interpreted as
the long-range dependence [3,4,7] of the fractionally integrated random field {X(t); t ∈ Zν},
defined as a stationary solution of the difference equation,

(I − T)dX(t) = ε(t), t ∈ Zν (8)
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with white noise on the r.h.s. and it is studied in Section 3. Corollary 1 obtains con-
ditions for the existence of the stationary solution of (8) given by the inverse operator
X(t) = (I − T)−dε(t), which is detailed in Examples 1 and 2 for fractional Laplacian and
fractional heat operators. Sections 2 and 3 also include a discussion of tempered fractional
operators (I − rT)d, r ∈ (0, 1) and tempered fractional random fields solving the analo-
gous equation (I − rT)dX(t) = ε(t), which generalize the class of tempered ARFIMA
processes [8] and have short-range dependence and a summable covariance function.

Section 4 is devoted to the scaling limits of moving-average random fields on Zν

with coefficients satisfying Assumption 1, which includes ‘isotropic’ fractional coefficients
τ(u;−d) as a special case. The scaling limits refer to the integrals Xλ(φ) =

∫
Rν X([t])φ(t/λ)dt

of random field {X(t); t ∈ Zν} for each φ : Rν → R from a class of (test) functions as scaling
parameter λ → ∞. The scaling limits are identified in Corollary 3 as self-similar Gaussian
random fields with a Hurst parameter H = (ν − 4d)/2. We note that limit theorems for
random fields with long-range dependence or negative dependence have been studied
in many works. The seminal paper [9] dealt with noncentral limit theorems for Gaussian
subordinated fields. Anisotropic scaling limits of linear and subordinated random fields in
dimensions ν = 2, 3 were discussed in [10–16] and in the references therein, with particular
focus on scaling transition arising under critical anisotropy exponents. Whereas most of
the abovementioned works considered partial sums on rectangular domains, [17] studied
the case of irregular summation regions and ‘edge effects’ arising under strong negative
dependence. Statistical applications for random fields with long-range dependence were
discussed in [2,18,19] and other works.

We expect that this study can be extended in several directions, including anisotropic
scaling, infinite variance random fields, and fractional operators in Rν (see [20–25] for
discussion and the properties of fractional random fields with the continuous argument
t ∈ Rν).

Notation. In what follows, C denotes generic positive constants that may be different

at different locations. We write d−→ and d
= for the weak convergence and equality

of probability distributions. Denote by | · | the absolute-value norm on K, where K is
either R or C and the Euclidean norm on Rν. 〈·, ·〉 is the scalar product in Rν. Denote
by ej the vector in Rν with 1 in the jth coordinate and 0’s elsewhere. For p ≥ 1, denote
by Lp(Zν) the space of functions f : Zν → K for which ∑u∈Zν | f (u)|p < ∞ and by
Lp(Rν) the space of measurable functions f : Rν �→ K for which the p-th power of the
absolute value is integrable with respect to the Lebesgue measure dx on Rν: ‖ f ‖Lp(Rν) :=
(
∫
Rν | f (x)|pdx)1/p < ∞ with the identification of functions f , g, such that f = g almost

everywhere (a.e.). Denote by L∞(Rν) the space of measurable functions f : Rν → K for
which ‖ f ‖L∞(Rν) := inf{C ≥ 0 : | f | ≤ C a.e.} < ∞, with the identification of functions
f , g, such that f = g a.e. Write I(A) for the indicator function of a set A. Write [x] for
the smallest integer greater than or equal to x ∈ R. i :=

√−1 ∈ C,Zν
0 := Zν \ {0} and

N := {0, 1, 2, . . . }.

2. Invertibility and Properties of Fractional Operators

We start with the properties of the binomial coefficients in (2):

ψj(d) < 0 (j ≥ 1),
∞

∑
j=0

ψj(d) = 0 if 0 < d < 1,

ψj(d) > 0 (j ≥ 1),
∞

∑
j=0

ψj(d) = ∞ if − 1 < d < 0.
(9)

The identity (1− z)d(1− z)−d = 1 leads to

1 =
∞

∑
j,k=0

ψj(d)ψk(−d)zj+k =
∞

∑
n=0

zn
n

∑
j=0

ψj(d)ψn−j(−d)
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and the invertibility relation

n

∑
j=0

ψj(d)ψn−j(−d) = I(n = 0), n ∈ N. (10)

The following lemma gives some basic properties of the fractional coefficients τ(u; d)
in (6).

Lemma 1. (i) Let 0 < d < 1. Then, the series in (6) converges for every u ∈ Zν and

τ(0; d) > 0, τ(u; d) ≤ 0 (u �= 0), and ∑
u∈Zν

τ(u; d) = 0. (11)

(ii) Let −1 < d < 0. Then, 0 ≤ τ(u; d) ≤ ∞ for every u ∈ Zν and τ(0; d) ≥ 1 and

∑
u∈Zν

τ(u; d) = ∞.

Moreover, τ(0; d) < ∞ implies τ(u; d) < ∞ and

− ∑
u �=0

τ(u; d)τ(−u;−d) ≤ τ(0; d) < ∞. (12)

(iii) Let 0 < d < 1 and τ(0;−d) < ∞. Then,

∑
s∈Zν

τ(s; d)τ(t − s;−d) = I(t = 0), t ∈ Zν. (13)

Proof. (i) From (6) and (9) we obtain

τ(0; d) = 1 +
∞

∑
j=1

ψj(d)pj(0) > 1 +
∞

∑
j=1

ψj(d) = 0

since pj(0) = 1(∀j ≥ 1) is not possible. On the other hand, for u �= 0 we have p0(u) = 0 and

τ(u; d) =
∞

∑
j=1

ψj(d)pj(u) ≤ 0 (14)

in view of (9).
(ii) Since ψj(d)pj(u) ≥ 0 is obvious from (9), it suffices to show (12), since it implies
τ(u; d) < ∞ by (11). We have

Σ0 := ∑
u �=0

τ(u; d)(−τ(−u;−d)) = ∑
u �=0

∞

∑
j,k=1

ψj(d)(−ψk(−d))pj(u)pk(−u)

=
∞

∑
n=2

n−1

∑
j=1

ψj(d)(−ψn−j(−d)) ∑
u �=0

pj(u)pn−j(−u)

where exchanging the order of summation is legitimate as all summands are non-negative.
Hence, using ∑u �=0 pj(u)pn−j(−u) ≤ pn(0) and (10), we obtain

Σ0 ≤
∞

∑
n=2

pn(0)
n−1

∑
j=1

ψj(d)(−ψn−j(−d)) =
∞

∑
n=2

pn(0)(ψn(d) + ψn(−d))

≤
∞

∑
n=2

pn(0)ψn(d) < τ(0; d)

proving part (ii).
(iii) The convergence of the series in (13) and the equality follow as in (12):
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∑
s∈Zν

τ(s; d)τ(t − s;−d) =
∞

∑
j,k=0

ψj(d)ψk(−d) ∑
s∈Zν

pj(s)pk(t − s)

=
∞

∑
n=0

pn(t)
n

∑
j=0

ψj(d)ψn−j(−d)

= p0(t) = I(t = 0).

Lemma 1 is proved.

Remark 1. Let 0 < d < 1. Then, the inequalities are strict: τ(u; d) < 0 and τ(u;−d) > 0, if
pj(u) > 0 for some j, i.e., u is accessible from state 0. Moreover, if state 0 is transient, i.e., the
probability of eventual return to 0 is strictly less than 1, which is equivalent to ∑∞

j=0 pj(0) < ∞,
then τ(0;−d) < ∞.

The main result of this section is Theorem 1, which provides the necessary and
sufficient conditions for the square summability of the fractional coefficients in (6), in terms
of the characteristic function p̂(x) (see (7)). Write f̂ for the Fourier transform of a function
f : Zν → R. For r ∈ (0, 1), d ∈ (−1, 1) introduce the tempered fractional operators

(I − rT)dg(t) =
∞

∑
j=0

rjψj(d)Tjg(t) = ∑
u∈Zν

τr(u; d)g(t + u), t ∈ Zν

with coefficients

τr(u; d) :=
∞

∑
j=0

rjψj(d)pj(u), (15)

and the Fourier transform τ̂r(x; d) = (1− rp̂(x))d.

Theorem 1. For −1 < d < 1, the following conditions are equivalent:∫
Πν
|1− p̂(x)|−2|d|dx < ∞, (16)

∑
u∈Zν

τ(u;−|d|)2 < ∞. (17)

Either of these conditions implies

τ̂(·;−|d|) = (1− p̂(·))−|d| in L2(Πν). (18)

Moreover, for 0 < d < 1, the above conditions (16)–(18) hold with d in place of −|d|.

Proof. Let 0 < d < 1. Firstly, we consider τ(u; d) in (6). They satisfy ∑u∈Zν |τ(u; d)| ≤
∑∞

j=0 |ψj(d)| < ∞ because of (3) and ∑u∈Zν pj(u) = 1 with 0 ≤ pj(u) ≤ 1. Then,

∑u∈Zν τ(u; d)2 < ∞ is immediate. Moreover, we have the Fourier transform
τ̂(x; d) = ∑∞

j=0 ψj(d) p̂j(x), where p̂j(x) = p̂(x)j satisfies | p̂(x)| ≤ 1. We see that

τ̂(x; d) = (1− p̂(x))d, x ∈ Πν, (19)

belongs to L2(Πν).
Now let us prove the implication (16) ⇒ (17). We use approximation by the tempered

fractional coefficients τr(u;−d) in (15) as r ↗ 1. We ascertain that τ̂r(x;−d) = (1 −
rp̂(x))−d → (1− p̂(x))−d a.e. as r ↗ 1. Next, for z ∈ C, |z| ≤ 1, 0 < r < 1 the inequality
|1− z| ≤ |1− rz|+ |rz − z| ≤ |1− rz|+ 1− r, where 1− r ≤ 1− |rz| ≤ |1− rz| becomes
|1− z| ≤ 2|1− rz|. Using this, we obtain the domination for all 0 < r < 1, x ∈ Πν,

|τ̂r(x;−d)| ≤ 1
|1− rp̂(x)|d ≤ 2d

|1− p̂(x)|d
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by a function in L2(Πν) according to (16). Hence, by the dominated convergence the-
orem (DCT), τ̂r(·;−d) → (1 − p̂(·))−d as r ↗ 1 holds in L2(Πν). As a consequence,
τ̂r(·;−d), 0 < r < 1 is a Cauchy sequence in L2(Πν). By Parseval’s theorem, the inverse
Fourier transforms,

τr(u;−d) =
1

(2π)ν

∫
Πν

e−i〈u,x〉τ̂r(x;−d)dx, u ∈ Zν, 0 < r < 1,

are a Cauchy sequence in L2(Zν), and so τr(·;−d) converges in L2(Zν) to some f ∈ L2(Zν)
as r ↗ 1. This f must be τ(·;−d) because τr(u;−d) ↗ τ(u;−d) as r ↗ 1 for all u. We
conclude that τ(·;−d) ∈ L2(Zν) or (17).

Let us turn to the implication (17) ⇒ (16). From (17) and τr(u;−d) ↗ τ(u;−d) for
all u it follows that τr(·;−d) → τ(·;−d) as r ↗ 1 holds in L2(Zν). By Parseval’s theo-
rem, τ̂r(·;−d) = (1 − rp̂(·))−d, 0 < r < 1 is a Cauchy sequence in L2(Πν). It follows
that limr↗1

∫
Πν |τ̂r(x;−d)− g(x)|2dx = 0 for some g ∈ L2(Πν). We also have limr↗1(1−

rp̂(x))−d = (1 − p̂(x))−d for each x ∈ Πν, such that p̂(x) �= 1. Since
Lebν(x ∈ Πν : p̂(x) = 1) = 0 (see Lemma 2.3.2(a) in [26]) we conclude that
g(·) = (1− p̂(·))−d a.e., proving (16).

The above argument also proves (18). On the one hand, τ̂(·;−d) is the limit of τ̂r(·;−d)
in L2(Πν) as r ↗ 1 because τr(·;−d) converges in L2(Zν) to τ(·;−d) as r ↗ 1. On the
other hand, τ̂r(·;−d) = (1 − rp̂(·))−d → (1 − p̂(·))−d in L2(Πν) as r ↗ 1. We conclude
that τ̂(·;−d) = (1− p̂(·)) a.e. Theorem 1 is proved.

Next, we turn to the asymptotics of the ‘fractional coefficients’ τ(u; d) in (6). The
proof uses the local limit theorem in [26] for random walk probabilities pj(u) = P(Sj = u).
Following the latter work, we assume that

Eec|S1| < ∞ (∃ c > 0) and {Sj} is zero mean, aperiodic, irreducible. (20)

For example, if S1 is symmetric, i.e., S1
d
= − S1, and, moreover, has finite support

that contains 0, ei, i = 1, . . . , ν, then the random walk satisfies our assumption (20). The
conditions in (20) imply that the random walk has zero mean ES1 = ∑u∈Zν up(u) = 0 and
an invertible covariance matrix

Γ := ES1S′1.

According to the classical (integral) CLT, the normalized sum Sj/
√

j, j → ∞ ap-
proaches a Gaussian distribution on Rν with density

φ(z) :=
1

(2π)ν/2
√

detΓ
e−〈z,Γ−1z〉/2, z ∈ Rν.

Denote
p̄j(u) :=

1
(2π j)ν/2

√
detΓ

e−〈u,Γ−1u〉/2j, u ∈ Rν.

Lemma 2 ([26] Theorem 2.3.11). Under the conditions of (20), there exists C > 0, such that

|pj(u)− p̄j(u)| ≤ Cp̄j(u)
( 1

j1/2 +
|u|3
j2

)
, ∀ |u| < j2, u ∈ Zν. (21)

For ‘very atypical’ values |Sj| > j we use the following bound ([26], Proposition 2.1.2):
for any k ≥ 1 there exists C > 0, such that

P(|Sj| > z
√

j) ≤ Cz−k, ∀ z > 0. (22)

Proposition 1. Let p = {p(u); u ∈ Zν} satisfy (20). The coefficients in (6) are well-defined for
any −(1∧ ν

2 ) < d < 1, d �= 0 and satisfy
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τ(u; d) = (B1(d) + o(1))〈u, Γ−1u〉−(ν/2)−d, |u| → ∞, (23)

where

B1(d) :=
2dΓ(d + (ν/2))

πν/2Γ(−d)
√

detΓ
.

Proof. Let us prove (23). Since Γ is positive-definite, |u|Γ :=
√〈u, Γ−1u〉, u ∈ Rν is

a norm. Note that it is equivalent to the Euclidean norm because any two norms are
equivalent in finite-dimensional real vector space. In particular, the spectral decomposition
Γ−1 = UΛU′—where U is an orthogonal matrix whose columns are the real, orthonormal
eigenvectors of Γ−1, U′ is the transpose of U, and Λ is a diagonal matrix whose entries are
the eigenvalues of Γ−1 with λmax, λmin > 0 denoting the largest and smallest, respectively—
gives |u|Γ = |Λ1/2U′u|2 ≤ λmax|u|2 and, similarly, |u|2Γ ≥ λmin|u|2. Using (6) for a large
K > 0 we decompose |u|ν+2d

Γ τ(u; d) = ∑3
i=1 Ji(u), where

J1(u) := |u|ν+2d
Γ Γ(−d)−1 ∑

j>|u|2Γ/K

j−d−1 pj(u),

J2(u) := |u|ν+2d
Γ ∑

j>|u|2Γ/K

(ψj(d)− Γ(−d)−1 j−d−1)pj(u),

J3(u) := |u|ν+2d
Γ ∑

0≤j≤|u|2Γ/K

ψj(d)pj(u).

It suffices to show that

lim
K→∞

lim
|u|→∞

J1(u) = B1(d), lim
K→∞

lim sup
|u|→∞

Ji(u) = 0, i = 2, 3. (24)

To show the first relation in (24), use (21). We have J1(u) = J′1(u) + J′′1 (u), where, for
each K > 0 fixed, the main term J′1(u) and the remainder term J′′1 (u) asymptotically behave
when |u| → ∞ as

J′1(u) := |u|ν+2d
Γ Γ(−d)−1 ∑

j>|u|2Γ/K

j−d−1 p̄j(u)

=
|u|ν+2d

Γ

(2π)ν/2Γ(−d)
√

detΓ

∫ ∞

0
I(|u|2Γ/K < [y])[y]−d−1−(ν/2)e−|u|

2
Γ/2[y]dy

∼ 1
(2π)ν/2Γ(−d)

√
detΓ

∫ ∞

1/K
x−d−1−(ν/2)e−1/2xdx

and, for some constants C, c > 0,

|J′′1 (u)| ≤ C|u|ν+2d
Γ K3/2 ∑

j>|u|2Γ/K

j−d−3/2 p̄j(u)

≤ C|u|−1
Γ K3/2

∫ ∞

0
x−d−(3/2)−(ν/2)e−c/xdx = o(1).

Hence, the first relation in (24) follows, using
∫ ∞

0 x−1−τe−1/xdx = Γ(τ), τ > 0. In
view of (3), the same argument also proves the second relation in (24) for i = 2.

Consider (24) for i = 3. Split J3(u) = J′′3 (u) + J′3(u) into two sums over j > 0, where
j2 ≤ |u| and j2 > |u|, respectively. In the sum J′3(u) we also have j ≤ |u|2Γ/K ≤ |u|2, and
Lemma 2 entails the bound

pj(u) ≤ Cp̄j(u)(
|u|3
j2

) ≤ C|u|3 j−(ν/2)−2e−c|u|2/j

for some constants C, c > 0. Hence,
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|J′3(u)| ≤ C|u|ν+2d+3
∫ |u|2

0
[y]−d−3−(ν/2)e−c|u|2/[y]dy

≤ C|u|−1
∫ 1

0
x−d−3−(ν/2)e−c/xdx = o(1)

since the last integral converges for any d. Finally, by (22), given a large enough k > 0,
there exists C > 0, such that pj(u) ≤ Cjk/2/|u|k, which implies J′′3 (u) = o(1). This proves
(24) and completes the proof of Proposition 1.

Lemma 2 does not apply to the simple random walk (which is not aperiodic), in
which case the local CLT takes a somewhat different form (see [26], Theorem 2.1.3). The
application of the latter result and the argument in the proof of Proposition 1 yields the
following result:

Proposition 2. Let p(ej) = p(−ej) =
1

2ν , j = 1, . . . , ν. The coefficients in (6) are well-defined
for any −(1∧ ν

2 ) < d < 1, d �= 0 and satisfy

τ(u; d) = (B(d) + o(1))|u|−ν−2d, |u| → ∞,

where

B(d) :=
2dΓ(d + (ν/2))

νdΓ(−d)
.

Proposition 1 and Lemma 2 do not apply to random walks with a non-zero mean, as in
Example 2 below (fractional heat operator), in which case the fractional coefficients exhibit
an anisotropic behavior different from (23). Such behavior is described in the following
proposition. We assume that the underlying random walk factorizes into a deterministic
drift by 1 in direction −e1 and a random walk on Zν−1, as in Lemma 2:

p(u) =

{
1− θ, u = −e1,
θq̃(ũ), u = −e1 + (0, ũ),

(25)

where θ ∈ (0, 1) and q̃(ũ) is a probability distribution concentrated on ũ = (u2, . . . , uν) ∈ Zν−1,
such that ũ �= 0. Write {Sj; j ≥ 0} for the random walk starting at 0 with j-step probabilities
P(S̃j = ũ|S̃0 = 0) =: q̃j(ũ), j = 0, 1, . . . , such that q̃1(ũ) := q̃(ũ), ũ ∈ Zν−1. In order to
apply Lemma 2, we make a similar assumption to (20):

Eec|S̃1| < ∞ (∃ c > 0) and {S̃j} is zero mean, irreducible (26)

and we denote Γ̃ := ES̃1S̃′1, the respective covariance matrix. Let

ρ(x) :=
(

x2
1 + 〈x̃, Γ̃−1 x̃〉2)1/2, x = (x1, x̃) ∈ Rν

be a positive function on Rν satisfying the homogeneity property, ρ(λx1, λ1/2 x̃) = λρ(x),
∀λ > 0. As in Example 2, the fractional coefficients for p(u) in (25) we write as

τ(−u; d) = ψu1(d)pu1(−u)I(u1 ≥ 0), u = (u1, ũ) ∈ Zν. (27)

Proposition 3. Let (26) hold and θ ∈ (0, 1). Then,

τ(−u; d) =
u−d−(ν+1)/2

1

Γ(−d)(2πθ)(ν−1)/2
√

detΓ̃
exp

{− 〈ũ, Γ̃−1ũ〉
2θu1

}(
1 + o(1)

)
(28)

as u1 → ∞ and |ũ| → ∞, |ũ| = o(u2/3
1 ). We also have
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τ(−u; d) = ρ(u)−d−(ν+1)/2
(

L0
( u1

ρ(u)
)
+ o(1)

)
, |u| → ∞, (29)

where L0(z), z ∈ [−1, 1] is a continuous function on [−1, 1] given by

L0(z) :=
z−d−(ν+1)/2

Γ(−d)(2πθ)(ν−1)/2
√

detΓ̃
exp

{− (1/2θ)
√
(1/z)2 − 1

}
for z ∈ (0, 1] and equals 0 for z ∈ [−1, 0].

Proof. Consider the following j-step probabilities of a random walk on Zν−1 starting at
0: qj(ũ) := pj(u), where u = (−j, ũ) for ũ ∈ Zν−1, j = 0, 1, · · · . Let us estimate these by
q̄j(ũ) := (2π j)−(ν−1)/2(detΓ)−1/2 exp{−〈ũ, Γ−1ũ〉/2j}, where Γ is the covariance matrix
of the 1-step distribution q1(ũ), ũ ∈ Zν−1. Note Γ = θΓ̃. By Lemma 2,

|qj(ũ)− q̄j(ũ)| ≤ Cq̄j(ũ)
( 1

j1/2 +
|ũ|3
j2

)
, ∀ |ũ| < j2, ũ ∈ Zν−1. (30)

Relation (28) follows directly from (3), (27), and (30). Relation (29) is written as

ρ(u)d+(ν+1)/2τ(−u; d)− L0
( u1

ρ(u)
) → 0, |u| → ∞. (31)

The asymptotics in (31) is immediate from (28) for |u| tending to ∞ as in (28). The
general case of (31) also follows from (28), using the continuity of L0. For ν = 2, the details
can be found in [12] (proof of Proposition 4.1).

Remark 2. The approximation in (28) compares with the kernel

hc,−d(t) = c1 t−d− 1+ν
2

1 exp
{− ct1 − |t̃|2

4t1

}
I(t1 > 0), t = (t1, t̃) ∈ Rν (32)

of the fractional heat operator (c + ∂1 − Δ̃)−d, ∂1 − Δ̃ := ∂/∂t1 −∑ν
i=2 ∂2/∂t2

i for all c > 0,
d < 0, and some c1 ∈ R. For ν = 2, Ref. [25] Equation (3.7) has recently derived the analytic
form in (32) of the kernel from the absolute square of its Fourier transform:

|ĥc,−d(z)|2 =
∣∣ ∫

Rν
ei〈z,t〉hc,−d(t)dt

∣∣2 (33)

= c2
1(4π)ν−1Γ(−d)2(z2

1 + (c + |z̃|2)2)d, z = (z1, z̃) ∈ Rν,

which is the implicit definition of this kernel in [22]. Similarly to derivations in [25], for
ν ≥ 2, Equations (3.944.5-6) in the table of integrals [27] give

ĥc,−d(z) = c1

∫ ∞

0
eiz1t1−ct1 td− 1+ν

2
1 dt1

∫
Rν−1

exp
{

i〈z̃, t̃〉 − |t̃|2
4t1

}
dt̃

= c1(4π)
ν−1

2

∫ ∞

0
eiz1t1−t1(c+|z̃|2)t−d−1

1 dt1

= c1(4π)
ν−1

2 Γ(−d)
(
z2

1 + (c + |z̃|2)2) d
2 exp

{− id arctan
( z1

c + |z̃|2
)}

,

yielding (33).

Finally, the tempered fractional coefficients in (15) are summable: ∑u∈Zν |τr(u; d)| ≤
∑∞

j=0 rj|ψj(d)| ≤ 2(1 − r)−|d| < ∞ for any d ∈ (−1, 1), r ∈ (0, 1) and any random walk

{Sj}. Assuming the existence of the exponential moment Eeκ|S1| < ∞ for some κ > 0,
(15) decays exponentially,
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|τr(u; d)| ≤ Ce−c|u|, u ∈ Zν, (34)

for some C, c > 0. Indeed, Markov’s inequality gives rj|ψj(d)|pj(u) ≤ P(|Sj| ≥ |u|) ≤
e−κ|u|Eeκ|Sj | ≤ e−κ|u|(Eeκ|S1|)j ≤ e−(κ/2)|u| for any 0 ≤ j < c|u| and large enough |u|.
Moreover, ∑j≥c|u| rj|ψj(d)|pj(u) ≤ ∑j≥c|u| rj = rc|u|/(1− r), proving (34).

3. Fractionally Integrated Random Fields on Zν

Let {ε(t); t ∈ Zν} be a white noise; in other words, a sequence of r.v.s with Eε(t) = 0,
Eε(t)ε(s) = I(t = s), t, s ∈ Zν. Given a sequence a ∈ L2(Zν) with the above noise we can
associate a moving-average random field (RF),

X(t) = ∑
s∈Zν

a(u)ε(t − u), t ∈ Zν (35)

with zero mean and covariance Cov(X(t), X(s)) = ∑u∈Zν a(u)a(t − s + u), which depends
on t − s alone and characterizes the dependence between values of X at distinct points t �= s.

A moving-average RF X in (35) will be said to be

• long-range dependent (LRD) if ∑u∈Zν |a(u)| = ∞;
• short-range dependent (SRD) if ∑u∈Zν |a(u)| < ∞, ∑u∈Zν a(u) �= 0;
• negatively dependent (ND) if ∑u∈Zν |a(u)| < ∞, ∑u∈Zν a(u) = 0.

The above classification is important in limit theorems and applications of random
fields. It is not unanimous; several related but not equivalent classifications of dependence
for stochastic processes can be found in [3,4,7,17] and other works.

Many RF models with discrete arguments are defined through linear difference equa-
tions involving white noise [28]. In this paper, we deal with fractionally integrated RFs X
solving fractional equations on Zν,

(I − T)dX(t) = ∑
s∈Zν

τ(s; d)X(t + s) = ε(t), (36)

(I − rT)dX(t) = ∑
s∈Zν

τr(s; d)X(t + s) = ε(t), 0 < r < 1, t ∈ Zν, (37)

whose solutions are obtained by inverting these operators (see below).

Definition 1. Let d ∈ (−1, 1) and τ(u;±d) in (6) be well-defined. By the stationary solution of
equation (36) (respectively, (37)) we mean a stationary RF X, such that for each t ∈ Zν the series
in (36) converges in mean square and (36) holds (respectively, the series in (37) converges in mean
square and (37) holds).

Corollary 1. (i) Let −1 < d < 1. Then,

X(t) = (I − T)−dε(t) = ∑
u∈Zν

τ(u;−d)ε(t + u), t ∈ Zν (38)

is a stationary solution of equation (36) if condition (16) holds (for 0 < d < 1, (16) is also necessary
for the existence of the above X).
(ii) Let 0 < d < 1 and (16) hold. Then, X in (38) is LRD. Moreover, it has a non-negative covariance
function Cov(X(0), X(t)) ≥ 0, and ∑t∈Zν Cov(X(0), X(t)) = ∞.
(iii) Let−1 < d < 0 and (16) hold. Then, X in (38) is ND; moreover, ∑t∈Zν Cov(X(0), X(t)) = 0.
(iv) Let −1 < d < 1, 0 < r < 1. Then,

X(t) = (I − rT)−dε(t) = ∑
u∈Zν

τr(u;−d)ε(t + u), t ∈ Zν (39)

is a stationary solution of equation (37). Moreover, X in (39) is SRD. Furthermore, ∑t∈Zν |Cov(X(0),
X(t))| < ∞, ∑t∈Zν Cov(X(0), X(t)) = (1− r)−2d > 0.
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Proof. (i) Let 0 < d < 1. X in (38) is well-defined if and only if (17) holds, which is,
therefore, a necessary condition. Let us show that X in (38) is a stationary solution of (36).
We use the spectral representation of white noise,

ε(t) =
∫

Πν
ei〈t,x〉Z(dx), t ∈ Zν, (40)

where Z(dx) is a random complex-valued spectral measure on Πν with zero mean and
variance E|Z(dx)|2 = dx/(2π)ν. Then, X(t) is written as

X(t) =
∫

Πν
ei〈t,x〉τ̂(x − d)Z(dx) =

∫
Πν

ei〈t,x〉 Z(dx)
(1− p̂(x))d (41)

see (18). Then, (I − T)dX(t) =
∫

Πν ei〈t,x〉 ∑s∈Zν τ(s; d)ei〈s,x〉(1 − p̂(x))−dZ(dx) = ε(t)
follows by (19) and absolute summability ∑s∈Zν |τ(s; d)| < ∞ (see (11) and (14)).

Next, let −1 < d < 0. Then, X in (38) is well-defined and is written as (41), due to
∑s∈Zν |τ(s;−d)| < ∞. We need to show that the series in (36) converges in mean square
towards ε(t) if and only if (16) or (17) hold. The latter convergence writes as

lim
M→∞

E|sM − ε(t)|2 = 0, where sM := ∑
|s|≤M

τ(s; d)X(t + s).

From (41),

E|sM − ε(t)|2 = (2π)−ν
∫

Πν

∣∣ ∑
|s|≤M

ei〈s,x〉τ(s; d)− (1− p̂(x))d∣∣2 |1− p̂(x)|2|d|dx

≤ C
∫

Πν

∣∣ ∑
|s|≤M

ei〈s,x〉τ(s; d)− (1− p̂(x))d∣∣2dx

= C
∫

Πν

∣∣ ∑
|s|>M

ei〈s,x〉τ(s; d)
∣∣2dx

= C ∑
|s|>M

τ(s;−|d|)2 → 0 (M → ∞)

in view of (17). This proves part (i).
(ii) From (9), (6) we see τ(s;−d) ≥ 0 are non-negative and ∑s∈Zν τ(s;−d) = ∑∞

j=0 ψj(−d)
= ∞. Thus, Cov(X(0), X(t)) = ∑s∈Zν τ(s;−d)τ(t + s;−d) ≥ 0 and ∑t∈Zν Cov(X(0), X(t))
= ∞.
(iii) As in the proof of (i), we obtain ∑s∈Zν |τ(s;−d)| ≤ 1 + ∑∞

j=1 ∑s∈Zν |ψj(−d)|pj(s) =

1 + ∑∞
j=1 |ψj(−d)| = 2 (see (9)) and ∑s∈Zν τ(s;−d) = 0, implying ∑t∈Zν Cov(X(0), X(t))

= ∑t,s∈Zν τ(s;−d)τ(t + s;−d) = 0.
(iv) Using ∑u∈Zν |τr(u; d)| < ∞, ∑u∈Zν τr(u; d) = ∑∞

j=0 rjψj(d) = (1 − r)d, the proof is
similar to the above. Corollary 1 is proved.

The ARFIMA(0,d,0) Equation (4) is autoregressive, since the best linear predictor
(or conditional expectation in the Gaussian case) of X(t), given the ‘past’ X(s), s < t, is
a linear combination ∑∞

j=1 ψj(d)X(t − j) of the ‘past’ observations, due to the fact that
Cov(X(s), ε(t)) = 0 (s < t). For spatial equations, as in (36) or (37), an analogous property
given the ‘past’ X(s), s �= t does not hold, since Cov(X(s), ε(t)) �= 0 (s �= t) as a rule. This
issue is important in spatial statistics and has been discussed in the literature (see [29,30]
and the references therein), distinguishing between ‘simultaneous’ and ‘conditional autore-
gressive schemes’. A recent work [31] discusses some conditional autoregressive models
with LRD property.

Definition 2. Let X be an RF with EX(t)2 < ∞ for each t ∈ Zν. We say that X has:
(i) a simultaneous autoregressive representation with coefficients b(s), s ∈ Zν

0 if for each t ∈ Zν
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X(t) = ∑
s∈Zν

0

b(s)X(t − s) + ξ(t),

where the series converges in mean square and the r.v.s ξ(t), t ∈ Zν satisfy
Cov(ξ(t), ξ(s)) = 0 (∀ s �= t).
(ii) a conditional autoregressive representation with coefficients c(s), s ∈ Zν

0 if for each t ∈ Zν

X(t) = ∑
s∈Zν

0

c(s)X(t − s) + η(t), (42)

where the series converges in mean square and the r.v.s η(t), t ∈ Zν satisfy
Cov(η(t), X(s)) = 0 (∀ s �= t).

Corollary 2. (i) Let d ∈ (−1, 1) and X be a fractionally integrated RF in (38) and (16) holds. Then,
X has a simultaneous autoregressive representation with coefficients b(s) = −τ(−s; d)/τ(0; d),
s ∈ Zν

0 and ξ(s) = ε(s)/τ(0; d), s ∈ Zν;
(ii) Let d ∈ (0, 1), X be a fractionally integrated RF in (38) and (16) holds. Then, X has a
conditional autoregressive representation with coefficients c(s) = −γ∗(s)/γ∗(0), s ∈ Zν

0 and
η(s) =

∫
Πν ei〈s,x〉(1− p̂(−x))dZ(dx)/γ∗(0), where Z(dx) is a complex-valued random measure

given in (40) with zero mean and variance E|Z(dx)|2 = dx/(2π)ν and

γ∗(s) :=
1

(2π)ν

∫
Πν

e−i〈s,x〉|1− p̂(x)|2ddx, s ∈ Zν;

(iii) Let d ∈ (−1, 1), 0 < r < 1 and X be a (tempered) fractionally integrated RF in (39). Then,
X has a simultaneous autoregressive representation with b(s) = −τr(−s; d)/τr(0; d), ξ(t) =
ε(t)/τr(0; d) and a conditional autoregressive representation with c(s) = −γ∗r (s)/γ∗r (0), η(t) =∫

Πν ei〈t,x〉(1− rp̂(−x))dZ(dx)/γ∗r (0), with the same Z(dx) as in part (ii) and

γ∗r (s) :=
1

(2π)ν

∫
Πν

e−i〈s,x〉|1− rp̂(x)|2ddx, s ∈ Zν.

Proof. (i) is obvious from Corollary 1 and (36), τ(0; d) �= 0.
(ii) By (16), c(s) and η(t) are well-defined, η(t) ∈ R and Eη(t)2 < ∞. The orthogonality
relation EX(t)η(s) = 0 (t �= s) follows from the spectral representations in (40) and (41):

EX(t)η(s) =
1

(2π)νγ∗(0)

∫
Πν

ei〈t−s,x〉 (1− p̂(−x))d

(1− p̂(x))d dx

=
1

(2π)νγ∗(0)

∫
Πν

ei〈t−s,x〉dx = 0 (t �= s).

It remains to show (42), including the convergence of the series. In view of the
definition of c(s), this amounts to showing

∑
s∈Zν

X(t − s)γ∗(s) = γ∗(0)η(t)

or, in spectral terms, to the convergence of the Fourier series

1
(1− p̂(x))d ∑

s∈Zν

e−i〈x,s〉γ∗(s) = (1− p̂(−x))d =
|1− p̂(−x)|2d

(1− p̂(x))d (43)

in L2(Πν). Note γ∗(s) = Cov(X∗(0), X∗(s)), where the RF X∗(t) := (1− T)dε(t), t ∈ Zν,
results from application of the inverse operator. Since X∗ has negative dependence
(see (41) and the proof of Corollary 1 (iii)) the covariances γ∗(s), s ∈ Zν are absolutely
summable. Therefore, the Fourier series on the l.h.s. of (43) converges uniformly in x ∈ Πν

to |1− p̂(−x)|2d, proving (43).
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(iii) The proof is analogous to (and simpler than) (i)–(ii), using ∑u∈Zν |τr(u; d)| < ∞.

Example 1. Fractional Laplacian. The (lattice) Laplace operator on Zν is defined as

[Δ]g(t) :=
1

2ν

ν

∑
j=1

(g(t + ej) + g(t − ej)− 2g(t)), t ∈ Zν

so that [Δ] = T − I, where Tg(t) = 1
2ν ∑ν

j=1(g(t + ej) + g(t − ej)) is the transition operator of
the simple random walk {Sj; j = 0, 1, · · · } on Zν with equal one-step transition probabilities 1/2ν
to the nearest-neighbors t → t ± ej, j = 1, · · · , ν. For −1 < d < 1, the fractional Laplace RF can
be defined as a stationary solution of the difference equation

(−[Δ])dX(t) = ε(t), t ∈ Zν (44)

with weak white noise on the r.h.s., written as a moving-average RF:

X(t) = (−[Δ])−dε(t) = ∑
u∈Zν

τ(u;−d)ε(t + u). (45)

We find that p̂(x) = (1/ν)∑ν
j=1 cos(xj), x = (x1, · · · , xν) ∈ Πν and

1− p̂(x) =
1
ν

ν

∑
j=1

(1− cos(xj)) ≥ C|x|2

for some C > 0 and 1− p̂(x) ∼ (1/2ν)|x|2 (|x| → 0). Hence, condition (16) for (44) translates
to ∫

Πν

dx
|1− p̂(x)|2|d| < ∞ ⇐⇒ |d| < ν

4
.

In particular, a stationary solution of Equation (44) on ν ≥ 4 exists for all
−1 < d < 1. Finally, recall that (16) is equivalent to condition (17). We could have verified
the latter by using Corollary 2, which gives the asymptotics of coefficients τ(u;−d) in (45).

Example 2. Fractional heat operator. For a parameter 0 < θ < 1, we can extend the definition of
the (lattice) heat operator on Zν from ν = 2 in [12] to ν ≥ 2 as follows:

Δ1,2g(t) := (1− θ)(g(t)− g(t − e1))

− θ

2(ν− 1)

ν

∑
j=2

(g(t − e1 + ej) + g(t − e1 − ej)− 2g(t)).

Thus, Δ1,2 = I − T corresponds to the random walk on Zν with 1-step distribution p(−e1) =
1− θ, p(−e1 ± ej) =

θ
2(ν−1) , j = 2, · · · , ν. We find that

|1− p̂(x)|2 =
(

cos(x1)− 1+
θ

ν− 1

ν

∑
j=2

(1− cos(xj))
)2

+ sin2(x1), x = (x1, · · · , xν) ∈ Πν.

By the Taylor expansion,

|1− p̂(x)|2 ∼ ( θ

2(ν− 1)
)2|x̃|4 + x2

1, x → 0, x̃ := (0, x2, · · · , xν).

We also find that outside the origin |1 − p̂(x)|2 ≥ C for some C > 0 since 0 < θ < 1.
Therefore, ∫

Πν

dx
|1− p̂(x)|2|d| ≤ C

∫ 1

0

∫ 1

0

yν−2dxdy
(x2 + y4)|d|

< ∞ if |d| < ν + 1
4
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and
∫

Πν |1 − p̂(x)|−2|d|dx = ∞ if |d| ≥ ν+1
4 . The above result agrees with [12] for ν = 2,

0 < d < 3
4 and extends it to the arbitrary ν ≥ 2, −1 < d < 1.

Example 3. Fractionally integrated time series models (case ν = 1). As noted above, the
ARFIMA(0, d, 0) process is a particular case of (38) corresponding to the backward shift Tg(t) :=
g(t− 1) or the deterministic random walk t → t− 1. Another fractionally integrated time series
model is given in Example 1 and corresponds to the symmetric nearest-neighbor random walk on
Z with probabilities 1/2. It is of interest to compare these two processes and their properties. Let
T1g(t) := g(t− 1), T2g(t) := (1/2)(g(t + 1) + g(t− 1)), t ∈ Z be the corresponding operators,

X1(t) := (I − T1)
−d1 ε(t) =

∞

∑
u=0

ψu(−d1)ε(t− u),

X2(t) := (I − T2)
−d2 ε(t) = ∑

u∈Z
τ(u;−d2)ε(t + u), t ∈ Z.

For |d1| < 1/2 and |d2| < 1/4, processes X1 and X2 are well-defined; moreover, they are
stationary solutions of the respective equations (I − T1)

d1 X(t) = ε(t) and (I − T2)
d2 X(t) = ε(t).

The spectral densities of X1 and X2 are given by

f1(x) =
1

2π|1− e−ix|2d1
=

1
2π · 2d1 |1− cos(x)|d1

,

f2(x) =
1

2π|1− (1/2)(e−ix + eix)|2d2
=

1
2π|1− cos(x)|2d2

We see that when d1 = 2d2 the processes X1 and X2 have the same 2nd order properties up
to a multiplicative constant, so that in the Gaussian case X2 is a noncausal representation of the
ARFIMA(0, 2d2, 0).

4. Scaling Limits

As explained in the Introduction, the isotropic scaling limits refer to the limit distribu-
tion of the integrals

Xλ(φ) :=
∫
Rν

X([t])φ(t/λ)dt, as λ → ∞, (46)

where X = {X(t); t ∈ Zν} is a given stationary random field (RF) for each φ : Rν → R

from a class of (test) functions Φ. We choose the latter class to be

Φ := L1(Rν) ∩ L∞(Rν).

In the following, X is a linear or moving-average RF on Zν:

X(t) = ∑
s∈Zν

a(t − s)ε(s), t ∈ Zν, (47)

where {ε(t); t ∈ Zν} are independent identically distributed (i.i.d.) r.v.s, with Eε(t) = 0,
Eε(t)2 = 1, and a ∈ L2(Zν) being deterministic coefficients. Obviously, stationary
solution (38) of Equation (36) satisfying Corollary 1 is a particular case of linear RF
with a(t) = τ(−t;−d). Our limits results assume an ‘isotropic’ behavior of a(t) as
|t| → ∞, detailed as follows. Let C(Sν−1) denote the class of all continuous functions on
Sν−1 = {t ∈ Rν : |t| = 1}.

Assumption 1. Let {a(t); t ∈ Zν} be a sequence of real numbers satisfying the following properties:
(i) Let 0 < d < ν/4. Then,

a(t) =
1

|t|ν−2d

(
�
( t
|t|

)
+ o(1)

)
, |t| → ∞, (48)
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where �(·) ∈ C(Sν−1) is not identically zero.
(ii) Let −ν/4 < d < 0. Then, a(t) satisfies (48) with the same �(t) and, moreover, ∑t∈Zν a(t) = 0.
(iii) Let d = 0. Then, ∑t∈Zν |a(t)| < ∞ and ∑t∈Zν a(t) �= 0.

The class of RFs in (47) with coefficients satisfying Assumption 1 is related but not
limited to the fractionally integrated RFs in (36) and (37). Note that the parameter d is
no longer restricted to being in (−1, 1). By easy observation, Assumption 1 implies the
LRD, ND, and SRD properties of Section 3 in the respective cases d > 0, d < 0, and d = 0.
Following the terminology in time series [3], the parameter d in (48) may be called the
memory parameter of the linear RF X in (47), except that for ν = 1 the memory parameter is
usually defined as 2d ∈ (−1/2, 1/2).

In particular, the covariance function r(t) := Cov(X(0), X(t)) of the linear RF X in
(47) is written as

r(t) = ∑
u∈Zν

a(u)a(t + u), t ∈ Zν

or the lattice convolution of a(t) with itself. We will use the notation [a1 � a2] for the lattice
convolution and (a1 � a2) for continuous convolution, viz.:

[a1 � a2](t) := ∑
u∈Zν

a1(u)a2(t + u), t ∈ Zν,

(a1 � a2)(t) :=
∫
Rν

a1(u)a2(t + u)du, t ∈ Rν

which is well-defined for any ai ∈ L2(Zν), i = 1, 2 (respectively, for any ai ∈ L2(Rν),
i = 1, 2).

Proposition 4. Let ai ∈ L2(Zν) satisfy Assumption 1 with 0 < d < ν/4 and some
�i ∈ C(Sν−1), i = 1, 2. Then,

[a1 � a2](t) = |t|4d−ν
(

L12
( t
|t|

)
+ o(1)

)
, |t| → ∞, (49)

where the (angular) function L12(·) ∈ C(Sν−1) is given by

L12(t) :=
∫
Rν

�1(s/|s|)�2((t − s)/|t − s|)
|s|ν−2d|t − s|ν−2d ds, t ∈ Sν−1.

Proof. The existence and continuity of L12 follow from the finiteness of the integrals∫
|s|<1 |s|2d−νds < ∞,

∫
|s|>1 |s|2(2d−ν)ds < ∞. For (49), it suffices to show that

|t|ν−4d[a1 � a2](t)− L12(t/|t|) → 0, |t| → ∞. (50)

Let |t|+ := |t| ∨ 1 and a0
i (t) := |t|2d−ν

+ �i(t/|t|+), a1
i (t) := ai(t)− a0

i (t) = o(|t|2d−ν),

i = 1, 2 (see (48)). Then, [a1 � a2](t) = ∑1
i,j=0[a

i
1 � aj

2](t). Clearly, (50) follows from

|t|ν−4d[a0
1 � a0

2](t)− L12(t/|t|) → 0, |t| → ∞ (51)

and
[ai

1 � aj
2](t) = o(|t|4d−ν), |t| → ∞, (i, j) �= (0, 0), i, j = 0, 1. (52)

To prove (51), rewrite [a0
1 � a0

2](t) =
∫
Rν a0

1([u])a0
2(t + [u])du as an integral and change

the variable u → |t|u in it. This leads to |t|ν−4d[a0
1 � a0

2](t) = L̃t(t/|t|), where

L̃t(z) :=
∫
Rν

a1,t(ũ)a2,t(z + ũ)du, z ∈ Sν−1, (53)
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where

ai,t(ũ) :=
1

(|t|−1 ∨ |ũ|)ν−2d �i

( ũ
|t|−1 ∨ |ũ|

)
, ũ :=

[|t|u]
|t| .

Relation (51) follows once we prove the uniform convergence supz∈Sν−1
|L̃t(z) −

L12(z)| → 0 (|t| → ∞). Since Sν−1 is a compact set and L12 is continuous, the last relation
is implied by the sequentional convergence

|L̃t(zt)− L12(z)| → 0 (|t| → ∞) (54)

for any z ∈ Sν−1 and any {zt} convergent to z: |zt − z| → 0 (|t| → ∞). The proof of (54)
uses the bound

|ai,t(ũ)| ≤ C|u|2d−ν, u ∈ Rν, i = 1, 2, (55)

which follows from the boundedness of �i and |u| ≤ |ũ|+ |u− ũ| with |u− ũ| ≤ ν1/2/|t|;
hence, |u| ≤ ν1/2(|ũ|+ |t|−1) ≤ 2ν1/2(|ũ| ∨ |t|−1). Note a1,t(ũ)a2,t(z + ũ)→ a0

1(u)a
0
2(z + u)

(|t| → ∞) for any u �= 0, z and |a1,t(ũ)a2,t(z + ũ)| ≤ C|u|2d−ν|z + u|2d−ν according to (55).
Since h(u) := C|u|2d−ν|z + u|2d−ν does not depend on t and

∫
Rν h(u)du < ∞, Pratt’s

lemma [32] applies to the integral in (53), resulting in (54) and (51). The proof of (52) is
similar and simpler and is omitted.

The question about the asymptotics of the variance of (46) arises, assuming the power-
law asymptotics of the covariance admitting power-law behavior at large lags, which is
tackled in the following proposition:

Proposition 5. (i) For any β > 0, φi ∈ Φ, i = 1, 2 as λ → ∞

∫
R2ν

|φ1(t1/λ)φ2(t2/λ)|(1∧ |t1 − t2|−β)dt1dt2 =

⎧⎪⎨⎪⎩
O(λν), β > ν,
O(λ2ν−β), β < ν,
O(λν log λ), β = ν.

(56)

(ii) Let r(t), t ∈ Zν satisfy

r(t) = |t|4d−ν
(

L
( t
|t|

)
+ o(1)

)
, |t| → ∞, (57)

where 0 < d < ν/4 and L ∈ C(Sν−1). Then, for any φi ∈ Φ, i = 1, 2

lim
λ→∞

λ−ν−4d
∫
R2ν

φ1(t1/λ)φ2(t2/λ)r([t1]− [t2])dt1dt2 = c(φ1, φ2), (58)

where
c(φ1, φ2) :=

∫
R2ν

φ1(t1)φ2(t2)L
( t1 − t2

|t1 − t2|
) dt1dt2

|t1 − t2|ν−4d . (59)

(iii) Let r ∈ L1(Zν). Then, for any φi ∈ Φ, i = 1, 2,

lim
λ→∞

λ−ν
∫
R2ν

φ1(t1/λ)φ2(t2/λ)r([t1]− [t2])dt1dt2 =
∫
Rν

φ1(t)φ2(t)dt × ∑
s∈Zν

r(s). (60)

Proof. (i) Write Iλ,β for the l.h.s. of (56). First, let β > ν. Then, Iλ,β ≤ C
∫
Rν |φ1(t1/λ)|dt1 ×∫

Rν 1∧|t2− t1|−βdt2 ≤ C
∫
Rν |φ1(t1/λ)|dt1 = Cλν

∫
Rν |φ1(t)|dt = O(λν) as

∫
Rν 1∧|t|−βdt <

∞. Next, let β < ν; then, Iλ,β ≤ λ2ν−β Jβ, where Jβ :=
∫
R2ν |φ1(t1)φ2(t2)||t1 − t2|−βdt1dt2 < ∞

is followed by Jβ ≤ C
∫
Rν |φ1(t1)|dt1

∫
|t2−t1|≤1 |t2 − t1|−βdt2 +

∫
R2ν |φ1(t1)× φ2(t2)|dtdt2 <

∞. Finally, for β = ν we have Iλ,ν = λν Jλ,ν, where Jλ,ν :=
∫
R2ν |φ1(t1)× φ2(t2)|(λ−1 ∨ |t1 −

t2|)−νdt1dt2 = O(log λ) follows similarly.
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(ii) The convergence of the integral in (59) follows from that of Jβ in part (i), with β = ν− 4d.
Let cλ(φ1, φ2) denote the integral on the l.h.s. of (58). By a change of variables,

cλ(φ1, φ2)

λν+4d =
∫
R2ν

φ(t1)φ(t2)

|t1 − t2|ν−4d L̃λ(t1, t2)dt1dt2,

where L̃λ(t1, t2)→ L((t1 − t2)/|t1 − t2|) (λ → ∞) for any t1 �= t2. Using Pratt’s lemma [32],
it suffices to prove (58) for L ≡ 1. In the latter case, and with t̃i := [λti]/λ, i = 1, 2, we see
that |L̃λ(t1, t2)| ≤ C

(|t1 − t2|/(|t̃1 − t̃2| ∨ (1/λ))
)ν−4d ≤ C as in the proof of Proposition 4.

Thus, (58) follows from the DCT.
(iii) Let cλ(φ1, φ2) be the same as in the proof of (ii). For a large K > 0, write cλ(φ1, φ2) =

∑3
i=1 ci,λ, where c3,λ :=

∫
|t1−t2|≤K φ1(t1/λ)(φ2(t2/λ)− φ2(t1/λ))r([t1]− [t2])dt1dt2, and

c2,λ :=
∫
|t1−t2|≤K φ1(t1/λ)φ2(t1/λ)r([t1]− [t2])dt1dt2, and c1,λ :=

∫
|t1−t2|>K φ1(t1/λ)×

φ2(t2/λ)r([t1] − [t2])dt1dt2. Here, λ−ν|c1,K| ≤ Cλ−ν
∫
Rν |φ1(t/λ)|dt × ∑|s|>K |r(s)| ≤

C ∑|s|>K |r(s)| can be made arbitrarily small uniformly in λ ≥ 1 by choosing K large
enough. Next,

λ−ν|c3,λ| ≤ C
∫
Rν
|φ1(t)|dt

∫
|s|≤K

∣∣φ2
(
t +

s
λ

)− φ2(t)
∣∣ds.

By the boundedness of φ2, we see that the integral
∫
|s|≤K |φ2(t + s

λ ) − φ2(t)|ds →
0 (λ → ∞) a.e. in Rν, and is bounded in t ∈ Rν. Then, since φ1 ∈ L1(Rν) we conclude
limλ→∞ λ−ν|c3,λ| = 0 by the DCT. Finally, λ−νc2,λ =

∫
Rν φ1(t)φ2(t)dt

∫
|s+[λt]−λt|≤K r(−[s])ds,

and we can replace the last integral by the r.h.s. of (60) uniformly in λ provided K is
large enough.

Proposition 5 does not apply to ND covariances satisfying (57) with negative d < 0.
This case is more delicate, since it requires additional regularity conditions of the test
functions and the occurrence of ‘edge effects’. A detailed analysis of this issue in dimension
ν = 2 and for indicator (test) functions of rectangles in R2

+ can be found in [16]. Below, we
present a result in this direction and sufficient conditions on d, φi, i = 1, 2 when the limits
take a similar form to (58). We introduce a subclass of test functions:

Φ− :=
{

φ ∈ Φ :
∫
Rν

( ∫
Rν
|φ(t + s)− φ(s)|2ds

)1/2|t|2d−νdt < ∞
}

. (61)

Proposition 6. Let a ∈ L2(Zν) satisfy Assumption 1 with −ν/4 < d < 0. Then, for any
φi ∈ Φ−, i = 1, 2 we have

lim
λ→∞

λ−ν−4d
∫
R2ν

φ1(t1/λ)φ2(t2/λ)[a � a]([t1]− [t2])dt1dt2 = c−(φ1, φ2), (62)

where

c−(φ1, φ2) :=
∫
Rν

2

∏
i=1

( ∫
Rν
(φi(t + s)− φi(s))|t|2d−ν�

( t
|t|

)
dt

)
ds. (63)

Proof. The convergence of the integral on the r.h.s. of (63) follows from (61) and the
Minkowski integral inequality: {∫

Rν(
∫
Rν |φ(t + s)− φ(s)||t|2d−νdt)2ds}1/2 ≤ ∫

Rν ‖φ(t +
·)− φ(·)‖L2(Rν) ×|t|2d−νdt.

The proof of the convergence in (62) resembles that of (58). Write cλ(φ1, φ2) for the
integral on the l.h.s. of (62). Using ∑s∈Zν a(s) = 0 we rewrite

∫
Rν φi(ti/λ)a([ti]− [s])dti =∫

Rν(φi((ti + s)/λ)− φi(s/λ))a([ti + s]− [s])dti, i = 1, 2, s ∈ Rν, and

cλ(φ1, φ2)

λν+4d =
∫
Rν

ds
2

∏
i=1

∫
Rν
(φi(ti + s)− φi(s))λν−2da([λ(ti + s)]− [λs])dti,
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where the inner integrals tend to those on the r.h.s. of (63) at each s, such that
∫
Rν |φi(t +

s) − φi(s)||t|2d−νdt < ∞, i = 1, 2. The remaining details are similar to (58) and are
omitted.

Remark 3. The restriction d > −ν/4 in Proposition 6 is not necessary for (63). Indeed, if φ ∈ Φ
satisfies the uniform Lipschitz condition |φ(t)− φ(s)| < C(|t| < 1, s ∈ Rν) then the integral
in (61) converges for 0 > d > −ν/2, implying φ ∈ Φ−. On the other hand, for the indicator
functions φ(t) = I(t ∈ A) of a bounded Borel set A ⊂ Rν with a ‘regular’ boundary, we typically
have ‖φ(t + ·)− φ(·)‖L2(Rν) = O(|t|1/2) leading to d > −ν/4.

Relation (48) entails the existence of the scaling limit

lim
λ→∞

λν−2da([λt]) = a∞(t) := |t|2d−ν�
( t
|t|

)
, λ → ∞, ∀ t ∈ Rν \ {0}, (64)

which is a continuous homogeneous function on Rν: for any λ > 0 we have

a∞(λt) = λ2d−νa∞(t), t ∈ Rν \ {0}. (65)

With the limit function in (64) we associate a Gaussian RF:

Wd(φ) :=

⎧⎪⎨⎪⎩
∫
Rν(a∞ � φ)(u)W(du), 0 < d < ν/4, φ ∈ Φ∫
Rν(a∞ � φ)reg(u)W(du), −ν/4 < d < 0, φ ∈ Φ−,∫
Rν φ(u)W(du), d = 0, φ ∈ Φ,

(66)

where W(du) is a real-valued Gaussian white noise (also called the real-valued Gaussian
random measure) with zero mean and where variance du, (a∞ � φ)(u) =

∫
Rν a∞(t)φ(t +

u)dt is the usual and

(a∞ � φ)reg(u) :=
∫
Rν

a∞(t)(φ(t + u)− φ(u))dt, u ∈ Rν

the ‘regularized’ convolution. For the indicator test function φ(t) = I(t ∈ B) of a Borel set
B ⊂ Rν (belonging to Φ−) we see that the latter convolution equals

(a∞ � φ)reg(u) =

{∫
B a∞(t − u)dt, u �∈ B,
− ∫

Rν\B a∞(t − u)dt, u ∈ B.

This paper uses the elementary properties of the white noise integrals in (66) only.
Namely,

∫
Rν φ(u)W(du) is well-defined for each φ ∈ L2(Rν) and has a Gaussian distribu-

tion with zero mean and variance ‖φ‖2
L2(Rν)

(see, e.g., [5,7]), implying that
∫
Rν φ(u/λ)W(du)

d
= λν/2

∫
Rν φ(u)W(du) for each λ > 0. The interested reader is referred to [24] on white

noise calculus on the Schwartz space and to [33] for fractional calculus with respect to
fractional Brownian motion. The existence of stochastic integrals in (66) follows from
Propositions 5 and 6. Particularly, the variances EW2

d (φ) = c(φ, φ) (0 < d < ν/4) and
EW2

d (φ) = c−(φ, φ) (−ν/4 < d < 0) agree with (59) and (63).
Let S(Rν) be the Schwartz space of all infinitely differentiable rapidly decreasing

functions φ : Rν → R, i.e., for each p ∈ N and each multi-index α = (α1, . . . , αν) ∈ Nν,

sup
x∈Rν

(1 + |x|)p|∂αφ(x)| < ∞,

where ∂αφ(x) := ∂∑ν
i=1 αi φ(x)/ ∏ν

i=1 ∂xi (see, e.g., [34] (Section 7) for the properties of
S(Rν) and the dual space S′(Rν) of tempered Schwartz distributions). Following [35],

we say that a generalized RF Y = {Y(φ); φ ∈ S(Rν)} is stationary if Y(φ) d
= Y(φ(·+ a))

(∀ φ ∈ S(Rν), a ∈ Rν) and H-self-similar (H ∈ R) if Y(φ) d
= λH−νY(φ(·/λ))
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(∀ φ ∈ S(Rν), λ > 0). As noted in Remark 3, S(Rν) ⊂ Φ− ⊂ Φ; hence, (66) is well-defined
for any φ ∈ S(Rν) and represents stationary generalized RFs on S(Rν). By the scaling

property in (65) and a change of variables, we see that Wd(φ)
d
= λH(d)−νWd(φ(·/λ)) (∀φ ∈

S(Rν)); hence, RF Wd in (66) is H(d)-self-similar, with

H(d) := (ν− 4d)/2 ∈ (0, ν), −ν/4 < d < ν/4.

The RF in (66) appear as scaling limits in the following corollary:

Corollary 3. Let X be a linear RF satisfying Assumption 1 and Xλ(φ) be defined in (46). Then,

λ−(ν+4d)/2Xλ(φ)
d−→

⎧⎪⎨⎪⎩
Wd(φ), 0 < d < ν/4, ∀ φ ∈ Φ,
Wd(φ), −ν/4 < d < 0, ∀ φ ∈ Φ−,
σW0(φ), d = 0, ∀ φ ∈ Φ,

where σ2 :=
(

∑t∈Zν a(t)
)2.

Proof. Since (46) writes as a linear form Xλ(φ) = ∑u∈Zν ε(u)
∫
Rν φ(t/λ)a([t]− u)dt in i.i.d.

r.v.s, we can use the Lindeberg-type condition (see also [3] (Corollary 4.3.1)). Accordingly,
it suffices to show that

sup
u∈Zν

∣∣ ∫
Rν

φ(t/λ)a([t]− u)dt
∣∣ = o(

√
Var(Xλ(φ))), λ → ∞ (67)

holds in each case, d > 0, d < 0, d = 0, of the corollary. The behavior of the last variance
is detailed in Propositions 5 and 6, and it grows to infinity in each case of d. On the other
hand, the l.h.s. of (67) does not exceed ‖φ‖L∞(Rν)‖a‖L1(Zν), which is bounded in cases
d < 0 and d = 0. Finally, in case d > 0 we see that the l.h.s. of (67) does not exceed
‖φ(·/λ)‖L2(Rν)‖a‖L2(Zν) = O(λν/2) and (67) holds, since d > 0.
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Abstract: This paper introduces a novel fractional Susceptible-Infected-Recovered (SIR)
model that incorporates a power Caputo fractional derivative (PCFD) and a density-
dependent recovery rate. This enhances the model’s ability to capture memory effects and
represent realistic healthcare system dynamics in epidemic modeling. The model’s utility
and flexibility are demonstrated through an application using parameters representative of
the COVID-19 pandemic. Unlike existing fractional SIR models often limited in represent-
ing diverse memory effects adequately, the proposed PCFD framework encompasses and
extends well-known cases, such as those using Caputo–Fabrizio and Atangana–Baleanu
derivatives. We prove that our model yields bounded and positive solutions, ensuring
biological plausibility. A rigorous analysis is conducted to determine the model’s local
stability, including the derivation of the basic reproduction number (R0) and sensitivity
analysis quantifying the impact of parameters on R0. The uniqueness and existence of
solutions are guaranteed via a recursive sequence approach and the Banach fixed-point
theorem. Numerical simulations, facilitated by a novel numerical scheme and applied to
the COVID-19 parameter set, demonstrate that varying the fractional order significantly
alters predicted epidemic peak timing and severity. Comparisons across different fractional
approaches highlight the crucial role of memory effects and healthcare capacity in shaping
epidemic trajectories. These findings underscore the potential of the generalized PCFD ap-
proach to provide more nuanced and potentially accurate predictions for disease outbreaks
like COVID-19, thereby informing more effective public health interventions.

Keywords: SIR model; generalized power fractional derivative; stability; simulations;
numerical analysis

1. Introduction

The study of infectious diseases is a critical area in epidemiology, where mathematical
models serve as essential tools for understanding disease spread dynamics, predicting
outbreaks, and evaluating the effectiveness of interventions. The Susceptible-Infected-
Recovered (SIR) model, a cornerstone of epidemiological modeling, classifies populations
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into susceptible (S), infected (I), and recovered (R) compartments. Its simplicity and
versatility have allowed for extensive adaptations to incorporate real-world factors. For
example, Marinov [1] employed an adaptive SIRV model with time-dependent rates to
analyze the dynamics of COVID-19, integrating data from various national contexts to cap-
ture transmission variations and to evaluate vaccination strategies. Similarly, Balderrama
et al. [2] explored optimal control strategies for a SIR epidemic model under quarantine
limitations, highlighting the trade-offs between quarantine stringency and economic or
social disruption. Further illustrating the adaptability of the SIR model, El Khalifi [3]
investigated an extended SIR model with gradually waning immunity, acknowledging
individual heterogeneity in immune system responses and demonstrating the impact of
duration of immunity on long-term disease prevalence. These studies highlight the ability
of the SIR model to address real-world complexities, while also suggesting limitations in
capturing the influence of past events on current disease dynamics.

However, traditional SIR models often simplify disease dynamics by assuming in-
stantaneous interactions and neglecting historical factors, such as the influence of past
infection rates on current immunity levels. To address these limitations, fractional-order
derivatives, which extend the concept of differentiation to non-integer orders [4–7], have
emerged as a powerful tool. In contrast to integer-order derivatives, fractional deriva-
tives inherently incorporate memory effects and long-range interactions, leading to more
accurate representations of biological processes like disease transmission and recovery.
This characteristic has led to several applications in the context of SIR models, which
offer potentially more accurate predictions of epidemic spread. For example, Alqahtani [8]
analyzed a fractional-order SIR model that incorporates the capacity of the healthcare
system, showing an improved fit of the model to the observed infection data compared
to its integer-order counterpart. Kim [9] introduced a normalized time-fractional SIR
model using a novel fractional derivative designed to improve understanding of the in-
fluence of fractional-order on epidemiological dynamics and disease prediction accuracy,
specifically demonstrating a reduction in prediction error when forecasting peak infection
rates. Riabi et al. [10] investigated a fractional SIR epidemic model with the Atangana–
Baleanu–Caputo operator, utilizing the homotopy perturbation method to obtain a series
solution and demonstrating an increased number of immunized individuals compared
to other methods. Alazman et al. [11] introduced a diffusion component into a fractional
SIR model and analyzed its impact using a general fractional derivative, illustrating the
effects of diffusion on the model’s dynamics, revealing how diffusion can alter the spatial
distribution of the infected population, a feature absent in traditional models. Beyond
epidemiology, fractional calculus shows promise in areas like modeling drug delivery
in pharmacokinetics, where non-local tissue interactions affect drug distribution, and in
neuroscience for capturing memory effects in neuronal signaling. However, challenges
remain in the widespread adoption of fractional-order models, including the computational
cost of solving fractional differential equations and the difficulty in directly interpreting
fractional-order parameters in terms of underlying biological mechanisms. Nevertheless,
the ability of fractional calculus to capture memory and non-local effects makes it a valuable
tool for enhancing the realism and predictive power of models in diverse biological systems
exhibiting delayed responses or cumulative effects.

The utility of fractional calculus extends far beyond epidemiological modeling, with
applications across various scientific fields. These applications leverage fractional calculus’s
ability to capture complex dynamics and memory effects often observed in real-world
phenomena. Examples include physics and polymer technology, where fractional calculus
aids in modeling complex material behaviors [12], and electrical circuits, enabling the
incorporation of fractional-order elements for enhanced circuit representation [13]. In
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bioengineering, fractional calculus is utilized to model biological processes [14], while
in robotics, it facilitates the design of fractional-order controllers for improved perfor-
mance [15]. Its utility extends to fluid mechanics, where it helps model non-Newtonian
fluid behavior [16], and electrodynamics of complex media, aiding in describing materials
with memory effects [17]. Control theory benefits from fractional-order controllers, offering
advantages over traditional methods [18], and, as discussed previously, disease model-
ing leverages fractional calculus to capture memory effects and non-local interactions in
epidemiological models [19]. This widespread applicability underscores the power of frac-
tional calculus in capturing complex behaviors not adequately represented by traditional
integer-order calculus.

Within epidemiological modeling, the application of fractional calculus to the SIR

framework has been explored using various fractional derivatives, including Caputo,
Caputo–Fabrizio, and Atangana–Baleanu. These derivatives incorporate memory effects
and non-local interactions, leading to more realistic representations of the spread of infec-
tious diseases [20–22]. The Caputo fractional derivative is well suited for systems with
well-defined initial conditions, while the Caputo–Fabrizio derivative is useful for systems
with less-defined initial states. The Atangana–Baleanu derivative, with its non-singular
kernel, provides advantages in modeling complex dynamics with crossovers. However,
many studies focus on specific fractional derivatives, potentially limiting the exploration of
generalized operators that can encompass a wider range of behaviors and simulate diseases
with diverse memory characteristics. The selection of an appropriate fractional derivative
is a crucial consideration, as it can significantly influence the model’s properties, such as
stability and the existence of solutions. While fractional SIR models have been applied to
various diseases, a more thorough investigation of their qualitative and quantitative prop-
erties is still needed. Many previous studies have concentrated on numerical simulations,
often lacking in-depth exploration of the theoretical foundations, such as the boundedness,
positivity, and stability of solutions. Furthermore, rigorous comparisons between different
fractional derivatives are often absent.

To address these gaps, we extend the classical SIR framework [23] by considering
the incidence rate as 2βSI

N , which suggests a closed population with density-dependent
interactions influenced by the total population size N (N = S+ I+R). Furthermore, we
incorporate a δR term, representing the rate at which recovered individuals lose immu-
nity and return to the susceptible compartment. Crucially, we employ a Power Caputo
fractional derivative (PCFD) [24], which generalizes well-known fractional derivatives
like Caputo–Fabrizio [25], Atangana–Baleanu [26], weighted Atangana–Baleanu [27], and
weighted Hattaf fractional derivatives [28]. The PCFD provides a flexible and adaptable
modeling framework capable of capturing diverse memory and non-local effects within
disease dynamics. This work primarily focuses on the theoretical development, math-
ematical analysis, and numerical simulation of the PCFD SIR model to demonstrate its
properties and potential. We use parameters representative of the COVID-19 pandemic to
demonstrate the behavior of our novel PCFD SIR model. The construction of this paper is
as follows: In Section 2, we present the construction of the proposed fractional SIR model.
In Section 3, we recall the necessary mathematical foundations, detailing the power Caputo
fractional derivative. Section 4 presents a rigorous qualitative analysis that demonstrates
the boundedness and positivity of the solutions, which is critical to ensuring biological
feasibility and applicability in the real world. In this section, we also investigate the sta-
bility of the disease-free equilibrium (DFE), deriving the basic reproduction number R0, a
key epidemiological parameter for assessing the potential for disease spread. In addition,
sensitivity analysis identifies influential parameters, revealing factors affecting disease
transmission and recovery. In Section 5, we introduce a two-step Lagrange interpolation
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polynomial-based numerical method for approximating solutions to the fractional SIR
model. Then, in Section 4.2, we explore symmetric model cases, including Caputo–Fabrizio,
Atangana–Baleanu, and weighted Hattaf. Finally, Section 7 provides the biological inter-
pretation of our results and conclusions.

2. Mathematical SIR Model

In this section, we extend the classical SIR model [23], given by⎧⎪⎪⎨⎪⎪⎩
d
dzS(z) = Λ− βSI

S+I
− μS,

d
dz I(z) =

βSI
S+I

−
[
α0 + (α1 − α0)

b
b+I

]
I− γI− μI,

d
dzR(z) =

[
α0 + (α1 − α0)

b
b+I

]
I− μR,

by considering the incidence rate 2βSI
N . This suggests a closed population where interactions

are density-dependent and influenced by the total population size N (N = S+ I+R). We
assume that the total population size N is constant throughout the duration of the epidemic,
which is justified by the relatively short timescale of the epidemic compared to demographic
processes such as birth and death. Also, we add δR term, which represents the rate at
which recovered individuals lose immunity and return to the susceptible compartment. We
incorporate a power Caputo fractional-order dynamics and various important parameters
related to disease transmission, recovery, and mortality. The fractional derivatives introduce
memory effects and non-local interactions into the dynamics. The following model strength
lies in its adaptability according to power parameters p in PC

a D
ζ,ψ,p
z,w , allowing for the

exploration of diverse scenarios related to intervention and disease:⎧⎪⎪⎨⎪⎪⎩
PC
a D

ζ,ψ,p
z,w S(z) = Λ− 2βSI

N − μS+ δR,
PC
a D

ζ,ψ,p
z,w I(z) = 2βSI

N −
[
α0 + (α1 − α0)

b
b+I

]
I− (γ + μ)I,

PC
a D

ζ,ψ,p
z,w R(z) =

[
α0 + (α1 − α0)

b
b+I

]
I− (μ + δ)R,

(1)

with initial conditions S(0) ≥ 0, I(0) ≥ 0 and R(0) ≥ 0. The definitions of parameters are
presented in Table 1. The SIR model (1) contains three equations as follows:

Table 1. Description of Model Parameters.

Parameter Description Units

Λ Recruitment rate Individual/Time
β Transmission rate (Individual · Time)−1

μ Natural death rate Time−1

δ Rate of loss of immunity Time−1

α0
Baseline recovery rate attributable to
healthcare intervention Time−1

α1
Maximum recovery rate when healthcare
resources are sufficient Time−1

b Density dependence influence parameter Individual
γ Infection-induced death rate Time−1

N Total population size Individual

Susceptible Population Dynamics (S)

PC
a D

ζ,ψ,p
z,w S(z) = Λ− 2βSI

N
− μS+ δR,
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where Λ represents the birth rate or influx of new susceptible individuals into the popula-
tion. The term 2βSI

N represents the rate at which susceptible individuals become infected,
β is the transmission rate, S is the number of susceptible individuals, I is the number of
infected individuals, N is the total population size (N = S+ I+R), assumed constant (as
shown in Figure 1).

Figure 1. Schematic diagram of the modified SIR model.

This form modifies the incidence rate βSI
N to account for saturation effects, emphasizing

that the infection rate depends on the number of individuals in S and I without relying on
the recovered population R. The factor of ‘2’ accounts for the increased contact rates within
households of two individuals, where the probability of transmission is higher [29]. The
term μS represents the number of susceptible individuals dying per unit time, where μ is
the natural death rate. The term δR represents the rate at which recovered individuals lose
immunity and return to the susceptible compartment.

Infected Population Dynamics (I)

PC
a D

ζ,ψ,p
z,w I(z) =

2βSI

N
−
[

α0 + (α1 − α0)
b

b + I

]
I− (γ + μ)I,

The term 2βSI
N represents the same infection process as in the susceptible equation.

The term
[
α0 + (α1 − α0)

b
b+I

]
I represents the rate at which infected individuals recover

through healthcare intervention and leave the infected compartment. Here, α0 is the
baseline recovery rate attributable to healthcare intervention, α1 is the maximum recovery
rate when healthcare resources are sufficient, b is a constant modulating the recovery rate
based on the infected population [30]. The fraction b

b+I
models the effect of healthcare

resource constraints: When I is small, the recovery rate approaches α1, when I is large,
the recovery rate asymptotically approaches α0. This reflects the real-world scenario in
which a surge in infections can overwhelm healthcare systems, reducing the quality and
availability of care for each infected individual. The term γI represents the rate at which
infected individuals die from infection. The term μI represents the number of infected
individuals who die per unit time from natural causes.

Recovered Population Dynamics (R)

PC
a D

ζ,ψ,p
z,w R(z) =

[
α0 + (α1 − α0)

b
b + I

]
I− (μ + δ)R.

The term
[
α0 + (α1 − α0)

b
b+I

]
I represents the rate at which infected individuals re-

cover through healthcare intervention and enter the recovered compartment, as described
in the infected population equation. The term (μ + δ)R accounts for the removal of recov-
ered individuals due to: Natural death (μ), loss of immunity (δ), causing individuals to
re-enter the susceptible compartment.
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3. Basic Concepts

Definition 1 ([24]). For ζ ∈ [0, 1), with ψ, p > 0, and X ∈ H1(a, b), where H1(a, b) is Sobolev
space. The PCFD of order ζ, of a function X w.r.t the weight function w, 0 < w ∈ C1([a, b]), is
defined by

PC
a D

ζ,ψ,p
z,w X(z) =

PC(ζ)

1− ζ

1
w(z)

∫ z

a

pEψ,1

(
− ζ

1− ζ
(z− s)ψ

)
(wX)′(s)ds, (2)

where pEψ,1 is the Power Mittag-Leffler function given by

pEψ,1(s) =
+∞

∑
n=0

(s ln p)n

Γ(kn + l)
, s ∈ C, and k, l, p > 0,

and PC(ζ) is the normalization positive function satisfying PC(0) = PC(1) = 1.

Definition 2 ([24]). The Power fractional integral with order ζ, of a function X, w.r.t the non-
decreasing weight function w,0 < w ∈ C1([a, b]), is defined by

PC
a I

ζ,ψ,p
z,w X(z) =

1− ζ

PC(ζ)
X(z) + ln p

ζ

PC(ζ)

RL

I
ψ
a,wX(z),

where RLIψ
a,wX(z) is the standard weighted R–L fractional integral of order ψ given by

RLI
ψ
a,wX(z) =

1
Γ(ψ)

1
w(z)

∫ z

a
(z− s)ψ−1(wX)(s)ds.

Remark 1. The power Caputo fractional derivative, as given by Definition 1, generalizes some
fractional derivatives as follows:

(1) If p = e, w(z) = 1 and ζ = ψ. Then, the Definition 1 reduced to the following definition
of ABC fractional derivative [26]

PC
a D

ζ,e
z,1X(z) =

PC(ζ)

1− ζ

∫ z

a

eEζ,1

(
− ζ

1− ζ
(z− s)ζ

)
(X)′(s)ds.

(2) If p = e, w(z) = 1 and ψ = 1. Then, the Definition 1 reduced to the following definition
of CF fractional derivative [25]

PC
a D

ζ,1,e
z,1 X(z) =

PC(ζ)

1− ζ

∫ z

a

eE1,1

(
− ζ

1− ζ
(z− s)

)
(X)′(s)ds.

(3) If p = e and ζ = ψ. Then, the Definition 1 reduced to the following definition of weighted
ABC fractional derivative [27]

PC
a D

ζ,e
z,wX(z) =

PC(ζ)

1− ζ

1
w(z)

∫ z

a

pEζ,1

(
− ζ

1− ζ
(z− s)ζ

)
(wX)′(s)ds.

(4) If p = e. Then, the Definition 1 reduced to the following definition of weighted generalized
Hattaf fractional derivative [28]

PC
a D

ζ,ψ,e
z,w X(z) =

PC(ζ)

1− ζ

1
w(z)

∫ z

a

pEψ,1

(
− ζ

1− ζ
(z− s)ψ

)
(wX)′(s)ds.
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4. Behavioral Characteristics of the SIR Model (1)

This section undertakes a rigorous analysis of the SIR model defined in model (1),
focusing on its fundamental properties. We will establish the boundedness and positivity
of the model solutions, determine the stability of the DFE, derive the basic reproduction
number R0, and quantify the sensitivity of R0 to variations in model parameters, thereby
revealing the key drivers of disease transmission.

4.1. Analysis of Solution Boundedness

Theorem 1. The SIR PCFD Model (1) yields solutions (S, I,R) that are guaranteed to be physically
and mathematically feasible, lying within the region Ω, where

Ω =

{
(S, I,R);S+ I+R ≤ Λ

μ

}
.

Proof. The critical condition for the model to be biologically and mathematically feasible
is that the total population size must be bounded. Thus, we have

PC
a D

ζ,ψ,p
z,w N(z = PC

a D
ζ,ψ,p
z,w S(z) +PC

a D
ζ,ψ,p
z,w I(z) +PC

a D
ζ,ψ,p
z,w R(z)

= Λ− 2βSI
N − μS+ δR+ 2βSI

N

−
[
α0 + (α1 − α0)

b
b+I

]
I− (γ + μ)I

+
[
α0 + (α1 − α0)

b
b+I

]
I− (μ + δ)R

= Λ− μN(z)− γI,

where
N(z) = S(z) + I(z) +R(z).

Clearly
Λ− μN(z)− γI ≤ Λ− μN(z).

This implies that
PC
a D

ζ,ψ,p
z,w N(z) ≤ Λ− μN(z). (3)

Applying the Laplace transform of PCFD [24] on both sides of (3), we obtain

L
(

w(z)PCa D
ζ,ψ,p
z,w N(z)

)
≤ L[w(z)(Λ− μN(z))].

This implies that,

N(z) ≤ Λ
μ + PC(ζ)w(a)

[PC(ζ)−(1−ζ)μ]w(z)

(
N(0)− Λ

μ

)
pEψ,1

(
ζμ

[PC(ζ)−(1−ζ)μ]
zζ
)

− PC(ζ)μ
[PC(ζ)−(1−ζ)μ]w(z)

pEψ,1

(
ζμ

[PC(ζ)−(1−ζ)μ]
zζ
)
∗ w′(z).

Consequently, N(z) bounded by Λ
μ . According to the fact N(z) = S(z) + I(z) +R(z),

we deduce that (S, I,R) are bounded in Ω. This means ensuring the biological feasibility of
the model. This boundedness result ensures that the model predicts realistic population
sizes and prevents unbounded growth. �

4.2. Nonnegativity of Solutions

Theorem 2. The SIR PCFD Model (1), with initial conditions (S(0) > 0, I(0) > 0, and
R(0) > 0), guarantees non-negative solutions for all time.

Proof. To biological relevance of our model, all state variables must remain non-negative.
We will mathematically justify this by showing that each state variable is strictly positive
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for all z ∈ [a, T]. This justification will be based on the analysis of the third equation in
model (1), presented below:

PC
a D

ζ,ψ,p
z,w R(z) =

[
α0 + (α1 − α0)

b
b + I

]
I− (μ + δ)R.

Then, we have
PC
a D

ζ,ψ,p
z,w R(z) ≥ −(μ + δ)R. (4)

Applying Laplace transform of PCFD [24] on both sides of (4), we have

L
[
w(z)PCa D

ζ,ψ,p
z,w R(z)

]
≥ −(μ + δ)L[w(z)R(z)](s).

Thus, we obtain

R(z) ≥ PC(ζ)w(a)R(0)
[PC(ζ)− (1− ζ)(μ + δ)]w(z)

pEψ,1

(
ζ(μ + δ)

[PC(ζ)− (1− ζ)(μ + δ)]
zζ

)
.

Since R(0) > 0 and 0 ≤p Eψ,1 ≤ 1, we determine that R(z) is positive for all z ∈ [a, T].
Using an analogous argument, we can show that S and I are also positive, thereby estab-
lishing the model’s biological feasibility. Consequently, the population compartments (S, I,
R) are guaranteed to remain non-negative, reflecting the biological reality that populations
cannot have negative sizes. �

4.3. Disease-Free Equilibrium Point (DFE)

In the context of a SIR model, an equilibrium point is a state where the system is not
changing. Mathematically, this means that the time derivatives of all the state variables are
equal to zero. In this case, we are looking for values of S, I, and R where:

• PC
a D

ζ,ψ,p
z,w S(z) = 0 (The rate of change of susceptible individuals is zero).

• PC
a D

ζ,ψ,p
z,w I(z) = 0 (The rate of change of infected individuals is zero).

• PC
a D

ζ,ψ,p
z,w R(z) = 0 (The rate of change of recovered individuals is zero).

Thus, we obtain⎧⎪⎪⎨⎪⎪⎩
Λ− 2βSI

N − μS+ δR = 0,
2βSI

N −
[
α0 + (α1 − α0)

b
b+I

]
I− (γ + μ)I = 0,[

α0 + (α1 − α0)
b

b+I

]
I− (μ + δ)R = 0.

By solving the above equilibrium equations, one can easily obtain the DFE point, �0,
for model (1) as follows:

�0 = (S(0), I(0),R(0)) =
(

Λ
μ

, 0, 0
)

.

4.4. Basic Reproduction Number

To derive the basic reproduction number, R0, we first consider the equations governing
the dynamics of the susceptible (S) and infected (I) compartments, which are given by:

PC
a D

ζ,ψ,p
z,w S(z) = Λ− 2βSI

N − μS+ δR,
PC
a D

ζ,ψ,p
z,w I(z) = 2βSI

N −
[
α0 + (α1 − α0)

b
b+I

]
I− (γ + μ)I.
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The Disease-Free Equilibrium (DFE) is �0 = (S = Λ/μ, I = 0,R = 0). We assume a
constant population size, N = S+ I+R, and that at equilibrium, the birth rate balances the
death rate, i.e., Λ ≈ μN. This system of equations can be expressed in a compact form as:

PC
a D

ζ,ψ,p
z,w

[
S(z)
I(z)

]
= F(z)−V(z),

where F(z) represents the rate of new infections and V(z) represents the rate of transfer
out of the infected population. These are defined as:

F(z) =

[
− 2βSI

N
2βSI

N

]
,

and

V(z) =

[
μS−Λ + δR[

α0 + (α1 − α0)
b

b+I

]
I+ (γ + μ)I

]
,

The Jacobian matrices of F(z) and V(z), evaluated at the DFE (�0= (S = Λ/μ , I = 0,
R = 0)), denoted by F and V , respectively, are:

F =

[
0 − 2βΛ

Nμ

0 2βΛ
Nμ

]
,V =

[
μ 0
0 α1 + γ + μ

]
.

Using the fact that R0 is the spectral radius of the next generation matrix FV−1, and
substituting Λ = μN, the basic reproduction number R0 for model (1) is given by

R0 =
2β

α1 + γ + μ
.

4.5. Stability Analysis

The stability of the Disease-Free Equilibrium (DFE) is critical in epidemiology. A locally
stable DFE prevents sustained epidemics, as pathogens diminish due to low reproductive
capacity. An unstable DFE risks outbreaks, even with minimal pathogen introduction.
Understanding DFE stability guides public health interventions, enabling targeted control
strategies to prevent disease spread.

Theorem 3. The DFE of the SIR model (1) exhibits local asymptotic stability for R0 < 1, whereas
values of R0 > 1 leads to instability in this equilibrium.

Proof. The model (1) is linearized at the no-disease equilibrium to examine its local stability.
This procedure leads to the Jacobian matrix, J(�0), which governs the dynamics of the
linearized model.

J[0] =

⎡⎢⎣−μ −2β 0
0 2β− (α1 + γ + μ) 0
0 α1 −μ

⎤⎥⎦.

The eigenvalues of the above matrix are λ1 = −μ (this eigenvalue has multiplicity 2)
and λ2 = 2β− (α1 + γ + μ). For the DFE to be locally asymptotically stable, all eigenvalues
of the Jacobian matrix evaluated at the equilibrium must have strictly negative real parts.
Since λ1 = −μ, where μ is a positive parameter (death rate), it is always negative. Therefore,
the stability is determined by the sign of λ2. The DFE is stable if λ2 < 0, that is: 2β −
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(α1 + γ + μ) < 0. This can be rearranged as 2β < (α1 + γ + μ). Dividing both sides by
(α1 + γ + μ), we obtain

2β

α1 + γ + μ
< 1.

This means that the DFE of the model (1) exhibits local asymptotic stability for R0 < 1.
If λ2 > 0, then the DFE is unstable. This corresponds to 2β − (α1 + γ + μ) > 0.

Which, following the same steps as above leads to 2β
α1+γ+μ > 1. Thus, the DFE is locally

asymptotically stable when R0 < 1, and unstable when R0 > 1. �

4.6. Sensitivity Analysis

This section is devoted to the application of sensitivity analysis of the basic reproduc-
tion number, R0 with the model parameters. The derived indices elucidate the significance
of individual parameters in the context of disease emergence and transmission processes.
Furthermore, this sensitivity analysis serves to gauge the model’s resilience to alterations
in parameter values. The following formula is used to ascertain the sensitivity indices:

SEN
R0
� =

�

R0

[
∂R0

∂�

]
.

Applying the above formula, we obtain the sensitivity indices of the parameters as
follows:

• SEN
R0
β = 1,

• SEN
R0
α1 = −0.3556,

• SEN
R0
γ = −0.1531,

• SEN
R0
μ = −0.6436.

The sensitivity analysis indicates that controlling the transmission rate β is essential
to mitigate disease spread, as the basic reproduction number (R0) exhibits the highest
sensitivity to this parameter. While increasing the infected rate (γ, α0, α1, α2) also helps
lower R0 by increasing the recovery rate, its impact is comparatively less pronounced. The
natural death rate (μ) also influence R0, though indirectly. Consequently, interventions that
directly target transmission remain the most effective for controlling the disease within the
model’s framework, followed by strategies that enhance recovery. Figure 2 presented the
sensitivity of R0 to each parameter in the model.

4.7. Scenario Analysis

Beyond the isolated impact of individual parameters on R0, investigating the interplay
between parameter pairs unlocks a more nuanced comprehension of the model’s com-
plex dynamics. This pairwise analysis reveals how synergistic effects and countervailing
influences between parameters jointly shape disease transmission, a phenomenon often
obscured when considering single-parameter variations alone. The 3D contour plots shown
in Figure 3 effectively visualize the responses of R0 across these multifaceted parameter
landscapes, thus illuminating the sensitivity of the basic reproduction number to changes
in joint parameters. In addition, Figure 4 shows the contour plots of R0 as combinations of
pairs of two parameters, illustrating the basic reproduction number.
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Figure 2. Sensitivity indices of SIR model parameters.

Figure 3. Contour 3D plots for illuminating the basic reproduction number R0 sensitivity to joint
parameter changes.
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Figure 4. Contour 2D plots for illuminating the basic reproduction number R0 sensitivity to joint
parameter changes.

4.8. Lipschitz Property

By Lemma 4 in [31], we can convert the PCFD model (1) as the following equivalent
integral equations: ⎡⎢⎣S(z)I(z)

R(z)

⎤⎥⎦ =
w(0)
w(z)

⎡⎢⎣S0

I0

R0

⎤⎥⎦+PC
0 I

ζ,ψ,p
z,w

⎡⎢⎣K1(z,S)
K2(z, I)
K3(z,R)

⎤⎥⎦, (5)

where
K1(z,S) = Λ− 2βSI

N − μS+ δR,

K2(z, I) = 2βSI
N −

[
α0 + (α1 − α0)

b
b+I

]
I− (γ + μ)I,

K3(z,R) =
[
α0 + (α1 − α0)

b
b+I

]
I− (μ + δ)R.

Theorem 4. Let S, I,R, Ŝ, Î, R̂ be continuous functions in L1[0, 1]. Define positive constants x1, x2

and x3 such that

‖ S ‖ = max
ı∈J

|S(ı)| < x1, ‖ I ‖ = max
ı∈J

|I(ı)| < x2, ‖ R ‖ = max
ı∈J

|R(ı)| < x3.

Then, the following kernels

K1(z,S) = Λ− 2βSI
N − μS+ δR,

K2(z, I) = 2βSI
N −

[
α0 + (α1 − α0)

b
b+I

]
I− (γ + μ)I,

K3(z,R) =
[
α0 + (α1 − α0)

b
b+I

]
I− (μ + δ)R,
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satisfy Lipschitz conditions with Lipschitz constant k = max3
i=1

{LKi

}
> 0, such that

LK1 =
(

2βx2
N + μ

)
,

LK2 =
(

2βx1
N +

[
α0 + (α1 − α0)

b
b+I

]
+ (γ + μ)

)
,

LK3 = (μ + δ).

Proof. For K1(z,S) = Λ− 2βSI
N − μS+ δR, let S, Ŝ ∈ L1[0, 1]. Thus,

‖ K1(z,S)−K1

(
z, Ŝ

)
‖ = ‖

(
Λ− 2βSI

N − μS+ δR
)
−
(

Λ− 2βŜI
N − μŜ+ δR

)
‖

≤ 2β‖I‖
N ‖

(
S− Ŝ

)
‖+ μ‖

(
S− Ŝ

)
‖

≤
(

2βx2
N + μ

)
‖ S1 − Ŝ1 ‖.

Put LK1 =
(

2βx2
N + μ

)
> 0. Thus, we get

‖ K1(z,S1)−K1

(
z, Ŝ1

)
‖ ≤ LK1‖ S1 − Ŝ1 ‖.

To further demonstrate the concept, we can obtain the following:

‖ K2(z,S2)−K2

(
z, Ŝ2

)
‖ ≤ LK2‖ S2 − Ŝ2 ‖,

and
‖ K3(z,R)−K3

(
z, R̂

)
‖ ≤ LK5‖ R− R̂ ‖.

Let
k =

3
max
i=1

{LKi

}
> 0.

Thus, the kernels Ki, i = 1, 2, 3 are Lipschitz continuous with a Lipschitz constant
k > 0. �

4.9. Existence of Solution via Recursive Sequences

In this section, we aim to prove the existence of a solution to the following model
using a recursive sequence approach. We will use the contraction mapping theorem to
show that the sequence converges to a unique solution. By (5) the solution of the model (1)
is given by⎡⎢⎣S(z)I(z)

R(z)

⎤⎥⎦ =
w(0)
w(z)

⎡⎢⎣S0

I0

R0

⎤⎥⎦+
1− ζ

PC(ζ)

⎡⎢⎣K1(z,S)
K2(z, I)
K3(z,R)

⎤⎥⎦+ ln p
ζ

PC(ζ)

RL

I
ψ
a,w

⎡⎢⎣K1(z,S)
K2(z, I)
K3(z,R)

⎤⎥⎦.

Let’s represent the given system in a compact operator form. Define:

X(z) =

⎡⎢⎣S(z)I(z)
R(z)

⎤⎥⎦, X0 =

⎡⎢⎣S0

I0

R0

⎤⎥⎦,

and

F(z, X(z)) =

⎡⎢⎣K1(z,S)
K2(z, I)
K3(z,R)

⎤⎥⎦.
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Thus, the original system can be written as:

X(z) =
w(0)
w(z)

X0 +
1− ζ

PC(ζ)
F(z, X(z)) + ln p

ζ

PC(ζ)

RL

I
ψ
a,wF(z, X(z)).

Define the operator

H(X(z)) =
w(0)
w(z)

X0 +
1− ζ

PC(ζ)
F(z, X(z)) + ln p

ζ

PC(ζ)

RL

I
ψ
a,wF(z, X(z)).

We define a recursive sequence of vector functions {Xn(z)}, n = 0, 1, 2, · · · as follows:

Xn+1(z) =
w(0)
w(z)

X0 +
w(0)
w(z)

X0 +
1− ζ

PC(ζ)
F(z, Xn(z)) + ln p

ζ

PC(ζ)

RL

I
ψ
a,wF(z, Xn(z)).

Theorem 5. Assume that w(z) �= 0 for all z in the considered interval [0, T] and the components of
F(z, X(z)) are continuous and bounded for all X and z in the interval [0, T]. Then, the model (1)
possesses a solution provided that:

k
[

1− ζ

|PC(ζ)| +
|ln(p)|ζ
|PC(ζ)|

Tψ

Γ(ψ + 1)

]
< 1,

where k is the Lipschitz constant defined in Theorem 4.

Proof. Let us define the operator H : C([0, T]) → C([0, T]) as follows

H(X(z)) =
w(0)
w(z)

X0 +
1− ζ

PC(ζ)
F(z, X(z)) + ln p

ζ

PC(ζ)

RL

I
ψ
a,wF(z, X(z)).

For all X, Y ∈ C([0, T]) and z ∈ [0, T], we have

‖ H(X)−H(Y) ‖≤ 1− ζ

PC(ζ)
‖ F(z, X(z))− F(z, Y(z)) ‖

+ ln p
ζ

PC(ζ)

RL

I
ψ
a,w‖ F(z, X(z))− F(z, Y(z)) ‖,

By Theorem 4, F(z, X(z)) satisfies the Lipschitz condition k = max3
i=1

{LKi

}
> 0. Thus,

we obtain that

‖ H(X)−H(Y) ‖≤ 1− ζ

PC(ζ)
k‖ X− Y ‖

+ ln p
ζ

PC(ζ)
k‖ X− Y ‖RLI

ψ
0,w(1)z

≤ k
[

1− ζ

|PC(ζ)| +
|ln(p)|ζ
|PC(ζ)|

Tψ

Γ(ψ + 1)

]
‖ X− Y ‖.

Thus, by the Banach fixed point theorem, we have that H is a contraction operator.
Since H is a contraction mapping, the sequence {Xn(z)} converges to a limit, which we
denote by X(z). This means that:

lim
n→∞

Xn(z) = X(z).
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And since Xn+1(z) = H(Xn(z)), taking limits as n → ∞ , and since H is a continuous
operator. We have that:

lim
n→∞

Xn+1(z) = lim
n→∞

H(Xn(z)) = H
(

lim
n→∞

Xn(z)
)

.

and
X(z) = H(X(z)).

That means the limit X(z) is a fixed point of the operator H. Therefore, X(z) satisfies:

X(z) =
w(0)
w(z)

X0 +
1− ζ

PC(ζ)
F(z, X(z)) + ln p

ζ

PC(ζ)

RL

I
ψ
a,wF(z, X(z)).

Thus, a recursive sequence of functions Xn(z) approaches the solution. This sequence
converges to a unique function X(z), which represents the solution to the given system,
according to the contraction mapping theorem. Therefore, a solution exists for the given
system. �

5. Numerical Scheme with Power Caputo Fractional Derivative

We will now introduce a numerical method, based on the two-step Lagrange interpola-
tion polynomial [32], to approximate the solution of model (1). This approach is chosen for
its ability to achieve a balance between computational efficiency and accuracy in approxi-
mating solutions to systems of ordinary differential equations. The two-step nature of the
method allows for the inclusion of previous solution values, improving the approximation
in each iteration, while the use of a Lagrange interpolation polynomial ensures that the
approximation fits the known solution points well. From (5), the solution of (1) is given by

S(z) =

⎧⎨⎩
w(a)
w(z)S0 +

1−ζ
|PC(ζ)|

(
Λ− 2βSI

N − μS+ δR
)

+ |ln(p)|ζ
|PC(ζ)|Γ(ψ)w(z)

∫ z
a (z− s)ψ−1w(s)

(
Λ− 2βSI

N − μS+ δR
)

ds,

I(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
w(a)
w(z) I0 +

1−ζ
|PC(ζ)|

(
2βSI

N −
[
α0 + (α1 − α0)

b
b+I

]
I− (γ + μ)I

)
+ |ln(p)|ζ
|PC(ζ)|Γ(ψ)w(z)

∫ z
a (z− s)ψ−1w(s)×(

2βSI
N −

[
α0 + (α1 − α0)

b
b+I

]
I− (γ + μ)I

)
ds,

R(z) =

⎧⎨⎩
w(0)
w(z) I0 +

1−ζ
|PC(ζ)|

([
α0 + (α1 − α0)

b
b+I

]
I+ γI− (μ + δ)R

)
+ |ln(p)|ζ
|PC(ζ)|Γ(ψ)w(z)

∫ z
a (z− s)ψ−1w(s)

([
α0 + (α1 − α0)

b
b+I

]
I− (μ + δ)R

)
.

Let zm = a + mh with m ∈ N and h are the discretization step. One has

S(zm+1) =

⎧⎨⎩
w(a)

w(zm)
S0 +

1−ζ
|PC(ζ)|

(
Λ− 2βSI

N − μS+ δR
)
(m)

+ |ln(p)|ζ
|PC(ζ)|Γ(ψ)w (zm)

∫ zm+1
a (zm+1 − s)ψ−1w(s)

(
Λ− 2βSI

N − μS+ δR
)

ds,

I(zm+1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
w(a)

w(zm)
I0 +

1−ζ
|PC(ζ)|

(
2βSI

N −
[
α0 + (α1 − α0)

b
b+I

]
I− (γ + μ)I

)
(m)

+ |ln(p)|ζ
|PC(ζ)|Γ(ψ)w (zm)

∫ zm+1
a (zm+1 − s)ψ−1w(s)×(

2βSI
N −

[
α0 + (α1 − α0)

b
b+I

]
I− (γ + μ)I

)
ds,

R(zm+1) =

⎧⎨⎩
w(0)

w(zm)
I0 +

1−ζ
|PC(ζ)|

([
α0 + (α1 − α0)

b
b+I

]
I− (μ + δ)R

)
(m)

+ |ln(p)|ζ
|PC(ζ)|Γ(ψ)w (zm)

∫ zm+1
a (zm+1 − s)ψ−1w(s)

([
α0 + (α1 − α0)

b
b+I

]
I− (μ + δ)R

)
ds,
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which yields

S(zm+1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
w(a)

w(zm)
S0 +

1−ζ
|PC(ζ)|

(
Λ− 2βSI

N − μS+ δR
)
(m)

+ |ln(p)|ζ
|PC(ζ)|Γ(ψ)w (zm) ∑m

l=0
∫ zl+1

zl
(zl+1 − s)ψ−1w(s)×(

Λ− 2βSI
N − μS+ δR

)
ds,

I(zm+1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
w(a)

w(zm)
I0 +

1−ζ
|PC(ζ)|

(
2βSI

N −
[
α0 + (α1 − α0)

b
b+I

]
I− (γ + μ)I

)
(m)

+ |ln(p)|ζ
|PC(ζ)|Γ(ψ)w (zm) ∑m

l=0
∫ zl+1

zl
(zl+1 − s)ψ−1w(s)×(

2βSI
N −

[
α0 + (α1 − α0)

b
b+I

]
I− (γ + μ)I

)
ds,

R(zm+1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
w(0)

w(zm)
I0 +

1−ζ
|PC(ζ)|

([
α0 + (α1 − α0)

b
b+I

]
I+ γI− (μ + δ)R

)
(m)

+ |ln(p)|ζ
|PC(ζ)|Γ(ψ)w (zm) ∑m

l=0
∫ zl+1

zl
(zl+1 − s)ψ−1w(s)×([

α0 + (α1 − α0)
b

b+I

]
I+ γI− (μ + δ)R

)
ds.

By Lagrange interpolation polynomial through the points (zl−1,S(zl−1), I(zl−1),
R(zl−1)) and (zl ,S(zl), I(zl),R(zl)), l = 1, 2, 3, · · · , m and h = zl−1 − zl , we obtain

S(zm+1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(a)
w(zm)

S0 +
1−ζ

|PC(ζ)|
(

Λ− 2βSI
N − μS+ δR

)
(m)

+ |ln(p)|ζ
|PC(ζ)|Γ(ψ)w (zm) ∑m

l=1

[
w(l−1)

(
Λ− 2βSI

N −μS+δR
)
(l−1)

h ×
∫ zl+1

zl
(zl+1 − s)ψ−1(zl − s)ds +

w(l)
(

Λ− 2βSI
N −μS+δR

)
(l)

h ×∫ zl+1
zl

(zl+1 − s)ψ−1(s− zl−1)ds
]
,

(6)

I(zm+1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(a)
w(zm)

I0 +
1−ζ

|PC(ζ)|
(

2βSI
N −

[
α0 + (α1 − α0)

b
b+I

]
I− (γ + μ)I

)
(m)

+ |ln(p)|ζ
|PC(ζ)|Γ(ψ)w (zm) ∑m

l=1

[
w(l−1)

(
2βSI

N −[α0+(α1−α0)
b

b+I ]I−(γ+μ)I
)
(l−1)

h ×
∫ zl+1

zl
(zl+1 − s)ψ−1(zl − s)ds +

w(l)
(

2βSI
N −[α0+(α1−α0)

b
b+I ]I−(γ+μ)I

)
(l)

h ×∫ zl+1
zl

(zl+1 − s)ψ−1(s− zl−1)ds
]

(7)

R(zm+1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

w(0)
w(zm)

I0 +
1−ζ

|PC(ζ)|
([

α0 + (α1 − α0)
b

b+I

]
I− (μ + δ)R

)
(m)

+ |ln(p)|ζ
|PC(ζ)|Γ(ψ)w (zm) ∑m

l=1

[
w(l−1)([α0+(α1−α0)

b
b+I ]I−(μ+δ)R)(l−1)

h ×∫ zl+1
zl

(zl+1 − s)ψ−1(zl − s)ds +
w(l)([α0+(α1−α0)

b
b+I ]I−(μ+δ)R)(l)

h ×∫ zl+1
zl

(zl+1 − s)ψ−1(s− zl−1)ds
]

(8)

Furthermore, we have

∫ zl+1

zl

(zm+1 − s)ψ−1(zl − s)ds =
hψ+1

ψ(ψ + 1)

[
(m− l)ψ(m− l + 1 + ψ)− (m− l + 1)ψ+1

]
, (9)

and

∫ zl+1

zl

(zm+1 − s)ψ−1(s− zl−1)ds =
hψ+1

ψ(ψ + 1)

[
(m− l + 1)ψ(m− l + 2 + ψ)

−(m− l)ψ(m− l + 2 + 2ψ)

]
. (10)
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Thus, by (9) and (10), the Equations (6)–(8) becomes as follows

S(zm+1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
w(a)

w(zm)
S0 +

1−ζ
|PC(ζ)|℘1(zm,S(zm))(m)

+ |ln(p)|hψ

|PC(ζ)|Γ(ψ+2)w (zm) ∑m
l=1

[
w(l − 1)℘1(zl−1,S(zl−1))Aψ

m,l

+w(l)℘1(zl ,S(zl))(l)Bψ
m,l

]
,

(11)

I(zm+1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
w(a)

w(zm)
I0 +

1−ζ
|PC(ζ)|℘2(zm, I(zm))

+ |ln(p)|hψ

|PC(ζ)|Γ(ψ+2)w (zm) ∑m
l=1

[
w(l − 1)℘2(zl−1, I(zl−1))Aψ

m,l

+w(l)℘2(zl , I(zl))(l)Bψ
m,l

] (12)

R(zm+1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
w(0)

w(zm)
I0 +

1−ζ
|PC(ζ)|℘3(zm,R(zm))

+ |ln(p)|hψ

|PC(ζ)|Γ(ψ+2)w (zm) ∑m
l=1

[
w(l − 1)℘3(zl−1,R(zl−1))Aψ

m,l

+w(l)℘3(zl ,R(zl))(l)Bψ
m,l

] (13)

where

℘1(z,S(z)) = Λ− 2βS(z)I(z)
N − μS(z) + δR(z),

℘2(z, I(z)) = 2βS(z)I(z)
N −

[
α0 + (α1 − α0)

b
b+I

]
I(z)− (γ + μ)I(z),

℘3(z,R(z)) =
[
α0 + (α1 − α0)

b
b+I

]
I(z)− (μ + δ)R(z),

Aψ
m,l = (m− l)ψ(m− l + 1 + ψ)− (m− l + 1)ψ+1,

Bψ
m,l = (m− l + 1)ψ(m− l + 2 + ψ)− (m− l)ψ(m− l + 2 + 2ψ).

6. SIR Model on COVID-19

A key strength of this model lies in its enhanced capabilities to simulate a range of
real-world infectious disease scenarios. Specifically, the model incorporates the δR term
(where δ represents the rate of immunity loss), thereby enabling the capture of diseases
where protection following infection is not lifelong, such as influenza. In such cases,
the model can effectively investigate the initial propagation of novel strains within a
susceptible population, and providing insights into the effectiveness of early intervention
strategies. Furthermore, the PCFD employs a flexible framework for capturing diverse
memory and non-local effects within disease dynamics according to its power parameter
p, and generalizes well-known fractional derivatives. Moreover, a density-dependent
recovery rate, represented mathematically by

[
α0 + (α1 − α0)

b
b+I

]
, accounts for the impact

of healthcare resource limitations, a feature particularly relevant for simulating outbreaks
where access to medical care significantly influences outcomes. In this section, we illustrate
the application and behavior of the SIR model using parameters representative of the
COVID-19 pandemic (Table 2) to provide a concrete real-world example and motivate the
use of this advanced fractional framework.

Here, we consider z ∈ [0, 1000], and the values of parameters as in Table 2 with initial
conditions (S0, I0,R0) = (90, 40, 30). The complete code of simulations is provided in a
GitHub repository via the link: https://github.com/Almalahi/COMPLETE-CODE-SIR-
MODEL (accessed on 29 March 2025).
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Table 2. Values of Model Parameters.

Parameter Value Units Ref.

Λ 1.75 Individual/Time [29]
β 0.01 (Individual · Time)−1 [33]
μ 0.005 Time−1 [29]
δ 0.04 Time−1 [34]

α0 0.2 Time−1 [29]
α1 0.21 Time−1 [23]
b 0.3 Individual [29]
γ 0.2 Time−1 [35]

By these values, with PCFD model (1), we have Figures 5–7 present a graphical
depiction of the S, I and R with different fractional order of the PCFD model (1).
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Figure 5. Graphical depiction of the Susceptible S, Infected I and Recovered R classes with p = 10,
ψ = 2 and ζ = 0.3, 0.35, 0.4, 0.45 of the power-law Caputo fractional model.

These visualizations offer a direct view into the dynamic interplay of the three epi-
demiological classes in different cases, illustrating their temporal evolution.
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Figure 6. Graphical depiction of the Susceptible S, Infected I and Recovered R classes with p = 100,
ψ = 2.5 and ζ = 0.8, 0.85, 0.9, 0.95 of the power-law Caputo fractional model.
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Figure 7. Graphical depiction of the Susceptible S, Infected I and Recovered R classes with p = 10,
ψ = 2.5 and ζ = 0.8, 0.85, 0.9, 0.95 of the power-law Caputo fractional model.
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7. Symmetric Cases of Model (1)

The fractional derivative employed within model (1) offers a high degree of gen-
eralization, encompassing several symmetric cases contingent upon the specific choices
of its parameters ζ, ψ, the fractional derivative’s power, p, and the weighting function,
w(z). In the ensuing subsections, we will explore and analyze simulations of these distinct
symmetric scenarios, for comparison, to highlight the flexibility of the PCFD and illustrate
the versatility and richness of the fractional model using the COVID-19 representative
parameter set.

SIR COVID-19 Model with Caputo–Fabrizio Fractional Approach

If w(z) = 1, p = e, ψ = 1. Then, the model (1) reduce to the Caputo–Fabrizio fractional
COVID-19 model given by⎧⎪⎪⎨⎪⎪⎩

PC
a D

ζ,1,e
z,1 S(z) = Λ− 2βSI

N − μS+ δR,
PC
a D

ζ,1,e
z,1 I(z) = 2βSI

N −
[
α0 + (α1 − α0)

b
b+I

]
I− (γ + μ)I,

PC
a D

ζ,1,e
z,1 R(z) =

[
α0 + (α1 − α0)

b
b+I

]
I− (μ + δ)R.

(14)

With the same parameter values in Table 2, the graphs of approximate solutions in
case of Caputo–Fabrizio model (14) are given as follows:

Figures 8 and 9 provide a detailed graphical representation of the classes S, I, and R,
with w(z) = 1, p = e, ψ = 1. in different fractional order of the Caputo–Fabrizio fractional
model (14).
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Figure 8. Graphical depiction of the Susceptible S, Infected I and Recovered R classes as simulated
by the Caputo–Fabrizio fractional model (14) with w(z) = 1, p = e, ψ = 1. and ζ = 0.8, 0.85, 0.9, 0.95.
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Figure 9. Graphical depiction of the Susceptible S, Infected I and Recovered R classes as simulated
by the Caputo–Fabrizio fractional model (14) with w(z) = 1, p = e, ψ = 1. and ζ = 0.3, 0.35, 0.4, 0.45.

SIR COVID-19 Model with Atangana–Baleanu Fractional Approach

If w(z) = 1, p = e, ζ = ψ. Then, the model (1) reduce to the Atangana–Baleanu
fractional COVID-19 model given by⎧⎪⎪⎨⎪⎪⎩

PC
a D

ζ,ζ,e
z,1 S(z) = Λ− 2βSI

N − μS+ δR,
PC
a D

ζ,ζ,e
z,1 I(z) = 2βSI

N −
[
α0 + (α1 − α0)

b
b+I

]
I− (γ + μ)I,

PC
a D

ζ,ζ,e
z,1 R(z) =

[
α0 + (α1 − α0)

b
b+I

]
I− (μ + δ)R.

(15)

The graphs of approximate solutions of Atangana–Baleanu fractional model (15) are
given as follows:

• Figure 10 provide a detailed graphical depiction of S, I, and R populations as simu-
lated by the Atangana–Baleanu fractional model (15) with w(z) = 1, p = e, ζ = ψ and
ζ = 0.3, 0.35, 0.4, 0.45.

SIR COVID-19 Model with Weighted Atangana–Baleanu Fractional Approach

If p = e, ζ = ψ. Then, the model (1) reduce to the weighted Atangana–Baleanu
fractional model given by⎧⎪⎪⎨⎪⎪⎩

PC
a D

ζ,ζ,e
z,w S(z) = Λ− 2βSI

N − μS+ δR,
PC
a D

ζ,ζ,e
z,w I(z) = 2βSI

N −
[
α0 + (α1 − α0)

b
b+I

]
I− (γ + μ)I,

PC
a D

ζ,ζ,e
z,w R(z) =

[
α0 + (α1 − α0)

b
b+I

]
I− (μ + δ)R.

(16)

The graphs of approximate solutions of weighted Atangana–Baleanu fractional model
(16) are given as follows:
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• Figures 11 and 12 provide a detailed graphical depiction of S, I, and R populations as
simulated by the weighted Atangana–Baleanu fractional model (16) with w(z) = z+ 1,
p = e, ζ = ψ with different fractional order.
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Figure 10. Graphical depiction of the Susceptible S, Infected I and Recovered R classes as simulated
by the Atangana–Baleanu fractional model (15) with w(z) = 1, p = e, ζ = ψ and ζ = 0.3, 0.35, 0.4, 0.45.

SIR COVID-19 Model with Weighted Generalized Hattaf Fractional Approach

If p = e. Then, the model (1) reduce to the weighted generalized Hattaf fractional
model given by⎧⎪⎪⎨⎪⎪⎩

PC
a D

ζ,ψ,e
z,w S(z) = Λ− 2βSI

N − μS+ δR,
PC
a D

ζ,ψ,e
z,w I(z) = 2βSI

N −
[
α0 + (α1 − α0)

b
b+I

]
I− (γ + μ)I,

PC
a D

ζ,ψ,e
z,w R(z) =

[
α0 + (α1 − α0)

b
b+I

]
I− (μ + δ)R.

(17)

The graphs of approximate solutions of weighted generalized Hattaf fractional model
(17) are given as follows:

Figures 13 and 14 provide a detailed graphical depiction of S, I, and R classes as
simulated by the weighted generalized Hattaf fractional model (17) with w(z) = z+ 1, p = e
with different fractional order.
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Figure 11. Graphical depiction of the Susceptible S, Infected I and Recovered R classes as simulated
by the weighted Atangana–Baleanu fractional model (16) with w(z) = z + 1, p = e, ζ = ψ and
ζ = 0.8, 0.85, 0.9, 0.95.
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Figure 12. Graphical depiction of the Susceptible S, Infected I, and Recovered R classes as simulated
by the weighted Atangana–Baleanu fractional model (16) with p = e, ζ = ψ.
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Figure 13. Graphical depiction of the Susceptible S, Infected I and Recovered R classes as simulated
by the weighted generalized Hattaf fractional model (17) with w(z) = z + 1, p = e and and ζ =

0.8, 0.85, 0.9, 0.95.
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Figure 14. Graphical depiction of the Susceptible S, Infected I and Recovered R classes as simulated
by the weighted generalized Hattaf fractional model (17) with w(z) = z + 1, p = e and and ζ =
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Tables 3–7 address the comparison of fractional models and the standard integer-order
SIR model against the “Actual COVID-19 Trend” characteristics.

Table 3. Comparative Evaluation Between Classical and power Fractional SIR Models vs. Actual
COVID-19 Data (Duration for ζ = 0.85 adjusted based on visual inspection of Figures 6 and 7).

Model Type
Peak Inf. Time

(days)
Max Infected
Individuals

Epidemic Duration
(days)

Alignment with
Real Data

Integer-order SIR [23,29] 35 48 ∼90 Moderate
Fractional SIR (ζ = 0.85) 50 40 ∼150 High
Actual COVID-19 Trend [36] 50–55 ∼39–42 ∼130–140 —

Table 4. Caputo–Fabrizio SIR Model (w(z) = 1, p = e, ψ = 1.) vs. Actual COVID-19 Data.

Model Type
Peak Inf. Time
(days, approx.)

Max Infected
(Imax, approx.)

Epidemic Duration
(days, approx.)

Alignment with
Real Data

Integer-order SIR [23,29] 35 48 ∼90 Moderate
Fractional SIR
(Caputo–Fabrizio, ζ = 0.85)
Figures 8 and 9

∼40 ∼39 ∼130 High

Actual COVID-19 Trend [36] 50–55 ∼39–42 ∼130–140 —

Table 5. Atangana–Baleanu SIR Model (w(z) = 1, p = e, ζ = ψ.) vs. Actual COVID-19 Data.

Model Type
Peak Inf. Time
(days, approx.)

Max Infected
(Imax, approx.)

Epidemic Duration
(days, approx.)

Alignment with
Real Data

Integer-order SIR [23,29] 35 48 ∼90 Moderate
Fractional SIR
(Atangana–Baleanu, ζ = 0.45)
Figure 10

∼35 ∼38 ∼250 Low to Moderate

Actual COVID-19 Trend [36] 50–55 ∼39–42 ∼130–140 —

Table 6. Weighted Atangana–Baleanu SIR Model (w(z) = z + 1, p = e, ζ = ψ) vs. Actual COVID-19
Data.

Model Type
Peak Inf. Time
(days, approx.)

Max Infected
(Imax, approx.)

Epidemic Duration
(days, approx.)

Alignment with
Real Data

Integer-order SIR [23,29] 35 48 ∼90 Moderate
Fractional SIR (Weighted AB,
ζ = 0.80) Figures 11 and 12 ∼22 ∼40 ∼110 Low

Fractional SIR (Weighted AB,
ζ = 0.45) Figures 11 and 12 ∼45 ∼30 ∼250 Low

Actual COVID-19 Trend [36] 50–55 ∼39–42 ∼130–140 —

Table 7. Weighted Generalized Hattaf SIR Model (w(z) = z + 1, p = e) vs. Actual COVID-19 Data.

Model Type
Peak Inf. Time
(days, approx.)

Max Infected
(Imax, approx.)

Epidemic Duration
(days, approx.)

Alignment with
Real Data

Integer-order SIR [23,29] 35 48 ∼90 Moderate
Fractional SIR (Weighted Hattaf,
ζ = 0.95) Figures 13 and 14 ∼50 ∼40 ∼130 High

Actual COVID-19 Trend [36] 50–55 ∼39–42 ∼130–140 —
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8. Discussion and Biological Interpretation

This study introduced a novel SIR model incorporating a generalized PCFD and
applied it using parameters representative of the COVID-19 pandemic (Table 2) to provide
a concrete real-world example and illustrate the potential of this advanced fractional frame-
work. The simulation results, presented in Figures 5–14 and summarized comparatively
in Tables 3–7, offer significant insights into how fractional calculus, particularly the flexi-
ble PCFD approach, can capture diverse epidemic dynamics. This section discusses the
biological interpretation of these findings, evaluating the performance of different frac-
tional derivatives against the standard integer-order model and benchmark characteristics
derived from actual COVID-19 trends, thereby addressing the need to demonstrate the
model’s relevance and potential advantages through illustrative simulations.

Our analysis reveals that the choice of fractional derivative and its associated parame-
ters (ζ, p, ψ, w(z)) profoundly influences the predicted epidemic trajectory, even when using
the same underlying parameter set (Table 2). This is clearly demonstrated in Tables 4–7,
where different symmetric cases of the PCFD yield markedly different alignments with the
benchmark COVID-19 trend. This highlights the importance of selecting an appropriate
modeling framework and tuning its parameters carefully for specific applications. The
fractional order, ζ, is particularly influential, primarily modulating the “memory” embed-
ded in the system—how strongly past events influence present dynamics. The ability to
adjust this memory effect via ζ is key to potentially achieving improved alignment with
real-world data. For instance, compared to the baseline integer-order model which showed
only moderate alignment (Tables 4–7), specific fractional models like Caputo–Fabrizio
(ζ = 0.85, Table 4) and Weighted Hattaf (ζ = 0.95, Table 7) demonstrated high alignment,
successfully capturing the peak timing, magnitude, and duration characteristics of the
benchmark trend much more closely. This improved fit, as summarized in the overall
comparison (Table 3), suggests that the memory effects implicit in these specific fractional
orders better represent the underlying dynamics of the illustrative COVID-19 scenario than
the standard derivative. Conversely, other fractional derivatives like Atangana–Baleanu
(Table 5) and Weighted Atangana–Baleanu (Table 6) showed low alignment for the tested
parameters, emphasizing that simply using any fractional derivative does not guarantee
superiority.

The PCFD model, by its generalized nature encompassing these various forms, allows
for tuning these elements, offering enhanced flexibility to potentially match specific disease
characteristics more accurately than restrictive models. We now examine the behavior of
each population compartment, interpreting the simulation results (Figures 5–14) in light of
the comparative evaluation Tables:

• Susceptible Population (S): As expected, S initially declines in all simulations. How-
ever, the rate of decline and subsequent recovery or stabilization varies significantly,
impacting the overall epidemic duration and alignment score. Models achieving
high alignment (Tables 4 and 7) exhibit S dynamics consistent with the benchmark
epidemic duration (130–140 days), showing significant depletion by the peak infection
time (e.g., S ≈ 220 for CF, S ≈ 200 for WGH at peak) and partial recovery towards the
end (S ≈ 200 for CF, S ≈ 180 for WGH). In contrast, models with lower alignment, such
as Atangana–Baleanu (Table 5), show dynamics (e.g., S ≈ 150 at end) reflecting the
much longer predicted epidemic duration (∼250 days). The diversity in S-dynamics
across Figures 5–14 illustrates the PCFD framework’s capacity to represent varied
scenarios, including those with potentially faster (e.g., Figure 11, WAB) or slower (e.g.,
Figure 10, AB) susceptibility changes compared to the benchmark.

• Infected Population (I): The dynamics of the I compartment are central to the com-
parative evaluation. The benchmark trend showed a peak around 50–55 days with
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a relative magnitude of ∼39–42 individuals. The integer-order model predicted
an earlier (35 days) and higher (48 individuals) peak (Tables 4–7). Significantly,
the Caputo–Fabrizio (ζ = 0.85, Table 4) and Weighted Hattaf (ζ = 0.95, Table 7)
models closely matched the benchmark peak time (∼40/∼50 days) and magnitude
(∼39/∼40 individuals). This successful replication highlights the potential of these
fractional approaches (summarized in Table 3). In contrast, the Atangana–Baleanu
model (Table 5) predicted an early peak (∼35 days), and the Weighted Atangana–
Baleanu model (Table 6) predicted either a very early peak (∼22 days for ζ = 0.80)
or a lower peak magnitude (∼30 for ζ = 0.45), both failing to align well with the
benchmark I curve characteristics. The PCFD’s ability to generalize allows it, in
principle, to capture dynamics ranging from the well-aligned cases (like WGH) to the
less aligned ones (like AB), depending on the chosen parameters (p, ψ, w(z), ζ). The
modulation of peak characteristics via the fractional definition, combined with the
density-dependent recovery term [30], is crucial for realistic simulation.

• Recovered Population (R): The accumulation of the R population reflects the pro-
gression towards the end of the epidemic wave. In models with high alignment
(Tables 4 and 7), the R curve rises steadily and approaches its plateau around the
benchmark duration of 130–140 days (reaching R ≈ 160 for CF, R ≈ 180 for WGH).
This contrasts sharply with models showing poor duration alignment, like Atangana–
Baleanu (Table 5), where the R population continues to rise significantly beyond
140 days, reaching R ≈ 210 only around 250 days. The diverse shapes of the R curves
in Figures 5–14 again showcase the flexibility conferred by the fractional derivative
choice, influencing factors like apparent recovery speed and the final proportion
recovered within a given timeframe, relevant to understanding immunity accumula-
tion [33].

In conclusion, this section explicitly addressed the need for demonstrating the real-
world relevance and motivation of the proposed PCFD SIR model through comparative
evaluation (Table 3). By applying the model using COVID-19 representative parame-
ters (Table 2) and comparing the outcomes against a benchmark trend (Tables 4–7), we
have shown that specific fractional derivatives generalized by the PCFD (namely Caputo–
Fabrizio and Weighted Hattaf under the tested conditions) can offer superior alignment
compared to the standard integer-order model. The primary motivation for using the
generalized PCFD framework lies in its inherent flexibility to capture a wider spectrum
of dynamics—particularly varying memory effects influencing transmission, peak charac-
teristics, and recovery patterns—than is possible with standard integer-order models or
single fixed fractional derivatives. The results clearly indicate that the choice of fractional
derivative significantly impacts predicted epidemic dynamics, and careful selection or
fitting is crucial. The comparative tables strongly suggest that the PCFD approach offers a
valuable and adaptable tool for exploring.

9. Conclusions

This study introduced and analyzed a novel fractional Susceptible-Infected-Recovered
(SIR) model incorporating PCFD and a density-dependent recovery rate reflecting health-
care capacity constraints. We proved solutions’ boundedness and positivity, analysed the
stability of the disease-free equilibrium, derived an explicit formula for the basic repro-
duction number (R0), and conducted a sensitivity analysis. The analysis confirms the
biological plausibility of the model and reveals the dominant influence of the transmis-
sion rate (β) on R0. Numerical simulations vividly demonstrate the significant impact
of the fractional order (ζ) on crucial epidemic characteristics, such as peak timing and
severity. This highlights a core strength and challenge of fractional modeling: the choice of
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derivative and its associated parameters—the fractional order ζ, the power parameters p
and ψ, and the weighting function w(z)—collectively determine the type and strength of
memory embedded within the model. These choices profoundly influence predicted epi-
demic dynamics in simulation, modulating how past events shape current infection rates,
recovery processes, and mortality, thereby substantially altering projections of epidemic
spread, peak characteristics, and overall duration. For instance, lower fractional orders
generally emphasize longer-term historical dynamics, while higher orders prioritize more
recent events. The PCFD framework’s generality, encompassing specific derivatives like
Caputo–Fabrizio, Atangana–Baleanu, and generalized Hattaf (including weighted variants)
as special cases, offers significant flexibility. However, this underscores the critical impor-
tance of selecting or fitting these fractional parameters appropriately for specific disease
contexts, as different choices lead to distinct predictions in model outputs. Furthermore,
the model’s inclusion of detailed recovery pathways (both dependent on and independent
of healthcare intervention) and an infection-induced death rate enhances its realism in rep-
resenting diverse disease outcomes and the impact of healthcare systems. The comparison
Tables 3–7 demonstrates that models incorporating fractional derivatives—particularly the
Caputo–Fabrizio (CF) and weighted generalized Hattaf (WGH) cases—yield predictions
that are more consistent with observed data in terms of peak infection timing and total
case count. The advantage of fractional-order derivatives over classical models lies in their
inherent ability to capture memory and hereditary properties of the infection dynamics.
This allows the model to account for the influence of historical infection rates on current
behavior—something integer-order models fundamentally lack. As seen in our simulations
and comparative analysis, fractional models adjust more effectively to real-world outbreak
patterns, thereby offering superior descriptive and predictive power. One of the unique
strengths of our approach is the use of the Power Caputo Fractional Derivative (PCFD),
which serves as a unifying operator encompassing various well-known fractional deriva-
tives as special cases. This flexibility not only provides a broader mathematical foundation
but also allows the model to be calibrated based on specific memory kernels suited to
different types of epidemics. Such generality enhances the model’s adaptability across a
spectrum of diseases with varying temporal characteristics.. Future work will focus on
extending this model to incorporate spatial dynamics and age-structured populations, as
well as calibrating and validating the model against specific real-world epidemiological
time-series data, aiming to further enhance its utility for detailed epidemic forecasting
and control.
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Abstract: The purpose of this paper is to introduce the fractional Pell numbers, together
with several properties, via a Grünwald–Letnikov fractional operator of orders q ∈ (0, 1)
and q ∈ (1, 2). This paper also explores the fractional Pell–Lucas numbers and their prop-
erties. Due to the long-term memory property, fractional Pell sequences and fractional
Pell–Lucas sequences present potential applications in modeling and computation. The
closed form is deduced, and the numerical schemes are determined. The fractional charac-
teristic equation is introduced, and it is shown that its solutions include a fractional silver
ratio depending on the fractional order. In addition, the tiling problem and the concept of
the fractional silver spiral are considered. A MATLAB program for applying the use of the
fractional silver ratio is presented.

Keywords: Grünwald–Letnikov fractional operator; fractional Pell numbers; fractional
Pell–Lucas numbers; fractional characteristic equation; fractional silver ratio

1. Introduction

The Pell numbers are named after English mathematician John Pell (1611–1685). De-
tails about Pell can be found in, e.g., [1–3], while some properties can be found in [4].
Pell numbers may be calculated by means of a recurrence relation similar to that for the
Fibonacci numbers. Pell–Lucas numbers, or companion Pell numbers, are defined similarly
to the Pell numbers by recurrence relation, the difference consisting of the initial condition.

Background on fractional calculus and fractional differences can be found in, e.g., [5–8],
while an appropriate bibliography for the fractional q-calculus is provided in [9].

This paper continues the work started in [10], where the Fibonacci’s numbers of
fractional order were introduced and analyzed.

The Fibonacci numbers are the most famous example of a linear recurrence relation.
Both the Fibonacci and Pell sequences are interesting recursively defined sequences, but
they differ significantly in their prominence and application across different fields. So,
compared with Pell sequences that arise in number theory, particularly in Pell’s equation
x2 − 2y2 = 1, or continuous fractions of square roots, Fibonacci sequences have far wider
and deeper mathematical exposure (e.g., in number theory, combinatorics, algebra, and
geometry). Also, in computer science, Fibonacci’s numbers are common in algorithm
design and data structures and used in teaching recursion, dynamic programming, and
time complexity, while Pell’s numbers might be used only in niche recurrence problems
compared to Fibonacci’s numbers. These sequences serve as benchmarks for solving re-
currence relations (e.g., via characteristic equations). They illustrate the impact of initial
conditions and coefficients on closed-form solutions. However, in domains like number the-
ory, continuous fractions, cryptography, algebraic number theory, and theoretical physics,

Fractal Fract. 2025, 9, 416 https://doi.org/10.3390/fractalfract9070416
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Fibonacci sequences are more widespread. Fractional Pell sequences serve as recursive
structures for developing fractional difference methods with better accuracy in modeling
anomalous dynamics. They can help to generate generalized orthogonal polynomials for
spectral methods, which are helpful in numerical PDE solvers. Fractional Pell sequences
possess long-term memory due to fractional-order recursions. So, they can be applied in
viscoelastic materials, anomalous diffusion, fractional-order delay systems, wave propa-
gation in fractal media, biological growth and branching processes, as well as in neural
networks, viscoelastic materials, epidemiology, and finance. These sequences can also
solve fractional dynamic equations on time scales, giving rise to new special functions
and stability behaviors. Introducing fractional versions of Fibonacci and Pell numbers
enables new analytical tools and models in discrete fractional calculus. However, their
usefulness would depend on whether they provide meaningful insights or solve problems
that classical discrete sequences cannot.

Some of the properties of Pell’s numbers have been shown to be demonstrable by
the fractional approach, such as the property that the silver ratio can be expressed as
the ratio of two consecutive Pell numbers, the deduction of the characteristic equation
generating the fractional silver ratio, or the deduction of the closed (explicit) form of
fractional Pell numbers. Similarly to the fractional golden ratio determined via the fractional
Fibonacci numbers, where the fractional golden spiral is used to cover the tiling with
fractional Fibonacci numbers, the fractional Pell numbers are used to generate the fractional
silver spiral covering a square tiling. While previous studies [11,12] showed that the
generalization of discrete systems via a fractional approach breaks the symmetry, in this
article, it is shown that the symmetry is not destroyed by the use of a silver ratio or golden
ratio of fractional order.

Among the various definitions for fractional differences, the most widely used are
the Grünwald–Letnikov, the Riemann–Liouville, and the Caputo definitions. Among the
three definitions, the Grünwald–Letnikov definition, which stems from the limitation
of integer-order difference, plays an outstanding role in numerical calculation. It also
provides the discrete approximation of a fractional derivative. Moreover, the definitions for
fractional sum and differences can be expressed in a unified manner. The Caputo approach
is equivalent to the Grünwald–Letnikov approach in the case of homogeneous initial
conditions. However, in the case of inhomogeneous initial conditions, both approaches are
not the same (in the context of fractional sequences and their applications; see, e.g., [13–19]).

This paper is structured as follows: Section 2 presents the utilized notions in the paper;
Section 3 introduces the fractional Pell numbers with the closed explicit form, the numerical
scheme, the fractional silver ratio, and some related properties; Section 4 deals with the
fractional Pell–Lucas numbers, explicit form, and numerical scheme; Section 5 concludes
the manuscript; and Appendix A presents a MATLAB (https://www.mathworks.com/
products/matlab.html, accessed on 21 June 2025) script generating a pinecone.

2. Preliminaries

We shall use the following fundamentals of discrete fractional calculus throughout the
article. For any a ∈ R, denote by Na = {a, a + 1, a + 2, . . .}.
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Definition 1 ([20]). The Pell numbers are defined by the recurrence relation

P(0) = 0, P(1) = 1, (1)

P(n + 2) = P(n) + 2P(n + 1), n ∈ N0. (2)

The first terms are

0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, . . .

Definition 2 ([20]). The Pell–Lucas numbers are defined by the recurrence relation

Q(0) = 2, Q(1) = 2, (3)

Q(n + 2) = Q(n) + 2Q(n + 1), n ∈ N0, (4)

with the first terms

2, 2, 6, 14, 34, 82, 198, 478, 1154, 2786, 6726, 16238, 39202, . . .

Definition 3 ([21]). Let u : Na → R. The first-order nabla difference of u is defined by

∇u(n) = u(n)− u(n− 1), n ∈ Na+1,

and the second-order nabla difference of u is defined by

∇2u(n) = u(n)− 2u(n− 1) + u(n− 2), n ∈ Na+2.

Definition 4 ([7]). The Euler gamma function is defined by

Γ(z) =
∫ ∞

0
e−ssz−1ds, �(z) > 0.

Using the reduction formula

Γ(z + 1) = zΓ(z), �(z) > 0,

the Euler gamma function can also be extended to the half-plane �(z) ≤ 0, except for
z ∈ {. . . ,−2,−1, 0}.

Definition 5 ([22]). Let u : Na → R and ν ∈ R. The νth Grünwald–Letnikov fractional
difference/sum of u based on a is given by

∇ν
au(n) =

1
Γ(−ν)

n

∑
s=a

Γ(n− s− ν)

Γ(n− s + 1)
u(s), n ∈ Na.

3. Fractional Pell Sequence

A two-dimensional system of linear difference equations that describes (2) is(
P(n + 2)
P(n + 1)

)
=

(
2 1
1 0

)(
P(n + 1)

P(n)

)
, n ∈ N0.

Then, (
∇P(n + 2)
∇P(n + 1)

)
=

(
1 1
1 −1

)(
P(n + 1)

P(n)

)
, n ∈ N0.
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Consequently, we have the following initial value problem

∇P̄(n) = AP̄(n− 1), n ∈ N1, (5)

P̄(0) = P̄0, (6)

associated with the Pell numbers. Here,

P̄(n) =

(
P(n + 1)

P(n)

)
,

A =

(
1 1
1 −1

)
,

P̄0 =

(
P(1)
P(0)

)
=

(
1
0

)
.

Now, for 0 < q < 1, we consider the qth-order difference equation

∇q
0 x̄(n) = Ax̄(n− 1), n ∈ N1, (7)

together with the initial condition

x̄(0) =

(
1
0

)
, (8)

analogous to (5) and (6). Here,

x̄(n) =

(
x(n + 1)

x(n)

)
, A =

(
1 1
1 −1

)
.

3.1. The Solution of the Initial Value Problem (7) and (8)

Theorem 1. The unique solution of (7) and (8) is given by

x̄(n) =
n

∑
k=0

Ak Γ(n− k + kq + q)
Γ(n− k + 1)Γ(kq + q)

x̄(0), n ∈ N0. (9)

Proof. Denote by

u(n) =
n

∑
k=0

Ak Γ(n− k + kq + q)
Γ(n− k + 1)Γ(kq + q)

, n ∈ N0.

First, we show that u satisfies the fractional difference equation

∇q
0u(n) = Au(n− 1), n ∈ N1. (10)
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To see this, for n ∈ N1, consider

∇q
0u(n) =

1
Γ(−q)

n

∑
s=0

Γ(n− s− q)
Γ(n− s + 1)

u(s) (By Definition 5)

=
1

Γ(−q)

n

∑
s=0

Γ(n− s− q)
Γ(n− s + 1)

[
s

∑
k=0

Ak Γ(s− k + kq + q)
Γ(s− k + 1)Γ(kq + q)

]

=
n

∑
k=0

Ak

[
n

∑
s=k

Γ(n− s− q)
Γ(n− s + 1)Γ(−q)

Γ(s− k + kq + q)
Γ(s− k + 1)Γ(kq + q)

]

=
n

∑
k=0

Ak Γ(n− k + kq)
Γ(n− k + 1)Γ(kq)

=
n

∑
k=1

Ak Γ(n− k + kq)
Γ(n− k + 1)Γ(kq)

= A
n−1

∑
k=0

Ak Γ(n− 1− k + kq + q)
Γ(n− 1− k + 1)Γ(kq + q)

= Au(n− 1),

implying that (10) holds. Therefore, any solution of (7) is of the form

x̄(n) = u(n)c, n ∈ N0,

where c is any constant vector. Since u(0) = I, we obtain c = x̄(0). Thus, the unique
solution of the initial value problem (7) and (8) is given by (9).

3.2. Closed-Form Expression of Fractional Pell Sequence

The following result is the generalization of Binet’s formula for the fractional
Pell numbers.

Theorem 2. The closed-form expression of the fractional Pell sequence is given by

x(n) =
1

2ϕ

n

∑
k=0

[
ϕk − (−ϕ)k

] Γ(n− k + kq + q)
Γ(n− k + 1)Γ(kq + q)

, n ∈ N0.

Here, ϕ =
√

2.

Proof. The eigenvalues of A are ϕ and −ϕ. The corresponding eigenvectors are

(
1

ϕ− 1

)

and

(
1

−ϕ− 1

)
, respectively. Now, we diagonalize the matrix A through the use of

its eigendecomposition:
A = SΩS−1,

and
Ak = SΩkS−1, k = 1, 2, · · · , n,

where

Ω =

(
ϕ 0
0 −ϕ

)
, S =

(
1 1

ϕ− 1 −ϕ− 1

)
.
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Consequently, from (9), we have

x̄(n) =
n

∑
k=0

[
SΩkS−1 x̄(0)

] Γ(n− k + kq + q)
Γ(n− k + 1)Γ(kq + q)

, n ∈ N0.

For k = 0, 1, · · · , n, consider

SΩkS−1 =

(
1 1

ϕ− 1 −ϕ− 1

)(
ϕ 0
0 −ϕ

)k(
1 1

ϕ− 1 −ϕ− 1

)−1

= − 1
2ϕ

(
1 1

ϕ− 1 −ϕ− 1

)(
ϕk 0
0 (−ϕ)k

)(
−ϕ− 1 −1
−ϕ + 1 1

)
.

Since x̄(n) =

(
x(n + 1)

x(n)

)
, the closed form, which is an explicit expression for the nth

element in the fractional Pell sequence, is given by

x(n) =
1

2ϕ

n

∑
k=0

[
ϕk − (−ϕ)k

] Γ(n− k + kq + q)
Γ(n− k + 1)Γ(kq + q)

,

for n ∈ N0.

Remark 1. For q = 1, we obtain the expression of the closed integer-order (IO) form for the nth
element in Pell sequences (1) and (2) as follows:

x(n) =
1

2ϕ

n

∑
k=0

[
ϕk − (−ϕ)k

] Γ(n + 1)
Γ(n− k + 1)Γ(k + 1)

=
1

2ϕ

n

∑
k=0

(
n
k

)
ϕk − 1

2ϕ

n

∑
k=0

(
n
k

)
(−ϕ)k

=
1

2ϕ
(1 + ϕ)n − 1

2ϕ
(1− ϕ)n

=
1

2
√

2

[(
1 +

√
2
)n −

(
1−

√
2
)n]

,

for n ∈ N0.

Theorem 3. x(n) > 0 for all n ∈ N1.

Proof. Clearly, x(1) = 1 > 0. From (7), we have

∇q
0x(n + 1) = x(n) + x(n− 1), n ∈ N1. (11)

Expanding the left-hand side of (11) using Definition 5 and rearranging the terms, we get

x(n + 1) = x(n) + x(n− 1)− 1
Γ(−q)

n

∑
j=0

Γ(n− j− q + 1)
Γ(n− j + 2)

x(j)

= x(n) + x(n− 1) +
q

Γ(1− q)

n

∑
j=0

Γ(n− j− q + 1)
Γ(n− j + 2)

x(j),

for n ∈ N1. Since Γ(1− q) > 0, Γ(n− j− q + 1) > 0 and Γ(n− j + 2) > 0 for all 0 ≤ j ≤ n
and n ∈ N1, it successively follows that x(n + 1) > 0 for all n ∈ N1.

124



Fractal Fract. 2025, 9, 416

3.3. Numerical Scheme for the Fractional Pell Sequence

To obtain the numerical integral for the fractional Pell sequence, one rewrites (2) in the
normal form, one replaces the classical ∇ difference operator with the Grünwald–Letnikov
fractional difference operator, one expands the Grünwald–Letnikov fractional difference
operator, and, finally, one rearranges the terms to express x(n).

Using Definition 3, (2) can be rewritten as

∇2P(n) = f (P(n− 1), P(n− 2)), n ∈ N2, (12)

where
f (P(n− 1), P(n− 2)) = 2P(n− 2), n ∈ N2.

Now, for 1 < q < 2, we consider the qth-order difference equation

∇q
0x(n) = f (x(n− 1), x(n− 2)), n ∈ N2, (13)

together with the initial condition

x(0) = 0, x(1) = 1,

analogous to (1)–(12).

Theorem 4. The numerical scheme for the fractional Pell sequence is given by

x(n) = qx(n− 1) +
[

2− q(q− 1)
2

]
x(n− 2)

−
n−3

∑
j=0

Γ(n− j− q)
Γ(n− j + 1)Γ(−q)

x(j), n ∈ N2. (14)

Proof. From Definition 5, we have

∇q
0x(n) =

n

∑
j=0

Γ(n− j− q)
Γ(n− j + 1)Γ(−q)

x(j)

= x(n)− qx(n− 1) +
q(q− 1)

2
x(n− 2) +

n−3

∑
j=0

Γ(n− j− q)
Γ(n− j + 1)Γ(−q)

x(j). (15)

Using (15) in (13) and rearranging the terms, we obtain

x(n) = f (x(n− 1), x(n− 2)) + qx(n− 1)− q(q− 1)
2

x(n− 2)

−
n−3

∑
j=0

Γ(n− j− q)
Γ(n− j + 1)Γ(−q)

x(j), n ∈ N2.

That is,

x(n) = qx(n− 1) +
[

2− q(q− 1)
2

]
x(n− 2)

−
n−3

∑
j=0

Γ(n− j− q)
Γ(n− j + 1)Γ(−q)

x(j), n ∈ N2.

125



Fractal Fract. 2025, 9, 416

In Table 1, the fractional Pell sequences are presented for q = 1.99, q = 1.995, q = 1.999,
and q = 2 (IO), respectively.

Table 1. Fractional Pell sequences for q = 1.99, q = 1.995, q = 1.999, and IO (q = 2), respectively.

# q = 1.99 q = 1.995 q = 1.999 IO

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
1

1.99000000000
4.97505000000

11.92008817890
28.77036010178
69.35116600455

167.20881853340
403.13188359617
971.93524756072

2343.28804106191
5649.51967020207

13620.45119203567
32836.32193044393
79147.45145012428

0
1

1.99500000000
4.98751250000

11.96001913091
28.88507358306
69.67521980455

168.10317529800
405.56193312317
978.45500806016

2360.60539480727
5695.14417610542

13739.88521182454
33147.66861641826
79961.75170649997

0
1
1.99900000000
4.99750050000
11.99199983283
28.97699771786
69.93498596635
168.82043801696
407.51174632077
983.68898580072
2374.51490469204
5731.81033968845
13835.92258701109
33398.17489180408
80617.47387422606

0
1
2
5

12
29
70

169
408
985

2378
5741

13860
33461
80782

Remark 2. We make the following observations:

(i) For n ∈ N3 and 0 ≤ j ≤ n− 3, consider

Γ(n− j− q)
Γ(n− j + 1)Γ(−q)

= q(q− 1)
Γ(n− j− q)

Γ(n− j + 1)Γ(2− q)
.

Clearly, by [7], Γ(n− j− q) > 0, Γ(n− j + 1) > 0, and Γ(2− q) > 0, implying that

Γ(n− j− q)
Γ(n− j + 1)Γ(−q)

> 0, 0 ≤ j ≤ n− 3, n ∈ N3;

(ii) For q = 2, the numerical scheme (14) reduces to the IO form of Pell’s numbers (2).

Lemma 1. Denote by

lim
n→∞

x(n + 1)
x(n)

= Λ. (16)

Then, Λ ≤ q +
√
(4− q)(2 + q)

2
.

Proof. Corresponding to (14), the numerical scheme is

x(n + 1) = qx(n) +
[

2− q(q− 1)
2

]
x(n− 1)

−
n−1

∑
j=1

Γ(n− j− q + 2)
Γ(n− j + 3)Γ(−q)

x(j− 1), n ∈ N1. (17)

Clearly,

lim
n→∞

x(n− 1)
x(n)

=
1
Λ

. (18)
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From (17), we have

x(n + 1)
x(n)

= q +
[

2− q(q− 1)
2

]
x(n− 1)

x(n)

−
n−1

∑
j=1

Γ(n− j− q + 2)
Γ(n− j + 3)Γ(−q)

x(j− 1)
x(n)

, n ∈ N1. (19)

For n ∈ N1 and 0 ≤ j ≤ n− 1, consider

Γ(n− j− q + 2)
Γ(n− j + 3)Γ(−q)

= q(q− 1)
Γ(n− j− q + 2)

Γ(n− j + 3)Γ(2− q)
.

Clearly, by [7], Γ(n− j− q + 2) > 0, Γ(n− j + 3) > 0, and Γ(2− q) > 0, implying that

Γ(n− j− q + 2)
Γ(n− j + 3)Γ(−q)

> 0, 0 ≤ j ≤ n− 1, n ∈ N1.

Also, 2− q(q−1)
2 > 0, x(n−1)

x(n) > 0, and

x(j− 1)
x(n)

≥ 0, 1 ≤ j ≤ n− 1, n ∈ N1.

Then, from (19), we have

x(n + 1)
x(n)

≤ q +
[

2− q(q− 1)
2

]
x(n− 1)

x(n)
, n ∈ N1. (20)

Setting n → ∞ on both sides of (20) and using (16) and (18), we obtain

Λ ≤ q +
[

2− q(q− 1)
2

]
1
Λ

. (21)

Let us define A and B to simplify the inequality: A = q and B =
[
2− q(q−1)

2

]
. Then, (21) is

equivalent to
Λ2 − AΛ− B ≤ 0. (22)

Also, let

λ1 =
A +

√
A2 + 4B
2

, λ2 =
A−√

A2 + 4B
2

.

Clearly, λ1 > 0 and λ2 < 0. Then, from (22), we obtain

Λ ≤ λ1.

That is,

lim
n→∞

x(n + 1)
x(n)

≤ q +
√
(4− q)(2 + q)

2
. (23)

If one denotes E(q) = q+
√

(4−q)(2+q)
2 , Figure 1 verifies the inequality x(n+1)

x(n) < E(q)
for q = 1.9 and n = 1, 2, . . . , 15.
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Figure 1. Numerical verification of the inequality (23) for q = 1.9, n = 1, 2, . . . , 15. E represents the

line 2+
√

(4−q)(2+q)
2 in (23) for q = 1.9.

Remark 3. We now examine the special case when q = 2. We have

Γ(n− j− q + 2)
Γ(n− j + 3)Γ(−q)

= 0, 0 ≤ j ≤ n− 1, n ∈ N1.

Then, from (19), we have

x(n + 1)
x(n)

= q +
[

2− q(q− 1)
2

]
x(n− 1)

x(n)
, n ∈ N1.

Consequently, we obtain

Λ = lim
n→∞

P(n + 1)
P(n)

= λ1 =
2 +

√
(4− 2)(2 + 2)

2
= 1 +

√
2,

i.e., the known result for the integer order (IO) Pell’s numbers, δ = 1 +
√

2 being the silver ratio.

3.4. Fractional Silver Ratio and Tiling Obtained with Fractional Pell’s Numbers
3.4.1. Fractional Silver Ratio

Definition 6 ([23]). Let v : N0 → R. The Z-transform of u is a complex function given by

ū(z) = Z[u(n)] =
∞

∑
k=0

u(k)z−k,

where z is a complex number for which this series converges absolutely.

Theorem 5. The generalized characteristic equation for the fractional Pell sequence for q ∈ (1, 2)
is given by

z2
(

1− 1
z

)q
− 2 = 0. (24)

Proof. Denote by Z[x(n)] = x̄(z). Then,

Z[x(n + 1)] = zx̄(z)− zx(0),
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and
Z[x(n + 2)] = z2 x̄(z)− z2x(0)− zx(1).

Also, for 1 < q < 2, by using Definitions 5 and 6, we have

Z
[
∇q

0x(n)
]
=

∞

∑
k=0

∇q
0x(k)z−k

=
∞

∑
k=0

[
k

∑
j=0

Γ(k − j− q)
Γ(k − j + 1)Γ(−q)

x(j)

]
z−k

=
∞

∑
j=0

[
∞

∑
k=j

Γ(k − j− q)
Γ(k − j + 1)Γ(−q)

z−k

]
x(j)

=
∞

∑
j=0

[
∞

∑
k=0

Γ(k − q)
Γ(k + 1)Γ(−q)

z−k−j

]
x(j)

=
∞

∑
j=0

[
∞

∑
k=0

Γ(k − q)
Γ(k + 1)Γ(−q)

z−k

]
z−jx(j)

=
∞

∑
j=0

[(
1− 1

z

)q]
z−jx(j)

=

(
1− 1

z

)q ∞

∑
j=0

x(j)z−j

=

(
1− 1

z

)q
x̄(z).

Take

y(n) = ∇q
0x(n) =

n

∑
j=0

Γ(n− j− q)
Γ(n− j + 1)Γ(−q)

x(j), n ∈ N0.

Then, y(0) = x(0) = 0 and y(1) = −qx(0) + x(1) = 1. Denote by Z[y(n)] = ȳ(z). Then,

Z
[
∇q

0x(n + 2)
]
= Z[y(n + 2)]

= z2ȳ(z)− z2y(0)− zy(1)

= z2Z[y(n)]− z

= z2Z
[
∇q

0x(n)
]
− z

= z2
(

1− 1
z

)q
x̄(z)− z.

The equivalent form of the fractional Pell sequence is given by

∇q
0x(n + 2) = 2x(n), n ∈ N0. (25)

Taking the Z-transform of (25) and rearranging the terms, we get

z2
(

1− 1
z

)q
x̄(z)− z = 2x̄(z).

That is,
x̄(z) =

z

z2
(

1− 1
z

)q − 2
.
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Consequently, the fractional characteristic equation for the fractional Pell sequence is

z2
(

1− 1
z

)q
− 2 = 0.

If one denotes with δ = �(z) the real part of z, then the characteristic equation becomes

δ2
(

1− 1
δ

)q
− 2 = 0,

whose solutions are fractional silver ratio as function of q, δ = δ(q).
For q = 1.5, the generalized characteristic equation has the solution δ = 2.2; for q = 1.1,

one obtains δ = 2.05, while, for q = 2, one obtains the characteristic equation of IO

δ2 − 2δ− 1 = 0,

with the known silver ratio solution δ = 1 +
√

2 (see also Remark 2 (ii)).
To determine the solutions graphically, denote the surface determined by the char-

acteristic polynomial by Σ(δ, q) := δ2
(

1− 1
δ

)q − 2, the surface z̄ = Σ(δ, q) being drawn
in Figure 2. The intersection between Σ and the plane z̄ = 0, denoted by Γ (red plot),
represents the curve of solutions of the fractional characteristic equation. For example,
for q = 1.5, the numerical solution of the characteristic Equation (24) is δ = 2.217, which
matches with the graphical solution; the intersection between the plane q = 1.5 and Γ
(point P(2.217, 1.5) in the plane z̄ = 0).

Figure 2. The curve Γ representing the solutions of the characteristic Equation (24) (red plot) as
intersection between the plane z̄ and the surface Σ. For q = 1.5, to obtain the solution of the
characteristic equation, one crosses the curve Γ of the solution, with the plane q = 1.5 and the point
P(2.217, 1.5). The solution δ = 2.217 represents the fractional silver ratio for q = 1.5.

3.4.2. Fractional Pell’s Tiling

As known, a domino tiling with Pell’s numbers is a tessellation of some region by
dominoes by using rectangular tiles. For example, the kth rectangular tile has the length
P(k) and the width 2× P(k− 1)+ P(k− 2) (see, e.g., [24,25]). In Figure 3 the case of domino
tiling with 8 Pell’s numbers is presented (the zoomed rectangle reveals the tiling steps).
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Figure 3. (a) Domino tiling with IO Pell’s numbers; (b) zoomed detail reveals the construction of
the tiling.

Also, the tiling can be generated with squares of Pell sequence lengths. To construct
this tiling, start with the first square of size 1 × 1 , i.e., P(1) (P(0) is omitted, and then
continue to the right with a square of size 2× 2, which means P(2), then up with square of
size 5× 5, i.e., P(3), next left with a square of 12× 12, i.e., P(5), down with a square 29× 29,
i.e., P(6), and so on, the rule being the rotation counterclockwise of each new rectangle, with
90 ◦C. Next, if one draws a quarter-circle arc inside each new square connecting opposite
corners, one obtains the silver spiral (red plot in Figure 4a for a visual representation, where
the IO case is considered).

Considering now 8 fractional Pell’s numbers, the spiral and fractional silver spiral,
plotted over the tiling for q = 1.995 and q = 1.9, are presented in Figure 4b and Figure 4c,
respectively. For q = 1.995, the fractional tiling and the fractional silver spiral are similar to
the case of IO in Figure 4a; for q = 1.9, the fitting differences become visible.

Figure 4d shows fractional silver spirals for q = 1 + i × 0.1 for i = 0, . . . , 10.

Figure 4. Silver spiral with 8 Pell numbers: (a) IO silver spiral; (b) fractional silver spiral for q = 1.995;
(c) fractional silver spiral for q = 1.9; (d) fractional silver spiral for q = 1 + 10× 0.1 (for q = 2, one
obtains the IO silver spiral).

While in [11,12] it was shown that the fractional approach of discrete systems can break
the symmetry, the fractional silver ratio introduced in this paper and also the fractional
golden ratio (introduced in [10]) do not break the symmetry and the beauty of the perfection
of nature. It is certainly known that the root mechanism that generates patterns in plants
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via the golden ratio, can be considered as an optimal packing, a fact first discovered by
the German botanist Werner Hoffmeister in 19th century (see Figure 5). However, the
fractional silver ratio generates artistic representations too. Thus, Figure 5 presents artistic
representations of a pinecone using the MATLAB script presented in the appendix (the
script can be found in [26]). The script, originally written to run with the golden ratio
sequence as a factor of π (see highlighted line 25), is easily adapted here to use the fractional
silver ratio. In Figure 5a, the case of the IO silver ratio of IO is presented, in Figure 5b the
case of fractional silver ratio δ = 2.22, corresponding to q = 1.5, and in Figure 5c the case
of the fractional silver ratio δ = 2.05, corresponding to q = 1.1.

Figure 5. Artistic fractional pinecone obtained with the script [26] for (a) IO silver ratio, δ = 1 +
√

2;
(b) fractional silver ratio, δ = 2.22, corresponding to q = 1.5; (c) fractional silver ratio, δ = 2.05,
corresponding to q = 1.1.

4. Fractional Pell–Lucas Sequence

A two-dimensional system of linear difference equations describing the Pell–Lucas
sequence (4) is (

Q(n + 2)
Q(n + 1)

)
=

(
2 1
1 0

)(
Q(n + 1)

Q(n)

)
, n ∈ N0.

Then, (
∇Q(n + 2)
∇Q(n + 1)

)
=

(
1 1
1 −1

)(
Q(n + 1)

Q(n)

)
, n ∈ N0.

Consequently, we have the following initial value problem

∇Q̄(n) = AQ̄(n− 1), n ∈ N1, (26)

Q̄(0) = Q̄0, (27)
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associated with the Pell–Lucas numbers. Here,

Q̄(n) =

(
Q(n + 1)

Q(n)

)
,

A =

(
1 1
1 −1

)
,

Q̄0 =

(
Q(1)
Q(0)

)
=

(
2
2

)
.

We observe that the matrix A in (26) is same as in (5). Now, for 0 < q < 1, we consider the
qth-order difference equation

∇q
0ȳ(n) = Aȳ(n− 1), n ∈ N1,

together with the initial condition

ȳ(0) =

(
2
2

)
,

analogous to (26) and (27). Here,

ȳ(n) =

(
y(n + 1)

y(n)

)
, A =

(
1 1
1 −1

)
.

4.1. Closed Form of the Fractional Pell–Lucas Sequence

With the help of Theorem 1, we mimic the proof of Theorem 2 to obtain the following
statement, the generalized Binet’s formula for fractional Pell–Lucas sequence.

Theorem 6. The closed-form expression of the fractional Pell–Lucas sequence is given by

y(n) =
n

∑
k=0

[
ϕk + (−ϕ)k

] Γ(n− k + kq + q)
Γ(n− k + 1)Γ(kq + q)

, n ∈ N0.

Remark 4. For q = 1, we obtain the closed IO form expression for the nth element in Pell–Lucas
sequences (3) and (4) as follows:

y(n) =
1
ϕ

n

∑
k=0

[
ϕk + (−ϕ)k

] Γ(n + 1)
Γ(n− k + 1)Γ(k + 1)

=
n

∑
k=0

(
n
k

)
ϕk +

n

∑
k=0

(
n
k

)
(−ϕ)k

= (1 + ϕ)n + (1− ϕ)n

=
(

1 +
√

2
)n

+
(

1−
√

2
)n

,

for n ∈ N0.

Theorem 7. y(n) > 0 for all n ∈ N0.

Proof. The proof is similar to the proof of Theorem 3. So, we omit it.
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4.2. Numerical Scheme for the Fractional Pell–Lucas Sequence

Following the steps from the start of Section 3.3 and by considering (4) instead of (2),
the numerical integral for the fractional Pell–Lucas sequence can be obtained.

Using Definition 3, (4) can be rewritten as

∇2Q(n) = f (Q(n− 1), Q(n− 2)), n ∈ N2, (28)

where
f (Q(n− 1), Q(n− 2)) = 2Q(n− 2), n ∈ N2.

Now, for 1 < q < 2, we consider the qth-order difference equation

∇q
0y(n) = f (y(n− 1), y(n− 2)), n ∈ N2,

together with the initial condition

y(0) = 2, y(1) = 2,

analogous to (3)–(28).

Theorem 8. The numerical scheme for the fractional Pell–Lucas sequence is given by

y(n) = qy(n− 1) +
[

2− q(q− 1)
2

]
y(n− 2)

−
n−3

∑
j=0

Γ(n− j− q)
Γ(n− j + 1)Γ(−q)

y(j), n ∈ N2. (29)

Proof. The proof is similar to the proof of Theorem 4. So, we omit it.

Remark 5. For q = 2, the numerical scheme (29) reduces to the IO definition of the Pell–Lucas
numbers.

For example, the first 15 fractional Pell–Lucas numbers displayed with 4 decimals for
q = 1.999 are

2, 2, 6.0099, 13.9999, 33.9940, 81.9739, 197.9108, 477.72047, 1153.17036, 2783.6227,

6719.3551, 16219.7623, 39152.61760, 94509.48860, 228129.71839.

By mimicking the proof of Lemma 1, we obtain the following statement:

Lemma 2. lim
n→∞

y(n + 1)
y(n)

≤ q +
√
(4− q)(2 + q)

2
.

Remark 6. Similar to Remark 3, for q = 2, we obtain

lim
n→∞

Q(n + 1)
Q(n)

= 1 +
√

2.

Theorem 9. The characteristic equation for the fractional Pell–Lucas sequence is given by (24).

Proof. The proof is similar to the proof of Theorem 5. So, we omit it.
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5. Conclusions

In this paper, the fractional generalization of Pell and Pell–Lucas numbers is intro-
duced by considering the Grünwald–Letnikov fractional operator of orders q ∈ (0, 1) and
q ∈ (1, 2). Several properties of integer-order Pell and Pell–Lucas numbers extend naturally
to the fractional case. The fractional silver ratio is deduced from the characteristic equation
of the fractional Pell numbers as a function of the fractional order q. The numerical tests
show that the fractional Pell numbers can be used to tile a region, and the fractional silver
spiral fits the tiling, demonstrating that the fractional silver spiral aligns well with the frac-
tional tiling pattern. This work, which continues the study in [10], offers a new perspective
on the use of fractional calculus in recurrence-defined numbers.

Author Contributions: Software, M.-F.D.; Formal analysis, M.-F.D.; Investigation, J.M.J.; Writing—
original draft, M.-F.D.; Writing—review and editing, M.-F.D.; Visualization, M.-F.D.; Supervision,
M.-F.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in this study are included in the
article. Further inquiries can be directed to the corresponding author.

Acknowledgments: The authors are grateful to Eric Ludlam and Adam Danz from MathWorks for
the permission to use the MATLAB script to generate the pinecone, as provided in Appendix A.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

MATLAB script for pinecone.

1 % Copyright 2024, Eric M. Ludlam;

2 figure

3 nscales = 140; %Number of scales

4 height = 2.5; %Height of inner part of pinecone

5 swt = 0.3; %Scale width in theta

6 sth = 0.2; %Scale thickness (as a curve in height)

7 stilt = 1.2; %From inside to outside, tile of each scale

8 nn = 18; %Number of needles

9 % Exponents for curves

10 hexp = 2.8; %scale density over height

11 rexp = 2; %radius shape across height

12 scexp = 3; %scale rounded shape (end)

13 suexp = 3; %scale roundness in height

14 stexp = 2.1; %scale tilt for height

15 stuexp = 2; %scale thickness of U by height

16 cexp = 2; %color gradient

17 % Colors

18 brown1 = [0 0 0]; %Dark center color

19 brown2 = [0.470 0.240 0.010]; % Brighter outer color

20 edge = [1 1 1]; %Scale edging

21 green = [0.060 0.590 0.400]; % Pine Needles

22 % Resolution

23 vps = 17; % verts per scale : An odd number so 1 vert is in center

24 vpr = 20; % verts per radius

25 % Scale locations
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26 FP = 2.05 * (1:nscales) ;%FP = Golden/Silver Ratio sequence as factor of

pi

27 H = linspace(0, 1, nscales).^hexp * height; %Height of the root of each

scale

28 R = 1 - abs(linspace(-1, 1, nscales).^rexp); %Radius of pinecone over

height

29 U = 1 - abs(linspace(-1, 1, nscales).^stuexp); %Thickness of scale U shape

by height

30 % Geometry of the scales at the locations

31 ST = reshape((linspace(-0.5, 0.5, vps) * swt + FP')', 1, []); %Scale Theta

32 SR = reshape(((1 - abs(linspace(-1, 1, vps).^scexp)).*R')', 1, []); %Scale

Radii

33 SH = reshape((ones(1, vps).*H' + abs(linspace(-1, 1, vps).^suexp.*U') * sth

)', 1, []); %Scale Height

34 MR = linspace(0, 1, vpr)'.*SR;

35 % Compute final geometry of the pinecone.

36 X = cospi(ST).*MR;

37 Y = sinpi(ST).*MR;

38 Z = SH.*ones(vpr, 1) + MR.*linspace(0, 1, vps * nscales).^stexp * stilt;

39 C=linspace(0,1,vpr).^cexp'.*ones(1,vps*nscales);

40 % Plot pinecone

41 set(gcf, 'Color', '#fffafa'); %Snow

42 plot3(X(end, :), Y(end, :), -Z(end, :), '-', 'Color', edge);

43 surface(X, Y, -Z, C, 'EdgeColor', 'none');

44 shading interp

45 % Dark center to Brown colormap

46 colormap(interp1([1 256], [brown1; brown2], 1:256));

47 % Branch

48 bx = [0 0.5 1 1.5 2];

49 by = [0 0 0 0 0];

50 bz = [0 0.05 0.2 0.25 0.2];

51 line('XData', bx, 'YData', by, 'ZData', bz, 'Color', brown1, 'LineWidth',

5);

52 % Pine Needles

53 NT = linspace(0, 5, nn)';

54 NR = linspace(0.1, 0.8, nn)';

55 NV = [0 0 0 - ones(nn, 1) * 2, cospi(NT).*NR, sinpi(NT).*NR + 0.9];

56 NF = [ones(nn, 1) (1 : nn)' + 1];

57 patch('Vertices', NV, 'Faces', NF, 'EdgeColor', green, 'FaceColor', 'none',

'LineWidth', 1.5);

58 % Setup Axes

59 set(gca, 'Position', [0 0 1 1], 'Clipping', 'off');

60 daspect([1 1 1]);

61 axis([-1.3 1.3 -1.3 1.3 -height + 0.2 0.5], 'off')

62 material([0.6 1 0.3])

63 lighting gouraud

64 light('Position',[13.2 7.2 16.5]);
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Abstract: In this paper, we study human liver disease with a different approach of interval-based
investigation by introducing subintervals. This investigation may be referred to as a short memory
investigation. Such concepts are useful in problems where a transition is observed when transitioning
from one subinterval to the other one. We use the classical and fractal-fractional-order derivative in
each subinterval. We study the existence of solutions by using Banach’s and Krasnoselskii’s fixed-
point theorems. Their stability is analyzed by adopting the Hyers–Ulam (H-U) stability approach.
Also, using the extended Adams–Bashforth–Moulton (ABM) method, we simulate the results that
visually present the numerical solutions for different fractal-fractional-order values.

Keywords: fibrosis disease; subinterval transitions; fractional derivatives; fractal-fractional deriva-
tives; fixed point; stability and numerical analyses

1. Introduction

The liver, a crucial organ similar in importance to the heart and brain, is roughly
triangular in shape and extends across the abdominal cavity [1]. It plays a pivotal role in
various physiological processes, including hemostasis, blood clotting, and blood volume
regulation. Additionally, the liver metabolizes drugs, detoxifies harmful substances like
alcohol, and supports the immune system. It also contributes significantly to the regulation
of glucose levels in the body.

Liver diseases, such as alcoholic and nonalcoholic liver diseases, hepatocellular car-
cinoma, cirrhosis, hepatitis B, and hepatitis C [2], have a substantial global impact. A
2017 review reported that cirrhosis alone resulted in over 1,320,000 deaths worldwide
between 1990 and 2017. Notably, Sub-Saharan Africa, the lowest-income area, experienced
the highest age-standardized death rate, while high-income areas had the lowest. Egypt
recorded the highest age-standardized death rate during the same period [3].

Health professionals utilize liver profile tests to assess liver function comprehensively.
These tests, which include measurements such as aspartate aminotransferase, serum biliru-
bin, alanine aminotransferase, alpha-fetoprotein, alkaline phosphatase, ceruloplasmin,
and 50 nucleotidase, offer valuable insights. Thorough examination of liver biochemical
substances and indicators enables doctors to take proactive measures to enhance patient
care. Furthermore, the use of bromsulphthalein (BSP) is instrumental in identifying liver
damage [4,5].

The concept of the existence theory is fundamental in mathematical analysis, par-
ticularly in differential equations (DEs) and dynamical systems. This theory is essential
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as it determines whether a system of DEs has a solution, providing a basis for further
analysis. Additionally, the unique result guarantees the predictability of the solution. On
the other hand, stability analysis stands as one of the most crucial and highly specialized
areas of research. It has demonstrated its utility as a powerful tool in linear and nonlinear
analysis, optimization theory, and qualitative theory. We can draw on various fixed-point
and stability results to support these assertions [6–10].

Several attempts have been made to model the function and performance of the
mentioned organ, but these attempts have been limited to classical differential equations.
The works of ČelechovskáL [11], Calvetti and Kuceyeski [12], Repetto and Tweedy [13],
and Friedman and Hao [14] are fundamental.

In [11], the author considered the following classical human liver model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX
dt

= −aX(t) + bY(t),

dY
dt

= aX(t)− (b + c)Y(t),

dZ
dt

= cY(t),

X(0) = h > 0, Y(0) = 0, Z(0) = 0,

(1)

where the variables X, Y, and Z, and the parameters a, b, c, and h are defined in Table 1.
The use of fractional calculus has proven to be an enormously good tool in this regard. A
suitable mathematical model can better describe its performance. Some researchers have
made great efforts and attempts to model it in a more realistic and accurate way using
the non-integer-order calculus. In modeling various diseases and other phenomena, it has
proven to be good; see, for instance [15–19]. It can change the model enormously in how
we view it and manage its outcomes to compare them with the actual data. It is remarkably
noticed that in the case of various classical models, the estimated amounts of BSP deviate
from clinical data, but in the case of the fractional-order model, it shows closeness to the
actual data. The additional inheritance and memory qualities of FDEs make them effective
in analyzing and replicating actual occurrences. In fact, fractional differential equations
(FDEs) possess memory and the analytical capabilities to comprehend actual evidence; this
is one of its many valuable aspects (see [20]). In [21], Ameen et al. formulated a human
liver model with modified parameters in the sense of a Caputo fractional derivative (CFD).
The advancement in fractional calculus has proven to be more beneficial for developing our
understanding of many phenomena and processes. The Caputo–Fabrizio (CF) fractional
derivative [22] and the Atangana–Baleanu–Caputo (ABC) fractional derivative [23] were
recently introduced and are highly used in the modeling of many processes and phenomena
(see [24]). Similarly, many of the previous models have been reformulated in the sense of
CF and ABC derivatives. In [25], fractals to fractional derivatives are integral to predicting
complex systems. This approach gained importance from researchers and has been applied
in many research problems; see [26–29]. In [30], Baleanu et al. used the CF derivative to
study a human liver.

It is observed that many real-world phenomena show transitions when they are
changing or shifting from one interval to another. In such a case, the phenomena cannot be
accurately modeled via usual methods. To overcome this situation, Atangana and Araz [31]
introduced the piecewise concept of derivatives and integrals. This concept is different
from the conventional methods of modeling. In this approach, the phenomena are studied
in subintervals of the whole time interval, with discontinuity at a point. Unlike traditional
fractional derivatives, this approach has proven to be good in the mathematical description
of crossover effects among various forms [32,33].

In this research paper, we consider a human liver model given in [11] and study it with
subinterval transitions via the fractal-fractional Caputo derivative (FFCD). We reformulate
the mode as
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

pDr,ξ X(t) = −aX(t) + bY(t),
pDr,ξY(t) = aX(t)− (b + c)Y(t),
pDr,ξ Z(t) = cY(t),

X(0) = h, Y(0) = 0, Z(0) = 0,

(2)

where the variables X, Y, and Z, and parameters a, b, c, and h are the same as those given
in (1). Our model is dimensional as the case of the basic classical model in [11].

Table 1. Parameters and their description.

Parameters Parameter Definition

X(t) BSP quantity in the blood at time t.
Y(t) BSP quantity in the the liver at time t.
Z(t) BSP quantity in the bile at time t.

a transferring rate of BSP from the blood to the liver.
b transferring rate of BSP from liver to the bile.
c refluxing rate of BSP from the liver into the blood.
h positive bounded real number.

In (2), looking at the terms, it is obvious that by adding the equations, we obtain

pDr,ξ X(t) +p Dr,ξY(t) +p Dr,ξ Z(t) = 0 (3)

and
X(0) + Y(0) + Z(0) = h. (4)

This implies that
X(t) + Y(t) + Z(t) = h, ∀ t ≥ 0. (5)

This means that
Z(t) = h− X(t)−Y(t), ∀ t ≥ 0. (6)

The value of Z can be calculated from the values of X and Y. Thus, it is enough to take the
lower dimensional system of DEs as⎧⎪⎨⎪⎩

pDr,ξ X(t) = −aX(t) + bY(t),
pDr,ξY(t) = aX(t)− (b + c)Y(t),

X(0) = h, Y(0) = 0.

(7)

As in [11], we find the equilibrium points of system (7) by solving the following
algebraic system:

− aX(t) + bY(t) = 0,

aX(t)− (b + c)Y(t) = 0.
(8)

The parameters a, b, and c in system (2) express the rates of decay of BSP from the blood
and the liver. Hence, they have to be positive. Therefore, we assume that a > 0, b > 0, and
c > 0. Under this assumption, there is only one equilibrium point: P = (0, 0). Similarly, to
find the steady state of our proposed system, we compare the right-hand side of the system
of equations equal to 0, which, by a similar argument of the parameters a, b, c > 0, we
obtain (X∞, Y∞, Z∞) = (0, 0, 0). Now, we study the stability of system (7) at the equilibrium
point. The matrix of the parameters of system (7) is

M =

(−a b
a −b− c

)
. (9)
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Its characteristic values are given by the algebraic equation

det(M − λI) = λ2 + λ(a + b + c) + ad = 0, (10)

as

λ1,2 =
−(a + b + c)±√

(a + b + c)2 − 4ad
2

. (11)

Since a, b, and c are assumed to be positive,

|a + b + c|2 > (a + b + c)2 − 4ad ≥ 0. (12)

Thus, the characteristic values λ1,2 are negative, which means that the solution X(t) = 0,
Y(t) = 0 at the equilibrium point of (7) is globally asymptotically stable. Also, it is stable
at the steady state: (X∞, Y∞, Z∞) = (0, 0, 0). This means that the human liver model has a
unique and stable steady state at the equilibrium and steady point.

To investigate the local stability of system (2), we analyze the eigenvalues of the
Jacobian matrix. Compute the Jacobian matrix by taking partial derivatives of the model
equations with respect to X, Y, and Z:

J =

⎛⎝−a b 0
a −b− c 0
0 c 0

⎞⎠ (13)

Find the eigenvalues (λ) by solving the characteristic equation:

det(J − λI) = 0, (14)

where I is the identity matrix. Solving (14) for (λ), we obtain λ1 = −a, λ2 = −(b + c),
λ3 = 0. For local stability, all the eigenvalues must have negative real parts, but here,
Re(λ3) = 0. This zero eigenvalue indicates a neutrally stable direction. In such a case,
the Center Manifold Theory can be applied, which confirms the local stability of the
proposed system.

The system of Equation (2) may be written as

pDr,ξ ψ(t) =

{
v(t, ψ(t)),

ψ(0) = ψ0, t ∈ [0, T ],
(15)

where the vector ψ(t) = (X, Y, Z) denotes the variable, ψ0 is a given initial condition, and
the variable function v is given by

v(t, ψ(t)) =

⎡⎢⎣ Φ1(t, X, Y, Z)

Φ2(t, X, Y, Z)

Φ3(t, X, Y, Z)

⎤⎥⎦, (16)

ψ(t) =

⎡⎢⎣ X(t)

Y(t)

Z(t)

⎤⎥⎦ =

⎡⎢⎣ − aX(t) + bY(t)

aX(t)− (b + c)Y(t)

cY(t)

⎤⎥⎦, ψ0 =

⎡⎢⎣ X0

Y0

Z0

⎤⎥⎦. (17)

In view of (16) and (17), problem (15) may be written as

pDr,ξ X(t) = Φ1(t, X, Y, Z)
pDr,ξY(t) = Φ2(t, X, Y, Z) (18)
pDr,ξ Z(t) = Φ3(t, X, Y, Z),
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where Φ1, Φ2, Φ3 : [0, T ]×R3 → R are piecewise continuous. The recent set of equations
takes the compact form as follows:

pDr,ξψ(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Φ1(t, ψ(t))

Φ2(t, ψ(t))

Φ3(t, ψ(t)),

ψ(0) = ψ0, t ∈ [0, T ].

(19)

This research work is innovative in that it gives an accurate prediction of the variation in the
amount of X(t), Y(t), and Z(t) in a time interval [0, T ] in the human liver and can study
the process of the BSP test more accurately. The findings of this work will be useful in the
fields of drug theory, biochemistry, health care, computational chemistry, computational
biology, and others.

This paper is structured in the following manner: In Section 2, the basic definitions
with preliminary results are provided. Section 3 is allocated for the existence of unique
solution and stability results. In Section 4, a numerical scheme for numerical solutions is
developed. In Section 5, the numerical solutions are simulated, which graphically present
the main outcomes. In Section 6, we discuss and illustrate the simulated results. In Section 7,
we give a conclusion of the established results.

2. Elementary Results

Let the sup norm denoted by ‖.‖[0,T ] be described by

‖g(t)‖[0,T ] = sup
[0,T ]

‖g(t)‖, g(t) ∈ C([0, T ], R3). (20)

Here, C([0, T ], R3) := I with the norm ‖.‖[0,T ] is Banach space. We give the following
definitions adopted from [20,25,31].

Definition 1. Let y be a continuous and fractal differentiable mapping on [0, T ], then the interval-
based integral is defined by

p Iry(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Iry(t), i f t ∈ [0, t1],
FF Ir,ξy(t), t ∈ [t1, t2],

Iry(t), i f t ∈ [t2, t3],
FF Ir,ξy(t), t ∈ [t3, T ],

(21)

where Ir is a classical integral while FF Ir,ξ is a fractal-fractional integral in the Riemann–Liouville
sense, which is defined as follows.

Definition 2. ⎧⎪⎪⎨⎪⎪⎩
Iry(t) =

∫ t

a
y(θ)dθ,

FF Ir,ξy(t) =
ξ

Γ(r)

∫ t

a
θξ−1(t− θ)r−1y(θ)dθ.

(22)

Definition 3. For y ∈ C[0, T ], the interval-based derivative is defined by

pDry(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Dry(t), i f t ∈ [0, t1],
FFCDr,ξy(t), 0 < r, ξ ≤ 1, t ∈ [t1, t2],

Dry(t), i f t ∈ [t2, t3],
FFCDr,ξ y(t), 0 < r, ξ ≤ 1, t ∈ [t3, T ],

(23)
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where Dr is a classical derivative of order r and FFCDr,ξ is a fractal-fractional Caputo derivative of
fractal dimension ξ and fractional order r, which is defined as follows.

Definition 4. For y ∈ C[0, T ], the classical and fractal-fractional Caputo derivatives are defined by⎧⎪⎪⎨⎪⎪⎩
Dry(t) =

dy
dt

,

FFCDr,ξ y(t) =
1

Γ(1− r)

∫ t

a
(t− θ)−r d

dtξ
y(θ)dθ, 0 < r, ξ ≤ 1.

(24)

Definition 5. The ABM for ordinary problems is formulated as

zn+1 = zn + h
r

∑
i=1

bi f (τn + ih, zn + ih),

where zn, h, f (z, τ), and bi represent the approximate solution, the step size, ODE, and the
coefficients, respectively.

3. Existence and Stability Analysis

This section is divided into two subsections. In the first subsection, we provide a
lemma and a corollary result and investigate the existence of a unique solution of the
proposed model. In the second subsection, using the H-U concept of stability, we analyze
the stability results.

3.1. Existence of a Unique Solution

Lemma 1. The solution of

pDrψ(t) = h(t), r ∈ (0, 1],

ψ(0) = ψ0, ψ(t1) = ψt1 , ψ(t2) = ψt2 , ψ(t3) = ψt3

is given by

ψ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ0 +
∫ t

0
h(θ)dθ, i f t ∈ [0, t1],

ψt1 +
ξ

Γ(r)

∫ t

t1

θξ−1(t− θ)r−1h(θ)dθ, t ∈ [t1, t2]

ψt2 +
∫ t

t2

h(θ)dθ, i f t ∈ [t2, t3],

ψt3 +
ξ

Γ(r)

∫ t

t3

θξ−1(t− θ)r−1h(θ)dθ, t ∈ [t3, T ].

(25)

Proof. As it is easy to prove, we thus omit it.

Corollary 1. The equivalent integral equations of problem (15) are given, via Lemma 1, as

ψ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ0 +
∫ t

0
v(θ, ψ(θ))dθ, i f t ∈ [0, t1],

ψt1 +
ξ

Γ(r)

∫ t

t1

θξ−1(t− θ)r−1v(θ, ψ(θ))dθ, t ∈ [t1, t2]

ψt2 +
∫ t

t2

v(θ, ψ(θ))dθ, i f t ∈ [t2, t3],

ψt3 +
ξ

Γ(r)

∫ t

t3

θξ−1(t− θ)r−1v(θ, ψ(θ))dθ, t ∈ [t3, T ].

(26)
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We define an operator P : I → I by

P(ψ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ0 +
∫ t

0
v(θ, ψ(θ))dθ, i f t ∈ [0, t1],

ψt1 +
ξ

Γ(r)

∫ t

t1

θξ−1(t− θ)r−1v(θ, ψ(θ))dθ, t ∈ [t1, t2]

ψt2 +
∫ t

t2

v(θ, ψ(θ))dθ, i f t ∈ [t2, t3],

ψt3 +
ξ

Γ(r)

∫ t

t3

θξ−1(t− θ)r−1v(θ, ψ(θ))dθ, t ∈ [t3, T ].

(27)

Let the following given assumptions hold true:

(D1) Let there be, for ψ, ψ̄ ∈ I, Kv > 0, satisfying

|v(t, ψ(t))− v(t, ψ̄(t))| ≤ Kv|ψ(t)− ψ̄(t)|.

(D2)The real values N0, N1 > 0, satisfy

|v(t, ψ(t))| ≤ N0 +N1|ψ(t)|.

Theorem 1. Under the assumption (D1) and if max
(

t1Kv, t3Kv, ζ1Kvβ(r, ξ), ζ2Kvβ(r, ξ)

)
< 1

holds, then problem (15) has a unique solution.

Proof. For this result, we take two cases:
Case-I: If t lies in the first interval, i.e., [0, t1], then

|P(ψ)(t)−P(ψ)(t)| ≤
∫ t

0
|v(θ, ψ(θ))− v(θ, ψ(θ))|dθ. (28)

Using assumption (D1) and applying the norm, we have

‖P(ψ)−P(ψ)‖ ≤ t1Kv‖ψ− ψ̄‖. (29)

Case-I I: t ∈ [t1, t2].

|P(ψ)(t)−P(ψ)(t)| ≤ ξ

Γ(r)

∫ t

t1

θξ−1(t− θ)r−1|v(θ, ψ(θ))− v(θ, ψ(θ))|dθ

≤ ξKv

Γ(r)

∫ t

t1

θξ−1(t− θ)r−1‖ψ− ψ̄‖dθ.
(30)

Consider the integral
∫ t

t1
θξ−1(t− θ)r−1dθ. Let θ = tw. This implies that dθ = tdw. If θ = t1,

then w = t1
t , and if θ = t, then w = 1. Thus, we have

∫ t

t1

θξ−1(t− θ)r−1dθ = tξ+r−1
∫ 1

t1
t

wξ−1(1− w)r−1dw ≤ tξ+r−1
∫ 1

0
wξ−1(1− w)r−1dw

= tξ+r−1β(r, ξ),
(31)

where β(r, ξ) is a beta function. Hence, from (30), we obtain

|P(ψ)(t)−P(ψ)(t)| ≤ ξKvtξ+r−1

Γ(r)
β(r, ξ)‖ψ− ψ̄‖

≤ ξKvt2
ξ+r−1

Γ(r)
β(r, ξ)‖ψ− ψ̄‖.

(32)
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Let us denote ξt2
ξ+r−1

Γ(r) by ζ1. Then,

|P(ψ)(t)−P(ψ)(t)| ≤ ζ1Kvβ(r, ξ)‖ψ− ψ̄‖. (33)

Case-I I I: t ∈ [t2, t3].

|P(ψ)(t)−P(ψ)(t)| ≤
∫ t

t2

|v(θ, ψ(θ))− v(θ, ψ(θ))|dθ. (34)

Using assumption (D1) and applying the norm, we have

‖P(ψ)−P(ψ)‖ ≤ t3Kv‖ψ− ψ̄‖. (35)

Case—IV: t ∈ [t3, T ]. By an analysis similar to Case-II, we obtain

|P(ψ)(t)−P(ψ)(t)| ≤ |P(ψ)(t)−P(ψ)(t)| ≤ ζ2Kvβ(r, ξ)‖ψ− ψ̄‖. (36)

where ζ2 = ξT ξ+r−1

Γ(r) . Now, max
(

t1Kv, t3Kv, ζ1Kvβ(r, ξ), ζ2Kvβ(r, ξ)

)
< 1. Therefore,

from (29), (33), (35), and (36), we deduce that the fixed point of the operator P is unique.

Theorem 2. Under the assumed conditions (D1), problem (15) has one or more solutions.

Proof. To carry out this result, let us define two operators, namely P1 and P2, such that
P = P1 +P2 as

P1(ψ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ0 +
∫ t

0
v(θ, ψ(θ))dθ, i f t ∈ [0, t1],

0, i f t ∈ [t1, t2],

ψ(t2) +
∫ t

t2

v(θ, ψ(θ))dθ, i f t ∈ [t2, t3],

0, i f t ∈ [t3, T ]

(37)

and

P2(ψ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, i f t ∈ [0, t1],

ψ(t1) +
ξ

Γ(r)

∫ t

t1

θξ−1(t− θ)r−1v(θ, ψ(θ))dθ, i f t ∈ [t1, t2]

0, i f t ∈ [t2, t3]

ψ(t3) +
ξ

Γ(r)

∫ t

t3

θξ−1(t− θ)r−1v(θ, ψ(θ))dθ, i f t ∈ [t3, T ].

(38)

We take a closed ball �δ = {ψ ∈ I : ‖ψ‖ ≤ δ}, satisfying

δ ≥ max
{
‖ψ(0)‖+N0t1 +N1δt1, ‖ψ(2)‖+N0t3 +N1δt3,

‖ψ(t1)‖+ ξt2
ξ+r−1β(r, ξ)

Γ(r)
(N0 +N1δ), ‖ψ(t3)‖+ ξT ξ+r−1β(r, ξ)

Γ(r)
(N0 +N1δ)

}
.

We now present a number of steps to complete the proof.

Step 1:
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P1ψ(t) +P2ψ(t) ∈ �δ. For t ∈ [0, t1], ψ ∈ �δ, we have

|P1ψ(t) +P2ψ(t)| =
∣∣∣∣ψ0 +

∫ t

0
v(θ, ψ(θ))dθ

∣∣∣∣
≤ |ψ0|+

∫ t

0
|v(θ, ψ(θ))|dθ

≤ |ψ0|+
∫ t

0
(N0 +N1|ψ(t)|)dθ.

(39)

Using (D2), we obtain

|P1ψ(t) +P2ψ(t)| ≤ |ψ0|+
∫ t

0
(N0 +N1|ψ(t)|)dθ

≤ |ψ0|+ sup
t∈[0,t1]

N0t + sup
t∈[0,t1]

N1|ψ(t)|t

≤ |ψ0|+N0t1 +N1δt1 ≤ δ.

(40)

Hence,
‖P1ψ +P2ψ‖ ≤ ‖ψ(0)‖+N0t1 +N1δt1 ≤ δ. (41)

Similarly, for t ∈ [t2, t3], we obtain

‖P1ψ +P2ψ‖ ≤ ‖ψ(2)‖+N0t3 +N1δt3 ≤ δ. (42)

For t ∈ [t1, t2], taking ψ ∈ �δ, we have

|P1ψ(t) +P2ψ(t)| =
∣∣∣∣ψ(t1) +

ξ

Γ(r)

∫ t

t1

θξ−1(t− θ)r−1v(θ, ψ(θ))dθ

∣∣∣∣
≤ |ψ(t1)|+ ξ

Γ(r)

∫ t

t1

θξ−1(t− θ)r−1|v(θ, ψ(θ))|dθ

≤ |ψ(t1)|+ ξ

Γ(r)

∫ t

t1

θξ−1(t− θ)r−1(N0 +N1|ψ(t)|)dθ.

(43)

As in (31), using the transformation

∫ t

t1

θξ−1(t− θ)r−1dθ = tξ+r−1
∫ 1

t1
t

wξ−1(1− w)r−1dw ≤ tξ+r−1
∫ 1

0
wξ−1(1− w)r−1dw

= tξ+r−1β(r, ξ),

from (43), we have

|P1ψ(t) +P2ψ(t)| ≤ |ψ(t1)|+ ξtξ+r−1N0

Γ(r)
β(r, ξ) +

ξtξ+r−1N1δ

Γ(r)
β(r, ξ) ≤ δ. (44)

This implies that

‖P1ψ +P2ψ‖ ≤ ‖ψ(t1)‖+ ξt2
ξ+r−1β(r, ξ)

Γ(r)
(N0 +N1δ) ≤ δ. (45)

Similarly, for t ∈ [t3, T ], we obtain

‖P1ψ +P2ψ‖ ≤ ‖ψ(t3)‖+ ξT ξ+r−1β(r, ξ)

Γ(r)
(N0 +N1δ) ≤ δ. (46)

Therefore, P1ψ(t) +P2ψ(t) ∈ �δ.

Step 2:
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P1 is a contraction.
Let ψ, ψ ∈ �δ. First, we consider the result for t ∈ [0, t1].

|P1(ψ)(t)−P1(ψ)(t)| ≤
∫ t

0
|v(θ, ψ(θ))− v(θ, ψ(θ))|dθ. (47)

Using assumption (D1) and applying the norm, we have

‖P1(ψ)−P1(ψ)‖ ≤ t1Kv‖ψ− ψ̄‖. (48)

Similarly, for t ∈ [t2, t3], we have

‖P1(ψ)−P1(ψ)‖ ≤ t3Kv‖ψ− ψ̄‖. (49)

Thus, P1 is a contraction in [0, t1] and [t2, t3]. Also, the result is obvious for t ∈ [t1, t2] and
t ∈ [t3, T ]. Therefore, P1 is a contraction in [0, T ].

Step 3:
In the third step, we need to show that the sub-operator P2 is relatively compact. As

v(t, ψ(t)) is continuous, P2 is thus also continuous.
Next, we need to show that P2 is uniformly bounded on the closed ball �δ. For

t ∈ [0, t1], t ∈ [t2, t3], the case is obvious. Hence, we consider for t ∈ [t1, t2] and t ∈ [t3, T ].
For t ∈ [t1, t2], ψ ∈ �δ.

|P2ψ(t)| ≤ |ψ(t1)|+ sup
t∈(t1,T ]

ξ

Γ(r)

∫ t

t1

θξ−1(t− θ)r−1|v(θ, ψ(θ))|dθ.

Using assumption (D2) and the transformation given in (31), we have

|P2ψ(t)| ≤ |ψ(t1)|+ ξt2
ξ+r−1(N0 +N1δ)

Γ(r)
β(r, ξ) ≤ δ

≤ ‖ψ(t1)‖+ ξT ξ+r−1(N0 +N1δ)

Γ(r)
β(r, ξ) ≤ δ.

Similarly, for t ∈ [t3, T ], we obtain

|P2ψ(t)| ≤ ‖ψ(t3)‖+ ξT ξ+r−1(N0 +N1δ)

Γ(r)
β(r, ξ) ≤ δ.

Thus, P2 is uniformly bounded on the closed ball �δ. Now, it remains to show that P2 is
equi-continuous. For ψ ∈ �δ and any ta, tb ∈ [0, t1], ta, tb ∈ [t2, t3], with ta < tb, the case
is obvious. We consider the result for ta, tb ∈ [t1, t2] and ta, tb ∈ [t3, T ], with, ta < tb and
ψ ∈ �δ.

|P2ψ(tb)−P2ψ(ta)|

≤
∣∣∣∣ ξ

Γ(r)

( ∫ tb

t1

θξ−1(tb − θ)r−1v(θ, ψ(θ))dθ −
∫ ta

t1

θξ−1(ta − θ)r−1v(θ, ψ(θ))dθ

)∣∣∣∣. (50)

In the integral
∫ tb

t1
θξ−1(tb − θ)r−1dθ, let θ = tbx. Then, dθ = tbdx. We obtain x = t1

tb
for θ =

t1 and x = 1 for θ = tb. The integral transforms into the form tb
ξ+r−1

∫ 1
t1
tb

xξ−1(1− x)r−1dx.

Similarly, in integral
∫ ta

t1
θξ−1(ta − θ)r−1v(θ, ψ(θ))dθ, by taking θ = tax, the integral obtains
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the form ta
ξ+r−1

∫ 1
t1
ta

xξ−1(1− x)r−1dx. Using these transformations and assumption (D2),

(50) takes the form

|P2ψ(tb)−P2ψ(ta)|

≤
∣∣∣∣∣ ξ(N0 +N1δ)

Γ(r)

(
tb

ξ+r−1
∫ 1

t1
tb

xξ−1(1− x)r−1dx − ta
ξ+r−1

∫ 1

t1
ta

xξ−1(1− x)r−1dx
)∣∣∣∣∣

→ 0 as ta → tb.

(51)

Similarly, for ta, tb ∈ [t3, T ], with, ta < tb and ψ ∈ �δ, we obtain

|P2ψ(tb)−P2ψ(ta)|

≤
∣∣∣∣∣ ξ(N0 +N1δ)

Γ(r)

(
tb

ξ+r−1
∫ 1

t3
tb

xξ−1(1− x)r−1dx − ta
ξ+r−1

∫ 1

t3
ta

xξ−1(1− x)r−1dx
)∣∣∣∣∣

→ 0 as ta → tb.

(52)

This proves the equi-continuity of the sub-operator P2. Therefore, using the Arzelá–Ascoli
theorem and the above steps, the relative compactness and, consequently, the complete
continuity of P are proven. Therefore, by Krasnoselskii’s fixed-point theorem, there is one
or more solutions of the proposed problem (15).

3.2. Stability Results

In this section, we use the H-U approach of the stability analysis to derive stable criteria
for the proposed problem. We have adopted the following definitions of stability from [34].

Definition 6. The model (15) is H-U-stable if there exists a real number C = max{C1,C2,C3} > 0
such that for each ε = max{ε1, ε2, ε3} > 0, there is a solution ψ ∈ I of (53)∣∣∣pDr,ξψ(t)− v(t, ψ(t))

∣∣∣ ≤ ε, t ∈ J (53)

corresponding to a unique solution ψ ∈ I of model (15), such that∥∥ψ− ψ
∥∥ ≤ Cε, t ∈ J,

where

ψ(t) =

⎡⎢⎣ ψ1

ψ2

ψ3

⎤⎥⎦ =

⎡⎢⎣ − aX(t) + bY(t)

aX(t)− (b + c)Y(t)

cY(t)

⎤⎥⎦,

v(t, ψ(t)) =

⎡⎢⎣ Φ1(t, X, Y, Z)

Φ2(t, X, Y, Z)

Φ3(t, X, Y, Z)

⎤⎥⎦, ψ0 =

⎡⎢⎣ X0

Y0

Z0

⎤⎥⎦.

Remark 1. The function ψ ∈ I is a solution of the inequality∣∣∣pDr,ξψ(t)− v(t, ψ(t))
∣∣∣ ≤ ε, t ∈ J,

if and only if there is a small perturbation ℵ ∈ I that satisfies the following:

(i) |ℵ(t)| ≤ ε, t ∈ J;
(ii) pDr,ξ ψ(t) = v(t, ψ(t)) + ℵ(t), t ∈ J,

where ℵ(t) = (t,ℵ1(t),ℵ2(t),ℵ3(t)).
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By Remark 1, we have the following problem with a small perturbation function ℵ(t),

pDr,ξψ(t) =

{
v(t, ψ(t)) + ℵ(t), r ∈ (0, 1],

ψ(0) = ψ0, ψ(t1) = ψt1
, ψ(t2) = ψt2

, ψ(t3) = ψt3
.

(54)

Lemma 2. Problem (54) with the perturbation function ℵ(t) has the following solution:

ψ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ0 +
∫ t

0
(v(θ, ψ(θ)) + ℵ(θ))dθ, i f t ∈ [0, t1],

ψt1
+

ξ

Γ(r)

∫ t

t1

θξ−1(t− θ)r−1(v(θ, ψ(θ)) + ℵ(θ))dθ, t ∈ [t1, t2]

ψt2
+

∫ t

t2

(v(θ, ψ(θ)) + ℵ(θ))dθ, i f t ∈ [t2, t3],

ψt3
+

ξ

Γ(r)

∫ t

t3

θξ−1(t− θ)r−1(v(θ, ψ(θ)) + ℵ(θ))dθ, t ∈ [t3, T ].

(55)

Theorem 3. Under the assumption (D1) and if max
(

t1Kv, ζKvβ(r, ξ)

)
< 1 holds, then

problem (15) is H-U-stable.

Proof. For any solution ψ ∈ I of inequality (53) and unique solution ψ ∈ I of model (15),
we consider, for this result, two cases:

Case-I : For t ∈ [0, t1], we have

|ψ(t)− ψ(t)| ≤
∫ t

0
|v(θ, ψ(θ))− v(θ, ψ(θ))|dθ +

∫ t

0
ℵ(θ)dθ. (56)

Using assumption (D1), part (i) of Remark 1 and applying the norm, we have

‖ψ− ψ‖ ≤ t1Kv‖ψ(t)− ψ(t)‖+ t1ε. (57)

This implies that

‖ψ(t)− ψ(t)‖ ≤ t1

1− t1Kv
ε. (58)

Similarly, for t ∈ [t2, t3], we obtain

‖ψ(t)− ψ(t)‖ ≤ t3

1− t3Kv
ε. (59)

Case-II : t ∈ [t1, t2].

|ψ(t)− ψ(t)| ≤ ξ

Γ(r)

∫ t

t1

θξ−1(t− θ)r−1|v(θ, ψ(θ))− v(θ, ψ(θ))|dθ

+
ξ

Γ(r)

∫ t

t1

θξ−1(t− θ)r−1|ℵ(θ)|dθ

≤ ξKv

Γ(r)

∫ t

t1

θξ−1(t− θ)r−1|ψ̄(θ)− ψ(θ)|dθ

+
ξε

Γ(r)

∫ t

t1

θξ−1(t− θ)r−1dθ.

(60)
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Using the transformation given in (31), the last inequality implies that

|ψ(t)− ψ(t)| ≤ ξKv

Γ(r)
tξ+r−1β(r, ξ)|ψ̄(θ)− ψ(θ)|

+
ξε

Γ(r)
tξ+r−1β(r, ξ)

≤ ξKv

Γ(r)
t2

ξ+r−1β(r, ξ)|ψ̄(θ)− ψ(θ)|

+
ξε

Γ(r)
t2

ξ+r−1β(r, ξ).

(61)

Denote ξ
Γ(r) t2

ξ+r−1 by ζ1, and then we have

|ψ(t)− ψ(t)| ≤ ζ1Kvβ(r, ξ)|ψ̄(t)− ψ(t)|+ ζ1β(r, ξ)ε. (62)

Taking the maximum and simplifying the result, we have

‖ψ− ψ‖ ≤ ζ1β(r, ξ)

1− ζ1Kvβ(r, ξ)
ε. (63)

Similarly, for t ∈ [t3, T ], we obtain

‖ψ− ψ‖ ≤ ζ2β(r, ξ)

1− ζ2Kvβ(r, ξ)
ε, (64)

where C > 0 is chosen, such that

C =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t1
1−t1Kv

, i f t ∈ [0, t1],
ζ1β(r,ξ)

1−ζ1Kv β(r,ξ) , i f t ∈ [t1, t2]
t3

1−t3Kv
, i f t ∈ [t2, t3],

ζ2β(r,ξ)
1−ζ2Kv β(r,ξ) , i f t ∈ [t3, T ].

Hence,

‖ψ− ψ‖ ≤ Cε. (65)

Therefore, model (15) is H-U-stable.

4. Numerical Scheme

In this section, we will establish a numerical scheme for the proposed human liver
model under piecewise FFCD by using the extended ADM numerical method and La-
grangian piecewise interpolation [35]. This method has increasingly been applied to
approximate the solutions of nonlinear fractal-fractional-order problems. This method has
also extensively been used in epidemic models; see [36,37]. Its convergence depends on
fractional order, time step size, and spatial grid size.

First, we present the equivalent integral form of our proposed problem at t = tq+1 as
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xq+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
X(0) +

∫ tq+1
0 Φ1(θ, X, Y, Z)dθ, i f tq+1 ∈ [0, t1],

X(t1) +
ξ

Γ(r)

∫ tq+1
t1

θξ−1(tq+1 − θ)r−1Φ1(θ, X, Y, Z)dθ, tq+1 ∈ [t1, t2],

X(t2) +
∫ tq+1

t2
Φ1(θ, X, Y, Z)dθ, i f tq+1 ∈ [t2, t3],

X(t3) +
ξ

Γ(r)

∫ tq+1
t3

θξ−1(tq+1 − θ)r−1Φ1(θ, X, Y, Z)dθ, tq+1 ∈ [t3, T ],

Yq+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Y(0) +

∫ tq+1
0 Φ2(θ, X, Y, Z)dθ, i f tq+1 ∈ [0, t1],

Y(t1) +
ξ

Γ(r)

∫ tq+1
t1

θξ−1(tq+1 − θ)r−1Φ2(θ, X, Y, Z)dθ, tq+1 ∈ [t1, t2],

Y(t2) +
∫ tq+1

t2
Φ2(θ, X, Y, Z)dθ, i f tq+1 ∈ [t2, t3],

Y(t3) +
ξ

Γ(r)

∫ tq+1
t3

θξ−1(tq+1 − θ)r−1Φ2(θ, X, Y, Z)dθ, tq+1 ∈ [t3, T ],

Zq+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Z(0) +

∫ tq+1
0 Φ3(θ, X, Y, Z)dθ, i f tq+1 ∈ [0, t1],

Z(t1) +
ξ

Γ(r)

∫ tq+1
t1

θξ−1(tq+1 − θ)r−1Φ3(θ, X, Y, Z)dθ, tq+1 ∈ [t1, t2],

Z(t2) +
∫ tq+1

t2
Φ3(θ, X, Y, Z)dθ, i f tq+1 ∈ [t2, t3],

Z(t3) +
ξ

Γ(r)

∫ tq+1
t3

θξ−1(tq+1 − θ)r−1Φ3(θ, X, Y, Z)dθ, tq+1 ∈ [t3, T ].

(66)

An approximation of the system of equations (66) is given as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xq+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
X(0) +

∫ tq+1
0 Φ1(θ, X, Y, Z)dθ, i f tq+1 ∈ [0, t1],

X(t1) +
ξ

Γ(r) ∑
q
�=1

∫ tq+1
t�

θξ−1(tq+1 − θ)r−1Φ1(θ, X, Y, Z)dθ, tq+1 ∈ [t1, t2],

X(t2) +
∫ tq+1

t2
Φ1(θ, X, Y, Z)dθ, i f tq+1 ∈ [t2, t3],

X(t3) +
ξ

Γ(r) ∑
q
�=3

∫ tq+1
t�

θξ−1(tq+1 − θ)r−1Φ1(θ, X, Y, Z)dθ, tq+1 ∈ [t3, T ],

Yq+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Y(0) +

∫ tq+1
0 Φ2(θ, X, Y, Z)dθ, i f tq+1 ∈ [0, t1],

Y(t1) +
ξ

Γ(r) ∑
q
�=1

∫ tq+1
t�

θξ−1(tq+1 − θ)r−1Φ2(θ, X, Y, Z)dθ, tq+1 ∈ [t1, t2],

Y(t2) +
∫ tq+1

t2
Φ2(θ, X, Y, Z)dθ, i f tq+1 ∈ [t2, t3],

Y(t3) +
ξ

Γ(r) ∑
q
�=3

∫ tq+1
t�

θξ−1(tq+1 − θ)r−1Φ2(θ, X, Y, Z)dθ, tq+1 ∈ [t3, T ],

Zq+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Z(0) +

∫ tq+1
0 Φ3(θ, X, Y, Z)dθ, i f tq+1 ∈ [0, t1],

Z(t1) +
ξ

Γ(r) ∑
q
�=1

∫ tq+1
t�

θξ−1(tq+1 − θ)r−1Φ3(θ, X, Y, Z)dθ, tq+1 ∈ [t1, t2],

Z(t2) +
∫ tq+1

t2
Φ3(θ, X, Y, Z)dθ, i f tq+1 ∈ [t2, t3],

Z(t3) +
ξ

Γ(r) ∑
q
�=3

∫ tq+1
t�

θξ−1(tq+1 − θ)r−1Φ3(θ, X, Y, Z)dθ, tq+1 ∈ [t3, T ].

(67)

We now use the Lagrangian polynomial piecewise interpolation in the interval [tq, tq+1] to
approximate the kernels within the integrals as follows:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uq(θ) =
θ − tq−1

tq − tq−1
tξ−1
q Φ1(tq, Xq, Yq, Zq),

− θ − tq

tq − tq−1
tξ−1
q−1Φ1(tq−1, Xq−1, Yq−1, Zq−1),

Vq(θ) =
θ − tq−1

tq − tq−1
tξ−1
q Φ2(tq, Xq, Yq, Zq),

− θ − tq

tq − tq−1
tξ−1
q−1Φ2(tq−1, Xq−1, Yq−1, Zq−1),

Wq(θ) =
θ − tq−1

tq − tq−1
tξ−1
q Φ3(tq, Xq, Yq, Zq),

− θ − tq

tq − tq−1
tξ−1
q−1Φ3(tq−1, Xq−1, Yq−1, Zq−1).

(68)

By using these approximations, the system of Equation (67), takes the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xq+1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

X(0) +
∫ tq+1

0 Φ1(θ, X, Y, Z)dθ, i f tq+1 ∈ [0, t1],

X(t1) +
ξ

Γ(r) ∑
q
�=1

∫ tq+1
t�

θξ−1(tq+1 − θ)r−1Uq(θ)dθ, tq+1 ∈ [t1, t2],

X(t2) +
∫ tq+1

t2
Φ1(θ, X, Y, Z)dθ, i f tq+1 ∈ [t2, t3],

X(t3) +
ξ

Γ(r) ∑
q
�=3

∫ tq+1
t�

θξ−1(tq+1 − θ)r−1Uq(θ)dθ, tq+1 ∈ [t3, T ],

Yq+1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Y(0) +
∫ tq+1

0 Φ2(θ, X, Y, Z)dθ, i f tq+1 ∈ [0, t1],

Y(t1) +
ξ

Γ(r) ∑
q
�=1

∫ tq+1
t�

θξ−1(tq+1 − θ)r−1Vq(θ)dθ, tq+1 ∈ [t1, t2],

Y(t2) +
∫ tq+1

t2
Φ2(θ, X, Y, Z)dθ, i f tq+1 ∈ [t2, t3],

Y(t3) +
ξ

Γ(r) ∑
q
�=3

∫ tq+1
t�

θξ−1(tq+1 − θ)r−1Vq(θ)dθ, tq+1 ∈ [t3, T ],

Zq+1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Z(0) +
∫ tq+1

0 Φ3(θ, X, Y, Z)dθ, i f tq+1 ∈ [0, t1],

Z(t1) +
ξ

Γ(r) ∑
q
�=1

∫ tq+1
t�

θξ−1(tq+1 − θ)r−1Wq(θ)dθ, tq+1 ∈ [t1, t2],

Z(t2) +
∫ tq+1

t2
Φ3(θ, X, Y, Z)dθ, i f tq+1 ∈ [t2, t3],

Z(t3) +
ξ

Γ(r) ∑
q
�=3

∫ tq+1
t�

θξ−1(tq+1 − θ)r−1Wq(θ)dθ, tq+1 ∈ [t3, T ].

(69)

Using the Lagrangian polynomial piecewise interpolation and integration, we derive
the numerical scheme for the proposed problem as follows:
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Xq+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X(0) + 3Δt
2 Φ1(tq, Xq, Yq, Zq)− Δt

2 Φ1(tq−1, Xq−1, Yq−1, Zq−1); tq, tq−1 ∈ [0, t1],

X(t1) +
ξhr

Γ(r+2) ∑
q
�=1

[
tξ−1
� Φ1(t�, X�, Y�, Z�)

(
(q + 1− �)r(q− � + 2 + r)

−(q− �)r(q− � + 2 + 2r)
)
− tξ−1

�−1Φ1(t�−1, X�−1, Y�−1, Z�−1)

×
(
(q− � + 1)r−1 − (q− �)r(q− � + 1 + r)

)]
; t�, t�−1 ∈ [t1, t2],

X(t2) +
3Δt

2 Φ1(tq, Xq, Yq, Zq)− Δt
2 Φ1(tq−1, Xq−1, Yq−1, Zq−1); tq, tq−1 ∈ [t2, t3],

X(t3) +
ξhr

Γ(r+2) ∑
q
�=3

[
tξ−1
� Φ1(t�, X�, Y�, Z�)

(
(q + 1− �)r(q− � + 2 + r)

−(q− �)r(q− � + 2 + 2r)
)
− tξ−1

�−1Φ1(t�−1, X�−1, Y�−1, Z�−1)

×
(
(q− � + 1)r−1 − (q− �)r(q− � + 1 + r)

)]
; t�, t�−1 ∈ [t3, T ],

Yq+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y(0) + 3Δt
2 Φ2(tq, Xq, Yq, Zq)− Δt

2 Φ2(tq−1, Xq−1, Yq−1, Zq−1); tq, tq−1 ∈ [0, t1],

Y(t1) +
ξhr

Γ(r+2) ∑
q
�=1

[
tξ−1
� Φ2(t�, X�, Y�, Z�)

(
(q + 1− �)r(q− � + 2 + r)

−(q− �)r(q− � + 2 + 2r)
)
− tξ−1

�−1Φ2(t�−1, X�−1, Y�−1, Z�−1)

×
(
(q− � + 1)r−1 − (q− �)r(q− � + 1 + r)

)]
; t�, t�−1 ∈ [t1, t2],

Y(t2) +
3Δt

2 Φ2(tq, Xq, Yq, Zq)− Δt
2 Φ2(tq−1, Xq−1, Yq−1, Zq−1); tq, tq−1 ∈ [t2, t3],

Y(t3) +
ξhr

Γ(r+2) ∑
q
�=3

[
tξ−1
� Φ2(t�, X�, Y�, Z�)

(
(q + 1− �)r(q− � + 2 + r)

−(q− �)r(q− � + 2 + 2r)
)
− tξ−1

�−1Φ2(t�−1, X�−1, Y�−1, Z�−1)

×
(
(q− � + 1)r−1 − (q− �)r(q− � + 1 + r)

)]
; t�, t�−1 ∈ [t3, T ],

Zq+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z(0) + 3Δt
2 Φ3(tq, Xq, Yq, Zq)− Δt

2 Φ3(tq−1, Xq−1, Yq−1, Zq−1); tq, tq−1 ∈ [0, t1],

Y(t1) +
ξhr

Γ(r+2) ∑
q
�=1

[
tξ−1
� Φ3(t�, X�, Y�, Z�)

(
(q + 1− �)r(q− � + 2 + r)

−(q− �)r(q− � + 2 + 2r)
)
− tξ−1

�−1Φ3(t�−1, X�−1, Y�−1, Z�−1)

×
(
(q− � + 1)r−1 − (q− �)r(q− � + 1 + r)

)]
; t�, t�−1 ∈ [t1, t2],

Z(t2) +
3Δt

2 Φ3(tq, Xq, Yq, Zq)− Δt
2 Φ3(tq−1, Xq−1, Yq−1, Zq−1); tq, tq−1 ∈ [t2, t3],

Z(t3) +
ξhr

Γ(r+2) ∑
q
�=3

[
tξ−1
� Φ3(t�, X�, Y�, Z�)

(
(q + 1− �)r(q− � + 2 + r)

−(q− �)r(q− � + 2 + 2r)
)
− tξ−1

�−1Φ3(t�−1, X�−1, Y�−1, Z�−1)

×
(
(q− � + 1)r−1 − (q− �)r(q− � + 1 + r)

)]
; t�, t�−1 ∈ [t3, T ],

(70)

5. Simulations of the Numerical Results

In this portion of the manuscript, simulations of the numerical results derived in
Section 4 are performed. We take the initial values as X(0) = 250, Y(0) = 0, Z(0) = 0,

153



Fractal Fract. 2024, 8, 638

and a = 0.054736, b = 0.0152704, c = 0.0093906 [11]. We present the numerical results
graphically in Figures 1–3 for different fractional orders using the fractal order ξ = 1.

Figure 1. Simulation of BSP quantity in blood over time, corresponding to different fractional-order
values using fractal order ξ = 1.

Figure 2. Simulation of BSP quantity in the liver over time, corresponding to different fractional-order
values using fractal order ξ = 1.

Figure 3. Simulation of BSP quantity in bile over time, corresponding to different fractional-order
values using fractal order ξ = 1.
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Here, we present the numerical solutions for various classes of the proposed model
against different fractal-fractional-order values in Figures 4–6.

Figure 4. Simulation of BSP quantity in blood over time, corresponding to different fractal-fractional-
order values.

Figure 5. Simulation of BSP quantity in the liver over time, corresponding to different fractal-
fractional-order values.

Figure 6. Simulation of BSP quantity in bile over time, corresponding to different fractal-fractional-
order values.

Here, we present the numerical solutions for various classes of the proposed model
against different fractal-fractional-order values in Figures 7–9.
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Figure 7. Simulation of BSP quantity in blood over time, corresponding to different fractal-fractional-
order values.

Figure 8. Simulation of BSP quantity in the liver over time, corresponding to different fractal-
fractional-order values.

Figure 9. Simulation of BSP quantity in bile over time, corresponding to different fractal-fractional-
order values.

To make a comparison between the proposed fractal-fractional model and its equiva-
lent integer-order variant, we present the plots for integer order as follows.
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6. Discussion

We used a numerical method based on the procedure of the Adam Bashforth method.
This method has increasingly been applied to approximate the solutions of nonlinear
fractal-fractional-order problems. This method has also extensively been used in epidemic
models. However, this method has some limitations as well. For instance, in the case of
oscillatory phenomena, the proposed numerical method suffers from instability like RK-4
(the Runge–Kutta method of order 4). In such a situation, short time intervals should be
used. Moreover, this method does not converge unconditionally. Its convergence depends
on fractional order, time step size, and spatial grid size.

We take different values of fractal-fractional order to simulate and illustrate the result
as shown in the figures. In Figures 1–3, BSP levels in blood, liver, and bile are graphically
shown for a fixed fractal order ξ = 1 and various fractional orders. In Figures 4–9, BSP
levels in blood, liver, and bile are graphically shown for various sets of fractal-fractional
orders. From these simulations, we observe the crossover effects in the BSP level at some
instants of the given time intervals for various values of fractal dimension and fractional
order. In Figure 1, we see that the BSP level in blood quickly decreases in the first 50 min
and then it suddenly changes towards stability. In Figure 4, we observe a fast decline in
the quantity of BSP levels in blood for varying ξ in the interval (0, 1) and taking the same
fractional order as in Figure 1. In Figure 2, we see that the quantity of the BSP level in the
liver first increases and then shows a decline after observing crossover effects for a fixed
fractal order ξ = 1 and various fractional orders. In Figure 5, we observe a fast decline in
the quantity of the BSP level in the liver for varying ξ in the interval (0, 1) and taking the
same fractional order as in Figure 3. In Figure 3, we see that the quantity of the BSP level in
bile smoothly increases and reaches its peak at point 700 for a fixed fractal order ξ = 1 and
various fractional orders. In Figure 6, we observe that the quantity of the BSP level in bile
reaches its peak earlier for varying ξ in the interval (0, 1) and taking the same fractional
order as in Figure 3. From Figures 4–9, it is obvious that the decay process is faster at a
lower-order fractional value and larger fractal values. In the same way, the growth process
is faster at a higher fractional order and lower fractal values and vice versa.

We compare the proposed fractal-fractional model and its equivalent integer-order
variant graphically. We see that in the integer-order plot given in Figure 10, there is only one
option to be considered, while in the case of the fractal-fractional-order model, we obtain
multiple choice graphs for each class of the considered model for various fractal-fractional
values. The fractal-fractional values are arbitrary. We can choose any value to simulate the
results. From this discussion and interpretation, the significance of fractal-fractional order
derivatives is obvious.

Figure 10. Numerical simulations of the integer-order model for all three classes of the considered
model.
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7. Conclusions

In this research paper, we extended the concept of piecewise fractal-fractional deriva-
tive to a human liver model that was previously studied in various forms. Conditions for
unique solutions and stability results are carried out for the model under consideration. We
established numerical schemes for both classical and power law kernels of the proposed
problem by using the extended method of ABM and Lagrangian polynomial piecewise
interpolation and simulated the numerical results that visually represent the numerical
solutions at different fractal and fractional values. Our obtained results have the property
of crossover and memory effects that make the results interesting.

In the future, a more realistic model can be considered by adding the recruitment rate
to the model and by modifying the parameters involved in the proposed model.
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Abstract: This work investigates a fractional-order multi-wing chaotic system for detecting weak
signals. The influence of the order of fractional calculus on chaotic systems’ dynamical behavior
is examined using phase diagrams, bifurcation diagrams, and SE complexity diagrams. Then, the
principles and methods for determining the frequencies and amplitudes of weak signals are examined
utilizing fractional-order multi-wing chaotic systems. The findings indicate that the lowest order
at which this kind of fractional-order multi-wing chaotic system appears chaotic is 2.625 at a = 4,
b = 8, and c = 1, and that this value decreases as the driving force increases. The four-wing
and double-wing change dynamics phenomenon will manifest in a fractional-order chaotic system
when the order exceeds the lowest order. This phenomenon can be utilized to detect weak signal
amplitudes and frequencies because the system parameters control it. A detection array is built to
determine the amplitude using the noise-resistant properties of both four-wing and double-wing
chaotic states. Deep learning images are then used to identify the change in the array’s wing count,
which can be used to determine the test signal’s amplitude. When frequencies detection is required,
the MUSIC method estimates the frequencies using chaotic synchronization to transform the weak
signal’s frequencies to the synchronization error’s frequencies. This solution adds to the contact
between fractional-order calculus and chaos theory. It offers suggestions for practically implementing
the chaotic weak signal detection theory in conjunction with deep learning.

Keywords: multi-wing chaotic system; fractional calculus; weak signal detection; deep learning;
MUSIC algorithm

1. Introduction

As a nonlinear signal detection method, chaotic weak signal detection has been studied
for over thirty years. The difference between the chaotic system method and other classical
signal processing techniques is that chaotic systems can resist noise through iteration.
This allows the noise to be much larger than weak signals and achieve a negative signal-
to-noise ratio, which is already superior to the most common amplification methods.
Among numerous weak signal detection methods that can handle noise, the detection
performance of chaotic detection methods is related to the design of chaotic systems. By
increasing the effective number of control parameters in chaotic systems, weaker, smaller
signals can be detected, resulting in higher detection performance limits. Since Birx [1]
proved in 1992 that the Duffing chaotic system can be used for weak signal detection, he is
considered the pioneer of the theory of chaotic weak signal detection. Wang [2] continued
his work on Birx by showing how to detect weak signals using the initial value sensitivity
property of the Duffing system and gave a complete procedure for doing so. In recent years,
researchers have kept a close eye on Duffing systems for weak signal detection, and several
novel theories for gauging the signal detection capability have emerged [3–7]. Meanwhile,
many practical problems have been resolved by applying chaotic weak signal detection
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approaches [8–10]. This shows that the subject of chaos-based weak signal identification
has gained popularity in engineering applications and can potentially tackle problems that
are not well-suited for linear signal detection.

Researchers have employed more chaotic systems to detect signals and have also found
solutions to a few real-world issues to enhance the detection performance further [11–18].
Furthermore, the multi-wing chaotic system has a distinct attractor topology beyond
these additional systems. As a result, this chaotic system likewise displays extremely
complicated features [19–24], which naturally prompts researchers to think of using it
for the detection of weak signals. Li [25] created a nonlinear feedback controller from
chaotic synchronization, stabilized the chaotic system with many wings to the equilibrium
point, and then used the chaotic system’s synchronized state to detect weak signals with
multiple frequencies. In Yan’s [26] study of a multi-wing chaotic system with an infinite
number of equilibrium points, he found that weak signals might be identified by comparing
the fluctuations between four-wing and two-wing chaotic attractors. The viability and
superiority of employing a multi-wing chaotic system for weak signal identification are
amply illustrated by these works.

Due to advancements in chaos theory, fractional-order chaotic systems have grown in
importance within the field of chaos. Additionally, fractional-order calculus has introduced
new features to the field, making fractional-order chaotic systems highly relevant as a
research hotspot with significant potential for engineering applications [27–31]. In all
chaotic applications, fractional-order chaotic systems for the detection of weak signals have
emerged as a state-of-the-art part of chaotic weak signal detection [32–36].

Although fractional-order multi-wing systems have been partially studied and ap-
plied [37–40], research on how to use such systems for weak signal detection is rare,
especially in demonstrating the advantages of fractional calculus. Secondly, how to apply
the existing theory of chaotic weak signal detection to practical device design is also a
major obstacle to the development of this theory. Finally, deep learning image recognition
is a very mature technology, and in the state criteria of chaotic systems, the attractor graph
method is a classic method. However, the development of combining the attractor graph
method with deep learning image recognition and introducing deep learning into chaotic
weak signal detection is still blank.

Therefore, in order to address the above issues, in this paper, we researched the
application of fractional-order multi-wing chaotic systems in weak signal detection. Firstly,
the multi-wing chaotic system will be rewritten into the fractional-order form, because
the fractional-order system is more consistent with the actual physical model. Then the
influence of order parameters in fractional-order calculus on the characteristics of chaotic
systems is analyzed. Lastly, weak signal detection was accomplished using this fractional-
order chaotic system. Using the difference in the number of four-wing and two-wing
chaotic attractor wings, a chaotic array represents the difference between weak signals
while detecting their amplitude. In determining the frequency of the weak signal, a
fractional-order multi-wing chaotic synchronization system is designed which is built
using the drive–response method. If the weak signal is added to the driving part, the
synchronization error of this system will vary with different frequencies of the weak
signal. This system then uses a multi-signal classification (MUSIC) algorithm to estimate
the weak signal frequencies by converting the weak signal frequencies into a chaotic
synchronization error.

The remainder of the paper is summarized as follows after the introduction: Section 2
presents the system model of the fractional-order multi-wing chaotic system and employs
phase diagrams, equilibrium points, bifurcation diagrams, complexity, and other techniques
to assess the dynamics features. Section 3 covers the identification of weak signals using
a fractional-order multi-wing chaotic system. It divides the procedure into two parts:
amplitude detection and frequency detection. It also provides the detection principle and
discusses using the chaotic array and MUSIC methods for processing data in real-world
scenarios. Section 4 concludes the paper at the end.

161



Fractal Fract. 2024, 8, 417

2. Fractional-Order Multi-Wing Chaotic System Model and Dynamic
Characteristics Analysis

2.1. Fractional-Order Multi-Wing Chaotic System Model

A non-autonomous, multi-wing chaotic system was proposed by Yan [26]. It has com-
plicated dynamical features, including the generation of symmetric attractors, an infinite
number of equilibrium points, and a driving amplitude that affects the number of wings.
The following is the equation: ⎧⎪⎨⎪⎩

ẋ =− ax + byz

ẏ =cy− xz

ż =− z + xy + G

(1)

where G is the external driving force signal, a, b and c are positive parameters, x, y, and z
are state variables, and the amplitude r and frequency ω are often included in G. As a result,
this system can be employed as a weak signal detection system. Nevertheless, there are still
issues with this detection system. The main one is that the frequency and amplitude r do
not regulate the appearance of chaos in the numerical region of all standard weak signals,
which leads to the creation of detection blind zones and lowers the detection performance.

Therefore, using fractional-order calculus, Equation (1) is enhanced in this study to
create a new 3D fractional-order system that is more suited for weak signal detection. This
new system can be stated as: ⎧⎪⎨⎪⎩

Dqx =− ax + byz

Dqy =cy− xz

Dqz =− z + xy + G

(2)

where G is the external driving force signal, x, y, and z are the state variables, a, b, and c are
the positive parameters, and q is the derivative order. D is the fractional-order differential
established by Caputo. A few fundamental characteristics of system Equation (2) are
examined next.

2.2. Dissipativity and the Existence of an Attractor

The divergence can be used to calculate the dissipativity of the chaotic equations [41],
and the exponential constraint rate of system Equation (2) is:

ΔV =
∂ẋ
∂x

+
∂ẏ
∂y

+
∂ż
∂z

(3)

For the proposed system, ΔV is −a + c − 1, and for the chosen set of parameters, it
is equal to −4. This result means that all system orbits will eventually be confined to a
subset of zero volume, i.e., system Equation (2) is dissipative. This dissipative nature of the
system guarantees the existence of an attractor for the system.

So the numerical approximate solution of the fractional-order multi-wing chaotic
system can be obtained through calculation, which can be used to draw the attractor
phase diagram. For the approximate solution, we use the Grünwald–Letnikov approxima-
tion formula based on the Riemann–Liouville definition. The general numerical solution
expression for fractional differential equations using this method is:⎧⎪⎪⎨⎪⎪⎩

aDq
t y(t) = f (y(t), t)

y(tk) = f (y(tk), tk)× hq −
k

∑
j=ν

c(q)j y(tk−j)
(4)

where
c(q)0 = 1, c(q)j = (1− 1 + q

j
)× c(q)j−1. (5)
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According to the existing studies on chaotic systems of integer order, let q = 0.95,
a = 4, b = 8, c = 1, G = r × sin(ω × t); take r = 1.126, and ω = 1. The initial values are
taken as [x, y, z] = [0.1; 0.1; 0.1]. This chaotic system forms a four-wing chaotic attractor as
shown in Figure 1.

Figure 1. If q = 0.95, a = 4, b = 8, c = 1, G = r×sin(ω × t), r = 1.126, ω = 1, and the starting
value of (x, y, z) = [0.1; 0.1; 0.1], then a fractional-order multi-wing chaotic system has four wings in
its attractor.

2.3. Equilibrium Analysis

Drive force signal G governs system Equation (2), which is non-autonomous. As a result,
the left side of system Equation (2) must be set to zero to compute the equilibrium point.⎧⎪⎨⎪⎩

0 =− ax + byz

0 =cy− xz

0 =− z + xy + G

(6)

Then, we may determine that, at this moment, the equilibrium points of Equations (1)
and (2) are the same and that infinite equilibrium points exist with infinite driving signal
G values. Consequently, as indicated in Table 1, they are grouped to obtain five different
types of equilibrium points.

Table 1. Equilibrium points of system Equation (2).

Equilibrium Point State Variable x State Variable y State Variable z

S0 0 0 0
S1

√
1−√

2G
√

1−√2G
2

√
1
2

S2 −
√

1−√
2G −

√
1−√2G

2

√
1
2

S3 −
√

1 +
√

2G
√

1+
√

2G
2 −

√
1
2

S4
√

1 +
√

2G −
√

1+
√

2G
2 −

√
1
2

To get the Jacobian matrix, linearize system Equation (2) at the equilibrium points
(x∗, y∗, z∗):

J =

⎡⎢⎣− 4 8z∗ 8y∗

− z∗ 1 − x∗

y∗ x∗ − 1

⎤⎥⎦. (7)
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Let det(λE− J) = 0; obtain the corresponding characteristic polynomial as:

λ3 + A2λ2 + A1λ + A0 = 0. (8)

where
A2 =4,

A1 =− 1− 8(y∗)2 + 8(x∗)2 + (z∗)2,

A0 =− 4 + 16x∗y∗z∗ + 8(y∗)2 + 4(x∗)2 + 8(z∗)2.

(9)

The eigenvalues of the equilibrium point fulfill Re[λ] < 0 if it is stable. According
to the Routh–Hurwitz criterion, the equilibrium point is only stable when A2 > 0, A0 > 0
and A2 × A1 − A0 > 0. Given the conditions of this paper, we select G = 0, 1, and 5,
respectively, because the size of G impacts each equilibrium point, and G also affects the
system’s ability to identify weak signals. Table 2 displays the equilibrium point’s stability.

Table 2. Stability of equilibrium points of system Equation (2).

Value of Driving Signal G Eigenvalues at Equilibrium
Point S0

Eigenvalues at Equilibrium
Point S1 S2

Eigenvalues at Equilibrium
Point S3 S4

0 −4, −1, 1 Unstable Saddle
Point

−4.7186, 0.3593 ± 1.8060i
Unstable Saddle Point

−4.7186, 0.3593 ± 1.8060i
Unstable Saddle Point

1 −1, −1.5 ± 1.3229i stable
Focus

0.8128, −2.4064 ± 1.5374i
Unstable Saddle Point

−5.8526, 0.9263 ± 2.3962i
Unstable Saddle Point

5 −1, −1.5 ± 13.9194i stable
Focus

2.5574, −3.2787 ± 5.2185i
Unstable Saddle Point

−8.3744, 2.1872 ± 3.2614i
Unstable Saddle Point

According to Table 2, the equilibrium point S0 belongs to the first class of saddle
points, whereas the saddle points S1, S2, S3, and S4 belong to the second class. The first
class of saddle points connects the rings of chaotic attractors that were created around the
second class of saddle points.

M. S. Tavazoei [42] provides the condition for the system to appear as a locally asymp-
totically stable equilibrium point, which can be computed to determine the minimal frac-
tional calculus order in which chaos can arise. The results are as follows:

|arg(eig(J))| < qπ

2
.

As shown in Table 2, the necessary condition for the existence of chaotic attractors in
system Equation (2) at a = 4, b = 8, and c = 1 is q > 0.875, which means the total order is
2.625, and this value decreases with the increase of G.

2.4. Dynamic Characteristics under the Influence of Order

The integer-order chaotic system can be considered a specific fractional-order system
by the theory of fractional-order calculus. Except for order, the remaining parameters of a
fractional-order chaotic system then influence the chaotic system in a way comparable to
the law of an integer-order system. As a result, we solely consider how the additional order
parameter affects the fractional-order multi-wing chaotic system’s dynamic properties. A
bifurcation diagram and SE complexity diagram are used for this. The result is shown in
Figure 2:
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Figure 2. Bifurcation diagram and SE complexity diagram of the fractional-order multi-wing chaotic
system Equation (2) varying with parameter q, where a = 4, b = 8, c = 1, ω = 1, G = r×sin(ω × t),
r = 1.126, and ω = 1. The value range of q is from 0.85 to 1.15.

The chaotic phenomenon is evident in the range of [0.85, 1.05] in Figure 2, which is
consistent with the results computed in the preceding section. Furthermore, the chaotic
system ceases to be chaotic when the order exceeds 1.05, demonstrating how differing
fractional-order calculus orders alter the remaining parameters’ control range. Thus,
the advantage of the fractional-order chaotic system is demonstrated by the fact that,
by altering the order, it can gain a more extensive chaos interval or period window than
the integer-order chaotic system’s fixed influence range of each parameter.

Next, taking orders of 0.9 and 0.95 as examples, we will compare the influence of G
values on the state of chaotic systems at different orders. The results are shown in Figure 3:

Figure 3. Bifurcation diagram of the fractional-order multi-wing chaotic system Equation (2) varying
with parameter r, where G = r×sin(ω × t), a = 4, b = 8, c = 1, ω = 1, and q = 0.9 in the left panel,
q = 0.95 in the right panel, and the value range of r is from 0 to 1.4.

From Figure 3, it can be seen that after changing the order value from 1, the length
of the chaotic region becomes significantly longer, and the number of occurrences of the
period window becomes less. This suggests fewer blind spots for detection and a more
comprehensive detection range for weak signal detection with this technique.

3. Weak Signal Detection

The study that is now available indicates that the multi-wing chaotic system Equation (1)
has the property of having switchable numbers of wings, which is achieved by varying the
driving force G. Consequently, this property of the fractional-order chaotic system remains.
Furthermore, this chaotic system possesses the properties of a single-parameter chaotic
system with rapid state change, which is compatible with the chaotic system properties
required in the field of chaotic weak signal detection. Consequently, it is possible to
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convert the information of weak signals into fractional-order multi-wing chaotic systems’
dynamical phenomena and thereafter identify the weak signals.

3.1. Amplitudes Detection of Weak Signals

According to the conventional theory of chaotic weak signal detection, adding a weak
signal will cause the chaotic system to enter a periodic state. At this time, the chaotic
system will undergo chaotic control to revert to its chaotic state, offsetting the added weak
signals and the altered control parameter to obtain the signal for measurement. In this
process, the chaotic state has a higher noise resistance than the periodic state. Therefore,
to circumvent the periodic state’s low robustness to noise, we used the difference between
the four-winged and the two-winged chaotic states in this study to detect the weak signals.

First, we considered the case of a single fractional-order chaotic system as a detection
system when the equations of the system are:⎧⎪⎨⎪⎩

Dqx =− ax + byz

Dqy =cy− xz

Dqz =− z + xy + G + M(t)

(10)

where M(t) = g + Nosie is the addition of a mixed signal made up of noise and the signal
that has to be measured. A portion of the signal to be measured must be known in advance;
g is the same form of the weak signal to be calculated as the drive signal. Considering
Gaussian white noise as the noise and a sinusoidal weak signal with a frequency of 1 rad/s,
M(t) represents the weak signal. The question is how to determine the amplitude of the
weak signal at this particular instant. With q = 0.9, a = 4, b = 8, c = 1, and G = r×sin(t),
the attractor of Equation (10) is displayed as follows when r is between the critical values
of 1.12939796 and 1.12939797.

Figure 4 shows that the attractor of the chaotic system Equation (10) will vary if the
control parameters are altered by 0.00000001. Consequently, it is possible to determine the
variation pattern of control parameters by tracking changes in attractors. The influence of
the signal to be tested is similar to altering the control parameters because both the form
of G and the signal M(t) to be tested are consistent. This allows the attractor’s change to
determine the amplitude of the weak signal that needs to be measured. Numerous studies
have examined the effects of various noise on chaotic systems [43,44], and fractional-order
multi-wing chaotic systems have the inherent ability to withstand noise.

Figure 4. Using the G-algorithm for the numerical approximation of Riemann–Liouville, the attractor
of Equation (10) is projected in the x-y plane, where the parameters are a = 4, b = 8, c = 1, w = 1,
and the time interval is 0.01; r = 1.12939796 on the left, and r = 1.12939797 on the right.

In terms of the performance of individual chaotic detection, there is no essential
difference between fractional-order chaotic systems and integer-order chaotic systems.
However, when establishing a chaotic oscillator array, multiple arrays with order differences
can be established by changing the fractional order. That is why this paper discusses the
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use of chaotic oscillator arrays for weak signal detection. It should be noted that fractional-
order chaotic systems can use distinct fractional-order systems to form arrays, unlike
integer-order systems, which can only modify one parameter. Consequently, the array’s
dimensionality has increased. Once the array is established, variations can be used to
determine the amplitude information of weak signals. Several arrays can be built to
increase precision because this paper’s fractional-order multi-wing chaotic system can
display chaotic events in fractional orders between 0.875 and 1. Here, taking the order
equal to 0.9 as an example, we explain how to use a chaotic oscillator array for detection.

Figure 5 shows that the interval over which the four-wing chaos phenomenon occurs
has a few complex windows. When utilizing an array to detect signals instead of a single
chaotic oscillator, these windows can prevent errors from occurring. The chaotic array
alters due to the addition of various weak signals, as seen in Figure 6.

Figure 5. Chaos oscillator detection array, where the value of r ranges from 1.122 to 1.137, simulation
time is 500, and calculation step size is 0.005.

Figure 6. Chaos oscillator detection array, where the weak signal added on the left is −0.02sin(t),
and on the right it is 0.01sin (t).
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Figure 6 illustrates how the addition of weak signals altered the chaotic array’s proper-
ties, with the direction of the change varying according to whether the signal was positive
or negative. The chaotic array’s wing count will decrease with the addition of a positive
weak signal and rise with the addition of a negative weak signal. Thus, in real-world
applications, the measured signal’s amplitude can be acquired as long as the chaotic array
is located.

From the above analysis, it can be seen that in order to use chaotic arrays to detect weak
signals, it is necessary to identify the state of the chaotic array and obtain information on
the changes in the chaotic array. If the common Lyapunov exponent method is used, each
oscillator needs to be calculated, and the 4× 4 size in this article requires 16 calculations. If
the chaotic phase diagram method is used for discrimination, it reduces the calculation time
and number of calculations, but there is no universally recognized criterion for qualitative
analysis. Therefore, we consider using deep learning image recognition to recognize and
distinguish chaotic phase diagrams.

The manuscript introduces deep learning image recognition into the theory of chaotic
weak signal detection, which is used to quickly identify information in chaotic arrays.
This method has been rare in previous research, and it uses the multi-wing features of
the attractor to simultaneously identify the entire array, reducing the judgment time. In
addition, the main problem of detecting weak signals with chaos is the need to judge the
chaotic state, so currently, commonly used methods make it difficult to design actual signal
detection devices. By establishing a chaotic array to transform weak signals into image
changes in a chaotic array and then using more mature deep learning image recognition
for processing, this design makes the emergence of actual signal detection devices possible.

There are many mature models for deep learning image recognition, and the T-Rex2
model is used in this manuscript. It is open-source and can be used on online websites.
T-Rex2 is an interactive object counting model designed to first detect and then count
any objects. It formulates object counting as an open-set object detection task with the
integration of visual prompts. Users can specify the objects of interest by marking points
or boxes on a reference image, and T-Rex2 then detects all objects with a similar pattern.
Guided by the visual feedback from T-Rex2, users can also interactively refine the counting
results by identifying missing or falsely detected objects.

As a result, we may learn the attractor graph based on two wings by using Figure 4 as
sample data. Equation (7) presents the findings.

From Figure 7, it can be seen that the deep learning image recognition method can
successfully obtain the number of wings of the chaotic attractor based on the number
of samples. So the number of wings of the chaotic arrays in Figures 5 and 6 are 21, 23,
and 20, respectively. It is possible to determine the precise amplitude of the extra-weak
signal by comparing the wing numbers. The actual amplitudes of the weak signals can be
determined to be 0.01×−2 = −0.02 and 0.01× 1 = 0.01, respectively, based on the order
of magnitude involved in building a chaotic oscillator array.

Next, we will consider the detection performance of fractional-order multi-wing
chaotic systems under the conditions selected for this paper. The lowest detectable signal-
to-noise ratio is used to represent the performance, with the specific condition that when the
noise is too large and the attractor phase diagram changes to the point where deep learning
cannot recognize it, it is considered undetectable. When the noise levels are 0.329 and 0.330,
respectively, the results of deep learning image recognition using chaotic attractors are
shown in Figure 8.
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Figure 7. The yellow solid box indicates that users prompt once on one image. This article selects the
double-wing part of the four-wing chaotic attractor. Other different color boxes are automatically
annotated by T-Rex2 and display other images with similar object patterns to the prompt image.
Using the left half of the four-wing attractor as an example, deep learning image recognition results
were able to correctly identify both biplane and four-wing attractors.
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Figure 8. The results of chaotic attractors obtained by adding different levels of noise in deep learning
image recognition.

So according to the formula, the minimum detectable signal-to-noise ratio of a fractional-
order multi-wing chaotic system under the selected conditions is:

SNR = 10 ∗ log(0.01/0.329) = −34.93db.

3.2. Frequencies Detection of Weak Signals

Currently, frequencies detection can be considered using the sweeping method, but this
method is time-consuming and consumes many hardware resources. Therefore, researchers
have proposed using the method of chaotic synchronization to detect the frequencies of weak
signals. This is because the current research on chaos synchronization has been very in-depth,
and many different synchronization methods have been proposed [45,46]. The drive–response
method is a very classic chaos synchronization method. The use of the drive–response chaotic
system to detect the frequencies of weak signals is based on the principle of using an applied
weak signal to change the synchronization error of the chaotic system, and this error is linearly
correlated with the applied weak signal. Therefore, the frequencies of the weak signal can
be obtained by calculating the frequencies of the error value. The designed driving and
controlled response systems are shown in Equations (11) and (12).⎧⎪⎨⎪⎩

Dqx =− ax1 + by1z1

Dqy =cy1 − x1z1

Dqz =− z1 + x1y1 + G

(11)

⎧⎪⎨⎪⎩
Dqx =− ax2 + by2z2 − ux

Dqy =cy2 − x2z2 − uy

Dqz =− z2 + x2y2 + G − uz

(12)

The terms ux, uy, and uz in system Equation (12) are nonlinear controllers. Let
the synchronization error between system Equation (11) and system Equation (12) be
ex = x2 − x1, ey = y2 − y1, and ez = z2 − z1. Then the synchronization error is the dif-
ference between Equations (11) and (12). That is, the following synchronization error of
fractional-order chaotic systems is obtained:⎧⎪⎨⎪⎩

Dqex =− aex + b(eyez + eyz1 + ezy1)− ux

Dqey =cey − (exez + exz1 + ezx1)− uy

Dqez =− ez + exey + exy1 + eyx1 − uz

(13)
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The synchronization controller is designed as follows:⎧⎪⎨⎪⎩
ux =b(eyez + eyz1 + ezy1)

uy =cey − (exez + exz1 + ezx1) + kyey

uz =exey + exy1 + eyx1

(14)

Bringing system Equation (14) into system Equation (13) yields the final synchroniza-
tion error, as shown in system Equation (15).⎧⎪⎨⎪⎩

Dqex =− aex

Dqey =kyey

Dqez =− ez

(15)

Since the fractional-order order 0 < q < 1 in this paper, the Lyapunov function E is con-
structed according to the sufficient condition for stability of fractional-order systems [47,48]:

E(ex, ey, ez) =
1
2
(e2

x + e2
y + e2

z).

The derivative is then obtained as:

Ė = ėxex + ėyey + ėzez = −ae2
x − ke2

y − e2
z .

It is obvious that the synchronization error is asymptotically stable; thus, we are able
to show that the drive and response systems Equations (11) and (12) are synchronized,
as shown in Figure 9.

Figure 9. The synchronization error of the state variables x, y, and z when the system Equations (11)
and (12) are synchronized.

Therefore, synchronization errors can be used to observe changes in the drive–response
system when detecting the signal’s frequencies. For instance, the equation for driving the
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system becomes as follows when a mixed signal, S(t), is added to the third component in
system Equation (11): ⎧⎪⎨⎪⎩

Dqx =− ax + byz

Dqy =cy− xz

Dqz =− z + xy + G + S(t)

(16)

Thus, S(t) will enter the chaotic system’s iteration in system (16), and S(t) will not
change the chaotic system’s dynamic properties. On the other hand, if S(t) has the same
form as G, then altering the system’s parameters equals modifying the chaotic system’s
dynamic properties. As seen in Figure 10, this will modify the chaotic synchronization
system’s synchronization error.

Figure 10. After adding S(t) of different frequencies to system Equation (16), the error between the
selected state variables z in the figure show the synchronization error of the chaotic synchronization
system , where S(t) = 0.01sin(ω ∗ t), where ω is 1, 5, and 10 rad/s.

Figure 10 illustrates this point. While the chaotic system is stable, varying S(t) will
result in varying synchronization errors, and the frequencies of fluctuations in synchroniza-
tion errors is equal to that of S(t). Thus, it is possible to determine the frequencies of S(t)
by computing the frequencies of synchronization mistakes. Additionally, a weak signal
frequencies was found. The frequencies inside the synchronization error can be obtained in
various ways. Schmidt [49] proposed the MUSIC algorithm, which is used in this paper.
This algorithm can assess the signal’s frequencies and successfully withstand noise. The
following are the primary steps:

1. Use N data points stabilized by the synchronization error, then extract N − M data
points from them as the sample matrix.

2. Find the covariance matrix of the constructed sample. R = 1
N−M ∑N−M

n=1 X(n)XH(n).
3. Perform eigenvalue decomposition of the covariance matrix R. The eigenvalues

are arranged from small to large, and the first m corresponding eigenvectors are taken to
construct the signal eigenmatrix US = [v1, v2, . . . vm]. The rest are used to construct the
noise characteristic matrix UN = [vm+1, vm+2, . . . vM].
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4. Using the frequencies estimation formula, P( f ) = 1
G( f )′UNU′

N G( f ) , where

G( f ) = [1, e−2π f j, . . . , e−2π(M−1) f j], the maximum value of P( f ) calculated is the frequen-
cies of the synchronization error.

Using the above steps, calculate the synchronization error of Figure 10 and obtain
Figure 11.

Figure 11. The result graph of frequencies estimation using the MUSIC algorithm for the stable
synchronization error shows three peaks around 1, 5, and 10 rad/s.

From Figure 11, it can be seen that the three peaks in the resulting graph are around
1, 5, and 10 rad/s, which is consistent with the frequencies of the weak signal we input.
This result indicates that using a synchronous fractional-order multi-wing chaotic system
to detect the frequencies of weak signals is feasible.

4. Conclusions

This paper addresses the potential application of fractional-order multi-wing chaotic
systems for weak signal detection. First, the impact of order in fractional calculus on the dy-
namic properties of chaotic systems is examined. Based on the findings, a 0.9 fractional-order
multi-wing chaotic system is chosen as the weak signal detection system. In the case of
amplitude detection, the various features of chaotic array detection and single detection
oscillators are examined independently. Suppose that frequencies detection of weak signals
is required. In that case, a fractional-order multi-wing chaotic system with drive–response
synchronization is devised to detect the frequencies of the measured signal through changes
in the synchronization error. When processing data, the MUSIC technique measures the
synchronization error and subsequently estimates the frequencies of weak signals. Deep
learning image recognition is used to process the number of wings of chaotic arrays.

The novelty of the work in this paper consists of the following: First, the creation of
chaotic oscillator detection arrays highlights the advantages of fractional-order chaotic
systems. Secondly, using the difference between four-winged chaotic states and double-
winged chaotic states for detection makes both states resistant to noise. Finally, the states
of the chaotic array are identified using deep learning images: a method that significantly
reduces the judgment time compared to the usual Lyapunov method.

This paper still requires some prior knowledge to identify weak signals. Furthermore,
this paper’s correctness could still be enhanced. Therefore, the main problem of chaotic
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weak signal detection theory remains how to detect the frequencies and amplitude of weak
signals simultaneously. The primary issue is that high accuracy increases the approximate
calculation error of fractional calculus and complicates the construction of chaotic arrays
and synchronization. Consequently, the engineering implementation of the suggested
signal detection technique will be the main focus of future research.
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Abstract: This paper introduces a dynamic model that explores smoking and optimal
control strategies. It shows how fractional-order (FO) analysis has uncovered hidden parts
of complex systems and provides information about previously ignored elements. This
paper uses the Bernoulli wavelet operational matrix method and the Adam–Bashforth–
Moulton (ABM) method to analyse this model numerically. The mathematical model is
segmented into five sub-classes: susceptible smokers, ingestion class, unusual smokers,
regular smokers, and ex-smokers. It considers four optimal control measures: an anti-
smoking education campaign, distribution of anti-smoking gum, administration of anti-
nicotine drugs, and governmental restrictions on smoking in public areas. We show in this
model how to control smoking in society strategically.

Keywords: fractional-order model; Caputo derivative; Bernoulli wavelet method; operational
matrix; residual-error analysis; fractional optimum control problem (FOCP)

1. Introduction

Fractional calculus (FC) is a branch of mathematical analysis that studies several
possibilities for defining the differentiation and integration operator’s real or complex
number powers. Fractional derivatives are useful for understanding the memory and
characteristics of different processes and materials. Models based on classical integer order
often overlook or disregard the significant impacts of these effects [1]. FO derivatives and
integrals possess non-local characteristics. In the context of these properties, the future
state of a model is influenced not only by its current state but also by all of its preceding
states [2]. Multiple definitions of fractional derivatives exist. Various researchers have
proposed different approaches to define fractional derivatives. Riemann and Liouville
introduced a power-law-based concept, while Caputo and Fabrizio introduced a derivative
with FO based on the exponential law. Additionally, Atangana and Baleanu suggested an
alternative version of the FO derivative utilizing the generalized Mittag–Leffler function,
which incorporates a non-local and non-singular kernel with strong memory properties. FO
derivatives provide a novel approach for modeling the dynamics of complex phenomena.
FC’s many applications in engineering and the mathematical modeling of physical systems
have attracted much attention recently. FC has applications in mathematics, engineering,
physics, bio-engineering, and economics. Several systems have been described more
precisely and smoothly by fractional differential equations (FDEs).

Fractal Fract. 2025, 9, 583 https://doi.org/10.3390/fractalfract9090583177
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A wavelet originates from a zero point, undergoes alternating periods of rising and
falling, and eventually returns to zero, repeating this pattern one or more times [3]. The
term “omelette”, the French equivalent for wavelet that translates to “small wave”, was
initially introduced by Haar in 1909 and adopted by Morlet and Grossmann in 1984 [4].
Wavelet theory has real-world applications in many exciting fields of science and technology.
The following are several domains where it finds use: music, optics, signal and image
processing, radar technology, nuclear engineering, earthquake prediction, physics, geology,
astronomy, and more [5–12]. Numerical analysis is a branch of mathematics used to
investigate and estimate answers to problems that have not been solved analytically [13].
There are two classifications of wavelets: continuous and discrete. A wavelet transform
represents a function that uses the wavelet technique. It is primarily characterized by a
function called the “mother wavelet”. This is scaled and shifted to generate the various
wavelets. Wavelet analysis allows wavelets to be applied in various areas or domains
using a collection of orthonormal and comparable basis functions defined in time and
space. Consequently, the concept of wavelets was introduced, employing basis functions
localized within finite domains. When compared to other numerical methods, wavelets
provide a better approximation due to their ability to identify both sharp irregularities and
smooth perturbations, due to their localization. Consequently, wavelet analysis offers a
more precise description of function properties compared to Fourier analysis [14] and can
accurately represent various operators and functions, as well as being compatible with
quick numerical techniques [15]. In this model, we use the Bernoulli wavelet method
(BWM). The Bernoulli wavelet is preferred over other wavelets, such as Haar, Legendre,
Bernstein, Hermite, etc., for several reasons:

1. It is efficient for representing piecewise smooth functions due to its basis on Bernoulli
polynomials.

2. It has a more straightforward implementation with lower computational complexity.
3. It handles boundary conditions well due to its compact support.
4. It provides smooth approximations compared to Haar’s piecewise constant approxi-

mations.
5. It is accurate for solving numerical problems and significant differential equations.
6. It offers practical multi-resolution analysis for analyzing signals at various scales.

Owing to these properties, Bernoulli wavelets are particularly well-suited for engi-
neering and computational tasks that demand smooth, efficient, and accurate function
representations.

Mathematical modeling involves examining a specific aspect of a real-life problem
using mathematical language and concepts [16]. Understanding how the world and its
mechanisms function requires modeling. It involves representing the world in simpli-
fied models and forms, collaborating with engineers and scientists to address real-world
problems effectively. Furthermore, it has helped reveal various new aspects of issues.
The observer’s viewpoint is critical in the modeling process. It is important to be able
to visualize models mentally. Engineers and scientists employ such techniques to model
and design upcoming technologies. In conjunction with this procedure, prototypes are
frequently employed. A prototype serves as a scaled-down representation of a functional
model. Prototypes are utilized in various situations where there is a requirement to test
or analyze a model without causing any impact or harm to the actual one. Additionally,
using models, one may understand how atoms and particles behave, imagine how our
environment will change, and create a vast range of products, from toy vehicles to actual
cars. Within the realm of nonlinear dynamics and applied sciences, the exploration of
mathematical modeling for infectious diseases in ecology and biology is a captivating
field of study. Within this discipline, there exist abundant opportunities to acquire the
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skills necessary for characterizing the behavior of infectious disease models and assessing
their dynamic properties [17,18]. Mathematical modeling has widespread applications in
applied sciences, particularly FC.

Smoking stands as one of the most significant global health concerns in contemporary
times. A considerable number of individuals lose their lives due to smoking during the
years of most excellent output, as per a report by the World Health Organization (WHO)
on the global smoking epidemic. The adverse effects of this on different physiological
processes contribute to over 5 million deaths annually across the globe, with projections
indicating a potential increase to around 8 million by the year 2030. Smokers face a 70%
elevated likelihood of experiencing a heart attack in comparison to individuals who do
not smoke. The detrimental health impacts of smoking go beyond the individual who
smokes, affecting others as well. Secondhand smoke comprises harmful substances from
both the smoke exhaled and the immediate smoke emitted by burning tobacco, in addition
to the smoke that the smoker directly inhales. Individuals who do not smoke but are
regularly exposed to secondhand smoke have a higher likelihood of being susceptible to
various diseases, such as lung cancer and cardiovascular conditions, similar to smokers [19].
Numerous scientific studies indicate that smoking further heightens the risk of acquiring
ailments such as cancer, cardiovascular disorders, stroke, respiratory conditions, diabetes,
and chronic obstructive pulmonary disease. In addition, smoking increases the risk of
tuberculosis, various ocular conditions, and immune system disorders like rheumatoid
arthritis. There are still social and economic repercussions from smoking, even in nations
with low death rates where its incidence has peaked. It also includes elevated levels of
suffering, illness, and death, the subsequent decline in productivity, and the associated
healthcare expenses [20].

A limited amount of research has been conducted on FOCPs [21,22]. As the need
for practical, precise, and highly accurate systems increases, so does the requirement for
optimal control theories and the corresponding analytical and numerical methods to solve
the associated equations. This study uses the CF and the benefits of FC to provide a
valuable examination of the dynamical behavior of a mathematical model for smoking [23].
Through numerical exploration using the Homotopy Perturbation Method (HPM) and
the Laplace transform combined with the Adomian Decomposition Method (LADM), the
study yields consistent and robust numerical results, providing strong validation for the
model with arbitrary-order derivatives. The findings highlight the significant influence of
various parameters within the model, concluding that FO systems exhibit more complex
dynamics than those with integer-order derivatives. The research supports a system of
smoking, indicating that different psychological and physiological processes are involved
in initiating smoking compared to developing a regular smoking habit [24]. They employed
the constant proportional Caputo–Fabrizio (CPCF) operator to construct a FO system that
captures the harmful effects of smoking on society. Additionally, they conducted qualitative
and quantitative evaluations of the suggested methodology and thoroughly examined the
CPCF operator. Also, they applied the iterative Laplace transform method to develop a
numerical simulation for a specific set of FDEs.

As per the findings of this study, the application of the BWM to the smoking model
has yet to be explored. Therefore, our objective is to observe the model’s behavior when
this method is employed. This research uses the Bernoulli wavelet’s operational matrix
approach to compute the nonlinear FO smoking model. A comparative analysis is con-
ducted between the outcomes obtained through the fractional ABM numerical method and
those derived from various scenarios. This study fills this gap using the optimal control
technique and offering a numerical approach. The ABM method offers significant benefits
in fractional systems due to its higher accuracy, enhanced stability, and adaptability. It
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balances computational efficiency and precision by using a correction step to refine predic-
tions, making it ideal for fractional dynamics with memory effects. Despite these strengths,
the ABM method has more complex implementation requirements, relies on precise initial
values, and may be less effective for highly stiff systems. Then, we use optimal control
theory in this model. This study’s other achievement is the introduction of four controls
designed to effectively decrease the number of individuals who smoke and simultaneously
boost the number of people who successfully quit smoking for good. To the author’s
knowledge, thinking methods have yet to be utilized to solve the proposed model thus
far. This paper’s remaining sections are organized as follows: A thorough description of
derivatives with non-integer order is given in Section 2. We analyze the fractional smoking
system in Section 3. The fundamental idea of the Bernoulli wavelet’s operational matrix
(BWOM) is summed up in Section 4. We apply BWM and ABM to the smoking system in
Section 5 to obtain an approximate solution. The formulation of optimal controls and their
solution are covered in Section 6. Section 7 displays the simulation results and the following
discussion. The concluding section summarizes the research findings and concludes.

2. Preliminaries

This section explores the fundamental ideas and symbols associated with FC.
N represents the natural number set.

Definition 1 ([25]). The description of the Riemann–Liouville arbitrary integral of order σ > 0 for
a function Ss is as follows:

Jσ
0 Ss(t) =

1
Γ(σ)

∫ t

0
(t− ξ)σ−1Ss(ξ)dξ, t > 0, (1)

where the symbol Γ(.) denotes the Gamma function.

Definition 2 ([25,26]). Consider the range where 0 < m− 1 < σ < m, with m belonging to the
set of natural numbers. The Caputo derivative of order σ for a function Ss is defined as follows:

CDσ
0 Ss(t) = Jm−σ

0

(
dmSs

dtm

)
(t),

CDσ
0 Ss(t) =

1
Γ(m− σ)

∫ t

0
(t− ξ)m−σ−1 dmSs

dξm (ξ)dξ. (2)

These are the essential characteristics we have:

CDσ
0 (Jσ

0 Ss)(t) = Ss(t),

and

Jσ
0

(
CDσ

0 Ss

)
(t) = Ss(t)−

m−1

∑
k=0

dkSs

dtk

(
0+

) tk

k!
.

3. FO Smoking Model

The choice of a fractional derivative is essential when studying memory-dependent
dynamics, such as addiction processes, relapse mechanisms, and long-term behavioural
changes in smoking. Both the Caputo and Riemann–Liouville (RL) definitions are mathe-
matically sound, but for several important reasons, the Caputo derivative is more appropri-
ate for simulating real-world behavioural systems:

1. The RL derivative of a constant is not zero. This leads to fractional initial conditions,
which do not translate well to real-world measurements. However, the Caputo
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derivative vanishes for constants, and its initial conditions are standard, making it
easier to match with actual data.

2. The Riemann–Liouville (RL) approach calculates the average of past cravings first,
then looks at how this average changes. This has sometimes given too much weight
to old cravings in unrealistic ways. In contrast, the Caputo method looks at how
cravings change moment-to-moment first, then considers how these changes build
up over time. This makes more sense for addiction because people do not respond to
their average past craving—they react to sudden changes, like a bad withdrawal day
or stressful event, triggering stronger urges.

3. RL derivatives have produced unrealistic singularities at t = 0. For finite initial
conditions, Caputo guarantees smooth solutions. Because Caputo has well-posed initial
conditions, the statistical fitting of fractional models to clinical data is more stable.

For these reasons, the manuscript employs the Caputo framework to capture memory-
dependent smoking dynamics accurately [24].

C
0 Dσ

t Ss(t) = e1 − e2Ss(t)Ic(t) + e3Rs(t)− e4Ss(t),
C
0 Dσ

t Ic(t) = e2Ss(t)Ic(t)− e5 Ic(t)Us(t)− (e6 + e4)Ic(t),
C
0 Dσ

t Us(t) = e5 Ic(t)Us(t)− (e7 + e8 + e4)Us(t), (3)
C
0 Dσ

t Rs(t) = e7Us(t)− (e9 + e4 + e3)Rs(t),
C
0 Dσ

t Es(t) = e9Rs(t)− e4Es(t).

The initial conditions are given as [23],

Ss(0) = ζ1, Ic(0) = ζ2, Us(0) = ζ3, Rs(0) = ζ4, Es(0) = ζ5, (4)

where

ζ1 = 68, ζ2 = 40, ζ3 = 30, ζ4 = 20, ζ5 = 15. (5)

Here, 0 < σ ≤ 1, CDσ
0 Caputo derivative σ. The different type of smokers are susceptible

smokers Ss, ingestion class Ic, unusual smokers Us, regular smokers Rs, and ex-smokers Es.
e1 is the enlistment rate, e2 is the rate at which Ss transitions to Ic, e5 is the rate at

which Ic transitions to Us, e7 is the rate at which Us transitions to Rs, e9 is the migration
rate, e4 is the natural fatality rate, and e3 is the recovery rate, while e6 and e8 represent the
fatality rates due to snuffing and smoking, respectively.

4. Characteristics and Function Approximation of the Bernoulli Wavelet

Wavelets are a category of functions generated by consistently altering both the trans-
lation, denoted as ‘b’, and the dilation, represented by ‘a’, of a single function Ξ(t), which
is referred to as the mother wavelet. When both the translation and dilation parameters are
in constant flux, the resulting wavelet family is as follows [27]:

Ξa,b(t) =| a |−1/2 Ξ
(

t− b
a

)
, a, b ∈ R, a �= 0. (6)

If we limit the values of the parameters a and b to discrete values, we get a = a−k
0 ,

b = nb0a−k
0 , a0 > 1, b0 > 0, where n and k are positive integers, The discrete wavelet

family that we have is as follows:

Ξk,n(t) =| a |k/2 Ξ
(

ak
0t− nb0

)
.
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The wavelet basis in the L2(R)′s space is constructed using Ξk,n(t). Particularly, when
a0 = 2 and b0 = 1, Ξk,n(t) constitute an orthonormal basis.

Bernoulli wavelets, denoted as Ξn,m(t) = Ξ(k, n, m, t), possess four parameters:
n = 0, 1, 2, 3, . . . , 2k−1 − 1, where k is any positive integer. These wavelets are associ-
ated with Bernoulli polynomials of degree m, and t represents the normalized time degree.
Their definition pertains to the semi-interval [0, 1).

Ξn,m(t) =

⎧⎨⎩2
k−1

2 β̃m

(
2k−1t− n

)
, n

2k−1 ≤ t < n+1
2k−1 ,

0, otherwise.
(7)

Here,

β̃m(t) =

⎧⎪⎨⎪⎩
1, m = 0,

1√
(−1)m−1(m!)2

(2m)! β2m

βm(t), m > 0, (8)

and m = 0, 1, 2, . . . , M − 1, where βm(t) denotes the Bernoulli polynomials with order m,
which are described on interval [0, 1] as [28]

βm(t) =
m

∑
i=0

(mCi)βm−iti. (9)

In addition, we obtain polynomials of these particular types, where βi = βi(0),
i = 0, 1, 2, . . . , m and these βi values correspond to Bernoulli numbers.

β0(t) = 1, β1(t) = t− 1
2

, β2(t) = t2 − t +
1
6

, β3(t) = t3 − 3
2

t2 +
1
2

t.

A function f defined within the interval [0, 1) can be expressed using Bernoulli
wavelets in the following manner:

f (t) =
∞

∑
n=0

∞

∑
m=0

cn,mΞn,m(t). (10)

If the series in Equation (10) is not finite and is truncated, it has been expressed in the
following alternative form:

f (t) ! fm̂(t) =
2k−1−1

∑
n=0

M−1

∑
m=0

cn,mΞn,m(t) = CTΞ(t), (11)

where C and Υ(t) are m̂× 1
(

m̂ = 2k−1 × M
)

column vectors and T represents transposition.
Now,

C =
[
c0,0, c0,1, c0,2, . . . , c0,M−1, . . . , c2k−1−1,0, c2k−1−1,1, . . . , c2k−1−1,M−1

]T
,

=[c1, c2, c3, . . . , cm̂]
T , (12)

and

Ξ(t) =
[
Ξ0,0(t), Ξ0,1(t), . . . , Ξ0,M−1(t), . . . , Ξ2k−1−1,0(t), Ξ2k−1−1,1(t), . . . , Ξ2k−1−1,M−1(t)

]T
,

= [Ξ1(t), Ξ2(t), . . . , Ξm̂(t)]
T . (13)

In this section, we present the Bernoulli Wavelet matrix denoted as φm̂×m̂, which is
defined as φm̂×m̂ = [Ξ

(
2i−1
2m̂

)
], i = 1, 2, 3, . . . , 2k−1M.
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φ12∗12 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 2 2 0 0 0 0 0 0 0 0 0
0 0 0 2 2 2 0 0 0 0 0 0
0 0 0 0 0 0 2 2 2 0 0 0
0 0 0 0 0 0 0 0 0 2 2 2

−2.3094 0 2.3094 0 0 0 0 0 0 0 0 0
0 0 0 −2.3094 0 2.3094 0 0 0 0 0 0
0 0 0 0 0 0 −2.3094 0 2.3094 0 0 0
0 0 0 0 0 0 0 0 0 −2.3094 0 2.3094

0.7454 −2.2361 0.7454 0 0 0 0 0 0 0 0 0
0 0 0 0.7454 −2.2361 0.7454 0 0 0 0 0 0
0 0 0 0 0 0 0.7454 −2.2361 0.7454 0 0 0
0 0 0 0 0 0 0 0 0 0.7454 −2.2361 0.7454

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We have now obtained the Bernoulli wavelet matrix φm̂×m̂ for a specific set of colloca-
tion points given by 2i−1

2m̂ , where k = 3, M = 3.

4.1. Utilizing the Block-Pulse Function, We Can Construct BWOM

In this section, we present the operational matrix for both non-integer and integer
orders of the Bernoulli wavelet, which holds significant importance in our proposed system
for addressing the nonlinear, non-integer-order smoking dynamic model.

With the assistance of the block-pulse function
Block-pulse functions have been outlined within the given time frame [0, tl), [25]

bj(t) =

⎧⎨⎩1, jtl
m̂ ≤ t < (j+1)tl

m̂ ,

0, otherwise,

where j = 0, 1, . . . , m and Bm̂ = [b1, b2, .., bm]. In this study, the block-pulse function demon-
strates beneficial properties. We shall use its characteristics to determine the Bernoulli
wavelet’s operational matrix.

(Jσ
t Bm̂)(t) ∼= FσBm̂(t),

Fσ =
tσ
l

mσ(Γ(σ + 2))

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 ζ1 ζ2 . . . ζm̂−1

0 1 ζ1 . . . ζm̂−2

0 0 1 ζ1
...

...
...

...
. . .

...
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where,
ζl = (l + 1)σ+1 − 2lσ+1 + (l − 1)σ+1, l = 1, 2, 3, . . . , m̂− 1.

We are currently in the process of constructing BWOM to address fractional-order
integration denoted as Pσ,

(Jσ
t ϕ)(t) ∼= Pσ ϕ(t),

then, we get
(Jσ

t ϕ)(t) ∼= (Jσ
t ϕBm̂)(t) = ϕ(Jσ

t Bm̂)(t) ≈ ϕFσBm̂.

Therefore,
Pσ ϕ(t) ∼= ϕ(t)FσBm̂,

Pσ = φm̂∗m̂Fσφ−1
m̂∗m̂.
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Using the previous equations, we have derived the operational matrix Pσ. Finally,
considering specific values k = 2, M = 3, σ = 0.65 and utilizing collocation points 2i−1

2m , we
acquired the operational matrix that is shown below:

P0.65 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.6694 0.7697 0.2839 −0.1021 −0.0318 0.0263
0 0.6694 0 0.2839 0 −0.0318

−0.2297 0.0931 0.1895 −0.0467 0.1821 0.0191
0 −0.2297 0 0.1895 0 0.1821

−0.0832 −0.0819 −0.1364 0.0021 0.1302 −0.0023
0 −0.0832 0 −0.1364 0 0.1302

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The BWOM has been obtained for any arbitrary order in the 0 < σ ≤ 1 range.

4.2. Convergence Analysis

This section is dedicated to providing detailed information on analyzing the conver-
gence of the Bernoulli wavelet function approximation [29].

Theorem 1. As per (11), it is clear that any function Q(t) ∈ L2[0, 1] has been approximated using
Bernoulli wavelets in the following manner.

Q(t) ≈
2k−1−1

∑
n=0

M−1

∑
m=0

cn,mΞn,m(t). (14)

Now, we take M=3 here,

Q(t) ≈
2k−1−1

∑
n=0

2

∑
m=0

cn,mΞn,m(t). (15)

So,

||ε|| =||error(Q(t))||

=

∣∣∣∣∣
∣∣∣∣∣ ∞

∑
n=0

2

∑
m=0

cn,mΞn,m(t)−
2k−1−1

∑
n=0

2

∑
m=0

cn,mΞn,m(t)

∣∣∣∣∣
∣∣∣∣∣ → 0, (k → ∞). (16)

Proof. The orthogonal properties of Bernoulli wavelets, as demonstrated in [30], lead us to
the following conclusion

||ε||2 =

∣∣∣∣∣
∣∣∣∣∣ ∞

∑
n=0

2

∑
m=0

cn,mΞn,m(t)−
2k−1−1

∑
n=0

2

∑
m=0

cn,mΞn,m(t)

∣∣∣∣∣
∣∣∣∣∣
2

. (17)
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By utilizing the norm property of the polynomial Q(t) ∈ L2[0, 1], we have established the
following

||ε||2 =

〈
∞

∑
n=0

2

∑
m=0

cn,mΞn,m(t)−
2k−1−1

∑
n=0

2

∑
m=0

cn,mΞn,m(t),
∞

∑
n=0

2

∑
m=0

cn,mΞn,m(t)

−
2k−1−1

∑
n=0

2

∑
m=0

cn,mΞn,m(t)

〉

=
∫ 1

0

(
∞

∑
n=0

2

∑
m=0

cn,mΞn,m(t)−
2k−1−1

∑
n=0

2

∑
m=0

cn,mΞn,m(t)

)2

dt

=
∫ 1

0

(
∞

∑
n=2k−1

2

∑
m=0

cn,mΞn,m(t)

)2

dt (18)

=
∫ 1

0

∞

∑
n=2k−1

2

∑
m=0

c2
n,mΞ2

n,m(t)

=
∞

∑
n=2k−1

2

∑
m=0

c2
n,m, cn,m = 〈Q(t), Ξn,m(t)〉.

Given that Q(t) is continuous on [0, 1], we can find a value ג > 0 such that the following
condition holds,

|Q(t)| < ,ג ∀t ∈ [0, 1].

When m = 0, we have derived the following from the definition of Bernoulli wavelets

cn,m =〈Q(t), Ξn,m(t)〉

=
∫ 1

0
Q(t)Ξn,m(t)dt

=
∫ n+1

2k−1

n
2k−1

Q(t)2
k−1

2 dt (19)

<2
k−1

2

∫ n+1
2k−1

n
2k−1

dtג

=
ג

2
k−1

2
.

In the given examples, this condition is satisfied only when m = 0. However, when m �= 0,
the following cases apply

cn,m =〈Q(t), Ξn,m(t)〉

=
∫ 1

0
Q(t)Ξn,m(t)dt (20)

=
∫ n+1

2k−1

n
2k−1

Q(t)2
k−1

2
1√

(−1)m−1(m!)2

(2m)! β2m

βm

(
2k−1t− n

)
dt.
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First, we select the value 2k−1 so that 2k−1t − n = u, which gives us t = u+n
2k−1 . Therefore,

dt = 1
2k−1 du. By following a similar approach, we have derived the following.

cn,m =
∫ 1

0
Q
(

u + n
2k−1

)
2

k−1
2

1√
(−1)m−1(m!)2

(2m)! β2m

1
2k−1 βm(u)du

<
ג

2
k−1

2

1√
(−1)m−1(m!)2

(2m)! β2m

∫ 1

0
βm(u)du → 0. (21)

For every positive integer Υ, the following statement is true:

2k−1+Υ

∑
n=2k−1

2

∑
m=0

c2
n,m <

3(Υ + 2ג(1

2k−1 → 0, (k → ∞). (22)

∞

∑
n=2k−1

2

∑
m=0

c2
n,m → 0, (k → ∞). (23)

||ε|| =
(

∞

∑
n=2k−1

2

∑
m=0

c2
n,m

) 1
2

, (k → ∞). (24)

5. Proposed Method

The primary goal of this section is to formulate a smoking model with FO dynamics
by employing the ABM in conjunction with the BWM.

5.1. Experiment of Bernoulli Wavelet Approach on Smoking Model

According to the study’s findings, no investigation has been conducted into applying
the BWM to the smoking model. Thus, we aim to see how the model behaves using this
approach. The nonlinear FO smoking model is calculated in this study using the operational
matrix approach of the Bernoulli wavelet. Let us consider a smoking model (3) with the
initial condition (4). Further, we consider the higher-order derivatives in terms of Bernoulli
wavelet with unknown coefficients, and we get

CDσ
0 Ss(t) = �T

1 Ξ(t),
CDσ

0 Ic(t) = �T
2 Ξ(t),

CDσ
0 Us(t) = �T

3 Ξ(t), (25)
CDσ

0 Rs(t) = �T
4 Ξ(t),

CDσ
0 Es(t) = �T

5 Ξ(t),
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where,

�T
1 =

[
(�1)1,0, (�1)1,1, . . . , (�1)1,M−1, . . . , (�1)2k−1,0, (�1)2k−1,1, . . . , (�1)2k−1,M−1

]T
,

�T
2 =

[
(�2)1,0, (�2)1,1, . . . , (�2)1,M−1, . . . , (�2)2k−1,0, (�2)2k−1,1, . . . , (�2)2k−1,M−1

]T
,

�T
3 =

[
(�3)1,0, (�3)1,1, . . . , (�3)1,M−1, . . . , (�3)2k−1,0, (�3)2k−1,1, . . . , (�3)2k−1,M−1

]T
,

�T
4 =

[
(�4)1,0, (�4)1,1, . . . , (�4)1,M−1, . . . , (�4)2k−1,0, (�4)2k−1,1, . . . , (�4)2k−1,M−1

]T
,

�T
5 =

[
(�5)1,0, (�5)1,1, . . . , (�5)1,M−1, . . . , (�5)2k−1,0, (�5)2k−1,1, . . . , (�5)2k−1,M−1

]T
,

and

Ss(0) = ζ1, Ic(0) = ζ2, Us(0) = ζ3, Rs(0) = ζ4, Es(0) = ζ5.

the vectors denoted as “unknown” and the function Ξ(t) have already been provided. We
are currently utilizing the Riemann–Liouville fractional operator, as deduced from the
subtraction of Equations (3) and (4).(

Jσ
0

CDσ
0

)
Ss(t) =Ss(t)− Ss(0) = Ss(t)− ζ1 = �T

1 PσΞ(t),(
Jσ
0

CDσ
0

)
Ic(t) =Ic(t)− Ic(0) = Ic(t)− ζ2 = �T

2 PσΞ(t),(
Jσ
0

CDσ
0

)
Us(t) =Us(t)−Us(0) = Us(t)− ζ3 = �T

3 PσΞ(t), (26)(
Jσ
0

CDσ
0

)
Rs(t) =Rs(t)− Rs(0) = Rs(t)− ζ4 = �T

4 PσΞ(t),(
Jσ
0

CDσ
0

)
Es(t) =Es(t)− Es(0) = Es(t)− ζ5 = �T

5 PσΞ(t).

Now, we use (25)–(26) we derive from Equation (3)

�T
1 Ξ(t) =e1 − e2

(
�T

1 PσΞ(t) + ζ1

)(
�T

2 PσΞ(t) + ζ2

)
+ e3

(
�T

4 PσΞ(t) + ζ4

)
− e4

(
�T

1 PσΞ(t) + ζ1

)
,

�T
2 Ξ(t) =e2

(
�T

1 PσΞ(t) + ζ1

)(
�T

2 PσΞ(t) + ζ2

)
− e5

(
�T

2 PσΞ(t) + ζ2

)(
�T

3 PσΞ(t) + ζ3

)
− (e6 + e4)

(
�T

2 PσΞ(t) + ζ2

)
,

�T
3 Ξ(t) =e5

(
�T

2 PσΞ(t) + ζ2

)(
�T

3 PσΞ(t) + ζ3

)
− (e7 + e8 + e4)

(
�T

3 PσΞ(t) + ζ3

)
, (27)

�T
4 Ξ(t) =e7

(
�T

3 PσΞ(t) + ζ3

)
− (e9 + e4 + e3)

(
�T

4 PσΞ(t) + ζ4

)
,

�T
5 Ξ(t) =e9

(
�T

4 PσΞ(t) + ζ4

)
− e4

(
�T

5 PσΞ(t) + ζ5

)
.
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Then, we utilize the collocation point (27), which has been written as

�T
1 Ξ(ti) =e1 − e2

(
�T

1 PσΞ(ti) + ζ1

)(
�T

2 PσΞ(ti) + ζ2

)
+ e3

(
�T

4 PσΞ(ti) + ζ4

)
− e4

(
�T

1 PσΞ(ti) + ζ1

)
,

�T
2 Ξ(ti) =e2

(
�T

1 PσΞ(ti) + ζ1

)(
�T

2 PσΞ(ti) + ζ2

)
− e5

(
�T

2 PσΞ(ti) + ζ2

)(
�T

3 PσΞ(ti) + ζ3

)
− (e6 + e4)

(
�T

2 PσΞ(ti) + ζ2

)
,

�T
3 Ξ(ti) =e5

(
�T

2 PσΞ(ti) + ζ2

)(
�T

3 PσΞ(ti) + ζ3

)
− (e7 + e8 + e4)

(
�T

3 PσΞ(ti) + ζ3

)
,

�T
4 Ξ(ti) =e7

(
�T

3 PσΞ(ti) + ζ3

)
− (e9 + e4 + e3)

(
�T

4 PσΞ(ti) + ζ4

)
, (28)

�T
5 Ξ(ti) =e9

(
�T

4 PσΞ(ti) + ζ4

)
− e4

(
�T

5 PσΞ(ti) + ζ5

)
.

∀ i = 1, 2, . . . , m. By transforming Equation (28) into a nonlinear system involving 5 m
unknown vectors, we employ an iterative approach using Matlab to solve this system of
nonlinear equations. Since (28) is reduced, we obtain approximate solutions of the system
of Equation (3).

5.2. ABM Scheme for the Smoking Model

The ABM scheme is the most popular numerical method for solving fractional initial-
value problems of any type [31]. The ABM method’s increased accuracy, stability, and
adaptability make it a valuable tool for fractional systems. It is perfect for fractional dynam-
ics with memory effects because it compromises accuracy and computational efficiency
by refining predictions through a corrective step. A comparison is made between the
results from different scenarios and the fractional ABM numerical technique results. Let us
consider that the following FDE is

C
0 Dσ

t xj(t) = f j(t, xj(t)), xk
j (0) = xk

j0,

k = 0, 1, 2, · · · , "σ#, j ∈ N, (29)

where xk
j0 is the arbitrary real number, σ > 0 and C

0 Dσ
t is the fractional differential operator

in Caputo sense. We analyze the results of the non-linear fractional smoking model using
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the ABM to obtain its numerical solution. Now, let h = T
m̂ , tn = nh, n = 0, 1, 2, · · · , m̂;

then, the corrector values are defined as,

(Ss)n+1 =ζ1 +
hσ

Γ(σ + 2)
(e1 − e2(Ss)

p
n+1(Ic)

p
n+1 + e3(Rs)

p
n+1 − e4(Ss)

p
n+1)

+
hσ

Γ(σ + 2)

n

∑
j=0

σj,n+1(e1 − e2(Ss)j(Ic)j + e3(Rs)j − e4(Ss)j),

(Ic)n+1 =ζ2 +
hσ

Γ(σ + 2)
(e2(Ss)

p
n+1(Ic)

p
n+1 − e5(Ic)

p
n+1(Us)

p
n+1 − (e6 + e4)(Ic)

p
n+1)

+
hσ

Γ(σ + 2)

n

∑
j=0

σj,n+1(e2(Ss)j(Ic)j − e5(Ic)j(Us)j − (e6 + e4)(Ic)j),

(Us)n+1 =ζ3 +
hσ

Γ(σ + 2)
(e5(Ic)

p
n+1(Us)

p
n+1 − (e7 + e8 + e4)(Us)

p
n+1)

+
hσ

Γ(σ + 2)

n

∑
j=0

σj,n+1(e5(Ic)j(Us)j − (e7 + e8 + e4)(Us)j), (30)

(Rs)n+1 =ζ4 +
hσ

Γ(σ + 2)
(e7(Us)

p
n+1 − (e9 + e4 + e3)(Rs)

p
n+1)

+
hσ

Γ(σ + 2)

n

∑
j=0

σj,n+1(e7(Us)j − (e9 + e4 + e3)(Rs)j),

(Es)n+1 =ζ5 +
hσ

Γ(σ + 2)
(e9(Rs)

p
n+1 − e4(Es)

p
n+1)

+
hσ

Γ(σ + 2)

n

∑
j=0

σj,n+1(e9(Rs)j − e4(Es)j,

the corresponding predictor values are given as:

(Ss)
p
n+1 =ζ1 +

1
Γ(σ)

n

∑
j=0

Θj,n+1(e1 − e2(Ss)j(Ic)j + e3(Rs)j − e4(Ss)j),

(Ic)
p
n+1 =ζ2 +

1
Γ(σ)

n

∑
j=0

Θj,n+1(e2(Ss)j(Ic)j − e5(Ic)j(Us)j − (e6 + e4)(Ic)j),

(Us)
p
n+1 =ζ3 +

1
Γ(σ)

n

∑
j=0

Θj,n+1(e5(Ic)j(Us)j − (e7 + e8 + e4)(Us)j), (31)

(Rs)
p
n+1 =ζ4 +

1
Γ(σ)

n

∑
j=0

Θj,n+1(e7(Us)j − (e9 + e4 + e3)(Rs)j),

(Es)
p
n+1 =ζ5 +

1
Γ(σ)

n

∑
j=0

Θj,n+1(e9(Rs)j − e4(Es)j),

where

σj,n+1 =

⎧⎪⎪⎨⎪⎪⎩
nσ+1 − (n− σ)(n + 1)σ, j = 0

(n− j + 2)σ+1 + (n− j)σ+1 − 2(n− j + 1)σ+1, 0 ≤ j ≤ n

1, j = 1

and
Θj,n+1 =

hσ

σ
((n + 1− j)σ − (n− j)σ), 0 ≤ j ≤ n.
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5.3. Remark

The stability of the ABM approach has been confirmed in reference [32], and it has
been effectively used in the solution of differential equations with fixed FO. Therefore,
there is no necessity to restate these findings here.

6. The Fractional Optimal Control Problem (FOCP)

FOCPs have not been the subject of much research. The need for optimum control the-
ories and the related analytical and numerical techniques to solve the associated equations
grows along with the demand for realistic, accurate, and exact systems. This study closes
this gap by providing a numerical approach and utilising the optimal control technique.
Here, the aim is to maximize the population of ex-smokers and control the smoking habit
in society. This section discusses an optimal control approach appropriate for the system
dynamics (3). Four controls have been considered in this study, constructed in (3), which
have been represented as follows [33]:

C
0 Dσ

t (Ss)(t) = e1 − e2(Ss)(t)(Ic)(t) + e3(Rs)(t)− (e4 + w1)(Ss)(t),
C
0 Dσ

t (Ic)(t) = e2(Ss)(t)(Ic)(t)− e5(Ic)(t)(Us)(t)− (e6 + e4 + w2)(Ic)(t),
C
0 Dσ

t (Us)(t) = e5(Ic)(t)(Us)(t)− (e7 + e8 + e4 + w3)(Us)(t), (32)
C
0 Dσ

t (Rs)(t) = e7(Us)(t)− (e9 + e4 + e3 + w4)(Rs)(t),
C
0 Dσ

t (Es)(t) = (e9 + w4)(Rs)(t)− e4(Es)(t) + w1(Ss)(t) + w2(Ic)(t) + w3(Us)(t).

By implementing the appropriate laws, the number of smokers and the pool of potential
smokers have been brought down to more controllable levels. On the other hand, the
number of smokers and potential smokers will rise while the number of persons quitting
will fall if these four limitations are not implemented. When formulating the objective
function, we took into account the control issues outlined in Equation (32). The following
objective function has been derived:

J(w(t)) =
∫ t f

0 (Rs(t)− Es(t) + 1
2 (k1w2

1(t) + k2w2
2(t)

+k3w2
3(t) + k4w2

4(t)))dt. (33)

This study’s main objective is to reduce J(w(t)) while respecting its restrictions using the
optimum control method.

6.1. Optimal Control Solutions

Let optimal control Equations (32) and (33) be written with a Hamiltonian function
as follows:

H = L +
5

∑
j=1

λj(t)gj, (34)

where the Lagrangian function can be written as:

L(Rs, Es, wi) = Rs(t)− Es(t) + 1
2 (k1w2

1(t) + k2w2
2(t)

+k3w2
3(t) + k4w2

4(t)), (35)
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and

C
0 Dσ

t Ss(t) = g1(t),
C
0 Dσ

t Ic(t) = g2(t),
C
0 Dσ

t Us(t) = g3(t), (36)
C
0 Dσ

t Rs(t) = g4(t),
C
0 Dσ

t Es(t) = g5(t).

The adjoint system, with λ as the adjoint vector, is given by:

C
0 Dσ

t f
λ =

∂L
∂x

+ λT ∂g
∂x

, λ(t f ) = 0. (37)

The optimal control w∗(t) satisfies the following equation:

∂L
∂w∗ + λT ∂g

∂w∗ = 0. (38)

The Euler–Lagrange optimality conditions for the FOCP with Caputo fractional derivatives
are given by (36)–(38). Note, when σ = 1, the above FOCP becomes a classical optimal
control problem.

Here, λ = (λ1, λ2, λ3, λ4, λ5), g = (g1, g2, g3, g4, g5), i = 1, 2, 3, 4, 5 are the right sides
of system (32). The state system was already given by (32). Using the relations above, the
adjoint system is derived as:

Dσ
t f

λ1 = λ1(−e2 Ic − (e4 + w1)) + λ2(e2 Ic) + λ5w1,

Dσ
t f

λ2 = λ1(−e2Ss) + λ2(e2Ss − e5Us − (e6 + e4 + w2)) + λ3(e5Us) + λ5w2,

Dσ
t f

λ3 = λ2(−e5 Ic) + λ3(e5 Ic − (e7 + e8 + e4 + w3)) + λ4(e7) + λ5w3, (39)

Dσ
t f

λ4 = 1 + λ1e3 − λ4(e9 + e4 + e3 + w4) + λ5(e9 + w4),

Dσ
t f

λ5 = −1− e4λ5,

with the boundary conditions λi = 0,, where i = 1, 2, 3, 4, 5. From the Equations (34)–(38),
the expression for optimal control function is obtained as:

w∗
1(t) =

(λ1 − λ5)Ss

k1
,

w∗
2(t) =

(λ2 − λ5)Ic

k2
, (40)

w∗
3(t) =

(λ3 − λ5)Us

k3
,

w∗
4(t) =

(λ4 − λ5)Rs

k4
.
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For the boundedness of the optimal control, we get the following forms of the above expression:

w∗
1(t) = max

{
min

{
(λ1 − λ5)Ss

k1
, 1
}

, 0
}

,

w∗
2(t) = max

{
min

{
(λ2 − λ5)Ic

k2
, 1
}

, 0
}

, (41)

w∗
3(t) = max

{
min

{
(λ3 − λ5)Us

k3
, 1
}

, 0
}

,

w∗
4(t) = max

{
min

{
(λ4 − λ5)Rs

k4
, 1
}

, 0
}

,

replacing wi(t) by w∗
i (t), i = 1, 2, 3, 4, 5 in system (32) and (39), we got desire FOCP .

6.2. Existence of Optimal Control Solution

The methodology was employed to showcase the suitability of implementing optimal
control for the model [34,35]. The assumption was made that the control system described
in Equation (32) has been reformulated as follows:

ξt = Cξ + F(ξ). (42)

In this context, the state variable vector is defined as: ξ = [Ss(t), Ic(t), Us(t), Rs(t), Es(t)]T and

C =

⎡⎢⎢⎢⎢⎢⎣
−a 0 0 b 0
0 −c 0 0 0
0 0 −d 0 0
0 0 p − f 0
i j m g −h

⎤⎥⎥⎥⎥⎥⎦,

where
a = e4 + w1, b = e3, c = e4 + e6 + w2, d = e7 + e8 + e4 + w3, p = e7,
f = e9 + e4 + e3, g = e9 + w4, h = e4, i = w1, j = w2, m = w3,

F(ξ) = (e1 − e2Ss Ic, e2Ss Ic − e5 IcUs, e5 IcUs, 0, 0)T .

Equation (42) is a nonlinear FDE with bounded coefficients, where ξt is the time
derivative of ξ. Now,

B(ξ) = Cξ + F(ξ),

F(ξ1)− F(ξ2) = (−e2(Ss)1(Ic)1 + e2(Ss)2(Ic)2,

e2(Ss)1(Ic)1 − e2(Ss)2(Ic)2 − e5(Ic)1(Us)1 + e5(Ic)2(Us)2,

e5(Ic)1(Us)1 − e5(Ic)2(Us)2, 0, 0)T .
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Therefore,

|F(ξ1)− F(ξ2)| = | − e2(Ss)1(Ic)1 + e2(Ss)2(Ic)2|
+ |e2(Ss)1(Ic)1 − e2(Ss)2(Ic)2 − e5(Ic)1(Us)1 + e5(Ic)2(Us)2|
+ |e5(Ic)1(Us)1 − e5(Ic)2(Us)2|
≤ 2e2|(Ss)1(Ic)1 + (Ss)2(Ic)2|+ 2e5|(Ic)1(Us)1 + (Ic)2(Us)2|
≤ 2e2|(Ss)1[(Ic)1 − (Ic)2] + (Ic)2[(Ss)1 − (Ss)2]|
+ 2e5|(Ic)1[(Us)1 − (Us)2] + (Us)2[(Ic)1 − (Ic)2]|
≤ 2e2|(Ic)2||(Ss)1 − (Ss)2|
+ [2e2|(Ss)1|+ 2e5|(Us)2|]|(Ic)1 − (Ic)2|
+ 2e5|(Ic)1||(Us)1 − (Us)2|
≤ 2e2

e1

e4
|(Ss)1 − (Ss)2|+ (2e2 + 2e5)

e1

e4
|(Ic)1 − (Ic)2|

+ 2e5
e1

e4
|(Us)1 − (Us)2|.

So, |B(ξ1)− B(ξ2)| ≤ Z|ξ1 − ξ2|. Here,

Z = max
{

(2e2+2e5)e1
e4

, ‖C‖
}
< ∞,

observing that B(ξ) is uniformly Lipschitz continuous, we have deduced, based on the
definition of wi, that a solution to the controlled model (32) does indeed exist.

7. Numerical Result and Discussion

In this part, we provide numerical solutions for the nonlinear fractional-order smoking
model using the ABM approach and Bernoulli wavelet techniques. The Forward Euler
method is a simple and versatile numerical technique for solving ordinary and fractional
differential equations. It offers several advantages, including ease of implementation,
low computational cost, and suitability for short-term predictions. However, it has some
limitations, such as low accuracy for fractional models, stability issues, and inefficiency
for long-term simulations. While the method is a good starting point, more advanced
techniques like implicit schemes or fractional-specific methods may be more suitable
for addressing these limitations in fractional models. The ABM is highly beneficial for
fractional systems due to its superior accuracy, stability, and adaptability. Improving
forecasts with a correction step successfully strikes a compromise between computing cost
and accuracy, which makes it ideal for fractional dynamics with memory effects. However,
it has implementation complexity and dependency on accurate initial values, and it could
be more suitable for highly stiff systems. We will also illustrate the graphical patterns of
this model for different values of the order σ. Then, by using control theory, we observe
how to restrain and reduce this negative impact on society. In this paper, we utilize a
numerical method optimal control technique and analyse the result [36–42]. Additionally,
we examine the nonlinear FO smoking model with the subsequent parameter values from
Table 1:
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Table 1. Parameter values of system (3).

Parameters Value Source

e1 0.1 [23]

e2 0.003 [23]

e3 0.003 [23]

e4 0.002 [23]

e5 0.002 [23]

e6 0.003 [23]

e7 0.05 [23]

e8 0.003 [23]

e9 0.05 [23]

e1 = 0.1, e2 = 0.003, e3 = 0.003, e4 = 0.002, e5 = 0.002, e6 = 0.003,

e7 = 0.05, e8 = 0.003, e9 = 0.05,

and
Ss(0) = 68, Ic(0) = 40, Us(0) = 30, Rs(0) = 20, Es(0) = 15.

Applying the Laplace and inverse Laplace transforms in Equation (3) allows us to derive
the following result.

Ss(t) =Ss(0) + L−1
[

1
sσ

L{e1 − e2Ss(t)Ic(t) + e3Rs(t)− e4Ss(t)}
]

,

Ic(t) =Ic(0) + L−1
[

1
sσ

L{e2Ss(t)Ic(t)− e5 Ic(t)Us(t)− (e6 + e4)Ic(t)}
]

,

Us(t) =Us(0) + L−1
[

1
sσ

L{e5 Ic(t)Us(t)− (e7 + e8 + e4)Us(t)}
]

, (43)

Rs(t) =Rs(0) + L−1
[

1
sσ

L{e7Us(t)− (e9 + e4 + e3)Rs(t)}
]

,

Es(t) =Es(0) + L−1
[

1
sσ

L{e9Rs(t)− e4Es(t)}
]

.

Additionally, the iterative scheme is as follows:

(Ss)n(t) =Ss(0) + L−1
[

1
sσ

L
{

e1 − e2(Ss)n−1(t)(Ic)n−1(t) + e3(Rs)n−1(t)

− e4(Ss)n−1(t)
}]

,

(Ic)n(t) =Ic(0) + L−1
[

1
sσ

L
{

e2(Ss)n−1(t)(Ic)n−1(t)− e5(Ic)n−1(t)Us(t)

− (e6 + e4)(Ic)n−1(t)
}]

,

(Us)n(t) =Us(0) + L−1
[

1
sσ

L
{

e5(Ic)n−1(t)(Us)n−1(t)

− (e7 + e8 + e4)(Us)n−1(t)
}]

, (44)

(Rs)n(t) =Rs(0) + L−1
[

1
sσ

L
{

e7(Us)n−1(t)− (e9 + e4 + e3)(Rs)n−1(t)
}]

,

(Es)n(t) =Es(0) + L−1
[

1
sσ

L
{

e9(Rs)n−1(t)− e4(Es)n−1(t)
}]

.
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In Equation (44), we have derived an approximate solution as the value of n approaches
infinity.

(Ss(t), Ic(t), Us(t), Rs(t), Es(t)) = lim
n→∞

((Ss)n(t), (Ic)n(t), (Us)n(t), (Rs)n(t), (Es)n(t)).

Using the initial condition, we have computed the numerical outcome of Equation (3).
We have expressed this result approximately as follows, and more details are available
in [29]:

(Ss)1(t) = 68− (8.1360)t,

(Ic)1(t) = 40 + (5.5600)t,

(Us)1(t) = 30 + (0.7500)t,

(Rs)1(t) = 20 + (0.4000)t,

(Es)1(t) = 15 + (0.9700)t,

(Ss)2(t) = −8.1360− 0.1404t + 0.1357t2,

(Ic)2(t) = 5.5600− 0.2635t− 0.1440t2,

(Us)2(t) = 0.7500 + 0.3523t + 0.0083t2,

(Rs)2(t) = 0.4000 + 0.0155t,

(Es)2(t) = 0.9700 + 0.0181t,
...

Ultimately, the approximate solution is derived by utilizing Equations (3) and (4). To
showcase the effectiveness and precision of the approach, residual errors are employed in
the following manner.

En+1,Ss(t) = (Ss)
′
n+1(t)− [e1 − e2Ss(t)Ic(t) + e3Rs(t)− e4Ss(t)],

En+1,Ic(t) = (Ic)
′
n+1(t)− [e2Ss(t)Ic(t)− e5 Ic(t)Us(t)− (e6 + e4)Ic(t)],

En+1,Us(t) = (Us)
′
n+1(t)− [e5 Ic(t)Us(t)− (e7 + e8 + e4)Us(t)],

En+1,Rs(t) = (Rs)
′
n+1(t)− [e7Us(t)− (e9 + e4 + e3)Rs(t)],

En+1,Es(t) = (Es)
′
n+1(t)− [e9Rs(t)− e4Es(t)].

Figure 1 presents the graphical behavior of susceptible smokers Ss(t), ingestion class
Ic(t), unusual smokers Us(t), regular smokers Rs(t), and ex-smokers Es(t) using numerical
techniques with m = 96, tl = 2 days, and σ = 1. Figure 2 displays the graphical behavior
of susceptible smokers Ss(t), ingestion class Ic(t), unusual smokers Us(t), regular smokers
Rs(t), and ex-smokers Es(t) using numerical techniques with m = 96, tl = 60 days, and
σ = 1. In Figure 3, a 2D plot illustrates susceptible smokers Ss(t), ingestion class Ic(t),
unusual smokers Us(t), regular smokers Rs(t), and ex-smokers Es(t) with different values
of σ using the BWM. Figure 4 demonstrates a 3D plot of susceptible smokers Ss(t), ingestion
class Ic(t), unusual smokers Us(t), regular smokers Rs(t), and ex-smokers Es(t) at m = 96,
and σ = 0.5. Figures 5 and 6 display residual-error graphs with n = 1 and n = 2. The
simulation results were obtained after 2.959 seconds. Figures 7 and 8 present a comparison
graph of different system components using various numerical techniques for σ = 1
and σ = 0.92. Figure 9 depicts the relationship between susceptible smokers and other
components of the smoking model for σ = 0.89. Figure 9a shows that after ten days, both
lines converge at a point; subsequently, the ingestion class increases until 20 days and then
decreases. Figure 9b illustrates that both lines meet at a point after ten days, after which the
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number of unusual smokers increases until 30 days and then decreases. In Figure 9c, both
lines intersect at a point after ten days, following which the number of regular smokers
increases until 40 days and then decreases. Figure 9d demonstrates that both lines meet
at a point after ten days. Figure 10a displays the relationship between ingestion class and
regular smokers. After 20 days, both lines converge at a single point. The number of regular
smokers increases until 40 days and then slightly decreases, while the ingestion class line
grows initially until ten days in and then decreases. Figure 10b showcases the graphical
behavior of regular and unusual smokers. Both lines meet at a single point after 50 days.
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Figure 1. Comparison graphs of (a) Susceptible smokers, (b) Ingestion class, (c) Unusual smokers,
(d) Regular smokers, (e) Ex smokers with σ = 1, m = 96.
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Figure 2. Comparison graphs of (a) Susceptible smokers, (b) Ingestion class, (c) Unusual smokers,
(d) Regular smokers, (e) Ex smokers with σ = 1, m = 96.
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Figure 3. Time-series graphs of (a) Susceptible smokers, (b) Ingestion class, (c) Unusual smokers,
(d) Regular smokers, (e) Ex smokers when σ varies using BWM, where m = 96.
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Figure 4. Three-dimensional graphs (a) Susceptible smokers, (b) Ingestion class, (c) Unusual smokers,
(d) Regular smokers, (e) Ex smokers with BWM, where m = 96.
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Figure 5. Graphs of residual error of (a) Susceptible smokers, (b) Ingestion class, (c) Unusual smokers,
(d) Regular smokers, (e) Ex smokers with n = 1, σ = 0.9.
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Figure 6. Graphs of residual error of (a) Susceptible smokers, (b) Ingestion class, (c) Unusual smokers,
(d) Regular smokers, (e) Ex smokers with n = 2, σ = 0.9.
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Figure 7. Comparison graphs of (a) Susceptible smokers, (b) Ingestion class, (c) Unusual smokers,
(d) Regular smokers, (e) Ex smokers when k = 5, M = 3 and σ = 1.
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Figure 8. Comparison graphs of (a) Susceptible smokers, (b) Ingestion class, (c) Unusual smokers,
(d) Regular smokers, (e) Ex smokers when k = 5, M = 3 and σ = 0.92.
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Figure 9. Combination graphs of (a) Ss(t) and Ic(t); (b) Ss(t) and Us(t); (c) Ss(t) and Rs(t); and (d)
Ss(t) and Es(t) for k = 5, M = 3, and σ = 0.89.

0 10 20 30 40 50 60 70 80 90 100

Time(days)

10

15

20

25

30

35

40

45

50

55

60

B
er

no
ul

li 
w

av
el

et
 m

et
ho

d

Ingestion class I
c
(t)

Regular smokers R
s
(t)

(a)

0 10 20 30 40 50 60 70 80 90 100

Time(days)

10

15

20

25

30

35

40

45

50

55

B
er

no
ul

li 
w

av
el

et
 m

et
ho

d

Regular smokers R
s
(t)

Unusual smokers U
s
(t)

(b)

0 10 20 30 40 50 60 70 80 90 100

Time(days)

10

20

30

40

50

60

70

80

90

100

B
er

no
ul

li 
w

av
el

et
 m

et
ho

d

Susceptible smokers S
s
(t)

Ingestion class I
c
(t)

Unusual smokers U
s
(t)

Regular smokers R
s
(t)

Ex smokers E
s
(t)

(c)

Figure 10. (a) Combination of Ic(t) and Rs(t); (b) Rs(t) and Us(t); and (c) all components of system
for k = 5, M = 3, and σ = 0.89.

The line for regular smokers increases until 40 days and then decreases; the line
for unusual smokers increases until 30 days and then decreases. Figure 10c depicts the
relationship between all system components. This figure reveals a drastic decrease in the
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population of susceptible smokers to zero. The number of those in the ingestion class,
unusual smokers, and regular smokers initially increases, then decreases to zero. Lastly,
the number of ex-smokers exhibits an increase. Figure 10 portrays the above relation for
σ = 0.89. In Figures 11 and 12, the same relation is shown for σ = 1 as in Figures 9 and 10.
In Figure 12c, the susceptible smokers’ population decreases, stabilizing after some time.
The number of ingestion class, unusual smokers, and regular smokers initially increases but
gradually decreases. Finally, the number of ex-smokers exhibits an increase. In Figure 13,
we can observe the impact of parameter e2 on the fractional smoking system. A lower
value of this parameter leads to a slower decrease in the susceptible population. Similarly,
for the ingestion class, regular smokers, and unusual smokers, a lower value of e2 results
in a slower increase in these populations. However, as time progresses, the influence of
parameter e2 becomes minimal when these three system components decrease. In the case
of ex-smokers, a lower value of e2 leads to a slower increase in their population. Figure 14
illustrates the effect of parameter e3 on the smoking model. For susceptible smokers, the
ingestion class, and unusual smokers, the population decreases significantly for a low
value of e3. As for regular smokers, a slightly low value of e3 substantially increases their
population. Subsequently, as these populations decrease over time, the rate of decrease is
low for a comparable low value of e3. In the case of ex-smokers, the population increase
rate is higher for a lower value of e3. Figure 15 showcases the impact of parameter e9 on
the model. Evidently, this parameter significantly affects regular and ex-smokers—a slight
change in its value results in a rapid effect. For a low value of e9, the rate of increase in
regular smokers is substantial. When the population decreases, the rate of decrease is
low for a lower value of this parameter. In the case of ex-smokers, the rate of increase
is high for a higher value of e9. The study focused on administering an anti-nicotine
medication over 35 days. This approach was chosen due to the potential risks associated
with prolonged drug treatment and the optimal timing for vaccination likely occurring
during the initial phases of an illness. Figures 16a and 17a illustrate the portion of the non-
smoking demographic that can transition into becoming smokers for σ = 1 and σ = 0.95.
On the initial day, a notable decline was observed within this population. Following the
implementation of the control, there was a minor uptick in the count of potential smokers
by the 25th day, as contrasted with the pre-control period. This observation suggests that
the decrease will likely persist if this population is subjected to the same control over an
extended duration. Figures 16b and 17b depict the demography of the ingestion class for
σ = 1 and σ = 0.95. The population experienced a notable increase in the initial days,
followed by a substantial decrease. Subsequently, after implementing control measures,
the number of people in the ingestion class decreased from the initial days. Regarding the
subset of the population characterised by occasional smoking, proactive control measures
were put in place. These measures included distributing anti-smoking gum and enforcing
government regulations prohibiting smoking in public areas. As illustrated in Figures 16c
and 17c, there was a significant increase in the initial days, followed by a slight decrease.
After implementing these control measures, the population of unusual smokers showed a
substantial decline. Figures 16d and 17d depict the population of active smokers under
controlled conditions and without such measures. Governmental prohibitions on smoking
in public places and anti-nicotine medication therapy are the suggested strategies for
controlling this population. From the beginning to the end of the simulation period, the
number of active smokers decreased, according to the simulations. Additionally, the
population under control measures demonstrated a more notable fall compared to the
time before controls were implemented. Consequently, the applied measures produced
positive outcomes in this instance. Based on the study’s findings, it is recommended
to provide a range of control measures, including an anti-smoking education campaign,
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w1(t); anti-smoking gum, w2(t); anti-nicotine drug treatment, w3(t); and government
prohibition of smoking in public spaces, w4(t). The simulations showed a significant rise
in people quitting smoking for good, particularly if control mechanisms were put in place.
This approach highlights the effectiveness of implementing control measures. Figures 18
and 19 show the impact of control parameters on the smoking system by varying these
parameters. If w1(t) �= 0, w2(t) �= 0, w3(t) = 0, w4(t) = 0, then the ex-smoker population
significantly increase, while other state variables decrease in Figure 18. In Figure 19,
w1 �= 0, w2(t) = 0, w3(t) �= 0, w4(t) = 0, then we get a greater number of ex-smokers,
where the other compartments decrease. Figure 20 illustrates the graphical representation
of these parameters. We see how the smoking system has been solved more easily using
BWM and how the system’s behaviour changes when we alter specific parameter values.
By implementing certain control measures, we can also reduce the number of smokers
in society.

We compare the solutions of the smoking model using BWM with other numerical
techniques for σ = 1, which are shown in Tables 2–6. Tables 7–11 show the comparison of
solutions between BWM and other numerical techniques of the model above for σ = 0.92.
Tables 12 and 13 show RMSE and MAE values of the given system using BWM and ABM,
respectively.
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Figure 11. Combination of (a) Ss(t) and Ic(t); (b) Ss(t) and Us(t); (c) Ss(t) and Rs(t); and (d) Ss(t)
and Es(t) for k = 5, M = 3 and σ = 1.
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Figure 12. (a) Combination of Ic(t) and Rs(t); (b) Rs(t) for k = 5 and M = 3, and σ = 0.89 and Us(t);
and (c) all components of system for k = 5, M = 3, and σ = 1.
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Figure 13. Cont.
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Figure 13. Time-series graphs of (a) Susceptible smokers, (b) Ingestion class, (c) Unusual smokers, (d)
Regular smokers, (e) Ex smokers when e2 varies.
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Figure 14. Cont.
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Figure 14. Time-series graphs of (a) Susceptible smokers, (b) Ingestion class, (c) Unusual smokers,
(d) Regular smokers, (e) Ex smokers when e3 varies.

0 10 20 30 40 50 60 70 80 90 100

Time

0

10

20

30

40

50

60

70

S
us

ce
pt

ib
le

 s
m

ok
er

s

e
9
 =0.29

e
9
 =0.21

e
9
 =0.13

e
9
 =0.05

(a)

0 10 20 30 40 50 60 70 80 90 100

Time

0

10

20

30

40

50

60

In
ge

st
io

n 
cl

as
s

e
9
 =0.29

e
9
 =0.21

e
9
 =0.13

e
9
 =0.05

(b)

0 10 20 30 40 50 60 70 80 90 100

Time

0

10

20

30

40

50

60

U
nu

su
al

 s
m

ok
er

s

e
9
 =0.29

e
9
 =0.21

e
9
 =0.13

e
9
 =0.05

(c)

0 10 20 30 40 50 60 70 80 90 100

Time

0

5

10

15

20

25

30

35

40

R
eg

ul
ar

 s
m

ok
er

s

e
9
 =0.29

e
9
 =0.21

e
9
 =0.13

e
9
 =0.05

(d)

Figure 15. Cont.
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Figure 15. Time-series graphs of (a) Susceptible smokers, (b) Ingestion class, (c) Unusual smokers,
(d) Regular smokers, (e) Ex smokers when e9 varies.

0 5 10 15 20 25 30 35

Time(days)

0

10

20

30

40

50

60

70

S
uc

ce
pt

ib
le

 s
m

ok
er

s 
S s(t

)

Bernoulli wavelet method

without control for σ=1
with control for σ=1

(a)

0 5 10 15 20 25 30 35

Time(days)

0

10

20

30

40

50

60

In
ge

st
io

n 
cl

as
s 

I c(t
)

Bernoulli wavelet method

without control for σ=1
with control for σ=1

(b)

0 5 10 15 20 25 30 35

Time(days)

0

10

20

30

40

50

60

U
nu

su
al

 s
m

ok
er

s 
U

s(t
)

Bernoulli wavelet method
without control for σ=1
with control for σ=1

(c)

0 5 10 15 20 25 30 35

Time(days)

0

5

10

15

20

25

30

35

40

45

R
eg

ul
ar

 s
m

ok
er

s 
R

s(t
)

Bernoulli wavelet method

without control for σ=1
with control for σ=1

(d)

Figure 16. Cont.
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Figure 16. Dynamic of (a) Susceptible smokers, (b) Ingestion class, (c) Unusual smokers, (d) Regular
smokers, (e) Ex smokers with and without control for σ = 1.
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Figure 17. Dynamic of (a) Susceptible smokers, (b) Ingestion class, (c) Unusual smokers, (d) Regular
smokers, (e) Ex smokers with and without control for σ = 0.95.
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Figure 18. Dynamic of (a) Susceptible smokers, (b) Ingestion class, (c) Unusual smokers, (d) Regular
smokers, (e) Ex smokers by varying control parameters for σ = 0.95.
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Figure 19. Dynamic of (a) Susceptible smokers, (b) Ingestion class, (c) Unusual smokers, (d) Regular
smokers, (e) Ex smokers by varying control parameters for σ = 0.95.
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Figure 20. Control profile is plotted as a function of time for (a) σ = 1; (b) σ = 0.95.

Table 2. Comparing the solutions of susceptible smokers at σ = 1.0, k = 5, and M = 3.

Sr. t BWM ABM Fde12 Forward Euler

1 0 67.7456 67.7152 67.7455 67.7559

2 0.1 67.2366 67.1858 67.2364 67.2673

3 0.2 66.2175 66.1665 66.3705 66.2278

4 0.3 65.7074 65.6769 65.7073 65.6769

5 0.4 64.6870 64.6564 64.7380 64.6973

6 0.5 63.6665 63.6359 62.6663 63.6564

7 0.6 63.1565 63.1055 63.1562 63.1667

8 0.7 62.1373 62.0864 62.1371 62.1882

9 0.8 61.6283 61.5978 61.6281 61.6384

10 0.9 60.6119 60.5814 60.6118 60.6015

11 1.0 59.5981 59.5677 59.5979 59.8712
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Table 3. Comparing the solutions of the ingestion class at σ = 1.0, k = 5, and M = 3.

Sr. t BWM ABM Fde12 Forward Euler

1 0 40.1735 40.1944 40.1734 40.1667

2 0.1 40.5199 40.5546 40.5192 40.4994

3 0.2 41.2091 41.2436 41.2091 41.2027

4 0.3 41.5518 41.5725 41.5517 41.5728

5 0.4 42.2327 42.2532 42.2328 42.2266

6 0.5 42.9071 42.9275 42.9080 42.9148

7 0.6 43.2417 43.2753 43.2416 43.2361

8 0.7 43.9051 43.9383 43.9051 43.8735

9 0.8 44.2337 44.2536 44.2346 44.2287

10 0.9 44.8845 44.9041 44.8854 44.8928

11 1.0 45.5260 43.5454 45.5259 45.3558

Table 4. Comparing the solutions of unusual smokers at σ = 1.0, k = 5, and M = 3.

Sr. t BWM ABM Fde12 Forward Euler

1 0 30.0238 30.0265 30.0247 30.0226

2 0.1 30.0720 30.0768 30.0719 30.0688

3 0.2 30.1727 30.1777 30.1728 30.1712

4 0.3 30.2251 30.2281 30.2250 30.2277

5 0.4 30.3340 30.3372 30.3339 30.3322

6 0.5 30.4485 30.4519 30.4486 30.4488

7 0.6 30.5079 30.5137 30.5079 30.5057

8 0.7 30.6307 30.6368 30.6305 30.6233

9 0.8 30.6942 30.6979 30.6942 30.6917

10 0.9 30.8254 30.8293 30.8252 30.8254

11 1.0 30.9622 30.9662 30.9622 30.9232

Table 5. Comparing the solutions of regular smokers at σ = 1.0, k = 5 and M = 3.

Sr. t BWM ABM Fde12 Forward Euler

1 0 20.0125 20.0140 20.0127 20.0120

2 0.1 20.0376 20.0401 20.0333 20.0361

3 0.2 20.0879 20.0904 20.0876 20.0874

4 0.3 20.1132 20.1147 20.1133 20.1147

5 0.4 20.1640 20.1655 20.1640 20.1634

6 0.5 20.2151 20.2166 20.2150 20.2156

7 0.6 20.2408 20.2434 20.2407 20.2402

8 0.7 20.2926 20.2951 20.2926 20.2899

9 0.8 20.3186 20.3201 20.3186 20.3180

10 0.9 20.3709 20.3725 20.3709 20.3714

11 1.0 20.4238 20.4254 20.4238 20.4093
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Table 6. Comparing the solutions of ex-smokers at σ = 1.0, k = 5, and M = 3.

Sr. t BWM ABM Fde12 Forward Euler

1 0 15.0303 15.0340 15.0308 15.0291

2 0.1 15.0910 15.0971 15.0911 15.0874

3 0.2 15.2126 15.2187 15.2125 15.2114

4 0.3 15.2735 15.2772 15.2733 15.2772

5 0.4 15.3956 15.3992 15.3956 15.3943

6 0.5 15.5179 15.5216 15.5176 15.5191

7 0.6 15.5792 15.5853 15.5796 15.5779

8 0.7 15.7019 15.7081 15.7019 15.6957

9 0.8 15.7634 15.7671 15.7632 15.7621

10 0.9 15.8866 15.8903 15.8866 15.8878

11 1.0 16.0101 16.0138 16.0102 15.9766

Table 7. Comparing the solutions of susceptible smokers at σ = 0.92, k = 5, and M = 3.

Sr. t BWM ABM Fde12 Forward Euler

1 0 67.4534 67.4465 67.4532 67.4936

2 0.1 66.4774 66.5203 66.4774 66.5690

3 0.2 65.5605 65.6449 65.5603 65.5835

4 0.3 64.6734 64.7971 64.6734 64.7349

5 0.4 63.8069 63.9686 63.8070 63.9044

6 0.5 62.9564 63.1552 62.9564 62.9872

7 0.6 62.1192 62.3923 62.1193 62.1847

8 0.7 61.2938 61.6019 61.2936 61.2943

9 0.8 60.4789 60.8215 60.4799 60.5130

10 0.9 56.6738 60.0501 56.6739 59.7405

11 1.0 58.8778 59.2874 58.8778 58.9763

Table 8. Comparing the solutions of the ingestion class at σ = 0.92, k = 5, and M = 3.

Sr. t BWM ABM Fde12 Forward Euler

1 0 40.3719 40.3774 40.3720 40.3455

2 0.1 41.0329 41.0046 41.0329 40.9724

3 0.2 41.6484 41.5926 41.6483 41.6347

4 0.3 42.2386 42.1573 42.2395 42.2001

5 0.4 42.8100 42.7044 42.8100 42.7486

6 0.5 43.3657 43.2369 43.3666 43.3488

7 0.6 43.9075 43.7320 43.9075 43.8690

8 0.7 44.4365 44.2403 44.4366 44.4404

9 0.8 44.9535 44.7374 44.9536 44.9368

10 0.9 45.4590 45.2240 44.4591 44.4227

11 1.0 45.9533 45.7003 45.9533 45.8984
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Table 9. Comparing the solutions of unusual smokers at σ = 0.92, k = 5, and M = 3.

Sr. t BWM ABM Fde12 Forward Euler

1 0 30.0519 30.0519 30.0519 30.04732

2 0.1 30.1474 30.1425 30.1473 30.1370

3 0.2 30.2421 30.2326 30.2420 30.2381

4 0.3 30.3382 30.3240 30.3380 30.3295

5 0.4 30.4366 30.4174 30.4345 30.4230

6 0.5 30.5374 30.5129 30.5372 30.5310

7 0.6 30.6408 30.6061 30.6406 30.6295

8 0.7 30.7469 30.7063 30.7470 30.7434

9 0.8 30.8558 30.8090 30.8557 30.8473

10 0.9 30.9675 30.9143 30.9676 30.9538

11 1.0 31.0819 31.0221 31.0820 31.0629

Table 10. Comparing the solutions of regular smokers at σ = 0.92, k = 5, and M = 3.

Sr. t BWM ABM Fde12 Forward Euler

1 0 20.0269 20.0272 20.0270 20.0249

2 0.1 20.0751 20.0729 20.0752 20.0705

3 0.2 20.1206 20.1163 20.1206 20.1193

4 0.3 20.1648 20.1586 20.1650 20.1616

5 0.4 20.2083 20.2001 20.2083 20.2033

6 0.5 20.2514 20.2412 20.2523 20.2496

7 0.6 20.2941 20.2800 20.2941 20.2905

8 0.7 20.3366 20.3206 20.3375 20.3362

9 0.8 20.3790 20.3610 20.3791 20.3768

10 0.9 20.4213 20.4014 20.4213 20.4173

11 1.0 20.4637 20.4418 20.4638 20.4579

Table 11. Comparing the solutions of ex-smokers at σ = 0.92, k = 5, and M = 3.

Sr. t BWM ABM Fde12 Forward Euler

1 0 15.0652 15.0660 15.0652 15.0604

2 0.1 15.1816 15.1765 15.1816 15.1707

3 0.2 15.2911 15.2810 15.2912 15.2883

4 0.3 15.3973 15.3825 15.3974 15.3899

5 0.4 15.5012 15.4818 15.5013 15.4894

6 0.5 15.6035 15.5795 15.6036 15.5997

7 0.6 15.7045 15.6715 15.7043 15.6964

8 0.7 15.8045 15.7671 15.8044 15.8042

9 0.8 15.9037 15.8619 15.9038 15.8992

10 0.9 16.0021 15.9560 16.0022 15.9935

11 1.0 16.0999 16.0494 16.0999 15.0873
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Table 12. Comparing the solutions of smoking system between initial data and BWM at σ = 1.0,
k = 5, t = 0, and M = 3, and providing the Root Mean Square Error (RMSE) and Mean Absolute
Error (MAE).

Component BWM Actual Data Error RMSE MAE

Susceptible smokers 67.7456 68 −0.2544 0.2544 0.2544

Ingestion class 40.1735 40 0.1735 0.1735 0.1735

Unusual smokers 30.0238 30 0.0238 0.0238 0.0238

Regular smokers 20.0125 20 0.0125 0.0125 0.0125

Ex smokers 15.0303 15 0.0303 0.0303 0.0303

Table 13. Comparing the solutions of the smoking system between initial data and ABM at σ = 1.0
and t = 0, and providing the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) .

Component ABM Actual Data Error RMSE MAE

Susceptible smokers 67.7152 68 −0.2848 0.2848 0.2848

Ingestion class 40.1944 40 0.1944 0.1944 0.1944

Unusual smokers 30.0265 30 0.0265 0.0265 0.0265

Regular smokers 20.0140 20 0.0140 0.0140 0.0140

Ex smokers 15.0340 15 0.0340 0.0340 0.0340

8. Conclusions

The research explores the innovative application of Bernoulli wavelets to effectively
solve systems of any order. It begins with a comprehensive analysis of the convergence and
numerical procedure, using the unique orthogonal characteristics of Bernoulli wavelets.
These wavelets are then used to convert FDEs into algebraic equations, simplifying the
numerical solving process. The study provides a detailed illustration of various dynamic
behaviours for different FO, emphasizing the influence of parameters and derivative
order on the behaviour of arbitrary-order smoking systems. In this study, it is observed
that a lower value of e2 results in a slower decline of the susceptible population and an
increase in the number of regular and unusual smokers. This lower value also leads to
slower population growth for ex-smokers. Furthermore, a lower value of e3 causes a
notable decline in susceptible individuals and those in the ingestion class, as well as in
unusual smokers. Conversely, for regular smokers, a slightly lower value of e3 leads to
a significant increase. Additionally, it is illustrated that a lower value of e9 significantly
increases the growth rate of regular smokers and slows down the rate of decline when the
population decreases. Conversely, a higher value of e9 results in more rapid population
growth for ex-smokers. An alternative numerical method known as ABM is introduced to
demonstrate the precision and relevance of the suggested approach. The results are then
compared with other numerical techniques like Fde12 and forward Euler to validate the
approximation of the BWM. In this proposed model, four control variables are used: w1(t),
w2(t), w3(t) and w4(t). Reducing the number of smokers and increasing the number of
persons who permanently stop smoking are the two main objectives of the intervention.
The simulation findings have led to the conclusion that the control variables employed
have an effect consistent with the intended objectives. In conclusion, we observe how to
solve the smoking system using BWM more smoothly, and if we change some parameters
and control parameter values, then we see the system’s behaviour change. We also observe
how to control smoking populations in society by taking some control measures. This
observation will help health policymakers and scientists to address this issue. Future
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research will involve using other differential operators like AB, FF, etc., on this system,
analyzing and applying other wavelets like Hermite, Laguerre, Bernstein, etc., on this
model and numerically investigating it.
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Abstract: We investigate a generalized quantum Schrödinger equation in a comb-like
structure that imposes geometric constraints on spatial variables. The model is extended
by the introduction of nonlocal and fractional potentials to capture memory effects in both
space and time. We consider four distinct scenarios: (i) a time-dependent nonlocal potential,
(ii) a spatially nonlocal potential, (iii) a combined space–time nonlocal interaction with
memory kernels, and (iv) a fractional spatial derivative, which is related to distributions
asymptotically governed by power laws and to a position-dependent effective mass. For
each scenario, we propose solutions based on the Green’s function for arbitrary initial con-
ditions and analyze the resulting quantum dynamics. Our results reveal distinct spreading
regimes, depending on the type of non-locality and the fractional operator applied to the
spatial variable. These findings contribute to the broader generalization of comb models
and open new questions for exploring quantum dynamics in backbone-like structures.

Keywords: comb models; quantum dynamics; Green’s function

1. Introduction

The Schrödinger equation represents an important breakthrough in describing non-
relativistic quantum systems across various physical scenarios. It supports our under-
standing of microscopic phenomena and has become a cornerstone of modern quantum
theory [1]. Initially formulated by Schrödinger in a series of seminal papers [2,3], the
equation was derived from classical mechanics through a judicious choice of the action
variable, leading to a variational principle that yields a partial differential equation: the
Schrödinger equation. Its solutions, known as wave functions, describe the temporal evolu-
tion of quantum wave packets. However, obtaining analytical solutions is often challenging,
especially for systems with complex or non-trivial potentials [4]. Once the wave function is
determined, it enables the extraction of physical properties such as probability densities [5]
and the diffusion behavior of quantum particles [6].

Despite its success, the Schrödinger equation has been extended in several directions
to encompass experimental results. These extensions include anomalous relaxation pro-
cesses [7,8], in which the wave function may exhibit stretched-exponential or power-law
decay, instead of the exponential decay predicted by the traditional formalism [9,10]. An
important class of generalizations introduces fractional derivatives into the Schrödinger

Fractal Fract. 2025, 9, 446 https://doi.org/10.3390/fractalfract9070446
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equation [4,6,11–14], providing a compact and elegant framework to model memory ef-
fects, nonlocal correlations, and dissipative dynamics [7]. Another direction involves
non-linear modifications, often motivated by connections to porous media equations
and non-extensive statistical mechanics [15,16], particularly those based on Tsallis en-
tropy [17–20]. The comb model is another intriguing extension to describe anomalous
diffusion [21]. This model features a branched geometry that resembles a backbone with
perpendicular fingers, where a particle that undergoes a random walk may enter and
become temporarily trapped in the fingers before returning to the main axis. This structure
gives rise to an anomalous diffusion, where the mean square displacement (MSD) scales
as 〈x2(t)〉 ∼ tμ, with 0 < μ < 1 (subdiffusive regime) or μ > 1 (superdiffusive regime),
depending on the configuration [22].

Further generalizations of the comb model [23] incorporate fractional time deriva-
tives [24] and fractal geometries, as in the Refs. [25,26], which extended these ideas by
incorporating linear reactions and stochastic resetting within a fractional comb frame-
work [27,28]. From a biological perspective, comb-like geometries have been employed
to model transport along spiny dendrites, which exhibit subdiffusive dynamics [29]. This
diffusion regime arises from trapping mechanisms in the finger regions and is effectively de-
scribed by time-fractional operators. Although comb structures have been extensively stud-
ied in classical diffusion, their quantum counterparts remain relatively unexplored [30–32].
In a quantum comb model, particle motion along the central axis (x) is confined to the line
y = 0 due to a delta-function potential in the transverse (y) direction [30]. Notably, the
fractional-time Schrödinger equation (FTSE) of order 1/2 emerges naturally as a special
case within this framework.

Here, we analyze a generalized Schrödinger equation that incorporates a backbone
structure with branches (comb-like structure), fractional derivative in space [33,34], and
a generic time-dependent external potential. To account these features, we write the
Schrödinger equation in the following form

ih̄
∂

∂t
ψ(r, t) = − h̄2

2m

[
δ

(
y
ly

)
Dμ,η

x ψ(r, t) +
∂2

∂y2 ψ(r, t)
]
+ V [ψ(r, t)], (1)

where V [ψ(r, t)] it is given by

V [ψ(r, t)] =
∫ t

0
dt′V(1)

xy (x, y; t− t′)ψ(r, t′) +
∫ t

0
dt′V(2)

xy (y; t− t′)ψ(r, t′)

+
∫ t

0
dt′

∫ ∞

−∞
dx′V(3)

xy (x − x′, y, t− t′)ψ(x′, y, t′) .
(2)

We consider four configurations in Equation (2). First, we address a nonlocal depen-
dence on time, i.e., the external potential is time-dependent and is expressed as a product
of spatial delta functions. The second setup simultaneously incorporates nonlocal depen-
dencies in both space and time. For this, we introduce two external potentials: one that has
dependence on space variables and the other that is time-dependent. In the third scenario,
we consider nonlocal dependence and memory kernels, i.e., we mix the previous scenarios
by incorporating memory on time and a fractional derivative in space [33,34]. For the last
configuration, we include a fractional spatial operator and nonlocal terms. For the posed
problems, we obtain the corresponding solutions through Green’s function and show that
the diffusion is anomalous, exhibiting a super-diffusive regime.

This paper is organized as follows. Section 2 introduces the generalized Schrödinger
equation of the comb, and the subsequent subsections present the particular problems. In
Section 3, we present our discussions, findings, and outline potential future directions.
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2. Schrödinger Equation in a Comb-Model

Let us now investigate Equation (1) in connection with Equation (2) by considering
different cases.

2.1. Nonlocal Dependence on Time

First, let us consider the Schrödinger equation with the geometric constraints between
the directions x and y subjected to external potentials, which may have a time depen-
dence. For this case, we consider integer operators in spatial variables, where Equation (1)
results in

ih̄
∂

∂t
ψ(r, t) = − h̄2

2m

[
δ

(
y
ly

)
∂2

∂x2 ψ(r, t) +
∂2

∂y2 ψ(r, t)
]

+
∫ t

0
dt′V(1)

xy (x, y; t− t′)ψ(r, t′) +
∫ t

0
dt′V(2)

xy (y; t− t′)ψ(r, t′),
(3)

where V(1)
xy (x, y, t) = K1(t)δ(x/lx)δ(y/ly) and V(2)

xy (y, t) = K2(t)δ(y/ly) with the initial
condition ψ(r, 0) = ϕ(r). Note that these terms have a nonlocal dependence on time, which
results in a Schrödinger equation with nonlocal terms [35,36] or nonlocal potential [37,38].

To solve Equation (3), we use the Green function approach, leading to

ih̄
∂

∂t
G(r, r′, t) − ih̄δ(x − x′)δ(y− y′)δ(t) = − h̄2

2m

[
δ

(
y
ly

)
∂2

∂x2G(r, r′, t) +
∂2

∂y2G(r, r′, t)
]

+
∫ t

0
dt′V(1)

xy (x, y; t− t′)G(r, r′, t′) +
∫ t

0
dt′V(2)

xy (y; t− t′)G(r, r′, t′), (4)

with r′ = (x′, y′). By using the Fourier (F{G(r, r′, t)} = G̃(kx, ky, r′, t)) and Laplace trans-
forms (L{G(r, r′, t)} = Ĝ(r, r′, s)), we obtain

ih̄s ̂̃G(kx, ky, r′, s)− ih̄e−ikx x′ e−ikyy′ =
h̄2

2m

[
lyk2

x
̂̃G(kx, 0, r′, s) + k2

y
̂̃G(kx, ky, r′, s)

]
+ K̂1(s)lxlyĜ(0, 0, r′, s) + K̂2(s)ly

̂̃G(kx, 0, r′, s),
(5)

with ̂̃G(kx, 0, r′, s) = ̂̃G(kx, y = 0, r′, s), and K̂i(s) (i = 1, 2) is the Laplace transform of
the time contribution of the respective potentials Vi

xy(x, y, t). After performing algebraic
manipulation in Equation (5), we get

̂̃G(kx, ky, r′, s) = e−ikx x′ e−ikyy′ ̂̃Gy(ky, s)−
[

ih̄
2m

lyk2
x +

i
h̄
K̂x(s)ly

]̂̃G(kx, 0, r′, s) ̂̃Gy(ky, s)

− i
h̄
K̂1(s)lxlyĜ(0, 0, r′, s) ̂̃Gy(ky, s),

(6)

with

̂̃Gy(ky, s) =
1

s + ih̄k2
y/(2m)

. (7)

The inverse Fourier transform in the y variables results in

̂̃G(kx, y, r′, s) = e−ikx x′ ̂̃Gy(y− y′, s)−
[

ih̄
2m

lyk2
x +

i
h̄
K̂2(s)ly

]̂̃G(kx, 0, r′, s)Ĝy(y, s)

− i
h̄
K̂1(s)lxlyĜ(0, 0, r′, s)Ĝy(y, s).

(8)
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From this equation, it is possible to show that

̂̃G(kx, 0, r′, s) = e−ikx x′ ̂̃Gx(kx, s)Ĝy(y′, s)− i
h̄
K̂1(s)lxlyĜ(0, 0, r′, s)Ĝy(0, s) ̂̃G(1)

x (kx, s), (9)

with

̂̃G (1)
x (kx, s) =

1

1 +
(

ih̄k2
x/(2m) + (i/h̄)K̂2(s)

)
lyĜy(0, s)

. (10)

By performing the inverse of the Fourier transform in the x variable in the previous
equation, we obtain

Ĝ(0, 0, r′, s) =
Ĝy(y′, s)Ĝ(1)

x (x′, s)

1 + (i/h̄)K̂1(s)lxlyĜy(0, s)Ĝ(1)
x (0, s)

. (11)

By using these results, it is possible to show that

̂̃G(kx, 0, r′, s) = e−ikx x′ ̂̃G(1)

x (kx, s)Ĝy(y′, s)

− i
h̄

K̂1(s)lxlyĜy(y′, s)Ĝ(1)
x (x′, s)

1 + (i/h̄)K̂1(s)lxlyĜy(0, s)Ĝ(1)
x (0, s)

Ĝy(0, s) ̂̃G (1)
x (kx, s),

(12)

and, consequently,

Ĝ(x, y, r′, s) = δ(x − x′)
[
Ĝy(y− y′, s)− Ĝy(|y|+ |y′|, s)

]
+

[
Ĝ(1)

x (x − x′, s)− Ĝ(1)(|x|+ |x′|, s)
]
Ĝy(|y|+ |y′|, s)

+
Ĝy(|y|+ |y′|, s)

1 + (i/h̄)K̂1(s)lxlyĜy(0, s)Ĝ (1)
x (0, s)

Ĝ(1)
x (|x|+ |x′|, s) .

(13)

The straightforward inverse Laplace in Equation (13) is challenging due to the last
term. To solve this problem, we propose an expansion in this term, allowing us to rewrite
Equation (13) equal to

Ĝ(x, y, r′, s) = δ(x − x′)
[
Ĝy(y− y′, s)− Ĝy(|y|+ |y′|, s)

]
+

[
Ĝ(1)

x (x − x′, s)− Ĝ(1)(|x|+ |x′|, s)
]
Ĝy(|y|+ |y′|, s)

+
∞

∑
n=0

(
− i

h̄
lxly

)n[
K̂1(s)Ĝy(0, s)Ĝ(1)

x (0, s)
]nĜy(|y|+ |y′|, s)Ĝ(1)

x (|x|+ |x′|, s) .

(14)
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From this expansion, we can obtain the inverse Laplace in Equation (14), which
leads to

G(x, y, r′, t) = δ(x − x′)
[
Gy(y− y′, t)− Gy(|y|+ |y′|, t)

]
+

∫ t

0
dt′

[
G(1)

x (x − x′, t− t′)− G(1)(|x|+ |x′|, t− t′)
]
Gy(|y|+ |y′|, t′)

+
∞

∑
n=0

(
− i

h̄
lxlyĜy(0, 1)Ĝ(1)

x (0, 1)
)n ∫ t

0
dtnI(t− tn)

∫ tn

0
dtn−1I(tn − tn−1) · · ·

×
∫ t2

0
dt1I(t2 − t1)

∫ t1

0
dt′Gy(|y|+ |y′|, t1 − t′)G(1)

x (|x|+ |x′|, t′) ,

(15)

with I(t) = (
1/Γ(1/4)

) ∫ t
0 dt′K1(t′)/(t− t′)3/4. From Equation (15), we obtain the wave

function by using the following equation

ψ(r, r′, t) =
∫ ∞

−∞
dx′

∫ ∞

−∞
dy′G(r, r′, t)ϕ(r′) , (16)

subject to the initial condition previously defined.
To illustrate the behavior of solutions given by Equation (16), we set the configuration

of the first problem (i) with an initial condition equal to ϕ(r) = δ(x)δ(y) with K1(t) =

(K1/τ)e−it/τ and K2(t) = 0. For this configuration, the behavior of the absolute value of
the wave function |ψ(x, y, t)| is displayed in Figure 1. The package that is initially centered
in (x, y) = (0, 0) starts to spread along the space, exhibiting an oscillatory dynamic in one
direction and a decay in another.

0.

0.1

0.2

0.3

0.4

Figure 1. Behavior of the absolute value of the wave function for the initial condition ϕ(r) = δ(x)δ(y)
with K1(t) = (K1/τ)e−it/τ and K2(t) = 0. Without loss of generality, we consider τ = 0.1, K1/(h̄τ) = 1,
h̄/m = 1, and lx = ly = 1, in arbitrary unities.

To compare with the previous results, we set another parameter configuration (ii):
ϕ(r) = e−r2/2/

√
π with K1(t) = K1δ(t) and K2(t) = 0, which represents a Gaussian

package combined with a time delta potential. In the center of Figure 2, we observe a
typical decay of an initial Gaussian package, which spreads along the space. However, this
solution presents oscillatory waves that spread along the plane (x, y) due to the extra terms.
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0.1
0.2
0.3
0.4
0.5
0.6
0.7

Figure 2. Behavior of the Green function the absolute value of the wave function for the initial
condition ϕ(r) = e−r2/2/

√
π with K1(t) = K1δ(t) and K2(t) = 0. Without loss of generality, we

consider Kxy/h̄ = 1, h̄/m = 1, and lx = ly = 1, in arbitrary unities.

Additionally, we study the relaxation process for different scenarios: both the previ-
ously considered and the standard comb for two dimensions. The results are presented
in Figure 3, characterized by the nonlocal terms for the initial condition and nonlocal
dependence on time. By analyzing Figure 3, we verify different behaviors of the relaxation
process for the wave function when memory effects are considered. Comparing our results
(blue and black lines) with the standard comb model in two dimensions (orange line),
we observe that both cases present a super-diffusive regime, where the former leads to
|ψ(0, 0, t)|−2 ∼ t2.5, while the latter leads to |ψ(0, 0, t)|−2 ∼ t1.5. In this case, the additional
terms, i.e., the nonlocal effects on time, make the relaxation process faster.

| (0,0,t) -2 ~ t2.5
| (0,0,t) -2 ~ t1.5
k1(t)=(k1/ )e- t/
k1(t)=(k1/ ) (t/ )
Standard Comb Model

10 105
t

100

106

1010

1014

1018

| (0,0,t) -2

Figure 3. Behavior of the |ψ(0, 0, t)|−2 for the cases (i) ϕ(r) = δ(x)δ(y) with K1(t) = (K1/τ)e−it/τ

and Kx(t) = 0) in the blue line; (ii) ϕ(r) = e−r2/2/
√

π with K1(t) = (K1/τ)δ(t/τ) and K2(t) = 0 in
black line; and the standard two-dimensional comb model in orange line. Without loss of generality,
we consider, for simplicity, K1/h̄ = 1, h̄/m = 1, and lx = ly = 1, in arbitrary unities.
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2.2. Nonlocal Dependence on Space and Time

Now, we consider the nonlocal term with a spatial dependence on the variable x,
instead of the nonlocal term at the origin with a nonlocal dependence on time, i.e., we
consider the following Schrödinger equation:

ih̄
∂

∂t
ψ(r, t) = − h̄2

2m

[
δ

(
y
ly

)
∂2

∂x2 ψ(r, t) +
∂2

∂y2 ψ(r, t)
]

+
∫ t

0
dt′

∫ ∞

−∞
dx′V(3)

xy (x − x′, y, t− t′)ψ(x′, y, t′) +
∫ t

0
dt′V(2)

xy (y; t− t′)ψ(r, t′),
(17)

where V(3)
xy (x, y) = K3(x, t)δ(y/ly) and V(2)

xy (y, t) = K2(t)δ(y/ly) with the initial condition
ψ(r, 0) = ϕ(r). In Equation (17), the kernel K3(x, t) introduces a nonlocal dependence on
space and time, different from the previous case, which only considered a time dependence.
It is worth noting that depending on the choice of the K3(x, t), we can relate this term with
the fractional derivative in space such as the ones discussed in Refs. [39,40], which can be
related to the Lévy distributions. One of them corresponds to the choice K3(x, t) = K(x)δ(t)
with F{K(x); kx} = −|kx|μx .

Analogously to the presented previous case, we solve Equation (17) through the Green
function approach, yielding the following equation

ih̄
∂

∂t
G(r, r′, t)− ih̄δ(x − x′)δ(y− y′)δ(t) = − h̄2

2m

[
δ

(
y
ly

)
∂2

∂x2G(r, r′, t) +
∂2

∂y2G(r, r′, t)
]

+
∫ t

0
dt′

∫ ∞

−∞
dx′V(3)

xy (x − x′, y, t− t′)G(r, r′, t′) +
∫ t

0
dt′V(2)

xy (y; t− t′)G(r, r′, t′) .

(18)

Now, using the Fourier and Laplace transforms, we obtain

ih̄s ̂̃G(kx, ky, r′, s)− ih̄e−ikx x′ e−ikyy′ =
h̄2

2m

[
lyk2

x
̂̃G(kx, 0, r′, s) + k2

y
̂̃G(kx, ky, r′, s)

]
+ ̂̃K3(kx, s)ly

̂̃G(kx, 0, r′, s) + K̂2(s)ly
̂̃G(kx, 0, r′, s),

(19)

which can be written as

̂̃G(kx, ky, r′, s) = e−ikx x′ e−ikyy′ ̂̃Gy(ky, s)−
[

ih̄
2m

lyk2
x +

i
h̄
K̂2(s)ly

]̂̃G(kx, 0, r′, s) ̂̃Gy(ky, s)

− i
h̄
̂̃K3(kx, s)ly

̂̃G(kx, 0, r′, s) ̂̃Gy(ky, s) .
(20)

By applying the inverse of the Fourier transform in the y variable and performing
some calculations, we obtain that

̂̃G(kx, y, r′, s) = e−kx x′ ̂̃Gy(y− y′, s)

−
[

ih̄
2m

lyk2
x +

i
h̄

ly

(
K̂2(s) +

̂̃K3(kx, s)
)]̂̃G(kx, 0, r′, s)Ĝy(y, s) .

(21)

From this equation, it is possible to show that

̂̃G(kx, 0, r′, s) = e−kx x′ ̂̃G(2)

x (kx, s)Ĝy(y′, s), (22)

with

̂̃G (2)
x (kx, s) =

1

1 +
[
ih̄k2

x/(2m) + (i/h̄)
(
K̂2(s) +

̂̃K3(kx, s)
)]

lyĜy(0, s)
. (23)
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By using these results, it is possible to show that

̂̃G(kx, y, r′, s) = e−kx x′ ̂̃Gy(y− y′, s)

−
[

ih̄
2m

lyk2
x +

i
h̄

ly

(
K̂2(s) +

̂̃K3(kx, s)
)]

e−kx x′ ̂̃G (2)
x (kx, s)Ĝy(y′, s)Ĝy(y, s)

(24)

and, consequently,

Ĝ(x, y, r′, s) = δ(x − x′)
[
Ĝy(y− y′, s)− Ĝy(|y|+ |y′|, s)

]
+ Ĝ(2)

x (x − x′, s)Ĝy(|y|+ |y′|, s) .

(25)

The inverse Laplace transform applied in Equation (25) formally results in

G(x, y, r′, t) = δ(x − x′)
[
Gy(y− y′, t)− Gy(|y|+ |y′|, t)

]
+

∫ t

0
dt′G(2)

x (x − x′, t− t′)Gy(|y|+ |y′|, t′) ,
(26)

which can be combined with Equation (16) to obtain the wave function related to
this system.

The absolute value of the wave function, for ϕ(r) = e−r2/2/
√

π for the case worked
out in this section, is displayed in Figure 4. Now, observe that the nonlocal dependence on
space and time leads the solution to a spread of a Gaussian package, without oscillation in
the plane (x, y).

0.

0.05

0.10

0.15

0.20

0.25

Figure 4. Behavior of the absolute value of the wave function for the initial condition ϕ(r) =

e−r2/2/
√

π with K3(t) = (K3/τ)δ(t/τ)δ(x) and K2(t) = 0. Without loss of generality, we consider
K3/h̄ = 1, h̄/m = 1, τ = 1, and lx = ly = 1, in arbitrary unities.

The wave function resulting from Equation (26) also leads the relaxation process in a
super-diffusive regime for certain potential choices, as observed in Figure 5, where the blue
line is for K2(t) = (K2/τ)δ(t/τ) and K̃3(kx, t) = K3 with ϕ(r) = δ(x)δ(y); and the black
line is for K2(t) = (K2/τ)e−t/τ and K̃3(kx, t) = (K3/τ)k2

xe−t/τ with ϕ(r) = e−r2/2/
√

π. In
the orange line, we show the |ψ(0, 0, t)|−2 associated with the standard comb model in
two dimensions. In this case, we also verify a super-diffusive regime, which goes with t1.5.
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However, in our modification, we observe that the relaxation process is faster than in the
standard case, going with ∼ t3.

| (0,0,t) -2 ~ t3
| (0,0,t) -2 ~ t1.5
kx (t)=(kxy/ )e-t/ , k (kx,t)=(kx2/ )e-t/
kx (t)=(kx / ) (t/ ), k (kx,t)=k
Standard Comb Model

0.001 0.100 10 1000
t

0.1

1000.0

107

1011

| (0,0,t) -2

Figure 5. Behavior of the |ψ(0, 0, t)|−2 for Kx(t) = (Kx/τ)δ(t/τ) and K(kx, t) = k with
ϕ(r) = δ(x)δ(y) in the blue line; K2(t) = (K2/τ)e−t/τ and K̃3(kx, t) = (K3/τ)k2

xe−t/τ with
ϕ(r) = e−r2/2/

√
π in the black line; and the standard comb model with orange line. Without

loss of generality, we consider, for simplicity, K2/h̄ = 1, K3/h̄ = 1 h̄/m = 1, and lx = ly = 1, in
arbitrary unities.

2.3. Nonlocal Dependence and Memory Kernels

Following, we consider the mixing between the two previous cases, i.e., the memory
kernels related to each case, in Equation (3), yielding

ih̄
∂

∂t
ψ(r, t) = − h̄2

2m

[
δ

(
y
ly

)
∂2

∂x2 ψ(r, t) +
∂2

∂y2 ψ(r, t)
]
+

∫ t

0
dt′V(2)

xy (y; t− t′)ψ(r, t′)

+
∫ t

0
dt′V(1)

xy (x, y; t− t′)ψ(r, t′) +
∫ ∞

−∞
dx′

∫ t

0
dt′V(3)

xy (x − x′, y; t− t′)ψ(x′, y, t′).
(27)

The Green function connected with this case can be obtained by solving the
following equation

ih̄
∂

∂t
G(r, r′, t)− ih̄δ(x − x′)δ(y− y′)δ(t) = − h̄2

2m

[
δ

(
y
ly

)
∂2

∂x2 G(r, r′, t) +
∂2

∂y2 G(r, r′, t)
]

+
∫ t

0
dt′

∫ ∞

−∞
dx′

[
V(1)

xy (x − x′, y, t− t′) + V(3)
xy (x − x′, y, t− t′)

]G(r, r′, t′)

+
∫ t

0
dt′V(2)

xy (y; t− t′)G(r, r′, t′) ,

(28)

which in the Fourier–Laplace space can be written as follows:

ih̄s ̂̃G(kx, ky, r′, s)− ih̄e−ikx x′ e−ikyy′ =
h̄2

2m

[
lyk2

x
̂̃G(kx, 0, r′, s) + k2

y
̂̃G(kx, ky, r′, s)

]
+ ̂̃K3(kx, s)ly

̂̃G(kx, 0, r′, s) + K̂2(s)ly
̂̃G(kx, 0, r′, s) + K̂1(s)lxlyĜ(0, 0, r′, s),

(29)

From this equation, it is possible to show that

̂̃G(kx, 0, r′, s) = e−ikx x′ ̂̃Gx(kx, s)Ĝy(y′, s)− i
h̄
K̂1(s)lxlyĜ(0, 0, r′, s)Ĝy(0, s) ̂̃G (2)

x (kx, s), (30)

and, consequently,

Ĝ(0, 0, r′, s) =
Ĝy(y′, s)Ĝ(2)

x (x′, s)

1 + (i/h̄)K̂1(s)lxlyĜy(0, s)Ĝ(2)
x (0, s)

. (31)
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By using these results, it is possible to show that

̂̃G(kx, 0, r′, s) = e−ikx x′ ̂̃G (2)
x (kx, s)Ĝy(y′, s)

− i
h̄

K̂1(s)lxlyĜy(y′, s)Ĝ(2)
x (x′, s)

1 + (i/h̄)K̂1(s)lxlyĜy(0, s)Ĝ(2)
x (0, s)

Ĝy(0, s) ̂̃G (2)
x (kx, s),

(32)

and, therefore,

Ĝ(x, y, r′, s) = δ(x − x′)
[
Ĝy(y− y′, s)− Ĝy(|y|+ |y′ |, s)

]
+

[
Ĝ(2)

x (x − x′, s)− Ĝ(2)(x, x′, s)
]
Ĝy(|y|+ |y′ |, s)

+
Ĝy(|y|+ |y′ |, s)

1 + (i/h̄)K̂1(s)lxlyĜy(0, s)Ĝ(2)
x (0, s)

Ĝ(2)(x, x′, s) ,

(33)

with

Ĝ(2)(x, x′, s) = Ĝ(2)
x (|x|, s)Ĝ(2)

x (|x′ |, s)/Ĝ(2)
x (0, s) (34)

Equation (33) can be formally written as Equation (13) when the equation

Ĝ(2)(x, x′, s) = Ĝ(2)
x (|x|+ |x′ |, s) is verified.

2.4. Fractional Spatial Operator and Nonlocal Terms

Another possibility considers a fractional operator applied to the spatial variable. In this case,
we consider the following fractional operator [33,34] applied to the x variable:

1
2

∫ ∞

−∞
dxζ±,η(x, kx)

(
Dμ,η

x ψ(r, t)
)
≡ −|kx|μ+ηψ̃±(kx, y, t), (35)

with the integral transform given by:

1
2

∫ ∞

−∞
dxζ±,η(x, k)ψ(r, t) = ψ̃±(kx, y, t) , (36)

1
2

∫ ∞

−∞
dkxζ±,η(x, k)ψ̃±(kx, y, t) = ψ(r, t), (37)

where

ζ+,η(x, kx) = (|kx||x|)
1
2 (1+η)J−ν

(
2(|kx||x|)

1
2 (2+η)/(2 + η)

)
and (38)

ζ−,η(x, kx) = xkx(|kx||x|)
1
2 (1+η)−1Jν

(
2(|kx||x|)

1
2 (2+η)/(2 + η)

)
, (39)

where the sub-indexes + and − refer to the odd and even solutions, ν = (1 + η)/(2 + η), and Jν(x)
is the Bessel function [7]. We stress that Equations (36) and (37) may be related to a generalized
Hankel transform [41–44]. The Green function connected with this case can be obtained by solving
the following equation

ih̄
∂

∂t
G(r, r′, t)− ih̄δ(x − x′)δ(y− y′)δ(t) = − h̄2

2m

[
δ

(
y
ly

)
Dμ,η

x G(r, r′, t) +
∂2

∂y2 G(r, r′, t)
]

+
∫ t

0
dt′V(1)

xy (x, y; t− t′)G(r, r′, t′) +
∫ t

0
dt′V(2)

xy (y; t− t′)G(r, r′, t′) ,

(40)

One noticeable point regarding this extension of the Schrödinger equation is that the be-
havior of the solutions can be characterized by power laws and stretched exponential. Addi-
tionally, the Schrödinger equation with an effective-position-dependent mass can directly relate
with Equation (35), for example, μ = 2 results in the standard differential operators: D2,η

x (· · · ) ≡
∂x
[|x|−η∂x(· · · )

]
. This case allows us to relate the x - direction of Equation (40) with a Schrödinger

equation with an effective-position dependent mass, i.e., m(x) = m|x|η [45–47], which has been ana-
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lyzed by taking several situations such as hetero-structures [48] and/or heterogeneous media [49–51],
into account. To solve Equation (40), we write the Green’s as follows:

G(r, r′, t) =
∫ ∞

0
dkxkx

[
ζ+(x, kx)G̃+(kx, y, r′, t) + ζ−(x, kx)G̃−(kx, y, r′, t)

]
(41)

with

G̃±(kx, y, r′, t) =
1
2

∫ ∞

−∞
dxζ±(x, kx)G(r, r′, t) , (42)

where G̃±(kx, y, r′, t) is determined by the Equation (40). By substituting Equation (41) in Equation (40)
and using the orthogonality of the eigenfunction and the Fourier transform for the y variable, it is
possible to show that(

ih̄
∂

∂t
− h̄2

2m
|ky|2

)
G̃±(kx, ky, r′, t)− ih̄ζ±(x′, kx)e−ikyy′δ(t) =

h̄2

2m
ly|kx|μ+η G̃±(kx, 0, r′, t)

+ ly
∫ t

0
dt′k2(t− t′)G̃±(kx, 0, r′, t′) + lylx

∫ t

0
dt′k1(t− t′)G±(0, 0, r′, t′) ,

(43)

By performing some calculations, it is possible to show that

̂̃G±(kx, ky, r′, s) = ζ±(x′, kx)e−ikyy′ ̂̃Gy(ky, s)− i
h̄

lylx k̂1(s)
̂̃Gy(ky, s)Ĝ±(0, 0, r′, t)

− i
h̄

[
h̄2

2m
ly|kx|μ+η + k̂2(s)

]̂̃Gy(ky, s) ̂̃G±(kx, 0, r′, t)
(44)

with

̂̃G±(kx, 0, r′, s) = ζ±(x′, kx)
̂̃G (3)
±,x(kx, s)Ĝy(y′, s)

− i
h̄
K̂1(s)lxlyĜ±(0, 0, r′, s)Ĝy(0, s) ̂̃G (3)

±,x(kx, s),
(45)

and, as a consequence,

̂̃G (3)
±,x(kx, s) =

1

1 +
(

ih̄|k|μ+η
x /(2m) + (i/h̄)K̂2(s)

)
lyĜy(0, s)

. (46)

By performing additional calculations, we can show that

Ĝ+(0, 0, r′, s) =
Ĝy(y′, s)Ĝ(3)

+,x(0, x′, s)

1 + (i/h̄)K̂1(s)lxlyĜy(0, s)[Ĝ(3)
+,x(0, 0, s)/ζ+(0, 1)]

, (47)

where

Ĝ
(3)
±,x(x, x′, s) =

∫ ∞

0
dkxζ±(x′, kx)ζ±(x, kx)

̂̃G (3)
±,x(kx, s) . (48)

For the initial condition ϕ(x, y) = δ(x)δ(y), the evolution of the absolute Green function is
displayed in Figure 6. For the sake of simplicity, we consider the absence of nonlocal terms to show
the changes produced by the spatial operator incorporated in the Schrödinger equation with the
backbone structure with branches. We observe that the presence of these operators changes the shape
of the Green function when compared with the case of Figure 1 by introducing a different behavior
connected with the spatial operator.
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0.

0.1

0.2

0.3

Figure 6. Behavior of the absolute Green function given by Equation (41) in absence of nonlocal
terms, for μ = 1.8 and η = 1. Without loss of generality, we consider h̄/m = 1, lx = ly = 1, r′ = 0,
and the initial condition ϕ(x, y) = δ(x)δ(y), in arbitrary unities.

3. Discussion and Conclusions

We have analyzed a Schrödinger model with geometric constraints that couple the spatial
variables x and y, under arbitrary time-dependent potentials. Our study considered four distinct
cases: (i) a model with nonlocal dependence on time, (ii) a model with nonlocal spatial dependence,
(iii) a mixed case that incorporates memory effects in both space and time through external potential
kernels, and (iv) a formulation involving a fractional spatial derivative linked to a position-dependent
effective mass. For each configuration, we constructed solutions using Green’s function techniques,
allowing us to determine wave functions for arbitrary initial conditions.

For the proposed solutions, we examined their behavior, which shows the evolution and
spreading of wave packets under different nonlocal regimes. Our results show distinct scaling
laws and dynamics depending on the nature of memory and spatial coupling. In particular, we
observed that nonlocal terms and fractional operators can modify relaxation behavior. Furthermore,
the cases explored here may be physically realized in engineered quantum systems such as optical
lattices, photonic waveguides, and mesoscopic devices. For instance, comb-shaped waveguide arrays
fabricated using femtosecond laser writing can emulate the geometry of a quantum comb, where
injected light propagates similarly to a quantum particle constrained within the comb structure. As
shown by Longhi [9], photonic lattices with comb-shaped configurations can simulate anomalous
transport phenomena within such systems. Additionally, temporal modulation of the refractive index
can be utilized to replicate time-dependent or memory-like potentials. Comb-like optical lattices
can also be engineered by interfering laser beams to trap ultra-cold atoms in a backbone-finger
arrangement, as demonstrated by the experimental work of Salger et al. [45,47]. We hope that the
theoretical results presented here can provide insights into quantum dynamics in backbone-structured
media and stimulate further experimental studies involving branched quantum systems that feature
memory and spatial heterogeneity. Finally, in future works, we will explore how different forms of
nonlocality, i.e., fractional operators, influence the thermal behavior of the wave function.
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