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Abstract: For the 250th birthday of Joseph Fourier, born in 1768 at Auxerre in France, this MDPI
special issue will explore modern topics related to Fourier analysis and Fourier Heat Equation.
Fourier analysis, named after Joseph Fourier, addresses classically commutative harmonic analysis.
The modern development of Fourier analysis during XXth century has explored the generalization of
Fourier and Fourier-Plancherel formula for non-commutative harmonic analysis, applied to locally
compact non-Abelian groups. In parallel, the theory of coherent states and wavelets has been
generalized over Lie groups (by associating coherent states to group representations that are square
integrable over a homogeneous space). The name of Joseph Fourier is also inseparable from the
study of mathematics of heat. Modern research on Heat equation explores geometric extension of
classical diffusion equation on Riemannian, sub-Riemannian manifolds, and Lie groups. The heat
equation for a general volume form that not necessarily coincides with the Riemannian one is useful
in sub-Riemannian geometry, where a canonical volume only exists in certain cases. A new geometric
theory of heat is emerging by applying geometric mechanics tools extended for statistical mechanics,
for example, the Lie groups thermodynamics.

Keywords: harmonic analysis on abstract space; heat equation on manifolds and Lie Groups

“The differential equations of the propagation of heat express the most general conditions
and the physical questions as a result of the analysis of pure problems, which is properly the
object of the theory .... The different forms of body are varied to infinity, to the distribution
of heat and penetrations; but all the inequalities fade away quickly and disappear as time
goes by. The march of the phenomenon become more regular and simpler, is finally subject
to a specific law that is the same for all cases, and that it bears no more any sensible imprint
of the initial disposition ... The new theories, explained in our work, are united forever with
the mathematical sciences, and rest, like them, on invariable foundations; they will retain
all the elements they possess today, and they will acquire, continually, more extension”.
[Les équations différentielles de la propagation de la chaleur expriment les conditions les
plus générales, et ramènent les questions physiques à des problèmes d’analyse pure, ce
qui est proprement l’objet de la théorie .... Les formes des corps sont variées à l’infini,
la distribution de la chaleur qui les pénètre peut être arbitraire et confuse; mais toutes
les inégalités s’effacent rapidement et disparaissent à mesure que le temps s’écoule. La
marche du phénomène devenue plus régulière et plus simple, demeure enfin assujettie à
une loi déterminée qui est la même pour tous les cas, et qui ne porte plus aucune empreinte
sensible de la disposition initiale ... . Les théories nouvelles, expliquées dans notre ouvrage
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sont réunies pour toujours aux sciences mathématiques et reposent comme elles sur des
fondements invariables; elles conserveront tous les éléments qu’elles possèdent aujourd’hui,
et elles acquerront, continuellement plus d’étendue.]—Joseph Fourier (1768–1830), Discours
préliminaire à la théorie analytique de la chaleur [1].

For the 250th birthday of Joseph Fourier (Figure 1) [1–6], born in 1768 at Auxerre in France, this
MDPI special issue will explore modern topics related to Fourier analysis and Fourier Heat Equation.

 

Figure 1. Jean-Baptiste-Joseph Fourier (1768–1830) [1].

Fourier analysis, named after Joseph Fourier, who showed that representing a function as a
sum of trigonometric functions greatly simplifies the study of heat transfer and addresses classically
commutative harmonic analysis. Classical commutative harmonic analysis is restricted to functions
defined on a topological locally compact and Abelian group G (Fourier series when G = Rn/Zn, Fourier
transform when G = Rn, discrete Fourier transform when G is a finite Abelian group). The modern
development of Fourier analysis during XXth century has explored the generalization of Fourier
and Fourier-Plancherel formula for non-commutative harmonic analysis, applied to locally compact
non-Abelian groups. This has been solved by geometric approaches based on “orbits methods”
(Fourier-Plancherel formula for G is given by coadjoint representation of G in dual vector space of
its Lie algebra) with many contributors (Dixmier, Kirillov, Bernat, Arnold, Berezin, Kostant, Souriau,
Duflo, Guichardet, Torasso, Vergne, Paradan, etc.) [7]. It was observed first by Souriau that the
coadjoint orbits carry a natural symplectic structure and there is a closed non-degenerate G-invariant
2-form on each orbit, called the Kirillov-Kostant-Souriau symplectic form that plays a central role in
geometric quantization and classification of the homogeneous symplectic manifolds. In parallel, theory
of coherent states (Klauder, Perelomov, Gilmore, etc.) and wavelets (Grossmann, Daubechies, Meyer,
etc.) has been generalized over Lie groups (by associating coherent states to group representations
that are square integrable over a homogeneous space) [8]. One should add the developments, over the
last 30 years, of the applications of harmonic analysis to the description of the fascinating world of
aperiodic structures in condensed matter physics, e.g., quasicrystals and their diffraction spectra [9].
The notions of model set introduced by Y. Meyer, and of almost periodic functions, have revealed
themselves as extremely fruitful in this domain of natural sciences.

The name of Joseph Fourier is also inseparable from the study of mathematics of heat, but it took
almost a century for the most brilliant scientists of the nineteenth century—Fourier, Biot, Poisson,
Lamé, and Boussinesq [10]—to unravel complexity appearances of the propagation of heat in solids, to
develop efficient physical concepts and related instruments of mathematics, and from confusion that
constitutes the reality of the calorific phenomena, to clarify a new knowledge of diffusion equation in
elastic and crystal domains. It is from the study of thermal energy that the very notion of diffusion
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related to the parabolic-type equation is born with Fourier and Biot. Fourier’s first memoir at the
Academy of Sciences on this subject dates back to 1807, and completed in 1811 by extensive work
that was examined by Malus, Haüy, Laplace, Lagrange, and Legendre. Fourier never adhered to
reviewers comments and he reprinted his memoir without taking any account of the critics of these
censors. It was in 1822 that the “Analytical Theory of Heat” appeared. The Fourier manuscript must
be considered rightly as the foundation of mathematical physics. Modern research on heat equation
explores the extension of classical diffusion equation on Riemannian, sub-Riemannian manifolds, and
Lie groups (i.e., Hall). The heat equation for a general volume form that not necessarily coincides
with the Riemannian one is useful in sub-Riemannian geometry, where a canonical volume only
exists in certain cases. Jean-Michel Bismut [11] has introduced the concept of hypoelliptic Laplacian
(If X is a Riemannian manifold, the hypoelliptic Laplacian is a family of hypoelliptic operators that
interpolates between the ordinary Laplacian and the geodesic flow), with the probabilistic counterpart
that is an interpolation between Brownian motion and geodesics. Elliptic heat kernel has infinite
propagation speed compared to geodesic flow that has a finite propagation speed. On R3, Langevin
had introduced the Langevin equation to reconcile Brownian motion and classical mechanics. The
hypoelliptic diffusion on the total space of the tangent bundle of a Riemannian manifold is a geometric
Langevin process that interpolates between the geometric Brownian motion and the geodesic flow. In
parallel with Geometric Mechanics, Jean-Marie Souriau [12] has interpreted the temperature vector of
Planck as a space-time vector, obtaining, in this way, a phenomenological model of continuous media
that presents some interesting properties: The temperature vector and entropy flux are in duality; the
positive entropy production is a consequence of Einstein’s equations; the Onsager reciprocity relations
are generalized; and in the case of a fluid in the non-relativistic approximation, the model unifies heat
conduction and viscosity (equations of Fourier and Navier). This work has been extended by Claude
Vallée [13], by constructing a relativistic model of a dissipative continuum that complies with the laws
of both mechanics and thermodynamics.

A last comment concerns the fundamental contribution of Fourier analysis to quantum physics:
Quantum mechanics with the notion of representation based on spectral properties of basic observables,
like position, momentum, energy, and spin; the quantum field theory saw the first steps that emerged
from solutions of Maxwell equations viewed as assemblies of harmonic vibrations (“modes”).

The content of this special issue highlights papers exploring non-commutative Fourier harmonic
analysis, hypoelliptic heat equation, and relativistic heat equation in the context of Information Theory
and Geometric Science of Information.

“By scrutinizing the history of these two great thoughts, would we find that the foundation
of mathematical thermology by Fourier was less prepared than that of celestial mechanics
by Newton?” [En scrutant de près l’histoire de ces deux grandes pensées, trouverait-on que
la fondation de la thermologie mathématique par Fourier était moins préparée que celle de
la mécanique céleste par Newton].—Auguste Comte, Cours de philosophie positive, t. II, p.
308, published by Bachelier, 1835.

“ We lack this thermodynamics of shapes, needed according to Thom for a true theory of
information ” [Il nous manque cette thermodynamique des formes nécessaire selon Thom
à une véritable théorie de l’information]. Edgard Morin, La méthode, la nature de la nature;
points, ed. du seuil, 1977.

We will introduce to each paper the following, structuring the special issue in two main sessions:

• Four papers on modern Fourier Heat Theory;
• Five papers on extension of Fourier Harmonic Analysis.

1. Modern Fourier Heat Theory

The first paper [14], written by F. Barbaresco, deals with Geometric Theory of Heat based on
Jean-Marie Souriau Lie Groups Thermodynamics and its extension to define Maximum Entropy (Gibbs)
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density with higher order moments constraints. In this Souriau model, Planck temperature is described
as an element of Lie algebra for the Lie Group acting on the homogeneous Manifold. Souriau has
introduced, through the concept of Souriau, non-equivariant coadjoint action of Lie Group on moment
map and Souriau cocycle, an invariant metric that is an extension of classical Fisher metric coming
from Information Geometry, called, in the paper, Souriau-Fisher metric and vector-valued extension
through poly-symplectic model.

The second paper [15], written by Arjan Van der Schaft and Bernhard Maschke, develops a
Thermodynamic model initially proposed by Balian and Valentin for symplectization of contact
manifolds, and introduces the global geometric definition of a degenerate Riemannian metric on the
homogeneous Lagrangian sub-manifold describing the state properties. In the second part of this
paper, authors give a geometric formulation of non-equilibrium thermodynamic processes, and the
definition of port-thermodynamic systems and interconnection ports.

The third paper of François Gay-Balmaz and Hiroaki Yoshimura [16] presents new results on the
variational formulation of nonequilibrium thermodynamics for discrete or continuum systems, and its
extension for irreversible processes. These new models are illustrated in the finite dimensional cases,
and on the continuum side.

The fourth paper [17], by Tamás Fülöp, Róbert Kovács, Ádám Lovas, Ágnes Rieth, Tamás Fodor,
Mátyás Szücs, Péter Ván, and Gyula Gróf, analyzes the non-Fourier heat conduction phenomenon on
room temperature and proposes to use the Guyer-Krumhansl equation to replace classical Fourier’s
law for room-temperature phenomena in the modeling of heterogeneous materials. Then, generalized
heat conduction equations are introduced where Fourier heat conduction is coupled to elasticity
via thermal expansion, resulting in a particular generalized heat equation for the temperature field.
The last model is deduced from pseudo-temperature concept underlying heat conduction mechanics
behind non-Fourier phenomena.

2. Extension of Fourier Harmonic Analysis

In the first paper of the second part [18], Hervé Bergeron and Jean Pierre Gazeau implement
the so-called covariant integral quantization for Weyl-Heisenberg and affine group symmetries. Any
quantization maps linearly function on a phase space to symmetric operators in a Hilbert space,
and covariant integral quantization combines operator-valued measure with the symmetry group of
the phase space. Covariant means that the quantization map intertwines classical (geometric operation)
and quantum (unitary transformations) symmetries. Integral means that all resources of integral
calculus are employed when the procedure is applied to singular functions, or distributions, for which
the integral calculus is an essential ingredient. This quantization scheme is first reviewed before its
specification to the Weyl-Heisenberg and affine groups, and the fundamental role played by Fourier
transform in both cases is emphasized. Generalizations of the Wigner-Weyl transform are considered,
and many properties of the Weyl integral quantization, commonly viewed as optimal, are shown to
actually be shared by a large family of integral quantizations.

The content of the second paper [19], authored by Maurice de Gosson, lies in the continuation of
previous works where it was shown that the equivalence of the Heisenberg and Schrödinger pictures
of quantum mechanics requires the use of the Born and Jordan quantization rules. It gives further
evidence that the Born–Jordan rule is the correct quantization scheme for quantum mechanics. For this
purpose, correct short-time approximations to the action functional, initially due to Makri and Miller,
are used, and it is shown that they lead to the desired quantization of the classical Hamiltonian.

In the third paper [20], Remco Duits, Erik J. Bekkers, and Alexey Mashtakov consider the
Fokker–Planck PDEs (including diffusions) for stable Lévy processes (including Wiener processes)
on the joint space of positions and orientations, which play a major role in mechanics, robotics,
image analysis, directional statistics, and the probability theory. The exact analytic designs and
solutions are known in the 2D case, where they have been obtained using Fourier transform on SE(2).
The authors extend these approaches to 3D using Fourier transform on the Lie group SE(3) of rigid
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body motions. More precisely, they define the homogeneous space of 3D positions and orientations
R3 S2:=SE(3)/({0}×SO(2)) as the quotient in SE(3). In their construction, two group elements are
equivalent if they are equal up to a rotation around the reference axis. On this quotient, the authors
design a specific Fourier transform and apply it to derive new exact solutions to Fokker–Planck PDEs
of α-stable Lévy processes on R3 S2. This reduces classical analysis computations and provides
an explicit algebraic spectral decomposition of the solutions. The exact probability kernel for α

= 1 (the diffusion kernel) is compared to the kernel for α = 12 (the Poisson kernel). Stochastic
differential equations (SDEs), for the Lévy processes on the quotient, are set up and the corresponding
Monte-Carlo methods are derived. The exact probability kernels are shown to arise as the limit of the
Monte-Carlo approximations.

In the fourth paper [21], authored by Adam Brus, Jiří Hrivnák, and Lenka Motlochová, sixteen
types of the discrete multivariate transforms, induced by the multivariate antisymmetric and
symmetric sine functions, are explicitly developed. Provided by the discrete transforms, inherent
interpolation methods are formulated. The four generated classes of the corresponding orthogonal
polynomials generalize the formation of the Chebyshev polynomials of the second and fourth kinds.
Continuous orthogonality relations of the polynomials, together with the inherent weight functions,
are deduced. Sixteen cubature rules, including the four Gaussian, are produced by the related
discrete transforms. For the three-dimensional case, interpolation tests, unitary transform matrices,
and recursive algorithms for calculation of the polynomials are presented.

In the fifth paper [22], Enrico Celeghini, Manuel Gadella, and Mariano A. Del Olmo present
recent results in harmonic analysis in the real line R and in the half-line R+, which show a closed
relation between Hermite and Laguerre functions, respectively, their symmetry groups and Fourier
analysis. This can be done in terms of a unified framework based on the use of rigged Hilbert spaces.
A relation is established between the universal enveloping algebra of the symmetry groups with the
fractional Fourier transform. The results obtained are relevant to quantum mechanics as well as to
signal processing as Fourier analysis has a close relation with signal filters. In addition, some new
results concerning a discretized Fourier transform on the circle are presented. The authors introduce
new functions on the circle constructed with the use of Hermite functions with interesting properties
under Fourier transformations.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: We introduce poly-symplectic extension of Souriau Lie groups thermodynamics based on
higher-order model of statistical physics introduced by Ingarden. This extended model could be used
for small data analytics and machine learning on Lie groups. Souriau geometric theory of heat is well
adapted to describe density of probability (maximum entropy Gibbs density) of data living on groups
or on homogeneous manifolds. For small data analytics (rarified gases, sparse statistical surveys, . . . ),
the density of maximum entropy should consider higher order moments constraints (Gibbs density is
not only defined by first moment but fluctuations request 2nd order and higher moments) as introduced
by Ingarden. We use a poly-sympletic model introduced by Christian Günther, replacing the symplectic
form by a vector-valued form. The poly-symplectic approach generalizes the Noether theorem, the
existence of moment mappings, the Lie algebra structure of the space of currents, the (non-)equivariant
cohomology and the classification of G-homogeneous systems. The formalism is covariant, i.e., no
special coordinates or coordinate systems on the parameter space are used to construct the Hamiltonian
equations. We underline the contextures of these models, and the process to build these generic structures.
We also introduce a more synthetic Koszul definition of Fisher Metric, based on the Souriau model,
that we name Souriau-Fisher metric. This Lie groups thermodynamics is the bedrock for Lie group
machine learning providing a full covariant maximum entropy Gibbs density based on representation
theory (symplectic structure of coadjoint orbits for Souriau non-equivariant model associated to a class
of co-homology).

Keywords: higher order thermodynamics; Lie groups thermodynamics; homogeneous manifold;
poly-symplectic manifold; dynamical systems; non-equivariant cohomology; Lie group machine
learning; Souriau-Fisher metric

“Inviter les savants géomètres à traiter nos problèmes avec le soucis de la commodité et de l’agrément:
qu’ils écartent tout ce qui n’a rien à voir avec la pénétration de l’esprit, seule qualité dont nous faisons
grand cas et que nous nous sommes proposé d’éprouver et de couronner” —Blaise Pascal—Deuxième
Lettre sur la roulette, Paris, 19 Juillet 1658 [1]

“Nous avons fait de la Dynamique un cas particulier de la Thermodynamique, une Science
qui embrasse dans des principes communs tous les changements d’état des corps, aussi bien les
changements de lieu que les changements de qualités physiques” —Pierre Duhem, Sur les équations
générales de la Thermodynamique, 1891 [2]

“Nous prenons le mot mouvement pour désigner non seulement un changement de position dans
l’espace, mais encore un changement d’état quelconque, lors même qu’il ne serait accompagné d’aucun

Entropy 2018, 20, 840; doi:10.3390/e20110840 www.mdpi.com/journal/entropy7
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déplacement . . . De la sorte, le mot mouvement s’oppose non pas au mot repos, mais au mot équilibre.”
—Pierre Duhem, Commentaire aux principes de la Thermodynamique, 1894 [3]

1. Introduction

These two Pierre Duhem’s citations (see [4] for English translations) make reference to Aristotle
definition of “motion” (which can be found in The Physics) to designate not only a change of position in
space, but also any change of state, even if not accompanied by any displacement. In this case, dynamics
appears as a special case of General Thermodynamics [2,3,5], to describe in common principles all
changes in the state of the body, both changes of place and changes in physical qualities. Making
reference to Duhem’s “Energetics”, Stefano Bordini write in [6]: “This theoretical design led Duhem to
rediscover and reinterpret the tradition of Aristotle’s natural philosophy and Pascal’s epistemology . . . This
outcome was surprising and clearly echoed the Aristotelian language and concept of motion as change and
transformation: within the framework of Aristotelian natural philosophy, motion in the modern physical sense
was actually a special case of the general concept of motion. The mathematisation of thermodynamics coincided
with a generalisation of mechanics, and this generalisation led to an unexpected connection between modern
mathematical physics and ancient natural philosophy” (see [7,8] for more developments on the affiliation
between Aristotle, Pascal and Duhem philosophies). This conceptual and epistemology point of view
was enlightened 75 years later by Jean-Marie Souriau through the symplectic model of geometric
mechanics applied to statistical mechanics and used to build a “Lie groups thermodynamics” of
dynamical systems, where the Gibbs density is covariant with respect to the action of the Lie group
on the system (dynamical groups as Galileo group). This Souriau theory is based on tools related to
non-equivariant model associated to a class of co-homology and affine representation of Lie groups
and Lie algebra (last approach was independently studied in mathematical domain by Koszul to
characterize homogeneous convex cones geometry [9–11]). Duhem [12] and Souriau [13,14] also both
studied how to extend Thermodynamics for a continuous media.

In this paper, we will explore and compare the joint geometric contextures shared in information
theory (based on Koszul’s information geometry) and heat theory (based on Souriau’s Lie groups
thermodynamics) to highlight their joint elementary structures. Classically, we address analogies
between mathematical or physical models by comparing their “structures” defined as the arrangement
of and relations between the parts or elements, or as the way in which the parts are arranged or
organized. My personal concept of “contexture” is more general and phenomenological and could
be defined as the act, process, or manner of weaving parts into a whole. We have then replaced the
relations between objects by the act to build these relations. Based on Souriau’s general definition of
entropy as the Legendre transform of the logarithm of generalized Laplace transform and symplectic
structure associated to Lie group coadjoint orbits, we will see how geometric structures of information
and heat theories are generated by these Souriau’s “generative processes”. We will extend theses
contextures in the vector-valued case based on poly-symplectic model of higher order Souriau’s Lie
groups thermodynamics.

In this paper, we identify the Riemanian metric introduced by Souriau based on co-homology, in
the framework of “Lie groups thermodynamics” as an extension of classical Fisher metric introduced
in information geometry. We have observed that Souriau metric preserves Fisher metric structure as
the Hessian of the minus logarithm of a partition function, where the partition function is defined as
a generalized Laplace transform on a convex cone. Souriau’s definition of Fisher metric extends the
classical one in case of Lie groups or homogeneous manifolds. Souriau has developed “Lie groups
thermodynamics” in the framework of homogeneous symplectic manifolds in geometric statistical
mechanics for dynamical systems, but as observed by Souriau, these model equations are no longer
linked to the symplectic manifold but only depend on the Lie group and the associated co-cycle.

This analogy with Fisher metric opens potential applications in machine learning, where the Fisher
metric is used by information geometry, to define the “natural gradient” tool to improve ordinary
stochastic gradient descent sensitivity to rescaling or changes of variable in parameter space [15–22].
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In machine learning revised by natural gradient of information geometry, the ordinary gradient is
designed to integrate the Fisher matrix. Amari has theoretically proved the asymptotic optimality of
the natural gradient compared to classical gradient. With the Souriau approach, the Fisher metric could
be extended, by Souriau-Fisher metric, to design natural gradients for data on homogeneous manifolds.

Information geometry has been derived from invariant geometrical structure involved in statistical
inference. The Fisher metric defines a Riemannian metric as the Hessian of two dual potential functions,
linked to dually coupled affine connections in a manifold of probability distributions. With the Souriau
model, this structure is extended preserving the Legendre transform between two dual potential
function parametrized in Lie algebra of the group acting transentively on the homogeneous manifold.

Classically, to optimize the parameter θ of a probabilistic model, based on a sequence of
observations yt, is an online gradient descent:

θt ← θt−1 − ηt
∂lt(yt)

T

∂θ
(1)

with learning rate ηt, and the loss function lt = − log p(yt/ŷt). This simple gradient descent has a
first drawback of using the same non-adaptive learning rate for all parameter components, and a
second drawback of non invariance with respect to parameter re-encoding inducing different learning
rates. Amari has introduced the natural gradient to preserve this invariance to be insensitive to the
characteristic scale of each parameter direction. The gradient descent could be corrected by I(θ)−1

where I is the Fisher information matrix with respect to parameter θ, given by:

I(θ) =
[
gij
]

with gij =

[
−Ey∼p(y/θ)

[
∂2 log p(y/θ)

∂θi∂θj

]]
ij

=

[
Ey∼p(y/θ)

[
∂ log p(y/θ)

∂θi

∂ log p(y/θ)

∂θj

]]
ij

(2)

with natural gradient:

θt ← θt−1 − ηt I(θ)−1 ∂lt(yt)
T

∂θ
(3)

Amari has proved that the Riemannian metric in an exponential family is the Fisher information
matrix defined by:

gij = −
[

∂2Φ
∂θi∂θj

]
ij

with Φ(θ) = − log
∫
R

e−〈θ,y〉dy (4)

and the dual potential, the Shannon entropy, is given by the Legendre transform:

S(η) = 〈θ, η〉 −Φ(θ) with ηi =
∂Φ(θ)

∂θi
and θi =

∂S(η)
∂ηi

(5)

In geometric statistical mechanics, Souriau has developed a “Lie groups thermodynamics” of
dynamical systems where the (maximum entropy) Gibbs density is covariant with respect to the action
of the Lie group. In the Souriau model, previous structures of information geometry are preserved:

I(β) = −∂2Φ
∂β2 with Φ(β) = −

∫
M

e−〈β,U(ξ)〉dλ (6)

S(Q) = 〈β, Q〉 −Φ(β) with Q =
∂Φ(β)

∂β
∈ g∗ and β =

∂S(Q)

∂Q
∈ g (7)

In the Souriau Lie groups thermodynamics model, β is a “geometric” (Planck) temperature,
element of Lie algebra g of the group, and Q is a “geometric” heat, element of dual Lie algebra g∗ of

9



Entropy 2018, 20, 840

the group. Souriau has proposed a Riemannian metric that we have identified as a generalization of
the Fisher metric:

I(β) =
[
gβ

]
with gβ([β, Z1], [β, Z2]) = Θ̃β(Z1, [β, Z2]) (8)

with Θ̃β(Z1, Z2) = Θ̃(Z1, Z2) +
〈

Q, adZ1(Z2)
〉

where adZ1(Z2) = [Z1, Z2] (9)

The tensor Θ̃ used to define this extended Fisher metric is defined by the moment map J(x), M
(homogeneous symplectic manifold) to the dual Lie algebra g∗, given by:

Θ̃(X, Y) = J[X,Y] − {JX , JY} with J(x): M → g∗ such that JX(x) = 〈J(x), X〉, X ∈ g (10)

This tensor Θ̃ is also defined in tangent space of the cocycle θ(g) ∈ g∗ (this cocycle appears due to
the non-equivariance of the coadjoint operator Ad∗g, action of the group on the dual lie algebra):

Q
(

Adg(β)
)
= Ad∗g(Q) + θ(g) (11)

Θ̃(X, Y) : g× g→ 
 with Θ(X) = Teθ(X(e))
X, Y �→ 〈Θ(X), Y〉 (12)

In Souriau’s Lie groups thermodynamics, the invariance by re-parameterization in information
geometry has been replaced by invariance with respect to the action of the group. When an element of
the group g acts on the element β ∈ g of the Lie algebra, given by adjoint operator Adg. Under the
action of the group Adg(β), the entropy S(Q) and the Fisher metric I(β) are invariant:

β ∈ g→ Adg(β)⇒
{

S
[
Q
(

Adg(β)
)]

= S(Q)

I
[
Adg(β)

]
= I(β)

(13)

In the case of small data analytics, we propose to parameterized the (maximum entropy) Gibbs
density with higher order “geometric” temperature βk and higher order heat Qk, that parameterized
higher order entropy S(Q1, . . . , Qn) and dual potential function Φ(β1, . . . , βn):

S(Q1, . . . , Qn) =
n
∑

k=1
〈βk, Qk〉 −Φ(β1, . . . , βn)

with βk =
∂S(Q1, . . . , Qn)

∂Qk
and Qk =

∂Φ(β1, . . . , βn)

∂βk

where Φ(β1, . . . , βn) = − log
∫
M

e
−

n
∑

k=1
〈βk ,Uk(ξ)〉

dω

(14)

We will develop in the paper that the geometric approach of statistical thermodynamics,
introduced by Souriau, offers an advantage over traditional formulations. Classical thermodynamics
has been developed for static systems taking into accound only the time evolution, but in case of
dynamical systems (e.g., a centrifuge system), this statistical physics is no longer valid because
the Gibbs density (the density of the maximum entropy) is not covariant. In case of only time
translation, what is preserved is only the energy, but for dynamical systems where a group is
acting, invariants are given by components of the “moment map” (which is a geometrization of
the Noether theorem providing invariants if there are symmetries). The “moment map” has been
introduced in parallel by Kostant in mathematics and by Souriau in physics. Souriau has developed the
non-equivariant case, and has applied it to statistical mechanics. The main advantages of “Lie groups
thermodynamics” of dynamical systems, is that this statistical physics is a coordinate-free model
preserving invariances with respect to the action of the (dynamical) Lie group acting on the system.
We give in appendix the development of the centrifuge thermodynamics with classical approach given
by Roger Balian, and prove that with the Souriau approach, the problem is solved by only applying
Lie groups thermodunamics equations through moment map computation, where in classical case, we
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should consider additional terms related to all moments (energy, angular momentum, . . . ) through
additional Lagrange hyper-parameters, that corresponds to components of Souriau’s “geometric”
(Planck) temperature.

Before developing all these models, and because this topic needs transverse knowledges of many
concepts developed in different disciplines as statistical physics & thermodynamics, information
geometry, symplectic mechanics and multi-symplectic geometry, we propose to the readers, in the
preamble, to study the following books and papers:

• Introduction to Statistical Physics and Thermodynamics: [2,3,23–26]
• Introduction to Higher Order Thermodynamics: [27–40]
• Introduction to Information Geometry: [9–11,15–22,41,42]
• Introduction to Symplectic Mechanics: [43–47]
• Introduction to Multi-Symplectic Geometry: [48–55]

The geometric definition and extension of Fisher metric has been recently studied in the framework
of quantum information geometry, but this community seems unaware of Souriau’s work on Lie groups
thermodynamics for the study of statistical physics of dynamical systems based on symplectic geometry
and c-homology tools in the 70s, and in particular the non-equivariant case developed by Souriau and
Koszul. We can make reference to the following recent works on the symplectic formulation of the
Fisher information theory [56–59].

The structure of the paper is the following:

• In Section 1, we introduce seminal idea on Symplectic geometry used in mechanics and in
statistical mechanics, as introduced by Jean-Marie-Souriau during the 60s. From previous work of
François Gallissot extending Cartan’s results on integral invariant (theorem on types of differential
forms generating equations of movement of a material point invariant in the transformations of
the Galilean group), we present the Lagrange 2-form and moment map elaborated by Souriau to
build a geometric mechanics theory, where a dynamical system is then represented by a foliation
of the evolution, determined by an antisymmetric covariant second order tensor. Souriau has
applied this tool for mechanical statistics to build a thermodynamics of dynamical systems, where
the classical notion of Gibbs canonical ensemble is extended for a homogeneous symplectic
manifold on which a Lie group (dynamical group) has a symplectic action. In case of Galileo
group, the symmetry is broken, and new “co-homological” Souriau relations should be verified in
Lie algebra of the group.

• In Section 2, we synthetize results on higher order thermodynamics based on higher order
temperatures and heats, as introduced by Ingarden and Jaworski for mesoscopic systems. This
model is based on higher order maximum entropy Gibbs density definition constraining solution
with respects to higher order moments.

• In Section 3, we develop “Lie groups thermodynamics” model, developed to describe Gibbs
state for dynamical systems, where Souriau introduced the concept of co-adjoint action of a
group on its momentum space that allows designing physical observables like energy, heat and
momentum or moment as pure geometrical objects. The Souriau model then generalizes the Gibbs
equilibrium state to all symplectic manifolds that have a dynamical group, with a “geometric”
(Planck) temperature as an element of the Lie algebra and “geometric heat” as an element of the
dual Lie algebra. We have observed that Souriau has introduced a symmetric tensor that is an
extension of classical Fisher metric in information geometry. This new Fisher-Souriau metric is
invariant with respect to the action of the group. These equations are universal, because they are
not dependent on the symplectic manifold but only on the dynamical group and its associated
two-cocycle. Souriau called it “Lie groups thermodynamics”.

• In Section 4, we give an extended Koszul study of Souriau’s non-equivariant model associated to
a class of co-homology. Koszul has deepened the Souriau model, considering purely algebraic
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and geometric developments of geometric mechanics. Koszul has defined a skew symmetric
bilinear form by a closed expression depending only on the cocycle and related to the Souriau
antisymmetric bilinear map introduced previously in Section 3. This Koszul study of the moment
map non-equivariance, and the existence of an affine action of G on g* is at the cornerstone of
Souriau theory of Lie groups thermodynamics.

• In Section 5, at the step of the Souriau Lie groups thermodynamics presentation, we will introduce
a generalized Souriau definition of entropy, as the Legendre transform of the logarithm of the
Laplace transform, making the connection with information geometry. This definition is a general
contexture that can be extended to highly abstract spaces preserving Legendre structure, if we are
able to generalize the Laplace transform.

• In Section 6, we illustrate Souriau’s Lie groups thermodynamics for a centrifuge system. The main
Souriau idea was to define the Gibbs states for one-parameter subgroups of the Galilean group,
because he proved that the action of the full Galilean group on the space of motions of an isolated
mechanical system is not related to any equilibrium Gibbs state (the open subset of the Lie algebra,
associated to this Gibbs state, is empty).

• In Section 7, we have defined an higher-order model of Lie groups thermodynamics based
on a poly-symplectic vector valued approach. This multi-symplectic extension, is based on a
multi-valued one that preserve the notion of (poly-)moment map built by Günther based on an
n-symplectic model. We replace the symplectic form of the Souriau model by a vector valued
form that is called poly-symplectic. We consider the non-equivariance of poly-moment map by
introducing poly-cocycle. We finally conclude with poly-symplectic definition extension of the
Fisher-Souriau metric.

• In Section 8, we conclude with potential extension to Lie group machine learning.

To facilitate understanding of previous results, we add some additional complements:

• In Appendix A, we recall a synthesis of Günther’s poly-symplectic model with initial notation
• In Appendix B, we develop computation of the Fisher metric for multivariate Gaussian density, to

establish links with Souriau’s Lie groups Gibbs density model.
• In Appendix C, we give more details on the Legendre transform, the basic tool of information

geometry and Souriau Lie groups thermodynamics. More especially, we give a definition of
the Legendre transform with projective geometry definition by Chasles as reciprocal polar with
respect to a paraboloid.

• In Appendix D, we give solution of a centrifuge system thermodynamics, given by Roger Balian
based on a classical approach, to make the link with the Souriau approach.

• In Appendix E, we recall the main proofs of Souriau’s Lie groups thermodynamics and its
poly-symplectic extension.

• In Appendix F, we present another Souriau statistical physics model, developed for relativistic
thermodynamics of continua, which preserves the Legendre transform, where temperature is
given by a killing vector.

2. Seminal Idea of Symplectic Geometry in Mechanics and in Statistical Mechanics by Gallissot
and Souriau

The symplectic structure has been introduced in mathematics much earlier than the word
symplectic, in works of the French physicist Joseph Louis Lagrange (see paper on the slow changes of
the orbital elements of planets in the solar system), who showed that this geometry is a fundamental
tool in the mathematical model of any problem in mechanics. Jean-Marie Souriau has shown that
Lagrange’s parentheses (nowdays called Lagranges bracket) are the components of the canonical
symplectic 2-form on the manifold of motions of the mechanical system, in the chart of that
manifold [60,61].
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Jean-Marie Souriau, graduated from ENS ULM 1942, was the nephew of the philosopher Etienne
Souriau (graduated from ENS Ulm 1912, ranked 1st at aggregation, a collaborator of Gaston Bachelard
in Paris Sorbonne University, PhD supervisor of Film Maker Eric Rohmer), author of “Les Structures de
l’oeuvre d’art” and grandson of the philosopher Paul Souriau (graduated from ENS Ulm 1873), author
of “Esthétique du mouvement” and a Latin thesis « De motus perceptione », who both have worked on
“aesthetics”, and little nephew of literature historian Maurice Souriau, the editor of a critical version
Blaise Pascal’s “Pensées” (awarded by 4 prices of Académie Française). The Souriau family, with Paul,
Etienne and Jean-Marie were motivated to explore esthetical issues of “motion structures” (we could
summarize by the triptych: the Esthetism of Motion of Paul Souriau, the Structure of Esthetism of
Etienne Souriau and the Structure of Motion of Jean-Marie Souriau). Jean-Marie Souriau’s book
“Structure des Systems Dynamiques” (SSD) was elaborated in Carthage and Marseille, where Souriau was
installed with his wife Christiane Souriau-Hoebrecht. In 1952 Souriau found a position at Institut des
Hautes Études de Tunis (8 rue de Rome, Tunis) (see Figure 1) and was back in Marseille in a position
in 1958 at the Faculté des Sciences. The manuscript was given to the editor Dunod in 1969, but only
edited in 1970 (2019 is the 50th birthday of this book and tributes will be given in 2 events FGSI’19 [62]
and SOURIAU 2019 [63]).

About the source of his book title, we are at the apogee or “acme” of the STRUCTURALISM
in anthropology/sociology/linguistic/philosophy/ epistemology in France (Levi-Strauss, Barthes,
Foucault, Althusser, Lacan, . . . ). The word “structure” was in the air of the time, fashionable at the
moment, circulating on all the lips as described by François Dosse in “Histoire du structuralisme I &
II”. After his ONERA PhD Defence in 1953 (I have a copy of his PhD), his PhD supervisor André
Lichnerowicz made one comment “you have many anti-symmetrical forms in your calculations, you should
be interested in symplectic structures”.

 

Figure 1. Institut des Hautes Etudes de Tunis, 8 rue de Rome where Souriau has developed his theory
of Geometric Mechanics and Lie Groups Thermodynamics (http://www.ina.fr/video/AFE01000164).

As early as 1966, influenced by François Gallissot’s work, Souriau applied his theory of geometric
mechanics to statistical mechanics, developed in Chapter IV of his book “Structure of Dynamical
Systems” [43,64], what he called “Lie groups thermodynamics”. We have discovered that Souriau
and Gallissot both attended the 1954 International Congress of Mathematicians (ICM’54) in Moscow.
We could assume that they have discussed 1952 Gallissot’s paper introducing three types of differential
forms generating equations of movement of a material point invariant in the transformations of the
Galilean group and their links with Poincaré-Cartan integral invariant. This seminal work of Gallissot
helped Souriau to formulate his new geometric mechanics and its extenxion to geometric statistical
physics. Using Lagrange’s viewpoint, in Souriau statistical mechanics, a statistical state is a probability
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measure on the manifold of motions. As we can read in his book, Souriau was influenced by François
Gallissot to introduce the Lagrange(-Souriau) 2-form.

In place of classical mechanical equations of a material point subjected to a force F, defined by its
mass m and its position r at time t, the second order differential equations m d2r

dt2 = F is rewritten by a

system of first order differential equations in phase space

(
r
v

)
:

m
dv
dt

= F and v =
dr
dt

(15)

If the force F is derived from a potential w, we have classical equations:

⎧⎪⎪⎨⎪⎪⎩
L =

1
2

mv2 − w (Lagrangian)

H =
1
2

mv2 + w (Hamiltonian)

with A =
t1∫

t0

Ldt

and Hamilton-Jacobi equations

⎧⎪⎪⎨⎪⎪⎩
dqi
dt

=
∂H
∂pi

dpi
dt

= −∂H
∂qi

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

r =

⎡⎢⎣ q1

q2

q3

⎤⎥⎦
mv =

⎡⎢⎣ p1

p2

p3

⎤⎥⎦
(16)

This idea of Lagrange, rediscovered by Souriau was to consider time t like the others variables.
One should use then the 7-dimensional space V (evolution space) (see Figure 2):

y =

⎛⎜⎝ t
r
v

⎞⎟⎠ (17)

Classical system of first order differential equations in phase space can then be rewritten in
evolution space V by the homogeneous form:{

mδv− Fδt = 0
δr− vδt = 0

(18)

At each point y of V, these equations define the tangent direction to the curve x described by the
point y during the evolution of the system. These curves are the leaves (lines of force) of the field
of directions defined by the equations of the homogeneous form, as defined for foliated manifolds.
See [43], for more details on definition of the different derivatives used.

Figure 2. Evolution space V, Space of motions U and classical space time.

A dynamical system is then represented by a foliation of the evolution, where the foliation
is determined by an antisymmetric covariant second order tensor, denoted by σ and called
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Lagrange-Souriau 2-form. The components of this tensor are expressions known as Lagrange brackets.
σ is considered as a bilinear operator on tangent vectors of V. If we choose two such vectors:

δy =

⎛⎜⎝ δt
δr
δv

⎞⎟⎠ and δ′y =

⎛⎜⎝ δ′t
δ′r
δ′v

⎞⎟⎠ (19)

σ associates to them an antisymmetric scalar product:

σ(δy)(δ′y) = 〈mδv− Fδt, δ′r− vδ′t〉 − 〈mδ′v− Fδ′t, δr− vδt〉 (20)

In the Souriau-Lagrange model, σ is a 2-form on the evolution space V, and the differential
equation of motion δy ∈ ε implies:

σ(δy)(δ′y) = 0 , ∀δ′y (21)

which can be written as:
σ(δy) = 0 or δy ∈ ker(σ) (22)

For study of this Souriau-Lagrange 2-form, readers should see the papers of Obădeanu [65–67].
Souriau has observed that this 2-form was introduced by Lagrange in a different language in his

study of celestial mechanics in 1808. Souriau was also influenced by François Gallissot that used this
2-form in [68,69]. We will see in the following the Souriau’s “moment map μ” in dual Lie algebra of the
group G, and the study of coadjoint orbits of G. For the definition of moment map, we make reference
to [45]. Souriau has extended this model for thermodynamics. For this new phenomenological
approach of mechanics, thermodynamics and information theory, we can give reference to Souriau
introduction of his paper “Quantique? Alors c’est géométrique” [70] and a video of his talk [71]:

“Plaçons-nous d’abord dans le cadre de la mécanique classique. Étudions un système mécanique
isolé, non dissipatif—nous dirons brièvement une «chose». L’ensemble des mouvements
de cette «chose» est une variété symplectique. Pourquoi? Il suffit de se reporter à la
Mécanique Analytique de Lagrange (1811); l’espace des mouvements y est traité comme
variété différentiable; les coordonnées covariantes et contravariantes de la forme symplectique
y sont écrites (Ce sont les “parenthèses“ et “crochets“ de Lagrange). Évoquons maintenant
la géométrie du 20 éme siècle. Soit G un groupe difféologique (par exemple un groupe de
Lie); μ un moment de G (un moment, c’est une 1-forme invariante à gauche sur G); alors
l’action du groupe sur μ engendre canoniquement un espace symplectique (ces groupes pourront
avoir une dimension infinie). Présomption épistémologique: derrière chaque «chose» est caché un
groupe G (sa “source“), et les mouvements de la «chose» sont simplement des moments de G (doublet
latin mnémotechnique : momentum-movimentum). L’isolement de la «chose» indique alors que
le groupe de Poincaré (respectivement de Galilée-Bargman) est inséré dans G; voilà l’origine des
grandeurs conservées relativistes (respectivement classiques) associées à un mouvement x: elles
constituent simplement le moment induit sur le groupe spacio-temporel par le moment-mouvement
x.” (In English: Let’s put ourselves first in the framework of classical mechanics. Let’s study an
isolated, non-dissipative mechanical system—we will briefly say a “thing”. The set of movements
of this “thing” is a symplectic manifold. Why? It is enough to refer to the Analytical Mechanics
of Lagrange (1811); the space of movements is treated as a differentiable manifold; the covariant
and contravariant coordinates of the symplectic form are written there (these are the “parentheses”
and “brackets” of Lagrange). Let’s now talk about the geometry of the 20th century. Let G be a
diffeological group (for example a Lie group); μ a moment of G (a moment is a left invariant 1-form
on G); then the action of the group on μ canonically generates a symplectic space (these groups can
have an infinite dimension). Epistemological presumption: behind each “thing” is hidden a group G
(its “source”), and the movements of the “thing” are simply moments of G (mnemonic Latin doublet:
momentum-movimentum). The isolation of the “thing” then indicates that the group of Poincaré
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(respectively Galileo-Bargman) is inserted in G; here is the origin of the relativistic (respectively
classical) conserved magnitudes associated with a movement x: they simply constitute the moment
induced on the spacio-temporal group by the moment-motion x.)

“Il y a un théorème qui remonte au XXème siècle. Si on prend une orbite coadjointe d’un groupe de
Lie, elle est pourvue d’une structure symplectique. Voici un algorithme pour produire des variétés
symplectiques: prendre des orbites coadjointes d’un groupe. Donc cela laisse penser que derrière
cette structure symplectique de Lagrange, il y avait un groupe caché. Prenons le mouvement
classique d’un moment du groupe, alors ce groupe est très «gros» pour avoir tout le système solaire.
Mais dans ce groupe est inclus le groupe de Galilée, et tout moment d’un groupe engendre des
moments d’un sous-groupe. On va retrouver comme cela les moments du groupe de Galilée, et si
on veut de la mécanique relativiste, cela va être du groupe de Poincaré. En fait avec le groupe de
Galilée, il y a un petit problème, ce ne sont pas les moments du groupe de Galilée qu’on utilise,
ce sont les moments d’une extension centrale du groupe de Galilée, qui s’appelle le groupe de
Bargman, et qui est de dimension 11. C’est à cause de cette extension, qu’il y a cette fameuse
constante arbitraire figurant dans l’énergie. Par contre quand on fait de la relativité restreinte, on
prend le groupe de Poincaré et il n’y a plus de problèmes car parmi les moments il y a la masse et
l’énergie c’est mc2. Donc le groupe de dimension 11 est un artéfact qui disparait, quand on fait
de la relativité restreinte.” (In Engish: There is a theorem dating back to the twentieth century.
If we take a coadjoint orbit of a Lie group, it is provided with a symplectic structure. Here is an
algorithm to produce symplectic manifolds: take coadjoint orbits from a group. So it suggests that
behind this symplectic structure of Lagrange, there was a hidden group. Take the classic movement
of a moment of the group, so this group is very “big” to have the whole solar system. But in this
group is included the Galileo group, and any moment of a group generates moments of a subgroup.
We will find like that the moments of the group of Galileo, and if we want relativistic mechanics, it
will be Poincaré group. In fact with Galileo group, there is a small problem, it is not the moments of
the Galileo group that are used, it is the moments of a central extension of the Galileo group, which
is called the Bargman group, and that is of dimension 11. It is because of this extension, that there
is this famous arbitrary constant appearing in the energy. On the other hand, when we do special
relativity, we take Poincaré group and there are no more problems because among the moments there
is the mass and the energy is mc2. So the 11-dimensional group is an artifact that disappears, when
we do special relativity.)

François Gallissot has observed that in his famous lessons on integral invariants, Elie Cartan has
shown that all the properties of the differential equations of the dynamics of holonomic systems result
from the existence of the integral invariant:∫

ω with ω = ∑
i

pidqi − Hdt (23)

Thus every holonomic system whose forces derive from a force function is associated to a form
ω, the equations of motion being the characteristics of the exterior form dω. Around 1950, the theory
of exterior forms on differentiable manifolds has been established on new foundations under the
influence of topologists. The question was then to wonder:

• if classical mechanics cannot benefit from these models by placing an exterior form of degree two
at its base

• if thanks to the notion of manifold, the notion of connection cannot be introduced in a more
natural way

• if the paradoxal indeterminations/impossibilities in the Lagrangian framework could be
explained more clearly

• if the problem of integration of equations of motion could be enlightened, generated by a form Ω
of degree two.
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To reach these various objectives, Gallissot has resumed first the study of the logical bases on
which the Galilean mechanics is built. He thus shown that when it is proposed to find generating
forms of the equations of motion of a material invariant point in the transformations of the Galilean
group, the most interesting form is an exterior form of degree two defined on a variety E3 × E× T
(E3 Euclidean space, T temporal). Gallissot had shown that any holonomic parametric system with
n degrees of freedom is associated with a form Ω of degree 2n defined on a differentiable manifold
whose characteristics are the equations of the movement. This form is expressed by means of 2n Pfaff
forms and by dt, the Hamiltonian form being a simple special case. He gave a summary of how we
can get rid of the servitude of coordinates in the study of dynamical systems and the important role
played by the operator i() antiderivative introduced by Cartan, the characteristic field E of the form Ω
being defined by the relation i(E)Ω = 0. Gallissot has then introduced the following theorem:

Theorem 1. There are three types of differential forms generating equations of movement of a material point
invariant in the transformations of the Galilean group:

A :

⎧⎪⎪⎨⎪⎪⎩
s = 1

2m

3
∑

i=1
(mdvi − Fidt)2

e = m
2

3
∑

j=1

(
dxj − vjdt

)2

B : f =
3
∑
1

δij(dxi − vidt)
(
mdvj − Fjdt

)
with δij krönecker symbol

C : ω =
3
∑
1

δij(mdvi − Fidt)∧
(
dxj − vjdt

)
(24)

If we consider the last form “C”:

ω =
3

∑
1

δij(mdvi − Fidt)∧
(
dxj − vjdt

)
= mδijdvi ∧ dxj −mδijvidvj ∧ dt + δijFidxj ∧ dt (25)

dω = 0 constraints Pfaff form δijFidxj to be closed, and to reduce the differential of function U:

ω = mδijdvi ∧ dxj − dH ∧ dt (26)

with H = T −U and T =
1
2

3

∑
i=1

m(vi)
2 (27)

It proves that the exterior derivative of ω is:

dω =
3

∑
i=1

mvidxj − Hdt (28)

The form ω∗ = dω generates Elie Cartan integral invariant.
In Chapter IV of his book, Souriau applied this model based on symplectic geometry for statistical

mechanics. Souriau observed that Gibbs equilibrium is not covariant with respect to dynamic groups
of physics. To solve this breaking of symmetry, Souriau introduced a new “geometric theory of heat”
where the equilibrium states are indexed by a parameter β with values in the Lie algebra of the group,
generalizing the Gibbs equilibrium states, where β plays the role of a geometric (Planck) temperature.
Souriau observed that the group of time translations of the classical thermodynamics is not a normal
subgroup of the Galileo group, proving that if a dynamical system is conservative in an inertial
reference frame, it need not be conservative in another. Based on this fact, Souriau generalized the
formulation of the Gibbs principle to become compatible with Galileo’s relativity in classical mechanics
and with Poincaré relativity in relativistic mechanics. The maximum entropy principle is preserved,
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and the Gibbs density is given by the density of maximum entropy (among the equilibrium states
for which the average value of the energy takes a prescribed value, the Gibbs measures are those
which have the largest entropy), but with a new principle “If a dynamical system is invariant under a
Lie subgroup G’ of the Galileo group, then the natural equilibria of the system forms the Gibbs ensemble of the
dynamical group G’”. The classical notion of Gibbs canonical ensemble is extended for a homogneous
symplectic manifold on which a Lie group (dynamic group) has a symplectic action. In case of a Galileo
group, the symmetry is broken, and new “cohomological” relations should be verified in Lie algebra
of the group. A natural equilibrium state will thus be characterized by an element of the Lie algebra
of the Lie group, determining the equilibrium temperature β. The entropy s(Q), parametrized by Q
the geometric heat (mean of energy U, element of the dual Lie algebra) is defined by the Legendre
transform of the Massieu potential given by Φ(β), parametrized by β (Φ(β) is the minus logarithm of
the partition function ψΩ(β)):

s(Q) = 〈β, Q〉 −Φ(β) with Φ(β) = − log
∫
M

e−〈β,U(ξ)〉dω , Q =
∂Φ
∂β

∈ g∗ and β =
∂s
∂Q

∈ g (29)

Souriau has proposed to study the statistical mechanics from the new point of view of symplectic
geometry, completing the work of Poincaré and Cartan on integral invariant, reinventing the
Lagrangian symplectic form in place of classical variational formulation and geometrizing the
Noether theorem with a moment map as new conserved quantities. Firstly, Souriau Lie groups
thermodynamics gives geometrical status to the (Planck) temperature and the entropy with a new
general definition of the Fisher Metric. Secondly, Souriau’s relativistic thermodynamics of continua
provides a geometrization of the smecond principle by the permanence of the entropy current, whose
flux has positive divergence [13,14,72–74]. This 2nd model of Souriau’s thermodynamics is described
in the Appendix. Other authors have studied this relativistic thermodynamics of continua [75–82].

If some works have been done from the 80s by Ingarden [83,84] and Mrugala [85–89] and
Arnold [90] to give a geometric structures to thermodynamics, Souriau’s Lie groups thermodynamics
was ignored for more than 50 years until recently recovered in [23,91].

3. Higher Order Thermodynamics Based on Higher Order Temperatures

We will generalize Souriau’s theory [43,64], reconsidered in [23] and with links to information
geometry in [91], in the framework of higher order thermodynamics as introduced by Ingarden [29–31]
and Jaworski [32–35] for mesoscopic systems. We can make also reference to other publications of
Ingarden [36–40], Jaworsky [92–94] and Nakagomi [95] on higher order thermodynamics. The Gibbs
canonical state results from the maximum entropy principle when the statistical mean value of the
energy is supposed to be known. A Polish school has studied the maximum entropy inference with
higher-order moments of energy (when not only mean values but also statistical moments of higher
order of some physical quantities are taken into account). Ingarden in 1963 and Jaworski in 1981 have
introduced the concept of second and higher-order temperatures, by assuming a distribution function
which includes information not only on the average of the energy but also on higher-order moments,
in particular 2nd moment related to fluctuations. This case should be considered in situations where
fluctuations are not negligible, such as near phase transitions or critical points, in metastable states in
systems with a small number of degrees of freedom. Ingarden’s idea is that if we can measure more
details, such as the first n cumulants of the energy, we can then introduce n high-order temperature, as
the Lagrange multipliers when we maximize the entropy with respect to these values:

P(β1,β2)
=

1
Z(β1, β2)

e−β1.H−β2(H−U)2
= eβ0−β1.H−β2(H−U)2

(30)

Ingarden proposed that if we can measure the second cumulant of the energy (the fluctuation
of the energy), the equilibrium state is not the canonical state, but would need two temperatures.
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Ingarden argues that for a macroscopic system there is very little difference between the two states, and
that we would need a mesoscopic or microscopic system to be able to detect the higher temperature.
Jaworski [27,28] has shown that the contribution to the total entropy, arising from the extra information
corresponding to the higher-order moments, is o(N), when N tends to infinity and N/V ratio is constant,
with N the number of particles and V the volume. The main result of Jaworski is that from a purely
thermodynamic point of view, the information corresponding to the higher-order moments of extensive
physical quantities is not essential and can be neglected in the maximum entropy procedure. Jaworski
showed that the maximum entropy inference has a certain stability property with respect to information
corresponding to higher order moments of extensive quantities. It can serve as an argument in favor of
the maximum entropy method in statistical physics and to understand better why these methods are
successful. Streater [96] has prefered to say that the states with generalized temperatures are not in
equilibrium, assuming that the final state, at large times, will be the canonical or grand canonical state
depending on mixing properties. Streater [96] intends that this occur even for a mesoscopic system,
such as a few atoms, adding that his approach is equivalent to Ingarden model if the relaxation time
from the state with generalized temperatures to the final equilibrium is very long.

Some examples of higher order maximum Entropy are given by Ingarden:

• 1st Example of Higher Oder Maximum Entropy Density:

Density of maximum Entropy

S(P) = −
+∞∫
−∞

P(x) log P(x)dx (31)

under the constraints:

P(x) ≥ 0,
+∞∫
−∞

P(x)dx = 1 and E
(

x2n
)
=

+∞∫
−∞

x2nP(x)dx = σ2n (32)

is given by:

P(x) =
1

2(2n)
1

2n σ.Γ(1 + 1/2n)
exp

(
− x2n

2nσ2n

)
= fn(x) (33)

with the following parameters:

βn =
1

2nσ2n , Z(βn) =
2Γ(1 + 1/2n)

β1/2n
n

, S(P) = log Z(βn) +
1

2n
(34)

where:

E
(

x2k−1
)
= 0 and − ∂ log Z(βk)

∂βk
= σ2k = E

(
x2k

)
=

(2n)k/nσ2kΓ(1 + (2k + 1)/2n)
(2k + 1)Γ(1 + 1/2n)

(35)

We illustrate this higher order maximum entropy density in Figure 3.
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Figure 3. Higher order maximum entropy density for constraints (32) from Ingarden’s paper.

• 2nd Example of Higher Oder Maximum Entropy Density:

Density of maximum Entropy S(P) = −
+∞∫
0

P(x) log P(x)dx under the constraints:

P(x) ≥ 0,
+∞∫
0

P(x)dx = 1 and E(xn) =

+∞∫
0

xnP(x)dx = σn (36)

is given by:

P(x) =
1

n
1
n σ.Γ(1 + 1/n)

exp
(
− xn

nσn

)
= fn(x) (37)

with the following parameters:

βn =
1

nσn , Z(βn) =
Γ(1 + 1/n)

β1/n
n

, S(P) = log Z(βn) +
1
n

(38)

where:

− ∂ log Z(βk)

∂βk
= σk = E

(
xk
)
=

nk/nσkΓ(1 + (k + 1)/n)
(k + 1)Γ(1 + 1/n)

(39)

We illustrate this higher order maximum entropy density in Figure 4.

Figure 4. Higher order maximum entropy density for constraints (36) from Ingarden paper.

As soon as 1963, Ingarden has introduced this concept of higher order temperatures for statistical
systems such as thermodynamics. In physics, the concept of temperature is connected with the mean
value of kinetic energy of molecules in an ideal gas. For a general physical system with interactions
among particles (the case of non-ideal gas: liquid or solid), an equilibrium probability distribution
depends on temperature T as the only statistical parameter of the Gibbs state: Pβ(x) = 1

Z(β)
e−β.H(x)
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with β =
1

kβT
and H(x) = H(p, q) where p is position, q the mechanical momentum and kβ the

Boltzmann constant (a factor to insure that β.H is dimensionless). If there are no stochastic interactions
between particles (ideal gas), the partition function Z has the property to be integrable and we can
obtain Gauss distribution in the momentum space deduced from the result of the limit theorem for
large N. The ideal gas model of Boltzmann can fail if the number of particles is not large enough in
the case of mesoscopic systems, and also if the interactions between particles are not weak enough.
Gibbs hypothesis can also fail in other cases when stochastic interactions with the environment are not
sufficiently weak. As remarked by Ingarden, nobody has ever observed thermal Gibbs equilibrium
in large and complex systems (cosmic systems, Earth’s atmosphere, biological organisms), but only
in cases of turbulence, flows or pumping, by replacing classical approach by local temperature and
concept of thermodynamic flows (non-equilibrium thermodynamics and thermo-hydrodynamics),
that is non-coherent with the classical concept of temperature which is, by definition, global/intensive
and does not depend on position. R.S. Ingarden proposed to consider the stationary case using of the
concept of higher order temperatures given by the Gibbs density:

P(β1,...,βn)(x) =
1

Z(β1, . . . , βn)
e−β1.H(x)−β2(H(x)−U)2−...−βn(H(x)−U)n

(40)

where U = E(H) is the mean energy. This mean energy has been introduced to preserve the the
total energy invariance with respect to an arbitrary additive constant, and β0 = − log Z(β1, . . . , βn)

the constant of normalization. The new constants βk are said to be β-temperatures of order k.
H(x) is usually defined as a quadratic function of x. The probability distribution is uniquely
defined from statistical moments which should be measured experimentally. But if values number
is too high to make this method practical, we are only able to measure the lowest moments
up to some order (if we can neglect the higher orders that do not change the result to a given
accuracy), and to fix β-temperatures defined as Lagrange multipliers by maximization of entropy
of distribution S = −

∫
P(β1,...,βn)(x) log P(β1,...,βn)(x)dx, with the given moments as constraints. R.S.

Ingarden observed that the entropy maximization randomizes higher moments in a symmetric way,
and it cancel any possible bias with respect to their special values, and it gives the best estimate to a
given accuracy. The values of β can be found by:

E
(

xk
)
=

∂β0

∂βk
=

∂ log Z
∂βk

with E
(

xk
)
= Z−1

∫
xke

−
n
∑

k=1
βkxk

dx =
∫

xkP(β1,...,βn)(x)dx (41)

Z =
∫

e
−

n
∑

k=1
βkxk

dx and the relation : S =
n

∑
k=1

βkE
(

xk
)
+ log Z =

n

∑
k=1

βk
∂β0

∂βk
− β0 (42)

Ingarden has applied this model for linguistic statistics, assuming the appearance of higher order
temperatures since there occur rather strong statistical correlations between phonemes and words
as elements of these statistics. He argued his choice observing that in the case of word statistics,
the existence of strong correlations is given by grammatical or semantical studies [9]. Ingarden made
the conjecture that his high order thermodynamics is the model of statistically interacting, biological
living systems, and small systems although the calculation/observation are more difficult.

Ingarden higher order temperatures could be defined in the case when no variation is considered,
but when a probability distribution depending on more than one parameter. It has been observed
by Ingarden, that Gibbs assumption can fail if the number of components of the sum goes to infinity
and the components of the sum are stochastically independent, and if stochastic interactions with
the environment are not sufficiently weak. In all these cases, we never observe absolute thermal
equilibrium of Gibbs type but only flows or turbulence. Non-equilibrium thermodynamics could be
indirectly addressed by means of high order temperatures.
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4. Model of Souriau Lie Groups Thermodynamics

For introduction to symplectic geometry, we make reference to Marle’s book [45] and Koszul’s
book [44]. In 1969, Souriau [43,64] introduced the concept of co-adjoint action of a group on its
momentum space, based on the orbit method works, that allows to define physical observables
like energy, heat and momentum or moment as pure geometrical objects. The moment map is a
constant of the motion and is associated to symplectic cohomology. In a first step to establish new
foundations of thermodynamics, Souriau has defined a Gibbs canonical ensemble on a symplectic
manifold M for a Lie group action on M. In classical statistical mechanics, a state is given by the
solution of Liouville equation on the phase space, the partition function. As symplectic manifolds have
a completely continuous measure, invariant by diffeomorphisms, the Liouville measure λ, all statistical
states will be the product of the Liouville measure by the scalar function given by the generalized
partition function eΦ(β)−〈β,U(ξ)〉 defined by the energy U (defined in the dual of the Lie algebra of
this dynamical group) and the geometric temperature β, where Φ is a normalizing constant such the
mass of probability is equal to 1, Φ(β) = − log

∫
M

e−〈β,U(ξ)〉dλ. Souriau then generalizes the Gibbs

equilibrium state to all symplectic manifolds that have a dynamical group. Souriau has observed that
if we apply this theory for a Galileo group, the symmetry has been broken. For each temperature β,
element of the Lie algebra g, Souriau has introduced a tensor Θ̃β, equal to the sum of the cocycle Θ̃
and the heat coboundary (with [.,.] Lie bracket):

Θ̃β(Z1, Z2) = Θ̃(Z1, Z2) +
〈

Q, adZ1(Z2)
〉

(43)

This tensor Θ̃β has the following properties: Θ̃(X, Y) = 〈Θ(X), Y〉 where the map Θ is the
symplectic one-cocycle of the Lie algebra g with values in g∗, with Θ(X) = Teθ(X(e)) where θ the
one-cocycle of the Lie group G. Θ̃(X, Y) is constant on M and the map Θ̃(X, Y) : g× g → 
 is a
skew-symmetric bilinear form, and is called the symplectic two-cocycle of Lie algebra g associated to the
moment map J, with the following properties:

Θ̃(X, Y) = J[X,Y] − {JX , JY} with J the Moment Map (44)

Θ̃([X, Y], Z) + Θ̃([Y, Z], X) + Θ̃([Z, X], Y) = 0 (45)

where JX linear application from g to differential function on M:g → C∞(M, R), X → JX and the
associated differentiable application J, called moment(um) map:

J : M → g∗ , x �→ J(x) such that JX(x) = 〈J(x), X〉, X ∈ g (46)

The geometric temperature, element of the algebra g, is in the the kernel of the tensor Θ̃β:

β ∈ Ker Θ̃β such that Θ̃β(β, β) = 0 , ∀β ∈ g (47)

The following symmetric tensor gβ([β, Z1], [β, Z2]) = Θ̃β(Z1, [β, Z2]), defined on all values of
adβ(.) = [β, .] is positive definite, and defines extension of the classical Fisher metric in information
geometry (as the Hessian of the logarithm of partition function):

gβ([β, Z1], Z2) = Θ̃β(Z1, Z2) , ∀Z1 ∈ g, ∀Z2 ∈ Im
(
adβ(.)

)
(48)

with:
gβ(Z1, Z2) ≥ 0 , ∀Z1, Z2 ∈ Im

(
adβ(.)

)
(49)
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These equations are universal, because they are not dependent on the symplectic manifold but
only on the dynamical group G, the symplectic two-cocycle Θ, the temperature β and the heat Q.
Souriau called it “Lie groups thermodynamics” (see Figures 5 and 6).

Theorem 2. [Souriau Theorem of Lie Groups Thermodynamics] Let Ω be the largest open proper subset
of g, Lie algebra of G, such that

∫
M

e−〈β,U(ξ)〉dλ and
∫
M

ξ.e−〈β,U(ξ)〉dλ are convergent integrals, this set Ω is

convex and is invariant under every transformation Adg(.). Then, the fundamental equations of Lie groups
thermodynamics are given by the action of the group:

• Action of Lie group on Lie algebra:
β → Adg(β) (50)

• Characteristic function after Lie group action:

Φ → Φ−
〈

θ
(

g−1
)

, β
〉

(51)

• Invariance of entropy with respect to action of Lie group:

s → s (52)

• Action of Lie group on geometric heat:

Q → a(g, Q) = Ad∗g(Q) + θ(g) (53)

Souriau’s equations of Lie groups thermodynamics are summarized in the following figures.

 

Figure 5. Global Souriau scheme of Lie groups thermodynamics.
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Figure 6. Broken symmetry on geometric heat Q due to adjoint action of the group on temperature β as
an element of the Lie algebra.

In the framework of Lie group action on a symplectic manifold, equivariance of moment could be
studied to prove that there is a unique action a(.,.) of the Lie group G on the dual g∗ of its Lie algebra
for which the moment map J is equivariant, that means for each x ∈ M:

J
(
Φg(x)

)
= a(g, J(x)) = Ad∗g(J(x)) + θ(g) (54)

When the group is not abelian (non-commutative group), the symmetry is broken, and new
“cohomological” relations should be verified in Lie algebra of the group. A natural equilibrium
state will thus be characterized by an element of the Lie algebra of the Lie group, determining the
equilibrium temperature β. The entropy s(Q), parametrized by Q the geometric heat (mean of energy
U, element of the dual Lie algebra) is defined by the Legendre transform [97–103] of the Massieu
potential Φ(β) parametrized by β (Φ(β) is the minus logarithm of the partition function ψΩ(β)):

s(Q) = 〈β, Q〉 −Φ(β) with

⎧⎪⎨⎪⎩
Q =

∂Φ
∂β

∈ g∗

β =
∂s
∂Q

∈ g
(55)

pGibbs(ξ) = eΦ(β)−〈β,U(ξ)〉 =
e−〈β,U(ξ)〉∫

M
e−〈β,U(ξ)〉dω

, Q = ∂Φ(β)
∂β =

∫
M

U(ξ)e−〈β,U(ξ)〉dω∫
M

e−〈β,U(ξ)〉dω
=
∫
M

U(ξ)p(ξ)dω

with Φ(β) = − log
∫
M

e−〈β,U(ξ)〉dω

(56)
Souriau completed his “geometric heat theory” by introducing a 2-form in the Lie algebra, that

is a Riemannian metric tensor in the values of adjoint orbit of β, [β, Z] with Z an element of the Lie
algebra. This metric is given for (β, Q):

gβ([β, Z1], [β, Z2]) = 〈Θ(Z1), [β, Z2]〉+ 〈Q, [Z1, [β, Z2]]〉 (57)

where Θ is a cocycle of the Lie algebra, defined by Θ = Teθ with θ a cocycle of the Lie group defined
by θ(M) = Q(AdM(β))− Ad∗MQ.

We observe that Souriau Riemannian metric, introduced with symplectic cocycle, is a
generalization of the Fisher metric, that we call the Souriau-Fisher metric, that preserves the property
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to be defined as a Hessian of the partition function logarithm gβ = −∂2Φ
∂β2 =

∂2 log ψΩ

∂β2 as in classical

information geometry. We will establish the equality of two terms, between Souriau definition
based on Lie group cocycle Θ and parameterized by “geometric heat” Q (element of dual Lie
algebra) and “geometric temperature” β (element of Lie algebra) and hessian of characteristic function
Φ(β) = − log ψΩ(β) with respect to the variable β:

gβ([β, Z1], [β, Z2]) = 〈Θ(Z1), [β, Z2]〉+ 〈Q, [Z1, [β, Z2]]〉 =
∂2 log ψΩ

∂β2 (58)

If we differentiate this relation of Souriau theorem Q
(

Adg(β)
)
= Ad∗g(Q) + θ(g), this relation

occurs:
∂Q
∂β

(−[Z1, β], .) = Θ̃(Z1, [β, .]) +
〈

Q, Ad.Z1([β, .])
〉
= Θ̃β(Z1, [β, .]) (59)

− ∂Q
∂β

([Z1, β], Z2.) = Θ̃(Z1, [β, Z2]) +
〈

Q, Ad.Z1([β, Z2])
〉
= Θ̃β(Z1, [β, Z2]) (60)

⇒ −∂Q
∂β

= gβ([β, Z1], [β, Z2]) (61)

As the entropy is defined by the Legendre transform of the characteristic function, this
Souriau-Fisher metric is also equal to the inverse of the hessian of “geometric entropy” s(Q) with

respect to the variable Q:
∂2s(Q)

∂Q2 .

For the maximum entropy density (Gibbs density), the following three terms coincide:
∂2 log ψΩ

∂β2

that describes the convexity of the log-likelihood function, I(β) = −E

[
∂2 log pβ(ξ)

∂β2

]
the Fisher metric

that describes the covariance of the log-likelihood gradient, whereas I(β) = E
[
(ξ −Q)(ξ −Q)T

]
=

Var(ξ) that describes the covariance of the observables.

We can also observe that the Fisher metric I(β) = −∂Q
∂β

is exactly the Souriau metric defined

through symplectic cocycle:

I(β) = Θ̃β(Z1, [β, Z2]) = gβ([β, Z1], [β, Z2]) (62)

The Fisher metric I(β) = −∂2Φ(β)

∂β2 = −∂Q
∂β

has been considered by Souriau as a generalization of

“heat capacity”. Souriau called it K the “geometric capacity”.
We could observe that Souriau Lie groups thermodynamics is compatible with Balian and

Valentin’s theory of thermodynamics [24], that is obtained by symplectization in dimension 2n + 2 of
contact manifold in dimension 2n + 1. All elements of the Souriau geometric temperature vector are
multiplied by the same gauge parameter. The Balian and Valentin model was first explored in [104]
and has been recently developed by der Schaft and Maschke in [26,105].

5. Extended Koszul Study of Souriau Non-Equivariant Model Associated to a
Class of Cohomology

Koszul has deepened Souriau’s model in his book “Introduction to symplectic geometry” [44] as
explained in [10]. In the historical foreword of this book, Koszul write “The development of analytical
mechanics provided the basic concepts of symplectic structures. The term symplectic structure is due largely
to analytical mechanics. But in this book, the applications of symplectic structure theory to mechanics is not
discussed in any detail”. Koszul considers in this book purely algebraic and geometric developments
of geometric/analytic mechanics developed during the 60s, more especially in Jean-Marie Souriau’s
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works detailed in chapters 4 and 5. The originality of this book lies in the fact that Koszul develops new
points of view, and demonstrations not considered initially by Souriau and after by the geometrical
mechanics community.

To highlight the importance of this Koszul book, we will illustrate the links of the detailed tools,
including demonstrations or original Koszul extensions, with Souriau’s Lie groups thermodynamics.
Koszul originally developed Souriau’s model, in the case of non-equivariance, of the action of the
group G on the moment map. As explained in [106] by Thomas Delzant at the 2010 CIRM conference
“Action Hamiltoniennes: invariants et classification”, organized with Michel Brion: “The definition of the
moment map is due to Jean-Marie Souriau . . . . In the book of Souriau, we find a proof of the proposition: the
map J is equivariant for an affine action of G on g* whose linear part is Ad* . . . . In Souriau’s book, we can also
find a study of the non-equivariant case and its applications to classical and quantum mechanics. In the case of
the Galileo group operating in the phase space of space-time, obstruction to equivariance (a class of cohomology)
is interpreted as the inert mass of the object under study”. We can uniquely define the moment map up to
an additive constant of integration, that can always be chosen to make the moment map equivariant
(a moment map is G-equivariant, when G acts on g* via the coadjoint action) if the group is compact
or semi-simple. In 1969, Souriau has considered the non-equivariant case where the coadjoint action
must be modified to make the map equivariant by a 1-cocycle on the group with values in dual Lie
algebra g*.

The concept and seminal idea of moment map was in the Sophus Lie’s book 2nd volume published
in 1890, developed for homogeneous canonical transformations. Professor Marsden has summarized
the development of this concept by Jean-Marie Souriau and Bertram Kostant based on their both
testimonials: “In Kostant’s 1965 Phillips lectures at Haverford, and in the 1965 U.S.–Japan Seminar, Kostant
introduced the momentum map to generalize a theorem of Wang and thereby classified all homogeneous
symplectic manifolds; this is called today ‘Kostant’s coadjoint orbit covering theorem’ . . . . Souriau introduced
the momentum map in his 1965 Marseille lecture notes and put it in print in 1966. The momentum map finally
got its formal definition and its name, based on its physical interpretation, by Souriau in 1967. Souriau also
studied its properties of equivariance, and formulated the coadjoint orbit theorem. The momentum map appeared
as a key tool in Kostant’s quantization lectures in 1970 [46], and Souriau discussed in 1970 it at length in his
book [43]. Kostant and Souriau realized its importance for linear representations, a fact apparently not foreseen
by Lie”. Souriau’s book reference date is 1970, but it was published by Dunod in 1969. For information,
Jean-Louis Koszul knew very well the Souriau and Kostant works, and as soon as 1958, Koszul made a
survey of first Kostant’s works at a Bourbaky seminar [47].

In this book in Chapter 4, Koszul calls symplectic G-space a symplectic manifold (M; ω) on which
a Lie group G acts by a symplectic action (an action which leaves unchanged the symplectic form
ω). Koszul then introduces and develop properties of the moment map μ (Souriau’s invention) of
a Hamiltonian action of the Lie algebra g. Koszul also defines the Souriau 2-cocycle, considering
that the difference of two moments of the same Hamiltonian action is a locally constant application
on M ,showing that when μ is a moment map, for every pair (a;b) of elements of g, the function
cμ(a, b) = {〈μ, a〉, 〈μ, b〉} − 〈μ, {a, b}〉 is locally constant on M, defining an antisymmetric bilinear
application of gxg in H0(M; R) which verifies Jacobi’s identity. This is the 2-cocycle introduced
by Jean-Marie Souriau in Geometric Mechanics, that will play a fundamental role in Souriau Lie
Groups Thermodynamics to define an extension of the Fisher Metric from Information Geometry:
“Fisher-Souriau metric”.

The antisymmetric bilinear map (31) and (32), with definition (27) and (28), introduced by Souriau is
exactly equal to the mathematical object extensively studied in Chapter 4 of Koszul’s book:

cμ(a, b) = {〈μ, a〉, 〈μ, b〉} − 〈μ, {a, b}〉 (63)
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In this book, Koszul has studied this antisymmetric bilinear map considering the following
developments. For any moment map μ, Koszul defines the skew symmetric bilinear form cμ(a, b) on
Lie algebra by:

cμ(a, b) =
〈
dθμ(a), b

〉
, a, b ∈ g (64)

Koszul observes that if he uses:

θμ(st) = μ(stx)− Ad∗stμ(x) = θμ(s) + Ad∗s μ(tx)− Ad∗s Ad∗t μ(x) = θμ(s) + Ad∗s θμ(t) (65)

by developing dμ(ax) = tadaμ(x) + dθμ(a) , x ∈ M, a ∈ g, he obtains:

〈dμ(ax), b〉 = 〈μ(x), [a, b]〉+
〈
dθμ(a), b

〉
= {〈μ, a〉, 〈μ, b〉}(x) , x ∈ M, a, b ∈ g (66)

He has then:

cμ(a, b) = {〈μ, a〉, 〈μ, b〉} − 〈μ, [a, b]〉 =
〈
dθμ(a), b

〉
, a, b ∈ g (67)

and the property:
cμ([a, b], c) + cμ([b, c], a) + cμ([c, a], b) = 0 , a, b, c ∈ g (68)

Koszul concludes by observing that if the moment map is transform as μ′ = μ + φ then we have:

cμ′(a, b) = cμ(a, b)− 〈φ, [a, b]〉 (69)

Finally using cμ(a, b) = {〈μ, a〉, 〈μ, b〉} − 〈μ, [a, b]〉 =
〈
dθμ(a), b

〉
, a, b ∈ g, koszul highlights the

property that:

{μ∗(a), μ∗(b)} = {〈μ, a〉, 〈μ, b〉} = μ∗
(
[a, b] + cμ(a, b)

)
= μ∗{a, b}cμ

(70)

In Chapter 4, Koszul introduces the equivariance of the moment map μ. Based on the definitions
of the adjoint and coadjoint representations of a Lie group or a Lie algebra, Koszul proves that when
(M; ω) is a connected Hamiltonian G-space and μ : M → g∗ a moment of the action of G, there exists an
affine action of G on g*, whose linear part is the coadjoint action, for which the moment μ is equivariant.
This affine action is obtained by modifying the coadjoint action by means of a cocycle. This notion is
also developed in Chapter 5 for studying Poisson manifolds.

Defining classical operation Adsa = sas−1 , s ∈ G, a ∈ g, adab = [a, b] , a ∈ g, b ∈ g and
Ad∗s = t Ads−1 , s ∈ G with classical properties:

Adexp a = exp(−ada) , a ∈ g or Ad∗exp a = exp t(ada) , a ∈ g (71)

Koszul considers:
x �→ sx , x ∈ M , μ : M → g∗ (72)

From which, he obtains:
〈dμ(v), a〉 = ω(ax, v) (73)

Koszul then study μ ◦ sM − Ad∗s ◦ μ : M → g∗, and develops:

d〈Ad∗s ◦ μ, a〉 = 〈Ad∗s dμ, a〉 = 〈dμ, Ads−1 a〉 (74)

〈dμ(v), Ads−1 a〉 = ω
(

s−1asx, v
)
= ω(asx, sv) = 〈dμ(sv), a〉 = (d〈μ ◦ sM, a〉)(v) (75)

d〈Ad∗s ◦ μ, a〉 = d〈μ ◦ sM, a〉 and then proves that d〈μ ◦ sM − Ad∗s ◦ μ, a〉 = 0 (76)
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Koszul considers the cocycle given by θμ(s) = μ(sx)− Ad∗s μ(x) , s ∈ G, and observes that:

θμ(st) = θμ(s)− Ad∗s θμ(t) , s, t ∈ G (77)

From this action of the group on dual Lie algebra:

G× g∗ → g∗, (s, ξ) �→ sξ = Ad∗s ξ + θμ(s) (78)

Koszul introduces the following properties:

μ(sx) = sμ(x) = Ad∗s μ(x) + θμ(s) , ∀s ∈ G, x ∈ M (79)

G× g∗ → g∗, (e, ξ) �→ eξ = Ad∗e ξ + θμ(e) = ξ + μ(x)− μ(x) = ξ (80)

(s1s2)ξ = Ad∗s1s2
ξ + θμ(s1s2) = Ad∗s1

Ad∗s2
ξ + θμ(s1) + Ad∗s1

θμ(s2)

(s1s2)ξ = Ad∗s1

(
Ad∗s2

ξ + θμ(s2)
)
+ θμ(s1) = s1(s2ξ) , ∀s1, s2 ∈ G, ξ ∈ g∗

(81)

This Koszul study of the moment map μ equivariance, and the existence of an affine action of
G on g*, whose linear part is the coadjoint action, for which the moment μ is equivariant, is at the
cornerstone of Souriau theory of geometric mechanics and Lie groups thermodynamics.

We compare Souriau and Koszul notations in Figure 7.

Figure 7. Comparison of the Souriau equations (column on the left) and Koszul equations (column on
the right).

We have also to make reference to Muriel Casalis’ papers [41,42] on this topic.

6. Souriau Model of Generalized Entropy Based on Legendre and Laplace Transforms

At the step of the development of Souriau Lie groups thermodynamics, we will introduce
generalized Souriau definition of entropy. Souriau first start to define “Laplace transform”:

Let E a vector space of finite size, μ a measure of its dual E∗, then the function given by:

α �→
∫
E∗

eMαμ(M)dM (82)

for all α ∈ E such that the integral is convergent. This function is called (generalized) Laplace transform.
This transform F of the measure μ is differentiable inside is definition set de f (F). Its p-th derivative is
given by the following convergent integral for all point inside de f (F):

F(p)(α) =
∫
E∗

M⊗ M . . .⊗ Mμ(M)dM (83)
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Theorem 3. [Souriau Theorem] Let E a vector space of finite size, μ a non-zero positive measure of dual space
E∗, F its Laplace transform, then:

- F is semi-definite convex function,
F(α) > 0, ∀α ∈ de f (F) (84)

- f = log F is convex and semi-continuous
- Let α an interior point of de f (F) then:

D2( f )(α) ≥ 0 (85)

D2( f )(α) =
∫
E∗

eMα[M− D( f )(α)]⊗
2
μ(M)dM (86)

D2( f )(α) inversible ⇔ Affine envelop(μ)) = E∗ (87)

See [107], for links between dual convex functions and optimization.

Before introducing Entropy, Souriau introduced the following lemma:

Lemma 1. Let X be a locally compact space, Let λ a positive measure of X, having X as support, then the
following function Φ is convex:

Φ(h) = log
∫
X

eh(X)λ(x)dx , ∀h ∈ C(X) (88)

such that the integral is converging.

The integral is strictly positive when it converges, and then insures existence of its logarithm. The

epigraph of Φ is the set of

(
h
y

)
such that

∫
X

eh(x)−yλ(x)dx ≤ 1. Convexity of exponential shows that

this epigraph is convex. Finally, Souriau introduced the “negentropy” as Legendre transform of the
function Φ:

Definition 1. [Souriau Entropy Definition] We call “Boltzmann Law” (relative to λ) all measure μ of X
such that the set of real values:

μ(h)−Φ(h), h ∈ de f (Φ) and h is μ-integrable (89)

This definition of entropy by Souriau is a general scheme that can be extended to highly abstract
spaces preserving Legendre structure [108], if we can define generalized Laplace transform. These
operations of Laplace and Legendre transforms are the core contextures of theory of Information and
Heat, generating the well-defined structures, from which we can preserve the definition of “average
value”. Jean-Marie Souriau explained this contexture property in the following sentence:

“Il est évident que l’on ne peut définir de valeurs moyennes que sur des objets appartenant à un espace
vectoriel (ou affine); donc—si bourbakiste que puisse sembler cette affirmation—que l’on n’observera
et ne mesurera de valeurs moyennes que sur des grandeurs appartenant à un ensemble possédant
physiquement une structure affine. Il est clair que cette structure est nécessairement unique—sinon
les valeurs moyennes ne seraient pas bien définies.” (In English: It is obvious that one can only define
average values on objects belonging to a vector (or affine) space; Therefore—so this assertion may
seem Bourbakist—that we will observe and measure average values only as quantity belonging to a
set having physically an affine structure. It is clear that this structure is necessarily unique—if not
the average values would not be well defined.)
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See also papers of Kostant [109] and Leray [100] for generalized Laplace transforms.

7. Illustration of Souriau Thermodynamics of a Centrifuge System

Duhem [110–113] and Poincaré [114] have studied statistical mechanics model of centrifuges.
We will illustrate Souriau’s Lie groups thermodynamics for Souriau Gibbs states for Hamiltonian
actions of subgroups of the Galilean group, as illustrated in Souriau’s book [43] and more recentltly by
Charles-Michel Marle [23].

Consider a Galilean Lie group:

⎛⎜⎝ A
→
b

→
d

0 1 e
0 0 1

⎞⎟⎠ with

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A ∈ SO(3) : rotation
→
b ∈ R3 : boost
→
d ∈ R3 : space translation
e : time translation

(90)

Galilean Lie algebra:

⎛⎜⎜⎝ j
(→

ω
) →

α
→
δ

0 1 ε

0 0 0

⎞⎟⎟⎠ with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

→
ω =

⎛⎜⎝ ωx

ωy

ωz

⎞⎟⎠,
→
α and

→
δ ∈ R3, ε ∈ R

j
(→

ω
)
=

⎛⎜⎝ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎞⎟⎠ ∈ so(3), j
(→

ω
)→

r =
→
ω ×→

r

(91)

Action of Lie group:⎛⎜⎝ A
→
b

→
d

0 1 e
0 0 1

⎞⎟⎠
⎛⎜⎝

→
r
t
1

⎞⎟⎠ =

⎛⎜⎝ A
→
r + t

→
b +

→
d

t + e
1

⎞⎟⎠ with
→
r =

⎛⎜⎝ x
y
z

⎞⎟⎠ (92)

Galilean transformation on position and speed is given by:⎛⎜⎝
→
r ′ →

v ′
t′ 1
1 0

⎞⎟⎠ =

⎛⎜⎝ A
→
b

→
d

0 1 e
0 0 1

⎞⎟⎠
⎛⎜⎝

→
r

→
v

t 1
1 0

⎞⎟⎠ =

⎛⎜⎝ A
→
r + t

→
b +

→
d A

→
v +

→
b

t + e 1
1 0

⎞⎟⎠ (93)

Souriau has proved that this action is Hamiltonian, with the map J, defined on the evolution space
of the particle, with value in the dual g* of the Lie algebra G, as momentum map:

J
(→

r , t,
→
v , m

)
= m

⎛⎜⎜⎝
→
r ×→

v 0 0
→
r − t

→
v 0 0

→
v 1

2‖
→
v ‖2

0

⎞⎟⎟⎠ = m
{
→
r ×→

v ,
→
r − t

→
v ,

→
v ,

1
2
‖→v ‖2

}
∈ g∗ (94)

where the coupling formula is given by:〈
J
(→

r , t,
→
v , m

)
, β
〉
=

〈
m
{
→
r ×→

v ,
→
r − t

→
v ,

→
v , 1

2‖
→
v ‖2

}
,
{
→
ω,

→
α ,

→
δ , ε

}〉
〈

J
(→

r , t,
→
v , m

)
, β
〉
= m

(
→
ω.
→
r ×→

v − (
→
r ×→

v ).
→
α +

→
v .
→
δ − 1

2‖
→
v ‖2

ε

) (95)
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with:

Z =

⎛⎜⎜⎝ j
(→

ω
) →

α
→
δ

0 1 ε

0 0 0

⎞⎟⎟⎠ =

{
→
ω,

→
α ,

→
δ , ε

}
∈ g (96)

Souriau gave the demonstration for the Galilean moment map for a free particle, considering the
definition of moment map:

σ(dp)(δp) = −d〈J, Z〉 , ∀dp (97)

and the definition of tangent vector field:

ZV(p) = δ[aV(p)] (98)

Z =

⎛⎜⎜⎝ j
(→

ω
) →

α
→
δ

0 1 ε

0 0 0

⎞⎟⎟⎠ ∈ g ⇒
ZV(p)=δ[aV(p)]

⎧⎪⎨⎪⎩
δt = ε

δrj =
→
ω × rj +

→
α t +

→
δ

δvj =
→
ω × vj +

→
α

(99)

Then, as General Lagrange 2 form for a force F is:

dp =

⎛⎜⎝ dt
dr
dv

⎞⎟⎠ and δp =

⎛⎜⎝ δt
δr
δv

⎞⎟⎠⇒ σ(dp)(δp) = 〈mdv− Fdt, δr− vδt〉 − 〈mδv− Fδt, dr− vdt〉 (100)

If F is equal to zero, we obtain:

σ(dp)(δp) = ∑
j

〈
mdv,

→
ω × rj +

→
α t +

→
δ − vε

〉
−
〈

m
(→

ω × vj +
→
α
)

, dr− vdt
〉

σ(dp)(δp) == −d〈J, Z〉 = −dJZ = −dH
(101)

and the co-cycle is given by:

θ(g) = J
(

AdgZ
)
− Ad∗g(J(Z)) =

{→
d ×

→
b ,

→
d −

→
b e,

→
b ,

1
2
‖
→
b ‖

2}
(102)

The main Souriau idea was to define the Gibbs states for one-parameter subgroups of the Galilean
group. Souriau has proved that action of the full Galilean group on the space of motions of an isolated
mechanical system is not related to any equilibrium Gibbs state (the open subset of the Lie algebra,
associated to this Gibbs state, is empty). Then, if we consider the 1-parameter subgroup of the Galilean
group generated by b element of Lie algebra, is the set of matrices:

exp(τβ) =

⎛⎜⎝ A(τ)
→
b (τ)

→
d (τ)

0 1 τε

0 0 1

⎞⎟⎠ with

⎧⎪⎪⎨⎪⎪⎩
A(τ) = exp

(
τ j(

→
ω)

)
and

→
b (τ) =

(
∞
∑

i=1

τi

i!

(
j(
→
ω)

)i−1
)
→
α

→
d (τ) =

(
∞
∑

i=1

τi

i!

(
j(
→
ω)

)i−1
)→

δ + ε

(
∞
∑

i=2

τi

i!

(
j(
→
ω)

)i−2
)
→
α

(103)

and:

β =

⎛⎜⎜⎝ j
(→

ω
) →

α
→
δ

0 1 ε

0 0 0

⎞⎟⎟⎠ ∈ g (104)

Then, Gibbs state defined for a gas enclosed in a moving box could be computed by Souriau
formula. If we fix the affine Euclidean reference frame

(
0,
→
e x,

→
e y,

→
e z

)
at t = 0, if we set the value

τ = t/ε, moving frame
(

0,
→
e x(t),

→
e y(t),

→
e z(t)

)
velocity and acceleration are given by the vector field

related to β element of the Lie algebra. For each point, we can associate a rotation speed ‖→ω‖/ε, a
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speed
→
δ /ε and an acceleration

→
α /ε. If we consider a gas made of N point particles, indexed by i ∈ {1,2,

. . . , N}, enclosed in a box with rigid and undeformable walls, whose motion is described by the action
of the 1-parameter subgroup of the Galilean group, A(t/ε) where t ∈ R. If we consider mi, ri(t), vi(t),
respectively the mass, position vector and velocity vector of the ith particle at time t. If we assume
free particle and we neglect contributions given by the collisions of the particles between themselves
collisions with the walls, then we can write:

〈J, β〉 =
N
∑

i=1
〈Ji, β〉 with

〈
Ji

(→
r i, t,

→
v i, mi

)
, β
〉
= mi

(
→
ω.
(→

r i ×
→
v i

)
− (

→
r i − t

→
v i).

→
α +

→
v i.

→
δ − 1

2‖
→
v i‖

2
ε

)
(105)

The important idea is to observe that 〈Ji, β〉 is invariant by the action of 1-parameter subgroup.
The proof of 〈Ji, β〉 invariance is based on Souriau equation for default of equivariance with cocyle. If
the action of the 1-parameter subgroup is exp

( t
ε β
)
, according to Souriau equation:

a(g, J) = Ad∗g(J) + θ(g) (106)

We obtain for:

〈Ji(p), β〉 =
〈

Ad∗g(Ji(p0), β
〉
+ 〈θ(g), β〉 =

〈
Ji(p0), Adg−1 β

〉
+ 〈θ(g), β〉

that can be reduded by using the properties:{
Adg−1 β = β

〈θ(g), β〉 = 0
⇒ 〈Ji(p), β〉 = 〈Ji(p0), β〉 (107)

and:

at t = 0 then
〈

Ji

(→
r i, t,

→
v i, mi

)
, β
〉

= mi

(
→
ω.
(→

r i0 ×
→
v i0

)
−→

r i0.
→
α +

→
v i0.

→
δ − 1

2‖
→
v i‖

2
ε

)
= mi

(
→
v i0.

(
→
ω ×→

v i0 +
→
δ

)
−→

r i0.
→
α − 1

2‖
→
v i‖

2
ε

) (108)

To obtain Souriau’s Gibbs maximum entropy density, we have to use the following change of
variables:

→
U
∗
=

1
ε

(
→
ω ×→

v i0 +
→
δ

)
(109)

〈
Ji

(→
r i, t,

→
v i, mi

)
, β
〉
= miε

(
−1

2
‖→v i0 −

→
U
∗
‖

2
−→

r i0.
→
α

ε
+

1
2
‖
→
U
∗
‖

2
)

(110)

We can then write:〈
Ji

(→
r i0,

→
p i0

)
, β
〉
= −ε

(
− 1

2mi
‖→p i0‖

2
+ mi fi

(→
r i0

))
with ε = − 1

κT

with

⎧⎪⎨⎪⎩
→
p i0 = mi

→
wi0 = mi

(
→
v i0 −

→
U
∗)

fi

(→
r i0

)
=

→
r i0.

→
α
ε − 1

2ε2 ‖
→
ω ×→

r i0‖
2 −

→
δ
ε .
(→

ω
ε ×

→
r i0

)
− 1

2ε2 ‖
→
δ ‖

2

(111)

and finally, the Souriau Gibbs density is given by:

ρ(β) =
N

∏
i=1

ρi(β) with ρi(β) =
1

Pi(β)
exp(−〈Ji, β〉) (112)
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Pi(β) =
∫

Mi

exp(−〈Ji, β〉)dλωi , Qi(β) =
∫

Mi

Ji exp(−〈Ji, β〉)dλωi et P(β) =
N

∏
i=1

Pi(β) (113)

If we consider the case of the centrifuge (as for a butter churn, device used to convert cream into
butter), the parameter of Galilean group Lie algebra are reduced to:

→
ω = ω

→
e z ,

→
α = 0 and

→
δ = 0

Rotation speed : ω
ε

with β =

⎛⎜⎜⎝ j
(→

ω
) →

α
→
δ

0 1 ε

0 0 0

⎞⎟⎟⎠ ∈ g (114)

with variables:

fi

(→
r i0

)
= −ω2

2ε2 ‖
→
e z ×

→
r i0‖

2
with Δ = ‖→e z ×

→
r i0‖ distance to axis z (115)

We obtain the closed form for maximum entropy Souriau-Gibbs density:

ρi(β) =
1

Pi(β)
exp(−〈Ji, β〉) = cst. exp

(
− 1

2miκT
‖→p i0‖

2
+

mi
2κT

(ω

ε

)2
Δ2
)

(116)

This equation describes the behaviour of a gas made of point particles of various masses in
a centrifuge rotating at a constant angular velocity and explains the observation that the heavier
particles concentrate farther from the rotation axis than the lighter ones. Souriau made reference to
thermodynamics of butter churn (see Figure 8).

 
(a) (b) 

Figure 8. Most simple use-case of Souriau’s Lie groups thermodynamics: the thermodynamics of the
centrifuge of butter churn (device used to convert cream into butter). (a) butter churn centrifuge with
horizontal axis; (b) butter churn centrifuge with vertical axis.

Souriau Lie groups thermodynamics provides right results if we apply it to subgroups of
Galileo group, as previous example of a cylindrical box with fluid with an invariance sub-group
of size 2 (rotation along the axis, time translation) providing a 2-dimensional Souriau (Planck)
temperature-vector. Souriau has observed that the process, by which a refrigerated centrifuge transmits
its own temperature-vector to its content, has two names: thermal conduction and viscosity, depending
on the temperature-vector component that is considered. Conduction and viscosity should therefore
be unified in a fundamental theory of irreversible processes (theory that remains to be constructed).

In the Appendix, we develop a solution given by Roger Balian [25] for the previous case of
centrifuge thermodynamics based on classical methods. Balian recover the same Gibbs density but
by introducing an additional Lagrange hyper-parameter associated to total angular momentum.
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Balian has computed the Boltzmann-Gibbs distribution without knowing the Souriau equations
(exercice 7b of). Balian started by considering the constants of motion that are the energy and the
component Jz of the total angular momentum J = ∑

i
(ri × pi). Balian observed that he must add to the

Lagrangian parameter, given by (Planck) temperature β for energy, an additional one associated with
Jz. He identifies this additional multiplier with −βω by evaluating the mean velocity at each point.
He then introduced the same results also by changing the frame of reference, the Lagrangian and
the Hamiltonian in the rotating frame and by writing down the canonical equilibrium in that frame.
He uses the resulting distribution to find, through integration, over the momenta, an expression for
the particles density as the function of the distance from the cylinder axis. The main Souriau model
advantage is that we can define covariant Gibbs density for dynamical systems, only by applying
formulas without any considerations [64].

8. Higher-Order Model of Lie Groups Thermodynamics Based on Poly-Symplectic Vector
Valued Model

As observed by Souriau in Chapter IV of [43], the Gausian density is a maximum entropy
density of 1st order. Considering multivariate Gaussian density, this remark is clear if we replace
classical parameterization z and (m, R) by the new parameterization, linked to information geometry
coordinates, ξ and β:

p(m,R)(z) =
1

(2π)n/2det(R)1/2 e−
1
2 (z−m)T R−1(z−m) =

1

(2π)n/2det(R)1/2e
1
2 mT R−1m

e−[−mT R−1z+ 1
2 zT R−1z]

p(m,R)(z) = pξ̂(ξ) =
1
Z e−〈β,ξ〉 with ξ =

[
z

zzT

]
, ξ̂ =

[
E[z]

E
[
zzT]

]
=

[
m

R + mmT

]

and β =

[
−R−1m

1
2

R−1
]
=

[
a
H

]
where 〈β, ξ〉 = aTz + zT Hz = Tr

[
zaT + zzT HT]

with log(Z) =
n
2

log(2π) +
1
2

log det(R) +
1
2

mT R−1m and S(ξ̂) =
〈
ξ̂, β

〉
−Φ(β)

ξ̂ = Θ(β) =
∂Φ(β)

∂β
and β = Θ−1(ξ̂) with Φ(β) = − log ψΩ(β) = − log

∫
Ω∗

e−〈β,ξ〉dξ

Fisher: I(β) =
∂2 log ψΩ(β)

∂β2 = E

[
∂ log pβ(ξ)

∂β

∂ log pβ(ξ)

∂β

T]
= E

[(
ξ − ξ̂

)(
ξ − ξ̂

)T
]

(117)

We can observe in previous equations that classical multivariate Gaussian density, classically

expressed by p(m,R)(z) = 1
(2π)n/2det(R)1/2 e−

1
2 (z−m)T R−1(z−m) could be rewritten in a new

parameterization in a Gibbs density form pξ̂(ξ) = 1
Z e−〈β,ξ〉 with tensor variable ξ =

[
z

zzT

]
,

where ξ̂ = E[ξ] =

[
m

R + mmT

]
and tensor parameterization β =

[
−R−1m

1
2 R−1

]
=

[
a
H

]
with

the following definition of duality braket given by 〈β, ξ〉 = aTz + zT Hz = Tr
[
zaT + zzT HT] also

written in the initial parameterization 〈β, ξ〉 = −mT R−1z + 1
2 zT R−1z = Tr

[
−zmT R−1 + 1

2 zzT R−1
]
.

To understand the meaning of these tensors, we can consider them as homeomorph to the following

respective matrices ξ =

[
zzT z

01×n 0

]
, ξ̂ =

[
R + mmT m

01×n 0

]
and β =

[
1
2 R−1 −R−1m
01×n 0

]
with

〈β, ξ〉 = Tr
[
βξT] (see [91] for more details).

Z is the classical normalization constant that is equal to log(Z) = n
2 log(2π) + 1

2 log det(R) +
1
2 mT R−1m. In this new parameterization, we can express the entropy by Legendre transform
S(ξ̂) =

〈
ξ̂, β

〉
− Φ(β) of Massieu characteristic function Φ(β) = − log ψΩ(β) = − log

∫
Ω∗

e−〈β,ξ〉dξ

(minus logarithm of partition function ψΩ(β) =
∫

Ω∗
e−〈β,ξ〉dξ), with the Souriay (Planck) geometric

temperature given by β = Θ−1(ξ̂) where the function Θ(.) is the inverse of the function given by
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ξ̂ = Θ(β) =
∂Φ(β)

∂β
(the temperature is also given by β =

∂S(ξ̂)
∂ξ̂

given by Lagendre transform;

where we recover classical definition of entropy by Clausius dS =
dQ
T

when β =
1
T

and ξ̂ = Q

heat). We can also defined Fisher metric of information geometry by I(β) =
∂2 log ψΩ(β)

∂β2 or I(β) =

−E

[
∂2 log pβ(ξ)

∂β2

]
= E

[
∂ log pβ(ξ)

∂β

∂ log pβ(ξ)

∂β

T]
= E

[(
ξ − ξ̂

)(
ξ − ξ̂

)T
]
. From this development, we

can observe that classical multivariate Gaussian Density pξ̂(ξ) = 1
Z e−〈β,ξ〉 is a maximum entropy

Gibbs density of 1st order with respect to the tensorial variable ξ̂ = E[ξ] =

[
m

R + mmT

]
. Classically

Gaussian density is considered as a maximum entropy Gibbs density of 2nd order where p(m,R)(z) =
1

(2π)n/2det(R)1/2 e−
1
2 (z−m)T R−1(z−m) is solution to −

∫
p(m,R)(z) logp(m,R)(z)dz under the constraints

that first two moments are known m =
∫

z.p(m,R)(z)dz and R =
∫
(z−m)(z−m)T .p(m,R)(z)dz.

The question is then, could we define a Gaussian density of higher order?
We have seen that Souriau has replaced classical maximum entropy approach by replacing

Lagrange parameters by only one geometric “temperature vector” as element of Lie algebra.
In parallel, Ingarden has introduced second and higher order temperature of the Gibbs state that
could be extended to Souriau’s theory of thermodynamics. The question is then, how to extend
the Souriau model to define an higher order Lie groups thermodynamics. For this purpose, we
propose to consider multi-symplectic geometry and more particularly poly-symplectic geometry [115].
The variational problems generalization with several variables was developed by Volterra in two
papers [116,117] where two different generalizations of the Hamilton system of equations are
introduced. In parallel, De Donder [53] has also studied this approach in a geometrical framework
based on Elie Cartan’s idea of invariant structure with no dependence to local coordinates and based
on affine multisymplectic manifold. We can also formalize the multisymplectic geometry with an
extension of the Poincaré-Cartan invariant integrals. Frédéric Hélein has observed the fact that
different theories could cohabitate was considered jointly by Lepage [54], Dedecker [118,119] and
Kijowski [92–94]. The Lepage–Dedecker theory was developed by Hélein [120], and the modern
formulation using the multisymplectic (n + 1)-form as the fundamental structure of the theory starts
with Kijowski’s papers. The geometrical multisymplectic approach uses the generalized Legendre
correspondence introduced by Lepage and Dedecker and Hamiltonian formalism developed by
Hélein [55]. We can also make references to poly-symplectic formulation of physical systems by
Carathéodory [121] and Weyl [122].

Among all multi-symplectic models, the more natural multi-valued one that preserve the notion
of (poly-)moment map has been initiated by Günther based on n-symplectic model. Günther has
shown that the symplectic structure on the phase space remains true, if we replace the symplectic form
by a vector valued form, that is called poly-symplectic. The Günther formalism is based on the notion
of a poly-symplectic form, which is a vector valued generalization of symplectic forms. Hamiltonian
formalism for multiple integral variational problems and field theory is presented in a global geometric
setting. Günther has introduced in this poly-symplectic formalism: Hamiltonian equations, canonical
transformations, Lagrange systems, symmetries, Field theoretic moment mappings, a classification of
G-homogeneous field theoretic systems on a generalization of coadjoint orbits.

Günther has defined six conditions for a multidimensional Hamiltonian formalism:

• C0: For each field system, an evolution space can be constructed, which describes the states of the
system completely.

• C1: The evolution space carries a geometric structure, which assigns to each function (Hamiltonian
density) its Hamiltonian equations.
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• C2: The geometry of the evolution space gives ‘canonical transformations’, i.e., the general
symmetry group of a system independently of the choice of Hamiltonian density.

• C3: The formalism is covariant, i.e., no special coordinates or coordinate systems on the parameter
space are used to construct the Hamiltonian equations.

• C4: There is an equivalence between regular Lagrange systems and certain (regular)
Hamiltonian systems.

• C5: For one dimensional parameter space the theory reduces to the ordinary Hamiltonian
formalism on symplectic manifolds in classical mechanics.

Günther has observed that Hamiltonian field theory by Marsden is not covariant, because C3
is not verified and causes problems in relativistic theories, and by the multisymplectic approach by
Tulczyjew, based on the general theory by Dedecker, does not satisfy C1 and C2.

The key idea of Günther for this generalized Hamiltonian formalism is to replace the symplectic
form in classical mechanics by a vector valued, so called poly-symplectic form with the property that:

• the evolution space of a classical field will appear as the dual of a jet bundle, which carries
naturally a polysymplectic structure.

• canonical transformations are bundle isomorphisms leaving this poly-symplectic form invariant.

The polysymplectic approach recovers all classical results also generalize the Noether theorem
based on canonical transformations and preserve the existence of momentum mappings. Christian
Günther’s work was inspired by the symplectic formulation of classical mechanics by Souriau and
by the work of Edelen [52,123] and Rund [124] on a local Hamiltonian formulation of field theory.
Edelen’s work is a coordinate version of the local polysymplectic approach of Günther.

Initiated by Gunther [48,49] based on n-symplectic model [50,51], it has been shown that the
symplectic structure on the phase space remains true, if we replace the symplectic form by a vector
valued form, that is called polysymplectic.

In Günther’s poly-symplectic model, we set: P : space of field values , φ : U → P and we
consider the bundle of linear maps from Rn into the tangent spaces of P:

InP ∼= Hom(Rn, TP) ∼= TP⊗ Rn∗ (118)

The base of Rn is interpreted as n-tangent υectors of M, there is the isomophy:

InP ∼= ⊕n
1 TP (119)

The natural projection is given by:

τn
P : InP → P (120)

The cojet space Hom(Rn, TP) carries a natural Rn-valued:

• one-form: Θ0 (canonical one-form):

Θ0 =
n

∑
i=1

pidq⊗ ∂

∂xi
(121)

• two-form: Ω0 = −dΘ0 closed & non-degenerate (canonical polysymplectic form)

Ω0 =
n

∑
i=1

dq ∧ dpi ⊗
∂

∂xi
(122)
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Definition 2.

• A closed nondegenerate Rn-valued two-form Ω on a manifold M is called a polysymplectic form. The pair
(M, Ω) is a polysymplectic manifold.

• A polysymplectic form Ω on a manifold M is called a standard form iff M has an atlas of canonical charts
for Ω, i.e., charts in which locally Ω is written as the canonical evaluation form on P x Lin (P,Rn). (M, Ω)
is called a standard polysymplectic manifold.

The classification of symplectic homogeneous spaces by coadjoint orbits by Souriau belong to the
major achievements in Hamiltonian mechanics. Günther has extended these results to polysymplectic
manifolds. Let Ad : G × LG → LG be the adjoint action. We denote by Adn induced action on
Lin(Rn, LG):

Adn
g : G× Lin(Rn, LG)→ Lin(Rn, LG)

Adn
g( f )(x) = Adg( f (x)) , f ∈ Lin(Rn, LG), x ∈ Rn, g ∈ G

(123)

The dual of Adn is denoted by Ad(n)∗g :

Ad# : G× LG∗ ⊗ Rn → LG∗ ⊗ Rn (124)

Corollary 1. [Günther Corollary] Let the moment map J(n) : M → Lin(LG, Rn) = LG∗ ⊗ Rn, there is a
smooth map θ(n):

θ(n) : G → LG∗ ⊗ Rn , θ(n)(g) = J(n)
(
Φg(x)

)
− Ad(n)∗g

(
J(n)(x)

)
(125)

with the following properties: θ(n) is a 1-cocyle for all g, h ∈ G then:

θ(n)(gh) = Ad(n)∗h

(
θ(n)(g)

)
+ θ(n)(h) (126)

Theorem 4. [Günther Theorem (Vector-Valued Extension of Souriau Theorem)] The map:

a : G× LG∗ ⊗ Rn → G× LG∗ ⊗ Rn

a(g, η) = Ad(n)∗g η + θ(n)(g)
(127)

is an affine operation of G on LG∗ ⊗ Rn, and commutes for all g ∈ G.

This extension by Günther defines an action of G over g∗ × (n). . .× g∗ called n-coadjoint action:

Definition 3.

Ad∗(n)g : G×
(
g∗ × (n). . .× g∗

)
→ g∗ × (n). . .× g∗

g× μ1 × . . .× μn �→ Ad∗(n)g (μ1, . . . , μn) =
(

Ad∗gμ1, . . . , Ad∗gμn

) (128)

Let μ = (μ1, . . . , μn) a poly-momentum, element of g∗ × (n). . .× g∗, we can define a n-coadjoint orbit Oμ =

O(μ1,...,μn) at the point μ, for which the canonical projection Prk : g∗ × (n). . .× g∗ → g∗ , (ν1, . . . , νn) �→ νk
induces a smooth map between the n-coadjoint orbit Oμ and the coadjoint orbit Oμk : πk : Oμ = O(μ1,...,μn) →
Oμk that is a surjective submersion with

n∩
k=1

KerTπk = {0}.
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Proposition 1. Extending Souriau’s approach, equivariance of poly-moment is a unique action a(.,.) of
the Lie group G on g∗ × (n). . .× g∗ for which the polymoment map J(n) =

(
J1, . . . , Jn) : M → g∗ × (n). . .× g∗

verifies x ∈ M and g ∈ G:

J(n)
(
Φg(x)

)
= a(g, J(n)(x)) = Ad∗(n)g

(
J(n)(x)

)
+ θ(n)(g) (129)

with:
Ad∗(n)g

(
J(n)(x)

)
=
(

Ad∗g J1, . . . , Ad∗g Jn
)

(130)

and:
θ(n)(g) =

(
θ1(g), . . . , θn(g)

)
(131)

θ(n)(g) is a poly-symplectic one-cocycle.

Definition 4. We define a poly-symplectic two-cocycle Θ̃
(n)

=
(

Θ̃
1
, . . . , Θ̃

n)
with

Θ̃
k
(X, Y) =

〈
Θk(X), Y

〉
= Jk

[X,Y] −
{

Jk
X , Jk

Y

}
(132)

where:
Θk(X) = Teθk(X(e)) (133)

Finally, we propose to define the poly-symplectic Souriau-Fisher metric.

Definition 5.

gβ([β, Z1], Z2) = diag
[
Θ̃βk (Z1, Z2)

]
k

, ∀Z1 ∈ g, ∀Z2 ∈ Im
(
adβ(.)

)
, β = (β1, . . . , βn) (134)

with

Θ̃βk (Z1, Z2) = −∂Φ(β1, . . . , βn)

∂βk
= Θ̃

k
(Z1, Z2) +

〈
Qk, adZ1(Z2)

〉
(135)

is a poly-symplectic extension of Souriau-Fisher Metric.

Compared to the Souriau model, heat is replaced by previous polysymplectic model:

Q = (Q1, . . . , Qn) ∈ g∗ × (n). . .× g∗ with Qk =
∂Φ(β1, . . . , βn)

∂βk
=

∫
M

U⊗k(ξ).e
−

n
∑

k=1
〈βk ,U⊗k(ξ)〉

dω

∫
M

e
−

n
∑

k=1
〈βk ,U⊗k(ξ)〉

dω

(136)

Proposition 2. The characteristic function:

Φ(β1, . . . , βn) = − log
∫
M

e
−

n
∑

k=1
〈βk ,U⊗k(ξ)〉

dω (137)

exists.

Proof. We extrapolate Souriau’s results, who proved in [1,2] that
∫
M

U⊗k(ξ).e−〈βk ,U⊗k(ξ)〉dω is locally

normally convergent using multi-linear norm ‖U⊗k‖ = Sup
U
〈E, U〉k and where U⊗k = U ⊗

(k)
U . . .⊗U

is defined as a tensorial product [43]. �
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Entropy is defined by the Legendre transform of the Souriau-Massieu characteristic function:

Definition 6. The poly-entropy is given by Legendre transform of the poly-symplectic characteristic function:

S(Q1, . . . , Qn) =
n

∑
k=1
〈βk, Qk〉 −Φ(β1, . . . , βn) where βk =

∂S(Q1, . . . , Qn)

∂Qk
(138)

The Gibbs density could be then extended with respect to high order temperatures.

Definition 7. Gibbs density is defined as the maximum entropy density of poly-Entropy:

pGibbs(ξ) = e
Φ(β1,...,βn)−

n
∑

k=1
〈βk ,U⊗k(ξ)〉

=
e
−

n
∑

k=1
〈βk ,U⊗k(ξ)〉

∫
M

e
−

n
∑

k=1
〈βk ,U⊗k(ξ)〉

dω

(139)

9. Conclusions and Possible Extensions

We have introduced contextures of geometric theory of information and heat based on Souriau’s
approach, but information geometry is at the interface between different geometries. First, information
geometry is at the intersection between “Riemannian geometry”, “complex geometry” and “symplectic
geometry”. Based on seminal work of Cartan on homogeneous domains and other works [125–128],
information geometry is jointly founded by (see Figure 9):

• Geometry of Jean-Marie Souriau: Study of homogeneous symplectic manifolds geometry with
the action of dynamical groups. Introduction of the Lie groups thermodynamics in statistical
mechanics [43,44].

• Geometry of Jean-Louis Koszul: Study of homogeneous bounded domains geometry, symmetric
homogeneous spaces and sharp convex cones. Introduction of an invariant 2-form [9–11,97,98,
129].

• Geometry of Erich Kähler: Study of differential manifolds geometry equipped with a unitary
structure satisfying a condition of integrability. The homogeneous Kähler case studied by André
Lichnerowicz [130].

Figure 9. Three Sources of Geometric Structures for Information and Heat.
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We have extended Souriau’s Lie groups thermodynamics by a vector-valued model based
on poly-symplectic geometry, introducing higher order Souriau-Gibbs density with higher order
Souriau temperatures, and elements of Lie algebra. This model preserves all contextures of Souriau’s
thermodynamics with covariance of Gibbs density with respect to dynamical groups in physics.
Poly-moment maps are compliant with the Noether theorem generalization in vector-valued cases.

The Jean-Marie Souriau model and equations were extensively studied in the Koszul Lecture
given in China in 1986 “Introduction to Symplectic Geometry”, in Chinese (see Figure 10). This book
should be translated in English in 2019. Chuan Yu Ma has written on the Koszul book: “This beautiful,
modern book should not be absent from any institutional library. . . . . During the past eighteen years there has
been considerable growth in the research on symplectic geometry. Recent research in this field has been extensive
and varied. This work has coincided with developments in the field of analytic mechanics. Many new ideas
have also been derived with the help of a great variety of notions from modern algebra, differential geometry,
Lie groups, functional analysis, differentiable manifolds and representation theory. [Koszul’s book] emphasizes
the differential-geometric and topological properties of symplectic manifolds. It gives a modern treatment of the
subject that is useful for beginners as well as for experts.”

  

Figure 10. Koszul Lecture on “Introduction of Symplectic Geometry” where the Souriau model of
non-equivariance is developed.

We have seen that in geometrical mechanics, the Galileo group related to classical mechanics:⎡⎢⎣
→
x ′
t′
1

⎤⎥⎦ =

⎡⎢⎣ R
→
u

→
w

0 1 e
0 0 1

⎤⎥⎦
⎡⎢⎣

→
x
t
1

⎤⎥⎦ , R ∈ SO(3),
→
u ,

→
w ∈ R3, e ∈ R (140)

and its central extension given by the Bargman group:⎡⎢⎢⎢⎢⎣
R

→
u 0

→
w

0 1 0 e

−→u t
R −‖→u‖2

2 1 f
0 0 0 1

⎤⎥⎥⎥⎥⎦ (141)

and Poincaré group in relativity. We then observe, that affine group or its sub-groups are at cornerstone
of different disciplines such as:

• In robotics, the special Euclidean group SE(3) which is the homogeneous Galileo group (robotics
also consider the group of similitudes SIM(3)):[

Z′
1

]
=

[
Ω t
0 1

][
Z
1

]
,

{
Ω ∈ SO(3)
t ∈ R3 (142)

40



Entropy 2018, 20, 840

• In information geometry, the general affine group is involved A(n,R) for exponential family:[
Z′
1

]
=

[
A t
0 1

][
Z
1

]
,

{
A ∈ GL(n)
t ∈ Rn (143)

with particular case of Gaussian density, associated by Cholesky factorisation of covariance matrix,
where covariance matrix square root is triangular matrix with positive elements on its diagonal (it
is a group): [

Y
1

]
=

[
R1/2 m

0 1

][
X
1

]
,

⎧⎪⎨⎪⎩
R1/2 ∈ T+

n(
R1/2 : Cholesky de R)

m ∈ Rn

(144)

• In the study of homogeneous bounded domains, as the simplest one given by Poincaré upper-half
plane: [

X′
1

]
=

[
a b
0 1

][
X
1

]
, a ∈ R∗+ et b ∈ R (145)

As illustrated in Figure 11, Jean-Marie Souriau developed these models at Carthage in Tunisia and
at Marseilles in France during 50’s and 60’s. Jean-Marie Souriau was motivated by group invariance,
not only in physics but also in neuroscience. Souriau intuition was highly premonitory, because this
neuroscience domain has been developed few decades after by Alain Berthoz at College de France
(http://public.weconext.eu/academie-sciences/2017-10-03_5a7/video_id_002/index.html) and by
Daniel Bennequin (https://www.youtube.com/watch?v=a-ctwxBpJxE) to study the brain sense of
movment. We can read in Souriau’s text the very interesting remarks on geometry and neuroscience:

“Je me suis dit, à force de rencontrer des groupes, il y a quelque chose de caché là-dessous. La catégorie
métaphysique des groupes qui plane dans l’empyrée des mathématiques, que nous découvrons et que
nous adorons, elle doit se rattacher à quelque chose de plus proche de nous. En écoutant de nombreux
exposés faits par des neurophysiologistes, j’ai fini par apprendre le rôle primitif du déplacement des
objets. Nous savons manipuler ces déplacements mentalement avec une très grande virtuosité. Ce
qui nous permet de nous manipuler nous-même, de marcher, de courir, de sauter, de nous rattraper
quand nous tombons, etc. Ce n’est pas vrai seulement pour nous, c’est vrai aussi pour les singes
; ils sont beaucoup plus adroits que nous pour anticiper les résultats d’un déplacement. Pour
certaines opérations élémentaires de «lecture», ils vont même dix fois plus vite que nous. Beaucoup de
neurophysiologistes pensent qu’il y a une structure spéciale génétiquement inscrite dans le cerveau, le
câblage d’un groupe . . . Lorsque il y un tremblement de terre, nous assistons à la mort de l’Espace.
. . . Nous vivons avec nos habitudes que nous pensons universelles. . . . La neuroscience s’occupe
rarement de la géométrie . . . Pour les singes qui vivent dans les arbres, certaines propriétés du groupe
d’Euclide sont mieux câblées dans leurs cerveaux.” (In Engish: “I said to myself, because of meeting
groups everywhere, there is something hidden there. The metaphysical category of groups that hovers
in the empyrean of mathematics, which we discover and adore, must be connected with something
closer to us. Listening to many presentations by neurophysiologists, I ended up learning the primitive
role of moving objects. We know how to manipulate these movements mentally with great virtuosity.
That allows us to manipulate ourselves, to walk, run, jump, catch up when we fall, and so on. This is
not true only for us, it is true also for monkeys; they are much more adroit than we are to anticipate
the results of a trip. For some basic “reading” operations, they are even ten times faster than us. Many
neurophysiologists think that there is a special structure genetically inscribed in the brain, the wiring
of a group . . . When there is an earthquake, we witness the death of Space. . . . We live with our habits
that we think universal. . . . Neuroscience rarely deals with geometry . . . For monkeys living in trees,
some of Euclid’s group properties are better wired in their brains.)
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Figure 11. Mediterranean sources of Souriau Book on Structure of Dynamical systems at Carthage and
Massilia where souriau wrote this text and theory.

Our new research directions will concern extension of “Le Hasard et la Courbure (Randomness
and Curvature)” (title of Yann Ollivier HDR), that we have synthetized in Souriau-Fisher metric to
“Le Hasard et la Torsion (Randomness and Torsion)” based on Elie Cartan works founded on Cosserats
brothers model of elasticity [125–127,131].

“Il est une Cosmologie avec laquelle la Thermodynamique générale présente une analogie
non-méconnaissable; cette Cosmologie, c’est la Physique péripatéticienne . . . Parmi les attributs
de la substance, la Physique péripatéticienne confère une égale importance à la catégorie de la quantité
et à la catégorie de la qualité; or, par ses symboles numériques, la Thermodynamique générale représente
également les diverses grandeurs des quantités et les diverses intensités des qualités. Le mouvement
local n’est, pour Aristote, qu’une des formes du mouvement général, tandis que les Cosmologies
cartésienne, atomistique et newtonienne concordent en ceci que le seul mouvement possible est le
changement de lieu dans l’espace. Et voici que la Thermodynamique générale traite, en ses formules,
d’une foule de modifications telles que les variations de températures, les changements d’état électrique
ou d’aimantation, sans chercher le moins du monde à réduire ces variations au mouvement local”
—Pierre Duhem—La théorie Physique: son objet, sa structure [132].

“Pour la théorie de la connaissance mais aussi pour les sciences est fondamentale la notion de
perspective. Or, les expériences faites dans la géométrie algébriques, dans la théorie des nombres,
et dans l’algèbre abstraite m’induisent à tenter une formulation mathématique de cette notion pour
surmonter ainsi au moyen de raisonnements d’origine géométrique la géométrie. Il me semble en
effet, que la tendance vers l’abstraction observée dans les mathématiques d’aujourd’hui, loin d’être
l’ennemi de l’intuition ait le sens profond de quitter l’intuition pour la faire renaitre dans une alliance
entre «esprit de géométrie» et «esprit de finesse», alliance rendue possible par les réserves énormes des
mathématiques pures dont Pascal et Goethe ne pouvaient pas encore se douter” —Erich Kähler—Sur
la théorie des corps purement algébriques, 1952.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Günther’s Polysymplectic Model

We recall in this appendix, a synthesis of Christian Günther Poly-symplectic model with his initial
notation [48].
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We set:
Q : space of field values

ϕ : U → Q
(A1)

The bundle of linear maps from Rn into the tangent spaces of Q.

InQ ∼= Hom(Rn, TQ) ∼= TQ⊗ Rn∗ (A2)

If a base of Rn is chosen, can also be interpreted as n-tangent υectors of Q, there is the isomophy:

InQ ∼= ⊕n
1 TQ (A3)

The natural projection is given by:

τn
Q : InQ → Q (A4)

In analogy to the canonical forms on the cotangent bundle, the cojet space Hom(Rn, TQ) carries a
natural Rn-valued:

• one-form: Θ0 (canonical one-form)
• two-form: Ω0 = −dΘ0 closed & non-degenerate (canonical polysymplectic form)

In the natural bundle coordinates the canonical forms on Hom(Rn, TQ) have the local
representation:

Θ0 =
n

∑
i=1

pidq⊗ ∂

∂xi
(A5)

Ω0 =
n

∑
i=1

dq ∧ dpi ⊗
∂

∂xi
(A6)

Following diffeomorphism leaves invariant one and two forms:

f : Q → Q and In∗ f : Hom(TQ, Rn)→ Hom(TQ, Rn)

(In∗ f )∗Θ0 = Θ0 and (In∗ f )∗Ω0 = Ω0
(A7)

Definition A1. A closed nondegenerate Rn-valued two-form Ω on a manifold M is called a polysymplectic
form. The pair (M, Ω) is a polysymplectic manifold.

The classification of linear polysymplectic forms is not trivial, because two polysymplectic forms
are not necessarily locally equivariant.

Definition A2. A polysymplectic form Ω on a manifold M is called a standard form iff M has an atlas of
canonical charts for Ω, i.e., charts in which locally Ω is written as the canonical evaluation form on Q x Lin
(Q,Rn). (M, Ω) is called a standard polysymplectic manifold.

The polysymplectic structure provides the procedure which assigns to a function on M, the
Hamiltonian, its associated Hamiltonian equations. Let (M, Ω) a polysymplectic manifold:

{
Ωb : TM → Hom(TM, Rn)

wm �→ Ωb
(vm)(wm) = Ω(vm, wm)

and

⎧⎪⎪⎨⎪⎪⎩
Ω# : Hom(TM, Rn)→ T∗M
Xm �→ Ω#(Xm) = tr

(
Ωb ◦ Xm

)
with tr

(
Ωb ◦ Xm

)
.vm = −tr

(
Ωb(vm) ◦ Xm

) (A8)
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An affine sub bundle of Hom(Rn, TQ) is defined by:

Ω#−1(dH) =
{

Xm ∈ Hom(Rn, TQ)/Ω#(Xm) = dH(m)
}

(A9)

Definition A3. Ω#−1(dH) is called the system of Hamiltonian partial differential equations associated with
the Hamiltonian function H. A smooth map ψ : U → Mis a solution of Ω#−1(dH) iff:

Tuψ ∈ Ω#−1(dH(ψ(u)))∀u ∈ U (A10)

Theorem A1. Let (M, Ω) be a standard polysymplectic manifold, (p,q) canonical coordinates for Ω on M, and
H a Hamiltonian function. A smooth map ψ : U → M is a solution of Ω#−1(dH) iff in canonical coordinates:

trdp(u) = −∂H
∂q

(ψ(u)) and Dq(u) =
∂H
∂p

(ψ(u)) (A11)

If a base e1, . . . , en of Rn is chosen and p(u) = (p1(u), . . . , pn(u)) with respect to this base, then the
equations take the form:

n

∑
i=1

∂pi
∂xi

(u) = −∂H
∂q

(ψ(u)) and
∂q
∂xi

(u) =
∂H
∂pi

(ψ(u)) (A12)

Proof.

X(ψ(u)) = Dψ(u) ∈ Lin
(

Rn, Tψ(u)M
)

X(m) = Xq(m) + Xp(m) , Xq(m) ∈ Lin(Rn, Q) , Xp(m) ∈ Lin(Rn, Lin(Q, Rn))

v(m) =
.
q(m) +

.
p(m) ,

.
q(m) ∈ Q ,

.
p(m) ∈ Lin(Q, Rn)

(A13)

Ω#(X).v = trΩb ◦ X(v) = −trΩb(v) ◦ X

Ωb(
.
q,

.
p).(

.
q,

.
p) =

.
p(

.
q) , (

.
q,

.
p) ∈ TM

Ω#(X).(
.
q,

.
p) = −tr

(
Xp(

.
q)− .

p ◦ Xq
)
= dH(

.
q,

.
p)

dH = ∂H
∂q dq +

n
∑

i=1

∂H
∂pi

dpi ⇒ −trXp = ∂H
∂q , ∂H

∂p = Xq

(A14)

�

Example A1. Consider a scalar field where n = 4, Q = R and M = R × R4 with scalar coordinates
(q, p1, . . . , p4)

Let H(q, p1, . . . , p4) =
1
2

4
∑

i=1
p2

i + mq2 an Hamiltonian on M, the canonical polysymplectic form Ω

is given by:

Ω =
4

∑
i=1

dq ∧ dpi ⊗
∂

∂xi
(A15)

The Hamiltonian equations for a scalar field:

ψ(x1, . . . , x4) = (q(x1, . . . , x4), p1(x1, . . . , x4), . . . , p4(x1, . . . , x4)) (A16)
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are:
4

∑
i=1

∂pi
∂xi

= mq and
∂q
∂xi

= pi (A17)

Definition A4. Let (M, Ω) be a polysymplectic manifold, Ω#(X) = dH, H is called an momentum tensor iff

trdH = dH (A18)

Proposition A1.

X¬Θ0 = 0, d(trLXΘ0) = 0 and trLXΘ0 = −d(H − tr(X¬Θ0)) (A19)

Proof.
Θ0 = ∑

i
pidq⊗ ∂

∂xi
and X = Xq

∂
∂q + ∑

i
Xpi

∂
∂pi

⇒ X¬Θ0 = ∑
i

piXq ⊗ ∂
∂xi

(A20)

trLXΘ0 = tr(dX¬Θ0 + X¬dΘ0)

tr(dX¬Θ0 + X¬dΘ0) = −dH + trdX¬Θ0
(A21)

�

The classification of symplectic homogeneous spaces by coadjoint orbits by Souriau belong to the
major achievements in Hamiltonian mechanics. C. Günther has extend these results to polysymplectic
manifolds. Let Ad : G × LG → LG be the adjoint action. We denote by Adn induced action on
Lin(Rn, LG):

Adn : G× Lin(Rn, LG)→ Lin(Rn, LG)

Adn
g( f )(x) = Adg( f (x)) , f ∈ Lin(Rn, LG), x ∈ Rn, g ∈ G

(A22)

The dual of Adn is denoted by Ad#:

Ad# : G× LG∗ ⊗ Rn → LG∗ ⊗ Rn , Ad#
g(α) = α ◦ Adn

g (A23)

λ
(

Adgu
)
= Λ∗

g(λ(u))⇒ Λ∗
gλn( f ) = λn

(
Adn

g f
)

for all g ∈ G, f ∈ Lin(Rn, LG) (A24)

Proposition A2 [Günther Proposition]. Let Λ : G × M → M be a strongly polysymplectic group action
with momentum map μ : M → Lin(LG, Rn) = LG∗ ⊗ Rn. Assume M is connected. Then the map:

M → LG∗ ⊗ Rn

m �→ μ
(
Λgm

)
− Ad#

g(μ(m))
(A25)

is a constant on M for all g ∈ G.

Corollary A1. There is a smooth map χ:

χ : G → LG∗ ⊗ Rn , χ(g) = μ
(
Λgm

)
− Ad#

g(μ(m)) (A26)

with the following properties:
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• is a 1-cocyle for all g, h ∈ G then

χ(gh) = Ad#
h(χ(g)) + χ(h) (A27)

• bilinear map ϕ on LG: ϕ := Lχ : LG → LG∗ ⊗ Rn , ϕ : LG× LG → Rn is a 2 cocycle

ϕ(u, [v, w]) + ϕ(v, [w, u]) + ϕ(w, [u, v]) = 0 , ∀u, v, w ∈ LG (A28)

Proof.
χ(hg) = μ ◦Λhg(m)− Ad#

hgμ(m)

χ(hg) = μ ◦Λg(Λhm)− Ad#
g ◦ μ(Λhm) + Ad#

g ◦ μ(Λhm)− Ad#
g Ad#

h ◦ μ(m)

χ(hg) = χ(g) + Ad#
g(χ(h))

(A29)

�

Theorem A2. [Günther Theorem (Vector-valued extension of Souriau Theorem)] Let Λ : G× M →
M be a polysymplectic action with momentum map μ : M → LG∗ ⊗ Rn. Then the map:

Ξ : G× LG∗ ⊗ Rn → G× LG∗ ⊗ Rn

Ξ(g, η) = Ad#
gη + χ(g)

(A30)

is an affine operation of G on LG∗ ⊗ Rn, and commutes for all g ∈ G and μ is G-equivariant.

Proof.
Ξ(gh, η) = χ(gh) + Ad#

ghη + χ(h) + χ(g) ◦ Adh + Ad#
h ◦ Ad#

gη

Ξ(gh, η) = χ(h) + Ad#
h

(
χ(g) + Ad∗gh

)
= Ξ(h, Ξ(g, η))

(A31)

Ξ is an action.

Ξg ◦ μ(m) = χ(g) + Ad#
g ◦ μ(m)

Ξg ◦ μ(m) = μ
(
Λgm

)
− Ad#

g(μ(m)) + Ad#
gμ(m) = μ ◦Λg(m)

(A32)

�

Christian Günther in a never found 1987 paper wrote that “The mathematical framework developed in
this paper is used in a separate publication to provide a rigorous foundation for field theory”. For a more recent
study of Günther’s poly-symplectic model, we make reference to [133].

Appendix B. Fisher Metric for Multivariate Gaussian Density

We will in the following illustrate information geometry for multivariate Gaussian density:

pξ̂(ξ) =
1

(2π)n/2det(R)1/2 e−
1
2 (z−m)T R−1(z−m) (A33)

If we develop:

1
2 (z−m)T R−1(z−m) = 1

2
[
zT R−1z−mT R−1z− zT R−1m + mT R−1m

]
= 1

2 zT R−1z−mT R−1z + 1
2 mT R−1m

(A34)
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We can write the density as a Gibbs density:

pξ̂(ξ) =
1

(2π)n/2det(R)1/2e
1
2 mT R−1m

e
−[−mT R−1z+

1
2

zT R−1z]
=

1
Z

e−〈ξ,β〉

ξ =

[
z

zzT

]
and β =

[
−R−1m

1
2 R−1

]
=

[
a
H

]
with 〈ξ, β〉 = aTz + zT Hz = Tr

[
zaT + HTzzT] (A35)

We can then rewrite density with canonical variables:

pξ̂(ξ) =
1∫

Ω∗
e−〈ξ,β〉.dξ

e−〈ξ,β〉 =
1
Z

e−〈ξ,β〉 with log(Z) = n log(2π) +
1
2

log det(R) + 1
2 mT R−1m

ξ =

[
z

zzT

]
, ξ̂ =

[
E[z]

E
[
zzT]

]
=

[
m

R + mmT

]
, β =

[
a
H

]
=

[
−R−1m

1
2 R−1

]
with 〈ξ, β〉 = Tr

[
zaT + HTzzT]

R = E
[
(z−m)(z−m)T

]
= E

[
zzT −mzT − zmT + mmT] = E

[
zzT]−mmT

(A36)

The first potential function (free energy/logarithm of characteristic function) is given by:

ψΩ(β) =
∫

Ω∗
e−〈ξ,β〉.dξ and Φ(β) = − log ψΩ(β) = 1

2
[
−Tr

[
H−1aaT]+ log

[
(2)ndetH

]
− n log(2π)

]
(A37)

We verify the relation between the first potential function and moment:

∂Φ(β)

∂β
=

∂[− log ψΩ(β)]

∂β
=

∫
Ω∗

ξ
e−〈ξ,β〉∫

Ω∗
e−〈ξ,β〉.dξ

.dξ =
∫

Ω∗
ξ.pξ̂(ξ).dξ = ξ̂

∂Φ(β)

∂β
=

⎡⎢⎣ ∂Φ(β)

∂a
∂Φ(β)

∂H

⎤⎥⎦ =

[
m

R + mmT

]
= ξ̂

(A38)

The second potential function (Shannon entropy) is given as a Legendre transform of the first one:

S(ξ̂) =
〈
ξ̂, β

〉
−Φ(β) with

∂Φ(β)

∂β
= ξ̂ and

∂S(ξ̂)
∂ξ̂

= β

S
(
ξ̂
)
= −

∫
Ω∗

e−〈ξ,β〉∫
Ω∗

e−〈ξ,β〉.dξ
log

e−〈ξ,β〉∫
Ω∗

e−〈ξ,β〉.dξ
.dξ = −

∫
Ω∗

pξ̂(ξ) logpξ̂(ξ).dξ
(A39)

S(ξ̂) = −
∫

Ω∗
pξ̂(ξ) log pξ̂(ξ).dξ = 1

2
[
log (2)ndet

[
H−1]+ n log(2π.e)

]
= 1

2 [log det[R] + n log(2π.e)] (A40)

This remark was made by Jean-Souriau in his book as soon as 1969. He has observed, as illustrated

in following Figure that if we take vector with tensor components ξ =

(
z

z⊗ z

)
, components of ξ̂

will provide moments of the first and second order of the density of probability pξ̂(ξ). He used this

change of variable z′ = H1/2z + H−1/2a, to compute the logarithm of the characteristic function Φ(β)

(see Figure A1 extracted from Souriau Book):
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Figure A1. Introduction of potential function for multivariate Gaussian law in Souriau book.

Appendix C. Geometric Definition of Legendre Transform by Chasles as Reciprocal Polar with
Respect to a Paraboloid

The Legendre transform plays a central role related to duality and convexity. Adrien-Marie
Legendre [102] has introduced the Legendre transform to solve a minimal surface problem given
by Monge (Monge requested him to consolidate its proof), with a link to Poncelet duality [103].
Chasles and Darboux interpreted the Legendre transform as reciprocal polar with respect to a
paraboloid (re-used by Hadamard and Fréchet in calculus of variations). Before Legendre, Alexis
Clairaut introduced a Clairaut Equation that has been developed by Maurice Fréchet to characterize
«distinguished densities» (densities with parameters that have covariance matrix reaching the
Fréchet-Cramer-Rao Bound) [9].

Legendre Transform transformes one fonction defined by its value in one point in a fonction
defined by its tangent, as illustrated in Figure A2.

 
(a)                      (b) (c) 

Figure A2. Legendre Transform and duality. (a) Classical Geometry; (b) Plücker Geometry;
(c) Legendre Transform.
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Darboux gave in his book one interpretation of Chasles: “Ce qui revient suivant une remarque de M.
Chasles, à substituer à la surface sa polaire réciproque par rapport à un paraboloïde». In the lecture «Leçons sur
le calcul des variations”, Hadamard, followed by Vessiot, used the reciprocal polar of figurative, and
figuratrice. This has also been developed by Belgodère as presented by Cartan on «Extrémale d’une
surface» [134,135]. Polarity on the plane is a transformation taking points to lines and dually lines to
points. A polarity preserves incidence and has degree 2. For a point P (that we name the pole) a conic
polarity transforms it to its image which is a line p (that we name the polar) as follows: from P we
draw the two tangents to the conic, which touch it in the points Q, R. If we now connect points Q, R
with a line p we obtain the polar line of the pole P. A Self-conjugate point Q is incident with its polar q;
that is Q lies on q.

Geometric interpretation of the Legendre transform by reciprocal polar with respect to a
paraboloid is given by the following simple development. First, let’s consider the surface:

z = f (x, y) with p =
∂z
∂x

and q =
∂z
∂y

(A41)

We consider the equation of the paraboloid:

x2 + y2 = 2z (A42)

Reciprocal polar with respect to paraboloid has coordinates: X, Y, Z
The polar plan with respect to paraboloid of this reciprocal polar Xx + Yy− z− Z = 0 should be

equal to tangent plan of the surface at point (x0, y0, z0):

z− z0 = p0(x− x0) + q0(y− y0)⇒ p0x + q0y− z− (p0x0 + q0y0 − z0) = 0 (A43)

This equality provides:

X = p0 , Y = q0 , Z = p0x0 + q0y0 − z0 (A44)

This is the Legendre transform. So in classical thermodynamics, the Legendre transform S(Q) =

〈β, Q〉 −Φ(β) is linked with polar reciprocal with respect to the paraboloid:

Q2 = 2S(Q) (A45)

We can develop other properties of Legengre transform. Let’s z = f (x, y) with p = ∂z
∂x and q = ∂z

∂y
and X = p , Y = q , Z = px + qy− z the Legendre transform.

We compute the first derivative of Z:

dZ = PdX + QdY with P =
∂Z
∂X

and Q =
∂Z
∂Y

(A46)

Z = px + qy− z ⇒ dZ = pdx + qdy− dz + xdp + ydq ⇒
dz = pdx + qdy

X = p, Y = q

dZ = xdX + ydQ ⇒ P = x, Q = y (A47)

We compute the 2nd derivative of Z:

R =
∂2Z
∂X2 =

∂P
∂X

=
∂x
∂X

, T =
∂2Z

∂X∂Y
=

∂P
∂Y

=
∂Q
∂X

=
∂x
∂Y

=
∂y
∂X

, S =
∂2Z
∂Y2 =

∂Q
∂Y

=
∂y
∂Y

(A48)
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⎧⎨⎩ dX = rdx + sdy

dY = sdx + tdy

r =
∂2z
∂x2 , t =

∂2z
∂y2 , s =

∂2z
∂x∂y

⇒

⎧⎪⎨⎪⎩
dx =

t
rt− s2 dX − s

rt− s2 dY

dy =
−s

rt− s2 dX +
r

rt− s2 dY

⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
R =

∂x
∂X

=
t

rt− s2

S =
∂x
∂Y

=
−s

rt− s2

T =
∂y
∂Y

=
r

rt− s2

⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
r =

T
RT − S2

s =
−S

RT − S2

t =
R

RT − S2

(A49)

The link with with contact transformations is then the following. Considering new variables
X,Y,Z and P,Q the derivatives of Z with respect to X and Y, problem of finding in which case this five
quantities could be express of x,y,z,p and q est the same problem where we look for five functions
X,Y,Z,P and Q of five independant variables x,y,z,p and q satisfying the differential equation:

dZ− PdX −QdY = ρ(dz− pdx− qdy) (A50)

where ρ is a function of x,y,z,p and q.

Proof. ⎧⎪⎨⎪⎩
p =

∂z
∂x

q =
∂z
∂y

⇒ dz− pdx− qdy = 0 ⇒ dZ = PdX + QdY ⇒

⎧⎪⎨⎪⎩
P =

∂Z
∂X

Q =
∂Z
∂Y

(A51)

and the reciprocal:

ρ =
∂Z
∂z

− P
∂X
∂z

−Q
∂Y
∂z

(A52)

Links with Ampere transformation is given then by the following developments. Let’s consider
Ampere transformation:

dz− pdx− qdy = d(z− qy)− pdx + ydq

Set

{
Z = z− qy, X = x, Y = q
P = p, Q = −y

⇒ dZ− pdX −QdY = dz− pdx− qdy
(A53)

Then ρ = 1, and we have a contact transformation, also valid when Legendre transform is no
longer valide (when rt− s2 = 0, p and q are not independant)

The link between Legendre transformation and Ampere transformation is then deduced. Legendre
transform is obtained by same equality:

dz− pdx− qdy = d(z− qy)− pdx + ydq

Set

{
Z = z− qy, X = x, Y = q
P = p, Q = −y

⇒ dZ− pdX −QdY = dz− pdx− qdy
(A54)

We can set:
X = p, Y = q, Z = z− px− qy
P = x, Q = y

(A55)

�

For complementary studies on the Legendre transform, we can make reference to [99,101].
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Appendix D. Centrifuge Thermodynamics by Roger Balian Based on Classical Approach

Balian has studied the case of gas enclosed in a vessel rotating with an angular velocity ω in

thermal equilibrium, and proved that the density of the gas is proportional to e
mω2r2

2kT , with classical
approach. The density is increased at the periphery due to centrifugal effects.

Balian has computed the Boltzmann-Gibbs distribution without knowing Souriau equations
(exercice 7b of [25]). Balian started by considering the constants of motion that are the energy and the
component Jz of the total angular momentum J = ∑

i
(ri × pi). Balian observed that he must add to the

Lagrangian parameter, given by (Planck) temperature β for energy, an additional one associated with
Jz. He identifies this additional multiplier with −βω by evaluating the mean velocity at each point.
He then introduced the same results also by changing the frame of reference, the Lagrangian and
the Hamiltonian in the rotating frame and by writing down the canonical equilibrium in that frame.
He uses the resulting distribution to find, through integration, over the momenta, an expression for
the particles density as the function of the distance from the cylinder axis. The fluid carried along
by the walls of the rotating vessel acquires a non-vanishing average angular momentum 〈Jz〉 around
the axis of rotation, that is a constant of motion. In order to be able to assign to it a definite value,
Balian proposed to associate with it a Lagrangian multiplier λ, in exactly the same way as we classicaly
associate the multiplier β with the energy in canonical equilibrium. The average 〈Jz〉 will be a function
of λ. The Gibbs density for rotating gas is given by Balian as:

D =
1
Z

e−βH−λJz =
1
Z

exp

{
∑

i

[
βp2

i
2m

+ λ
(
xi pyi − yi pxi

)]}
(A56)

With the energy and the average angular momentum given by:

U = −∂ ln Z
∂β

=
1

kT
and 〈Jz〉 = −∂ ln Z

∂λ
(A57)

The Lagrangian parameter λ has a mechanical nature. To identify this parameter, Balian compared
microscopic and macroscopy descriptions of fluid mechanics. He described the single-particle reduced
density by:

f (r, p) ∝ exp
{
− βp2

2m
− λ

(
xpy − ypx

)}
= exp

{
− β

2m

(
p +

m
β
[λ× r]

)2
+

mλ2

2β

(
x2 + y2)} and 〈Jz〉 = −∂ ln Z

∂λ
(A58)

Whence Balian finds the velocity distribution at a point r to be proportional to:

exp

{
− m

2kT

(
v +

1
β
[λ× r]

)2
}

and 〈Jz〉 = −∂ ln Z
∂λ

(A59)

The mean velocity of the fluid at the point r is equal to:

〈v〉 = − 1
β
[λ× r] and 〈Jz〉 = −∂ ln Z

∂λ
(A60)

and can be identified with the velocity [ω × r] in an uniform rotation with angular velocity ω. By
comparison, Balian put ω = − λ

β . Balian made the remarks that “The angular momentum is imparted to
the gas when the molecules collide with the rotating walls, which changes the Maxwell distribution at every point,
shifting its origin. The walls play the role of an angular momentum reservoir. Their motion is characterized by a
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certain angular velocity, and the angular velocities ω of the fluid and of the walls become equal at equilibrium,
exactly like the equalization of the temperature through energy exchanges”.

Considering the invariance principle, Balian observed that the Lagrangian can be taken as
remaining under any change of reference frame, because the stationary action principle is independent
of the frame. Comparing the Hamiltonian in two frames for a single particle with position r′ and the
velocity v′ in the rotating frame:

L1 =
1
2

mv2 =
1
2

m(v′+ [ω × r′])2 (A61)

Balian then considered the conjugate momentum of r′:

p′ = ∂L1

∂v′ = m(v′+ [ω × r′]) (A62)

and the Hamiltonian in the rotating frame:

H1′ = (p′.v′)− L1 =
p′2
2m

− (ω.[r′ × p′]) (A63)

The Gibbs density in the rotating frame is then given by:

D =
1
Z

e−βH′ (A64)

where H’ is the sum over N particles:

H′ =
N

∑
i=1

(
pi′2
2mi

− (ω.[ri′ × pi′])
)

(A65)

At this step, Balian observed that to switch back to the original coordinates, p′ and [r′ × p′] can be
derived from p and [r× p], respectively, by means of the same change of coordinates that leads from r
to r′. Balian then got:

H′ = H − (ω.J) (A66)

and identified density D with the earlier expression, provided λ = −βω.
Balian observed that as in the case of equilibrium of a gas in a gravitational field, the result could

have obtained by a macroscopic calculation from Thermodynamics and Fluid Mechanics, using locally
the perfect gas law and the balance between the forces, here centrifugal forces and pressure gradients.
Balian recalled that we should fix the value of these Lagrangian multipliers by requiring that on the
average the angular and linear momenta vanish. For symmetry reasons these quantities vanish at the
same time as the corresponding multipliers, and we have:

〈Jz〉 = −∂ ln Z
∂λ

= NmωR2

⎡⎢⎢⎣ 1

1− exp
(
−mω2R2

2kT

) − 2kT
mω2R2

⎤⎥⎥⎦ ∼
ω→0

1
2

ωNmR2 (A67)

and the energy:

U = −∂ ln Z
∂β

=
3
2

NkT +
1
2

ω〈Jz〉 (A68)

Balian observed that in the change of frame, the linear momentum mv′ is no longer equal to
the momentum p′ because the velocity v = p/m in the fixed frame is transformed in v′ = p′/m−
[ω × r′] in the rotating frame. Balian made the analogy with a particle of charge q in a magnetic field
characterized by a velocity (p− qA)/m.
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Balian wrote “Whereas positions and velocities are physical quantities, momenta have a certain amount
of arbitrariness which is connected with the fact that we can change the Lagrangian by adding to it a time
derivative without changing the equations of motion.” Balian gave the example in a Gallilean transformation
with velocity u with the procedure where the Lagragian is assumed to be invariant pi′ = pi whereas
vi′ = vi − u, the Hamiltonian becomes H′ = H − 〈u, P〉, where P is the total momentum. Balian
observed that another procedure, that better exhibits the Gallielan invariance consists in adding to the
Lagrangian the ineffective term:

−∑
i

mi

(
(vi′.u) +

1
2

u2
)
=

d
dt

(
∑

i
mi

(
1
2

u2t− (r.u)
))

(A69)

When we change coordinates (ri, vi) to (ri′, vi′), the momentum which is conjugate to ri′ is
pi′′ = pi −miu = miv′i and not pi′ = pi and the Hamiltonian H′′ = H − (u.P) + 1

2 Mu2 has in terms of
the p′′i exactly the same form as H in terms of the pi.

Balian presented these argues to be regarded as a microscopic justification of such a calculation
and wrote “As in the case of equilibrium of a gas in a gravitational field, we could have obtained the result by a
macroscopic calculation from thermodynamics and fluid mechanics, using locally the perfect gas laws and the
balance between the forces, here centrifugal forces and pressure gradients”.

Balian observed that usually no conditions are unquired about the Lagrangian multipliers for
dynamical constants of motion sur as the angular or the linear momentum. Balian proposes to fix
the values of these multipliers by requiring that on the average the angular and linear momenta
vanish. Balian observed that for symmetry reasons, these quantities vanish at the same time as the
corresponding multipliers, and we have:

〈Jz〉 = −∂ ln Z
∂λ

= NmωR2
[

1
1− e−mω2R2/2KT

− 2kT
mω2R2

]
∼

ω→0
1
2 ωNmR2

(A70)

The angular momentum 〈Jz〉 is to lowest order in ω the same as for the rotation of a cylinder with
uniform density, which has a moment of inertia equal to 1

2 NmR2. The energy contains a contribution
due to the motion, and is given by:

〈Jz〉 = −∂ ln Z
∂β

=
3
2

NkT +
1
2

ω〈Jz〉 (A71)

The entropy also depends on the rotational velocity, but only to order ω4. It decreases with ω, as
the rotation produces changes in density which increase the spatial order.

Appendix E. Proof of Convergence for Poly-Symplectic Model Based on Souriau Proof

Jean-Marie Souriau has given the following definition:

Definition A5. [Souriau Generalized Temperature Definition] Let G a Lie group acting on a symplectic
Manifold (M, ω) by an Hamiltonian action Γ : G× M → M, g is Lie algebra and J : M → g∗ a moment map
of the action, a generalized temperature is an element β ∈ g such that the integral:∫

M

e−〈β,J〉dλω (A72)

is normally convergent.
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Normal convergence means that there exist an open neighborhood Vfrom β to g, and a function
f : M → 
+integrable on Mrelative to Liouville measure λω, such that:∫

M

e−〈β,J〉dλω (A73)

Lebesgue theorem on dominated convergence gives the proof.
Jean-Marie Souriau then introduced the following proposition:

Proposition A3. [Souriau Differentiability Proposition] Consider Ω, a non-empty set of generalized
temperatures, Ω is a convex open set of Lie algebra g that doesn’t depend on the choice of the choice of
the moment map J associated with the Hamiltonian action. The partition function I : Ω ↔ 
 given by
I0(β) =

∫
M

e−〈β,J〉dλω is infinitely differentiable on Ω. Its nth differentiation is given by the tensorial integral:

In(β) =
∫
M

J⊗ne−〈β,J〉dλω (A74)

and is normally convergent.

Let

• β0, β1 ∈ Ω
• V0, V1 neighborhoods respectively of β0, β1

• f0, f1 positive integrable function on Msuch that:{
e−〈β0′,J〉 ≤ f0, if β0′ ∈ V0

e−〈β1′,J〉 ≤ f1, if β1′ ∈ V1
(A75)

∀λ ∈ [0, 1], Vλ = {(1− λ)β0′+ λβ1′/β0′ ∈ V0, β1′ ∈ V1} is a neighborhood of βλ given by βλ =

(1− λ)β0 + λβ1, and the function fλ = (1− λ) f0 + λ f1 is integrable on M and e−〈βλ ′,J〉 ≤ fλ, ∀βλ′ ∈
Vλ. Then βλ ∈ Ω proving that Ω is convex.

n-th differential of e−〈β,J〉 is given:

Dn
(

e−〈β,J〉
)
= (−1)n J⊗ne−〈β,J〉 (A76)

Selecting a norm on Lie algebra g, and considering Sup Norm on space L(g,
)of n-multilinear
forms on g. We can deduce on g∗ and on [g∗]⊗n a norm of multi-linear map:

‖J⊗n‖ = Sup
β

|〈β, J〉| (A77)

Let:
β ∈ Ω, ε > 0 and e−〈β,J〉 ≤ f , if β′ ∈ g and ‖β′ − β‖ ≤ ε (A78)

Let β′′ ∈ g and ‖β′′ − β‖ ≤ ε
2 , for all X ∈ g and ‖X‖ = 1, then:

‖〈X, J〉‖ ≤ 2n
ε

e
ε

2n ‖〈X,J〉‖ ⇒ ‖〈X, J〉‖ne−〈β′′,J〉 ≤
(

2n
ε

)n
e−〈β′′±

ε
2 X,J〉 (A79)
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The last relation is established by considering:

∀α ∈ 
, ∀n ∈ ℵ,
∣∣∣∣2α

n

∣∣∣∣n ≤ ∣∣∣2sh
( α

n

)∣∣∣n =
∣∣∣e α

n − e−
α
n

∣∣∣n =

∣∣∣∣∣ n

∑
p=0

(−1)pCp
ne−[−1+2 p

n ]α

∣∣∣∣∣ (A80)

If we select X ∈ g and α = 〈X, J〉:∣∣∣∣ 2
n

∣∣∣∣ne−〈β,J〉|〈X, J〉|n ≤
∣∣∣∣∣ n

∑
p=0

(−1)pCp
ne−〈β−[2 p

n−1]X〉
∣∣∣∣∣ (A81)

e−〈β,J〉 ≤ f ⇒ e−〈β,J〉|〈X, J〉|n ≤ nn f , if ‖β− β0‖ ≤
ε

2
, ‖V‖ ≤ ε

2
(A82)

For X unitary, and by setting X = J ε
2

‖〈X, J〉‖ne−〈β,J〉 ≤
(

2n
ε

)n
f (A83)

In ‖〈X, J〉‖ne−〈β′′,J〉 ≤
( 2n

ε

)ne−〈β′′±
ε
2 X,J〉, the sign ± is selected such that 〈±εX, J〉 ≥ 0.

As ‖β− β′′ ± ε
2 X‖ ≤ ε, the final result is deduced:

‖Dn
(

e−〈β′′,J〉
)
‖ ≤

[
2n
ε

]n
f ⇒ ‖J⊗ne−〈β′′,J〉‖ ≤

[
2n
ε

]n
f (A84)

It proves that the n-differential of e−〈β,J〉 is normally integrable on M with respect to Liouville
measure, the partition function is infinitely differentiable on Ω.

By considering the taylor expansion of exponential function:

eα − 1− α =
α2

2
eλα, λ ∈ [0, 1] (A85)

From which, we deduce that:

e−〈β−X,J〉 J⊗n − e−〈β,J〉 J⊗n − e−〈β,J〉 J⊗n+1(X) =
1
2

e〈β−λX,J〉 J⊗n+2(X)(X) (A86)

where T(X) means the contraction of a covariant tensor with vector X. Then:

‖J⊗n+2e−〈β,J〉‖ ≤
[

2(n + 2)
ε

]n+2
f ⇒ 1

2
e〈β−λX,J〉 J⊗n+2(X)(X) ≤ 1

2

[
2(n + 2)

ε

]n+2
f ‖X‖2 (A87)

By integration on V and using
∫
V

f .Vol = a < +∞, we obtain:

‖In(β− X)− In(β)− In+1(β)‖ ≤ a
2

[
2(n + 2)

ε

]n+2
‖X‖2 if β ∈> B

(
β0,

ε

4

)
and ‖X‖ ≤ ε

4
(A88)

It proves that the function In : β ∈ g→ 
 is continuous and derivable in a neighborhood of β0,
and its derivative is given In+1. Then I0 is an infinite derivable function with In as nth derivable.

These demonstrations can be extended for poly-symplectic model of Souriau Lie groups
Thermodynamic by considering the polysymplectic partition function:

Ipoly
0 =

∫
M

e
−

n
∑

k=1
〈βk ,J⊗k(ξ)〉

dλω (A89)
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and its n-th derivatices given by:

Ipoly
n,i =

∂n I0

∂βn
i
=

∫
M

J⊗nke
−

n
∑

k=1
〈βk ,J⊗k〉

dλω (A90)

where J⊗k = J ⊗
(k)
J . . .⊗ J is defined as a tensorial product.

Appendix F. Relativistic Souriau Thermodynamics of Continua

We will summarize in this appendix the Souriau relativistic thermodynamics of fluids. This
Souriau model about relativistic thermodynamics of continua will give a solution to Duhem’s general
thermodynanics: Nous avons fait de la dynamique un cas particulier de la thermodynamique, une Science qui
embrasse dans des principes communs tous les changements d’état des corps, aussi bien les changements de lieu
que les changements de qualités physiques “. (In English: We made dynamics a special case of thermodynamics,
and science that embraces common principles in all changes of state bodies, changes of places as well as changes
in physical qualities”.)

The objective is not to make a survey of all literature on this topic. We give this model to compare
Souriau’s approaches related to invariance and symmetries in thermodynamics. I think that this is
the first time that Souriau relativistic model is presented in English. My objective is to underline
that Souriau has replaced the geometric temperature of “Lie groups thermodynamics”, where the
temperature is an element of Lie algebra, by a temperature that is defined as a killing vector. I also
underline, that in both models, Souriau was motivated to search solutions where the “Legendre
transform” structure is preserved between Massieu thermodynamics potentials.

Kinematics is defined by the vector field Θ and the measurement of number of molecules: using
two state functions, Souriau has built a (thermo-)dynamic according to the two principles: conservation
of the Noetherian quantities attached to the Poincaré group, positive Entropy production. Such a
dissipative fluid has movements in which the entropy production is nil; Θ is then a killing vector;
the equations of motion fully integrate; Souriau found in particular the results of kinetic theory at
equilibrium. This method can be used to study perfect fluids; Souriau recover the classic Lichnerowicz
results; moreover, we can build, even in the non-isentropic case, an space-time 2-Form Ω which
is Integral invariant (in the sense of Cartan-Poincaré) of the temperature vector Θ; this provides a
generalization of Helmholtz’s theorem. In weakly dissipative movements, naturally occur the two
viscosity coefficients, as well as the thermal conductivity coefficient; they are accompanied by two
other coefficients that may be measurable on actual fluids.

Jean-Marie Sourias has first considered the kinematics of a relativistic simple fluid, considering
the following space-time vectors field by temperature vector X �→ Θ with:

Θ = Uε

{
U : Unitary quadri-vector

ε = 1
T > 0 (Boltzman k = 1)

(A91)

Θ generates a group with a parameter of diffeomorphisms of space-time E4; the group’s orbits
(the current lines of the fluid) form an abstract space V3 (has a manifold structure of dimension 3,
characterized by the fact that the following projection is a restricted submersion:

X ∈ E4 �→ x ∈ V3 (A92)

Let the metric tensor g Lie derivative (for the vector field X ∈ E4 �→ Θ ):⎧⎨⎩ γ =
1
2

δLg

δX = Θ
(A93)
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The Killing formula gives the symmetric tensor:

γλμ =
1
2
[
∂λΘμ + ∂μΘλ

]
(A94)

Let consider positive density n of quotient manifold V3:

x ∈ V3 �→ n (A95)

Integral of n on V3 gives the number of molecules. Its reciprocal image by projection is defined by:

X ∈ E4 �→ N (A96)

Particules conservation is given by:

∂λNλ = 0 with N = Un (A97)

Direction of U or Θ defines a foliation of space-time E4. Leaves are current lines solutions of:

dX
dsc

= U (A98)

We illustrate in Figure A3, the Souriau’s midel of Thermodynamics of continua.

Figure A3. Souriau’s model of Thermodynamics of Continua.

Thermodynamic 1st principle in this model is given by:

∂λTλμ = 0 with Tλμ = Tμλ (A99)

The energy-momentum density tensor Tλμ has been built by Souriau using the kinematic
quantities, such as to verify the second principle.

Lemma A1 [Souriau Lemma]. Let (n, ε) �→ ζ a differentiable function, then there is a symmetric tensor
�
T

λμ

such that:

∂λ

[
Nλζ

]
= −

�
T

λμ

γλμ with Θ = Uε et N = Un (A100)

�
T

λμ

=
n2

ε

∂ζ

∂n

[
gλμ −UλUμ

]
− n

∂ζ

∂ε
UλUμ (A101)
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We assume that there exist ϕ = ϕ(n, Θ, γ) such this function is convex and energy-momentum
density are given by:

Tλμ =
∂ϕ

∂γλμ
(A102)

If we assume that
{

γλμ = 0
}
⇒

{
Tλμ =

�
T

λμ
}

then the following vector has a positive

divergence:
Sλ = Nλζ + TλμΘμ (A103)

The Thermodynamic 2nd principle is given by:

∂λSλ ≥ 0 (A104)

Proof is given by:

∂λSλ =

[
Tλμ −

�
T

λμ
]

γλμ∂λSλ =

{
ϕ(γ)− ϕ(0)−

�
T

λμ

γλμ

}
+
{

ϕ(0)− ϕ(γ)− Tλμ
(
−γλμ

)}
≥ 0 (A105)

∂λSλ ≥ 0 Souriau proposed to define the dynamics of the fluid by means of the two functions ζ

and ϕ which give at each point the energy tensor Tλμ and the entropy flux Sλ by following formulas.
These functions being determined, we have 5 equations to determine the 5 variables

(
n, Θλ

)
and,

moreover, the Sλ; ∂λSλ ≥ 0 will express the 2nd principle.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Tλμ =
∂ϕ(n, Θ, γ)

∂γλμ

Sλ = Nλζ(n, ε) + TλμΘμ with Θ = Uε and N = Un

γλμ = 1
2
[
∂λΘμ + ∂μΘλ

]
∂λTλμ = 0 and ∂λNλ = 0

(A106)

Souriau has then considered the case of non-dissipative movements. If ϕ is strictly convex for
variable γ then:

∂λSλ = 0 ⇔ γλμ = 0 ⇔ Θ infinitesimal isometry (A017)

For non-dissipative solution of movement equations, Θ is a Killing vector, associated to an element
of Lie algebra of Poincaré group:

Θ =

[
Λ Γ
0 0

]
(A108)

with:
Θλ = ΛλμXμ + Γλ

(
Λλμ + Λμλ = 0

)
Θ = Uε

}
⇒ Uλ, ε (A109)

The equations of motion integrate through an arbitrary constant:

ζ +
∂ζ

∂n
n = Cste ⇒ n (A110)

Thermodynamics constants are the following:

• specific molecular volume:

u =
1
n

(A111)
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• specific mass:

ρ = −n
∂ζ

∂ε
= − 1

u
∂ζ

∂ε
(A112)

• pressure:

ρ = −n2

ε

∂ζ

∂n
= −1

ε

∂ζ

∂u
(A113)

In case of a nill entropy production:

∂λSλ = 0 ⇒
{

γ = 0
Θ = Λ.X + Γ

⇒

⎧⎪⎪⎨⎪⎪⎩
Uλ∂λε = 0 ⇒ ∃ε, x ∈ V3 �→ ε

∂λUλ = 0 ⇒
[
∂λNλ = 0 ⇒ Uλ∂λn = 0

]
⇒ ∃n, x ∈ V3 �→ n

εUλ∂λUμ + ∂με = 0
⇒ variable n and ε are constant on current lines

(A114)

We can also deduce the following equations:{
Θ = Λ.X + Γ

∂λNλ = 0
⇒ Uλ∂λ

[
n2

ε

∂ζ

∂n

]
= 0 and Uλ∂λ

[
n

∂ζ

∂n

]
= 0 (A115)

From tensor computation, Souriau has computed the energy-momentum density currents:

∂λNλ = 0 ⇒ ∂λ

[
Nλζ

]
= Nλ∂λζ = Uλn

[
∂ζ

∂n
∂λn +

∂ζ

∂ε
∂λε

]
γλμ =

1
2
[
∂λΘμ + ∂μΘλ

]
=

ε

2
[
∂λUμ + ∂μUλ

]
+

1
2
[
Uλ∂με + Uμ∂λε

]
⇒ gλμγλμ = ε∂λUλ + Uλ∂λε

(A116)

with the following developments:

U unitary ⇒ UλUλ = gλμUλUμ = 1 ⇒ Uλ∂μUλ = 0 ⇒ UλUμγλμ = Uλ∂λε

∂λNλ = 0 ⇒ Uλ∂λn + ∂λUλn = 0

⇒ Tλμ =
n2

ε

∂ζ

∂n
[
gλμ −UλUμ

]
− n

∂ζ

∂ε
UλUμ

(A117)

For this non-dissipative movement, we can prove:⎧⎪⎪⎨⎪⎪⎩
Uλ∂λ

[
n2

ε

∂ζ

∂n

]
= 0

Uλ∂λ

[
n

∂ζ

∂n

]
= 0

and

⎧⎪⎪⎨⎪⎪⎩
Uλ∂λε = 0

∂λUλ = 0

εUλ∂λUμ + ∂με = 0

(A118)

Tλμ =
n2

ε

∂ζ

∂n
[
gλμ −UλUμ

]
− n

∂ζ

∂ε
UλUμ

⇒ ∂λTλμ = gλμ

{
∂λ

[
n2

ε

∂ζ

∂n

]
+

∂λε

ε

[
n2

ε

∂ζ

∂n
+ n

∂ζ

∂ε

]}
=

n
ε

gλμ∂λ

{
n

∂ζ

∂n
+ ζ

} (A119)

⇒
{

∂λTλμ = 0

∂λNλ = 0
integrable on

{
n constant on current lines

n ∂ζ
∂n + ζ constant in space-time

(A120)
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Souriau has proved that the entropy vector preserves the Legendre transform:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Sλ = Nλζ + TλμΘμ

Tλμ = n2

ε

∂ζ

∂n
[
gλμ −UλUμ

]
− n

∂ζ

∂ε
UλUμ

Θ = Uε and N = Un

⇒ Sλ = Nλ

[
ζ − ε

∂ζ

∂ε

]

Sλ = Nλs ⇒ s = ζ − ε
∂ζ

∂ε

(A121)

with the entropy per molecule:
s = ζ + ρuε (A122)

ζ is the Massieu potential (Massieu charcateristic function):

ζ = − F
T

= −uρ− Ts
T

with F : Helmoltz Free Energy

ζ +
∂ζ

∂n
n = −G

T
= − F + pu

T
with G : Free Gibbs-Duhem Energy

(A123)

The link with Souriau 2-form and Poincaré-Cartan integral invariant is given by the following
developments. Consider the 1-form given by enthalpy:

Hλ = hUλ with h =
p + ρ

n
= u[p + ρ] (A124)

Its 2-form given by exterior differentiation

Ωλμ = ∂λHμ − ∂μ Hλ (A125)

Movement’s equation are replaced by:{
∂λNλ = 0

∂λTλμ = 0
⇒

{
∂λNλ = 0

ΩλμΘμ + ∂λs = 0
(A126)

Ω is a Poincaré-Cartan integral invariant of the field:

ΩλμΘμ + ∂λs = 0 ⇒
{

δs = 0
δLΩ = 0

for δX = Θ

if ∂λs = 0 (isentropic movment) ⇒ Θ ∈ ker(Ω)

(A127)

Souriau has then considered weakly dissipative movements. If we cannot know ϕ = ϕ(n, Θ, γ),
it can be approximated by 2nd order development in γ variable:

ϕ = ϕ0 +
�
T

λμ

γλμ +
1
2

Cλμ,vqγλμγvq ⇒ Tλμ = Tλμ =
∂ϕ

∂γλμ
=

�
T

λμ

+ Cλμ,vqγvq (A128)

Entropy production is given by:

∂λSλ =

[
Tλμ −

�
T

λμ
]

γλμ = Cλμ,vqγλμγvq

Onsager Reciprocity ⇒ Cλμ,vq = Cvq,λμ

(A129)

55 coefficients of Transport coefficients Cλμ,vq are reduced to 5 coefficients (by fluid symetries and
Onsager reciprocity): A, B, C, E & F.
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Souriau then obtained relativistic (Fourier) equation of heat. Let us consider the constraints tensor:

τjk = −Tjk = δjk

[
−p + λvis∂lvl − B

∂ε

∂t

]
+ μvis

[
∂jvk + ∂kvj

]
(

j, k = 1, 2, 3 and vj speed, zero at the point considered
) (A130)

With the equations given by:

• Heat Flux:

Tj0 =

⎧⎪⎨⎪⎩F

⎡⎢⎣
→

gradε− ε
∂
→
v

∂t

⎤⎥⎦
⎫⎪⎬⎪⎭

j

(A131)

• Specific Mass-Energy:

T00 = ρ + C
∂ε

∂t
− Bεdiv

(→
v
)

(A132)

with:

λvis =

[
A− 2E

3

]
ε, μvis = Eε, ε =

1
T

and Thermo− conductivity :
F

T2

Variables A, B, C, E & F are functions of ε and n, and convexity of ϕ induces:

A > 0, C > 0, E > 0, F > 0, |B| <
√

AC (A133)
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Abstract: Since the 1970s, contact geometry has been recognized as an appropriate framework
for the geometric formulation of thermodynamic systems, and in particular their state properties.
More recently it has been shown how the symplectization of contact manifolds provides a new
vantage point; enabling, among other things, to switch easily between the energy and entropy
representations of a thermodynamic system. In the present paper, this is continued towards the
global geometric definition of a degenerate Riemannian metric on the homogeneous Lagrangian
submanifold describing the state properties, which is overarching the locally-defined metrics of
Weinhold and Ruppeiner. Next, a geometric formulation is given of non-equilibrium thermodynamic
processes, in terms of Hamiltonian dynamics defined by Hamiltonian functions that are homogeneous
of degree one in the co-extensive variables and zero on the homogeneous Lagrangian submanifold.
The correspondence between objects in contact geometry and their homogeneous counterparts
in symplectic geometry, is extended to the definition of port-thermodynamic systems and the
formulation of interconnection ports. The resulting geometric framework is illustrated on a number
of simple examples, already indicating its potential for analysis and control.

Keywords: thermodynamics; symplectization; metrics; non-equilibrium processes; interconnection

1. Introduction

This paper is concerned with the geometric formulation of thermodynamic systems. While the
geometric formulation of mechanical systems has given rise to an extensive theory, commonly called
geometric mechanics, the geometric formulation of thermodynamics has remained more elusive
and restricted.

Starting from Gibbs’ fundamental relation, contact geometry has been recognized since the 1970s
as an appropriate framework for the geometric formulation of thermodynamics; see in particular [1–8].
More recently, the interest in contact-geometric descriptions has been growing, from different points of
view and with different motivations; see, e.g., [9–20].

Despite this increasing interest, the current geometric theory of thermodynamics still poses
major challenges. First, most of the work is on the geometric formulation of the equations of state,
through the use of Legendre submanifolds [1–3,5,8], while less attention has been paid to the geometric
definition and analysis of non-equilibrium dynamics. Secondly, thermodynamic system models
commonly appear both in energy and in entropy representation, while in principle, this corresponds
to contactomorphic, but different contact manifolds. This is already demonstrated by rewriting Gibbs’
equation in energy representation dE = TdS− PdV, with intensive variables T,−P, into the entropy
representation dS = 1

T dE + P
T dV, with intensive variables 1

T , P
T . Thirdly, for reasons of analysis

and control of composite thermodynamic systems, a geometric description of the interconnection of
thermodynamic systems is desirable, but currently largely lacking.
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A new viewpoint on the geometric formulation of thermodynamic systems was provided
in [21], by exploiting the well-known result in geometry that odd-dimensional contact manifolds
can be naturally symplectized to even-dimensional symplectic manifolds with an additional
structure of homogeneity; see [22,23] for textbook expositions. While the classical applications of
symplectization are largely confined to time-dependent Hamiltonian mechanics [23] and partial
differential equations [22], the paper [21] argued convincingly that symplectization provides an
insightful angle to the geometric modeling of thermodynamic systems as well. In particular, it yields
a clear way to bring together energy and entropy representations, by viewing the choice of different
intensive variables as the selection of different homogeneous coordinates.

In the present paper, we aim at expanding this symplectization point of view towards
thermodynamics, amplifying our initial work [24,25]. In particular, we show how the symplectization
point of view not only unifies the energy and entropy representation, but is also very helpful in
describing the dynamics of thermodynamic processes, inspired by the notion of the contact control
system developed in [11–13,17–19]; see also [16]. Furthermore, it yields a direct and global definition
of a metric on the submanifold describing the state properties, encompassing the locally-defined
metrics of Weinhold [26] and Ruppeiner [27], and providing a new angle to the equivalence results
obtained in [3,5,7,10]. Finally, it is shown how symplectization naturally leads to a definition
of interconnection ports; thus extending the compositional geometric port-Hamiltonian theory of
interconnected multi-physics systems (see, e.g., [28–30]) to the thermodynamic realm. All this will
be illustrated by a number of simple, but instructive, examples, primarily serving to elucidate the
developed framework and its potential.

2. Thermodynamic Phase Space and Geometric Formulation of the Equations of State

The starting point for the geometric formulation of thermodynamic systems throughout this
paper is an (n + 1)-dimensional manifold Qe, with n ≥ 1, whose coordinates comprise the extensive
variables, such as volume and mole numbers of chemical species, as well as entropy and energy [31].
Emphasis in this paper will be on simple thermodynamic systems, with a single entropy and energy
variable. Furthermore, for notational simplicity, and without much loss of generality, we will assume:

Qe = Q×R×R, (1)

with S ∈ R the entropy variable, E ∈ R the energy variable, and Q the (n− 1)-dimensional manifold
of remaining extensive variables (such as volume and mole numbers).

In composite (i.e., compartmental) systems, we may need to consider multiple entropies or
energies; namely for each of the components. In this case, R×R is replaced by RmS ×RmE , with mS
denoting the number of entropies and mE the number of energies; see Example 3 for such a situation.
This also naturally arises in the interconnection of thermodynamic systems, as will be discussed in
Section 5.

Coordinates for Qe throughout will be denoted by qe = (q, S, E), with q coordinates for
Q (the manifold of remaining extensive variables). Furthermore, we denote by T ∗Qe the (2n +

2)-dimensional cotangent bundle T∗Qe without its zero-section. Given local coordinates (q, S, E) for
Qe, the corresponding natural cotangent bundle coordinates for T∗Qe and T ∗Qe are denoted by:

(qe, pe) = (q, S, E, p, pS, pE), (2)

where the co-tangent vector pe := (p, pS, pE) will be called the vector of co-extensive variables.
Following [21], the thermodynamic phase space P(T∗Qe) is defined as the projectivization of

T ∗Qe, i.e., as the fiber bundle over Qe with fiber at any point qe ∈ Qe given by the projective space
P(T∗qe Qe). (Recall that elements of P(T∗qe Qe) are identified with rays in T∗qe Qe, i.e., non-zero multiples of
a non-zero cotangent vector.) The corresponding projection will be denoted by π : T ∗Qe → P(T∗Qe).
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It is well known [22,23] that P(T∗Qe) is a contact manifold of dimension 2n + 1. Indeed,
recall [22,23] that a contact manifold is an (2n+ 1)-dimensional manifold N equipped with a maximally
non-integrable field of hyperplanes ξ. This means that ξ = ker θ ⊂ TN for a, possibly only
locally-defined, one-form θ on N satisfying θ ∧ (dθ)n �= 0. By Darboux’s theorem [22,23], there
exist local coordinates (called Darboux coordinates) q0, q1, · · · , qn, γ1, · · · , γn for N such that, locally:

θ = dq0 −
n

∑
i=1

γidqi (3)

Then, in order to show that P(T∗M) for any (n+ 1)-dimensional manifold M is a contact manifold,
consider the Liouville one-form α on the cotangent bundle T∗M, expressed in natural cotangent bundle
coordinates for T∗M as α = ∑n

i=0 pidqi. Consider a neighborhood where p0 �= 0, and define the
homogeneous coordinates:

γi = − pi
p0

, i = 1, · · · , n, (4)

which, together with q0, q1, · · · , qn, serve as local coordinates for P(T∗M). This results in the
locally-defined contact form θ as in (3) (with α = p0θ). The same holds on any neighborhood where
one of the other coordinates p1, · · · , pn is different from zero, in which case division by the non-zero
pi results in other homogeneous coordinates. This shows that P(T∗M) is indeed a contact manifold.
Furthermore [22,23], P(T∗M) is the canonical contact manifold in the sense that every contact manifold
N is locally contactomorphic to P(T∗M) for some manifold M.

Taking M = Qe, it follows that coordinates for the thermodynamical phase space P(T∗Qe)

are obtained by replacing the coordinates pe = (p, pS, pE) for the fibers T∗qe Qe by homogeneous
coordinates for the projective space P(T∗qe Qe). In particular, assuming pE �= 0, we obtain the
homogeneous coordinates:

γ =:
p

−pE
, γS :=

pS
−pE

, (5)

defining the intensive variables of the energy representation. Alternatively, assuming pS �= 0, we obtain
the homogeneous coordinates (see [21] for a discussion of pS, or pE, as a gauge variable):

γ̃ =:
p

−pS
, γ̃E :=

pE
−pS

, (6)

defining the intensive variables of the entropy representation.

Example 1. Consider a mono-phase, single constituent, gas in a closed compartment, with volume q = V,
entropy S, and internal energy E, satisfying Gibbs’ relation dE = TdS− PdV. In the energy representation,
the intensive variable γ is given by the pressure −P, and γS is the temperature T. In the entropy representation,
the intensive variable γ̃ is equal to P

T , while γ̃E equals the reciprocal temperature 1
T .

In order to provide the geometric formulation of the equations of state on the thermodynamic
phase space P(T∗Qe), we need the following definitions. First, recall that a submanifold L of T ∗Qe is
called a Lagrangian submanifold [22,23] if the symplectic form ω := dα is zero restricted to L and the
dimension of L is equal to the dimension of Qe (the maximal dimension of a submanifold restricted to
which ω can be zero).

Definition 1. A homogeneous Lagrangian submanifold L ⊂ T ∗Qe is a Lagrangian submanifold with the
additional property that:

(qe, pe) ∈ L ⇒ (qe, λpe) ∈ L, for every 0 �= λ ∈ R (7)
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In the Appendix A, cf. Proposition A2, homogeneous Lagrangian submanifolds are geometrically
characterized as submanifolds L ⊂ T ∗Qe of dimension equal to dim Qe, on which not only the
symplectic form ω = dα, but also the Liouville one-form α is zero.

Importantly, homogeneous Lagrangian submanifolds of T ∗Qe are in one-to-one correspondence
with Legendre submanifolds of P(T∗Qe). Recall that a submanifold L of a (2n + 1)-dimensional
contact manifold N is a Legendre submanifold [22,23] if the locally-defined contact form θ is zero
restricted to L and the dimension of L is equal to n (the maximal dimension of a submanifold restricted
to which θ can be zero).

Proposition 1 ([23], Proposition 10.16). Consider the projection π : T ∗Qe → P(T∗Qe). Then, L ⊂
P(T∗Qe) is a Legendre submanifold if and only if L := π−1(L) ⊂ T ∗Qe is a homogeneous Lagrangian
submanifold. Conversely, any homogeneous Lagrangian submanifold L is of the form π−1(L) for some Legendre
submanifold L.

In the contact geometry formulation of thermodynamic systems [1–3,5], the equations of state are
formalized as Legendre submanifolds. In view of the correspondence with homogeneous Lagrangian
submanifolds, we arrive at the following.

Definition 2. Consider Qe and the thermodynamical phase space P(T∗Qe). The state properties of the
thermodynamic system are defined by a homogeneous Lagrangian submanifold L ⊂ T ∗Qe and its corresponding
Legendre submanifold L ⊂ P(T∗Qe).

The correspondence between Legendre and homogeneous Lagrangian submanifolds also implies
the following characterization of generating functions for any homogeneous Lagrangian submanifold
L ⊂ T ∗Qe. This is based on the fact [22,23] that any Legendre submanifold L ⊂ N in Darboux
coordinates q0, q1, · · · , qn, γ1, · · · , γn for N can be locally represented as:

L = {(q0, q1, · · · , qn, γ1, · · · , γn) | q0 = F− γJ
∂F
∂γJ

, qJ = − ∂F
∂γJ

, γI =
∂F
∂qI

} (8)

for some partitioning I ∪ J = {1, · · · , n} and some function F(qI , γJ) (called a generating function for
L), while conversely, any submanifold L as given in (8), for any partitioning I ∪ J = {1, · · · , n} and
function F(qI , γJ), is a Legendre submanifold.

Given such a generating function F(qI , γJ) for the Legendre submanifold L, we now define,
assuming p0 �= 0 and substituting γJ = − pJ

p0
,

G(q0, · · · , qn, p0, · · · , pn) := −p0F(qI ,−
pJ

p0
) (9)

Then a direct computation shows that:

− ∂G
∂p0

= F(qI ,−
pJ

p0
) + p0

∂F
∂γJ

(qI ,−
pJ

p0
)

pJ

p2
0
= F(qI , γJ)−

∂F
∂γJ

γJ , (10)

implying, in view of (8), that:

π−1(L) = {((q0, · · · , qn, p0, · · · , pn) | q0 = − ∂G
∂p0

, qJ = − ∂G
∂pJ

, pI =
∂G
∂qI

} (11)

In its turn, this implies that G as defined in (9) is a generating function for the homogeneous
Lagrangian submanifold L = π−1(L). If instead of p0, another coordinate pi is different from zero,
then by dividing by this pi �= 0, we obtain a similar generating function. This is summarized in the
following proposition.
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Proposition 2. Any Legendre submanifold L can be locally represented as in (8), possibly after renumbering
the index set {0, 1, · · · , n}, for some partitioning I ∪ J = {1, · · · , n} and generating function F(qI , γJ),
and conversely, for any such F(qI , γJ), the submanifold L defined by (8) is a Legendre submanifold.

Any homogeneous Lagrangian submanifold L can be locally represented as in (11) with generating
function G of the form (9), and conversely, for any such G, the submanifold (11) is a homogeneous Lagrangian
submanifold.

Note that the generating functions G as in (9) are homogeneous of degree one in the variables
(p0, · · · , pn); see the Appendix A for further information regarding homogeneity.

The simplest instance of a generating function for a Legendre submanifold L and its homogeneous
Lagrangian counterpart L occurs when the generating F as in (8) only depends on q1, · · · , qn. In this
case, the generating function G is given by:

G(q0, · · · , qn, p0, · · · , pn) = −p0F(q1, · · · , qn), (12)

with the corresponding homogeneous Lagrangian submanifold L = π−1(L) locally given as:

L = {(q0, · · · , qn, p0, · · · , pn) | q0 = F(q1, · · · , qn), p1 = −p0
∂F
∂q1

, · · · , pn = −p0
∂F
∂qn

} (13)

A particular feature of this case is the fact that exactly one of the extensive variables, in the above q0,
is expressed as a function of all the others, i.e., q1, · · · , qn. At the same time, p0 is unconstrained, while
the other co-extensive variables p1, · · · , pn are determined by p0, q1, · · · , qn. For a general generating
function G as in (9), this is not necessarily the case. For example, if J = {1, · · · , n}, corresponding to
a generating function −p0F(γ), then q0, · · · , qn are all expressed as a function of the unconstrained
variables p0, · · · , pn.

Remark 1. In the present paper, crucial use is made of homogeneity in the co-extensive variables (p, pS, pE),
which is different from homogeneity with respect to the extensive variables (q, qS, qE), as occurring, e.g., in the
Gibbs–Duhem relations [31].

The two most important representations of a homogeneous Lagrangian submanifold L ⊂
T ∗Qe, and its Legendre counterpart L ⊂ P(T∗Q), are the energy representation and the entropy
representation. In the first case, L is represented, as in (12), by a generating function of the form:

− pEE(q, S) (14)

yielding the representation:

L = {(q, S, E, p, pS, pE) | E = E(q, S), p = −pE
∂E
∂q

(q, S), pS = −pE
∂E
∂S

(q, S)} (15)

In the second case (the entropy representation), L is represented by a generating function of
the form:

− pSS(q, E) (16)

yielding the representation:

L = {(q, S, E, p, pS, pE) | S = S(q, E), p = −pS
∂S
∂q

(q, E), pE = −pS
∂S
∂E

(q, E)} (17)

Note that in the energy representation, the independent extensive variables are taken to be q and
the entropy S, while the energy variable E is expressed as a function of them. On the other hand, in the
entropy representation, the independent extensive variables are q and the energy E, with S expressed
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as a function of them. Furthermore, in the energy representation, the co-extensive variable pE is “free”,
while instead in the entropy representation, the co-extensive variable pS is free. In principle, also
other representations could be chosen, although we will not pursue this. For instance, in Example 1,
one could consider a generating function −pVV(S, E) where the extensive variable V is expressed as
function of the other two extensive variables S, E.

As already discussed in [1,2], an important advantage of describing the state properties by a
Legendre submanifold L, instead of by writing out the equations of state, is in providing a global
and coordinate-free point of view, allowing for an easy transition between different thermodynamic
potentials. Furthermore, if singularities occur in the equations of state, L is typically still a smooth
submanifold. As seen before [21], the description by a homogeneous Lagrangian submanifold L
has the additional advantage of yielding a simple way for switching between the energy and the
entropy representation.

Remark 2. Although the terminology “thermodynamic phase space” for P(T∗Qe) may suggest that all points
in P(T∗Qe) are feasible for the thermodynamic system, this is actually not the case. The state properties of the
thermodynamic system are specified by the Legendre submanifold L ⊂ P(T∗Qe), and thus, the actual “state
space” of the thermodynamic system at hand is this submanifold L; not the whole of P(T∗Qe).

A proper analogy with the Hamiltonian formulation of mechanical systems would be as follows. Consider the
phase space T∗Q of a mechanical system with configuration manifold Q. Then, the Hamiltonian H : T∗Q → R

defines a Lagrangian submanifold LH of T∗ (T∗Q) given by the graph of the gradient of H. The homogeneous
Lagrangian submanifold L is analogous to LH, while the symplectized thermodynamic phase space T ∗Qe is
analogous to T∗ (T∗Q).

3. The Metric Determined by the Equations of State

In a series of papers starting with [26], Weinhold investigated the Riemannian metric that is
locally defined by the Hessian matrix of the energy expressed as a (convex) function of the entropy and
the other extensive variables. (The importance of this Hessian matrix, also called the stiffness matrix,
was already recognized in [31,32].) Similarly, Ruppeiner [27], starting from the theory of fluctuations,
explored the locally-defined Riemannian metric given by minus the Hessian of the entropy expressed
as a (concave) function of the energy and the other extensive variables. Subsequently, Mrugała [3]
reformulated both metrics as living on the Legendre submanifold L of the thermodynamic phase space
and showed that actually, these two metrics are locally equivalent (by a conformal transformation);
see also [9]. Furthermore, based on statistical mechanics arguments, [7] globally defined an indefinite
metric on the thermodynamical phase space, which, when restricted to the Legendre submanifold,
reduces to the Weinhold and Ruppeiner metrics; thus showing global conformal equivalence. This
point of view was recently further extended in a number of directions in [10].

In this section, crucially exploiting the symplectization point of view, we provide a novel global
geometric definition of a degenerate pseudo-Riemannian metric on the homogeneous Lagrangian
submanifold L defining the equations of state, for any given torsion-free connection on the
space Qe of extensive variables. In a coordinate system in which the connection is trivial (i.e.,
its Christoffel symbols are all zero), this metric will be shown to reduce to Ruppeiner’s locally-defined
metric once we use homogeneous coordinates corresponding to the entropy representation, and to
Weinhold’s locally-defined metric by using homogeneous coordinates corresponding to the energy
representation. Hence, parallel to the contact geometry equivalence established in [3,7,10], we show
that the metrics of Weinhold and Ruppeiner are just two different local representations of this same
globally-defined degenerate pseudo-Riemannian metric on the homogeneous Lagrangian submanifold
of the symplectized thermodynamic phase space.

Recall [33] that a (affine) connection ∇ on an (n + 1)-dimensional manifold M is defined as
an assignment:

(X, Y) �−→ ∇XY (18)
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for any two vector fields X, Y, which is R-bilinear and satisfies ∇ f XY = f∇XY and ∇X( f Y) =

f∇XY + X( f )Y, for any function f on M. This implies that ∇XY(q) only depends on X(q) and the
value of Y along a curve, which is tangent to X at q. In local coordinates q for M, the connection is
determined by its Christoffel symbols Γa

bc(q), a, b, c = 0, · · · , n, defined by:

∇ ∂
∂qb

∂

∂qc
=

n

∑
a=0

Γa
bc(q)

∂

∂qa
(19)

The connection is called torsion-free if:

∇XY −∇YX = [X, Y] (20)

for any two vector fields X, Y, or equivalently if its Christoffel symbols satisfy the symmetry
property Γa

bc(q) = Γa
cb(q), a, b, c = 0, · · · , n. We call a connection trivial in a given set of coordinates

q = (q0, · · · , qn) if its Christoffel symbols in these coordinates are all zero.
As detailed in [34], given a torsion-free connection on M, there exists a natural pseudo-Riemannian

(“pseudo” since the metric is indefinite) metric on the cotangent-bundle T∗M, in cotangent bundle
coordinates (q, p) for T∗M given as:

2
n

∑
i=0

dqi ⊗ dpi − 2
n

∑
a,b,c=0

pcΓc
ab(q)dqa ⊗ dqb (21)

Let us now consider for M the manifold of extensive variables Qe = Q×R2 with coordinates
qe = (q, S, E) as before, where we assume the existence of a torsion-free connection, which is trivial in
the coordinates (q, S, E), i.e., the Christoffel symbols are all zero. Then, the pseudo-Riemannian metric
I on T ∗Qe takes the form:

I := 2(dq⊗ dp + dS⊗ dpS + dE⊗ dpE) (22)

Denote by G the pseudo-Riemannian metric I restricted to the homogeneous Lagrangian
submanifold L describing the state properties. Consider the energy representation (15) of L,
with generating function −pEE(q, S). It follows that 1

2G equals (in shorthand notation):

dq⊗ d
(
−pE

∂E
∂q

)
+ dS⊗ d

(
−pE

∂E
∂S

)
+ dE⊗ dpE =

−pEdq⊗
(

∂2E
∂q2 dq + ∂2E

∂q∂S dS
)
− dq⊗ ∂E

∂q dpE

−pEdS⊗
(

∂2E
∂q∂S dq + ∂2E

∂S2 dS
)
− dS⊗ ∂E

∂S dpE

+ ∂T E
∂q dq⊗ dpE + ∂T E

∂S dS⊗ dpE

= −pE

(
dq⊗ ∂2E

∂q2 dq + dq⊗ ∂2E
∂q∂S dS + dS⊗ ∂2E

∂q∂S dq + dS⊗ ∂2E
∂S2 dS

)
=: −pEW

(23)

where:

W = dq⊗ ∂2E
∂q2 dq + dq⊗ ∂2E

∂q∂S
dS + dS⊗ ∂2E

∂S∂q
dq + dS⊗ ∂2E

∂S2 dS (24)

is recognized as Weinhold’s metric [26]; the (positive-definite) Hessian of E expressed as a (strongly
convex) function of q and S.
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On the other hand, in the entropy representation (17) of L, with generating function −pSS(q, E),
an analogous computation shows that 1

2G is given as pSR, with:

R = −dq⊗ ∂2S
∂q2 dq− dq⊗ ∂2S

∂q∂E
dE− dE⊗ ∂2

∂E∂q
dq− dE⊗ ∂2S

∂E2 dE (25)

the Ruppeiner metric [27]; minus the Hessian of S expressed as a (strongly concave) function of q and
E. Hence, we conclude that:

− pEW = pSR, (26)

implying W = − pS
pE
R = ∂E

∂SR = TR, with T the temperature. This is basically the conformal
equivalence betweenW andR found in [3]; see also [7,10]. Summarizing, we have found the following.

Theorem 1. Consider a torsion-free connection on Qe, with coordinates qe = (q, S, E), in which the Christoffel
symbols of the connection are all zero. Then, by restricting the pseudo-Riemannian metric I to L, we obtain
a degenerate pseudo-Riemannian metric G on L, which in local energy-representation (15) for L is given by
−2pEW , with W the Weinhold metric (24), and in a local entropy representation (17) by 2pSR, with R the
Ruppeiner metric (25).

We emphasize that the degenerate pseudo-Riemannian metric G is globally defined on L,
in contrast to the locally-defined Weinhold and Ruppeiner metrics W and R; see also the discussion
in [3,5,7,9,10]. We refer to G as degenerate, since its rank is at most n instead of n + 1. Note furthermore
that G is homogeneous of degree one in pe and hence does not project to the Legendre submanifold L.

While the assumption of the existence of a trivial connection appears natural in most cases (see
also the information geometry point of view as exposed in [35]), all this can be directly extended to
any non-trivial torsion-free connection ∇ on Qe. For example, consider the following situation.

For the ease of notation, denote qS := S, qE := E, and correspondingly denote
(q0, q1, · · · , qn−2, qS, qE) := (q, S, E). Take any torsion-free connection on Qe given by symmetric
Christoffel symbols Γc

ab = Γc
ba, with indices a, b, c = 0, · · · , n− 2, S, E, satisfying Γc

ab = 0 whenever one
of the indices a, b, c is equal to the index E. Then, the indefinite metric I on T ∗Qe is given by (again in
shorthand notation):

2
E

∑
i=0

dqi ⊗ dpi − 2
S

∑
a,b,c=0

pcΓc
ab(q)dqa ⊗ dqb (27)

It follows that the resulting metric 1
2G on L is given by the matrix:

− pE

(
∂2E

∂qa∂qb
−

S

∑
c=0

∂E
∂qc

Γc
ab

)
a,b=0,··· ,S

(28)

Here, the (n× n)-matrix at the right-hand side of −pE is the globally defined geometric Hessian
matrix (see e.g., [36]) with respect to the connection on Q×R corresponding to the Christoffel symbols
Γc

ab, a, b, c = 0, · · · , n− 2, S.

4. Dynamics of Thermodynamic Processes

In this section, we explore the geometric structure of the dynamics of (non-equilibrium)
thermodynamic processes; in other words, geometric thermodynamics. By making crucial use of the
symplectization of the thermodynamic phase space, this will lead to the definition of port-thermodynamic
systems in Definition 3; allowing for open thermodynamic processes. The definition is illustrated in
Section 4.2 on a number of simple examples. In Section 4.3, initial observations will be made regarding
the controllability of port-thermodynamic systems.
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4.1. Port-Thermodynamic Systems

In Section 2, we noted the one-to-one correspondence between Legendre submanifolds L of
the thermodynamic phase space P(T∗Qe) and homogeneous Lagrangian submanifolds L of the
symplectized space T ∗Qe. In the present section, we start by noting that there is as well a one-to-one
correspondence between contact vector fields on P(T∗Qe) and Hamiltonian vector fields XK on T ∗Qe

with Hamiltonians K that are homogeneous of degree one in pe (see the Appendix A for further details
on homogeneity).

Here, Hamiltonian vector fields XK on T ∗Qe with Hamiltonian K are in cotangent bundle
coordinates (qe, pe) = (q0, · · · , qn, p0, · · · , pn) for T∗Qe given by the standard expressions:

q̇i =
∂K
∂pi

(qe, pe), ṗi = − ∂K
∂qi

(qe, pe), i = 0, 1, · · · , n, (29)

while contact vector fields XK̂ on the contact manifold P(T∗Qe) are given in local Darboux coordinates
(qe, γ) = (q0, · · · , qn, γ1, · · · , γn) as: [22,23]

q̇0 = K̂(qe, γ)−∑n
j=1 γj

∂K̂
∂γj

(qe, γ)

q̇i = − ∂K̂
∂γi

(qe, γ), i = 1, · · · , n

γ̇i = ∂K̂
∂qi

(qe, γ) + γi
∂K̂
∂q0

(qe, γ), i = 1, · · · , n,

(30)

for some contact Hamiltonian K̂(qe, γ).
Indeed, consider any Hamiltonian vector field XK on T ∗Qe, with K homogeneous of degree

one in the co-extensive variables pe. Equivalently (see Appendix A, Proposition A1), LXK α = 0,
with L denoting the Lie-derivative. It follows, cf. Theorem 12.5 in [23], that XK projects under
π : T ∗Qe → P(T∗Qe) to a vector field π∗XK, satisfying:

Lπ∗XK θ = ρθ (31)

for some function ρ, for all (locally-defined) expressions of the contact form θ on P(T∗Qe). This exactly
means [23] that the vector field π∗XK is a contact vector field with contact Hamiltonian:

K̂ := θ(π∗XK) (32)

Conversely [22,23], any contact vector field XK̂ on P(T∗Qe), for some contact Hamiltonian K̂,
can be lifted to a Hamiltonian vector field XK on T ∗Qe with homogeneous K. In fact, for K̂ expressed
in Darboux coordinates for P(T∗Qe) as K̂(q0, q1, · · · , qn, γ1, ·, γn), the corresponding homogeneous
function K is given as, cf. [23] (Chapter V, Remark 14.4),

K(q0, · · · , qn, p0, · · · , pn) = p0K̂(q0, · · · , qn,− p1

p0
, · · · ,− pn

p0
), (33)

and analogously on any other homogeneous coordinate neighborhood of P(T∗Qe). This is summarized
in the following proposition (N.B.: for brevity, we will from now on refer to a function K(qe, pe) that
is homogeneous of degree one in the co-extensive variables pe as a homogeneous function and to a
Hamiltonian vector field XK on T ∗Qe with K homogeneous of degree one in pe as a homogeneous
Hamiltonian vector field).

Proposition 3. Any homogeneous Hamiltonian vector field XK on T ∗Qe projects under π to a contact vector
field XK̂ on P(T∗Qe) with K̂ locally given by (32), and conversely, any contact vector field XK̂ on P(T∗Qe)

lifts under π to a homogeneous Hamiltonian vector field XK on T ∗Qe with K locally given by (33).
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Recall, and see also Remark 2, that the equations of state describe the constitutive relations
between the extensive and intensive variables of the thermodynamic system, or said otherwise, the state
properties of the thermodynamic system. Since these properties are fixed for a given thermodynamic
system, any dynamics should leave its equations of state invariant. Equivalently, any dynamics on
T ∗Qe or on P(T∗Qe) should leave the homogeneous Lagrangian submanifold L ⊂ T ∗Qe, respectively,
its Legendre submanifold counterpart L ⊂ P(T∗Qe), invariant. (Recall that a submanifold is invariant
for a vector field if the vector field is everywhere tangent to it; and thus, solution trajectories remain
on it.)

Furthermore, it is natural to require the dynamics of the thermodynamic system to be Hamiltonian;
i.e., homogeneous Hamiltonian dynamics on T ∗Qe and a contact dynamics on P(T∗Qe).

In order to combine the Hamiltonian structure of the dynamics with invariance, we make crucial
use of the following properties.

Proposition 4.

1. A homogeneous Lagrangian submanifold L ⊂ T ∗Qe is invariant for the homogeneous Hamiltonian vector
field XK if and only if the homogeneous K : T ∗Qe → R restricted to L is zero.

2. A Legendre submanifold L ⊂ P(T∗Qe) is invariant for the contact vector field XK̂ if and only if K̂ :
P(T∗Qe)→ R restricted to L is zero.

3. The homogeneous function K : T ∗Qe → R restricted to L is zero if and only the corresponding function
K̂ : P(T∗Qe)→ R restricted to L is zero.

Item 2 is well known [22,23], and Item 1 can be found in [23,25], while Item 3 directly follows
from the correspondence between K and K̂ in (32) and (33).

Based on these considerations, we define the dynamics of a thermodynamic system as being
produced by a homogeneous Hamiltonian function, parametrized by u ∈ Rm,

K := Ka + Kcu : T ∗Qe → R, u ∈ Rm, (34)

with Ka restricted to L zero, and Kc an m-dimensional row of functions Kc
j , j = 1, · · · , m, all of which

are also zero on L. Then, the resulting dynamics is given by the homogeneous Hamiltonian dynamics
on T ∗Qe:

ẋ = XKa(x) +
m

∑
j=1

XKc
j
(x)uj, x = (qe, pe), (35)

restricted to L. (In [24,25], (35) was called a homogeneous Hamiltonian control system.) By
Proposition 3, this dynamics projects to contact dynamics corresponding to the contact Hamiltonian
K̂ = K̂a + K̂cu on the corresponding Legendre submanifold L ⊂ P(T∗Qe).

The invariance conditions on the parametrized Hamiltonian K defining the dynamics on L and L
can be seen to take the following explicit form. Since K is homogeneous of degree one, we can write by
Euler’s homogeneous function theorem (Theorem A1):

Ka = pT f + pS fS + pE fE, f = ∂Ka

∂p , fS = ∂Ka

∂pS
, fE = ∂Ka

∂pE

Kc = pT g + pSgS + pEgE, g = ∂Kc

∂p , gS = ∂Kc

∂pS
, gE = ∂Kc

∂pE
,

(36)

where the functions f , fS, fE, as well as the elements of the m-dimensional row vectors of functions
g, gS, gE are all homogeneous of degree zero. Now, recall the energy representation (15) of the
Lagrangian submanifold L describing the state properties of the system:

L = {(q, S, E, p, pS, pE) | E = E(q, S), p = −pE
∂E
∂q

(q, S), pS = −pE
∂E
∂S

(q, S)} (37)
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By substitution of (37) in (36), it follows that K restricted to L is zero for all u if and only if:(
−pE

∂E
∂q f − pE

∂E
∂S fS + pE fE

)
|L = 0(

−pE
∂E
∂q g− pE

∂E
∂S gS + pEgE

)
|L = 0

(38)

for all pE, or equivalently:(
∂E
∂q

f +
∂E
∂S

fS

)
|L = fE|L,

(
∂E
∂q

g +
∂E
∂S

g
)
|L = gE|L (39)

This leads to the following additional requirements on the homogeneous function Ka. The first
law of thermodynamics (“total energy preservation”) requires that the uncontrolled (u = 0) dynamics
preserves energy, implying that:

fE|L = 0 (40)

Furthermore, the second law of thermodynamics (“increase of entropy”) leads to the following
requirement. Writing out K|L = 0 in the entropy representation (17) of L amounts to:(

∂S
∂q

f +
∂S
∂E

fE

)
|L = fS|L,

(
∂S
∂q

g +
∂S
∂E

gE

)
|L = gS|L (41)

Plugging in the earlier found requirement fE|L = 0, this reduces to:

∂S
∂q

f |L = fS|L,
(

∂S
∂q

g +
∂S
∂E

gE

)
|L = gS|L (42)

Finally, since for u = 0, the entropy is non-decreasing, this implies the following additional requirement:

fS|L ≥ 0 (43)

All this leads to the following geometric formulation of a port-thermodynamic system.

Definition 3 (Port-thermodynamic system). Consider the space of extensive variables Qe = Q×R×R

and the thermodynamic phase space P(T∗Qe). A port-thermodynamic system on P(T∗Qe) is defined as
a pair (L, K), where the homogeneous Lagrangian submanifold L ⊂ T ∗Qe specifies the state properties.
The dynamics is given by the homogeneous Hamiltonian dynamics with parametrized homogeneous Hamiltonian
K := Ka + Kcu : T ∗Qe → R, u ∈ Rm, in the form (36), with Ka, Kc zero on L, and the internal Hamiltonian
Ka satisfying (corresponding to the first and second law of thermodynamics):

fE|L = 0, fS|L ≥ 0 (44)

This means that, in energy representation (15):(
∂E
∂q

f +
∂E
∂S

fS

)
|L = 0,

(
∂E
∂q

g +
∂E
∂S

gS

)
|L = gE|L (45)

and, in entropy representation (17):

∂S
∂q

f |L = fS|L ≥ 0,
(

∂S
∂q

g +
∂S
∂E

gE

)
|L = gS|L (46)

Furthermore, the power-conjugate outputs yp of the port-thermodynamic system (L, K) are defined as
the row-vector:

yp := gE|L (47)
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Since by Euler’s theorem (Theorem A1), all expressions f , fS, fE, g, gS, gE are homogeneous of degree
zero, they project to functions on the thermodynamic phase space P(T∗Qe). Hence, the dynamics and the
output equations are equally well-defined on the Legendre submanifold L ⊂ P(T∗Qe). Note that as a
consequence of the above definition of a port-thermodynamic system:

d
dt

E|L = ypu, (48)

expressing that the increase of total energy of the thermodynamic system is equal to the energy
supplied to the system by the environment.

Remark 3. In case f , fS, fE, g, gS, gE do not depend on pe (and therefore, are trivially homogeneous of degree
zero in pe), they actually define vector fields on the space of extensive variables Qe (since they transform as vector
fields under a coordinate change for Qe). In this case, the dynamics on T ∗Qe and L is equal to the Hamiltonian
lift of the dynamics on Qe; see, e.g., [37].

Remark 4. Whenever the dynamics on L is given as the Hamiltonian lift of dynamics on Qe (see the previous
Remark), the properties (44) can be enforced by formulating the dynamics on Qe as the sum of a Hamiltonian
vector field with respect to the energy E and a gradient vector field with respect to the entropy S, in such a way
that S is a Casimir of the Poisson bracket and E is a “Casimir” of the symmetric bracket; see, e.g., [38,39]. The
extension of this to the general homogeneous setting employed in Definition 3 is of much interest.

Remark 5. Definition 3 is generalized to the compartmental situation Qe = Q × RmS × RmE by
modifying (44) to:

mE

∑
i=1

fEi |L = 0,
mS

∑
j=1

fSj |L ≥ 0, (49)

corresponding, respectively, to total energy conservation and total entropy increase; see already Example 3.

Remark 6. An extension to Definition 3 is to consider a non-affine dependence of K on u, i.e., a general function
K : T ∗Qe ×Rm → R that is homogeneous in pe. See already the damper subsystem in Example 7 and the
formulation of Hamiltonian input-output systems as initiated in [40] and continued in, e.g., [37,41,42].

Defining the vector of outputs as being power-conjugate to the input vector u is the most common
option for defining an interaction port (in this case, properly called a power-port) of the thermodynamic
system. Nevertheless, there are other possibilities, as well. Indeed, a port representing the rate of
entropy flow is obtained by defining the alternative output yre as:

yre := gS|L, (50)

which is the entropy-conjugate to the input vector u, This leads instead to the rate of entropy balance:

d
dt

S|L = yreu + fS|L, (51)

where the second, non-negative, term on the right-hand side is the internal rate of entropy production.

Remark 7. From the point of view of dissipativity theory [43,44], this means that any port-thermodynamic
system, with inputs u and outputs yp, yre, is cyclo-lossless with respect to the supply rate ypu and cyclo-passive
with respect to the supply rate yreu.

Finally, it is of interest to note that, as illustrated by the examples in the next subsection,
the Hamiltonian K generating the dynamics on L is dimensionless; i.e., its values do not have a
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physical dimension. Physical dimensions do arise by dividing the homogeneous expression by one of
the co-extensive variables.

4.2. Examples of Port-Thermodynamic Systems

Example 2 (Heat compartment). Consider a simple thermodynamic system in a compartment, allowing for
heat exchange with its environment. Its thermodynamic properties are described by the extensive variables S
(entropy) and E (internal energy), with E expressed as a function E = E(S) of S. Its state properties (in energy
representation) are given by the homogeneous Lagrangian submanifold:

L = {(S, E, pS, pE) | E = E(S), pS = −pEE′(S)}, (52)

corresponding to the generating function −pEE(S). Since there is no internal dynamics, Ka is absent. Hence,
taking u as the rate of entropy flow corresponds to the homogeneous Hamiltonian K = Kcu with:

Kc = pS + pEE′(S), (53)

which is zero on L. This yields on L the dynamics (entailing both the entropy and energy balance):

Ṡ = u ṗS = −pEE′′(S)u

Ė = E′(S)u ṗE = 0,
(54)

with power-conjugate output yp equal to the temperature T = E′(S). Defining the homogeneous coordinate
γ = − pS

pE
leads to the contact Hamiltonian K̂c = E′(S)− γ on P(T∗R2), and the Legendre submanifold:

L = {(S, E, γ) ∈ P(T∗R2) | E = E(S), γ = E′(S)} (55)

The resulting contact dynamics on L is equal to the projected dynamics π∗XK = XK̂ given as:

Ṡ = u

Ė = E′(S)u

γ̇ = − ṗS
pE

= E′′(S)u

(56)

Here, the third equation corresponds to the energy balance in terms of the temperature dynamics. Note that
E′′(S) = T

C , with C the heat capacitance of the fixed volume.
Alternatively, if we take instead the incoming heat flow as input v, then the Hamiltonian is given by:

K = (pS
1

E′(S)
+ pE)v, (57)

leading to the “trivial” power-conjugate output yp = 1 and to the rate of entropy conjugate output yre given by
the reciprocal temperature yre =

1
T .

Example 3 (Heat exchanger). Consider two heat compartments as in Example 2, exchanging a heat flow through
an interface according to Fourier’s law. The extensive variables are S1, S2 (entropies of the two compartments) and E
(total internal energy). The state properties are described by the homogeneous Lagrangian submanifold:

L = {(S1, S2, E, pS1 , pS2 , pE) | E = E1(S1) + E2(S2), pS1 = −pEE′1(S1), pS2 = −pEE′2(S2)}, (58)
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corresponding to the generating function −pE (E1(S1) + E2(S2)), with E1, E2 the internal energies of the
two compartments. Denoting the temperatures T1 = E′1(S1), T2 = E′2(S2), the internal dynamics of the
two-component thermodynamic system corresponding to Fourier’s law is given by the Hamiltonian:

Ka = λ(
1
T1
− 1

T2
)(pS1 T2 − pS2 T1), (59)

with λ Fourier’s conduction coefficient. Note that the total entropy on L satisfies:

Ṡ1 + Ṡ2 = λ(
1
T1
− 1

T2
)(T2 − T1) ≥ 0, (60)

in accordance with (49). We will revisit this example in the context of the interconnection of thermodynamic
systems in Examples 8 and 9.

Example 4 (Mass-spring-damper system). Consider a mass-spring-damper system in one-dimensional
motion, composed of a mass m with momentum π, linear spring with stiffness k and extension z, and
linear damper with viscous friction coefficient d. In order to take into account the thermal energy and the
entropy production arising from the heat produced by the damper, the variables of the mechanical system are
augmented with an entropy variable S and internal energy U(S) (for instance, if the system is isothermal, i.e.,
in thermodynamic equilibrium with a thermostat at temperature T0, the internal energy is U(S) = T0S). This
leads to the total set of extensive variables z, π, S, E = 1

2 kz2 + π2

2m +U(S) (total energy). The state properties of
the system are described by the Lagrangian submanifold L with generating function (in energy representation):

− pE

(
1
2

kz2 +
π2

2m
+ U(S)

)
(61)

This defines the state properties:

L = {(z, π, S, E, pz, pπ , pS, pE)|E =
1
2

kz2 +
π2

2m
+ U(S), pz = −pEkz, pπ = −pE

π

m
, pS = −pEU′(S)} (62)

The dynamics is given by the homogeneous Hamiltonian:

K = pz
π

m
+ pπ

(
−kz− d

π

m

)
+ pS

d( π
m )2

U′(S)
+
(

pπ + pE
π

m

)
u, (63)

where u is an external force. The power-conjugate output yp = π
m is the velocity of the mass.

Example 5 (Gas-piston-damper system). Consider a gas in an adiabatically-isolated cylinder closed by a
piston. Assume that the thermodynamic properties of the system are covered by the properties of the gas (for an
extended model, see [13], Section 4). Then, the system is analogous to the previous example, replacing z by
volume V and the partial energy 1

2 kz2 + U(S) by an expression U(V, S) for the internal energy of the gas.
The dynamics of a force-actuated gas-piston-damper system is defined by the Hamiltonian:

K = pz
π

m
+ pπ

(
−∂U

∂V
− d

π

m

)
+ pS

d( π
m )2

∂U
∂S

+
(

pπ + pE
π

m

)
u, (64)

where the power-conjugate output yp = π
m is the velocity of the piston.
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Example 6 (Port-Hamiltonian systems as port-thermodynamic systems). Example 4 can be extended to
any input-state-output port-Hamiltonian system [28–30]:

ẋ = J(x)e− R(e) + G(x)u, e = ∂H
∂x (x), J(x) = −JT(x)

y = GT(x)e
(65)

on a state space manifold x ∈ X , with inputs u ∈ Rm, outputs y ∈ Rm, Hamiltonian H (equal to the
stored energy of the system), and dissipation R(e) satisfying eT R(e) ≥ 0 for all e. Including entropy S as
an extra variable, along with an internal energy U(S) (for example, in the isothermal case U(S) = T0S),
the state properties of the port-Hamiltonian system are given by the homogeneous Lagrangian submanifold
L ⊂ T∗(X ×R2) defined as:

L = {(x, S, E, p, pS, pE) | E(x, S) = H(x) + U(S), p = −pE
∂H
∂x

(x), pS = −pEU′(S)}, (66)

with generating function −pE (H(x) + U(S)). The Hamiltonian K is given by (using the shorthand notation
e = ∂H

∂x (x)):

K(x, S, E, p, pS, pE) = pT (J(x)e− S(e) + G(x)u) + pS
eT R(e)
U′(S)

+ pEeTG(x)u (67)

reproducing on L the dynamics (65) with outputs yp = y. Note that in this thermodynamic formulation of the
port-Hamiltonian system, the energy-dissipation term eT R(e) in the power-balance d

dt H = −eT R(e) + yTu is
compensated by the equal increase of the internal energy U(S), thus leading to conservation of the total energy
E(x, S) = H(x) + U(S).

4.3. Controllability of Port-Thermodynamic Systems

In this subsection, we will briefly indicate how the controllability properties of the
port-thermodynamic system (L, K) can be directly studied in terms of the homogeneous Hamiltonians
Ka and Kc

j , j = 1, · · · , m, and their Poisson brackets. First, we note that by Proposition A3, the Poisson
brackets of these homogeneous Hamiltonians are again homogeneous. Secondly, we recall the
well-known correspondence [22,23,33] between Poisson brackets of Hamiltonians h1, h2 and Lie
brackets of the corresponding Hamiltonian vector fields:

[Xh1 , Xh2 ] = X{h1,h2} (68)

In particular, this property implies that if the homogeneous Hamiltonians h1, h2 are zero on the
homogeneous Lagrangian submanifold L and, thus, by Proposition 4, the homogeneous Hamiltonian
vector fields Xh1 , Xh2 are tangent to L, then also [Xh1 , Xh2 ] is tangent to L, and therefore, the Poisson
bracket {h1, h2} is also zero on L. Furthermore, with respect to the projection to the corresponding
Legendre submanifold L, we note the following property of homogeneous Hamiltonians:

̂{h1, h2} = {ĥ1, ĥ2}, (69)

where the bracket on the right-hand side is the Jacobi bracket [22,23] of functions on the contact manifold
P(T∗Qe). This leads to the following analysis of the accessibility algebra [45] of a port-thermodynamic
system, characterizing its controllability.

Proposition 5. Consider a port-thermodynamic system (L, K) on P(T∗Qe) with homogeneous K := Ka +

∑m
j=1 Kc

j uj : T ∗Qe → R, zero on L. Consider the algebra P (with respect to the Poisson bracket) generated by

Ka, Kc
j , j = 1, · · · , m, consisting of homogeneous functions that are zero on L and the corresponding algebra P̂

generated by K̂a, K̂c
j , j = 1, · · · , m, on L. The accessibility algebra [45] is spanned by all contact vector fields Xĥ
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on L, with ĥ in the algebra P̂ . It follows that the port-thermodynamic system (L, K) is locally accessible [45] if
the dimension of the co-distribution dP̂ on L defined by the differentials of ĥ, with h in the Poisson algebra P ,
is equal to the dimension of L. Conversely, if the system is locally accessible, then the co-distribution dP̂ on L
has dimension equal to the dimension of L almost everywhere on L.

Similar statements can be made with respect to local strong accessibility of the port-thermodynamic
system; see the theory exposed in [45].

5. Interconnections of Port-Thermodynamic Systems

In this section, we study the geometric formulation of interconnection of port-thermodynamic systems
through their ports, in the spirit of the compositional theory of port-Hamiltonian systems [28–30,43].
We will concentrate on the case of power-port interconnections of port-thermodynamic systems,
corresponding to power flow exchange (with total power conserved). This is the standard situation
in (port-based) physical network modeling of interconnected systems. At the end of this section, we will
make some remarks about other types of interconnection; in particular, interconnection by exchange of the
rate of entropy.

Consider two port-thermodynamic systems with extensive and co-extensive variables:

(qi, pi, Si, pSi , Ei, pEi ) ∈ T∗Qe
i = T∗Qi × T∗Ri × T∗Ri, i = 1, 2, (70)

and Liouville one-forms αi = pidqi + pSi dSi + pEi dEi, i = 1, 2. With the homogeneity assumption in
mind, impose the following constraint on the co-extensive variables:

pE1 = pE2 =: pE (71)

This leads to the summation of the one-forms α1 and α2 given by:

αsum := p1dq1 + p2dq2 + pS1 dS1 + pS2 dS2 + pEd(E1 + E2) (72)

on the composed space defined as:

T∗Qe
1 ◦ T∗Qe

2 := {(q1, p1, q2, p2, S1, pS1 , S2, pS2 , E, pE) ∈ T∗Q1 × T∗Q2 × T∗R× T∗R× T∗R} (73)

Leaving out the zero-section p1 = 0, p2 = 0, pS1 = 0, pS2 = 0, pE = 0, this space will be denoted by
T ∗Qe

1 ◦ T ∗Qe
2 and will serve as the space of extensive and co-extensive variables for the interconnected

system. Furthermore, it defines the projectivization P(T∗Qe
1 ◦ T∗Qe

2), which serves as the composition
(through Ei, pEi , i = 1, 2) of the two projectivizations P(T∗Qe

i ), i = 1, 2.
Let the state properties of the two systems be defined by homogeneous Lagrangian submanifolds:

Li ⊂ T∗Qi × T∗Ri × T∗Ri, i = 1, 2, (74)

with generating functions −pEi Ei(qi, Si), i = 1, 2. Then, the state properties of the composed system
are defined by the composition:

L1 ◦ L2 := {(q1, q2, p1, p2, S1, pS1 , S2, pS2 , E, pE | E = E1 + E2, (qi, pi, Si, pSi , Ei, pEi ) ∈ Li, i = 1, 2}, (75)

with generating function −pE (E1(q1, S1) + E2(q2, S2)).
Furthermore, consider the dynamics on Li defined by the Hamiltonians Ki = Ka

i + Kc
i ui, i = 1, 2.

Assume that Ki does not depend on the energy variable Ei, i = 1, 2. Then, the sum K1 + K2 is
well-defined on L1 ◦ L2 for all u1, u2. This defines a composite port-thermodynamic system, with
entropy variables S1, S2, total energy variable E, inputs u1, u2, and state properties defined by L1 ◦ L2.
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Next, consider the power-conjugate outputs yp1, yp2; in the sequel, simply denoted by y1, y2.
Imposing on the power-port variables u1, u2, y1, y2 interconnection constraints that are satisfying the
power-preservation property:

y1u1 + y2u2 = 0, (76)

yields an interconnected dynamics on L1 ◦ L2, which is energy conserving (the pE-term in the
expression for K1 + K2 is zero by (76)). This is summarized in the following proposition.

Proposition 6. Consider two port-thermodynamic systems (Li, Ki) with spaces of extensive variables Qe
i ,

i = 1, 2. Assume that Ki does not depend on Ei, i = 1, 2. Then, (L1 ◦ L2, K1 + K2), with L1 ◦ L2 given
in (75), defines a composite port-thermodynamic system with inputs u1, u2 and outputs y1, y2. By imposing
interconnection constraints on u1, u2, y1, y2 satisfying (76), an autonomous (no inputs) port-thermodynamic
system is obtained.

Remark 8. The interconnection procedure can be extended to the case of an additional open power-port with
input vector u and output row vector y, by replacing (76) by power-preserving interconnection constraints on
u1, u2, u, y1, y2, y, satisfying:

y1u1 + y2u2 + yu = 0 (77)

Proposition 6 is illustrated by the following examples.

Example 7 (Mass-spring-damper system). We will show how the thermodynamic formulation of the system
as detailed in Example 4 also results from the interconnection of the three subsystems: mass, spring, and damper.

I. Mass subsystem (leaving out irrelevant entropy). The state properties are given by:

Lm = {(π, κ, pπ , pκ) | κ =
π2

2m
, pπ = −pκ

π

m
}, (78)

with energy κ (kinetic energy) and dynamics generated by the Hamiltonian:

Km = (pκ
π

m
+ pπ)um, (79)

corresponding to π̇ = um, ym = π
m .

II. Spring subsystem (again leaving out irrelevant entropy). The state properties are given by:

Ls = {(z, P, pz, pP) | P =
1
2

kz2, pz = −pPkz}, (80)

with energy P (spring potential energy) and dynamics generated by the Hamiltonian:

Ks = (pPkz + pz)us, (81)

corresponding to ż = us, ys = kz.
III. Damper subsystem. The state properties are given by:

Ld = {(S, U) | U = U(S), pS = −pUU′(S)}, (82)

involving the entropy S and an internal energy U(S). The dynamics of the damper subsystem is generated by
the Hamiltonian:

Kd = (pU + pS
1

U′(S)
)du2

d (83)

with d the damping constant and power-conjugate output:

yd := dud (84)
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equal to the damping force.
Finally, interconnect, in a power-preserving way, the three subsystems to each other via their power-ports

(um, ym), (us, ys), (ud, yd) as:
um = −ys − yd, us = ym = ud (85)

This results (after setting pκ = pP = pU =: p) in the interconnected port-thermodynamic system with
total Hamiltonian Km + Ks + Kd given as:

(p π
m + pπ)um + (pkz + pz)us + (p + pS

1
U′(S) )du2

d =

(p π
m + pπ)(−kz− d π

m ) + (pkz + pz)
π
m + (p + pS

1
U′(S) )d(

π
m )2 =

pz
π
m + pπ(−kz− d π

m ) + pS
d( π

m )2

U′(S) ,

(86)

which is equal to the Hamiltonian for u = 0 as obtained before in Example 4, Equation (63).

Example 8 (Heat exchanger). Consider two heat compartments as in Example 2, with state properties:

Li = {(Si, Ei, pSi , pEi ) | Ei = Ei(Si), pSi = −pEi E
′
i(S)}, i = 1, 2. (87)

The dynamics is given by the Hamiltonians:

Ki = (pEi + pSi

1
Ti
)vi, Ti = E′i(Si), i = 1, 2, (88)

with v1, v2 the incoming heat flows and power-conjugate outputs y1, y2, which both are equal to one. Consider the
power-conserving interconnection:

v1 = −v2 = λ(T2 − T1), (89)

with λ the Fourier heat conduction coefficient. Then, the Hamiltonian of the interconnected port-thermodynamical
system is given by:

K1 + K2 = λ(T2 − T1)(
pS1

T1
− pS2

T2
), (90)

which equals the Hamiltonian (59) as obtained in Example 3.

Apart from power-port interconnections as above, we may also define other types of
interconnection, not corresponding to the exchange of rate of energy (power), but instead to the
exchange of rate of other extensive variables. In particular, an interesting option is to consider
interconnection via the rate of entropy exchange. This can be done in a similar way, by considering,
instead of the variables Ei, pEi , i = 1, 2, as above, the variables Si, pSi , i = 1, 2. Imposing alternatively
the constraint pS1 = pS2 =: pS yields a similar composed space of extensive and co-extensive variables,
as well as a similar composition L1 ◦ L2 of the state properties. By assuming in this case that the
Hamiltonians Ki do not depend on the entropies Si, i = 1, 2 and by imposing interconnection constraints
on u1, u2 and the “rate of entropy” conjugate outputs yre1, yre2 leads again to an interconnected
port-thermodynamic system. Note however that while it is natural to assume conservation of
total energy for the interconnection of two systems via their power-ports, in the alternative case
of interconnecting through the rate of entropy ports, the total entropy may not be conserved, but
actually increasing.

Example 9. As an alternative to the previous Example 8, where the heat exchanger was modeled as the
interconnection of two heat compartments via power-ports, consider the same situation, but now with outputs yi
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being the “rate of entropy conjugate” to vi, i.e., equal (cf. the end of Example 2) to the reciprocal temperatures 1
Ti

with Ti = E′(Si), i = 1, 2. This results in interconnecting the two heat compartments as, equivalently to (89),

v1 = −v2 = λ(
1
y2
− 1

y1
) (91)

This interconnection is not total entropy conserving, but instead satisfies y1v1 + y2v2 = λ( 1
y2
− 1

y1
)(y1 −

y2) ≥ 0, corresponding to the increase of total entropy.

6. Discussion

While the state properties of thermodynamic systems have been geometrically formulated since
the 1970s through the use of contact geometry, in particular by means of Legendre submanifolds,
the geometric formulation of non-equilibrium thermodynamic processes has remained more elusive.
Taking up the symplectization point of view on thermodynamics as successfully initiated in [21],
the present paper develops a geometric framework based on the description of non-equilibrium
thermodynamic processes by Hamiltonian dynamics on the symplectized thermodynamic phase
space generated by Hamiltonians that are homogeneous of degree one in the co-extensive
variables; culminating in the definition of port-thermodynamic systems in Section 4.1. Furthermore,
Section 3 shows how the symplectization point of view provides an intrinsic definition of a metric that
is overarching the locally-defined metrics of Weinhold and Ruppeiner and provides an alternative
to similar results in the contact geometry setting provided in [3,5,7,10]. The correspondence
between objects in contact geometry and corresponding homogeneous objects in symplectic geometry
turns out to be very effective. An additional benefit of symplectization is the simplicity of
the expressions and computations in the standard Hamiltonian context, as compared to those
in contact geometry. This feature is also exemplified by the initial controllability study in
Section 4.3. As noted in [38], physically non-trivial examples of mesoscopic dynamics are
infinite-dimensional. This calls for an infinite-dimensional extension, following the well-developed
theory of infinite-dimensional Hamiltonian systems (but now adding homogeneity) of the presented
definition of port-thermodynamic systems, encompassing systems obtained by the Hamiltonian lift
of infinite-dimensional GENERIC [38] and dissipative port-Hamiltonian [46] formulations; see also
Remark 4. From a control point of view, one of the open problems concerns the stabilization of
thermodynamic processes using the developed framework.
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Appendix A. Homogeneity of Functions, of Hamiltonian Vector Fields, and of
Lagrangian Submanifolds

In this section, we use throughout, for notational simplicity, the notation M instead of Qe. Furthermore, we
let dim M = n + 1 with n ≥ 0 denote coordinates for M by q = (q0, q1, · · · , qn) and co-tangent bundle coordinates
for T∗M by (q, p) = (q0, q1, · · · , qn, p0, p1, · · · , pn).

The notion of homogeneity in the variables p will be fundamental.

Definition A1. Let r ∈ Z. A function K : T ∗M → R is called homogeneous of degree r (in the variables p =

(p0, p1 · · · , pn)) if:

K(q0, q1, · · · , qn, λp0, λp1, · · · , λpn) = λrK(q0, q1, · · · , qn, p0, p1, · · · , pn), ∀λ �= 0 (A1)

Note that this definition is independent of the choice of cotangent-bundle coordinates (q, p) for T ∗M.
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Theorem A1 (Euler’s homogeneous function theorem). A differentiable function K : T ∗M → R is homogeneous of
degree r (in p = (p0, p1, · · · , pn)) if and only if:

n

∑
i=0

pi
∂K
∂pi

(q, p) = rK(q, p), for all (q, p) ∈ T ∗M (A2)

Furthermore, if K is homogeneous of degree r, then its derivatives ∂K
∂pi

, i = 0, · · · , n, are homogeneous of degree r− 1.

Geometrically, Euler’s theorem can be equivalently formulated as follows. Recall that the Hamiltonian
vector field Xh on T∗M with symplectic form ω = dα corresponding to an arbitrary Hamiltonian h : T∗M → R is
defined by iXh ω = −dh. It is immediately verified that h : T∗M → R is homogeneous of degree r iff:

α(Xh) = r h (A3)

Define the Euler vector field (also called the Liouville vector field) E on T∗M as the vector field satisfying:

dα(E, ·) = α (A4)

In co-tangent bundle coordinates (q, p) for T∗M, the vector field E is given as ∑n
i=0 pi

∂
∂pi

. One verifies that
h : T∗M → R is homogeneous of degree r iff (with L denoting Lie-derivative):

LEh = r h (A5)

In the sequel, we will only use homogeneity and Euler’s theorem for r = 0 and r = 1. First, it is clear
that physical variables defined on the contact manifold P(T∗Qe) correspond to functions on T ∗Qe, which are
homogeneous of degree zero in p. On the other hand, as formulated in Proposition 3, a Hamiltonian vector field
on T ∗Qe with respect to a Hamiltonian that is homogeneous of degree one in p projects to a contact vector field
on the contact manifold P(T∗Q). Such Hamiltonian vector fields are locally characterized as follows.

Proposition A1. If h : T∗M → R is homogeneous of degree one in p, then X = Xh satisfies:

LXα = 0 (A6)

Conversely, if a vector field X satisfies (A6), then X = Xh for some locally-defined Hamiltonian h that is homogeneous
of degree one in p.

Proof. Note that by Cartan’s formula, for any vector field X:

LXα = iXdα + diXα = iXdα + d (α(X)) (A7)

If h is homogeneous of degree one in p, then by (A3), we have α(Xh) = h, and thus, iXh dα + dα(Xh) =

−dh + dh = 0, implying by (A7) that LXh α = 0. Conversely, if LXα = 0, then (A7) yields iXdα + d (α(X)) = 0,
implying that X = Xh, with h = α(X), which by (A3) for r = 1 is homogeneous of degree one.

Summarizing, Hamiltonian vector fields with Hamiltonians that are homogeneous of degree one in p are
characterized by (A6); in contrast to general Hamiltonian vector fields X on T∗M, which are characterized by the
weaker property LXdα = 0.

Similar statements as above can be made for homogeneous Lagrangian submanifolds (cf. Definition 1).
Recall [22,23,33] that a submanifold L ⊂ T∗M is called a Lagrangian submanifold if the symplectic form ω := dα

is zero on L, and dimL = dim M.

Proposition A2. Consider the cotangent bundle T∗M with its canonical one-form α and symplectic form ω := dα. A
submanifold L ⊂ T ∗M is a homogeneous Lagrangian submanifold if and only if α restricted to L is zero, and dimL =

dim M.

Proof. First of all, note the following. Recall the definition of the Euler vector field E in (A4). In co-tangent bundle
coordinates (q, p) for T∗M, the Euler vector field takes the form E = ∑n

i=0 pi
∂

∂pi
. Hence, the homogeneity of L is

equivalent to the tangency of E to L.
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(If) By Palais’ formula (see, e.g., [33], Proposition 2.4.15):

dα(X0, X1) = LX0 (α(X1))−LX1 (α(X0))− α ([X0, X1]) (A8)

for any two vector fields X0, X1. Hence, for any X1, X2 tangent to L, we obtain dα(X0, X1) = 0,
implying that dα is zero restricted to L, and thus, L is a Lagrangian submanifold. Furthermore,
by (A4):

dα(E, X) = α(X) = 0, (A9)

for all vector fields X tangent to L. Because L is a Lagrangian submanifold, this implies that E is tangent to
L (since a Lagrangian submanifold is a maximal submanifold restricted to ω = dα, whichis zero). Hence, L is
homogeneous.

(Only if) If L is homogeneous, then E is tangent to L, and thus, since L is Lagrangian, (A9) holds for all
vector fields X tangent to L, implying that α is zero restricted to L.

Regarding the Poisson brackets of Hamiltonian functions that are either homogeneous of degree one or zero
(in p), we have the following proposition.

Proposition A3. Consider the Poisson bracket {h1, h2} of functions h1, h2 on T∗M defined with respect to the symplectic
form ω = dα. Then:

(a) If h1, h2 are both homogeneous of degree one, then also {h1, h2} is homogeneous of degree one.
(b) If h1 is homogeneous of degree one and h2 is homogeneous of degree zero, then {h1, h2} is homogeneous of degree zero.
(c) If h1, h2 are both homogeneous of degree zero, then {h1, h2} is zero.

Proof.

(a) Since h1, h2 are both homogeneous of degree one, we have by Proposition A1, LXhi
α = 0, i = 1, 2. Hence:

LX{h1,h2}
α = L[Xh1 ,Xh2 ]

α = LXh1
(LXh2

α)−LXh2
(LXh1

α) = 0, (A10)

implying by Proposition A1 that {h1, h2} is homogeneous of degree one.
(b) α(Xh2 ) = 0, while by Proposition A1 LXh1

α = 0, implying:

0 = LXh1
(α(Xh2 )) = (LXh1

α)(Xh2 ) + α([Xh1
, Xh2 ]) = α(X{h1,h2}), (A11)

which means that {h1, h2} is homogeneous of degree zero.
(c) First we note that for any Xh with h homogeneous of degree zero, since α(Xh) = 0,

LXh α = iXh dα + d(iXh α) = −dh (A12)

Utilizing this property for h1, we obtain, since α(Xh2 ) = 0,

0 = LXh1
(α(Xh2 )) = (LXh1

α)(Xh2 ) + α(X{h1,h2}) =

−dh1(Xh2 ) + α(X{h1,h2}) = −{h1, h2}+ α(X{h1,h2}),
(A13)

proving that {h1, h2} is homogeneous of degree one. Hence, by Proposition A1, LX{h1,h2}
α = 0, and thus:

0 = LX{h1,h2}
α = L[Xh1 ,Xh2 ]

α = LXh1
LXh2

α−LXh2
LXh1

α =

LXh1
(−dh2)−LXh2

(−dh1) = −2{h1, h2}
(A14)

where in the fourth equality, we use (A12) for h1 and h2.
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Abstract: In this paper, we survey our recent results on the variational formulation of
nonequilibrium thermodynamics for the finite-dimensional case of discrete systems, as well as for the
infinite-dimensional case of continuum systems. Starting with the fundamental variational principle
of classical mechanics, namely, Hamilton’s principle, we show, with the help of thermodynamic
systems with gradually increasing complexity, how to systematically extend it to include irreversible
processes. In the finite dimensional cases, we treat systems experiencing the irreversible processes
of mechanical friction, heat, and mass transfer in both the adiabatically closed cases and open
cases. On the continuum side, we illustrate our theory using the example of multicomponent
Navier–Stokes–Fourier systems.

Keywords: nonequilibrium thermodynamics; variational formulation; nonholonomic constraints;
irreversible processes; discrete thermodynamic systems; continuum thermodynamic systems

1. Introduction

This paper reviews our recent work on the development of a variational formulation of
nonequilibrium thermodynamics, as established in [1–4]. This formulation extends to nonequilibrium
thermodynamics of the Lagrangian formulation of classical and continuum mechanics that include
irreversible processes, such as friction, heat, and mass transfer, chemical reactions, and viscosity.

1.1. Some History of the Variational Approaches to Thermodynamics

Thermodynamics was first developed to treat exclusively equilibrium states and the transition
from one equilibrium state to another in which a change in temperature plays an important role.
In this context, thermodynamics appeared mainly as a theory of heat, and it is viewed today as
a branch of equilibrium thermodynamics. Such a classical theory, which does not aim to describe the
time evolution of the system, can be developed in a well-established setting [5] governed by the
well-known first and second laws, e.g., [6,7]. It is worth noting that classical mechanics, fluid dynamics,
and electromagnetism, being essentially dynamical theories, cannot be treated in the context of
equilibrium thermodynamics. Although much effort has been applied to the theoretical investigation of
nonequilibrium thermodynamics in relation to physics, chemistry, biology, and engineering, the theory
of nonequilibrium thermodynamics has not reached the level of completeness. This is in part due
to the lack of a general variational formulation for nonequilibrium thermodynamics that would
reduce to the classical Lagrangian variational formulation of mechanics in absence of irreversible
processes. So far, various variational approaches have been proposed in relation to nonequilibrium
thermodynamics. For example, the principle of least dissipation of energy, introduced in [8] and later
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extended in [9,10], underlies the reciprocal relations in linear phenomenological laws, and the principle
of minimum entropy production by [11,12] sets conditions on steady-state processes. Onsager’s approach
was generalized in [13] for systems with nonlinear phenomenological laws. We refer to [14] for reviews
and developments of Onsager’s variational principles and for a study of the relation between Onsager’s
and Prigogine’s principles. We also refer to Section 6 of [15,16] for overviews on variational approaches
to irreversible processes. Note that, however, the variational principles developed in these previous
works are not natural extensions of Hamilton’s principle of classical mechanics, because they do not
recover Hamilton’s principle for the case in which irreversible processes are not included. Another
important work was by [17,18], wherein, in conjunction with thermoelasticity, viscoelasticity, and heat
transfer, a principle of virtual dissipation as a generalized form of the d’Alembert principle was used with
various applications to nonlinear irreversible thermodynamics. In particular, Biot [17] mentioned that
the relations between the rate of entropy production and state variables may be given as nonholonomic
constraints. Nevertheless, this variational approach was restricted to weakly irreversible systems or
thermodynamically holonomic and quasi-holonomic systems. More recently, it was noteworthy that [19]
showed a variational formulation for viscoelastic fluids, in which the internal conversion of mechanical
power into heat power due to frictional forces was written as a nonholonomic constraint. However,
it should be noted that none of the approaches mentioned above present systematic and general
variational formulations of nonequilibrium thermodynamics and are hence restricted to a certain class
of thermodynamic systems.

Following the initial works of [20–22], the geometry of equilibrium thermodynamics has been
mainly studied via contact geometry by [23], with further developments by [24–26]. In this geometric
setting, thermodynamic properties are encoded by Legendre submanifolds of the thermodynamic
phase space. A step toward a geometric formulation of irreversible processes was made in [27] by
lifting port-Hamiltonian systems to the thermodynamic phase space. The underlying geometric
structure in this construction is again a contact form. A description of irreversible processes using
modifications of Poisson brackets was introduced in [28–30]. This was further developed, for instance,
in [31–35]. A systematic construction of such brackets from the variational formulation given in the
present paper was presented in [36] for the thermodynamics of multicomponent fluids.

1.2. Main Features of Our Variational Formulation

The variational formulation for nonequilibrium thermodynamics developed in [1–4] is distinct
from the earlier variational approaches mentioned above, both in its physical meaning and in its
mathematical structure, as well as in its goal. Roughly speaking, while most of the earlier variational
approaches mainly underlie the equation for the rate of entropy production, in order to justify the
expression of the phenomenological laws governing the irreversible processes involved, our variational
approach aims to underlie the complete set of time evolution equations of the system in such a way that it
extends the classical Lagrangian formulation in mechanics to nonequilibrium thermodynamic systems
including irreversible processes.

This is accomplished by constructing a generalization of the Lagrange–d’Alembert principle of
nonholonomic mechanics, where the entropy production of the system, written as the sum of the
contribution of each of the irreversible processes, is incorporated into a nonlinear nonholonomic constraint.
As a consequence, all the phenomenological laws are encoded in the nonlinear nonholonomic constraints,
to which we naturally associate a variational constraint on the allowed variations of the action functional.
A natural definition of the variational constraint in terms of the phenomenological constraint is possible
thanks to the introduction of the concept of thermodynamic displacement, which generalizes the concept
of thermal displacement given by [37] to all the irreversible processes.

More concretely, if the system involves internal irreversible processes, denoted by α,
and irreversible process at the ports, denoted by β, with thermodynamic fluxes Jα, Jβ and

thermodynamic affinities Xα, Xβ together with a thermodynamic affinity Xβ
ext associated with the

exterior, then the thermodynamic displacements Λα, Λβ are such that Λ̇α = Xα and Λ̇β = Xβ.
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This allows us to formulate the variational constraint associated with the phenomenological constraint
in a systematic way, namely, by replacing all the velocities by their corresponding virtual displacement
and by removing the external thermodynamic affinity Xβ

ext at the exterior of the system as follows:

JαΛ̇α + Jβ

(
Λ̇β − Xβ

ext
)

� JαδΛα + JβδΛβ.

Our variational formulation thus has a clear and systematic structure that appears to be common
for the macroscopic description of the nonequilibrium thermodynamics of physical systems. It can be
applied to the finite-dimensional case of discrete systems, such as classical mechanics, electric circuits,
chemical reactions, and mass transfer. Further, our variational approach can be naturally extended to
the infinite-dimensional case of continuum systems; for instance, it can be applied to some nontrivial
example, such as the multicomponent Navier–Stokes–Fourier equations. Again, it is emphasized that
our variational formulation consistently recovers Hamilton’s principle in classical mechanics when
irreversible processes are not taken into account.

1.3. Organization of the Paper

In Section 2, we start with a very elementary review of Hamilton’s variational principle in classical
mechanics and its extension to the case of mechanical systems with external forces. We also briefly
review the variational formulation of mechanical systems with linear nonholonomic constraints by
using the Lagrange–d’Alembert principle. Furthermore, we review the extension of Hamilton’s
principle to continuum systems and illustrate it with the example of compressible fluids in the
Lagrangian description. The variational principle in the Eulerian description is then deduced in the
context of symmetry reduction. In Section 3, we recall the two laws of thermodynamics as formulated
by [38], and we present the variational formulation of nonequilibrium thermodynamics for the
finite-dimensional case of discrete systems. We first consider adiabatically closed simple systems
and illustrate the variational formulation using the case of a movable piston containing an ideal gas
and the case of a system consisting of a chemical species experiencing diffusion between several
compartments. We then consider adiabatically closed non-simple systems, such as the adiabatic
piston with two cylinders and a system with a chemical species experiencing both diffusion and heat
conduction between two compartments. Further, we consider the variational formulation for open
systems and illustrate it with the example of a piston device with ports and heat sources. In Section 4,
we extend the variational formulation of nonequilibrium thermodynamics to the infinite-dimensional
case of continuum systems and consider a multicomponent compressible fluid subject to irreversible
processes due to viscosity, heat conduction, and diffusion. The variational formulation is first given
in the Lagrangian description, from which the variational formulation in the Eulerian description is
deduced. This is illustrated with the multicomponent Navier–Stokes–Fourier equations. In Section 5,
we make some concluding remarks and mention further developments based on the variational
formulation of nonequilibrium thermodynamics, such as variational discretizations, Dirac structures
in thermodynamics, reduction by symmetries, and thermodynamically consistent modeling.

2. Variational Principles in Lagrangian Mechanics

2.1. Classical Mechanics

One of the most fundamental statements in classical mechanics is the principle of critical action
or Hamilton’s principle, according to which the motion of a mechanical system between two given
positions is given by a curve that makes the integral of the Lagrangian of the system critical (see,
for instance, [39]).

Let us consider a mechanical system with configuration manifold Q. For instance, for a system
of N particles moving in the Euclidean 3-space, the configuration manifold is Q = R3N , whereas
for a rigid body moving freely in space, Q = R3 × SO(3), the product of the Euclidean 3-space and
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the rotation group. Let us denote by (q1, ..., qn) the local coordinates of the manifold Q, also known
as generalized coordinates of the mechanical system. Let L be a given Lagrangian of the system,
which usually depends only on the position q and velocity v of the system and is hence defined on the
tangent bundle or velocity phase space, TQ, of the manifold Q. Recall that tangent bundle of a manifold
Q is the manifold TQ given by the collection of all tangent vectors in Q. As a set, it is given by the
disjoint union of the tangent spaces of Q, that is, TQ =  q∈QTqQ, where TqQ is the tangent space to
Q at q. The elements in TqQ are denoted by (q, v). The Lagrangian L is usually given by the kinetic
minus the potential energy of the system: L(q, v) = K(q, v)−U(q).

Hamilton’s principle is written as follows. Suppose that the system occupies the positions q1 and
q2 at the time t1 and t2. Then, the motion q(t) of the mechanical system between these two positions is
a solution of the critical point condition

d
dε

∣∣∣∣
ε=0

∫ t2

t1

L
(
q(t, ε), q̇(t, ε)

)
dt = 0, (1)

where q(t, ε), t ∈ [t1, t2], ε ∈ [−a, a], is an arbitrary variation of the curve q(t) with fixed endpoints,
i.e., q(t, ε)|ε=0 = q(t) and q(t1, ε) = q(t1), q(t2, ε) = q(t2), for all ε. The infinitesimal variation
associated with a given variation q(t, ε) is denoted by

δq(t) :=
d
dε

∣∣∣∣
ε=0

q(t, ε).

From the fixed endpoint conditions, we have δq(t1) = δq(t2) = 0.
The Hamilton principle in Equation (1) is usually written in short form as

δ
∫ t2

t1

L(q, q̇)dt = 0, (2)

for arbitrary infinitesimal variations δq, with δq(t1) = δq(t2) = 0. Throughout this paper, we always
use this short notation for the variational principles and also simply refer to δq for variations.

The direct application of Equation (1) gives, in local coordinates q = (q1, ..., qn),

δ
∫ t2

t1

L(q, q̇)dt =
∫ t2

t1

[
∂L
∂qi δqi +

∂L
∂q̇i δq̇i

]
dt

=
∫ t2

t1

[
∂L
∂qi −

d
dt

∂L
∂q̇i

]
δqi dt +

[
∂L
∂q̇i δqi

]t2

t1

,
(3)

where Einstein’s summation convention is employed. Since δq is arbitrary and since the
boundary term vanishes because of the fixed endpoint conditions, we get from Equation (3) the
Euler–Lagrange equations:

d
dt

∂L
∂q̇i −

∂L
∂qi = 0, i = 1, ..., n. (4)

We recall that L is called regular when the Legendre transform FL : TQ → T∗Q, locally given by
(qi, vi) �→ (qi, ∂L

∂vi ), is a local diffeomorphism, where T∗Q denotes the cotangent bundle or momentum
phase space of Q. Recall that cotangent bundle of a manifold Q is the manifold T∗Q = ∪q∈QT∗q Q,
where T∗q Q is the cotangent space at each q given as the dual space to TqQ. The elements in T∗q Q are
covectors, denoted by (q, p). When L is regular, the Euler–Lagrange Equation (4) yields a second-order
differential equation for the curve q(t).

The energy of a mechanical system with the Lagrangian L is defined on TQ by

E(q, v) =
〈

∂L
∂v

, v
〉
− L(q, v), (5)
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where 〈, 〉 denotes a dual pairing between the elements in T∗q Q and TqQ. It is easy to check that E is
conserved along the solutions of the Euler–Lagrange Equation (4), namely,

d
dt

E(q, q̇) =
(

d
dt

∂L
∂q̇i −

∂L
∂qi

)
q̇i = 0.

Let us assume that the mechanical system is subject to an external force, given by a map Fext :
TQ → T∗Q assumed to be fiber preserving, i.e., Fext(q, v) ∈ T∗q Q for all (q, v) ∈ TqQ. The extension of
Equation (2) to forced mechanical systems is given by

δ
∫ t2

t1

L(q, q̇)dt +
∫ t2

t1

〈
Fext(q, q̇), δq

〉
dt = 0, (6)

for arbitrary variations δq, with δq(t1) = δq(t2) = 0. The second term in Equation (6) is the time
integral of the virtual work

〈
Fext(q, q̇), δq

〉
done by the force field Fext : TQ → T∗Q with a virtual

displacement δq in TQ. The principle in Equation (6) leads to the forced Euler–Lagrange equations

d
dt

∂L
∂q̇i −

∂L
∂qi = Fext

i . (7)

Systems with Nonholonomic Constraints

Hamilton’s principle, as recalled above, is only valid for holonomic systems, i.e., systems without
constraints or whose constraints are given by functions of the coordinates only, not the velocities.
In geometric terms, such constraints are obtained by the specification of a submanifold N of the
configuration manifold Q. In this case, the equations of motion are still given by Hamilton’s principle
for the Lagrangian L restricted to the tangent bundle TN of the submanifold N ⊂ Q.

When the constraints cannot be reduced to relations between the coordinates only, they are called
nonholonomic. Here, we restrict the discussion to nonholonomic constraints that are linear in velocity.
Such constraints are locally given in the form

ωα
i (q)q̇

i = 0, α = 1, ..., k < n, (8)

where ωα
i are functions of local coordinates q = (q1, ..., qn) on Q. Intrinsically, the functions ωα

i are the
components of k independent one-forms ωα on Q, i.e., ωα = ωα

i dqi, for α = 1, ..., k. Typical examples
of linear nonholonomic constraints are those imposed on the motion of rolling bodies, namely,
the velocities of the points in contact should be identical.

For systems with nonholonomic constraints (Equation (8)), the corresponding equations of motion
can be derived from a modification of the Hamilton principle called the Lagrange–d’Alembert principle,
which is given by

δ
∫ t2

t1

L(q, q̇)dt = 0, (9)

for variations δq subject to the condition

ωα
i (q)δqi = 0, α = 1, ..., k < n, (10)

together with the fixed endpoint conditions δq(t1) = δq(t2) = 0. Note the occurrence of two constraints
with distinct roles. First, there is the constraint in Equation (8) on the solution curve called the kinematic
constraint. Second, there is the constraint in Equation (10) on the variations used in the principle,
referred to as the variational constraint. Later, we show that this distinction becomes more noticeable in
nonequilibrium thermodynamics.

A direct application of Equations (9) and (10) yields the Lagrange–d’Alembert equations
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d
dt

∂L
∂q̇i −

∂L
∂qi = λαωα

i . (11)

These equations, together with the constraints in Equation (8), form a complete set of equations
for the unknown curves qi(t) and λα(t).

For more information on nonholonomic mechanics, the reader can consult [40–42]. Note that
the Lagrange–d’Alembert principle (9) is not a critical curve condition for the action integral restricted
to the space of a curve satisfying the constraints. Such a principle, which imposes the constraint via a
Lagrange multiplier, gives equations that are, in general, not equivalent to the Lagrange–d’Alembert
Equation (11), see, e.g., [42,43]. Such equations are sometimes referred to as the vakonomic equations.

2.2. Continuum Mechanics

Hamilton’s principle permits a natural extension to continuum systems, such as fluid and elasticity.
For such systems, the configuration manifold Q is typically a manifold of maps. We shall restrict the
discussion here to fluid mechanics in a fixed domain D ⊂ R3 that is assumed to be bounded by a
smooth boundary ∂D. Hamilton’s principle for fluid mechanics in the Lagrangian description has
been discussed at least since the works of [44] for an incompressible fluid and [45,46] for compressible
flows (see also [47] for further references on these early developments). Hamilton’s principle has since
then been an important modeling tool in continuum mechanics.

2.2.1. Configuration Manifolds

For fluid mechanics in a fixed domain and before the occurrence of any shocks, the configuration
space can be taken as the manifold Q = Diff(D) of diffeomorphisms of D. In this paper, we do
not describe the functional analytic setting needed to rigorously work in the framework of infinite
dimensional manifolds. For example, one can assume that the diffeomorphisms are of some given
Sobolev class, regular enough (at least of class C1) so that Diff(D) is a smooth infinite-dimensional
manifold and a topological group with a smooth right translation. The tangent bundle to Diff(D)

is formally given by the set of vector fields on D covering a diffeomorphism ϕ and tangent to the
boundary, i.e., for each ϕ ∈ Diff(D), we have

Tϕ Diff(D) = {V : D → TD | V(X) ∈ Tϕ(X)D, ∀ X ∈ D, V(X) ∈ Tϕ(X)∂D, ∀ X ∈ ∂D}.

The motion of the fluid is fully described by a curve ϕt ∈ Diff(D) defining the position
x = ϕt(X) at time t of a fluid particle with label X ∈ D. The vector field Vt ∈ Tϕt Diff(D) defined by
Vt(X) = d

dt ϕt(X) is the material velocity of the fluid. In local coordinates, we write xa = ϕa
t (XA) and

Va
t (XA) = d

dt ϕa
t (XA).

2.2.2. Hamilton’s Principle

Given a Lagrangian L : TQ → R defined on the tangent bundle of the infinite-dimensional
manifold Q = Diff(D), Hamilton’s principle formally takes the same form as Equation (2), namely,

δ
∫ t2

t1

L(ϕ, ϕ̇)dt = 0, (12)

for variations δϕ such that δϕt1 = δϕt2 = 0.
Let us consider a Lagrangian of the general form

L(ϕ, ϕ̇) =
∫
D

L (ϕ(X), ϕ̇(X),∇ϕ(X))d3X,

with L being the Lagrangian density and∇ϕ being the Jacobian matrix of ϕ, known as the deformation
gradient in continuum mechanics. The variation of the integral yields
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δ
∫ t2

t1

L(ϕ, ϕ̇)dt =
∫ t2

t1

∫
D

[
∂L

∂ϕa δϕa +
∂L

∂ϕ̇a δϕ̇a +
∂L

∂ϕa
,A

δϕa
,A

]
d3Xdt

=
∫ t2

t1

∫
D

[
∂L

∂ϕa δϕa − ∂

∂t
∂L

∂ϕ̇a −
∂

∂A
∂L

∂ϕa
,A

]
δϕad3Xdt

+
∫
D

[
∂L

∂ϕ̇a δϕa
]t2

t1

d3X +
∫ t2

t1

∫
∂D

∂L

∂ϕa
,A

NAδϕadSdt,

where N is the outward-pointing unit normal vector field to the boundary ∂D, and dS denotes the
area element on the surface ∂D. Hamilton’s principle thus yields the Euler–Lagrange equations and
the boundary condition

∂

∂t
∂L

∂ϕ̇
+ DIV

∂L

∂∇ϕ
=

∂L

∂ϕ
and

∂L

∂∇ϕ
·N

∣∣∣∣
T∂D

= 0 on ∂D, (13)

where the divergence operator is defined as
(

DIV ∂L
∂∇ϕ

)
a =

∂
∂A

∂L
∂ϕa

,A
. The tensor field

P := − ∂L

∂∇ϕ
, i.e. PA

a = − ∂L

∂ϕa
,A

(14)

is called the first Piola–Kirchhoff stress tensor (see, e.g., [48]).

2.2.3. The Lagrangian of the Compressible Fluid

For a compressible fluid, the Lagrangian has the standard form

L(ϕ, ϕ̇) = K(ϕ, ϕ̇)−U(ϕ) =
∫
D

[
1
2

�ref(X)|ϕ̇(X)|2 − E
(
�ref(X), Sref(X),∇ϕ(X)

)]
d3X, (15)

with �ref(X) and Sref(X) being the mass density and entropy density in the reference configuration.
The two terms in Equation (15) are, respectively, the total kinetic energy of the fluid and minus the
total internal energy of the fluid. The function E is a general expression for the internal energy density
written in terms of �ref(X), Sref(X), and the deformation gradient ∇ϕ(X). For fluids, E depends on
the deformation gradient only through the Jacobian of ϕ, denoted by Jϕ. This fact is compatible with
the material covariance property of E , written as

E
(
ψ∗�ref, ψ∗Sref,∇(ϕ ◦ ψ)

)
= ψ∗

[
E
(
�ref, Sref,∇ϕ

)]
, for all ψ ∈ Diff(D), (16)

where the pull-back notation is defined as

ϕ∗ f = ( f ◦ ϕ)Jϕ (17)

for some function f defined onD. From Equation (16), we deduce the existence of a function ε such that

E
(
�ref, Sref,∇ϕ

)
= ϕ∗

[
ε(ρ, s)

]
, for ρ = ϕ∗�ref, s = ϕ∗Sref, (18)

(see [48,49]). The function ε = ε(ρ, s) is the internal energy density in the spatial description expressed
in terms of the mass density ρ and entropy density s.

For the Lagrangian Equation (15) and with the assumption in Equation (16), the first
Piola–Kirchhoff stress tensor (Equation (14)) and its divergence are computed as

PA
a =

∂E

∂ϕa
,A

= −pJϕ(ϕ−1)A
,a and DIV P = (∇p ◦ ϕ)Jϕ, (19)
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where p = ∂ε
∂ρ ρ + ∂ε

∂s s − ε is the pressure. Note that for all δϕa parallel to the boundary, we have

PA
a NAδϕa = −pJϕ(ϕ−1)A

,a NAδϕa = 0, since (ϕ−1)A
,a δϕa is parallel to the boundary. Hence,

the boundary condition in Equation (13) is always satisfied. From Equation (19), the Euler–Lagrange
Equation (13) becomes

�ref ϕ̈ = (∇p ◦ ϕ)Jϕ. (20)

Equation (20) is the equation of motion for a compressible fluid in the material (or Lagrangian)
description, which directly follows from the Hamilton principle in Equation (12) applied to the
Lagrangian Equation (15). It is, however, highly desirable to have a variational formulation that
directly produces the equations of motion in the standard spatial (or Eulerian) description. This is
recalled below in Section 2.3 by using Lagrangian reduction by symmetry.

2.3. Lagrangian Reduction by Symmetry

When symmetry is available in a mechanical system, it is often possible to exploit it in order to
reduce the dimension of the system and thereby facilitate its study. This process, called reduction by
symmetry, is presently well understood on both the Lagrangian and Hamiltonian sides (see [50] for an
introduction and references).

On the Hamiltonian side, this process is based on the reduction of symplectic or Poisson
structures while, on the Lagrangian side, it is usually based on the reduction of variational principles
(see [51–53]). Consider a mechanical system with a configuration manifold Q and Lagrangian
L : TQ → R, and consider also the action of a Lie group G on Q, denoted here simply as q �→ g · q
for g ∈ G, q ∈ Q. This action naturally induces an action on the tangent bundle TQ, denoted here
simply as (q, v) �→ (g · q, g · v), called the tangent-lifted action. We say that the action is a symmetry
for the mechanical system if the Lagrangian L is invariant under this tangent-lifted action. In this
case, L induces a symmetry-reduced Lagrangian � : (TQ)/G → R defined on the quotient space (TQ)/G
of the tangent bundle with respect to the action. The goal of the Lagrangian reduction process is to
derive the equations of motion directly on the reduced space (TQ)/G. Under standard hypotheses
on the action, this quotient space is a manifold, and one obtains the reduced Euler–Lagrange equations
by computing the reduced variational principle for the action integral

∫ t2
t1

�dt induced by Hamilton’s

principle (Equation (2)) for the action integral
∫ t2

t1
L dt. The main difference between the reduced

variational principle and Hamilton’s principle is the occurrence of constraints on the variations to be
considered when computing the critical curves for

∫ t2
t1

�dt. These constraints are uniquely associated
with the reduced character of the variational principle and are not due to physical constraints as in
Equation (10) earlier.

We now quickly recall the application of Lagrangian reduction for the treatment of fluid mechanics
in a fixed domain (see Section 2.2) by following the Euler–Poincaré reduction approach in [54]. In this
case, the Lagrangian reduction process encodes the shift from the material (or Lagrangian) description
to the spatial (or Eulerian) description.

As we recalled above, in the material description, the motion of the fluid is described by a curve
of diffeomorphisms ϕt in the configuration manifold Q = Diff(D), and the evolution Equation (20) for
ϕt follows from the standard Hamilton principle.

In the spatial description, the dynamics are described by the Eulerian velocity v(t, x), the mass
density ρ(t, x) and the entropy density s(t, x), defined in terms of ϕt as

vt = ϕ̇t ◦ ϕ−1
t , ρt = (ϕt)∗�ref, st = (ϕt)∗Sref. (21)

Using these relations and Equation (18), the Lagrangian Equation (15) in the material description
induces the following expression in the spatial description:

�(v, ρ, s) =
∫
D

[
1
2

ρ|v|2 − ε(ρ, s)
]

d3x.
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The symmetry group underlying the Lagrangian reduction process is the subgroup

Diff(D)�red,Sref ⊂ Diff(D)

of diffeomorphisms that preserve both the mass density �ref and entropy density Sref in the reference
configuration. So, we have Q = Diff(D) and G = Diff(D)�red,Sref in the general Lagrangian reduction
setting described above.

From the relations in Equation (21), we deduce that the variations δϕ used in Hamilton’s principle
in Equation (12) induce the variations

δv = ∂tζ + v · ∇ζ − ζ · ∇v, δρ = −div(ρζ), δs = −div(sζ), (22)

where ζ = δϕ ◦ ϕ−1 is an arbitrary time-dependent vector field parallel to ∂D. From Lagrangian
reduction theory, the Hamilton principle in Equation (12) induces, in the Eulerian description,
the (reduced) variational principle

δ
∫ t2

t1

�(v, ρ, s)dt = 0, (23)

for variations δv, δρ, δs constrained by the relations in Equation (22) with ζ(t1) = ζ(t2) = 0.
This principle yields the compressible fluid equations ρ(∂tv + v · ∇v) = −∇p in the Eulerian
description, while the continuity equations ∂tρ + div(ρv) = 0 and ∂ts + div(sv) = 0 follow from
the definition of ρ and s in Equation (21) (see [54]). We refer to [49] for an extension of this Lagrangian
reduction approach to the case of fluids with a free boundary.

The variational formulations in Equations (22) and (23) are extended in Section 4 to include
irreversible processes and are illustrated using the Navier–Stokes–Fourier system as an example.

3. Variational Formulation for Discrete Thermodynamic Systems

In this section, we present a variational formulation for the finite-dimensional case of discrete
thermodynamic systems that reduces to Hamilton’s variational principle in Equation (2) in absence
of irreversible processes. The form of this variational formulation is similar to that of nonholonomic
mechanics recalled earlier (see Equations (8)–(10)) in the sense that the critical curve condition is
subject to two constraints: a kinematic constraint on the solution curve and a variational constraint on the
variations to be considered when computing the criticality condition. A major difference, however,
with the Lagrange–d’Alembert principle recalled above is that the constraints are nonlinear in velocity.
This formulation is extended to continuum systems in Section 4.

Before presenting the variational formulation, we recall below the two laws of thermodynamics
as formulated in [38].

• The two laws of thermodynamics

Let us denote by Σ a physical system and by Σext its exterior. The state of the system is defined
by a set of mechanical variables and a set of thermal variables. State functions are functions of these
variables. Stueckelberg’s formulation of the two laws is given as follows.

• First law:

For every system Σ, there exists an extensive scalar state function E, called energy, which satisfies

d
dt

E(t) = Pext
W (t) + Pext

H (t) + Pext
M (t),

where Pext
W is the power associated with the work done on the system (here, work includes not only mechanical

work by the action of forces but also other physical work, such as that by the action of electric voltages,
etc.), Pext

H is the power associated with the transfer of heat into the system, and Pext
M is the power associated
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with the transfer of matter into the system. As we recall below, a transfer of matter into the system is
associated with a transfer of work and heat. By convention, Pext

W and Pext
H denote uniquely the power

associated with a transfer of work and heat into the system that is not associated with a transfer of matter.
The power associated with a transfer of heat or work due to a transfer of matter is included in Pext

M .
Given a thermodynamic system, the following terminology is generally adopted:

• A system is said to be closed if there is no exchange of matter, i.e., Pext
M (t) = 0.

When Pext
M (t) �= 0, the system is said to be open.

• A system is said to be adiabatically closed if it is closed and there are no heat exchanges,
i.e., Pext

M (t) = Pext
H (t) = 0.

• A system is said to be isolated if it is adiabatically closed and there is no mechanical power
exchange, i.e., Pext

M (t) = Pext
H (t) = Pext

W (t) = 0.

From the first law, it follows that the energy of an isolated system is constant.

• Second law:

For every system Σ, there exists an extensive scalar state function S, called entropy, which obeys
the following two conditions

(a) Evolution part:

If the system is adiabatically closed, the entropy S is a non-decreasing function with respect to
time, i.e.,

d
dt

S(t) = I(t) ≥ 0,

where I(t) is the entropy production rate of the system accounting for the irreversibility of internal
processes.

(b) Equilibrium part:

If the system is isolated, as time tends to infinity, the entropy tends toward a finite local maximum
of the function S over all thermodynamic states ρ compatible with the system, i.e.,

lim
t→+∞

S(t) = max
ρ compatible

S[ρ].

By definition, the evolution of an isolated system is said to be reversible if I(t) = 0, namely,
the entropy is constant. In general, the evolution of a system Σ is said to be reversible if the evolution of
the total isolated system with which Σ interacts is reversible.

Based on this formulation of the two laws, Stueckelberg and Scheurer [38] developed a systematic
approach for the derivation of the equations of motion for thermodynamic systems; it is especially
well suited for the understanding of nonequilibrium thermodynamics as an extension of classical
mechanics. We refer, for instance, to [55–57] for the applications of Stueckelberg’s approach to the
derivation of equations of motion for thermodynamical systems.

We present our approach by considering systems with gradually increasing level of complexity.
First we treat adiabatically closed systems that have only one entropy variable or, equivalently,
one temperature. Such systems, called simple systems, may involve the irreversible processes
of mechanical friction and internal matter transfer. Then, we treat a more general class of
finite-dimensional adiabatically closed thermodynamic systems with several entropy variables,
which may also involve the irreversible process of heat conduction. We then consider open
finite-dimensional thermodynamic systems, which can exchange heat and matter with the exterior.
Finally, we explain how chemical reactions can be included in the variational formulation.
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3.1. Adiabatically Closed Simple Thermodynamic Systems

We present below the definition of finite-dimensional and simple systems following [38].
A finite-dimensional thermodynamic system Σ is a collection Σ = ∪P

A=1ΣA of a finite number of
interacting simple thermodynamic systems ΣA. By definition, a simple thermodynamic system is a
macroscopic system for which one (scalar) thermal variable and a finite set of nonthermal variables
are sufficient to entirely describe the state of the system. From the second law of thermodynamics,
we can always choose the entropy S as a thermal variable. A typical example of such a simple
system is the one-cylinder problem. We refer to [55] for a systematic treatment of this system via
Stueckelberg’s approach.

3.1.1. Variational Formulation for Mechanical Systems with Friction

We consider here a simple system which can be described only by a single entropy as a
thermodynamic variable, besides mechanical variables. As in Section 2.1 above, let Q be the
configuration manifold associated with the mechanical variables of the simple system. The Lagrangian
of the simple thermodynamic system is thus a function:

L : TQ×R→ R, (q, v, S) �→ L(q, v, S),

where S ∈ R is the entropy. We assume that the system involves external and friction forces given
by fiber-preserving maps Fext, Ffr : TQ×R → T∗Q, i.e., such that Ffr(q, v, S) ∈ T∗q Q, similar to Fext.
As stated in [1], the variational formulation for this simple system is given as follows:

Find the curves q(t), S(t) which are critical for the variational condition

δ
∫ t2

t1

L(q, q̇, S)dt +
∫ t2

t1

〈
Fext(q, q̇, S), δq

〉
dt = 0, (24)

subject to the phenomenological constraint

∂L
∂S

(q, q̇, S)Ṡ =
〈

Ffr(q, q̇, S), q̇
〉

, (25)

and for variations subject to the variational constraint

∂L
∂S

(q, q̇, S)δS =
〈

Ffr(q, q̇, S), δq
〉

, (26)

with δq(t1) = δq(t2) = 0.

Taking variations of the integral in Equation (24), integrating by parts, and using δq(t1) = δ(t2) = 0,
it follows that ∫ t2

t1

[(
∂L
∂qi −

d
dt

∂L
∂q̇i + Fext

i

)
δqi +

∂L
∂S

δS
]

dt.

From the variational constraint in Equation (26), the last term in the integrand of the above
equation can be replaced by Ffr

i δqi. Hence, using Equation (25), we get the following system of
evolution equations for the curves q(t) and S(t):⎧⎪⎪⎨⎪⎪⎩

d
dt

∂L
∂q̇
− ∂L

∂q
= Ffr(q, q̇, S) + Fext(q, q̇, S),

∂L
∂S

Ṡ =
〈

Ffr(q, q̇, S), q̇
〉

.

(27)
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This variational formulation is a generalization of Hamilton’s principle in Lagrangian mechanics
in the sense that it can yield irreversible processes in addition to the Lagrange–d’Alembert equations
with external and friction forces. In this generalized variational formulation, the temperature is defined
as minus the derivative of L with respect to S, i.e., T = − ∂L

∂S , which is assumed to be positive. When the
Lagrangian has the standard form

L(q, v, S) = K(q, v)−U(q, S),

where the kinetic energy K is assumed to be independent of S, and U(q, S) is the internal energy,
then T = − ∂L

∂S = ∂U
∂S recovers the standard definition of the temperature in thermodynamics.

When the friction force vanishes, the entropy is constant from the second equation in Equation (27),
and hence, the system in Equation (27) reduces to the forced Euler–Lagrange equations in classical
mechanics for a Lagrangian depending parametrically on a given constant entropy S0.

The total energy associated with the Lagrangian is still defined by the same expression as in
Equation (5) except that it now depends on S, i.e., we define the total energy E : TQ×R→ R by

E(q, v, S) =
〈

∂L
∂v

, v
〉
− L(q, v, S). (28)

Along the solution curve of Equation (27), we have

d
dt

E =

(
d
dt

∂L
∂q̇i −

∂L
∂qi

)
q̇i − ∂L

∂S
Ṡ = Fext

i q̇i = Pext
W ,

where Pext
W is the power associated with the work done on the system. This is nothing but the statement

of the first law for the thermodynamic system, as in Equation (27).
The rate of entropy production of the system is

Ṡ = − 1
T

〈
Ffr, q̇

〉
.

The second law states that the internal entropy production is always positive, from which the
friction force is dissipative, i.e.,

〈
Ffr(q, q̇, S), q̇

〉
≤ 0 for all (q, q̇, S). This suggests the phenomenological

relation Ffr
i = −λij q̇j, where λij, i, j = 1, ..., n are functions of the state variables, with the symmetric

part of the matrix λij positive semi-definite, which are determined by experiments.

Remark 1 (Phenomenological and variational constraints). The explicit expression of the constraint in
Equation (25) involves phenomenological laws for the friction force Ffr, which is why we refer to it as a
phenomenological constraint. The associated constraint in Equation (26) is called a variational constraint since
it is a condition on the variations to be used in Equation (24). Note that the constraint in Equation (25) is
nonlinear and also that one shifts from the variational constraint to the phenomenological constraint by formally
replacing the time derivatives q̇, Ṡ by the variations δq, δS:

∂L
∂S

Ṡ =
〈

Ffr, q̇
〉

� ∂L
∂S

δS =
〈

Ffr, δq
〉

.

Such a systematic correspondence between the phenomenological and variational constraints will hold,
in general, for our variational formulation of thermodynamics, as we present in detail below.

Remark 2. In our macroscopic description, it is assumed that the macroscopically “slow ” or collective motion of
the system can be described by q(t), while the time evolution of the entropy S(t) is determined from the
microscopically “fast ” motions of molecules through statistical mechanics under the assumption of local
equilibrium. It follows from statistical mechanics that the internal energy U(q, S), given as a potential energy at
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the macroscopic level, is essentially coming from the total kinetic energy associated with the microscopic motion
of molecules, which is directly related to the temperature of the system.

Example 1 (piston). Consider a gas confined by a piston in a cylinder as in Figure 1. This is an example of a
simple adiabatically closed system, whose state can be characterized by (q, v, S).

q

m

F fr

U(q,S)

Ideal gas F
ext

ext

Figure 1. One cylinder.

The Lagrangian is given by L(q, v, S) = 1
2 mv2 − U(q, S), where m is the mass of the piston;

U(q, S) := U(S, V = Aq, N0), where U(S, V, N) is the internal energy of the gas, N0 is the constant number
of moles, V = αq is the volume, and α is the constant area of the cylinder. Note that we have

∂U
∂S

(q, S) = T(q, S) and
∂U
∂q

(q, S) = −p(q, S)α,

where T is temperature and p = − ∂U
∂V is the pressure. The friction force reads Ffr(q, q̇, S) = −λ(q, S)q̇,

where λ(q, S) ≥ 0 is the phenomenological coefficient, which is determined experimentally.
Following Equations (24)–(26), the variational formulation is given by

δ
∫ t2

t1

[
1
2

mq̇2 −U(q, S)
]

dt +
∫ t2

t1

Fext(q, q̇, S)δq dt = 0,

subject to the phenomenological constraint

∂U
∂S

(q, S)Ṡ = λ(q, S)q̇2.

and for variations subject to the variational constraint

∂U
∂S

(q, S)δS = λ(q, S)q̇δq.

From this principle, we get the equations of motion for the piston-cylinder system as

mq̈ = p(q, S)α + Fext − λ(q, S)q̇, T(q, S)Ṡ = λ(q, S)q̇2,

consistent with the equations derived in Section 4 of [55]. We can verify the energy balance, i.e., the first law,
as d

dt E = Fextq̇, where E = 1
2 mq̇2 + U is the total energy.

3.1.2. Variational Formulation for Systems with Internal Mass Transfer

We here extend the previous variational formulation to the finite-dimensional case of discrete
systems experiencing internal diffusion processes. Diffusion is particularly important in biology,
as many processes depend on the transport of chemical species through bodies. For instance,
the setting that we develop is well suited for the description of diffusion across composite membranes,
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e.g., composed of different elements arranged in a series or parallel array, which occurs frequently in
living systems and has remarkable physical properties (see [58–61]).

As illustrated in Figure 2, we consider a thermodynamic system consisting of K compartments
that can exchange matter by diffusion across walls (or membranes) of their common boundaries.
We assume that the system has a single species, and we denote by Nk the number of moles of the
species in the k-th compartment, k = 1, ..., K. We assume that the thermodynamic system is simple;
i.e., a uniform entropy S, the entropy of the system, is attributed to all the compartments.

1

2

3

4

5J 1→2

J 2→3

J 3→5J 3→1

J 1→4 N

N

N

N
N

4

1

2

3

5

Compartment

Compartment

Compartment

Compartment

Compartment

S

S

S

S

S

,

,

,
,

,

Figure 2. Simple adiabatically closed system with a single chemical species experiencing diffusion
among several compartments.

For each compartment k = 1, ..., K, the mole balance equation is

d
dt

Nk =
K

∑
�=1

J �→k,

where J �→k = −J k→� is the molar flow rate from compartment � to compartment k due to diffusion of
the species. We assume that the simple system also involves mechanical variables, friction, and exterior
forces Ffr and Fext, as in (A). The Lagrangian of the system is thus a function:

L : TQ×R×RK → R, (q, v, S, N1, ..., NK) �→ L (q, v, S, N1, ..., NK) .

Thermodynamic displacements associated with matter exchange. The variational formulation involves
the new variables Wk, k = 1, ..., K, which are examples of thermodynamic displacements and play a
central role in our formulation. In general, we define the thermodynamic displacement associated with
an irreversible process as the primitive in time of the thermodynamic force (or affinity) of the process.
This force (or affinity) thus becomes the rate of change of the thermodynamic displacement. In the
case of matter transfer, Ẇk corresponds to the chemical potential of Nk.

The variational formulation for a simple system with an internal diffusion process is stated
as follows.

Find the curves q(t), S(t), Wk(t), Nk(t) which are critical for the variational condition

δ
∫ t2

t1

[
L (q, q̇, S, N1, ..., NK) + Ẇk Nk

]
dt +

∫ t2

t1

〈
Fext, δq

〉
dt = 0, (29)
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subject to the phenomenological constraint

∂L
∂S

Ṡ =
〈

Ffr, q̇
〉
+

K

∑
k,�=1

J �→kẆk, (30)

and for variations subject to the variational constraint

∂L
∂S

δS =
〈

Ffr, δq
〉
+

K

∑
k,�=1

J �→kδWk, (31)

with δq(t1) = δq(t2) = 0 and δWk(t1) = δWk(t2) = 0, k = 1, ..., K.

Taking variations of the integral in Equation (29), integrating by parts, and using
δq(t1) = δq(t2) = 0 and δWk(t1) = δWk(t2) = 0, it follows that

∫ t2

t1

[(
∂L
∂qi −

d
dt

∂L
∂q̇i + Fext

i

)
δqi +

∂L
∂S

δS +

(
∂L

∂Nk
+ Ẇk

)
δNk − ṄkδWk

]
dt.

Then, using the variational constraint in Equation (31), we get the following conditions:

δqi :
d
dt

∂L
∂q̇i −

∂L
∂qi = Ffr

i + Fext
i , i = 1, ..., n,

δNk :
d
dt

Wk = − ∂L
∂Nk

, k = 1, ..., K,

δWk :
d
dt

Nk =
K

∑
�=1

J �→k, k = 1, ..., K.

(32)

These conditions, combined with the phenomenological constraint in Equation (30), yield the
system of evolution equations for the curves q(t), S(t), and Nk(t):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

∂L
∂q̇
− ∂L

∂q
= Ffr + Fext,

d
dt

Nk =
K

∑
�=1

J �→k, k = 1, ..., K,

∂L
∂S

Ṡ =
〈

Ffr, q̇
〉
− ∑

k<�

J �→k
(

∂L
∂Nk

− ∂L
∂N�

)
.

(33)

The total energy is defined as in Equations (5) and (28) and depends here on the mechanical
variables (q, v) ∈ TQ, the entropy S, and the number of moles Nk, k = 1, ..., K, i.e., we define
E : TQ×R×RK → R as

E (q, v, S, N1, ..., NK) =

〈
∂L
∂v

, v
〉
− L (q, v, S, N1, ..., NK) . (34)

On the solutions of Equation (33), we have

d
dt

E =

(
d
dt

∂L
∂q̇i −

∂L
∂qi

)
q̇i − ∂L

∂S
Ṡ− ∂L

∂Nk
Ṅk = Fext

i q̇i = Pext
W ,

where Pext
W is the power associated with the work done on the system. This is the statement of the first

law for the thermodynamic system in Equation (33).
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For a given Lagrangian L, the temperature and chemical potentials of each compartment are
defined as

T := −∂L
∂S

and μk := − ∂L
∂Nk

, k = 1, ..., K.

The last equation in Equation (33) yields the rate of entropy production of the system as

Ṡ = − 1
T

〈
Ffr, q̇

〉
+

1
T ∑

k<�

J k→�(μk − μ�),

where the two terms correspond, respectively, to the rate of entropy production due to mechanical
friction and to matter transfer. The second law suggests the phenomenological relations

Ffr
i = −λij q̇j and J k→� = Gkl(μk − μ�),

where λij, i, j = 1, ..., n and Gk�, k, � = 1, ..., K are functions of the state variables, with the symmetric
part of the matrix λij positive semi-definite and with Gk� ≥ 0 for all k, �.

Example 2 (mass transfer associated with nonelectrolyte diffusion through a homogeneous membrane).
We consider a system with diffusion due to internal matter transfer through a homogeneous membrane separating
two reservoirs. We suppose that the system is simple (so it is described by a single entropy variable) and involves
a single chemical species. We assume that the membrane consists of three regions, namely, the central layer
denotes the membrane capacitance in which energy is stored without dissipation, while the outer layers indicate
transition regions in which dissipation occurs with no energy storage. We denote by Nm the number of mole of
this chemical species in the membrane and by N1 and N2 the numbers of mole in reservoirs 1 and 2, as shown in
Figure 3. Define the Lagrangian by L(S, N1, N2, Nm) = −U(S, N1, N2, Nm), where U(S, N1, N2, Nm) denotes
the internal energy of the system, and assume that the volumes are constant and the system is isolated. We denote
by μk = ∂U

∂Nk
the chemical potential of the chemical species in the reservoirs (k = 1, 2) and in the membrane

(k = m). The flux from reservoir 1 into the membrane is denoted by J 1→m, and the flux from the membrane
into reservoir 2 is denoted by J m→2.

¹ ¹ ¹

J

m1 2Reservoir Reservoir

Membrane

One chemical
component

J1

1

2

2

m

m

m

Figure 3. Nonelectrolyte diffusion through a homogeneous membrane.

The variational condition for the diffusion process is provided by

δ
∫ t2

t1

[
L(S, N1, N2, Nm) + Ẇ1N1 + Ẇ2N2 + ẆmNm

]
dt = 0, (35)

subject to the phenomenological constraint

∂L
∂S

Ṡ = J m→1(Ẇ1 − Ẇm) + J m→2(Ẇ2 − Ẇm) (36)
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and for variations subject to the variational constraint

∂L
∂S

δS = J m→1(δW1 − δWm) + J m→2(δW2 − δWm), (37)

with δWk(ti) = 0 for k = 1, 2, m and i = 1, 2.
Thus, it follows that

Ṅ1 = J m→1, Ṅm = J 1→m + J 2→m, Ṅ2 = J m→2 (38)

and Ẇ1 = μ1, Ẇ2 = μ2, Ẇm = μm. The constraint in Equation (36) becomes

− TṠ = J m→1(μ1 − μm) + J m→2(μ2 − μm), (39)

where T = − ∂L
∂S . Equations (38) and (39) are equivalent to those derived in ([61] Section 2.2).

From Equations (38) and (39), we have energy conservation d
dt U = 0, which is consistent with the fact

that the system is isolated.

3.2. Adiabatically Closed Non-Simple Thermodynamic Systems

We now consider a general finite-dimensional system Σ = ∪P
A=1ΣA composed of interconnected

simple thermodynamic systems ΣA, as illustrated in Figure 4. This class of non-simple interconnected
systems extends the class of interconnected mechanical systems (see [62]) to include the irreversible
processes. In addition to the irreversible processes of friction and mass transfer described earlier,
these systems can also involve the process of heat conduction.

The main difference from the previous cases is the occurrence of several entropy variables,
namely, each subsystem ΣA has an entropy denoted by SA, A = 1, ..., P. Besides the variables SA,
each subsystem ΣA may also be described by mechanical variables qA ∈ QA and number of moles
(NA,1, ..., NA,KA) ∈ RKA , where QA is a configuration manifold for a mechanical variable associated
with ΣA and where KA is the number of compartments in a simple system ΣA. For simplicity,
we assume that independent mechanical coordinates q ∈ Q have been chosen to represent the
mechanical configuration of the interconnected system Σ. The state variables needed to describe
this system are

(q, v) ∈ TQ, SA, A = 1, ..., P, NA,k, k = 1, ..., KA, A = 1, ..., P. (40)
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ext

ext
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5

6

4

Figure 4. Non-simple interconnected system.
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We present the variational formulation for these systems in two steps, exactly as in Section 3.1,
by first considering the case without any transfer of mass.

3.2.1. Variational Formulation for Systems with Friction and Heat Conduction

Besides the entropies SA, A = 1, ..., P, these systems only involve mechanical variables.
The Lagrangian of the system is thus a function:

L : TQ ×RP → R, (q, v, S1, ..., SP) �→ L (q, v, S1, ..., SP) .

We denote by Fext→A : T∗Q×RP → T∗Q the external force acting on subsystem ΣA. Consistent
with the fact that the mechanical variables q = (q1, ..., qn) describe the configuration of the entire
interconnected system Σ, only the total exterior force Fext = ∑P

A=1 Fext→A appears explicitly in
the variational condition in Equation (42). We denote by Ffr(A) : T∗Q × RP → T∗Q the friction
forces experienced by subsystem ΣA. This friction force is at the origin of an entropy production
for subsystem ΣA and appears explicitly in the phenomenological constraint (Equation (43)) and the
variational constraint (Equation (44)) of the variational formulation. We also introduce the fluxes JAB,
A �= B associated with the heat exchange between subsystems ΣA and ΣB and such that JAB = JBA.
The relation between the fluxes JAB and the heat power exchange PA→B

H are given later. For the
construction of variational structures, it is convenient to define the flux JAB for A = B as

JAA := − ∑
B �=A

JAB,

so that we have
P

∑
A=1

JAB = 0, for all B. (41)

Thermodynamic displacements associated with heat exchange. To incorporate heat exchange into our
variational formulation, the new variables ΓA, A = 1, ..., P are introduced. These are again examples of
thermodynamic displacements in the same way as we defined Wk before. For the case of heat exchange,
Γ̇A corresponds to the temperature of the subsystem ΣA, where ΓA is identical to the thermal displacement
employed in [37], which was originally introduced by [63]. The introduction of ΓA is accompanied by
the introduction of an entropy variable ΣA whose meaning will be clarified later.

Now, the variational formulation for a system with friction and heat conduction is stated
as follows:

Find the curves q(t), SA(t), ΓA(t), ΣA(t) which are critical for the variational condition

δ
∫ t2

t1

[
L (q, q̇, S1, ..., SK) + Γ̇A(SA − ΣA)

]
dt +

∫ t2

t1

〈
Fext, δq

〉
dt = 0, (42)

subject to the phenomenological constraint

∂L
∂SA

Σ̇A =
〈

Ffr(A), q̇
〉
+ JABΓ̇B, for A = 1, ..., P, (43)

and for variations subject to the variational constraint

∂L
∂SA

δΣA =
〈

Ffr(A), δq
〉
+ JABδΓB, for A = 1, ..., P, (44)

with δq(t1) = δq(t2) = 0 and δΓA(t1) = δΓA(t2) = 0, A = 1, ..., P.
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Taking variations of the integral in Equation (42), integrating by parts, and using
δq(t1) = δ(t2) = 0 and δΓA(t1) = δΓA(t2) = 0, it follows that

∫ t2

t1

[(
∂L
∂qi −

d
dt

∂L
∂q̇i + Fext

i

)
δqi +

∂L
∂SA

δSA − (ṠA − Σ̇A)δΓA + Γ̇A(δSA − δΣA)

]
dt = 0.

Then, using the variational constraint (Equation (44)), we get the following conditions:

δqi :
∂L
∂qi −

d
dt

∂L
∂q̇i −

P

∑
A=1

Γ̇A

∂L
∂SA

Ffr(A)
i + Fext

i = 0, i = 1, ..., n,

δSA :
∂L

∂SA
+ Γ̇A = 0, A = 1, ..., P,

δΓA : − ṠA + Σ̇A −
P

∑
B=1

Γ̇A

∂L
∂SA

JBA = 0, A = 1, ..., P.

The second equation yields

Γ̇A = − ∂L
∂SA

=: TA, (45)

where TA is the temperature of the subsystem ΣA. This implies that ΓA is a thermal displacement.
Because of Equation (41), the last equation yields ṠA = Σ̇A. Hence, using Equation (43), we get the
following system of evolution equations for the curves q(t) and SA(t):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d
dt

∂L
∂q̇
− ∂L

∂q
=

P

∑
A=1

Ffr(A) + Fext,

∂L
∂SA

ṠA =
〈

Ffr(A), q̇
〉
−

P

∑
B=1

JAB

(
∂L

∂SB
− ∂L

∂SA

)
, A = 1, ..., P.

(46)

As before, we have d
dt E =

〈
Fext, q̇

〉
= Pext

W , where the total energy E is defined in the same way as
before. Since the system is non-simple, it is instructive to analyze the energy behavior of each subsystem.
This can be done if the Lagrangian is given by the sum of the Lagrangians of the subsystems, i.e.,

L(q, v, S1, ..., SP) =
P

∑
A=1

LA(q, v, SA).

The mechanical equation for ΣA is given as

d
dt

∂LA
∂q̇

− ∂LA
∂q

= Ffr(A) + Fext→A +
P

∑
B=1

FB→A,

where FB→A = −FA→B is the internal force exerted by ΣB on ΣA. Denoting EA as the total energy of
ΣA, we have

d
dt

EA =
〈

Fext→A, q̇
〉
+

P

∑
B=1

〈
FB→A, q̇

〉
+

P

∑
B=1

JAB

(
∂L

∂SB
− ∂L

∂SA

)

= Pext→A
W +

P

∑
B=1

PB→A
W +

P

∑
B=1

PB→A
H ,

(47)

where Pext→A
W and PB→A

W denote the power associated with the work done on ΣA by the exterior and
that by the subsystem ΣB, respectively, and where PB→A

H is the power associated with the heat transfer
from ΣB to ΣA. The link between the flux JAB and the power exchange is thus

PB→A
H = JAB(TA − TB).
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Since entropy is an extensive variable, the total entropy of the system is S = ∑P
A=1 SA.

From Equation (46), it follows that the rate of total entropy production Ṡ = ∑P
A=1 ṠA of the system is

given by

Ṡ = −
P

∑
A=1

1
TA

〈
Ffr(A), q̇

〉
+

K

∑
A<B

JAB

(
1

TB −
1

TA

)
(TB − TA). (48)

The second law suggests the phenomenological relations

Ffr(A)
i = −λA

ij q̇j and JAB
TA − TB

TATB = LAB(TB − TA), (49)

where λA
ij and LAB are functions of the state variables, with the symmetric part of the matrices

λA
ij positive semi-definite and with LAB ≥ 0 for all A, B. From the second relation, we deduce

JAB = −LABTATB = −κAB, with κAB = κAB(q, SA, SB) being the heat conduction coefficients between
subsystem ΣA and subsystem ΣB.

Example 3 (The adiabatic piston). We consider a piston-cylinder system composed of two cylinders connected
by a rod, each of which contains a fluid (or an ideal gas) and is separated by a movable piston, as shown in
Figure 5. We assume that the system is isolated. Despite its apparent simplicity, this system has attracted a lot of
attention in the literature because there has been some controversy about the final equilibrium state of this system
when the piston is adiabatic. We refer to [55] for a review of this challenging problem and for the derivation of
the time evolution of this system, based on the approach of [38].

§

m

`

1 m3 m2
T         S2
2
,

T         S1
1
,

1

§3

§2

®1, ®2,

q Dr - q` -=

Figure 5. The two-cylinder problem.

The system Σ may be regarded as an interconnected system consisting of three simple systems; namely,
the two pistons Σ1, Σ2 of mass m1, m2 and the connecting rod Σ3 of mass m3. As illustrated in Figure 5, q and
r = D − �− q denote, respectively, the distance between the bottom of each piston to the top, where D is a
constant. In this setting, we choose the variables (q, v, S1, S2) (the entropy associated with Σ3 is constant) to
describe the dynamics of the interconnected system, and the Lagrangian is given by

L(q, v, S1, S2) =
1
2

Mv2 −U1(q, S1)−U2(q, S2), (50)

where M := m1 + m2 + m3, and

U1(q, S1) := U1(S1, V1 = α1q, N1), U2(q, S2) := U2(S2, V2 = α2r, N2),

with Ui(Si, Vi, Ni) as the internal energies of the fluids, Ni as the constant number of moles, and αi as the
constant areas of the cylinders, i = 1, 2.

As in Equation (49), we have Ffr(A)(q, q̇, SA) = −λAq̇, with λA = λA(q, SA) ≥ 0, A = 1, 2 and
JAB = −κAB =: −κ, where κ = κ(S1, S2, q) ≥ 0 is the heat conductivity of the connecting rod.
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From the variational formulations (Equations (42)–(44)), we get the following system for q(t), S1(t), S2(t),
in light of Equation (46), as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Mq̈ = p1(q, S1)α1 − p2(q, S2)α2 − (λ1 + λ2)q̇,

T1(q, S1)Ṡ1 = λ1q̇2 + κ
(

T2(q, S2)− T1(q, S1)
)

,

T2(q, S2)Ṡ2 = λ2q̇2 + κ
(

T1(q, S1)− T2(q, S2)
)

,

where we used ∂Ui
∂Si

(q, Si) = Ti(q, Si),
∂U1
∂q = −p1(q, S1)α1, and ∂U2

∂q = p2(q, S2)α2.

These equations recover those derived in [55], (51)–(53). We have d
dt E = 0, where E = 1

2 Mq̇2 +

U1(q, S1) + U(q, S2), consistent with the fact that the system is isolated. The rate of total entropy production is

d
dt

S =

(
λ1

T1 +
λ2

T2

)
q̇2 + κ

(T2 − T1)2

T1T2 ≥ 0.

The equations of motion for the adiabatic piston are obtained by setting κ = 0.

3.2.2. Variational Formulation for Systems with Friction, Heat Conduction, and Internal Mass Transfer

We extend the previous case to one in which the subsystems ΣA not only exchange work and heat
but also exchange matter. In general, each subsystem may itself have several compartments, in which
case the variables are those listed in Equation (40). For simplicity, we assume that each subsystem has
only one compartment. The reader can easily extend this approach to the general case. The Lagrangian
is thus a function:

L : TQ×RP ×RP → R, (q, v, S1, ..., SP, N1, ..., NP) �→ L (q, v, S1, ..., SP, N1, ..., NP) ,

where SA and NA are the entropy and number of moles of subsystem ΣA, A = 1, ..., P. Since the
previous cases are presented in detail above, we here just present the variational formulation and the
resulting equations of motion.

Find the curves q(t), SA(t), ΓA(t), ΣA(t), WA(t), NA(t) which are critical for the variational
condition

δ
∫ t2

t1

[
L (q, q̇, S1, ..., SP, N1, ..., NP) + ẆANA + Γ̇A(SA − ΣA)

]
dt +

∫ t2

t1

〈
Fext, δq

〉
dt = 0, (51)

subject to the phenomenological constraint

∂L
∂SA

Σ̇A =
〈

Ffr(A), q̇
〉
+ JABΓ̇B + J B→AẆA, for A = 1, ..., P, (52)

and for variations subject to the variational constraint

∂L
∂SA

δΣA =
〈

Ffr(A), δq
〉
+ JABδΓB + J B→AδWA, for A = 1, ..., P, (53)

with δq(ti) = δWA(ti) = δΓA(ti) = 0, i = 1, 2, A = 1, ..., P.
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From Equations (51)–(53), we obtain the following system of evolution equations for the curves
q(t), SA(t), and NA(t):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

∂L
∂q̇
− ∂L

∂q
=

P

∑
A=1

Ffr(A) + Fext,

d
dt

NA =
P

∑
B=1

J B→A, A = 1, ..., P,

∂L
∂SA

ṠA =
〈

Ffr(A), q̇
〉
−

P

∑
B=1

JAB

(
∂L

∂SB
− ∂L

∂SA

)
−

P

∑
B=1

J B→A ∂L
∂NA

, A = 1, ..., P.

(54)

We also obtain the conditions

Γ̇A = − ∂L
∂SA

=: TA, ẆA = − ∂L
∂NA

=: μA, Σ̇A = ṠA, A = 1, ..., P,

where we defined the temperature TA and the chemical potential μA of the subsystem ΣA. The variables
ΓA and WA are again the thermodynamic displacements associated with the processes of heat and
matter transfer.

The total energy satisfies d
dt E = Pext

W and the detailed energy balances can be carried out as in
Equation (47) and yields here

PB→A
H+M = JAB(TA − TB).

The rate of total entropy production of the system is computed as

Ṡ = −
P

∑
A=1

1
TA

〈
Ffr(A), q̇

〉
+ ∑

A<B
JAB

(
1

TB −
1

TA

)
(TB − TA) + ∑

A<B
J B→A

(
μB

TB −
μA

TA

)
.

From the second law of thermodynamics, the total entropy production must be positive and hence
suggests the phenomenological relations

Ffr(A)
i = −λA

ij q̇j,

⎡⎣ TA−TB

TATB JAB

J B→A

⎤⎦ = LAB

⎡⎣TB − TA

μB

TB − μA

TA

⎤⎦ , (55)

where the symmetric part of the n × n matrices λA and of the 2 × 2 matrices LAB are positive.
The entries of these matrices are phenomenological coefficients determined experimentally, which may
generally depend on the state variables. From Onsager’s reciprocal relations, the 2× 2 matrix

LAB =

⎡⎣LHH
AB LHM

AB

LMH
AB LMM

AB

⎤⎦
is symmetric for all A, B. The matrix elements LHH

AB and LMM
AB are related to the processes of heat

conduction and diffusion between ΣA and ΣB. The coefficientsLMH
AB andLHM

AB describe the cross-effects,
and hence are associated with discrete versions of the process of thermal diffusion and the Dufour
effect. Thermal diffusion is the process of matter diffusion due to the temperature difference between
the compartments. The Dufour effect is the process of heat transfer due to difference of chemical
potentials between the compartments.

Example 4 (Heat conduction and diffusion between two compartments). We consider a closed system
consisting of two compartments, as illustrated in Figure 6. The compartments are separated by a permeable wall
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through which heat conduction and diffusion is possible. The system is closed and, therefore, there is no matter
transfer with exterior, while we have heat and mass transfer between the compartments.

N1 N 2
S1 S2J 1→2

Compartment Compartment 1 2

J12

Figure 6. Non-simple closed system with a single chemical species, experiencing diffusion and heat
conduction between two compartments.

The Lagrangian of this system is

L(S1, S2, N1, N2) = −U1(S1, N1)−U2(S2, N2),

where Ui(Si, Ni) is the internal energy of the ith chemical species and the volume is assumed to be constant.
In this case, the system in Equation (54) specifies⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ṅ1 = J 2→1, Ṅ2 = J 1→2,

T1Ṡ1 = −J12(T2 − T1)−J 2→1μ1,

T2Ṡ2 = −J12(T1 − T2)−J 1→2μ2,

(56)

where
TA =

∂U
∂SA

, μA =
∂U

∂NA
, A = 1, 2

are the temperatures and chemical potentials of the Ath compartments. From Equation (56), it follows that the
equation for the total entropy S = S1 + S2 of the system is

Ṡ = J12(T1 − T2)

(
1

T1 −
1

T2

)
+ J 1→2

(
μ1

T1 −
μ2

T2

)
≥ 0,

from which the phenomenological relations are obtained as in Equation (55). The energy balance in each
compartment is

d
dt

U1 = −J12(T2 − T1),
d
dt

U2 = −J12(T1 − T2),

which shows the relation between the flux J12 and the power P1→2 = J12(T2 − T1) exchanged between the
two compartments due to heat conduction, diffusion, and their cross-effects. The total energy E = U1 + U2

is conserved.

Remark 3 (General structure of the variational formulation for adiabatically closed systems). In each of
the situation considered, the variational constraint can be systematically obtained from the phenomenological
constraint by replacing the time derivative by the delta variation for each process. For the most general case
treated above, we have the following correspondence:

∂L
∂SA

Σ̇A =
〈

Ffr(A), q̇
〉
+ JABΓ̇B + J B→AẆA � ∂L

∂SA
δΣA =

〈
Ffr(A), δq

〉
+ JABδΓB + J B→AδWA.
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In the above, the quantities to be determined from the state variables by phenomenological laws are Ffr(A),
JAB, and J B→A.

The structure of our variational formulation is better explained by adopting a general point of view. If we
denote by Q the thermodynamic configuration manifold and by x ∈ Q the collection of all the variables of the
thermodynamic system, for instance, x = (q, SA, NA, WA, ΓA, ΣA), A = 1, ..., P in the preceding case, then the
variational formulation for an adiabatically closed system falls into the following abstract setting. Given a
Lagrangian L : TQ → R, an external force F ext : TQ → T∗Q, and fiber-preserving maps Aα : TQ → T∗Q,
Aα(x, v) ∈ T∗xQ, α = 1, ..., k, the variational formulation reads as follows:

δ
∫ t2

t1

L(x(t), ẋ(t))dt +
∫ t2

t1

〈
F ext(x(t), ẋ(t)), δx(t)

〉
dt = 0, (57)

where the curve x(t) satisfies the phenomenological constraint

Aα(x, ẋ)·ẋ = 0, for α = 1, ..., k, (58)

and for variations δx subject to the variational constraint

Aα(x, ẋ)·δx = 0, for α = 1, ..., k, (59)

with δx(t1) = δx(t2) = 0.
This yields the system of equations⎧⎪⎨⎪⎩

d
dt

∂L
∂ẋ

− ∂L
∂x

−F ext = λα Aα(x, ẋ),

Aα(x, ẋ)·ẋ = 0, α = 1, ..., k.
(60)

It is clear that all the variational formulations for the adiabatically closed system considered above fall
into this category by appropriately choosing x, L(x, ẋ), F ext(x, ẋ), and Aα(x, ẋ). The energy defined by
E(x, v) =

〈
∂L
∂v , v

〉
−L(x, v) satisfies d

dtE =
〈
F ext, ẋ

〉
.

The constraints involved in this variational formulation admit an intrinsic geometric description.
The variational constraint (Equation (59)) defines the subset CV ⊂ TQ×Q TQ given by

CV = {(x, v, δx) ∈ TQ×Q TQ | Aα(x, v)·δx = 0, for α = 1, ..., k},

so that CV(x, v) := CV ∩
(
{(x, v)} × TxQ

)
is a vector subspace of TxQ for all (x, v) ∈ TQ.

The phenomenological constraint (Equation (58)) defines the subset CK ⊂ TQ given by

CK = {(x, v) ∈ TQ | Aα(x, v)·v = 0, for α = 1, ..., k}.

Then, one notes that the constraint CK can be intrinsically defined from CV as

CK = {(x, v) ∈ TQ | (x, v) ∈ CV(x, v)}.

Constraints CV and CK related in this way are called nonlinear nonholonomic constraints of thermodynamic
type (see [1,64]).
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3.3. Open Thermodynamic Systems

The thermodynamic systems that we considered so far are restricted to the adiabatically closed
cases. For such systems, interaction with the exterior is only through the exchange of mechanical work,
and hence the first law for such systems reads

d
dt

E =
〈

Fext, q̇
〉
= Pext

W .

We now consider the more general case of open systems exchanging work, heat, and matter with
the exterior. In this case, the first law reads

d
dt

E = Pext
W + Pext

H + Pext
M ,

where Pext
H is the power associated with the transfer of heat into the system and Pext

M is the power
associated with the transfer of matter into the system. As we recall below, the transfer of matter into or
out of the system is associated with a transfer of work and heat. By convention, Pext

W and Pext
H denote

uniquely the power associated with work and heat that is not associated with a transfer of matter.
The power associated with a transfer of heat or work due to a transfer of matter is included in Pext

M .
In order to get a concrete expression for Pext

M , let us consider an open system with several ports,
a = 1, ..., A, through which matter can flow into or out of the system. We suppose, for simplicity,
that the system involves only one chemical species and denote by N the number of moles of this
species. The mole balance equation is

d
dt

N =
A

∑
a=1

J a,

where J a is the molar flow rate into the system through the ath port so that J a > 0 indicates the flow
into the system and J a < 0 indicates the flow out of the system.

As matter enters or leaves the system, it carries its internal, potential, and kinetic energy.
This energy flow rate at the ath port is the product EaJ a of the energy per mole (or molar energy)
Ea and the molar flow rate J a at the ath port. In addition, as matter enters or leaves the system,
it also exerts work on the system that is associated with pushing the species into or out of the system.
The associated energy flow rate is given at the a-th port by J a paVa, where pa and Va are the pressure
and the molar volume of the substance flowing through the ath port. From this, we get the expression

Pext
M =

A

∑
a=1

J a(Ea + paVa). (61)

We refer, for instance, to [65,66] for the detailed explanations of the first law for open systems.
We present below an extension of the variational formulation to the case of open systems. In order

to motivate the form of the constraints that we use, we first consider a particular case of simple open
system, namely, the case of a system with a single chemical species N in a single compartment with
constant volume V and without mechanical effects. In this particular situation, the energy of the
system is given by the internal energy written as U = U(S, N), since V = V0 is constant. The balance
of moles and energy are respectively given by

d
dt

N =
A

∑
a=1

J a,
d
dt

U =
A

∑
a=1

J a(Ua + paVa) =
A

∑
a=1

J aHa

(see Equation (61)), where Ha = Ua + paVa is the molar enthalpy at the ath port and where Ua, pa,
and Va are, respectively, the molar internal energy, the pressure, and the molar volume at the ath
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port. From these equations and the second law, one obtains the equations for the rate of change of the
entropy of the system as

d
dt

S = I +
A

∑
a=1

J aSa, (62)

where Sa is the molar entropy at the ath port and I is the rate of internal entropy production of the
system given by

I =
1
T

A

∑
a=1

J a (Ha − TSa − μ) , (63)

with T = ∂U
∂S being the temperature and μ = ∂U

∂N being the chemical potential. For our variational
treatment, it is useful to rewrite the rate of internal entropy production as

I =
1
T

A

∑
a=1

[
J a

S (T
a − T) + J a(μa − μ)

]
,

where we define the entropy flow rate J a
S := J aSa and also use the relation Ha = Ua + paVa =

μa + TaSa. The thermodynamic quantities known at the ath port are usually the pressure pa and
the temperature Ta, from which the other thermodynamic quantities, such as μa = μa(pa, Ta) or
Sa = Sa(pa, Ta), are deduced in light of the state equations of the gas.

Here, we only show the variational formulation for a simplified case of open systems, namely,
an open system with only one entropy variable and one compartment with a single species. So,
the open system is a simple system. The reader is referred to [3] for the more general cases of open
systems, such as the extensions of Equations (29)–(31) and (51)–(53) to open systems, as well as for the
case when the mechanical energy of the species is taken into account.

The state variables needed to describe the system are (q, v, S, N) ∈ TQ, and the Lagrangian is
a map

L : TQ×R×R→ R, (q, v, S, N) �→ L(q, v, S, N),

We assume that the system has A ports, through which species can flow out of or into the system,
and B heat sources. As above, μa and Ta denote the chemical potential and temperature at the ath port,
and Tb denotes the temperature of the bth heat source.

Find the curves q(t), S(t), Γ(t), Σ(t), W(t), N(t) which are critical for the variational condition

δ
∫ t2

t1

[
L(q, q̇, S, N) + ẆN + Γ̇(S− Σ)

]
dt +

∫ t2

t1

〈
Fext, δq

〉
dt = 0, (64)

subject to the phenomenological constraint

∂L
∂S

Σ̇ =
〈

Ffr, q̇
〉
+

A

∑
a=1

[
J a(Ẇ − μa) + J a

S (Γ̇− Ta)
]
+

B

∑
b=1

J b
S (Γ̇− Tb), (65)

and for variations subject to the variational constraint

∂L
∂S

δΣ =
〈

Ffr, δq
〉
+

A

∑
a=1

[
J aδW + J a

S δΓ
]
+

B

∑
b=1

J b
S δΓ, (66)

with δq(t1) = δq(t2) = 0, δW(t1) = δW(t2) = 0, and δΓ(t1) = δΓ(t2) = 0.

We note that the variational constraint (Equation (66)) follows from the phenomenological
constraint (Equation (65)) by formally replacing the time derivatives Σ̇, q̇, Ẇ, Γ̇ by the corresponding
virtual displacements δΣ, δq, δW, δΓ and by removing all the terms that depend uniquely on
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the exterior, i.e., the terms J aμa, J a
S Ta, and J b

S Tb. Such a systematic correspondence between
the phenomenological and variational constraints extends to open systems the correspondence for
adiabatically closed systems verified in Equations (25) � (26), (30) � (31), (43) � (44), (52) � (53);
see also Remarks 1 and 3. Note that the action functional in Equation (64) has the same form as that in
the case of adiabatically closed systems.

Taking variations of the integral in Equation (64), integrating by parts, and using δq(t1) = δ(t2) = 0,
δW(t1) = δW(t2) = 0, and δΓ(t1) = δΓ(t2) = 0 and using the variational constraint (Equation (66)),
we obtain the following conditions:

δq :
d
dt

∂L
∂q̇i −

∂L
∂qi = Ffr

i + Fext
i , i = 1, ..., n,

δS : Γ̇ = −∂L
∂S

,

δW : Ṅ =
A

∑
a=1

J a,

δN : Ẇ = − ∂L
∂N

,

δΓ : Ṡ = Σ̇ +
A

∑
a=1

J a
S +

B

∑
b=1

J b
S .

(67)

By the second and fourth equations, the variables Γ and W are thermodynamic displacements as
before. The main difference from the earlier cases is that now Ṡ and Σ̇ are no longer equal. The physical
interpretation of Σ is given below. From Equation (65), it follows that the system of evolution equations
for the curves q(t), S(t), N(t) is defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

∂L
∂q̇
− ∂L

∂q
= Ffr + Fext,

d
dt

N =
A

∑
a=1

J a,

∂L
∂S

(
Ṡ−

A

∑
a=1

J a
S −

B

∑
b=1

J b
S

)
=
〈

Ffr, q̇
〉
−

A

∑
a=1

[
J a

( ∂L
∂N

+ μa
)
+ J a

S

(∂L
∂S

+ Ta
)]
−

B

∑
b=1

J b
S

(∂L
∂S

+ Tb
)

.

(68)

The energy balance for this system is computed as

d
dt

E =
〈

Fext, q̇
〉︸ ︷︷ ︸

=Pext
W

+
B

∑
b=1

J b
S Tb

︸ ︷︷ ︸
=Pext

H

+
A

∑
a=1

(J aμa + J a
S Ta)︸ ︷︷ ︸

=Pext
M

.

From the last equation in Equation (68), the rate of entropy of the system is found by the equation

Ṡ = I +
A

∑
a=1

J a
S +

B

∑
b=1

J b
S , (69)

where I is the rate of internal entropy production given by

I = − 1
T

〈
Ffr, q̇

〉
︸ ︷︷ ︸

mechanical friction

+
1
T

A

∑
a=1

[
J a

(
μa − μ

)
+ J a

S

(
Ta − T

)]
︸ ︷︷ ︸

mixing of matter flowing into the system

+
1
T

B

∑
b=1

J b
S

(
Tb − T

)
︸ ︷︷ ︸

heating

.
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From the last Equations (67) and (69), we notice that Σ̇ = I is the rate of internal entropy production.
The second and third terms in Equation (69) represent the entropy flow rate into the system associated
with the ports and the heat sources. The second law requires I ≥ 0, whereas the sign of the rate of
entropy flow into the system is arbitrary.

Example 5 (A piston device with ports and heat sources Figure 7). We consider a piston with mass m
moving in a cylinder containing a species with internal energy U(S, V, N). We assume that the cylinder has two
external heat sources with entropy flow rates J bi , i = 1, 2, and two ports through which the species is injected
into or flows out of the cylinder with molar flow rates J ai , i = 1, 2. The entropy flow rates at the ports are given
by J ai

S = J aiSai .

F
ext

F
fr

q

, ,

, ,

p

p

T

T

J

J

a

a

1

2

a

a

1

2

a

a

1

2

b1
T

b2
TJ b1 J b2

S S, ,

m

U(q, S, N)

Figure 7. A piston device with ports and heat sources.

The variable q characterizes the one-dimensional motion of the piston such that the volume occupied by the
species is V = αq, with α the sectional area of the cylinder. The Lagrangian of the system is

L(q, q̇, S, N) =
1
2

mq̇2 −U(S, Aq, N).

The variational formulations (Equations (64)–(66)) yield the evolution equations for q(t), S(t), N(t)

mq̈ = p(q, S, N)α + Ffr + Fext, Ṅ =
A

∑
a=1

J a, Ṡ = I +
2

∑
i=1

J ai
S +

2

∑
j=1

J bj
S ,

where p(q, S, N) = − ∂U
∂V is the pressure and I = Σ̇ is the internal entropy production given by

I = − 1
T

Ffrq̇ +
1
T

2

∑
i=1

[
(μai − μ) + Sai (Tai − T)

]
J ai +

1
T

2

∑
j=1

J bj
S (Tbj − T).

The first term represents the entropy production associated with the friction experienced by the moving
piston, the second term is the entropy production associated with the mixing of gas flowing into the cylinder at
the two ports a1, a2, and the third term denotes the entropy production due to the external heating. The second
law requires that each of these terms is positive. The energy balance holds as

d
dt

E = Fextq̇︸ ︷︷ ︸
=Pext

W

+
2

∑
j=1

J bj
S Tbj

︸ ︷︷ ︸
=Pext

H

+
2

∑
i=1

(J ai μai + J ai
S Tai )︸ ︷︷ ︸

=Pext
M

.
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Remark 4 (Inclusion of chemical reactions). The variational formulations presented so far can be extended
to include several chemical species undergoing chemical reactions. Let us denote by I = 1, ..., R the chemical
species and by a = 1, ..., r the chemical reactions. Chemical reactions may be represented by

∑
I

ν′aI I
a(1)
�
a(2)

∑
I

ν′′aI I, a = 1, ..., r,

where a(1) and a(2) are the forward and backward reactions associated with reaction a, and ν′′aI , ν′aI are the
forward and backward stoichiometric coefficients for component I in reaction a. Mass conservation during each
reaction is given by

∑
I

mIν
a
I = 0 for a = 1, ..., r (Lavoisier law),

where νa
I := ν′′aI − ν′aI , and mI is the molecular mass of species I. The affinity of reaction a is the state

function defined by Aa = −∑R
I=1 νa

I μI , a = 1, ..., r, where μI is the chemical potential of the chemical species I.
The thermodynamic flux associated with reaction a is the rate of extent denoted Ja.

The thermodynamic displacements are WI and νa such that

Ẇ I = μI , I = 1, ..., R and ν̇a = −Aa, a = 1, ..., r. (70)

For chemical reactions in a single compartment assumed to be adiabatically closed and without mechanical
components, the variational formulation is given as follows.

Find the curves S(t), NI(t), WI(t), νa(t), I = 1, ..., R, a = 1, ..., r, which are critical for the variational
condition

δ
∫ t2

t1

[
L(N1, ..., NR, S) + ẆI NI

]
dt = 0, (71)

subject to the phenomenological and chemical constraints

∂L
∂S

Ṡ = Jaν̇a and ν̇a = νa
I Ẇ I , a = 1, ..., r, (72)

and for variations subject to the variational constraints

∂L
∂S

δS = Jaδνa and δνa = νa
I δWI , a = 1, ..., r, (73)

with δWI(t1) = δWI(t2) = 0, I = 1, ..., R.

The variational formulations (Equations (71)–(73)) yield the evolution equations for chemical reactions

ṄI = Jaνa
I , I = 1, ..., R and TṠ = JaAa,

together with the conditions in Equation (70).
Chemical reactions can be included in of all the thermodynamic systems considered previously by combining

the variational formulations given by Equations (71)–(73) for chemical reactions with the variational formulations
given by Equations (29)–(31), (51)–(53), and (64)–(66).

Remark 5 (General structure of the variational formulation for open systems). As opposed to the
adiabatically closed case, the phenomenological and variational constraints depend explicitly on time t ∈ R for
the case of open systems. In addition, the phenomenological constraint involves an affine term that depends
only on the properties at the ports. From a general point of view, letting Q be the configuration manifold,
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these constraints are defined by the maps Aα : R× TQ → T∗Q, A(t, x, v) ∈ T∗xQ, with Aα(t, x, v) ∈ T∗xQ,
and Bα : R× TQ → R, α = 1, ..., k, where t ∈ R and (x, v) ∈ TQ.

Given a time-dependent Lagrangian L : R× TQ → R and an external force F ext : R× TQ → T∗Q,
the variational formulations in Equations (57)–(59) are extended as follows.

δ
∫ t2

t1

L(t, x(t), ẋ(t))dt +
∫ t2

t1

〈
F ext(t, x(t), ẋ(t)), δx(t)

〉
dt = 0, (74)

where the curve x(t) satisfies the phenomenological constraint

Aα(t, x, ẋ)·ẋ + Bα(t, x, ẋ) = 0, for α = 1, ..., k. (75)

and for variations δx subject to the variational constraint

Aα(t, x, ẋ)·δx = 0, for α = 1, ..., k. (76)

with δx(t1) = δx(t2) = 0.
This yields the system of equations⎧⎪⎨⎪⎩

d
dt

∂L
∂ẋ

− ∂L
∂x

−F ext = λα Aα(t, x, ẋ)

Aα(t, x, ẋ)·ẋ + Bα(t, x, ẋ) = 0, α = 1, ..., k.
(77)

The variational formulation for open systems falls into this category by appropriately choosing x and L.
For instance, for Equations (64)–(66), one has x = (q, S, N, W, Γ, Σ), and L is the integrand in Equation (64).
Note that in Equation (74), we chose the Lagrangian to be time-dependent for the sake of generality. In fact, all the
variational formulations for thermodynamics presented above generalize easily to time-dependent Lagrangians.
We refer to [3] for a full treatment.

The energy defined by E(t, x, v) =
〈

∂L
∂v , v

〉
−L(t, x, v) satisfies the energy balance equation

d
dt
E =

〈
F ext, ẋ

〉
− λαBα − ∂L

∂t
. (78)

In the application to open thermodynamic systems, the first term is identified with Pext
W , the second term is

identified with Pext
H+M, while the third term is due to the explicit dependence of the Lagrangian on the time.

4. Variational Formulation for Continuum Thermodynamic Systems

In this section, we extend Hamilton’s principle of continuum mechanics (12) to nonequilibrium
continuum thermodynamics, in the same way as Hamilton’s principle of classical mechanics
(Equation (2)) was extended to the finite-dimensional case of discrete thermodynamic systems in
Section 3.

We consider a multicomponent compressible fluid subject to the irreversible processes of viscosity,
heat conduction, and diffusion. In presence of irreversible processes, we impose no-slip boundary
conditions, hence, the configuration manifold for the fluid motion is the manifold Q = Diff0(D) of
diffeomorphisms that keep the boundary ∂D pointwise fixed.

We assume that the fluid has P components with mass densities �A(t, X), A = 1, ..., P in the
material description, and we denote by S(t, X) the entropy density in the material description.
The motion of the multicomponent fluid is given as before by a curve of diffeomorphisms
ϕt ∈ Diff0(D), but now ϕ̇t is interpreted as the barycentric material velocity of the multicomponent
fluid. The Lagrangian of the multicomponent fluid with irreversible processes is

L : T Diff0(D)×F (D)×F (D)P → R, (ϕ, ϕ̇, S, �1, ..., �P) �→ L(ϕ, ϕ̇, S, �1, ..., �P),
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where F (D) denotes a space of functions on D and is given by

L(ϕ, ϕ̇, S, �1, ..., �P) = K(ϕ, ϕ̇, �1, ..., �P)−U(ϕ, S, �1, ..., �P)

=
∫
D

[
1
2

�(X)|ϕ̇(X)|2 − E
(
�1(X), ..., �P(X), S(X),∇ϕ(X)

)]
d3X.

(79)

The first term is the total kinetic energy of the fluid, where � := ∑P
A=1 �A is the total mass density.

The second term is minus the total internal energy of the fluid, where E is a general expression for
the internal energy density written in terms of �A(X), S(X), and the deformation gradient ∇ϕ(X).
As in Equation (16), E satisfies the material covariance assumption and depends on the deformation
gradient only through the Jacobian Jϕ. As in Equation (18), there is a function ε, the internal energy
density in the spatial representation, such that

E
(
�1, ..., �P,∇ϕ)

)
= ϕ∗

[
ε(ρ1, ..., ρP, s)

]
, for ρA = ϕ∗�A, s = ϕ∗S. (80)

In the spatial description, the Lagrangian Equation (79) reads as

�(v, s, ρ1, ..., ρP) =
∫
D

[
1
2

ρ|v|2 − ε(ρ1, ..., ρP, s)
]

d3x.

Note that in absence of irreversible process, the Lagrangian (79) would just be defined on the
tangent bundle T Diff(D) with �A = �refA, A = 1, ..., P and S = Sref seen as fixed parameters, exactly as
in Equation (15) for the single-component case.

Remark 6 (Material vs spatial variational principle). As we present below, the variational formulation for
continuum thermodynamical systems in the material description is the natural continuum (infinite-dimensional)
version of that of discrete (finite-dimensional) thermodynamical systems described in Section 3. This is analogous
to the conservative reversible case recalled earlier, namely, the Hamilton principle (Equation (12)); associated
with the material description of continuum systems is the natural continuum version of the classical Hamilton
principle Equation (2). This is why we first consider below in Section 4.1 the variational formulation of
continuum systems in the material description and deduce from it the variational formulation in the spatial
description later in Section 4.2. The latter is more involved since it contains additional constraints, as we have
seen in the conservative reversible case in Section 2.3.

4.1. Variational Formulation in the Lagrangian Description

The variational formulation of a multicomponent fluid subject to the irreversible processes of
viscosity, heat conduction, and diffusion is the continuum version of the variational formulations
(Equations (51)–(53)) for finite-dimensional thermodynamic systems with friction, heat, and mass
transfer. Analogous to the thermodynamic fluxes Ffr, JAB, J B→A are the viscous stress, the entropy
flux density, and the diffusive flux density given by Pfr, JS, JA in the material description. Total mass
conservation imposes the condition ∑P

A=1 JA = 0.
We give below the variational formulation for a general Lagrangian with density L , i.e.,

L(ϕ, ϕ̇, S, �1, ..., �P) =
∫
D

L
(

ϕ, ϕ̇,∇ϕ, S, �1, ..., �P
)
d3X. (81)

The continuum version of the variational formulations (Equations (51)–(53)) that we propose are
the following.
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Find the curves ϕ(t), S(t), Γ(t), Σ(t), WA(t), �A(t) which are critical for the variational condition:

∫ T

0

∫
D

[
L
(

ϕ, ϕ̇,∇ϕ, S, �1, ..., �P
)
+ ẆA�A + Γ̇(S− Σ)

]
d3Xdt = 0 (82)

subject to the phenomenological constraint

∂L

∂S
Σ̇ = −Pfr : ∇ϕ̇ + JS · ∇Γ̇ + JA · ∇ẆA (83)

and for variations subject to the variational constraint

∂L

∂S
δΣ = −Pfr : ∇δϕ + JS · ∇δΓ + JA · ∇δWA (84)

with δϕ(ti) = δΓ(ti) = δWA(ti) = 0, i = 1, 2, and with δϕ|∂D = 0.

Taking variations of the integral in Equation (82), integrating by parts, and using δϕ(ti) = δΓ(ti) =

δWA(ti) = 0, i = 1, 2, and δϕ|∂D = 0, it follows that

∫ t2

t1

∫
D

[( ∂L

∂ϕa δϕa − ∂

∂t
∂L

∂ϕ̇a −
∂

∂A
∂L

∂ϕa
,A

)
δϕa +

∂L

∂S
δS +

( ∂L

∂�A
+ ẆA

)
δ�A

− �̇AδWA − (Ṡ− Σ̇)δΓ + Γ̇(δS− δΣ)

]
d3Xdt = 0.

Using the variational constraint (Equation (84)), integrating by parts, and collecting the terms
proportional to δϕ, δΓ, δS, δWA, and δ�A, we get

δϕ :
d
dt

∂L

∂ϕ̇
+ DIV

( ∂L

∂∇ϕ
+ Γ̇

∂L

∂S

−1
Pfr

)
− ∂L

∂ϕ
= 0

δΓ : Ṡ = DIV
(

Γ̇
∂L

∂S

−1
JS

)
+ Σ̇, δS : Γ̇ = −∂L

∂S
,

δWA : �̇A = DIV
(

Γ̇
∂L

∂S

−1
JA

)
, δ�A : ẆA = − ∂L

∂�A
,

(85)

together with the boundary conditions∫
∂D

PfrB
a NBδϕadS = 0,

∫
∂D

JS ·NδΓdS = 0,
∫

∂D
JA ·NδWAdS = 0,

where N is the outward-pointing unit normal vector field to ∂D. The first boundary term vanishes
since δϕ|∂D = 0 from the no-slip boundary condition. The second and third conditions give

JS ·N = 0 and JA ·N = 0, A = 1, ..., P, on ∂D,

i.e., the fluid is adiabatically closed.
From the third and fifth conditions in Equation (85), we have Γ̇ = − ∂L

∂S = T, the temperature
in the material representation, and ẆA = − ∂L

∂�A
= ΥA, a generalization of the chemical potential

of component A in the material representation. The second equation in Equation (85) thus reads as
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Ṡ + DIV JS = Σ̇ and attributes to Σ the meaning of entropy generation rate density. From the first and
fourth equation and the constraint, we get the system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d
dt

∂L

∂ϕ̇
+ DIV

( ∂L

∂∇ϕ
− Pfr

)
− ∂L

∂ϕ
= 0

�̇A + DIV JA = 0, A = 1, ..., P

T(Ṡ + DIV JS) = Pfr : ∇ϕ̇− JS · ∇T− JA · ∇ΥA,

(86)

for the fields ϕ(t, X), �A(t, X), and S(t, X). The parameterization of the thermodynamic fluxes Pfr, JS,
JA in terms of the thermodynamic forces are discussed in the Eulerian description below.

4.2. Variational Formulation in the Eulerian Description

While the variational formulation is simpler in the material description, the resulting equations
of motion are usually written and studied in the spatial description. It is therefore useful to have
an Eulerian version of the variational formulations (Equations (82)–(84)). In order to obtain such
a variational formulation, all the variables used in Equations (82)–(84) must be converted to their
Eulerian analogue. We have already seen the relations s = ϕ∗S and ρA = ϕ∗�A between the Eulerian
and Lagrangian mass densities and entropy densities, where the pull-back notation is defined in
Equation (17). The Eulerian quantities associated with Σ, Γ, and WA are defined as follows

σ = ϕ∗Σ, γ = Γ ◦ ϕ−1, wA = WA ◦ ϕ−1.

The Eulerian version of the Piola–Kirchhoff viscous stress tensor Pfr is the viscous stress tensor
σfr obtained via the Piola transform (see [2,48]).

From the material covariance assumption, the Lagrangian (81) can be rewritten exclusively in
terms of spatial variables as

�
(
v, s, ρ1, ..., ρP

)
=

∫
D
L
(
v, s, ρ1, ..., ρP

)
d3x,

where the Lagrangian density is defined by

L
(
v, s, ρ1, ..., ρP

)
= ϕ∗ [L (v ◦ ϕ, ϕ∗ρ1, ..., ϕ∗ρP, ϕ∗s)] .

Using all the preceding relations between Lagrangian and Eulerian variables, we can rewrite the
variational formulations Equations (82)–(84) in the following purely Eulerian form.

Find the curves v(t), s(t), γ(t), σ(t), wA(t), ρA(t) which are critical for the variational condition

∫ T

0

∫
D

[
L
(
v, s, ρ1, ..., ρP

)
+ DtwAρA + Dtγ(s− σ)

]
d3xdt = 0 (87)

subject to the phenomenological constraint

∂L
∂s

D̄tσ = −σfr : ∇v + jS · ∇Dtγ + jA · ∇DtwA (88)

and for variations δv = ∂tζ + v · ∇ζ − ζ · ∇v, δρA, δwA, δs, δσ, and δγ subject to the
variational constraint

∂L
∂s

D̄δσ = −σfr : ∇ζ + jS · ∇Dδγ + jA · ∇DδwA (89)
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with ζ(ti) = δγ(ti) = δwA(ti) = 0, i = 1, 2, and with ζ|∂D = 0.

In Equations (87)–(89), we use the notations Dt f = ∂t f + v · ∇ f , D̄t f = ∂t f + div( f v),
Dδ f = δ f + ζ · ∇ f , and D̄δ f = δ f + div( f ζ) for the Lagrangian time derivatives and variations
of functions and densities.

The variational formulations (Equations (87)–(89)) yield the system⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(∂t + £v)
∂L
∂v

= ρA∇
∂L
∂ρA

+ s∇∂L
∂s

+ div σfr

D̄tρA + div jA = 0, A = 1, ..., P

∂L
∂s

(D̄ts + div js) = −σfr :∇v− js ·∇
∂L
∂s

− jA ·∇
∂L
∂ρA

,

(90)

together with the conditions

D̄tσ = D̄ts + div js, Dtγ = −∂L
∂s

, DtwA = − ∂L
∂ρA

.

In Equation (90), £v denotes the Lie derivative defined as £vm = v · ∇m +∇vT ·m + m div v.
We refer to [2] for a detailed derivation of these equations from the variational formulations
(Equations (87)–(89)).

The multicomponent Navier–Stokes–Fourier equations. For the Lagrangian

�
(
v, s, ρ1, ..., ρP

)
=

∫
D

[
1
2

ρ|v|2 − ε(ρ1, ..., ρP, s
)]

d3x

we get ⎧⎪⎪⎨⎪⎪⎩
ρ(∂tv + v · ∇v) = −∇p + div σfr

D̄tρA + div jA = 0, A = 1, ..., P

T(D̄ts + div js) = σfr : ∇v− js · ∇T − jA · ∇μA

(91)

with μA = ∂ε
∂ρA

, T = ∂ε
∂s , and p = μAρA + Ts− ε.

The system of Equation (91) needs to be supplemented with phenomenological expressions for
the thermodynamic fluxes σfr, jS, jA in terms of the thermodynamic affinities Def v, ∇T, ∇μA compatible
with the second law. It is empirically accepted that for a large class of irreversible processes and
under a wide range of experimental conditions, the thermodynamic fluxes Jα are linear functions of
the thermodynamic affinities Xα, i.e., Jα = LαβXβ, where the transport coefficients Lαβ(...) are state
functions that must be determined by experiments or, if possible, by kinetic theory. Besides defining
a positive quadratic form, the coefficients Lαβ(...) must also satisfy Onsager’s reciprocal relations [8]
due to the microscopic time reversibility and the Curie principle associated with material invariance
(see, for instance, [67–70]). In the case of the multicomponent fluid, writing the traceless part of σfr

and Def v as (σfr)(0) = σfr − 1
3 (Tr σfr)δ and (Def v)(0) = Def v − 1

3 (div v)δ, we have the following
phenomenological linear relations

−
[

jS
jA

]
=

[
LSS LSB
LAS LAB

] [
∇T
∇μB

]
,

1
3

Tr σfr = ζ div v, (σfr)(0) = 2μ(Def v)(0),

where all the coefficients may depend on (s, ρ1, ..., ρP). The first linear relation describes the vectorial
phenomena of heat conduction (Fourier law), diffusion (Fick law), and their cross-effects (Soret and
Dufour effects); the second relation describes the scalar processes of bulk viscosity with coefficient
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ζ ≥ 0, and the third relation is the tensorial process of shear viscosity with coefficient μ ≥ 0.
The associated friction stress reads

σfr = 2μ Def v +
(

ζ − 2
3

μ
)
(div v)δ.

All these phenomenological considerations take place with the phenomenological constraint
(Equation (88)) and the associated variational constraint (Equation (89)), but they are not involved in
the variational condition (87). Note that our variational formulation holds independently on the linear
character of the phenomenological laws.

Remark 7. For simplicity, we chose the fluid domain D as a subset of R3 endowed with the Euclidean metric.
More generally, the variational formulation can be intrinsically written on Riemannian manifolds (see [2]).
Making the dependence of the Riemannian metric explicit, even if it is given by the standard Euclidean metric,
is important for the study of the covariance properties [49].

5. Concluding Remarks

In this paper, we survey our recent developments on the Lagrangian variational formulation
for nonequilibrium thermodynamics developed in [1–3], which is a natural extension of Hamilton’s
principle in mechanics to include irreversible processes.

Before going into details, we briefly review Hamilton’s principle as it applies to
(finite-dimensional) discrete systems in classical mechanics, as well as to (infinite-dimensional)
continuum systems. Then, in order to illustrate our variational formulation for nonequilibrium
thermodynamics, we first start with the finite dimensional case of adiabatically closed systems together
with representative examples, such as a piston containing an ideal gas, a system with a chemical species
experiencing diffusion between several compartments, an adiabatic piston with two cylinders, and a
system with a chemical species experiencing diffusion and heat conduction between two compartments.
Then, we extend the variational formulation to open finite-dimensional systems that can exchange
heat and matter with the exterior. This case is illustrated with the help of a piston device with ports
and heat sources. We also demonstrate how chemical reactions can be naturally incorporated into our
variational formulation.

Second, we illustrate the variational formulation with the infinite-dimensional case of
continuum systems by focusing on a compressible fluid with the irreversible processes due
to viscosity, heat conduction, and diffusion. The formulation is first given in the Lagrangian
(or material) description because it is in this description that the variational formulation is a natural
continuum extension of the one for discrete systems. The variational formulation in the Eulerian
(or spatial) description is then deduced by Lagrangian reduction and yields the multicomponent
Navier–Stokes–Fourier equations.

One of the key issue of our variational formulation is the introduction and the use of the
concept of thermodynamic displacement, whose time derivative corresponds to the affinity of the
process. Thermodynamic displacement allows for systematically developing the variational constraints
associated with the nonlinear phenomenological constraints. The variational formulations presented
in this paper use the entropy as an independent variable, but a variational approach based on the
temperature can be also developed by considering free energy Lagrangians (see [4]).

Further Developments

Associated with our variational formulation of nonequilibrium thermodynamics, there are the
following interesting and important topics, which we have not described here due to lack of space,
but they are quite relevant to the variational formulation of nonequilibrium thermodynamics, reviewed
in this paper.
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• Dirac structures and Dirac systems: It is well known that when the Lagrangian is regular,
the equations of classical mechanics can be transformed into the setting of Hamiltonian systems.
The underlying geometric object for this formulation is the canonical symplectic form on the phase
space T∗Q of the configuration manifold. When irreversible processes are included, this geometric
formulation is lost because of the degeneracy of the Lagrangians and the presence of the nonlinear
nonholonomic constraints. Hence, one may ask: what is the appropriate geometric object that
generalizes the canonical symplectic form in the formulation of thermodynamics? In [64,71],
it was shown that the evolution equations for both adiabatically closed and open systems can
be geometrically formulated in terms of various classes of Dirac structures induced by the
phenomenological constraint and from the canonical symplectic form on T∗Q or on T∗(Q×R).

• Reduction by symmetry: When symmetries are available, reduction processes can be applied to
the variational formulation of thermodynamics, thereby extending the process of Lagrangian
reduction from classical mechanics to thermodynamics. This is illustrated in Section 4.2 for
the Navier–Stokes–Fourier equation, but it can be carried out in general for all the variational
formulations presented in this paper. For instance, we refer to [72] for the case of simple
thermodynamic systems on Lie groups with symmetries.

• Variational discretization: Associated with the variational formulation in this paper, there exist
variational integrators for the nonequilibrium thermodynamics of simple adiabatically closed
systems (see [72,73]). These integrators are structure-preserving numerical schemes that are
obtained by a discretization of the variational formulation. The structure-preserving property
of the flow of such systems is an extension of the symplectic property of the flow of variational
integrators for Lagrangian mechanics.

• Modeling of thermodynamically consistent models: The variational formulation for thermodynamics
can be also used to derive new models, which are automatically thermodynamically consistent.
We refer to [74] for an application of the variational formulation to atmospheric thermodynamics
and its pseudo-incompressible approximation.
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Abstract: The non-Fourier heat conduction phenomenon on room temperature is analyzed from
various aspects. The first one shows its experimental side, in what form it occurs, and how we
treated it. It is demonstrated that the Guyer-Krumhansl equation can be the next appropriate
extension of Fourier’s law for room-temperature phenomena in modeling of heterogeneous materials.
The second approach provides an interpretation of generalized heat conduction equations using
a simple thermo-mechanical background. Here, Fourier heat conduction is coupled to elasticity
via thermal expansion, resulting in a particular generalized heat equation for the temperature
field. Both aforementioned approaches show the size dependency of non-Fourier heat conduction.
Finally, a third approach is presented, called pseudo-temperature modeling. It is shown that
non-Fourier temperature history can be produced by mixing different solutions of Fourier’s law.
That kind of explanation indicates the interpretation of underlying heat conduction mechanics behind
non-Fourier phenomena.

Keywords: non-Fourier heat conduction; thermal expansion; heat pulse experiments;
pseudo-temperature; Guyer-Krumhansl equation

1. Introduction

The Fourier’s law [1]

q = −k
→
∇T (1)

is one of the most applicable, well-known elementary physical laws in engineering practice. Here, q is
the heat flux vector, T is absolute temperature, k is thermal conductivity. However, as all the constitutive
equations, it also has limits of validation. Phenomena that do not fit into these limits, called non-Fourier
heat conduction, appear in many different forms. Some of them occur at low temperature such as the
so-called second sound and ballistic (thermal expansion induced) propagation [2–7]. These phenomena
have been experimentally measured several times [8–11] and many generalized heat equations exist to
simulate them [12–20]. The success in low-temperature experiments resulted in the extension of this
research field to find the deviation at room temperature as well. One of the most celebrated result is
related to Mitra et al. [21,22] where the measured temperature history was very similar to a wave-like
propagation. However, these results have not been reproduced by anyone and undoubtedly demanded
for further investigation.
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In most of the room-temperature measurements, the existence of Maxwell-Cattaneo-Vernotte
(MCV) type behavior attempted to be proved [23,24]. It is this MCV equation that is used to model the
aforementioned second sound, the dissipative wave propagation form of heat [3,25,26]. The validity
of MCV equation for room-temperature behavior has not yet been justified, despite of the numerous
experiments. It is important to note that many other extensions of Fourier equation exist beyond
the MCV one, such as the Guyer-Krumhansl (GK) equation [27–32], the dual-phase-lag model [33],
and their modifications, too [7,34,35]. Some of these possess stronger physical background, some others
not [36–38]. Here we would like to emphasize that we restrict ourselves to the GK equation that shows
the simplest hierarchical arrangement of Fourier’s law and applicable for room-temperature problems.

The simplest extension of MCV equation is the GK model, which reads:

τq̇ + q + k
→
∇T − κ2!q = 0, (2)

where the coefficient τ is called relaxation time and κ2 is regarded as a dissipation parameter and
the dot denotes the time derivative. This GK-type constitutive equation contains the MCV-type by
considering κ2 = 0 and the Fourier equation taking τ = κ2 = 0. This feature of GK equation allows to
model both wave-like temperature history and over-diffusive one. This is more apparent when one
applies the balance equation of internal energy to eliminate q:

ρcṪ +
→
∇ · q = 0, (3)

with mass density ρ, specific heat c and volumetric source neglected, one obtains

τT̈ + Ṫ = a!T + κ2!Ṫ, (4)

with thermal diffusivity a = k/(ρc). One can realize that Equation (4) contains the Fourier
heat equation

Ṫ = a!T (5)

as well as its time derivative, with different coefficients. It becomes more visible after rearranging
Equation (4):

τ

(
Ṫ − κ2

τ
!T

).

+ Ṫ − a!T = 0. (6)

when the so-called [39,40] Fourier resonance condition κ2/τ = a holds, the solutions of the Fourier
Equation (5) are covered by the solutions of (4). Meanwhile, when κ2 < aτ the wave-like behavior is
recovered, and this domain is known as under-damped region. In the opposite case (κ2 > aτ), there is
no visible wave propagation and it is called over-diffusive (or over-damped) region. We measured the
corresponding over-diffusive effect several times in various materials such as metal foams, rocks and
in a capacitor, too [39,40]. Furthermore, a similar temperature history was observed in a biological
material [38]. It is also important to note that originally the GK equation is derived from Boltzmann
equation applying phonon hydrodynamics in the background. Here, we would like to emphasize that
in non-equilibrium thermodynamics it can also be derived without assuming any phonon interaction
in the material [6,7] keeping the GK equation applicable for room-temperature heat conduction.

In this paper, further aspects of over-diffusive propagation are discussed. In the following sections
the size dependence of the observed over-damped phenomenon is discussed both experimentally and
theoretically. Moreover, the approach of pseudo-temperature is presented to provide one concrete
possible interpretation for non-Fourier heat conduction.
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2. Size Dependence

Our measurements reported here are performed on basalt rock samples with three different
thicknesses, 1.86, 2.75 and 3.84 mm, respectively. We have applied the same apparatus of heat pulse
experiment as described in [39,40], schematically depicted in Figure 1 below.

Figure 1. Setup of our heat pulse experiment [40].

In each case, the rear-side temperature history was measured and numerically evaluated solving
the GK equation with constant coefficients, i.e., they do not depend on the temperature due to its small
change. It is also assumed that the GK equation characterizes the whole sample. We choose the GK
equation as the simplest thermodynamically consistent one that can predict signal shapes observed
in room-temperature measurements. (The heat pulse setup—a widely used one for transient heat
conduction measurements—is not capable of obtaining space dependence of temperature along the
sample but even such measurement data would be insufficient to determine an underlying partial
differential equation - any experimental data can only refute or support an equation (at some confidence
level).) The GK coefficients used below are best fits. The recorded dimensionless temperature signals
are plotted in Figures 2–4. In these figures, the dashed line shows the solution of Fourier equation
using thermal diffusivity corresponding to the initial part of temperature rising on the rear side.
The measured signal deviates from the Fourier-predicted one even when considering non-adiabatic
(cooling) boundary condition. That deviation weakens with increasing sample thickness; for the
thickest one it is hardly visible, and the prediction of Fourier’s law is almost acceptable.
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Figure 2. Data recorded for basalt rock sample with thickness of 1.86 mm. The dashed line shows the
prediction of Fourier’s law.

Figure 3. Data recorded for basalt rock sample with thickness of 2.75 mm. The dashed line shows the
prediction of Fourier’s law.

Figure 4. Data recorded for basalt rock sample with thickness of 3.84 mm. The dashed line shows the
prediction of Fourier’s law.

The evaluation of the thinnest sample using the GK equation is shown in Figure 5. The fitted
coefficients are summarized in Table 1. It is important to mention that MCV equation using the
presented parameters would show a wave-like propagation that is not observed in the experiments.
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Figure 5. Data recorded using the basalt with thickness of 1.86 mm. The dashed line shows the
prediction of GK equation.

Table 1. Summarized results of fitted coefficients in Fourier and GK equations.

Thickness
L, [mm]

Fourier
Thermal Diffusivity

aF ,·10−6
[

m2

s

] Guyer-Krumhansl
Thermal Diffusivity

aGK , ·10−6
[

m2

s

] Relaxation
Time
τ, [s]

Dissipation
Parameter

κ2, ·10−6[m2]

1.86 0.62 0.55 0.738 0.509
2.75 0.67 0.604 0.955 0.67
3.84 0.685 0.68 0.664 0.48

Deviation from the Fourier prediction is weak but is clearly present, and has size dependent
attributes. Concerning the ratio of parameters, i.e., investigating how considerably the Fourier
resonance condition aτ/κ2 = 1 is violated, the outcome can be seen in Table 2. As analysis of
the results, it is remarkable to note the deviation of the GK fitted thermal diffusivity from the Fourier
fitted one, and that this deviation is size dependent. For the thickest sample, which can be well
described by Fourier’s law, the fitted thermal diffusivity values are practically equal, and the ratio of
parameters is very close to the Fourier resonance value 1.

Table 2. Ratio of the fitted coefficients.

Thickness
L, [mm]

Ratio of Parameters
aGK τ

κ2

1.86 0.804
2.75 0.854
3.84 0.943

The next section is devoted to a possible explanation for the emergence of a generalized heat
equation with higher time and space derivatives. All coefficients of the higher time and space
derivative terms are related to well-known material parameters. The result also features size dependent
non-Fourier deviation.

3. Seeming Non-Fourier Heat Conduction Induced by Elasticity Coupled via Thermal Expansion

While, in general, one does not have a direct physical interpretation of the phenomenon that leads
to, at the phenomenological level, non-Fourier heat conduction here follows a case where we do know
this background phenomenon. Namely, in case of heat conduction in solids, a plausible possibility
is provided by an interplay between elasticity and thermal expansion. Namely, without thermal
expansion, elasticity—a tensorial behavior—is not coupled to Fourier heat conduction—a vectorial
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one—in isotropic materials. However, with nonzero thermal expansion, strains and displacements
must be in accord both with what elastic mechanics dictates and with what position dependent
temperature imposes. The coupled set of equations of Fourier heat conduction, of elastic mechanics
and of kinematic relationships, after eliminating the kinematic and mechanical quantities, leads to
an equation for temperature only that contains higher derivative corrections to Fourier’s equation.
It is important to check how remarkable these corrections are. In the following section we present this
derivation and investigation.

The Basic Equations

In all respects involved, we choose the simplest assumptions: the small-strain regime,
a Hooke-elastic homogeneous and isotropic solid material, with constant thermal expansion coefficient,
essentially being at rest with respect to an inertial reference frame. Kinematic, mechanical and
thermodynamical quantities and their relationships are considered along the approach detailed
in [41–43].

The Hooke-elastic homogeneous and isotropic material model states, at any position r,
the constitutive relationship

σd = EdDd, σs = EsDs, Ed = 2G, Es = 3K, (7)

σ = EdDd + EsDs = EdD +
(

Es − Ed
)

Ds (8)

between stress tensor σ and elastic deformedness tensor D (which, in many cases, coincides with the
strain tensor), where d and s denote the deviatoric (traceless) and spherical (proportional to the unit
tensor 1) parts, i.e.,

Ds =
1
3
(trD) 1, Dd = D−Ds; hence, e.g., 1s = 1, 1d = 0. (9)

Stress induces a time derivative in the velocity field v of the solid medium, according to
the equation

�v̇ = σ ·
←
∇ (10)

with mass density � being constant in the in the small-strain regime; hereafter
←
∇ and

→
∇ denote

derivative of the function standing to the left and to the right, respectively, to display the tensorial
order (tensorial index order) properly for vector/tensor valued functions. For the velocity gradient L

and its symmetric part, one has

L = v⊗
←
∇, trLsym = trL = v ·

←
∇, (Lsym)s =

1
3
(trLsym) 1 =

1
3

(
v ·

←
∇
)

1, (11)

(
Lsym ·

←
∇
)
·
←
∇ =

1
2

∂i∂j
(
∂ivj + ∂jvi

)
=

1
2

[
!
(→
∇ ·v

)
+!

(→
∇ ·v

)]
= !

(
v ·

←
∇
)

, (12)(
L ·

←
∇
)
·
←
∇ = !

(
v ·

←
∇
)

, (13)

where the Einstein summation convention for indices has also been applied. Again, using this
convention, and the Kronecker delta notation, to any scalar field f ,

∂j
(

f δij
)
= δij∂j f = ∂i f , ( f 1) ·

←
∇ =

→
∇ f (14)
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follow, which are also to be used below.
The small-deformedness relationship among the kinematic quantities, with linear thermal

expansion coefficient α considered constant, and absolute temperature T, is

Lsym = Ḋ + αṪ1 . (15)

For specific internal energy e,

e = cT +
Esα

�
T trDs + eel , eel =

Ed

2�
tr
[(

Dd
)2
]
+

Es

2�
tr
[
(Ds)2

]
, (16)

its balance,

�ė = tr (σL)− q ·
←
∇ , (17)

after subtracting the contribution �ėel coming from specific elastic energy eel and the corresponding
elastic part tr

(
σḊ

)
of the mechanical power tr (σL), is

� (e− eel)
· = �cṪ + EsαT0 trḊs = − q ·

←
∇ , with q = −k

→
∇T , (18)

where c is specific heat corresponding to constant zero stress (or pressure), temperature has been
approximated in one term of (18) by an initial homogeneous absolute temperature value T0 to stay in
accord with the linear (small-strain) approximation, and heat flux q follows the Fourier heat conduction
constitutive relationship with thermal conductivity k also treated as a constant.

The Derivation

The strategy is to eliminate σ in favor of (with the aid of) D, then D is eliminated in favor of Lsym,
after which we can realize that both from the mechanical direction and from the thermal one we obtain
relationship between v ·

←
∇ and T, which, eliminating v ·

←
∇, yields an equation for T only.

Starting with the thermal side,

�cṪ + EsαT0 tr
(
Lsym − αṪ1

)s
= �cṪ + EsαT0

(
v ·

←
∇
)
− Esα2T0Ṫ · 3 =

=
(

�c− 3Esα2T0︸ ︷︷ ︸
γ1

)
Ṫ + EsαT0(v ·

←
∇) , (19)

= − q ·
←
∇ = −

(
−k

→
∇T

)
·
←
∇ = k!T =⇒

EsαT0

(
v ·

←
∇
)
= k!T − γ1Ṫ . (20)
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Meanwhile, from the mechanical direction, aiming at being in tune with (20):

EsαT0

(
v̈ ·

←
∇
)
= EsαT0

1
�

(
σ̇ ·

←
∇
)
·
←
∇ =

=
EsαT0

�

{[
EdḊ +

(
Es − Ed

)
Ḋs

]
·
←
∇
}
·
←
∇ =

=
EsαT0

�

{[
Ed (Lsym − αṪ1

)
+

+
(

Es − Ed
) (

Lsym − αṪ1
)s
]
·
←
∇
}
·
←
∇ =

=
EsαT0

�

{[
EdLsym − EdαṪ1 +

(
Es − Ed

) 1
3

(
v ·

←
∇
)

1 −

−
(

Es − Ed
)

αṪ1

]
·
←
∇
}
·
←
∇ =

=
EsαT0

�

[
Ed!

(
v ·

←
∇
)
+

Es − Ed

3
!
(

v ·
←
∇
)
− Esα!Ṫ

]
=

=
EsαT0

�

[
Es + 2Ed

3
!
(

v ·
←
∇
)
− Esα!Ṫ

]
=

=
Es + 2Ed

3�
!
[

EsαT0

(
v ·

←
∇
)]
− (Esα)2T0

�
!Ṫ =

=
Es + 2Ed

3�︸ ︷︷ ︸
c2

!
(
k!T − γ1Ṫ

)
− (Esα)2T0

�
!Ṫ ; in parallel,

=
(
k!T − γ1Ṫ

)··
= k!T̈ − γ1

...
T [cf. (20)] (21)

(where c is the longitudinal elastic wave propagation velocity); hence, summarizing the final result in
two equivalent forms,

(
γ1Ṫ − k!T

)··
= c2!

(
γ1Ṫ − k!T

)
+

(Esα)2T0

�
!Ṫ , (22)

γ1

(
T̈ − c2!T

)·
= k!γ1

(
T̈ − c2!T

)
+

(Esα)2T0

�
!Ṫ . (23)

The first form here tells us that we have here the wave equation of a heat conduction equation,
the last term on the r.h.s. somewhat detuning the heat conduction equation of the r.h.s. with respect to
the one on the l.h.s. (the underlined coefficient is the one becoming modified when its term is melted
together with the last term). In the meantime, the second form shows the heat conduction equation of
a wave equation, the last term on the r.h.s. detuning the underlined coefficient.

Both forms show that coupling, after elimination, leads to a hierarchy of equations, with an
amount of detuning that is induced by the coupling—for similar further examples, see [44].

We close this section by rewriting the final result in a form that enables to estimate the contribution
of thermal expansion coupled elasticity to heat conduction:

1
c2

(
γ1Ṫ − k!T

)··
= !

[(
γ1 +

(Esα)2T0

�c2

)
Ṫ − k!T

]
, (24)
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i.e.,

1
c2

(
γ1Ṫ − k!T

)··
= !

[(
�c− 6EdEsα2T0

Es + 2Ed︸ ︷︷ ︸
γ2

)
Ṫ − k!T

]
. (25)

One message here is that, thermal expansion coupled elasticity modifies the thermal diffusivity
a = k/(�c) to an effective one a2 = k/γ2 = (�c/γ2) · a (see the heat conduction on the r.h.s.). For metals,
this means a few percent shift (1% for steel and copper, and 6% for aluminum) at room temperature.

The other is that, for a length scale (e.g., characteristic sample size) � and the corresponding
Fourier time scale �2/a, the r.h.s. is, to a (very) rough estimate, 1/�2 times a heat conduction equation
while the l.h.s. is (similarly roughly)

1
(�2/a)2 ·

1
c2 (26)

times the (nearly) same heat conduction equation (a one with a1 = k/γ1). In other words, the l.h.s.
provides a contribution to the r.h.s. via a dimensionless factor

�2

(�2/a)2 ·
1
c2 =

a2

�2c2 . (27)

This dimensionless factor is about 10−10 to 10−13 for metals, 10−14 for rocks and 10−15 for plastics
with � = 3 mm, a typical size for flash experiments. Therefore, the effect of the l.h.s. appears to be
negligible with respect to the r.h.s.

It is important to point out that the first phenomenon—the emergence of effective thermal
diffusivity—would remain unnoticed in the analogous one space dimensional calculation:

σ = ED, �v̇ = σ′, L = v′ = Ḋ + αṪ, (28)

q = −kT′, e = cT +
Eα

�
TD +

E
2�

D2 =⇒ (29)

�

E

[(
�c− Eα2T0

)
Ṫ − kT′′

]··
=
[
�cṪ − kT′′

]′′ (30)

[no detuning of �c on the r.h.s.]. It is revealed only in the full 3D treatment, which reveals possible
pitfalls of 1D considerations in general as well.

As conclusion of this section, thermal expansion coupled elasticity may introduce a few percent
effect (a material dependent but sample size independent value) in determining thermal diffusivity
from flash experiments or other transient processes (while its other consequences may be negligible).

4. Pseudo-Temperature Approach

The experimental results serve to check whether a certain theory used for describing the observed
phenomenon is acceptable or not. The heat pulse (flash) experiment results may show various
temperature histories. Generally, the flash measurement results are according to the Fourier theory.
In some cases, as reported in [39,40] the temperature histories show “irregular” characteristics,
especially these histories could be described by the help of various non-Fourier models [7,34,45,46].
Some kind of non-Fourier behavior could be constructed as it is shown in the following. This is only
an illustration how two parallel Fourier mechanisms could result a non-Fourier-like temperature
history. The idea is strongly motivated by the hierarchy of Fourier equations in the GK model [44] as
mentioned previously; however, their interaction is not described in detail.

The sample that we investigate now is only a hypothetic one, we may call it as a “pseudo-matter”.
We consider in the following that the pseudo-matter formed by parallel material strips is wide enough
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that the interface effects might be neglected, i.e., they are like insulated parallel channels. We also
consider that only the thermal conductivities are different, and the strips have the same mass density
and specific heat. During the flash experiment after the front side energy input, a simple temperature
equalization process happens in the sample in case of adiabatic boundary conditions. Since the flash
method is widely developed, the effects of the real measurement conditions (heat losses, heat gain,
finite pulse time, etc.) are well treated in the literature.

Figure 6 shows two temperature histories with thermal diffusivities of different magnitude,
both are the solution of Fourier heat equation.

Figure 6. Rear-side temperature history; solid line: a = 10−6 m2/s, dashed line: a = 2.5 · 10−7 m2/s,
L = 2 mm.

The mathematical formula that expresses the temperature history of the rear side in the adiabatic
case is [47]:

ν(ξ = 1, Fo) = 1 + 2
∞

∑
m=1

(−1)me−(m2π2Fo), (31)

where ν is the dimensionless temperature, i.e., ν = T−T0
Tmax−T0

, where T0 is the initial temperature and
Tmax is the asymptotic temperature corresponding to equilibrium with adiabatic boundary conditions,
ξ is the normalized spatial coordinate (ξ = 1 corresponds to the rear-side) and Fo = a · t/(L2) stands
for the Fourier number (dimensionless time variable). This is an infinite series with property of slow
convergence for short initial time intervals. An alternative formula derived using the Laplace theorem
to obtain faster convergence for Fo < 1 [48]:

p(Fo) =
2√
πFo

∞

∑
n=0

e−
(2n+1)2

4Fo , (32)

wherein p is the Laplace transform of ν. In the further analysis we use Equation (32) to calculate the
rear-side temperature history.

So far, we described two parallel heat-conducting layers without direct interaction among them;
however, let us suppose that they can change energy only at their rear side through a very thin layer
with excellent conduction properties. Eventually, that models the role of the silver layer used in our
experiments to close the thermocouple circuit and assure that we measure the temperature of that
layer instead of any internal one from the material. Actually, the silver layer averages the rear-side
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temperature histories of the parallel strips. We considered the mixing of temperature histories using
the formula:

p(Fo) = Θp1(a = 10−6 m2/s, Fo1) + (1−Θ)p2(a = 2.5 · 10−7 m2/s, Fo2), (33)

that is, taking the convex combination of different solutions of Fourier heat Equation (5). Figure 7
shows a few possible cases of mixing.

Figure 7. Rear-side temperature histories.

5. Outlook and Summary

This pseudo-material virtual experiment is only to demonstrate that there might be several
effects causing non-Fourier behavior of the registered temperature data. Here, the assumed mixing of
“Fourier-temperatures” is analogous with the GK equation in sense of the hierarchy of Fourier equation:
dual heat-conducting channels are present and interact with each other. However, the GK equation is
more general, there is no need to assume some mechanism to derive the constitutive equation.

Comparing Equations (6) to (25), the hierarchy of Fourier equation appears in a different way.
While (6) contains the zeroth and first order time derivatives of Fourier equation, the (25) instead
contains its second order time and spaces derivatives. Recalling that Equation (25)

1
c2

(
γ1Ṫ − k!T

)··
= !

[(
�c− 6EdEsα2T0

Es + 2Ed︸ ︷︷ ︸
γ2

)
Ṫ − k!T

]
. (34)

is derived using the assumption that thermal expansion is present beside heat conduction, it becomes
obvious to compare it to a ballistic (i.e., thermal expansion induced) heat conduction model. Let us
consider such model from [7]:

τ1τ2
...
T + (τ1 + τ2)T̈ + Ṫ = a!T + (κ2 + aτ2)!Ṫ, (35)

where τ1 and τ2 are relaxation times. Equation (35) have been tested on experiments, too [16].
Eventually, the GK equation is extended with a third order time derivative and the coefficients
are modified by presence of τ2. On contrary to Equation (34), it does not contain any fourth order
derivative. Actually, the existing hierarchy of Fourier equation is extended, instead of τ and κ2 the
terms (τ1 + τ2) and (κ2 + aτ2) appear within (35).

Although it is still not clear exactly what leads to over-diffusive heat conduction, the presented
possible interpretations and approaches can be helpful to understand the underlying mechanism. It is
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not the first time to experimentally measure the over-diffusive propagation, but it is to consider its
size dependence. The simplest thermo-mechanical coupling predicts size dependence of material
coefficients that can be relevant in certain cases. All three approaches lead to a system of partial
differential equations, which can be called hierarchical.
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Abstract: Any quantization maps linearly function on a phase space to symmetric operators in a
Hilbert space. Covariant integral quantization combines operator-valued measure with the symmetry
group of the phase space. Covariant means that the quantization map intertwines classical (geometric
operation) and quantum (unitary transformations) symmetries. Integral means that we use all
resources of integral calculus, in order to implement the method when we apply it to singular
functions, or distributions, for which the integral calculus is an essential ingredient. We first review
this quantization scheme before revisiting the cases where symmetry covariance is described by
the Weyl-Heisenberg group and the affine group respectively, and we emphasize the fundamental
role played by Fourier transform in both cases. As an original outcome of our generalisations
of the Wigner-Weyl transform, we show that many properties of the Weyl integral quantization,
commonly viewed as optimal, are actually shared by a large family of integral quantizations.

Keywords: Weyl-Heisenberg group; affine group; Weyl quantization; Wigner function; covariant
integral quantization

1. Introduction: A Historical Overview

More than one century after the publication by Fourier of his “Théorie analytique de la
chaleur” [1,2], the Fourier transform revealed its tremendous importance at the advent of quantum
mechanics with the setting of its specific formalism, especially with the seminal contributions of Weyl
(1927) [3] on phase space symmetry, and Wigner (1932) [4] on phase space distribution. The phase space
they were concerned with is essentially the Euclidean plane R2 = {(q, p) , q, p,∈ R}, q (mathematicians
prefer to use x) for position and p for momentum. It is the phase space for the motion on the line and
its most immediate symmetry is translational invariance: no point is privileged and so every point
can be chosen as the origin. Non-commutativity relation [Q, P] = ih̄IH between the self-adjoint
quantum position Q and momentum P, the QM key stone, results from this symmetry through the
Weyl projective unitary irreducible representation U [5] of the abelian group R2 in some separable
Hilbert space H,

R2 " (q, p) �→ U(q, p) = e
i
h̄ (pQ−qP) , U(q, p)U(q′, p′) = e−

i
2h̄ (qp′−q′p U(q + q′, p + p′) (1)

or equivalently the true representation of the so-called Weyl-Heisenberg group, central extension with
parameter ϑ of the above one,

R×R2 " (ϑ, q, p) �→ UWH(ϑ, q, p) = eiϑ/h̄U(q, p) . (2)
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In 1932, Wigner introduced his function (or quasidistribution) to study quantum corrections to
classical statistical mechanics, originally in view of associating the wavefunction ψ(x), i.e., the pure
state ρψ = |ψ〉〈ψ|, with a probability distribution in phase space. It is a Fourier transform, up to a
constant factor, for all spatial autocorrelation functions of ψ(x):

Wρψ(q, p) = 2
∫ +∞

−∞
dx ψ(q + x)ψ(q− x) e

2i
h̄ px = tr

(
U(q, p)2PU†(q, p)ρψ

)
. (3)

The alternative expression using in the above the parity operator (Pψ)(x) = ψ(−x) [6] allows us
to extend this transform to any density operator ρ, and in fact to any traceclass operator A in H

A �→ WA(q, p) = tr
(
U(q, p)2PU†(q, p)A

)
. (4)

One of the most attractive aspects of the above Wigner transform is that it is one-to-one.
The inverse is precisely the Weyl quantization, more precisely the integral Weyl-Wigner quantization,
defined as the map (with h̄ = 1)

f (q, p) �→ A f =
∫
R2

dq dp
2π

f (q, p)U(q, p)2PU†(q, p) =
∫
R2

dq dp
2π

U(q, p)Fs[ f ](q, p) . (5)

Hence, WA f (q, p) = f (q, p), with mild conditions on f . In the second expression of the
Weyl-Wigner quantization (5) is introduced the dual of the symplectic Fourier transform. The latter is
defined as

Fs[ f ](q, p) =
∫
R2

dq dp
2π

e−i(qp′−q′p) f (q′, p′) . (6)

It is involutive, Fs [Fs[ f ]] = f like its dual defined as Fs[ f ](q, p) = Fs[ f ](−q,−p).
Hence, we observe that the Fourier transform lies at the heart of the above interplay of Weyl

and Wigner approaches. Please note that both the maps (46) and (5) allow one to set up a quantum
mechanics in phase space, as was developed at a larger extent in the 1940s by Groenewold [7] and
Moyal [8]. This feature became so popular that it led some people to claim that if one seeks a
single consistent quantization procedure mapping functions on the classical phase space to operators,
the Weyl quantization is the “best” option. Actually, we will see below that this claimed preponderance
should be somewhat attenuated, for various reasons.

The organisation of the paper is as follows. In Section 2 we give a general presentation of
what we call covariant integral quantization associated with a Lie group, and its semi-classical side.
The content of this section should be viewed as a shortened reiteration of a necessary material
present in previous publications by one of or both the authors, essentially [9–13]. The original
content of the paper is found in the next sections, namely the fact that many properties of the
Weyl integral quantization, commonly viewed as optimal, are actually shared by a large family
of integral quantizations. In Section 3 we revisit the Weyl-Heisenberg symmetry and the related
Wigner-Weyl transform and Wigner function by inserting in their integral definition a kernel which
allows to preserve one of their fundamental properties, the one-to-one character of the corresponding
quantization. In Section 4 we devote a similar study to the case of the half-plane, for which the affine
symmetry replaces the translational symmetry, and we compare our results with some previous works.
We summarize the main points of the content in Section 5. Detailed proofs of two of our results are
given in Appendix A.

2. Covariant Integral Quantization: A Summary

Integral quantization [9–13] is a generic name for approaches to quantization based on
operator-valued measures. It includes the so-called Berezin-Klauder-Toeplitz quantization, and more
generally coherent state quantization [10,14,15]. The integral quantization framework includes as
well quantizations based on Lie groups. In the sequel we will refer to this case as covariant integral
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quantization. We mentioned in the introduction its most famous example, namely the covariant integral
quantization based on the Weyl-Heisenberg group (WH), like Weyl-Wigner [3,6,16–18] and (standard)
coherent states quantizations [14]. It is well established that the WH group underlies the canonical
commutation rule, a paradigm of quantum physics. However, one should be aware that there is a world
of quantizations that follow this rule [9,13]. Another basic example of covariant integral quantization
concerns the half-plane viewed as the phase space for the motion on the half-line. The involved Lie
group is the group of affine transformations x �→ (q, p) · x := x/q + p, q > 0, of the real line [9,11].
The latter has been proven essential in a series of recent works devoted to quantum cosmology [19–23].
Let us notice that the affine group and related coherent states were also used for the quantization of
the half-plane in works by J. R. Klauder, although from a different point of view (see [24–26] with
references therein).

2.1. General Settings

We first proceed with a necessary repetition of the material needed to understand the method and
found in the previously quoted [9–13]. Let X be a set equipped with some structures, e.g., measure,
topology, manifold, etc. In this paper X will be viewed as a phase space for a mechanical system.
Let C(X) be a vector space of complex-valued functions f (x) on X, defined through some functional
or distributional constraints, and viewed here as classical observables. A quantization of elements of
C(X) is a linear map Q : f ∈ C(X) �→ Q( f ) ≡ A f ∈ A(H) to a vector space A(H) of linear operators
on some Hilbert space H. Furthermore this map must fulfill the following conditions:

(i) To f = 1 there corresponds A f = IH, where IH is the identity in H,
(ii) To a real function f ∈ C(X) there corresponds a(n) (essentially) self-adjoint operator A f in H.

From a physical point of view it will be necessary to add to this minimal material an interpretative
measurement context.

Let us now assume that X = G is a Lie group with left Haar measure dμ(g). Let g �→ Ug be
a unitary irreducible representation (UIR) of G as operators in H. Let M be a bounded self-adjoint
operator on H and let us define Ug-translations of M as

M(g) = Ug MU†
g . (7)

The application of Schur’s Lemma under mild conditions allows to infer that there exists a
real constant cM ∈ R such that the following resolution of the identity holds (in the weak sense of
bilinear forms) ∫

G
M(g)

dμ(g)
cM

= IH . (8)

For instance, in the case of a square-integrable unitary irreducible representation U : g �→ Ug

(see Chapters 7 and 8 in [10] for details and references), let us pick a unit vector |ψ〉 for which
cM =

∫
G dμ(g)|〈ψ|Ugψ〉|2 < ∞, i.e., |ψ〉 is an admissible unit vector for U. With M = |ψ〉〈ψ| the

resolution of the identity (8) provided by the family of states |ψg〉 = Ug|ψ〉 reads

∫
G
|ψg〉〈ψg|

dμ(g)
cM

= IH . (9)

Vectors |ψg〉 are named (generalized) coherent states (or wavelets) for the group G.
With the resolution (8) in hand one can proceed with the integral quantization of complex-valued

functions or distributions on the group G as follows

f �→ A f =
∫

G
M(g) f (g)

dμ(g)
cM

. (10)
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Of course, some conditions have to be imposed to f in order to ensure the existence of the operator,
or quantum observable, A f . With such conditions, the quantization (10) is covariant in the sense that
Ug A f U†

g = AF where F(g′) = (Ug f )(g′) = f (g−1g′).
To be more precise about the existence of the operator-valued integral in (10), the latter should be

understood in a weak sense. Precisely, the sesquilinear form

H " ψ1, ψ2 �→ Bf (ψ1, ψ2) =
∫

G
〈ψ1|Mg|ψ2〉 f (g)

dμ(g)
cM

, (11)

is assumed to be defined on a dense subspace of H. If f is a complex bounded function, Bf is a
bounded sesquilinear form, and from the Riesz lemma we deduce that there exists a unique bounded
operator A f associated with Bf . If f is real and semi-bounded, and if M is a positive operator,
Friedrich’s extension of Bf ([27], Thm. X23) univocally defines a self-adjoint operator. However, if f
is real but not semi-bounded, there is no natural choice for a self-adjoint operator associated with
Bf . In this case, one can consider directly the symmetric operator A f enabling us to obtain a possible
self-adjoint extension (an example of this kind of mathematical study is presented in [28]).

2.2. Semi-Classical Framework With Probabilistic Interpretation

Integral quantization allows to develop what is commonly viewed as a semi-classical
analysis/interpretation of quantum observables. If M = ρ and ρ̃ are two non-negative (“density
operator”) unit trace operators, we obtain the classical-like expectation value formula

tr(ρ̃A f ) =
∫

G
f (g)w(g)

dμ(g)
cM

. (12)

Indeed, resolution of the identity, non-negativeness and unit-trace conditions imply that
w(g) = tr(ρ̃ ρ(g)) ≥ 0 is, up to the coefficient cM, a classical probability distribution on the group.
Moreover, we consider the map

f �→ f̌ (g) =
∫

G
tr
(
ρ̃(g) ρ(g′)

)
f (g′)

dμ(g)
cM

. (13)

as a generalization of Berezin or heat kernel or Segal-Bargmann transforms [29] on G. Given f , the new
function f̌ is called lower or covariant symbol of the operator A f . It may be viewed as one of its
semi-classical representations.

In the case of coherent states |ψg〉 (i.e., M = ρ = |ψ〉〈ψ|), Equation (12) reads

tr(ρ̃A f ) =
∫

G
f (g) 〈ψg|ρ̃|ψg〉

dμ(g)
cM

, (14)

where w(g) = 〈ψg|ρ̃|ψg〉 ≥ 0 is viewed here as a classical probability distribution on the group (up to
the coefficient cM). Similarly assuming ρ̃ = |ψ̃〉〈ψ̃|, the lower symbol f̌ (g) involved in (13) reads

f̌ (g) =
∫

G
|〈ψ̃g|ψg′ 〉|2 f (g′)

dμ(g′)
cM

(15)

2.3. Semi-Classical Picture Without Probabilistic Interpretation

A semi-classical framework similar to (13) can be also developed if the operators M and M̃ are
not positive:

f �→ f̌ (g) = tr
(

M̃(g)A f

)
=

∫
G

tr
(

M̃(g) M(g′)
)

f (g′)
dμ(g′)

cM
(16)
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Then the probabilistic interpretation is lost in general due to the loss of positiveness of the map
g′ �→ tr

(
M̃(g)M(g′)

)
. However, in some special cases Equation (16) allows one to obtain an inverse of

the quantization map (10). Namely for special pairs (M, M̃) we obtain

tr
(

M̃(g) A f

)
= f (g) (17)

In the sequel we analyze different examples of this kind in the case of the quantization of the
plane (Weyl-Heisenberg group) and the half-plane (affine group).

3. Quantization of the Plane: Generalizations of the Wigner-Weyl Transform

3.1. The Group Background

Let us first recall some definitions with more details about the Weyl-Heisenberg (WH) group
GWH , that we have already mentioned in the introduction. More details can be found for instance
in [10,13]. It is a central extension of the group of translations of the two-dimensional euclidean plane.
In classical mechanics the latter is viewed as the phase space for the motion of a particle on the real line.
The UIR we are concerned with is the unitary representation of GWH , acting in some separable Hilbert
space H, which integrates the canonical commutation rule (CCR) of quantum mechanics, [Q, P] = ih̄IH.
Forgetting about physical dimensions (h̄ = 1), an arbitrary element g of GWH is of the form

g = (ϑ, q, p), ϑ ∈ R, (q, p) ∈ R2, (18)

with multiplication law

g1g2 = (ϑ1 + ϑ2 + ζ[(q1, p1), (q2, p2)], q1 + q2, p1 + p2) , (19)

where ζ is the multiplier function ζ[(q1, p1), (q2, p2)] =
1
2
(p1q2 − p2q1). Any infinite dimensional

UIR Uλ
WH of GWH is characterized by a real number λ �= 0 (in addition, there are also degenerate,

one-dimensional, UIR’s corresponding to λ = 0, but they are irrelevant here). These UIR’s may be
realized on the same Hilbert space H, as the one carrying an irreducible representation of the CCR:

Uλ
WH(ϑ, q, p) = eiλϑUλ(q, p) = eiλ(θ−qp/2)eiλpQe−iλqP . (20)

If H = L2(R, dx) corresponding to the spectral decomposition Q =
∫
R

x |x〉〈x|dx of the
essentially self-adjoint position operator Q, the action of Uλ

WH reads as(
Uλ

WH(ϑ, q, p)φ
)
(x) = eiλϑeiλp(x−q/2)φ(x− q), φ ∈ L2(R, dx) . (21)

Thus, the three operators IH, Q, P appear as the generators of this representation and are
realized as:

(Qφ)(x) = xφ(x), (Pφ)(x) = − i

λ
φ′(x), [Q, P] =

i

λ
IH . (22)

For our purpose we take λ = 1/h̄ = 1 and simply write UWH for the corresponding representation.

3.2. Hyperbolic W-H Covariant Integral Quantization

3.2.1. General Settings

We investigate special cases of the Weyl-Heisenberg covariant integral quantization that have
remarkable properties. They are included in our general framework as a special case. Namely let us
choose some function F ∈ L1(R, dx) and define its Fourier transform F̂ as

F̂(ω) =
∫
R

F(u)e−iωu du . (23)
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This framework will be extended to distributions when necessary. We define the operator P (F)
0

(corresponding to the operator (denoted by M in Section 2.1) as the Weyl transform of F̂:

P (F)
0 =

∫
R2

dqdp
2π

F̂(qp) ei(pQ−qP) . (24)

The associate quantization is named hyperbolic because of this special dependence through a
function of qp. The operator P (F)

0 is bounded if F ∈ L1
(
R,
∣∣u2 − 1/4

∣∣−1/2 du
)

(see Appendix A for
the proof). The main interest of this choice at the physical level is that all quantizations of this kind
involve solely the Planck constant h̄ as a dimensional parameter. In fact, h̄ can be restored as follows

P (F)
0 =

∫
R2

dqdp
2πh̄

F̂(qp/h̄) ei(pQ−qP)/h̄ . (25)

The already mentioned canonical Wigner-Weyl transform or the Born-Jordan quantization [30–32]
are special cases, but the above generalisation of the latter offers a large freedom in the choice of F
with no need for introducing extra dimensional parameters.

In terms of the Dirac kets |x〉 such that Q |x〉 = x |x〉, the kernel 〈x|P (F)
0 |y〉 reads as:

〈x|P (F)
0 |y〉 = 1

|x− y|
∫
R

du
2π

F̂(u) exp
(
iu

x + y
2(x− y)

)
(26)

which gives

〈x|P (F)
0 |y〉 = 1

|x− y| F
(

x + y
2(x− y)

)
. (27)

The bounded operator P (F)
0 is self-adjoint if F verifies the hilbertian symmetry F(u) = F(−u).

We assume this condition to be fulfilled in the sequel.
The kernel of the operator P (F)

q,p corresponding to the WH transported operators M(g) as in
Equation (7) reads

〈x|P (F)
q,p |y〉 =

1
|x− y| F

(
x + y− 2q
2(x− y)

)
eip(x−y) . (28)

While the variable p appears in this formula as the Fourier reciprocal variable, the variable
q appears as a translation parameter from the arithmetic mean of the variables x and y. Such an
observation will take its real importance when we will deal with the affine symmetry in the next part
of this paper.

3.2.2. Resolution of the Identity

From the Weyl-Heisenberg covariance and Schur’s lemma, we obtain the resolution of unity as∫
R2

dq dp
2π

P (F)
q,p = c IH (29)

where c =
∫
R

F(u)du. Therefore we assume in the sequel
∫
R

F(u)du = 1.
At this point it is valuable to give a direct proof of (29). Due to the polarization identity, it is

sufficient to prove that for any ψ ∈ H:∫
R2

dq dp
2π

〈ψ|P (F)
q,p |ψ〉 = c〈ψ|ψ〉 . (30)

First

〈ψ|P (F)
q,p |ψ〉 =

∫
R2

dx dy ψ(x)ψ(y)
1

|x− y| F
(

x + y− 2q
2(x− y)

)
eip(x−y) . (31)

148



Entropy 2018, 20, 787

By performing the change of variables X = (x + y)/2, z = x− y, we obtain

〈ψ|P (F)
q,p |ψ〉 =

∫
R2

dX dz ψ(X + z/2)ψ(X − z/2)
1
|z| F

(
X − q

z

)
eipz . (32)

Then we keep z and we change X in u = (X − q)/z. This leads to

〈ψ|P (F)
q,p |ψ〉 =

∫
R2

du dz F(u) eipz ψ(q + (u + 1/2)z)ψ(q + (u− 1/2)z) . (33)

We remark that this equation is in fact a generalization of the Wigner function. The latter is
recovered with F(u) = δ(u). In this sense, the function F is a Cohen kernel [33,34], but its interpretation
in the present quantization context is different of the role it was given by this author and others, like [35].
Now the integral over p gives ∫

R

dp
2π
〈ψ|P (F)

q,p |ψ〉 =
∫
R

du F(u)|ψ(q)|2 . (34)

and finally ∫
R2

dq dp
2π

〈ψ|P (F)
q,p |ψ〉 = 〈ψ|ψ〉

∫
R

du F(u) . (35)

Assuming
∫

du F(u) = 1, we recover the resolution of the identity.

3.2.3. Covariant Quantization and Properties

The F-dependent quantization map f �→ A(F)
f is defined as

f �→ A(F)
f =

∫
R2

dqdp
2π

f (q, p)P (F)
q,p (36)

The usual Wigner-Weyl kernel corresponds to the distribution choice F(x) = δ(x) and it is,
therefore, singular with respect to the functional framework. The case of Born-Jordan corresponds to
the choice of the indicator function F(u) = 1[−1/2,1/2](u). The map f �→ A(F)

f is such that whatever F
(under the above conditions)

A(F)
q = Q and A(F)

p = P , (37)

and more generally,
A(F)

f (q) = f (Q) and A(F)
f (p) = f (P) . (38)

Therefore, by linearity any classical Hamiltonian h(q, p) = 1
2m p2 + V(q) is mapped into the

quantum Hamiltonian H = 1
2m P2 + V(Q) that has the same form. Moreover, with the same conditions

on F, we have

A(F)
qp =

1
2
(QP + PQ) + c, with c = −i

∫
R

uF(u)du . (39)

The constant c is real due to the condition F(u) = F(−u). If F(u) is real then c = 0.

Remark 1. Different quantizations generated by different F cannot be distinguished only using the most
common operators involved in non-relativistic quantum mechanics (and corresponding to observables that can
be really measured). Therefore there is no reason to privilege a specific one (for example the canonical one).
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3.2.4. Trace Formula

Let us rewrite (28) as:

P (F)
q,p =

∫
R2

dxdy
1

|x− y| F
(

x + y− 2q
2(x− y)

)
eip(x−y)|x〉〈y| . (40)

Using the same kind of transformations as the ones used for the resolution of the identity we
have (formally):

P (F)
q,p =

∫
R2

du dz F(u) eipz|q + (u + 1/2)z〉 〈q + (u− 1/2)z| . (41)

Then (still formally)

trP (F)
q,p =

∫
R2

du dz F(u) eipz δ(z) = 1 . (42)

For two different functions F and G we obtain the trace formula:

tr
(
P (F)

q,p P (G)
q′ ,p′

)
=

∫
R

dz
|z| e−i(p−p′)z(F ∗ G)

(
q− q′

z

)
. (43)

where F ∗ G is the convolution product of F and G.

3.3. Invertible W-H Covariant Integral Quantization: Generalization of the Wigner-Weyl Transform

3.3.1. General Settings

Let us examine the case for which (43) gives the equation F ∗ G = δ. Please note that such an
equation has no solution with a pair of summable functions. In this case, we have

tr
(
P (F)

q,p P (G)
q′ ,p′

)
= 2π δ(q− q′) δ(p− p′) . (44)

Therefore if F possesses a convolution inverse G, the quantization map is invertible. Indeed if G
is the inverse of convolution of F then

tr
(
P (G)

q,p A(F)
f

)
= f (q, p) . (45)

In this regard, the Wigner-Weyl case is trivial in the sense that F = δ is its own inverse and
therefore the Wigner-Weyl quantization map is inverted with the same operator. Furthermore since
δ is a distribution, the Wigner-Weyl choice is in fact singular within this functional framework.
Therefore using a true function F can be viewed as a regularization. However, this regularization
in the quantization map has a cost: the inverse map (if it exists) is more singular than a pure δ.

In the case of Born-Jordan the Fourier transform of the indicator function F(u) is F̂(k) =
sin(k/2)

k/2
that possesses simple zeros on the real axis. Whence the convolution inverse of F only exists in a
distribution sense as a series of principal values.

3.3.2. Generalized Wigner Functions

Given a function F, we now define the generalized Wigner function of an operator A as

W (F)
A (q, p) = tr

(
P (F)

q,p A
)

. (46)
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If A is the pure state |ψ〉〈ψ|, this function reads

W (F)
ψ (q, p) ≡ W (F)

|ψ〉〈ψ|(q, p) = 〈ψ|P (F)
q,p |ψ〉 (47)

=
∫
R2

du dz F(u) eipz ψ(q + (u + 1/2)z)ψ(q + (u− 1/2)z) . (48)

The standard Wigner function corresponds to W (δ)
ψ (q, p). All functions W (F)

ψ (q, p)

share the same marginal properties. Namely the functions q �→ (2π)−1
∫

dpW (F)
ψ (q, p)

and p �→ (2π)−1
∫

dqW (F)
ψ (q, p) are the exact quantum probability distributions for position and

momentum. This is a direct consequence of (38). Furthermore, because of the invertible character of
the corresponding Wigner-Weyl transform, i.e.,

W (δ)
A f

(q, p) := tr
(
P (δ)

q,p A f

)
= f (q, p) , (49)

we have

|ψ〉〈ψ| =
∫
R2

dq′ dp′

2π
W (δ)

ψ (q′, p′)P (δ)
q′ ,p′ . (50)

Therefore

W (F)
ψ (q, p) =

∫
R2

dq′ dp′

2π
W (δ)

ψ (q′, p′) tr
(
P (F)

q,p P (δ)
q′ ,p′

)
. (51)

Using (43) we obtain
W (F)

ψ = W(δ)
ψ ∗Λ(F) . (52)

where ∗ holds for the 2d-convolution product with the measure
dq dp

2π
and

Λ(F)(q, p) = F̃(qp), with F̃(ω) =
∫
R

dα

|α| e
−iω/α F(α) (53)

Remark 2.

• The function Λ(F) only depends on the variable qp. Therefore it cannot belong to some Lr space on
the plane. Hence, the convolution product involved in (52) should be understood in general in the
distribution sense.

• The function F̃ is defined as an integral only if F belongs to L1(R, |α|−1dα). In other cases an extension in
the distribution framework is needed.

• An interesting question concerns the positiveness of W (F)
ψ . In the genuine Wigner-Weyl case (F = δ),

Hudson theorem [36] asserts that only gaussian states ψ lead to positive Wigner functions W (δ)
ψ (q, p),

and so the latter can be interpreted as probability densities on phase space. Beyond the pure Gaussian
case, see for instance [37]. The problem now is to formulate a generalized version of the Hudson theorem
(involving maybe a different family of states) for the generalized Wigner function W(F)

ψ ). In other words,

for a given state ψ, is it possible to “build” a function F such that the corresponding Wigner function W (F)
ψ

is positive?

3.3.3. Examples of Invertible Map

In the following lines, we give an explicit example of invertible map, dependent on two strictly
positive parameters α and β and that includes the Wigner-Weyl solution as a special case (this example
was found through the use of Fourier transform). Let us define Fα,β as

Fα,β(x) = α4δ(x) +
1
2

αβ(1− α4)e−αβ|x| . (54)

151



Entropy 2018, 20, 787

Obviously we have F(x) = F(−x) (in the distribution sense), and formally
∫

F(x)dx = 1.
Taking into account the elementary result for a, b > 0:

e−a|x| ∗ e−b|x| =
2

b2 − a2

(
be−a|x| − ae−b|x|

)
, (55)

we find that a convolution inverse of Fα,β is Fα′ ,β′ with α′ = 1/α et β′ = βα−2. The Wigner-Weyl case
corresponds to the degenerate case F1,β(x) = δ(x).

4. Quantization of the Half-Plane With the Affine Group: Wigner-Weyl-Like Scheme

4.1. The Group Background

The half-plane is defined as Π+ = {(q, p) | q > 0, p ∈ R}. Equipped with the law

(q, p)(q′, p′) =
(

qq′, p +
p′

q

)
, (56)

Π+ is viewed as the affine group Aff+(R) of the real line. The left invariant measure is
dμ(q, p) = dqdp. Besides a trivial one, the affine group possesses two nonequivalent square integrable
UIR’s. Equivalent realizations of one of them, say, U, are carried by Hilbert spaces L2(R+, dx/xμ).
Nonetheless these multiple possibilities do not introduce noticeable differences. Therefore we choose
in the sequel μ = 0, and denote H = L2(R+, dx). The UIR of Aff+(R), when expressed in terms of the
(dimensionless) phase-space variables (q, p), acts on H as

Uq,pψ(x) =
1√
q

eipxψ(x/q) . (57)

We define the (essentially) self-adjoint operator Q on H as the multiplication operator
(Qφ)(x) = xφ(x) and the symmetric operator P as (Pφ)(x) = −iφ′(x). Let us note that P has no
self-adjoint extension in H [27].

4.2. Wigner-Weyl-Like Covariant Affine Quantization

General Settings

In the continuation of the procedure exposed in the previous sections, we now investigate special
cases of affine covariant integral quantization that leads to remarkable properties. They are analogous
to the Wigner-Weyl transform on the plane. As for the plane, the interest of these cases on the physical
level is that if we restore physical dimensions for q or x (length) and p (momentum) they only include
the Planck constant as a dimensional parameter. The freedom of the quantization map lies again in the
choice of a pure mathematical function F. This section generalizes Wigner-like and Weyl-like aspects
of affine covariant quantization presented in [11] by introducing families of invertible mappings that
look like the Wigner-Weyl case in the plane (see the discussion below).

In this affine context, we define the operators P (F)
q,p , (q, p) ∈ Π+, dependent on a possibly complex

function F : R+ " u �→ F(u) ∈ C, by their kernel 〈x|P (F)
q,p |y〉 in the generalized basis |x〉, x ≥ 0,

such that Q |x〉 = x |x〉:
〈x|P (F)

q,p |y〉 = δ(
√

xy− q)F
(√

x/y
)

eip(x−y) , (58)

Note the alternative expression, δ(
√

xy− q) = (2q/x)δ(y− q2/x).
It is easy to verify that the covariance with respect to the affine group holds true. If needed, we

remind that the presence of the Planck constant is restored by replacing eip(x−y) with exp
(

i
h̄ p(x− y)

)
.
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We prove in Appendix B that the operator P (F)
q,p is bounded if the function u �→ u2F(u) is bounded.

In addition, to impose the self-adjointness of P (F)
q,p we assume that F fulfills the symmetry:

F(x) = F(1/x).

Remark 3. We already noticed that the Wigner-Weyl transform on the plane induced by the operators P (δ)
q,p

introduced in the previous section involves the arithmetic mean (x + y)/2 through δ(2−1(x + y)− q). In the
present case of the half-plane, its affine symmetry leads us to replace the arithmetic mean by the geometric mean√

xy appearing in δ(
√

xy− q).

4.3. Resolution of the Identity

The operatorsP (F)
q,p defined by their kernels (58) solve the identity. Indeed, we check (formally) that

∫
R

dp
2π
〈x|P (F)

q,p |y〉 = δ(x− y)δ(x− q)F(1) , (59)

and therefore ∫
R+×R

dqdp
2π

〈x|P (F)
q,p |y〉 = F(1)δ(x− y) (60)

Therefore if we impose F(1) = 1 we obtain the resolution of the identity.
In the sequel we assume the function F fulfill both the conditions F(1) = 1 and F(x) = F(1/x).

4.4. Affine Covariant Quantization and Properties

The F-dependent quantization map f �→ A(F)
f is defined as

f �→ A(F)
f =

∫
Π+

dq dp
2π

f (q, p)P (F)
q,p . (61)

This map is such that whatever F (under the above conditions) we have:

A(F)
q = Q, A(F)

p = P +
i

2Q
F′(1) . (62)

Ap is symmetric because F′(1) = −F′(1). If we impose F to be real, then we have F(u) = F(1/u)

and then F′(1) = 0, therefore A(F)
p = P.

More generally, whatever F we have the following relation which is similar to the Wigner-Weyl
quantization map:

A(F)
f (q) = f (Q) . (63)

Whatever F we have for the kinetic term p2,

A(F)
p2 = P2 +

iF′(1)
2

(
1
Q

P + P
1
Q

)
− F′′(1) + F′(1)

4Q2 . (64)

From F′(1) = −F′(1), and F′′(1) = 2F′(1) + F′′(1) one deduces that Ap2 is symmetric.
If F(u) is real, then F(u) = F(1/u), and F′(1) = 0 (but the sign of F′′(1) is unspecified).

It follows that

A(F)
p2 = P2 − F′′(1)

4Q2 . (65)

If F′′(1) < −3 then A(F)
p2 has a unique self-adjoint extension on H [27,38].

We notice that at the opposite of the Wigner-Weyl case we have not in general A f (p) = f (P).
The arbitrary choice of function F allows some regularization at the operator level. For example, in the
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case of A(F)
p2 , an adequate choice of F leads to a natural unique self-adjoint extension that uniquely

specifies the quantization of p2.

Trace Formula

The trace of P (F)
q,p reads (formally)

trP (F)
q,p =

∫
R+

dx〈x|P (F)
q,p |x〉 =

∫
R+

dxδ(x− q)F(1) = F(1) = 1 . (66)

Concerning the trace of the product of two different operators P (F)
q,p andP (G)

q′ ,p′ we successively have

tr
(
P (F)

q,p P (G)
q′ ,p′

)
=

∫
R+×R+

dx dy 〈x|P (F)
q,p |y〉〈y|Pq′ ,p′(G)|x〉

= 2
√

qq′δ(q− q′)
∫
R+

dx
x

exp
(
i(p− p′)

(
x− qq′

x

))
F

(
x√
qq′

)
G

(√
qq′

x

)
(67)

= 2
√

qq′δ(q− q′)
∫
R+

du
u

exp
(
i(p− p′)

√
qq′(u− 1/u)

)
F(u)G(1/u) .

Applying our symmetry assumption G(x) = G(1/x) we get

tr
(
P (F)

q,p P (G)
q′ ,p′

)
= 2

√
qq′δ(q− q′)

∫
R+

du
u

exp
(
i(p− p′)

√
qq′(u− 1/u)

)
F(u)G(u) (68)

We now define the function φ : R+ " u �→ ξ = u − 1/u ∈ R. We have φ′(u) = 1 + u−2 and
u = φ−1(ξ) = (ξ/2) +

√
(ξ/2)2 + 1. Therefore

tr
(
P (F)

q,p P (G)
q′ ,p′

)
=
√

qq′δ(q− q′)
∫
R

dξ

ξ/2 +
√
(ξ/2)2 + 1

(
1 +

ξ√
ξ2 + 4

)
×

× ei(p−p′)
√

qq′ξ F[φ−1(ξ)]G[φ−1(ξ)] (69)

= 2
√

qq′δ(q− q′)
∫
R

dη√
η2 + 1

e2i(p−p′)
√

qq′η F[φ−1(2η)]G[φ−1(2η)] .

Defining F̃(η) (and G̃(η)) as

F̃(η) =
1

(η2 + 1)1/4 F[φ−1(2η)] , (70)

we finally get

tr
(
P (F)

q,p P (G)
q′ ,p′

)
= 2

√
qq′δ(q− q′)

∫
R

dη e2i(p−p′)
√

qq′η F̃[η]G̃[η] . (71)

4.5. Invertible W-H-like Affine Covariant Quantization

Trivially, if we impose in (71) the relation G̃(η) = F̃(η)
−1

, then

tr
(
P (F)

q,p P (G)
q′ ,p′

)
= 2π δ(q− q′) δ(p− p′) . (72)

This means that the quantization map is invertible. The simplest case is obtained for
F̃(η) = G̃(η) = 1 which corresponds to

F(u) =
1√
2

√
u +

1
u

. (73)
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We notice that the constraint F(1) = 1 is verified. This solution gives an affine counterpart of
the Wigner-Weyl transform since we need an unique function to build the quantization map and its
inverse. However, we notice that the function F of (73) does not fulfill the boundedness condition
|u2F(u)| ≤ C which was requested at the beginning of this section. Therefore the operators P (F)

q,p
involved in this case might be unbounded. In fact, this solution is a special case of a larger family of
functions: Fν(u) with

Fν(u) =
(

1
2
(u + u−1)

)ν+1/2
. (74)

The “conjugate function” allowing to build the inverse map due to Fν(u) is just F−ν(u).
The boundedness condition |u2Fν(u)| ≤ C is fulfilled only for ν ≤ −5/2. Therefore Fν and F−ν

cannot fulfill this condition at once. However, if we assume ν ≤ −5/2 for the quantization mapping,

then F′′(1) =
3
2
(ν + 1/2) < −3. Therefore in that case the operator A(Fν)

p2 has a unique self-adjoint
extension. We notice also that for ν = 0 (our analogue of Wigner-Weyl) we obtain an attractive
potential in A(F)

p2 .

4.6. Discussion

Some Wigner-like and Weyl-like aspects of affine covariant quantization are presented in [11].
The calculations developed in Section 7 of [11] correspond to the simplest case F(u) = 1 which
corresponds to ν = −1/2 in our family Fν. This choice allows to reproduce in the affine framework
the Wigner-Weyl properties A f (q) = f (Q) and A f (p) = f (P). However, in that case the inverse of the
quantization mapping cannot be built using the same function (as noticed in Proposition 7.5 of [11])
and there exists different possible self-adjoint extensions of the quantized kinetic operator Ap2 = P2

(as noticed below Equation (7.7) of [11]). Therefore this choice is not a complete analogue of the
Wigner-Weyl map. In fact, a complete analogue of the Wigner-Weyl map does not exist in the affine
framework. In general for ν �= −1/2 we fail to impose A f (p) = f (P), but for ν = 0 we preserve the
use of a unique function (operator) for the inverse map, while for ν < −5/2 we are able to uniquely
specify the self-adjoint kinetic operator Ap2 .

5. Conclusions

Through the above specifications of covariant integral quantization, in their Wigner-Weyl-like
restrictions, to two basic cases, the euclidean plane with its translational symmetry on one hand,
the open half-plane with its affine symmetry on the other hand, we have provided an illustration of
the crucial role of the Fourier transform, which is needed at each step of the calculations. With these
generalizations of the Wigner-Weyl transform we have shown that the Weyl integral quantization,
often thought of as the “best” option, has many interesting features shared by a wide panel of other
integral quantizations.

We also think that similar features hold far beyond the two elementary symmetries which
have been examined here. There exist many versions of the Wigner function or equivalent
quasi-distribution for other groups, see for instance [39,40] for SU(n) and references therein. In the
case of non-compact groups, particularly those which are semi-direct products of groups, the existence
of square-integrability of the UIR requested by the resolution of the identity lying at the heart of the
construction is in general not guaranteed. However, we think that it is possible to get round this issue
if square-integrability of the UIR holds with respect to a subgroup. Related concepts and material on
the restricted level of coherent states are found for instance in [41] and the chapters 7 and 8 of [10] with
references therein.

As a final comment, the methods of quantization which have been exposed here are just a tiny
part of a huge variety of ways of building quantum models from a unique classical one. We should
always keep in our mind that mathematical models for physical systems are mainly effective, and the
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freedom one has in picking one specific model should be considered as an attractive feature rather
than a drawback [42].
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Appendix A. Quantization of The Plane: Boundedness Of P (F)
0

We prove the bounded character of the operator P (F)
0 when F belongs to

L1(R, du)
⋂

L1
(
R, |u2 − 1/4|−1/2du

)
. From the Riesz lemma it is sufficient to prove that B(φ, ψ) = 〈φ|P (F)

0 |ψ〉 is
a bounded bilinear form. Using (33) we have

|B(φ, ψ)| ≤
∫
R
|F(u)|du

∫
R

dz |φ((u + 1/2)z)| |ψ((u− 1/2)z)| , (A1)

Using Cauchy-Schwarz inequality and a change of variable we obtain∫
R

dz |φ((u + 1/2)z)| |ψ((u− 1/2)z)| ≤ 1√
|u2 − 1/4|

‖φ‖ ‖ψ‖ . (A2)

Therefore if F belongs to L1(R, du)
⋂

L1
(
R, |u2 − 1/4|−1/2du

)
we have |B(φ, ψ)| ≤ C||φ|| ||ψ|| with C =∫

R |F(u)| |u2 − 1/4|−1/2 du and B(φ, ψ) is a bounded bilinear functional.
We notice that the same reasoning holds if we replace F(u)du by a positive measure dμ(u) such that

u �→ |u2 − 1/4|−1/2 belongs to L1(R, dμ(u)). This is in particular the case when we choose F(u) = δ(u)
(Wigner-Weyl transform).

Appendix B. Quantization of The Half-Plane: Boundedness of P (F)
q,p

We prove the boundedness of the operator P (F)
q,p when u �→ u2F(u) is a bounded function. From the Riesz

lemma it is sufficient to prove that B(φ, ψ) = 〈φ|P (F)
q,p |ψ〉 is a bounded bilinear form. From (58) B(φ, ψ) reads

B(φ, ψ) =
∫
R+

dx
2x
q

F(x/q) φ(x)ψ(q2/x) eip(x−q2/x) . (A3)

Therefore we obtain:

|B(φ, ψ)| ≤ 2
∫
R+

dx
x2

q2 F(x/q)|φ(x)| q
x
|ψ(q2/x)| . (A4)

Thus if u �→ u2F(u) is a bounded function with |u2F(u)| ≤ C we have

|B(φ, ψ)| ≤ 2C
∫
R+

dx |φ(x)| q
x
|ψ(q2/x)| . (A5)

Then using the Cauchy-Schwarz inequality and a change of variable in the integral involving (q/x)ψ(q2/x)
we obtain:

|B(φ, ψ)| ≤ 2C ‖φ‖ ‖ψ‖ . (A6)

We conclude that the operator P (F)
q,p is bounded.
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Abstract: We have shown in previous work that the equivalence of the Heisenberg and Schrödinger
pictures of quantum mechanics requires the use of the Born and Jordan quantization rules. In the
present work we give further evidence that the Born–Jordan rule is the correct quantization scheme
for quantum mechanics. For this purpose we use correct short-time approximations to the action
functional, initially due to Makri and Miller, and show that these lead to the desired quantization of
the classical Hamiltonian.

Keywords: Born–Jordan quantization; short-time propagators; time-slicing; Van Vleck determinant

1. Motivation and Background

1.1. Weyl versus Born and Jordan

There have been several attempts in the literature to find the “right” quantization rule for
observables using either algebraic or analytical techniques [1–7]. In a recent paper [8] we have analyzed
the Heisenberg and Schrödinger pictures of quantum mechanics, and shown that if one postulates that
both theories are equivalent, then one must use the Born–Jordan quantization rule

(BJ) xm p� −→ 1
m + 1

m

∑
k=0

x̂k p̂� x̂m−k, (1)

and not the Weyl rule (To be accurate, it was McCoy [9] who showed that Weyl’s quantization scheme
leads to Formula (2)).

(Weyl) xm p� −→ 1
2m

m

∑
k=0

(
m
k

)
x̂k p̂� x̂m−k (2)

for monomial observables. The Born–Jordan and Weyl rules yield the same result only if m < 2 or
� < 2; for instance in both cases the quantization of the product xp is 1

2 (x̂ p̂ + p̂x̂). One can also show
that the product p f (x) is, for any smooth function f of position alone, given in both cases by the
symmetric rule

p f (x) −→ 1
2
( p̂ f (x) + f (x) p̂).

It follows that if H is a Hamiltonian of the type

H =
n

∑
j=1

1
2mj

(pj − Aj(x))2 + V(x)

one can use either the Weyl or the Born–Jordan prescriptions to get the the corresponding quantum
operator, which yields the familiar expression
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Ĥ =
n

∑
j=1

1
2mj

(
−ih̄

∂

∂xj
− A(x)

)2

+ V(x).

(See Section 3.3). Since this Hamiltonian is without doubt the one which most often occurs in quantum
mechanics one could ask why one should bother about which is the “correct” quantization. It turns
out that this question is just a little bit more than academic: There are simple physical observables
which yield different quantizations in the Weyl and Born–Jordan schemes. One interesting example
is that of the squared angular momentum: Writing r = (x, y, z) and p = (px, py, pz) the square of the
classical angular momentum

� = (ypz − zpy)i + (zpx − xpz)j + (xpy − ypx)k (3)

is the function �2 = �2
x + �2

y + �2
z where

�2
x = x2 p2

y + y2 p2
x − 2xpxypy (4)

and so on. The Weyl quantization of �2
x is

(�̂2
x)W = x̂2 p̂2

y + x̂2
y p̂2

x − 1
2 (x̂ p̂x + p̂x x̂)(ŷ p̂y + p̂yŷ) (5)

while its Born–Jordan quantization is

(�̂2
x)BJ = x̂2 p̂2

y + x̂2
y p̂2

x − 1
2 (x̂ p̂x + p̂x x̂)(ŷ p̂y + p̂yŷ)− 1

6 h̄2; (6)

similar relations are obtained for �2
y and �2

z so that, in the end,

(�̂2)W − (�̂2)BJ =
1
2 h̄2. (7)

This discrepancy has been dubbed the “angular momentum dilemma ”[10]; in [11] we have
discussed this apparent paradox and shown that it disappears if one systematically uses
Born–Jordan quantization.

1.2. The Kerner and Sutcliffe Approach to Quantization

As we have proven in [8,12], Heisenberg’s matrix mechanics [13], as rigorously constructed
by Born and Jordan in [14] and Born, Jordan, and Heisenberg in [15], explicitly requires the use of
the quantization rule (1) to be mathematically consistent, a fact which apparently has escaped the
attention of physicists, and philosophers or historians of Science. In the present paper, we will show
that the Feynman path integral approach is another genuinely physical motivation for Born–Jordan
quantization of arbitrary observables; it corrects previous unsuccessful attempts involving path integral
arguments which do not work for a reason that will be explained. One of the most convincing of these
attempts is the paper [16] by Kerner and Sutcliffe. Elaborating on previous work of Garrod [17] Kerner
and Sutcliffe tried to justify the Born–Jordan rule as the unique possible quantization (see Steven
Kauffmann’s [18,19] brilliant discussion of this work). Assuming that Ĥ is the quantization of some
general Hamiltonian H, they write as is usual in the theory of the phase space Feynman integral the
propagator as

〈x|e− i
h̄ Ĥt|x′〉 = lim

N→∞

∫
dxN−1 · · · dx1∏N

k=1〈xk|e−
i
h̄ ĤΔt|xk−1〉 (8)

where xN = x and x0 = x′ are fixed and Δt = t/N. They thereafter use the approximation

〈xk|e−
i
h̄ ĤΔt|xk−1〉 ≈

1
2πh̄

∫
e

i
h̄ S(x,x′ ,p,Δt)dp (9)
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the function S being given by

S(x, x′, p, Δt) = p(x− x′)− H(x, x′, p)Δt (10)

where H is the time average of H over p fixed and x = x(t), that is

H(x, x′, p) =
1

Δt

∫ Δt

0
H(x′ + s

x− x′

Δt
, p)ds. (11)

Notice that introducing the dimensionless parameter τ = s/Δt, Formula (11) can be written in the
more convenient form

H(x, x′, p) =
∫ 1

0
H(τx + (1− τ)x′, p)dτ (12)

which is the usual mathematical definition of Born–Jordan quantization: See de Gosson [12,20] and
de Gosson and Luef [21].

Taking the limit Δt → 0 the operator Ĥ can then be explicitly and uniquely determined, and Kerner
and Sutcliffe show that in particular this leads to the Born–Jordan ordering (1) when their Hamiltonian
H is a monomial xm p�. Unfortunately (as immediately Cohen’s rebuttal was published in the
same volume of J. Math. Phys. in which Kerner and Sutcliffe published their results. Noted by
Cohen [22]) there are many a priori equally good constructions of the Feynman integral, leading to
other quantization rules. In fact, argues Cohen, there is a great freedom of choice in calculating the
action p(x− x′)− H appearing in the right-hand side of (11). For instance, one can choose

S(x, x′, p, Δt) = p(x− x′)− H( 1
2 (x + x′), p)Δt (13)

which leads for xm p� to Weyl’s rule (2), or one can choose

S(x, x′, p, Δt) = p(x− x′)− 1
2 (H(x, p) + H(x′, p))Δt, (14)

which leads to the symmetric rule

xm p� −→ 1
2
(x̂m p̂� + p̂� x̂m). (15)

This ambiguity shows—in an obvious way—that Feynman path integral theory does not lead to
an uniquely defined quantization scheme for observables. However—and this is the main point of the
present paper—while Cohen’s remark was mathematically justified, Kerner and Sutcliffe’s insight was
right (albeit for the wrong reason).

1.3. What We Will Do

It turns out that the Formula (10) for the approximate action that Kerner and Sutcliffe “guessed”
has been justified independently (in another context) by Makri and Miller [23,24] and the present
author [25] by rigorous mathematical methods. This formula is actually the correct approximation to
action up to order O(Δt2) (as opposed to the “midpoint rules” commonly used in the theory of the
Feynman integral which yield much cruder approximations); it follows that Kerner and Sutcliffe’s
Formula (9) indeed yields a correct approximation of the infinitesimal propagator 〈xk|e−

i
h̄ ĤΔt|xk−1〉,

in fact the best one for calculational purposes since it ensures a swift convergence of numerical schemes.
This is because for short times Δt the solution of Schrödinger’s equation

ih̄
∂ψ

∂t
(x, t) =

[
n

∑
j=1

−h̄2

2mj

∂2

∂x2
j
+ V(x)

]
ψ(x, t) (16)

161



Entropy 2018, 20, 869

with initial condition ψ(x, 0) = ψ0(x) is given by the asymptotic formula

ψ(x, Δt) =
∫

K(x, x′, Δt)ψ0(x′)dnx′ + O(Δt2); (17)

the approximate propagator K being defined, for arbitrary time t, by

K(x, x′, t) =
(

1
2πh̄

)n ∫
exp

(
i
h̄
[
p(x− x′)− (Hfree(p) + V(x, x′))t

])
dn p, (18)

where, by definition, Hfree(p) is the free particle Hamiltonian function, and the two-point function

V(x, x′) =
∫ 1

0
V(τx + (1− τ)x′)dτ

is the average value of the potential V on the line segment [x′, x].

• In Section 2 we discuss the accuracy of Kerner and Sutcliffe’s propagator by comparing it with the
more familiar Van Vleck propagator; we show that for small times both are approximations to
order O(t2) to the exact propagator of Schrödinger’s equation.

• In Section 3 we show that if one assume’s that short-time evolution of the wavefunction (for an
arbitrary Hamiltonian H) is given by the Kerner and Sutcliffe propagator, then H must be
quantized following the rule (12); we thereafter show that when H is a monomial xm p� then the
corresponding operator is given by the Born–Jordan rule (1), not by the Weyl rule 2.

Notation 1. The generalized position and momentum vectors are x = (x1, ..., xn) and p = (p1, ..., pn); we
set px = p1x1 + · · ·+ pnxn. We denote by x̂j the operator of multiplication by xj and by p̂j the momentum
operator −ih̄(∂/∂xj).

2. On Short-Time Propagators

In this section we only consider Hamiltonian functions of the type “kinetic energy plus potential”:

H(x, p) = Hfree(p) + V(x) , Hfree(p) =
n

∑
j=1

1
2mj

p2
j . (19)

These are the simplest physical Hamiltonians, both from a classical and a quantum perspective.

2.1. The Van Vleck Propagator

Consider a Hamiltonian function of the type (19) above; the corresponding Schrödinger equation is

ih̄
∂ψ

∂t
(x, t) =

[
n

∑
j=1

−h̄2

2mj

∂2

∂x2
j
+ V(x)

]
ψ(x, t). (20)

We will denote by K(x, x′, t) = 〈x|e− i
h̄ Ĥt|x′〉 the corresponding exact propagator:

ψ(x, t) =
∫

K(x, x′, t)ψ0(x′)dnx′ (21)

where with ψ0(x) is the value of ψ at time t = 0. The function K(x, x′, t) must thus satisfy the
boundary condition

lim
t→0

K(x, x′, t) = δ(x− x′). (22)
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It is well-known (see e.g., Gutzwiller [26], Schulman [27], de Gosson [25], Maslov and
Fedoriuk [28]) that for short times an approximate propagator is given by Van Vleck’s formula

K̃(x, x′, t) =
(

1
2πih̄

)n/2 √
ρ(x, x′, t)e

i
h̄ S(x,x′ ,t) (23)

where

S(x, x′, t) =
∫ t

0

(
∑n

j=1
1
2 mjẋj(s)2 −V(x(s)

)
ds (24)

is the action along the classical trajectory leading from x′ at time t′ = 0 to x at time t (there is no sum
over different classical trajectories because only one trajectory contributes in the limit t → 0 [23]) and

ρ(x, x′, t) = det

(
−∂2S(x, x′, t)

∂xj∂x′jk

)
1≤j,k≤n

(25)

is the Van Vleck density of trajectories [25–27]; the argument of the square root is chosen so that
the initial condition (22) is satisfied [25,29]. It should be emphasized that although the Van Vleck
propagator is frequently used in semiclassical mechanics, it has nothing “semiclassical” per se, since it
is genuinely an approximation to the exact propagator for small t – not just in the limit h̄ → 0. In fact:

Theorem 1. Let ψ̃ be given by

ψ̃(x, t) =
∫

K̃(x, x′, t)ψ0(x′)dnx′

where ψ0 is a tempered distribution. Let ψ be the exact solution of Schrödinger’s equation with initial datum ψ0.
We have

ψ(x, t)− ψ̃(x, t) = O(t2). (26)

In particular, the Van Vleck propagator K̃(x, x′, t) is an O(t2) approximation to the exact propagator K(x, x′, t):

K(x, x′, t)− K̃(x, x′, t) = O(t2) (27)

for t → 0 and hence
lim
t→0

K̃(x, x′, t) = δ(x− x′).

Proof. Referring to de Gosson [25] (Lemma 241) for details, we sketch the main lines in the case n = 1.
Assuming that ψ0 belongs to the Schwartz space S(Rn) of rapidly decreasing functions, one expands
the solution ψ of Schrödinger’s equation to second order:

ψ(x, t) = ψ0(x) +
∂ψ

∂t
(x, 0)t + O(t2).

Taking into account the fact that ψ is a solution of Schrödinger’s equation this can be rewritten

ψ(x, t) =

[
1 +

t
ih̄

(
− h̄2

2m
∂2

∂x2 + V(x)

)]
ψ0(x) + O(t2). (28)

Expanding the exponential eiS/h̄ in Van Vleck’s Formula (23) at t = 0 one shows, using the estimate (32)
in Theorem 2, that we also have

ψ̃(x, t) =

[
1 +

t
ih̄

(
− h̄2

2m
∂2

∂x2 + V(x)

)]
ψ0(x) + O(t2); (29)

163



Entropy 2018, 20, 869

comparison with (28) implies that ψ(x, t)− ψ̃(x, t) = O(t2). By density of the Schwartz space in the
class of tempered distributions S′(Rn) the estimate (26) is valid if one chooses ψ0(x) = δ(x − x0),
which yields Formula (27) since we have∫

K̃(x, x′, t)δ(x− x0)dnx′ = K̃(x, x0, t)

and ∫
K(x, x′, t)δ(x− x0)dnx′ = K(x, x0, t).

Let us briefly return to the path integral. Replacing the terms 〈xk|e−
i
h̄ ĤΔt|xk−1〉 in the product

Formula (8) with K̃(xk−1, xk−1, Δt) one shows, using the Lie–Trotter Formula [25,27], that the exact
propagator K(x, x′, t) = 〈x|e− i

h̄ Ĥt|x′〉 is given by

〈x|e− i
h̄ Ĥt|x′〉 = lim

N→∞

∫
dxN−1 · · · dx1∏N

k=1K̃(xk−1, xk−1, Δt). (30)

This formula is often taken as the starting point of path integral arguments: observing that the
expression (23) is in most cases (The free particle and the harmonic oscillator are remarkable particular
cases where the action integral can be explicitly calculated and thus yields an explicit formula for
the propagator, but mathematically speaking this fact is rather a consequence of the theory of the
metaplectic group [25,29]) difficult to calculate (it implies the computation of an action integral, which
can be quite cumbersome) people working in the theory of the Feynman integral replace the exact
action S(x, x′, t) in (23) with approximate expressions, for instance the “midpoint rules” that will be
discussed below. Now, one should be aware that this legerdemain works, because when taking the limit
N → ∞ one indeed obtains the correct propagator, but it does not imply that these midpoint rules are
accurate approximations to S(x, x′, t).

2.2. The Kerner–Sutcliffe Propagator

We showed above that the Van Vleck propagator is an approximation to order O(t2) to the exact
propagator. We now show that the propagator proposed by Kerner and Sutcliffe in [16] approximates
the Van Vleck propagator also at order O(t2). Hence

Van Vleck = Kerner–Sutcliffe + O(t2).

We begin by giving a correct short-time approximation to the action.

Theorem 2. The function S defined by

S(x, x′, t) =
n

∑
j=1

mj
(xj − x′j)

2

2t
−V(x, x′)t (31)

where V(x, x′) is the average of the potential V along the line segment [x′, x] :

V(x, x′) =
∫ 1

0
V(τx + (1− τ)x′)dτ.

satisfies for t → 0 the estimate
S(x, x′, t)− S(x, x′, t) = O(t2). (32)

For detailed proofs we refer to the aforementioned papers [23,24] by Makri and Miller, and to
our book [25]; also see de Gosson and Hiley [30,31]. The underlying idea is quite simple (and already
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appears in germ in Park’s book [32], p. 438): one remarks that the function S = S(x, x′, t) satisfies the
Hamilton–Jacobi equation

∂S
∂t

+
n

∑
j=1

1
2mj

(
∂S
∂xj

)2

+ V(x) = 0 (33)

and one thereafter looks for an asymptotic solution

S(x, x′, t) =
1
t

S0(x, x′) + S1(x, x′)t + S2(x, x′)t2 + · · ·.

Insertion in (33) then leads to

S0(x, x′) =
n

∑
j=1

mj
(xj − x′j)

2

2

and S1(x, x′) = −V(x, x′) hence (31). Notice that this procedure actually allows one to find
approximations to S to an arbitrary order of accuracy by solving successively the equations satisfied
by S2 ,S3, ... (see [23,24] for explicit formulas).

Let us now set
H(x, x′, t) = Hfree(p) + V(x, x′)

where

V(x, x′) =
∫ 1

0
V(τx + (1− τ)x′)dτ

is the averaged potential.
Let us now show that the propagator postulated by Garrod [17] and Kerner and Sutcliffe [16] is as

good an approximation to the exact propagator as Van Vleck’s is. We recall the textbook Fourier formula(
1

2πh̄

)n ∫
e

i
h̄ p(x−x′)p�j dn p =

(
−ih̄ ∂

∂xj

)�
δ(x− x′). (34)

Theorem 3. Let K = K(x, x′, t) be defined (in the distributional sense) by

K(x, x′, t) =
(

1
2πh̄

)n ∫
e

i
h̄ (p(x−x′)−H(x,x′ ,p)t)dn p. (35)

and set
ψ(x, t) =

∫
K(x, x′, t)ψ0(x′)dnx′. (36)

Let ψ be the solution of Schrödinger’s equation with initial condition ψ0. We have

ψ(x, t)− ψ(x, t) = O(t2). (37)

The function K is an O(t2) approximation to the exact propagator K:

K(x, x′, t)− K(x, x′, t) = O(t2). (38)

Proof. It is sufficient to prove (37); Formula (38) follows by the same argument as in the proof of
Theorem 1. To simplify notation we assume again n = 1; the general case is a straightforward extension.
Expanding for small t the exponential in the integrand of (35) we have

K(x, x′, t) =
(

1
2πh̄

)n ∫
e

i
h̄ p(x−x′)(1− i

h̄
H(x, x′, p)t)dp + O(t2)

= δ(x− x′)− it
h̄

∫
e

i
h̄ p(x−x′)H(x, x′, p)dp + O(t2)
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and hence

ψ(x, t) = ψ0(x)− it
h̄

∫
e

i
h̄ p(x−x′)H(x, x′, p)ψ0(x′)dpdx′ + O(t2).

We have ∫
e

i
h̄ p(x−x′)H(x, x′, p)dn p =

∫
e

i
h̄ p(x−x′)

(
p2

2m
+ V(x, x′)

)
dp;

using the Fourier Formula (34) we get

(
1

2πh̄

)n ∫
e

i
h̄ p(x−x′) p2

2m
dp = − h̄2

2m
∂2

∂x2 δ(x− x′)

and, noting that V(x, x) = V(x),(
1

2πh̄

)n ∫
e

i
h̄ p(x−x′)V(x, x′)dp = V(x, x′)δ(x− x′)

= V(x)δ(x− x′).

Summarizing,

K(x, x′, t) = δ(x− x′) +
it
h̄

(
− h̄2

2m
∂2

∂x2 + V(x)

)
δ(x− x′) + O(t2) (39)

and hence

ψ(x, t) = ψ0(x)− it
h̄

(
− h̄2

2m
∂2

∂x2 + V(x)

)
ψ0(x) + O(t2).

Comparing this expression with (28) yields (38).

2.3. Comparison of Short-Time Propagators

We have seen above that both the Van Vleck and the Kerner–Sutcliffe propagators are accurate to
order O(t2):

K(x, x′, t)− K̃(x, x′, t) = O(t2). (40)

K(x, x′, t)− K(x, x′, t) = O(t2) (41)

and hence, of course,
K̃(x, x′, t)− K(x, x′, t) = O(t2). (42)

Let us now study the case of the most commonly approximations to the action used in the theory of
the Feynman integral, namely the mid-point rules

S1(x, x′, t, t′) =
n

∑
j=1

mj
(xj − x′j)

2

2t
− 1

2
(V(x) + V(x′))t (43)

and

S2(x, x′, t) =
n

∑
j=1

mj
(xj − x′j)

2

2t
−V( 1

2 (x + x′))Δt. (44)

We begin with a simple example, that of the harmonic oscillator

H(x, p) =
p2

2m
+

1
2

m2ω2x2
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(we are assuming n = 1). The exact value of the action is given by the generating function

S(x, x′, t) =
m

2 sin ωt
((x2 + x′2) cos ωt− 2xx′); (45)

expanding the terms sin ωt and cos ωt in Taylor series for t → 0 yields the approximation

S(x, x′, t) = m
(x− x′)2

2t
− mω2

6
(x2 + xx′ + x′2)t + O(t2). (46)

It is easy to verify, averaging 1
2 m2ω2x2 over [x′, x] that

S(x, x′, t) = m
(x− x′)2

2t
− mω2

6
(x2 + xx′ + x′2)t

is precisely the approximate action provided by (31). If we now instead apply the midpoint rule (43)
we get

S1(x, x′, t) = m
(x− x′)2

2t
− m2ω2

4
(x2 + x′2)t

which differs from the correct value (46) by a term O(Δt). Similarly, the rule (44) yields

S2(x, x′, t) = m
(x− x′)2

2t
− m2ω2

8
(x + x′)2t

which again differs from the correct value (45) by a term O(t). It is easy to understand why it is
so by examining the case of a general potential function, and to compare V(x, x′), 1

2 (V(x) + V(x′)),
and V( 1

2 (x + x′). Consider for instance V(x, x′)−V( 1
2 (x + x′). Expanding V(x) in a Taylor series at

x = 1
2 (x + x′) we get after some easy calculations

V(x, x′) = V(x) + V′(x)(x− x′) +
1
2

V′′(x)(x− x′)2 + O((x− x′)3)

= V( 1
2 (x + x′)− 1

12 V′′( 1
2 (x + x′))(x− x′)3 + O((x− x′)3)

hence V(x, x′) − V( 1
2 (x + x′) is different from zero unless x = x′ (or if V(x) is linear) and hence

the difference between S(x, x′, t) and S2(x, x′, t) will always generate a term containing t so that
S(x, x′, t) − S2(x, x′, t) = O(t) (and not O(t2)). A similar calculation shows that we will also
always have S(x, x′, t)− S1(x, x′, t) = O(t). Denoting by K1(x, x′, t) and K2(x, x′, t) the approximate
propagators obtained from the midpoint rules (43) and (44), respectively, one checks without difficulty
that we will have

K(x, x′, t)− K1(x, x′, t) = O(t)

K(x, x′, t)− K2(x, x′, t) = O(t)

where K(x, x′, t) is the Kerner–Sutcliffe propagator (35) (in these relations we can of course replace
K(x, x′, t) with the van Vleck propagator K̃(x, x′, t) since both differ by a quantity O(t2) in view
of Theorem 3.

3. The Case of Arbitrary Hamiltonians

3.1. The Main Result

We now consider the following very general situation: We assume that we are in the presence of
a quantum system represented by a state |ψ〉 whose evolution is governed by a strongly continuous
one-parameter group (Ut) of unitary operators acting on L2(Rn); the operator Ut takes an initial
wavefunction ψ0 to ψ = Utψ0. It follows from Schwartz’s kernel theorem [33] that there exists a function
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K = K(x, x′; t) such that (This equality is sometimes postulated; it is in fact a mathematical fact which
is true in quite general situations.)

ψ(x, t) =
∫

K(x, x′; t)ψ0(x′)dnx′ (47)

and from Stone’s [34] theorem one strongly continuous one-parameter groups of unitary operators
that there exists a self-adjoint (generally unbounded) operator Ĥ on L2(Rn) such that

ψ(x, t) = e−
i
h̄ Ĥtψ0(x); (48)

equivalently ψ(x, t) satisfies the abstract Schrödinger equation (Jauch [35])

ih̄
∂ψ

∂t
(x, t) = Ĥψ(x, t). (49)

We now make the following crucial assumption, which extrapolates to the general case what we
have done for Hamiltonians of the type classical type “kinetic energy plus potential”: the quantum
dynamics is again given by the Kerner–Sutcliffe propagator (35) for small times t, i.e.,

K(x, x′, t) = K(x, x′, t) + O(t2) (50)

the approximate propagator being given by

K(x, x′, t) =
(

1
2πh̄

)n ∫
e

i
h̄ (p(x−x′)−H(x,x′)t)dn p (51)

where H is this time the averaged Hamiltonian function

H(x, x′, p) =
∫ 1

0
H(τx + (1− τ)x′, p)dτ. (52)

Obviously, when H = Hfree + V the function H reduces to the function Hfree + V considered in
Section 2.

This assumption can be motivated as follows (see de Gosson [12], Proposition 15, §4.4). Let

S(x, x′, t) =
∫

γ
pdx− Hdt

be Hamilton’s two-point function calculated along the phase space path leading from an initial
point (x′, p′, 0) to a final point (x, p, t) (the existence of such a function for small t is guaranteed
by Hamilton–Jacobi theory; see e.g., Arnol’d [36] or Goldstein [37]). That function satisfies the
Hamilton–Jacobi equation

∂S
∂t

+ H(x,∇xS) = 0.

One then shows that the function

S(x, x′, t) = p(x− x′)− H(x, x′, p)t

where p is the momentum at time t is an approximation to S(x, x′, t), in fact

S(x, x′, t)− S(x, x′, t) = O(t2).
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Here is an example: Choose H = 1
2 p2x2 (we are assuming here n = 1); then

S(x, x′, t) =
(ln(x/x′))2

2t
.

Using the formula

H(x, x′, p) =
1
6

p2(x2 + xx′ + x′2)

one shows after some calculations involving the Hamiltonian equations for H that

S(x, x′, t) =
(ln(x/x′))2

2t
+ O(t2)

(see [12], Chapter 4, Examples 10 and 16 for detailed calculations).
We are now going to show that the operator Ĥ can be explicitly and uniquely determined from

the knowledge of K(x, x′, t).

Theorem 4. If we assume that the short-time propagator is given by formula (51) then the operator Ĥ appearing
in the abstract Schrödinger Equation (49) is given by

Ĥψ(x) =
(

1
2πh̄

)n ∫
e

i
h̄ p(x−x′)H(x, x′, p)ψ(x′)dn pdnx′. (53)

Proof. Differentiating both sides of the equality (47) with respect to time we get

ih̄
∂ψ

∂t
(x, t) = ih̄

∫
∂K
∂t

(x, x′, t)ψ0(x′)dnx′;

since K itself satisfies the Schrödinger Equation (49) we thus have

Ĥψ(x, t) = ih̄
∫

∂K
∂t

(x, x′, t)ψ0(x′)dnx′.

It follows, using the assumptions (50) and (51), that

Ĥψ(x, t) = ih̄
∫

∂K
∂t

(x, x′, t)ψ0(x′)dnx′ + O(t)

and hence, letting t → 0,

Ĥψ0(x) = ih̄
∫

∂K
∂t

(x, x′, 0)ψ0(x′)dnx′. (54)

Introducing the notation
S(x, x′, t) = p(x− x′)− H(x, x′, p)t

we have

∂K
∂t

(x, x′, t) =
(

1
2πh̄

)n i
h̄

∫
e

i
h̄ S(x,x′ ,t) ∂S

∂t
(x, x′, t)dn p′

=
(

1
2πh̄

)n 1
ih̄

∫
e

i
h̄ S(x,x′ ,t)H(x, x′, p′)dn p′.

Taking the limit t → 0 and multiplying both sides of this equality by ih̄ we finally get

Ĥψ0(x) =
(

1
2πh̄

)n ∫
e

i
h̄ p(x−x′)H(x, x′, p′, t′)ψ0(x′)dn p′dnx′

which proves (53).
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We will call the operator Ĥ defined by (53) the Born–Jordan quantization of the Hamiltonian
function H. That this terminology is justified is motivated below.

3.2. The Case of Monomials

Let us show that (53) reduces to the usual Born–Jordan quantization rule (1) when H = xm p�

(we are thus assuming dimension n = 1). We have here

H(τx + (1− τ)x′, p) = (τx + (1− τ)x′)m p�

hence, using the binomial formula,

H(τx + (1− τ)x′, p) =
m

∑
k=0

(
m
k

)
τk(1− τ)m−kxk p�x′m−k. (55)

Integrating from 0 to 1 in τ and noting that

∫ 1

0
τk(1− τ)m−kdτ =

k!(m− k)!
(m + 1)!

we get

H(x, x′, p) =
1

m + 1

m

∑
k=0

xk p�x′m−k

and hence, using the definition (53) of Ĥ,

Ĥψ(x) =
1

2πh̄(m + 1)

m

∑
k=0

∫ ∞

−∞
e

i
h̄ p(x−x′)xk p�x′m−kψ(x′)dpdx′

=
xk

2πh̄(m + 1)

m

∑
k=0

∫ ∞

−∞

(∫ ∞

−∞
e

i
h̄ p(x−x′)p�dp

)
x′m−kψ(x′)dx′.

In view of the Fourier inversion Formula (34) we have

1
2πh̄

∫ ∞

−∞
e

i
h̄ p(x−x′)p�dp = (−ih̄)�δ(�)(x− x′) (56)

so that we finally get

Ĥψ(x) =
1

m + 1

m

∑
k=0

xk(−ih̄)�
∂�

∂x�
(xm−kψ),

which is equivalent to (1) since p̂� = (−ih̄)�∂�/∂x�.

3.3. Physical Hamiltonians

Let us now show that the Born–Jordan quantization of a physical Hamiltonian of the type

H =
n

∑
j=1

1
2mj

(pj − Aj(x))2 + V(x) (57)

coincide with the usual operator

Ĥ =
n

∑
j=1

1
2mj

(
−ih̄

∂

∂xj
− Aj(x)

)2

+ V(x) (58)
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obtained by Weyl quantization (the functions Aj and V are assumed to be C1). Since the quantizations
of p2

j , Aj(x) and V(x) are the same in all quantization schemes (they are respectively −h̄2∂2/∂x2
j

and multiplication by Aj(x) and V(x)), we only need to bother about the cross-products pj A(x).
We claim that

p̂j Aψ = − ih̄
2

[
∂

∂xj
(A←) + A

∂ψ

∂xj

]
, (59)

from which (58) immediately follows. Let us prove (59); it is sufficient to do this in the case n = 1.
Denoting by pA the Born–Jordan quantization of the function pA we have

pA(x, x′, p) = p
∫ 1

0
A(τx + (1− τ)x′)dτ = pA(x, x′)

and hence

p̂Aψ(x) =
1

2πh̄

∫
e

i
h̄ p(x−x′)pA(x, x′)ψ(x′)dx′dp

=
∫ ∞

−∞

(
1

2πh̄

∫ ∞

−∞
e

i
h̄ p(x−x′)pdp

)
A(x, x′)ψ(x′)dx′.

In view of (34) the expression between the square brackets is −ih̄δ′(x− x′) so that

p̂Aψ(x) = −ih̄
∫ ∞

−∞
δ′(x− x′)A(x, x′)ψ(x′)dx′

= −ih̄
∫ ∞

−∞
δ(x− x′)

∂

∂x′
(A(x, x′)ψ(x′))dx′

= −ih̄

(
∂A
∂x′

(x, x)ψ(x)) + A(x, x)
∂ψ

∂x′
(x))

)

Now, by definition of A(x, x′) we have A(x, x) = A(x) and

∂A
∂x′

(x, x) =
∫ 1

0
(1− τ)

∂A
∂x

(x)dτ =
1
2

∂A
∂x

(x)

and hence
p̂Aψ = − ih̄

2
∂A
∂x

ψ− ih̄A
∂ψ

∂x
which is the same thing as (59).

4. Discussion

Both Kerner and Sutcliffe, and Cohen relied on path integral arguments which were doomed to
fail because of the multiple possible choices of histories in path integration. However, it follows from
our rigorous constructions that Kerner and Sutcliffe’s insight was right, even though their construction
was not rigorously mathematically justified. While there is, as pointed out by Cohen [22], a great
latitude in choosing the short-time propagator, thus leading to different quantizations, our argument
did not make use of any path-integral argument; what we did was to propose a short-time propagator
which is exact up to order O(t2) (as opposed to those obtained by using midpoint rules), and to show
that if one use this propagator, then one must quantize Hamiltonian functions (and in particular
monomials) following the prescription proposed by Born and Jordan in the case of monomials.
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Abstract: Fokker–Planck PDEs (including diffusions) for stable Lévy processes (including Wiener
processes) on the joint space of positions and orientations play a major role in mechanics, robotics,
image analysis, directional statistics and probability theory. Exact analytic designs and solutions
are known in the 2D case, where they have been obtained using Fourier transform on SE(2). Here,
we extend these approaches to 3D using Fourier transform on the Lie group SE(3) of rigid body
motions. More precisely, we define the homogeneous space of 3D positions and orientations R3 �

S2 := SE(3)/({0} × SO(2)) as the quotient in SE(3). In our construction, two group elements
are equivalent if they are equal up to a rotation around the reference axis. On this quotient, we
design a specific Fourier transform. We apply this Fourier transform to derive new exact solutions
to Fokker–Planck PDEs of α-stable Lévy processes on R3 � S2. This reduces classical analysis
computations and provides an explicit algebraic spectral decomposition of the solutions. We compare
the exact probability kernel for α = 1 (the diffusion kernel) to the kernel for α = 1

2 (the Poisson
kernel). We set up stochastic differential equations (SDEs) for the Lévy processes on the quotient and
derive corresponding Monte-Carlo methods. We verified that the exact probability kernels arise as
the limit of the Monte-Carlo approximations.

Keywords: fourier transform; rigid body motions; partial differential equations; Lévy processes;
Lie Groups; homogeneous spaces; stochastic differential equations

1. Introduction

The Fourier transform has had a tremendous impact on various fields of mathematics including
analysis, algebra and probability theory. It has a broad range of applied fields such as signal and
image processing, quantum mechanics, classical mechanics, robotics and system theory. Thanks to
Jean-Baptiste Joseph Fourier (1768–1830), who published his pioneering work “Théory analytique de
la chaleur” in 1822, the effective technique of using a Fourier transform to solve linear PDE-systems
(with appropriate boundary conditions) for heat transfer evolutions on compact subsets Ω of Rd was
born. The Fourier series representations of the solutions helped to understand the physics of heat
transfer. Due to the linearity of the evolution operator that maps the possibly discontinuous square
integrable initial condition to the square integrable solution at a fixed time t > 0, one can apply a
spectral decomposition which shows how each eigenfunction is dampened over time. Thanks to
contributions of Johann Peter Gustav Lejeune Dirichlet (1805–1859), completeness of the Fourier basis
could then be formalized for several boundary conditions. Indeed, separation of variables (also known
as “the Fourier method”) directly provides a Sturm–Liouville problem [1] and an orthonormal basis of
eigenfunctions for L2(Ω), which is complete due to compactness of the associated self-adjoint kernel
operator. When dilating the subset Ω to the full space Rd, the discrete set of eigenvalues start to fill
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R and the discrete spectrum approximates a continuous spectrum (see, e.g., [2]). Then, a diffusion
system on Rd can be solved via a unitary Fourier transform on L2(R

d) (cf. [3]).
Nowadays, in fields such as mechanics/robotics [4–7], mathematical physics/harmonic

analysis [8], machine learning [9–13] and image analysis [14–19], it is worthwhile to extend the
spatial domain of functions on M = Rd (or M = Zd) to groups G = M � T that are the semi-direct
product of an Abelian group M and another matrix group T. This requires a generalization of the
Fourier transforms on the Lie group (Rd,+) towards the groups G = Rd � T. Then, the Fourier
transform gives rise to an invertible decomposition of a square integrable function into irreducible
representations. This is a powerful mechanism in view of the Schur’s lemma [20,21] and spectral
decompositions [22,23]. However, it typically involves regularity constraints ([22], ch:6.6, [24], ch:3.6)
on the structure of the dual orbits in order that Mackey’s imprimitivity theory [25] can be applied to
characterize all unitary irreducible representations (UIRs) of G. This sets the Fourier transform on the
Lie group G [22,24,26]. Here, we omit technicalities on regularity constraints on the dual orbits and
the fact that G may not be of type I (i.e., the quasi-dual group of G may not be equal to the dual group
of G (cf. [22], thm.7.6, 7.7, [24], ch:3, [27]), as this does not play a role in our case of interest.

We are concerned with the case M = R3 and T = SO(3) where G = SE(3) = M � SO(3) is the
Lie group of 3D rigid body motions. It is a (type I) Lie group with an explicit Fourier transform FG
where the irreducible representations are determined by regular dual orbits (which are spheres in the
Fourier domain indexed by their radius p > 0) and an integer index s ∈ Z (cf. [4,26]).

In this article, we follow the idea of Joseph Fourier: we apply the Fourier transformFG on the rigid
body motion group G = SE(3) to solve both non-degenerate and degenerate (hypo-elliptic) heat flow
evolutions, respectively, on the Lie group G. More precisely, we design a Fourier transform FG/H on
the homogeneous space of positions and orientations G/H with H ≡ {0} × SO(2) to solve degenerate
and non-degenerate heat flow evolutions on the homogeneous space G/H. We also simultaneously
solve related PDEs (beyond the diffusion case), as we explain below. For general Fourier theory and
harmonic analysis on homogeneous spaces, see the works by Ghaani Farashahi [28–31], of which the
work in [31] applies to our setting G/H = R3 � S2. In contrast to ([31], ch:5.2), we consider the
subgroup H ≡ {0} × SO(2) instead of {0} × SO(3), and we include an extra projection in our design
of FG/H .

The idea of applying Fourier transforms to solve linear (degenerate) PDEs on non-commutative
groups of the type Rd � T is common and has been studied by many researchers. For example, tangible
probability kernels for heat transfer (and fundamental solutions) on the Heisenberg group were derived
by Gaveau [32]. They can be derived by application ([23], ch:4.1.1) of the Fourier transform on the
Heisenberg group ([22], ch:1). This also applies to probability kernels for degenerate, hypo-elliptic
diffusions on SE(2) = R2 � SO(2), where three different types (a Fourier series, a rapidly decaying
series, and a single analytic formula that equals the rapidly decaying series) of explicit solutions to
probability kernels for (convection-)diffusions were derived in previous works by Duits et al. [33–36].
For a concise review, see ([37], ch:5.1). Here, the two fundamental models for contour perception by,
respectively, Mumford [38], Petitot [39] and Citti and Sarti [15] formed great sources of inspiration to
study the degenerate diffusion problem on SE(2).

The degenerate (hypo-elliptic) diffusion kernel formula in terms of a Fourier series representation
was generalized to the much more wide setting of unimodular Lie groups by Agrachev, Boscain,
Gauthier and Rossi [23]. This approach was then pursued by Portegies and Duits to achieve explicit
exact solutions to (non-)degenerate (convection-)diffusions on the particular SE(3) case (see [40]).

The idea of using Fourier transform on SE(3) to represent solutions to the linear heat equations on
SE(3) has been considered by other authors in a wide variety of applications in the last decade. For a
concise theoretical survey, see the recent work of Chirikjian [41]; for related articles with convincing
applications, see [42,43]. In the recent work by Portegies and Duits [40], exact solutions are expressed
in terms of an explicit, converging, eigenfunction decomposition in spheroidal wave-functions via
technical, classical analysis techniques. This provides exact, analytic and converging series expressions
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that hold (and allow for analysis) prior to any numerical approximation. They can be used to
compare different numerical techniques, as was done by Zhang and Duits et al. in the SE(2) case [37].
In numerical implementations, the exact series must be truncated, and, as the spectrum is derived
analytically, it is easy to control and reduce approximation errors to a neglectable level [44] (as in the
SE(2)-case ([37], ch:5.1.4, thm 5.2 and 5.3, ch:6) with comparisons to an alternative single formula by
Duits ([36], thm 5.2)).

Here, we aim to simplify and generalize the explicit spectral decompositions [40] of degenerate
diffusions on R3 � S2 = SE(3)/H, and to put this in the algebraic context of Fourier transform on
G = SE(3) [4,26,41], or more efficiently on the algebraic context of a Fourier transform on G/H. To this
end, we first propose a specific Fourier transform on G/H in Theorem 1. Then, we use it to derive
explicit spectral decompositions of the evolution operator in Theorem 2, from which we deduce explicit
new kernel expressions in Theorem 3. Finally, we generalize the exact solutions to other PDE systems
beyond the diffusion case: We simultaneously solve the Forward-Kolmogorov PDEs for α-stable Lévy
processes on the homogeneous space of positions and orientations. Next, we address their relevance in
the fields of image analysis, robotics and probability theory.

In image analysis, left-invariant diffusion PDEs on SE(3) have been widely used for
crossing-preserving diffusion and enhancement of fibers in diffusion-weighted MRI images of brain
white matter [45–50], or for crossing-preserving enhancements of 3D vasculature in medical images [18].
They extend classical works on multi-scale image representations [51–54] to Lie groups [55].

In robotics, they play a role via the central limit theorem [56] in work-space generation of robot
arms ([4], ch.12) and they appear indirectly in Kalman-filtering on SE(3) for tracking [57], motion
planning of robotic devices [42], and camera motion estimation [58].

In probability theory, diffusion systems on Lie groups describe Brownian motions [59,60] and
they appear as limits in central limit theorem on Lie groups [56].

Both in probability theory [61] and in image analysis [62–65], the spectral decomposition of
the evolution operator also allows simultaneously dealing with important variants of the diffusion
evolution. These variants of the heat-evolution are obtained by taking fractional powers −(−Δ)α

(cf. [66]) of the minus Laplacian operator Δ = div ◦ grad that generates the heat flow (due to Fick’s
law and the Gauss divergence theorem), where α ∈ (0, 1].

This generalization allows for heavy tailed distributions of α-stable Lévy processes, which arise
in a fundamental generalization [61] of the central limit theorem where one drops the finite variance
condition. Here, we note that recently an extension of the central limit on linear groups (such as
SE(3)) has been achieved for finite second-order moments [56]. In engineering applications, where
(iterative group-)convolutions are applied ([4], ch.12 and 13, [9,12,13,67–71]), the “kernel width”
represents the spread of information or the scale of observing the signal. In the case the applications
allow for an underlying probabilistic model with finite variances, variance is indeed a good measure
for “kernel width”. However, often this is not the case. Probability kernels for stochastic Lévy
processes (used in directional statistics [72], stock market modeling [73], natural image statistics [65]),
and modeling of point-spread functions in acquired images (e.g., in spectroscopy [74])) do require
distributions with heavier tails than diffusion kernels. Therefore, “full width at half maximum” is a
more generally applicable measure for kernel width than variance, as it applies to all α-stable Lévy
processes. The probability distributions for α < 1 encode a longer range of interaction via their heavy
tails and still allow for unlimitedly sharp kernels.

Finally, regarding entropy, we show that for α ∈ { 1
2 , 1} we have monotonic increase of entropy

Eα(t) over evolution time t > 0 of our α-stable Lévy processes. For α = 1, one arrives at a diffusion
system, and a previous result by Chirikjian on Lie groups [75], also applies to the Lie group quotient
G/H = R3 � S2. Thereby, E′1(t) = trace{D · F1(t)} > 0, where F1(t) is the Fisher information matrix
and D is the diffusion matrix. We show that for α = 1

2 one arrives at a Poisson system where entropy
also increases monotonically over time, again relative to a corresponding Fisher matrix. It is also
intriguing, from the perspective of geometric theory of information and heat [76], to study optimal
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entropy on R3 � S2 and (Fourier) Cramér Transforms building on results [77,78] on Rn. However, such
investigations first require a good grip on the spectral decompositions of the PDE-evolution operators
for α-stable Lévy processes via a Fourier transform on R3 � S2, which is our primary focus here.

1.1. Structure of the Article

The structure of the article is as follows. In the first part of the Introduction, we briefly discuss
the history of the Fourier transform, and its generalization to other groups that are the semi-direct
product of the translation group and another matrix group, where we provide an overview of related
works. Then, we specify our domain of interest—the Fourier transform on the homogeneous space
G/H of positions and orientations, which is a Lie group quotient of the Lie group G = SE(3) with a
subgroup H isomorphic to {0} × SO(2). Then, we address its application of solving PDE systems on
G/H, motivated from applications in image analysis, robotics and probability theory.

There are four remaining subsections of the Introduction. In Section 1.2, we provide basic facts
on the homogeneous space G/H of positions and orientations and we provide preliminaries for
introducing a Fourier transform on G/H. In Section 1.3, we formulate the PDEs of interest on G/H
that we solve. In Section 1.4, we formulate the corresponding PDEs on the group G. In Section 1.5, we
relate the PDE for α = 1

2 to a Poisson system and quantify monotonic increase of entropy for α ∈ { 1
2 , 1}.

In Section 1.6, we provide a roadmap on the spectral decomposition of the PDE evolutions.
In Section 2, based on previous works, we collect the necessary prior information about the PDEs

of interest and the corresponding kernels. We also describe how to extend the case α = 1 (the diffusion
case) to the general case α ∈ (0, 1].

In Section 3, we describe the Fourier transform on the Lie group SE(3), where we rely on UIRs of
SE(3). In particular, by relating the UIRs to the dual orbits of SO(3) and by using a decomposition
with respect to an orthonormal basis of modified spherical harmonics, we recall an explicit formula for
the inverse Fourier transform.

In Section 4, we present a Fourier transform FG/H on the quotient G/H = R3 � S2.
Our construction requires an additional constraint—an input function must be bi-invariant with
respect to subgroup H, as explained in Remark 3. This extra symmetry constraint is satisfied by the
PDE kernels of interest. We prove a theorem, where we present: (1) a matrix representation for the
Fourier transform on the quotient; (2) an explicit inversion formula; and (3) a Plancherel formula.

In Section 5, we apply our Fourier transform on the quotient to solve the PDEs of interest.
The solution is given by convolution of the initial condition with the specific kernels (which are the
probability kernels of α-stable Lévy process). We find the exact formulas for the kernels in the frequency
domain relying on a spectral decomposition of the evolution operator (involved in the PDEs). We show
that this result can be obtained either via conjugation of the evolution operator with our Fourier
transform on R3 � S2 or (less efficiently) via conjugation of the evolution operator with the Fourier
transform acting only on the spatial part R3. Then, we present a numerical scheme to approximate
the kernels via Monte-Carlo simulation and we provide a comparison of the exact solutions and their
approximations. Finally, in Section 6, we summarize our results and discuss their applications. In the
appendices, we address the probability theory and stochastic differential equations (SDEs) regarding
Lévy processes on R3 � S2.

The main contributions of this article are:

• We construct FR3�S2—the Fourier transform on the quotient R3 � S2, in Equation (43).
• The matrix representations for FR3�S2 , explicit inversion and Plancherel formulas are shown in

Theorem 1.
• The explicit spectral decompositions of PDE evolutions for α-stable Lévy process on R3 � S2,

in the Fourier domains of both R3 � S2 and R3, are shown in Theorem 2; here, the new
spectral decomposition in the Fourier domain of R3 � S2 is simpler and involves ordinary
spherical harmonics.
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• The quantification of monotonic increase of entropy of PDE solutions for α-stable Lévy processes
on R3 � S2 for α ∈ { 1

2 , 1} in terms of Fisher information matrices is shown in Proposition 1.
• the exact formulas for the probability kernels of α-stable Lévy processes on R3 � S2, in Theorem 3.

This also includes new formulas for the heat kernels (the case α = 1), that are more efficient than
the heat kernels presented in previous work [40].

• Simple formulation and verifications (Monte-Carlo simulations) of discrete random walks for
α-stable Lévy processes on R3 � S2 in Proposition 3. The corresponding SDEs are in Appendix A.

1.2. Introduction to the Fourier Transform on the Homogeneous Space of Positions and Orientations

Let G = SE(3) denote the Lie group of rigid body motions, equipped with group product:

g1g2 = (x1, R1)(x2, R2) = (R1x2 + x1, R1R2), with gk = (xk, Rk) ∈ G, k = 1, 2. (1)

Here, xk ∈ R3 and Rk ∈ SO(3). Note that SE(3) = R3 �SO(3) is a semi-direct product of R3

and SO(3).

Definition 1. Let B(H) denote the vector space of bounded linear operators on some Hilbert space H.
Within the space B(H), we denote the subspace of bounded linear trace-class operators by

B2(H) =
{

A : H → H | A linear and |||A|||2 := trace(A∗A) < ∞
}

.

Definition 2. Consider a mapping σ : G → B(Hσ), where Hσ denotes the Hilbert space on which each σg

acts. Then, σ is a Unitary Irreducible Representation (UIR) of G if

1. σ : G → B(Hσ) is a homomorphism;
2. σ−1

g = σ∗g for all g ∈ G; and
3. there does not exist a closed subspace V of Hσ other than {0,Hσ} such that σgV ⊂ V.

We denote by Ĝ the dual group of G. Its elements are equivalence classes of UIRs, where one
identifies elements via σ1 ∼ σ2 ⇔ there exists a unitary linear operator υ, s.t. σ1 = υ ◦ σ2 ◦ υ−1. Note
that G = SE(3) is a unimodular Lie group of type I, which means that the left and right-invariant
Haar measure coincide, and that its dual group and its quasi dual group coincide. Thereby it admits a
Plancherel theorem [22,24].

Definition 3. The Fourier transform FG( f ) = ((FG f )(σ))σ∈Ĝ of a square-integrable, measurable and
bounded function f on G is a measurable field of bounded operators indexed by unitary irreducible representations
(UIR’s) σ. Now, Ĝ can be equipped with a canonical Plancherel measure ν and the Fourier transform FG admits
an extension unitary operator from L2(G) to the direct-integral space

∫ ⊕
Ĝ B2(Hσ)dν(σ). This unitary extension

([22], 4.25) (also known as “Plancherel transform” ([24], thm.3.3.1)) is given by

FG( f ) =
⊕∫̂
G

f̂ (σ) dν(σ), with

f̂ (σ) = (FG f ) (σ) =
∫
G

f (g) σg−1dg ∈ B2(Hσ), for all σ ∈ Ĝ,
(2)

for all f ∈ L1(G) ∩L2(G).

The Plancherel theorem states that ‖FG( f )‖2
L2(Ĝ)

=
∫

Ĝ |||FG( f )(σ)|||2dν(σ) =
∫

G | f (g)|2dg =

‖ f ‖2
L2(G) for all f ∈ L2(G), and we have the inversion formula f = F−1

G FG f = F∗
GFG f . For details,

see [22,24], and, for detailed explicit computations, see [4].
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In this article, we constrain and modify the Fourier transform FG on G = SE(3) such that we
obtain a suitable Fourier transform FG/H defined on a homogeneous space

R3 � S2 := G/H with subgroup H = {0} × StabSO(3)(a) (3)

of left cosets, where StabSO(3)(a) = {R ∈ SO(3) | Ra = a} denotes the subgroup of SO(3) that
stabilizes an a priori reference axis a ∈ S2, say a = ez = (0, 0, 1)T . In the remainder of this article, we
set this choice a = ez.

Remark 1. Although the semi-direct product notation R3 � S2 is formally not correct as S2 is not a Lie group,
it is convenient: it reminds that G/H denotes the homogeneous space of positions and orientations.

Remark 2. (notation and terminology)
Elements in Equation (3) denote equivalence classes of rigid body motions g = (x, Rn) ∈ SE(3) that map

(0, a) to (x, n):
[g] =: (x, n) ∈ R3 � S2 ⇔ g$ (0, a) = (x, n),

under the (transitive) action

g$ (x′, n′) = (Rx′ + x, Rn′), for all g = (x, R) ∈ SE(3), (x′, n′) ∈ R3 � S2. (4)

Therefore, we simply denote the equivalence classes [g] by (x, n). This is similar to the conventional
writing n ∈ S2 = SO(3)/SO(2). Throughout this manuscript, we refer to G/H as “the homogeneous space of
positions and orientations” and henceforth Rn denotes any rotation that maps the reference axis a into n.

The precise definition of the Fourier transformFG/H on the homogeneous space G/H is presented
in Section 4. It relies on the decomposition into unitary irreducible representations in Equation (2), but
we must take both a domain and a range restriction into account. This is explained in Section 4. Next,
we address an a priori domain constraint that is rather convenient than necessary.

Remark 3. We constrain the Fourier transform FG/H to

L
sym
2 (G/H) :=

{
f ∈ L2(G/H) | ∀R∈StabSO(3)(a)

: f (x, n) = f (Rx, Rn)
}

. (5)

This constraint is convenient in view of the PDEs of interest (and the symmetries of their kernels)
that we formulate in the next subsection, and that solve via Fourier’s method in Section 5.

1.3. Introduction to the PDEs of Interest on the Quotient R3 � S2

Our main objective is to use the Fourier transform FG/H to solve the following PDEs on R3 � S2:

⎧⎨⎩
∂

∂t
Wα(x, n, t) = QαWα(x, n, t),

Wα(x, n, 0) = U(x, n),
(6)

where (x, n) ∈ R3 � S2, t ≥ 0, α ∈ (0, 1] and the generator

Qα := −(−Q)α (7)

is expressed via
Q = D11‖n×∇R3‖2 + D33(n · ∇R3)2 + D44ΔS2

n ,

with D33 > D11 ≥ 0, D44 > 0, and with ΔS2
n the Laplace–Beltrami operator on S2=

{
n ∈ R3

∣∣ ‖n‖ = 1
}

.
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Note that the generator Q is a self-adjoint unbounded operator with domain

D(Q) := H2(R
3)⊗H2(S2),

where H2 denotes the Sobolev space W2
2.

The semigroup for α = 1 is a strongly continuous semigroup on L2(R
3 � S2) with a closed

generator, and by taking the fractional power of the generator one obtains another strongly continuous
semigroup, as defined and explained in a more general setting in the work by Yosida ([66], ch:11).
The fractional power is formally defined by

QαW = −(−Q)αW :=
sin απ

π

∫ ∞

0
λα−1(Q− λI)−1(−QW)dλ for all W ∈ D(Q). (8)

In Section 1.6, we show that the common technical representation Equation (8) is not really
needed for our setting. In fact, it is very easy to account for α ∈ (0, 1] in the solutions; by a spectral
decomposition, we only need to take fractional powers of certain eigenvalues in the Fourier domain.
For the moment, the reader may focus on the case α = 1, where the system in Equation (6) becomes an
ordinary elliptic diffusion system which is hypo-elliptic (in the sense of Hörmander [79]) even in the
degenerate case where D11 = 0.

The PDEs in Equation (6) have our interest as they are Forward-Kolmogorov equations for
α-stable Lévy processes on G/H. See Appendix A for a precise formulation of discrete and continuous
stochastic processes. This generalizes previous works on such basic processes [61,64] with applications
in financial mathematics [80] and computer vision [65,78,81,82], from Lie group R3 to the Lie group
quotient R3 � S2.

See Figure 1 for a visualization of sample paths from the discrete stochastic processes explained
in Appendix A. They represent “drunk man’s flights” rather than “drunk man’s walks”.

Figure 1. Various visualization of the diffusion process (α = 1) on Rd � Sd−1, for d = 2 and d = 3.
(Top) random walks (or rather “drunk man’s drives”) and an iso-contour of the limiting diffusion
kernel, for the case d = 2 studied in previous works (see, e.g., [15,37,83]); and (Bottom) random walks
(or rather “drunk man’s flights”) and a visualization of the limiting distribution for the case d = 3. This
limiting distribution is a degenerate diffusion kernel (x, n) �→ Kα=1

t (x, n) that we study in this article.
We visualize kernel Kα=1

t by a spatial grid of surfaces, where all surfaces are scaled by the same μ > 0.
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1.4. Reformulation of the PDE on the Lie Group SE(3)

Now, we reformulate and extend our PDEs in Equation (6) to the Lie group G = SE(3) of rigid
body motions, equipped with group product in Equation (1). This helps us to better recognize
symmetries, as we show in Section 2.1. To this end, the PDEs are best expressed in a basis of
left-invariant vector fields {g �→ Ai|g}6

i=1 on G. Such left-invariant vector fields are obtained by
push forward from the left-multiplication Lg1 g2 := g1g2 as

Ai|g = (Lg)∗Ai ∈ Tg(G),

where Ai := Ai|e form an orthonormal basis for the Lie algebra Te(G). We choose such a basis typically
such that the first three are spatial generators A1 = ∂x, A2 = ∂y, A3 = ∂z = a · ∇R3 and the remaining
three are rotation generators, in such a way that A6 is the generator of a counter-clockwise rotation
around the reference axis a. For all Ũ ∈ C1(G) and g ∈ G, one has

AiŨ(g) = lim
t↓0

Ũ(g etAi )− Ũ(g)
t

, (9)

where A �→ eA denotes the exponent that maps Lie algebra element A ∈ Te(G) to the corresponding
Lie group element. The explicit formulas for the left-invariant vector fields in Euler-angles (requiring
two charts) can be found in Appendix B, or in [4,84].

Now we can re-express the PDEs in Equation (6) on the group G = SE(3) as follows:

⎧⎨⎩
∂

∂t
W̃α(g, t) = Q̃αW̃α(g, t), g ∈ G, t ≥ 0

W̃α(g, 0) = Ũ(g), g ∈ G,
(10)

where the generator
Q̃α := −(−Q̃)α (11)

is again a fractional power (α ∈ (0, 1]) of the diffusion generator Q̃ given by

Q̃ = D11(A2
1 +A2

2) + D33 A2
3 + D44(A2

4 +A2
5), (12)

where A2
i = Ai ◦ Ai for all i ∈ {1, . . . , 5}. The initial condition in Equation (10) is given by

Ũ(g) = Ũ(x, R) = U(x, Ra).

Similar to the previous works [40,85], one has

W̃α(x, R, t) = Wα(x, Ra, t), (13)

that holds for all t ≥ 0, (x, R) ∈ SE(3).

Remark 4. Equation (13) relates the earlier PDE formulation in Equation (6) on the quotient G/H to the PDE
formulation in Equation (10) on the group G. It holds since we have the relations

A6W̃α(x, R, t) = 0,
(A2

5 +A2
4)W̃α(x, R, t) = ΔS2

Wα(x, Ra, t),

A3W̃α(x, Rn, t) = n · ∇R3Wα(x, n, t),(
A2

1 +A2
2
)

W̃α(x, R, t) =
(

ΔR3 −A2
3

)
W̃α(x, R, t) = ‖n×∇R3‖2 Wα(x, Ra, t)
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so that the generator of the PDE in Equation (10) on G and the generator of the PDE in Equation (6) on G/H
indeed stay related via

Q̃αW̃α(x, R, t) = QαWα(x, Ra, t) for all t ≥ 0. (14)

1.5. Increase of Entropy for the Diffusion System (α = 1) and the Poisson System (α = 1
2 ) on G/H

The PDE-system in Equation (6) on G/H relates to the PDE-system in Equation (10) on G via
Equation (14). Next, we show that for α = 1

2 the PDE-system boils down to a Poisson system. For α = 1
the PDE-system in Equation (10) is a diffusion system on Lie group G, for which one has monotonic
increase of entropy [75]. The next theorem quantifies the monotonic increase of entropy for α ∈ { 1

2 , 1}
in terms of Fisher matrices.

Definition 4. Let α ∈ (0, 1]. Let W̃α be the solution to Equation (10) with positive initial condition Ũ > 0
with Ũ ∈ L2(G) and

∫
G Ũ(g)dg = 1. Then, we define the entropy Eα(t) at evolution time t ≥ 0 as

Eα(t) := −
∫
G

W̃α(g, t) log W̃α(g, t)dg. (15)

Proposition 1. For α = 1
2 , the PDE system in (10) yields the same solutions as the following Poisson system:⎧⎨⎩

(
∂2

∂t2 + Q̃
)

W̃1
2
(g, t) = 0 g ∈ G, t ≥ 0, with ∀t≥0 : W̃1

2
(·, t) ∈ L2(G)

W̃1
2
(g, 0) = Ũ(g) > 0, g ∈ G.

(16)

The entropy in Equation (15) equals Eα(t) = −2π
∫

G/H
Wα(x, n, t) log Wα(x, n, t)dxdμS2(n).

For all t > 0, one has

E′1(t) = trace{D · F1(t)} > 0,

E′′1
2
(t) < −trace{D · F 1

2
(t)} < 0 and E′1

2
(t) =

∞∫
t

trace{D · F 1
2
(τ)}+ F(τ) dτ > 0,

(17)

for the diffusion matrix D = diag{Dii}6
i=1 > 0, where D11 = D22, D33 and D44 = D55 are the coefficients in

Q̃, and with Fisher matrix Fα(t) = diag{
∫
G

|AiW̃α(g,t)|2
W̃α(g,t)

dg}6
i=1, and F(t) =

∫
G

|∂τW̃1/2(g,t)|2
W̃1/2(g,t)

dg ≥ 0.

Proof. For α = 1
2 , one has by the square integrability constraint in Equation (16) and application

of the unitary Fourier transform on G that
(

∂2

∂t2 + Q̃
)

W̃1
2
=
(

∂
∂t −

√
−Q̃

) (
∂
∂t +

√
−Q̃

)
W̃1

2
= 0 ⇒(

∂
∂t +

√
−Q̃

)
W̃1

2
= 0 and thereby the PDE system in Equation (10) can be replaced by the Poisson

system in Equation (16) on G×R+. The formula for the entropy follows from a product decomposition
of the (bi-invariant) haar measure on G into measure on the quotient G/H and a measure on the
subgroup H ≡ {0} × SO(2) and the fact that W̃α(gh, t) = W̃α(g, t) for all h ∈ H, α ∈ (0, 1], due to
Equation (14). For α = 1

2 , we have that W̃α satisfies Equation (16) and

E′′1
2
(t) = −

∫
G

(∂tW̃ 1
2
(g,t))2

W̃ 1
2
(g,t)

− (log(W̃1
2
(g, t) + 1)) ∂2

t W̃1
2
(g, t)dg

<
∫
G
(log W̃1

2
(g, t) + 1) Q̃W̃1

2
(g, t) dg =

∫
G
(log W̃1

2
(g, t)) Q̃W̃1

2
(g, t) dg

= −
∫
G

6
∑

i=1

Dii |AiW̃ 1
2
(g,t)|2

W̃ 1
2
(g,t)

dg = −trace(D · F 1
2
(t)),
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where we use integration by parts and short notation with ∂t := ∂
∂t . Now, E′′1

2
< 0 and E′1

2
is continuous

(due to the Lebesgue dominated convergence principle and continuity of each mapping t �→ ∂tW̃(g, t)

indexed by g ∈ G) and E 1
2
(t)→ 0 when t → ∞, from which we deduce that E′1

2
(t) = −

∞∫
t

E′′1
2
(τ)dτ > 0.

For α = 1, we follow ([75], Thm.2) and compute (again using the PDE and integration by parts)

E′1(t) = −
∫
G

(∂tW̃1(g, t)) log W̃1(g, t)+ W̃1(g, t)dg =
∫
G

6

∑
i=1

Dii
|AiW̃1(g, t)|2

W̃1(g, t)
dg = trace(D ·F1(t)) > 0.

Regarding the strict positivity in Equation (17), we note that Ũ > 0 ⇒ W̃α > 0 and if E′α(t) = 0
then this would imply that W̃α(·, t) is constant, which violates W̃α(·, t) ∈ L2(G) as G is not compact.

1.6. A Preview on the Spectral Decomposition of the PDE Evolution Operator and the Inclusion of α

Let U be in the domain of the generator Qα given by Equation (7), of our evolution Equation (6).
For a formal definition of this domain, we refer to ([86], Equation 9). Let its spatial Fourier transform
be given by

U(ω, n) = [FR3U(·, n)] (ω) :=
1

(2π)
3
2

∫
R3

U(x, n) e−iω·x dx. (18)

To the operator Qα, we associate the corresponding operator −(−B)α in the spatial Fourier
domain by

− (−B)α =
(
FR3 ⊗ 1L2(S2)

)
◦Qα ◦

(
F−1
R3 ⊗ 1H2α(S2)

)
. (19)

Then, direct computations show us that

− (−B)αU(ω, n) =
[
−(−Bω)

αU(ω, ·)
]
(n), for all n ∈ S2, (20)

where, for each fixed ω ∈ R3, the operator −(−Bω)α : H2α(S2)→ L2(S2) is given by

− (−Bω)
α = −

(
−D44ΔS2

n + D11‖ω× n‖2 + D33(ω · n)2
)α

. (21)

In this article, we employ Fourier transform techniques to derive a complete orthonormal basis
(ONB) of eigenfunctions {

Φl,m
ω | l ∈ N0, m ∈ Z with |m| ≤ l

}
, (22)

in L2(S2) for the operator −(−Bω) := −(−Bω)α=1. Then, clearly, this basis is also an ONB of
eigenfunctions for −(−Bω)α, as we only need to take the fractional power of the eigenvalues. Indeed,
once the eigenfunctions in Equation (22) and the eigenvalues

BωΦl,m
ω = λl,m

r Φl,m
ω , with r = ‖ω‖, (23)

are known, the exact solution of Equation (6) is given by (shift-twist) convolution with a probability
kernel on R3 � S2. More precisely, the solutions of Equation (6) can be expressed as follows:

Wα(x, n, t) = (Kα
t ∗U)(x, n) :=

∫
S2

∫
R3

Kα
t (R

T
n′ (x− x′), RT

n′n)U(x′, n′) dx′dμS2 (n′)

=
∫
R3

∞
∑

l=0

l
∑

m=−l

〈
U(ω, ·) , Φl,m

ω (·)
〉
L2(S2)

Φl,m
ω (n) e−(−λl,m

r )αteix·ωdω,

with the probability kernel given by

Kα
t (x, n) =

[
F−1
R3

(
Kα

t (·, n)
)]

(x),

with Kα
t (ω, n) =

∞
∑

l=0

l
∑

m=−l
Φl,m

ω (a)Φl,m
ω (n) e−(−λl,m

r )αt.

(24)
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Here, the inner product in L2(S2) is given by

〈y1(·), y2(·)〉L2(S2) :=
∫
S2

y1(n) y2(n)dμS2(n). (25)

where μS2 is the usual Lebesgue measure on the sphere S2.

Remark 5. The eigenvalues λl,m
r only depend on r = ‖ω‖ due to the symmetry Φl,m

Rω(Rn) = Φl,m
ω (n) that

one directly recognizes from Equations (21) and (23).

Remark 6. The kernels Kα
t are the probability density kernels of stable Lévy processes on R3 � S2, see

Appendix A.1. Therefore, akin to the Rn-case [61,65], we refer to them as the α-stable Lévy kernels on R3 � S2.

2. Symmetries of the PDEs of Interest

Next, we employ the PDE formulation in Equation (10) on the group G = SE(3) to summarize
the symmetries for the probability kernels Kα

t : R3 � S2 → R+. For details, see [40,87].

2.1. PDE Symmetries

Consider the PDE system in Equation (10) on the group G = SE(3). Due to left-invariance
(or rather left-covariance) of the PDE, linearity of the map Ũ(·) �→ W̃α(·, t), and the Dunford–Pettis
theorem [88], the solutions are obtained by group convolution with a kernel K̃α

t ∈ L1(G):

W̃α(g, t) =
(
K̃α

t ∗ Ũ
)
(g) :=

∫
G

K̃α
t (h

−1g) Ũ(h) dh, (26)

where we take the convention that the probability kernel acts from the left. In the special case, U = δe

with unity element e = (0, I) we get W̃α(g, t) = K̃α
t (g).

Thanks to the fundamental relation in Equation (13) that holds in general, we have in
particular that

∀t≥0 ∀(x,R)∈G : K̃α
t (x, R) = Kα

t (x, Ra). (27)

Furthermore, the PDE system given by Equation (10) is invariant under Ai �→ −Ai, and, since
inversion on the Lie algebra corresponds to inversion on the group, the kernels must satisfy

∀t≥0 ∀g∈G : K̃α
t (g) = K̃α

t (g−1), (28)

and for the corresponding kernel on the quotient this means

∀t≥0 ∀(x,n)∈G/H : Kα
t (x, n) = Kα

t (−RT
nx, RT

na). (29)

Finally, we see invariance of the PDE with respect to right actions of the subgroup H. This is due to
the isotropy of the generator Q̃α in the tangent subbundles span{A1,A2} and span{A4,A5}. This due
to Equation (A11) in Appendix B. Note that invariance of the kernel with respect to right action of
the subgroup H and invariance of the kernel with respect to inversion in Equation (28) also implies
invariance of the kernel with respect to left-actions of the subgroup H, since (g−1(h′)−1)−1 = h′g for
all h′ ∈ H and g ∈ G. Therefore, we have

∀t≥0 ∀g∈G∀h,h′∈H : K̃α
t ( g h ) = K̃α

t (g) = K̃α
t (h

′g),
∀t≥0 ∀(x,n)∈G/H∀α∈[0,2π) : Kα

t (x, n) = Kα
t (Ra,αx, Ra,αn).

(30)

Remark 7. (notations, see also the list of abbreviations at the end of the article)
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To avoid confusion between the Euler angle α and the α indexing the α-stable Lévy distribution, we put an
overline for this specific angle. Henceforth, Rv,ψ denotes a counter-clockwise rotation over axis v with angle ψ.
This applies in particular to the case where the axis is the reference axis v = a = (0, 0, 1)T and ψ = α. Recall
that Rn (without an angle in the subscript) denotes any 3D rotation that maps reference axis a onto n.

We write the symbol ·̂ above a function to indicate its Fourier transform on G and G/H; we use the
symbol · for strictly spatial Fourier transform; the symbol ·̃ above a function/operator to indicate that it is
defined on the group G and the function/operator without symbols when it is defined on the quotient G/H.

2.2. Obtaining the Kernels with D11 > 0 from the Kernels with D11 = 0

In ([40], cor.2.5), it was deduced that for α = 1 the elliptic diffusion kernel (D11 > 0) directly
follows from the degenerate diffusion kernel (D11 = 0) in the spatial Fourier domain via

K1,elliptic
t (ω, n) = e−r2D11tK1,degenerate

t

(√
D33 − D11

D33
ω, n

)
, with r = ‖ω‖, 0 ≤ D11 < D33.

For the general case α ∈ (0, 1], the transformation from the case D11 = 0 to the case D11 > 0 is

achieved by replacing −(−λl,m
r )α �→ −(−λl,m

r + r2D11)
α and r �→ r

√
D33−D11

D33
in Equation (24) for the

kernel. Henceforth, we set D11 = 0.

3. The Fourier Transform on SE(3)

The group G = SE(3) is a unimodular Lie group (of type I) with (left- and right-invariant) Haar
measure dg = dxdμSO(3)(R) being the product of the Lebesgue measure on R3 and the Haar measure
μSO(3) on SO(3). Then, for all f ∈ L1(G) ∩L2(G), the Fourier transform FG f is given by Equation (2).
For more detailsm see [22,24,26]. One has the inversion formula:

f (g) = (F−1
G FG f )(g) =

∫
Ĝ

trace
{
(FG f ) (σ) σg

}
dν(σ) =

∫
Ĝ

trace
{

f̂ (σ) σg

}
dν(σ). (31)

In our Lie group case of SE(3), we identify all unitary irreducible representations σp,s having
non-zero dual measure with the pair (p, s) ∈ R+ × Z. This identification is commonly applied (see,
e.g., [4]). Using the method ([26], Thm. 2.1, [25]) of induced representations, all unitary irreducible
representations (UIRs) of G, up to equivalence, with non-zero Plancherel measure are given by:

σ = σp,s : SE(3)→ B(L2(p S2)), p > 0, s ∈ Z,(
σ

p,s
(x,R)

φ
)
(u) = e−i u·x φ

(
R−1u

)
Δs

(
R−1

u
p

RR R−1u
p

)
, u ∈ pS2, φ ∈ L2(pS2),

(32)

where pS2 denotes a 2D sphere of radius p = ‖u‖; Δs is a unitary irreducible representation of SO(2)
(or rather of the stabilizing subgroup StabSO(3)(a) ⊂ SO(3) isomorphic to SO(2)) producing a scalar.

In Equation (32), R u
p

denotes a rotation that maps a onto u
p . Thus, direct computation

R−1
u
p

RR R−1u
p

a = R−1
u
p

RR−1
(

u

p

)
= a

shows us that it is a rotation around the z-axis (recall a = ez), e.g. about angle α. This yields character

Δs

(
R−1

u
p

RR R−1u
p

)
= e−isα, for details, see ([4], ch.10.6). Thus, we can rewrite Equation (32) as

(
σ

p,s
(x,R)

φ
)
(u) = e−i (u·x+sα) φ(R−1u), where (x, R) ∈ G, u ∈ pS2, φ ∈ L2(pS2).
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Mackey’s theory [25] relates the UIR σp,s to the dual orbits pS2 of SO(3). Thereby, the dual measure
ν can be identified with a measure on the family of dual orbits of SO(3) given by {pS2 | p > 0}, and(

F−1
G f̂

)
(g) =

∫
Ĝ

trace
{

f̂ (σp,s) σ
p,s
g

}
dν(σp,s) =

∫
R+

trace
{

f̂ (σp,s) σ
p,s
g

}
p2dp,

for all p > 0, s ∈ Z. For details, see ([24], ch. 3.6.).
The matrix elements of f̂ = FG f with respect to an orthonormal basis of modified spherical

harmonics {Yl,m
s (p−1·)}, with |m|, |s| ≤ l (see ([4], ch.9.8)) for L2(pS2) are given by

f̂ p,s
l,m,l′ ,m′ :=

∫
G

f (g)
〈

σ
p,s
g−1Yl′ ,m′

s (p−1 ·) , Yl,m
s (p−1 ·)

〉
L2(pS2)

dg, (33)

where the L2 inner product is given by 〈 y1(·) , y2(·) 〉L2(pS2) := 〈 y1(p·) , y2(p·) 〉L2(S2) (recall Equation (25)).

For an explicit formula for the modified spherical harmonics Yl,m
s see [4], where they are denoted

by hl
m,s. The precise technical analytic expansion of the modified spherical harmonics is not important

for this article. The only properties of Yl,m
s that we need are gathered in the next proposition.

Proposition 2. The modified spherical harmonics Yl,m
s have the following properties:

(1) For s = 0 or m = 0, they coincide with standard spherical harmonics Yl,m, cf. ([89], eq.4.32):

Yl,m
s=0 = Yl,m and Yl,0

s = (−1)s Yl,s, where Yl,m(n(β, γ)) = εm√
2π

Pm
l (cos β) eimγ,

with n(β, γ) = (cos γ sin β, sin γ sin β, cos β)T , with spherical angles β ∈ [0, π], γ ∈ [0, 2π),

with Pm
l the normalized associated Legendre polynomial and εm = (−1)

1
2 (m+|m|).

(2) They have a specific rotation transformation property in view of Equation (32):

σ
p,s
(0,R)

Yl,m
s =

l
∑

m′=−l
Dl

m′m(R) Yl,m′
s , where Dl

m′m(·) denotes the Wigner D-function [90].

(3) For each s ∈ Z fixed, they form a complete orthonormal basis for L2(S2) :〈
Yl,m

s (·), Yl′ ,m′
s (·)

〉
L2(S2)

= δl,l′δm,m′
for all m, m′ ∈ Z, l, l′ ∈ N0, with |m| ≤ l, |m′| ≤ l′, l, l′ ≥ |s|.

For details and relation between different Euler angle conventions, see ([4], ch:9.4.1). In our
convention of ZYZ-Euler angles (see Appendix B), one has

Dl
m′m(Rez ,αRey ,βRez ,γ) = e−im′αPl

m′m(cos β)e−imγ, (34)

with Pl
m′m a generalized associated Legendre polynomial given in ([4], eq.9.21).

Moreover, we have inversion formula ([4], Equation 10.46):

f (g) =
1

2π2 ∑
s∈Z

∞

∑
l′=|s|

∞

∑
l=|s|

l′

∑
m′=−l′

l

∑
m=−l

∞∫
0

f̂ p,s
l,m,l′ ,m′

(
σ

p,s
g

)
l′ ,m′ ,l,m

p2dp, (35)

with matrix coefficients (independent of f ) given by(
σ

p,s
g

)
l′ ,m′ ,l,m

=
〈

σ
p,s
g Yl,m

s (p−1·) , Yl′ ,m′
s (p−1·)

〉
L2(pS2)

. (36)

Note that σp,s is a UIR so we have(
σ

p,s
g−1

)
l′ ,m′ ,l,m

=
(

σ
p,s
g

)
l,m,l′ ,m′ . (37)
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4. A Specific Fourier Transform on the Homogeneous Space R3 � S2 of Positions and Orientations

Now that we have introduced the notation of Fourier transform on the Lie group G = SE(3),
we define the Fourier transform FG/H on the homogeneous space G/H = R3 � S2. Afterwards, in
the subsequent section, we solve the Forward-Kolmogorov/Fokker–Planck PDEs in Equation (6) via
application of this transform, or, more precisely, via conjugation with Fourier transform FG/H .

4.1. The Homogeneous Space R3 � S2

Throughout this manuscript, we rely on a Fourier transform on the homogeneous space of
positions and orientations that is defined by the partition of left-cosets: R3 � S2 := G/H, given by
Equation (3).

Note that subgroup H can be parameterized as follows:

H = {hα := (0, Ra,α) | α ∈ [0, 2π)}, (38)

where we recall that Ra,α denotes a (counter-clockwise) rotation around the reference axis a = ez.
The reason behind this construction is that the group SE(3) acts transitively on R3 � S2 by (x′, n′) �→
g$ (x′, n′) given by Equation (4). Recall that by the definition of the left-cosets one has

H = {0} × SO(2), and g1 ∼ g2 ⇔ g−1
1 g2 ∈ H.

The latter equivalence simply means that for g1 = (x1, R1) and g2 = (x2, R2) one has

g1 ∼ g2 ⇔ x1 = x2 and ∃α∈[0,2π) : R1 = R2Ra,α.

The equivalence classes [g] = {g′ ∈ SE(3) | g′ ∼ g} are often just denoted by (x, n) as they
consist of all rigid body motions g = (x, Rn) that map reference point (0, a) onto (x, n) ∈ R3 � S2 :

g$ (0, a) = (x, n), (39)

where we recall Rn is any rotation that maps a ∈ S2 onto n ∈ S2.

4.2. Fourier Transform on R3 � S2

Now we can define the Fourier transform FG/H on the homogeneous space G/H. Prior to this,
we specify a class of functions where this transform acts.

Definition 5. Let p > 0 be fixed and s ∈ Z. We denote

L
sym
2 (pS2) =

{
f ∈ L2(pS2)

∣∣∣ ∀α∈[0,2π) σ
p,s
hα

f = f
}

the subspace of spherical functions that have the prescribed axial symmetry, with respect to the subgroup H
(recall Equation (38)).

Definition 6. We denote the orthogonal projection from L2(pS2) onto the closed subspace Lsym
2 (pS2) by P

sym
p .

Definition 7. To the group representation σp,s : SE(3) → B(L2(pS2)) given by Equation (32), we relate a
“representation” σp,s : R3 � S2 → B(L2(pS2)) on R3 � S2, defined by

σ
p,s
[g] :=

1
(2π)2

2π∫
0

2π∫
0

σ
p,s
hα̃ghα

dαdα̃ = P
sym
p ◦ σ

p,s
g ◦ Psym

p . (40)
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Definition 8. A function Ũ : G → C is called axially symmetric if

Ũ(x, R) = Ũ(x, RRa,α) for all α ∈ [0, 2π) and all (x, R) ∈ G. (41)

To each function U : G/H → C, we relate an axially symmetric function Ũ : G → C by

Ũ(x, R) := U(x, Ra). (42)

Definition 9. We define the Fourier transform of function U on G/H = R3 � S2 by

Û(σp,s) = (FG/HU) (σp,s) := P
sym
p ◦ FGŨ(σp,s) ◦ Psym

p . (43)

Standard properties of the Fourier transform FG on SE(3) such as the Plancherel theorem and
the inversion formula [4,26] naturally carry over to FG/H with “simpler formulas”. This is done by a
domain and range restriction via the projection operators Psym

p in Equation (43). The reason for the
specific construction Equation (43) becomes clear from the next lemmas, and the “simpler formulas”
for the Plancherel and inversion formulas are then summarized in a subsequent theorem, where we
constrain ourselves to the case m = m′ = 0 in the formulas. The operator P

sym
p that is most right

in Equation (43) constrains the basis Yl,m
s to m = 0, whereas the operator P

sym
p that is most left in

Equation (43) constrains the basis Yl′ ,m′
s to m′ = 0.

Lemma 1. (axial symmetry) Let Ũ : G → C be axially symmetric. Then,

1. it relates to a unique function U : G/H → C via U(x, n) = Ũ(x, Rn);
2. the matrix coefficients

Ûp,s
l,m,l′ ,m′ =

[
FGŨ(σp,s)

]
l,m,l′ ,m′ of linear operator FGŨ(σp,s)

relative to the modified spherical harmonic basis {Yl,m
s } vanish if m �= 0; and

3. the matrix coefficients

Ûp,s
l,m,l′ ,m′ = [FG/HU(σp,s)]l,m,l′ ,m′ of linear operator FG/HU(σp,s)

relative to the modified spherical harmonic basis {Yl,m
s } vanish if m �= 0 or m′ �= 0.

Conversely, if Ũ = F−1
G (Û) and

∀p>0∀l∈N0∀s∈Z, with |s|≤l ∀m′∈Z, with |m′ |≤l ∀m �=0 : Ûp,s
l,m,l′ ,m′ = 0, (44)

then Ũ satisfies the axial symmetry in Equation (41).

Proof. Item 1: Uniqueness of U follows by the fact that the choice of Rn of some rotation that maps a

onto n does not matter. Indeed, U(x, n) = Ũ(x, RnRa,α) = Ũ(x, Rn).
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Item 2: Assumption Equation (41) can be rewritten as Ũ(g) = Ũ(ghα) for all hα ∈ H, g ∈ G.
This gives:

Ûp,s
l,m,l′ ,m′ =

〈
(FGŨ)(Yl′ ,m′

s (p−1·)) , Yl,m
s (p−1·)

〉
L2(pS2)

=
∫
G

Ũ(g)
〈

σ
p,s
g−1Yl′ ,m′

s (p−1·) , Yl,m
s (p−1·)

〉
L2(pS2)

dg

=
∫
G

Ũ(g)
〈

Yl′ ,m′
s (p−1·) , σ

p,s
g Yl,m

s (p−1·)
〉
L2(pS2)

dg

=
∫
G

Ũ(ghα)
〈

Yl′ ,m′
s (p−1·) , σ

p,s
ghα

Yl,m
s (p−1·)

〉
L2(pS2)

d(ghα)

=
∫
G

Ũ(g)
〈

Yl′ ,m′
s (p−1·) , σ

p,s
g ◦ σ

p,s
hα

Yl,m
s (p−1·)

〉
L2(pS2)

d(ghα)

= e−imα Ûp,s
l,m,l′ ,m′ for all α ∈ [0, 2π),

(45)

where we recall that σ is a UIR and that the Haar measure on G is bi-invariant. In the first step, we used
the third property, whereas in the final step we used the second property of Proposition 2 together with

Dl
m′m(Ra,α) = e−imαδm′m so that σ

p,s
hα

Yl,m
s (p−1·) = e−imαYl,m

s (p−1·). (46)

We conclude that (1− e−imα)Ûp,s
l,m,l′ ,m′ = 0 for all α ∈ [0, 2π) so m �= 0 ⇒ Ûp,s

l,m,l′ ,m′ = 0.
Item 3: Due to the second property in Proposition 2, we have

σ
p,s
(0,R)

Yl,m
s (p−1·) =

l

∑
m′=−l

Dl
m′m(R) Yl,m′

s (p−1·).

Thereby, the projection P
sym
p is given by

P
sym
p

(
∞

∑
l=0

l

∑
m=−l

αl,mYl,m
s

)
=

∞

∑
l=0

αl,0Yl,0
s . (47)

Now, the projection P
sym
p that is applied first in Equation (43) filters out m = 0 as the only possible

nonzero component. The second projection filters out m′ = 0 as the only possible nonzero component.
Conversely, if Equation (44) holds, one has by inversion Equation (35) that

Ũ(g) =
1

2π2 ∑
s∈Z

∞

∑
l=|s|

∞

∑
l′=|s|

l′

∑
m′=−l′

∞∫
0

Ûp,s
l,0,l′ ,m′

(
σ

p,s
g

)
l′ ,m′ ,l,0

p2dp,

so then the final result follows by the identity(
σ

p,s
ghα

)
l′ ,m′ ,l,0

=
(

σ
p,s
g

)
l′ ,m′ ,l,0

. (48)

Thus, it remains to show why Equation (48) holds. It is due to σ
p,s
(x,R)

= σ
p,s
(x,I) ◦σ

p,s
(0,R)

and Equation (46),
as one has

σ
p,s
ghα

= σ
p,s
(x,R)(0,Ra,α)

= σ
p,s
(x,RRa,α)

= σ
p,s
(x,R)

◦ σ
p,s
(0,Ra,α)

, and Yl,0
s (p−1R−1

a,α·) = Yl,0
s (p−1·) (49)

and thereby Equation (48) follows by Equation (36).

Lemma 2. If K̃ ∈ L2(G) is real-valued and satisfies the axial symmetry in Equation (41), and moreover the
following holds

K̃(g−1) = K̃(g) (50)
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then the Fourier coefficients satisfy K̂p,s
l,m,l′ ,m′ = K̂p,s

l′ ,m′ ,l,m and they vanish for m �= 0 and for m′ �= 0.

Proof. The proof follows by Equation (37) and inversion invariance of the Haar measure on G
(see [86]).

The next lemma shows that Equation (50) is a sufficient but not a necessary condition for the
Fourier coefficients to vanish for both the cases m′ �= 0 and m �= 0.

Lemma 3. Let K̃ ∈ L2(G) and K ∈ L2(G/H) be related by Equation (42). Then, we have the following equivalences:

K(x, n) = K(Ra,αx, Ra,αn), for all α ∈ [0, 2π), (x, n) ∈ G/H
&

K̃(gh) = K̃(g) = K̃(hg), for all g ∈ G, h ∈ H
&

The Fourier coefficients K̂p,s
l,m,l′ ,m′ vanish for m �= 0 and for m′ �= 0.

(51)

Proof. We show a ⇒ b ⇒ c ⇒ a to get a ⇔ b ⇔ c.
a ⇒ b: Denoting h = hα = (0, Ra,α), g = (x, R), we have

∀α,α′∈[0,2π)∀x∈R3∀R∈SO(3) : K̃(ghα) = K̃(x, RRa,α) = K(x, RRa,αa) = K(x, Ra) = K̃(x, R) = K̃(g)
= K(Ra,αx, Ra,αRa) = K̃(Ra,αx, Ra,αR) = K̃(hαg).

b ⇒ c: By Lemma 1, we know that the Fourier coefficients vanish for m �= 0. Next, we show they also
vanish for m′ �= 0. Similar to Equation (49) we have

σ
p,s
hαg = σ

p,s
(Ra,αx,Ra,αR)

= σ
p,s
(Ra,αx,I) ◦ σ

p,s
(0,Ra,αR)

, (52)

which gives the following relation for the matrix-coefficients:

(
σ

p,s
g=(x,R)

)
l′ ,m′ ,l,m

=
l

∑
j=−l

〈
σ

p,s
(x,I)Y

l,j
s (p−1·) , Yl′ ,m′

s (p−1·)
〉
L2(pS2)

Dl
jm(R) ⇒(

σ
p,s
hα g

)
l′ ,m′ ,l,m

=
l

∑
j=−l

e−i(m′−j)α
〈

σ
p,s
(x,I)Y

l,j
s (p−1·) , Yl′ ,m′

s (p−1·)
〉
L2(pS2)

e−i jα Dl
jm(R)⇒(

σ
p,s
hαg

)
l′ ,m′ ,l,m

= e−im′α
(

σ
p,s
g

)
l′ ,m′ ,l,m

.

(53)

The implication can be directly verified by Proposition 2, Equations (34) and (52), and〈
Yl′ ,m′

s (p−1·) , σ
p,s
(Ra,αx,I)Y

l,j
s (p−1·)

〉
L2(pS2)

=
∫

pS2
e−ip(x·RT

a,αu) Yl,j
s (u) Yl′ ,m′

s (u)dμpS2 (u)

=
∫

pS2
e−ip(x·v)Yl,j

s (Ra,αv) Yl′ ,m′
s (Ra,αv)dμpS2 (v).

From Equation (53), we deduce that:

K̂p,s
l,m,l′ ,m′ =

∫
G

K̃(g)
〈

σ
p,s
g Yl,m

s (p−1·) , Yl′ ,m′
s (p−1·)

〉
L2(pS2)

dg

=
∫
G

K̃(hαg)
〈

σ
p,s
hαgYl,m

s (p−1·) , Yl′ ,m′
s (p−1·)

〉
L2(pS2)

d(hαg)

=
∫
G

K̃(g)
〈

σ
p,s
g Yl,m

s (p−1·) , σ
p,s
h−1

α

Yl′ ,m′
s (p−1·)

〉
L2(pS2)

dg = e+im′ α K̂p,s
l,m,l′ ,m′ ,

which holds for all α ∈ [0, 2π). Thereby, if m′ �= 0, then K̂p,s
l,m,l′ ,m′ = 0.
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c ⇒ a: By inversion of Equation (35), where the only contributing terms have m = 0 and m′ = 0,
we see that K̃(gh) = K̃(hg) = K̃(g) for all h = (0, Ra,α). Thereby, K̃ is axially symmetric and by
Lemma 1 it relates to a unique kernel on G/H via K(x, n) = K̃(x, Rn) and the result follows by
Equation (30).

Now that we have characterized all functions K ∈ L2(G/H) for which the Fourier coefficients
K̂p,s

l,m,l′ ,m′ vanish for m �= 0 and m′ �= 0 in the above lemma, we considerably simplify the inversion and
Plancherel formula for Fourier transform FG on the group G = SE(3) to the Fourier transform FG/H
on the homogeneous space G/H = R3 � S2 in the next theorem. This is important to our objective of
deriving the kernels for the linear PDEs in Equation (6) that we address in the next section.

Theorem 1. (matrix-representation for FG/H, explicit inversion and Plancherel formula)
Let K ∈ L

sym
2 (G/H) and K̃ ∈ L2(G) be related by Equation (42). Then, the matrix elements of FG/HK

are given by

K̂p,s
l′ ,0,l,0 =

∫
G

K̃(g)
(

σ
p,s
g−1

)
l′ ,0,l,0

dg ,

with
(

σ
p,s
g

)
l′ ,0,l,0

=
l

∑
j=−l

[l′, 0 | p, s |l, j] (x) Dl
j0(R) for all g = (x, R) ∈ G.

The constants [l′, 0 | p, s |l, j] (x) :=
〈

σ
p,s
(x,I)Y

l,j
s (p−1·) , Yl′ ,0

s (p−1·)
〉
L2(pS2)

admit an analytic

expression in terms of elementary functions ([4], Equation10.34) and the Wigner D-functions in Equation (34).
Furthermore, we have the following Plancherel and inversion formula:

‖K‖2
L2(G/H) = ‖FG/HK‖2 = ∑

s∈Z

∫
R+

‖| (FG/HK) (σp,s)‖|2 p2dp =
∫
R+

∞
∑

s=−∞

∞
∑

l′=|s|

∞
∑

l=|s|
|K̂p,s

l,0,l′ ,0|2 p2dp,

K(x, n) =
(
F−1

G/HFG/HK
)
(x, n) = ∑

s∈Z

∫
R+

trace
{
(FG/HK)(σp,s) σ

p,s
(x,n)

}
p2dp

= 1
2π2 ∑

s∈Z

∞
∑

l′=|s|

∞
∑

l=|s|

∫
R+

K̂p,s
l,0,l′ ,0

(
σ

p,s
(x,n)

)
l′ ,0,l,0

p2dp,

with matrix coefficients given by (for analytic formulas, see ([4], eq.10.35))(
σ

p,s
(x,n)

)
l′ ,0,l,0

=
(

σ
p,s
g

)
l′ ,0,l,0

=
〈

σ
p,s
g Yl,0

s (p−1·) , Yl′ ,0
s (p−1·)

〉
L2(pS2)

=
〈

σ
p,s
g Yl,s(p−1·) , Yl′ ,s(p−1·)

〉
L2(pS2)

for g = (x, Rn).
(54)

Proof. The above formulas are a direct consequence of Lemma 3 and the Plancherel and inversion
formulas (see [4], ch:10.8, [26]) for Fourier transform on SE(3). Recall that a coordinate-free definition
of σp,s is given in Equation (40). Its matrix coefficients are given by Equation (54), where we recall the
first item of Proposition 2 and where we note that they are independent on the choice of Rn ∈ SO(3)
mapping a onto n.

Corollary 1. Let K1, K2 ∈ L
sym
2 (G/H). Then, for shift-twist convolution on G/H = R3 � S2 given by

(K1 ∗ K2)(x, n) =
∫
S2

∫
R3

K1(R
T
n′(x− x′), RT

n′n)K2(x
′, n′) dx′dμS2(n′)

we have FG/H(K1 ∗ K2) = (FG/HK1) ◦ (FG/HK2).

191



Entropy 2019, 21, 38

Proof. Set K̃1(g)=K1(g$ (0, a)). Standard Fourier theory [5] gives FG(K̃1 ∗ K2)=FG(K̃1 ∗ K̃2), so

FG/H(K1 ∗ K2)
def

= P
sym
p ◦ FG(K̃1 ∗ K2) ◦ Psym

p
= P

sym
p ◦ FG(K̃1) ◦ FG(K̃2) ◦ Psym

p
= P

sym
p ◦ FG(K̃1) ◦ Psym

p ◦ Psym
p ◦ FG(K̃2) ◦ Psym

p
= (FG/HK1) ◦ (FG/HK2),

where the first equality is given by Equation (43) and the third equality follows by Lemma 3 and
Equation (47).

5. Application of the Fourier Transform on R3 � S2 for Explicit Solutions of the Fokker–Planck

PDEs of α-stable Lévy Processes on R3 � S2

Our objective is to solve the PDE system in Equation (6) on the homogeneous space of positions
and orientations G/H. Recall that we extended this PDE system to G in Equation (10). As the cases
D11 > 0 follow from the case D11 = 0 (recall Section 2.2), we consider the case D11 = 0 in this section.
From the symmetry consideration in Section 2, it follows that the solution of Equation (10) is given by
W̃α(g, t) = (K̃α

t ∗ Ũ)(g) with a probability kernel K̃α
t : G → R+, whereas the solution of Equation (6) is

given by

Wα(x, n, t) = (Kα
t ∗U)(x, n) :=

∫
S2

∫
R3

Kα
t (R

T
n′(x− x′), RT

n′n) U(x′, n′) dx′dμS2(n′),

where the kernels Kα
t are invariant with respect to left-actions of the subgroup H (recall Equation (30)).

This invariance means that the condition for application of the Fourier transform FG/H on R3 � S2 is
satisfied (recall Lemma 3) and we can indeed employ Theorem 1 to keep all our computations, spectral
decompositions and Fourier transforms in the 5D homogeneous space R3 � S2 = G/H rather than a
technical and less direct approach [40] in the 6D group G = SE(3).

Remark 8. For the underlying probability theory, and sample paths of discrete random walks of the α-Stable
Lévy stochastic processes, we refer to Appendix A. To get a general impression of how Monte Carlo simulations
of such stochastic processes can be used to approximate the exact probability kernels Kα

t , see Figure 1. In essence,
such a stochastic approximation is computed by binning the endpoints of the random walks. A brief mathematical
explanation follows in Section 5.2.

For now, let us ignore the probability theory details and let us first focus on deriving exact analytic
solutions to Equation (6) and its kernel Kα

t via Fourier transform FG/H on G/H = R3 � S2.

5.1. Exact Kernel Representations by Spectral Decomposition in the Fourier Domain

Let us consider the evolution in Equation (6) for α-stable Lévy process on the quotient G/H =

R3 � S2. Then, the mapping from the initial condition W(·, 0) = U(·) ∈ L2(G/H) to the solution
W(·, t) at a fixed time t ≥ 0 is a bounded linear mapping. It gives rise to a strongly continuous
(holomorphic) semigroup [66]. We conveniently denote the bounded linear operator on L2(G/H)

as follows:
Wα(·, t) = (etQα U)(·), for all t ≥ 0. (55)

In the next main theorem, we provide a spectral decomposition of the operator using both a direct
sum and a direct integral decomposition. Note that definitions of direct integral decompositions (and
the underlying measure theory) can be found in ([24], ch:3.3 and 3.4).
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5.1.1. Eigenfunctions and Preliminaries

To formulate the main theorem, we need some preliminaries and formalities. First, let us define
FR3 : L2(R

3 � S2)→ L2(R
3 � S2) by

(FR3U)(ω, n) := [FR3U(·, n)] (ω). (56)

Recalling Equation (19), we re-express the generator in the spatial Fourier domain:

−(−B)α = FR3 ◦Qα ◦ F−1
R3 ⇒

− (−Bω)
α = −

(
−D33 (iω · n)2 − D44 ΔS2

n

)α

= −
(

D33 r2
(

a · (RT
r−1ω

n)
)2
− D44 ΔS2

n

)α

= −
(

D33 r2 cos2(βω)− D44 ΔS2
n

)α
, with r = ‖ω‖, α ∈ (0, 1],

(57)

where βω denotes the angle between n and r−1ω (see Figure 2). This re-expression is the main reason
for the following definitions.

Instead of the modified spherical Harmonics Yl,m
s in Proposition 2, which are commonly used

as a standard basis to represent each operator in the Fourier transform on SE(3), we use our
generalized spherical harmonics, depending on a spatial frequency vector, as this is in accordance with
Equation (57).

Definition 10. Let l ∈ N0. Let m ∈ Z such that |m| ≤ l. Let ω ∈ R3 be a frequency vector. We define

Yl,m
ω (n) = Yl,m(RT

r−1ω
n), with r = ‖ω‖, n ∈ S2, (58)

where we take the rotation which maps a onto r−1ω whose matrix representation in the standard basis is:

Rr−1ω =
(

(ω×a)×ω
||(ω×a)×ω||

ω×a
||ω×a|| r−1ω

)
for r−1ω �= a, and Ra = I, and R0 = I.

Recall the standard spherical angle formula n(β, γ) = (sin β cos γ, sin β sin γ, cos β)T from
Proposition 2. These are Euler-angles relative to the reference axis a = ez. For the Euler-angles
relative to the (normalized) frequency r−1ω one has (see also Figure 2):

nω(βω, γω) = Rr−1ωn(βω, γω). (59)

Definition 11. Let l ∈ N0. Let m ∈ Z such that |m| ≤ l. We define the functions Φl,m
ω ∈ L2(S2) by

Φl,m
ω (n) =

∞

∑
j=0

dl,m
j (r)

‖dl,m (r) ‖ Y|m|+j,m
ω (n), (60)

where r = ‖ω‖ and dl,m (r) :=
(

dl,m
j (r)

)∞

j=0
are coefficients such that

Φl,m
ω (nω(βω, γω)) = Sl,m

ρ (cos βω)
eimγω

√
2π

, with ρ = r

√
D33

D44
,

where Sl,m
ρ (·) denotes the L2-normalized spheroidal wave function.
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Remark 9. The spheroidal wave function arises from application of the method of separation on operator Bω in
Equation (57) where basic computations (for details, see [40]) lead to the following singular Sturm-Liouville problem:

(Ly)(x) =
d

dx

[
p(x)

dy(x)
dx

]
+ q(x)y(x) = −λ(r) y(x), x = cos βω ∈ [−1, 1]. (61)

with p(x) = (1− x2), q(x) = −ρ2x2 − m2

1−x2 , and again ρ = r
√

D33/D44. In this formulation, p(x) vanishes
at the boundary of the interval, which makes our problem a singular Sturm–Liouville problem. It is sufficient
to require boundedness of the solution and its derivative at the boundary points to have nonnegative, distinct,
simple eigenvalues λl,m

r and existence of a countable, complete orthonormal basis of eigenfunctions {yj}∞
j=0 [91]

for the spheroidal wave equation.
As a result, standard Sturm–Liouville theory (that applies the spectral decomposition theorem for compact

self-adjoint operators to a kernel operator that is the right-inverse of L) provides us (for each ω fixed) a complete
orthonormal basis of eigenfunctions {Φl,m

ω } in L2(S2) with eigenvalues of our (unbounded) generators:

− (−Bω)
α Φl,m

ω = −(−λl,m
r )α Φl,m

ω , for all |m| ≤ l. (62)

Remark 10. Define Yl,m(β, γ) := Yl,m(n(β, γ)). Then, Equations (58) and (59) imply Yl,m
ω (nω(βω, γω)) =

Yl,m(βω, γω).

Remark 11. The matrix-representation of− (−Bω)
α with respect to orthonormal basis

{
Y|m|+j,m

ω

}
j∈N0,m∈Z

equals

⊕
m∈Z

−(D33r2Mm + D44Λm)α,

where Λm := diag{l(l + 1)}∞
l=|m| = diag{(|m| + j)(|m| + j + 1)}∞

j=0, r = ‖ω‖ and where Mm is the
tri-diagonal matrix (that can be computed analytically ([40], eq. 106)) given by

(cos β)2Y|m|+j,m(n(β, γ)) =
∞

∑
j′=0

(
(Mm)T

)
j,j′

Y|m|+j′ ,m(n(β, γ)). (63)

As a result, we see from Equations (60) and (62) that the coefficients dl,m (r) for our eigenfunctions are
eigenvectors of a matrix

−
(

D33r2Mm + D44Λm
)

dl,m(r) = λl,m
r dl,m(r), for l ≥ |m|. (64)

This matrix (and its diagonalization) play a central role for our main spectral decomposition theorem both
in the spatial Fourier domain and in the Fourier domain of the homogeneous space of positions and orientations.
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Figure 2. For ω �= a, we parameterize every orientation n (green) by rotations around r−1ω (orange)
and ω×a

||ω×a|| (blue). In other words, nω(βω, γω) = Rr−1ω,γω R ω×a
||ω×a|| ,β

ω (r−1ω).

5.1.2. The Explicit Spectral Decomposition of the Evolution Operators

In Theorem 2, we present the explicit spectral decompositions both in the spatial Fourier domain
and in the Fourier domain of the homogeneous space of positions and orientations.

Prior to this theorem, we explain the challenges that appear when we apply FG/H to the PDE
of interest in Equation (6) on the quotient G/H. To get a grip on the evolution operator and the
corresponding kernel, we set the initial condition equal to a delta distribution at the origin, i.e.,
we consider

U = δ(0,a) ⇒ Wα(·, t) = etQα U = e−t(−Q)α
δ(0,a) = Kα

t .

In this case, the necessary condition in Equation (51) in Lemma 3 for application of FG/H is indeed
satisfied, due to the symmetry property of the kernel, given by Equation (30). Now, due to linearity

FG/H ◦ etQα ◦ F−1
G/H = et (FG/H ◦ Qα ◦ F−1

G/H),

we just need to study the generator in the Fourier domain.
For the moment, we set α = 1 (the degenerate diffusion case) and return to the general case later

on (recall Sections 1.6 and 2.2). Then, it follows that (for details, see ([40], App.D))(
FG/H ◦Q ◦ F−1

G/HK̂1
t

)
(σp,s) =

(
−D33 (a · u)2 + D44 ΔpS2

u

)
K̂1

t (σ
p,s),

with the kernel K̂1
t := FG/HK1

t (·).
(65)

Here, ΔpS2

u denotes the Laplace–Beltrami operator on a sphere pS2 = {u ∈ R3
∣∣‖u‖ = p} of

radius p > 0.
We recall that u ∈ pS2 is the variable of the functions on which σp,s acts. Recalling Equation (32),

the first part in the righthand side of Equation (65) denotes a multiplier operator M given by

(Mφ)(u) := − (a · u)2φ(u), for all φ ∈ L2(pS2), and almost every u ∈ pS2.

As a result, we obtain the following PDE system for K̂α
t (now for general α ∈ (0, 1]):

⎧⎨⎩ ∂
∂t K̂α

t (σ
p,s) = −

(
−D33 M− D44 ΔpS2

u

)α
K̂α

t (σ
p,s)

K̂α
0 (σ

p,s) = 1L2(pS2).
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Remark 12. There is a striking analogy between the operators FG/H ◦Qα ◦ F−1
G/H and FR3 ◦Qα ◦ F−1

R3 given
by Equation (57), where the role of rRT

ω/rn corresponds to u. This correspondence ensures that the multipliers
of the multiplier operators in the generator coincide and that the roles of p and r coincide:

u = rRT
r−1ω

n ⇒ (a · u)2 = r2(RT
r−1ω

a · n)2 = (ω · n)2 and ‖u‖ = p = r = ‖ω‖.

Lemma 4. Let t ≥ 0 and p > 0 be fixed. The matrix-representation of operator

et(D33 M+D44 ΔpS2
u ) : L2(pS2) → L2(pS2) with respect to the orthonormal basis of spherical harmonics{

Yl=|s|+j , s(p−1·)
}

j∈N0 , s∈Z
equals

⊕
s∈Z

e−t (D33 p2Ms+D44Λs) . (66)

Proof. Recall Equation (63) that defines matrix Mm (for analytic formulas of this tri-diagonal matrix,
see [40]). This may be re-written as follows:

(a · n)2Y|m|+j,m(n) =
∞

∑
j′=0

(
(Mm)T

)
j,j′

Y|m|+j′ ,m(n).

Now, fix s ∈ Z and set m = s and n = p−1u and we have:〈(
D33M+ D44 ΔpS2

u

)
Yl,s(p−1·) , Yl′ ,s(p−1·)

〉
L2(pS2)

= −p2 D33 (M
s)j′ ,j − D44l(l + 1)δjj′ ,

where again l = |s|+ j, l′ = |s|+ j′ and j, j′ ∈ N0.

Finally, we note that operator D33 M+ D44 ΔpS2

u is negative definite and maps each subspace
span

{
{Yl,s(p−1·)}∞

l=|s|

}
for fixed s ∈ Z onto itself, which explains direct sum decomposition in

Equation (66).

Next, we formulate the main result, where we apply a standard identification of tensors a⊗ b

with linear maps:
x �→ (a⊗ b)(x) = 〈x , b〉 a. (67)

Theorem 2. We have the following spectral decompositions for the Forward-Kolomogorov evolution operator of
α-stable Lévy-processes onthe homogeneous space G/H = R3 � S2:

• In the Fourier domain of the homogeneous space of positions and orientations, we have:

FG/H ◦ e−t(−Q)α ◦ F−1
G/H

=
⊕∫

R+

⊕
s∈Z

∞
∑

l,l′=|s|

[
e−(D33 p2Ms+D44Λs)αt

]
l,l′

(
Yl,s(p−1·)⊗Yl′ ,s(p−1·)

)
p2dp

=
⊕∫

R+

⊕
s∈Z

∞
∑

l=|s|
e−(−λl,s

p )αt
(

Φl,s
pa(p−1·)⊗Φl,s

pa(p−1·)
)

p2dp

(68)

• In the spatial Fourier domain, we have

(
FR3 ◦ e−t(−Q)α ◦ F−1

R3 U
)
(ω, ·) = W(ω, ·, t)

= ∑
m∈Z

∞
∑

l,l′=|m|

[
e−(D33r2Mm+D44Λm)αt

]
l,l′

(
Yl,m

ω ⊗Yl′ ,m
ω

)
(U(ω, ·))

= ∑
m∈Z

∞
∑

l=|m|
e−(−λl,m

r )αt
(

Φl,m
ω ⊗Φl,m

ω

)
(U(ω, ·))

(69)
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where W(ω, ·, t) = FR3W(ω, ·, t) and U(ω, ·) = FR3U(ω, ·) (recall Equation (56)).

In both cases, the normalized eigenfunctions Φl,m
ω are given by Equation (60) in Definition 11.

The eigenvalues λl,m
r are the eigenvalues of the spheroidal wave equation, as explained in Remark 9.

Proof. The first identity in Equation (68) follows by:

FG/H ◦ e−t(−Q)α ◦ F−1
G/H = et(FG/H◦−(−Q)α◦F−1

G/H)

([40], App.D) and Theorem 1
=

⊕∫
R+

e
−t
(
−D33M+D44ΔpS2

u

)α

p2dp

Lemma 4 and Theorem 1
=

⊕∫
R+

⊕
s∈Z

∞
∑

l,l′=|s|

[
e−t(D33 p2Ms+D44Λs)

α]
l,l′

(
Yl,s(p−1·)⊗Yl′ ,s(p−1·)

)
p2dp

(60)
=

⊕∫
R+

⊕
s∈Z

∞
∑

l=|s|
e−(−λl,s

p )αt
(

Φl,s
pa(p−1·)⊗Φl,s

pa(p−1·)
)

p2dp .

In the last equality, we use the fact that Φl,m
a = Yl,m. By applying the identification in Equation (67),

one observes that Equation (69) is a reformulation of Equation (24), was already been derived for α = 1
in previous work by the first author with J.M. Portegies ([40], Thm.2.3 and Equation31). The key idea
behind the derivation, the expansion and the completeness of the eigenfunctions {Φl,m

ω } is summarized
in Remark 9. The general case α ∈ (0, 1] then directly follows by Section 1.6.

Recently, exact formulas for the (degenerate) heat-kernels on G = SE(3) and on G/H = R3 � S2

(i.e., the case α = 1) have been published in [40]. In the next theorem:

• We extend these results to the kernels of PDE in Equation (6), which are Forward-Kolmogorov
equations of α-stable Lévy process with α ∈ (0, 1].

• We provide a structured alternative formula via the transform FG/H characterized in Theorem 1.

Theorem 3. We have the following formulas for the probability kernels of α-stable Lévy processes on R3 � S2:

• Via conjugation with FR3�S2 :

Kα
t (x, n) =

1
(2π)2

∞∫
0

∑
s∈Z

∞

∑
l=|s|

e−(−λl,s
p )αt

[
σ

p,s
(x,n)

]
l,0,l,0

p2dp, (70)

where
[
σ

p,s
(x,n)

]
l,0,l,0

=
〈

σ
p,s
(x,Rn)

Φl,s
pa(p−1·) , Φl,s

pa(p−1·)
〉
L2(pS2)

can be derived analytically (see ([86], Rem. 16)).

• Via conjugation with FR3 :

Kα
t (x, n) =

1
(2π)3

∫
R3

(
∞

∑
l=0

l

∑
m=−l

e−(−λl,m
‖ω‖)

αt Φl,m
ω (a)Φl,m

ω (n)

)
eix·ω dω. (71)

Proof. Equation (70) follows by

Kα
t (x, n) = (etQα δ(0,a))(x, n) =

(
F−1

G/H ◦ etFG/H◦Qα◦F−1
G/H ◦ FG/Hδ(0,a)

)
(x, n).

Now, (FG/Hδ(0,a))(σ
p,s) = 1L2(pS2) implies ((FG/Hδ)(σp,s)(0,a))(σ

p,s))l,0,l′ ,0 = δll′ so that the
result follows by setting U = δ(0,a) (or, more precisely, by taking U a sequence that is a bounded
approximation of the unity centered around (0, a)) in Theorem 2, where we recall the inversion formula
from the first part of Theorem 1.
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Equation (71) follows similarly by

Kα
t (x, n) =

(
etQα δ(0,a)

)
(x, n) =

(
F−1

R3 ◦ etF
R3◦Qα◦F−1

R3 ◦ FR3 δ(0,a)

)
(x, n).

Now,
(
FR3 δ(0,a)

)
(σp,s) = 1

(2π)
3
2

δa and the result follows from the second part of Theorem 1 (again

by taking U a sequence that is a bounded approximation of the unity centered around (0, a)).

Remark 13. There also exist Gaussian estimates for the heat kernel Kα=1
t that use a weighted modulus on

the logarithm on G, [92]. Such Gaussian estimates can account for the quotient structure G/H [87], and
can be reasonably close (cf. [44], Figure 4.4, [93]) to the exact solutions for practical parameter settings in
applications [48,94,95].

5.2. Monte-Carlo Approximations of the Kernels

A stochastic approximation for the kernel Kα
t is computed by binning the endpoints of discrete

random walks simulating α-stable processes on the quotient R3 � S2 that we explain next. Let us first
consider the case α = 1. For M ∈ N fixed, we have the discretization⎧⎪⎪⎨⎪⎪⎩

XM = X0 +
M
∑

k=1

√
tD33

M εkNk−1,

NM =

(
M
∏

k=1
Ra,γk R

ey ,βk

√
tD44

M

)
N0 =

(
Ra,γM R

ey ,βM

√
tD44

M

◦ . . . ◦ Ra,γ1 R
ey ,β1

√
tD44

M

)
N0 ,

(72)

with εk ∼ GR
t=1 ∼ N (0, σ =

√
2) stochastically independent Gaussian distributed on R with t = 1;

with uniformly distributed γk ∼ Unif (R/(2πZ) ≡ [−π, π)); and βk ∼ g, where g : R → R+ equals

g(r) = |r|
2 e−

r2
4 in view of the theory of isotropic stochastic processes on Riemannian manifolds by

Pinsky [96]. By the central limit theorem for independently distributed variables with finite variance it
is only the variances of the distributions for the random variables g and GR

t=1 that matter. One may
also take

εk ∼
√

3 Unif
[
− 1

2 , 1
2

]
and βk ∼

√
6 Unif

[
− 1

2 , 1
2

]
or εk ∼ GR

t=1 and βk ∼ GR
t=2.

These processes are implemented recursively; for technical details and background, see
Appendix A.

Proposition 3. The discretization of Equation (72) can be re-expressed, up to order 1
M for M ' 0, as follows:

(XM, NM) ∼ GM $ (0, a), with GM =

⎛⎝ M

∏
k=1

e

5
∑

i=3

√
t Dii

M εi
k Ai

⎞⎠G0, (73)

with εi
k ∼ GR

t=1 stochastically independent normally distributed variables with t = 1
2 σ2 = 1, and D44 = D55.

Proof. In our construction, βk and γk can be seen as the polar radius and the polar angle (on a
periodic square [−π, π]× [−π, π]) of a Gaussian process with t = 1 on a plane spanned by rotational
generators A4 and A5 . The key ingredient to obtain Equation (73) from Equation (72) is given by the
following relation:

eu cos vA5−u sin vA4 = evA6 euA5 e−vA6 , for all u, v ∈ R, (74)

which we use for u = βk

√
tD44

M and v = γk

√
tD44

M .
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The second ingredient is given by the Campbell–Baker–Hausdorff–Dynkin formula:

for all ai = O(
1√
M

) and for M large, we have ea3 A3 ea4 A4 ea5 A5 = e(a3 A3+a4 A4+a5 A5)(1+O( 1
M )),

that allows to decompose the stochastic process in SE(3) into its spatial and angular parts.

For the binning, we divide R3 into cubes cijk, i, j, k ∈ Z, of size Δs× Δs× Δs:

cijk :=
[
(i− 1

2
)Δs, (i +

1
2
)Δs

]
×
[
(j− 1

2
)Δs, (j +

1
2
)Δs

]
×
[
(k− 1

2
)Δs, (k +

1
2
)Δs

]
. (75)

We divide S2 into bins Bl , l = {1, . . . , b} for b ∈ N, with surface area σBl and maximal surface
area σB. The number of random walks in a simulation with traveling time t that have their end
point xM ∈ cijk with their orientation nM ∈ Bl is denoted with #ijkl

t . Furthermore, we define the
indicator function

1cijk ,Bl (x, n) :=

{
1 x ∈ cijk, n ∈ Bl ,

0 otherwise.

When the number of paths N → ∞, the number of steps in each path M → ∞ and the bin sizes
tend to zero, the obtained distribution converges to the exact kernel:

lim
N→∞

lim
Δs,σB→0

lim
M→∞

pΔs,σB ,N,M
t (x, n) = Kα=1

t (x, n),

with pΔs,σB ,N,M
t (x, n) =

b
∑

l=1
∑

i,j,k∈Z
1ci,j,k ,Bl (x, n)

#ijkl
t

M(Δs)3σBl
.

(76)

The convergence is illustrated in Figure 3.

Monte-Carlo Simulation for α ∈ (0, 1].

Let qt,α : R+ → R+ be the temporal probability density given by the inverse Laplace transform

qt,α(τ) = L−1
(

λ → e−tλα
)
(τ), with in particular:

for α = 1
2 it is qt, 1

2
(τ) = t

2τ
√

πτ
e−

t2
4τ ,

for α ↑ 1 we find qt,α(·)→ δt in distributional sense .

(77)

For explicit formulas in the general case α ∈ (0, 1], see [66]. Then, one can deduce from Theorem 3 that

Kα
t (x, n) =

∞∫
0

qt,α(τ) Kα=1
τ (x, n) dτ. (78)

This allows us to directly use the Monte-Carlo simulations for the diffusion kernel α = 1 for
several time instances to compute a Monte-Carlo simulation of the α-stable Lévy kernels for α ∈ (0, 1].
To this end, we replace the Monte Carlo approximation in Equation (76) for α = 1 in the above

Equation (78). See Figure 4, where we compare the diffusion kernel Kα=1
t to the Poisson kernel Kα= 1

2
t .

See also Appendix A.2.1.
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Figure 3. (Top) Spatial projections in R3 of N sample paths of the discrete random walks (or rather
“drunk man’s flights”) in R3 � S2 for α = 1, given by Equation (72), for increasing N (with σ = 4π

252 ,
Δs = 1, M = 40); and (Bottom) convergence of the Monte-Carlo simulation kernel in Equation (76) for
α = 1 and N → ∞. As N increases, the Monte-Carlo simulation converges towards the exact solution.
For a comparison of the exact diffusion kernel in Equation (70) and its Monte-Carlo approximation in
Equation (76), see Figure 5.

5.3. Comparison of Monte-Carlo Approximations of the Kernels to the Exact Solutions

In this section, we compute the probability density kernels Kα
t via the analytic approach of

Section 5.1.2 (Equation (71), Theorem 3) and via the Monte-Carlo approximation of Section 5.2.
The kernels are computed on a regular grid with each (xi, yj, zk) at the center of the cubes cijk of
Equation (75) with i, j = −3, . . . , 3, k = −5, . . . , 5, and Δs = 0.5. The Monte-Carlo simulations also
require spherical sampling which we did by a geodesic polyhedron that sub-divides each mesh triangle
of an icosahedron into n2 new triangles and projects the vertex points to the sphere. We set n = 4 to
obtain 252 (almost) uniformly sampled points on S2.

The exact solution is computed using (truncated) spherical harmonics with l ≤ 12. To obtain
the kernel, we first solve the solution in the spatial Fourier domain and then do an inverse spatial
Fast Fourier Transform. The resulting kernel Kα

t (where we literally follow Equation (71)) is only
spatially sampled and provides for each (xi, yj, zk) an analytic spherical distribution expressed in
spherical harmonics.

For the Monte-Carlo approximation, we follow the procedure described in Section 5.2. The kernel
Kα

t is obtained by binning the end points of random paths on the quotient R3 � S2 (cf. Equation (72))
and thereby approximate the limit in Equation (76). Each path is discretized with M = 40 steps and in
total N = 1010 random paths were generated. The sphere S2 is divided into 252 bins with an average
surface area of σBl ≈ 4π

252 .
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Figure 4. (Left) The degenerate diffusion kernel (Equation (70) for α = 1 and t = 2); and
(Right) the degenerate Poisson kernel (Equation (70) for α = 1

2 and t = 3.5). Parameters settings:
D44 = 0.2, D33 = 1, D11 = 0.

In Figures 1 and 3–5, we set D33 = 1, D44 = 0.2. In the comparison between the kernels Kα=1
t with

Kα=0.5
t , we set t = 2 and t = 3.5, respectively, to match the full width at half maximum value of the

distributions. In Figures 1, 3 and 5, we set α = 1 and t = 2. In Figures 1, 3 and 4, we sample the grid in
Equation (75) with |i|, |j| ≤ 4, |k| ≤ 8.

Figure 5 shows that the Monte-Carlo kernel closely approximates the exact solution and since the
exact solutions can be computed at arbitrary spherical resolution, it provides a reliable way to validate
numerical methods for α-stable Lévy processes on R3 � S2.

Figure 5. The exact kernel Kα
t and its Monte-Carlo approximation for t = 2, α = 1, D33 = 1, D44 = 0.2.
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6. Conclusions

We set up a Fourier transform FG/H on the homogeneous space of positions and orientations.
The considered Fourier transform acts on functions that are bi-invariant with respect to the action of
subgroup H. We provide explicit formulas (relative to a basis of modified spherical harmonics) for the
transform, its inverse, and its Plancherel formula, in Theorem 1.

Then, we use this Fourier transform to derive new exact solutions to the probability kernels of
α-stable Lévy processes on G/H, including the diffusion PDE for Wiener processes, which is the special
case α = 1. They are obtained by spectral decomposition of the evolution operator in Theorem 2.

New formulas for the probability kernels are presented in Theorem 3. There, the general case
0 < α < 1 follows from the case α = 1 by taking the fractional power of the eigenvalues. In comparison
to previous formulas in [40] for the special case α = 1 obtained via a spatial Fourier transform, we
have more concise formulas with a more structured evolution operator in the Fourier domain of G/H,
where we rely on ordinary spherical harmonics, and where we reduce the dimension of the manifold
over which it is integrated from 3 to 1 (as can be seen in Theorem 3).

We introduce stochastic differential equations (or rather stochastic integral equations) for the
α-stable Lévy processes in Appendix A.1, and we provide simple discrete approximations where we
rely on matrix exponentials in the Lie group SE(3) in Proposition 3.

We verified the exact solutions and the stochastic process formulations, by Monte-Carlo
simulations that confirmed to give the same kernels, as shown in Figure 5. We also observed the
expected behavior that the probability kernels for 0 < α < 1 have heavier tails, as shown in Figure 4.

The PDEs and the probability kernels have a wide variety of applications in image analysis
(crossing-preserving, contextual enhancement of diffusion-weighted MRI, cf. [45,46,49,94,97,98] or in
crossing-preserving diffusions in 3D scalar images [18]), robotics [4,5,57] and probability theory [56,61].
The generalizations to α ∈ (0, 1] allow for longer range interactions between local orientations (due to
the heavy tails). This is also of interest in machine learning, where convolutional neural networks on
the homogeneous space of positions and orientations [9,12] can be extended to 3D [67,68], which may
benefit from the PDE descriptors and the Fourier transform presented here.
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Abbreviations

The following abbreviations and symbols are used in this manuscript:

UIR Unitary Irreducible Representation
G The rigid body motions group SE(3) Equation (1)
a The reference axis a = ez = (0, 0, 1)T Equation (3)
H The subgroup that stabilizes (0, a) Equation (3)
G/H The homogeneous space of positions and orientations R3 � S2 Equation (3)
U The spatial Fourier transform of U Equation (18)
Û The Fourier transform Û = FG/HU Equation (43)
α Parameter of the α-Stable processes (indexing fractional power of the generator) Equation (10)
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α Rotation angle around reference axis a = ez = (0, 0, 1) Remark 7
σp,s UIR of G = SE(3) Equation (32)
σp,s the action on the quotient corresponding to σp,s Definition 7
K̃α

t The probability kernel on G Equation (26)
Kα

t The probability kernel on G/H Equation (27)
W̃α Solution of the PDE on G Equation (10)
Wα Solution of the PDE on G/H Equation (6)
Q̃α Evolution generator of the PDE on G Equation (11)
Qα Evolution generator of the PDE on G/H Equation (7)
Rn Any rotation that maps a onto n Remark 2
Rv,φ A counter-clockwise rotation about axis v with angle φ Remark 2
Pt Lévy Processes on G/H Definition A1
Pt Lévy Processes on R3 ×R3 Equation (A4)
qt,α The kernel relating Kα

t and K1
t Equation (77)

Yl,m The ordinary spherical harmonics Proposition 2
Yl,m

s The modified spherical harmonics according to [4] Proposition 2
Yl,m

ω The generalized spherical harmonics according to [40] Definition 10
Φl,m

ω The spheroidal wave basis function for L2(S2) Definition 11
(α, β, γ) ZYZ Euler angles. Equation (A12)

Appendix A. Probability Theory

Appendix A.1. Lévy Processes on R3 � S2

In the next definition, we define Lévy processes on our manifold of interest G/H = R3 � S2. Recall, that
the action of G = SE(3) on G/H is given by Equation (4). As a prerequisite, we define the “difference” of two
random variables P1 = (X1, N1) and P2 = (X2, N2) in R3 � S2:

G−1
2 $ P1 = (X2, RN2 )

−1 $ (X1, N1) = (RT
N2

(X1 − X2), RT
N2

N1), (A1)

where we relate random variables on G/H and in G via P = G$ (0, a), according to Equation (39).
We assume that P1 and P2 are chosen such that the distribution of G−1

2 $ P1 is invariant under the choice of
rotation variable RN2 ∈ SO(3), which maps reference axis a onto N2. This is done in view of the homogeneous
space structure in Equation (3) and the fact that Lévy processes on Lie groups such as G = SE(3) require Lie
group inversion in their definition (see, e.g., [99]).

Definition A1. A stochastic process {Pt : t ≥ 0} on G/H is a Lévy process if the following conditions hold:

1. For any n ≥ 1 and 0≤ t0 < t1 < . . .< tn, the variables Pt0 , G−1
t0
$ Pt1 , . . ., G−1

tn−1
$ Ptn are independent.

2. The distribution of G−1
s $ Ps+t does not depend on s ≥ 0.

3. P0 = (0, a) almost surely.
4. It is stochastically continuous, i.e. lims→t P[d(Ps, Pt) > ε] = 0, ∀ε > 0.

Here, d((x1, n1), (x2, n2)) = |x1 − x2|2 + arccos2(n1 · n2).

Let us consider the solutions
Wα(x, n, t) = (Kα

t ∗U)(x, n)

of our linear PDEs of interest in Equation (6) for α ∈ (0, 1] fixed. Let us consider the case where U ∼ δ(0,a), so
that the solutions are the probability kernels Kα

t themselves. We consider the random variables Pα
t such that their

probability densities are given by

P(Pα
t = (x, n)) = Kα

t (x, n) for all t ≥ 0, (x, n) ∈ R3 � S2. (A2)

Proposition A1. The stochastic process {Pα
t : t ≥ 0} is a Lévy processes on R3 � S2.

Proof. We first address Items 1 and 2. On G = SE(3), one has for two stochastically independent variables:

P(G1G2 = g) =
∫
G

P(G2 = h−1g)P(G1 = h) dh.
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In particular, for G1 = Gt ∼ K̃α
t and G2 = Gs ∼ K̃α

s , we have

GsGt ∼ K̃α
t ∗ K̃α

s = K̃α
t+s and G−1

s Gt+s = Gt ∼ K̃α
t ,

which is due to etQ̃α ◦ esQ̃α = e(t+s)Q̃α (recall Equation (55)). Similarly, on the quotient G/H, we have

G−1
s $ Ps+t = Pt ∼ Kα

t .

Furthermore, the choice of Gs such that Gs $ (0, a) = (0, a) does not matter, since

P((0, Ra,ᾱ)
−1G−1

s $ Ps+t = (x, n)) = Kα
t ((0, Ra,ᾱ)$ (x, n)) = Kα

t (x, n)

(recall Equation (30)). Item 3 is obvious since we have P0 = δ(0,a). Item 4 follows by strong continuity of the
semigroup operators ([64], Thm. 2), [66].

Lemma A1. The kernels Kα
t are infinitely divisible, i.e.

Kα
t ∗ Kα

s = Kα
t+s for all s, t ≥ 0.

Proof. The infinite divisibility directly follows from Corollary 1 and FG/H(Kα
t ∗ Kα

s ) = FG/H(Kα
t ) ◦ FG/H(Kα

t ) =

FG/H(Kα
t+s), which is clear due to Equation (70).

Remark A1. Recall that on Rn a Lévy process Xt is called α-stable if

a−
1

2α Xat ∼ Xt for all a > 0. (A3)

This convention and property applies to all n ∈ N, cf. [61]. Next, we come to a generalization of α-stability but then
for the processes Pt. Here, an embedding of R3 � S2 into R6 = R3 ×R3 is required to give a meaning to α-stability and a
scaling relation on Pt = (Xt, Nt) that is similar to Equation (A3).

Appendix A.2. SDE Formulation of α-Stable Lévy Processes on R3 � S2

Consider the Lévy processes {Pt : t ≥ 0} on R3 � S2 given by Equation (A2). They give rise to the Forward
Kolmogorov PDEs in Equation (6) in terms of their stochastic differential equation (SDE) according to the book of
Hsu on Stochastic Analysis on Manifolds [60].

We apply ([60], Prop.1.2.4) on the embedding map Φ : R3 ×R3 → R3 � S2 given by

Φ : (x, n) �→ Φ(x, n) =

(
x,

n

‖n‖

)
= (x, n).

Note that Φ∗ = DΦ =
(

I, 1
‖n‖

(
I − n

‖n‖ ⊗
n
‖n‖

))
. Here, I denotes the identity map on R3.

Let us first concentrate on α = 1. In this case, our PDE in Equation (6) becomes a diffusion PDE that is the
forward Kolmogorov equation of a Wiener process Pt = (Xt, Nt) on R3 � S2. Next, we relate this Wiener process

to a Wiener process (W
(1)
t , W

(2)
t ) in the embedding space R3 ×R3. We write down the stochastic differential

equation (SDE) and show that Equation (72) boils down to discretization of the stochastic integral (in Îto sense)
solving the SDE.

Next, we define Pt = (Xt, Nt) by the SDE in the embedding space:

dPt = s|Pt
◦ dWt, (A4)

where Wt = (W
(1)
t , W

(2)
t ), with W

(1)
t and W

(2)
t being Wiener processes in R3; and where

s|P(dx, dn) =

(
s(1)|P (dx, dn)

s(2)|P (dx, dn)

)
=

( √
D33

N
‖N‖

(
N
‖N‖ · dx

)
√

D44 dn

)
.

Here, Index (1) stands for the spatial part and Index (2) stands for the angular part.
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Now, we define a corresponding process on R3 � S2:

Pt = Φ(Pt).

Then, the SDE for Pt = (Xt, Nt) becomes (see ([60], Prop.1.2.4))

dPt = d
(
Φ ◦ Pt

)
⇔

⎧⎨⎩dXt = s(1)
∣∣∣
Pt
◦ dW

(1)
t ,

dNt = P〈Nt〉⊥ s(2)
∣∣∣
Pt
◦ dW

(2)
t ,

where Nt = Nt
‖Nt‖

; and where P〈Nt〉⊥ = (I −Nt ⊗Nt) denotes the orthogonal projection to the tangent plane
perpendicular to Nt.

Therefore, we have the following SDE on R3 � S2:⎧⎨⎩dXt =
√

D33 Nt(Nt · dW
(1)
t ),

dNt =
√

D44 P〈Nt〉⊥dW
(2)
t

(A5)

Thus, integrating the SDE, we obtain the following stochastic integral (in Îto form):⎧⎪⎪⎪⎨⎪⎪⎪⎩
Xt = X0 +

√
D33

t∫
0

Ns(Ns · dW
(1)
s ) = X0 +

√
D33 ms-lim

M→∞

M
∑

k=1
Ntk−1

(
Ntk−1 ·

(
W

(1)
tk
−W

(1)
tk−1

))
,

Nt = ms-lim
M→∞

M
∏

k=1
expS2

(√
D44

(
I −Ntk−1 ⊗Ntk−1

) (
W

(2)
tk
−W

(2)
tk−1

))
N0.

(A6)

Here, expS2 (V)n0 denotes the exponential map on a sphere, i.e., its value is the end point (for t = 1) of a
geodesic starting from n0 ∈ S2 with the tangent vector V ∈ Tn0 S2. Note that, in the formula above, the symbol ∏
denotes the composition

M

∏
k=1

expS2 (Vk)n0 =
(
expS2 (VM) ◦ . . . ◦ expS2 (V1)

)
n0.

Note that
√

D33

(
W

(1)
tk
−W

(1)
tk−1

)
=
√

D33W
(1)
tk−tk−1

=
√

tD33
M εk, where εk ∼ W

(1)
1 , i.e., εk ∼ Gt=1.

For M ∈ N fixed, we propose a discrete approximation for the stochastic integrals in Equation (A6):⎧⎪⎪⎪⎨⎪⎪⎪⎩
XM = X0 +

M
∑

k=1

√
tD33

M εkNk−1,

NM =

(
M
∏

k=1
Ra,γk R

ey ,βk

√
tD44

M

)
N0,

(A7)

with εk ∼ GR
t=1 ∼ N (0, σ =

√
2) stochastically independent Gaussian distributed on R with t = 1; with uniformly

distributed γk ∼ Unif (R/(2πZ) ≡ [−π, π)); and with βk ∼ g, where g : R → R+ equals g(β) =
|β|
2 e−

β2

4 .
The choice of g is done by application of the theory of isotropic stochastic processes on Riemannian manifolds by
Pinsky [96], where we note that

GR2

t (β cos γ, β sin γ) = g(β) Unif ([−π, π)) (γ), β ∈ R, γ ∈ [−π, π).

Now, in the numerical simulation, we can replace g by GR
t=2 due to the central limit theorem on R and

Var(β) =

∞∫
−∞

β2g(β)dβ = 2
∞∫

0

β2g(β)dβ = 2.
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Appendix A.2.1. From the Diffusion Case α = 1 to the General Case α ∈ (0, 1]

For the case α ∈ (0, 1], we define the (fractional) random processes by their probability densities

P(Pα
t = (x, n)) =

∞∫
0

qt,α(τ) P(Pτ = (x, n))dτ,

P(Pα
t = (x, n)) =

∞∫
0

qt,α(τ) P(Pτ = (x, n))dτ.
(A8)

Recal that the kernel qt,α(τ) is given by Equation (77). For Monte-Carlo simulations, one can use Equation (78),

or alternatively use Pα
tM
≈

M
∏
i=1

GTi $ P0, for M ' 0, where P0 is almost surely (0, a), with Ti a temporal random

variable with P(Ti = τ) = qti ,α(τ), with ti =
i

M t and Gti given by Equation (73).

Appendix A.2.2. α-Stability of the Lévy Process

Due to the absence of suitable dilations on G/H, we resort to the embedding space where α-stability is
defined. The Lévy process {P

α
t = (Xα

t , N
α
t ) | t ≥ 0} associated to the Lévy process {Pα

t = (Xα
t , Nα

t ) | t ≥ 0} in
R3 � S2 is α-stable, i.e., for all a, t > 0 we have (by Equations (A5) and (78))

a−
1

2α Xα
at ∼ Xα

t and a−
1

2α N
α
at ∼ N

α
t .

Appendix B. Left-Invariant Vector Fields on SE(3) via Two Charts

We need two charts to cover SO(3). When using the following coordinates (ZYZ-Euler angles) for SE(3) =
R3 � SO(3) for the first chart:

g = (x, y, z, Rez ,γRey ,βRez ,α), with β ∈ (0, π), α, γ ∈ [0, 2π), (A9)

Equation (9) yields the following formulas for the left-invariant vector fields:

A1|g = (cos α cos β cos γ− sin α sin γ)∂x + (sin α cos γ + cos α cos β sin γ)∂y − cos α sin β ∂z

A2|g = (− sin α cos β cos γ− cos α sin γ)∂x + (cos α cos γ− sin α cos β sin γ)∂y + sin α sin β ∂z

A3|g = sin β cos γ ∂x + sin β sin γ ∂y + cos β ∂z,

A4|g = cos αcotβ ∂α + sin α ∂β − cos α
sin β ∂γ,

A5|g = − sin αcotβ ∂α + cos α ∂β +
sin α
sin β ∂γ,

A6|g = ∂α.

(A10)

We observe that

Aghα
≡ (Rez ,α ⊕ Rez ,α)

TAg, where Ag =
(
A1|g, . . . ,A6|g

)
. (A11)

The above formulas do not hold for β = π or β = 0. Thus, we even lack expressions for our left-invariant
vector fields at the unity element (0, I) ∈ SE(3) when using the standard ZYZ-Euler angles. Therefore, one
formally needs a second chart, for example the XYZ-coordinates in [84,87,100]:

g = (x, y, z, Rex ,γ̃Rey ,β̃Rez ,α), with β̃ ∈ [−π, π), α ∈ [0, 2π), γ̃ ∈ (−π/2, π/2), (A12)

Equation (9) yields the following formulas for the left-invariant vector fields (only for |β̃| �= π
2 ):

A1|g = cos α cos β̃ ∂x + (cos γ̃ sin α + cos α sin β̃ sin γ̃) ∂y + (sin α sin γ̃− cos α sin β̃ cos γ̃) ∂z

A2|g = − sin α cos β̃ ∂x + (cos α cos γ̃− sin α sin β̃ sin γ̃)∂y + (sin α sin β̃ cos γ̃ + cos α sin γ̃) ∂z

A3|g = sin β̃ ∂x − cos β̃ sin γ̃ ∂y + cos β̃ cos γ̃ ∂z,

A4|g = − cos αtanβ̃ ∂α + sin α ∂β̃ +
cos α
cos β̃

∂γ̃,

A5|g = sin αtanβ̃ ∂α + cos α∂β̃ − sin α
cos β ∂γ̃,

A6|g = ∂α.

(A13)
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Abstract: Sixteen types of the discrete multivariate transforms, induced by the multivariate
antisymmetric and symmetric sine functions, are explicitly developed. Provided by the discrete
transforms, inherent interpolation methods are formulated. The four generated classes of the
corresponding orthogonal polynomials generalize the formation of the Chebyshev polynomials
of the second and fourth kinds. Continuous orthogonality relations of the polynomials together
with the inherent weight functions are deduced. Sixteen cubature rules, including the four Gaussian,
are produced by the related discrete transforms. For the three-dimensional case, interpolation tests,
unitary transform matrices and recursive algorithms for calculation of the polynomials are presented.

Keywords: discrete multivariate sine transforms, orthogonal polynomials, cubature formulas

1. Introduction

The goal of this article is to develop discrete transforms of the multivariate symmetric and
antisymmetric sine functions [1] together with the related Fourier interpolation and Chebyshev
polynomial methods. The eight symmetric and eight antisymmetric discrete sine transforms
form multivariate generalizations of the standard univariate discrete sine transforms [2] and
correspond to their multivariate cosine counterparts from [3]. The cubature formulas of multivariate
generalizations of the classical Chebyshev polynomials of the second and fourth kind are induced by
the discrete transforms.

The multivariate (anti)symmetric trigonometric functions are constructed in [1] as trigonometric
analogues of the Weyl orbit functions which are symmetrized or antisymetrized sums of exponential
functions. The (anti)symmetrization is performed with respect to the Weyl group, which is a finite
group generated by reflections and uniquely connected to a root system of a simple Lie algebra [4,5].
The continuous and discrete transforms together with interpolation tests of the bivariate cosine and
sine cases are detailed in [6,7]. The specific connection between the Weyl orbit functions [4,5,8] and
the (anti)symmetric trigonometric functions is deduced in [9]. For instance, since the Weyl group of
simple Lie algebra Cn is isomorphic to (Z/2Z)n � Sn, the antisymetric sine functions coincide, up to
a constant, with the antisymmetric Weyl orbit functions. The discrete transforms of the Weyl orbit
functions on lattice fragments are induced by group theoretic arguments in [10–13]. On the other hand,
the discrete transforms of the multivariate (anti)symmetric cosine transforms [3] are generated by
their eight underlying standard univariate cosine transforms [2]. The eight univariate discrete sine
transforms represent solutions of the discretized harmonic oscillator equation with distinct boundary
conditions applied on the grid or mid-grid points [2]. These boundary conditions are inherited
by the multivariate generalizations and combined with the behavior on the (anti)symmetrization
boundaries determine overall properties of each discrete transform. The (anti)symmetric discrete sine
transform developed from the discrete cosine transform of type I is derived in [1] and the antisymmetric
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discrete sine transforms are special cases of the transforms in [14]. However, the symmetric discrete
transforms of types II–VIII in n variables have not been studied elsewhere. The multivariate
(anti)symmetric trigonometric functions lead to the generalizations of the Chebyshev polynomials
and the discrete transforms produce effective interpolation methods along with the related cubature
integration formulas.

The four kinds of the classical Chebyshev polynomials serve as widely utilized orthogonal
polynomials intertwined with powerful methods of numerical integration and approximation [15,16].
The (anti)symmetric cosine functions grant a multidimensional generalization of the Chebyshev
polynomials of the first and third kinds [3], the present (anti)symmetric sine functions provide
generalization of the second and fourth kinds firstly introduced in the present paper. The bivariate
polynomials form special cases of analogues of the Jacobi polynomials [17]. The multivariate
(anti)symmetric sine polynomials acquire essential characteristics from the (anti)symmetric sine
functions and this connection grants required apparatus for generalization of efficient cubature
formulas of the univariate Chebyshev polynomials. The fundamental goal of cubature formulas,
replacing integration by optimal finite summation, is achieved via the suitable point sets of the
generalized Chebyshev nodes [18]. Similarly to the classical univariate Chebyshev case, the resulting
finite sum over the nodes equals exactly the approximated integral for polynomials up to a specific
degree. Gaussian cubature formulas involve the lowest bound of the number of nodes and attain
the maximal degree of precision [19–21]. Among the presented sixteen types of the symmetric sine
cubature formulas four types are Gaussian which turn out to be special cases of formulas studied from
different point of view in [22]. The other cubature formulas completing the set of integration formulas
connected with the discrete multivariate sine transforms of types I–VIII are novel.

The successful interpolation tests for the 2D and 3D (anti)symmetric trigonometric functions are
accomplished in [3,6,7]. The (anti)symmetric sine functions form solutions of the Laplace equation
that satisfy a specific combination of the Dirichlet and von Neumann conditions on the boundaries of
the fundamental domain [1]. The 2D and 3D (anti)symmetric sine functions as eigenfunctions of the
discretized Laplace operator potentially represent solutions to lattice vibration models in solid state
physics as well as foundation for description of the corresponding models in quantum field theory [23].
Boundary conditions of these models are determined by the boundary behavior of the multivariate
discrete transforms and the spectral analysis provided by the developed transforms contributes to
explicit solutions of the time evolution of the mechanical models. The approximation capability of the
cubature formulas in the Weyl group setting that includes 2D cases of the (anti)symmetric trigonometric
functions is successfully tested in [24]. The applications of Weyl orbit functions in image processing
are developed in [25]. The potential physical applications of the studied cubature formulas encompass
calculations in laser optics [26], stochastic dynamics [27], quantum dynamics [28], fluid flows [29],
magnetostatic modeling [30], electromagnetic wave propagation [31], micromagnetic simulations [32],
liquid crystal colloids [33] and porous materials [34,35].

The paper is organized as follows. In Section 2, the multivariate (anti)symmetric sine functions,
their symmetry properties and continuous orthogonality are recalled. In Section 3, the sixteen types
of the discrete (anti)symmetric sine transforms are listed and the interpolation method along, with
the form of the unitary transform matrices, is presented. In Section 4, the multivariate generalization
of the Chebyshev polynomials of the second and fourth kinds are introduced and the corresponding
continuous orthogonality and cubature rules are deduced.

2. Multivariate (Anti)symmetric Sine Functions

2.1. Definitions and Symmetry Properties

The multivariate symmetric and antisymmetric generalizations of trigonometric functions are
introduced in [1], symmetry properties of the (anti)symmetric discrete cosine transforms are detailed
in [3]. The antisymmetric sine functions sin−λ (x) and the symmetric sine functions sin+

λ (x), labeled
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by the parameter λ = (λ1, λ2, . . . , λn) ∈ Rn and of the variable x = (x1, x2, . . . , xn) ∈ Rn, are defined
via the determinants and permanents of matrices with entries sin(πλixj). Denoting the group of
permutations by Sn and the sign homomorphism on Sn by sgn, the (anti)symmetric sine functions of
several variables [1] are given explicitly by

sin−λ (x) = ∑
σ∈Sn

sgn(σ) sin(πλσ(1)x1) sin(πλσ(2)x2) . . . sin(πλσ(n)xn),

sin+
λ (x) = ∑

σ∈Sn

sin(πλσ(1)x1) sin(πλσ(2)x2) . . . sin(πλσ(n)xn).
(1)

The (anti)symmetric cosine functions [1] cos±λ (x) are for parameter λ = (λ1, λ2, . . . , λn) ∈ Rn and
variable x = (x1, x2, . . . , xn) ∈ Rn given similarly by the following formulas,

cos−λ (x) = ∑
σ∈Sn

sgn(σ) cos(πλσ(1)x1) cos(πλσ(2)x2) . . . cos(πλσ(n)xn),

cos+λ (x) = ∑
σ∈Sn

cos(πλσ(1)x1) cos(πλσ(2)x2) . . . cos(πλσ(n)xn).
(2)

The (anti)symmetric sine functions posses several crucial symmetry properties [1]. Directly from
definition (1), the multivariate sine functions sin±λ (x) are (anti)symmetric with respect to the action of
a permutation σ ∈ Sn,

sin−λ (σ(x)) = sgn(σ) sin−λ (x), sin−
σ(λ)

(x) = sgn(σ) sin−λ (x),

sin+
λ (σ(x)) = sin+

λ (x), sin+
σ(λ)

(x) = sin+
λ (x),

(3)

where σ(x) = (xσ(1), xσ(2), . . . , xσ(n)) and σ(λ) = (λσ(1), λσ(2), . . . , λσ(n)). Furthermore, the sine
functions are anti–invariant with respect to sign alternations of both variables and parameters. For a
change of sign τi of any i-th coordinate of the variable x ∈ Rn or the parameter λ ∈ Rn,

τi(x1, . . . , xi, . . . , xn) = (x1, . . . ,−xi, . . . , xn),

τi(λ1, . . . , λi, . . . , λn) = (λ1, . . . ,−λi, . . . , λn),
(4)

it holds that
sin±λ (τi(x)) = − sin±λ (x),

sin±
τi(λ)

(x) = − sin±λ (x).
(5)

Therefore, the functions sin±λ vanish if any coordinate of the variable xi or the parameter λi are
equal to zero.

Setting the �−vector as

� =

(
1
2

,
1
2

, . . . ,
1
2

)
, (6)

the functions sin±k and sin±k−�, k ∈ Zn, admit additional symmetries with respect to multivariate integer
shifts t = (t1, t2, . . . , tn) ∈ Zn that stem from the periodicity of the univariate sine function,

sin±k (x + 2t) = sin±k (x),

sin±k−�(x + 2t) = (−1)t1+···+tn sin±k−�(x).
(7)

The sets of integer parameters P±1 are introduced as

P+
1 = {(k1, k2, . . . , kn) ∈ Zn | k1 ≥ k2 ≥ · · · ≥ kn ≥ 1} ,

P−1 = {(k1, k2, . . . , kn) ∈ Zn | k1 > k2 > · · · > kn ≥ 1} .
(8)
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The relations (3) and (5) imply that it suffices to parametrize the functions sin±k and sin±k−� only
by the following values,

sin+
k , sin+

k−� : k ∈ P+
1 ,

sin−k , sin−k−� : k ∈ P−1 .
(9)

Due to relations (3), (5) and (7), the functions sin±k and sin±k−� are restricted to the closure of the

fundamental domain F(S̃aff
n ),

F(S̃aff
n ) = {(x1, x2, . . . , xn) ∈ Rn | 1 ≥ x1 ≥ x2 ≥ . . . ≥ xn ≥ 0} . (10)

Furthermore, it follows from the symmetry relations (3), (5) and the identity sin(πki) = 0, ki ∈ Z,
that the functions sin±k and sin±k−� are identically equal to zero on certain parts of the boundary of the

domain F(S̃aff
n ). In particular, the following points are omitted from F(S̃aff

n ),

sin−k (x) : xi = xi+1, i ∈ {1, . . . , n− 1} ; x1 = 1; xn = 0,

sin−k−�(x) : xi = xi+1, i ∈ {1, . . . , n− 1} ; xn = 0,

sin+
k (x) : x1 = 1; xn = 0,

sin+
k−�(x) : xn = 0.

(11)

In order to analyse polynomials of several variables in Section 4, four special cases of multivariate
sine functions sin±λ , labeled by the generalized �−vectors

�−2 = (n, n− 1, . . . , 1), �+2 = (1, 1, . . . , 1), �−4 =

(
n− 1

2
, n− 3

2
, . . . ,

1
2

)
, �+4 = �, (12)

are expressed in their product forms.

Proposition 1. Let k ∈ N be given by

k =

{
n−1

2 for n odd,
n
2 for n even.

(13)

Then it holds that

sin−
�−2

(x1, . . . , xn)=(−1)k2n(n−1)
n

∏
i=1

sin (πxi) ∏
1≤i<j≤n

sin
(π

2
(xi + xj)

)
sin

(π

2
(xi − xj)

)
, (14)

sin+
�+2

(x1, . . . , xn)=n!
n

∏
i=1

sin (πxi) , (15)

sin−
�−4

(x1, . . . , xn)=(−1)k2n(n−1)
n

∏
i=1

sin
(π

2
xi

)
∏

1≤i<j≤n
sin

(π

2
(xi + xj)

)
sin

(π

2
(xi − xj)

)
, (16)

sin+
� (x1, . . . , xn) =n!

n

∏
i=1

sin
(π

2
xi

)
. (17)
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Proof. The Formulas (15) and (17) follow directly from definition. The Equality (14) is derived in [3].
From the definition (1) and the symmetry property (3), the function sin−

�−4
is given by

sin−
�−4

(x1, . . . , xn) = (−1)k sin−( 1
2 , 3

2 ,...,n− 1
2

) = (−1)k det

⎛⎜⎜⎜⎜⎝
sin( π

2 x1) sin( 3π
2 x1) ··· sin

(
(2n−1)π

2 x1

)
sin( π

2 x2) sin( 3π
2 x2) ··· sin

(
(2n−1)π

2 x2

)
...

...
. . .

...
sin( π

2 xn) sin( 3π
2 xn) ··· sin

(
(2n−1)π

2 xn

)

⎞⎟⎟⎟⎟⎠ . (18)

Basic properties of determinants together with the trigonometric identity for powers of the
sine function

sin((2m− 1)θ) = (−1)m−122(m−1) sin2m−1(θ)−∑m−1
i=1 (−1)i(2n−1

i ) sin ((2n− 1− 2i)θ) , m ∈ N, (19)

and the power-reduction formula
cos(2θ) = 1− 2 sin2(θ) (20)

imply that the determinant (18) is of the following form,

sin−
�−4

(x1, . . . , xn) = (−1)k det

⎛⎜⎜⎝
sin( π

2 x1) 2 sin( π
2 x1) cos(πx1) ··· 2n−1 sin( π

2 x1) cosn−1(πx1)

sin( π
2 x2) 2 sin( π

2 x1) cos(πx2) ··· 2n−1 sin( π
2 x1) cosn−1(πx2)

...
...

. . .
...

sin( π
2 xn) 2 sin( π

2 x1) cos(πxn) ··· 2n−1 sin( π
2 x1) cosn−1(πxn)

⎞⎟⎟⎠ . (21)

The Formula (21) is rewritten as

sin−
�−4

(x1, . . . , xn) = (−1)k2
n(n−1)

2

n

∏
i=1

sin
(π

2
xi

)
det

⎛⎜⎝
1 cos(πx1) ··· cosn−1(πx1)

1 cos(πx2) ··· cosn−1(πx2)

...
...

. . .
...

1 cos(πxn) ··· cosn−1(πxn)

⎞⎟⎠ . (22)

Taking into account that the last determinant is of the Vandermonde type, it holds that

sin−
�−4

(x1, . . . , xn) = (−1)k2
n(n−1)

2

n

∏
i=1

sin
(π

2
xi

)
∏

1≤i<j≤n
cos(πxi)− cos(πxj). (23)

The sum-to-product trigonometric identity

cos(πxi)− cos(πxj) = 2 sin
(π

2
(xi + xj)

)
sin

(π

2
(xi − xj)

)
(24)

substituted in relation (23) yields Formula (16).

Due to identities (14)–(17), the functions sin±
�±2

and sin−
�±4

vanish only on the parts of the boundary

points of F(S̃aff
n ) specified by (11).

Corollary 1. The functions sin±
�±2

and sin−
�±4

are non-zero in the interior F(S̃aff
n )◦ of the fundamental

domain F(S̃aff
n ).

Example 1. Contour plots of the graph cuts z = 1/5 of the symmetric trivariate sine function sin+
k (x, y, z)

and sin+
k−�(x, y, z) are for parameters k = (2, 1, 1), (3, 1, 1), (3, 3, 1) and k = (3, 2, 2), (4, 2, 2), (4, 4, 2)

depicted in Figures 1 and 2, respectively. Contour plots of the graph cuts z = 1/5 of the antisymmetric
trivariate sine function sin−k (x, y, z) and sin−k−�(x, y, z) are for parameters k = (4, 2, 1), (5, 2, 1), (5, 4, 1) and
k = (5, 3, 2), (6, 3, 2), (6, 5, 2) depicted in Figures 3 and 4, respectively. The specific values of parameters
are dispersed to visualize a wide range of different generalized trigonometric functions that possess common
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symmetry properties within each family. The plotting of the figures in this example, as well as plotting, numerical
calculations and integrations in subsequent examples is performed by Wolfram Mathematica.

Figure 1. The contour plots of the symmetric trivariate sine function sin+
k (x, y, 1/5) with

k = (2, 1, 1), (3, 1, 1) and (3, 3, 1). The border of the fundamental domain is depicted by the black line.

Figure 2. The contour plots of the symmetric trivariate sine function sin+
k−�(x, y, 1/5) with

k = (3, 2, 2), (4, 2, 2) and (4, 4, 2). The border of the fundamental domain is depicted by the black line.

Figure 3. The contour plots of the antisymmetric trivariate sine function sin−k (x, y, 1/5) with
k = (4, 2, 1), (5, 2, 1), (5, 4, 1). The border of the fundamental domain is depicted by the black line.

Figure 4. The contour plots of the antisymmetric trivariate sine function sin−k−�(x, y, 1/5) with
k = (5, 3, 2), (6, 3, 2), (6, 5, 2). The border of the fundamental domain is depicted by the black line.
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2.2. Continuous Orthogonality

The antisymmetric and symmetric sine functions (9) are pairwise continuously orthogonal within
each family when integrated over F(S̃aff

n ). Denoting the order of the stabilizer subgroup StabSn(λ) of
Sn with respect to a point λ ∈ Rn by Hλ,

Hλ = |StabSn(λ)|, (25)

the continuous orthogonality relations of the (anti)symmetric sine functions are given by∫
F(S̃aff

n )
sin−k (x) sin−k′ (x) dx = 2−nδkk′ , k, k′ ∈ P−1 , (26)∫

F(S̃aff
n )

sin−k−�(x) sin−k′−�(x) dx = 2−nδkk′ , k, k′ ∈ P−1 , (27)∫
F(S̃aff

n )
sin+

k (x) sin+
k′ (x) dx = 2−n Hkδkk′ , k, k′ ∈ P+

1 , (28)∫
F(S̃aff

n )
sin+

k−�(x) sin+
k′−�(x) dx = 2−n Hkδkk′ , k, k′ ∈ P+

1 , (29)

where δkk′ denotes the Kronecker delta.
The orthogonality relations (26) and (28) are deduced in [1] from the continuous orthogonality of

univariate sine functions sin(πmθ), m ∈ N over the interval [0, 1]. The remaining relations (27) and (29)
follow similarly from the continuous orthogonality of the shifted sine functions sin(π(m− 1/2)θ),
m ∈ N, ∫ 1

0
sin

(
π

(
m− 1

2

)
θ

)
sin

(
π

(
m′ − 1

2

)
θ

)
dθ =

1
2

δmm′ , m, m′ ∈ N. (30)

3. Discrete Transforms

The standard discrete sine transforms (DSTs) arise naturally from discretized solution of the
harmonic oscillator equation with certain choices of boundary conditions [2]. The Dirichlet boundary
condition is required at the beginning of the interval whereas the Neumann and Dirichlet boundary
conditions are both allowed at the other end of the interval. Application of the boundary conditions at
the grid or mid-grid points produces eight different transforms DST-I, . . . , DST-VIII. The antisymmetric
and symmetric generalizations of DSTs result in 16 various multivariate discrete transforms denoted
by AMDST and SMDST respectively. The (anti-)symmetric multivariate sine transforms of type I
are derived in [1] by employing DST-I. A similar method is used to complete the list of AMDST
and SMDST.

In order to describe the generalized discrete transforms, two sets of labels D1,N and D1,N,� are
introduced for an arbitrary scaling factor N ∈ N,

D1,N = {(k1, k2, . . . , kn) ∈ Zn |N ≥ ki ≥ 1, i = 1, . . . , n} ,

D1,N,� = −� + D1,N =

{(
k1 −

1
2

, k2 −
1
2

, . . . , kn −
1
2

)
| ki ∈ Zn, N ≥ ki ≥ 1, i = 1, . . . , n

}
.

(31)

The normalization function d assigns to each label k ∈ D1,N the value dk determined by

dk = ck1 ck2 . . . ckn , cki
=

{
1
2 if ki = N,

1 otherwise.
(32)
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Similarly, to each label k ∈ D1,N,� is assigned the value d̃k equal to the previous discrete function
evaluated at non-shifted point k + � from D1,N ,

d̃k = dk+�. (33)

The generalized discrete transforms are developed on specific finite sets of points contained in
F(S̃aff

n ). The point sets Cm
1,N and Cm

1,N,� are subsets of two types of cubic lattices defined for four cases
m ∈ {N + 1, N, (2N + 1)/2, (2N − 1)/2} by

Cm
1,N =

1
m

D1,N , Cm
1,N,� =

1
m

D1,N,�. (34)

The discrete weight function ε, defined for each point s ∈ Cm
1,N , is specified by the value of the

function d on the point ms ∈ D1,N ,
εs = dms. (35)

The discrete function ε̃ is for each point s ∈ Cm
1,N,� given by

ε̃s = d̃ms. (36)

3.1. Antisymmetric Multivariate Discrete Sine Transforms

For an arbitrary scaling factor N ∈ N greater than or equal to n, AMDSTs express a discrete-valued
function as a linear combination of antisymmetric sine functions. The functions sin−k are labeled by a
finite set D−

1,N of labels in P−1 with coordinates not exceeding the value N,

D−
1,N = D1,N ∩ P−1 = {(k1, k2, . . . , kn) ∈ Zn |N ≥ k1 > k2 > . . . > kn ≥ 1} , (37)

and by the label set D−
1,N,� containing all labels of D−

1,N shifted by −�,

D−
1,N,� = −� + D−

1,N = D1,N,� ∩ {−� + P−1 }

=

{(
k1 −

1
2

, k2 −
1
2

, . . . , kn −
1
2

)
| ki ∈ Z, N ≥ k1 > k2 > . . . > kn ≥ 1

}
.

(38)

In particular, Table 1 determines the finite set of labels D�,−
N and the corresponding finite

set of points F�,−
N ⊂ F(S̃aff

n ), on which an expanded discrete function is evaluated, for each type
� ∈ {I, II, . . . , VIII} of AMDST. Each antisymmetric �−type transform requires the inherent weights ε�

and normalization coefficients h� listed also in Table 1. The antisymmetric sine functions labeled by
k, k′ ∈ D�,−

N form an orthogonal basis of real-valued functions defined on the finite point set F�,−
N of

each type,

∑
s∈F�,−

N

ε�s sin−k (s) sin−k′ (s) = h�k δkk′ . (39)

The discrete orthogonality (39) implies that any function f : F�,−
N → R is expanded in terms of

antisymmetric sine functions labeled by k ∈ D�,−
N as

f (s) = ∑
k∈D�,−

N

A�
k sin−k (s), A�

k =
1
h�k

∑
s∈F�,−

N

ε�s f (s) sin−k (s). (40)

The eight types of AMDSTs specialize for n = 1 to the corresponding standard DSTs.
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Table 1. The sets of labels D�,−
N , D�,+

N and sets of points F�,−
N , F�,+

N together with the weights ε�

and normalization coefficients h� are specified for each type � ∈ {I, II, . . . , VIII} of antisymmetric
generalizations of discrete sine transforms (DSTs) (AMDST), and symmetric generalizations of DSTs
(SMDST), respectively.

� D�,−
N F�,−

N D�,+
N F�,+

N h�
k ε�s

I D−
1,N

1
N+1 D−

1,N D+
1,N

1
N+1 D+

1,N

(
N+1

2

)n
1

II D−
1,N

1
N D−

1,N,� D+
1,N

1
N D+

1,N,� d−1
k

(
N
2

)n
1

III D−
1,N,�

1
N D−

1,N D+
1,N,�

1
N D+

1,N

(
N
2

)n
εs

IV D−
1,N,�

1
N D−

1,N,� D+
1,N,�

1
N D+

1,N,�

(
N
2

)n
1

V D−
1,N

2
2N+1 D−

1,N D+
1,N

2
2N+1 D+

1,N

(
2N+1

4

)n
1

VI D−
1,N

2
2N+1 D−

1,N,� D+
1,N

2
2N+1 D+

1,N,�

(
2N+1

4

)n
1

VII D−
1,N,�

2
2N+1 D−

1,N D+
1,N,�

2
2N+1 D+

1,N

(
2N+1

4

)n
1

VIII D−
1,N,�

2
2N−1 D−

1,N,� D+
1,N,�

2
2N−1 D+

1,N,� d̃−1
k

(
2N−1

4

)n
ε̃s

Remark 1. The antisymmetric sine functions labeled by the parameters k of the form (N + 1, k2, . . . , kn) and
(N + 1/2, k2, . . . , kn) are identically equal to zero for all points from the sets FI,−

N and FVII,−
N , respectively.

Therefore, the discrete orthogonality relations (39) for � = I and � = VII remain valid if either k or k′, but not
both, are of such form.

3.2. Symmetric Multivariate Discrete Sine Transforms

For an arbitrary scaling factor N ∈ N, SMDSTs express a discrete-valued function as a linear
combination of symmetric sine functions. The functions sin+

k are labeled by a finite set D+
1,N of points

in P+
1 with coordinates not exceeding the value N,

D+
1,N = D1,N ∩ P+

1 = {(k1, k2, . . . , kn) ∈ Zn |N ≥ k1 ≥ k2 ≥ . . . ≥ kn ≥ 1} , (41)

or by the set D+
1,N,� containing all points of D+

1,N shifted by −�,

D+
1,N,� = −� + D+

1,N = D1,N,� ∩ {−� + P+
1 }

=

{(
k1 −

1
2

, k2 −
1
2

, . . . , kn −
1
2

)
|N ≥ k1 ≥ k2 ≥ . . . ≥ kn ≥ 1, ki ∈ Z

}
.

(42)

In particular, Table 1 determines the finite set of labels D�,+
N and the corresponding finite

set of points F�,+
N ⊂ F(S̃aff

n ), on which an expanded discrete function is evaluated, for each type
� ∈ {I, II, . . . , VIII} of SMDST. Besides the weights ε� and normalization coefficients h� from Table 1,
the stabilizer function Hk, defined by (25), enters each symmetric transform. The symmetric sine
functions, labeled by k, k′ ∈ D�,+

N , form an orthogonal basis of real-valued functions defined on the
finite point set F�,+

N of each type,

∑
s∈F�,+

N

ε�s H−1
s sin+

k (s) sin+
k′ (s) = h�k Hkδkk′ . (43)

The discrete orthogonality (43) implies that any function f : F�,+
N → R is expanded in terms of

symmetric sine functions labeled by k ∈ D�,+
N as

f (s) = ∑
k∈D�,+

N

A�
k sin+

k (s), A�
k =

1
h�k Hk

∑
s∈F�,+

N

ε�s H−1
s f (s) sin+

k (s). (44)
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The eight types of SMDSTs specialize for n = 1 to the corresponding standard DSTs.

Remark 2. The symmetric sine functions, labeled by the parameters k of the form (N + 1, k2, . . . , kn) and
(N + 1/2, k2, . . . , kn), are identically equal to zero for all points from the sets FI,+

N and FVII,+
N , respectively.

Therefore, the discrete orthogonality relations (43) for � = I and � = VII remain valid if k or k′, but not both,
are of such form.

3.3. Interpolation by (Anti)symmetric Sine Functions

The developed formalism of discrete transforms provides solution of an interpolation problem
formulated for a real-valued function over the fundamental domain F(S̃aff

n ). The interpolation problem
for f : F(S̃aff

n ) → R involves formation of an interpolation polynomial in terms of multivariate sine
functions, labeled by parameters k ∈ D�,±

N , � ∈ {I, II, . . . , VIII},

ψ�,±
N (x) = ∑

k∈D�,∓
N

A�
k sin±k (x). (45)

The values of function f are required to coincide with the values of the interpolation polynomial
on the corresponding finite set of points F�,±

N ,

ψ�,±
N (s) = f (s), s ∈ F�,±

N . (46)

Eight different types of antisymmetric interpolation polynomials ψ�,−
N and eight different types of

symmetric interpolation polynomials ψ�,+
N are formed. Since the functions sin±k labeled by k ∈ D�,±

N
form an orthogonal basis of all real-valued discrete functions on F�,±

N , the coefficients A�
k are calculated

by (40) and (44), respectively.

Example 2. For n = 3, the following function f is chosen as a model function,

f (x, y, z) = exp

(
(x− 0, 7)2 + (y− 0, 5)2 + (z− 0, 15)2

0, 005
+ 3

)

+
1
3

exp

(
(x− 0, 87)2 + (y− 0, 7)2 + (z− 0, 15)2

0, 005
+ 3

)
.

(47)

The graph of the cut of f (x, y, z) by the plane z = 1/5 in the fundamental domain F(S̃aff
3 ) is plotted in Figure 5.

The model function f is interpolated by the antisymmetric and symmetric polynomials of the sixth type ψVI,−
N

and ψVI,+
N , with N = 7, 12, 17. The graph cuts of the interpolating polynomials are depicted in Figures 6 and 7.

Table 2 shows the integral error estimates for the polynomial approximations of the model function f by the
antisymmetric and symmetric interpolation polynomials of type II, III, VI and VII for N = 7, 12, 17, 22, 27.

Figure 5. The graph cut of the model function (47) for fixed z = 1/5.
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Figure 6. The antisymmetric interpolation polynomial ψVI,−
N (x, y, 1/5) of the model function (47) with

N = 7, 12, 17. The sets of points FVI,−
N are depicted as the black dots.

Figure 7. The symmetric interpolation polynomial ψVI,+
N (x, y, 1/5) of the model function (47) with

N = 7, 12, 17. The sets of points FVI,+
N are depicted as the black dots.

Table 2. Integral error estimates of the polynomial approximations of the model function (47) by
ψII,±

N , ψIII,±
N , ψVI,±

N and ψVII,±
N for N = 7, 12, 17, 22, 27.

N
∫

F(S̃aff
n ) | f − ψII,−

N |2 ∫
F(S̃aff

n ) | f − ψIII,−
N |2 ∫

F(S̃aff
n ) | f − ψVI,−

N |2 ∫
F(S̃aff

n ) | f − ψVII,−
N |2

7 144, 637× 10−6 204, 640× 10−6 123, 618× 10−6 121, 379× 10−6

12 8850× 10−6 11, 715× 10−6 7540× 10−6 5554× 10−6

17 238× 10−6 358× 10−6 113× 10−6 96× 10−6

22 21× 10−6 21× 10−6 20× 10−6 11× 10−6

27 18× 10−6 17× 10−6 2× 10−6 7× 10−6

N
∫

F(S̃aff
n ) | f − ψII,+

N |2 ∫
F(S̃aff

n ) | f − ψIII,+
N |2 ∫

F(S̃aff
n ) | f − ψVI,+

N |2 ∫
F(S̃aff

n ) | f − ψVII,+
N |2

7 146, 367× 10−6 146, 252× 10−6 190, 670× 10−6 158, 619× 10−6

12 5639× 10−6 11, 502× 10−6 9971× 10−6 8792× 10−6

17 192× 10−6 297× 10−6 238× 10−6 191× 10−6

22 11× 10−6 14× 10−6 20× 10−6 11× 10−6

27 8× 10−6 7× 10−6 16× 10−6 6× 10−6
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3.4. Matrices of the Normalized Discrete Trigonometric Transforms

The orthogonal matrices S�,±
N , that correspond to the eight types of the normalized discrete sine

transforms (40) and (44), are defined by relations

(
S�,+

N

)
k,s

=

√
ε�s

h�k Hk Hs
sin+

k (s),
(

S�,−
N

)
k,s

=

√
ε�s
h�k

sin−k (s). (48)

The ordering inside the point and label sets is chosen as lexicographic.

Example 3. The orthogonal matrices SVI,+
3 and SVI,−

5 which realize the trivariate normalized transforms
SMDST-VI and AMDST-VI are of the following explicit form,

SVI,+
3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.035 0.137 0.309 0.400 0.110 0.350 0.556 0.198 0.446 0.206
0.110 0.321 0.480 0.309 0.150 0.202 −0.115 −0.079 −0.527 −0.446
0.198 0.385 0.321 0.137 −0.079 −0.404 −0.293 −0.337 0.115 0.556
0.206 0.198 0.110 0.035 −0.446 −0.350 −0.137 0.556 0.309 −0.400
0.137 0.293 0.115 −0.556 0.321 0.404 −0.337 0.385 0.079 0.198
0.350 0.404 −0.202 −0.350 0.202 −0.143 0.404 −0.404 0.202 −0.350
0.446 0.079 −0.150 −0.110 −0.527 0.202 0.321 0.115 −0.480 0.309
0.309 0.115 −0.527 0.446 0.480 −0.202 −0.079 0.321 −0.150 0.110
0.556 −0.337 −0.079 0.198 −0.115 0.404 −0.385 −0.293 0.321 −0.137
0.400 −0.556 0.446 −0.206 0.309 −0.350 0.198 0.137 −0.110 0.035

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

SVI,−
5 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.047 −0.152 −0.279 −0.365 −0.166 −0.383 −0.535 −0.256 −0.445 −0.199
−0.166 −0.365 −0.383 −0.279 −0.256 −0.199 0.047 0.152 0.535 0.445
−0.256 −0.279 −0.199 −0.383 0.152 0.445 0.166 0.365 −0.047 −0.535
−0.199 −0.047 −0.256 −0.166 0.445 0.152 0.383 −0.535 −0.279 0.365
−0.279 −0.445 −0.047 0.535 −0.383 −0.166 0.365 −0.199 −0.152 −0.256
−0.535 −0.256 0.365 0.152 0.047 0.279 −0.445 0.166 −0.199 0.383
−0.445 0.166 −0.152 0.256 0.535 −0.365 −0.199 −0.047 0.383 −0.279
−0.365 0.199 0.535 −0.445 −0.279 −0.047 0.152 −0.383 0.256 −0.166
−0.383 0.535 −0.166 −0.047 −0.199 −0.256 0.279 0.445 −0.365 0.152
−0.152 0.383 −0.445 0.199 −0.365 0.535 −0.256 −0.279 0.166 −0.047

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

4. Chebyshev-Like Multivariate Orthogonal Polynomials

The Chebyshev polynomials of the first and third kind are generalized to multivariate orthogonal
polynomials via the antisymmetric and symmetric cosine Function (2) in [3]. The multivariate
generalizations of the Chebyshev polynomials of the second and fourth kind are built on the
(anti)symmetric sine functions. Analogously to Chebyshev polynomials, the polynomial variables
X1, X2, . . . , Xn are associated with the functions of n variables given by

X1 = cos+
(1,0,...,0), X2 = cos+

(1,1,0...,0), X3 = cos+
(1,1,1,0,...,0), . . . , Xn = cos+

(1,1,...,1) . (49)

The common label set

P+ = {(k1, k2, . . . , kn) ∈ Zn | k1 ≥ k2 ≥ · · · ≥ kn ≥ 0} , (50)
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labels all four classes of orthogonal polynomials P II,±
k ,P IV,±

k , k ∈ P+, in variables X1, X2, . . . , Xn of
degree k1, induced for x ∈ F(S̃aff

n )◦ by the following four rational functions,

P II,−
k (X1(x), X2(x), . . . , Xn(x)) =

sin−
k+�−2

(x)

sin−
�−2
(x)

, P II,+
k (X1(x), X2(x), . . . , Xn(x)) =

sin+
k+�+2

(x)

sin+
�+2
(x)

,

P IV,−
k (X1(x), X2(x), . . . , Xn(x)) =

sin−
k+�−4

(x)

sin−
�−4
(x)

, P IV,+
k (X1(x), X2(x), . . . , Xn(x)) =

sin+
k+�+4

(x)

sin+
�+4
(x)

.

(51)

Corollary 1 implies that the rational functions in (51) are well-defined on the interior of F(S̃aff
n ).

The polynomials (51) are totally ordered by the lexicographic ordering > on P+.

4.1. Recurrence Relations

The recursive construction of the polynomials is based on the generalized trigonometric identity
that is derived from the classical product-to-sum trigonometric identity and valid for any λ, μ ∈ Rn,

sin±λ (x) cos+μ (x) =
1
2n ∑

σ∈Sn

∑{ ai=−1,1
i=1,...,n

} sin±
(λ1+a1μσ(1) ,...,λn+anμσ(n))

(x). (52)

Proposition 2. The functions P II,±
k , P IV,±

k , k ∈ P+ are polynomials in variables X1, X2, . . . , Xn, given by
relation (49), of degree k1.

Proof. Only the following special choices of parameters λ and μ appearing in (52) are considered,

λ ∈ {�±2 , �±4 }, μ = k ∈ P+.

Referring by minus sign to antisymmetric sign functions and by plus sign to symmetric sine
functions, the labels from the right-side of (52) are denoted by l±,

l± = (λ1 + a1kσ(1), λ2 + a2kσ(2), . . . , λn + ankσ(n)), σ ∈ Sn, ai = −1, 1. (53)

All labels l± for which the generalized sine functions are identically equal to zero are excluded
from consideration. Therefore, any label l± with at least one zero-valued coordinate and any label l−

having at least two coordinates with the same absolute value are omitted.
For the remaining labels satisfy l±i �= 0, there exists an alternation of signs τ of the negative

coordinates such that all coordinates of τ(l±) are positive. Any sequence of (different) positive
numbers can be rearranged by a certain permutation into a (decreasing) non-increasing sequence, i.e.
there exists σ′ ∈ Sn such that

[τ(l−)]σ′(1) > [τ(l−)]σ′(2) > · · · > [τ(l−)]σ′(n) > 0,

[τ(l+)]σ′(1) ≥ [τ(l+)]σ′(2) ≥ · · · ≥ [τ(l+)]σ′(n) > 0.
(54)

This implies that σ′τ(l±) lies in the set λ + P+.
Setting

k̃ = σ′τ(l±)− λ ∈ P+, (55)

either k̃ = k or it holds that ki + λi > k̃i + λi = [σ′τ(l±)]i = |λj + ajkσ(j)| for the first i for which the

coordinates of k + λ and k̃ + λ differ and some j ∈ {1, . . . , n}. Thus, k is lexicographically higher or
equal to k̃. The equality is fulfilled if and only if ai = +1 for all i for which ki > 0 and, in the case of
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the antisymmetric sine functions, if the additional condition that σ stabilizes k is satisfied. Considering
the possible values of ai for which k = k̃, a function Tk is defined by

Tk = tk1 tk2 . . . tkn , tki
=

{
2 if ki = 0,

1 otherwise.
(56)

Reflecting the possible values of σ, functions H±
k are introduced by

H−
k = Hk, H+

k = n!.

By symmetry properties of multivariate sine functions, the Formula (52) is rewritten as

sin±λ (x) cos+k (x) =
1
2n Tk H±

k sin±k+λ(x) + ∑
k>k̃∈P+

Ak̃ sin±
k̃+λ

(x), Ak̃ ∈ R. (57)

It follows from the Formula (57) that each function defined by (51) is built recurrently as certain
linear combination of cos+

k̃
(x) parametrized by k̃ ≤ k and that the coefficient of cos+

k̃
(x) with k̃ = k

is non-zero. From Proposition 4.1 in [3], cos+
k̃
(x) is expressible as a polynomial function in variables

X1, X2, . . . , Xn of degree k̃1.

Remark 3. Proposition 2 implies that all the points for which the denominator is zero-valued are removable
singularities. Therefore, it is possible to extend the domain of definition on the whole F(S̃aff

n ).

Special choices of the labels in Formula (52) together with basic properties of multivariate sine
functions suffice to deduce recurrence relations for the polynomials (51). In particular, the recurrence
relations are deduced from the proof of Proposition 2, or by setting λ = k ∈ P+ and equating
successively μ to (1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, 1, . . . , 1) in (52). Thus, the recurrence algorithm is
based on the following formulas,

sin±k =
21

1!(n− 1)!
sin±k−l1

X1 − sin±k−2l1
−

n

∑
i=2

sin±k−l1−li
,

sin±k =
22

2!(n− 2)!
sin±k−l1−l2

X2 − sin±k−2l1−2l2
− sin±k−2l1

− sin±k−2l2

−
n

∑
i=3

(
sin±k−l2+li

+ sin±k−2l1−l2−li
+ sin±k−l2−li

+ sin±k−2l1−l2+li

)
−

n

∑
i,j=2
i<j

(
sin±k−l1−l2+li+lj

+ sin±k−l1−l2−li−lj
+ sin±k−l1−l2+li−lj

+ sin±k−l1−l2−li+lj

)
,

...

sin±k =
2n

n!
sin±k−l1−l2−...−ln

Xn −
n

∑
i

sin±k−2li
−

n

∑
i,j=1
i<j

sin±k−2li−2lj
− . . .− sin±k−2l1−2l2−...−2ln

,

(58)

where li is a vector with i-th coordinate equal to 1 and others to 0.

Example 4. For n = 3, the lowest polynomial of type P II,+
k is constant, P II,+

(0,0,0) = 1, and the first degree
polynomials are given by

P II,+
(1,0,0) =

1
3

X1, P II,+
(1,1,0) =

2
3

X2, P II,+
(1,1,1) =

4
3

X3. (59)
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The consecutive polynomials are then determined by the following recurrence relations.

k1 ≥ 2, k2 = k3 = 0 : P II,+
(k1,0,0) = P II,+

(k1−1,0,0)X1 −P II,+
(k1−2,0,0) − 2P II,+

(k1−1,1,0)

k1 − 1 > k2 > k3 = 0 : P II,+
(k1,k2,0) = P II,+

(k1−1,k2,0)X1 −P II,+
(k1−2,k2,0) −P

II,+
(k1−1,k2+1,0)

−P II,+
(k1−1,k2−1,0) −P

II,+
(k1−1,k2,1)

k1 − 1 > k2 = k3 > 0 : P II,+
(k1,k2,k2)

= P II,+
(k1−1,k2,k2)

X1 −P II,+
(k1−2,k2,k2)

− 2P II,+
(k1−1,k2+1,k2)

− 2P II,+
(k1−1,k2,k2−1)

k1 − 1 > k2 > k3 > 0 : P II,+
(k1,k2,k3)

= P II,+
(k1−1,k2,k3)

X1 −P II,+
(k1−2,k2,k3)

−P II,+
(k1−1,k2+1,k3)

−P II,+
(k1−1,k2−1,k3)

−P II,+
(k1−1,k2,k3+1) −P

II,+
(k1−1,k2,k3−1)

k1 − 1 = k2 > k3 = 0 : P II,+
(k1,k1−1,0) =

1
2
P II,+
(k1−1,k1−1,0)X1 −P II,+

(k1−1,k1−2,0) −
1
2
P II,+
(k1−1,k1−1,1)

k1 − 1 = k2 > k3 > 0 : P II,+
(k1,k1−1,k3)

=
1
2
P II,+
(k1−1,k1−1,k3)

X1 −P II,+
(k1−1,k1−2,k3)

− 1
2
P II,+
(k1−1,k1−1,k3+1) −

1
2
P II,+
(k1−1,k1−1,k3−1)

k1 − 1 = k2 = k3 > 0 : P II,+
(k1,k1−1,k1−1) =

1
3
P II,+
(k1−1,k1−1,k1−1)X1 −P II,+

(k1−1,k1−1,k1−2)

k1 = k2 = 2, k3 = 0 : P II,+
(2,2,0) = 2P II,+

(1,1,0)X2 − 2P II,+
(1,0,0)X1 −

2
3
P II,+
(1,1,1)X1 + P II,+

(0,0,0) + 4P II,+
(1,1,0)

k1 = k2 > 2, k3 = 0 : P II,+
(k1,k1,0) = 2P II,+

(k1−1,k1−1,0)X2 − 2P II,+
(k1−1,k1−2,0)X1 −P II,+

(k1−1,k1−1,1)X1

+ P II,+
(k1−2,k1−2,0) + 3P II,+

(k1−1,k1−1,0) + 2P II,+
(k1−1,k1−2,1)

+ 2P II,+
(k1−1,k1−3,0) + P II,+

(k1−1,k1−1,2)

k1 = k2 > k3 + 2 > 2 : P II,+
(k1,k1,k3) = 2P II,+

(k1−1,k1−1,k3)X2 − 2P II,+
(k1−1,k1−2,k3)X1

−P II,+
(k1−1,k1−1,k3+1)X1 −P II,+

(k1−1,k1−1,k3−1)X1 + P II,+
(k1−2,k1−2,k3)

+ 2P II,+
(k1−1,k1−2,k3+1) + 2P II,+

(k1−1,k1−2,k3−1) + 4P II,+
(k1−1,k1−1,k3)

+ 2P II,+
(k1−1,k1−3,k3)

+ P II,+
(k1−1,k1−1,k3+2) + P II,+

(k1−1,k1−1,k3−2)

k1 = k2 = k3 + 2 = 3 : P II,+
(3,3,1) = 2P II,+

(2,2,1)X2 − 2P II,+
(2,1,1)X1 −

2
3
P II,+
(2,2,2)X1

−P II,+
(2,2,0)X1 + P II,+

(1,1,1) + 5P II,+
(2,2,1) + 4P II,+

(2,1,0)
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k1 = k2 = k3 + 2 > 3 : P II,+
(k1,k1,k1−2) = 2P II,+

(k1−1,k1−1,k1−2)X2 − 2P II,+
(k1−1,k1−2,k1−2)X1

− 2
3
P II,+
(k1−1,k1−1,k1−1)X1 −P II,+

(k1−1,k1−1,k1−3)X1 + P II,+
(k1−2,k1−2,k1−2)

+ 5P II,+
(k1−1,k1−1,k1−2) + 4P II,+

(k1−1,k1−2,k1−3) + P II,+
(k1−1,k1−1,k1−4)

k1 = k2 = k3 + 1 = 2 : P II,+
(2,2,1) =

2
3
P II,+
(1,1,1)X2 −P II,+

(1,1,0)X1 + P II,+
(1,0,0) + P II,+

(1,1,1)

k1 = k2 = k3 + 1 > 2 : P II,+
(k1,k1,k1−1) =

2
3
P II,+
(k1−1,k1−1,k1−1)X2 −P II,+

(k1−1,k1−1,k1−2)X1

+ P II,+
(k1−1,k1−2,k1−2) + P II,+

(k1−1,k1−1,k1−1) + P II,+
(k1−1,k1−1,k1−3)

k1 = k2 = k3 = 2 : P II,+
(2,2,2) =

4
3
P II,+
(1,1,1)X3 − 6P II,+

(1,1,0)X2 + 3P II,+
(1,0,0)X1

+ 2P II,+
(1,1,1)X1 −P II,+

(0,0,0) − 6P II,+
(1,1,0)

k1 = k2 = k3 = 3 : P II,+
(3,3,3) =

4
3
P II,+
(2,2,2)X3 − 6P II,+

(2,2,1)X2 + 3P II,+
(2,1,1)X1 + 2P II,+

(2,2,2)X1

+ 3P II,+
(2,2,0)X1 −P II,+

(1,1,1) − 9P II,+
(2,2,1) − 6P II,+

(2,1,0)

k1 = k2 = k3 > 3 : P II,+
(k1,k1,k1)

=
4
3
P II,+
(k1−1,k1−1,k1−1)X3 − 6P II,+

(k1−1,k1−1,k1−2)X2

+ 3P II,+
(k1−1,k1−2,k1−2)X1 + 2P II,+

(k1−1,k1−1,k1−1)X1

+ 3P II,+
(k1−1,k1−1,k1−3)X1 −P II,+

(k1−2,k1−2,k1−2) − 9P II,+
(k1−1,k1−1,k1−2)

− 6P II,+
(k1−1,k1−2,k1−3) − 3P II,+

(k1−1,k1−1,k1−4).

(60)

Similarly, the recurrence relations can be found for polynomials P II,−
(k1,k2,k3)

and P IV,±
(k1,k2,k3)

. The polynomials

P II,±
(k1,k2,k3)

and P IV,±
(k1,k2,k3)

of degree at most two are listed in Tables 3–6.

Table 3. The coefficients of the polynomials P II,±
(k1,k2,k3)

with k1 ≤ 2 and k1 + k2 + k3 even.

P II,−
(k1,k2,k3)

1 X2 X2
1 X1X3 X2

2 X2
3 P II,+

(k1,k2,k3)
1 X2 X2

1 X1X3 X2
2 X2

3

P II,−
(0,0,0) 1 P II,+

(0,0,0) 1

P II,−
(1,1,0) 2 2 P II,+

(1,1,0) 0 2
3

P II,−
(2,0,0) −3 −2 1 P II,+

(2,0,0) −1 − 4
3

1
3

P II,−
(2,1,1) −2 −2 1 4

3 P II,+
(2,1,1) 0 − 2

3 0 4
9

P II,−
(2,2,0) 6 10 −2 − 4

3 4 P II,+
(2,2,0) 1 8

3 − 2
3 − 8

9
4
3

P II,−
(2,2,2) −4 −8 2 12

3 −4 16
9 P II,+

(2,2,2) −1 −4 1 8
3 −4 16

9

Table 4. The coefficients of the polynomials P II,±
(k1,k2,k3)

with k1 ≤ 2 and k1 + k2 + k3 odd.

P II,−
(k1,k2,k3)

X1 X3 X1X2 X2X3 P II,+
(k1,k2,k3)

X1 X3 X1X2 X2X3

P II,−
(1,0,0) 1 P II,+

(1,0,0)
1
3

P II,−
(1,1,1) 1 4

3 P II,+
(1,1,1) 0 4

3

P II,−
(2,1,0) 0 − 4

3 2 P II,+
(2,1,0) − 1

3 − 2
3

1
3

P II,−
(2,2,1) 1 4 0 8

3 P II,+
(2,2,1)

1
3

4
3 − 2

3
8
9
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Table 5. The coefficients of the polynomials P IV,−
(k1,k2,k3)

with k1 ≤ 2.

P IV,−
(k1,k2,k3)

1 X1 X2 X3 X2
1 X1X2 X1X3 X2

2 X2X3 X2
3

P IV,−
(0,0,0) 1

P IV,−
(1,0,0) 1 1

P IV,−
(1,1,0) 3 1 2

P IV,−
(1,1,1) 3 2 2 4

3

P IV,−
(2,0,0) −3 1 −2 0 1

P IV,−
(2,1,0) −1 1 0 − 4

3 1 2

P IV,−
(2,1,1) −3 2 −2 0 2 2 4

3

P IV,−
(2,2,0) 8 0 12 − 4

3 −2 2 − 4
3 4

P IV,−
(2,2,1) 6 2 10 4 −1 2 0 4 8

3

P IV,−
(2,2,2) −6 2 −10 16

3 3 0 16
3 −4 8

3
16
9

Table 6. The coefficients of the polynomials P IV,+
(k1,k2,k3)

with k1 ≤ 2.

P IV,+
(k1,k2,k3)

1 X1 X2 X3 X2
1 X1X2 X1X3 X2

2 X2X3 X2
3

P IV,+
(0,0,0) 1

P IV,+
(1,0,0) 1 1

3

P IV,+
(1,1,0) 1 2

3
2
3

P IV,+
(1,1,1) 1 1 2 4

3

P IV,+
(2,0,0) −1 1

3 − 4
3 0 1

3

P IV,+
(2,1,0) −1 0 − 2

3 − 2
3

1
3

1
3

P IV,+
(2,1,1) −1 − 1

3 − 2
3 0 1

3
2
3

4
9

P IV,+
(2,2,0) 1 − 2

3
10
3 − 4

3 − 2
3

2
3 − 8

9
4
3

P IV,+
(2,2,1) 1 − 1

3 2 4
3 − 2

3 0 0 4
3

8
9

P IV,+
(2,2,2) −1 1 −6 16

3 1 −2 4 −4 8
3

16
9

4.2. Continuous Orthogonality

The key notion that induces continuous orthogonality relations of the polynomials P II,±
k and

P IV,±
k is the change of variables (49) in Formulas (26)–(28). The determinant of the Jacobian matrix

J (x1, . . . , xn) = det
∂ (X1, . . . , Xn)

∂ (x1, . . . , xn)
(61)

for the change from the polynomial variables (X1, . . . , Xn) to (x1, . . . , xn) is calculated in [3].
The absolute value of J is given by

|J(x1, . . . , xn)| = c
∣∣∣∣sin−

�−2
(x1, x2, . . . , xn)

∣∣∣∣ , (62)

with the constant c determined as

c = πn
(

1
2

) n(n−1)
2

(
n

∏
i=1

(n− i)!i!

)
. (63)
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The absolute value |J(x1, . . . , xn)| is shown in [3] to be expressible as a function J in the
polynomial variables (X1, . . . , Xn),

J (X1, . . . , Xn) = |J(x1, . . . , xn)| . (64)

Positivity of the Jacobian J (X1(x), . . . , Xn(x)) > 0 is for all x ∈ F(S̃aff
n )◦ guaranteed by Corollary

1.
In order to define the underlying weight functions, properties of the three additional products

of multivariate sine functions sin+
�+2
(x) · sin+

�+2
(x), sin−

�−4
(x) · sin−

�−4
(x) and sin+

�+4
(x) · sin+

�+4
(x) are

determined. Similarly to Formula (52), products of the (anti)symmetric sine functions are by a classical
product-to-sum identity decomposed into a sum of the symmetric cosine functions. Denoting the
number of positive ai by α(a1, . . . , an), it holds that

sin−λ (x) sin−μ (x)=
1
2n ∑

σ∈Sn

sgn(σ) ∑{ ai=−1,1
i=1,...,n

}(−1)α(a1,...,an) cos+
(λ1+a1μσ(1) ,...,λn+anμσ(n))

(x),

sin+
λ (x) sin+

μ (x)=
1
2n ∑

σ∈Sn

∑{ ai=−1,1
i=1,...,n

}(−1)α(a1,...,an) cos+
(λ1+a1μσ(1) ,...,λn+anμσ(n))

(x).
(65)

Therefore, all three products are expressed as polynomials in the variables X1, . . . , Xn,

J II,+ (X1(x), . . . , Xn(x)) = sin+
�+2
(x) sin+

�+2
(x),

J IV,− (X1(x), . . . , Xn(x)) = sin−
�−4
(x) sin−

�−4
(x),

J IV,+ (X1(x), . . . , Xn(x)) = sin+
�+4
(x) sin+

�+4
(x).

(66)

In the case of polynomials P II,−
k , the following polynomial function is introduced,

J II,− (X1, . . . , Xn) = sin−
�−2
(x) sin−

�−2
(x) =

(J
c

)2
. (67)

Due to Corollary 1, all four Functions (66) and (67) do not vanish in the interior of F(S̃aff
n ).

The Equalities (14)–(17) imply that J 2 is divisible by J II,± and J IV,±.
The final weights wII,± and wIV,± in the continuous orthogonality relations are given for x ∈

F(S̃aff
n )◦ by

wII,± =
J II,±

J , wIV,± =
J IV,±

J . (68)

Example 5. For n = 3, the Jacobian J in the polynomial variables is of the form

J (X1, X2, X3) =

√
π6

(
−8X3

2 + X2
1X2

2 − 12X2
3 + 12X1X2X3 −

4
3

X3
1X3

)
×
√
(X3 + 3X2 + 3X1 + 6) (−X3 + 3X2 − 3X1 + 6).

(69)
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The explicit formulas of the polynomials J II,± and J II,± are given by

J II,− (X1, X2, X3) =
1
9

(
−8X3

2 + X2
1X2

2 − 12X2
3 + 12X1X2X3 −

4
3

X3
1X3

)
× (X3 + 3X2 + 3X1 + 6) (−X3 + 3X2 − 3X1 + 6) ,

J II,+ (X1, X2, X3) = (X3 + 3X2 + 3X1 + 6) (−X3 + 3X2 − 3X1 + 6) ,

J IV,− (X1, X2, X3) =
1

12

(
−8X3

2 + X2
1X2

2 − 12X2
3 + 12X1X2X3 −

4
3

X3
1X3

)
× (−X3 + 3X2 − 3X1 + 6) ,

J IV,+ (X1, X2, X3) =
3
4
(−X3 + 3X2 − 3X1 + 6) .

(70)

Proposition 3. The polynomials P II,±
k and P IV,±

k , k ∈ P+, form within each family an orthogonal polynomial
sequence on the integration domain F(S̃aff

n ) given by

F(S̃aff
n ) =

{
(X1(x), . . . , Xn(x)) ∈ Rn | x ∈ F(S̃aff

n )
}

(71)

and with respect to the weights wII,± and wIV,±. For X = (X1, . . . , Xn), dX = dX1 . . . dXn and k, k′ ∈ P+,
the polynomial orthogonality relations are of the explicit form∫

F(S̃aff
n )
P II,−

k (X)P II,−
k′ (X)wII,−(X) dX = 2−nδkk′ ,∫

F(S̃aff
n )
P II,+

k (X)P II,+
k′ (X)wII,+(X) dX = 2−n Hkδkk′ ,∫

F(S̃aff
n )
P IV,−

k (X)P IV,−
k′ (X)wIV,−(X) dX = 2−nδkk′ ,∫

F(S̃aff
n )
P IV,+

k (X)P IV,+
k′ (X)wIV,+(X) dX = 2−nHkδkk′ .

(72)

Proof. The correspondence between the domain F(S̃aff
n ) and F(S̃aff

n ) given by

ϕ : x ∈ F(S̃aff
n )→ (X1(x), . . . , Xn(x)) ∈ F(S̃aff

n ) (73)

is proved to be one-to-one in [3]. Therefore, the corresponding change of variables is applicable on the
integration Formulas (26)–(29).

Corollary 2. The polynomials P II,±
k and P IV,±

k , k ∈ P+ form an orthogonal basis of all polynomials f , g ∈
R[X] of n variables with respect to the scalar product defined by

〈 f , g〉w =
∫
F(S̃aff

n )
f (X)g(X)w(X) dX, w ∈ {wII,±, wIV,±}. (74)

Proof. Proposition 4.1 in [3] grants that the number of polynomials (51) of degree d is equal to the
number of monomials of n variables of degree d.

4.3. Cubature Formulas

The main objective of cubature formulas is to estimate weighted integrals of multivariate
integrable functions f (Y), Y ∈ Rn, over an integration domain Ω ⊂ Rn with a weight w by linear
combinations of function values at a suitable finite set of points Ωn ⊂ Ω,∫

Ω
f (Y)w(Y)dY ≈ ∑

Y∈Ωn

cY f (Y). (75)
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The points from Ωn are generally called nodes. It is required that the cubature formulas hold exactly
for polynomials up to a certain degree. The optimal cubature formulas in a sense of minimal number
of points on which functions need to be evaluated are called Gaussian. In the following, the integrals
over the domain F (S̃aff

n ) with weights w ∈ {wII,±, wIV,±} are replaced by finite summing.
The finite sets F�,±

N , � ∈ I, II, . . . , VIII of generalized Chebyshev nodes, on which cubature formulas
are evaluated, are connected to the points in the discrete sets F�,±

N from Table 1 by the ϕ-transform (73),

F�,±
N =

{
ϕ(s) | s ∈ F�,±

N

}
. (76)

Recall from [3] that the ϕ−transform is one-to-one correspondence between F�,±
N and F�,±

N and
therefore, for each Y ∈ F�,±

N there exists a unique s ∈ F�,±
N such that Y = ϕ(s). Thus, the following

three weight symbols are well-defined,

HY = Hs, EY = εs, ẼY = ε̃s. (77)

Each family of orthogonal polynomials (51) gives rise to four different cubature formulas. The
formulas related to P II,− are derived from AMDST of type I, II, V and VI whereas the formulas related
to P II,+ arise from the symmetric discrete transforms of the same types. Similarly, the formulas related
to P IV,− are deduced from AMDST of type III, IV, VII and VIII and the formulas related to P IV,+ arise
from the symmetric discrete transforms of the same types.

Theorem 1.

1. For N ∈ N, N ≥ n and any polynomial f (Y) of degree at most 2(N − n) + 1, the following formula
holds exactly, ∫

F(S̃aff
n )

f (Y)wII,−(Y) dY =

(
1

N + 1

)n

∑
Y∈FI,−

N

f (Y)J II,−(Y). (78)

2. For N ∈ N, N ≥ n + 1 and any polynomial f (Y) of degree at most 2(N − n)− 1, the following formula
holds exactly, ∫

F(S̃aff
n )

f (Y)wII,−(Y) dY =

(
1
N

)n

∑
Y∈FII,−

N

f (Y)J II,−(Y). (79)

3. For N ∈ N, N ≥ n and any polynomial f (Y) of degree at most 2(N − n), the following formulas
hold exactly, ∫

F(S̃aff
n )

f (Y)wII,−(Y) dY =

(
2

2N + 1

)n

∑
Y∈FV,−

N

f (Y)J II,−(Y),

∫
F(S̃aff

n )
f (Y)wII,−(Y) dY =

(
2

2N + 1

)n

∑
Y∈FVI,−

N

f (Y)J II,−(Y).
(80)

Proof. The linearity of Equation (78) implies that it is sufficient to consider f (Y) in form of a monomial
of degree at most 2(N − n) + 1. Any such monomial is expressible as a product of a monomial p(Y) of
degree not exceeding N− n + 1 and a monomial q(Y) of degree at most N− n. From Proposition 2 and
Corollary 2 it follows that the monomials p and q are expressible as linear combinations of polynomials
P II,−

k with k1 ≤ N − n + 1 and P II,−
k′ with k′1 ≤ N − n, respectively. From the transform AMDST-I,

given by (40), and Remark 1, these polynomials satisfy the following discrete orthogonality relation,(
1

N + 1

)n

∑
Y∈FI,−

N

P II,−
k (Y)P II,−

k′ (Y)J II,−(Y) = 2−nδkk′ . (81)
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Comparing (72) and (81), the cubature Formula (78) is derived. Other cubature formulas are deduced
similarly from AMDST of type II, V and VI.

Theorem 2.

1. For N ∈ N and any polynomial f (Y) of degree at most 2N − 1, the following formula holds exactly,

∫
F(S̃aff

n )
f (Y)wII,+(Y) dY =

(
1

N + 1

)n

∑
Y∈FI,+

N

H−1
Y f (Y)J II,+(Y). (82)

2. For N ∈ N, N > 1 and any polynomial f (Y) of degree at most 2N− 3, the following formula holds exactly,

∫
F(S̃aff

n )
f (Y)wII,+(Y) dY =

(
1
N

)n

∑
Y∈FII,+

N

H−1
Y f (Y)J II,+(Y). (83)

3. For N ∈ N and any polynomial f (Y) of degree at most 2N − 2, the following formulas hold exactly,

∫
F(S̃aff

n )
f (Y)wII,+(Y) dY =

(
2

2N + 1

)n

∑
Y∈FV,+

N

H−1
Y f (Y)J II,+(Y),

∫
F(S̃aff

n )
f (Y)wII,+(Y) dY =

(
2

2N + 1

)n

∑
Y∈FVI,+

N

H−1
Y f (Y)J II,+(Y).

(84)

Theorem 3.

1. For N ∈ N, N ≥ n and any polynomial f (Y) of degree at most 2(N − n) + 1, the following formula
holds exactly,

∫
F(S̃aff

n )
f (Y)wIV,−(Y) dY =

(
2

2N + 1

)n

∑
Y∈FVII,−

N

f (Y)J IV,−(Y). (85)

2. For N ∈ N, N ≥ n and any polynomial f (Y) of degree at most 2(N − n), the following formulas
hold exactly, ∫

F(S̃aff
n )

f (Y)wIV,−(Y) dY =

(
1
N

)n

∑
Y∈FIII,−

N

EY f (Y)J IV,−(Y),

∫
F(S̃aff

n )
f (Y)wIV,−(Y) dY =

(
1
N

)n

∑
Y∈FIV,−

N

f (Y)J IV,−(Y).
(86)

3. For N ∈ N, N ≥ n + 1 and any polynomial f (Y) of degree at most 2(N − n)− 1, the following formula
holds exactly,

∫
F(S̃aff

n )
f (Y)wIV,−(Y) dY =

(
2

2N − 1

)n

∑
Y∈FVIII,−

N

ẼY f (Y)J IV,−(Y). (87)

Theorem 4.

1. For N ∈ N and any polynomial f (Y) of degree at most 2N − 1, the following formula holds exactly,

∫
F(S̃aff

n )
f (Y)wIV,+(Y) dY =

(
2

2N + 1

)n

∑
Y∈FVII,+

N

H−1
Y f (Y)J IV,+(Y). (88)
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2. For N ∈ N and any polynomial f (Y) of degree at most 2N − 2, the following formulas hold exactly,

∫
F(S̃aff

n )
f (Y)wIV,+(Y) dY =

(
1
N

)n

∑
Y∈FIII,+

N

EYH−1
Y f (Y)J IV,+(Y),

∫
F(S̃aff

n )
f (Y)wIV,+(Y) dY =

(
1
N

)n

∑
Y∈FIV,+

N

H−1
Y f (Y)J IV,+(Y).

(89)

3. For N ∈ N, N > 1 and any polynomial f (Y) of degree at most 2N− 3, the following formulas hold exactly,

∫
F(S̃aff

n )
f (Y)wIV,+(Y) dY =

(
2

2N − 1

)n

∑
Y∈FVIII,+

N

ẼYH−1
Y f (Y)J IV,+(Y). (90)

4.4. Gaussian Cubature Formulas

Theorem 5. The cubature Formulas (78), (82), (85) and (88) are optimal Gaussian cubature formulas.
Furthermore, it holds that

1. the orthogonal polynomials P II,−
k of degree k1 = N − n + 1 vanish for all nodes FI,−

N ,

2. the orthogonal polynomials P II,+
k of degree k1 = N vanish for all nodes FI,+

N ,

3. the orthogonal polynomials P IV,−
k of degree k1 = N − n + 1 vanish for all nodes FVII,−

N ,

4. the orthogonal polynomials P IV,+
k of degree k1 = N vanish for nodes FVII,+

N .

Proof. The number of nodes in the set FI,−
N is equal to the number of points in FI,−

N since ϕ is injective
on FI,−

N . The definition of FI,−
N in Table 1 and definition (37) imply that∣∣∣FI,−

N

∣∣∣ = ∣∣∣D−
1,N

∣∣∣ (91)

and the cardinality of these sets corresponds to the number of polynomials P II,−
k of degree N − n.

Therefore, the cubature Formula (78) is Gaussian. Similar counting arguments prove that the remaining
listed formulas are also Gaussian. The fact that the nodes are common zeros of the corresponding
polynomials of a specific degree follows directly from definition (51) and Remarks 1 and 2.

The Gaussian cubatures (78), (82), (85) and (88) are special cases of the general cubature
Formulas (1) and (2) from [22], where the values of integrals∫

f (u)[Δ(u)]±
1
2 dν(u) (92)

are studied. The variables ui are connected to the elementary symmetric functions by relation

ui = ui(y1, . . . , yn) = ∑
1≤k1<···<ki≤n

yk1 . . . yki
(93)

and coincide, up to a multiplication by a constant, with the current polynomial variables Xi,

ui =
Xi

(n− i)!i!
. (94)
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The measures w(X) dX, w ∈ {wII,±, wIV,±}, given by (68), correspond to the special choices of the

positive measure [Δ(u)]±
1
2 dν(u) of the form μ(u) du with

μ(u) =
n

∏
i=1

(1− yi)
α(1 + yi)

β

(
∏

1≤i<j≤n
(yi − yj)

2

)γ

, (95)

and

α, β, γ ∈
{
±1

2

}
, −1 < y1 < · · · < yn < 1. (96)

In particular, the parameters α, β and γ have the following values depending on the chosen family
of polynomials,

P II,−
k : α = β = γ =

1
2

,

P II,+
k : α = β =

1
2

, γ = −1
2

,

P IV,−
k : α = γ =

1
2

, β = −1
2

,

P IV,+
k : α =

1
2

, β = γ = −1
2

.

(97)

The cubature Formulas (78), (82), (85) and (88) together with the Gaussian cubatures from [3]
form the set of cubatures with all possible values of parameters in (95).

5. Conclusions

• The present fully explicit expression of the cubature rules allows straightforward implementation
of the numerical integration and approximation methods. Compared to the abstract variables
of the symmetric polynomials (93) from [22], the additional relation (49) established via the
fundamental symmetric cosine function connects directly, like in the classical Chebyshev
polynomials, the underlying lattice with the generalized Chebyshev nodes. The antisymmetric
discrete sine transforms from Table 1 are special cases of the discrete transforms derived
in [14] from generalized Schur polynomials associated with Bernstein-Szegö polynomials and
parametrized by (a−, b−) ∈ {(0, 0), (0,−1)}. On the other hand, the symmetric discrete sine
transforms from Table 1 extend the set of discrete transforms connected to the Chebyshev
polynomials of the second and fourth kind.

• The symmetry group of the (anti)symmetric sine functions (Z/2Z)n � Sn is isomorphic to the Weyl
groups of the classical series of the simple Lie algebras Bn and Cn. The correspondence between
the (anti)symmetric sine and cosine functions and the four types of the Weyl orbit functions is
explicitly developed in [9]. The present point sets of the discrete (anti)symmetric sine transforms
and the generalized Chebyshev nodes differ from the weight and dual weight lattice point sets
on which the discrete transforms and cubature rules of the Weyl orbit functions are formulated.
The topology of the current point sets is, however, similar for some cases to the root lattices of the
series Bn and Cn and the explicit formulation of the comparison poses an open problem.

• The Lebesgue constant estimates of the polynomial cubatures and integral error estimates for
the interpolation formulas together with criteria for the convergence of the polynomial series
deserve further study. The developed cubature formulas as well as the rules from [3,8] reveal
that the shifted lattice transforms carry high capacity to produce cubature formulas of Gaussian
type. Versions of the Clenshaw–Curtis methods of numerical integration [36], developed for the
C2 and A2 root systems in [37,38], also need to be further investigated. The formation of the
hyperinterpolation methods [39,40], which straightforwardly employ the standard polynomial
cubature rules, poses an open problem for the presented cubature rules.
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• The existence and explicit forms of generating functions for the related Weyl group polynomials,
developed in [41,42], further increase the relevance of the presented Chebyshev polynomial
methods. The generating functions form a powerful tool for investigating symmetries and
parity relations of the generated orthogonal polynomials and represent practical tool for efficient
computer implementation and handling of the generated polynomials. The recurrence relations
algorithms for the calculation of the trivariate polynomials are potentially superseded by explicit
evaluation formulas derived from the generating functions. The form of the generating functions
and the explicit evaluation formulas for the current polynomials pose open problems.
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Abstract: In this paper, we present recent results in harmonic analysis in the real line R and in the
half-line R+, which show a closed relation between Hermite and Laguerre functions, respectively,
their symmetry groups and Fourier analysis. This can be done in terms of a unified framework based
on the use of rigged Hilbert spaces. We find a relation between the universal enveloping algebra
of the symmetry groups with the fractional Fourier transform. The results obtained are relevant in
quantum mechanics as well as in signal processing as Fourier analysis has a close relation with signal
filters. In addition, we introduce some new results concerning a discretized Fourier transform on the
circle. We introduce new functions on the circle constructed with the use of Hermite functions with
interesting properties under Fourier transformations.

Keywords: Fourier analysis; special functions; rigged Hilbert spaces; quantum mechanics;
signal processing

1. Introduction

The seminal work by Fourier of 1807, published in 1822 [1], about the solution of the heat equation
had a deep impact in physics and mathematics as is well known. Roughly speaking, the Fourier method
decomposes functions into a superposition of “special functions” [2,3]. In particular, trigonometric
functions were used by Fourier himself for this purpose . In addition, the Fourier method makes use
of other types of special functions; each of these types is often related with a group. Then, these special
functions have symmetry properties, which are inherited from the corresponding group. For instance,
this is the way in which harmonic analysis appears in group representation theory [4]. An interesting
aspect of Fourier analysis is the decomposition of Hilbert space vectors, quite often represented by
square integrable functions on some domain, into an orthogonal basis. This generalizes both the
standard Fourier analysis of trigonometric series and the decomposition of a vector in terms of an
algebraic basis of linearly independent vectors. Another generalization is the decomposition of a
self-adjoint or normal operator on a Hilbert space in terms of spectral measures, say through the
spectral representation theorem. We are mainly interested in these generalizations concerning Hilbert
space vectors and operators.

In recent works [5,6], we started an attempt to reformulate the harmonic analysis on the real
line to obtain a global description of the Hermite functions, the Weyl–Heisenberg Lie algebra and the
Fourier analysis in the framework of rigged Hilbert spaces (RHS) that we present here in a more formal
way. As is well known, the Fourier transform relates two continuous bases which are used in the
description of one-dimensional quantum systems on the whole real line. These are the coordinate and
momentum representations, naturally connected with the position and the momentum operator [7,8],
respectively. They span the Weyl–Heisenberg algebra together with the identity operator. Moreover,
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these two continuous bases can be related with a discrete orthonormal basis labeled by the natural
numbers via the Hermite functions. In consequence, we have continuous and discrete bases within the
same framework. However, only discrete bases as complete orthonormal sets have a precise meaning
in Hilbert space. If we have a structure allowing to work with these types of bases and to find relations
among them, one needs to extend the Hilbert space to a more general structure called the rigged
Hilbert space.

The fundamental message of the present paper is to show how a class of different and apparently
unrelated mathematical objects, such as classical orthogonal polynomials, Lie algebras, Fourier analysis,
continuous and discrete bases and RHS, can be fully wived as a branch of harmonic analysis, with
applications in quantum mechanics and signal processing, among other possible applications.

We have mentioned that the mathematical concept of RHS is very important in our work.
It has been introduced by Gelfand and collaborators [9] proving (although Maurin [10]) the nuclear
spectral theorem as was heuristically introduced by Dirac [11]. It is also generally accepted that the
eigenfunction expansions and the Dirac formalism are generalizations of the Fourier analysis for which
we need RHS [10,12] . It is also known that the spectral theory of infinitesimal operators of an arbitrary
unitary representation of a Lie group also need RHS [10,12] . In the physics literature, the similarities
between the Dirac formalism, classical Fourier analysis and generalized Fourier transforms have been
discussed within the RHS framework [13,14] . Another application of RHS, which has a particular
importance in our presentation, is signal processing. In particular, in the electrical engineering
literature, these aspects have been discussed in [15–18] .

Since the average physicists may not be acquainted with the concept of RHS, let us give a
definition and some remarks on this concept. A rigged Hilbert space or Gelfand triple is a set of three
vector spaces

Φ ⊂ H ⊂ Φ× ,

where H is an infinite dimensional separable Hilbert space, Φ is a topological vector space endowed
with a topology finer than the Hilbert space topology and dense on H with the Hilbert space topology,
and Φ× is the dual of Φ (i.e., the space of linear (or antilinear) continuous mappings from Φ into the
complex numbers C) and it is endowed with a topology compatible with the pair (Φ, Φ×).

The formulation of quantum mechanics in terms of RHS was introduced by Bohm and Roberts
in the sixties of the last century and further developed later [19–26]. Continuous bases are not well
defined in Φ and H but only in Φ×. The action of a functional F ∈ Φ× on a vector ϕ ∈ Φ is written
as 〈ϕ|F〉 for keeping up with the Dirac notation. Since we will consider the scalar product on Hilbert
space antilinear to the left, we shall assume the antilinearity of the elements in Φ×.

The first part of the present paper is devoted to a review of a previous work by the authors [6]
concerning to the above-mentioned extension of Fourier analysis on the real line with the use of special
functions such us Hermite functions, which will be here for our main example. This is studied in
Section 2. The use of the Fractional Fourier transform (FFT) in this analysis is discussed in Section 3.

In addition, we give a second example in which the real line has been replaced by the semi-axis
R+ ≡ [0, ∞) and Hermite functions by Laguerre functions. In this latter case, we construct two different
Fourier-like transforms T ± and their eigenvectors are functions on the positive half-line. This is given
in Sections 4 and 5. Extensions to Rn using or not spherical coordinates are also possible, although
we shall not consider this option in the present manuscript [27]. In Reference [28], we revisited the
harmonic analysis on the group SO(2) using RHS. Furthermore, in Reference [29], we introduce a new
realization of the group SU(2) in the plane in terms of the associated Laguerre polynomials.

In Section 4, we introduce some new results concerning harmonic analysis on the circle. We
construct new functions on the circle using Hermite functions and taking advantage of their properties.
Again, these new functions give a unitary view of different mathematical objects that are often
considered as unrelated: Fourier transform, discrete Fourier transform, Hermite functions and RHS.

To understand the importance of the present research, let us remark that Hermite and Laguerre
functions are bases of spaces of square integrable functions, no matter whether real or complex, defined
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on R and R+, respectively. Square integrable real and complex (wave) functions play a similar role in
signal processing and quantum mechanics, respectively. In addition, the interest of signal processing
comes after the definition of two new types of filters. One is based in restrictions to subspaces of L2(R)

or L2(R+). We have systematically constructed these filters by the use of the FFT. The other requires
choosing low values of the index n in the span of a given function by either Hermite or Laguerre
functions (we may also use a combination thereof). These filters remove noise or other spurious effects
from the signal or the wave function.

In addition, since the basic operators related with these functions span some Lie algebras, such as
the io(2) [30] for the Hermite functions and the su(1, 1) for the Laguerre functions, we can introduce a
richer space of operators on L2(R) or L2(R+), related to the universal enveloping algebra (UEA) of
io(2) or su(1, 1), respectively [31].

These operator spaces connect functions describing the time evolution of the states under filters
or some kind of interaction.

Finally, we would like to add that this discussion may be related with some integral transforms of
the type Fourier-like, Laplace-like or Sumudu-like transforms [32–36].

2. Harmonic Analysis on R

The first example of Fourier analysis and its relation with group theory is provided by the
translation group in one spatial dimension T1 , R (for the group SO(2) see [28]). The action of its
unitary irreducible representations, R, on the continuous basis {|p〉}p∈R, given by the eigenvectors of
the infinitesimal generator P of the group, is given by

R(x)|p〉 = e−iPx |p〉 = e−ipx |p〉 ; P |p〉 = p |p〉 , ∀p ∈ R , ∀x ∈ T1 . (1)

The vectors of the basis {|p〉} verify

〈p|p′〉 =
√

2π δ(p− p′) ,
1√
2π

∫ ∞

−∞
|p〉〈p| dp = I . (2)

Considering the position operator X and a continuous basis {|x〉}x∈R of its eigenvectors, i.e.,

X |x〉 = x |x〉 , ∀x ∈ R , T1 . (3)

Via the Fourier transform, we can relate both (conjugate) bases {|p〉} and {|x〉}

|x〉 = 1√
2π

∫ ∞

−∞
e−ipx |p〉 dp, |p〉 = 1√

2π

∫ ∞

−∞
eipx |x〉 dx, (4)

such that we find for the basis {|x〉} that

〈x|x′〉 =
√

2π δ(x− x′) ,
1√
2π

∫ ∞

−∞
|x〉〈x| dx = I . (5)

Moreover, X, P together with I determine the Weyl–Heisenberg algebra

[X, P] = i I , [·, I] = 0 . (6)

For more details, see Reference [37].

2.1. Hermite Functions and the Group IO(2)

Now, we consider the inhomogeneous orthogonal group IO(2) which is isomorphic to the
Euclidean group in the plane, E(2). In the study of the ray representations [38–40], we have to deal
with the central extended group [30]. Here, we use a non-standard technique related to the projective
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representations of IO(2) by considering the algebra of the harmonic oscillator that it is isomorphic to
the central extension mentioned above. To proceed, let us consider the operators

a :=
1√
2
(X + iP) , a+ :=

1√
2
(X − iP) , N := a a+ , I ,

which determine the Lie commutators

[a, a+] = I , [N, a] = −a , [N, a+] = a+ , [I, ·] = 0 ,

and the quadratic Casimir
C = {a, a+} − 2(N + 1/2) I .

In the representation with C = 0, we obtain the differential equation

C Kn(x) ≡
(
−D2

x + X2 − (2N + 1)
)

Kn(x) = 0 , (7)

where P = −i DX = −i d/dx and N is a kind of number operator such that for each index n ∈ N,
N Kn(x) = n Kn(x), where Kn(x) are solutions of the differential Equation (7). These solutions are the
Hermite functions

Kn(x) :=
e−x2/2√
2nn!

√
π

Hn(x) , (8)

with Hn(x) the Hermite polynomials. Thus, {Kn(x)}n∈N is an orthonormal basis in L2(R). As is
well known, ∫ ∞

−∞
Kn(x)Km(x) dx = δnm ,

∞

∑
n=0

Kn(x)Kn(x′) = δ(x− x′) . (9)

Note that we denote by N the set of positive integers or natural numbers together with 0 and by
N∗ = N− {0}.

We see that the spectrum of the operator N is countably infinite, so that we may construct a
countable orthonormal basis of eigenvectors of N, {|n〉}n∈N, in terms of the continuous basis related
to X and the Hermite functions. This is given by the following relation:

|n〉 := (2π)−1/4
∫ ∞

−∞
Kn(x) |x〉 dx , n = 0, 1, 2, . . . . (10)

From the properties of the continuous basis as well as of the Hermite functions, we obtain that

〈n|m〉 = δnm ,
∞

∑
n=0

|n〉〈n| = I . (11)

It is worth noticing that the Hermite functions are eigenfunctions of the Fourier transform:

[F Kn](p) ≡ K̃n(p) =
1√
2π

∫ ∞

−∞
eipx Kn(x) dx = in Kn(p) . (12)
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This expression allows us to write relations between the three bases: one discrete and two
continuous, which have been defined in this section. These relations are

|n〉 = in(2π)−1/4
∫ ∞

−∞
Kn(p) |p〉 dp , (13)

|x〉 = (2π)1/4
∞

∑
n=0

Kn(x) |n〉 , (14)

|p〉 = (2π)1/4
∞

∑
n=0

in Kn(p) |n〉 . (15)

We see that the Hermite functions are the elements of the “transition matrices” between the
continuous ad the discrete bases. We can express any ket | f 〉 in any of the three bases in terms of the
following equations:

| f 〉 = 1√
2π

∫ ∞

−∞
dx f (x) |x〉 , | f 〉 = 1√

2π

∫ ∞

−∞
dp f̃ (p)∗ |p〉 , | f 〉 = (2π)−1/4

∞

∑
n=0

an |n〉 , (16)

with

f (x) := 〈x| f 〉 =
∞

∑
n=0

cn Kn(x) , f̃ (p)∗ := 〈p| f 〉 =
∞

∑
n=0

(−i)n cn Kn(p) , (17)

and
cn = (2π)1/4 〈n| f 〉 =

∫ ∞

−∞
dx Kn(x) f (x) = in (2π)−1/4

∫ ∞

−∞
dp Kn(p) f̃ (p)∗ . (18)

Therefore, we have obtained three different manners of expressing a quantum state | f 〉 in terms
of three different bases: two of them are continuous and non-countable , {|x〉}x∈R and {|p〉}p∈R, and
the other one, {|n〉}n∈N, is countably infinite. The framework to deal together with all three of these
bases is the RHS [21].

In particular, the set {|n〉 ≡ Kn(x)}n∈N is a discrete basis of Φ ≡ S (the Schwartz space) and
H ≡ L2(R) and the continuous bases belong to Φ× ≡ S× (the space of tempered distributions). More
precisely, we have two equivalent RHS: one is abstract Φ ⊂ H ⊂ Φ× and the other admits a realization
in terms of functions, S ⊂ L2(R) ⊂ S×. They are related through the unitary map U : H �−→ L2(R)

defined by U|n〉 = Kn(x). There is another interesting fact related with the use of RHS: the space
S belongs to the domain of the operators in UEA[io(2)]. All of these operators can be extended by
duality to continuous (under any topology on S× compatible with the dual pair) operators on S×. For
a detailed exposition of the actual case, see [6] and references therein.

2.2. UEA[io(2)] and Fractional Fourier Transform

Let us consider the kets |n〉 that form a complete orthonormal system in the abstract Hilbert space
H. For any n ∈ N and 0 < k ≤ n ∈ N, we consider the natural numbers, q and r such that n = k q + r ,
where r = 0, 1, 2, . . . , k − 1. For k fixed, the set {|k q + r〉} is a complete orthonormal system in H.
Let us define the operators Q and R as

Q |k q + r〉 := q |k q + r〉 , R |k q + r〉 := r |k q + r〉 . (19)

These operators also act on Φ ⊂ H and can be extended by duality to Φ×.
Infinitely many copies of the Lie algebra io(2) are contained in UEA[io(2)]. Thus, for any

positive integer k, each of the pairs (k, r) with 0 ≤ r ≤ k − 1 labels a copy of io(2), here denoted
as iok,r(2). Furthermore,

k−1⊕
r=0

iok,r(2) ⊂ UEA[io(2)] .
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We define the family of operators A†
k,r and Ak,r in UEA[io(2)] by

A†
k,r := (a†)k

√
N + k− r√

k ∏k
j=1(N + j)

, Ak,r :=
√

N + k− r√
k ∏k

j=1(N + j)
(a)k ,

where A†
k,r is the formal adjoint of Ak,r and viceversa. They are continuous on Φ and can be

continuously extended by duality to Φ×. Their action on the vectors |k q + r〉 is

A†
k,r |k q + r〉 =

√
q + 1 |k (q + 1) + r〉 , Ak,r |k q + r〉 = √

q |k (q− 1) + r〉 .

For each pair of integers k and r with 0 ≤ r < k, the operators Q, A†
k,r, Ak,r and I close a io(2) Lie

algebra, here denoted as iok,r(2). The commutation relations are

[Q, A†
k,r] = + A†

k,r , [Q, Ak,r] = − Ak,r ,

[Ak,r, A†
k,r] = I , [I, ·] = 0 .

Note that, for any pair (k, r), the kets |k q + r〉 span subspaces Hk,r of H and L2
k,r(R) of L2(R).

Hence, we have that

H =
k−1⊕
r=0

Hk,r , L2(R) =
k−1⊕
r=0

L2
k,r(R) . (20)

We can easily obtain the spaces Φk,r and Sk,r. A vector |φ〉 belongs to Φk,r if and only if

|φ〉 =
∞

∑
q=0

cq |k q + r〉 , (21)

such that
∞

∑
q=0

(q + 1)2p |cq|2 < ∞ , ∀p ∈ N .

A similar result can be obtained for any Sk,r, just replacing |k q + r〉 by Kk q+r(x) in Label (21).
Moreover, the corresponding RHS can be obtained:

Φk,r ⊂ Hk,r ⊂ Φ×
k,r ,

Sk,r ⊂ L2
k,r(R) ⊂ S×k,r .

(22)

One can also prove that an operator O belongs to UEA[iok,r(2)] if and only if O is an operator
on Hk,r.

The split of L2(R) as a direct sum of subspaces L2
k,r(R) is connected with the FFT, which is is a

generalization of the Fourier transform [36]. It is very interesting that we can also relate the FFT with
the Hermite functions Kn(x) (8) in a simple manner. Let us first define the fractional Fourier transform of
f ∈ L2(R) associated to a ∈ R, F a f , as

[F a f ](p) :=
∞

∑
n=0

cn ei n a π/2 Kn(p) , (23)

where

f (x) =
∞

∑
n=0

cn Kn(x) , cn =
∫ ∞

−∞
f ∗(x)Kn(x) dx . (24)

The convergence of the series in (23) is in the L2(R) norm as well as in the more generalized sense
given in (21) if f (x) ∈ S , so that F a f ∈ S if f ∈ S .
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When a = 4/k, with k ∈ N∗, we have

f̃ k(p) := [F 4/k f ](p) =
∞

∑
n=0

cn e2 π i n/k Kn(p) . (25)

In this case, we recover the standard Fourier transform for k = 4, which means that a = 1.
Since for every k ∈ N∗, any n ∈ N can be decomposed as n = k q + r with q ∈ N and 0 ≤ r ≤ k− 1 , we
have the following decomposition of f̃ k given by

f̃ k(p) =
∞

∑
q=0

ckq e2π(kq)i/k Kkq(p) +
∞

∑
q=0

ckq+1 e2π(kq+1)i/k Kkq+1(p)

+ · · ·+
∞

∑
q=0

ckq+k−1 e2π(kq+k−1)i/k Kkq+k−1(p)

= f̃ k
0 (p) + f̃ k

1 (p) + · · ·+ f̃ k
k−1(p) ,

(26)

where

f k
r (x) :=

∞

∑
q=0

ckq+r Kkq+r(x) , f̃ k
r (p) := e2 π r i/k f k

r (p) .

Relation (26) gives a split of L2(R) into an orthonormal direct sum of subspaces because the
vectors f̃ k

r , (r = 0, 1, . . . , k − 1) are mutually orthogonal. Moreover, each term in the direct sum is
an eigen-subspace of F 4/k with eigenvalue ei2πr/k since f̃ k

r (p) ≡ [F 4/k f k
r ](p). The decomposition is

given by
L2(R) = L2

k,0(R)⊕ L2
k,1(R)⊕ · · · ⊕ L2

k,k−1(R) ,

so that we have recovered the decomposition (20).

3. Harmonic Analysis on R+

Let L2(R+) be the space of square integrable functions on R+ ≡ [0,+∞). As is well known a
basis in L2(R+) is determined by the Laguerre functions

Mα
n(y) =

√
Γ(n + 1)

Γ(n + α + 1)
yα/2 e−y/2 Lα

n(y) , (27)

with −1 < α < +∞, n = 0, 1, 2, . . . , and Lα
n(y) the associated Laguerre polynomials [41,42].

Indeed, Mα
n(y) verify the following orthonormality and completeness relations

∫ ∞

0
Mα

n(y) Mα
m(y) dy = δnm ,

∞

∑
n=0

Mα
n(y) Mα

n(y
′) = δ(y− y′) . (28)

3.1. Harmonic Analysis on su(1, 1)

Let us define the following operators on L2(R+)

N Mα
n(y) := n Mα

n(y) , I Mα
n(y) := Mα

n(y) ,

Y Mα
n(y) := y Mα

n(y) , Dy Mα
n(y) := Mα

n(y)
′ =

d
dy

Mα
n(y) .

(29)

Using the operators defined in (29), we may define some others:

J+ :=
(

Y Dy + N + 1 +
α−Y

2

)
, J− :=

(
−Y Dy + N +

α−Y
2

)
. (30)
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These operators act on Mα
n(y) as

J+Mα
n(y) =

√
(n + 1)(n + α + 1)Mα

n+1(y) ,

J−Mα
n(y) =

√
n(n + α)Mα

n−1(y).
(31)

These two operators, together with

J3 := N +
α + 1

2
I , J3 Mα

n(y) =
(

n +
α + 1

2

)
Mα

n(y) ,

define the Lie algebra su(1, 1) because their commutation relations are

[J3, J±] = ±J± , [J+, J−] = −2 J3 . (32)

The Casimir operator C of su(1, 1) is

C = J 2
3 −

1
2
{J+, J−} =

α2 − 1
4

I . (33)

From (30), we obtain that Y = −(J+ + J−) + 2N + (α + 1) I , and from the Casimir we may obtain
the differential equation defining the associated Laguerre polynomials.

Omitting the technical details which can be found in Reference [6], let us say that there exists a set
of generalized eigenvectors of Y, {|y〉}y∈R+ , (or more strictly of U−1YU, where U : H �−→ L2(R+) is a
unitary operator and H is a separable Hilbert space) such that

Y|y〉 = y|y〉 , 〈y|y′〉 = δ(y− y′) ,
∫ +∞

−∞
|y〉〈y| dy = I . (34)

Actually, we have two families, depending on α, of equivalent RHS Φα ⊂ H ⊂ Φ×
α and Dα ⊂

L2(R+) ⊂ D×
α . All the elements and their extensions of the UEA(su(1, 1)) are continuous on both RHS.

In analogy with the case of the whole real line, a decomposition like (20) for any k �= 0 ∈ N, we
also obtain here that

H =
k−1⊕
r=0

Hk,r , L2(R+) =
k−1⊕
r=0

L2
k,r(R

+) . (35)

We define the vectors |n, α〉 ∈ Φα as

|n, α〉 :=
∫ ∞

0
dy Mα

n(y)|y〉 , ∀n ∈ N , α ∈ (−1,+∞) , (36)

which after (28) and (34), they have the properties

〈n, α|m, α〉 = δnm ,
∞

∑
n=0

|n, α〉〈n, α| = I . (37)

Hence, |n, α〉with n ∈ N (and α fix) is an orthonormal basis inH. Taking into account the unitarity
of the operator U, we have that U|n, α〉 = Mα

n. For y ≥ 0, we easily obtain

〈y|n, α〉 =
∫ ∞

0
dy′ Mα

n(y
′) 〈y|y′〉 = Mα

n(y) . (38)

In analogy with the previous case in which we have considered functions on the whole real line,
we also have two different bases spanning the vectors in Φα ⊂ H: a continuous one {|y〉}y∈R+ and
another discrete {|n, α〉}n∈N whose elements are eigenvectors of the operator U−1NU where N was
defined in (29).
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3.2. Fourier-Like Transformations on R+

In Section 2.2, we have introduced the FFT related to the Hermite functions. Now, after the results
displayed in the previous section that show a close analogy between the formalisms on R and on R+,
we may consider an extension of the FFT valid for the generalized Laguerre functions. However, this
is not possible since the Laguerre functions, Mα

n(y), are not eigenfunctions of the Fourier transform
unlike the Hermite functions. Fortunately, there exists a partial way out due to the relations among
Hermite and Laguerre polynomials

H2n(x) = (−1)n 22n n! L−1/2
n (x2) , H2n+1(x) = (−1)n 22n+1 n! x L+1/2

n (x2)

that allow us to relate the above-mentioned functions as

K2n(x) = (−1)n (x2)1/4 M−1/2
n (x2) , K2n+1(x) = (−1)n x (x2)−1/4 M1/2

n (x2) .

Thus, we can define the transforms T± on functions f (y) ∈ L2(R+) by

[T± f ](s) :=
1√
2π

∫ ∞

0
dy

S±(
√

s y)
(s y)1/4 f (y) , S+(·) = cos(·), S−(·) = sin(·) , (39)

such that they verify the relation

[T±M±1/2
n ](s) = (−1)n M±1/2

n (s) , (40)

which means that M±1/2
n (s) are eigenfunctions with eigenvalues (−1)n of T±. In consequence, we

have two relevant values of the label α: ±1/2. Then, since, for any f (y) ∈ L2(R+),

f (y) =
∞

∑
n=0

c±n M±1/2
n (y) , c±n =

∫ ∞

0
f ∗(y)M±1/2

n (y) dy . (41)

We may introduce two new families of FFT T a
± (a ∈ R) by

[T a
± f ](s) :=

∞

∑
n=0

c±n ei n a π/2 M±1/2
n (s) .

Thus, if we choose a = 4/k with k ∈ N∗, we have

f̃ k
±(s) := [T 4/k

± f ](s) =
∞

∑
q=0

c±kq e−2π(kq)i/k M±1/2
kq (s) +

∞

∑
q=0

c±kq+1 e−2π(kq+1)i/k M±1/2
kq+1 (s) + . . .

· · ·+
∞

∑
q=0

c±kq+k−1 e−2π(kq+k−1)i/k M±1/2
kq+k−1(s) (42)

= f k
0,±(s) + e−2πi/k f k

1,±(s) + · · ·+ e−2π(k−1)i/k f k
k−1,±(s) ,

with

f k
r,±(s) :=

∞

∑
q=0

c±kq+r M±1/2
kq+r (s) .

We have recovered the splitting (35) of L2(R+) for the particular cases of α = ±1/2

L2(R+) = L2
k,0(R

+)± ⊕ L2
k,1(R

+)± ⊕ · · · ⊕ L2
k,k−1(R

+)± ,

where each of the closed subspaces L2
k,r(R

+)± is an eigen-subspace of T± with eigenvalue e−2 π r i/k.

245



Entropy 2018, 20, 816

4. A New Harmonic Analysis on the Circle

The set Hermite functions Kn(x) is a good tool so as to construct a countable set of periodic
functions, which is a system of generators of the space of square integrable functions on the unit circle
L2(C), i.e., the functions f (φ) : C �−→ C with norm

∣∣∣∣ f (φ)
∣∣∣∣ defined by

|| f (φ)||2 :=
1

2π

∫ π

−π
| f (φ)|2 dθ < ∞ . (43)

Let us define the periodic functions (with period 2π)

Kn(φ) :=
∞

∑
k=−∞

Kn(φ + 2kπ) , −π ≤ φ < π , n = 0, 1, 2, . . . . (44)

It can be proven that the series defining the Kn(φ) are absolutely convergent and also that every
Kn(φ) is bounded and square integrable on the interval −π ≤ φ < π. Using this property and the
Lebesgue theorem, we may also prove that

∫ π

−π
eimφ dφ

∞

∑
k=−∞

Kn(φ + 2kπ) =
∞

∑
k=−∞

∫ π

−π
eimφ Kn(φ + 2kπ) dφ . (45)

A Discretized Fourier Transform on the Circle

Let us compare the space L2(C), which we may also denote as L2[−π, π], to the space l2(Z) of
2-power summable sequences. As is well known, an orthonormal basis on L2(C) is {(2π)−1 einφ} with
n ∈ Z. Hence, any f (φ) ∈ L2(C) admits the following span into exponential Fourier series given by

f (φ) =
1

2π ∑
n∈Z

fn einφ , fn ∈ C , (46)

with
fn =

1
2π

∫ π

−π
f (φ) e−inφ dφ . (47)

The sum (46) converges in the sense of the norm (43). Moreover, for any continuous function f (φ),
the series also converge pointwise. The properties of orthonormal basis in Hilbert spaces show that

1
2π ∑

n∈Z
| fn|2 = || f (φ)||2 . (48)

We may call to the sequence of complex numbers { fn}n∈Z, the components of f .
The Hilbert space l2(Z) is a space of sequences of complex numbers A ≡ {an}n∈Z such that

||A||2 :=
1

2π ∑
n∈Z

|an|2 < ∞ , (49)

with scalar product given by

〈A|B〉 :=
1

2π ∑
n∈Z

a∗n bn . (50)

An orthonormal basis for l2(Z) is given by the sequences Ek = {δk,n}n∈Z with k ∈ Z. Any
f ∈ l2(Z) with components { fn}n∈Z may be written as

f =
1

2π ∑
n∈Z

fn En ,
1

2π ∑
n∈Z

| fn|2 = || f ||2 < +∞ . (51)
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Therefore, there exists a unitary correspondence between L2(C) and l2(Z) which maps any
f (φ) ∈ L2(C) as in (46) into f as in (51), provided that in both cases the sequence { fn}n∈Z is the same.

Expression (46) gives the expansion into Fourier series of the functions in L2(C). From this point
of view, we may say that the Fourier series is a unitary mapping, F , from L2(C) onto l2(Z). It admits
an inverse, F−1, from l2(Z) onto L2(C), which is also unitary and is sometimes called the discrete
Fourier transform, i.e.,

F [ f (φ)] =
1

2π ∑
n∈Z

fn einφ ≡ { fn}n∈N , F−1[{an}n∈N] =
1

2π ∑
n∈Z

an einφ ≡ a(φ) , (52)

with fn ∈ C and given by (47).
As we mention in the introduction, we will give a unitary version of concepts that are often

introduced separately, like Fourier transform, Fourier series and discrete Fourier transform in one side
and the Hermite functions on the other.

We start by constructing a set of functions in l2(Z) using the Hermite functions Kn(x). We
introduce the sequences χn associated to Kn(x) as follows:

χn := {Kn(m)}m∈Z , n ∈ N . (53)

These sequences χn are in l2(Z). Moreover, they are linearly independent and span l2(Z).
The proof can be find in [43] and they are based on the fact that∣∣∣∣∣∣∣∣∣∣∣∣∣

H0(−N) . . . H0(0) . . . H0(N)

H1(−N) . . . H1(0) . . . H1(N)

. . . . . . . . . . . . . . .

H2N(−N) . . . H2N(0) . . . H2N(N)

∣∣∣∣∣∣∣∣∣∣∣∣∣
�= 0 , (54)

and ∣∣∣∣∣∣∣∣∣∣∣∣∣

H0(0) H0(1) . . . H0(N)

H1(0) H1(1) . . . H1(N)

. . . . . . . . . . . .

HN(0) HN(1) . . . HN(N)

∣∣∣∣∣∣∣∣∣∣∣∣∣
�= 0 , (55)

for any N ∈ N, where Hn(k) is the Hermite polynomial Hn(x) evaluated at the integer k (remember
that Kn(x) = e−x2/2 Hn(x)/

√
2nn!

√
π).

Since the functions Kn(φ) are in L2[−π, π], they admit a span in terms of the orthonormal basis
{(2π)−1 eimφ}m∈Z in L2[−π, π]. Thus, we can write

Kn(φ) =
1√
2π

∞

∑
m=−∞

km
n e−imφ , (56)

with
km

n =
1√
2π

∫ π

−π
eimφ Kn(φ) dφ . (57)

The continuity of the functions Kn(φ) on [−π, π] guarantees the pointwise convergence of (56)
and since the Kn(φ) are periodic with period 2π, hence (56) is valid for all φ ∈ R.

We recall that the Hermite functions Kn(x) are eigenfunctions of the Fourier transform with
eigenvalue (−i)n (12), i.e., [F Kn](p) = (−i)n Kn(p). Thus, Kn(x) are eigenfunctions of the inverse
Fourier transform with eigenvalue in, i.e., [F−1 Kn](x) = in Kn(x). From this fact, we can find an
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explicit expression of the coefficients km
n (57) in terms of the values of the Hermite functions at

the integers

km
n =

1√
2π

∫ π

−π
eimφ dφ

[
∞

∑
k=−∞

Kn(φ + 2kπ)

]
=

1√
2π

∞

∑
k=−∞

∫ π

−π
eimφ Kn(φ + 2kπ) dφ

=
1√
2π

∞

∑
k=−∞

∫ π+2kπ

−π+2kπ
eims Kn(s) ds =

1√
2π

∫ ∞

−∞
eims Kn(s) ds = in Kn(m) ,

where s := φ + 2kπ and eimφ = eim(φ+2kπ) = eims. Hence, (56) and (57) can be written, respectively, as

Kn(φ) =
in
√

2π

∞

∑
m=−∞

Kn(m) e−imφ , Kn(m) =
(−i)n
√

2π

∫ π

−π
Kn(φ) eimφ dφ , (58)

where km
n = in Kn(m).

The systems of generators in L2[−π, π] ≡ L2(C), {Kn(φ)}n∈Z, and in l2(Z), given by the set of
sequences {χn}n∈Z, are not orthonormal basis. The scalar product on L2[−π, π] is related with the
scalar product in l2(Z)

〈Kn|Km〉 =
∫ π

−π
K∗n(φ)Km(φ) dφ =

1
2π

∫ π

−π
dφ

∞

∑
j=−∞

∞

∑
k=−∞

(−i)n im K∗n(j)Km(k) e−i(k−j)φ

=
∞

∑
j=−∞

∞

∑
k=−∞

δj,k im−n K∗n(j)Km(k) =
∞

∑
j=−∞

im−n K∗n(j)Km(j)

= im−n (χn, χm) .

The Gramm–Schmidt procedure allows us to obtain orthogonal bases in both spaces.

5. Conclusions

In this paper, we have presented a unified framework where Hermite functions, or alternatively
Laguerre functions, their symmetry groups, Fourier analysis and RHS fit in a perfect manner. Hermite
functions are basic in the study of quantum mechanics and signal processing on the real line R, while
Laguerre functions play the same role on the half-line R+. We have also studied the particular relation
between both situations. In both cases, these functions are eigenvectors of the Fourier transform and
this is an essential property.

It is precisely the use of RHS that allows the use of bases of different cardinality on a simple and
interchangeable manner. This makes RHS the correct mathematical formulation that encompasses
both quantum mechanics and signal processing. Here, Hermite functions act as transition elements
of transition matrices between continuous and discrete bases. This is not strictly new as was
already discussed in [21], although we introduce a general point of view which could be relevant for
computational and epistemological purposes in quantum theory.

We have shown how Fourier analysis allows for the decomposition of RHS into direct sums of
RHS. This may permit the filtering of noise or any other undesirable signal. The same applies to
operators as we may restrict their evolution to a sub-algebra, which has been chosen among infinite
other possibilities in the universal enveloping algebra of the corresponding symmetry group. The
decomposition of RHS is consistent with the FFT. This is the cornerstone of the filtering procedure.
We have extended the formalism to functions over the semi-axis R+ by the construction of a pair of
“Fourier-like” transformations which play the role before reserved to the Fourier transform on R. FFTs
may be defined after these Fourier-like transforms and also serve for filtering. Moreover, the algebraic
approach associated to the Lie symmetry algebra and its universal enveloping algebra extends the
discussion from the vector spaces to the space of operators acting on them.
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All of these results can be also translated, in some sense, to the circle. We have constructed some
special functions on the circle out of Hermite functions and have taken advantage of the properties of
Hermite functions in order to use Fourier analysis on the circle as well. This work is still in process.

As a final remark, let us insist that we have given a unitary point of view of mathematical
objects that are often considered as unrelated such as Fourier transform, discrete Fourier transform,
Hermite and Laguerre functions and RHS.
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