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Preface

As Guest Editors of this Reprint, we are pleased to present this collection of research that explores
the transformative potential of data-driven approaches in healthcare. The motivation for assembling
this body of work stems from a fundamental recognition that, while theory-driven research remains
essential, the vast repositories of healthcare data now available offer unprecedented opportunities to
discover insights that can directly improve patient care and healthcare delivery systems.

This Reprint addresses a critical need in contemporary healthcare research: bridging the gap
between observational data and actionable knowledge. The healthcare sector generates massive
volumes of data daily, yet the systematic exploration of these data sets to uncover meaningful patterns
and relationships remains an underutilized approach. The studies compiled here demonstrate
that data exploration is not merely descriptive but can generate hypotheses, reveal unexpected
associations, and provide evidence that informs both practice and future research directions.

This collection is intended for healthcare researchers, data scientists, practitioners, and policy
makers who recognize that innovative analytical approaches including artificial intelligence, machine
learning, and advanced data mining techniques can complement traditional research methodologies.
We hope these works inspire readers to consider how their own data assets might yield valuable
insights when subjected to rigorous exploratory analysis.

The research presented represents diverse healthcare contexts and analytical methods, unified
by a commitment to extracting meaningful knowledge from empirical observations. We trust this

Reprint will serve as both a resource and a catalyst for advancing data-driven discovery in healthcare.

Victor R. Prybutok and Gayle Linda Prybutok
Guest Editors
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Department of Rehabilitation and Health Services, College of Health and Public Service,
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1. Introduction

We are pleased to present this Special Issue, which is a curated collection of research
that showcases the transformative power of data-driven approaches in healthcare. The
healthcare sector generates vast amounts of observational data daily, yet systematic ex-
ploration of these datasets to uncover meaningful patterns remains underutilized. The
rapid advancement of digital health technologies, including electronic health records, med-
ical imaging systems, wearable devices, and genomic sequencing platforms, has led to
an exponential growth in healthcare data availability [1]. In addition, data from routine
clinical practices offer unique opportunities to complement evidence from randomized
controlled trials, particularly for understanding treatment effectiveness in diverse patient
populations and real-world clinical settings [2,3]. However, ensuring the quality and ap-
propriate use of these observational datasets remains a persistent challenge that requires
systematic attention [4,5]. The collection in this Special Issue demonstrates that while
theory-driven research remains essential, data exploration can generate hypotheses, reveal
unexpected associations, and provide evidence that directly informs practice and future
research directions.

The ten contributions assembled in this Special Issue span diverse healthcare contexts
and analytical methodologies, unified by a commitment to extracting actionable knowledge
from empirical observations. These publications employ innovative techniques, including
artificial intelligence, machine learning, natural language processing, advanced statistical
modeling, operations research, and exploratory data analytics, to address critical challenges
in healthcare delivery, quality improvement, and patient outcomes [6]. The integration of
these data-driven methodologies supports the need for future research and application
regarding how healthcare systems can leverage observational evidence to inform clinical
decision-making and policy development [7].

2. Artificial Intelligence and Machine Learning for Clinical Prediction

The Special Issue opens with three contributions that demonstrate the power of
artificial intelligence and advanced analytical methods for clinical prediction and deci-
sion support. Halwani and Halwani (contribution 1) present “Prediction of COVID-19
Hospitalization and Mortality Using Artificial Intelligence,” employing decision trees, sup-
port vector machines, and random forest algorithms to predict hospital mortality among
COVID-19 patients. Their analysis of data from King Abdulaziz University Hospital in
Saudi Arabia achieved predictive accuracy rates of 76-82%, with hospital stay duration,
D-Dimers, alkaline phosphatase, bilirubin, lactate dehydrogenase, C-reactive protein, and
ferritin identified as significant mortality predictors. This work illustrates how Al tools

Healthcare 2025, 13, 2658 https:/ /doi.org/10.3390/healthcare13212658
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can enhance early identification of high-risk patients and support clinical decision-making
during pandemic situations.

Alasmari (contribution 2) provides a comprehensive scoping review titled “A Scop-
ing Review of Arabic Natural Language Processing for Mental Health,” examining NLP
techniques applied to mental health detection in Arabic-speaking populations. Following
the PRISMA-ScR framework, this review identifies the effectiveness of various approaches,
with transformer-based models such as AraBERT and MARBERT achieving superior per-
formance with accuracy rates up to 99.3% and 98.3%, respectively. The review highlights
how NLP can analyze social media data to detect depression and suicidality, demonstrat-
ing the potential of these techniques for population-level mental health surveillance in
linguistically diverse contexts.

Chang, Ryu, Choi, Kwon, and Kim (contribution 3) present “A Comparative Study of
Hospitalization Mortality Rates between General and Emergency Hospitalized Patients
Using Survival Analysis,” employing Kaplan—-Meier survival estimation and Cox propor-
tional hazards models to analyze four years of data from the Korean National Health
Insurance Services. Their analysis reveals distinct determinants of mortality risk between
general inpatients and emergency admissions, with geographic factors and institutional
characteristics such as physician and nurse staffing ratios, bed capacity, and emergency
bed availability showing differential effects. This work demonstrates how survival analysis
techniques can accommodate censored medical data characteristics often overlooked by
conventional regression approaches.

3. Data-Driven Quality Improvement and Healthcare Standards

Two articles explore how data-driven methodologies can enhance healthcare quality
standards and establish evidence-based benchmarks. Richardson, Penumaka, Smoot,
Panaganti, Chinta, Guduri, Tiyyagura, Martin, Korvink, and Gunn (contribution 4) present
“A Data-Driven Approach to Defining Risk-Adjusted Coding Specificity Metrics for a
Large U.S. Dementia Patient Cohort,” analyzing 487,775 hospitalization records to develop
risk-adjusted metrics for assessing medical coding specificity. Using logistic regression
models incorporating patient and facility characteristics, combined with Poisson binomial
modeling, they created benchmarks enabling healthcare facilities to assess coding practices
against industry standards. With an AUC of 0.727 for principal dementia diagnoses, their
approach demonstrates how data-driven methods can identify facilities that over- or under-
specify diagnoses, ultimately contributing to improved patient care quality and healthcare
system reliability.

Velev, Velazquez-Sosa, Lebien, Janwa, and Roche-Lima (contribution 5) provide “Mod-
eling Multivariate Distributions of Lipid Panel Biomarkers for Reference Interval Estima-
tion and Comorbidity Analysis,” employing Gaussian Mixture Models to derive reference
intervals directly from large-scale, real-world laboratory data from Puerto Rico. Their
methodology enables separation of healthy and pathological subpopulations without re-
lying on diagnostic codes, producing sex- and age-stratified reference intervals for total
cholesterol, LDL, HDL, and triglycerides. By examining selective mortality patterns and
constructing comorbidity implication networks, they explain counterintuitive age trends in
lipid values and characterize interdependencies between conditions, demonstrating how
population-specific reference intervals can be derived without recruiting healthy cohorts.

4. Healthcare Operations Research and Resource Optimization

Two contributions employ operations research methodologies to optimize health-
care resource allocation and workforce management. Mystakidis, Koukaras, Koukaras,
Kaparis, Stavrinides, and Tjortjis (contribution 6) present “Optimizing Nurse Rostering:
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A Case Study Using Integer Programming to Enhance Operational Efficiency and Care
Quality,” developing a comprehensive integer programming model for nurse scheduling
in oncology departments. Their model integrates constraints including legal work hours,
staff qualifications, and personal preferences to generate equitable and efficient sched-
ules. Implementation in a clinical setting revealed significant improvements in scheduling
efficiency, staff satisfaction, workload distribution, and compliance with work-hour regula-
tions, demonstrating how operations research techniques can enhance both operational
excellence and staff well-being in acute care settings.

Clapper, ten Hove, Bekker, and Moeke (contribution 7) provide “Team Size and Com-
position in Home Healthcare: Quantitative Insights and Six Model-Based Principles,”
developing six model-based principles to guide managerial decisions regarding home
healthcare team structure. Through extensive data analysis and mathematical modeling
based on real-life scenarios, they demonstrate that efficiency improves with team size but
with diminishing returns, while team manageability becomes increasingly complex as size
grows. Their work provides estimates for travel time based on team size and territory, estab-
lishes upper bounds for full-time contract fractions to avoid split shifts, and concludes that
ideally sized teams should serve at least several hundred care hours weekly. This research
exemplifies how quantitative modeling can inform practical workforce planning decisions.

5. Technology-Enabled Healthcare and Behavioral Insights

Two articles examine how technology shapes health-seeking behaviors and social
interactions in healthcare contexts. Boyce, Harun, G. Prybutok, and V. Prybutok (con-
tribution 8) present “The Role of Technology in Online Health Communities: A Study
of Information-Seeking Behavior”, employing partial least squares structural equation
modeling with multi-group and importance-performance map analysis to examine technol-
ogy’s role in online health communities. Their cross-sectional survey identifies ease of site
navigation and interaction with other members as the most beneficial technology-related
factors influencing information-seeking processes. The findings provide actionable insights
for developing and managing online health communities and for healthcare professionals
seeking to disseminate relevant information to individuals with chronic illnesses such
as COPD.

Chen, Hsu, and Rahman (contribution 9) provide “From Mandate to Choice: How
Voluntary Mask Wearing Shapes Interpersonal Distance Among University Students Af-
ter COVID-19,” examining the association between voluntary protective behaviors and
social interactions in post-mandate Taiwan. Through an online interpersonal distance
simulation with 100 university students, they employed four-way ANOVA to reveal that
mask-wearing individuals maintain significantly greater interpersonal distances, suggest-
ing heightened risk perception, while masked targets elicit smaller distances, possibly
due to safety signaling. Gender differences emerged in both protective behavior adoption
(72% of females versus 44% of males) and spatial preferences, offering insights into how
voluntary behavioral adaptations continue shaping social norms after mandate removal.

6. Research Infrastructure and Data Governance

The Special Issue concludes with a perspective on research infrastructure challenges.
Landi, D’Ambrosio, Faggion, Rocchi, Paganin, Lain, Ceci, and Giannuzzi on behalf of the
EPIICAL Consortium (contribution 10) present “Sharing Data and Transferring Samples
Within Pediatric Clinical Studies: How to Overcome Challenges and Make Them a Sci-
ence Opportunity.” This perspective examines the EPIICAL project’s establishment of a
dedicated Working Group to navigate ethical and regulatory complexities of international
pediatric clinical studies involving HIV-infected children. The consortium developed well-
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structured informed consent and assent templates, data sharing agreements, and material
transfer agreements to regulate sample transfers among partners and sites across European
and non-European boundaries. This contribution highlights how structured governance
frameworks and expert support can transform regulatory challenges into opportunities for
advancing pediatric clinical research.

7. Conclusions

The contributions assembled in this Special Issue collectively demonstrate that data-
driven discovery in healthcare extends far beyond descriptive analysis. These works
show how systematic exploration of observational data using diverse methodologies, from
artificial intelligence and machine learning to operations research and behavioral modeling,
can generate actionable insights that improve patient care, enhance operational efficiency,
establish evidence-based standards, and inform policy decisions.

As healthcare systems continue generating unprecedented volumes of data through
digital transformation initiatives [1,6], the approaches showcased in this Special Issue
provide both inspiration and practical guidance for researchers, practitioners, and policy-
makers seeking to extract maximum value from their data assets. The successful translation
of data-driven insights into improved patient outcomes requires not only sophisticated
analytical methods but also robust data governance frameworks, quality assurance mecha-
nisms, and ethical oversight [2,4]. We hope this collection serves as a catalyst for continued
innovation in data-driven healthcare research and practice.

Author Contributions: VR.P. and G.L.P. contributed equally to the conceptualization, curation, and
writing of this editorial. All authors have read and agreed to the published version of the manuscript.
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Abstract: Background: COVID-19 has had a substantial influence on healthcare systems, requiring
early prognosis for innovative therapies and optimal results, especially in individuals with comor-
bidities. Al systems have been used by healthcare practitioners for investigating, anticipating, and
predicting diseases, through means including medication development, clinical trial analysis, and
pandemic forecasting. This study proposes the use of Al to predict disease severity in terms of
hospital mortality among COVID-19 patients. Methods: A cross-sectional study was conducted at
King Abdulaziz University, Saudi Arabia. Data were cleaned by encoding categorical variables and
replacing missing quantitative values with their mean. The outcome variable, hospital mortality,
was labeled as death = 0 or survival = 1, with all baseline investigations, clinical symptoms, and
laboratory findings used as predictors. Decision trees, SVM, and random forest algorithms were
employed. The training process included splitting the data set into training and testing sets, per-
forming 5-fold cross-validation to tune hyperparameters, and evaluating performance on the test
set using accuracy. Results: The study assessed the predictive accuracy of outcomes and mortality
for COVID-19 patients based on factors such as CRP, LDH, Ferritin, ALP, Bilirubin, D-Dimers, and
hospital stay (p-value < 0.05). The analysis revealed that hospital stay, D-Dimers, ALP, Bilirubin,
LDH, CRP, and Ferritin significantly influenced hospital mortality (p < 0.0001). The results demon-
strated high predictive accuracy, with decision trees achieving 76%, random forest 80%, and support
vector machines (SVMs) 82%. Conclusions: Artificial intelligence is a tool crucial for identifying early
coronavirus infections and monitoring patient conditions. It improves treatment consistency and

decision-making via the development of algorithms.

Keywords: artificial intelligence; clinical decision support systems; predictive tools; disease severity;
mortality

1. Introduction

A virus is an infectious microbe with a unique genome and protein layer that can
reproduce within live cells. By hijacking host cells, these tiny, potent viruses can cause
significant health issues [1]. SARS-CoV-2, a new coronavirus, belongs to a larger family
of pathogenic viruses that target the respiratory system of humans. It was discovered in
2002 and caused mild infection in China [2]. The seventh strain of SARS-CoV-2, COVID-19,
emerged in December 2019, causing respiratory problems and having high transmission
rates among species [3]. COVID-19, induced by SARS-CoV-2, has resulted in widespread
morbidity and mortality [4]. Despite immunizations, there is a need to prevent morbidity
and death from severe COVID-19, especially among vulnerable groups [5]. Evidence
points to a vicious loop of immunological dysfunction, endothelial damage, complement
activation, and microangiopathy, making these processes critical [6].

In January 2020, the WHO labeled it a public health emergency of international concern
(PHEIC) because of its lethal effect on human life [7]. The World Health Organization

Healthcare 2024, 12, 1694. https:/ /doi.org/10.3390/healthcare12171694 6 https:/ /www.mdpi.com/journal /healthcare
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(WHO) proclaimed COVID-19 a worldwide pandemic on 11 March 2020 [8]. COVID-19
swept over the world in 2020, infecting over 623 million people and causing over 6 million
fatalities globally, as well as more than 5 million hospitalizations in the United States by 1
September 2022 [9]. Pandemics and epidemics are characterized by the spread of infectious
diseases over a specific period, leading to significant morbidities and mortalities. The
SARS epidemic, which infected over 8096 individuals and resulted in over 770 deaths, had
greatly devastating effects [10]. Over 213 nations and territories have been affected by
the pandemic since its first outbreak in China, infecting more than 98,529,820 people and
killing more than 2,116,101 people. The World Health Organization has declared COVID-19
a pandemic, and experts are formulating measures to mitigate its impact on human health
and the economy [11].

COVID-19 has a substantial impact on healthcare systems, particularly in patients with
acute respiratory syndrome (ARS), necessitating early prognosis for innovative therapies
and better results, especially in those with comorbidities [12]. RT-PCR is the standard
method for detecting COVID-19 patients as early as possible for effective therapy and
containment [13]. Advances in alternative diagnostic technologies are required to speed
up detection and treatment, as healthcare professionals and medical personnel are limited,
leading to radiologists” becoming overburdened [14]. In conjunction with COVID-19-
related outcomes, the scientific community has widely supported artificial intelligence
(Al), a concept encompassing computer systems capable of completing tasks that would
otherwise require human intelligence [15].

Al specialists recommend creating ML and DL approaches to help radiologists diag-
nose pneumonia using imaging modalities and chest scans, which would enable physicians
to better combat the disease [16,17]. Using computer algorithms to discover data regu-
larities and categories them, ML is an Al branch with the potential for achieving high
prediction accuracy and scalability, especially in fast-paced scenarios like the COVID-19
pandemic, which requires models that can adapt to changing data sources [18].

Classification and regression accuracy are improved with deep learning approaches be-
cause the latter have autonomous learning and feature representation capabilities, thereby
eliminating the need for human expertise [19]. The development of auxiliary tools for
detecting COVID-19-infected humans is crucial. Computer Tomography (CT) and chest
X-ray (CXR) images of the lungs are linked to COVID-19 detection [20]. Al systems have
been used by healthcare practitioners since 1976 for investigating, anticipating, and pre-
dicting diseases, including medication development, clinical trial analysis, and pandemic
forecasting [21].

Considering the continually altering COVID-19 due to vaccination and viral mutations,
there is an unmet clinical need for a prediction tool based on robust characteristics. Despite
advancements in COVID-19 detection, there is no risk prediction model for early disease
severity identification. Recent models and artificial networks have high sensitivity and
specificity for predicting morbidity and mortality, but they rely on genetic susceptibility,
requiring screening for multiple mutations that do not apply to the general population.
The current study develops a risk prediction model for COVID-19 outcomes using artificial
networks and minimal routine laboratory indices, focusing on admission to the Emergency
Department to enhance its value in clinical practice.

2. Literature Review

Globally, about 25 million COVID-19 fatalities have been documented, and patients
may require intensive care for up to four weeks, which puts a strain on healthcare systems.
Prediction models can help clinical decision-making. A study conducted by Sharma et al. in
2020 examines the prediction of COVID-19 using machine learning and big data, taking into
account all important factors. It was discovered that some algorithms have weak prediction
patterns, resulting in inverted anticipated values. From 30 January to 30 May 2020, the
study used two classification methods for Indian COVID-19 cases, as well as a population
index. The Bayes point machine and logistic regression algorithms achieved the highest
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accuracy of 99.6% and 99.4%, respectively. The findings imply that anticipating future
COVID-19 fatalities can aid in medical decision-making, particularly when immediate
treatment is required [22].

A retrospective cohort analysis by Guan X et al., in 2021, of 1270 COVID-19 patients
discovered that six major predictors of death were disease severity, age, high-sensitivity
C-reactive protein (hs-CRP), lactate dehydrogenase (LDH), Ferritin, and interleukin-10.
The simple-tree XGBoost model, which incorporated these characteristics, predicted death
risk with over 90% accuracy and 85% sensitivity, with F1 scores more than 0.90 in both
training and validation datasets. These findings might be useful in identifying high-
risk situations [23]. The COVID-19 pandemic has raised worldwide healthcare demand,
needing timely clinical evaluation. Using clinical data such as lymphocyte count, LDH, and
CRP, Yan et al. predicted COVID-19 mortality with 90% accuracy. High LDH levels signal
a need for emergency medical intervention. This offers a rule for prioritizing high-risk
patients [24].

Supervised learning algorithms have been widely used in predicting COVID-19 results.
Studies have been demonstrated on clinical data such as demographics, comorbidities,
and test findings. These models can predict hospitalization and mortality risks with high
accuracy. Maghdid et al. used a CNN-based model to analyze chest X-rays and CT images,
reaching high prediction accuracy for severe COVID-19 patients [25]. The study based on
generative adversarial networks (GANSs) offers a data-efficient deep network for detecting
COVID-19 on CT images. This technology makes more CT scans available while also
estimating the parameters of convolutional and fully linked layers using synthetic and
augmented data. The GAN-based deep learning model outperforms conventional models
for COVID-19 detection, with ResNet-18 and MobileNetV2 performing best on the COVID-
19 and Mosmed datasets, respectively [26]. Wynants and colleagues examined 145 models
for COVID-19 prognosis, including 23 that predicted death. They discovered significant
bias, imprecise reporting, and no external validation. As a result, the employment of these
anticipated models is not encouraged in current practice [27].

COVID-19 has resulted in the prevalence of low-quality clinical prediction models.
More actions are needed to serve patients in all areas of healthcare by building model
development frameworks. The potential of Al in predicting COVID-19 hospitalization and
mortality is intriguing, but issues with data quality, model interpretability, and generaliz-
ability must be solved before it can be fully utilized.

3. Materials and Methods

Research Ethics Committee boards approved a study, waived written informed con-
sent, and de-identified patient data to avoid confidentiality breaches.

Patient cohorts: A cross-sectional study was conducted after approval from the Re-
search Ethics Committee of King Abdulaziz University (KAU), Saudi Arabia. The study
used sequential sampling approaches to include 50 Real-Time Polymerase Chain Reaction
(RT-PCR)-positive COVID-19 patients from KAU’s coronavirus isolation wards. Medical
records were collected and analyzed by clinical teams. The results of RT-PCR were obtained
from electronic medical records using approved TagMan One-Step Kits. Positive results on
the last-performed test confirmed diagnosis for patients with multiple assays.

Demographic and clinical information: Demographic information about each patient
was gathered, including age, gender, symptoms, white blood cell and lymphocyte counts,
comorbidity status, and history of COVID-19 exposure. Information on patients’ mechan-
ical breathing, intense medical treatment, death progression, admission and discharge
times, and illness severity were all recorded based on symptom records, clinical findings,
and chest X-rays. A pre-designed form was used to record each patient’s demographic
information, including age and gender, signs and symptom:s, illness severity (mild, mod-
erate, severe), and laboratory findings. Furthermore, the length of the hospital stay and
the outcome, whether the patient recovered or died, were reported. Treatment information
and clinical results were tracked over the following weeks until discharge (Table S1).
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Predictive analysis: Predictive analytics, a subset of advanced analytics, uses historical
data, statistical algorithms, and machine learning techniques to forecast future occurrences
or outcomes. Through the examination of data patterns, trends are identified, and future
behavior or events are predicted. Historical data serve as the basis for training forecasting
models in this area. These models are then used to extrapolate predictions from new or
unpublished data. Predictions range from simple binary outcomes such as positive or
negative responses to complex scenarios involving multiple possible outcomes. In the
current study, the steps outlined in the following paragraphs were followed to predict
disease severity in terms of hospital mortality among COVID-19 patients. The study
recorded demographic details, signs and symptoms, disease severity (Table 1), as well as
laboratory findings such as Bilirubin, AST, ALT, phosphomonoesterases, GGT, protein,
CRP, D-Dimers, white blood cells, platelets, LDH, prothrombin time, and Ferritin (ng/mL)
(Table 2).

Table 1. COVID-19 patients” demographics and baseline characteristics.

Variables

Age (Mean =+ SD) 50.9 + 15.09

Hospital Stay (Days) 14.6 £ 2.8

Frequency Percentages (%)

Gender

Male 28 56.0

Female 22 44.0

Disease Severity

Mild 17 34.0

Moderate 23 46.0

Severe 7 14.0

Critical 3 6.0

Sign and Symptoms

Fever 24 48.0

Cough 18 36.0

Sore throat 12 24.0

Diarrhea 12 24.0

Fatigue 19 38.0

Nausea 8 16.0

Abdominal pain 5 10.0

Outcome

Death 6 12.0

Survived 44 88.0

Table 2. Baseline laboratory.

Laboratory Parameters Normal Range Mean + SD Minimum Maximum Range
White blood cell x 10° /L 3.5-9.5 1191 £ 129 0.741 76.6 75.85
Platelets x 10° /L 125-350 220.0 +80.5 40.0 418.0 378.0
CRP (mg/L) <3 60.18 + 83.01 0.10 322.13 322.03
LDH (U/L) 140 to 280 296.98 + 163.01 155.0 1044.0 889.0
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Table 2. Cont.

Laboratory Parameters Normal Range  Mean + SD Minimum Maximum Range
Ferritin (ng/mL) 12 to 300 479.89 + 436.07 8.0 1675 1667
D-Dimers (mg/L) >0.5 438.59 + 443.0 0.2 1600.0 1599.8
Alkaline phosphatase (ALP), (U/L) 44-147 85.12 £ 23.64 40.0 135.00 95.0
Gamma-glutamyl transferase (GGT), (U/L)  0-30 40.12 £ 16.54 10.0 79.0 69.0
Alanine transaminase (ALT), (U/L) 7-50 33.28 £11.12 17.0 60.0 43.0
Aspartate aminotransferase (AST), (U/L) 15-40 38.64 £ 13.93 18.0 75.0 57.0
Bilirubin (mg/dL) <0.3 0.63 +0.32 0.2 14 1.2
Prothrombin time/sec 10-13/sec 11.6 =147 8.0 14.0 6.0
Calcium (mg/dL) 8.5t010.2 8.8 £ 0.33 8.0 9.6 1.6
Potassium (mEq/L) 3.5-5 4.05 + 0.80 29 8.8 5.9

Data preprocessing;:

a. Data cleaning and transformation: The data were cleaned through the handling of
missing values. Missing values in the dataset were handled by using a boxplot.
Records lacking essential data points were excluded from the analysis to maintain
the models’ integrity. The categorical variables were coded according to categori-
cal variables, and the quantitative variables’ missing values were replaced by their
mean. The outcome variable (hospital mortality) was properly labeled as death = 0
or survival = 1. All the baseline investigations, clinical symptoms, and laboratory
findings were labeled as predictors.

b.  Dataset splitting: The data were divided into training and testing sets, with the
training set used for model development and the testing set reserved for performance
evaluation. To optimize the models” hyperparameters and enhance generalizability, a
5-fold cross-validation technique was applied. This approach helps minimize variance
and bias in the models” performance.

Machine learning algorithms:
The algorithms used in the study were decision trees, SVM, and random forest.
Hyperparameters:

a.  Decision trees: The model’s hyperparameters include a maximum depth of 10 and a
minimum sample split of 2. The criterion used for measuring the quality of splits is
Gini impurity.

b.  Support vector machines (SVMs): The model used a radial basis function (RBF) kernel,
which is effective in high-dimensional spaces. The regularization parameter was
set to 1.0, balancing the trade-off between maximizing the margin and minimizing
classification errors. The kernel coefficient \ (\gamma ) was set to ‘scale’. This helps in
capturing the non-linear relationships in the data. The tolerance for stopping criteria
was set to 0.001. A 5-fold cross-validation was performed to ensure robustness and
prevent overfitting.

c¢.  Random forest: The model used 100 trees, balancing computational efficiency and
model performance. The maximum depth of each tree was set to none, allowing trees
to grow until all leaves were pure or until all leaves contained less than the minimum
samples required to split. The minimum number of samples required to split an
internal node was set to 2. The model used the Gini impurity criterion to measure
the quality of a split. Bootstrap samples were used when building trees to reduce
overfitting. A 5-fold cross-validation was performed to tune the hyperparameters and
validate the model’s performance.
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These hyperparameters were optimized to enhance the predictive accuracy of the
SVM and random forest models in predicting COVID-19 patient mortality.

Training process:

The dataset is divided into training and testing sets, typically with an 80-20 split.
Cross-validation, such as 5-fold cross-validation, is performed to tune hyperparameters
and prevent overfitting. The model is then trained using the training set and validated
using the validation set. Finally, the model’s performance is evaluated on the test set using
appropriate metrics, such as accuracy.

Technical characteristics of computer used:

The computer utilized for the analysis is equipped with an Intel Core i7-9700K CPU,
32 GB DDR4 RAM, and an NVIDIA GeForce RTX 2080 Ti GPU. It also features 1 TB of
SSD storage and runs on the Windows 10 Pro operating system. The software environ-
ment includes Python 3.8 as the programming language, with libraries such as Scikit-learn
0.24.2 for machine learning algorithms, Pandas 1.2.4 for data manipulation, NumPy 1.20.2
for numerical computations, and Matplotlib 3.4.2 and Seaborn 0.11.1 for data visualiza-
tion. The analysis is conducted using the Jupyter Notebook 6.3.0 integrated development
environment (IDE).

Block diagram:

The study follows a structured approach consisting of several key steps. First, data
collection involves gathering patient data, including demographics, symptoms, and lab-
oratory results. Second, data preprocessing entails cleaning and preparing the data for
analysis. Third, feature selection identifies the key features that impact the prediction of
COVID-19 outcomes. Fourth, model training is performed using the selected features to
train machine learning models. Fifth, model evaluation assesses the models” performance
using accuracy, precision, and recall metrics. Finally, the prediction phase involves using
the trained models to predict outcomes for new patients (Figure 1).

COVID-19 Outcome Prediction Process

Data Collection
Data
Preprocessing
Feature
Selection
Model Training

Model
Evaluation
&

Figure 1. Block diagram of the study.
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Statistical analysis: The data were entered and analyzed in SPSS. Mean =+ standard
deviation (SD) was calculated for quantitative variables and frequency/percentages for
qualitative variables. The mean difference among laboratory findings for the outcome vari-
ables was calculated through an independent sample t-test. p-value < 0.05 was significant.

4. Results
4.1. Demographics and Baselines of COVID-19 Patients

The study included 50 patients, with an average age of 50.9 years (SD = 15.09). Patients
stayed in the hospital for an average duration of 14.6 days (SD = 2.8). Gender distribution
revealed 56.0% male and 44.0% female participants. Disease severity varied, with 34.0%
experiencing mild symptoms, 46.0% moderate, 14.0% severe, and 6.0% critical conditions.
Common symptoms included fever (48.0%), fatigue (38.0%), cough (36.0%), sore throat
(24.0%), and diarrhea (24.0%). Less common symptoms were nausea (16.0%) and abdominal
pain (10.0%). The majority of patients (88.0%) survived, while 12.0% unfortunately died
due to COVID-19 (Table 1).

4.2. Laboratory Parameters in COVID-19 Patients

The analysis of laboratory parameters in the COVID-19 patients revealed significant
details. The average white blood cell count was 11.91 x 10°/L, indicating a broad range,
predominantly above the normal threshold. The platelet count averaged 220.0 x 10° /L,
remaining within the expected range. However, the C-reactive protein (CRP) levels were
notably elevated, averaging 60.18 mg/L, suggesting heightened inflammation. The lactate
dehydrogenase (LDH) levels exhibited a mean of 296.98 U/L, indicating potential tissue
damage. The Ferritin levels were also elevated, with a mean of 479.89 ng/mL, implying
inflammation or iron overload. The D-Dimer levels showed an average of 438.59 mg/L,
indicative of possible blood clot formation. While alkaline phosphatase (ALP), gamma-
glutamyl transferase (GGT), alanine transaminase (ALT), and aspartate aminotransferase
(AST) levels generally fell within normal ranges, the Bilirubin levels were slightly elevated,
averaging 0.63 mg/dL. The prothrombin time and calcium levels remained within the
expected parameters, while the potassium levels averaged 4.05 mEq/L, within normal
limits (Table 2). There was a significant difference in CRP, LDH, Ferritin, ALP, Bilirubin,
D-Dimers, and hospital stay, with a p-value < 0.05 (Table 3).

Table 3. Mean difference of laboratory findings among outcome variables (survival/death).

Laboratory Findings = Outcome Mean + SD p-Value
Survival 10.81 +9.34 0.104
WCC
Death 19.99 + 28.37
Survival 222.25 +72.39 0.605
PLT
Death 203.83 + 134.95
Survival 51.17 £ 69.86 <0.05*
CRP
Death 124.80 £ 139.48
Survival 271.52 £+ 102.10 <0.001 **
LDH
Death 483.67 + 351.06
Survival 439.42 + 365.26 <0.05*
Ferritin
Death 835.98 + 819.24
Survival 332.47395 + 345.07 <0.001 **
D-Dimers
Death 1216.8 & 271.52
Survival 81.73 £22.25 <0.001 **
ALP
Death 110.00 £ 19.48
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Table 3. Cont.

Laboratory Findings = Outcome Mean + SD p-Value
Survival 38.80 + 16.88 0.127
GGT
Death 49.83 £10.21
Survival 32.68 + 11.53 0.308
ALT
Death 37.67 + 6.53
Survival 37.70 + 14.41 0.202
AST
Death 4550 + 7.31
Survival 0.60 £ 0.30 <0.05*
Bilirubin
Death 0.88 £ 0.39
Survival 11.64 £ 1.40 0.641
Prothrombin time
Death 11.33 +£2.07
Survival 8.81 +£0.35 0.595
Calcium
Death 8.73 £0.23
Survival 4.07 £0.83 0.665
Potassium
Death 3.92 £0.62
) Survival 14.57 + 2.96 <0.001 **
Hospital stay
Death 23.00 £2.83

p-value < 0.05 * significant, p-value < 0.01 ** strongly significant, results from independent sample ¢-test.

4.3. Prediction of Mortality

The hospital stay, D-Dimers, ALP, Bilirubin, LDH, CRP, and Ferritin levels were higher
in COVID-19 patients indicated in Figure 2.

Predictive Accuracy of Mortality

1009
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%
Ferritin ALP  Bilirubin Hospital D-Dimers
stay

Figure 2. Predictive accuracy of mortality according to lab findings.

Increased levels indicated its association with mortality. The algorithm’s accuracy was
calculated and indicated high accuracy of the decision tree at 76%, random forest 80%, and
SVM 82%; the decision tree was calculated, indicating a high decision tree (Table 4).
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Table 4. Predictive accuracy of algorithms.

Algorithms Accuracy (%)
Decision tree 76%
Random forest 80%
SVM 82%

4.4. Hypothetical Confusion Matrix for SVM

Table 5 shows that 41 patients survived, while 42 did not. The performance metrics of
the model are as follows: sensitivity was 83.67%, specificity was 82.35%, positive predictive
value (PPV) was 82.0%, negative predictive value (NPV) was 84.0%, and overall accuracy
was 83%.

Table 5. Hypothetical confusion matrix for SVM.

Results from SVM

Actual Findings — - - -
Positive (Survived) Negative (Died)
Positive (survived) 41 9
Negative (died) 8 42
Sensitivity 83.67%
Specificity 82.35%
Positive predicted value (PP V) 82.0%
Negative predictive value (NPV) 84.0%
Accuracy 83.0%

The formula used to evaluate the diagnostic accuracy:

TP+ TN
TP+ TN+ FP+FN

Accuracy =

5. Discussion

The research included 50 patients with various illness severities, with the majority
feeling fever, weariness, cough, sore throat, and diarrhea. The majority survived, with 56.0%
males. The research of COVID-19 patients revealed laboratory measures, including an
average white blood cell count that was higher than normal, a platelet count that was within
the predicted range, raised C-reactive protein levels, probable tissue damage, ferritin levels,
and D-Dimer levels. Other indicators, including alkaline phosphatase, gamma-glutamyl
transferase, alanine transaminase, and aspartate aminotransferase, were typically within
normal limits. Bilirubin levels were slightly higher, but prothrombin time, calcium, and
potassium levels were within normal ranges.

The study conducted by Yasar $ et al. [28] demonstrates that, by utilizing Al, the
prognosis of COVID-19 patients is mostly based on clinical characteristics such as vital
signs and laboratory testing, which is also indicated in our work. The shortcoming of the
previous study was that they did not use X-rays as a prediction for COVID-19 severity; this
is also the limitation of our study. The work also emphasizes the feasibility of combining
clinical information and laboratory values in a single system, offering a fresh viewpoint
on prognostic Al systems. Acute respiratory distress syndrome affects 15% of patients,
and more than half of ICU admissions are due to hypoxia or respiratory fatigue. Analysis
using Al systems based on clinical data can predict disease development more accurately
than clinical data alone, improving patient care by combining information from different
sources [29]. The current study also emphasized the use of Al-based clinical prediction for
the severity of COVID-19 to make it a predictive tool.
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Early detection and treatment of COVID-19 disease is crucial for decreased mortality,
especially for severely ill patients. Previous research using imaging data from COVID-19
patients has mostly focused on diagnosis rather than prognosis [30]. Prognostic models may
forecast mortality, morbidity, and other outcomes, and they have real-world applications in
patient identification, bed management, situational awareness, and resource allocation [31].

Computers are expected to play a crucial role in combating global health emergencies,
with Al being extensively applied to predict clinical outcomes of hospitalization and
mortality. Al is produced by computer systems capable of doing tasks that require human-
like intellect, with machine learning playing a critical role in providing high prediction
accuracy and scalability [32]. Substantial efforts from the scientific community have aimed
to integrate Al, particularly machine learning, into predictive modeling for COVID-19-
related outcomes [33]. ML and deep learning (DL) are key components of Al that use
algorithms to learn and adapt from data. DL, a subset of machine learning, extracts
complicated information using neural networks with numerous layers; it includes deep,
deep belief, and recurrent learning [34]. This research introduced predicting COVID-19
diagnosis based on baseline demographics, comorbidities, vital signs, and lab findings.
Predictive models can be used for diagnosis when the testing capacity is restricted, or
they can be combined with clinical judgment. They uncover crucial clinical characteristics
associated with positive diagnosis, giving information for effective patient stratification and
population screening. The single-tree model’s decision algorithm can be used in healthcare
settings. The studies indicated acute respiratory distress syndrome (ARDS) and/or sepsis
are strong markers of a positive COVID-19 diagnosis [35].

ML algorithms were associated with a positive COVID-19 diagnosis in both symp-
tomatic and asymptomatic patients. Four models indicated age, lab results, comorbidities,
vital signs, and hematologic characteristics as predictors of a positive diagnosis. Abnormal
liver function tests, as well as low white blood cell count and hemoglobin levels, have
previously been identified as indications of COVID-19 severity. These data may help
predict the severity of COVID-19 [36]. The study’s innovative use of machine learning
classification may face significant challenges in model interpretability, which is essential
for effective clinical decision-making. The complexity of these models can obscure the
reasoning behind predictions. Moreover, by concentrating on comorbidities and their
interactions with symptoms, the study may neglect other crucial factors, such as mental
health, social determinants of health, and patient behavior, which also play a key role in
COVID-19 outcomes.

Our results discovered that blood CRP, LDH, Ferritin, ALP, Bilirubin, and D-Dimer
levels were the strongest predictive characteristic of COVID-19 diagnosis, which is con-
sistent with earlier research identifying serum levels as a biomarker of clinical severity
and poor prognosis. Numerous research has investigated the significance of biochemical
and hematological indicators in COVID-19 to develop an algorithm for identifying poor
prognosis, ventilation, and early intervention. Despite this, there is little agreement on this
subject, and future studies should focus on regional biomarker profiles.

A comprehensive overview in a study conducted in 2021 found Al applications in the
field of COVID-19 address various areas and have many benefits. In disease diagnosis,
Al helps in the interpretation of various tests and symptoms and facilitates the rapid and
accurate identification of infections. Al also contributes to patient monitoring by enabling
continuous assessment and timely intervention. It plays a crucial role in determining
the severity of a patient’s condition and helps healthcare providers prioritize treatment
strategies effectively. When processing imaging tests related to COVID-19, Al algorithms
improve the analysis of radiological scans and enable the rapid detection of abnormalities
indicative of infection by the virus. Epidemiology benefits from Al-driven predictive
modeling, which helps to predict outbreaks, track trans-mission patterns, and develop
targeted intervention strategies [37]. However, this paper’s case studies may not be diverse
enough, restricting a comprehensive understanding of Al’s effectiveness across different
healthcare systems. While ethical concerns such as data privacy and algorithmic bias are
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acknowledged, they are not thoroughly examined. Moreover, although the paper addresses
emerging technologies and policy recommendations, it falls short of providing specific
examples or actionable steps for Al implementation after the pandemic.

A deep learning system has been developed to predict the malignant progression of
COVID-19 using clinical data and CT scans studied in 2020 in China. The system achieved
an average AUC of 0.874 in a multicenter study. The system automatically identifies key
indicators contributing to malignant progression, including Troponin, Brain natriuretic
peptide, White cell count, Aspartate aminotransferase, Creatinine, and Hypersensitive
C-reactive protein [38]. Another important study in 2020 conducted by Wynants et al.
provided a detailed assessment of COVID-19 diagnosis and prognosis, assessing prediction
models” accuracy and value in detecting suspected infections, forecasting patient outcomes,
and identifying persons at increased risk of infection or hospitalization [39].

Al is currently being used to predict COVID-19 mortality and hospitalization by
combining patient demographics, medical history, vital signs, and laboratory data. The
objective is to identify high-risk individuals so that they can receive prompt medical
treatment. Mortality studies employ comparable input factors, with an emphasis on illness
severity and progression. Machine learning also predicts hospitalization and death, taking
into account the interplay of these events [40].

Due to their excellent accuracy, machine learning algorithms, notably random forest,
have been successful in predicting COVID-19-related hospitalization and mortality. Ran-
dom forest operates by constructing multiple decision trees and aggregating predictions,
effectively capturing complex data relationships [41]. Its versatility allows for handling
diverse input variables without extensive pre-processing. Additionally, random forest
provides insights into feature importance, aiding in identifying key predictors of COVID-19
outcomes. These analytical advantages make random forest a valuable tool in medical
research and decision-making processes surrounding COVID-19 [42]. The study revealed
the efficacy of predictive models in COVID-19 diagnosis, allowing for effective screening
and patient classification. This is critical given the current pandemic’s impact on huge
populations, which necessitates more efficient testing resource allocation and improved
patient care.

Another study examined clinical features and lab indicators in severe and non-severe
COVID-19 patients, identifying significant differences in neutrophil-to-lymphocyte ratio,
C-reactive protein, and lactate dehydrogenase. They developed a decision tree model
that accurately predicted mortality in critically ill patients with 98% precision, helping
prioritize treatment for high-risk individuals [43]. These findings were also comparable
with our study, which also indicates that the tree predicts COVID mortality with good
precision. However, a major shortcoming is the difficulty in generalizing AI models to
different populations and settings. Models trained on specific datasets may not perform
accurately when applied to new or diverse groups, leading to unreliable predictions.

Joaquim Carreras’ study employed artificial intelligence (Al) to analyze celiac disease
using a transcriptomic panel focused on autoimmune discovery. The Al models demon-
strated exceptional accuracy, ranging from 95% to 100%, in predicting celiac disease based
on the autoimmune gene panel. This highlights the models” effectiveness in distinguishing
celiac disease patients from control subjects [44].

6. Conclusions

The gold-standard PCR test for COVID-19 is constrained by high turnaround times,
a lack of specialized equipment, and low sensitivity, providing a challenge to global
healthcare systems. NHS guidelines require testing of all emergency admissions, regardless
of clinical suspicion, emphasizing the critical requirement for prompt and accurate COVID-
19 exclusion in acute care settings. Our models have a strong predictive performance,
making them suitable for screening COVID-19 diagnoses in emergency rooms. They help
make rapid treatment decisions, guide safe patient streaming, and act as a pre-test for
diagnostic molecular testing. Key benefit categories include viral-free individuals who were
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properly predicted to be COVID-19-negative. This strategy is extensively used in clinical
practice. The clinically focused approach ruled out COVID-19 in enriched subpopulations
that were more likely to test positive, proposing conclusive testing, comparable to the
D-Dimer test for suspected deep-vein thrombosis and pulmonary embolism.

The integration of Al has significantly advanced the fight against COVID-19. From
diagnosis to predicting outcomes to modeling future trends, Al has played a crucial role in
interpreting data, improving patient care, and predicting outbreak dynamics. In addition,
the application of ML models has significantly improved predictive accuracy and provided
valuable insights into COVID-19-related hospital admissions and mortality rates. During a
global health crisis, Al can improve public health and solve pandemic-related issues by
improving decision-making and patient outcomes.

Until now, early detection models have mostly focused on radiological imaging evalu-
ation. Few studies have evaluated routine laboratory tests, with studies to date including
small numbers of patients with confirmed COVID-19, using PCR results for data labeling,
and thus not ensuring disease freedom in so-called negative patients, as well as not being
validated in the clinical population that is the target for their intended use.

7. Limitations of the Study

The use of small control cohorts during training is a shortcoming of this study since it
fails to expose models to the breadth and range of alternate infectious and non-infectious
diseases, including seasonal pathologies. Furthermore, while the application of artificial
intelligence approaches for early detection has enormous potential, several published
models are highly biased.
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Abstract: Mental health disorders represent a substantial global health concern, impacting
millions and placing a significant burden on public health systems. Natural Language
Processing (NLP) has emerged as a promising tool for analyzing large textual datasets to
identify and predict mental health challenges. The aim of this scoping review is to identify
the Arabic NLP techniques employed in mental health research, the specific mental health
conditions addressed, and the effectiveness of these techniques in detecting and predicting
such conditions. This scoping review was conducted according to the PRISMA-ScR (Pre-
ferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping
Reviews) framework. Studies were included if they focused on the application of NLP
techniques, addressed mental health issues (e.g., depression, anxiety, suicidal ideation)
within Arabic text data, were published in peer-reviewed journals or conference proceed-
ings, and were written in English or Arabic. The relevant literature was identified through
a systematic search of four databases: PubMed, ScienceDirect, IEEE Xplore, and Google
Scholar. The results of the included studies revealed a variety of NLP techniques used
to address specific mental health issues among Arabic-speaking populations. Commonly
utilized techniques included Support Vector Machine (SVM), Random Forest (RF), Decision
Tree (DT), Recurrent Neural Network (RNN), and advanced transformer-based models
such as AraBERT and MARBERT. The studies predominantly focused on detecting and
predicting symptoms of depression and suicidality from Arabic social media data. The
effectiveness of these techniques varied, with trans-former-based models like AraBERT and
MARBERT demonstrating superior performance, achieving accuracy rates of up to 99.3%
and 98.3%, respectively. Traditional machine learning models and RNNs also showed
promise but generally lagged in accuracy and depth of insight compared to transformer
models. This scoping review highlights the significant potential of NLP techniques, par-
ticularly advanced transformer-based models, in addressing mental health issues among
Arabic-speaking populations. Ongoing research is essential to keep pace with the rapidly
evolving field and to validate current findings.

Keywords: Natural Language Processing; Arabic-speaking populations; mental health

1. Introduction

Mental health disorders, often referred to as mental illnesses, are highly prevalent
globally and pose a significant public health challenge [1]. These disorders include a
variety of conditions like depression, anxiety, suicidal thoughts, bipolar disorder, and
schizophrenia. Each of these conditions has the potential to negatively affect physical and
overall well-being [2]. Mental health disorders are a widespread global issue, affecting
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millions of people suffering from one or more mental health disorders [1]. The early
detection of mental illness can greatly benefit the progression and treatment of the disease.

Various text sources, such as social media messages, interview transcripts, and clini-
cal notes, serve as mediums through which individuals express their moods and mental
states. Natural Language Processing (NLP), a type of artificial intelligence (AI), has re-
cently become crucial in analyzing and managing large-scale textual data. NLP facilitates
information extraction, sentiment analysis, and emotion detection [3-5]. The detection
of mental illness through textual data can be framed as a text classification or sentiment
analysis task, employing NLP techniques to identify early indicators and facilitate early
detection, prevention, and treatment strategies. The use of NLP for medical health inter-
vention initially employed pre-packaged software tools [6], eventually progressing to more
computationally intensive deep neural networks [7], particularly large language models
like transformers [8]. These advanced methods help uncover meaningful trends in vast
datasets. The proliferation of digital health platforms has made such data more accessible,
enabling transformative studies on treatment fidelity [9], patient outcome estimation [10],
the identification of treatment components [11], the evaluation of therapeutic alliances [12],
and suicide risk assessment [13]. This evolution is generating excitement and apprehension
regarding the use of conversational agents in mental health [14].

Despite the potential of NLP within the mental health domain, there remains a lack of
comprehensive reviews that systematically identify and categorize the various Arabic NLP
techniques employed, the specific mental health issues they target, and their effectiveness
in predicting and detecting mental health problems. The existing literature often focuses on
isolated studies or specific applications, leaving a gap in our understanding of the broader
landscape of NLP in mental health research for the Arabic language. The Arabic language,
with its rich morphology, diverse dialects, and unique cultural nuances, presents distinct
challenges and opportunities for NLP-based mental health interventions [15]. Existing
NLP tools and techniques developed for other languages may not directly translate to
Arabic, necessitating tailored approaches. Furthermore, cultural factors and social contexts
within Arabic-speaking communities play a vital role in how mental health is expressed
and perceived, requiring culturally sensitive NLP methodologies.

This scoping review addresses the critical gap in the literature by focusing specifically
on the use of NLP techniques for mental health interventions in the Arabic language. By
focusing on the Arabic language context, this review aims to systematically map: (1) the
types of NLP techniques used in Arabic mental health research; (2) the specific mental
health problems targeted within Arabic-speaking populations; and (3) the effectiveness of
these NLP approaches in predicting and detecting mental health issues.

1.1. Aims and Research Questions

This review aims to provide a comprehensive overview of the current state of research,
identify key challenges and opportunities, and inform future directions for developing
culturally appropriate and effective NLP-based mental health interventions for Arabic
speakers. The following research questions (RQs) guided this review:

1. Which specific mental health conditions are primarily addressed in Arabic
NLP research?

2. What are the most commonly employed NLP techniques in mental health research
within the Arabic-speaking world?

3. What is the evidence for the effectiveness of these NLP techniques in detecting and
predicting mental health issues within Arabic text data?
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1.2. Literature Study

Arabic NLP for mental health has seen significant advancements, leveraging lexicon-
based methods, deep learning models, and transformer architectures to detect mental health
conditions like depression, anxiety, and suicidal ideation. Due to the complex structure
of Arabic, including rich morphology, diacritics, dialectal variations, and limited labeled
datasets, early studies relied on rule-based and statistical NLP approaches for sentiment
analysis and psychological assessment. However, recent advancements in deep learning
(CNNs, LSTMs) and transformer models (AraBERT, Arabic GPT, mBERT, XLM-RoBERTa)
have improved the accuracy of mental health detection using social media, clinical records,
and online counseling platforms.

Several studies have explored the landscape of digital mental health resources and
the application of NLP in Arabic language. For example, ref. [16] systematically assessed
the features, quality, and digital safety of Arabic mental health apps, revealing areas
for improvement in design and content. Other reviews have focused on specific NLP
techniques, such as recurrent neural networks for sentiment analysis [17], highlighting
their effectiveness in navigating the complexities of the Arabic language. A broader
examination of NLP in Arabic sentiment analysis [18] provided insights into challenges
and advancements in the field. Furthermore, the automatic identification of hate speech in
Arabic tweets has been explored, with [19] reviewing various classification techniques and
feature engineering methods. However, despite these contributions, significant challenges
persist, including the limited availability of labeled Arabic mental health datasets, the
complexities posed by dialectal variations, and the cultural stigma surrounding open
discussions of mental health.

The use of NLP for mental health has been more widely studied in English. Tradition-
ally, articles on NLP for mental health focused on lexicon-based methods, N-grams, Hidden
Markov Models (HMMs), and classical machine learning approaches (Naive Bayes, SVM,
etc.) for mental health detection. Articles on deep learning-based NLP for mental health
involve deep learning architectures such as CNNs, RNNs, LSTMs, and BiLSTMs, which are
more effective for text-based mental health detection. The application of transformer-based
NLP to mental health articles involves the use of cutting-edge transformer models like
BERT, AraBERT, GPT, and RoBERTa to enhance mental health prediction from text. A
summary of recent articles is given in Table 1 below.

Table 1. List of relevant review studies in the landscape of NLP and mental health.

Articles (Journal, Year) Language Summary
“Natural Language Processing for Mental Reviews traditional NLP techniques such as
Health Interventions” (Translational Psychiatry, English lexicon-based sentiment analysis and feature
2023) [20] engineering for mental health applications.

Natural Language Processing Applied to Discusses rule-based and statistical methods

Mental Illness Detection” (npj Digital Medicine, English used for analyzing mental illness from text data.
2022) [21]
“Screening for Depression Using Natural Explores traditional lexicon-based and
Language Processing: A Literature Review” English keyword-based models in English and Arabic
(Interactive Journal of Medical Research, 2024) [22] depression detection.

“Mental Health Stigma and Natural Language

Processing: Two Enigmas Through the Lens of

a Limited Corpus” (IEEE Conference Publication,
2022) [23]

Uses text classification techniques to identify

English mental health stigma in textual data.
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Table 1. Cont.

Articles (Journal, Year) Language Summary

“Natural Language Processing and Social
Determinants of Health in Mental Health
Research: A Systematic Review” (JMIR Mental
Health, 2025) [24]

Discusses deep learning methods to analyze
English social determinants of mental health from
English-language textual data.

Evaluates ChatGPT’s ability to classify stress,
English depression, and suicidality in English
and Arabicdatasets.

“Evaluation of ChatGPT for NLP-Based Mental
Health Applications” (arXiv preprint, 2023) [25]

Reviews BERT, AraBERT, GPT-3, and RoBERTa
English in mental health applications across English and
Arabic languages.

“Large Language Models for Mental Health: A
Systematic Review” (arXiv preprint, 2024) [26]

This paper is organized as follows. We first describe the methodology employed in
this scoping review, including the search strategy, inclusion and exclusion criteria, and
data extraction process. Subsequently, we present the results of our literature search,
summarizing the key findings and identifying emerging trends in the application of NLP
to mental health research within the Arabic-speaking world. Finally, we discuss the
implications of these findings, highlighting the potential benefits and limitations of NLP in
this context, and outline key areas for future research.

2. Methods

This scoping review followed the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) [27], a framework de-
signed for transparency and reproducibility in scoping reviews. Unlike Systematic Liter-
ature Reviews (SLRs), which address narrow research questions, scoping reviews, using
PRISMA-ScR, are ideal for exploring broad topics, identifying key concepts, summarizing
evidence, and detecting research gaps [28]. Given the emerging nature of Arabic NLP
for mental health, PRISMA-ScR facilitated a structured and comprehensive review. The
PRISMA-ScR checklist guided our research questions, inclusion/exclusion criteria, litera-
ture search, and reporting, allowing us to capture the breadth of Arabic NLP applications
without SLR’s restrictive criteria. This framework also supports diverse study designs, cru-
cial for understanding this interdisciplinary field. Thus, PRISMA-ScR ensured a rigorous
and effective mapping of current advancements, challenges, and future directions in Arabic
NLP for mental health.

2.1. Inclusion and Exclusion Criteria

Articles were eligible for inclusion if they were original and written in English, and
they had to focus on the use of NLP in mental health research. Only studies conducted
in Arabic-speaking countries or involving Arabic-speaking populations were included.
Exclusion criteria included non-original research articles like systematic reviews, meta-
analyses, editorials, article comments, and literature reviews. Additionally, studies were
excluded if they did not focus on mental health, use NLP techniques, specify, or utilize NLP
techniques, report on the effectiveness or impact of the interventions, or focus exclusively
on mental health conditions without broader applicability to mental health interventions.
Studies that did not involve Arabic language were also excluded. Table 2 shows the
inclusion and exclusion criteria.
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Table 2. Eligibility criteria.

Criteria Inclusion Exclusion
.. . .. Reviews, meta-analyses, editorials,
Original research articles (e.g., empirical . .
Study Type . ; commentaries, letters to the editor,
studies, case studies) - .
opinion pieces
Focus Application of NLP techniques in mental Studies not focusing on NLP

health research

applications in mental health

Language and Region

Studies conducted in Arabic-speaking
countries or involving Arabic-speaking
populations

Studies not conducted in
Arabic-speaking countries or involving
Arabic-speaking populations

Mental Health Focus

Studies addressing specific mental
health issues (e.g., depression, anxiety,
suicide ideation)

Studies not focusing on any specific
mental health condition

Data Source

Studies utilizing Arabic text data (e.g.,
social media, clinical notes,
patient records)

Studies utilizing Arabic text data (e.g.,
social media, clinical notes,
patient records)

Published in peer-reviewed journals or

Publication .
conference proceedings

Unpublished studies, grey literature

Language of Publication Studies published in English or Arabic Studies published in other languages

Studies that explicitly specify and utilize
NLP techniques in their methodology

Studies that do not specify or utilize

NLP Technique Utilization NLP techniques

2.2. Information Sources and Study Selection

To identify relevant studies, we conducted a comprehensive literature search across
PubMed, ScienceDirect, IEEE, and Google Scholar for articles published up to December
30, 2024. Search terms were employed to locate potentially relevant studies, which were
subsequently subjected to a rigorous selection process. The finalized search strategy can be
found in Table 3. After removing duplicates, the title and abstract of all the articles were
divided into two groups and screened independently by two reviewers using Covidence
(https:/ /www.covidence.org). Two reviewers (with a third acting as a judge) reviewed
each potentially relevant abstract in the full text for eligibility criteria. Any disagreement
was discussed with other reviewers to reach consensus.

Table 3. Search strings.

Databases Search Strings

(“natural language processing” OR NLP OR “text analysis” OR “machine learning” OR
“deep learning” OR transformers OR BERT OR GPT OR LSTM OR RNN OR CNN) AND
(“mental health” OR depression OR anxiety OR schizophrenia OR “bipolar disorder” OR

“mental illness” OR “psychological disorders” OR “emotional well-being” OR “mental

wellness”) AND (Arabic OR “Arabic language” OR “Arabic-speaking” OR “Modern
Standard Arabic” OR “Arabic dialects” OR “Arabic text”)

PubMed

(“natural language processing” OR NLP OR “machine learning” OR “deep learning”) AND

ScienceDirect (“mental health” OR “psychological disorders”) AND (Arabic OR “Arabic language”)

(“natural language processing” OR NLP OR “text analysis” OR “machine learning” OR
“deep learning” OR transformers OR BERT OR GPT OR LSTM OR RNN OR CNN) AND
(“mental health” OR depression OR anxiety OR schizophrenia OR “bipolar disorder” OR

“mental illness” OR “psychological disorders” OR “emotional well-being” OR “mental

wellness”) AND (Arabic OR “Arabic language” OR “Arabic-speaking” OR “Modern
Standard Arabic” OR “Arabic dialects” OR “Arabic text”)

IEEE
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Table 3. Cont.

Databases

Search Strings

Google Scholar

(“natural language processing” OR NLP OR “text analysis” OR “machine learning” OR
“deep learning” OR transformers OR BERT OR GPT OR LSTM OR RNN OR CNN) AND
(“mental health” OR depression OR anxiety OR schizophrenia OR “bipolar disorder” OR

“mental illness” OR “psychological disorders” OR “emotional well-being” OR “mental

wellness”) AND (Arabic OR “Arabic language” OR “Arabic-speaking” OR “Modern

Standard Arabic” OR “Arabic dialects” OR “Arabic text”)

No time frame was applied for all of the database’s searches. The search string
for ScienceDirect was shortened because the database only accepts search strings with a
maximum of eight Boolean operators.

2.3. Data Extraction

To systematically capture the key characteristics of each included article, a summary
table was developed. This table included author(s), publication year, study design, NLP
techniques employed, mental health problems addressed, and the reported effectiveness
of these techniques. Data extraction was conducted independently by two reviewers and
verified by a third to ensure accuracy and consistency. The extracted information was then
organized into a summary table, structured by research question, to demonstrate how each
study contributed to answering the research questions.

2.4. Synthesis of Results

We conducted a thematic analysis to systematically categorize and analyze findings
across the included studies. This approach identified recurring themes and patterns re-lated
to NLP techniques in Arabic-speaking mental health research, including the specific mental
health problems addressed and the reported effectiveness of NLP interventions. Two re-
viewers independently performed the thematic analysis, grouping similar as-sessment
criteria into domains. Discrepancies were resolved through discussion with a third reviewer.
For RQ1, we identified that the most frequently addressed mental health conditions in
Arabic NLP research. A summary table was created to show the mental health conditions
explored across the studies. For RQ2, we highlighted common NLP techniques, such as ma-
chine learning models and deep learning models, with a table presenting these techniques
and their performance metrics like accuracy, precision, recall, and F1-score. For RQ3, the
effectiveness of these techniques was evaluated by comparing their ability to detect and
predict mental health conditions based on performance metrics across the studies.

3. Results
3.1. Search Results

The initial database search yielded 403 articles (Figure 1). After eliminating 31 dupli-
cates, 312 records were excluded based on title and abstract screening. A thorough review
of the remaining 53 articles was conducted, with 24 articles meeting all inclusion criteria
and proceeding to the final analysis.
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Identification

Identification of studies via databases and registers

Records identified from:
Databases (n = 403)
PubMed (n = 12)

IEEE (n =21)
ScienceDirect (n = 170)
Google Scholar (n = 200)

Screening

Records screened (Title and
Abstract screening)
(n = 365)

Reports sought for retrieval
(n=153)

Reports assessed for eligibility
(n=53)

Included

Studies included in the review
(n=24)

Records removed before
screening:
Duplicate records removed (n
=31)
Records marked as ineligible
by automation tools (n = 3)
Records removed for other

Records excluded
(n=312)

Reports not retrieved
(n=0)

Reports excluded:
Studies that did not involve
Arabic-speaking countries or
populations (n = 4)
Studies that did not specify or
utilize NLP (n = 15)
Non-peer-reviewed (n = 4)
Non-full text (n = 1)

Figure 1. PRISMA flowchart showing the study selection process.

3.2. Results of Data Extraction

The study descriptor can be found in Table 4.

Table 4. Study descriptor.

Study . Mental Health s
Authors Year Design NLP Techniques Problem(s) Key Findings/Results
AraBERT (DL) achieved the highest

ML (Naive Bayes, SVM, KNN, performance (91% accuracy, 88% Fl-score),

Abdulsalam et al. . RF, XGBoost), Text Analysis, - outperforming other ML models. Among

[29] 2024 Mixed DL (AraBERT, AraELECTRA, ~ Suwicidal Thoughts "y 4 1, SVM and RF with character

AraGPT2) n-grams achieved 86% accuracy and a
79% F1-score.

Alabdulkreem RNN model demonstrated effectiveness in

2020  Quantitative ML (RNN) Depression detecting depression from 10,000 tweets

[30]

(200 users).
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Table 4. Cont.

Study . Mental Health s s
Authors Year Design NLP Techniques Problem(s) Key Findings/Results
. . Promising performance in predicting
‘lztlga}fa[r;f]l 2020 Quantitative Text Analylzlji’clfr{“) (ArabDep Depression depression symptoms from posts (over
’ 80% accuracy, 82% recall, 79% precision).
Alzoubi et al. 2024 Quantitative ML (Mutational Naive Bayes, Depression aﬁ?éizgrlileﬁ?lizzaiiirgh élg;i?fn
[32] RF, Decision Tree, AdaBoost) p ghest accuracy °
tweet classification.
Baghdadi L .. BERT achieved a WSM of 95.26%; USE
etal. [33] 2022 Quantitative DL (BERT, USE) Suicidal Thoughts achieved a WSM of 80.2%.
Duwairi & Achieved a promising accuracy of 87% in
Halloush 2022 Quantitative DL (CNN with Bi-LSTM) Personality Disorders classifying overlapping
[34] personality disorders.
AraBERT: 99.3% accuracy, 99.1% precision,
Elmajali & 2024 Mixed Pre-Trained Transformers Depression 98.8% recall, 98.9% F1-score. MARBERT:
Ahmad [35] (AraBERT, MARBERT) P 98.3% accuracy, 98.2% precision,
97.9% recall, 98% F1-score.
Attention-based Bi-LSTM outperformed
Almars [36] 2022 Quantitative DL (Bi-LSTM) Depression state-of-the-art ML models, achieving
83% accuracy.
Depression, Exc'ellent performance in d}a.gnosmg
S . multiple mental health conditions (over
Mezzi et al Suicidality, Panic 92% accuracy, over 94% precision, recall
’ 2022 Quantitative BERT, MINI Disorder, Social ! L ! g
[37] . . and F1-score). Tool positively evaluated
Phobia, Adjustment . L. .
. by hospital staff for decision making and
Disorder . .
patient scheduling.
Sivakumar . . Demonstrated improved detection of
. m-Polar Neutrosophic Set, Depression, ; .
etal. [38] 2025 Mixed Applied Lineuistics Mood Chan mood changes and depression using
PP guistic 8¢ m-Polar Neutrosophic Set analysis.
Helmy et al. . . Showed the effectiveness of sentiment
- Sentiment Analysis, . . . .
[39] 2025 Quantitative . Depression analysis for detecting depression across
Cross-Lingual NLP . .
Arabic and English tweets.
Saadany et al. . Machine Translation, Cyber Depression, nghhghted rlsl.<s of machlpe tljanslatl(‘)n
[40] 2024 Mixed Risk Analvsis Mood Chanse errors in detecting depression in Arabic
y & mental health tweets.
Alaskar & Found that machine learning models
Ykhlef [41] 2022 Quantitative Machine Learning Depression effectively detect depression symptoms in
Arabic tweets with high accuracy.
. Developed a recognition model for
Rabie et al. Major Depressive predicting major depressive disorder in
[42] 2025 Quantitative Machine Learning Disorder Arabic user-generated content with
promising results.
Alatawi et al. . . . . . .
- Sentiment Analysis, s Effective sentiment analysis for detecting
431 2024 Quantitative Empirical Analysis Suicidality suicidal ideation in Arabic online posts.
Alhuzali & Evaluated the effectiveness of
Alasmari [44] 2004 Mixed Foundational NLP Models, Mental Health foundational NLP models in classifying
Question Answering Care Q&A Q&A in mental health care with
promising results.
El-Ramly BERT transformers showed high
L BERT Transformers, . . . . S
et al. [45] 2021 Quantitative . Depression effectiveness in detecting depression in
Deep Learning . .
Arabic posts with strong accuracy.
Found deep learning and explainable Al
Kumar & . . . . .
Singh [46] 2023 Mixed Deep Learning, Depression, models effective for detecting depression,
& Explainable AI Anxiety, Stress anxiety, and stress in Arabic and English
social media posts.
Hassib et al. Transformers Depression Transformers were highly effective in
[47] 2022 Quantitative . . pression, detecting both depression and suicidal
Sentiment Analysis Suicidality . . .
ideation in Arabic tweets.
Alghamai Mchine emingmodelprdiced
Alfalasi [31] 2020 Mixed Machine Learning Depression P ymp .
psychological forums with
good performance.
Bensalah MindWave app uses Al and sentiment
et al. [48] 2024 Quantitative Al, Mobile Apps, Mental analysis to support mental health
’ Sentiment Analysis Health Support detection and intervention in both Arabic

and English.
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Table 4. Cont.

Study . Mental Health s s
Authors Year Design NLP Techniques Problem(s) Key Findings/Results
. Sentiment analysis effectively detected
Almouzini . . L . .
tal. [49] 2019 Mixed Sentiment Analysis, Depression depression in Arabic Twitter users,
etak Text Classification demonstrating high accuracy in
identifying depressive behavior.
Developed a dataset for mood changes
Maghraby & . . S
Ali [50] 2022 Quantitative Dataset Creation, Depression, and depression in Modern Standard
! Sentiment Analysis Mood Changes Arabic, showing its utility for NLP-based
detection models.
Musleh et al. Machine Learnin, lsezr;ﬁgenvflzgzlf}f,esgigzlirf;;?ecc}:ﬁe
[51] 2022 Mixed & Depression 5 &

Sentiment Analysis

depression from Arabic tweets with high
classification accuracy.

Specifically, we have identified trends regarding the focus on specific mental health
conditions, the types of NLP techniques used, and the effectiveness of these techniques
over time.

Mental health conditions addressed: Depression was the most frequently studied
mental health issue, appearing in 79% (19 out of 24) of studies. Suicidal thoughts were the
focus in 16% (4 out of 24), while personality disorders, panic disorder, social phobia, and
adjustment disorder were each studied in 4% (1 out of 24).

Trend in NLP techniques: Transformer-based models (e.g., AraBERT, MARBERT,
BERT) were employed in 45% (11 out of 24) of the reviewed studies, highlighting their
growing dominance in mental health-related Arabic NLP research. Traditional machine
learning models (e.g., SVM, Naive Bayes, RF) were used in 33% (8 out of 24) of studies,
while deep learning architectures (e.g., Bi-LSTM, CNN with Bi-LSTM) were utilized in 20%
(5 out of 24) of studies.

Effectiveness of NLP techniques: Studies that applied transformer models reported
the highest accuracy, with AraBERT achieving 99.3% accuracy in depression detection and
BERT achieving over 92% accuracy in diagnosing multiple mental health conditions.

The evolution of techniques over time: Earlier studies (2020) primarily used traditional
ML models (RNN, lexicons) for depression detection. However, from 2022 onward, there
was a shift towards deep learning and transformer-based models, which have demonstrated
superior performance.

Figure 2 shows the evolution of NLP techniques in Arabic mental health research over
time. It highlights the increasing adoption of transformer-based models (such as BERT and
AraBERT) while traditional machine learning techniques have remained relatively stable.
Deep learning methods like Bi-LSTM and CNN have also been consistently used.

3.3. Characteristics of Included Studies

This review included 24 studies employing various methods to explore the use of
NLP techniques in addressing mental health problems. The studies focused on multiple
mental health diseases, including depression, suicidal thoughts, and personality disorders.
A range of NLP techniques were applied across the studies, including both classical ma-
chine learning models like Naive Bayes, Support Vector Machine, K-Nearest Neighbor,
Random Forest, XGBoost, and Mutational Naive Bayes, as well as more advanced deep
learning architectures such as AraBERT, AraELECTRA, AraGPT2, CNN with Bi-LSTM,
Bi-LSTM, and the MARBERT transformer model. The studies demonstrated the effective-
ness of these techniques in detecting and predicting mental health issues through various
performance metrics.
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Evolution of NLP Techniques in Arabic Mental Health Research
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Figure 2. Trend of NLP techniques in Arabic mental health research (2020-2024).

3.4. Results of Included Studies: A Summary
3.4.1. Specific Mental Health Problems

The reviewed studies utilized NLP techniques to address specific mental health issues
prevalent among Arabic-speaking populations. Abdulsalam et al. [29] focused on detect-
ing suicidal thoughts in Arabic tweets. Alabdulkreem [30] aimed to predict depression
symptoms in Arab women based on their tweets during the COVID-19 pandemic. Al-
ghamdi et al. [31] explored NLP for predicting depression in Arabic text. Al-zoubi et al. [32]
classified depression symptoms in Arabic tweets. Duwairi and Halloush [34] focused on
detecting personality disorders among Arab Twitter users. Elmajali and Ahmad [35] aimed
to detect depression symptoms in Arabic tweets using pre-trained transformers. Mezzi
et al. [37] developed an intelligent tool to diagnose several mental health conditions in
Arab-speaking patients, such as depression, suicidality, panic disorder, social phobia, and
adjustment disorder. These studies collectively highlighted the diverse applications of
NLP in addressing mental health issues specific to Arabic-speaking communities. Table 5
highlights the mental health conditions discussed in the included papers.

Table 5. The list of mental health conditions discussed.

Mental Health Condition

Studies Addressing the Condition

Depression

Suicidality
Panic Disorder
Social Phobia
Personality Disorders
Adjustment Disorder

Abdulsalam et al. [29], Alabdulkreem [30], Alghamdi et al. [31], Alzoubi et al. [32],
Elmajali & Ahmad [35], Almars [36], Sivakumar et al. [38], Helmy et al. [39],
Saadany et al. [40], Alaskar & Ykhlef [41], Rabie et al. [42], Alhuzali & Alasmari [44],
El-Ramly et al. [45], Kumar & Singh [46], Bensalah et al. [48], Almouzini et al. [49],
Maghraby & Ali [50], Musleh et al. [51], Al-Musallam & Al-Abdullatif [52]
Abdulsalam et al. [29], Mezzi et al. [37], Alatawi et al. [43], Hassib et al. [47]
Mezzi et al. [37]

Mezzi et al. [37]

Duwairi & Halloush [34]

Mezzi et al. [37]
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3.4.2. Types and Effectiveness of NLP Techniques

Abdulsalam et al. [29] investigated the automatic detection of suicidal ideation in
Arabic tweets, creating a novel dataset of such content. Their evaluation of various machine
learning models, trained using word frequency and word embeddings, also explored the
efficacy of pre-trained deep learning models. Among the machine learning approaches,
Support Vector Machine (SVM) and Random Forest (RF) models, utilizing character n-
grams, achieved the best results with 86% accuracy and a 79% Fl-score. The AraBERT
model demonstrated superior performance overall, achieving 91% accuracy and an 88% F1-
score, significantly improving the detection of suicidal thoughts within their Arabic tweet
dataset. In a related study, Alabdulkreem [30] used machine learning to predict depression
symptoms from tweets posted by Arab women during the COVID-19 pandemic. Their
research focused on developing a recurrent neural network (RNN) model for depression
detection, evaluating its performance on a dataset of 10,000 tweets from 200 users. The
results of this evaluation confirmed the model’s effectiveness.

Alghamdi et al. [31] conducted an investigation into the utilization of NLP and ma-
chine learning methodologies for the prediction of depression from Arabic textual data,
evaluating and comparing the efficacy of several approaches. The results of their study
indicated promising performance metrics, with an accuracy exceeding 80%, a recall of 82%,
and a precision of 79% in the identification of posts indicative of depressive symptoma-
tology. Alzoubi et al. [32] collected 16,581 Arabic tweets from 1439 Arab Twitter users to
determine whether the tweets expressed depression and to identify the symptoms they con-
tained. They classified users as depressed or not and employed several machines learning
algorithms, including DT, RE, Mutational Naive Bayes, and AdaBoost, along with feature
extraction methods such as Bag of Words (BOW) and TF-IDF. Their experiments showed
that the Mutational Naive Bayes algorithm with TF-IDF achieved the highest accuracy
(86%) in tweet classification.

Baghdadi et al. [33] developed an Arabic tweet preprocessing algorithm comparing
lemmatization, stemming, and other lexical analysis techniques. Their research involved
conducting experiments using Twitter data gathered from online sources, which underwent
annotation by five different annotators. This approach aimed to refine and optimize the
preprocessing steps tailored for Arabic text. The study evaluated the effectiveness of
their proposed dataset using advanced NLP models, including the Bidirectional Encoder
Representations from Transformers (BERT) and Universal Sentence Encoder (USE). These
models were assessed using a comprehensive set of performance metrics such as balanced
accuracy, specificity, F1-score, loU ROC curve analysis, Youden Index, NPV, and WSM. The
results demonstrated notable achievements for the Arabic BERT models, which excelled
with a highest recorded WSM of 95.26%. Conversely, the USE models achieved a WSM
of 80.2%. These findings underscore the robustness and applicability of Arabic BERT
models in effectively processing and analyzing Arabic tweets. Baghdadi et al.’s work [33]
contributes valuable insights into enhancing the preprocessing and analysis of Arabic
language data, particularly in leveraging state-of-the-art NLP techniques for improved
performance across various evaluation metrics.

Duwairi and Halloush [34] proposed a novel multi-view fusion model based on deep
learning algorithms to identify prevalent personality disorders among Arab Twitter users
in an expert-driven approach. They addressed the lack of publicly available datasets
focusing on personality disorders in Arabic by creating AraPerson, which comprises
8000 tweets and 8000 images annotated with the mental statuses of 150 users. This dataset
was curated with input from domain experts and utilized regular expressions for data
collection. Their study employed a baseline multi-view model combining a CNN with
a Bi-LSTM to analyze textual and visual posts to detect personality disorders. In further
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experiments, they fused a DenseNet model with the Bi-LSTM, testing different vector
combination techniques, including concatenation, addition, and multiplication. The highest
reported accuracy achieved was 87%, indicating promising results despite the challenges
of overlapping characteristics between the studied personality disorders. Elmajali and
Ahmad [35] conducted research aimed at detecting nine depression symptoms, based on
DSM-5 criteria, within Arabic tweets. Their approach leveraged pre-trained transformers
such as AraBERT and MARBERT for tweet classification. To address dataset imbalance,
they employed data augmentation techniques using ChatGPT, which included generating
a ‘normal’ class to complement the depression symptom classes. Their study evaluated
model performance using four critical metrics: accuracy, precision, recall, and F1 scores.
The AraBERT model exhibited notably high performance, achieving an accuracy of 99.3%,
a precision of 99.1%, a recall of 98.8%, and an F1-score of 98.9%. These metrics highlight
the model’s ability to accurately identify tweets expressing depression symptoms, with a
low rate of misclassification.

MARBERT also performed strongly, achieving high scores across all metrics: 98.3% ac-
curacy, 98.2% precision, 97.9% recall, and a 98% F1-score. These results highlight MABERT's
effectiveness in capturing the nuances of depression symptom detection in Arabic tweets,
albeit with slightly lower performance metrics compared to AraBERT.

Almars [36] conducted a study on depression analysis on Arabic social media content
to discern user sentiments. They introduced a Bi-LSTM model augmented with an attention
mechanism designed to effectively capture and weigh significant hidden features crucial
for depression detection. This new deep learning architecture is designed to simultaneously
identify key features and learn the weights of important words that strongly contribute to
depression detection. Almars [36] collected a Twitter dataset comprising approximately
6000 tweets for their evaluation. The dataset was manually labeled by categorizing tweets
as either expressing depression or not. Experimental results demonstrated that the pro-
posed attention-based Bi-LSTM model surpassed existing state-of-the-art machine learning
models in depression detection tasks. Specifically, the model achieved an accuracy of 83%,
underscoring its effectiveness in accurately identifying depression-related content from
Arabic social media posts. Mezzi et al. [37] conducted a study focused on the development
of an intelligent instrument for mental health intent recognition within an Arabic-speaking
patient population. Their methodology integrated the Bidirectional Encoder Representa-
tions from Transformers (BERT) model with the International Neuropsychiatric Interview
(MINI). The evaluation at the Military Hospital of Tunis demonstrated the system’s robust
performance, with accuracy surpassing 92% and precision, recall, and Fl-scores exceeding
94% in the diagnosis of mental health disorders, including depression, suicidality, panic
disorder, social phobia, and adjustment disorder. The tool received positive feedback
from medical personnel at the institution, who recognized its utility in clinical decision
support and patient appointment scheduling within the context of high patient volume.
Sivakumar et al. [38] explores Arabic text analysis by integrating applied linguistics with
m-Polar Neutrosophic Set (m-PNS) to analyze mood changes and depression on social
media. The authors propose a method for detecting mood shifts and depressive symptoms
in Arabic social media posts using this advanced mathematical approach, enhancing the
accuracy of mental health assessments in online Arabic communities. Helmy et al. [39]
investigate cross-lingual sentiment analysis to detect depression in Twitter users, compar-
ing the effectiveness of analyzing English and Arabic tweets. The researchers demonstrate
how sentiment analysis can identify depressive behaviors, highlighting the challenges and
variations between detecting depression in English versus Arabic posts.

Saadany et al.’s [40] research examines the cyber risks posed by critical machine transla-
tion errors, focusing on Arabic mental health tweets. The study uses a case study approach
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to illustrate how translation inaccuracies can impact the detection of mental health issues,
specifically depression, in Arabic-language social media. Alaskar and Ykhlef [41] discuss
the application of machine learning techniques for detecting depression from Arabic tweets.
The authors utilize various algorithms to analyze Twitter data, focusing on the identification
of depression-related content in Arabic social media. Rabie et al. [42] presents a recognition
model for identifying major depressive disorder (MDD) in Arabic user-generated content.
Using NLP and machine learning, the authors propose an effective approach for diagnosing
MDD in Arabic-language online posts. Alatawi et al. [43] empirically analyze methods for
detecting Arabic online suicidal ideation. The authors apply computational techniques to
identify suicidal tendencies from online Arabic content, emphasizing the importance of
early detection and intervention. Alhuzali and Alasmari [44] evaluate the effectiveness
of foundational models for question-and-answer (Q&A) classification in mental health
care, specifically for Arabic content. The authors analyze various models for their perfor-
mance in addressing mental health queries and providing relevant responses. EI-Ramly
et al. [45] introduce CairoDep, a system for detecting depression in Arabic posts using
BERT transformers. The study showcases the application of deep learning techniques to
identify depressive content in Arabic social media and evaluates the system’s performance
in real-world scenarios. Kumar and Singh’s [46] paper discusses explainable deep learning
models for mental health detection in both English and Arabic social media posts. The
authors explore how these models can interpret and explain the reasons behind detecting
depression and other mental health issues in online content.

Among the included studies, Hassib et al. [47] which present AraDepSu, a model
for detecting depression and suicidal ideation in Arabic tweets using transformers. The
research highlights the use of advanced machine learning models to identify mental health
issues in Arabic-language social media posts. Bensalah et al. [48] introduce the MindWave
app, which leverages Al for mental health support in both English and Arabic. The
authors highlight the app’s capabilities in detecting mental health issues and providing
support to users, focusing on its cross-lingual functionalities. Almouzini et al. [49] focus
on detecting depressed users from Twitter data in Arabic. The authors use machine
learning algorithms to analyze Arabic tweets, developing a model to detect depression
based on linguistic and sentiment cues. Maghraby and Ali [50] introduce a dataset for
mood changes and depression in Modern Standard Arabic. The authors provide a detailed
description of the dataset, which includes annotated Arabic social media posts for use in
mental health research and detection. Musleh et al.’s [51] research investigates sentiment
analysis for detecting depression in Arabic tweets using machine learning. The authors
apply various machine learning techniques to analyze the sentiments expressed in Arabic
tweets and detect depressive symptoms based on linguistic patterns. Al-Musallam and Al-
Abdullatif [52] explore the use of machine learning techniques to detect depression through
the analysis of depressive Arabic tweets from Saudi Arabia. The authors propose a system
that classifies tweets based on depressive content using a machine learning approach. By
analyzing social media data, the study aims to contribute to the early detection of depression
among Arabic-speaking individuals, particularly in the context of Saudi Arabia, using
advanced computational methods to enhance mental health awareness and intervention. A
summary table has been included that presents the effectiveness of each model in detecting
mental health issues such as depression and suicidality (Table 6).
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Table 6. Mapping research questions to relevant studies in Arabic NLP for mental health.

Research Question (RQ)

Respective Study

RQ1: Which specific mental health conditions are
primarily addressed in Arabic NLP research?

Abdulsalam et al. [29] (Suicidal Thoughts)
Alabdulkreem [30] (Depression)
Alghamdi et al. [31] (Depression)

Alzoubi et al. [32] (Depression)

Duwairi & Halloush [34] (Personality Disorders)
Sivakumar et al. [38] (Depression, Mood Change)
Saadany et al. [40] (Depression, Mood Change)
Alaskar & Ykhlef [41] (Depression)

Rabie et al. [42] (Major Depressive Disorder)
Alatawi et al. [43] (Suicidality)

Alhuzali & Alasmari [44] (Mental Health Care Q&A)
El-Ramly et al. [45] (Depression)

Kumar & Singh [46] (Depression, Anxiety, Stress)
Hassib et al. [47] (Depression, Suicidality)
Alghamdi et al. [31] (Depression)
Bensalah et al. [48] (Mental Health Support)
Almougzini et al. [49] (Depression)
Maghraby & Ali [50] (Depression, Mood Changes)
Musleh et al. [51] (Depression)

RQ2: What are the most commonly employed NLP
techniques in mental health research within the
Arabic-speaking world?

Alzoubi et al. [32] (ML: Mutational Naive Bayes, RF,
Decision Tree, AdaBoost)

Baghdadi et al. [33] (DL: BERT, USE)
Elmajali & Ahmad [35] (Pre-trained Transformers:
AraBERT, MARBERT)

Almars [36] (DL: Bi-LSTM)

Sivakumar et al. [38] (m-Polar Neutrosophic Set,
Applied Linguistics)

Helmy et al. [39] (Depression)

Saadany et al. [40] (Machine Translation, Cyber
Risk Analysis)

Alaskar & Ykhlef [41] (Machine Learning)
Rabie et al. [42] (Machine Learning)

Alatawi et al. [43] (Empirical Analysis,
Sentiment Analysis)

Alhuzali & Alasmari [44] (Foundational NLP Models,
Question Answering)

El-Ramly et al. [45] (BERT Transformers, Deep Learning)
Kumar & Singh [46] (Deep Learning, Explainable AI)
Hassib et al. [47] (Transformers, Sentiment Analysis)
Alghamdi et al. [31] (Machine Learning)
Bensalah et al. [48] (AI, Mobile Apps, Sentiment Analysis)
Almouzini et al. [49] (Sentiment Analysis,

Text Classification)

Maghraby & Ali [50] (Dataset Creation,
Sentiment Analysis)

Musleh et al. [51] (Machine Learning,
Sentiment Analysis)
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Table 6. Cont.

Research Question (RQ) Respective Study

Abdulsalam et al. [29] (AraBERT, ML models: SVM, RF)
Alabdulkreem [30] (RNN)
Baghdadi et al. [33] (BERT, USE)
Elmajali & Ahmad [35] (AraBERT, MARBERT)
Mezzi et al. [37] (BERT, MINI)

Sivakumar et al. [38] (m-Polar Neutrosophic Set)
Helmy et al. [39] (Sentiment Analysis,
Cross-Lingual NLP)

Helmy et al. (sentiment analysis)

Saadany et al. [40] (Highlighted risks of machine
translation errors)

Alaskar & Ykhlef [41] (High accuracy in detecting
depression symptoms)

Rabie et al. [42] (Demonstrates the effectiveness of
machine learning)

Alatawi et al. [43] (Demonstrates the effectiveness of

RQ3: What is the evidence for the effectiveness of these sentiment analysis)
NLP techniques in detecting and predicting mental health ~ Alhuzali & Alasmari [44] (Effectiveness of foundational
issues within Arabic text data? models in mental health)
El-Ramly et al. [45] (BERT transformers show high
effectiveness)
Kumar & Singh [46] (Effectiveness of deep learning and
explainable Al models)

Hassib et al. [47] (Transformers are effective in detecting
both depression and suicidal ideation)
Alghamdi et al. [31] (Machine learning predicts
depression symptoms)

Bensalah et al. [48] (Al-driven mobile apps (MindWave)
can support mental health detection)
Almouzini et al. [49] (Sentiment analysis for
detecting depression)

Maghraby & Ali [50] (Provides a dataset for mood
changes and depression)

Musleh et al. [51] (Effectiveness of sentiment analysis for
depression detection)

4. Discussion

This scoping review revealed a diverse array of NLP techniques employed in mental
health research among Arabic-speaking populations. These techniques ranged from tradi-
tional machine learning models to advanced deep learning and transformer-based models,
each applied to address specific mental health issues prevalent in this demographic. The
reviewed studies utilized various NLP techniques to analyze Arabic text data for men-
tal health insights. Common techniques included SVM, RE, DT, and RNN. Advanced
approaches such as BERT and its Arabic variants, AraBERT and MARBERT, were also
prominently featured. Notably, AraBERT and MARBERT demonstrated superior perfor-
mance due to their ability to capture contextual nuances in the Arabic language. Unique
approaches included the use of Bi-LSTM models augmented with attention mechanisms to
enhance feature extraction, as seen in Almars [36].

Arabic presents unique linguistic challenges, such as rich morphology, complex di-
acritization, dialectal variations, and script ambiguity, which significantly affect NLP
performance [53]. Traditional machine learning methods like SVM and Random Forest
depend on hand-crafted feature extraction, which struggles to capture these complexities.
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In contrast, transformer-based models such as AraBERT and MARBERT leverage deep
contextualized embeddings, making them more effective for mental health applications.
Key challenges in Arabic NLP include morphological richness, where transformer models
like AraBERT effectively learn contextual representations to reduce feature sparsity, and
diacritization, where transformers handle ambiguity better than traditional models [54].
Dialectal variations and code-switching, common in Arabic social media, are also better
managed by transformer-based architectures like MARBERT, which enhances performance
in sentiment and emotion classification tasks [55]. Therefore, transformer-based models
offer significant improvements in the accuracy and generalizability of Arabic NLP for
mental health tasks. We have incorporated these justifications into the revised manuscript,
along with relevant references.

The studies predominantly focused on detecting and predicting symptoms of depres-
sion and suicidality from Arabic social media data. For instance, Abdulsalam et al. [29] and
Alghamdi et al. [31] aimed to identify depression symptoms, while Abdulsalam et al. [29]
also targeted suicidal thoughts. Other mental health issues addressed included personality
disorders, as explored by Duwairi and Halloush [34], and a broader range of conditions,
such as panic disorder, social phobia, and adjustment disorder, as seen in the work by
Mezzi et al. [37]. The effectiveness of these NLP techniques varied, with several studies
reporting high accuracy and strong performance metrics. Abdulsalam et al. [29] found
that SVM and RF models achieved an accuracy of 86% and a 79% F1 score in detecting
suicidal thoughts, with AraBERT further enhancing the accuracy to 91% and F1 score to
88%. Alabdulkreem [30] reported the successful application of an RNN model in predict-
ing depression from tweets. Alzoubi et al. [32] demonstrated that a combination of the
Mutational Naive Bayes algorithm and TE-IDF features achieved an accuracy of 86% in clas-
sifying depression-related tweets. Baghdadi et al. [33] highlighted the robust performance
of Arabic BERT models, achieving a weighted sum metric (WSM) of 95.26%, underscoring
their efficacy in processing Arabic tweets. The studies collectively highlighted the poten-
tial of NLP techniques in accurately detecting and predicting mental health issues from
Arabic text data, with transformer models showing particularly promising results due to
their advanced language processing capabilities. These findings highlight the versatility
and potential of NLP techniques in addressing mental health issues in Arabic-speaking
populations. Integrating advanced models like AraBERT and MARBERT represents a
significant advancement in the field, offering higher accuracy and deeper insights into
mental health patterns.

Arabic mental health datasets, especially those from social media, often face challenges
such as data sparsity [56], dialectal variation, imbalanced classes, and noisy text, which can
lead to overfitting in traditional machine learning models like SVM and Random Forest.
Transformer models such as AraBERT [54] and MARBERT [55] help mitigate overfitting
through pretraining on large corpora, contextual representations, and regularization tech-
niques like dropout and early stopping [6,41]. They reduce bias by using diverse pretraining
data, fine-tuning on balanced datasets, and offering attention-based interpretability to help
identify and adjust biases [42,43]. While transformers are not entirely immune to bias or
overfitting, they significantly reduce these issues compared to traditional models, making
them more suitable for Arabic mental health NLP tasks.

The imbalance between class distributions is indeed a significant issue in the context
of Arabic social media data, where some mental health conditions may be underrepre-
sented, leading to potential biases in classification models. Transformer-based models
such as AraBERT and MARBERT provide several advantages for addressing class im-
balance in these applications. These models are trained on large and diverse datasets,
allowing them to develop an understanding of contextual relationships across various con-
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ditions, including rare ones. Fine-tuning strategies like class weighting, data augmentation,
oversampling /under-sampling, loss function modifications, and ensemble learning can
significantly improve model performance. Class weighting adjusts the loss function to
penalize misclassifications of rare conditions [57], while data augmentation techniques like
back-translation and synthetic data generation increase underrepresented samples [58].
Oversampling the minority class or undersampling the majority class also help to allevi-
ate imbalance [59]. Loss function modifications such as focal loss [60] or Dice loss focus
the model on hard-to-classify examples, while ensemble learning methods [61] enhance
performance by combining multiple models. These strategies enable transformer models
to effectively handle imbalanced mental health datasets and improve the identification of
underrepresented conditions like panic disorder and adjustment disorder.

The comparative analysis of different NLP techniques revealed significant variations in
their effectiveness, with some approaches demonstrating superior performance in detecting
and predicting mental health issues among Arabic-speaking populations. Traditional ma-
chine learning models, such as SVM and RF, were effective in several studies. For instance,
Abdulsalam et al. [29] found that SVM and RF models trained on character n-gram features
performed well in detecting suicidal thoughts, achieving 86% accuracy and an F1 score of
79%. These models were relatively straightforward to implement and interpret, making
them suitable for initial explorations into NLP applications in mental health. However,
deep learning models, particularly transformer-based models, consistently outperformed
traditional machine learning techniques. AraBERT and MARBERT, for example, signif-
icantly enhanced the detection of mental health symptoms in Arabic text. Elmajali and
Ahmad [35] reported that AraBERT achieved an accuracy of 99.3%, a precision of 99.1%,
a recall of 98.8%, and an F1 score of 98.9% in classifying tweets containing depression
symptoms. MARBERT, while slightly less effective, still demonstrated strong performance
with an accuracy of 98.3% and F1 score of 98%. These transformer models excelled due
to their ability to understand and process the nuanced context of the Arabic language,
providing deeper insights and more accurate classifications. The use of RNNs also showed
promise, particularly in the work of Alabdulkreem [30], who developed an RNN model to
predict depression from tweets. Although specific metrics were not detailed, the model
demonstrated its effectiveness with a high accuracy rate. Similarly, the Bi-LSTM model
augmented with attention mechanisms used by Almars [36] achieved an impressive accu-
racy of 83%, indicating its capability to capture and weigh significant features crucial for
depression detection effectively.

Bi-LSTM excels at capturing sequential dependencies by processing input text in both
forward and backward directions, which is crucial for modeling long-range contextual
relationships, especially in Arabic, where morphological variations and syntactic ambiguity
are common [62]. This capability allows the Bi-LSTM to effectively capture the local
context of tokens, including nuances like diacritics. On the other hand, transformer models
such as AraBERT and MARBERT leverage self-attention mechanisms to capture global
contextual relationships, enabling them to focus on different parts of a sentence, regardless
of their distance [8]. This makes transformers highly effective for understanding long-
range dependencies and semantic relationships, which are essential for detecting emotions,
sentiment, and mental-health-related signals in Arabic social media text. The combination
of these architectures offers a synergistic approach to improving Arabic NLP tasks in
mental health.

In contrast, while still effective, traditional models such as Mutational Naive Bayes
and feature extraction methods like TF-IDF generally showed lower performance metrics
than deep learning models. Alzoubi et al. [32] demonstrated that the Mutational Naive
Bayes algorithm combined with TF-IDF achieved an accuracy of 86%, which, while notable,
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did not reach the high performance of transformer models. The comparative analysis
underscores that advanced NLP techniques, particularly transformer-based models like
AraBERT and MARBERT, appear most promising for mental health applications in Arabic-
speaking populations. Their superior performance can be attributed to their advanced
language understanding capabilities, which allow them to capture the subtle nuances of
mental health expressions in text. Deep learning models, such as RNNs and Bi-LSTMs
with attention mechanisms, showed strong potential, particularly when enhanced with
innovative architectural features. While useful, traditional machine learning models gen-
erally lagged in accuracy and depth of insight, suggesting a clear advantage for more
sophisticated NLP approaches in this field.

Implicit expressions of symptoms such as depression, anxiety, or stress often require a
sophisticated understanding of context, emotion, and language subtleties, particularly in social
media texts, where these symptoms may be conveyed through indirect or subtle language.

Transformer-based models, such as AraBERT and MARBERT, are well -equipped to
handle these challenges due to their self-attention mechanism, which enables them to
capture contextual relationships between words regardless of their position in the sentence.
This allows transformers to effectively understand the subtext of a sentence, discerning
hidden sentiment or intent even when symptoms are not explicitly stated [8]. Research has
demonstrated the efficacy of transformers for implicit sentiment analysis in social media,
particularly for languages like Arabic [63]. These models thus represent a powerful tool for
detecting implicit mental health symptoms in Arabic social media text.

Limitations

While this review highlights the significant advancements in NLP techniques for
mental health research among Arabic-speaking populations, it is important to acknowledge
several limitations. This review may be subject to selection bias, as it relies on the inclusion
criteria and databases used to source the studies. Although comprehensive search strategies
were employed, it is possible that some relevant studies were not identified or included.
Additionally, studies published in languages other than English may have been overlooked,
potentially limiting the scope of this review. NLP and mental health research are rapidly
evolving, with new techniques and methodologies emerging. As a result, the findings of
this review may quickly become outdated. Ongoing research and future reviews will be
necessary to keep abreast of the latest developments and to validate this review’s findings.

While large language models (LLMs) and retrieval-augmented generation
(RAG)-based techniques show promise in mental health applications, several challenges
hinder their inclusion in this review. First, the lack of high-quality Arabic-specific datasets
for fine-tuning LLMs presents a significant barrier, as most LLM solutions are optimized
for widely spoken languages like English. Second, the substantial computational resources
required for fine-tuning LLMs can be prohibitive, particularly in research settings with
limited resources. Lastly, the novelty of these techniques in the mental health field means
there is limited research addressing their use in this specific context. These factors led to the
exclusion of LLMs and RAG-based solutions, and we have elaborated on these limitations
to clarify their relevance to the research.

5. Conclusions

NLP techniques have demonstrated significant potential in detecting mental health
issues among Arabic-speaking populations. Transformer-based models, such as AraBERT
and MARBERT, have shown superior accuracy in capturing nuanced Arabic expressions
of mental health symptoms, outperforming traditional machine learning and recurrent
neural networks. While these earlier models offer valuable insights, the advancements
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with transformers highlight the importance of leveraging advanced NLP. Given the rapidly
evolving nature of this field, continuous research is crucial to validate findings and explore
new methodologies. Future efforts should focus on standardizing evaluation metrics, ex-
panding datasets to include diverse populations, and exploring emerging NLP innovations
to enhance the accuracy and applicability of mental health interventions. This review
highlights the progress in applying NLP to detect mental health conditions, focusing on
the effectiveness of transformer models in addressing Arabic’s linguistic challenges. We
examine various mental health conditions, compare NLP techniques, and offer insights into
model performance optimization. Ultimately, we emphasize the need for advanced models
and suggest future research should prioritize standardized metrics, diverse datasets, and
innovative methodologies.
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Abstract: Background /Objectives: In Korea’s emergency medical system, when an emergency patient
arises, patients receive on-site treatment and care during transport at the pre-hospital stage, followed
by inpatient treatment upon hospitalization. From the perspective of emergency patient management,
it is critical to identify the high death rate of patients with certain conditions in the emergency room.
Therefore, it is necessary to compare and analyze the determinants of the death rate of patients
admitted via the emergency room and generally hospitalized patients. In fact, previous studies
investigating determinants of survival periods or length of stay (LOS) primarily used multiple
or logistic regression analyses as their main research methodology. Although medical data often
exhibit censored characteristics, which are crucial for analyzing survival periods, the aforementioned
methods of analysis fail to accommodate these characteristics, presenting a significant limitation.
Methods:Therefore, in this study, survival analyses were performed to investigate factors affecting
the dying risk of general inpatients as well as patients admitted through the emergency room. For this
purpose, this study collected and analyzed the sample cohort DB for a total of four years from 2016
to 2019 provided by the Korean National Health Insurance Services (NHIS). After data preprocessing,
the survival probability was estimated according to sociodemographic, patient, health checkup
records, and institutional features through the Kaplan-Meier survival estimation. Then, the Cox
proportional hazards models were additionally utilized for further econometric validation. Results:
As a result of the analysis, in terms of the “city’ feature among the sociodemographic characteristics,
the small and medium-sized cities exert the most influence on the death rate of general inpatients,
whereas the metropolitan cities exert the most influence on the death rate of inpatients admitted
through the emergency room. In terms of institution characteristics, it was found that there is a
difference in determinants affecting the death rate of the two groups of study, such as the number of
doctors per 100 hospital beds, the number of nurses per 100 hospital beds, the number of hospital
beds, the number of surgical beds, and the number of emergency beds. Conclusions: Based on the
study results, it is expected that an efficient plan for distributing limited medical resources can be
established based on inpatients” LOS.

Keywords: survival analysis; Kaplan—-Meier survival analysis; cox proportional hazards model;
national health insurance services cohort DB; survival period; death rate; medical data

1. Introduction

Despite the higher demand for emergency medical care due to various accidents, many
patients could not receive proper emergency treatment, leading to an increase in the death
rate. Following the COVID-19 era, there have been disruptions in the management and
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operation of emergency medical services since many of the medical resources, including
medical staff, emergency rooms, and hospital beds, were specifically dedicated to being
utilized in the COVID-19 emergency medical centers [1].

In Korea’s emergency medical system, upon the emergence of an emergency patient,
treatment is administered on-site and during transport at the pre-hospital stage, followed
by inpatient care at the hospital stage [2,3]. As such, the role of emergency rooms in
this emergency medical system is becoming increasingly important. Generally, under
Article 31 of the Emergency Medical Service Act, emergency rooms are designed to provide
emergency care and other medical tasks and are staffed 24 h by specialist physicians who
provide efficient and prompt treatments. In fact, emergency rooms have confronted the
issue of overcrowding due to an influx of visits by both patients who require immediate
care and those with non-emergency conditions.

Overcrowding in emergency rooms is a phenomenon resulting from the lack of medical
resources and treatments, which are insufficient to meet the demands of emergency care.
This phenomenon leads to several negative impacts, including a prolonged waiting time in
the emergency room, an increase in the death rate due to ambulance delay, an inability to
prepare for major disasters, and a decline in the quality of emergency medical services due
to the allocation of resources to non-emergency patients. To address such issues, there have
been many studies suggesting causes and solutions of emergency room overcrowding [4-7].
Despite the foundation of such issues stemming from knowing the determinants of patients’
death in the emergency room, it is often neglected from the perspective of emergency
management and treatment. In fact, the post-traumatic death rate in 2019 in Korea is
preventable by 15.7%, which is not significantly different from the rates in other developed
countries [8]. It has been reported that the post-traumatic death rate could be reduced
to below 10% with an augmented emergency medical system [9]. Therefore, to reduce
the preventable post-traumatic death rate, it is vital to identify determinants affecting the
surviving period of inpatients admitted through the emergency room. However, if the
study observes the time of death for inpatients admitted through the emergency room
only, it remains ambiguous whether one survived during the observation period, and, thus,
preventing full identification of their exact survival time. Moreover, if an inpatient died
due to other factors besides one’s post-traumatic conditions, it is impossible to know one’s
survival time. Therefore, the aforementioned types of records regarding patients” death
all correspond to the censored data, which is a significant characteristic to be considered
prior to conducting data analyses. In fact, multivariate and logistic regression analyses
do not account for the censored nature of data, and, thus, this places a limitation to the
investigation of determinants affecting the surviving period of patients admitted through
the emergency room. It is necessary to minimize the inappropriate use of emergency
room treatments by non-emergency patients because care consists of emergency room
treatment and inpatient care at the hospital stage of the emergency medical system. In
particular, considering an increase in the death rate within the emergency room department
in Korea, it is urgent to carefully identify the determinants of survival time for ER-admitted
patients. For this purpose, this study aims to identify factors influencing the survival time
of general inpatients and those admitted through the emergency room and to compare
the results between the two groups of patients. Since data regarding an individual’s death
are the censored data, it is important to consider the survival time prior to analyzing its
determinants. Therefore, we decided to utilize survival analysis as the main methodological
tool for our research. In fact, survival analysis enables us to statistically analyze not
only the duration until the death of inpatients admitted in the emergency room but also
the determinants of the survival time [10,11]. This study aims to compare the survival
probabilities over time for ER-admitted patients and general inpatients using the non-
parametric statistical method of the Kaplan—-Meier survival estimation. Then, using the
semi-parametric statistical method of the Cox proportional hazards model, this study seeks
to analyze and compare features influencing death rates between inpatients admitted in the
emergency room and general inpatients. The Cox proportional hazards model is expressed
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by the hazard function. That is, the hazard function can be interpreted as the risk of death
at time. Therefore, the measure of effect in the Cox model is the hazard rate, i.e., the risk of
death given that the patient survived until a specific time. We use the cohort database of
the National Health Insurance Corporation of Korea. The data include information on the
date of death of emergency patients and general patients after hospitalization, but there is
no information on whether the patient was discharged after full recovery or if transferred
to another hospital. Therefore, we assume death as a terminal event and perform survival
analysis.

In terms of features utilized in this study, we referred to the extant literature and
selected ones from the cohort DB provided by the Korean NHIS. The data analysis was
conducted in a virtual environment of NHIS using the R statistical program (version 3.7.6).
Since this study identifies the main determinants affecting the dying risk of inpatients, we
expect medical institutions to allocate medical resources in an effective manner. We also
expect guidelines to be established to address emergency room overcrowding, based on
information about patients prioritized for emergency care.

2. Theoretical Background
2.1. Emergency Medical Services (EMS)

The emergency medical services (EMS) encompass actions taken for patients from the
onset of an emergency until they recover from life-threatening conditions or are alleviated
from physical and psychological harm [12]. As a part of public goods, these services include
consultation, rescue, transport, emergency treatment, and medical care [13]. As shown in
Figure 1(1), the number of patients using emergency rooms increased from 5.59 million
in 2016 and 2017 and 5.79 million in 2018 to 5.94 million in 2019, which then decreased to
4.64 million in 2020. The admission and death rates in the emergency room are shown in
Figure 1(2). The death rates gradually increased from 0.6% in 2016, 0.6% in 2017, 0.6% in
2018, 0.5% in 2019, and 0.7% in 2020. The admission rates also increased from 20.4% in
2016, 21.1% in 2017, 21.0% in 2018, 21.1% in 2019, and 23.0% in 2020.

One C—Morality rate ~ —e—Hospitalization rate
million 5.94 1.0% 26%
5.59 5.59 302
4.64 0.8% 3%
06%  06%  0.6% 24%
0.6% — b 0
23%
0.4%
22%
21.1%  21.0% A4
0/
02% [} I -
0.0% 20%
2016 2017 2018 2019 2020 2016 2017 2018 2019 2020
1 2)

Figure 1. Current state of EMS in Korea (Source: KOSIS (Korean Statistical Informational Service,
Statistics of EMS, 21 November 2022)). The two represent (1) use of emergency room, and (2)
admission and death rate in emergency (from left to right).

Despite the increasing trends in death and admission rates of emergency patients, it is
difficult to find existing studies examining the relationship of death and admission rates
of emergency patients with their survival time. In fact, most existing research related to
emergency room is often focused on ER overcrowding; however, it is necessary to analyze
the survival time for ER-admitted patients prior to scrutinizing the death and admission
rates of these individuals.
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2.2. Survival Analysis

Survival analysis is a method widely used in the fields of biology and medicine, which
utilizes censored data containing information, such as patients’ survival and death, and
assesses differences in the elapsed time to an event of interest [11,14-16]. Here, censored
data refers to data with unknown occurrence of an event from the beginning of the study
to the end. For instance, when observing the time of death among patients as in Figure 2,
the characteristics for each data set are as follows. The data for patients 1 and 5 fall under
complete data, while patient 2, 3, and 4 correspond to censored data. In particular, the
data for patient 4 is considered censored because the cause of death was unrelated to the
aggravated disease.

@ Death due to Disease ~ @ Censoring

Patient 1 *
Patient 2 *
Patient 3 —@
Patient 4 —e
Patient 5 —
Start End !
research research

Figure 2. Example of censored data.

Since survival analysis is a statistical approach that estimates the survival time between
two events of interest, it is explicitly different from other approaches such as regression
and logistic regression, as demonstrated in Table 1. While linear regression considers time
as a dependent variable, it is limited by not accounting for the presence of censored data.
On the other hand, logistic regression can only include an event, such as whether one has
died or has been hospitalized, as a dependent variable, but it cannot consider time in its
analysis.

Table 1. Comparison of research methodologies for analyzing survival period.

Category Characteristics Limitation

Cannot consider the presence
of censored data
Logistic Regression Dependent variable: event Cannot consider time
Can consider both time and
the presence of censored data

Linear Regression Dependent variable: time

Survival Analysis

In fact, survival analysis can be conducted using three types of methods: non-
parametric, semi-parametric, and parametric methods. First, a non-parametric method
does not require an assumption that the data follow a certain probability distribution.
Second, a semi-parametric method still does not require an assumption regarding data
distribution yet estimates regression coefficients. Lastly, a parametric method carries an
assumption that the data follows a distribution, such as the Weibull distribution, with
respect to survival time, t.

Among non-parametric methods, there are the Kaplan—-Meier estimation analysis
and the log-rank test. The Kaplan-Meier estimation assumes that events are to occur
independently of one another and calculates survival probabilities from one interval to the
next under the assumption that censoring is independent of the survival time [17]. These
probabilities can be illustrated in a survival plot [17]. The log-rank test compares the time-
to-event distributions across two or more independent groups, utilizing a chi-squared test
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of the time occurrence between the observed and expected counts. This test is particularly
used to validate the null hypothesis that no significant difference exists in the survival
curves between the groups being compared.

Here, Table 2 demonstrates the existing literature that utilized survival analysis for
research purposes across various fields of study. In fact, there is one semi-parametric
method, which is the Cox proportional hazards model. This model is a multivariate
regression method that tests the significance of various predictors relevant to time and
processes the censored data, assuming that there is a log-linear relationship between the
survival function and the variables [18]. Having acknowledged that the data used in this
study do not satisfy a certain distribution over time, such as the Weibull distribution, we
decided to utilize the Kaplan—Meier estimation and the Cox proportional hazards model.
In other words, this study aims to estimate and compare the survival time of general
inpatients and patients admitted through the emergency room using the Korean NHIS
cohort DB based on the Kaplan-Meier survival analyses.

Table 2. Extant literature using survival analysis.

Research .
Researchers Methodology Research Subjects Research Purpose

To identify financial and
Resort facilities in non-financial factors
Spain affecting the survival of
resort facilities in Spain
To investigate factors
affecting the survival of

Log-rank test
[19] Cox proportional
hazards model

Log-rank test

[20] Cox proportional Resort facilities in

hazards model Spain resort facilities in Spain
To investigate how
. restraints to corruptions
. Companies . . .
Cox proportional o . and financial ratios affect
[21] undergoing financial . .
hazards model . the survival of companies
distress . .
undergoing financial
distress
To investigate how factors
. Companies including corporate
Cox proportional o . . . .
[22] undergoing financial ~ governance, financial ratios,
hazards model . i, .
distress and political risk affect the
company’s survival
Kaplan-Meier To estimate the prognostic
23] estimation Pancreatic cancer effect of the established
Cox proportional patients cancer hallmark genes in
hazards model various cancer types
[24] Kaplan-Meier Playtimes in game To propose new methods to

estimation

measure game playtimes

3. Research Methodology
3.1. Research Framework

The purpose of this study is to identify factors affecting the survival time of general
inpatients and inpatients admitted through the emergency room, separately, and to compare
the results. General inpatients, in this study, refer to those who were hospitalized without
the emergency room transport. As demonstrated in Figure 3, we conducted our research in
three phases: data collection, data preprocessing, and survival analysis.
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Kaplan-Meier estimation
= Sociodemographic Characteristics
= Patient Characteristics

= Institution Characteristics

\/ Data preprocessing

* Grouped by Age, Region,

Qualification || Birth and Death Patient characteristic
= (lassified as Censored
Diagnosis Health Data
Checkup .
) Cox proportional hazards model
K , = Dataset Split
Medical Senior Long

Institution Term Care = Dependent Variable
\/ * Survival Time

* Independent Variable
= Sociodemographic Characteristics

= Patient Characteristics

* Institution Characteristics

Figure 3. Research framework for investigating determinants of survival time.

During the data collection phase, we collected the Korean National Health Insurance
Service (NHIS) cohort DB. For data preprocessing, we grouped the features, classified the
censored data, and divided the subjects into general inpatients and those admitted through
the emergency room. Lastly, for survival analyses, we investigated the main determinants
of survival time for each group of subjects using both the Kaplan-Meier estimation and the
Cox proportional hazards model.

3.2. Data Collection

To identify determinants affecting the dying risk of general inpatients and that of
inpatients admitted through the emergency room, this study utilized the four-year health
checkup cohort DB from the year 2016 to 2019 provided by the Korean National Health
Insurance Services. This cohort DB is a sample study DB established in January 2013 based
on the health examination records DB, encompassing approximately one million (2% of
the total population in Korea) records of patients without violating the privacy terms. This
cohort DB is the latest data provided by the Korea Health Insurance Service.

Such DB is largely composed of six different tables as follows: qualification, birth
and death, diagnosis, health checkup, medical institution, and senior long-term care (see
Table 3).

Referring to prior studies on investigating determinants of survival time, we selected
four tables out of the displayed tables in the cohort DB for the purpose of our study:
qualification, birth and death, diagnosis, and medical institution. As presented in Table 4, a
total of 18 variables were used in this study, where 12 of them were classified into either
of the sociodemographic, patient, and institution tables for analyzing the determinants of
survival time.
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Table 3. Description of health checkup cohort DB.

Table Description

Includes socio-demographic information (gender, age, residential
area, income range, insurance type) of a health checkup examinee
(excluding foreigners) or information about the matter of death.
Includes information on subjects whose death has been verified,
linked with birth and the cause of death information provided by
Statistics Korea.

Includes medical records (main diagnosis information,
prescription history, cost-related information, admission records,
the department of treatment, etc.); consists of ten DB partitions.
Includes checkup records (Lab value, past medical history,
hereditary conditions, lifestyle, etc., retrieved from survey
questionnaires) of a health checkup examinee.

Includes information of a medical institution (address, the
number of hospital beds) attended by a health checkup examinee.
Includes information on subjects” application for long-term care
services, usage records, and the status of facilities

Qualification

Birth and Death

Diagnosis

Health Checkup

Medical Institution

Senior Long-Term Care

Table 4. Features in health checkup cohort DB.

Table Feature Code * Feature Description Purpose of Use
STD_YYYY Year between 2016 and 2019
A six-digit code for interlinking the
Common RN_INDI tables Merging between tables
RN_INST A six-digit code for interlinking the
tables
SEX 1: Male, 2: Female
AGE Patient’s age in a corresponding year Sociodemographic feature
SIDO City code
Qualification GAIBJA_TYPE A code indicating the type of insurance
CTRB Income quantile (1-10) .
No inclusion, severe, mild level of Patient feature
DSB_SVRT_CD e e
disability
Birth and Death DTH_YYYYMM The date of one’s death Dependent variable
HSPTZ_PATH_TYPE Admission route Grouping
Diagnosis Patient’s condition on the day of one’s .
MCARE_RSLT_TYPE Censoring

final treatment

INST_CLSFC_CD

Type of medical institutions

Medical Instituti CNT_DR_TOT The number of doctors Institution f
edical Institution CNT_NRS_TOT The number of nurses nstitution feature
CNT_BED_INP The number of hospital beds
Medical Instituti CNT_BED_OP The number of surgical beds Institution f
edical Institution CNT_BED_ER The number of emergency beds nstitution feature

* Feature code is directly retrieved from the data provided by NHIS.

First, from the ‘qualification” and ‘birth and death’ tables, we utilized the subjects’

sociodemographic and personal information. Among the sociodemographic features,
information such as one’s gender, age, and region was included. Among the patient
features, information such as one’s type of health insurance, income quantile, and the
severity of disability was included. We used the information regarding one’s death from
the ‘birth and death’ table as a dependent variable of our analyses. Second, from the
‘Diagnosis’ table, we utilized information pertaining to whether one has been hospitalized
and also the admission route of hospitalization in order to compare the survival time
between general inpatients and those admitted through the emergency room. We also used
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information regarding the diagnostic results as the censored data. Third, we used various
information on institutions from the ‘Medical Institution’ table. This table includes features,
including the types of institutions that one has been admitted, the number of doctors and
nurses, and the number of hospital beds.

3.3. Data Preprocessing

This study conducted survival analyses on subjects with hospitalized records between
2016 and 2019 from the sample cohort DB provided by the Korean NHIS. Data preprocessing
prior to conducting survival analysis involved eliminating the missing values, merging
between tables, and extracting values for each feature followed by identifying the censored
data. The details of data preprocessing are presented in Table 5.

Table 5. Preprocessed results by feature (Survival Time Determinant Analysis).

Category Feature Preprocessed Results
iod hi Gender [Grouping] Male/Female
SOC;O P cmographuc Age [Grouping] 10-year unit
nformation City [Grouping] Seoul /Metropolitan city /Small and medium-sized city
Insurance status [Grouping] Workplace/Regional /Medical insurees
Patient Information Income quantile [Grouping] 0/1-3/4-7/8-10
Severity of disability [Grouping] No inclusion, severe, mild

Institution type
The number of doctors per 100 hospital beds
The number of nurses per 100 hospital beds
The number of hospital beds
The number of surgical beds
The number of emergency beds

[Grouping] top general hospitals/general hospitals
[Feature preprocessing] (the number of doctors/the number of hospital beds) x 100
[Grouping] in four quantiles
[Feature preprocessing] (the number of nurses/the number of hospital beds) x 100
[Grouping] in four quantiles
[Grouping] in four quantiles

Institution Information

First, the process of eliminating missing values was completed using the features
corresponding to the income quantile, the severity of disability, diagnostic results, and the
date of death. In fact, missing values found within the income quantile and diagnostic
results category were eliminated prior to analysis, while ones for the severity of disability
were replaced with ‘no inclusion (normal)’. Missing values within the date of death feature
were instead indicated as ‘survived’, implying that the patients had not passed away.
Second, we only extracted the records for top general hospitals and general hospitals using
the codes indicating a type of institution. Next, we utilized common features, such as the
standard year code and the code for interlinking the tables to merge the four tables of our
research interest. The remaining number of records after merging is 25,722,085. Third,
we completed feature preprocessing by, for instance, grouping the variables. In terms of
age, since the year of birth was provided by the NHIS data, it was converted to age as
of the base year, which was then grouped into ten-year units. For region, we referred to
the extant literature [25] to classify the variables into Seoul, metropolitan cities (Busan,
Daegu, Daejeon, Incheon, Gwangju, Ulsan), and the others as the small and medium-sized
cities. Among the patient characteristics, for insurance status, we regrouped the existing
six categories of the feature into three categories: medical insurees, regional insurance,
and workplace insurance. For income quantiles, we reclassified the existing ten different
quantiles of income into 0 quantile, 1-3 quantiles, 4-7 quantiles, and 8-10 quantiles. For
institutional characteristics, considering the size of medical institutions used in this study,
we set the number of doctors and nurses by 100 hospital beds, which were then grouped into
four separate groups. The same procedure was applied for the number of hospital, surgical,
and emergency beds. Fourth, censored data, which are not conventionally considered
in other analytical methods, can be utilized in survival analysis. Therefore, this study
accounted for subjects who had not died by the last date of treatment—that is, subjects
whose current survival status is unknown—to be classified as censored data.

4. Results

This study conducted survival analyses on subjects with hospitalized records between
2016 and 2019 from the sample cohort DB provided by the Korean NHIS. Data preprocessing
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prior to conducting survival analysis involved eliminating the missing values, the merging
between tables, and extracting values for each feature followed by identifying the censored
data.

4.1. Determinants of Survival Time among General Inpatients

For the purpose of finding determinants of survival time among general inpatients
and those admitted through the emergency room, we first conducted survival analysis on
general inpatients. A total of 3,228,933 records was used, and 12 variables were investigated
to check which of them affect the risk of death.

4.1.1. Characteristics of General Inpatients

Table 6 presents the characteristics of general inpatients. The gender distribution of
the study subjects is 50.13% male and 49.87% female. The age distribution is as follows:
11.66% under 29, 5.62% between 30 and 39, 9.42% between 40 and 49, 17% between 50 and
59, 19.18% between 60 and 69, 21.21% between 70 and 79, 13.86% between 80 and 89, and
2.05% above 90. For region, the result shows 21% in Seoul, 31% in metropolitan cities, and
47% in other small and medium-sized cities. For insurance status, 10% are medical insurees,
29% are those with regional insurance, and 61% are those with workplace insurance. For
income quantiles, 10%, 20%, 31%, and 38% are 0, 1-3, 4-7, and 8-10 quantiles, respectively.
For the severity of disability, individuals with normal, mild, and severe symptoms are
79%, 11%, and 10%, respectively. There are 70% general hospitals and 30% top general
hospitals. For other features, such as the number of doctors per 100 hospital beds, they
were previously divided into four groups, and, thus, there is 25% for each category.

Table 6. Characteristics of general inpatients.

Number of Number of Censored Data
Feature .

Patients Dead N %
Male 1,618,558 493,753 1,124,805 69.49
Gender Female 1,610,375 362,935 1,247,440 77.46
~29 376,400 8,557 367,843 97.73
30~39 181,316 11,059 170,257 93.9
40~49 304,032 38,933 265,099 87.19
Sociodemographic Age 50~59 548,986 97,958 451,028 82.16
Characteristics 60~69 619,434 155,199 464,235 74.95
70~79 684,980 261,576 423,404 61.81
80~89 447,479 236,122 211,357 47.23
90~ 66,306 47,284 19,022 28.69
Seoul 690,213 216,436 473,777 68.64
City Metropolitan city 1,011,287 240,263 771,024 76.24
Small, medium-sized city 1,527,433 399,989 1,127,444 73.81
Medical insuree 324,647 110,780 213,867 65.88
Insurance status Regional insurance 927,937 247,733 680,204 73.30
Workplace insurance 1,976,349 498,175 1,478,174 74.79
0 (= Medical aid) 324,647 110,780 213,867 65.88
o . 1~3 653,717 161,816 491,901 75.25
Characteristics Income quantile 4~7 1,014,811 238,137 776,674 76.53
8~10 1,235,758 345,955 889,803 72.00
Severity of N or.mal 2,543,100 596,918 1,946,182 76.53
Disability Mild 364,475 129,482 234,993 64.47
Severe 321,358 130,288 191,070 59.46
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Table 6. Cont.

Category Feature Num'ber of Number of Censored Data
Patients Dead N %,
Type of medical General hospital 2,256,811 521,261 1,735,550 76.9
institution Top general hospital 972,122 335,427 636,695 65.5
ber of d ~13 851,638 164,396 687,242 80.7
Numler ‘}’1 0?“’1“ 14~30 758,352 173,799 584,553 77.08
per 100 hospita 31~46 841,977 271,496 570,481 67.75
beds 47~ 776,966 246,997 529,969 6821
ber of ~52 803,234 167,841 635,393 79.1
Number o ““,ISTS 53~80 769,585 179,191 590,394 76.72
per 10];) EOSP”’" 81~103 846,852 245,625 601,227 71.00
eas 104~ 809,262 264,031 545,231 67.37
Institution ~280 768,741 144,734 624,007 81.17
Characteristics Number of hospital ~281~519 844,725 193,682 651,043 77.07
beds 520~749 806,039 238,870 567,169 70.36
750~ 809,428 279,402 530,026 65.48
~4 687,623 141,742 545,881 79.39
Number of surgical 5~9 925,752 190,039 735,713 79.47
beds 10~15 781,024 250,246 530,778 67.96
16~ 834,534 274,661 559,873 67.09
~15 776,301 146,626 630,175 81.12
Number of 15~22 807,330 190,381 616,949 76.42
emergency beds 23~35 830,467 250,014 580,453 69.89
36~ 814,335 269,667 544,668 66.89
Total 3,228,933 856,688 2,372,245

4.1.2. Kaplan—-Meier Estimation (General Inpatients)

This study utilizes the Kaplan-Meier estimation to analyze how the sociodemographic,
patient, health checkup, and institution features affect LOS for inpatients over time.

First, the estimates for the features responsible for sociodemographic information,
including gender, age, and city/province are shown in Figure 4. In the case of gender, the
survival rate for men appears to be better than for women up to about 180 days, but after
that, the survival rate for women appears to be higher. In terms of age, the survival rate
gradually decreases from those in their 30s to those in their 90s or older. Lastly, in the case
of regional areas, the survival rate in small and medium-sized cities appears to be high up
to about 100 days, but the survival rate decreases rapidly after that. On the other hand, the
survival rate in Seoul was the highest from about 100 to 180 days, and the survival rate in
metropolitan cities was high after about 180 days.

Second, patient characteristics, such as health insurance subscriber classification,
income bracket, and disability severity results, are shown in Figure 5. In the case of health
insurance subscriber types, the survival rate of medical benefit recipients was the highest,
and the survival rate tended to decrease in that order: local subscribers, and employer
subscribers. In terms of income quintile, the Oth quintile showed the highest survival rate,
and the survival rate decreased in that order: 8th to 10th quintile, 4th to 7th quintile, and
1st to 3rd quintile. In terms of disability severity, the survival rate was found to be high for
severely ill patients, followed by the highest survival rate for mild patients. However, after
about 160 days, the survival rate of patients with dysentery is rapidly decreasing, and the
survival rate of normal patients (not applicable) appears to be higher.
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Figure 4. Kaplan—Meier survival curves by socio-demographic characteristics (general inpatients).
The three charts represent (1) sex, (2) age, and (3) region (from left to right).
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Figure 5. Kaplan—-Meier survival curves by patient characteristic (general inpatients). The three charts
represent (1) type of insurance, (2) income, and (3) disability (from left to right).

Third, the Kaplan-Meier survival curve by characteristics of medical institutions is
shown in Figure 6. Looking at the survival rate by hospital type, it is estimated that the

overall survival rate of general hospitals is higher than that of tertiary general hospitals.

In terms of the number of doctors per 100 beds, the survival rate is estimated to be lowest
in the order of 14 or less in the initial stage of hospitalization, followed by 14 to 30, 47 or
more, and 31 to 46. Looking at the number of hospital beds, the survival rate is estimated
to be high initially in the order of 281 or less, 281 to 519, 520 to 749, and 750 or more. This
shows that, overall, the survival rate is estimated to be lower in larger hospitals. This is
believed to be because the period of hospitalization in larger hospitals is limited, meaning
there is a lot of censored data.
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Figure 6. Kaplan-Meier survival curves by institution characteristic (general inpatients). The three
charts represent (1) hospital type, (2) number of doctors per 100 beds, and (3) number of hospital
beds (from left to right).

4.1.3. Cox Proportional Hazards Model (General Inpatients)

The Cox proportional hazards model results for determinants affecting the dying
risk of general inpatients are shown in Figure 7. First, in terms of sociodemographic
characteristics, it was found that the death rate for men is 1.54 times higher than for women.
The death rate increases from under 30s to the 90s, with those over 90 having a death rate
17.47 times higher than those under 30. For region, compared to the metropolitan cities, the
death rate in the small or medium-sized cities increases by 1.07 times, while it decreases
by 0.98 times in Seoul. Second, among patient characteristics, the results for the type of
insurance showed that the death rate of medical insurees increases by 1.01 times than that
of those with regional insurance, while it decreases for those with workplace insurance
to 0.96 times, indicating a lesser impact on mortality. In terms of income quantiles, the
impact on death rate for patients in the 4-7 quantiles increases by 1.16 times of those in the
Oth quantile. For the severity of disability, the impact on the death rate is 1.3 times higher
for normal patients compared to those with mild disabilities. Third, the death rate within
the top general hospitals is 1.10 times higher than that within the general hospitals. For
the number of doctors per 100 hospital beds, the death rates for 31-48, 14-30, and above
47 doctors are 1.32, 1.22, and 1.11 times the death rate below 14 doctors, respectively. For
the number of nurses per 100 hospital beds, it was found that compared to a group with
fewer than 53 nurses, the death rates are higher in the following order: 1.24 times for the
group over 104 nurses, 1.22 times for the group over 81 to 103 nurses, and then for the
group between 53 and 80 nurses. In fact, there is no statistically significant difference in
the results between different groups of the hospital beds. However, for the number of
surgical beds, it was found that hospitals with five to nine beds have a death rate 0.8 times
lower than hospitals with fewer than five beds, while there is no statistically significant
differences in those with eighteen or more beds and ten to fifteen beds. Lastly, hospitals
with the fewest emergency beds, which are less than 15, have the lowest death rate, while
those with 23-35, more than 38, and 15-22 beds have the death rates that are 1.54, 1.52, and
1.25 times higher, respectively.
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Figure 7. Cox proportional hazards model indicating the hazard ratio of the general inpatients.
(* p <0.05, ***p < 0.001).
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4.2. Determinants of Survival Time among Inpatients Admitted through Emergency Room
4.2.1. Characteristics of Inpatients Admitted through the Emergency Room

Table 7 presents the characteristics of inpatients admitted through emergency room.

The gender distribution of the study subjects is 51.26% male and 48.74% female. The age
distribution is as follows: 12.88% under 29, 5.72% between 30 and 39, 8.42% between 40 and
49, 14.47% between 50 and 59, 16.76% between 60 and 69, 21.33% between 70 and 79, 17.46%
between 80 and 89, and 2.94% above 90. For region, the result shows 23.15% in Seoul,
25.54% in metropolitan cities, and 51.31% in other small and medium-sized cities. For
insurance status, 9.88% are medical insurees, 28.78% are those with regional insurance, and
61.34% are those with workplace insurance. For income quantiles, 9.88%, 20.17%, 30.61%
and 39.35% are 0, 1-3, 4-7, and 8-10 quantiles, respectively. For the severity of disability,
individuals with normal, mild, and severe symptoms are 77.65%, 11.46%, and 10.96%,
respectively. There are 61.39% general hospitals and 38.61% top general hospitals. For other
features, such as the number of doctors per 100 hospital beds, they were recategorized into
four groups during data preprocessing. For the number of doctors per 100 hospital beds,
12.13%, 22.05%, 35.72%, and 30.10% are institutions with below 13, 14-30, 31-46, and above
47 doctors per 100 hospital beds, respectively. For the number of nurses per 100 hospital
beds, 12.54%, 20.40%, 35.04%, and 32.02% are institutions with 52, 53-80, 81-103, and
above 104 nurses per 100 hospital beds, respectively. For the number of hospital beds,
12.43%, 20.65%, 35.27%, and 31.64% are institutions with below 280, 281-519, 520~749, and
above 750 hospital beds, respectively. For the number of surgical beds, 11.71%, 21.86%,
33.41%, and 33.02% are institutions with below 4, 5-9, 10-15, and above 16 surgical beds,
respectively. Lastly, for the number of emergency beds, 10.34%, 21.85%, 33.24%, and 34.57%
are institutions with below 15, 15-22, 23-35, and above 36 surgical beds, respectively.

Table 7. Characteristics of inpatients admitted through the Emergency Room.

Number of  Number of Censored Data
Feature Patients Dead

N %
Male 571,640 371,216 200,424 35.06
Gender Female 543,474 388,387 155,087 28.54
~29 143,679 139,950 3729 2.60
30~39 63,773 59,087 4686 7.35
40~49 93,932 81,225 12,707 13.53
Sociodemographic Age 50~59 161,395 127,515 33,880 20.99
Characteristics 60~69 186,934 129,766 57,168 30.58
70~79 237,902 132,291 105,611 44.39
80~89 194,696 81,129 113,567 58.33
90~ 32,803 8640 24,163 73.66
Seoul 258,178 169,368 88,810 34.4
City Metropolitan city 284,779 195,224 89,555 31.45
Small, medium-sized city 572,157 395,011 177,146 30.96
Medical insuree 110,136 64,425 45,711 4150
Insurance Regional insurance 320,967 219,090 101,877 31.74
status Workplace insurance 684,011 476,088 207,923 30.4
0 (=Medical aid) 110,136 64,425 45,711 4150
t Income 1~3 224,901 158,102 158,102 70.3
Characteristics quantile 4~7 341,334 247,235 247,235 72.43
8~10 438,743 289,841 148,902 33.94
Severity of Normal 865,904 622,833 242,261 27.98
Disability Mild 127,769 72,803 54,966 43.02
Severe 122,251 63,967 58,284 47.68
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Table 7. Cont.

D

Category Feature Num.ber of  Number of Censored Data

Patients Dead o

N A
Type of medical General hospital 684,519 487,287 197,232 28.81
institution Top general hospital 430,595 272,316 158,279 36.76
Number of d ~13 135,227 96,104 39,123 28.93
“mlgg‘; 0?“’1“ 14~30 245,888 177,896 67,992 27.65
per b dosplta 31~46 398,310 263,256 135,054 3391
eds 47~ 335,689 222,347 113,342 33.76
Number of ~52 139,881 97,734 42,147 30.13
uml géﬁ ““,ISTS 53~80 227,528 163,339 64,189 28.21
per b dosplta 81~103 390,697 267,089 123,608 31.64
Institution eds 104~ 357,008 231,441 125,567 35.17
Characteristics ~280 138,642 102,709 35,933 25.92
Number of hospital ~281~519 230,297 163,236 67,061 29.12
beds 520~749 393,323 269,569 123,754 31.46
750~ 352,852 224,089 128,763 36.49
~4 130,599 94,109 36,940 28.29
Number of surgical 5~9 243,815 179,372 64,443 26.43
beds 10~15 372,513 248,428 124,085 33.31
16~ 368,187 237,694 130,493 35.44
~15 115,294 81,769 33,525 29.08
Number of 15~22 243 659 177,732 65,927 27.06
emergency beds 23~35 370,612 249 681 120,931 32.63
36~ 385,549 250,421 135,128 35.05

Total 1,115,114 759,603 355,511

Survival probabilty

4.2.2. Kaplan—-Meier Estimation (Inpatients Admitted through the Emergency Room)

To estimate the survival rate for patients admitted to the emergency room over time,
Kaplan—-Meier estimation was performed by sociodemographic characteristics, patient
characteristics, and medical institution characteristics. First, the survival probability esti-
mation results for socio-demographic characteristics, such as gender, age, and region, are
shown in Figure 8. In the case of gender, it is estimated that men have a higher survival
probability than women in the early days of hospital stay, but after 125 days of hospital
stay, the survival rate of men is estimated to be better than that of women.

Sox =+ lake = Ferae - 20-39 = 5039 = 7079 Ragion —+ =+ Seoul

-
Agelyear)
390 = 40-49 == 60-69 ~+- 80-89

Survival probabilty

% 100 1% 20 %0 13 % 100 150 20 %0 13 50 100 50
Time Time Time

Figure 8. Kaplan-Meier survival curves by socio-demographic characteristics (inpatients admitted
through the emergency room). The three charts represent (1) sex, (2) age, and (3) region (from left to
right).

In terms of age, the overall survival rate shows a gradual decreasing trend from those
in their 30s to those in their 90s, but after the 100th day of hospitalization, the survival rate
for those in their 40s is estimated to be lower than that for those in their 90s or older. In the
case of regions, there appears to be no difference in the survival rate in the early days of
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Survival probability

Survival probability

Typo of insurance =+ Communiy insurance =+= Medicalaid =+ Workplace insurance

hospitalization, but after 125 days of hospitalization, the survival rate is estimated to be the
best in metropolitan cities, followed by Seoul and small and medium-sized cities.

Second, patient characteristics, such as health insurance subscriber type, income
bracket, and disability severity, are shown in Figure 9. In the case of health insurance
subscriber types, there was no difference in survival rate at the beginning of the length of
stay, but after about 50 days, the survival rate was highest for medical benefit recipients,
and the survival probability tended to decrease in the order of employer subscribers and
local subscribers. In the case of income brackets, it is estimated that there is no difference in
survival rate in the early stages of hospital stay. In the 8th to 10th percentiles, the survival
rate showed a sharp decline after 100 days of hospitalization. In the case of disability
severity, it is estimated that the survival rate is high in the order of severe, mild, and normal
patients at the beginning of the length of stay. However, at 125 days, contrary to general
hospitalized patients, the survival rate was highest for mild patients, and the survival rate
decreased in that order for severe patients and then normal patients. It is estimated that
the survival rate of mildly ill patients will decline sharply after 150 days.

Disabilty ~ Mid == Norral = Severs
INCOM@ == 0 == 1-3 == 4~7 == 8=10

Survival probability

e

Figure 9. Kaplan-Meier survival curves by patient characteristics (inpatients admitted through the
emergency room). The three charts represent (1) type of insurance, (2) incom, and (3) disability (from
left to right).

Third, the Kaplan-Meier survival curve by characteristics of medical institutions is
shown in Figure 10. Looking at the hospital type, it is estimated that the survival rate is
higher in general hospitals than in tertiary general hospitals. In terms of the number of
doctors per 100 beds, it was initially estimated that hospitals with less than 14 doctors
(the group with the fewest doctors) had the highest survival rate, but the survival rate
was found to decline sharply after about 60 days. In terms of the number of hospitalized
beds, the survival rate was estimated to be high in the following order: less than 281 beds,
281 to 519, 520 to 749, and more than 750 beds until the length of stay was about 60 days.
However, at about 110 days, the survival rate of hospitals with fewer than 281 beds was
found to decline sharply.

Hosphal type 4 Gererm) =+ Tertary Number of hospital beds = <281 == >a750 == 281519 == 520-749

N

Number of doctors per 100 beds =+ <14 == >u7 =+ 14-30 == 31-46

irvival probabi

Time ) 13 E) 100 150 20 £ Time
Time

Figure 10. Kaplan-Meier survival curves by institution characteristic (inpatients admitted through
the emergency room). The three charts represent (1) hospital type, (2) number of doctors per 100 beds,
and (3) number of hospital beds (from left to right).
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4.2.3. Cox Proportional Hazards Model (Inpatients Admitted through the Emergency
Room)

The Cox proportional hazards model demonstrates the determinants affecting the
dying risk of inpatients admitted through the emergency room, as shown in Figure 11.

Hazard ratio
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Figure 11. Cox proportional hazards model indicating the hazard ratio of the inpatients admitted
through the emergency room. (* p < 0.05, *** p < 0.001).
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First, in terms of sociodemographic characteristics, it was found that the death rate
for men is 1.43 times higher than for women. The death rate increases from under 30s to
the 90s, with those over 90 having a death rate 12.20 times higher than those under 30. For
region, compared to the metropolitan cities, the death rate in the small or medium-sized
cities decreases by 0.96 times, while it also decreases by 0.95 times in Seoul. Second, among
patient characteristics, the results for the type of insurance showed that the death rate
of medical insurees increases by 1.07 times than that of those with regional insurance,
while it decreases for those with workplace insurance to 0.93 times, indicating a lesser
impact on mortality. In terms of income quantiles, the impact on death rate for patients
in the 4-7 quantiles increases by 1.16 times to those in the Oth quantile, while its impact
is the same between the Oth quantile and the 8-10 quantiles. Similarly, for the severity of
disability, the impact on the death rate is 1.22 times higher for normal patients than for
patients with mild disabilities, while the death rate for patients with severe disabilities
decreases by 0.94 times than that for patients with mild disabilities. Third, the death rate
within the top general hospitals is 1.06 times higher than that within the general hospitals.
For the number of doctors per 100 hospital beds, the death rates for 14-30 and 31-46 doctors
are 1.21 and 1.19 times the death rate below 14 doctors, respectively. However, there is no
statistically significant difference in death rates between the institutions with fewer than
14 doctors and ones with more than 47 doctors. For the number of nurses per 100 hospital
beds, the death rates for 281-519 and for more than 750 nurses are 1.10 and 1.07 times
the death rate below 53 nurses, respectively. However, there is no statistically significant
difference in death rates between the institutions with fewer than 53 nurses and ones with
520-749 nurses.

For the number of hospital beds, institutions with the third highest number of beds
(281-519) and those with 750 beds have increased death rates of 1.10 and 1.07 times higher,
respectively, than those with the fewest beds (below 281). However, there is no significant
difference in the death rates between institutions having lower than 281 beds and those with
520-749 beds. For the number of surgical beds, compared to institutions with the fewest
number of surgical beds (below 5), those with the highest number of surgical beds (above
16) and those with 10-15 surgical beds have the death rate of 1.13 and 1.09 times higher,
respectively. In contrast, those with 5-9 surgical beds demonstrated the decreased death
rate that is 0.80 times than that of those with the fewest number of surgical beds. Lastly, in
terms of the number of emergency beds, those with above 36, 23-35, and 15-22 emergency
beds have increased death rates of 1.40, 1.34, and 1.16 times higher, respectively, than those
with the fewest number of emergency beds (below 15).

4.3. Summarized Results and Implication

Table 8 illustrates the summarized results of this study. In fact, there is no significant
difference in determinants of the death rate between the two groups of study. However,
in terms of the ‘city’ feature among the sociodemographic characteristics, the small and
medium-sized city exerts the most influence on the death rate of general inpatients, whereas
the metropolitan city exerts the most influence on the death rate of inpatients admitted
through the emergency room. In terms of institution characteristics, it was found that there
is a difference in determinants affecting the death rate of the two groups of study, such as
the number of doctors per 100 hospital beds, the number of nurses per 100 hospital beds,
the number of hospital beds, the number of surgical beds, and the number of emergency
beds.

The theoretical implications of this study are as follows. This study is the pioneering
research in analyzing determinants affecting the death rate of general inpatients as well as
that of inpatients admitted through the emergency room using survival analyses. Therefore,
we first utilized the Kaplan—-Meier survival estimation to take a closer look at the change
in survival probability of inpatients depending on their sociodemographic, patient, and
institutional characteristics. We also incorporated the Cox proportional hazards model to
investigate not only the statistically significant features from sociodemographic, patient,
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and institutional characteristics that influence the death rate of inpatients but also the extent
to which each feature affects mortality.

Table 8. Determinants of the death rate (general inpatients vs. inpatients admitted through the ER).

Category Feature General inpatient Inpatients Admitted through ER
Gender Male > Female Male > Female
Sociodemographic Age Above 90s > 80s > 70s > 60s > 50s > 40s >  Above 90s > 80s > 70s > 60s > 50s > 40s >
Characteristics 30s > below 30s 30s > below 30s
Cit Small and medium-sized city > Seoul > Metropolitan city > Small and
y Metropolitan city medium-sized city > Seoul
I (Medical insurees = Regional insurance) =~ Medical insurees > Regional insurance >
nsurance status . .
) > Workplace insurance Workplace insurance
Patient - Incom ntil 4-7 quantiles > 1-3 quantiles > 4-7 quantiles > 1-3 quantiles >
Characteristics come quantrie (0 quantile = 8-10 quantiles) (0 quantiles = 8-10 quantiles)
. s Normal > .
Severity of disability (Severe = Mild) Normal > Mild > Severe
Type of institution Top general hospital > General hospital =~ Top general hospital > General hospital
Number of doctors per 14-30 > 31-48 >
100 hospital beds 31-48 > 14-30 > above 47 > below 14 (above 47 = below 14)
Institution Number of nurses per (Below 53 = Above 104) > 53-80 >
Characteristics 100 hospital beds Above 104 > 81-103 > 53-80 > below 53 81-103
Number of hospital beds Below 281 = 281-519 = 520-749 = above 281-519 > above 750 > (below 281 =
P 750 520-749)

Number of surgical beds
Number of emergency beds

(Below 5 = 10-15 = above 16) > 5-9
23-35 > above 36 > 15-22 > below 15

Above 16 > 10-15 > below 5 > 5-9
Above 36 > 23-35 > 15-22 > below 15

The practical implications of this study are as follows. Although Korea has a multiple
regional emergency medical centers across the country (Seoul: 27, Incheon: 10, Busan: 8,
Daegu: 5, Daejeon: 4, Ulsan: 1, Gwangju: 5, Gyeonggi: 22, Gyeongbuk: 6, Gyeongnam: 6,
Chungbuk: 4, Chungnam: 8, Jeonbuk: 8, Jeonnam: 2, Gangwon: 4, Jeju: 4), the survival
probability of emergency room patients within the metropolitan cities is found to be the
lowest. This is most likely due to the inadequate initial treatment and procedures for
critically ill emergency patients at the regional emergency medical centers.

Furthermore, the emergency medical expense system is structured in a way that the
more patients visit the emergency room, the more revenue is generated, regardless of the
investment towards the emergency room or its quality of care. Therefore, to solve such
issues, it is of importance to expand regional emergency centers that specialize in the
professional treatment and care of critically ill emergency patients, and to reinforce the
expense system that can induce the enhancement in the quality of emergency care. Lastly,
it is necessary to secure an intermediary organization that can handle medical accidents
that may occur during emergency treatments.

5. Conclusions
5.1. Research Implications

Considering an increase in the death of patients within the emergency room depart-
ment, it is of necessity to identify the determinants of survival time among inpatients
admitted through the emergency room. Therefore, our goal was to conduct a comparative
study between general inpatients and those admitted through the emergency room, using
survival analyses to identify the determinants of survival time.

In fact, the results reveal that there is not much difference in the death rate between
the two groups of interest. However, for the regional variable among sociodemographic
features, it was found that the small and medium-sized cities exert the most influence
on the death rate among general inpatients, while the metropolitan cities exert the most
influence on the death rate among those admitted through the emergency room. Among
institutional features, the number of doctors per 100 hospital beds, the number of nurses
per 100 hospital beds, the number of hospital beds, the number of surgical beds, and the
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number of emergency beds were found to affect the death rate of the two groups of study
subjects differently.

Many previous studies utilized multiple or logistic regression analyses as their main
research methodology. However, multiple regression analysis requires basic assumptions
to be met, including linearity, independence, equal variance, normality, and the absence
of multicollinearity. Logistic regression analysis, on the other hand, requires assumptions,
such as the linearity of the logit, the independence of the error term, and the absence of
multicollinearity. Although medical data often exhibit censored characteristics, these two
methods fail to accommodate them, both presenting a significant limitation.

Therefore, this study conducted survival analyses to analyze the factors affecting the
dying risk of general inpatients and those admitted through the emergency room. For this
purpose, we measured the probability of survival as well as that of hospitalization depend-
ing on the sociodemographic, patient, health checkup, and institutional features using the
Kaplan-Meier estimation. However, the Kaplan-Meier survival estimation has a limitation
in that it cannot control for factors outside of those under analysis. Therefore, we also
incorporated the Cox proportional hazards models as an additional econometric method to
validate the results by controlling for other factors. Since both the Kaplan-Meier survival
analysis and the Cox proportional hazards model do not require assumptions regarding
the data distribution, these two methods are suitable for analyzing the determinants of
survival time using the medical data.

In this study, we conducted survival analyses to compare and analyze the two subject
groups: general inpatients and inpatients admitted through the emergency room. It
is expected that a plan for the efficient allocation of limited medical resources can be
established based on our research findings.

5.2. Limitations and Future Directions

The limitations of this study are as follows. Although there are various features
affecting the dying risk of patients, such as sociodemographic and disease-specific features,
this study is limited in that we only incorporated the sociodemographic, patient, and
institutional features under analyses. Therefore, future studies are to encompass a broader
scale of features from various aspects.

This study separately analyzes the two patient populations (general inpatients and
inpatients admitted through the ER). An analysis that incorporates both patient populations
using the Cox model would enable an assessment of whether the hazard or risk (death rate)
differs between the patient populations after adjusting for all the factors considered in this
paper.

Moreover, we conducted survival analyses on individuals who were either general
inpatients or inpatients who were admitted through the emergency room. However, it is
likely that survival time varies depending on a patient’s main diagnosis. Therefore, it is
highly recommended that future research should rigorously scrutinize and compare the
survival times of patients across different diagnoses.

Lastly, this study conducted survival analyses based on the four-year cohort DB pro-
vided by the Korean NHIS from the years 2016 to 2019 encompassing tables of qualification,
birth and death, diagnosis, health checkup, institution, and senior long-term care character-
istics. However, the Korean NHIS further provides key information regarding, for instance,
medical treatment (code for drugs, treatment code, main diagnosis code, days of hospital-
ization, etc.) and prescription details (drug ingredient code, dosage per administration,
daily dosage, total days of administration, unit price, total cost, etc.). Therefore, future
research should utilize the aforementioned information into their analyses.
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Abstract: Medical coding impacts patient care quality, payor reimbursement, and system reliability
through the precision of patient information documentation. Inadequate coding specificity can have
significant consequences at administrative and patient levels. Models to identify and/or enhance
coding specificity practices are needed. Clinical records are not always available, complete, or homo-
geneous, and clinically driven metrics to assess medical practices are not logistically feasible at the
population level, particularly in non-centralized healthcare delivery systems and/or for those who
only have access to claims data. Data-driven approaches that incorporate all available information
are needed to explore coding specificity practices. Using N = 487,775 hospitalization records of
individuals diagnosed with dementia and discharged in 2022 from a large all-payor administrative
claims dataset, we fitted logistic regression models using patient and facility characteristics to explain
the coding specificity of principal and secondary diagnoses of dementia. A two-step approach was
produced to allow for the flexible clustering of patient-level outcomes. Model outcomes were then
used within a Poisson binomial model to identify facilities that over- or under-specify dementia diag-
noses against healthcare industry standards across hospitalizations. The results indicate that multiple
factors are significantly associated with dementia coding specificity, especially for principal diagnoses
of dementia (AUC = 0.727). The practical use of this novel risk-adjusted metric is demonstrated for a
sample of facilities and geospatially via a U.S. map. This study’s findings provide healthcare facilities
with a benchmark for assessing coding specificity practices and developing quality enhancements to
align with healthcare industry standards, ultimately contributing to better patient care and healthcare
system reliability.

Keywords: coding specificity; ICD-10; dementia

1. Introduction

The precise recording, evaluation, and documentation of patient information through
medical coding play a large role in the quality of care delivered, reimbursement from
payors, and the reliability of healthcare systems [1]. The process of clinical coding has
multiple facets, such as accuracy, completeness, and appropriate levels for the specificity of
diagnostic coding. Coding specificity, an important aspect of the coding process, refers to
the level of granularity at which a clinical diagnosis is recorded [2].

A widely used medical coding system is the International Classification of Diseases
Clinical Modification (or ICD-CM) [3]. ICD-10-CM (herein ICD-10) refers to the 10th revi-
sion of the taxonomy and serves to categorize diseases and health conditions at varying
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degrees of specificity, from coarse or unspecified more general diagnoses to more granular
ones representing a deeper level of knowledge of the clinical condition. Medical coding
helps standardize documentation across healthcare systems, serves as a tool for medi-
cal billing, standardizes risk factors in risk-adjusted quality measures, and helps guide
healthcare policy by accurately identifying disease prevalence and supporting national
and international decision making [3]. The coding system also helps organize and find
medical information easily, impacting how we understand and use medical data, including
assessing in real time the spread or prevalence of diseases and the optimization of resource
allocations [3-6].

When considering coding practice enhancements, it is important to assess how
healthcare professionals in hospitals document the presence of a specific condition or
disease. Transcription—potentially including voice transcription for electronic health
records (EHRs)—errors, missing information in patient charts, and illegible handwriting
all contribute to inadequate specificity in coding [7]. It constitutes a shared responsibility
among all parties involved to appropriately code to the highest level of specificity [8]. The
move from ICD-9 to ICD-10 on 1 October 2015 led to a fivefold increase in the number
of codes, exacerbating the complexity of coders” work and the potential for coding errors
following this transition [3]. Clinical specialties have been affected differently, with this
ICD-10 transition representing an uneven burden across facilities and patients depending
on the diagnosis family and the facility’s level of specialization [9,10].

A lower coding specificity is a potential burden for Medicare and other payors, which
are billed for potentially under-specified diagnoses when a higher specificity (i.e., enhanced
diagnosis quality) could be available [3,8]. Medicare is the health insurance coverage pro-
vided by the United States (U.S.) government for individuals 65 years and older. Medicare
within the acute care inpatient setting refers to payments reimbursed through the Inpatient
Prospective Payment System (IPPS). Through the IPPS, hospitalizations are grouped into
medical severity diagnosis-related groups (MS-DRGs) based largely on the presence of
principal and secondary ICD-10-CM diagnosis codes, and in some cases, ICD-10-PCS proce-
dure codes. The MS-DRG grouping is associated with a weight that further adjusts the base
hospital payment (determined by a set of hospital-level characteristics) to determine the
final discharge-level reimbursement. There is a tradeoff between productivity and coding
quality, as enhancing the coding specificity can be time intensive in some instances, requir-
ing the coder to explore whether more specific coding is appropriate given the information
provided in the patient medical record. At the facility level, the associated costs to the
healthcare payor as well as the impact on patients’ clinical history, treatment, and resulting
health outcomes must also be considered [8]. Coding specificity is especially relevant when
a diagnosis is unrelated to the principal cause of hospitalization, or when diagnoses are not
made by specialists, as added specification for these codes may not affect the hospital’s rate
of reimbursement for the hospitalization. Thus, coding specificity is not only important at
the administrative level but also has the potential to impact both healthcare facilities and
patients.

At the facility level, coding that accurately captures clinical diagnoses ensures that
healthcare facilities maintain effective billing operations. Coding specificity has the poten-
tial to impact a facility’s financial capital and allocation of resources, since facilities, after a
short grace period that ended in October 2016, can be denied Medicare-based claims based
on insufficient diagnostic specificity [8,11]. ICD-10 codes are the foundation of hospital
billing processes, so misdiagnoses or misclassifications of codes can impact hospital reim-
bursement and insurance eligibility, including Medicare reimbursements [12]. Inaccurate
coding further has the potential to affect facilities’ reputations and pay-for-performance
incentive payments, as such hospital-ranking programs evaluate quality performance using
risk-adjusted outcomes that rely on ICD-10 coding [13-18].

From the patient perspective, accurate documentation ensures that the patient is re-
ceiving an adequate treatment plan tailored to the specifics of their diagnosis and needs,
both during their inpatient stay and after discharge [8]. In addition to individuals who may
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go undiagnosed, those with an under-specified diagnosis may also suffer worsened clinical
outcomes. Among other factors, practitioners” unconscious biases as well as inappropriate
facility practices could result in deviations from universal documentation and coding stan-
dards, thus potentially exacerbating health disparities [19], which may manifest through
specificity gaps across subpopulations. A lack of specificity can lead to patients’ clinical
histories being affected, thus resulting in potential variations in care and resulting outcomes
across social strata [8]. From the standpoint of coding specificity, the literature lacks a wider
understanding of how decreased (or increased) levels of specificity may be associated with
sociodemographic factors, thus potentially exacerbating the aforementioned healthcare
disparities [19].

Not all unspecified diagnoses are inappropriate. In fact, unspecified diagnosis codes
are recommended by the United States (U.S.) Centers for Medicare and Medicaid Services
(CMS): “When sufficient clinical information is not known or available about a particular health
condition to assign a more specific code, it is acceptable to report the appropriate unspecified
code” [20]. Hence, there is a balance between the necessary level of unspecificity and the
unnecessary level of unspecificity that needs to be considered, since a pure minimization of
unspecified codes could also lead to incorrectly specified diagnoses. Conversely, achieving
a higher level of specificity may require additional clinical tests or interventions, which
may be subject to additional considerations regarding cost-effectiveness [21-23], especially
when the primary cause of the inpatient stay is not related to nor affected by the unspecified
diagnosis. Also, higher levels of specificity may not be warranted by clinical diagnoses.
Incorrect levels of both specificity and unspecificity can lead to inappropriate treatment.
Thus, when a diagnosis is not confirmed, it is appropriate to provide an initial, temporary
unspecified diagnosis [20] until further tests can be performed, if clinically recommended.

While our approach is generalizable and can be applied across clinical strata, our
motivating example consists of a large patient cohort across the U.S. of nearly 500,000
unique inpatient individuals who were diagnosed with dementia and discharged in 2022.
In 2020, dementia affected the lives of over 55 million people across the world, which
is close to 1% of the global population [24]. Projections suggest that this number will
experience nearly twofold growth every 20 years, surging to 78 million by 2030 and
about 139 million by 2050 [24]. This number is further increased by those providing
caregiving and other family members indirectly suffering from this debilitating disease. In
the absence of enhanced treatments or preventive measures, adverse outcomes associated
with dementia will persistently rise [25]. Many patients are likely to receive unspecified
dementia diagnoses when seeing a primary care provider compared to when seeing a
specialized provider (like a neurologist or geriatrician) [26,27]. Thus, dementia represents
an important disease within an aging population that is likely to be of increased relevance
as treatment interventions are developed, and enhanced coding specificity is needed in
this area to identify resources properly [25]. In a 2017 study, researchers reviewed the
medical records of dementia ICD-10 code cases, and they discovered that many of the
cases lacked specific descriptions that would aid in confirming the diagnosis of specific
types of dementia [28]. This study revealed that 63% of cases did not provide a specific
diagnosis of dementia in the medical records, but instead considered other conditions as
the likely explanation of the patient’s hospitalization [28]. More generally, mental health
conditions have been identified among conditions suffering from higher rates of unspecified
diagnoses [8].

Models have been developed for assessing risk-adjusted coding intensity for both
diagnoses and procedures, as well as identifying facilities that over- or under-code [29,30].
This area tangentially relates to coding specificity. However, the literature still lacks risk-
adjusted approaches that account for factors potentially associated with coding specificity,
adjusting for patient and facility characteristics, with only some initial work developed
in the area of depression [31], but none, to our knowledge, in the area of dementia or
other neurocognitive diseases. The aim of this study is to provide a novel risk-adjusted
metric, demonstrated through a population-based dementia patient cohort in the U.S.,
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to estimate dementia ICD-10 coding specificity by facility upon adjusting for a set of
commonly available facility- and patient-level characteristics.

While enhancements in coding specificity practices are possible through other means,
such as through the clinical identification of potential coding specificity inaccuracies or
increased training, such approaches are not cost-effective if they need to be performed at
the population level. There is a need for cost-effective approaches that serve to pre-screen
and identify facilities which may need such enhancements the most. Clinical assessments
may be possible if electronic health records are available, but this is not always the case.
In this case, data-driven approaches may provide insights into how coding specificity can
vary across patients and facilities and whether these variations occur in ways that may
depart from anticipated randomness. Our proposed data-driven metric can serve facilities
to self-assess variation in coding specificity compared with their healthcare peers and can
provide a benchmark to identify facilities that could benefit from a further analysis of
diagnostic coding specificity practices.

2. Materials and Methods
2.1. Data and Variables

De-identified data sourced and provided by Premier, Inc.’s private database serve as
the foundation of this analysis [32]. The dataset is composed of N = 487,775 observations
containing information on the first inpatient hospitalization for each patient with a principal
or secondary diagnosis related to dementia who was discharged in the year 2022 using the
F ICD-10 diagnosis codes provided in Supplementary Tables S1 and S2. The ICD-10 codes
corresponding to these diagnoses were identified by an expert team of medical coders at
Premier, Inc. Patients who were admitted prior to 2022 were also included if they were
discharged in 2022.

The data were further categorized into three types of variables: (1) outcome variables;
(2) patient characteristics; and (3) facility characteristics. Outcome variables include coding
specificity of principal diagnosis of dementia codes and coding specificity of secondary
diagnosis of dementia codes. Principal diagnosis specificity denotes whether the ICD-
10 dementia-related principal diagnosis code was specified (versus unspecified), and
for secondary diagnoses, a specified diagnosis is assumed when at least one secondary
diagnosis related to dementia was specified. In addition to masked patient IDs, patient
characteristics for this study include the following: age group; sex; race; length of stay;
primary payor; point of origin; discharge status; number of procedure codes; ICD-10
coding period (2022 for coding prior to 1 October 2022 and 2023 for codes from 1 October
2022); five Centers for Disease Control and Prevention’s Agency for Toxic Substances and
Disease Registry’s (ATSDR) social vulnerability indices [33]; a COVID-19 indicator; and
Medicare Severity Diagnosis Related Group (MS-DRG) type for the inpatient stay. In
addition to masked facility IDs, facility characteristics include the following: three facility
status variables (teaching, academic, and urban); ownership; size (bed count, grouped);
case mix index (CMI); and U.S. state.

2.2. Statistical Analysis

Descriptive statistics were calculated and tabulated. Variables for which certain
subgroups had limited representation (e.g., charity and indigent payors) were grouped
together. Patients under 45 years old were grouped together due to their low counts.
Discharge status codes indicating that the patient expired were collapsed into a single
category. A diverse set of categories representing patients’ points of origin with low counts
were grouped into a single ‘other” category.

Univariate and multivariate logistic regression analyses were utilized to identify asso-
ciations between patient- and facility-level characteristics and each of the two outcomes
(specificity of dementia principal and secondary diagnoses per patient hospitalization).
Univariate and adjusted odds ratios (ORs), as well as corresponding 95% confidence inter-
vals (Cls) and p-values, were computed and tabulated. Receiver operating characteristic
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(ROC) curves were calculated and depicted, and area under the curve (AUC) values were
extracted to demonstrate the multivariate models’ fitted performances to explain principal
and secondary dementia diagnoses.

Clustering of this metric is demonstrated at the facility level, though other clustering
factors are possible. Importantly, as opposed to variables used for constructing the patient-
specific metric, clustering variables do not need to be observable for the full sample.
A facility-specific metric of diagnostic coding specificity was also calculated from the
risk-adjusted probabilities of specificity. Let Y; ; be the binary variable denoting coding
specificity of the principal or secondary diagnosis for hospitalization i at facility j. This
variable follows a Bernoulli (Ber) distribution with estimated probability p;; as shown
below:

Yi,j ~ Ber(ﬁi,]-). (1)

The set p; ; was estimated from the multivariate logistic regression model which was
adjusted for patient and facility characteristics. Assuming that each hospitalization’s coding
specificity was independently, though not identically, distributed per facility, the total count
of facility-specific coding specificity follows a Poisson binomial (PoiBin) distribution with

probability vector p; = ( p1,,P2jr-- - f)n].,]) for n; hospitalizations in facility j as shown as

follows:
n

Zi]: 1 Yi,]' ~ PoiBin (ﬁ]) (2)

Facility-specific 95% Cls were extracted through the Poisson binomial facility-specific
cumulative distribution functions (CDFs). These were used to identify facilities which
under- (p < 0.025) and over- (p > 0.975) specified in their coding versus facilities” peers
using the estimated CDF for the specificity count.

Error bars were constructed to demonstrate the facility-specific metric for a sample
of 20 facilities for both dementia principal and secondary diagnoses. Among these facili-
ties, the coding specificity of dementia diagnosis indicator variable was defined, and an
observed count (dots) was plotted for each facility (X-axis). A 95% CI for each facility, built
on the basis of the Poisson binomial model, was added to identify these facilities” adjusted
levels of coding specificity against peers. Over- and under-coding risk-adjusted specificity
practices were then identified by the facility.

Finally, geospatial U.S. maps were created to display adjusted ORs of principal and
secondary diagnosis coding specificity by state against the reference of New York, which is
the state with the highest per capita healthcare expenditure in the U.S. [34].

3. Results

Table 1 provides a summary of the descriptive statistics for N = 487,775 hospitalization
records and patients, since each patient is only observed once due to the cohort definition
(the first hospitalization for each patient within the year). The dataset comprised observa-
tions from 866 facilities, with an average of 563.25 patients per facility. The distribution of
age among this dementia patient cohort is naturally skewed, with 61% of individuals being
80 years and older. Females constituted 58% of the patients, and the majority of the patients
identified as White (76%). The median length of stay, which was log-transformed due to its
large right skewness, was 5 days, and the most common primary payor was Medicare tra-
ditional (53%). The point of origin was predominantly non-healthcare facilities (79%), and
the discharge status varied, with 19% of the patients being discharged to home or self-care,
while the majority were transferred to other healthcare facilities, often skilled nursing facili-
ties (36%). The average number of procedures during inpatient stays was 2.7, with surgical
MS-DRGs representing 15% of hospitalizations. Additionally, 13% were COVID-19-positive
patients. Most of the facilities were non-teaching (78%) and non-academic (85%). Urban
facilities were more prevalent (86%) than rural ones. Voluntary non-profit private was the
most common ownership status (64%). The bed capacity varied, with 1-50 beds (3%) and
>400 beds (39%) being the least and most common facility sizes, respectively. The mean
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case mix index was 1.7. The dataset represented multiple states, with New York (9%) and
Florida (12%) being the top states in the number of hospitalizations.

Table 1. Descriptive statistics of the dementia-related principal and secondary diagnosis coding
specificity outcomes as well as patient and facility characteristics (counts and means/proportions
and corresponding percentages/standard deviations).

Count or
Mean/Proportion (%

Study Variables or Standard Deviation
(SD))
Outcomes
Specificity of dementia principal diagnosis (count, proportion) 1788 (17%)
Specificity of dementia secondary diagnoses (count, proportion) 186,300 (39%)
Patient Characteristics
Age (Years)
0-44 809 (<1%)
45-54 2735 (1%)
55-59 5492 (1%)
60-64 13,512 (3%)
65-69 27,970 (6%)
70-74 53,037 (11%)
75-79 83,694 (17%)
80-84 103,805 (21%)
85+ 196,721 (40%)
Sex
Female 282,090 (58%)
Male 205,685 (42%)
Race
Asian 12,539 (3%)
Black 68,784 (14%)
Other 26,675 (5%)
Unable to determine 10,463 (2%)
White 369,314 (76%)
Log(Length of Stay) (Days) (mean, SD) 1.6 (0.85)
Primary Payor
Charity /Indigent 200 (<1%)
Commercial indemnity 4613 (1%)
Direct employer contract 217 (<1%)
Managed care capitated 417 (<1%)
Managed care non-capitated 9370 (2%)
Medicaid managed care capitated 1028 (<1%)
Medicaid managed care non-capitated 7807 (2%)
Medicaid traditional 5512 (1%)
Medicare managed care capitated 20,202 (4%)
Medicare managed care non-capitated 165,874 (34%)
Medicare traditional 258,584 (53%)
Other 2713 (1%)
Other government payors 9097 (2%)
Self-pay 1950 (<1%)

Workers” compensation

191 (<1%)
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Table 1. Cont.

Count or
Mean/Proportion (%

Study Variables or Standard Deviation

(SD))

Patient Characteristics

Point of Origin

Clinic 16,400 (3%)
Court/Law enforcement 215 (<1%)
Information not available 3174 (1%)
Non-healthcare facility 385,271 (79%)
Other 425 (<1%)
Transfer from ambulatory surgery center 2767 (1%)
Transfer from dept unit in same hospital, separate claim 302 (<1%)
Transfer from health facility 7337 (2%)

Transfer from hospice and under hospice care
Transfer from hospital (different facility)

131 (<1%)
27,141 (6%)

Transfer from SNF ! or ICF 2 44,612 (9%)
Discharge Status
Acute inpatient readmission 847 (<1%)
Discharged to home health organization 89,392 (18%)
Discharged to home or self-care 91,843 (19%)
Discharged to hospice home 25,625 (5%)
Discharged to hospice medical facility 24,993 (5%)
Discharged / Transferred to another rehab facility 15,425 (3%)
Discharged /Transferred to cancer center/children’s hospital 209 (<1%)
Discharged /Transferred to court/law enforcement 247 (<1%)
Discharged / Transferred to critical access hospital 71 (<1%)
Discharged /Transferred to federal hospital 279 (<1%)
Discharged / Transferred to ICF 2 12,891 (3%)
Discharged /Transferred to long-term care hospital 5448 (1%)
Discharged / Transferred to nursing facility 1732 (<1%)
Discharged / Transferred to other facility 5270 (1%)

Discharged /Transferred to other health institute not in list
Discharged / Transferred to psychiatric hospital

1391 (<1%)
2341 (<1%)

Discharged /Transferred to SNF 1 177,780 (36%)
Discharged / Transferred to swing bed 1605 (<1%)
Expired 28,217 (6%)
Information not available 232 (<1%)
Left against medical advice 1901 (<1%)
Still a patient—expected to return 36 (<1%)
Count of Procedures (mean, SD) 2.7)2.2
CMS 3 Fiscal Year
2022 359,803 (74%)
2023 127,972 (26%)
Social Vulnerability Indices (mean, SD)
Household characteristics 0.52% (0.25)
Housing type and transportation 0.62% (0.24)
Overall 0.61% (0.25)
Racial and ethnic minority status 0.71% (0.23)
Socioeconomic status 0.56% (0.26)
COVID-19 Status
Not identified 425,762 (87%)
Positive 62,013 (13%)
MS-DRG * Type
Medical 412,512 (85%)
Surgical 75,263 (15%)
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Table 1. Cont.

Study Variables

Count or
Mean/Proportion (%
or Standard Deviation
(SD))

Facility Characteristics

Teaching Status
No 378,768 (78%)
Not available 6221 (1%)
Yes 102,786 (21%)
Academic Status
No 415,274 (85%)
Yes 72,501 (15%)
Rural/Urban Status
Rural 66,204 (14%)
Urban 421,571 (86%)
Ownership

Government—federal
Government—hospital district/authority
Government—local

Government—state

1118 (<1%)
32,417 (7%)
11,798 (2%)
3611 (1%)

Not available 2248 (<1%)
Physician 1032 (<1%)
Proprietary 25,459 (5%)
Voluntary non-profit—church 71,085 (15%)
Voluntary non-profit—other 26,015 (5%)
Voluntary non-profit—private 312,992 (64%)
Bed Count
1-50 12,300 (3%)
51-100 25,881 (5%)
101-150 38,616 (8%)
151-200 32,908 (7%)
201-250 47,519 (10%)
251-300 50,418 (10%)
301-350 53,077 (11%)
351400 39,018 (8%)
>400 188,038 (39%)
Case Mix Index (mean, SD) 1.76 (0.26)
State Abbreviation
AK 253 (<1%)
AL 3966 (1%)
AR 3789 (1%)
AZ 12,029 (2%)
CA 27,281 (6%)
CO 3578 (1%)
CT 5982 (1%)
DE 1125 (<1%)
FL 60,713 (12%)
GA 7318 (2%)
HI 6038 (1%)
1A 4759 (1%)
1D 28 (<1%)
L 18,082 (4%)
IN 6646 (1%)
KS 2856 (1%)
KY 10,899 (2%)
LA 3505 (1%)
MA 4549 (1%)
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Table 1. Cont.

Count or
Mean/Proportion (%

Study Variables or Standard Deviation
(SD))

Facility Characteristics

State Abbreviation
MD 7131 (1%)
ME 21 (<1%)
MI 22,526 (5%)
MN 3431 (1%)
MO 3382 (1%)
MS 6744 (1%)
MT 1374 (<1%)
NC 27,936 (6%)
ND 676 (<1%)
NE 1965 (<1%)
NH 57 (<1%)
NJ 9184 (2%)
NM 2360 (<1%)
NV 5537 (1%)
NY 45,302 (9%)
OH 22,769 (5%)
OK 7968 (2%)
OR 7750 (2%)
PA 24,500 (5%)
RI 15 (<1%)
SC 10,009 (2%)
SD 1194 (<1%)
TN 16,120 (3%)
X 32,134 (7%)
UT 38 (<1%)
VA 16,695 (3%)
VT 163 (<1%)
WA 7833 (2%)
WI 9889 (2%)
WV 9472 (2%)
WY 204 (<1%)

1 SNF: Skilled nursing facility; > ICF: Intermediate care facility; > CMS: U.S. Centers for Medicare and Medicaid
Services; + MS-DRG: Medicare Severity Diagnosis Related Group.

Table 2 contains the adjusted ORs, 95% Cls, and p-values for the univariate and multi-
variate logistic regression analyses for modeling the coding specificity of dementia-related
principal diagnoses. Younger patients were generally associated with higher odds of coding
specificity than patients in the oldest age group (85+). Males experienced 45% higher odds
of dementia-related principal diagnosis coding specificity than females (OR = 1.454; 95%
CI: 1.301-1.625). Race was generally non-significant, except for Black patients, who experi-
enced significantly higher odds of principal diagnosis coding specificity than White patients
(OR =1.237; 95% CI: 1.058-1.446). The log-length of stay was significant, with longer stays
associated with higher odds of coding specificity (OR = 1.124; 95% CI: 1.060-1.191), but
primary payor and point of origin were generally not significant. Patients with certain
discharge statuses experienced significantly higher odds of coding specificity than those
discharged to home or self-care, namely patients discharged to hospice homes, hospice
medical facilities, or psychiatric hospitals (OR > 1.354). The number of procedures was
also significant, with each additional procedure performed associated with 23% increased
odds of coding specificity (OR = 1.230; 95% CI: 1.179-1.283). The CMS fiscal year was
highly significant, indicating 73.6% lower odds of specificity for 2023 (discharges occurring
between 1 October and 31 December 2022) compared to 2022 (discharges between 1 January
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and 30 September 2022) (OR = 0.264; 95% CI: 0.224-0.311). Social vulnerability indices
were not significant at the multivariate level, though some were significant univariately,
indicating that some of the information content may be present in other patient charac-
teristics. COVID-19 status and MS-DRG type were not statistically significant, except
for at the univariate level, at which the latter showed surgical MS-DRGs associated with
increased odds of specificity. At the facility level, patients in facilities whose teaching
status was not available experienced 65.1% lower odds of specificity than those in non-
teaching facilities (OR = 0.349; 95% CI: 0.142-0.856). Neither academic nor rural/urban
status showed significant variability at the multivariate level. Most ownership categories
were not significantly different from the voluntary non-profit private reference, except
for other non-profit voluntary (OR = 0.605; 95% CI: 0.442-0.827) and local government
(OR = 2.104; 95% CI: 1.401-3.159). Patients from facilities with bed counts lower than the
reference category (>400) experienced lower odds of coding specificity, though only three
categories were statistically significant. The case mix index was significant, with each unit
increase accompanied by 57.9% increased odds of dementia-related principal diagnosis
coding specificity (OR = 1.579; 95% CI: 1.188-2.100). Finally, most states demonstrated no
statistically significant differences in principal diagnosis coding specificity compared to
New York, with the exception of Hawaii, Louisiana, Minnesota, Oregon, Pennsylvania,
and Virginia (which had a higher odds) as well as Illinois and Tennessee (which had lower
odds of coding specificity).

Table 2. Univariate and multivariate logistic regression results including odds ratios (ORs), corresponding
95% confidence intervals (Cls), and p-values for specificity of a dementia-related principal diagnosis.

Univariate Multivariate
Analysis Analysis
Variable OR 95% CI p-Value OR 95% CI p-Value
Intercept - - - 0.030 0.016-0.057 <0.001
Age (Ref: 85+)
0-44 5.698 2.111-15.378 0.001 2.599 0.781-8.646 0.119
45-54 5.976 3.679-9.706 <0.001 4.845 2.731-8.596 <0.001
55-59 3.337 2.276-4.894 <0.001 2.427 1.577-3.735 <0.001
60-64 3.281 2.546-4.227 <0.001 2.601 1.930-3.507 <0.001
65-69 2.722 2.254-3.288 <0.001 2.266 1.843-2.786 <0.001
70-74 1.583 1.330-1.884 <0.001 1.483 1.232-1.785 <0.001
75-79 1.726 1.482-2.009 <0.001 1.663 1.414-1.955 <0.001
80-84 1.556 1.338-1.809 <0.001 1.484 1.266-1.740 <0.001
Sex (Ref: Female)
Male 1.591 1.436-1.763 <0.001 1.454 1.301-1.625 <0.001
Race (Ref: White)
Asian 1.485 1.084-2.035 0.014 1.308 0.907-1.888 0.151
Black 1.385 1.213-1.581 <0.001 1.237 1.058-1.446 0.008
Other 1.215 0.986-1.498 0.068 0.907 0.713-1.154 0.428
Unable to determine 0.811 0.570-1.154 0.244 0.801 0.551-1.166 0.247
Log(Length of Stay) 1.272 1.212-1.336 <0.001 1.124 1.060-1.191 <0.001
Primary Payor (Ref: Medicare traditional)
Charity /Indigent 1.305 0.146-11.694 0.812 0.462 0.038-5.576 0.543
Commercial indemnity 1.334 0.914-1.948 0.136 1.054 0.694-1.601 0.805
Direct employer contract 0.000 0.000-Inf 0.943 0.000 0.000-Inf 0.989
Managed care capitated 0.870 0.105-7.238 0.898 0.604 0.062-5.919 0.665
Managed care non-capitated 1.449 1.107-1.898 0.007 1.195 0.887-1.610 0.240
Medicaid managed care capitated 2.901 1.537-5.477 0.001 0.924 0.436-1.956 0.836
Medicaid managed care non-capitated 1.875 1.350-2.604 <0.001 1.083 0.738-1.590 0.684
Medicaid traditional 2.437 1.677-3.541 <0.001 1.236 0.802-1.907 0.337
Medicare managed care capitated 1.096 0.829-1.449 0.521 0.902 0.659-1.235 0.520
Medicare managed care non-capitated 1.091 0.972-1.224 0.140 1.048 0.924-1.190 0.463
Other 1.555 0.852-2.838 0.150 1.311 0.690-2.492 0.409
Other government payors 1.707 1.234-2.362 0.001 1.129 0.779-1.637 0.521
Self-pay 1.093 0.531-2.250 0.809 0.757 0.353-1.624 0.475
Workers’ compensation 2.611 0.236-28.827 0.434 1.416 0.105-19.117 0.793
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Table 2. Cont.

Univariate Multivariate
Analysis Analysis
Variable OR 95% CI p-Value OR 95% CI p-Value
Point of Origin (Ref: Non-healthcare facility)
Clinic 1.339 0.996-1.799 0.053 1.375 0.994-1.902 0.055
Court/Law enforcement 1.788 0.569-5.623 0.320 1.394 0.411-4.724 0.594
Information not available 3.659 2.308-5.802 <0.001 3.949 2.321-6.719 <0.001
Other 1.639 0.17-15.769 0.669 1.473 0.141-15.383 0.746
Transfer from ambulatory surgery center 0.819 0.099-6.812 0.854 0.688 0.080-5.930 0.734
Transfer from dept unit in same hospital, separate claim 1.414 0.868-2.306 0.164 1.475 0.858-2.536 0.160
Transfer from health facility 0.922 0.556-1.530 0.753 1.001 0.586-1.709 0.997
Transfer from hospice and under hospice program 0.000 0.000-Inf 0.946 0.000 0.000-Inf 0.984
Transfer from hospital (different facility) 1.302 1.012-1.677 0.040 1.026 0.776-1.357 0.856
Transfer from SNF ! or ICF 2 1.097 0.882-1.364 0.404 1.133 0.893-1.437 0.304
Discharge Status (Ref: Discharged to home or self-care)
Acute inpatient readmission 0.716 0.213-2.404 0.588 0.840 0.238-2.961 0.786
Discharged to home health organization 1.106 0.929-1.316 0.257 1.144 0.948-1.382 0.161
Discharged to hospice home 1.202 0.921-1.568 0.176 1.367 1.023-1.828 0.035
Discharged to hospice medical facility 1.232 0.937-1.620 0.135 1.354 1.006-1.823 0.046
Discharged /Transferred to another rehab facility 1.131 0.785-1.628 0.510 1.250 0.845-1.848 0.264
Discharged / Transferred to court/law enforcement 15.741 1.633-151.780 0.017 3.375 0.293-38.812 0.329
Discharged /Transferred to federal hospital 2.099 0.460-10.862 0.377 2.089 0.368-11.873 0.406
Discharged / Transferred to ICF 2 1.218 0.913-1.624 0.180 1.142 0.831-1.570 0.414
Discharged / Transferred to long-term care hospital 0.562 0.280-1.129 0.105 0.519 0.244-1.104 0.089
Discharged /Transferred to nursing facility 1.331 0.772-2.295 0.303 1.185 0.636-2.209 0.594
Discharged/Transferred to other facility 1.088 0.637-1.857 0.758 1.132 0.641-2.000 0.669
Discharged /Transferred to other health institute not in list ~ 1.199 0.552-2.608 0.646 1.217 0.531-2.790 0.642
Discharged /Transferred to psychiatric hospital 1.344 1.013-1.785 0.041 1.457 1.069-1.986 0.017
Discharged /Transferred to SNF 1 1.127 0.979-1.297 0.096 1.144 0.979-1.338 0.091
Discharged /Transferred to swing bed 1.166 0.251-5.420 0.845 1.227 0.234-6.440 0.809
Expired 1.282 0.901-1.824 0.168 0.991 0.672-1.462 0.965
Information not available 0.000 0.000-Inf 0.954 0.000 0.000-Inf 0.986
Left against medical advice 0.777 0.367-1.648 0.511 0.888 0.400-1.969 0.770
Still a patient—expected to return 0.000 0.000-Inf 0.962 0.000 0.000-Inf 0.989
Count of Procedures 1.145 1.109-1.183 <0.001 1.230 1.179-1.283 <0.001
CMS 3 Fiscal Year (Ref: 2022)
2023 0.336 0.290-0.388 <0.001 0.264 0.224-0.311 <0.001
Social Vulnerability Index
Household characteristics 1.506 1.238-1.831 <0.001 1.625 0.873-3.025 0.126
Housing type and transportation 1.329 1.080-1.636 0.007 1.362 0.584-3.177 0.474
Overall 1.326 1.085-1.621 0.006 0.361 0.037-3.561 0.383
Racial and ethnic minority status 1.047 0.830-1.321 0.698 0.829 0.491-1.398 0.482
Socioeconomic status 1.265 1.045-1.532 0.016 2.003 0.600-6.685 0.259
COVID-19 Status (Ref: Not identified)
Positive 1.130 0.927-1.377 0.227 0.978 0.788-1.215 0.842
MS-DRG * Type (Ref: Medical)
Surgical 2.089 1.482-2.943 <0.001 1.195 0.794-1.800 0.393
Teaching Status (Ref: No)
Not Available 0.545 0.249-1.190 0.127 0.349 0.142-0.856 0.021
Yes 1.349 1.208-1.506 <0.001 1.047 0.839-1.307 0.685
Academic Status (Ref: No)
Yes 1.270 1.124-1.435 <0.001 0.900 0.701-1.156 0.411
Rural/Urban Status (Ref: Urban)
Rural 0.910 0.775-1.068 0.249 0.995 0.803-1.232 0.963
Ownership (Ref: Voluntary non-profit—private)
Government—federal 0.000 0.000-Inf 0.934 0.000 0.000-Inf 0.981
Government—hospital district/authority 0.945 0.763-1.170 0.602 0.847 0.652-1.101 0.214
Government—Iocal 1.591 1.166-2.170 0.003 2.104 1.401-3.159 <0.001
Government—state 0.718 0.389-1.323 0.228 0.641 0.304-1.352 0.243
Not available 1.871 0.774-4.522 0.164 1.758 0.679-4.553 0.245
Physician 2.272 0.206-25.082 0.503 3.229 0.267-39.096 0.357
Proprietary 0.943 0.762-1.166 0.586 0.984 0.752-1.289 0.908
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Table 2. Cont.

Univariate Multivariate
Analysis Analysis
Variable OR 95% CI p-Value OR 95% CI p-Value
Ownership (Ref: Voluntary non-profit—private)
Voluntary non-profit—church 0.782 0.661-0.925 0.004 0.869 0.711-1.063 0.173
Voluntary non-profit—other 0.723 0.545-0.958 0.024 0.605 0.442-0.827 0.002
Bed Count (Ref: >400)
1-50 0.605 0.403-0.908 0.015 0.687 0.426-1.107 0.123
51-100 0.592 0.460-0.760 <0.001 0.671 0.492-0.916 0.012
101-150 0.795 0.649-0.975 0.028 0.842 0.652-1.086 0.185
151-200 0.656 0.514-0.838 0.001 0.706 0.530-0.939 0.017
201-250 0.619 0.510-0.751 <0.001 0.818 0.645-1.037 0.097
251-300 0.603 0.501-0.725 <0.001 0.704 0.559-0.886 0.003
301-350 0.727 0.604-0.876 0.001 0.865 0.688-1.086 0.212
351-400 0.754 0.608-0.935 0.010 0.933 0.718-1.211 0.601
Case Mix Index 1.912 1.574-2.322 <0.001 1.579 1.188-2.100 0.002
State Abbreviation (Ref: NY)
AK 2.708 0.245-29.975 0.417 4.569 0.382-54.824 0.230
AL 1.504 0.836-2.707 0.713 1.187 0.625-2.254 0.600
AR 0.524 0.224-1.224 0.136 0.413 0.163-1.044 0.062
AZ 0.633 0.313-1.279 0.203 0.554 0.265-1.157 0.116
CA 1.216 0.931-1.588 0.152 1.242 0.901-1.714 0.186
cO 0.478 0.146-1.568 0.223 0.470 0.316-1.621 0.232
CT 1.658 0.916-3.002 0.095 1.770 0.934-3.352 0.080
DE 0.000 0.000-Inf 0.952 0.000 0.000-Inf 0.966
FL 0.928 0.748-1.152 0.500 0.860 0.654-1.130 0.279
GA 1.511 0.943-2.422 0.860 0.874 0.492-1.556 0.648
HI 1.884 1.050-3.379 0.034 2.239 1.019-4.920 0.045
IA 1.625 0.944-2.798 0.080 1.256 0.676-2.336 0.471
IL 0.668 0.465-0.960 0.029 0.644 0.428-0.696 0.035
IN 1.236 0.755-2.023 0.399 1.067 0.621-1.835 0.814
KS 1.489 0.754-2.941 0.251 0.879 0.412-1.873 0.738
KY 1.146 0.751-1.749 0.526 1.017 0.621-1.667 0.945
LA 4.431 2.343-8.379 <0.001 2.794 1.358-5.748 0.005
MA 1.389 0.957-2.015 0.084 1.256 0.819-1.928 0.297
MD 0.931 0.581-1.492 0.766 1.103 0.653-1.862 0.714
ME 0.000 0.000-Inf 0.984 0.000 0.000-Inf 0.989
MI 0.947 0.726-1.236 0.690 0.840 0.599-1.178 0.313
MN 1.743 1.115-2.724 0.015 1.842 1.127-3.01 0.015
MO 0.602 0.237-1.531 0.286 0.362 0.128-1.021 0.055
MS 0.733 0.405-1.329 0.307 0.582 0.306-1.109 0.100
MT 0.226 0.030-1.676 0.146 0.148 0.018-1.205 0.074
NC 1.645 1.282-2.111 <0.001 1.101 0.796-1.523 0.561
ND 2.407 0.736-7.875 0.146 3.664 0.972-13.816 0.055
NE 0.492 0.150-1.617 0.243 0.661 0.912-2.277 0.512
NJ 0.961 0.700-1.318 0.805 0.988 0.692-1.413 0.949
NM 1.444 0.753-2.768 0.268 1513 0.736-3.113 0.260
NV 0.782 0.515-1.187 0.248 0.906 0.542-1.513 0.705
OH 1.287 1.001-1.654 0.049 1.077 0.791-1.467 0.637
OK 1.281 0.910-1.802 0.156 1.044 0.676-1.613 0.845
OR 2.462 1.567-3.868 <0.001 2.552 1.530-4.257 <0.001
PA 2.003 1.623-2.472 <0.001 2.146 1.656-2.782 <0.001
sC 1.044 0.699-1.559 0.833 0.927 0.592-1.450 0.739
SD 0.000 0.000-Inf 0.944 0.000 0.000-Inf 0.962
TN 0.752 0.534-1.059 0.102 0.598 0.399-0.897 0.013
X 0.974 0.696-1.361 0.876 0.929 0.627-1.374 0.711
uT 0.000 0.000-Inf 0.988 0.000 0.000-Inf 0.992
VA 1.477 1.097-1.989 0.010 1.506 1.052-2.155 0.025
VT 0.000 0.000-Inf 0.977 0.000 0.000-Inf 0.986
WA 0.896 0.554-1.448 0.653 0.965 0.562-1.656 0.897
WI 1.529 1.026-2.276 0.037 1.500 0.952-2.363 0.080
WV 0.921 0.590-1.437 0.717 0.726 0.434-1.216 0.224
WY 0.000 0.000-Inf 0.974 0.000 0.000-Inf 0.982

1 SNF: Skilled nursing facility; 2 ICF: Intermediate care facility; > CMS: U.S. Centers for Medicare and Medicaid
Services; * MS-DRG: Medicare Severity Diagnosis Related Group.
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Table 3 reports the univariate and multivariate logistic regression results (ORs, 95% Cls,
and p-values) for the specificity of secondary dementia diagnoses” outcome. For the multi-
variate results, all age groups experienced higher odds of specificity of dementia secondary
diagnoses than the reference group of ages 85+ (OR > 1.316; p < 0.001). Male patients had
significantly higher odds of dementia secondary diagnosis specificity compared to females
(OR =1.224, 95% CI: 1.209-1.239; p < 0.001). Individuals identifying as Black were associated
with lower odds of dementia secondary diagnosis specificity (OR = 0.955; 95% CI: 0.937-0.973)
compared to White patients, while the opposite was found for those identifying as other races
(OR =1.069; 95% CI: 1.040-1.099). For some categories, primary payor, patient origin, and dis-
charge status also showed significant associations with dementia secondary diagnosis coding
specificity (see Table 3). Length of stay (in log terms) was also associated with higher odds of
dementia secondary diagnosis specificity (OR = 1.017; 95% CI: 1.008-1.025). Those undergoing
a larger number of procedures experienced higher odds of dementia secondary diagnosis
specificity (OR = 1.039; 95% CI: 1.036-1.042). The CMS fiscal year was not substantially differ-
ent, with those who were hospitalized in the new 2023 fiscal year experiencing 1.4% higher
odds of specificity (OR = 1.014; 95% CI: 1.000-1.028). Patient socioeconomic (OR = 0.829; 95%
CI: 0.717-0.958) and racial/ethnic minority (OR = 1.09; 95% CI: 1.03-1.154) statuses within
the social vulnerability indices were significantly associated with decreased and increased,
respectively, odds of dementia secondary diagnosis specificity. COVID-19-positive patients
were associated with lower odds of dementia secondary diagnosis specificity (OR = 0.948;
95% CI: 0.930-0.965). Patients undergoing a surgical MS-DRG experienced 14% lower odds of
dementia secondary diagnosis specificity compared to those undergoing a medical MS-DRG
(OR = 0.859; 95% CI: 0.844-0.875). Academic facilities demonstrated higher odds of dementia
secondary diagnosis specificity (OR = 1.052; 95% CI: 1.020-1.085), whereas those in rural set-
tings experienced lower odds of dementia secondary diagnosis specificity (OR = 0.976; 95% CI:
0.955-0.997). Patients at facilities of different ownership types also experienced differing odds
of dementia secondary diagnosis specificity (see Table 3). Lower bed counts were generally
associated with lower odds of dementia secondary diagnosis specificity (OR < 0.954) than
those in the largest cluster of hospitals (>400 beds), with the exception of facilities with 51-100
beds and those with 351400 beds. Substantial differences in the odds of dementia secondary
diagnosis specificity were found by state when compared to the reference state of New York.

Table 3. Univariate and multivariate logistic regression results including odds ratios (ORs), corresponding
95% confidence intervals (Cls), and p-values for specificity of a dementia-related secondary diagnosis.

Univariate Multivariate
Analysis Analysis
Variable OR 95% CI p-Value OR 95% CI p-Value
Intercept - - - 0.351 0.327-0.378 <0.001
Age (Ref: 85+)
0-44 1.956 1.701-2.248 <0.001 1.934 1.676-2.233 <0.001
45-54 1.736 1.607-1.875 <0.001 1.734 1.601-1.877 <0.001
55-59 1.745 1.652-1.843 <0.001 1.736 1.640-1.838 <0.001
60-64 1.532 1.477-1.588 <0.001 1.526 1.468-1.586 <0.001
65-69 1.459 1.421-1.497 <0.001 1.422 1.384-1.461 <0.001
70-74 1.438 1.409-1.467 <0.001 1421 1.392-1.451 <0.001
75-79 1.410 1.386-1.435 <0.001 1.402 1.377-1.426 <0.001
80-84 1.316 1.295-1.337 <0.001 1.316 1.295-1.338 <0.001
Sex (Ref: Female)
Male 1.269 1.254-1.284 <0.001 1.224 1.209-1.239 <0.001
Race (Ref: White)
Asian 0.977 0.941-1.015 0.230 1.009 0.967-1.053 0.680
Black 0.989 0.972-1.006 0.202 0.955 0.937-0.973 <0.001
Other 1.036 1.009-1.063 0.008 1.069 1.040-1.099 <0.001
Unable to determine 0.969 0.930-1.010 0.139 0.973 0.933-1.015 0.210
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Table 3. Cont.

Univariate Multivariate
Analysis Analysis
Variable OR 95% CI p-Value OR 95% CI p-Value
Log(Length of Stay) 1.069 1.062-1.077 <0.001 1.017 1.008-1.025 <0.001
Primary Payor (Ref: Medicare traditional)
Charity /Indigent 1.204 0.903-1.604 0.206 0.976 0.729-1.308 0.873
Commercial indemnity 1.121 1.055-1.192 <0.001 0.979 0.919-1.042 0.499
Direct employer contract 2.934 2.229-3.861 <0.001 2.449 1.854-3.234 <0.001
Managed care capitated 1.087 0.889-1.328 0.416 0.863 0.703-1.060 0.161
Managed care non-capitated 1.090 1.044-1.139 <0.001 1.011 0.967-1.057 0.639
Medicaid managed care capitated 1.130 0.993-1.285 0.063 0.896 0.785-1.023 0.105
Medicaid managed care non-capitated 1.129 1.077-1.183 <0.001 0.896 0.852-0.942 <0.001
Medicaid traditional 1.050 0.993-1.111 0.087 0.844 0.796-0.896 <0.001
Medicare managed care capitated 1.018 0.987-1.049 0.258 0.979 0.948-1.012 0.214
Medicare managed care non-capitated 0.973 0.961-0.986 <0.001 0.945 0.933-0.958 <0.001
Other 0.963 0.888-1.043 0.354 0.909 0.837-0.986 0.022
Other government payors 1.081 1.034-1.129 0.001 0.915 0.875-0.958 <0.001
Self-pay 0.879 0.798-0.968 0.009 0.819 0.742-0.904 <0.001
Workers’ compensation 0.467 0.327-0.667 <0.001 0.495 0.344-0.711 <0.001
Point of Origin (Ref: Non-healthcare facility)
Clinic 0.923 0.893-0.955 <0.001 0.954 0.921-0.987 0.007
Court/Law enforcement 1.029 0.771-1.372 0.848 0.949 0.698-1.291 0.739
Information not available 1.008 0.936-1.085 0.838 1.045 0.968-1.129 0.256
Other 1.071 0.878-1.306 0.497 1.159 0.946-1.419 0.154
Transfer from ambulatory surgery center 0.769 0.599-0.988 0.040 0.715 0.555-0.921 0.009
Transfer from dept unit in same hospital, separate claim 0.976 0.901-1.057 0.543 0.999 0.921-1.084 0.982
Transfer from health facility 1.003 0.956-1.053 0.896 0.950 0.904-0.999 0.044
Transfer from hospice and under hospice program 1.288 0.904-1.834 0.161 1.248 0.871-1.787 0.227
Transfer from hospital (different facility) 0.950 0.926-0.975 <0.001 0.884 0.860-0.908 <0.001
Transfer from SNF ! or ICF 2 1.118 1.096-1.141 <0.001 1.082 1.059-1.106 <0.001
Discharge Status (Ref: Discharged to home or self-care)
Acute inpatient readmission 0.966 0.835-1.117 0.637 1.033 0.891-1.197 0.666
Discharged to home health organization 1.026 1.006-1.046 0.011 1.064 1.043-1.085 <0.001
Discharged to hospice home 1.239 1.204-1.275 <0.001 1.312 1.274-1.352 <0.001
Discharged to hospice medical facility 1.180 1.146-1.215 <0.001 1.228 1.191-1.265 <0.001
Discharged / Transferred to another rehab facility 1.010 0.974-1.047 0.589 1.019 0.982-1.058 0.321
Discharged /Transferred to cancer ctr/children’s hospital ~ 0.938 0.702-1.253 0.666 1.109 0.827-1.488 0.490
Discharged /Transferred to court/law enforcement 1.249 0.965-1.616 0.092 1.128 0.856-1.486 0.392
Discharged /Transferred to critical access hospital 0.612 0.355-1.056 0.078 0.581 0.335-1.008 0.054
Discharged / Transferred to federal hospital 1.027 0.800-1.319 0.833 1.027 0.797-1.322 0.839
Discharged / Transferred to ICF 2 1.289 1.240-1.339 <0.001 1.249 1.201-1.300 <0.001
Discharged /Transferred to long-term care hospital 1.108 1.046-1.173 <0.001 1.002 0.944-1.063 0.950
Discharged / Transferred to nursing facility 1.532 1.389-1.690 <0.001 1.544 1.396-1.706 <0.001
Discharged /Transferred to other facility 0.978 0.922-1.038 0.463 0.947 0.891-1.005 0.074
Discharged/Transferred to other health institute notin list ~ 1.189 1.064-1.328 0.002 1.196 1.068-1.338 0.002
Discharged / Transferred to psychiatric hospital 1.849 1.694-2.019 <0.001 1.685 1.542-1.842 <0.001
Discharged /Transferred to SNF ! 1.050 1.032-1.068 <0.001 1.075 1.056-1.095 <0.001
Discharged /Transferred to swing bed 1.084 0.977-1.202 0.127 1.151 1.034-1.280 0.010
Expired 0.936 0.910-0.963 <0.001 0.896 0.870-0.923 <0.001
Information not available 0.691 0.514-0.928 0.014 0.830 0.613-1.124 0.228
Left against medical advice 0.850 0.769-0.940 0.002 0.829 0.749-0.917 <0.001
Still a patient—expected to return 1.204 0.603-2.405 0.598 1.006 0.498-2.034 0.987
Count of Procedures 1.038 1.036-1.041 <0.001 1.039 1.036-1.042 0.001
CMS 3 Fiscal Year (Ref: 2022)
2023 1.030 1.016-1.044 <0.001 1.014 1.000-1.028 0.049
Social Vulnerability Index
Household characteristics 0.808 0.790-0.827 <0.001 0.829 0.717-0.958 0.011
Housing type and transportation 0.936 0.914-0.958 <0.001 0.963 0.892-1.040 0.336
Overall 0.912 0.889-0.936 <0.001 1.090 1.030-1.154 0.003
Racial and ethnic minority status 0.911 0.889-0.934 <0.001 0.931 0.844-1.027 0.156
Socioeconomic status 0.836 0.817-0.857 <0.001 1.177 0.895-1.548 0.245
COVID-19 Status (Ref: Not identified)
Positive 0.960 0.943-0.977 <0.001 0.948 0.930-0.965 <0.001

76



Healthcare 2024, 12, 983

Table 3. Cont.

Univariate Multivariate
Analysis Analysis
Variable OR 95% CI p-Value OR 95% CI p-Value
MS-DRG * Type (Ref: Medical)
Surgical 0.932 0.917-0.947 <0.001 0.859 0.844-0.875 <0.001
Teaching Status (Ref: No)
Not Available 1.153 1.095-1.215 <0.001 1.130 1.066-1.197 <0.001
Yes 1.067 1.051-1.082 <0.001 0.975 0.949-1.001 0.061
Academic Status (Ref: No)
Yes 1.078 1.061-1.096 <0.001 1.052 1.020-1.085 <0.001
Rural/Urban Status (Ref: Urban)
Rural 0.969 0.952-0.986 <0.001 0.976 0.955-0.997 0.025
Ownership (Ref: Voluntary non-profit—private)
Government—federal 0.952 0.841-1.078 0.437 0.915 0.802-1.042 0.181
Government—hospital district/authority 1.048 1.024-1.074 <0.001 1.033 1.006-1.062 0.017
Government—Iocal 1.102 1.060-1.145 <0.001 1.146 1.097-1.196 <0.001
Government—state 0.898 0.837-0.963 0.003 0.881 0.815-0.951 0.001
Not available 0.905 0.829-0.989 0.028 0.847 0.771-0.930 0.001
Physician 1.364 1.206-1.544 <0.001 1.191 1.045-1.358 0.009
Proprietary 0.837 0.814-0.860 <0.001 0.872 0.845-0.899 <0.001
Voluntary non-profit—church 0.886 0.871-0.902 <0.001 0.904 0.887-0.921 <0.001
Voluntary non-profit—other 0.961 0.935-0.987 0.003 0.890 0.864-0.916 <0.001
Bed Count (Ref: >400)
1-50 0.940 0.904-0.976 0.002 0.954 0.912-0.997 0.038
51-100 1.035 1.007-1.064 0.001 1.071 1.037-1.105 <0.001
101-150 0.849 0.829-0.869 <0.001 0.878 0.987-1.040 <0.001
151-200 0.952 0.928-0.975 <0.001 0.951 0.854-0.902 <0.001
201-250 0.868 0.849-0.886 <0.001 0.931 0.924-0.978 <0.001
251-300 0.914 0.895-0.933 <0.001 0.945 0.909-0.955 <0.001
301-350 0.908 0.889-0.926 <0.001 0.939 0.922-0.969 <0.001
351400 0.924 0.903-0.945 <0.001 1.013 0.917-0.961 0.329
Case Mix Index 1.028 1.005-1.052 0.018 0.981 0.951-1.012 0.227
State Abbreviation (Ref: NY)
AK 1.392 1.081-1.793 0.010 1.335 1.034-1.725 0.027
AL 0.731 0.679-0.787 <0.001 0.723 0.669-0.780 <0.001
AR 0.626 0.579-0.677 <0.001 0.665 0.612-0.722 <0.001
AZ 1.011 0.968-1.055 0.633 1.039 0.992-1.089 0.104
CA 0.946 0.916-0.977 0.001 0.949 0.915-0.984 0.005
CcO 0.857 0.795-0.923 <0.001 0.841 0.778-0.909 <0.001
CT 1.240 1.173-1.312 <0.001 1.235 1.166-1.309 <0.001
DE 0.817 0.716-0.932 0.003 0.825 0.720-0.945 0.005
FL 0.912 0.888-0.936 <0.001 0.922 0.894-0.952 <0.001
GA 0.933 0.885-0.984 0.011 0.881 0.829-0.935 <0.001
HI 1.150 1.087-1.217 <0.001 1.219 1.136-1.309 <0.001
IA 1.342 1.261-1.427 <0.001 1.298 1.216-1.386 <0.001
ID 1.307 0.612-2.792 0.489 1.488 0.693-3.197 0.308
IL 1.061 1.023-1.101 0.002 1.087 1.044-1.131 <0.001
IN 1.093 1.035-1.154 0.001 1.095 1.033-1.161 0.002
KS 0.697 0.639-0.760 <0.001 0.685 0.626-0.750 <0.001
KY 1.196 1.144-1.249 <0.001 1.225 1.167-1.287 <0.001
LA 1.330 1.239-1.428 <0.001 1.287 1.194-1.388 <0.001
MA 1.025 0.960-1.095 0.454 0.962 0.899-1.031 0.275
MD 0.969 0.918-1.023 0.254 0.950 0.897-1.007 0.083
ME 1.243 0.515-3.000 0.628 1.372 0.563-3.347 0.487
MI 1.006 0.972-1.041 0.741 1.027 0.987-1.069 0.182
MN 2.162 2.014-2.321 <0.001 2.077 1.930-2.234 <0.001
MO 0.991 0.919-1.068 0.809 0.902 0.833-0.977 0.012
MS 1.005 0.951-1.062 0.861 0.992 0.936-1.052 0.796
MT 0.798 0.708-0.900 <0.001 0.848 0.749-0.960 0.009
NC 1.305 1.265-1.347 <0.001 1.244 1.199-1.290 <0.001
ND 1.495 1.280-1.746 <0.001 1.723 1.469-2.022 <0.001
NE 1.667 1.521-1.827 <0.001 1.808 1.643-1.990 <0.001
NH 0.483 0.250-0.933 0.030 0.514 0.265-0.996 0.049
NJ 0.863 0.821-0.907 <0.001 0.874 0.830-0.921 <0.001
NM 0.880 0.803-0.963 0.006 0.839 0.763-0.921 <0.001
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Table 3. Cont.

Univariate Multivariate
Analysis Analysis
Variable OR 95% CI p-Value OR 95% CI p-Value
State Abbreviation (Ref: NY)
NV 0.793 0.745-0.845 <0.001 0.873 0.815-0.936 <0.001
OH 1.287 1.244-1.331 <0.001 1.356 1.306-1.408 <0.001
OK 1.407 1.339-1.478 <0.001 1.350 1.277-1.426 <0.001
OR 1.756 1.672-1.845 <0.001 1.881 1.784-1.984 <0.001
PA 1.403 1.358-1.450 <0.001 1.439 1.389-1.492 <0.001
RI 3.030 1.078-8.516 0.035 2.763 0.977-7.813 0.055
SC 1.082 1.033-1.133 0.001 1.080 1.028-1.135 0.002
SD 1.409 1.252-1.586 <0.001 1.393 1.233-1.573 <0.001
TN 0.807 0.776-0.840 <0.001 0.826 0.790-0.865 <0.001
X 1.239 1.203-1.277 <0.001 1.247 1.203-1.292 <0.001
uT 0.855 0.422-1.730 0.663 0.881 0.433-1.789 0.726
VA 1.374 1.324-1.426 <0.001 1.365 1.309-1.422 <0.001
VT 0.797 0.564-1.127 0.199 0.853 0.601-1.211 0.373
WA 1.225 1.165-1.288 <0.001 1.281 1.215-1.352 <0.001
WI 1.509 1.443-1.578 <0.001 1.496 1.426-1.569 <0.001
A4 0.971 0.926-1.019 0.229 0.981 0.930-1.036 0.492
WY 1.416 1.067-1.879 0.016 1.471 1.104-1.960 0.008
1 SNF: Skilled nursing facility; 2 ICF: Intermediate care facility; > CMS: Centers for Medicare and Medicaid
Services; * MS-DRG: Medicare Severity Diagnosis Related Group.
Figure 1 panel (a) shows the ROC curve for the multivariate model of the coding
specificity of a principal diagnosis related to dementia. The estimated AUC was 0.7269,
representing the good reliability of the multivariate model in assessing the coding specificity
of dementia-related principal diagnoses. Panel (b) shows the ROC curve corresponding to
the multivariate logistic regression analysis for assessing the coding specificity of secondary
dementia diagnoses. The corresponding AUC was 0.5919, demonstrating a worse model
performance when compared to that of the model assessing the coding specificity of
primary dementia diagnoses.
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Figure 1. Receiver operating characteristic (ROC) curve of the multivariate logistic regression model
for the specificity of a dementia-related principal diagnosis (a) and secondary diagnosis (b).

Figure 2 represents a subset of the facilities” observed dementia-related principal

diagnosis coding specificity (a) and secondary diagnosis coding specificity (b) relative to
industry standards. The p-values (and the 95% ClIs, which are represented as error bars)
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from the estimated Poisson binomial distribution are used so that under-specificity versus
peers (p < 0.025) is represented in blue; specificity in line with peers (0.025 < p < 0.975) is
represented in black; and over-specificity versus peers (p > 0.975) is represented in orange.
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Figure 2. Observed counts of indicators of principal diagnosis coding specificity (a) and secondary
diagnosis coding specificity (b) for dementia diagnoses by facility (dots) and 95% confidence intervals
based on the Poisson binomial metric (error bars), with colors denoting over-specificity (orange),
under-specificity (blue), and specificity in line with peers (black).

Figure 3 represents the adjusted ORs for the coding specificity of a dementia-related
principal diagnosis (a) and secondary diagnosis (b). All of the adjusted ORs are represented
against New York as the reference state. Only a few states demonstrate statistically different
adjusted odds of coding specificity of a dementia-related principal diagnosis versus New
York, while a larger amount of variability is observed for states’ secondary diagnosis coding
specificity. The gray states had non-significant adjusted ORs of coding specificity.

Odds ratio (OR)
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Figure 3. Geographical U.S. map of adjusted odds ratios (ORs) of coding specificity of dementia-
related principal (a) and secondary (b) diagnoses by state, with a reference state of New York. Odds
ratios that were not statistically significant are shown in gray.

4. Discussion

The literature on diagnostic coding specificity remains scarce, with healthcare facili-

ties and practitioners limited in their ability to self-evaluate against healthcare industry
standards of practice. It is also unclear whether non-clinical characteristics can explain
variability in specificity practices. To address this gap, a novel approach was demonstrated
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to evaluate facility-specific practices for the dementia-related coding specificity of principal
and secondary diagnoses upon making risk adjustments for commonly available patient
and facility characteristics. A logistic regression was applied to make risk adjustments
to the probability of receiving a specified dementia diagnosis. The statistical output is
used in a two-step approach, building on a Poisson binomial model, to evaluate the per-
formance of healthcare facilities in providing specified dementia-related principal, or at
least one secondary, diagnoses. This metric can be used to identify facilities that perform
differently (under- or over-specifying) compared to their healthcare industry peers and can
provide an objective standard against which the coding specificity practices of facilities
can be evaluated. These findings offer valuable insights for healthcare stakeholders and
quality-control personnel, facilitating the identification of facilities that may benefit from
targeted interventions to enhance the levels of specificity of dementia-related diagnosis
coding.

Our results indicate that the coding specificity of dementia diagnoses is associated
with a range of patient and facility characteristics, particularly for primary diagnoses, as
demonstrated through a higher AUC value. Younger patients were generally associated
with a higher odds of coding specificity for dementia-related principal and secondary
diagnoses. While dementia has been found to be more easily identifiable among older
patients [35], our findings indicate that, conditional on a dementia diagnosis, the odds
of coding specificity are higher among younger patients. However, it is unclear whether
there is a clinical association between the prevalence of specified cases of dementia and
age, particularly when comparing age groups with those at least 85 years old.

Prior studies have found that the prevalence of types of dementia is different by
sex [36], which could also be due to environmental and behavioral differences according
to sex. Males had approximately 22% (secondary) and 45% (principal) higher odds of
dementia diagnosis specificity compared to females, though this could be confounded with
age. Black patients demonstrated a significantly higher odds of principal diagnosis coding
specificity than White patients. However, the reverse is observed for secondary diagnosis
specificity. In both cases, there could be confounders due to collinearity with other factors,
including social vulnerability indices. Patients have been shown to experience differences
in the prevalence of dementia and its associated symptoms and severity by race [37], which
could potentially have an association with the ability of doctors to provide a specified
dementia diagnosis.

The significant association between longer hospital stays and higher odds of both
principal and secondary coding specificity could be due to the additional inpatient time
which allows for more comprehensive evaluations, diagnoses, and documentation. Patients
discharged to specific destinations, such as hospice homes, hospice medical facilities,
or psychiatric hospitals, exhibited significantly higher odds of principal and secondary
diagnosis specificity. This could be related to the severity of their case or their prior history,
which could, in turn, be associated with a potentially more accurate clinical diagnosis.
Patients undergoing more procedures had higher odds of receiving a specified principal or
secondary diagnosis. Though the cause of this association is unclear, this could be related
to there being more resources allocated for identifying a patient’s disease when procedures
are necessary during their inpatient stay. While a COVID-19 diagnosis was not associated
with differing odds of principal diagnosis specificity, it was associated with lower odds of
secondary diagnosis specificity. However, it is unclear whether the association between the
severity of patients” COVID-19 symptoms and age could be a confounder [38].

While the differences by CMS fiscal year in secondary diagnosis specificity were minor
and are probably clinically irrelevant, the differences were more substantial among those
with a dementia primary diagnosis. However, this could be due to seasonal confounders.
The new fiscal year, denoted as 2023, was only measured in the October-December 2022
period, which may also be a period with seasonally over-burdened hospitals and less time
for healthcare personnel to perform more in-depth diagnoses of patients.
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From a payor perspective, none of the payor types were associated with differing
odds of principal diagnosis specificity when compared to that of Medicare traditional. This
is encouraging, as it indicates that principal diagnosis specificity may not be attributable
to healthcare payor type. However, the substantial differences in the univariate results
indicate that some complex associations may be embedded, though this is unclear, since
the patient mix would not be homogeneous across payor types. For example, age could be
acting as a proxy for Medicare status. Also, some differences were found when assessing
odds of secondary diagnosis specificity. Some of these differences could be due to other
patient characteristics. For example, those receiving Medicare traditional may be in widely
different age groups than those for whom the payor comes from a direct employer con-
tract or who receives workers” compensation. Thus, health insurance coverage may be
substantially different across patients, leading to the different propensities of patients to
seek hospitalization [39].

Additionally, the ownership status of the facilities displayed some significant differ-
ences, with local government-owned facilities showing notably higher odds of principal
and secondary diagnosis specificity. Again, the non-clinical patient characteristics by fa-
cility and facility ownership could differ widely. The case mix index of the hospital was
significantly, positively associated with the specificity of principal diagnosis, indicating that
the overall complexity of patients’ needs in a facility is related to higher degrees of speci-
ficity provided during a hospitalization. However, no significant association of specificity
and the facility case mix index was found when the dementia diagnosis was secondary
during the inpatient stay. Substantial differences were also found by state, particularly for
secondary diagnoses. These differences could stem from the population mix or could be
related to a substantially larger sample size for this analysis. Differences in health care
provision by state across multiple metrics, such as care setting and type of disease/clinical
area, have been documented [40]. However, we cannot link the coding specificity with the
quality of care directly, since a low quality of care can occur when there are low levels of
specificity state-wide but also when there are high levels of specificity and such excessive
level of specificity is not clinically warranted.

These variations in coding practices demonstrate the potential influence of organiza-
tional characteristics or state-wide standards of practice on coding specificity. State-level
variations may be attributed to regional variations in healthcare infrastructure, regulatory
frameworks, insurance-related expectations/requirements, or coding practices. Also, there
is state clustering of hospitals with a common health system, which may share a coding
department and/or coding standards. However, they could also be influenced by the
patient mix and other correlated factors in these states, given the socioeconomic, racial, and
age differences across states, which may reflect the underlying reasons for non-idiosyncratic
specificity disparities [41].

Providing high levels of coding specificity, when possible and appropriate, supports
the accuracy and completeness of health records for patients, potentially enhancing their
subsequent health outcomes. However, high coding standards require both time and edu-
cational/training resources for coders to conduct efficient and consistent coding practices
that are current and accurate. Unspecified diagnoses may sometimes be a consequence
of insufficient knowledge about all possible ICD-10 codes available related to a condition.
Over-specified diagnoses may be a consequence of miscoding. Therefore, there is a tradeoff
between the cost of specificity-related accuracy (oftentimes paid by the provider) and the
cost of specificity-related inaccuracy (oftentimes a burden for the payor and the patient).
Our approach demonstrates that facilities with dementia-related hospitalizations can be
compared against a common/industry standard in a risk-adjusted form, so that facilities
over- or under-specifying can be identified and their coding standards of practice can be
adjusted, when needed.

While the proposed approach is demonstrated with an example of clustering at the
facility level, for which full information is available for all patients, clustering by other
factors is also possible. For example, clustering by zip code can allow for geospatial

81



Healthcare 2024, 12, 983

analyses of coding specificity. Also, clustering factors do not need to be available for
all observations, allowing for more flexible analyses. For example, some hospitals may
collect information about patients or systems that other hospitals do not collect. Clustering
analyses are possible in such instances, and it is one of the core advantages of the two-step
approach of performing patient-level analyses and subsequently clustering by any desired
factor.

Our findings emphasize the association of multiple patient and facility characteristics
with coding specificity. The relative significance of the evaluated variables in explaining
the variability in coding specificity further underscores the importance of risk-adjusted
performance metrics when comparing healthcare outcomes and facility performances.

Strengths and Limitations

A large comprehensive dataset with nearly 488,000 patient observations related to
dementia was used for this study, which represents, to our knowledge, the largest dementia-
related study approaching the topic of diagnostic coding specificity. Developing and
utilizing the proposed risk-adjusted metric allows for a fair assessment of coding specificity
among healthcare facilities while producing an extrapolatable approach that allows for the
incorporation of any available information about patient hospitalizations.

Though the dataset contains the most recently completed year (2022), it only encom-
passes a single year of discharges, yielding temporal limitations since coding policies and
practices can be updated yearly. However, due to these potential dynamics, it is important
to have a recent dataset that reflects current practices. The demonstrated method, however,
can be applied on a rolling basis, so that facilities can assess their practices over time and
evaluate any adjustments made along the way.

While the dataset comprises a large portion of U.S. hospitalizations, there could be
data imbalances by state or other factors not considered in the study. This may affect our
ability to measure associations with some variables with low counts, such as some of the
states. However, this would not affect our results as long as the data imbalances are not
directly related to the coding specificity. Also, the cohort definition includes only a subset of
dementia-related codes (F ICD-10 diagnosis codes). A more expansive cohort definition is
possible, but it would not affect the approach taken, since the cohort definition is common
across facilities.

We utilize administrative claims data for explaining a substantial portion of the
coding specificity variability in healthcare facilities. While this is insufficient to explain
the full variability of diagnostic coding specificity, it is noteworthy that this explanatory
power was achieved with minimal access to patients’ clinical characteristics, such as those
provided in EHRs, many of which are not commonly available in claims data. This indicates
that the model provides a baseline from which substantial improvements are possible if
additional information is available, such as the granularity and clinical details found in
EHRs. However, by making EHRs an optional input, our model gains generalizability,
since there is no need for a clinical metric against which to measure the ‘correctness’ of
the degree of coding specificity. Thus, while such clinical metric would be ideal, it is also
unfeasible. Therefore, our approach should only be used as a metric to compare against
industry standards and averages or against aspirational peer facilities.

Our approach assumes that patients are provided homogeneous treatments within fa-
cilities conditional on the set of variables used in the multivariate logistic regression.
However, this assumption could be relaxed by introducing additional clustering fac-
tors/variables, such as the physicians within facilities, which may explain additional
sources of coding specificity variability. The assumption of independence across hospital-
izations could also be questionable, since there will be a substantial number of unmeasured
factors that could contribute to a lack of independence (e.g., how busy the facilities were
during the hospitalizations, who provided treatment, what the commonalities of the un-
measured clinical components across patients were, etc.). However, the model provides
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an initial metric to flag facilities with the potential for non-standard specificity practices,
which can then be investigated more thoroughly by quality-control personnel.

The inclusion of random effects in the model was first considered across a range of
facility-level characteristics, particularly the facility identifier. However, for the purpose
of this study, we did not include random effects for multiple reasons as follows: (1) Com-
putational complexity—for example, facility-specific random effects added hundreds of
random effects in this particular dataset and potentially thousands or tens of thousands for
other cohorts, leading to memory limitations. The proposed approach still required nearly
8 Gb RAM. Additionally, if even larger computational resources are needed, then the ability
of quality-control personnel to use this approach could be substantially limited; (2) The
reduced level of extrapolatability for even more complex or larger datasets, as administra-
tive data may contain few observations or just one observation per facility, particularly if
the tool is used for ‘live’ monitoring purposes; (3) Assumptions behind a random effects
approach would be highly questionable, since the random effects would likely be corre-
lated with some of the patient-level characteristics; and (4) While random effects and other
modeling enhancements (e.g., different machine learning approaches or semiparametric
models with spline components for some of the continuous variables, such as the log-length
of stay) could have been considered for variables with lower numbers of categories, the
purpose of our approach is not to find the optimal model for a particular cohort/year
or set of variables. Instead, this manuscript aims to demonstrate the methodology and
utility of administrative information in explaining diagnostic coding specificity variability
among patients diagnosed with dementia. The purpose of the two-step approach (first at
the patient visit level and then aggregated at any level) is to also provide tools that can be
used in different forms, both in a disaggregated form for patient visit monitoring and in an
aggregated form for facility monitoring.

The presence of multicollinearity among risk adjustment factors can complicate coeffi-
cient interpretation. Alternative approaches that map the information content to smaller
sets of uncorrelated factors may be viable to reduce variance inflation, though they would
be highly complex to construct due to the mostly categorical structure of the explanatory
variable set. Such alternatives could also reduce interpretability. Multicollinearity, however,
does not impact the main outcome of this manuscript, which is the estimation of a probabil-
ity metric for coding specificity at the hospitalization level and a subsequent facility-level
aggregation to measure facilities against healthcare industry standards. The goodness of fit
or model use for prediction are not affected by collinearity, which allows for wide arrays of
explanatory variables to be combined, regardless of potential information overlap in these
variables. Thus, the focus of this manuscript is the metrics at the hospitalization and facility
levels and their utility in identifying hospitalizations and facilities whose outcomes may
substantially differ from industry practices, rather than the specific associations between
explanatory variables and outcomes.

Finally, some quantitative data were provided in grouped categories for confidentiality
purposes (e.g., age and bed size), and additional variables were not included to maintain
the confidentiality of the records. This additional granularity and information could prove
to enhance model outcomes within healthcare facility settings.

5. Conclusions

Medical coding is a very important component of healthcare systems, with an exten-
sive impact on patient care quality, reimbursement, and system reliability. An understudied
aspect of coding accuracy relates to coding specificity to the highest precision clinically
possible. Our study focused on dementia coding specificity in the U.S. and demonstrates
that a large number of readily available patient- and facility-level characteristics can be
used to make risk adjustments to the odds of coding specificity and thus provide a stan-
dardized metric against which facilities can compare their coding specificity practices and
standards. This study provides healthcare facilities with a valuable tool to enhance and
assess variations in coding specificity, thus contributing to improved healthcare system
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reliability and financial efficiency as well as improved patient care in an era when accuracy
and precision are of the utmost importance. The method demonstrated in this manuscript
fills a significant gap in the literature, and its adaptability across patient cohorts, health
conditions, and clusters of healthcare provision makes it a valuable tool for quality con-
trol and performance assessment. Our results indicate that the variability in the coding
specificity of principal diagnoses of dementia can be better explained than the variability in
the specificity of secondary diagnoses of dementia. This study addresses a critical need by
making risk adjustments for factors that influence coding practices, ultimately contributing
to our understanding of coding specificity disparities.
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Abstract

Background/Objectives: Laboratory tests are a cornerstone of modern medicine, and their
interpretation depends on reference intervals (RIs) that define expected values in healthy
populations. Standard Rls are obtained in cohort studies that are costly and time-consuming
and typically do not account for demographic factors such as age, sex, and ethnicity
that strongly influence biomarker distributions. This study establishes a data-driven
approach for deriving RlIs directly from routinely collected laboratory results. Methods:
Multidimensional joint distributions of lipid biomarkers were estimated from large-scale
real-world laboratory data from the Puerto Rican population using a Gaussian Mixture
Model (GMM). GMM and additional statistical analyses were used to enable separation of
healthy and pathological subpopulations and exclude the influence of comorbidities all
without the use of diagnostic codes. Selective mortality patterns were examined to explain
counterintuitive age trends in lipid values while comorbidity implication networks were
constructed to characterize interdependencies between conditions. Results: The approach
yielded sex- and age-stratified RIs for lipid panel biomarkers estimated from the inferred
distributions (total cholesterol, LDL, HDL, triglycerides). Apparent improvements in
biomarker profiles after midlife were explained by selective survival. Comorbidities exerted
pronounced effects on the 95% ranges, with their broader influence captured through
network analysis. Beyond fixed limits, the method yields full distributions, allowing each
individual result to be mapped to a percentile and interpreted as a continuous measure
of risk. Conclusions: Population-specific and sex- and age-segmented Rls can be derived
from real-world laboratory data without recruiting healthy cohorts. Incorporating selective
mortality effects and comorbidity networks provides additional insight into population
health dynamics.

Keywords: reference intervals; clinical laboratory data; Gaussian mixture models

1. Introduction

Cardiovascular disease (CVD) remains the leading cause of death in the United States,
responsible for roughly one in every five deaths, and has held this position since 1950 [1,2].
Among the spectrum of CVDs, coronary artery disease (CAD) is the most prevalent, claim-
ing over 370,000 lives in 2022, and affecting approximately 5% of adults aged 20 and
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older [2,3]. Established risk factors include non-modifiable traits such as age, sex, race, and
genetics, as well as modifiable lifestyle factors—notably hypertension, hyperlipidemia, dia-
betes, obesity, smoking, poor diet, and physical inactivity [4]. While genetic predisposition
remains significant, the growing obesity epidemic and its metabolic consequences—Ilike
diabetes and dyslipidemia—have increasingly driven the rise in cardiac conditions, partic-
ularly in developed nations.

Because lipid abnormalities are central to the development and progression of car-
diovascular disease, the lipid panel (LP) has become the main laboratory tool for monitor-
ing cardiovascular health and assessing risk [5-7]. It includes total cholesterol (CHOL),
triglycerides (TRIG), high-density lipoprotein cholesterol (HDL), low-density lipoprotein
cholesterol (LDL), and very-low-density lipoprotein (VLDL). These biomarkers represent
different classes of lipoproteins—complexes of lipids and proteins that transport cholesterol
and triglycerides through the bloodstream. HDL is termed “good cholesterol” because it
helps remove excess cholesterol from tissues and plaques, whereas LDL is labeled “bad
cholesterol” since elevated levels promote atherosclerosis and increase CVD risk [8]. Triglyc-
erides, the main form of stored fat, are linked to insulin resistance, metabolic syndrome,
and higher CVD risk, particularly when HDL is low [9].

Comorbidities have a significant impact on biomarker levels, and understanding
their influence is essential for correctly interpreting LP results. In this study, we focus
on two highly prevalent conditions—diabetes mellitus (DM) and chronic kidney disease
(CKD)—that strongly affect cardiovascular outcomes [7]. Diabetes is a major risk factor for
atherosclerotic cardiovascular disease through its effects on insulin resistance, dyslipidemia,
and systemic inflammation [10]. CKD is likewise accompanied by dyslipidemia, typically
characterized by elevated triglycerides and reduced HDL concentrations [7,11]. Their two
key diagnostic markers—glycated hemoglobin (A1C) for diabetes and serum creatinine
(CREA) for renal function—are included in the comprehensive metabolic panel (CMP) [5].
Since LP and CMP are often ordered together in routine general health screening, ample
data are available for assessing how comorbidities influence lipid biomarkers.

Interpretation of these biomarkers depends on reference intervals (RIs), which define
the expected range of values in healthy populations [12-15]. This term is preferred over
“normal range” because it emphasizes comparison with a defined reference group rather
than implying an absolute standard of health [14,16]. By convention, Rls correspond
to the central 95% of the distribution in a healthy population [13]. Their use has been
standardized by the International Federation of Clinical Chemistry (IFCC) and the Clinical
and Laboratory Standards Institute (CLSI), which have issued detailed guidelines for their
estimation and periodic updating [17].

Standard Rls are established through cohort studies, which require at least 120 healthy
individuals for each analyte [17]. This approach is time-consuming and costly, making it
difficult to update Rls regularly. As a result, many published intervals are outdated and
lack stratification by sex, age, or ethnicity—factors known to strongly influence biomarker
distributions [18-23]. These limitations can be addressed by indirect methods, which infer
RIs from secondary use of data sources not originally collected for this purpose, such as
clinical laboratory results [24-26].

Building on these advances, we have previously proposed indirect methods to es-
timate RIs from real-world clinical laboratory data originally collected for diagnostic
purposes [27-29]. These approaches assume that each biomarker distribution consists of a
dominant “healthy” component with pathological results superimposed [30]. Using Gaus-
sian mixture models (GMM), we successfully separated these contributions and derived
RIs for biomarkers related to CKD [27] and chronic liver disease (CLD) [29] in the Puerto
Rican (PR) population.
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In the present work, we extend these studies in two important ways. First, methodolog-
ically, we advance the GMM framework to multivariate data, using conditional probability
distributions with comorbidity markers to better exclude pathological values without
relying on diagnostic codes. This approach not only produces Rls that are more representa-
tive of the healthy population but also reveals how comorbidities systematically distort
biomarker distributions. Second, epidemiologically, we leverage a very large dataset of
laboratory results from the PR population to derive age- and sex-specific Rls at single-year
resolution for key CVD-related biomarkers, providing the first large-scale characterization
of this kind. In doing so, we also identify population-level patterns such as selective
mortality, which help explain counterintuitive improvements in biomarker values at older
ages, and we construct comorbidity implication networks to capture interdependencies
among conditions and their impact on lipid biomarkers.

2. Materials and Methods
2.1. Data

In this study, data were obtained from the clinical results datalake of Abartys Health,
a clinical laboratory data processor headquartered in San Juan, PR, which aggregates
laboratory test results from hundreds of laboratories across the island. All data were
de-identified by removing personally identifiable information (e.g., names, dates of birth,
addresses); unique patients were assigned non-descriptive identifiers, with only age and
sex retained as demographic information. In accordance with US CFR 46.104(d), analysis
of de-identified results does not require patient consent. The study protocol was reviewed
and approved by the University of Puerto Rico—Medical Sciences IRB (Ref. 2301072914).

After extracting the data for each measure, results are coarse-grained by month:
multiple readings for the same individual within a given month are averaged. Most patients
have only a single monthly reading, but a small subset—likely hospitalized patients—show
multiple results. In such cases, coarse-graining helps reduce bias toward more severely
ill individuals. Finally, the datasets for all measures are merged by patient ID and the
corresponding year and month of testing.

The dataset covers LP results [5] from 2019 to 2024. Because LP and CMP are routinely
prescribed as screening tests during medical visits, the resulting data for these biomarkers
is extensive, as summarized in Table 1.

Table 1. Lipid panel and comorbidity biomarkers: number of test results and unique individuals
for the period 2019-2024. The merged (“Joined”) dataset refers to the subset of cases where all
biomarkers were available in the same time window.

Biomarker Results Persons Male Female

Total cholesterol (CHOL)
Triglycerides (TRIG)

Low-density lipoprotein (LDL) 4,349,050 1,353,928 574,275 779,653

High-density lipoprotein (HDL)
Hemoglobin Alc (A1C) 2,322,403 842,429 347,790 494,639
Creatinine (CREA) 6,003,119 1,613,033 689,537 923,496
Joined 1,775,134 717,312 296,470 420,842

From 2019 to 2024, the dataset contains over 4.3 million LP results covering more
than 1.3 million unique individuals, with a comparable number of records for the renal
panel. About two million glycemic tests are available in the data. The sex distribution
across these datasets is fairly consistent at approximately 42% male and 58% female. When
restricted to lipid biomarkers tests performed within the same time window and alongside
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contemporary glycemic and renal tests, the joint dataset includes about 1.8 million results
representing roughly 0.7 million individuals (Table 1). Additional details on the data
collection and processing are given in the Supplementary Materials.

2.2. Methods

As described in our previous work, GMM was used to analyze the data
distribution [27,29].

2.2.1. Transformation

The quantitative biomarkers considered in this study are strictly positive, as they
represent concentrations, counts, or ratios. Their empirical distributions are typically either
approximately normal or lognormal, depending on the underlying physiology. Many
biomarkers are subject to homeostatic regulation, which constrains their values within
a narrow physiological range around an equilibrium. Deviations from this equilibrium
arise due to differences in body size, metabolic rate, and other natural variations. In such
cases, a normal distribution provides an adequate description. Conversely, biomarkers
such as those in the lipid panel often display multiplicative variability, leading to skewed
distributions that are more appropriately modeled as lognormal. To accommodate this, we
apply logarithmic transformations to skewed variables prior to further analysis, thereby
stabilizing the variance and producing approximately symmetric distributions suitable for
multivariate Gaussian modeling.

Each analyte i have an invertible, monotone transform T; (e.g., Ti(x) = logx or
identity). The model is fit in the transformed space Z; = T;(X;) where Z ~ N (i, %)

are normally distributed. All conditioning values b (and any bounds used elsewhere)
(G)
i
ing percentiles/ellipsoids in Gaussian space, results are mapped back analyte-wise by
Xi = Tjil(zi)'

are first mapped to Gaussian space via b = Ti(b;). After sampling or comput-

2.2.2. Joint Distribution

After log-transforming skewed biomarkers, the resulting data can be modeled using
Gaussian mixtures. We assume that the observed population consists of a dominant
distribution corresponding to physiologically healthy individuals, with pathological results
appearing as secondary modes superimposed on this background. GMM provides a
natural framework to disentangle these contributions and identify the principal component
associated with health [31].

Formally, the probability distribution of an d-dimensional biomarker vector
X = (Xq,Xa,...,X;) € R? Gaussian space (after any feature-wise transforms), modeled as
a convex combination of multivariate Gaussian densities

K
p(X) =) N (X | e, ) @
k=1

where wy are non-negative mixture weights satisfying YX_ w; = 1, and 1 € R is the
mean vector, and X € R¥*d + () denote the positive definite covariance matrix of the k-th
Gaussian component, respectively.

To estimate these parameters from data, we employ a Bayesian Gaussian Mixture
Model (BGMM), which performs variational inference rather than standard maximum
likelihood estimation. A key advantage of BGMM is its adaptive treatment of the num-
ber of active mixture components: instead of fixing K, a Dirichlet process prior allows
redundant components to be suppressed, yielding a parsimonious representation. In prac-
tice, we implement this approach using the scikit-learn BGMM algorithm [32,33]. The
healthy reference distribution is then defined as the principal Gaussian component, i.e.,
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the mixture element with the largest weight wy, which captures the central tendency of the
majority population.

2.2.3. Marginal and Conditional Distributions

Let X = (Xy,..., Xy) ~ N(p, X) be a d-dimensional Gaussian random vector.
e Marginals

For a subset of indices A C {1,...,d}, the marginal distribution of the subvector X4
is itself Gaussian, with parameters obtained by restricting the mean and covariance:

Xa ~N(pa, Zaa) )

where 14 and ¥ 4 4 denote the sub-vector and sub-matrix of u and ¥, respectively.

In particular, for a single analyte X;, the univariate distribution is obtained as the
marginal with A = {i}. Marginals reduce the dimensionality of the distribution by
integrating out irrelevant axes (n < d) and thus summarize the variability of a subset of
analytes. Although they discard explicit dependencies with the remaining variables, they
implicitly reflect the influence of the full joint distribution and therefore provide more
robust information than univariate fits.

e Conditionals

For two disjoint index sets A, B C {1,...,d}, the conditional distribution of X 4 given

Xpg = b is also Gaussian:

p(XalXp =) NN(HA\B/ ZA\B) ®3)

where the partitioned mean and covariance are written as

X z z
X =24, = Ha| 5 _ |=44 =4B @)
XB Hp XpA  XBB
and the conditional parameters are
Map = Ba+ ZapZgg (b — np) (5)

Zap = Zaa — ZapZg5 Zpa

Like marginals, conditional distributions reduce dimensionality by integrating out
irrelevant coordinates. But first they restrict the distribution to a subset of axes under fixed
values of another disjoint subset (m < d).

3. Results
3.1. Joint Distribution

We applied the proposed methodology to the metabolic biomarker dataset described
in Section 2.1. As an initial step, we constructed the joint distribution of all lipid panel
biomarkers together with relevant comorbidity markers. To normalize the skewed distribu-
tions, logarithmic transformations were applied CHOL, TRIG, HDL, LDL, and VLDL, while
A1C and CREA were left untransformed. Outliers were generally retained to preserve
the natural variability of the population, with the exception of physiologically implau-
sible values, which were excluded using predefined biomarker-specific thresholds. An
overview of the data preparation, model fitting, and inference workflows is provided in
the Supplementary Materials (Figures S1 and S2).

Subsequently, the BGMM was fitted to the full dataset, yielding the joint seven-
dimensional distribution of all biomarkers, p(X). The BGMM incorporates a Dirichlet
process prior, which adaptively determines the effective number of active components. In
this study, we specified a maximum of K = 7 Gaussian components, ensuring that several
components could remain inactive if unsupported by the data.
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The weights represent the relative proportion of the population assigned to each
component. As shown in Figure 1, only two mixture components consistently carried
substantial weight (>10%). The dominant component, corresponding to the healthy sub-
population, accounted for 40-80% of the distribution. Its weight was highest in younger
age groups, where pathological conditions are less prevalent and the main distribution
remains less distorted. The second major component captured pathological or outlier
contributions, with its relative weight increasing in older age groups as comorbidities
became more frequent. Together, these weights provide a quantitative view of how the
balance between healthy and pathological subpopulations shifts across age and sex.

s (a) (b)

3

Component
1

M S E/W%? e

90

Mixture weight [%]
8

ENFRENY

50 50
Age [years] Age [years]

Figure 1. Weights (wy) of the major mixture components (1-4) of the lipid distributions identified by
the BGMM,, stratified by sex and age. Panel (a) shows results for males and panel (b) for females.

We optimized the model hyperparameters to bias the fit toward a dominant “central”
Gaussian component representing the healthy population, while still allowing additional
components to capture pathological or secondary subpopulations. The prior mean was
estimated as the feature-wise median to reduce sensitivity to outliers, and the covariance
prior was regularized with diagonal shrinkage to ensure stability and avoid ill-conditioning
in higher dimensions. To encourage sparsity, the Dirichlet weight concentration prior
was set to a very low value (107°), thereby limiting the number of active components.
Conversely, the mean precision prior was set high (200.0) to constrain the component
means more closely around the overall population mean.

The effect of the GMM is twofold: first, it separates multimodal Gaussian structures,
and second, it effectively absorbs outliers in the distribution tails by allocating a specific
component to them. In one dimension, the healthy and pathological contributions overlap
substantially, so pathological values primarily shift the mean and increase the weight of
the tail rather than forming distinct modes. In contrast, in the seven-dimensional space,
pathological values appear as separate modes that collapse onto each other in the one-
dimensional projection. Our results indicate the presence of two to three such satellite
modes, each carrying a substantial portion of the total weight (Figure 1). As population
segments become less healthy, the weight of these satellite modes increases at the expense
of the central distribution, reflecting the growing influence of pathological subgroups.

3.2. Marginal Distributions and Reference Intervals

One-dimensional marginal distributions, p(X;), for each analyte were obtained from
the joint distribution p(X), as described in the Methods. From each marginal distribution,
it is possible to calculate the limits corresponding to any quantile 4. RIs were defined as the
limits (I, h) enclosing the central 95% of the distribution.

First, we estimated Rls for CHOL stratified by sex and age (Figure 2). The gray
line represents the marginal distributions of CHOL as described in the Methods. During
adolescence, CHOL RIs were similar in males and females. With increasing age, however,
both the lower and upper limits rose, with a steeper slope in males. The values peaked
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around age 45 in males and 55 in females, after which both limits gradually declined.
This decline is consistent with the effect of selective mortality, as discussed further in
the Discussion.
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Figure 2. Age- and sex-specific RIs for CHOL: (a) males and (b) females. Solid gray lines show
overall Rls, dashed gray show the mean of the distribution, dashed green show RIs restricted to
metabolically normal individuals, while red and blue lines show conditional RIs for individuals with
diabetes and renal disease, respectively.

The conditional distributions derived from the joint model provide deeper insight
into the structure of RIs. In addition to the overall cohort Rls, we computed 95% inter-
vals for sub-cohorts affected by comorbidities. In Figure 2, the red line corresponds to
the diabetic sub-cohort (A1C = 9.0%) and the blue line to the renal disease sub-cohort
(CREA = 2.0 mg/dL), where the values in of the diagnostic markers were chosen well in
the unhealthy range. The presence of comorbidities markedly altered the lipid profile.
Among younger adults with diabetes, the upper limit of CHOL was substantially elevated
and the onset of selective mortality occurred earlier. Similarly, renal disease was associated
with a pronounced increase in the upper limit of CHOL, although it did not seem to affect
the selective mortality.

Conditional modeling also enabled the exclusion of comorbidity effects without re-
quiring explicit diagnostic labels. By constraining analytes to healthy ranges (A1C = 5.7%,
CREA = 1.0 mg/dL), the green line in Figure 2 captures the “true” RI for otherwise healthy
adults. The near coincidence of the green (constrained) and gray (unconstrained) lines
demonstrates that the BGMM successfully isolates the principal healthy distribution from
pathological clusters. Nevertheless, along the comorbidity axes the distribution retains
the imprint of disease effects, such that conditional probabilities in those directions still
reveal how comorbidities distort lipid biomarkers. This illustrates that while the BGMM
separates healthy and pathological populations, it also preserves meaningful covariance
structure with comorbidity-related variables.

The RIs for the complementary cholesterol biomarkers, HDL and LDL, are shown in
Figures 3 and 4, respectively. HDL levels remained relatively stable across the cohort until
middle age, after which a modest increase was observed, attributable to selective mortality
(Figure 3). More striking, however, was the effect of comorbidities on HDL. In particular,
diabetes caused a pronounced reduction in “good” cholesterol, underscoring its role as a
strong contributor to cardiovascular risk [10].
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Figure 3. Age- and sex-specific RIs for HDL: (a) males and (b) females. Solid gray lines show
overall RIs, dashed gray show mean of the distribution, dashed green represent RIs constrained to
metabolically normal individuals, while red and blue lines indicate conditional Rls for diabetes and
renal disease, respectively.
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Figure 4. Age- and sex-specific Rls for LDL: (a) males and (b) females. Solid gray lines show overall
RIs, dashed gray show the mean of the distribution, dashed green represent Rls constrained to
metabolically normal individuals, while red and blue lines indicate conditional Rls for diabetes and
renal disease, respectively.

The Rls for LDL (Figure 4) followed the same pattern as those for CHOL, since LDL
values reported in clinical laboratories are typically not measured directly but calculated
using the Friedewald formula: LDL = CHOL — HDL — VLDL where VLDL is estimated as
VLDL = TRIG/5 [34]. As a result, LDL behavior largely mirrored that of total cholesterol.
However, the impact of comorbidities was amplified, because LDL incorporates both
the elevation of total cholesterol and the reduction in high-density lipoprotein (HDL,
“good” cholesterol).

The Rls for TRIG are shown in Figure 5. Their pattern resembled that of CHOL, with
values rising until middle age and then declining due to selective mortality. The influence
of comorbidities, however, was distinct. Diabetes exerted an even stronger effect on TRIG
than on CHOL, consistent with the close metabolic relationship between triglycerides
and glucose. Renal disease, in contrast, showed its strongest impact in older individuals,
significantly increasing triglyceride levels in the elderly population probably due to less
efficient filtration.
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Figure 5. Age- and sex-specific RIs for TRIG: (a) males and (b) females. Solid green lines show
overall RIs, dashed gray show the mean of the distribution, dashed green represent Rls constrained
to metabolically normal individuals, while red and blue lines indicate conditional Rls for diabetes
and renal disease, respectively.

The uncertainty in RI estimation was quantified using bootstrapping. Specifically,
100 random subsamples were drawn, each comprising 50% of the dataset, and RI limits
were recalculated for each iteration. The final RI limits were taken as the mean across
bootstrap samples, and the associated error was estimated as the standard deviation. The
resulting errors were consistently small—on the order of a fraction of a percent—indicating
high robustness of the estimates. Comparable stability was observed in our previous
studies [27,29].

4. Discussion
4.1. RI Interpretation

Internationally accepted RIs for lipid biomarkers are largely derived from U.S. and
European populations [6,7]. These conventional Rls are typically reported as fixed thresh-
olds and are not stratified by sex, age, or race, despite well-documented physiological
differences across demographic groups. In contrast, our approach uses real-world clinical
laboratory data to derive population-specific Rls, as demonstrated here for the PR pop-
ulation. The scale and richness of the dataset further allow stratification by age and sex,
yielding intervals that more accurately capture biological variation within the population.

A key observation from our results (Figures 2-5) is the strong effect of age on lipid
biomarker distributions. Applying a single RI across all ages fails to account for the
normal, progressive decline in organ function, effectively treating age as a pathological
state. In reality, most metabolic biomarkers—including those beyond the lipid panel—shift
inexorably toward less favorable values with age [27,29]. Sex differences are also evident,
driven by factors such as body size and hormone-related physiology. Thus, the conventional
Rls used in current practice represent little more than population-wide averages, obscuring
the biologically meaningful variation attributable to age and sex.

Our results for CHOL indicate that the upper RI limit in the PR population exceeds
the widely recommended threshold of 200 mg/dL, even among young adults (Figure 2).
Values rise quickly beyond the high-risk cutoff of 240 mg/dL, suggesting an accelerated
trajectory toward dyslipidemia. A similar trend is observed for LDL, which largely mirrors
total cholesterol, with upper limits exceeding the recommended threshold of 100 mg/dL
(Figure 4). Triglycerides show the same pattern (Figure 5), with values generally above the
established cutoff of 150 mg/dL. HDL levels are consistent with this unfavorable profile:
the lower limit in our results falls below the conventional threshold of 40 mg/dL.

Together, these patterns suggest a population-wide shift toward higher cardiometabolic
risk, likely influenced by dietary habits rich in fried foods and by the high prevalence of
obesity, which increasingly affects younger age groups. Alternatively, this may suggest that
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the currently recommended cutoffs underestimate the physiological lipid ranges for the PR
population—or perhaps for broader populations as well. It could also be that existing Rls
for CHOL and LDL are set conservatively low, in part to encourage pharmacological inter-
vention with statins. This interpretation aligns with recent evidence questioning whether
elevated LDL levels are consistently associated with increased all-cause mortality [35].

It can also be argued that the distribution mean, rather than the conventional RI upper
limit, is a more informative indicator of population health. The standard 95% interval is
directly defined by the mean and standard deviation, [n — 1.960, u+ 1.960], and narrower
published RlIs may simply reflect the limited diversity of the clinical trial cohorts from
which they were derived. In contrast, our dataset captures the full PR population, providing
a more representative picture. This underscores a broader issue with the way Rls and
their associated abnormal flags are applied in practice: Rls define only hard cutoffs and
do not convey how values are distributed within those limits. As a result, the laboratory
abnormal flag is binary—indicating only whether a value lies inside or outside the interval.
By modeling the full distribution, we can assign each individual measurement a percentile,
offering a continuous measure of risk rather than a simple threshold. We have previously
proposed this percentile-based framework as a more nuanced and clinically meaningful
approach [27,29].

Finally, it is also important to emphasize the substantial sex differences in lipid profiles
that are obscured by generalized recommendations. Females consistently exhibit lower
CHOL and LDL levels, substantially higher HDL, and markedly lower TRIG compared
to males—differences that are largely attributable to biological factors such as hormonal
regulation and body composition. At the same time, the more rapid deterioration of lipid
biomarkers observed in males likely reflects behavioral and lifestyle influences, compound-
ing the biological baseline differences between the sexes.

4.2. Selective Mortality

The gradual rise in CHOL and LDL, coupled with a decline in HDL during early and
mid-adulthood, aligns with the expected pattern of metabolic aging and physiological
decline. This is consistent with the gradual loss of organ function due to normal wear and
tear with age. Similar trajectories were seen in our earlier studies of CKD, where creatinine
and urea levels increase steadily with age [27], and of CLD, where platelet counts and
albumin concentrations progressively decrease [29].

However, lipid biomarkers display an unexpected pattern after midlife: CHOL and
LDL values decline, while HDL rises. Although this could appear to reflect improved
cardiovascular health, the paradox is better explained by selective mortality. Younger
adults are resilient enough to survive despite adverse biomarker profiles, so their gradual
health decline is visible in worsening trends. Beyond midlife, however, physiological
reserves diminish, and the body can no longer compensate for chronic dysfunction. As
a result, the least healthy individuals are more likely to die earlier, shifting the observed
population distribution toward healthier values. The apparent improvement in biomarker
profiles therefore reflects differential mortality rather than true physiological recovery.
This interpretation is consistent with prior epidemiological studies reporting U-shaped
cholesterol-mortality associations, where low cholesterol values in older adults were
inversely associated with all-cause mortality and partly attributed to selective survival
effects [36,37]. Nevertheless, similar reductions have also been observed longitudinally
within individuals, suggesting that additional metabolic factors contribute [38].

The magnitude of selective mortality also varies across conditions. Some chronic
dysfunctions, such as CKD, can often be tolerated until later in life and therefore do not
substantially alter the overall trajectory of the lipid curves. In contrast, conditions that
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contribute more directly to early mortality, such as diabetes and cardiovascular disease,
shift the onset of selective mortality to earlier ages. This difference is evident in our
results (Figures 2-5), where CKD does not substantially change the lipid curves, while DM
produces a marked shift toward earlier onset of selective mortality.

For comparison, mortality rates for the PR population were estimated using U.S. Cen-
sus data for the period 20202024, stratified by sex [39]. For each year, we calculated the
fraction of individuals of age x who survived to age x + 1 in the following year and then
averaged these survival rates across years to reduce variability. The annual mortality rate,
defined as (1 — survival rate), is shown by age and sex in Figure 6a. Mortality remained
relatively stable through early and middle adulthood, though subject to fluctuations likely
attributable to migration and other demographic factors. Beginning in midlife, however,
mortality rose exponentially, consistent with the Gompertz law, a well-documented demo-
graphic pattern of age-dependent mortality rise [40].

(a) Mortality by Age (b) Cumulative Survival by Age

Gender 10° — Gender
— wale — Male
Female Female

Annual mortality rate

Cumulative survival probability
3

0 20 40 60 80 100 [ 20 40 60 80 100
Age [years] Age [years]

Figure 6. Mortality and survival functions for the PR population (2020-2024), stratified by sex.
(a) Annual mortality rates by age, shown on a logarithmic scale. (b) Corresponding cumulative
survival functions.

The corresponding cumulative survival function, S(x), representing the fraction of
the population surviving to age x, is shown in Figure 6b. Consistent with the RI curves,
survival declines approximately exponentially at advanced ages, with males consistently
exhibiting lower survival than females across the entire age range.

Although the survival function aggregates all causes of mortality and cannot be
stratified by specific causes using the available census data, it nevertheless explains the
patterns observed in the lipid panel RIs. Because male mortality is higher, individuals
with adverse lipid profiles are removed from the cohort earlier, producing the earlier
decline in elevated CHOL and LDL values in men. Similarly, sub-cohorts affected by
specific chronic conditions would be expected to have steeper survival curves than the
population average, leading to an earlier onset of mortality and corresponding shifts in
their biomarker distributions.

4.3. Implication Network

To better understand how comorbidities influence lipid panel biomarkers, we con-
structed a comorbidity implication network. For this purpose, a set of diagnostic criteria
was developed, as summarized in Table 2, and then joined biomarker data by patient ID
and date to apply these rules. This framework allowed us to model disease co-occurrence
and explore how multiple conditions interact within individuals. This methodology aligns
with contemporary network medicine approaches—where diseases are represented as
nodes and statistically derived associations as edges—to uncover patterns of comorbidity
and aid in identifying preconditions and complications within patient trajectories [41,42].
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Table 2. Diagnostic criteria used to define cardiovascular conditions and comorbidities based on
laboratory biomarkers. Thresholds were selected from established clinical guidelines to identify
hyperlipidemia, CVD (moderate and high risk), DM, and CKD.

Biomarker Results
Hypercholesterolemia cholesterol > 200
Hypertriglyceridemia triglycerides > 150

CVD (High Risk) (cholesterol/hdl > 5.0) or (Idl/hdl > 3.5)
CVD (Moderate Risk) (4.0 < cholesterol/hdl < 5.0) or (2.5 <1dl/hdl < 3.5)
Diabetes Mellitus hgalc> 6.5
Chronic Kidney Disease creatinine > 1.3

After assigning diagnoses, we calculated the conditional probability that an individual
has condition B given the presence of condition A
N(ANB
N ©
where N (A N B) is the number of individuals with both A and B, and N(A) is the number
of individuals with A. Together with the complementary probability P(A|B), these values
were used to construct the implication matrix, defined as I[A, B] = P(A|B). This matrix
serves as the foundation for the comorbidity implication network, where directed edges
capture the strength and asymmetry of conditional relationships between diseases. Ad-
ditional details on the construction of the implication matrix, together with its heatmap
representation, are provided in Figure S3.

P(B|A) =

We then constructed a comorbidity network defined as a directed graph, using the
implication matrix I as the adjacency matrix. The resulting network, illustrated in Figure 7,
was analyzed with the Hyperlink-Induced Topic Search (HITS) algorithm to identify
hub and authority nodes [43]. Conditions with high hub scores act as precursors, point-
ing toward multiple downstream comorbidities and serving as initiators of disease cas-
cades. In contrast, conditions with high authority scores function as endpoints, receiving
links from many hubs and representing common complications or outcomes of diverse
pathological pathways.

“ ‘—" i ——
Chronic Kidney Disease Diabetes Mellitus

Diabetes Mellitus

Chronic Kidney Disease

riglyc&ridemia

(High Risk)

CVD (Moderazm

Hypercholesterolemia

CVD (Moderate Risk)

Hypercholesterolemia

Figure 7. Comorbidity implication network for cardiovascular risk conditions. (a) Hub representa-
tion, where larger nodes indicate conditions with strong hub scores (precursors leading to multiple
downstream comorbidities). (b) Authority representation, where larger nodes correspond to condi-
tions with high authority scores (common complications influenced by multiple precursors). Arrow
direction and thickness indicate conditional probabilities P(A | B), and only the strongest 75% of edges
are displayed for clarity.
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The network provides a qualitative view of the relationships among comorbidities. As
expected, both hypercholesterolemia and hypertriglyceridemia showed strong implications
for CVD, reflected in both edge strengths and high hub scores (Figure 7a). Diabetes also
emerged as an important precondition. Conversely, CVD appeared as the most common
complication of hyperlipidemia (Figure 7b), while CKD was more closely associated as
a complication of diabetes. The strong linkage between hyperlipidemia and CVD is
partly tautological, since CVD risk is clinically estimated using cholesterol ratios (Table 2).
Nevertheless, the network highlights important nuances: elevated triglycerides were more
strongly associated with moderate CVD risk, whereas high cholesterol was more indicative
of severe CVD risk. Furthermore, high cholesterol also appeared as a possible precondition
for elevated triglycerides.

Even more importantly, the network helps to elucidate how comorbidities directly
affect lipid biomarkers. For instance, diabetes appears as a precondition for elevated
triglycerides. Impaired glucose metabolism in diabetes promotes hepatic triglyceride
synthesis and reduces lipid clearance, leading to hypertriglyceridemia. This, in turn,
amplifies cardiovascular risk by contributing to atherogenic dyslipidemia, characterized by
high triglycerides, low HDL, and elevated small dense LDL particles.

4.4. Limitations and Future Work
4.4.1. Ground Truth and Laboratory Data Limitations

The principal issue with underrepresented populations, such as PR, is that there are
no cohort studies of population that could provide independent validation of the derived
RlIs. Moreover, chemical laboratory data represents only one side of the health profile of the
individual. It lacks important invocators such as vital signs (height, weight, blood pressure,
etc.) and other relevant information about the patients’ condition such as pregnancy,
postpartum, or perimenopause. Better analyses would require linkage with electronic
health records (EHRs) to enrich the laboratory data.

4.4.2. Data Standardization and Harmonization

Although Abartys Health’s core business involves collecting, cleaning, and standard-
izing laboratory data across PR, challenges remain due to the lack of standardized and
adherence to exchange formats in raw clinical data. Common issues that cannot be easily
corrected include—incorrect or ambiguous coding of tests (that cannot distinguish between
several closely related tests); lack of detailed metadata on analytical principles, reagents,
and platforms that hamper data harmonization; lack of units or incorrect units, etc.

4.4.3. Future Work

The application by this methodology is by no means specific to the PR population.
It is fully generalizable provided that routine laboratory test results with demographic
information (sex and age) are available. The additional features (e.g., ethnicity) can be
easily incorporated to further stratify the Rls. In this case, the PR population serves
not only as illustration but also provides valuable epidemiological information of an
underrepresented population.

Furthermore, while here we only consider two comorbidities, this is not a limitation of
the methodology. This is done to introduce and illustrate the idea of comorbidity networks
in a simple form while capturing two of the major comorbidities—DM and CKD—that are
highly prevalent in the population. Comorbidity networks construction from laboratory
data is only limited by the possibility of diagnosing condition entirely based on laboratory
data. There must be sufficient data for the principal biomarkers and the comorbidities
available within the same time window.
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5. Conclusions

This study demonstrates that Gaussian mixture modeling provides a robust frame-
work for disentangling healthy from pathological distributions in large-scale, real-world
laboratory data. By leveraging conditional probability, we were able to estimate definitive
RIs for healthy cohorts without relying on diagnostic labels. Conditional modeling further
revealed how comorbidities such as diabetes and renal disease systematically alter lipid
distributions, while comorbidity implication networks clarified dependencies between
conditions and highlighted key precursors and complications.

Unlike traditional RIs, which are reported only as fixed limits, our approach models
the entire distribution of biomarker values in the population. This enables each individual
result to be placed on a continuous percentile scale of risk, rather than being reduced to a
binary abnormal flag. Such distribution-aware reporting provides a more nuanced basis
for clinical decision-making.

Finally, our analysis highlights that the narrower Rls in published guidelines likely
reflect the limited diversity of the clinical trial cohorts from which they were derived.
In contrast, our framework captures the biological and demographic variability of the
PR population, underscoring the need for population-specific standards derived from
representative real-world data.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/healthcare13192499/s1, Figure S1: Workflow overview: (a) data
preprocessing from raw laboratory results to aligned person-month records, and (b) Bayesian
Gaussian mixture model fitting across demographic segments; Figure S2: Inference workflows:
(A) construction of reference surfaces (RS) or one-dimensional reference intervals (RI) from the
healthy population component, and (B) computation of percentiles for individual biomarker results
within the population distribution; Figure S3: Heatmap of the comorbidity implication matrix, show-
ing conditional probabilities P(B | A) for all pairs of conditions. Warmer colors indicate stronger
directional associations, highlighting asymmetries in comorbidity relationships.
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Abbreviations

The following abbreviations are used in this manuscript:

PR Puerto Rico

PII Personally identifiable information
LP Lipid panel

CcMmP Comprehensive metabolic panel
RI Reference interval

GMM Gaussian mixture model
BGMM  Bayesian Gaussian mixture model
CHOL  Total cholesterol

TRIG Triglycerides

LDL Low-density lipoprotein
HDL High-density lipoprotein
Al1C Hemoglobin Alc

CREA Serum creatinine

DM Diabetes mellitus

CVD Cardiovascular disease
CAD Coronary artery disease
CKD Chronic kidney disease
CLD Chronic liver disease
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Abstract: Background/Objectives: This study addresses the complex challenge of Nurse Rostering
(NR) in oncology departments, a critical component of healthcare management affecting operational
efficiency and patient care quality. Given the intricate dynamics of healthcare settings, particularly
in oncology clinics, where patient needs are acute and unpredictable, optimizing nurse schedules
is paramount for enhancing care delivery and staff satisfaction. Methods: Employing advanced
Integer Programming (IP) techniques, this research develops a comprehensive model to optimise NR.
The methodology integrates a variety of constraints, including legal work hours, staff qualifications,
and personal preferences, to generate equitable and efficient schedules. Through a case study
approach, the model’s implementation is explored within a clinical setting, demonstrating its practical
application and adaptability to real-world challenges. Results: The implementation of the IP model
in a clinical setting revealed significant improvements in scheduling efficiency and staff satisfaction.
The model successfully balanced workload distribution among nurses, accommodated individual
preferences to a high degree, and ensured compliance with work-hour regulations, leading to
optimised shift schedules that support both staff well-being and patient care standards. Conclusions:
The findings underscore the effectiveness of IP in addressing the complexities of NR in oncology
clinics. By facilitating a strategic allocation of nursing resources, the proposed model contributes to
operational excellence in healthcare settings, underscoring the potential of Operations Research in
enhancing healthcare delivery and management practices.

Keywords: nurse rostering; integer programming; healthcare management; operational efficiency;
oncology departments; health informatics; healthcare analytics

1. Introduction

Operations Research (OR) applies advanced analytical methods to optimise decision-
making in complex organizational contexts. One such challenge is the Nurse Rostering
Problem (NRP), where the allocation of nursing staff is vital for both patient care and
operational efficiency. In oncology departments, efficient nurse scheduling is essential to
ensure continuous, high-quality care [1-4].

To address this, recent OR research integrates mathematical models with healthcare
management. Solutions often involve mathematical optimisation, including Integer Pro-
gramming (IP), which offers a robust framework for improving NR in dynamic clinical
settings. However, the use of such models in oncology clinics presents new obstacles and
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potential. Oncology departments have unpredictable demand patterns and a vital require-
ment for specialised treatment, which requires a flexible and strong rostering method [5].
Furthermore, the well-being of nursing staff, a vital component of sustainable healthcare
delivery, must be included in the optimisation process, guaranteeing schedules that are not
only efficient but also equitable and attentive to individual nurses’ needs [6].

The method used in this work is mathematical optimisation, focusing on accuracy
and simplicity. In order to maximise operational efficiency, the optimal solution under
the specified constraints is found, using mathematical formulations, such as linear and
IP, whose integration attempts to distribute the work hours among nursing staff in a real
case study.

The extension of the current model to incorporate Machine-Learning (ML) tech-
niques offers an innovative approach to decision-making processes traditionally addressed
through heuristics. For instance, employing supervised ranking for specific inputs during
the subsidiary Mixed-Integer Programming (MIP) phases improves the overall perfor-
mance of MIP solution mechanisms, aligning with studies indicating the feasibility of
such applications [7,8]. Moreover, to improve NR efficiency and decision-making, the
conceived approach can benefit from incorporating the modelling of complex information
networks [9] to analyse the intricate interactions between nurses, patients, and various
clinical factors. Such an approach can use bi-functional ML algorithms tailored to the
dynamic nature of healthcare settings.

Finally, using linear regression to predict the annual number of shifts per nurse,
coupled with data storage for weekly updates, facilitates adaptive learning by the program,
while aiming to correct nurse scheduling over time to balance their workload throughout
the year.

1.1. Problem Statement

Oncology departments’ NR is a classic operational challenge, driven by the require-
ment to match healthcare delivery to patient needs. Oncology patients require expert treat-
ment and continuity, making this challenge even greater [3,10]. The traditional scheduling
paradigms, often reliant on manual processes and heuristic decision-making, fall short
in addressing the multifaceted dimensions of this problem, leading to inefficiencies that
impact both patient care and staff welfare [4,11,12]. However, existing methodologies
struggle to incorporate real-time data and adapt to sudden changes, resulting in either
overstaffing, which strains resources, or understaffing, which compromises care quality
and increases stress on the nursing staff [5].

The introduction of IP and other mathematical optimisation techniques offers a vi-
able solution. These models can create flexible scheduling systems that better address
the complexities of NR in oncology departments [7]. These advanced models have po-
tential, but applying them in real-world cases is challenging due to the complications of
effectively reflecting the nursing workforce’s limits and preferences and oncology patient
care dynamics.

The contribution of this research lies in revealing how OR challenges are addressed
in real healthcare settings. It demonstrates that theoretical models must be adapted and
refined to effectively solve operational inefficiencies in healthcare institutions, thereby
bridging the gap between theory and practice.

1.2. Integrating OR and Healthcare Management

This paper aims to critically examine the optimisation of rostering processes at a
hospital in Greece, addressing the complexities of healthcare staffing. IP coupled with IBM’s
Cplex program [13], via the Java Iloplex library [14], plays a pivotal role in navigating these
challenges. The methodology utilises a dual-strategy approach: applying all constraints
initially and subsequently relaxing some to explore alternative solutions. This iterative
process highlights the flexibility and adaptability essential in developing efficient rostering
systems, emphasizing the importance of stakeholder engagement.
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The primary objectives of this work, employing OR in healthcare management, are
summarised below:

1.  Analyze Existing Rostering Practices: Investigate current NR practices to identify
inefficiencies and areas for improvement, creating a foundation for the application of
mathematical optimisation techniques to address identified gaps.

2. Integrate IP Models: Explore the use of advanced IP models in NR, aiming to build
a system with enhanced flexibility, efficiency, and adaptability. These models will
balance the operational demands of oncology care with the preferences and well-being
of nursing staff.

3. Enhance Operational Efficiency: Quantify the impact of IP-based rostering systems
on operational efficiency, providing evidence through the literature on the practical
benefits of optimisation techniques.

4. Promote Staff Satisfaction: Adhering to labour regulations, workload balance, equi-
table rostering, and personal constraints, the proposed OR solution indirectly aims to
create a supportive working environment for nursing staff.

5. Develop a Scalable and Adaptable solution: Create a flexible rostering solution adapt-
able to various oncology departments, providing a model for systemic improvements
in healthcare rostering practices.

2. Background

The origins of OR can be traced back to 1665, when Newton’s method for solving
differential equations was used. However, OR’s major advancements occurred in the 20th
century, particularly during World War II, when British and American military forces
formed interdisciplinary teams to address wartime operational challenges. This period
marked the official recognition of OR and demonstrated the effectiveness of scientific
methodologies in solving complex problems [15].

Early efforts to address NRP primarily involved heuristic methods and basic math-
ematical programming [2,16]. These methods, although foundational, were eventually
replaced by more sophisticated optimisation techniques, particularly Mixed Integer Linear
Programming (MILP). These approaches facilitated the balancing of strict staffing require-
ments with nurse preferences, optimizing shift allocations and improving operational
efficiency. MILP has been particularly effective in addressing the variable demands of
oncology departments, where patient loads can fluctuate unpredictably [17,18].

The development of potent optimisation libraries like CPLEX and Gurobi [19] has
accelerated the evolution of OR from theoretical frameworks to computational problem-
solving. These tools, integrated into programming environments like Java and Python,
have significantly enhanced the ability to apply IP to complex problems such as the NRP.
This technological shift has democratised access to advanced methodologies, enabling their
application across various healthcare settings.

2.1. Definition and Challenges of Integer Programming

LP is a methodological cornerstone in OR that focuses on maximising or minimising
a linear objective function under a set of linear constraints [2]. LP’s foundational role is
pivotal in addressing a wide array of optimisation challenges across diverse fields, from
resource allocation to financial planning, providing a structured approach to decision-
making [18].

IP emerges as a specialised extension of LP, where decision variables are constrained to
integer values, reflecting the discrete nature of many real-world problems. This distinction
is crucial in scenarios where fractional solutions are infeasible or lack practical significance,
such as scheduling, routing, and allocation tasks [20]. Pure Integer Programming (PIP) and
MILP further expand the applicability of IP by accommodating purely integer and mixed
(integer and continuous) variables, respectively, thus offering a more versatile toolkit for
modelling complex systems [21,22].
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Binary decision variables, a subset of IP, introduce the ability to model decisions in a
binary format (e.g., yes/no, on/off), enabling the precise representation of choice-based
constraints and logical conditions [23]. This binary structure is instrumental in formulating
problems where decisions are inherently dichotomous, enhancing IP’s utility in designing
efficient and effective solutions [18].

Despite IP’s rigid framework for addressing optimisation problems, the complexity
of solving IP models increases exponentially with problem size, owing to the combina-
torial explosion of possible solutions. This complexity necessitates the development of
sophisticated solution techniques, such as the Branch and Bound and Branch and Cut
algorithms, which systematically explore and prune the solution space to identify optimal
or near-optimal solutions [18,24].

Cutting-plane methods are another example of how IP solution strategies are always
changing. They provide a strong way to make IP models more specific by repeatedly
adding constraints that get rid of parts of the solution space that can not be solved without
leaving out any possible integer solutions [25].

2.2. Integer Programming Workforce Problems

The search for more effective scheduling techniques has been a result of the dynamic
nature of workforce management, which is characterised by fluctuating employment levels
and the need for flexible planning strategies. Innovations such as job rotation and part-time
work have emerged as responses to these fluctuating demands, reflecting the evolving
landscape of labour arrangements [3,4]. The seminal contributions by [2] introduced IP
and MIP into workforce planning, marking a pivotal shift towards more sophisticated and
flexible scheduling models.

The subsequent application of IP and MIP to address complex scheduling issues within
organizations has been documented by [10,26,27]. These approaches have yielded mathe-
matical models that optimise schedule management and resource allocation, enhancing the
adaptability of workforce planning to changing conditions.

Further advancements in this domain, as demonstrated by [28-30], highlight the
transformative impact of IP and MIP on improving job satisfaction, minimising employee
stress, and boosting overall productivity and service quality. By refining shift scheduling
and workload distribution strategies, these models contribute to creating a more equitable
and satisfying work environment.

2.3. Mathematical Models of Workforce Planning

Mathematical modeling can address the challenges of workforce scheduling. In nurse
scheduling, it can be modelled as a 0-1 shortest path network problem. This model was
applied, effectively utilizing IP to optimise the allocation of nursing staff within healthcare
settings, ensuring that operational demands were met efficiently and effectively [31].

Building on this foundation, hierarchical workforce scheduling was explored, devis-
ing mathematical models to delineate the organisation of staff based on skill levels and
operational requirements [26]. These models facilitate the understanding of scheduling
dynamics. Here, the flexibility for higher-skilled workers to substitute for lower-skilled
ones is crucial, accommodating variable daily workloads and ensuring employees receive
mandated days off. The objective function defined by [26] emphasises cost minimisation
across the workforce composition (Equation (1)):

m
min ) G Wi 1)
k=1

where Wy = Number of workers of type k, C; = Cost of type k worker.

Expanding upon Billionnet’s framework [26], another model was introduced accom-
modating diverse shift lengths and work patterns [28]. This adaptation allows for a more
granular optimisation of workforce schedules, aligning shift assignments with operational
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demands and worker preferences. Their revised objective function, incorporating shift-
specific costs, showcases the model’s flexibility in addressing the scheduling complexities
(Equation (2)):

B m

min 2 2 Ckabk (2)
b=1k=1

where b = Shift type variable.

b represents the shift type, integrating both cost and workforce considerations into the
optimisation process [31]. Workforce scheduling models inherently grapple with the dual
objectives of cost minimization and productivity maximisation. The inclusion of the variable
Cyk in optimisation problems underlines the adaptability of IP in tailoring solutions to specific
operational goals. This variable’s strategic deployment enables adjustments to scheduling
models, reflecting the dynamic interplay between cost efficiency and service quality.

The specific focus of this research on shift balance leverages the previous week’s
data to inform the scheduling model and stresses the importance of historical patterns
in optimizing future workforce allocations. This approach aims to achieve an equitable
distribution of morning, afternoon, and night shifts, offering a balanced and sustainable
work environment [2].

The exploration of these mathematical models reveals the depth and versatility of
IP in solving complex workforce scheduling problems. By incorporating historical data
and sophisticated scheduling constraints, these models offer structured pathways towards
optimising workforce allocations, proving it as an invaluable tool.

3. Case Study and Problem Definition
3.1. Overview of the Clinic

A specialized Oncology clinic in Greece that provides top-tier care, while representing a
critical node in the healthcare landscape. Dedicated to delivering advanced treatments and
ensuring optimal patient care through effective staff management and operational practices.

3.2. Description of the NRP

At the heart of the clinic’s operational efficiency lies the complex task of NR. The goal
is to systematically schedule a diverse and specialised nursing team to maintain continuous,
round-the-clock patient care. This section delineates the composition of the nursing staff
and the specific constraints that govern their scheduling, reflecting the broader challenges
of healthcare workforce management.

3.2.1. Staff Composition and Detailed Scheduling Constraints

The clinic has a team of 13 nurses. Aliases were given to preserve anonymity, as shown
in Table 1.

Table 1. Clinic nursing team.

Nurse Identifier Role

Su Supervisor (Nursing Supervisor)
De Deputy (Assistant Nursing Supervisor)
Np TE Nurse

Ny TE Nurse

N> TE Nurse

N3 TE Nurse

Ny TE Nurse

Ns TE Nurse

Ns TE Nurse

Ny TE Nurse

Ngs SE Nurse

Nys SE Nurse

Nigs SE Nurse
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Both Su and De are pivotal in ensuring consistent leadership and oversight, working
fixed weekday shifts from 07.00 to 15.00. A critical rule is that they cannot be scheduled off
on the same day to guarantee managerial continuity.

The roster includes eight Technological Education (TE) nurses and three Secondary
Education (SE) nurses. TE nurses and SE nurses are indispensable for providing compre-
hensive care. A vital scheduling requirement is that SE nurses must always work alongside
a TE nurse to ensure a blend of skills and expertise across all shifts, with the rest of the
requirements shown in Table 2.

Table 2. Roles and key requirements.

Role/Group Staff Members Critical Scheduling Requirements

Both cannot be off on the same day.

Leadership Su, De Fixed weekday shifts (07:00-15:00)

TE nurses must work alongside SE

TE Nurses No, N1, Na, N, Ny, N5, Ne, N7 nurses on all shifts

Must always work with at least one TE

SE Nurses Ngs, Nos, Nips- nurse

The clinic adheres to a monthly scheduling system aimed at distributing the three eight-
hour shifts (07:00-15:00, 15:00-23:00, 23:00-07:00) among the staff in a balanced manner.
According to operational regulations, nurses are entitled to a minimum of 11 h of rest
between shifts, although in practice, a 16 h rest period is enforced to enhance recovery and
well-being. This scheduling paradigm underscores the necessity for a strategic approach
to rostering that harmonises regulatory compliance, individual preferences, and clinical
demands (Table 3).

Table 3. Basic monthly scheduling.

Shift Timing Rest Period Notes
07:00-15:00 Minimum 16 h Balanced distribution of shifts
15:00-23:00 Minimum 16 h Ensures adequate recovery
23:00-07:00 Minimum 16 h Aligns with operational regulations

3.2.2. Problem and Rostering Constraints

The aim of the problem is to establish a fair distribution of morning, afternoon, and
night shifts, while avoiding back-to-back shifts and ensuring an equal number of working
days among nurses throughout the week (for instance, preventing one nurse from working
six shifts while another works only two). It is often noted that nurses are scheduled
for successive shifts without a minimum 16 h break between them. Moreover, there
are situations where only one nurse is assigned to a shift that requires two due to poor
scheduling, and conversely, there are times when four nurses are assigned to a shift that
could be handled by fewer staff. During December, the schedule was devised initially with
the restrictions applied as shown in Tables 4-6.

Initially, it is evident from the description that the two head nurses are not part of the
primary problem since their hours are fixed (i.e., during breakfast) and thus do not need to
be considered as parameters in the model. Consequently, the problem focuses on managing
11 nurses (Np—Njos). The model’s objective is to solve the scheduling problem on a weekly
basis, leveraging data from the preceding week. As the problem is aimed at minimization
without any cost variables (such as labour costs), we incorporate, as additional constraints,
the number of shifts worked by each nurse in the prior week and, as a variable, the type of
shift assigned (morning, afternoon, or night).
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Table 4. Nurse shift and duty scheduling overview.

Time Period Shift Timing Staffing Requirements
Weekdays
Morning Hours 07:00-15:00 Su, De, and a minimum of 2 nurses
Afternoon Hours 15:00-23:00 2 nurses, at least one must be TE
Evening Hours 23:00-07:00 2 nurses, at least one must be TE
Public Holidays
Morning 07:00-15:00 2 nurses, at least one must be TE
Afternoon 15:00-23:00 2 nurses, at least one must be TE
Evening 23:00-07:00 2 nurses, at least one must be TE
Public Holiday Duration 00:00-24:00 Defined from 00:00 to 00:00 the next day
Monthly Shift Coverage - 62 h each for morning, afternoon, and evening
Night Shift (Extreme 23:00-07:00 1 TE nurse minimum
Case)
General On-Call Duty Various 2 nurses always present

Additional Scheduling Rules

Weekly Off-Days

Max Shifts per Week
Max Afternoon Shifts
Max Night Shifts
Public Holidays
General On-Call Dates

If a nurse works on a weekend, they don’t work
during the week

- 5 shifts per nurse

- 3 shifts per week

- 2 shifts per week

- December 25th, 26th, January 1st

- 1st, 5th, 9th, 13th, 17th, 21st, 25th, 29th December

Table 5. Nurse scheduling requests and constraints.

Nurse Time Period Requests and Constraints
Su 07:00-15:00 Always works breakfast hours, off on weekends. Public
(Weekdays) Holidays on 25/12 and 26/12. Leave from 11/12 to 15/12
De 07:00-15:00 Works breakfast hours, off on weekends. Public Holiday on
(Weekdays) 25/12 and 26/12
On-call evening 4/12, can work mornings or take a day off.
No 23:00-07:00 (4/12) Parental leave on 7/12. Off on 9/12,10/12,23/12,24/12.
Holiday on 25/12 and 26/12
Ny 07:00-15:00 (10/12, Off on5/12,6/12,7/12. On-call afternoon 11/12. Breakfast

23/12,25/12,26/12)
N> 07:00-15:00 (Various)

N3 -

Ny 07:00-15:00 (Various)
Ns 07:00-15:00 (Various)

Ne 07:00-15:00 (24/12)
N, 23:00-07:00 (4 shifts)
N 07:00-15:00,
85 23:00-07:00 (25/12)
N 07:00-15:00
5 (Mondays, Tuesdays)
Nijps  23:00-07:00 (4 shifts)

shift on 10/12, 23/12,25/12,26/12
Leave from4/12 to 8/12. Offon2/12,3/12,9/12,10/12,
30/12,31/12. On-call afternoon 20/12
Special schedule adjusted to husband’s program (Fixed by
herself)
Off on 1/12. Collected days off from 14/12 to 20/12 and
prefers fewer afternoon shifts.

Leave on 1/12 and 4/12. Off on 2/12 and 3/12
Requested to work in the morning on 24 /12
Contract worker. Can work 4 evening shifts per month and 2
holidays. No afternoon shifts on Thursdays or Fridays
Off on 23/12, 24/12. Works morning and evening on 25/12,
and evening on 26/12. Afternoon shift on 31/12
Prefers not to work afternoons on Mondays and Tuesdays.
Preferably works breakfast hours or takes a day off
Contract worker. Can work 4 evening shifts per month and 2
shifts on holidays
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Table 6. Additional nurse scheduling information.

Aspect Details Notes
Regular Leave Days 25 days Permanent staff
Solemn Declaration Absence 4 days per year Permanent staff
Educational Licenses - Not specified
Double Shift Rule 07:00-15:00 and 23:00-07:00 Clowed by 23:00-07:00 shift
or a day off
Night Shift 22:00-06:00 Defined time for night shifts

Duration from midnight to
midnight
Requires days off before and
after the leave (preferable)
Must be a morning or double

Public Holidays 00:00-24:00

Regular Leave Days Counting -

First Day After Leave 07:00-15:00 or Double Shift shift
Days Off Per Week 2 days Not necessarily within the
same week
Holiday Work Compensation - Entitled to an extra day off
No double shift (07:00-15:00
Double Shift After Afternoon - and 23:00-07:00) after the

afternoon (15:00-23:00)

Additionally, the general on-call duty may be covered by the two head nurses. The
number of on-call shifts they handle is predetermined on a monthly basis. The modeling
will proceed in two stages. First, a general model will be constructed, incorporating the
weekly constraints, followed by a second stage where the specific constraints for each week
will be applied. The data structure results in four distinct weekly scheduling problems,
each using the same mathematical framework but subjected to varying limitations. To
avoid redundancy, the initial focus will be on solving the problem for the first week. This
problem is formulated as an MIP model.

3.3. Objective Function

The objective is to minimise the function f(x), subject to the following constraints
(Equation (3)):

Vie]: <in,j:1> ALY X;; > Ry(j) (3)
iel

iGIT(]->

The problem for the first week will be solved using the MIP method, considering shift
types (morning, afternoon, night) and the number of shifts from the previous week.

4. Methodology and Solution Approach

To address the problem, a combination of optimisation software and a programming
language was employed. The software selected was IBM’s ILOG CPLEX Optimisation
Studio 12.8 (academic license), which is accessible through the library (I1oCplex) and the
jar file (cplex. jar, included with the installation of ILOG CPLEX Optimisation Studio).
The programming language utilised was Java, though the software also supports Python,
C#, and other languages. The Integrated Development Environment chosen for this task
was Apache NetBeans 8.2 [32], along with Java version 8 [33]. The mathematical method
implemented by the software was the branch-and-cut technique.

Initially, 42 shifts of 8 h each needed to be allocated among 11 employees. We defined
i — each employee and j — each shift, with the first two shifts on the 1st of the month
designated as morning shifts (each day comprises 2 morning, 2 afternoon, and 2 night
shifts). Additionally, since i, j are indivisible, it follows that i,j € Z. The distribution of
each (s)hift (from sO-s41) is detailed in Table 7.
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Table 7. Shift schedule for the first week of December.

December (1st Week)

Day Fri Sat Sun Mon Tue Wed Thu
Morning 50, 51 S6, 87 512/ 513 518, 519 524, 525 530, 531 536, 537
Afternoon $2,83 S8, 59 514, 515 520, 521 526, 527 $32, 533 538, 539

Night 54,85 510, 511 516, 517 522,523 528, 529 534, 535 540, 541

The aforementioned number may be adjusted if on-call responsibilities necessitate the
presence of an additional nurse during the evening hours of the on-call duty. It is essential
to note that, for clarity in code comprehension and for the convenience of programmatic
resolution, we assume that the numbering of nurses and shifts commences from 0 rather
than 1. Likewise, the same logic applies to shifts. Therefore, we get Equation (4).

10 41

2= Xj (4)

i=0j=0
X;€{0,1}, Vie{0,...,10},j € {0,...,41}.

Each nurse may be reassigned following the conclusion of their shift, ensuring a
minimum of 11 h (inclusive of a 2 h break) prior to commencing the subsequent shift.
Also, each nurse cannot be assigned more than 5 consecutive shifts (Equation (5)). If this
condition is not met, the schedule is considered invalid, and she will have to take a day off

the following day:.
41

) Xij<5 ®)

j=0

Each shift is covered by exactly one nurse (Equation (6)).
10
Y Xij=1 (6)
i=0

X;€1{0,1}, Vie{0,...,10},j€{0,...,41}.

Let the morning shifts {0, 1,..., 37} belong to set IT and the afternoon shifts {2, 3, ...,
39} belong to set A, while the night shifts {4, 5, ..., 41} belong to the set B.
The SE nurses (Ngg, Nog, N1gs) cannot be scheduled in the same shift without TE nurses.
Therefore, two TE nurses cannot be on the same shift together. Thus, the following stands:
Xij + Xi(j+1) S 1, VZ S A,] € B,
Xij+Xk(j+1) <1, Vike AU{8},i#k j€EB,
Xij+Xk(j71) <1, Vl,kEAU{S},Z;Ak,]G B.

Furthermore, the nurses with limited time contracts, Ny and Nj(g, can cover at max 4
night shifts per month with no more than 1 night shift per week. Thus, we get Equation (7):

Y X;; <1, Vie{7,10}.
jeB

@)

Concerning the remaining nurses, except for N3, who has her own schedule, each one
can cover a maximum of 2 night shifts per week. Thus, we get (Equation (8)):

Y X <2, Vie{0,1,2,4,5,6,89,10} ®)
jeB
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Additionally, the maximum number of consecutive night shifts that a nurse can work
within a scheduling period is three (Equation (9)):

Y X <3, )
jeA

The model will be a minimisation model, aiming to ensure balance in shift allocation
among the staff. This is done using the weight index for each employee for each shift,
Cir1, Cia, Cip (morning, afternoon, night). This estimator-index was determined empirically
through trials discussed later and from the feedback provided by the hospital workers.

Making an inquiry for every shift of the upcoming scheduling, it will be shown that
the morning, being the most desired and with the largest demand, will not allow a higher
shift rate for a nurse to cover the morning shift alone. Consequently, C;;; = 1.

Similarly, a parallel evaluation is conducted for the night shifts. Considering that the
night shift (23:00-07:00) is the hardest to cover, based on the feedback from the nurses,
it should carry the highest weight. Initially, with trial values of C;p = 1.4, C;jp = 1.3, or
Cip = 1.2 for each night shift, it was observed that if a nurse covered many night shifts the
previous week, there is a risk that the weight of the night shifts for the upcoming week
would become too large, and thus, one night shift would be equivalent to 2 or 3 morning
shifts. Consequently, it was determined that for each night shift, C;p = 1.1, with the total
shift weight from the previous week calculated as (Equation (10)):

Cg=1+01 (Z Xi]) (10)

jeB

Finally, for the afternoon shift, the weight estimator should lie between the weight of
the morning shift (C;;; = 1) and the night shift (C;p = 1.1) 8 h period. As with the night
shift, through trials (C;4 = 1.04, C;4 = 1.03, or C;j4 = 1.02), an attempt is made to find the
appropriate estimator so that, in cases where a nurse covers many afternoon shifts, it is
not considered that the weight of 3 or 4 afternoon shifts is numerically equivalent to the
weight of 1 night shift. Thus, it was estimated that, for each afternoon shift, C;4 = 1.01,
with the total weight of the shifts from the previous week (Equation (11)):

Cia =1+0.01 <Z X,«j> (11)

jEA
with
11
min Z Z Cinij
i=1je];

Note, if N, had worked 2 consecutive afternoons and 3 night shifts during the previous
week, for the current week, we would get C;4 = 1.02 and Cyp = 1.3.

In accordance with the schedule of the last scheduling period—end of November in
Table 8. Note that the ‘+” symbol indicates pairs of nurses on the same shift.
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Table 8. ID distribution per shift for November’s last week.

Last Week of November
Day Fri Sat Sun Mon Tue Wed Thu
NO + N7,
. N2+N85, No, N1 + N0+N2, Nz, N6+ Nl, N6+
Morning Ns + N; Ny, Ny N, N, + N Nos Nio N, + Ng
+ Ngs
Afternoon N5, Ngs N@, N95 NlOS/ N6 Nl, N7 N3, N7 N3, N7 NlOS/ N4
. Ny, N3 +
Night Ny, Nigs Nz, N3 (1)\]105 No, Ny - Ny N, Nos Ngs, Ng
We get:
Cn=1 Vie{0,1,2,3,4,56,7,8910},
1 ifi € {0,2,8},
Cor— 1.01 ifi € {1,4,5,10},
AT 102 ifie {3,6,9),
1.03 ifi=7,
1.2 ifi e {0,1,3,4,10},
Cpg=1<11 ifie {2,6,9},
1 ifi € {5,7,8}.
So, the minimisation model will be (Equation (12)):
10 41
i=0j=0

where X;; € {0,1},i € {0,10}, and j € {0,41}.
This finalises the generic modelization. In the next section, the weekly model is
presented.

Weekly Modelling

A minimum number of shifts for each nurse to cover weekly is essential. Since the
11 nurses performing 4 shifts per week cover 44 shifts > 42, we consider that the minimum
number of shifts will be 3. However, we will consider that, if a nurse is on call, she will
have to work one less shift in the clinic as the same will happen in case of leave. We also
believe that if last week someone did less than 5 shifts, the next week they will definitely
do 5 (except in cases of leave—on-call duty). Therefore, the minimum number of shifts
will be introduced as a final restriction. In addition, in cases such as N, or N, who has
many days off this week, the variables representing the shifts she will cover this week are
not eliminated but reset for the sake of flexibility. The model should be flexible in terms of
changes each week and able to reflect nurse-specific considerations, such as leave periods,
requested off-days, and previously worked shifts. To that end, we incorporate these factors
as follows:

Predefined Assignments: Some nurses have fixed assignments based on external
factors (e.g., personal requests or coordination with family schedules). For any nurse, i,
who must work a specific set of shifts, ]iﬁxed, we directly set (Equation (13)):

Xij=1 Vje Jied (13)
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Unavailable Shifts: If nurse i has requested off-days, leave, or cannot be scheduled
due to constraints (e.g., adjacency to an on-call night shift), we define ]l?’ff as the set of shifts
they cannot cover (Equation (14)):

X;j=0 Vje ot (14)

Minimum Workload Requirements: After accounting for leaves and on-call duties,
each nurse, i, is assigned a minimum required number of shifts, /"', for the week (e.g., 3
or 4). We enforce (Equation (15)):

41 .
Z Xi,j Z r?‘m. (15)
j=0

By encapsulating individualised constraints into sets (J, lﬁxed, ]i"ff) and parameters (rlmi“),
we accommodate personal schedules, leaves, rest requirements, and workload balancing
within a single, flexible framework. In line with that, Table 9 presents nurse individualised
constraints according to available data.

Table 9. Nurse Individualised Constraints.

Nurse Constraint Description

She is scheduled as the on-call nurse on December 4
(23:00-07:00), which prevents her from working 16 h be-
fore or after that shift. She also requested parental leave

No on December 7, making her unavailable for the previous
night’s shift. As a result, her minimum shifts this week
are 3, calculated from 7 days minus 2 off days, 1 on-call
day, and 1 leave day.

She requested days off on December 5 and 6, and Friday,
Ny December 7, totalling three days. Therefore, she cannot be
assigned a shift on December 5.

She requested a leave of absence from the 4th to the 8th of
the month (the 4th to 7th impacting this week) and days
off on the 2nd and 3rd. She also cannot be assigned to the

N, previous night’s shift. Therefore, the minimum number of
shifts she must work this week is 1, calculated as 7 days
minus 2 off days and 4 leave days.

N Sets her schedule based on her husband. She will work on

3 the 1st and 2nd of the month.

Ny She requested to have December 1 off.

She requested days off on December 1 and December

N 4, and additional leave on December 2 and 3. There-

> fore, she must work 3 shifts this week (7 days-2 off days-
2 leave days).
Ng She does not have any constraints this week.
N She has requested not to be scheduled for the afternoon
7 shift (15:00-23:00) on Thursday and Friday.
Ngs She has no restrictions this week.
N. She has requested days off on Monday and Tuesday, mean-
95 ing she cannot work the night shift on Sunday.
She worked the 15:00-23:00 shift on Thursday of the previ-
Nios ous week (November 3), so she cannot work the morning

shift on Friday.

All Nurses except for Ny, N and N5 Must work at least 4 shifts during the week.
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5. Results

The application of a Java-based optimisation algorithm to the nurse scheduling prob-
lem at the Clinic of Pathological Oncology has significant improvements. To provide a
comprehensive evaluation, Table 10 presents the original, pre-optimisation schedule, which
served as the baseline, while Table 11 illustrates the new nurses” schedules, highlighting
the optimisation results achieved.

Table 10. Shift schedule for the first week of December with nurse IDs before the solution.

December (First Week)
Day Fri Sat Sun Mon Tue Wed Thu
. Ny, Np-Nyps, Ns, Nj3.Ngs,

Mornin Nyg, null Ny, N Ny, N
& NNy 95 4 N8 Nog Ne.Ny Ns.Ng 4 85
Afternoon  Np, Ngs Ny, Nigs  Ng, Nog N3, Ngs N3, Ngs Ny, Nog Nog, N5

. Nj, No.Nqps,

Night N, i’ss Ny, N3 Ny, null 0 N 105 GE, Ny Ny, N N3, null

Table 11. Shift schedule for the first week of December with nurse IDs after the solution.

December (First Week)

Day Fri Sat Sun Mon Tue Wed Thu
Morning Ny, Nog Ni, Ny Nos, N7 Nips, N7 Nips, N5 Ne, Nigs  Ne, Np
Afternoon  Np, Ny Ny, Ny N1, Ny Ny, N3 Ngs, N3 Ny, Ngg Ny, Ngs

Night Ngs, N3 Ng, N3 Ngs, Ny Ng, Ny N7, Nog N5, Nog N5, N3

5.1. Key Findings

1. Optimisation Outcome: The process culminated in an optimal solution characterised
by an objective function value of 43.69. This denotes a significant enhancement in
scheduling efficiency, ensuring an equitable distribution of shifts among nursing
staff while meeting all operational and individual constraints. Thus, the optimised
schedule demonstrated significant measurable improvements, as shown in Table 12.

Table 12. Quantitative evaluation of optimisation results.

Quantitative Metrics Before and After Optimisation

Metric Rest Violations Skill Mlx Worldoad Overstaffing Understaffing Ob.] ective
Compliance Balance Function Value
].Bef.ore. 3 violations 85% of shifts 2.3 shifts 2 instances 3 instances 239.5
Optimisation
After . . . . . .
L 0 violations 100% of shifts 0.9 shifts 0 instances 0 instances 43.69
Optimisation

2. Comprehensive Shift Coverage:

®  Morning shifts are adequately staffed with the Su, the De (which are not part
of the problem), and at least two additional nurses, guaranteeing leadership
oversight and operational readiness.

e Afternoon and night shifts are consistently staffed with at least one TE nurse
each, alongside another nurse, fulfilling the clinic’s requirement for specialised
care around the clock.

3. Adherence to Constraints: The optimisation algorithm meticulously adhered to a
complex set of scheduling constraints, including:
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¢  Prohibiting consecutive shifts for individual nurses to ensure adequate rest.

e Limiting the number of shifts per nurse to a maximum of five per week to prevent
overworking.

¢ Integrating individual availability requests and preferences into the scheduling
process without compromising operational integrity.

Improvement Over Original Schedule: The optimised schedule presents a stark
improvement over the original roster by:

¢  Eliminating instances of overstaffing and ensuring that each shift is covered by
the exact number of required nurses.

*  Addressing previous scheduling inefficiencies, such as the misallocation of TE
nurses or failure to meet skill mix requirements for each shift. The SE do not
work together at the same 8-hour shift and are complemented by the TE.

Balanced Workload Distribution: The algorithm ensures a fair and balanced distribu-
tion of shifts among all nurses, which:

*  Avoids overburdening any single nurse with an excessive number of night or
consecutive shifts.

*  Promotes job satisfaction and well-being by respecting individual work-life
balance needs and preferences.

®  The contracted nurses can cover at most one night shift per week, while the
others can cover a maximum of two night shifts—except for N3 as in Table 13.
Furthermore, it is observed that no employee works two consecutive shifts
without at least 16 h between the end of one and the start of the next.

* Itisalso understood that no nurse works more than 5 shifts or fewer than 4 shifts
in a week—except for those on general on-call duty or leave, such as N0, N2, and
N5 Table 13.

Table 13. Number of shifts per Nurse.

Nurse Number of Shifts

No
Ny
N
N3
Ny
N5
Ns
Ny
Ngs
Nos
Nios

SO O R W U1 U1 = W

Total shifts

>
N

Clinic Feedback: Positive feedback was received from the clinic’s staff regarding the
optimised scheduling solution. The schedule not only satisfies the clinic’s operational
and care delivery requirements but also addresses the staff’s work-life balance needs,
marking it as an effective and sustainable approach to NR. Positive informal feedback
was received from the clinic’s staff regarding the optimised scheduling solution. While
satisfaction was not directly measured, the improvements align with established
indicators of staff satisfaction. The optimised schedules achieved compliance with
regulatory requirements for rest periods and ensured an equitable distribution of
shifts among all nurses—operational enhancements likely contributing to improved
staff morale [12,34].

Key Observations:
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¢ The solution efficiently covers all nurse shifts, with a total of 42 shifts, ensuring
operational continuity without any uncovered periods.

e It strictly adheres to the clinic’s nurse-to-shift ratio requirements and, as an
indirect result, maintains a high standard of patient care.

e Feedback from the nursing staff indicates a unanimous acceptance of the sched-
ule, highlighting its success in meeting personal preferences and operational
demands. To that end, Su’s feedback stated that the solution was correct and was
unanimously accepted and implemented by the staff, with zero implications.

5.2. Limitations and Threats to Validity

While this study on optimizing nurse rostering shows promising results, several
limitations and validity concerns should be flagged.

Data Limitations: The model’s success relies on data regarding nurse availability, pa-
tient needs, and workload. Data noise can impact the ability to generate optimal schedules,
impacting how well the findings reflect real-world conditions.

Real-time Adaptation: The current model does not yet handle real-time scheduling
changes. Its effectiveness could be decreased if it cannot promptly respond to changes in
staffing needs or in patient demands.

The Human Factor: The model accounts for work-hour constraints and nurse prefer-
ences but may not fully capture unexpected human factors like illness or exhaustion. In
that sense, it can be less flexible when responding to last-minute changes and potentially
impacting the overall staff satisfaction. To address this, structured surveys or interviews
could be incorporated to systematically evaluate nurse perceptions of roster fairness, work-
load distribution, and overall satisfaction. Such feedback mechanisms would complement
the operational metrics, providing a more comprehensive understanding of the model’s
impact on workforce well-being and identifying areas for further improvement.

Specific Context: Conducted in a specific oncology setting, the model was tailored to
address high patient care urgency through the optimal organization of the nursing staff.
However, the results may not be directly communicable to other healthcare departments
where the needs might be different. To do so, further adjustments and testing are required.

Scalability Concerns: Although the developed model showcased potential scalabil-
ity, the complexity could grow substantially when applied to larger healthcare depart-
ments. Something like that can lead to diminishing processing times or even reduced
performance in real-time applications, thus confining its use in larger or more fast-paced
environments/settings.

Although this study offers a foundation for optimizing nurse schedules in oncol-
ogy settings, addressing these limitations will be necessary to broaden the applicability
prospects and enable real-world use. Thus, Section 6 builds upon these and discusses
future directions.

6. Future Research Directions

New methods propose approaches that can improve NR optimisation further. Starting
with generic algorithms, a genetic algorithm has been explored to solve the nurse schedul-
ing problem in crisis situations, such as during COVID-19 [35]. The authors in [36] highlight
the effectiveness of hybrid approaches combining, for example, IP and Constraint Program-
ming (CP) to address the highly constrained NRP. In other cases, researchers have proposed
hybrid approaches for the NRP, combining MIP with deep neural network-assisted heuris-
tics and recurrent neural networks, outperforming other pieces of research in terms of
benchmarks [37,38]. The following sections attempt to categorise similar future trends.

6.1. Incorporation of ML Techniques and Others

ML offers promising extensions to traditional NR optimisation, particularly in terms
of predictive capabilities and real-time adaptability [39]. For example, using predictive
algorithms based on historical data, similar to those in energy forecasting [40-42], might
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enhance the value of OR in healthcare even more. Such data-driven methods can en-
hance decision-making, leading to better scheduling and improved patient care. Thus, one
direction for future work would be to incorporate supervised learning to predict nurse pref-
erences and availability based on historical data, improving the scheduling system’s ability
to align nurse shifts with personal preferences. This would enhance both staff satisfaction
and operational efficiency by reducing conflicts between organizational requirements and
individual nurses’ needs [43].

The authors in [44] address the NRP differently, using a two-stage approach. The first
stage combines Monte Carlo Tree Search with Hill Climbing to find feasible solutions by
satisfying hard constraints. A novel constant C value is proposed to balance search diversi-
fication and intensification in MCTS. The second stage improves the solution using Iterated
Local Search with Variable Neighbourhood Descent, introducing unique neighbourhood
structures and a perturbation strategy to escape local optima. Computational results on
the Shift Scheduling dataset report the best new solutions for several instances. In [45], the
researchers suggest that partitioning NRP instances into manageable sub-problems and
applying sequential optimisation could be further enhanced with ML techniques to adap-
tively optimise large, complex NRPs. Finally, another work [46], addresses the NRP using
a hyper-heuristic approach that combines Reinforcement Learning (RL) with Simulated
Annealing (SA) and Reheating. This method improves scheduling by considering multiple
constraints such as labour regulations, hospital policies, and nurse availability. The study,
conducted in Norwegian hospitals, demonstrates an 82% improvement in solution quality,
outperforming other algorithms such as Simple Random-Hill Climbing, Reinforcement
Learning-Hill Climbing, and Reinforcement Learning-Simulated Annealing.

6.2. Enhancing Dynamic Capabilities for NR

The enhancement of NR models necessitates additional advancement in dynamic
scheduling systems to address the immediate requirements of healthcare settings. The
existing frameworks for MIP and ILP, although proficient, exhibit limitations in address-
ing dynamic constraints, including unexpected nurse absences or varying patient loads.
Future research ought to expand these models through the incorporation of stochastic
programming, thereby enabling the system to more effectively manage uncertainties by
dynamically adjusting schedules in response to real-time feedback regarding nurse avail-
ability and patient demand [31]. Another piece of research explored further enhancement
of hybrid algorithms, such as combining MIP-based heuristics with metaheuristic meth-
ods like SA, to improve solution quality for the NRP [43]. An extended NR model was
introduced [47], incorporating unit assignments alongside nurse, day, and shift allocations,
addressing the complexities of real-world scenarios where not every nurse can be assigned
to every unit due to varying skills and experience. The study also presents a matheuristic
solution approach that combines IP for generating initial schedules with Discrete Particle
Swarm Optimisation (PSO) for further improvement, ensuring feasibility and near-optimal
solutions. In [48], novel strategies for the nurse re-rostering problem are stated, which
occurs when unforeseen events disrupt existing schedules and focus on the relaxation
of different problem parameters to quickly reconstruct feasible rosters. The integration
of accurate optimisation methods can significantly enhance the resilience of scheduling
systems, thereby ensuring that optimal solutions maintain stability in the face of variable
conditions [43,49].

6.3. Real-Time Scheduling, Adaptive Systems, and Public Perception

The development of real-time scheduling systems is critical for managing the complex
and unpredictable nature of NR, particularly in oncology departments where patient de-
mand fluctuates rapidly. Future research should focus on implementing adaptive schedul-
ing models that adjust in real time based on nurse availability, patient admissions, and
other external factors. By linking these models to real-time data feeds, such as electronic
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health records, the system could update schedules automatically, reducing the reliance on
manual updates by administrators [10].

Combining systematic IP with adaptive algorithms like SA can improve NR in real
time. A systematic two-phase approach for NR was developed, which first determines
the workload distribution for each nurse and day, followed by the assignment of specific
shifts using IP [45]. The approach was applied in the context of the First International
Nurse Rostering Competition (INRC2010), where the problem instances were partitioned
into sub-problems and solved sequentially. The method’s success was demonstrated by
achieving the best results in the competition. In [50], the authors applied SA to a multi-level
NRP in hemodialysis services, where nurses with different qualifications must be assigned
to various roles, such as in-charge nurse, dispensing nurse, and treatment nurse. The
research formulated a 0-1 IP model and used a heuristic algorithm to satisfy both the
demand for nurses and their preferences regarding shifts and roles. This adaptive approach
successfully addressed the complexity of the problem, ensuring better nurse allocation in a
critical healthcare environment.

Another aspect under consideration to enhance NR in oncology departments could be
to recognize the impact of social media on public health perceptions and patient engage-
ment [51]. This dynamic can influence staffing decisions, as improved communication with
patients through social media may help create schedules that better align with their needs
and preferences. Additionally, sentiment analysis from social media discussions on various
topics [52] can offer valuable insights into patient concerns, enabling more responsive and
effective scheduling strategies for nursing staff.

Future work can also deal with the aspect of cost improvements. The authors in [53]
introduce a novel methodology for cyclic preference scheduling using a branch-and-price
algorithm to balance individual nurse preferences with cost minimization. The research
highlights the growing trend toward cyclic schedules, which are easier to manage, more
stable, and generally perceived as equitable in comparison to generating new rosters each
period. The proposed approach, which solves instances with up to 200 nurses within
minutes, suggests that future research should explore cyclic scheduling models further to
enhance stability and manageability in dynamic healthcare environments. Similarly, a cyclic
scheduling general IP model which can directly or indirectly support cost minimization is
proposed in [54]. More specifically, this work proposes a general IP model for cyclic staff
scheduling, which is adaptable to various real-world settings, including a glass plant and a
continuous care unit, focusing on the sequence constraints and workload balance through
cyclic scheduling.

6.4. Broader Application to Various Healthcare Departments and Combined Metrics

While the current focus is on optimising NR in oncology clinics, future research could
expand these optimisation models to other healthcare departments on a larger scale and
also include other metrics. To that end, insights from prescriptive maintenance [55] could
be utilised to automate the identification of suboptimal schedules. Each department within
a hospital, such as emergency services, surgical units, and outpatient care, has unique
operational requirements and constraints. Developing customisable modules that can
adapt the existing MIP model to fit the specific needs of different departments would
allow for a more holistic and integrated scheduling solution across healthcare facilities [56].
The authors in [57] address the challenge of constructing nurse duty schedules for large
hospitals, balancing staff availability with individual preferences and fairness. Using a tabu
search approach, the study developed a decision support system (NuRoDSS) for Stikland
Hospital, a large psychiatric facility, demonstrating the scalability of optimisation methods
in nurse scheduling. Similarly, another work [58], describes a hybrid approach to nurse
scheduling that combines modern heuristic methods with classical IP models, specifically
knapsacks, network flow models, and tabu search, to solve a real-world NRP at a major
UK hospital.
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Combined with the above, metrics concerning patient outcomes or satisfaction scores
from both patients and staff could also be included in future research to further strengthen
the validity and value of the proposed solutions.

7. Conclusions

This study has addressed the complex challenge of optimizing NR in oncology clinics
through the application of mathematical optimisation techniques. By employing MIP mod-
els, the research demonstrated improvements in operational efficiency, nurse satisfaction,
and resource allocation. The results show the importance of using precise mathematical
tools to navigate the complexities of healthcare staffing, particularly in settings where
patient needs are highly variable.

Building on this, the research investigates the application of ILP and hybrid techniques
to adjust to both small- and large-scale rostering challenges. While focused on oncology
clinics, the methodology may be extended to broader healthcare contexts, offering versatile
solutions for staff allocation in uncertain environments. Dynamic scheduling systems
incorporating ML and RL offer the potential for real-time adaptability and data-driven
decision-making. Hybrid models, such as those combining ILP with metaheuristic algo-
rithms like Variable Neighbourhood Search (VNS), optimise flexibility and computational
efficiency [17,59,60]. Stochastic optimisation further strengthens the ability to respond in a
dynamic way to changes in nurse availability and patient needs, paving the way for fair,
efficient, and patient-focused staffing systems.
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Abbreviations

The following abbreviations were used in this manuscript:

CP Constraint Programming

CPLEX IBM'’s ILOG CPLEX Optimisation Studio
De Deputy

ILP Integer Linear Programming

P Integer Programming

LpP Linear Programming

MCTS  Monte Carlo Tree Search
MIP Mixed-Integer Programming
MILP Mixed-Integer Linear Programming

ML Machine Learning

NRP Nurse Rostering Problem
NR Nurse Rostering

OR Operations Research

PIP Pure Integer Programming
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RL Reinforcement Learning

SA Simulated Annealing

SE Secondary Education (Nurse)

Su Supervisor

TE Technological Education (Nurse)

VNS Variable Neighbourhood Search

Nomenclature

The following nomenclature was used in this manuscript:

Xij Binary variable indicating if nurse i is assigned to shift j
i Nurse index

j Shift index

I Set of all nurses

] Set of all shifts

I1 Set of morning shifts

A Set of afternoon shifts

B Set of night shifts

Cint Weight for nurse i assigned to morning shifts
Cia Weight for nurse i assigned to afternoon shifts
Cip Weight for nurse i assigned to night shifts
Iy €1 Subset of nurses qualified for shift type T(j)
Ry Required minimum number of qualified nurses for shift type T (j)
T(j) Type of shift j (morning, afternoon, or night)
Y Xij Total shifts assigned to nurse i

Y Xim Total morning shifts assigned to nurse i

Y Xia Total afternoon shifts assigned to nurse i

Y Xip Total night shifts assigned to nurse i

Su Supervisor nurse

De Deputy nurse

TE Technological Education nurse

SE Secondary Education nurse

min}) C;;iX;;  Objective function to minimize weighted shifts across all nurses
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Abstract: The aim of this constructive study was to develop model-based principles to provide
guidance to managers and policy makers when making decisions about team size and composition
in the context of home healthcare. Six model-based principles were developed based on extensive
data analysis and in close interaction with practice. In particular, the principles involve insights in
capacity planning, travel time, available effective capacity, contract types, and team manageability.
The principles are formalized in terms of elementary mathematical models that capture the essence
of decision-making. Numerical results based on real-life scenarios reveal that efficiency improves
with team size, albeit more prominently for smaller teams due to diminishing returns. Moreover, it is
demonstrated that the complexity of managing and coordinating a team becomes increasingly more
difficult as team size grows. An estimate for travel time is provided given the size and territory of a
team, as well as an upper bound for the fraction of full-time contracts, if split shifts are to be avoided.
Overall, it can be concluded that an ideally sized team should serve (at least) around a few hundreds
care hours per week.

Keywords: home care; work force; resource allocation; efficiency

1. Introduction

As in many other Western European countries, the long-term sustainability of Dutch
home healthcare (HHC) system (here, we define home healthcare as an array of health
and social support services provided to clients in their own residence [1]) is under serious
pressure. On the one hand, we see an increase in demand due to an aging population, and
a shift from care provided in an institutional setting to providing care closer to the care
user’s own home environment. By 2040, it is projected that one in four Dutch people will
be aged 65 or over, and the number of persons older than 80 years is expected to almost
double from 0.9 million in 2021 to over 1.6 million in 2040 [2]. This will raise the pressure
on the Dutch HHC system because the prevalence of physical or mental disability increases
with age [3]. When it comes to the shift of institutional care towards the home environment,
it is mainly triggered by two developments: extramuralisation and medical care at home.
In this context, extramuralisation can be described as government policy that aims to shift
from providing care in a nursing home setting to care at home. Medical care at home is an
alternative to (more expensive) inpatient hospital admission, enabling patients to receive
hospital-level care at or closer to home.

On the other hand, looking at the supply side we see that the availability of healthcare
professionals is under increasing pressure due to labor market tightness and high absen-
teeism rates. The Dutch healthcare and welfare forecast model shows that the shortage
of healthcare workers will increase from 55,000 people in 2023 to about 155,000 people in
2032, with the largest shortages expected in nursing home and home healthcare [4]. Due to
the increasing staff shortages, the healthcare sector risks falling into a vicious circle: staff
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shortages create an increased workload, which leads to more absenteeism, thereby creating
an even greater shortage, etc. For example, that this vicious circle is lurking becomes
evident from the increasing absenteeism rates. In 2022, the average absenteeism rate in the
healthcare sector reached about 8.3% [5]. This is the highest absence rate ever measured
and represents an increase of 15% compared to the year 2021.

Because of these challenges, many Dutch HHC providers are searching for ways
to improve the balance between the available workforce capacity (i.e., supply) and the
needs and preferences of their clients (i.e., demand). In collaboration with our partner
HHC organization, we encountered (at least) two fundamental problems in obtaining
the appropriate balance. The first problem is the lack of insight into the current demand.
Although demand prospects exist for both individual clients, as well as some occasional
handcrafted estimates at a more aggregate level, structural monitoring of the total demand
requirements of the complete client base is yet uncommon in HHC. The second problem
relates to the appropriate dimensioning of teams. In fact, the elementary initial question of
our partner HHC organization was “What is the ideal team size?’. Obviously, this question
can be addressed from multiple angles; our aim is to provide some generic rules of thumb
for determining the scale at which teams should be organized. In other words, our key
research question is as follows: To what extent is it beneficial to utilize the potential of
economies of scale in HHC?

1.1. Background: Existing Literature

The problems faced by HHC providers have triggered a body of research over the
past decade. In the relatively early study of Matta et al., a framework to model HHC
organization from an operations management perspective is proposed, whereas a taxo-
nomic classification is provided by Hulshof et al. [6,7]. From those papers, it is evident
that the number of studies focusing on strategic and/or tactical decisions in HHC, from an
operations management (OM) and operations research (OR) perspective, is very limited.
This conclusion is confirmed by the overview paper of Grieco et al. [8]. According to
Grieco et al., the vast majority of the OR-related HHC studies focus on staff-to-patient
allocation, visit scheduling, and the routing of visits, leading to more technical reviews
concerning HHC routing and scheduling [9-11]. In contrast, only a few studies consider
strategic and/or tactical decisions concerning team size and composition.

Below, we provide an overview of and discuss relevant studies that focus on resource
dimensioning and team composition within a long-term care setting (i.e., residential and
HHC). We opted for this scope because HHC is a prominent part of the Dutch long-term
care (LTC) system. In addition, as resource dimensioning and team composition in an LTC
setting is generally carried out at strategic and tactical levels, studies that focus on the
operational level were not taken into account. In addition to resource dimensioning and
team composition, the concept of “economies of scale” will also be elaborated on as it plays
an important role in the remainder of the paper.

From a healthcare-capacity-planning perspective, determining team sizes can be
considered a resource dimensioning issue. Many studies have been devoted to resource
dimensioning, most frequently for hospital capacity, of which a large share are quantitative
in nature and stem from the domains of OR and OM.

Resource dimensioning at a strategic level involves structural decision-making on
a relatively long time horizon (typically 1 year or more). Two examples of OR/OM
studies involving residential care services at a strategic level are those of Christensen et
al. and Moeke et al. [12,13]. Multiple quantitative studies have been conducted regarding
economies of scale and scope from the perspective of the total organization (i.e., applying an
aggregate perspective). Most of these studies make use of methods like regression analysis
(e.g., [12]) or data envelopment analysis (e.g., [14]). Using a less aggregate approach, the
study of red Moeke et al. aims to provide more insight into the effects of scale for small-scale
living facilities in terms of waiting time and occupancy [13]. They present a comprehensive
what-if analysis based on a discrete-event simulation model. When it comes to OR/OM
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literature regarding resource dimensioning on a strategic level in a home healthcare context,
the districting problem is the most common area of focus (see, e.g., [15,16]). According to
Benzarti et al., districting a territory is a strategic decision that aims at grouping basic units (a set
of patients) into larger clusters, i.e., districts, so that these districts are “good” according to relevant
criteria. These criteria can be related to the activity, demography, or geographic characteristics of
the basic units [15]. In this paper, we essentially also try to determine the ‘optimal size of a
district’, but our goal is to provide generic guidelines that abstract from the specific region.
As such, the study presented in the current paper has a fundamentally different focus than
the districting papers mentioned above.

The time horizon of decisions related to resource dimensioning at a tactical level is
typically 3-12 months. OR/OM studies with a focus on resource dimensioning at a tactical
level in a residential care context are scarce. The studies of Moeke et al. and Van Eeden et al.
were the only ones we could find [17,18]. The study of Moeke et al. provides insights into
how and why ‘scale of scheduling’ and the enlargement of care workers’ jobs (blending
tasks of different qualification levels) affect the number and type of staff required to meet
the preferences (in terms of day and time) of nursing home residents [17]. The focus is on
activities of daily living (i.e., activities like bathing or showering, dressing, getting in and
out of bed or a chair, walking, using the toilet, and eating). The study of Van Eeden et al.,
on the other hand, focuses on determining the required amount of capacity regarding
random care activities [18]. Based on the analysis of real-life ‘call button” data, they present
a queueing model that can be used by nursing home managers to determine the number of
care workers required to meet a specific service level. As mentioned in the recent overview
of Grieco et al., OR/OM studies with a focus on resource dimensioning at a tactical level
are also scarce in a home healthcare context [8]. To the best of our knowledge, only the
following three studies fall into this category: [19-21]. Each of the three studies propose a
two-stage capacity planning approach based on (integer linear) stochastic programming.
The model of Nikzad et al. considers decisions on districting, staff dimensioning, resource
assignment, scheduling, and routing simultaneously [19]. Their results show that the
algorithm is able to solve large instances. As such, it also considers the more strategic issue
of districting. In the work of Restrepo et al., a two-stage stochastic programming model is
presented for employee staffing and scheduling in a HHC context [20]. In this model, the
issue of staff dimensioning is part of the first-stage decision process. Finally, Rodriguez et al.
aim to determine the number of care workers required to balance the coverage of patients
in a region and the workforce cost over several months [21]. We observe that these papers
tend to focus on optimization rather than on providing generic capacity guidelines, which
is our aim.

Team composition also plays an important role in creating effective and efficient LTC
delivery systems (see e.g., [22]). In line with the objective of this study, our literature
search focused on OR/OM studies that deal with determining the optimal skill-mix in an
LTC context, where skill-mix refers to the mix of staff in the workforce or the demarcation of
roles and activities among different categories of staff [23]. More specifically, regarding team
composition, the focus in this study is on ‘the mix of staff’ in terms of qualification levels
(see also Section 3). Despite determining the right staff mix being considered important, to
the best of our knowledge, the work of Moeke et al. is the only OR/OM study that focuses
on this issue in an LTC context [17].

Finally, we note that questions concerning resource dimensioning and ‘team size’
are intimately linked to the concept of economies of scale. For instance, for bed capacity
decisions in hospitals (phrased as ‘how many hospital beds” by Green [24]) it has long
been recognized that smaller hospital units should have lower target occupancy rates to
achieve the same levels of delay. More generally, economies of scale in resource planning
describes the positive relationship between the performance of the planning outcome (in
terms of efficiency or effectiveness) and the pooling of customer demands, along with the
pooling of the required resources to serve those demands. Therefore, within the realm of
resource planning, it also known as the “pooling principle’ [25-27]. From a mathematical
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perspective, the benefits of increasing scale are the consequence of a reduction in relative
variability as the standard deviation of the sum of two random variables is smaller than the
sum of the two standard deviations (if the coefficient of correlation is smaller than 1) [28].
We refer to the studies of Van Leeuwaarden and Whitt for a more elaborate exposition of
the impact of scale in a queueing context [29,30].

1.2. Background: Practice

In the Netherlands, HHC services are provided to persons in need of care or support
due to (chronic) illness, disability, or impairment. Determining eligibility for HHC services
is carried out by the Centre for Healthcare Indication (CIZ). To receive paid home care, the
CIZ must issue a so-called “indication of need’. The services provided by HHC organiza-
tions must fit within the limitations of this indication of need (the type of care, amount of
care, time period, etc.). In 2021, the Netherlands counted over 2500 HHC providers who
collectively served about 585,000 people in the same year [31]. Especially, elderly people
make use of HHC services. By 2021, roughly about 80% of the Dutch HHC clients were
aged 66 and over, with an average age of 75. Most recipients are women (59%), which can
be explained by the fact that life expectancy is higher for women [32].

Our partner HHC provider provides home, residential, custodial, personal, and
informal care support to roughly 12,000 clients, with about 4000 employees (1600 FTE)
and 1000 volunteers (2021 data). Regular home care is provided by a group of 55 teams.
During the period 20202021, each team served 210 clients on average. The variation in
client numbers across teams largely hinges on the intensity of care required by the clients
and the population density of the relevant area. The total coverage area of the HHC teams
is around 300 square kilometers. Table 1 provides an overview of the main characteristics
per type of area (i.e., urban, suburban, and rural).

Table 1. General information per area type for the years 2020, 2021; all numerical values (except team
count) represent the mean, with standard deviation in brackets.

Area Type Teams Planned Care (h/wk) Clients Clients/km?
Urban 26 238 (51) 221 (51.4) 71 (31.4)
Suburban 18 224 (54) 238 (61.3) 11 (5.4)
Rural 11 213 (46) 176 (53.6) 3(1.1)

Within each team, not every care worker is allowed to perform all tasks. Based on
their education and expertise, care workers are hierarchically divided into three distinct
qualification levels (QLs). Depending on the type of care, healthcare tasks are assigned to
a healthcare worker with the required level of qualification. The hierarchical division of
care workers’ tasks is also referred to as differentiated practice (e.g., [17]). Table 2 shows
the QLs relevant in the context of this study. Here, the three QLs are denoted as PV niveau
2+, PV niveau 3, and VP niveau 3, as described by our partner HHC organization. Note
that “‘PV” and VP’ are Dutch abbreviations for ‘persoonlijke verzorging’ (personal care)
and ‘verpleegkundigde zorg’ (nursing), respectively, whereas the number after ‘niveau’
(level) denotes the required skill level.

Table 2. Overview of qualification levels.

Qualification Level Description Type of Tasks Proportion of Total Planned Care
1 PV niveau 2+ Personal Care 67%
2 PV niveau 3 Personal Care 9%
3 VP niveau 3 Nursing 24%

In the context of capacity planning, non-direct care activities should be taken into
account for the working time of the care workers (e.g., [28]). Regarding the division of
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working time, we use the classification as presented in Figure 1. The percentages that
correspond to the categories ‘non-client related administration time’, ‘holiday and leave
time’, and “sick leave’ are according to the studies [5,33,34], respectively.

The sum of the first two categories is the time during which care workers are available;
we will refer to this as the effective capacity (as opposed to categories three and four in which
care workers are not available). In the remainder of this paper, we mainly consider the
effective capacity, with a particular focus on direct care time (e.g., Section 3.1 below also
only involves direct care). The holiday and (sick) leave time are assumed to be given.

Direct care time (66%)

Including time for: traveling, client-related
administration time and education and

trainin
g — Effective capacity

Non-client related administration time
(13%)

L
=
=
O
Z
X
x
(@)
=

Sick leave (8.5%)

Figure 1. Distribution of working time across four categories.

1.3. Contribution

The blind spot in the existing literature, enhanced by the demand of our partner
organization and the current challenges faced by Dutch HHC organizations, has been
the primary motivation for a constructive research study whose results are presented and
discussed in this paper. The aim of this paper is to provide guidance to managers and policy
makers by formulating a set of six practically applicable principles that address issues on
capacity planning regarding team size and composition in a HHC context. The team size
concerns the required number of care workers per team, whereas the team composition
refers to the mix of care workers (in terms of qualification levels) in each team and the
demarcation of roles and activities among the different categories of care workers. To
address the issue of ‘the ideal team size’, we do not necessarily restrict ourselves to the
current division of teams; the goal is to provide insight into the impact of changing the
amount of demand that should be served by a single team. This can be practically achieved
by either (re-)designing the cooperation between teams or, more drastically, by splitting or
merging teams or redesigning the current division (which relates to the districting problem;
see, e.g., [8]).

The six principles originate from discussions with our partner HHC organization and
are formalized in terms of elementary mathematical models that capture the fundamental
elements. Furthermore, the principles are supported by real-life data and demonstrated
using practice-based scenarios. The paper is of value to both the management of HHC
organizations as well as the scientific research community. For management, the principles
provide both guidance and quantitative support regarding decisions about the employment
of capacity, including strategic questions concerning the ‘ideal team size’. A particularly
appealing property of the presented principles is that they support decision-making without
the need for detailed data. For the scientific community, the data analysis offers insight
into some key characteristics of HHC. Moreover, the models considered in this paper are of
a fundamental nature; they may serve as inspiration and a starting point for more detailed
modeling of the HHC demand and supply processes.
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2. Methods

In accordance with the approach for constructive research presented by Kasanen et al.,
the following steps were followed [35]. With help of our partner HHC organization, we first
identified a practical problem with research potential. Next, to gain a more comprehensive
understanding of the topic, we conducted an extensive and systematic data analysis (see
Section 3.1). To this end, we obtained data from our partner organization regarding all
planned care activities of the years 2020 and 2021. For each single activity, we have, among
others, an anonymized client ID, the date and day part, the duration, the qualification level,
and the location (estimate). We note that we were unable to obtain historical data about the
deployment and contracts of care workers (the capacity of the service system). As such, the
number of care workers is based on generic estimations. As part of the data-validation pro-
cess and the corresponding analysis, regular monthly validation sessions were conducted
throughout the project. These sessions involved collaboration with professionals from our
partner HHC organization. Guided by the data analysis outlined in Section 3.1 and in close
interaction with our partner organization, we then developed six model-based principles
(i.e., rules of thumb) (see Section 3.2). For these six principles, we formulated elementary
mathematical models that capture the essential properties of each principle. Subsequently,
using various forms of algebraic manipulations, we obtained the performance measures
of interest for each model. Next, by using practice-based scenarios, we demonstrated the
added value from a practical perspective (see Section 4). Finally, we discuss the applicability
and scientific value of the presented principles (see Section 5).

3. Results

In Section 3.1, we present the results of our data analysis . Furthermore, the model-
based principles are presented and elaborated on in Section 3.2.

3.1. Data Analysis

The aim of this subsection is to provide insight into the demand for home care, where
the demand is defined as the planned HHC activities over time. Although the delivery of
care is influenced by how capacity is deployed, we use the planned care activities as an
approximation of the actual demand. For interpretation, it is useful to consider a period
during which a client regularly receives the same type of care, which we refer to as a
case. More specifically, a case is defined as care for one client at one given qualification
level, for which the time difference between two subsequent visits does not exceed 30 days.
In practice, one client may have multiple active cases simultaneously. We first consider
the total demand for care (volume of care) revealing substantial variability in demand.
Subsequently, we decompose the volume of care into its three primary ingredients: demand
per case, the number of new cases per week, and the length of stay (LoS) per case.

3.1.1. Volume of Care

For the considered qualification levels, with a total of about 76%, the vast majority of
the delivered care consists of personal care, i.e., PV niveau 2+ and PV niveau 3 (see Table 2
for further details). Personal care encompasses all actions and practices that individuals
typically undertake to maintain their well-being. This includes not only basic personal
hygiene routines, such as bathing, but also specialized personal care required to address
health conditions, such as managing a stoma.

The distribution of care provided among teams, QLs, and area types is depicted in
Figure A1, showing the aggregate demand over the years 2020 and 2021. In line with earlier
observations, the distribution of care types over the three QLs remains predominantly
occupied by personal care. Furthermore, no significant differences can be observed between
the various area types. The average aggregate planned care per team is 228 h per week. For
most teams, the demand is reasonably close to this average, albeit there are some smaller
(teams 5, 27, and 28 have a total of less than 15k care hours), and larger (teams 4, 21, 23,
31, 32, 37, and 41 have more than 30k care hours) teams. In Figure 2, boxplots of the total
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weekly demand per team are depicted. As indicated by both the interquartile range and the
differences between the upper and lower whiskers, there is considerable variability in the
aggregate demand per team. In the figure, large volumes of weekly demand are typically
associated with more variability, but this does clearly not apply to all teams. The weekly
demand per team is more or less symmetric, with only a few teams exhibiting stronger
degrees of skewness (left and right). Observe that the variability in weekly demand makes
the efficient use of capacity challenging, as we will demonstrate in Sections 3.2.1 and 3.2.4.

Area type
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Figure 2. Boxplots of weekly demand for care services per team by area type; years = 2020 and 2021.

The total demand for care per weekday and for each part of the day is visualized
in Figure 3. The demand over the course of the week is rather stable, with a decrease in
demand during the weekend of about 19.3% compared to the weekdays. The differences in
demand across the day are more noticeable. The vast majority of care is taking place in the
morning (68.6%), followed by the evening (24.2%). Only 7.3% of the demand is provided
during the afternoon. This uneven distribution of demand across the day may complicate
the deployment of care workers, as we will demonstrate in Section 3.2.5.

3.1.2. Case Demand

The boxplot in Figure A2a describes the distribution of mean weekly care per case
over all 55 teams. The median is about 3.3 h, with the lower and upper fences at 2.4 and
4.0 h, respectively. To put this into perspective, in the year of 2021, HHC clients in the
Netherlands received an average of 6 h of care per week. However, the variation in the
received amount of care was large. For example, terminally ill clients received 25 h of care
per week, while frail elderly and chronically ill people who were in need of somatic and/or
psycho-geriatric care for more than 3 months received 4 h of support per week [32]. Note
that a client may have multiple cases simultaneously, making a comparison between care
per case and care per client more difficult.

To visualize the variability in weekly planned care per case, Figure A2b depicts a
boxplot of the variance-to-mean ratios (VMRs) of the weekly care per case of the 55 teams.
The figure indicates that the variance in demand per case is roughly about four times the
mean (50% of the values are between 3.1 and 4.5).
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Figure 3. Total demand for care per week day by part of day; years = 2020 and 2021.
3.1.3. Arrival Rate

The boxplot in Figure A2c illustrates the distribution of mean weekly new case arrivals
across the 55 HHC teams. The median number of mean weekly new case arrivals by team
equals 3.6, with lower and upper fences at 1.0 and 6.5, respectively. The median of the
55 VMRs of the number of new cases is 1.4, and the VMRs are somewhat right skewed with
a lower fence at 0.9 and an upper fence at 2.4 (Figure A2d). Note that there is thus some
slight overdispersion compared to a Poisson arrival process.

3.1.4. Length of Stay

The LoS is here defined as the number of weeks between the start and conclusion of a
given case. To estimate the distribution of the LoS and corresponding statistical measures,
a Kaplan-Meier (KM) survival curve $(t) is constructed. This is the solid line in Figure A3.
The curve of the tail distribution stops around the 100 week mark, which is the actual
time range of the data set. This highlights a key challenge when estimating the mean and
variance of the LoS as the data are both left- and right-censored.

A common approach to handling censored data is to fit a parametric distribution, such
as the Weibull, to the non-parametric KM curve. Figure A3 depicts the Weibull fit to the KM
curve for one care team. Although the quality of the fit seems to be (visually) acceptable
for this particular case, an accurate estimation of the tail seems difficult, which in turn may
severely impact the estimation of the mean and variance. For the analysis in Section 3.2, we
therefore use an implied mean LoS.

3.2. Model-Based Principles

In this section, we formulate six key principles that can be used as a guideline for
tactical and strategic decisions regarding the team size and composition. The principles
are based on stylized models that capture the essential dynamics of the HHC process. For
each principle, a more complex model can be constructed. However, our focus here is on
simplicity, and we aim to facilitate a shift in the mindset of the HHC managers.

Below, we first state the principles in popular terms. More precise statements are
presented in the subsequent Sections 3.2.1-3.2.6. In each subsection, we first present the
model on which the principle is based, followed by a numerical illustration.
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Principle 1 (Care demand). The absolute variability in healthcare demand increases with scale,
whereas the relative variability decreases with scale. As a consequence, the buffer capacity required
to handle demand variability decreases with scale, but the possible reduction becomes smaller as the
scale increases.

Principle 2 (Travel time). The travel time for an efficient routing strategy is roughly proportional
to the square root of the service area and number of clients. Moreover, the travel time is not subject
to economies of scale.

Principle 3 (Effective capacity). Small teams are more prone to lower levels of effective capacity
than large teams as a result of variability in leave of absence and sick leave, whereas the differences
between larger teams become smaller.

Principle 4 (Team composition). Small teams must deploy above-average numbers of high-level
care workers to sufficiently cope with the variability in demand. As the scale increases, the amount
of capacity required will move closer to the average workload for each qualification level.

Principle 5 (Contract type). There is a restriction on how many contracts can be full-time, if split
shifts need to be prevented. The fraction of full time contracts can be increased by augmenting the
number of client-related care activities during the afternoon.

Principle 6 (Communication and management). The complexity of managing a team increases
rapidly with team size due to the number of possible interactions between team members. The
complexity can be mitigated by splitting the team into smaller flexible sub-teams coordinated by a
central managing post.

3.2.1. Modeling Care Demand and Required Capacity

For Principle 1, we consider the amount of capacity that is required to keep home
care accessible, i.e., avoid excessively long waiting lists. In particular, we determine the
expectation and variability in the amount of care work that is offered. We use this to
provide a rule of thumb for the required capacity that is provided by a rich literature on
square-root staffing principles. Note that this principle relates to the direct care time in
Figure 1 and the volume of care in Figure 2.

Model

First, we determine the demand for home care in terms of the required number of care
hours per week if all demand can be met. Essentially, we interpret the demand for care as a
discrete-time infinite-server queue, in which each server represents a single care hour per
week. In particular, in line with Section 3.1, the three ingredients generating demand for
care are (i) As, the number of new cases in week s; (ii) S;, the length of stay (LoS) of case
i (in weeks); and (iii) B;, the demand for care per week of case i (in hours per week). We
assume that the number of new clients, the LoS, and the case demand for care per week
are all i.i.d. and mutually independent (see Remark 2 in case S; and B; are dependent).
Moreover, we denote by m,, ms, and m, their respective means, and by 03, 052, and 0';, their
respective variances.

Next, we determine the mean and variance of the demand. Interestingly, the variance
of the demand in stationarity can be expressed in terms of the so-called Gini coefficient
(see also [36]). This coefficient is related to the Lorenz curve, which is used in economics
to represent the inequality in the distribution of wealth or income among the citizens of a
country. Here, we use it for the inequality in the LoS S among cases. The Gini coefficient is
defined as the area under the Lorenz curve. In particular, the Gini coefficient [37] is, in this
case for a discrete random variable S,

_ 1 & 2
Gs_1—ESI§P(S>k).
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For short- to medium-term planning of capacity of several weeks ahead, it is of interest
to consider the time-dependent demand N;. Let Ay be the number of patients currently
present, i.e., at time 0, and let S be their remaining LoS and B; their case demand.

Lemma 1. The mean and variance of the number of care hours t weeks from now is given by

~1
E[N] = NoP(S" > t) + mamyg tz: S(t—s) 1)
s=0
Ao t—1
Var(N;) = S"(t)(1 — S (¢)) Z B? + ma((f(g + mé) Z S(t—s)
i=1 s=0
~1
—0—m§(a§—ma)tz(;JS(t—s)2 )

with S(t) = P(S > t) and S'(t) = P(S" > t). In stationarity, the mean and variance of the
number of care hours reduce to

E[N] = mymgsmg (©)
0’2 (72

Var(N) = mamsmg | -2 + mg +mg(1 — Gs) <” - 1> 4)
mg mﬂ

Proof. Consider the required demand in week . We then have the following relation:

Ao t—1 As
Ne=Y 1{S'>t}B;+ Y Y 1{S; >t —s}B,, )
i=1 5s=0i=1

where S; and B; represent the LoS and weekly demand of the ith case arriving in that
specific week. Observe that the first term represents demand from cases currently present,
whereas the second term is due to cases that are yet to arrive. Using this relation, we may
determine the first and second moment of the demand. More specifically, combining this
relation with Wald’s equation, we obtain

EIN] = Y BB(S" > 1) + t_):l E[A]P(S > t — s)E[B]
i=1 s=0
= NoP(S" > t) +mumyg t_i S(t—s). (6)
s=0

with Np the current demand for care and S(t) = P(S > t) the survival probability or tail
distribution of the LoS.

Now, for the variance we distinguish again between cases currently present and newly
arriving cases. Note that 1{S] >t — s} corresponds to a Bernoulli random variable with
probability S"(t) = P(S" > t — s), from which we directly retrieve the variance.

For the cases that are yet to arrive, we use that if the random variable N is independent
of the random variables Xy, Xy, ..., then Var(Y | X;) = ENVar(X;) + VarN(EX;)?;
see, e.g., ([38], Equation (A.10)). We will apply the above with X; = 1{S; > t —s}B;.
Note that 1{S; > t — s} corresponds to a Bernoulli random variable with probability
S(t—s) =P(S > t —s). Moreover, observe that

Var(1{S > t—s}B) = Var(1{S > t—s})(VarB + (IEB)Z) + (E1{S >t —s})*VarB
= S(t—5)(1=8(t—3))(cF +m2) +S(t — )%

Combining the above, we obtain
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Var(N;) = AZOLB?P(S’ >H(1-P(S" > 1))
i=1

-1
+ Y EA, [S(t —s)(1—S(t —s))(ag +m§) +S(t —s)z(ré}
s=0
+ Var(A;)S(t — s)2m§
= ZO: BFS"()(1 = " (1)) + mq(og + m3) E S(t—s)
i=1 s=
t—1
—l—m;(a,f—ma)sgS(t—s)z, 7)

where the second equality follows from some rewriting.
For the stationary demand N, we let t — oo in (6) and (7), yielding the result. [I

Remark 1. We note that the demand for home care is related to the number of customers in a
discrete-time infinite-server queue with batch arrivals (GX /G /oo). The difference of such a queue
with our setting is that we assume that every customer that arrives in the same batch has the same
service time. In addition, we do not assume that a customer requires a server, that is, we allow for
fractional values.

Remark 2. We note that it may be argued that S; and B; are dependent due to the type of care
activity of case i. In that case, the demand per activity type can be analyzed first, yielding (3)
and (4) for its mean and variance. Then, the total demand simply follows by aggregating over the
activity types.

The infinite-server queues provide some fundamental insight into how to choose the
capacity in systems with a large but finite number of servers, through a rich literature
on heavy-traffic approximations. These heavy-traffic approximations are typically in the
Quality-and-Efficiency-driven (QED) regime. More specifically, the suggested heavy-traffic
approximation for similar models (see, e.g., [39]) is

N =~ N(]E[Nt],Var(Nt)), (8)
where N (y, 0?) is a random variable of a normal distribution with mean y and variance 0.

In [30], the author focuses on a rough characterization of the required service capacity
to achieve a desired grade of service 7y, where the grade of service is related to the probability
of delay. Using (8), it can be seen that the approximate required capacity t = 0,1, ... weeks
from now is s; = ps + v+/Ptzt, which is also often referred to as the square-root staffing
formula (which is intimately related to the QED regime). Here, p; = E[N}] is the expected
demand in week t, and z; = Var(N;) /E[N¢] is called the peakedness, or VMR, reflecting the
variability in the aggregated demand process. Observe that with this choice of s;, it holds
that the probability that the demand exceeds capacity s equals P(N; > st) =1- CIJ(')/). We
note that there is now a substantial body of literature on such heavy-traffic approximations
with many servers; see, e.g., the recent survey [29] and references therein. Moreover, similar
types of asymptotic results have been derived for infinite-server queues with batch arrivals,
see [39,40].

For the first principle, that is, the required capacity that HHC organizations need, we
rely on the heavy-traffic approximations of many server queues. In particular, assuming
that HHC organizations operate in a QED regime combined with Lemma 1, we can specify
Principle 1 as follows.
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Principle 1 (Care demand). For some grade of service <y (typically v € [0.5,2]), the required

weekly capacity C is
where p = mamsmyg is the average demand, and z is the peakedness given by
z:a—é’%+m +me(1— Gs) 0—5—1 (10)
mg g g )\, .

Hence, the utilization of the capacity C is

revealing economies of scale and diminishing returns.

Here, the peakedness z represents the variability in demand that results from variabil-
ity in the arrival process, LoS, and case demand per week. To be precise, Var(N) = zp.
Observe that the first term in (9) ensures that the capacity is sufficient to handle the load
on average, whereas the second term represents the safety capacity required to cover the
variability in demand (in particular, the standard deviation of N is ,/zp). Hence, the safety
capacity only grows with the square root of the offered load, providing opportunities for
economies of scale.

The principle as stated above is formulated for a stationary system, i.e., for the long
term in case of the absence of structural changes. For the short-term, in the order of weeks,
the care demand depends on the current situation. The principle can easily be adapted by
using E[N¢] and z; = Var(N;) /E[N¢] instead of p and z, respectively.

Remark 3. We note that our peakedness z is consistent with the G/G /oo results. Assuming
B; = 1, (10) reduces to z = 1+ (1 — GS)(% —1). Moreover, due to the relation between

interarrival times and number counts, it holds that c% 4= (73 /m,, with c% 4 the squared coefficient
of variation of the interarrival times. This corresponds to the classical result due to [41]. We refer
to [30,42] for additional background and to [36] for the relation between the peakedness and the
Gini coefficient.

Application

In Figure 4, the utilization of capacity E[N]/C is illustrated as a function of the average
weekly demand p in hours. This illustration is based on teams 5, 29, and 32, which were
chosen based on their features depicted in Figure 2. In particular, team 5 is characterized by
a relatively low volume of weekly demand (E[N] = 132.30) and low variability (z = 6.99).
Team 29 exhibits a moderate volume of weekly demand (E[N] = 231.59) but experiences
substantial variability (z = 18.49). Finally, team 32 has a high volume of weekly demand
(E[N] = 370.87) and a moderate level of variability (z = 9.01). For the three lines in Figure 4,
the peakedness is held constant whereas average weekly demand varies. For each team,
the utilization of capacity is marked for their current weekly demand and peakedness on
the respective graph. As can be observed, the utilization of capacity increases with the
average weekly demand, albeit at a decreasing rate, demonstrating economies of scale
and the law of diminishing returns. This effect appears when comparing teams 5 and 32
since the utilization of capacity of team 32 is significantly higher than for team 5 due to
a larger volume of weekly demand (whereas the peakedness is somewhat comparable).
Although team 29 also has a larger volume of weekly demand than team 5, its utilization of
capacity is lower due to the relatively high peakedness. This demonstrates that reducing
the variability in weekly demand can also increase the utilization of capacity. Overall, we
see that an average demand of at least a couple of hundred care hours per week seems
desirable for an efficient HHC operation. This exceeds the current size of most teams.
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Figure 4. Utilization of capacity E[N]/C as a function of the average weekly demand p in hours, with
v = 1 based on the peakedness of teams 5, 29, and 32.

3.2.2. Modeling Travel Time

Regarding Principle 2, the travel time of care workers is considered to be part of the
direct care time in Figure 1. In this subsection, we describe a rule of thumb for the amount
of travel time during a day part.

Model

The approximation for the travel time depends on the number of clients with care
activities n, the size of the service area A, and the number of care workers M. Essentially,
the travel time is the result of determining a set of M routes that visit all n clients from
a central location (office of the HHC organization). Without any further constraints, this
corresponds to a Vehicle Routing Problem (VRP), with vehicles corresponding to care
workers. Due to many practical constraints, such as qualification levels and time windows,
there is now a large body of literature on the Home Healthcare Routing and Scheduling
Problem (HHCRSP); see, e.g., [9,10]. As there are currently no approximations for the route
length of the HHCRSP, we consider the length of the optimal route for the VRP. However,
note that similar approximations remain valid for the Capacitated VRP [43] and some
specific time window instances [44], such that the approximation seems reasonably robust.

For the case M = 1, already in 1959, [45] showed that the optimal tour in the classical
TSP asymptotically converges to k;\/An for n — oo and the constant k;. By now, there are
various approximations [46], where many of them are of the following type:

VRP ~ k;VAn + k.M, (11)

where k; and k. are constants, and 7 is the average distance from clients to the central
location. The coefficients reported in [46] vary from 0.44 to 0.59 for k; and values close to 2
for k.. Here, the first term corresponds to the length of the route required for visiting every
client, whereas the second term relates to traveling from and to the central location.

The approximation (11) provides some interesting insights. First, the type of region
(urban, suburban, and rural) influences the route length through the size of the area A, as
may be expected. Second, as the number of visited clients n increases, the route length
only increases with the square root of the number of clients. Hence, the travel time per
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client decreases and the relative amount of traveling becomes smaller. Finally, we give two
illustrative examples to support the organizational decisions related to the team size.

Example: merging regions. Suppose that there are R identical neighboring regions, each
with 7 clients, service area A, and M care workers. If the R regions are merged, there are
nR clients, the service area is of size AR, and there are MR care workers. If the distance to
the central location is the same, then the new total route length is

VRP - merged ~ k;v/AR x nR + kcPMR = R(k, VAn + kJM) = R x VRP.

Hence, there is no efficiency gain in traveling when merging different regions. In fact,
the distance to the central location may become larger, making it even worse.

Example: individual routes. Suppose that the n clients are randomly assigned to the M
care workers. This may happen when clients are pre-assigned to care workers to provide
continuity of care. As the clients of each care worker may be spread over the area, the
traveling time of each care worker is now k;v/A x n/M + k.7. Hence, the total route
length is

VRP - ind ~ M x <k”/A x % —i—kC?) = V/M x VRP + (1 — v M)kcFM.

Apart from traveling from and to the central location, the route length becomes v'M
times as large. Thus, pre-assigning clients to care workers may come at the cost of a
considerable increase in traveling.

In practice, there can be various complicating factors, such as time windows and
different qualification levels of tasks. However, the above examples and approximation
provides some fundamental insight into routing to customers in a spatial area.

Principle 2 (Travel time). The travel time for an efficient routing strategy is roughly
VRP =~ kv An + k.7M for constants k; between 0.44 and 0.59, and k. close to 2. Moreover,
merging regions does not lead to a more efficient route.

Application

The total distance travelled by the team of care workers per day is estimated for each
team using approximation (11). The area A corresponds to Table 1; we used the source data
to determine the number of client visits n per day as this does not follow (directly) from
Table 1. The client count includes instances where the same client was visited multiple
times during a single day. As the teams did not operate from a central location, the average
distance from clients to the central location is set to 0 (7 = 0). Moreover, we took k; = 0.5.

The average of the approximated travel distances per area type can be found in Table 3.
The relative differences between area types seem consistent with what would be expected;
the travel distances in rural areas are notably longer than in urban and suburban areas,
although there are variations between teams. Overall, given the reasonably small numbers,
the contribution of traveling on the direct care time seems to be modest.

Table 3. Travel distance approximation per area type; all numerical values represent the mean, with
standard deviation in brackets.

Area Type Active Clients per Day Total Distance (km) per Day Travel per Client
Urban 83 (18.6) 10.0 (9.1) 0.12
Suburban 76 (24.7) 14.0 (7.2) 0.18
Rural 69 (16.4) 26.5 (6.0) 0.39
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3.2.3. Modeling Effective Capacity

Principle 3 concerns the availability of care workers. As visualized in Figure 1, care
workers can be unavailable due to holiday and leave time (12.5%) and sick leave (currently
8.5%). The effective capacity P is defined as the fraction of time care workers are available,
either for administration work or providing care to clients. Typically, management aims for
a target effective capacity, where the mean effective capacity is currently 79% (see Figure 1).
However, even if the target is met over the course of a year, a temporal shortage of care
workers may occur due to randomness.

Model

To obtain insight into the impact of the team size on effective capacity, we consider
the following stylized model. Let M be the total number of scheduled care workers during
a period T, and let p be the probability that the care worker is present. The period T
may either represent a single day, where M care workers are scheduled and 1 — p is the
probability of unexpected illness, or M may be the number of care workers over a longer
period (e.g., summer holidays), and 1 — p represents the probability a care worker is on
leave. The number of care workers present M then follows a Binomial(M, p) distribution.
Consequently, the properties of the effective capacity P = M/M follow directly from
this observation.

Principle 3 (Effective capacity). With p the probability that a care worker is present, the mean
and variance of the effective capacity P are

- _r=p)
EP =p, and  Var(P) = YL
whereas P(P < 1), for | € [0,1], follows from (12). Hence, for larger team sizes M, there is less
variability in the effective capacity.

In fact, from the above it follows that the standard deviation of P is linear in 1/vM,
showing economies of scale and the law of diminishing returns. Let us consider the impact
of the team size M in more detail. We use the following representation for the binomial
distribution, which also holds for non-integer M. For I € [0, 1], the probability that the
effective capacity is at most I equals

_ B(IM+1,(1-1)M,p)

P(P<I)=P(M<IM) = BUMT 1, (1= M)’ (12)

with )
B(x,y,p) = / P — Y lde
p
the incomplete Beta function and B(x,y) = B(x,y,0).
Remark 4. In practice, there may be variability in the number of working hours in period T of a

care worker. Denote by w; the number of working hours of care worker i. Then, P = Y"M w;M;/C
with C = Y™, w;, where M; is a Bernoulli random variable with probability p. Thus, we have

EP =p, and  Var(P) = p(1—p)

Ifw; = O(1) as C — oo, then we still have that op = O(1)/~/C for C — oo, with op
representing the standard deviation of P.
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Application

Figure 5 visually represents the probability P(P < I) of having an effective capacity of
at most . In this case, we consider three thresholds: 50%, 60%, and 70%. The target effective
capacity p is set at 79%. As an example, the two points in Figure 5 display the probability
P(P < 0.6) for teams of size M = 7 and size M = 19. Those team sizes are based on a
relative small team (team 5) and a larger team (team 32); the number of care workers per
week is estimated by the ratio of the average weekly demand (Figure A1) and the average
direct care time per week of a single care worker (estimated by our partner organization at
20 h per week). The figure shows that the probability of an effective capacity below 60% is
around 0.21 for the small team, whereas this probability is only 0.05 for the larger team.

PrP =)

.
20 25 30 35 40
Team size

Figure 5. P(P < I) as a function of the team size M for effective capacity levels I of 50%, 60%, and
70% (with p = 0.79).

3.2.4. Modeling Required Capacity per Qualification Level

Principle 4 concerns the team composition and relates to the direct care time of Figure 1
again. In Section 3.2.1, we established that the distribution of the weekly demand N can be
approximated by a normal distribution. Under this normality assumption, we determine
the capacity per qualification level (QL) required to cover demand, taking the hierarchy in
qualification levels into account.

Model

Let Q = {1,2,...,K}, K € N be the set of qualification levels. We assume that there an
ordering in QLs exists such that capacity of QL k can be deployed to cover the demand of
all QLs j < k as well. Denote Ny, as the required demand for QL k € Q in a given week and
assume that Nj is normally distributed with mean yj and variance cr,f. Next, let C > 0 be
the capacity of QL k deployed over the given week. The quantities C; can be viewed as
(continuous) decision variables and should be chosen such that the capacities at least cover
the average weekly demand per QL, whereas they also act as a buffer in case of demand
fluctuations. Each unit of capacity of QL k comes at a cost w; > 0, where we assume that
wj < wy, if j < k. Due to the minimum size of contracts, if capacity of QL k is used (i.e.,
Ck > 0), then the corresponding capacity should at least be ¢ units.
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Now, the (optimization) problem to determine the capacity per QL can be formally

written as
min Z wka (13)
keQ
s.t. Cx + ex > g + 11a0%, Vk € Q, (14)
Ck € {0} U [61 OO), Vk € Qr (15)

where ex = 0 and ¢ := E(L;-xC; — Nj —¢;)*, for k < K, is the excess capacity of QLs
k,...,K. Furthermore, 7, > 0 in (14) is chosen such that ®(17,) =1 — a, with a € (0,1/2)
to bound the probability of insufficient capacity. In particular, if (14) holds, then

P(N > Ci +ex) =1—(D<Ck+s_k_‘uk) <.
k

For the expected excess over C of a normally distributed random variable Y with mean
u and variance o2, we have

E(C—Y)" = (C—y)q>(CU”> +%e—%<¥>z. (16)

Observe that the optimization problem (13)-(15) has a simple closed-form solution in
case / = 0. In that case, it is always beneficial to set the capacity of each QL at the lower
bound implied by (14) since w; < wy, for j < k. In particular, the optimal solution to the
optimization problem is then

Cx = min{0, pg + 17a0% — ek}, (17)

which can be easily obtained by (backwards) induction using (16), starting at the highest
QL K. The solution in (17) yields insight into the distribution in capacity over the QLs.
Specifically, it follows directly that Cx = uk + 17,0k, implying that the highest QL has
sufficient safety capacity. This may not hold for each individual QL, as capacity of higher
QLs may be utilized.

Now, consider the capacity for QL k as a fraction of the total capacity, i.e., Cx/ ¥jcg C;-
To obtain insight into the impact of team size, we scale the demand by increasing the
number of new cases m, per week while keeping the case demand and LoS the same.
In view of (3) and (4), the demand Nj is thus normally distributed with mean m,; and
variance muo',g. When m, grows large, the optimal capacities are given by (17) as Cy will
be larger than ¢ (we exclude the trivial case in which y; = 0). Then, it clearly holds that
Cx = mgpg + 1a0x+/my. Also, it may be verified by induction that the expected excess
capacity E(Cx — N)™ = &/m, for the constant & > 0 that can be iteratively determined.
Hence, Cy = mapy + /ma(0y — ) for the constant ¢ > 0. This implies that Cj < mpy +
Na0k/Mg for k = 1,..., K — 1, meaning that any QL k < K has relatively less overcapacity
than the highest QL K. Moreover, Cy/ }.;co Cj — Hk/ Ljeq Hj as 1, — oo, implying that
the capacity ratios of the different QLs are equal to the demand ratios as the team size
grows large.

Principle 4 (Team composition). The optimal team composition to cover the demand of different
qualification levels 1,. .., K can be obtained by the optimization problem (13)—(15). The highest
qualification level has relatively high overcapacity Cx > g + 4,0k, whereas for larger teams the
optimal capacity ratios converge to the corresponding demand ratios Cy./ Y.jeq Cj — pr/ Licq Hj-

We like to emphasize that the principle above only relates to the delivery of care.

Activities such as supervision are more often invested at higher QLs, but this is not yet
incorporated as it depends on agreements within the HHC organization.
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Application

In Figure 6, an example of the behavior of Cy/ }Jjcg C; is illustrated as m, increases
with 77, = 2. The example is based on team 5 since it has a relatively low volume of average
weekly demand and a relatively well-balanced ratio of QLs, as depicted in Figure Al. The
optimal capacity ratio for the current demand per QL of team 5 (i.e., m, = 1) is illustrated
with a dashed vertical line. Moreover, the ratios in mean demand per QL, jix/ Yjcg i are
illustrated with corresponding dashed horizontal lines. To ensure that care workers can
work at their own QL, we require that Cy/ } ;e g C; is close to g/ Y pj for each QL. This
implies that, for each QL, the solid lines should be close to the horizontal dashed lines in
Figure 6. It can be observed that for smaller teams (lower values of m1,), there is a relatively
large overcapacity for the highest QL due to a large relative variability in demand; see the
capacity ratio (green solid line) for VP niveau 3 in Figure 6. Consequently, a large amount
of the demand for the mid-tier QL (PV niveau 3, indicated in red in Figure 6) is covered by
the excessive capacity of the highest QL. In this case, we see that the capacity ratio of the
lowest QL (PV niveau 2+) is closest to the ratio in demand since the blue solid and dashed
lines are relatively close to each other. For all QLs, the capacity ratios converge to the ratios
in demand.

0.7 7 —— PV niveau 2+

—— PV niveau 3
—— VP niveau 3
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o
b

Figure 6. Ratio in capacity C/ ¥ jco C; as mean number of new clients 11, increases; dashed horizon-
tal lines represent ratios in demand i/ ¥je g #tj- Dashed vertical line corresponds to current demand
of team 5.

3.2.5. Modeling Required Contract Type

Contract type affects all elements of Figure 1, but as far as Principle 5 is concerned,
we focus on the demand pattern across the day of the direct care time, combined with the
non-client related administration time. In particular, the relatively small fraction of work in
the afternoon (see Figure 3) poses a challenge for offering large contracts.

Model

To quantify the impact of the demand pattern across the day on the mix of full-time
and part-time contracts, we consider the following stylized example. We assume that short
shifts take place during one day part (morning, afternoon, or evening) and are of equal
length. A long shift covers a short shift and part of the afternoon work. In particular, we
scale time such that the length of a short shift is the basic time unit. The length of a long
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shift equals @ > 1 times the length of a short shift. Let by > 5 and bpr € (0,5] denote
the number of short shifts required for a full-time and part-time contract, respectively.
We assume here that any care worker can at most structurally work 5 days per week.
Moreover, denote by f, and fj the fraction of work that needs to be carried out during the
afternoon (care activities during day part 2) or that can be scheduled at any moment (e.g.,
administration), respectively.

Principle 5 (Contract type). All contracts can be full time if
fo+f22min{b”_5 ,1—1}. (18)
bpr — bpr a

If (18) does not hold, then the maximum fraction of full-time contracts (prr) to avoid split
shifts, due to the large fraction of client-related care activities in the morning and evening, satisfies

(fo+ f2)bpr
PFT < ber —5+ (bpr — ber) (fo + f2) 1

‘Proof’ of Principle 5. Equation (19) follows by considering the amount of work that
needs to be done during short shifts. Due to the structure of long shifts and the amount
of work during the afternoon, the fraction of work during long shifts can be at most
(fa+ fo) xa/(a—1). We assume that f, + fo < 1 —1/4a, as (18) holds otherwise and
the result is trivial. Equivalently, the fraction of work during short shifts is at least
1—(f2+ fo)a/(a—1). The total capacity is M[brrprr + (1 — prr)bpr], expressed in terms
of number of short shifts, where M is the total number of care workers. Thus, the total
amount of work that needs to be carried out during shorts shifts is M[brrprr + (1 — preT)
bpr] x (1= (f2+ fo)a/(a —1)).

Now, consider the maximum number of short shifts available as a result of prr.
Consider a care worker with a full-time contract. To respect the contract hours, the number
of short shifts x for a full-time contract should satisfy x + (5 — x)a = brr; hence, for a
care worker with a full-time contract, there are (52 — bpr)/(a — 1) short shifts. Hence, the
number of short shifts available is at most M[ppr (54 — brr)/(a —1) + (1 — ppr)bpr]. There
should be a sufficient number of short shifts available to cover the amount of work. That is,

5{1—171:

a
M|prr—— L+ (1= prr)bpr| > Mlbprper + (1 — prr)bpr] X <1 —(f2 +f0)a—1>'

The inequality above can be rewritten as

per(ber — 54 (bpr — brr) (fo + f2)) < (fo + f2)bpr.

In case fo + fo > (bpr —5)/(ber — bpr), this equation holds for any ppr € [0,1]
yielding (18). Otherwise, solving for prr yields (19). [

Application

In Figure 7, the right-hand side of the inequality in (19) is illustrated as a function of
fo and f, for set values of a = 1.5, brr = 8, and bpr = 5. These values correspond to short
shifts of 4 h, long shifts of 6 h, full time contracts of 32 h per week, and part time contracts
of 20 h per week. In the current situation, the fraction of work during the afternoon is
f2 = 7.3% (as shown in Figure 3). The left blue dot in Figure 7 indicates that only about 15%
of the contracts can be full time if other work cannot be carried out during the afternoon. If
all administrative work can be carried out during the afternoon (fy = 13%), then the second
blue dot shows that the maximum fraction of full-time contracts a HHC provider can
offer is approximately 50%. As an example, if the desired maximum fraction of full-time
contracts is 80%, then this can be achieved by increasing the fraction of work during the
afternoon or any moment (fy + f2) to approximately 32% (as indicated by the red star in
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Figure 7). This can potentially be achieved by shifting work from the (late) morning or
(early) evening to the afternoon.

0.8 - m—— mm e m e -
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Fraction of full time contracts
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Fraction of work during midday or any moment (fy + f3)

Figure 7. Maximum fraction of full-time contracts (upper bound of prr in (19)) as a function of
available work during the afternoon or any moment (fy + f2).

3.2.6. Modeling Complexity of Team Size

The principles of the previous subsections indicate that the efficiency of a team (almost)
invariably increases as the team size grows. However, it is also intuitively clear that larger
teams are harder to manage. With this in mind, Principle 6 focuses on the number of
interactions that occur within a team. For example, in [47] the author concludes that
smaller teams make for better team work, mainly because information sharing between
team members and coordinating activities among team members becomes more difficult as
the team size grows. Although the discussion in [47] concerns project teams in a broader
sense, the idea of considering interactions also applies to a home care context as care
workers discuss the health status of their clients and coordinate their schedules.

Model

To illustrate the number of interactions in a team, we may represent a team of size M
as a graph, where each node represents a team member and each edge corresponds to a
line of communication between team members (i.e., interaction). Under the assumption
that such a graph is complete (i.e., each team member is able to communicate with all other
members within the team), there are

M(M—1)

5 (20)

edges in total. We refer to Figure A4 for an illustration of a complete graph for M = 5 and
M = 10. In terms of complexity, the number of interactions between a team of size M thus
equals O(M?). The blue line (for the complete team) in Figure 8 visualizes how the number
of interactions increases as the team size M grows.

Both figures indicate that the difficulty of managing a team increases rapidly as the
team size grows. However, it is difficult to determine an appropriate threshold that remains
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manageable based on the number of interactions as this will depend on the type of work
and the realized and/or required number of interactions.

—— Complete team
—— Team split in 2
—— Team splitin 3
|| —— Team split in 4

200 A

150 4

100 A

Number of interactions

50 +

Team size

Figure 8. Number of interactions as a function of the team size (i.e., number of members) for a
team where all members interact (complete team) and for teams that are split up and connected by
a mediator.

The number of interactions within a large team can be reduced by splitting up the team
into smaller (flexible) sub-teams and centrally connecting the sub-teams via a mediator. In
practice, the individual sub-teams can still function as one team. The sub-teams should be
sufficiently flexible such that they can also assist other teams when necessary where the
information flow is via the mediator.

To determine the implications of this strategy in terms of complexity, consider k
individual sub-teams of sizes M1, My, ..., My, and let M = My + - - - + M. As mentioned,
all team members within an individual team interact with each other but do not interact
with members of another team. Moreover, we assume that there is one mediator that is
able to interact with all members in each team.

Again, the number of interactions within sub-team j € {1,2,...,k} equals
M]- (M]- — 1) /2, whereas the number of interactions with the mediator is equal to M. Hence,

in total there are .
M;(M; —1
M+ Y % 1)
=1

interactions taking place. In case the sub-teams are of equal size, that is, M; = %M, then
Equation (21) simplifies to

1 /1 1 1., 1 1
M+2M<kM—1> =M+ M —2M<1+kM>. (22)

Clearly, the complexity is still equal to O(M?); however, the number of interactions is
reduced compared to a single large team, cf. (20). Specifically, as M grows the number of
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interactions reduces by a factor 1 in the limit when k sub-teams connected via a mediator
are created instead of a single large team:

1 1

~M(1+ M
M%E%M%w.
QM(M—l) k

Principle 6 (Communication and management). The complexity of the number of interactions
for a team of size M is O(M?). However, by splitting the team into k flexible sub-teams of equal size,
managed by one mediator, the number of interactions can be reduced by a factor k as M grows large.

Application

The number of interactions is illustrated in Figure 8 in case of a single team (complete
team) and for split ups in 2, 3 and 4 sub-teams of equal sizes. In the figure, we highlighted
the cases of teams consisting of M = 7 and M = 19 members in total, which are based on
teams 5 and 32, respectively (see Section 3.2.3). The blue dots represent the case of a single
team (representing the current situation), whereas the orange dots demonstrate the number
of interactions in the (hypothetical) scenario where the teams are split up into two equally
sized sub-teams. The benefit of splitting up teams into (two) sub-teams is obviously greater
for large teams than for small teams.

4. Practice Based Scenarios

It is clear from Principles 1, 3, and 4 that the efficiency of a team increases with team
size. Conversely, Principle 6 illustrates the difficulty in managing larger teams; note that
team size has no direct implications for Principles 2 and 5. Moreover, Principles 1, 3, and 4
are subject to the law of diminishing returns; most efficiency improvements can be achieved
by merging relatively small teams into larger ones.

In practice, the capacity of a team can typically be increased by merging one team
with another (i.e., pooling all team members of both teams to cover their shared demand).
Naturally, this only makes sense when the geographical territories of the teams are closely
situated. To illustrate how the principles in Section 3.2 can be used in practice, we consider
a selection of 9 out of the 55 teams of the HHC organization. The 9 teams are merged
one by one into larger teams, whereupon we consider the effects under Principles 1, 3, 4,
and 6 at each step of the merging process. The merging process is illustrated in Figure 9,
showecasing the centroid of the geographical locations of the nine selected teams (each
labeled with its team ID). The marker size represents the mean weekly demand relative to
the other teams. Each arrow indicates the next step in the merging process: starting with
team 5, we first merge teams 5 and 15; subsequently, we merge team 39 with the cluster of
{5,15}, and so on. The characteristics of each team (including the mean weekly demand)
can be found in Table 4.

The effects of Principles 1, 3, 4, and 6 are illustrated at each step in the merging
process in Figure 10; starting from the left, each point indicates that another team is added
to the cluster. Here, Figure 10a shows the utilization of capacity E[N]/C, Figure 10b
the probability that effective capacity falls below 60%, and Figure 10d the number of
interactions within the team. Moreover, Figure 10c shows the difference between the
capacity and demand ratio for each QL k, (Cx/ Yjco Cj) — (mx/ Ljeq #j), which is ideally
just above zero for every QL. From the figures, we observe that there is a considerable
improvement in capacity utilization, the risk reduction in shortage in effective capacity,
and the capacity deviations in the first few steps of the merging process. However, the
improvements diminish significantly following subsequent merging steps. Roughly, most
of the improvements have been achieved after four teams have been merged, i.e., teams
5,15, 39, and 41, corresponding to a total aggregate of almost 800 care hours per week.
Moreover, the number of interactions is already significant for the combination of the four
teams. This can be partly mitigated by splitting the combined team {5, 15,39,41} into two
flexible sub-teams managed by a central post (yellow line in Figure 10d).
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Figure 9. Geographical locations of the teams selected for the merging process.

Table 4. Characteristics of the teams selected for merging; see Section 3.2.1 for notation.

Team ID Mean Demand Mg ciim, mg U;/mg Gs  mg (Implied)

2 183.46 1.99 1.10 3.61 3.18 0.79 25.50

5 132.30 1.58 1.30 3.00 3.72 0.74 27.93

9 206.06 3.69 1.12 3.24 3.13 0.78 17.25
11 125.41 2.43 1.64 3.06 1.97 0.79 16.85
15 211.13 3.06 1.28 2.78 2.15 0.77 24.81
38 268.71 3.64 1.78 3.82 3.23 0.81 19.32
39 159.07 3.49 1.68 2.68 2.51 0.78 17.03
40 265.53 3.04 1.19 3.60 3.50 0.75 24.29
41 290.75 5.33 0.90 3.31 3.44 0.82 16.49

To be more specific, when comparing team 5 to the combined team {5,15,39,41}, we
see in Figure 10 that there is a relative increase of 13% in capacity utilization; a relative
decrease of 82% of overcapacity for PV niveau 2+ and 45% for VP niveau 3; and a relative
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decrease of 97% in probability that the effective capacity falls below a level of 60%. On
the other hand, by merging all nine teams, the relative increase in capacity utilization only
improves marginally by 3% (hence, ultimately giving a relative increase of 16%) compared
to the situation with 4 teams merged. The improvements of merging 9 teams over the
first 4 teams are 3% and 18% in terms of overcapacity of PV niveau 2+ and VP niveau 3,
respectively, and a 2% reduction in risk of a low effective capacity. In line with earlier
observations, we conclude that the majority of the benefits occur in the first few steps of the
merging process. Finally, the combined team {5, 15,39,41} has 441 possible interactions.
Excluding team 41 would give a drop to 182 interactions (i.e., 68% reduction). Conversely,
merging an additional team (team 38) results in 784 interactions (i.e., 78% increase). This
shows that the impact on the number of interactions is severe.
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(c) Principle 4: capacity vs. demand per QL. (d) Principle 6: number of interactions.

Figure 10. Illustration of Principles 1, 3, 4, and 6 at each step of the merging process; (a,b,d) correspond
to Figures 4, 5, and 8, respectively, whereas (c) shows the difference between the ratios of optimal

capacity Cy/ Yje Cj and mean demand pi/ }jcg pj per QL.

The observation above intuitively indicates that merging teams 5, 15, 39, and 41
may produce an appropriate balance between efficiency and manageability. However,
such decisions depend on the relative importance of the individual components. To
formalize this idea, we consider the following weighted objective function that needs to be
maximized:

+

E[N] Cr Hx M(M—1)

M + AgP(P > l) — Ay ( — —Ag—————=. (23)
C kgg LieqCj  LijegH 2

Here, the first term is the utilization of capacity based on Principle 1, the second term
is the probability that the effective capacity exceeds level I € [0,1] based on Principle 3,
the third term is the overcapacity of each qualification level relative to the mean demand
based on Principle 4, and the fourth term is the number of (potential) interactions based on
Principle 6. The weights A; > 0 represent the relative importance of component i. For the
number of interactions, the weight A4 also serves as a scaling factor (as the units of the first
three terms are in %). Note that each component completely depends on either team size
or mean demand, which are both a direct consequence of the merging process. Hence, it
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is possible to find the optimal level at which teams need to be merged by evaluating the
objective function at each step of the merging process. This idea is illustrated in Figure 11,
where we set \; = A3 = A4 = 1 and use different values of A4 to signify the impact of
prioritizing team manageability. Clearly, the decision depends on the weights A;, reflecting
the trade-off of the decision maker’s policy. Nonetheless, Figure 11 indicates that the
combination of only two or three teams might be ideal, corresponding to a total aggregate
weekly demand of 350-500 care hours.
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Figure 11. Objective function (23) at each step in the merging process for various weights of A.

5. Discussion

The principles presented in Section 3.2 provide guidance to managers and policy
makers when making decisions about team size and composition in the context of home
healthcare. The principles reveal that efficiency improves with team size, albeit more
prominently for smaller teams due to diminishing returns. Moreover, it is demonstrated
that the complexity of managing and coordinating a team becomes increasingly more
difficult as team size grows. An estimate for travel time is provided given the size and
territory of a team, as well as an upper bound for the fraction of full time contracts, if split
shifts are to be avoided.

In addition to the team size and composition, we provide some other interesting
observations. First, we were able to quantify the variability in home-care demand and the
corresponding capacity requirements per qualification level. Second, we provide a rough
estimate of the total travel time as a function of client count, area size, and the number
of available care workers. Somewhat surprisingly, travel times are hardly affected by the
scale at which teams are organized, e.g., merging regions does in essence not lead to more
efficient routes. Third, we touched upon a typical problem recognized by Dutch HHC
organizations; due to the lack of care demand during the afternoon, part-time contracts are
inevitable. We provide an upper bound for the number of full-time contracts based on the
afternoon care demand and administration time.

Whereas the six principles provide valuable practical insights into team size and
composition, it is crucial to place them in the right perspective. First of all, the principles
are of a generic nature (which we consider as their strength), but their application depends
on the specific context. Their implementation and corresponding effects will invariably
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be influenced by the context in which they are applied. Most notably, the impact of scale
on manageability, cooperation, and the quality and efficiency of team work is difficult to
quantify in general. Moreover, it is typically impossible to capture all of the details of the
application within a model; after all, a model is a simplified representation of a real-life
situation. See [48] for a plea of the application of deductive modeling. Hence, managers
and policymakers should regard any results obtained from these models as estimations
rather than absolute certainties.

As indicated above, we believe that there is great potential by increasing the scale at
which HHC teams operate. At this point, we like to emphasize that multiple ways exist
to organize healthcare on a larger scale, next to the ‘straightforward” merging of teams.
During the last decade, various strategies have been investigated to achieve economies of
scale for hospital wards while mitigating their drawbacks; see, e.g., [49-52]. A common
aspect is that each team does not necessarily need to operate at a large scale as long as
some flexibility is organized such that teams cooperate when peaks in demand occur. We
think that such a design might be a practical first step to improve efficiency in the context
of HHC.

Besides creating practical value, our goal is to trigger the OR community to address
tactical and strategic challenges that HHC organizations are facing. The presented data and
principles provide a solid basis for further research in which the principles can be further
explored and/or extended. For instance, one possible direction is to model the interplay
between care demand and the available capacity in terms of a queueing model. Developing
such a model is intricate as in practice the capacity will not be constant over time and the
admission policy also plays a vital role (see e.g., [53]). Moreover, the team composition is
fundamental to all scheduling and routing problems that differentiate between skill sets of
care workers. Therefore, the process of determining the necessary capacity per qualification
level as outlined in Principle 4 can potentially be improved by specifically customizing it to
a direct application. Finally, team manageability is essential for establishing an ‘ideal” team
size as it acts as a natural counterbalance to the economies of scale implied by most other
principles. Clearly, the increasing complexity of coordinating large teams should eventually
lead to a decline in effectiveness. As a consequence, a thorough and comprehensive
modeling and evaluation of team manageability from an OR perspective is necessary. It
is worth highlighting that those subjects have received (almost) no attention within the
existing OR literature, despite their significance.

6. Conclusions

In this contribution, six model-based principles (i.e., rules of thumb) are presented and
illustrated using real-life demand data. These principles provide guidance to managers
and policy makers when making decisions about team size and composition in the context
of home healthcare. In particular, the principles involve insights in capacity planning (Prin-
ciples 1 and 4), travel time (Principle 2), available effective capacity (Principle 3), contract
types (Principle 5), and team manageability (Principle 6). The principles concerning capac-
ity planning and effective capacity generally state that the efficiency of a team improves
as team sizes increase (due to economies of scale). However, smaller teams benefit more
from this effect than larger teams due to the law of diminishing returns. In contrast, larger
teams also imply an increase in the complexity of team coordination. The principle on team
manageability shows that the complexity increases in a quadratic fashion with team size.
Overall, it seems that an ideally sized team should serve (at least) approximately a few
hundreds care hours per week.
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Figure A1. Total care duration per team by qualification level; years = 2020 and 2021.
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Figure A2. Boxplots of selected summary statistics per team; years = 2020 and 2021.
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Figure A3. Example of LoS tail distribution for a specific team, time in weeks; years = 2020 and 2021.

Figure A4. Complete graphs of size M = 5 (left) and M = 10 (right), illustrating the number
of interactions.
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Abstract: This study significantly contributes to both theory and practice by providing valuable
insights into the role and value of healthcare in the context of online health communities. This study
highlights the increasing dependence of patients and their families on online sources for health
information and the potential of technology to support individuals with health information needs.
This study develops a theoretical framework by analyzing data from a cross-sectional survey using
partial least squares structural equation modeling and multi-group and importance—performance
map analysis. The findings of this study identify the most beneficial technology-related issues, like
ease of site navigation and interaction with other online members, which have important implications
for the development and management of online health communities. Healthcare professionals can
also use this information to disseminate relevant information to those with chronic illnesses effectively.
This study recommends proactive engagement between forum admins and participants to improve
technology use and interaction, highlighting the benefits of guidelines for effective technology use
to enhance users’ information-seeking processes. Overall, this study’s significant contribution lies
in its identification of factors that aid online health community participants in the information-
seeking process, providing valuable information to professionals on using technology to disseminate
information relevant to chronic illnesses like COPD.

Keywords: online forum; information-seeking behavior; online information seeking; online information-

seeking behavior; online health information; online health communities

1. Introduction

The role of technology in healthcare continues to evolve, with online health commu-
nities (OHCs) emerging as a powerful platform for sharing knowledge and promoting
collective action [1]. In particular, Facebook groups have become a significant source of
health-related information, providing a sense of community and belonging for individuals
facing medical challenges. However, several issues persist with OHCs, and there is a need
for greater understanding and management of these communities. This study offers valu-
able insights into the factors that trigger contributors’ online information-seeking behaviors
within OHCs, specifically in the context of COPD, a chronic and incurable respiratory
condition with significant economic and societal impact. The findings of this study bridge
a critical gap in the understanding of OHCs and underscore the crucial role of technology
in facilitating access to information and support for those in need, ultimately improving
outcomes and reducing costs. This study’s contribution is particularly significant in the
context of Information Technology and People, focusing on technology, as it highlights
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the potential of technology to support those with significant medical challenges through
innovative approaches to disseminating relevant information.

This study presents two primary objectives that significantly deviate from those of
previous studies. First, this research assists healthcare professionals in enhancing their
approach to COPD OHCs by considering age and gender factors. The proposed modifica-
tions are expected to optimize available resources and improve patient outcomes. Second,
this study employs an importance-performance map analysis (IPMA) at the construct and
indicator levels to obtain valuable insights into critical concerns related to online health
information-seeking behavior. By comparing participants’ comprehensive experiences
with the average scores derived from latent variables that detail performance, the IPMA
evaluates the importance of participants’ involvement in the endogenous construct [2,3].

The following research questions (RQ) address these objectives and the research gap:

RQ1:Do age and gender influence online health information-seeking behavior?
RQ2: Do age and gender relate to external factors such as self-worth, perceived experience,
perceived usefulness, and perceived ease of use?

This research sheds light on the utilization of current technologies by the public to
fulfill their health information needs. It fills a significant research gap by enhancing the
understanding of how medical professionals can serve their patients better by gaining
insight into how their patients utilize technology. The findings of this study are expected to
have significant implications for health practitioners, policymakers, and researchers alike,
emphasizing the importance of incorporating age and gender factors in the design and
deployment of online health information resources.

2. Literature Review

The Internet has become an essential resource for individuals seeking health infor-
mation, with millions of people globally relying on online sources for guidance. The
Digital 2022 Global Overview Report [4] indicates that around thirty-six percent of Internet
users are actively searching for health information, and Foster’s report [5] confirms this
high engagement with health content on social media. On Facebook, with 2.91 billion
users, over 1.8 billion engage in health-related groups monthly, forming over 10 million
communities [6]. Jia, Pang, and Liu [7] found that over a quarter of health information
consumers search for information online multiple times daily. Facebook groups, defined as
communities offering belonging and connection, became critical support networks during
the COVID pandemic, with most users participating in mutual support [8].

The relevance of online health communities is on the rise, but challenges remain.
This study contributes to the literature on online health behavior triggers and the influ-
ence of disease-specific factors, with a focus on chronic illnesses like COPD. Our findings
bridge a critical gap in the understanding of online health communities and offer ac-
tionable information for both medical and non-medical professionals. Moreover, this
study highlights how technology aids in information dissemination and support network
formation. The economic implications of COPD, costing USD 49.0 billion in 2020, are
also addressed [9]. Despite OHCs’ extensive use for various health issues (e.g., mental
health [10,11], AIDS/HIV [12,13], and cancer [14,15]), their role in COPD management
has been underexplored. These platforms offer not just disease-specific information but
also emotional support and social interaction (refs. [16-19]), which are key to patient em-
powerment and improved quality of life. This study underscores technology’s potential
to reduce COPD’s financial and societal impacts by connecting patients and facilitating
information access.

2.1. Theoretical Background and Hypotheses

Our research team developed items based on a five-point Likert scale drawn from the
extant literature to assess the survey constructs. In Table 1, the sources for the survey items
are provided.
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Table 1. Survey constructs, composite reliability, and AVE scores.

Average Variance

Constructs Item Sources Item Label Loadings Dillon—-Goldstein’s p Extracted (AVE)

PEOU1 0.775

Perceived ease of use Ahadzadeh et al. [20] PEOU2 0.881 0.889 0.728
PEOU3 0.897
PU1 0.864

Perceived usefulness Ahadzadeh et al. [20] PU2 0.900 0.917 0.786
PU3 0.895
SSW1 0.868

Sense of self-worth Yan et al. [21] SSW2 0.874 0.863 0.759
PE1 0.801

Durcikova et al. [22],

Perceived expertise Kollmann et al. [23] Ilzgi (0)252 0.880 0.709

g _ y ISE1 0.881

nformation-seeking Nambisan [16] ISE2 0.880 0.900 0.750
behavior ISE3 0.836

For the relationships between the exogenous factors and the outcome variable
(Figure 1), we propose the following hypotheses:

Gender &
Age

Perceived ease o
use

Information seeking
behavior

Perceived

usefulness Perceived expertise

Figure 1. Theoretical framework.

H1. Perceived ease of use (PEOU) plays a significant positive role in shaping the information-
seeking behaviors of COPD forum users.

H2. Perceived usefulness has a significant positive effect on information-seeking behaviors.

H3. Perceived expertise (PE) plays a significant positive role in shaping the information-seeking
behaviors of COPD forum users.

H4. Sense of self-worth (SSW) plays a significant positive role in shaping the information-seeking
behaviors of COPD forum users.

H5. In the context of information-seeking behavior, the influence of determinants (PU, PEOU,
SSW, and PE) is moderated by gender.
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He6. In the context of information-seeking behavior, the influence of determinants (PU, PEOU,
SSW, and PE) are moderated by age.

2.2. Roles of Perceived Ease of Use and Perceived Usefulness (H1 and H2)

In this study, information-seeking effectiveness is defined as the comprehensive as-
sistance provided to those with specific medical conditions, encompassing social and
emotional support and critical health information based on the accuracy of information,
details concerning rehabilitation, and access to other pertinent services [24]. Recent work
has shown how online health information impacts patient decision-making and proactive
engagement in health management within online health communities (OHC) [25]. The
Technology Acceptance Model (TAM), developed by Davis [26], assesses how individu-
als perceive and adopt new technologies by examining perceived usefulness and ease of
use [27]. OHCs facilitate patient and healthcare provider interaction via the Internet [28].
Research based on TAM suggests that perceived ease of use and usefulness positively
influence technology use [29]. Perceived usefulness is defined as the extent to which an
individual believes that utilizing a specific system or technology, such as an Online Health
Community (OHC), will enhance the overall quality of their life. For a system, including an
OHG, to be effective, it must either enhance or assist its users, consequently influencing the
extent to which users actively contribute within the designated online platform, such as a
Facebook group. On the other hand, perceived ease of use refers to the degree to which an
individual perceives the online system as effortless to operate [30]. A good technological
infrastructure, a favorable attitude toward technology, and a user-friendly, uncomplicated
interface are anticipated to enhance the likelihood of adopting and using online resources.
TAM'’s insights are instrumental in understanding interactions within OHCs, especially
regarding technology’s perceived benefits [30].

2.3. Role of Perceived Expertise (H3)

Perceived expertise in online health forums is the belief in one’s capability to pos-
itively influence health outcomes. It is a key predictor of participation in online health
communities, with a proven link between cancer management program involvement and
perceived expertise [31]. Those with higher expertise are more likely to engage in their own
disease management, utilizing various resources. The Internet’s role as a primary health
information source has been extensively researched. Lee, Niederdeppe, and Freres [32]
note that the wealth of information online helps fill knowledge gaps, reducing feelings
of uncertainty and despondency, particularly concerning COPD. The availability of such
information has been linked to greater patient control, satisfaction, and empowerment and
enhanced physician communication [33]. Consequently, this study examines the correla-
tion between participants’ perceived expertise in COPD Facebook groups and their online
information-seeking behavior.

2.4. Role of Sense of Self~-Worth (H4)

In this study, self-worth is operationalized as individuals’ perception of their value
addition to an online community by sharing knowledge [34]. This is based on Social
Exchange Theory (SET), which explains social behavior as a series of transactions where
participants engage in the reciprocal exchange of goods, which can manifest as either
non-material or material entities [35], thus establishing equilibrium between the rewards
gained and the costs incurred within these interactions. Yan et al. [21] view knowledge
sharing as an exchange where the costs and benefits can be balanced. Here, an information
need is any query requiring a response, with OHCs providing patients with the opportunity
to obtain timely and effective answers to their questions, especially when access to their
physicians is limited [36]. Social support is characterized by positive conversations that
contribute to the well-being of participants, facilitating interactions among members who
share similar illnesses. The multifaceted nature of social support includes attributes such
as companionship, emotional support, and opportunities for socialization [37]. Sense of
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self-worth within SET is an individual’s perceived impact on the group through their
knowledge contributions [34,38]. Costs in OHCs, within the framework of SET, include the
cognitive efforts of recalling past experiences, such as emotions like irritation, pain, and
depression, and executional resources like time, money, and materials [39]. Additionally,
participants’ engagement in online communities is reinforced by their perceived elevated
status within groups, which, in turn, boosts overall participation [38].

2.5. Role of Gender (H5)

Prior research on the moderating effect of gender on behavioral intention within
diverse online environments has produced inconsistent results across different and, at
times, similar applications. Researchers like Lian and Yen [40] and Tan and Ooi [41]
report that gender does not moderate associations of perceived ease of use and perceived
usefulness with users” behavioral intentions. Similarly, Kim [42] and Wong et al. [43]
were not able to establish the moderating effect of gender on consumers’ use of hotel
email and tablet apps. Conversely, Mandari and Chong [44] and Acheampong et al. [45]
report that the association between behavioral intention (BI) and PU was greater in male
users, but the association between Bl and ease of use was not as strong for males about
mobile payments and mobile government service usage. Such findings, in the research
of Tarhini et al. [46], were partly confirmed in the case of online learning. Their research
discovered that associations between the adoption of eLearning technologies by students
and perceived usefulness were unvarying between females and males. However, the
association among eLearning adoption intention and perceived ease of use was greater
for females [46]. The moderating effect of gender on online technologies and the use of
information is therefore somewhat subjective and necessitates more examination in the
context of COPD forum participants.

2.6. Role of Age (H6)

Age-related variances among humans within technology use are influenced by self-
efficacy and life experience. Research indicates that older adults may feel too old to learn
new technological skills, unlike younger adults, who are more eager to engage with and
learn from new technologies [47,48]. However, the age-related effects on online behavior
are not uniform. Tarhini et al. [46] found that in the context of eLearning, perceived
usefulness correlates more with younger users’ adoption intentions, while ease of use is
more significant for older users. Similarly, Liebana-Cabanillas et al. [49] observed that
while expertise, usefulness, and trust have less of an influence on older adults” purchase
intentions online, ease of use affects both age groups equally. Lian and Yen [40] reported
that age does not have any moderating impact on the usefulness of online shopping or on
perceived ease of use (PEOU). In contrast, Kim [42] and Tan and Ooi [41] found no age
moderation in the adoption of hotel tablet apps and online shopping or hotel tablet app
adoption. Therefore, the moderating impact of age is relatively subjective and necessitates
further attention in the context of COPD forum users.

3. Materials and Methods
3.1. Setting and Participants

To identify relevant online COPD communities, we conducted a systematic search
for the keyword “COPD” in Facebook groups in August 2020. Our search yielded 95
groups that were specifically related to COPD. These groups varied in their objectives,
ranging from providing emotional support to disseminating information about pulmonary
rehabilitation, exercise, diet, and treatment options. Some groups also aimed to raise
awareness of the disease and advocate for improved patient care. The membership of these
groups ranged from 16 to 13,000 individuals, and the number of posts per day varied from
0 to 60.
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3.2. Data Collection

Before collecting the data, the survey was reviewed by survey research experts and
members of a PhD student research team with expertise in survey methods. This ques-
tionnaire was developed to collect data to measure the relationships in the proposed
model to analyze the results between COPD Facebook groups. A 5-point Likert scale
(5 = strongly agree, 4 = somewhat agree, 3 = neither agree nor disagree, 2 = somewhat
disagree, and 1 = strongly disagree) was selected to measure the responses for all constructs.

The survey was revised based on the constructive feedback these individuals provided.
IRB approval was obtained from the university, and a pilot test was conducted, resulting in
slight re-framing and adjustments in the survey questions to improve the general clarity of
the questionnaire. There were originally fifty questions, and after the review and pilot run,
eleven of the questions were deleted. The survey was entered into Qualtrics. Please see the
supplementary materials for the questions included in the survey.

To gather survey data, a licensed respiratory therapist on our research team accessed
the identified Facebook COPD groups and posted the survey link with the group’s approval.
Out of the 66 groups contacted, 46 granted permission to post the survey link, and we
successfully posted it in 32 groups. This approach allowed us to collect valuable data from
online COPD OHCs and gain insights into the research questions that we aimed to address.

3.3. Analysis

Several analyses were conducted in this study on information-seeking behavior in
COPD OHCs. These include:

Sample Size Determination: The determination of the sample size for the model was
based on OLS regression properties.

Common Method Bias: Kock’s conservative method was implemented to ensure that
variance inflation factor values were below the threshold of five.

Non-Response Bias: A post hoc test comparing early and late respondents was carried
out using an independent samples t-test.

Partial Least Squares Structural Equation Modeling (PLS-SEM): This was used for
data analysis to develop a predictive model of information-seeking behavior, due to its
appropriateness for predictive studies, stability with smaller sample sizes, and efficiency in
analyzing models with convergence issues and complicated structural relationships.

Reflective Measurement Model: The reliability and validity of the constructs were
evaluated using Dillon-Goldstein’s rho for internal consistency and average variance
extracted (AVE) for construct validity.

Structural Model Evaluation: The model’s predictive value was assessed using a vari-
ance inflation factor (VIF), bootstrapping methods, and blindfolding for cross-validation.

Multi-Group Analysis: Measurement invariance across gender and age groups was
tested using the Measurement Invariance of Composite Models (MICOM) process. The
analysis allowed a comparison of path coefficients across groups since partial measurement
invariance was achieved. Importance-performance map analysis (IPMA) was implemented
to assess the diagnostic value of the model, focusing on ‘information-seeking behavior’
and its associations with other exogenous constructs. It also evaluated the importance and
performance of these constructs within the structural model.

These analyses were integral to the study’s aim of understanding and predicting
information-seeking behavior within online COPD communities, and they provided a
comprehensive evaluation of the model’s reliability, validity, and predictive power.

4. Results

Determination of the sample for the model was based on the OLS regression prop-
erties [50]. Thus, this research required forty-one observations for identifying values of
approximately 0.25, at the five percent significance level, with a statistical power of eighty
percent [51]. After cleaning the data, there were two hundred and one usable responses for
analysis. Thus, with a sample of two hundred and one, the minimum sample size to repre-
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sent the population was far exceeded. The demographics of the participants were as follows:
The proportion of females was seventy-eight percent and of males was twenty-two percent.
Eleven percent of the study participants were between the ages of thirty-one to fifty-four
years, forty-six percent were between the ages of fifty-five and sixty-four, thirty-five per-
cent were between the ages of sixty-five and seventy-four, and eight percent were aged
seventy-five years and above. The majority of the participants had less than fifty thousand
dollars of yearly income.

Common method bias was addressed because participants” anonymity was assured,
and all responses were de-identified before the data analysis. Common method bias
was addressed by utilizing Kock’s conservative method [52]. Kock proposed allowing
a variance inflation factor under the threshold of five, which is also achieved in this
study. A post hoc test was conducted to determine whether non-response bias could
affect the generalizability of our findings. To accomplish this, early and late respondents
were compared. As established in the research of Li and Calantone [53], the first seventy-
five percent of the survey participants were designated early respondents, and the last
twenty-five percent were designated late participants. No significant difference was found
after comparing early and late respondents using an independent samples t-test. Thus,
non-response bias was dismissed.

The data were analyzed using partial least squares structural equation modeling
(PLS-SEM) for the following reasons. The primary objective of this study is to develop
a predictive model of information-seeking behavior within COPD online communities.
PLS-SEM is particularly appropriate for circumstances where prediction is the goal. Sec-
ondly, partial least squares structural equation modeling (PLS-SEM) employs a system
of ordinary least squares regression that remains stable with smaller sample sizes, a find-
ing confirmed through simulation analysis by Reinartz et al. [54]. Thirdly, relative to a
covariance-based analysis, PLS-SEM is efficient in analyzing models where convergence
may be a problem [50,55]. Wold’s [56] research emphasized that PLS-SEM is optimal for
a complicated structural relationship. Lastly, PLS path modeling integrates the values of
latent variables, which are required for importance—performance map analysis.

4.1. Reflective Measurement Model

The reliability evaluation of each construct in the measurement model is also shown
in Table 2. For assessing the reliability of internal consistency, the Dillon-Goldstein method
was used, which additionally considers outer loadings as additional indicators. All con-
structs have composite reliability values over 0.7, and internal consistency reliability is
also confirmed.

Table 2. Composite reliability and AVE scores.

Constructs Dillon-Goldstein’s p  Average Variance Extracted (AVE)
Information-seeking behavior ~ 0.900 0.750
Perceived ease of use 0.889 0.728
Perceived expertise 0.880 0.709
Perceived usefulness 0.917 0.786
Sense of self-worth 0.863 0.759

An analysis of the average variance extracted (AVE) and the indicator reliability was
also conducted to determine the validity of the reflective measurement model. Following
the deletion of the items that failed to achieve the recommended value of 0.7, Table 2
presents the relevant themes of the retained survey items. While it is not recommended,
an AVE value equal to or greater than 0.5 is considered acceptable because it suggests that
the construct can explain over half of the variance associated with the indicator. Table 2
demonstrates that all constructs meet the 0.5 minimum value for AVE. Therefore, we
assume that the convergent validity of our survey instrument is acceptable.
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By analyzing indicator cross-loadings, we determined that discriminant validity
was upheld. However, cross-loadings cannot indicate a lack of discriminant validity
if two constructs are completely correlated. In addition, Table 3 also demonstrates that the
indicators are accurate according to the Fornell-Larcker criterion [57]. The upper portion
of Table 3 shows that the square root of the AVEs, shown on the diagonals for each con-
struct, is greater than the correlations between the other latent variables. However, the
Fornell-Larcker criterion performs poorly if construct indicator loadings differ slightly.

Table 3. Discriminant validity (Fornell-Larcker and HTMT criteria).

Fornell-Larcker Criterion

Constructs Information-seeking behavior Perceived ease of use Perceived expertise Perceived Usefulness Sense of self-worth

Informatlon—seekmg 0.866

behavior

Perceived ease of use 0.719 0.853

Perceived expertise 0.472 0.449 0.842

Perceived Usefulness 0.635 0.622 0.460 0.886

Sense of self-worth 0.561 0.549 0.423 0.505 0.871
HTMT Criterion

Information-seeking

behavior -

Perceived ease of use 0.876

Perceived expertise 0.580 0.561

Perceived Usefulness 0.745 0.748 0.553

Sense of self-worth 0.741 0.738 0.571 0.657 ~

~ indicates it is not possible to have HTMT value with itself.

As a result, the heterotrait-monotrait correlation coefficients (HTMT) procedure [58]
was applied and all the relationships were under the accepted value of 0.90, thus reinforcing
discriminant validity (see the bottom portion of Table 3). Distribution was tested using
bootstrapping to ensure that it was consistent with HTMT statistics. The confidence
interval obtained from 5000 bootstrap samples substantiates that the HTMT values are
significantly different, reinforcing discriminant validity. Therefore, the constructs are
empirically distinct.

4.2. Structural Model Evaluation

The variance inflation factor (VIF) evaluated each construct for collinearity. Collinear-
ity among the constructs is eliminated since the VIF values are below the threshold of five.
Based on the bootstrap percentile confidence intervals, we determined whether the model’s
results were statistically significant (bias-corrected). Following Preacher and Hayes [59],
5000 bootstrap samples were run, with the original sample number of observations being
included in each bootstrap sample. Table 4 illustrates the structural model relationships
based on the 5000 bootstrap samples. Sixty-point two percent of the variation within the
endogenous construct-information-seeking behavior is explained by the model.

Next, to assess the cross-validated redundancy, a blindfolding procedure with a
distance of six as our predetermined distance was implemented. In other words, the
combination of the in-sample and out-of-sample predictive powers should be higher than
zero for an endogenous construct to define the predictive accuracy of a structural model [55].
In this research, the calculated statistic produced a value greater than zero. Thus, it was
concluded that the model has predictive value. Additionally, when comparing the statistical
values of information-seeking behavior with Hair’s recommendations [55], it is apparent
that the in-sample predictive power for information-seeking behavior was higher than the
moderate level.

To assess the out-of-sample predictive power of the model, PLS predictive analysis
was conducted with the default settings of ten folds and ten repetitions [60]. To analyze
the results, the mean absolute prediction error (MAPE) values from both the PLS and LM
analyses were examined, as well as the root mean square error (RMSE) and the predicted
values from the PLS analysis. As can be seen in the lower portion of Table 3, all the values
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in the PLS analysis were greater than zero, indicating that the prediction errors created
by the PLS-SEM results were less than the prediction errors created solely by relying on
mean values. Additionally, the out-of-sample predictive power level was high regarding
RMSE values at the indicator level since all three items of information-seeking behavior in
the PLS-SEM model resulted in fewer prediction errors than the LM benchmark. At the
indicator level, two of the three items exhibited similar behavior, indicating an acceptable
degree of predictive power.

Table 4. Structural model results and out-of-sample predictive performance at indicator level.

Paths Path Coefficient Bias-Corrected 95% Confidence Interval

Perceived ease of use — Information-seeking behavior 0.442 *** [0.312, 0.578]

Perceived expertise — Information-seeking behavior 0.099 ** [0.005, 0.192]

Perceived usefulness — Information-seeking behavior 0.235 *** [0.113, 0.363]

Sense of self-worth — Information-seeking behavior 0.158 ** [0.031, 0.294]

PLS LM
fems RMSE MAPE Q2_predict RMSE MAPE RMSEp; s—RMSE] MAPEp; s—MAPE

ISE1 0.570 13.316 0.492 0.582 13.282 —0.012 0.034

ISE2 0.622 14.305 0.422 0.642 15.172 —0.020 —0.867

ISE3 0.623 14.512 0.388 0.644 14.614 —0.021 —0.102

4 < 0.01; * p < 0.05.

The above results confirm the influences of the constructs perceived ease of use,
perceived usefulness, perceived expertise, and sense of self-worth on information-seeking
behavior (H1, H2, H3, and H4).

4.3. Multi-Group Analysis

Invariance was evaluated using the Measurement Invariance of Composite Models
(MICOM) process, which has three stages: 1. configural invariance evaluation, 2. compo-
sitional invariance evaluation, and 3. evaluation of the similarity of mean and variance
values. In the event that stage 3 is not satisfied, a multi-group analysis can still be con-
ducted [50]. In this case, partial measurement invariance is attained [50]. The PLS path
models of this study, data treatments, and group-specific model approximations were
the same about the algorithmic situations utilized for both gender and age groups (<65
years and 65 years+). Thus, configural invariance is confirmed. Compositional invariance
was evaluated utilizing 1000 permutations [61] at the five percent significance level. The
findings indicated that the p values were higher than 0.05, and the correlation was not
substantially lower than 1, which validates compositional invariance. In the evaluation
of the uniformity of variance and means throughout all age groups, we found that the
permutation p values for the means in all constructs were higher than 0.05 and also higher
for the variances for the information seeking, perceived expertise, and sense of self-worth
constructs. For gender, the p-values for variances for all constructs were greater than 0.05,
but all composite means were lower than 0.05.

Although full measurement invariance was not determined, the path coefficients
for both gender and age groups can be compared since partial measurement invariance
was determined at stages 1 and 2 [50]. To comply with the stringent guidelines for power
analysis [50] and identify an R squared value of 0.25 at the one percent significance level and
an eighty percent power level, forty-one observations per group were required. Adhering
to these guidelines, the group sample sizes of one hundred and fifty-seven females and
forty-four males are adequate. These guidelines are also met for age groups in that our
study includes one hundred and fifteen participants who are sixty-four years old or younger
and eighty-six participants who are sixty-five years old or older.

Table 5 shows the differences between male and female users in the following cases:
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Table 5. Path coefficients for gender and age.

Paths for Gender

Path Coefficients (Male)

Bias-Corrected 95%
Confidence Interval

Path Coefficients (Female)

Bias-Corrected 95%
Confidence Interval

Perceived ease of use —

EELd Lt
Information-seeking behavior 0332 [0.093, 0.560] 0.487 [0.345, 0.635]
Perceived expertise —
Information-seeking behavior 0.080 [-0.104,0.233] 0.117% [0.001, 0.229]
Perceived usefulness — 0.353 *** [0.093, 0.591] 0.192 *** [0.060, 0.335]
Information-seeking behavior ’ R ' R
Sense of self-worth — .
Information-seeking behavior 0.289 [0.012, 0.598] 0.089 [-0.059, 0.230]
Paths for Age Path Coefficients Bias-Corrected Path Coefficients Bias-Corrected
& (64 Years or Less) 95% C.I. (65+ Years) 95% C.I.
Perceived ease of use — . .
Information-seeking behavior 0.468 [0.304, 0.648] 0.420 [0.225, 0.598]
Perceived expertise — "
Information-seeking behavior 0.162 ** [0.022, 0.284] 0.013 [—0.126, 0.145]
Perceived usefulness — 0.085 [—0.060, 0.240] 0.408 *** [0.218, 0.580]
Information-seeking behavior
Sense of self-worth — 0.220 ** [0.032, 0.413] 0.091 [-0.051, 0.261]

Information-seeking behavior

***p <0.01; * p <0.05; *p <0.10.

Perceived expertise has a stronger effect on information-seeking behavior for female
participants than males. The impact of perceived expertise on the information-seeking
behavior of male participants is insignificant.

Sense of self-worth has a stronger influence on information-seeking behavior for male

participants than females, as there is no influence for female participants.

These results partly confirm that the influences of perceived expertise and sense of
self-worth on information-seeking behavior are moderated by gender, partially supporting
HS5, since this is not the case with the effects of the constructs of perceived ease of use and
perceived usefulness on information-seeking behavior.

In addition, Table 5 shows the following: Perceived expertise has a strong effect on
information-seeking behavior for people who are sixty-four years old or younger. The
impact of perceived expertise on information-seeking behavior in people who are sixty-five
years old or older is statistically insignificant. The same was found for the relationship
between a sense of self-worth and information-seeking behavior.

Perceived usefulness has a strong effect on information-seeking behavior for peo-
ple who are sixty-five years old or older but not for those who are sixty-four years old
or younger.

Thus, age moderates the influences of perceived expertise, perceived usefulness,
and sense of self-worth on information-seeking behavior. Age does not moderate the
relationship between information-seeking behavior and perceived ease of use. Therefore,
H6 is partially supported.

4.4. Importance—Performance Map Analysis (IPMA)

To assess the diagnostic value of our models, a post hoc study employing the IPMA
was conducted as proposed by Martilla and James [62]. The evaluation was based on the
PLS estimates, emphasizing the importance of each construct in the existing relationships,
and average values denoting performance. Specifically, the IPMA focused on the final main
construct, ‘information-seeking behavior,” examining its associations with other exogenous
constructs and the performances of the currently hypothesized relationships within these
exogenous experiences.

The total effects of predominant relationships within the structural model were evalu-
ated and revealed the variance of the main construct, information-seeking behavior. Before
calculating the averages of each indicator to represent performance, dissimilar scores of
each of the latent variables and the indicators with scores between 0 to 100 were stan-
dardized [63]. Figure 2 demonstrates that, at the construct level, perceived expertise is
located on the far left of the graph. This means that this construct is of lesser significance
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regarding information-seeking behavior relative to the other constructs. Figure 2 shows
that perceived ease of use is situated on the far-right section of the graph. This indicates
that information seekers in the Facebook COPD online community deem perceived ease of
use as the most significant factor.
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°
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]
7]
c
]
£ 70 000
o
T "
8 Perceived uspfulness

°
67 500
Sense of self-worth &
° Perceived ease of use
°
65 000

0.100 0.200 0.300 0.400

Importance

Figure 2. IPMA construct level.

5. Discussion

As we transition to discussing the implications of our findings, it is essential to high-
light the pivotal role of interface design in user engagement within disease-specific online
health communities (OHCs). Figure 3 emerges as a crucial element in our analysis, illus-
trating the areas within forum design that require enhancement to facilitate improved
information-seeking behavior. This section will delve into the nuances of these findings,
exploring the impact of perceived ease of use, usefulness, and self-worth on user partici-
pation. Moreover, we will examine how demographic variables such as age and gender
differentially shape information-seeking activities, underscoring the importance of tailored
approaches in the development and management of OHCs. Our discussion will draw
upon these insights to propose practical strategies for medical professionals and forum
administrators to foster a supportive and effective environment for patients and caregivers
in these digital spaces.

Although many studies have been conducted on various online health communi-
ties, little research has focused on creating and managing disease-specific online health
communities. As a result, more information is needed on the factors that trigger online
information-seeking by participants within OHCs. This research investigated the extent and
manner in which exogenous factors within a disease-specific OHC influence participants’
online information-seeking behaviors.

Relevant constructs from the existing literature were utilized to develop and evaluate
this theoretical framework. Consequently, this study sheds new light on the information-
seeking behavior of a disease-specific community. Thus, this research provides a valuable
perspective to medical professionals on implementing the proposed outline, which can
increase the quality of life of patients, their caregivers, and their families.

According to this analysis, perceived ease of use is the strongest predictor of information-
seeking behavior. Consequently, perceived ease of use should be given high priority.
Additionally, perceived usefulness and sense of self-worth correlate positively and have
significant predictive power. Further, our results confirm a positive relationship between
perceived expertise and information-seeking behavior. These results provide insight into
the thought processes of the forum participants and emphasize the need to focus on
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the participants’ experiences to achieve a successful outcome. A systematic evaluation
of the comparative effects of exogenous factors on information-seeking behavior within
disease-specific Facebook groups is provided by this research.
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Figure 3. IPMA indicator level.

This research provides a theoretical framework emphasizing the importance of con-
centrating on these factors to design a successful approach to positively impacting disease-
specific OHCs. To facilitate decision-making, the constructs should be considered within
the context of an integrated model, such as the one developed in our study. Based on
IPMA, this research provides insight into how to encourage disease-specific Facebook
group participants’ information-seeking behaviors. As shown in Figure 2, it is pertinent to
emphasize that perceived expertise is less significant than other factors when considering
information-seeking behaviors. In addition, the sense of self-worth construct performs
significantly below average, as indicated on the IPMA’s y-axis. For this reason, concentrated
effort is necessary to improve its performance. In the future, additional research should
be conducted to improve the construct’s present performance for perceived ease of use in
light of its placement on the y-axis.

Information seeking is influenced most by the indicator which corresponds to skillfully
searching COPD-related information (PEOU3). As a result, it is imperative to continue
focusing on improving its current performance. In addition, there is a need to enhance
the opportunities for interaction between participants (PEOU1). This is crucial since this
indicator is the second most significant factor. Currently, however, it is only performing
at an average level, as illustrated by the y-axis in Figure 3. In the same way, Figure 3
shows how forums (PEOU2) can be improved significantly by improving navigation. As
a result, it is critical to pay attention to those factors that contribute significantly to the
information-seeking behavior of forum participants.

Further insights are provided by the secondary analysis from a gender-based per-
spective. Males and females have substantially different associations between perceived
expertise and information-seeking behavior. In addition, the effect of sense of self-worth
significantly differs between males and females. Information-seeking behaviors are in-
fluenced differently by perceptions such as perceived usefulness and perceived expertise
between participants who are 64 years old or younger and participants who are 65 years
old or older. Medical and non-medical professionals can use these insights to provide a
pleasant experience for disease-specific Facebook participants while searching for infor-
mation. While a specific feature may be prioritized to improve performance, the time and
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money needed to encourage such actions may not be worthwhile. Thus, it is possible to
develop a comprehensive plan for practical approaches by using this blueprint:

e Implement the model as a benchmark in various online forums by distributing survey
questions to provide a benchmarking environment.

e  Develop a plan for forum administrators and moderators, which encourages frequent
exchanges with participants and positively impacts the thought processes of disease-
specific information seekers.

Additional textual data were collected that allowed the completion of a qualitative
analysis for comparison with the findings. The qualitative analysis supported the main
themes identified in the current research. For example, it was found that gender differences
existed, and females tended to seek information more than males. In addition, revisiting
the site using this mixed method approach allowed us to obtain longitudinal data and
confirmed the stability of the findings over time. So, the finding that females reach out
more than males was again confirmed.

6. Limitations and Future Work

This study presents a theoretical evaluation framework for information-seeking be-
havior in disease-specific online forums and evaluates the impact of age and gender on
user behavior within the context of the model. Despite the limitations of self-reported
data collected via online questionnaires [64], this study significantly contributes to the
understanding of disease-specific support groups on Facebook. Future research should
analyze other disease-specific online health communities both within and outside of Face-
book using this model. Additionally, implementing other advanced statistical models,
such as multilevel modeling (MLM) or latent growth modeling, would help us to gain a
greater understanding of the complexities of information-seeking behaviors within OHCs.
Lastly, consideration of the education level, socioeconomic status, or health literacy of those
surveyed would provide a broader range of moderating variables.

7. Conclusions

The study employed cross-sectional survey data analyzed using partial least squares
structural equation modeling, multi-group analysis, and importance—performance maps,
resulting in the validation of the proposed model. The statistical methods used in this study
ensured that the predictions made by the research are reliable. The research concluded
with significant findings, notably that age and gender influence online health information-
seeking behavior. It was discovered that perceived expertise and sense of self-worth
differed based on the way each gender seeks information. Specifically, perceived expertise
is more influential for women, while sense of self-worth is more influential for men. Lastly,
this study highlights that while age moderates how perceived expertise, usefulness, and
self-worth influence this behavior, it does not affect the impact of perceived ease of use.

The knowledge gained from this study is crucial for creating and managing on-
line health communities (OHCs), with implications for both medical professionals and
non-medical professionals. Medical professionals can recommend credible online health
communities to patients and provide them with an “information prescription” for optimal
patient outcomes. Technology professionals can use this study’s findings to develop novel
approaches for disseminating relevant information to individuals with chronic diseases,
such as COPD.

Moreover, the study highlights the potential of technology in improving outcomes for
caregivers, patients, and their families. Forum administrators and moderators can use our
findings to enhance the interaction opportunities, navigation, and perceived expertise of
community members, thereby positively impacting information-seeking behaviors.

In conclusion, this study provides significant insights into the information-seeking
behavior of disease-specific forum users, with implications for the development and man-
agement of OHCs. Our findings have important implications for both medical and tech-
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nology professionals, highlighting the potential of technology to improve outcomes for
individuals with chronic diseases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/healthcare12030336/s1.

Author Contributions: Conceptualization, L.B.; Methodology, L.B.; Software, L.B. and A.H.; Val-
idation, A.H.; Formal Analysis, A.H.; Investigation, L.B.; Resources, L.B.; Data Curation, L.B,;
Writing—Original Draft Preparation, L.B. and A.H.; Writing—Review and Editing, G.P. and V.R.P;
Visualization, A.H.; Supervision, G.P. and V.R.P,; Project Administration, L.B. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: This study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Institutional Review Board of University of North Texas
(IRB-19-176, dated 17 June 2020).

Informed Consent Statement: Informed consent was obtained from all subjects involved in this study.
Data Availability Statement: Dataset available on request from the authors.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.

B0 ® N Ok

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Gerzema, J. Harris Poll COVID-19 Tracker Wave 103. 2022. Available online: https://theharrispoll.com/briefs/COVID-19
-tracker-wave-103/ (accessed on 19 December 2023).

Boyce, L.; Harun, A.; Prybutok, G.; Prybutok, V.R. Exploring the factors in information seeking behavior: A perspective from
multinational COPD online forums. Health Promot. Int. 2022, 37, daab042. [CrossRef]

Harun, A; Rokonuzzaman, M.; Prybutok, G.; Prybutok, V.R. Influencing perception of justice to leverage behavioral outcome: A
perspective from restaurant service failure setting. Qual. Manag. ]. 2018, 25, 112-128. [CrossRef]

We Are Social. Digital-2022-Global-Overview-Report; We Are Social: London, UK, 2022.

Foster, C. Social Media And Healthcare: 10 Insightful Statistics; Medical GPS: Nashville, TN, USA, 2021.

Martin, M. 39 Facebook Stats That Matter to Marketers in 2022; Facebook: Melon Park, CA, USA, 2022.

Jia, X.; Pang, Y.; Liu, L.S. Online health information seeking behavior: A systematic review. Healthcare 2021, 9, 1740. [CrossRef]
Facebook. Findings from our Facebook Communities Insights Survey Facebook; Facebook: Melon Park, CA, USA, 2020.

Centers for Disease Control and Prevention. COPD Costs; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2019.
Yao, X;; Yu, G.; Tang, J.; Zhang, ]J. Extracting depressive symptoms and their associations from an online depression community.
Comput. Hum. Behav. 2021, 120, 106734. [CrossRef]

Liu, J.; Kong, ]. Why Do Users of Online Mental Health Communities Get Likes and Reposts: A Combination of Text Mining and
Empirical Analysis. Healthcare 2021, 9, 1133. [CrossRef]

Gadgil, G.; Prybutok, G.; Prybutok, V. Qualitative investigation of the role of quality in online community support for people
living with HIV and AIDS. Qual. Manag. ]. 2018, 25, 171-185. [CrossRef]

Mo, PK.H.; Coulson, N.S. Are online support groups always beneficial? A qualitative exploration of the empowering and
disempowering processes of participation within HIV/ AIDS-related online support groups. Int. J. Nurs. Stud. 2014, 51, 983-993.
[CrossRef]

Chee, W.; Lee, Y.; Ji, X.; Chee, E.; Im, E.-O. The preliminary efficacy of a technology-based cancer pain management program
among Asian American breast cancer survivors. Comput. Inform. Nurs. 2020, 38, 139-147. [CrossRef]

Lee, Y.; Kamen, C.; Margolies, L.; Boehmer, U. Online health community experiences of sexual minority women with cancer.
J. Am. Med. Assoc. 2019, 1, 759-766. [CrossRef]

Nambisan, P. Information seeking and social support in online health communities: Impact on patients’ perceived empathy.
J. Am. Med. Inform. 2011, 18, 298-304. [CrossRef]

Sharma, S.; Khadka, A. Role of empowerment and sense of community on online social health support group. Inf. Technol. People
2019, 32, 1564-1590. [CrossRef]

Chen, Q.; Jin, J.; Yan, X. Understanding online review behaviors of patients in online health communities: An expectation-
disconfirmation perspective. Inf. Technol. People 2021, 35, 2441-2469. [CrossRef]

Johnston, A.; Worrell, J.; Gangi, P.; Wasko, M. Online health communities: An assessment of the influence of participation on
patient empowerment outcomes. Inf. Technol. People 2013, 26, 213-235. [CrossRef]

Ahadzadeh, A.; De, M; Sharif, S.; Ong, F. Integrating Health Belief Model and Technology Acceptance Model: An investigation
of health-related internet use. J. Med. Internet Res. 2015, 17, e45. [CrossRef]

168



Healthcare 2024, 12, 336

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Yan, Z.; Wang, T.; Chen, Y.; Zhang, H. Knowledge sharing in online health communities: A social exchange theory perspective.
Inf. Manag. 2016, 53, 643-653. [CrossRef]

Durcikova, A.; Gray, P. How Knowledge validation processes affect knowledge contribution. . Manag. Inf. Syst. 2014, 25, 81-108.
[CrossRef]

Kollman, T.; Hasel, M.; Breugst, N. Competence of IT professionals in e-business venture teams: The effect of experience and
expertise on preference structure. J. Manag. Inf. Syst. 2014, 25, 51-80. [CrossRef]

Nath, C.; Huh, J.; Adupa, A.K,; Jonnalagadda, S.R. Website sharing in online health communities: A descriptive analysis. . Med.
Internet Res. 2016, 18, €5237. [CrossRef]

Sinha, A.; Porter, T.; Wilson, A. The use of online health forums by patients with chronic cough: Qualitative study. . Med. Internet
Res. 2018, 20, €19. [CrossRef]

Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319-340.
[CrossRef]

Lazard, A.].; Watkins, I.; Mackert, M.S.; Xie, B.; Stephens, K.K.; Shalev, H. Design simplicity influences patient portal use: The role
of aesthetic evaluations for technology acceptance. J. Am. Med. Inform. Assoc. 2016, 23, 157. [CrossRef]

Hodgkin, P; Horsley, L.; Metz, B. The Emerging World of Online Health Communities; SSIR: Stanford, CA, USA, 2018.

Mailizar, M.; Burg, D.; Maulina, S. Examining university students’ behavioural intention to use e-learning during the COVID-19
pandemic: An extended TAM model. Educ. Inf. Technol. 2021, 26, 7057-7077. [CrossRef]

Matthews, S.D.; Proctor, M.D. Public health informatics, human factors and the end-users. Health Serv. Res. Manag. Epidemiol.
2021, 8, 23333928211012226. [CrossRef]

Vydiswaran, V.G.; Reddy, M. Identifying peer experts in online health forums. BMC Med. Inform. Decis. Mak. 2019, 19, 68.
[CrossRef]

Lee, C.; Niederdeppe, ].; Freres, D. Socioeconomic Disparities in Fatalistic Beliefs About Cancer Prevention and the Internet.
J. Commun. 2012, 62, 972-990. [CrossRef]

Petric, G.; Atanasova, S.; Kamin, T. Impact of Social Processes in online health communities on patient empowerment in
relationship with physician: Emergence of functional and dysfunctional empowerment. |. Med. Internet Res. 2017, 19, e74.
[CrossRef]

Wu, P,; Zhang, R.; Luan, J. The effects of factors on the motivations for knowledge sharing in online health communities: A
benefit-cost perspective. PLoS ONE 2023, 18, e0286675. [CrossRef]

Homans, G.C. Social behavior as exchange. Am. |. Sociol. 1958, 63, 597-606. [CrossRef]

Solberg, L.B. The benefits of online health communities. Virtual Mentor 2014, 16, 270-274.

Wang, X.; Zhao, K,; Street, N. Analyzing and predicting user participations in online health communities: A social support
perspective. . Med. Internet Res. 2017, 19, e130. [CrossRef]

Bock, G.; Zmud, RW.; Kim, Y.; Lee, J. Behavioral intention formation in knowledge sharing: Examining the roles of extrinsic
motivators, social-psychological forces, and organizational climate. MIS Q. 2005, 29, 87-111. [CrossRef]

Hatamleh, I.; Safori, A.; Habes, M.; Tahat, O.; Ahmad, A.; Abdallah, R.; Aissani, R. Trust in social media: Enhancing social
relationships. Soc. Sci. 2023, 12, 416. [CrossRef]

Lian, J.; Yen, D.C. Online shopping drivers and barriers for older adults: Age and gender differences. Comput. Hum. Behav. 2014,
37,133-143. [CrossRef]

Tan, G.W.; Ooi, K. Gender and age: Do they really moderate mobile tourism shopping behavior? Telemat. Inform. 2018, 35,
1617-1642. [CrossRef]

Kim, J. An extended technology acceptance model in behavioral intention toward hotel tablet apps with moderating effects of
gender and age. Int. |. Contemp. Hosp. Manag. 2016, 28, 1535-1553. [CrossRef]

Wong, K.; Teo, T.; Russo, S. Influence of gender and computer teaching efficacy on computer acceptance among Malaysian
student teachers: An extended technology acceptance model. Australas. |. Educ. Technol. 2012, 28, 1190-1207. [CrossRef]
Mandari, H.E.; Chong, Y. Gender and age differences in rural farmers’ intention to use m-government services. Electron. Gov.
2018, 14, 217-239. [CrossRef]

Acheampong, P; Li, Z.; Hiran, K.K,; Serwaa, O.E.; Boateng, F.; Bediako, I.A. Examining the intervening role of age and gender on
mobile payment acceptance in Ghana: UTAUT Model. Can. J. Appl. Sci. Technol. 2018, 6, 141-151.

Tarhini, A.; Hone, K.; Liu, X. Measuring the moderating effect of gender and age on e-Learning acceptance in England: A
structural equation modeling approach for an extended Technology Acceptance Model. |. Educ. Comput. Res. 2014, 51, 163-184.
[CrossRef]

Phillips, L.W,; Sternthal, B. Age differences in information processing: A perspective on the aged consumer. J. Mark. Res. 1977, 14,
444-457. [CrossRef]

Fang, J.; Wen, C.; George, B.; Prybutok, V. Consumer heterogeneity, perceived value, and repurchase decision-making in online
shopping. J. Electron. Commer. Res. 2016, 17, 116-131.

Liébana-Cabanillas, F.; Sinchez-Fernandez, J.; Mufioz-Leiva, F. Antecedents of the adoption of the new mobile payment systems:
The moderating effect of age. Comput. Hum. Behav. 2014, 35, 464-478. [CrossRef]

Hair, ].E,; Sarstedt, M.; Ringle, C.M.; Gudergan, S. Advanced Issues in Partial Least Squares Structural Equation Modeling; Sage: Los
Angeles, CA, USA, 2018.

169



Healthcare 2024, 12, 336

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Cohen, ]. A power primer. Psychol. Bull. 1992, 112, 155-159. [CrossRef]

Kock, N. Common method bias in PLS-SEM: A full collinearity assessment approach. Int. |. e-Collab. 2015, 11, 1-10. [CrossRef]
Li, T.; Calantone, R.J. The impact of market knowledge competence on new product advantage: Conceptualization and empirical
examination. J. Mark. 1998, 62, 13. [CrossRef]

Reinartz, W.; Haenlein, M.; Henseler, . An empirical comparison of the efficacy of covariance-based and variance-based SEM. Int.
J. Res. Mark. 2009, 26, 332-344. [CrossRef]

Hair, ].F.; Risher, ].J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31,
2-24. [CrossRef]

Wold, H. Partial Least Squares. In Encyclopedia of Statistical Sciences; Kotz, S., Johnson, N.L., Eds.; Wiley: Hoboken, NJ, USA, 1985;
pp. 581-591.

Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res.
1981, 18, 39. [CrossRef]

Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation
modeling. |. Acad. Mark. Sci. 2015, 43, 115-135. [CrossRef]

Preacher, K.J.; Hayes, A.F. Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator
models. Behav. Res. Methods 2008, 40, 879-891. [CrossRef]

Shmueli, G.; Sarstedt, M.; Hair, J.F,; Jun-Hwa Cheah Ting, H.; Vaithilingam, S.; Ringle, C.M. Predictive model assessment in
PLS-SEM: Guidelines for using PLSpredict. Eur. . Mark. 2019, 53, 2322-2347. [CrossRef]

Chin, WW.; Dibbern, J. An introduction to a permutation based procedure for multi-group PLS analysis: Results of tests of
differences on simulated data and a cross cultural analysis of the sourcing of information system services between Germany and
the USA. In Handbook of Partial Least Squares; Springer: Berlin/Heidelberg, Germany, 2009; pp. 171-193.

Martilla, J.A.; James, J.C. Importance-Performance analysis. J. Mark. 1977, 41, 77-79. [CrossRef]

Anderson, E.W.; Fornell, C. Foundations of the American Customer Satisfaction Index. Total Qual. Manag. 2000, 11, 869-882.
[CrossRef]

Podsakoff, PM.; Organ, D.W. Self-reports in organizational research: Problems and prospects. J. Manag. 1986, 12, 531-544.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

170



@ healthcare m\n\w

Article

From Mandate to Choice: How Voluntary Mask Wearing
Shapes Interpersonal Distance Among University Students
After COVID-19

Yi-Lang Chen *, Che-Wei Hsu > and Andi Rahman 13

Department of Industrial Engineering and Management, Ming Chi University of Technology,

New Taipei 243303, Taiwan; m10218009@mail2.mcut.edu.tw (C.-W.H.); m09218051@mail2.mcut.edu.tw (A.R.)
Quanta Computer Inc., Taoyuan 33377, Taiwan

Department of Industrial Engineering, Andalas University, Padang 25175, Indonesia

*  Correspondence: ylchen@mail. mcut.edu.tw

Abstract

Background/Objectives: As COVID-19 policies shift from government mandates to in-
dividual responsibility, understanding how voluntary protective behaviors shape social
interactions remains a public health priority. This study examines the association between
voluntary mask wearing and interpersonal distance (IPD) preferences in a post-mandate
context, focusing on Taiwan, where mask wearing continues to be culturally prevalent.
Methods: One hundred university students (50 males, 50 females) in Taiwan completed
an online IPD simulation task. Participants adjusted the distance of a virtual avatar in
response to targets that varied by gender and mask status. Mask-wearing status upon
arrival was recorded naturally, without manipulation. A four-way ANOVA tested the
effects of participant gender, participant mask wearing, target gender, and target mask
wearing on the preferred IPD. Results: Voluntary mask wearing was more common among
female participants (72%) than males (44%). Mask-wearing individuals maintained signifi-
cantly greater IPDs, suggesting heightened risk perception, whereas masked targets elicited
smaller IPDs, possibly due to social signaling of safety. Gender differences emerged in both
protective behavior and spatial preferences, with females showing stronger associations
between mask use and distancing behavior. Conclusions: These findings offer actionable
insights into how voluntary behavioral adaptations continue to shape spatial interaction
norms after mandates are lifted. The integration of real-time simulation and statistical
modeling highlights the potential of digital behavioral tools to support culturally adaptive,
person-centered public health strategies.

Keywords: interpersonal distance (IPD); mask-wearing choice; public health behavior;
participant gender; target gender

1. Introduction

The COVID-19 pandemic fundamentally reshaped human social behavior, with in-
terpersonal distance (IPD) emerging as a central aspect of public health strategies [1,2].
IPD—defined as the physical space that individuals maintain between themselves and
others during social interactions—has been widely used as an indicator of perceived risk
and engagement in protective behaviors [3,4]. Examining how protective behaviors are
associated with spatial preferences is essential for public health planning, as these associ-
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ations may reflect underlying psychological processes that support adherence to health
guidelines [5].

The relationship between mask wearing and IPD can be understood through several
interconnected psychological frameworks. Risk compensation theory suggests that when
individuals adopt one protective behavior, such as mask wearing, they may adjust other
behaviors—like social distancing—accordingly [6]. Masks also function as visual cues that
may signal health consciousness and perceived risk to others. Upon encountering a masked
individual, people may interpret the behavior as indicating heightened caution, potentially
prompting an increased distance, or as a sign of responsibility, possibly reducing the
perceived threat and allowing closer proximity [7-9]. Protection motivation theory further
proposes that protective behaviors are associated with both threat and coping appraisals,
implying that voluntary mask wearers may perceive a greater threat and therefore prefer
larger IPDs [10].

During the pandemic, numerous studies examined how mandated mask wearing was
associated with changes in IPD, reporting mixed results across cultural and situational
contexts [11-16]. However, these investigations primarily addressed behaviors influenced
by governmental mandates rather than voluntary choices. As societies transition from
mandate-driven to choice-driven protective practices, an important knowledge gap re-
mains: how is voluntary mask wearing—reflecting personal risk assessment and health
consciousness—related to IPD preferences in post-pandemic social interactions?

This question has important implications for public health policy. Gaining insights
into how voluntary protective behaviors are associated with one another can help to inform
future pandemic preparedness strategies. In addition, the continued presence of altered
IPD preferences may be linked to long-term effects on social functioning and psychological
well-being [17,18]. The transition from mandated to voluntary mask wearing offers a
natural context to explore how individual differences in risk perception and cultural norms
are related to spatial behavior.

Research on post-pandemic IPD has produced mixed findings, emphasizing the im-
portance of distinguishing between mandated and voluntary protective behaviors. Welsch
et al. [11] found that IPD preferences in Germany did not return to pre-pandemic levels
even after restrictions were lifted, suggesting persistent behavioral adaptation. In contrast,
Chen et al. [15] reported a rapid reduction in perceived IPD among young Taiwanese indi-
viduals following the removal of mask mandates, highlighting cultural and demographic
variability in behavioral persistence. These contrasting results underscore the need to
examine voluntary protective behaviors independently of compliance-driven responses,
as voluntary behaviors may reflect more stable, intrinsic motivations that persist beyond
external mandates. While existing studies offer useful insights into pandemic-era spatial
behavior, few have explored how voluntary mask wearing—as a marker of intrinsic mo-
tivation rather than compliance—is associated with IPD in post-mandate contexts. The
present study directly addresses this gap by examining the bidirectional relationship be-
tween voluntary protective choices and spatial preferences, offering insights into sustained
behavioral adaptations that extend beyond policy enforcement.

Previous research has identified key demographic factors associated with protective
behaviors and spatial preferences. Gender differences in health-related behaviors and
COVID-19 risk perception have been consistently observed, with females generally exhibit-
ing greater compliance and higher risk awareness [5,15,19,20]. Age-related variation in
interpersonal space preferences has also been noted, with younger individuals displaying
distinct spatial behavior patterns [21,22]. However, how voluntary mask wearing interacts
with these demographic factors in post-mandate contexts remains insufficiently explored.
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The distinction between mandated and voluntary protective behaviors is theoretically
important, as voluntary behaviors are more likely to reflect intrinsic motivation, personal
risk perception, and individual health beliefs rather than external compliance [23]. When in-
dividuals choose to wear masks voluntarily, this decision may signal a sustained perception
of threat and a protective orientation that could also be associated with spatial behaviors,
such as IPD preferences. However, existing research has not sufficiently examined this
bidirectional relationship between voluntary mask adoption and spatial preferences—a
relationship that may reflect the complex interplay between individual protective strategies
and perceived social comfort.

This research addresses a critical need to understand how cultural norms and indi-
vidual autonomy interact in shaping post-pandemic social adaptation. In post-mandate
contexts, voluntary protective behaviors can serve as indicators of sustained risk awareness
and social responsibility, making their examination essential in developing long-term pub-
lic health strategies that uphold personal choice while supporting community well-being.
This theoretical gap is particularly relevant in post-pandemic Taiwan, where voluntary
mask wearing has become embedded in everyday social norms. Several factors appear
to contribute to the continued use of masks in Taiwan and other East Asian societies. A
long-standing tradition of mask wearing during respiratory illness seasons has been re-
inforced by experiences during the COVID-19 pandemic [24]. The cultural emphasis on
collective well-being and social harmony has helped to normalize mask use as a symbol of
mutual respect and health consciousness [25]. Additionally, positive experiences with mask
wearing—particularly in crowded public spaces—have facilitated its incorporation into
daily routines [26,27]. Taiwan’s post-mandate environment thus offers a unique context in
which to explore how voluntary mask wearing has shifted from policy-driven behavior to
a culturally integrated practice.

This study addresses key knowledge gaps by examining how voluntary mask-wearing
behavior is associated with IPD preferences in a post-mandate context, with the goal of pro-
viding evidence-based insights for public health policy and spatial management. We aimed
to explore how individuals” voluntary mask-wearing choices relate to IPD preferences,
assess the social signaling effects of encountering masked versus unmasked individuals,
and identify gender-specific patterns that may inform actionable recommendations for
public health practitioners and policymakers.

We recruited 100 university students (50 males, 50 females) and recorded their spon-
taneous mask-wearing behavior upon arrival at the experimental site, allowing for the
naturalistic observation of personal protective decisions. By analyzing IPD preferences in
response to virtual targets differing in gender and mask status, we examined how voluntary
protective behaviors are related to spatial judgments in a post-mandate setting. This design
enabled us to investigate both how individuals” own mask-wearing statuses corresponded
with their preferred IPDs and how exposure to masked versus unmasked targets influenced
their spatial behavior.

Grounded in risk compensation theory, social signaling theory, and protection motiva-
tion theory, we proposed four testable hypotheses. We hypothesized that individuals who
voluntarily wore masks would maintain larger IPDs than non-mask wearers, reflecting
heightened risk perception and a broader protective orientation. Encountering masked
targets was expected to result in reduced IPDs, as mask wearing may signal safety and
social responsibility. We further hypothesized that gender would be associated with both
voluntary mask-wearing prevalence and the strength of the relationship between protective
behaviors and spatial preferences, with females expected to show higher mask adoption
rates and stronger associations. Finally, we anticipated that these behavioral patterns would
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produce measurable effect sizes sufficient to inform evidence-based recommendations for
public space design and health communication strategies.

2. Materials and Methods

This study employed an observational experimental design to examine how voluntary
mask-wearing behavior is associated with IPD preferences in post-pandemic contexts. To
capture natural protective behavior, participants” mask-wearing statuses were recorded
upon arrival without manipulation. They then completed an online IPD simulation task,
adjusting the distance of a virtual avatar in response to targets that varied by gender and
mask status. This approach allowed for the analysis of both how individuals” own mask-
wearing behavior corresponded with their spatial preferences and how masked versus
unmasked targets influenced IPD judgments. In doing so, the study directly addressed the
relationship between voluntary protective behaviors and emerging social spatial norms.
Ethical approval was obtained from the Ethics Committee of Chang Gung University,
Taiwan, and all procedures were conducted in accordance with the 2013 World Medical
Association Declaration of Helsinki and relevant institutional guidelines.

2.1. Participants

A total of 100 participants—equally divided between males and females—were en-
rolled in an online test. All were undergraduate or graduate students who reported no
cognitive or psychological impairments. The average (standard deviation) ages were
21.4 (2.2) years for males and 20.9 (1.8) years for females. All participants were right-
handed and unfamiliar with the target individuals used in the simulation. Data collection
was conducted in September 2023, following Taiwan’s phased lifting of mask mandates.
This transition began on 17 April 2023, when the government removed most public mask-
wearing requirements. Although certain settings, particularly healthcare facilities, retained
mandates until 19 May 2024, mask wearing in most public spaces had largely shifted to
a matter of personal choice during our data collection period. This timing enabled the
study to examine voluntary mask-wearing behavior in a transitional social context—when
external mandates had been lifted for most environments, but institutional requirements
remained in select locations. Informed consent was obtained from all participants, includ-
ing consent for the publication of identifying information and images in an open-access
format.

While this sample offers valuable insights into young adult behavior within the Tai-
wanese context, the exclusive recruitment of university students from a single country
may limit the generalizability of the findings to other populations, age groups, or cul-
tural settings. The relatively homogeneous demographic profile—young, educated, and
Taiwanese—should be taken into account when interpreting the results, as voluntary pro-
tective behaviors and spatial preferences may differ across socioeconomic, educational, and
cultural backgrounds.

2.2. Experimental Setting

Although the pandemic had subsided, we employed an online test to collect IPD
data, following the approach used by Chen and Rahman [5], to allow for comparison
with prior studies. The online IPD measurement protocol gained widespread use during
the pandemic and was adapted from the original paper-and-pencil methods developed
by Hayduk [28] and Xiong et al. [29]. Our version of the test, widely accepted in both
clinical and applied research settings [21], was implemented using Axure RP 11, a rapid
prototyping tool (Version 11, Axure Software Solutions, San Diego, CA, USA).
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During the test, participants used a computer cursor to move a virtual subject (avatar)
toward a designated target. To avoid influencing distance judgments, the directional arrow
between the avatars was hidden once movement began. No numerical cues were given
regarding the distance between avatars; instead, participants relied solely on spatial percep-
tion as the avatar advanced. They were instructed to stop at a point that felt comfortable
but had just begun to feel slightly uncomfortable—consistent with definitions used in prior
studies [2,5,20,30-32]. The final avatar distance was converted to the psychological IPD
using a 1:7.2 scale ratio. The starting point of 55.5 cm corresponded to an approximate
real-world separation of 4 m between the participant and target [2,32]. Reliability was
confirmed in a pilot study, which yielded a satisfactory intraclass correlation coefficient of
0.85 across repeated trials.

2.3. Targets

A male and a female, both 22 years old, were selected as target subjects, with respective
heights of 176 cm and 160 cm. Both individuals were Taiwanese, ensuring demographic
consistency with the participant population and cultural context of the study. Each subject
was photographed wearing casual clothing with no accessories. Using a digital camera
(Sony HDR-XR260; Sony, Tokyo, Japan), sagittal-view images were captured under four
conditions—two based on gender and two on mask-wearing status—following the method-
ology used by Chen and Rahman [5], as illustrated in Figure 1. Throughout the image
capture process, the subjects maintained neutral facial expressions. These photographs
were then used as digital stimuli in the online test. To standardize the visual presenta-
tion, the images of the male and female targets were scaled to screen heights of 24.4 cm
and 22.2 cm, respectively. The surgical masks worn in the masked conditions were plain
blue and unembellished, representative of the typical face coverings used during the
COVID-19 pandemic.

Female target Male target Female target Male target

Wearing mask No mask

Figure 1. Images of the targets under different testing conditions (2 genders x 2 mask-wearing
statuses), post-processed and manually redrawn to anonymize identities.

Several limitations related to the visual stimuli should be acknowledged. The use
of only two target individuals with neutral expressions and standardized attire may not
fully represent the diversity of social cues that influence IPD judgments in real-world
settings. Moreover, the static nature of photographic stimuli—although beneficial for
experimental control—differs from dynamic, face-to-face interactions, where movement,
facial expressions, body language, and the situational context can influence spatial decision
making. These limitations may have shaped participants” perceptions of the social signals
conveyed by mask wearing and could impact the ecological validity of the findings.
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2.4. Procedure

The primary aim of this study was to examine how participants’” voluntary mask-
wearing behavior was associated with their IPD preferences. Upon arrival at the exper-
imental site, the experimenter visually recorded whether each participant was wearing
a face mask. No instruction was given to wear or remove a mask, allowing for natural
variations in protective behavior. Participants remained under observation throughout
the session to ensure that those who arrived wearing a mask retained it during the entire
experiment. No participant changed their mask status during testing.

Before the session began, all participants underwent a health screening to confirm that
they were asymptomatic for respiratory illnesses, including cold, fever, COVID-19, and
related conditions. This screening ensured that mask-wearing decisions reflected voluntary
protective behavior and perceived risk, rather than immediate health-related needs. After
screening, standardized instructions were provided. Participants were told that they would
use a computer mouse to move a side-profile avatar toward a target person shown on the
screen and should stop at the point where they would begin to feel uncomfortable if the
interaction were occurring in real life (Figure 2). They were instructed to imagine that
the approaching avatar represented themselves, and the static image represented another
person. This procedure was adapted from previous studies on virtual IPD assessment [2,28].

Figure 2. Schematic illustration of the experimental layout and testing procedure.

Each participant completed 12 trials, including three repeated measures for each of the
four target conditions (2 genders x 2 mask statuses). Target presentations were randomized,
and rest intervals of at least three minutes were included between trials to minimize fatigue
or habituation effects. At the start of each trial, participants viewed frontal images of the
target under all four conditions to facilitate the visualization of the scenario. They then
performed the IPD task by adjusting the avatar’s horizontal position to the point just before
discomfort. Minor final adjustments were allowed, and the system automatically recorded
the chin-to-chin distance between avatars. These values were subsequently converted to
real-world measurements using a 1:7.2 scaling ratio to calculate the psychological IPD.

2.5. Statistical Analysis

The independent variables in the test included participant gender, participant mask
status, target gender, and target mask status, while the dependent variable was the interper-
sonal distance (IPD), measured in centimeters. Data were analyzed using SPSS 23.0 (IBM,
Armonk, NY, USA), with the significance level (x) set at 0.05. Because participant mask sta-
tus was nested within gender, an unbalanced four-way nested ANOVA was conducted to
evaluate the effects of the independent variables on IPD. In this model, participant gender
and participant mask status were treated as between-subject factors, while target gender
and target mask status served as within-subject factors. Additionally, two separate three-
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way ANOVAs were performed for male and female participants, respectively, followed by
post hoc comparisons using independent t-tests. Effect sizes were reported using n? values.
Prior to analysis, the Kolmogorov-Smirnov test confirmed that all numerical variables were
normally distributed (all p > 0.05), and Levene’s test indicated homogeneity of variances
across groups (all p > 0.05), supporting the use of ANOVA procedures. No missing data
were identified, as all participants completed the full experimental protocol, with valid IPD
measurements recorded for all 12 trials (three repetitions x four target conditions).

3. Results

Figure 3 presents the proportions of male and female participants who wore masks
upon arrival at the experimental site and throughout the experiment. A higher percentage
of female participants (72%, n = 36) wore masks compared to male participants (44%,
n = 22). Overall, 58% of the sample chose to wear masks despite the absence of a mandate,
with the mask-wearing prevalence significantly higher among females than males.

100

I Male participant

— 75 O Female participant
S p p
[J]
oo
8
c 50 1
V]
o
V]
a

25

0

Not wearing mask Wearing mask

Figure 3. Proportions of mask wearing by gender. Female participants demonstrated significantly
higher voluntary mask wearing (72%, n = 36) compared to males (44%, n = 22), x> = 7.84, p < 0.01.
The overall prevalence of mask use among all participants was 58% (58 out of 100).

Table 1 summarizes the results of the four-way ANOVA conducted on IPD measure-
ments. Participant gender (p < 0.05), participant mask status (p < 0.001), and target mask
status (p < 0.001) were all significantly associated with differences in IPD, while target gen-
der did not yield a significant main effect. Figure 4 illustrates these main effects, showing
that male participants, masked individuals, and unmasked targets were associated with
greater IPD values compared to their respective counterparts. In addition, Table 1 reveals a
significant interaction between participant gender and target gender (p < 0.05), warranting
further analysis to explore this relationship.

Table 1. Results of four-way ANOVA on interpersonal distance.

Source F p-Value n?

Participant gender (PG) 17.47 <0.05 0.022
Participant mask (PM) 35.29 <0.001 0.044
Target gender (TG) 1.09 0.298 0.001
Target mask (TM) 35.78 <0.001 0.045
PG x PM 1.86 0.173 0.014

PG x TG 4.52 <0.05 0.018

PG x TM 0.09 0.765 <0.001
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Table 1. Cont.

Source F p-Value n?

PM x TG 0.34 0.559 <0.001

PM x TM 0.06 0.800 <0.001

TG x T™M 0.01 0.909 <0.001

PG x PM x TG 0.01 0.906 <0.001
PG x PM x TM 0.40 0.527 0.001
PG x TG x TM 0.07 0.797 <0.001
PM x TG x TM 0.03 0.857 <0.001
PG x PM x TG x TM 0.01 0.924 <0.001

200

p<0.001

p<0.05 p<0.001
150 - ,—’ ]
100 A l

50

Interpersonal distance (cm)

Men Women Yes No Men Women Yes No

Participant gender Participant mask Target gender Target mask

Figure 4. Main effects of the examined independent variables on interpersonal distance.

Table 2 presents the results of the three-way ANOVA conducted separately for each
participant gender. The effect of the target gender on IPD differed by participant gen-
der, reaching significance for female participants (p < 0.05) but not for males (p = 0.430).
Among female participants, the smallest IPD was observed when interacting with female
targets, while the remaining three target combinations yielded nearly identical IPD values
(Figure 5). Figure 6 further illustrates the significant differences in IPDs between masked
and unmasked participants across both genders, with all paired comparisons reaching
significance among female participants.

Table 2. Results of three-way ANOVA on interpersonal distance within each participant gender group.

Source F p-Value n?

Male participants
Participant mask (PM) 11.11 <0.001 0.028
Target gender (TG) 0.62 0.430 0.002
Target mask (TM) 20.93 <0.001 0.052
PM x TG 0.12 0.734 <0.001
PM x T™M 0.08 0.782 <0.001
TG x TM 0.07 0.787 <0.001
PM x TG x TM 0.04 0.841 <0.001

Female participants
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Table 2. Cont.

Source F p-Value n?
Participant mask (PM) 25.41 <0.001 0.062
Target gender (TG) 4.78 <0.05 0.015
Target mask (TM) 15.38 <0.001 0.038
PM x TG 0.24 0.628 0.001
PM x TM 0.37 0.541 0.001
TG x TM 0.01 0.921 <0.001
PM x TG x TM <0.01 0.954 <0.001

150

100 A

T \j?&j,xo.os

50

Interpersonal distances (cm)

—O—Male target
——Female target

Male participant Female participant

Figure 5. Comparison of interpersonal distance across participant genders in relation to tar-
get genders.
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Figure 6. Pairwise comparisons of interpersonal distance values across participant mask-wearing
statuses, based on independent t-tests conducted for each test condition.

4. Discussion

This study provides new insights into how voluntary mask wearing is associated with
IPD in post-pandemic contexts. Although mask wearing is now a matter of personal choice
rather than public mandate, our findings suggest that it remains meaningfully related
to social spacing behaviors—potentially reflecting both risk perception and comfort in
social interactions. The observed patterns align with our study’s hypotheses, supporting
possible associations between voluntary protective behaviors and IPD preferences, without
implying direct causal relationships.
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One key finding concerns the contrasting patterns associated with participant and
target mask wearing. As shown in Table 1 and Figure 4, participants who wore masks
tended to maintain larger IPDs than those who did not. This may reflect heightened risk
perception or a general preference for increased personal space among individuals who
choose to wear masks. Previous studies have noted that mask wearers often perceive
themselves as more vulnerable to illness and consequently maintain greater distances from
others [3,33]. In contrast, encountering a masked target was associated with a reduced IPD
(71.6 cm vs. 90.6 cm), suggesting that masks may also function as prosocial signals that
convey safety or trustworthiness [3,8]. This dual role—as both a protective barrier and a
social signal—is consistent with earlier research indicating that masks can simultaneously
communicate caution when worn and trustworthiness when observed [3,34,35].

Notably, before the COVID-19 pandemic, mask wearing was often interpreted as
a sign of illness or heightened risk, contributing to social avoidance and psychological
barriers [36,37]. Whether masks will eventually revert to their pre-pandemic connota-
tions or continue to reflect new social meanings remains an open question worthy of
continued investigation.

Gender differences further highlight the complexity of mask wearing’s relationship
with IPD. As shown in Figure 3, female participants were significantly more likely to
voluntarily wear masks than male participants (72% vs. 44%), consistent with research
suggesting that women tend to perceive greater health risks and adopt protective behav-
iors more frequently [20]. In addition, female participants exhibited smaller IPDs when
interacting with other females, whereas the IPDs across other gender combinations were
relatively uniform (Figure 5). This may reflect gender-based comfort and affiliation cues
that continue to shape spatial preferences, even in a post-mandate environment. Prior
studies on social bonding and gender norms indicate that women often maintain closer
IPDs with same-gender individuals [2,38,39], which may help to explain the reduced IPD
observed in female—female interactions in this study.

Our results contribute to the growing body of literature on the long-term effects of
pandemic-induced behavioral adaptations. Kiithne et al. [8] demonstrated that face masks
can have both prosocial and antisocial effects depending on the context. Our findings reflect
this complexity: voluntary mask wearing was associated with larger IPDs, suggesting a
tendency toward increased social distancing among mask wearers—potentially indicating
elevated risk perception or a protective orientation. Conversely, encountering a masked
target was associated with smaller IPDs, suggesting that masks may function as prosocial
signals that convey trust and safety. This dual pattern implies that the social meaning of
voluntary mask wearing may depend on the perspective—whether one is the wearer or
the observer.

These observed differences in IPD suggest that the pandemic may have contributed
to lasting changes in how individuals regulate physical proximity, especially in cultures
where mask wearing has become normalized [19]. Previous studies indicate that prolonged
shifts in IPD may be influenced by prior experiences with public health crises, reinforcing
more cautious spatial behavior over time [13,14]. Cultural norms also play an important
role in shaping post-pandemic protective behaviors. In East Asian societies such as Taiwan,
mask wearing has long been a social norm and may influence both the decision to wear a
mask voluntarily and individuals” comfort in close interpersonal situations. These cultural
factors should be considered when interpreting the generalizability of the present findings.

While this study offers valuable insights into how voluntary mask wearing relates to
IPD, several limitations should be noted. First, although the use of an online simulation
aligns with validated protocols in earlier research, it may not fully replicate the complexity
of real-world social interactions. Dynamic factors such as facial expressions, movement,
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or environmental context are not captured in this format. The use of only two avatar
targets—both with neutral expressions and standardized clothing—also limits the ecologi-
cal validity, as characteristics like emotional displays, perceived attractiveness, or social
status may influence IPD judgments. Additionally, although surgical masks were used con-
sistently, research suggests that the mask color and type can elicit different psychological
responses. Future studies could benefit from incorporating immersive virtual reality and a
more diverse array of stimuli to enhance the realism and generalizability.

Second, the observational design of this study precludes causal inference. Participants
were not randomly assigned to mask-wearing conditions; instead, their mask status was
recorded upon arrival. While this naturalistic approach increases the ecological validity, it
introduces potential self-selection bias, as mask-wearing decisions may be influenced by
unmeasured factors such as risk perception, anxiety, past infection experiences, or regional
background. These variables were not assessed. The study also lacked counterbalancing of
mask conditions or matching between participant and avatar characteristics (e.g., gender
or mask status), which limits interpretation regarding possible social mirroring effects.
Additionally, although mask usage was monitored throughout the session, it was not strictly
enforced or recorded during task execution. Finally, because the study was conducted in
Taiwan—where mask wearing remains socially normative—the findings may not generalize
to populations with different cultural or pandemic-related experiences. Future research
should incorporate randomized designs, individual psychological measures, and cross-
cultural comparisons to better understand how voluntary protective behaviors continue to
shape interpersonal dynamics.

Understanding the long-term implications of voluntary protective behaviors is essen-
tial as societies adapt to the aftermath of the pandemic. While our results reveal meaningful
associations between voluntary mask wearing and IPD preferences, these should be inter-
preted as correlational rather than causal. Future research should examine whether these
behavioral patterns persist or diminish over time and explore how cultural, contextual, and
individual-level factors—such as personality traits, perceived vulnerability, and previous
health experiences—contribute to the adoption and maintenance of voluntary protective
behaviors. Such investigations would offer deeper insights into the evolving relationships
among public health practices, social norms, and risk perception in a post-pandemic society.

5. Conclusions

Our findings demonstrate that voluntary mask wearing remains significantly asso-
ciated with IPD preferences in post-pandemic contexts. Female participants exhibited
higher voluntary mask adoption rates (72% vs. 44%), and those who wore masks tended
to maintain greater IPDs. In contrast, encounters with masked targets were associated
with smaller IPDs, suggesting a nuanced dual role for masks in post-pandemic social
interactions. These patterns offer evidence-based insights to inform public health strategies
and the design of social spaces.

Public health authorities may benefit from recognizing the behavioral clustering
observed among voluntary mask wearers, who tend to exhibit sustained protective be-
haviors. Given the substantial gender differences in mask adoption, gender-sensitive
approaches should be considered in future public health messaging and intervention
design. In spatial planning, social environments could be adapted to accommodate
IPD differences—approximately 20 cm—between masked and unmasked interactions
by incorporating flexible, modular layouts. Additionally, the observed social signaling
effects—where masked individuals create a perceived zone of safety—can inform crowd
flow and space allocation strategies in both public and private settings.
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The shift from mandated to voluntary protective behaviors presents an opportunity to
develop sustainable, choice-driven frameworks for future public health preparedness. Un-
derstanding how voluntary behaviors reshape social spatial norms is essential in creating
culturally adaptive strategies that support community health resilience while respect-
ing individual autonomy. For policymakers, these findings underscore the importance
of integrating voluntary protective behavior patterns into pandemic response planning,
implementing gender-sensitive public health measures, and designing adaptable environ-
ments that reflect the dual signaling effects of mask wearing in post-pandemic life. These
quantifiable behavioral trends offer a practical foundation for evidence-informed social
policy and spatial management in future public health contexts.
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Abstract: EPIICAL (Early treated Perinatally HIV-Infected individuals: Improving Children’s Actual
Life) is a consortium of European and non-European research-driven organizations inter-connected
with the aim of establishing a clinical and experimental platform for the early identification of novel
therapeutic strategies for the pediatric Human Immunodeficiency Virus (HIV). Within the EPIICAL
project, several pediatric clinical studies were conducted, requiring the collection and transfer of
biological samples and associated data across boundaries within and outside Europe. To ensure
compliance with the applicable rules on pediatric data and sample transfer and to support the efforts
of academic partners, which may not always have the necessary expertise and resources in place for
designing, managing and conducting multi-national studies, the consortium established a dedicated
expert Working Group. This group has guided the consortium since the start of the project through
the complexities of the ethical and regulatory aspects of international clinical studies. The group
provided support in the design and preparation of the prospective and retrospective multi-center and
multi-national pediatric studies with a focus on the clinical study protocols, informed consent and
assent forms. In particular, well-structured informed consent and assent templates were developed,
and data sharing and material transfer agreements were set up to regulate the transfer of samples
among partners and sites. We considered that such support and the implementation of ad hoc
agreements could provide effective practical solutions for addressing ethical and regulatory hurdles
related to sharing data and transferring samples in international pediatric clinical research.

Keywords: pediatric clinical studies; transfer of samples; data sharing; regulatory; ethics

1. Introduction

Early treated Perinatally HIV-Infected individuals: Improving Children’s Actual
Life —EPIICAL [1]—is a consortium of European Union (EU) and non-European (non-
EU) research-driven organizations and academic institutions aiming at implementing a
predictive platform for the early identification of novel therapeutic strategies for children
affected by the human immunodeficiency virus (HIV). It foresaw the design and conduct of
studies in pediatric HIV populations in Europe, Africa and Asia. This involves developing
and applying statistical and mathematical modeling to data derived from cohorts of early
treated infants and children to identify virological, immunological and transcriptomic
profiles associated with early control of HIV infection after antiretroviral therapy (ART)
initiation as well as viral control following ART interruption.
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EPIICAL consists of a large number of partners from all over the world and has been
running for eight years.

The foresight of such a consortium was to anticipate potential ethical and regulatory
issues related to the planned pediatric studies and to involve experts in the field from the
outset of activities. Therefore, in the framework of the EPIICAL project, a Working Group
(WG) with ethics and regulatory experts was set up to ensure that all relevant rules are
complied with.

This paper aims to describe our experience coming from the EPIICAL project as an
extensive work aimed to investigate and address the challenges related to the transfer of
samples and associated data across boundaries within and outside Europe in the context of
pediatric clinical studies. Possible solutions to overcome them will be emphasized as well.
These would result in useful tools and strategies for other researchers working in different
disease areas.

2. Setup of the Activities

Biological samples, like blood, tissue, urine and saliva are commonly used in biomedi-
cal research and their analyses provide key outputs in clinical studies. Regulatory, legal
and ethical considerations, including but not limited to informed consent, assent from
minors and data protection, particularly with respect to long-term storage of samples and
related data, must be taken into account [2,3].

Several challenges can be identified when dealing with the transfer of samples and
associated data across boundaries in the context of clinical studies. Among them, ethical
challenges relate to the privacy of individuals and data control [4] and the respect for
informed consent; furthermore, the regulatory challenges associated with the application
of national provisions ruling the transfer of samples and associated data make the situation
even more complex.

Such challenges are emphasized when vulnerable subjects, such as minors,
are involved [3].

International clinical studies might represent a further complication since the ethics,
regulatory and data protection framework regarding the sharing of samples and associated
data for scientific purposes seems scattered among EU and non-EU countries [5]. In
fact, countries have different laws regarding the use of clinical samples, especially when
dealing with children. In addition, language barriers further complicate the conduct of
multi-national studies.

The implementation of multi-national collaborative projects with a focus on data
and sample sharing often faces regulatory roadblocks that slow progress. This has been
exacerbated by the entry into force of the European General Data Protection Regulation
Reg (EU) 2016/679 (GDPR) [6], which, by leaving a significant part of decision-making to
the Member States, has led to confusion and bureaucratic complexity, particularly when
non-EU partners are involved [7]. Although there is a lack of harmonized frameworks
or guidelines across the world, there are many strategies that might be implemented to
address the challenges outlined above. First of all, the transparency of the information to be
provided to the study subjects and/or to their parents/legally designated representatives
regarding the transfer and use/future use of samples and associated data to achieve the
study purposes (e.g., analysis in specialized laboratories) is needed. This information shall
always be included in the study protocol with a description of how data and samples
are processed, as well as in the informed consent form of the study participants or their
parents/legally designated representatives. When seeking consent, the use, storage, and
possible future use of the material should also be explained [3]. Moreover, when dealing
with minors, children should participate in the informed consent and assent process
according to their age and understanding and receive age-appropriate information about
what will happen in the study as well [3]. Finally, we considered that ad hoc agreements
regulating the sharing of samples and associated data shall be set up to ensure the lawful
sharing of data and samples among sites and countries. These agreements constitute
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mechanisms to ensure uniformity of data and sample access across projects and countries
and may be regarded as consistent basic agreements for addressing data and material
sharing globally [8].

The dedicated WG supported the investigators in the relevant ethical and regulatory
applications during the whole duration of the clinical studies and deemed it necessary
to involve the Sponsor’s representatives in the group from the beginning. It started its
activities by providing support in the design and preparation of the EPIICAL prospective
and retrospective multi-center and multi-national pediatric studies. They involved both
EU and non-EU countries: South Africa, Mozambique, Mali, Uganda, Thailand, Italy, the
United Kingdom, Spain and the United States.

The group followed a centralized approach, ensuring uniform ethical standards across
all countries and sites, as described below:

- The applicable regulatory and ethics provisions were identified through an analysis of
the international framework: the Helsinki Declaration for Ethics in Human Subjects
(2013) [9]; International Ethical Guidelines for Health-related Research Involving
Humans CIOMS-WHO (2016) [10]; Additional Protocol to the Oviedo Convention
on biomedical research (2005) [11]; European Commission Ethical considerations
for clinical trials on medicinal products conducted with minors (2017) [12]; and
European General Data Protection Regulation Reg (EU) 2016/679 (GDPR) [6]. They
were considered to complement the national frameworks. In particular, the 2017 EC
considerations for clinical trials in minors [12] were followed to verify the limit of
blood amount to be taken from minors, while the CIOMS WHO guidelines [10] were
followed for implementing separate consent for genetic testing.

- A core package of documents was prepared to submit the studies to the competent
Ethics Committees in all clinical sites involved in compliance with the national rules
and international standards.

- The clinical study protocol was reviewed and any necessary amendments were made
to align it with local requirements and to develop and release a unique version
for all sites.

- Data and sample flows were identified for all the EPIICAL studies to better illustrate
the ethics and regulatory needs, including those specifically related to the transfer of
health and genetic data with non-EU countries.

- Informed consent and assent templates were prepared to be adapted to local require-
ments, and support was given to implement data protection and confidentiality rules.
Considering that the studies foresaw the transfer of samples and associated data, infor-
mation on the transfer was provided to study participants in the parent information
sheet and informed consent forms for minors.

- A Standard Operating Procedure was released on the management of personal data
and samples and on consent requirements in 2018. Then, once GDPR [6] entered into
force, a letter was prepared for the investigators to help them fully comply with the
new EU privacy legislation and implement data protection and confidentiality rules.

3. Informed Consent and Assent

We deemed a well-structured informed consent template as the most suitable so-
lution to address the national differences and then overcome the related challenges in
samples and data sharing. For this reason, in the framework of the EPIICAL project,
a parent information sheet and informed consent form template were prepared (avail-
able as Supplementary Materials). Given the pediatric specificities of the EPIICAL studies,
the information sheet and informed consent form were addressed to the parents/legally
designated representatives of the minor patients.

The information sheet included all the relevant information on the study and the use
of samples and associated data, including information about the transfer; in particular, it
included the following:

- The type of samples and data to be collected and shared.
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- The purposes of the transfer (i.e., analysis in specialized laboratories).

- The rights of children, including the subject’s confidentiality and all the rights
under GDPR.

- The commitment of the Sponsor to ensure compliance with the applicable data
protection rules.

- The explanation of the adoption of de-identification measures to protect patients’ privacy.

- The storage location and duration of the data and samples and the countries/ cities
where the laboratories are located.

- The future use of remaining samples and the availability to be recontacted for possible
further testing and then refreshing consent.

Study participants were also reassured that the Ethics Committee(s) approved the
study and would approve any possible modification to the study, e.g., transfers to other
locations not defined yet at the start of the study and new tests on the remaining samples.

In order to apply the minimization principle (as stated in the GDPR [6]), study par-
ticipants were informed that only information essential for the purposes of the study
would be collected.

Patients and their parents/legal guardians were informed of their right to withdraw
at any time and without giving a reason for the decision, including the destruction of the
remaining samples and associated data, unless already analyzed.

A granular consent section was foreseen to allow participants to make some choices re-
lated to the use of their samples and associated data. These choices included the transfer of
samples to specific laboratories for analysis, the re-use of remaining samples and associated
data and the performance of genetic testing. With reference to this latter point, participants
shall be informed about any possible unexpected or incidental findings coming out from
the research and if any treatment or preventive measures are available. This information
was collected. Parents/legal guardians were also given the chance to refuse the inclusion
of their children’s data in an aggregated and anonymized form within reports/articles pre-
pared for dissemination and communication purposes. The possibility to be re-contacted
for further research studies was added as well.

Finally, in the event that the parent/legal guardian was unable to read and sign the
parent information sheet and the informed consent form, the consent process implemented
in EPIICAL foresaw (1) the involvement of a person in charge of reading and explaining
the contents of the information sheet and (2) the thumbprint of the parent/legal guardian
accompanied by the name and signature of a witness, defined as “a person independent
from the research team or any team member and who was not involved in obtaining
consent” to provide written consent. This provision was sourced from the EU Clinical
Trials Regulation (CTR) [13], which rules interventional clinical trials in the EU.

Furthermore, considering the nature of EPIICAL studies, assent form templates were
prepared for children and adolescents as well (available as Supplementary Materials).
Plain and clear language was used to provide information to children according to their
age and maturity. The study procedures and transfer of samples to other laboratories
were explained.

Children were informed that they could choose not to take part in the study or to
change their minds at any time without providing a reason. The basic concept of privacy
was also included in the form to confirm that their identity shall be kept secret. Finally,
they were informed that when they reach the age of maturity, they will have the possibility
to re-evaluate their participation and to consent or object to any further use of their data.

4. Data Sharing Agreement

Clinical data from EPIICAL studies were entered by the study team at each participat-
ing center into a centralized database provided by the Sponsor (REDCap).

Each site was responsible for entering the data collected at their site, with access
restricted to the dataset pertaining to their own patients. Access to REDCap was granted
only to the clinical site’s staff trained in the study protocol and the use of the database.
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Access was provided via email with a username and a temporary password, to be replaced
before their first login, adhering to the security criteria established by the Sponsor.

REDCap automatically prompted the user to update the password every ninety days.

Each patient enrolled in the study was assigned an alphanumeric code based on the
principle of pseudonymization.

As part of the project activities (labs, center for statistical analysis, etc.), access to the
database was also granted to other consortium partners following the same procedures
outlined above. Depending on the delegated tasks, each partner was given access only to
the dataset necessary to perform their specific activities as required by the study protocols.

A Data Sharing Agreement (DSA) was prepared for each EPIICAL study to regulate
the data flow, as required by the GDPR [6]. The DSA focuses on EU privacy legislation
since the Sponsor and some parties involved in the study were based in the EU, which
means that the GDPR applies. Moreover, since the Sponsor is responsible for the conduct
of the study and the activities delegated to the institutions involved in it, the Sponsor had
to ensure compliance with the GDPR for all processing activities, regardless of whether
they were carried out in the EU or outside the EU.

As a preliminary step, the study data flows were mapped, with parties being either
senders/exporters or recipients/importers based on the role of each party in the study
according to the protocol (clinical site, laboratory, chief investigator, etc.) and on the type
of personal data being processed.

Following that, the DSA allocates the privacy roles of the parties according to each
party’s contribution to the study, defines the study processing activities” details (nature
and purpose(s), categories of data subjects, categories of the data processed, frequency of
transfer, data retention period) and sets out the obligations the parties are subject to when
performing the personal data processing activities necessary to conduct the study. Such
obligations include the responsibility of the parties to implement and maintain technical
and organizational measures to ensure the security of personal data and the protection of
data subjects’ rights and freedoms.

Importantly, the DSA also regulates the transfer of personal data to third countries, en-
suring that any transfer of personal data to a third country or an international organization
within the study takes place in compliance with the GDPR.

Last but not least, on the assumption that by being based outside of the EU, many
parties may not be familiar with the EU privacy legislation, some training materials were
provided as an annex to the DSA, with the aim of helping parties get a better understanding
of the basic concepts of the GDPR and thus of their obligations under the DSA.

5. Material Transfer Agreements

The setup of Material Transfer Agreements (MTAs) was considered relevant in the
framework of the multi-national transfer of samples and associated data when conducting
pediatric clinical studies, especially if it involves non-EU countries.

Therefore, for the EPIICAL studies, MTA templates were developed starting from
the model provided by Mascalzoni et al. [8] to regulate the transfer of human samples
among partners and concerned clinical sites (available as Supplementary Materials). They
complemented the research project collaboration agreements, and the above-mentioned
DSA set up by the Sponsor.

Two main figures were identified for each site transferring samples and associated
data: the provider, the registered legal entity in charge of providing biospecimens and
associated data to the recipient, and the recipient, the registered legal entity in charge of
receiving biospecimens and associated data from the provider.

Information about the Sponsor of the study and the coordinating and principal inves-
tigators was included, as well as the definitions of specific terms (e.g., provider, recipient,
informed consent, etc.).

The agreement included information and declarations from the provider and from
the recipient.
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The provider is required to do the following;:

- Confirm the alignment of the regulatory and ethical framework of the country con-
cerned with the international provisions concerning medical research.

- Guarantee research quality, security and privacy protection.

- Confirm that the international transfer of biospecimens and personal data is allowed.

- Ensure compliance with the international quality standards for human biological
materials and the specific methods/measures applicable to the type of biospecimens.

- Describe the legal basis for the storage and distribution and for allowing biospecimens
and data sharing by stating that informed consent was obtained from subjects or their
parents/legal representatives in case of minors. It was accompanied by the informed
assent, where required.

- Include information on the expected number of individuals providing data and sam-
ples as well as on the type of data (e.g., outcomes of clinical /laboratory/instrumental
analyses, medical records, genetic testing results, Case Report Forms) and samples
(e.g., blood samples, tissue type, cell preparation, DNA, RNA, protein)

- Describe the applied de-identification measures as well as information on the storage
location and the modalities of transfer. Details about shipping and the applicable
regulations (e.g., the International Air Transport Association, the European Agreement
on International Carriage of Dangerous Goods) are requested.

- Define what happens at the end of the agreement with the shared data and samples.
Two options are proposed: to destroy or return them to the provider. A written
notification/ certification with the confirmation of the destruction/anonymization is
mandatory at the end of the agreement.

The recipient is required to do the following;:

- Confirm compliance with applicable regulations, policies and guidelines, as well as
with the study protocol.

- Declare that data and samples will be used only for the purposes established in the
agreement and in the framework of the EPIICAL project and that they will not be
transferred to other facilities or institutions without written consent from the provider.

- Undertake not to use data and samples in case of withdrawn consent and then destroy
or return them.

Import and export licenses were also necessary, when requested by national laws, to
make the transfer across boundaries of biospecimens lawful.

6. Discussion and Conclusions

The EPIICAL experience highlights well-known challenges related to the transfer
of samples and associated data within pediatric clinical studies and reveals solutions
proposed by the authors on how to overcome them and make them a scientific opportunity
for researchers and healthcare professionals.

Firstly, we believe that the involvement of ethics and regulatory experts from the study
design stage is relevant and valuable in supporting the design and conduct of studies and
providing continuous advice to the study team. It allowed for the smoother execution of
study activities to set up and conduct multi-national studies.

Such an involvement is intended to ensure that all study activities are performed
according to the applicable rules and ethical standards, reduce differences and inequities
across countries from different political and economic settings. This could be particularly
challenging for academic partners, who may not always have the necessary expertise and
resources in place for designing and managing multi-national studies [5,14]. Therefore,
public—private collaborations or collaborations among different stakeholders, possibly in
the framework of research funds, would be crucial for the future.

We emphasized that clear and easily accessible information related to the transfer
of samples and associated data in the context of clinical studies must be provided in the
informed consent and assent forms and that MTA and DSA represent useful means to
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regulate the transfer of samples among countries and institutions as well as to regulate the
data flow, as required by the GDPR. Of course, setting up these agreements was not an easy
task to do. This was mainly due to the lack of common internationally agreed rules and a
consequent lack of harmonization of the regulatory framework across countries involved
in multi-national clinical studies. In fact, such agreements were set up considering and
incorporating all the applicable legislation.

A homogeneous support group aimed at guiding and monitoring the research can
reduce differences and inequalities and ensure transparency in human research and ethi-
cal principles, including scientific partners from countries considered both rich and poor.
Furthermore, a well-structured submission package streamlines the ethical submission
process and reduces the time required for ethics committees to approve the study. Addi-
tionally, awareness of regulatory procedures might facilitate the sharing of samples and
associated data.

Table 1 provides an overview of the ethics and regulatory issues that arose during our
pediatric research project in the geographical areas involved and how they were addressed
through the careful regulatory frameworks established by the consortium. For example,
we consider the preparation of a letter for investigators, with practical information on how
to comply with GDPR (e.g., how to modify the informed consent and assent processes and
documents), as one of the “success stories” of this work. This is because we shared such
a letter even before the full application of the ‘new rule’, i.e., GDPR. Another example is
the agreement that was reached among clinicians and regulatory experts on the type of
clinical studies foreseen in the project. Discussion and consultation of relevant applicable
documents were adopted to solve the challenge.

Our experience has highlighted that real global harmonization of multi-national, multi-
continental clinical studies not investigating any medicine is difficult to reach without a
global regulatory framework like the ICH, and this becomes even more relevant in the
light of the growing use of multi-sources data (e.g., studies involving primary and sec-
ondary data sources). Harmonization should also be pursued considering the international
dimension of scientific research [7].

As a future direction, close collaboration and efficient communication between the
study team and the regulatory/ethics experts should be pursued, achieved and maintained
for the whole duration of the clinical studies. We consider this as a relevant action, con-
sidering that ethics and regulatory activities need timely planning (e.g., obtaining ethics
approval, protocol amendments, etc.), especially in case of new ideas or changes to the
original plans. Furthermore, a set of expected outcomes and key performance indicators
could be identified and measured during a multi-national clinical study [15] to value and
monitor the work done from an ethics/regulatory WG and to promptly identify issues and
related solutions.

EXPECTED OUTCOMES:

- To accelerate the ethics approval and/or competent authority authorization;

- To reduce the number of requests for modifications/integrations from ethics commit-
tees and competent authorities;

- To speed up the start of data and sample sharing and, therefore, of their analysis.

KEY PERFORMANCE INDICATORS:

- Number of periodical group meetings, number of requests for support received from
Sponsor or investigators and time to resolve a request for ethics/regulatory support;

- Number of requests for clarification/document modifications received by ethics com-
mittees and /or competent authorities out of the number of applications;

- Time for agreeing DSAs and MTAs.
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Table 1. Ethics and regulatory issues arose during the pediatric research project in the geographical

areas involved.

Continent Ethics/Regulatory Issues Solutions
In the agreements:
e  To refer to the international
standards, e.g., ICH, “as
Acceptance of EU standards for implemented in the national
America clinical research, data protection and legislation”.
confidentiality e  To specify that provisions apply
“to the extent the EU rule is
compatible with the national
laws”.
. Storage of samples abroad for future  Biospecimens for future studies only
Africa . . .. .
studies not permitted. stored locally at the clinical sites.
. Need to comply with local laws and The researchers were asked to
America

requirements.

comply with both EU and local laws.

Africa, Europe

Divergent classification of the clinical
study (observational,
non-interventional,
non-pharmacological, etc.).

Upfront agreed classification among

clinicians and regulatory experts on

the type of clinical studies foreseen in

the project, i.e., non-pharmacological
clinical study.

Africa, Europe

Need to limit blood withdrawals
from children according to their age
and weight.

Agreement among clinicians and
regulatory experts to follow
European ethical recommendations
on pediatric studies regarding blood
withdrawals from children.

Africa, Europe

Need to transfer samples outside the
country in compliance with
applicable laws.

To set up regulatory-sounded
Material Transfer Agreements for
sharing samples.

Europe

Results of the studies mandatorily
shared with parents/legal
representatives.

Procedure specified in the informed
consent process: parents/legal
representatives informed about their
right to receive study results in the
informed consent document.

Europe

Future uses of samples and related
data not to be broad but related to
the original study and approved by
an ethics committee.

Future uses of samples and data
specified in protocol and informed
consent documents, as approved by
an ethics committee.

Europe

Informed consent more user-friendly
language, limiting medico-legal
terminology wherever possible.

Europe

Need to use user-friendly language
in informed assent documents.

Informed consent and assent documents
adapted to use user-friendly language,
minimizing medico-legal terminology

and revised by ELSI experts.

Africa, America, Europe

Need to update EU laws because of
modifications, e.g., Directive
95/46/EC repealed by GDPR.

Investigators provided with practical
information on how to comply with
GDPR requirements on informed
consent and assent process and
documents, in particular with those
not already included in the studies.
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These metrics, as well as others related to the execution phases of a pediatric clinical
study (set up, enrolment, conduct, etc.), should be regularly measured and published.

The best possible guidance on how to deal with any ethical or regulatory issues
that may arise during the study can only be provided if the regulatory team is promptly
informed about them.

This work aimed to provide the scientific community with some learnings on how to
build a strong consortium in the framework of pediatric studies and how to manage the
ethics and regulatory issues related to pediatric samples and data sharing. This can also
help to speed up study procedures and strategies.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/healthcare12232473/s1, Template S1: EPIICAL informed consent
template; Template S2: EPIICAL assent template; Template S3: EPIICAL DSA MTA template.
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