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Optimizing Integration of Fuel Cell Technology in
Renewable Energy-Based Microgrids for Sustainable and
Cost-Effective Energy
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Abstract: This article presents a cost-effective and reliable solution for meeting the energy demands of
remote areas through the integration of multiple renewable energy sources. The proposed system aims
to reduce dependence on fossil fuels and promote sustainable development by utilizing accessible
energy resources in a self-contained microgrid. Using the Hybrid Optimization Model for Electric
Renewable (HOMER) software, the study examined the optimal combination of energy sources
and storage technologies for an integrated hybrid renewable energy system (IHRES) in the Patiala
location of Punjab. The total life cycle cost (TLCC) is the main objective of this manuscript. The
HOMER result is taken as a reference, and the results are compared with the optimization hybrid
algorithm (PSORSA). From this, it is clear that the proposed algorithm has less TLCC as compared
to others. Two combinations of energy sources and storage technologies were considered, namely
solar photovoltaic (PV)/battery and solar PV/fuel cell (FC). The results showed that the solar PV/FC
combination is more cost-effective, reliable, and efficient than the solar PV/battery combination.
Additionally, the IHRES strategy was found to be more economically viable than the single energy
source system, with lower total life cycle costs and greater reliability and efficiency. Overall, the
proposed IHRES model offers a promising solution for meeting energy demands in remote areas
while reducing dependence on fossil fuels and promoting sustainable development.

Keywords: solar photovoltaic; PV; FC; fuel cell; sustainable energy; green energy; energy harvesting;
HOMER; battery; smart grids; TLCC

1. Introduction

One of the essential components for a nation’s economic development is the availability
of power. In many countries, 17% of people, particularly those in remote areas, still have
no access to power [1]. The high costs of network transmission in remote regions often
necessitate the use of diesel generators to meet load requirements. The high cost of diesel
fuel, environmental pollution, and scarcity of fossil fuels make diesel power generation
not always an affordable and effective option. The use of renewable energy has been
investigated as a potential solution to this problem by many scholars in the past few
years. The use of renewable energy systems, particularly solar PV systems, can be a viable
alternative in isolated areas [2]. Solar PV systems can provide renewable and sustainable
energy with minimum environmental impact. Furthermore, they are relatively easy to
install, maintain, and operate. As a result, they are increasingly being adopted in rural and
remote areas. Solar PV systems are also cost-effective and can reduce energy costs in the

Energies 2023, 16, 4482. https://doi.org/10.3390/en16114482 https://www.mdpi.com/journal/energies1
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long run. Moreover, they are an important part of a clean energy future, helping to reduce
carbon emissions and combat climate change. However, it is difficult to provide a steady
load in remote regions since solar radiation is unpredictable, and solar systems depend
on the climate. Therefore, for standalone locations, a PV system with an energy storage
unit is a feasible approach. The battery is one of the most widely used forms of storage.
In order to meet the demand for the load at the lowest possible cost and with the highest
level of reliability, it is important to design the ideal configuration of the power scheme
components for remote areas. In order to tackle these issues, effective modelling and an
optimization technique are crucial.

Numerous studies have investigated the mathematical modeling, optimal size, and
techno-economic analysis of hybrid energy designs based on solar energy. These stud-
ies have helped to identify cost-effective hybrid energy designs that can provide reliable
energy supply. Additionally, they have led to an increased understanding of the poten-
tial of solar energy and its integration into existing energy systems. For a remote island,
Javed et al. [2] optimized a hybrid solar/wind system with storage using a genetic algo-
rithm. In comparison, the results were compared to those obtained using the software
HOMER (hybrid optimization of multiple energy sources). This optimization showed
significant improvement in energy efficiency, cost, and reliability. The study concluded that
hybrid systems are more reliable and cost-effective than traditional energy systems. It also
highlighted the potential of renewable energy sources to replace fossil fuels. In an Indian
radio transmitter station, Das et al. [3] created a techno-economically ideal stand-alone
hybrid solar/biogas/energy storage scheme using metaheuristic optimization.

The optimal sizing of hybrid solar energy systems has been investigated using a
number of optimization techniques, such as HOMER software [4], genetic algorithms,
tabu searches, simulated annealing, particle swarm searches, gray wolf searches, harmony
searches, and global dynamic harmony searches. It has been studied that various theories
and methods can be applied to power systems. A harmony search-based approach was
suggested by Yu et al. [5] for determining the optimal capacity and location for off-grid
PV/battery systems. An optimization algorithm based on harmony search performs better
than one based on simulation annealing. The majority of renewable energy sources are not
available 24 h a day in nature, so they cannot provide continuous power supply. Batteries
are therefore essential to all renewable energy power generation and conversion systems [6].
The batteries available on the market today are lithium-based, which is heavy, toxic, and
expensive to recycle. It is possible to solve all such problems by generating hydrogen
from renewable energy sources (e.g., solar PVs), storing it, and using it as a fuel cell to
create electricity when renewable sources are not available. However, current hydrogen
technology is not efficient enough to be commercially viable. Research and development of
a more efficient and cost-effective hydrogen generation and storage technology is needed
to make hydrogen fuel cells a viable alternative to lithium-based batteries. Governments
should invest in R&D to make hydrogen fuel cells and storage more affordable and efficient.
This technology could then be used to power electronic devices and transportation with
minimal environmental impact [7,8].

Prior studies have mostly concentrated on finding the most cost-effective hybrid solar
energy system configurations. The effect of the reliability index (RI) on the hybrid energy
system has also been studied in some research. In the past, studies typically performed
techno-economic assessments using the HOMER software tool based on the input data of
hybrid systems. Although changes in the modelling of the hybrid system’s components are
limited, the HOMER software tools enable a fast assessment of hybrid energy systems. The
HOMER tool has some limitations regarding the capacity to alter mathematical models and
input data for various renewable energy systems. It is rare in earlier studies to examine the
effects of important economic parameters and the reliability index when optimizing hybrid
systems with a robust metaheuristic algorithm. This type of optimization can be used to
improve the reliability and performance of hybrid systems. Furthermore, it can be used to
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reduce the cost of maintenance and operation of such systems. The main contribution of
the manuscript is given below:

• A hybrid system configuration incorporating solar PV/battery energy storage and
solar PV/fuel cell based methods is presented in this manuscript for an optimal hybrid
system configuration.

• The optimization model presented in this article is used to accomplish a case study
in Patiala.

• An altitude of 257 m places Patiala in southeastern Punjab, northwestern India at a
position of 30.3398◦ N, 76.3869◦ E.

• The purpose of the paper is to minimize the total life cycle costs (TLCC).
• The TLCC is calculated by considering the cost of generation, installation, and opera-

tion of the system.
• The results show that the optimal hybrid system configuration can reduce the total

cost as compared to the standalone solar PV system.

Section 2 describes the system model and the methodology. Section 3 presents the
results and discussion. The conclusion is in Section 4.

2. System Description

To analyze and quantify the cost of both systems, two models of HRES (Solar PV/Battery
and Solar PV/FC) have been evaluated with HOMER (Version 3.14.0). The hourly electricity
demand of the micro-grid was simulated for a period of twenty years, and the results were
compared in terms of total life cycle cost (TLCC). Cost optimization was performed to
identify the optimal configuration and evaluate the economic feasibility of both systems.
For HOMER simulation to assess the optimization outcomes of these two models, additional
input data is required, which is provided in the following section.

• Load Profile Data: As can be seen from Table 1, the baseline and scaled load on a daily
basis has an average value of 175.47 kWh, the average (kW) load level with a scaled
load level of 7.3 kW, the peak capacity load level with a scaled load level of 25.47 kW,
and the load factor for the baseline, and scaled load level at 0.5 is assumed. Based on
the annual load data presented in Tables 2 and 3, the weekday and weekend loads are
calculated.

Table 1. Baseline and scaled load data.

Parameters Baseline Load Scaled Load

Average (kWh/day) 175.47 175.47
Average (kW) 7.3 7.3

Peak (kW) 25.47 25.47
Load Factor 0.5 0.5

• Battery Bank: The conventional approach to storing electrical energy is to use a battery
bank. Assembling one or more batteries in order to store energy electrochemically
is also considered electrochemical storage [9]. Using HOMER software, a battery is
modelled as an energy storage system that can store a specified amount of direct
current (DC) with a fixed energy efficiency round-trip. It determines whether a battery
needs to be replaced based on the number of charge and discharge cycles [10]. The
battery system can be used in various applications such as energy storage in renewable
energy systems, power-grid support, uninterruptible power supply, and others. It is
important to note that batteries have a finite lifespan and, thus, need to be replaced at
regular intervals. To ensure batteries are replaced on time, a battery system can be used
to monitor their condition. This system can also be used to alert when the battery needs
to be replaced. Additionally, the system can be used to optimize battery performance.
Table 4 represents the battery description which is used in the proposed model.
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Table 2. Weekdays load data profile.

Hour Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0 0.109 0.109 0.109 0.109 0.109 0.109 0.109 0.109 0.109 0.109 0.109 0.109
1 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095
2 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095
3 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095
4 0.327 0.327 0.327 0.327 0.327 0.327 0.327 0.327 0.327 0.327 0.327 0.327
5 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
6 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550
7 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
8 0.420 0.420 0.420 0.420 0.420 0.420 0.420 0.420 0.420 0.420 0.420 0.420
9 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430
10 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495
11 0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533
12 0.691 0.691 0.691 0.691 0.691 0.691 0.691 0.691 0.691 0.691 0.691 0.691
13 0.519 0.519 0.519 0.519 0.519 0.519 0.519 0.519 0.519 0.519 0.519 0.519
14 0.418 0.418 0.418 0.418 0.418 0.418 0.418 0.418 0.418 0.418 0.418 0.418
15 0.397 0.397 0.397 0.397 0.397 0.397 0.397 0.397 0.397 0.397 0.397 0.397
16 0.409 0.409 0.409 0.409 0.409 0.409 0.409 0.409 0.409 0.409 0.409 0.409
17 0.658 0.658 0.658 0.658 0.658 0.658 0.658 0.658 0.658 0.658 0.658 0.658
18 1.231 1.231 1.231 1.231 1.231 1.231 1.231 1.231 1.231 1.231 1.231 1.231
19 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003
20 0.676 0.676 0.676 0.676 0.676 0.676 0.676 0.676 0.676 0.676 0.676 0.676
21 0.480 0.480 0.480 0.480 0.480 0.480 0.480 0.480 0.480 0.480 0.480 0.480
22 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300
23 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204

Table 3. Weekend Load Data Profile.

Hour Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0 0.109 0.109 0.109 0.109 0.109 0.109 0.109 0.109 0.109 0.109 0.109 0.109
1 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095
2 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095
3 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095
4 0.327 0.327 0.327 0.327 0.327 0.327 0.327 0.327 0.327 0.327 0.327 0.327
5 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
6 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550
7 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
8 0.462 0.462 0.462 0.462 0.462 0.462 0.462 0.462 0.462 0.462 0.462 0.462
9 0.473 0.473 0.473 0.473 0.473 0.473 0.473 0.473 0.473 0.473 0.473 0.473
10 0.545 0.545 0.545 0.545 0.545 0.545 0.545 0.545 0.545 0.545 0.545 0.545
11 0.586 0.586 0.586 0.586 0.586 0.586 0.586 0.586 0.586 0.586 0.586 0.586
12 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760
13 0.571 0.571 0.571 0.571 0.571 0.571 0.571 0.571 0.571 0.571 0.571 0.571
14 0.460 0.460 0.460 0.460 0.460 0.460 0.460 0.460 0.460 0.460 0.460 0.460
15 0.437 0.437 0.437 0.437 0.437 0.437 0.437 0.437 0.437 0.437 0.437 0.437
16 0.450 0.450 0.450 0.450 0.450 0.450 0.450 0.450 0.450 0.450 0.450 0.450
17 0.658 0.658 0.658 0.658 0.658 0.658 0.658 0.658 0.658 0.658 0.658 0.658
18 1.231 1.231 1.231 1.231 1.231 1.231 1.231 1.231 1.231 1.231 1.231 1.231
19 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003
20 0.676 0.676 0.676 0.676 0.676 0.676 0.676 0.676 0.676 0.676 0.676 0.676
21 0.480 0.480 0.480 0.480 0.480 0.480 0.480 0.480 0.480 0.480 0.480 0.480
22 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300
23 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204
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Table 4. Battery Description.

Nominal Voltage (V) 55
Nominal Capacity (kWh) 3.26
Nominal Capacity (Ah) 63
Roundtrip efficiency (%) 94.9

Maximum Charge Current (A) 63
Maximum Discharge Current (A) 63

• Solar PV Panel: Electricity is generated by solar panels by absorbing sunlight. How-
ever, there are certain variables that affect the PV’s output, such as temperature and
sunlight. Solar panel output is also affected by shading, dust, and dirt. To maximize
the output, it is important to install the panels in a location that receives direct sunlight
and is not affected by shade. Regularly cleaning the panels can help maintain their
efficiency. Panels should also be angled correctly to maximize the amount of sunlight
received. Additionally, panels should be installed in areas with low temperatures to
ensure optimal performance.

• Fuel Cell: An electro-chemical device that converts chemical energy into electrical
energy is called a fuel cell (FC). Fuel cells are available in a variety of configurations
based on the types of electrodes, operating characteristics, and power ranges they op-
erate at. Fuel cells can be used to generate power for a wide range of applications from
home heating and cooling systems to electric vehicles. Additionally, fuel cells are clean
and efficient sources of energy, producing no emissions and creating no waste. Among
the variety of FCs available on the market, Proton Exchange Membrane Fuel Cells
(PEMFCs) are the most commonly used due to their excellent start-up time and low
operating temperature. PEMFCs are also known for their high energy efficiency and
low emissions, making them an ideal choice for clean energy applications. Addition-
ally, they are relatively compact and lightweight, making them suitable for powering
vehicles, portable electronics, and other applications. PEMFCs are also relatively
inexpensive compared to other types of fuel cells, making them a cost-effective option
for many applications. Furthermore, they are relatively low-maintenance, making
them an attractive option for many users.

• Electrolyzer: Carbon-free hydrogen can be produced from renewable energy sources
by electrolysis. The electrolysis process involves splitting water into hydrogen and
oxygen using electricity. During this reaction, an electrolyzer is used. An electrolyzer
can range in size from a small appliance that can be used to manufacture hydrogen
at a small scale to a large scale, central production facility that can be connected di-
rectly to renewable or non-greenhouse gas-emitting electricity sources. The hydrogen
produced by electrolysis is considered to be a clean energy source, as there are no
carbon emissions generated during the production process. This makes it an attractive
alternative to traditional fossil fuels. Additionally, hydrogen can be stored and used
as a fuel for transportation. Furthermore, hydrogen can be produced from renewable
sources such as solar, wind, and water, making it an even greener option. Hydrogen
also has a high energy density and can be used in stationary power plants.

• Hydrogen Storage Tank: Hydrogen is stored in hydrogen tanks and supplied to fuel
cells for energy generation after it is produced by the electrolyzer [11]. During a day,
hydrogen is produced by the electrolyzer and stored in the hydrogen tank, which is
used when there is no PV generation. The stored hydrogen is then used as a source
of renewable energy, which is converted into electrical energy by the fuel cell. This
electrical energy can then be used to power the electric vehicle or stored in the battery
for later use.

2.1. Methodology

The proposed system is optimized, simulated, and modeled using HOMER software.
The results from this process allowed us to analyze the performance of the system. We then
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used this information to make adjustments and improve the system’s efficiency. Finally, we
validated the system to ensure its accuracy and reliability. As discussed below, two cases
are examined in this manuscript:

Case 1: Solar PV/Battery: Figure 1 shows the IHRES consisting of solar photovoltaics
and a battery bank. In this case, solar PV is the primary source of supply, while batteries
serve as a storage medium.

Figure 1. Proposed diagram for Case 1.

Case 2: Solar PV/Fuel Cell: As shown in Figure 2, IHRES consists of solar photovoltaic
and a fuel cell. In this scenario, solar PV and fuel cells make up the majority of the supply.
Fuel cells are also being used for energy storage.

Figure 2. Proposed diagram for Case 2.

2.2. System Modelling

• Solar PV Model: Based on Equation (1), a solar PV panel’s power output (depends on
solar radiation) is proportional to the amount of sunlight it receives.

Psolar(t) = Pt
s floss

Hi(t)
Ht

(1)

Solar PV panel rating is represented by Pt
s ; loss factor or derating is represented by

floss, due to dirt, shadows, temperature, etc.; the hourly solar radiation incident at the
surface of solar PV panels (W/m2) is represented by Hi(t); and standard incident radiation
(1000 W/m2) by Ht.

6
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Converter: When a system contains AC and DC components, DC to AC and AC to
DC power converters are required. Fuel cells, solar PV panels, and batteries produce DC
output while AC load is considered. Upon the peak load demand Pm

L (t), converter size is
taken. As shown in Equation (2), the inverter rating Pin v is calculated as follows:

Pin v(t) = Pm
L (t)/ïin v

(2)

where the efficiency of the inverter is denoted by ïin v.

• Battery Bank: During times when the power from renewable systems is insufficient
or absent, a battery is used to store excess energy. An accurate estimation of the state
of charge (SOC) can lead to the measurement of energy. Equation (3) can be used to
calculate the SOC of a battery:

SOC(t)
SOC(t − 1)

=
∫ r

r−1

Pb(t)ïbattery

Vbus
dt (3)

A battery’s input/output voltage is denoted by Pb(t), the battery’s efficiency by ïbattery,
and its voltage by Vbus. A positive value indicates that the battery is charging, while a
negative value indicates it is discharging. Equation (4) gives you the round-trip efficiency
of a battery:

ïbattery =
√

ïc
batteryïd

battery (4)

The charging efficiency ïc
battery and discharging efficiency ïd

battery of the battery are
depicted in [12]. It is estimated that the battery has a round-trip efficiency of 92%. Addi-
tionally, discharging and charging efficiencies are assumed to be different and calculated as
100% and 85%, respectively. As shown in Equation (5), SOCmax is the maximum value of
SOC and equals the aggregate capacity of the battery bank Cn:

Cn =
Nbattery

Ns
battery

Cb (5)

Single battery capacity should be denoted as Cb, total battery number should be
denoted as Nbattery, and number of batteries connected in series should be denoted as
Ns

battery. SOCmin is the minimum discharge limit that can be reached by the battery bank.
System constraints can be applied according to the usage of the battery bank. Batteries are
connected in series in order to achieve desired bus voltage. As shown in Equation (6), a
series of batteries is calculated as follows:

Ns
battery =

Vbus
Vbattery

(6)

An individual battery’s voltage is represented by Vbattery. In battery modeling, the
maximum charge or discharge power at any given time is also a major factor. Equation (7)
calculates maximum charge current based on maximum charge current:

Pmax
b =

NbatteryVbattery Imax

1000
(7)

where the maximum charge current in amperes is denoted as Imax.

• Fuel Cell: In hydrogen fuel cells, chemical energy is converted directly into electric
power, while at the same time, heat and water are produced as by-products as long
as fuel is available. Hydrogen fuel cells are considered to be a clean and renewable
source of energy, as they do not emit any greenhouse gases [13]. They are also highly
efficient, with some fuel cells achieving up to 80% efficiency. The anode and cathode
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chemical reactions are shown in equations 8 to 10. By combining reactions on both
electrodes, the entire reaction may be obtained.

The anode’s chemical reaction is as follows:

H2 → 2H+ + 2e− (8)

The cathode’s chemical reaction is as follows:

1
2

O2 + 2H+ + 2e− → H2O (9)

The overall chemical reaction is as follows:

H2 +
1
2

O2 → H2O (10)

Across the membrane, hydrogen gas dissociates into protons and electrons at an anode
on the left, forming the concentration gradient between the electrodes. The gradient causes
protons to diffuse across the membrane while leaving electrons behind. In relation to the
anode, the cathode becomes positively charged when protons drift towards it. Since the
membrane prevents electrons from passing through, the remaining electrons are drawn
to the positively charged cathode, causing current to flow the other way. According to
Equation (11), fuel cells produce the following voltage:

VFC = ENernst − Vact − Vohm − Vcon (11)

Equation (12) shows the maximum voltage that can be generated by a cell given a
reversible open circuit voltage, an ohmic voltage drop, an activation voltage drop, and a
concentration voltage drop.

ENernst = −ΔG◦

nF
+

ΔS
nF

(
T − Tre f

)
+

R.T
n.F

ln

(
P0.5

O2
.P1

H2

P1
H2O

)
(12)

where ΔGo is an electric work which is called Gibbs free energy; the number of moles
is denoted by n; F is a Faraday’s constant; specific entropy is denoted by ΔS; absolute
temperature is denoted by T; Tre f is taken as 25 ◦C; P0.5

O2
, P1

H2
, P1

H2O are pressure of pure
oxygen, hydrogen, and H2O as fuel; and R is gas constant, respectively. Equation (13)
shows the total power output of a stack of fuel cells PFC:

PFC = pFCVFC IFC (13)

In a stack of fuel cells, pFC and IFC represent rating and current, respectively.
A major component of fuel cell modeling for power generation is hydrogen mass flow

rate
(
QH2

)D
1 . According to Equation (14), 1 kW fuel cells consume hydrogen in kg/h at the

following mass flow rate: (
QH2

)D
1 = α1Ps

FC + α2PFC (14)

The intercept coefficient t α1, α2. and Ps
FC of a fuel cell is measured in kilograms per

hour per kW, and its rated capacity is measured in kilowatts. In the case of a fuel cell rating
of 1 kW, taking into account α1 and α2 to be 0.0003 and 0.58 kg/h/kW,

(
QH2

)D
1 calculated

is 0.059 kg/h. For a fuel cell to generate 1 kW of power, 0.059 kg of hydrogen is required
per hour [14].

• Electrolyzer: The electrolyzer converts the surplus electricity from the PV panels into
hydrogen, which is stored in a hydrogen tank and used to power the fuel cell. Hy-
drogen production by the electrolyzer is the primary aspect to consider. Equation (15)

8
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shows the mass flow rate
(
mH2

)Q
1 of hydrogen produced by a 1 kW electrolyzer in

kilograms per hour: (
mH2

)Q
1 =

3600Ps
elnel

HVH2

(15)

The heating value of hydrogen in MJ/kg, and the efficiency of the electrolyzer Ps
el ,

HVH2 and nel are 1 kW, MJ/kg, and kWh/kg, respectively. Electrolyzers are estimated to be
90% efficient [15]. The mass flow rate of hydrogen in an electrolyzer with 142 MJ/kg heating
value will be 0.02268 kg/h/kW. Based on this, 1 kW electrolyzers produce 0.02268 kg/h
hydrogen.

• Hydrogen Tank: The electrolyzer produces hydrogen that is stored in hydrogen tanks
for use in fuel cells. As the electrolyzer produces hydrogen during the day, the
hydrogen tank stores it, as well as supplying hydrogen to the fuel cell when no PV
power is generated. A decision variable for the proposed system was the size of the
hydrogen tank, TH2 in kilograms. t is mH2(t), the time at which hydrogen is available
to flow. As shown in Equation (16), hydrogen is available at a given time after being
produced by the electrolyzer.

mH2(t) = Pel
(
mH2

)Q
1 (16)

In Equation (15), Pel is the power consumed by the electrolyzer, and
(
mH2

)Q
1 is the

mass flow rate of hydrogen produced in kg/h by a 1 kW electrolyzer. Equation (17)
calculates this available hydrogen stored in a hydrogen tank:

TH2(t) = mH2 + TH2(t − 1) (17)

where TH2(t − 1) is the hydrogen in the tank at the previous hour. Hydrogen is used to
generate power in a fuel cell. Equation (18) represents the mass flow rate of hydrogen taken
from hydrogen tank by a fuel cell at a particular time:

QH2(t) = PFC
(
QH2

)D
1 (18)

Based on Equation (14), the mass flow rate of hydrogen consumed by 1 kW fuel cell is
calculated in kg/h. Equation (19) calculates the remaining hydrogen in the hydrogen tank
after taking hydrogen:

TH2(t) = TH2(t − 1)− QH2 (19)

The amount of hydrogen TH2(t − 1) in the tank at the time is t − 1.

2.3. Proposed Algorithm
2.3.1. Rat Search Algorithm (RSA)

Various sizes and weights of rats belonging to two species are studied in this study,
which provides insights into their behavior as intelligent and social rodents. Among the
activities they engage in within their territorial communities are grooming, tumbling, hop-
ping, boxing, and chasing. It is not uncommon for rats to exhibit violent behavior during
competitions for prey, resulting in fatalities. Mathematically modeling the aggressive
behavior of rats during chases and battles is the focus of this research.

Mathematical Modeling:

Chasing:
Animals such as rats engage in social agonistic behaviors to pursue prey in groups.

For math modeling, we assume the most effective search agent knows where the prey is,

9
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and other search agents adjust their positions based on the best agent. In order to explain
this mechanism, Equation (20) is introduced.

→
Q = B.

→
Qj(z) + D.

(→
Qs(z)−

→
Qj(z)

)
(20)

The rat’s position is denoted by
→
Qj(z), while the best optimal solution is denoted by

→
Qs(z). The values of B and D are specified by Equations (21) and (22).

B = S − z ×
(

S
Maxiter

)
(21)

where, z = 0, 1, 2, . . . .., Maxiter

D = 2. rand () (22)

A parameter S represents a random number, while a parameter D represents a random
number, with values [0, 2] and [1, 5], respectively. In the iterative process, B and D are
responsible for optimizing the performance of these parameters during exploration and
exploitation.

Fighting:
Rats engage in battles with their prey using Equation (23) as a mathematical represen-

tation. →
Qj(z + 1) =

∣∣∣∣→Qs(z)−
→
Q
∣∣∣∣ (23)

The rat search algorithm updates the next position of the rat by utilizing equation
→
Qj(z + 1). As a result, the optimal solution is maintained, and the locations of other search
agents are adjusted in relation to it. In order to facilitate exploration and exploitation, the
parameters B and D have been adjusted. RSA proposes a solution that can be obtained with
a minimum amount of operators. The pseudo-code of the rat search algorithm is presented
in Algorithm 1, and the flow chart of that algorithm is shown in Figure 3.

Algorithm 1 Rat search algorithm pseudo-code

Input: Population of rat
Output: Optimal Search agent
Initialize the parameter B, D, and S.
Calculate the fitness value of all search agents.
Qs is the best search agent.

While (x < Maxiter) do.
For each search agent do.
Update the position of current search agent.
End for
Update parameter B, D, and S.

Check if there is any search agent which goes beyond the boundary condition.
Calculate the fitness of each search agent.
Update Qs, if the solution is better than the previous one.
End while
return Qs,
End

10
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Figure 3. Flow chart of RSA.

2.3.2. Hybrid Particle Swarm Optimization and Rat Search Algorithm (PSORSA)

We propose a hybrid approach to combine two algorithms for increased efficiency. Our
approach enhances the precision of results achieved by RSA by leveraging PSO, which is a
precursor algorithm to the class of optimization algorithms known as swarm algorithms.
As a result of our hybrid method, the system is not trapped in local minimums and is
also enhanced in accuracy. This enhances the speed of the system and ensures the system
finds the global optimum within reasonable time. The combination of RSA and PSO thus
provides a powerful hybrid approach to optimize the system. The hybrid method is also
extremely cost effective, since it does not require a large amount of computational power to
achieve the desired result. The combination of RSA and PSO thus provides a powerful and
cost-effective solution to optimize the system. The flow chart of that algorithm is shown in
Figure 4.
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Figure 4. Flow chart of PSORSA.

2.4. Objective Function and Constraints

Objective Function: A value that minimizes the total life cycle cost (TLCC) is the
objective function. Costs associated with ongoing operation and maintenance (C&R) and
capital and replacement (O&M) will be included in the total life cycle cost of the project.
These costs should be weighed against the expected benefits of the project to determine
the optimal value of the objective function. A variety of techniques, such as cost-benefit
analysis, can be used to ensure a thorough evaluation of the project, which is given in
Equation (24):

TLCC = C&R + O&M (24)

In a mathematical model, the capital recovery cost (CRF) is determined based on the
interest rate (j) and system life span (m), which occur at the beginning and during the
duration of the project. The CRF is used to calculate the value of the project by taking into
account the amount of money needed to pay off the initial investment. It is a key factor in
determining the profitability of a project and is given in Equation (25):

CRF (j, m) =
j(1 + j)m

(1 + j)m − 1
(25)
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Constraints: The number of solar PV panel, fuel cell, electrolyzer, hydrogen tank, and
battery constraints and storage units are given in Equation (26a)–(26e):

Nmin
solar ≤ Nsolar ≤ Nmax

solar (26a)

Nmin
f uel cell ≤ Nf uel cell ≤ Nmax

f uel cell (26b)

Nmin
electrolyzer ≤ Nelectrolyzer ≤ Nmax

electrolyzer (26c)

Nmin
hydrogen tank ≤ Nhydrogen tank ≤ Nmax

hydrogen tank (26d)

Nmin
battery ≤ Nbattery ≤ Nmax

battery (26e)

where maximum number of solar PV panel is denoted by Nmax
solar, maximum rating of fuel

cell is denoted by Nmax
f uel cell ; maximum rating of electrolyzer is denoted by Nmax

electrolyzer;
maximum rating of size of hydrogen tank is denoted by Nmax

hydrogen tank; and maximum rating
of size of battery is denoted by Nmax

battery.

3. Results and Discussion HOMER Based

A case study is presented in Patiala using the optimization model. In the south-eastern
part of Punjab, northwestern India, Patiala has an altitude of 257 m and is situated at
30.3398◦ N, 76.3869◦ E. The work focuses on two case studies, namely Solar PV/Battery-
based system and Solar PV/Fuel Cell-based system [16,17]. Table 5 lists the specifications
of the components of hybrid systems. To develop and implement a renewable-based hybrid
energy system, the TLCC reliability index is of the utmost importance. In this manuscript,
some parts of the suggested IHRES are evaluated for their ability to fulfill a community’s
AC (Alternating Current) and DC (Direct Current) primary load requirements. The size
of the bi-directional plant is determined by its peak load. Bi-directional converters are
assumed to be 90% efficient. The HOMER software is used to calculate the cost of all the
system components. In this study, we used five main parameters, such as the rating of the
solar PV panel, the fuel cell, the battery, the electrolyzer, and the size of the hydrogen tank.
Inverter size was not considered as an optimization parameter; it was selected based on
peak load demand. It was assumed that the project would last 20 years at a 5% interest rate.
The two cases are considered as discussed below:

Table 5. System component specifications and cost.

Component Parameter Value Unit

PV Panel

Maximum power (Pmax) 100 W

Maximum power voltage (Vmp) 18 V

Maximum power current (Imp) 5.56 A

Open circuit voltage (VOC) 22.3 V

Short circuit voltage (IsC) 6.1 A

Number of cells 36 -

Nominal operating cell temperature 45 ◦C

Capital cost and replacement cost 1084 USD/kW

O&M cost 5/kW USD/yr

Life time 20 yr

13



Energies 2023, 16, 4482

Table 5. Cont.

Component Parameter Value Unit

Inverter

Rated power 1 kW

Inverter efficiency (ηinv) 90 %

Capital and replacement cost 127 USD/kW

O&M cost 1 USD/yr

Life time 20 yr

Fuel cell

Rated power 1 kW

Capital and replacement cost 600 USD/kW

O&M cost 0.01 USD/h/kW

Fuel cell coefficient 0.0003 USD/h/kW

Hydrogen to electricity conversion by fuel cell (QH2)
1
c 0.059 USD/h/kW

Life time of FC 20 yr

Electrolyzer

Capital and replacement cost 150 USD/kW

O&M cost 8 USD/yr/kW

Efficiency 90 %

Life time 20 yr

Hydrogen tank

Capital cost 1.3 USD/kg

Replacement cost 0.5 USD/kg

O&M cost 0.6 USD/yr/kg

Life time 20 yr

Battery

Nominal capacity 360 Ah

Nominal voltage 6 V

Maximum charging current 18 A

Minimum state of charge 30 %

Maximum state of charge 100 %

Round trip efficiency 92 %

Capital cost 300 USD

Replacement cost 200 USD

O&M cost 3.67 USD/yr

Life-time 20 yr

Others
Project life (N) 20 yr

Interest rate (i) 5 %

Case 1: Solar PV/Battery Based System: According to Figure 1, IHRES consists of a
solar photovoltaic system and a battery bank. A battery serves as a storage device in this
case, with Solar PV as the main source of supply. Table 6 and Figure 5 show the overall
system component cost for this case. The total capital, replacement, and O&M cost are
252,251, 68,375, and 31,153. From Table 6, it is observed that the TLCC of battery, converter,
and solar PV is 136,213, 67,682, and 147,884, respectively, but the overall TLCC of the
system is 351,779. The Figure 6 shows the TLCC of all the system for case 1.
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Table 6. Overall system component cost for Case 1.

Component Capital (USD)
Replacement

(USD)
O&M (USD) TLCC (USD)

Battery 102,150 30,750 3313 136,213
Converter 28,958 37,625 1099 67,682
Solar PV 121,143 0 26,741 147,884
System 252,251 68,375 31,153 351,779

Figure 5. Overall system component cost for Case 1.

Figure 6. Total life cycle cost for Case 1.

Using HOMER software, the costs of the entire component were calculated of the
proposed system. These parameters were then compared with the proposed algorithm, as
well as their parent algorithms, as previously mentioned. The feasible and optimal solution
was determined by ranking the parameters based on TLCC, as shown in Table 7. Table 7
displays the results in TLCC format for HOMER, RAT, PSO, GWO, and HHO case studies.
While the proposed hybrid system took hours to simulate with HOMER, the simulation
time was significantly reduced with the help of developed algorithms. From the results,
it was concluded that the proposed algorithm outperformed both the parent algorithms,
compared algorithm, and the HOMER simulation.
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Table 7. Optimization results.

Algorithm TLCC (USD)

PSO 350,229
RAT 330,125

GWO 345,115
HOMER 351,779

HHO 343,451
PSORSA 320,224

Case 2: Solar PV/Fuel Cell Based System: According to Figure 2, IHRES consists of
solar photovoltaics and fuel cells. As a storage device, fuel cell is used in this case as a main
source of supply in addition to Solar PV. Table 8 and Figure 7 show the overall system com-
ponent cost for this case. The total capital, replacement, and O&M cost are 244,910, 62,569,
and 23,893. From Table 8, it is observed that the TLCC of fuel cell, electrolyzer, hydrogen
tank, converter, and solar PV is 112,825, 29,448, 890, 62,940, and 125,269, respectively, but
the overall TLCC of the system is 331,372. Figure 8 shows the TLCC of all the system for
Case 2.

Table 8. Overall system component cost for Case 2.

Component Capital (USD) Replacement (USD) O&M (USD) TLCC (USD)

Fuel Cell 88,524 21,147 3154 112,825
Electrolyzer 14,000 6321 9127 29,448

Hydrogen Tank 140 0 750 890
Converter 26,989 35,101 850 62,940
Solar PV 115,257 0 10,012 125,269
System 244,910 62,569 23,893 331,372

Figure 7. Overall system component cost for Case 2.

Using HOMER software, the costs of the entire component were calculated for the
proposed system. These parameters were then compared with the proposed algorithm, as
well as their parent algorithms, as previously mentioned. The feasible and optimal solution
was determined by ranking the parameters based on TLCC, as shown in Table 9. Table 9
displays the results in TLCC format for HOMER, RAT, PSO, GWO, and HHO case studies.
While the proposed hybrid system took hours to simulate with HOMER, the simulation
time was significantly reduced with the help of developed algorithms. From the results,
it was concluded that the proposed algorithm outperformed both the parent algorithms,
compared algorithm, and the HOMER simulation.

16



Energies 2023, 16, 4482

Figure 8. Total life cycle cost for Case 2.

Table 9. Optimization results.

Algorithm TLCC (USD)

PSO 325,152
RAT 306,124

GWO 323,522
HOMER 331,372

HHO 318,189
PSORSA 302,198

Based on the results obtained, the performance of the system presented in Case 2 is
significantly better than that in Case 1. Based on the above comparison, the Case 2 is the
more economical system. Case 2 has a lower cost of all the components, a lower TLCC
overall, and a fuel cell instead of a battery, which is more economical.

Fuel cell systems with hydrogen as a fuel are gradually replacing lithium-ion batteries.
It is possible for fuel cells to replace lithium-based batteries, which cause water and air
pollution. It costs approximately five times more to produce a lithium-based battery
that has been recycled than one that has been extracted from the ground. All battery
manufacturing units are unconsciously extracting more and more lithium from the Earth,
causing the Earth to become a ‘lithium dump’. There is real potential for fuel cells to qualify
as technology that generates electricity with harmless byproducts. Hydrogen fuel cells have
the advantages of scalability, low greenhouse gas emissions, and silent operation. Unlike a
battery, the fuel cell does not self-discharge. It does not release any hazardous gases either.
This makes it an ideal choice for powering electric vehicles, homes, and businesses. It can
also be used in stationary applications such as backup power and grid-scale energy storage.

4. Conclusions and Outcomes

The aim of this manuscript is to provide an optimal configuration for stand-alone
hybrid solar PV/battery systems and solar PV/fuel cell systems. According to the reliability
index, the objective function is to minimize the total life cycle cost (TLCC). With the HOMER
software, it has been possible to determine the optimal size of different components such
as solar PV, fuel cells, converters, batteries, hydrogen tanks, and electrolyzers. It is obvious
from the TLCC that Case 2 has a higher economic benefit than Case 1. Through proper
sizing of components and efficient energy flow management between system components,
a cost-effective AC/DC hybrid energy system can be designed. The HOMER software can
help to identify the most cost-effective combination of components to meet the user’s energy
needs. By optimizing the size and configuration of the system, the user can maximize
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the economic benefits and ensure a reliable energy supply. The HOMER software is an
invaluable tool for designing AC/DC hybrid energy systems, as it can quickly analyze the
various options and determine the most cost-effective solution. The HOMER software is
used as a reference in the manuscript. The main disadvantage of HOMER software is that it
takes lot of time to simulate the things to overcome that disadvantage optimization results
are conducted. Here, it is seen that the proposed algorithm TLCC is lower than the rest
of the compared algorithms as well as HOMER software. Furthermore, it can accurately
predict the system’s performance and energy output.

Author Contributions: Conceptualization, M.K.S. and J.G.; methodology, M.K.S.; software, M.K.S.
and J.G.; validation, M.H.A., A.J. and M.K.S.; formal analysis, M.H.A. and A.J.; investigation, A.J.;
resources, M.K.S. and J.G.; writing—original draft preparation, M.K.S.; writing—review and editing,
J.G., M.H.A. and A.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ghasemi, A.; Enayatzare, M. Optimal energy management of a renewable-based isolated microgrid with pumped-storage unit
and demand response. Renew. Energy 2018, 123, 460–474. [CrossRef]

2. Javed, M.S.; Song, A.; Ma, T. Techno-economic assessment of a stand-alone hybrid solar-wind-battery system for a remote island
using genetic algorithm. Energy 2019, 176, 704–717. [CrossRef]

3. Das, M.; Singh, M.A.K.; Biswas, A. Techno-economic optimization of an off-grid hybrid renewable energy system using metaheuristic
optimization approaches–case of a radio transmitter station in India. Energy Convers. Manag. 2019, 185, 339–352. [CrossRef]

4. Mokhtara, C.; Negrou, B.; Settou, N.; Bouferrouk, A.; Yao, Y. Design optimization of grid-connected PV-Hydrogen for energy
prosumers considering sector-coupling paradigm: Case study of a university building in Algeria. Int. J. Hydrogen Energy 2021, 46,
37564–37582. [CrossRef]

5. Yu, X.; Li, W.; Maleki, A.; Rosen, M.A.; Birjandi, A.K.; Tang, L. Selection of optimal location and design of a stand-alone
photovoltaic scheme using a modified hybrid methodology. Sustain. Energy Technol. Assess. 2021, 45, 101071. [CrossRef]

6. Sawle, Y.; Gupta, S.C.; Kumar Bohre, A. PV-wind hybrid system: A review with case study. Cogent Eng. 2016, 3, 1189305. [CrossRef]
7. Mahato, D.P.; Sandhu, J.K.; Singh, N.P.; Kaushal, V. On scheduling transaction in grid computing using cuckoo search-ant colony

optimization considering load. Clust. Comput. 2020, 23, 1483–1504. [CrossRef]
8. Rani, S.; Babbar, H.; Kaur, P.; Alshehri, M.D.; Shah, S.H.A. An optimized approach of dynamic target nodes in wireless sensor

network using bio inspired algorithms for maritime rescue. IEEE Trans. Intell. Transp. Syst. 2022, 24, 2548–2555. [CrossRef]
9. Hina, F.; Prabaharan, N.; Palanisamy, K.; Akhtar, K.; Saad, M.; Jackson, J.J. Hybrid-Renewable Energy Systems in Microgrids;

Woodhead Publishing: Cambridge, UK, 2018.
10. Lambert, T.; Gilman, P.; Lilienthal, P. Micropower system modeling with HOMER. Integr. Altern. Sources Energy 2006, 1, 379–385.
11. Singh, S.; Chauhan, P.; Aftab, M.A.; Ali, I.; Hussain, S.S.; Ustun, T.S. Cost optimization of a stand-alone hybrid energy system

with fuel cell and PV. Energies 2020, 13, 1295. [CrossRef]
12. Singh, S.; Singh, M.; Kaushik, S.C. Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass and

battery energy storage system. Energy Convers. Manag. 2016, 128, 178–190. [CrossRef]
13. Hemi, H.; Ghouili, J.; Cheriti, A. A real time fuzzy logic power management strategy for a fuel cell vehicle. Energy Convers. Manag.

2014, 80, 63–70. [CrossRef]
14. Wu, K.; Zhou, H.; An, S.; Huang, T. Optimal coordinate operation control for wind–photovoltaic–battery storage power-generation

units. Energy Convers. Manag. 2015, 90, 466–475. [CrossRef]
15. Nehrir, M.H.; Wang, C.; Strunz, K.; Aki, H.; Ramakumar, R.; Bing, J.; Miao, Z.; Salameh, Z. A review of hybrid renew-

able/alternative energy systems for electric power generation: Configurations, control, and applications. IEEE Trans. Sustain.
Energy 2011, 2, 392–403. [CrossRef]

16. Nijhawan, P.; Singla, M.K.; Gupta, J. A proposed hybrid model for electric power generation: A case study of Rajasthan, India.
IETE J. Res. 2021, 69, 1952–1962. [CrossRef]

17. Nijhawan, P.; Singla, M.K.; Gupta, J. Site selection of solar PV power plant at Bathinda. Int. J. Recent Technol. Eng. 2020, 8,
5032–5038. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

18



energies

Review

The Risks and Challenges of Electric Vehicle Integration into
Smart Cities

Oluwagbenga Apata *, Pitshou N. Bokoro and Gulshan Sharma

Department of Electrical Engineering Technology, University of Johannesburg, Johannesburg 2028, South Africa;
pitshoub@uj.ac.za (P.N.B.)
* Correspondence: g.apata@ieee.org

Abstract: The integration of electric vehicles (EVs) into smart cities presents a promising opportunity
for reducing greenhouse gas emissions and enhancing urban sustainability. However, there are
significant risks and challenges associated with the integration of EVs into smart cities, which must
be carefully considered. Though there are various reviews available on the challenges of integrating
EVs into smart cities, the majority of these are focused on technical challenges, thereby ignoring
other important challenges that may arise from such integration. This paper therefore provides a
comprehensive overview of the risks and challenges associated with the integration of EVs into smart
cities in one research paper. The different challenges associated with the integration of EVs into smart
cities have been identified and categorized into four groups, namely: technical, economic, social, and
environmental, while also discussing the associated risks of EV integration into smart cities. The
paper concludes by highlighting the need for a holistic approach to EV integration into smart cities
that considers these challenges and risks. It also identifies possible future trends and outlooks to
address these challenges and promote the successful integration of EVs into smart cities. Overall, this
paper provides valuable insights for policymakers, city planners, and researchers working towards
sustainable urban transportation systems.

Keywords: electric vehicle; gasoline vehicle; grid integration; smart city; greenhouse gas emissions;
information and communication technologies

1. Introduction

The concept of smart cities has been around for several decades, but it has gained sig-
nificant attention in recent years due to advances in technology and growing urbanization.
The idea of using technology to improve urban living can be traced back to the 1970s, when
researchers began to explore the potential of using computer networks to manage urban
infrastructure. In the 1990s, the concept of the “digital city” emerged, which focused on
using digital technologies to improve urban services and public participation. The term
“smart city” was first coined in the early 2000s, and it has since become a popular buzzword
in urban planning and development. The smart city concept gained momentum in 2008
when IBM launched its Smarter Planet initiative [1,2], which focused on using technology
and data to address global challenges such as climate change, energy management, and
urbanization. Since then, smart city initiatives have been implemented in cities around the
world, and the concept has continued to evolve with advances in technology. These cities
use sensors, devices, and networks to collect and analyse data, which is used to inform
decision-making processes and optimize resource usage. One of the key challenges faced
by smart cities is reducing their carbon footprint and promoting sustainable transportation.
Electric vehicles (EVs) have emerged as a promising solution to this challenge, as they offer
a more efficient and cleaner alternative to conventional gasoline-powered vehicles. This
can be seen in the exponential growth of EV sales globally when compared to conventional
gasoline-powered vehicles [3]. As seen from Figure 1, statistics available from [4] show
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that Germany had the highest EV share at 26% in 2021 compared to other countries such as
Canada, the United Kingdom, France, and Korea.

 
Figure 1. EV registrations for 2021.

From Figure 2, it is observed that the Tesla Y model was the highest selling EV for
the year 2022 [5]. By integrating EVs into smart cities, urban planners can create a more
sustainable and efficient transportation system, while also reducing traffic congestion and
improving air quality, and increasing energy efficiency.

 
Figure 2. Models of EV sold in 2022 [5].

The integration of EVs into smart cities offers numerous benefits. First and foremost,
EVs reduce the carbon footprint of cities. According to the International Energy Agency
(IEA), the transportation sector accounts for 24% of global CO2 emissions [6], with road
transport being the largest contributor. By replacing conventional vehicles with EVs, cities
can significantly reduce their carbon emissions and improve air quality since EVs are
mostly powered by electricity generated from renewable sources such as wind and solar
power. This makes them a sustainable alternative to conventional vehicles that rely on fossil
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fuels such as gasoline and diesel. The different benefits of EVs have been well documented
in various literature amongst which are [7–10]. The authors in [11] carried out a study
using a life cycle assessment (LCA) to compare the environmental impacts of conventional
gasoline-powered vehicles and electric vehicles in Hong Kong. The results showed that
electric vehicles have lower environmental impacts in terms of greenhouse gas emissions,
air pollution, and resource depletion compared to conventional fossil-fuelled vehicles. A
comparative analysis of different results obtained by various authors in terms of LCA of EVs
and conventional fossil-fuel-powered vehicles was carried out in [12]. The findings revealed
that with the adoption of EVs, there are reduced greenhouse gas emissions (GHG) compared
to conventional vehicles even though there is an increase in the human toxicity levels.
Despite their numerous benefits, the integration of EVs into smart cities also poses several
challenges. These challenges include the need for adequate charging infrastructure [13],
efficient energy management [14,15], effective communication and data management [16,
17], and addressing social and cultural factors. Addressing these challenges requires a
coordinated and collaborative approach involving government agencies, private companies,
and other stakeholders. With careful planning and implementation, the integration of
EVs into smart cities can help create a more sustainable, efficient, and liveable urban
environment. These challenges have been discussed in various literature. The majority of
research papers discussing the challenges associated with the integration of EVs into smart
cities, smart grids, or conventional grids are focused on the technical challenges. In [18],
the authors presented some challenges such as the cost of EV batteries and charger issues.
The authors in [19] discussed the status of charging infrastructure development for EVs in
the UK. The issues of increased load demand due to charging are discussed in [20], where
the authors reviewed various smart charging strategies to tackle this challenge. A review of
the critical impacts of grid-tied EVs is presented in [21], where the authors focused on the
interaction of EVs in a smart grid environment. In [22], the issues of charging infrastructure
are also presented and the authors presented a critical review on applications of machine
learning for solving the issues around infrastructure planning.

A systematic and comprehensive review of the charging infrastructure planning for
smart cities is presented in [23], while ref. [24] discusses the possibility of increased stress
on the electricity grid during peak load as a result of high penetration of EVs in residential
low-voltage networks. A centralized control algorithm was proposed to manage the EV
charging points to mitigate congestion while the challenge of a reduction in battery life as a
result of an extreme case of full daily battery discharge is reported in [25]. A systematic
literature review on the integration of EVs into the smart grid is also presented in [26],
where the authors presented various results from different research works on the subject of
EV integration into smart cities and smart grids. However, the bulk of this systematic review
done in [26] also focused on the various technological challenges associated with integrating
EVs into smart grids and smart cities, particularly the problems of charging infrastructure.
As seen in [13–24], most reviews and research papers concerning the risks and challenges of
integrating electric vehicles into smart cities are focused on technical challenges. However,
there are other associated risks and challenges associated with EV integration into smart
cities, such as the security risks of electric vehicle infrastructure. Charging stations could
be hacked, leading to significant damage to the energy management systems of smart
cities. Another risk factor associated with electric vehicle adoption is the potential for
battery disposal. Electric vehicle batteries have a limited lifespan, and if not appropriately
disposed, can cause significant environmental damage. Therefore, implementing disposal
strategies that minimize the environmental impact is essential.

Unlike so many other review papers focused on individual risk factors or challenges
associated with EV integration into smart cities, this paper has grouped all of the vari-
ous challenges and associated risks of EV integration into smart cities into four groups,
namely: technical, economic, social, and environmental. By categorizing the challenges into
technical, economic, social, and environmental aspects, the paper provides a structured
framework for understanding the multiple dimensions involved in the integration process.
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The technical challenges include issues related to EV infrastructure, such as charging sta-
tions and battery management systems, as well as interoperability and standardization. The
economic challenges involve costs associated with EV deployment and infrastructure, as
well as the potential impact on traditional transportation systems and industries. The social
challenges involve the need to address issues related to equity and accessibility, as well as
concerns about user acceptance and behavioural change. The environmental challenges
involve the potential impact of EVs on the electricity grid and the need to address the life
cycle emissions associated with EV production and disposal. The paper concludes by high-
lighting the need for a holistic approach to EV integration into smart cities that considers
these challenges and risks. It also identifies potential research directions to address these
challenges and promote the successful integration of EVs into smart cities. Overall, this
paper provides valuable insights for policymakers, city planners, and researchers working
towards sustainable urban transportation systems.

2. Methodology

In order to carry out a comprehensive overview of the different risks and challenges
associated with the integration of EVs into smart cities, this research has identified existing
review papers, research articles, reports, and relevant publications on the topic to gain
insights into the current state of knowledge. Based on the identified existing literature,
a technical, economic, social, and environmental analysis has been carried out and the
different challenges associated with the integration of EVs into smart cities have been
broadly categorized into four groups. This makes this review outstanding from the differ-
ent reviews already conducted in existing literature since it incorporates all of these risks
and challenges into one research paper. From a technical standpoint, challenges include the
availability and scalability of charging infrastructure, interoperability of charging stations,
battery range limitations, and the capacity and stability of the power grid. Economic risks
encompass the high costs of EVs, charging infrastructure deployment, and maintenance,
along with potential impacts on industries such as automotive manufacturing, energy,
and transportation services. Social challenges involve addressing public acceptance and
perception of EVs, addressing range anxiety, ensuring equitable access to charging in-
frastructure, and accommodating diverse user needs. Environmental risks include the
need to carefully evaluate the lifecycle environmental impacts of EVs and their batteries,
while also considering the potential benefits of reduced greenhouse gas emissions and
improved air quality. Addressing these risks is crucial for successful integration of EVs
into smart cities, requiring collaborative efforts among stakeholders to develop sustainable
solutions that foster technological advancements, economic viability, social equity, and
environmental sustainability.

3. Risks of EV Integration into Smart Cities

The integration of EVs into smart cities is critical in promoting sustainable trans-
portation solutions and reducing the impact of climate change. However, this integration
process presents several risks. The major risks associated with integrating EVs into smart
cities are the risks of cybersecurity and data privacy. Policymakers, energy managers, and
other stakeholders must address these risks and develop effective strategies to mitigate
these risks.

3.1. Cybersecurity Risks

As EVs gain traction in smart cities, the risks and challenges associated with their
integration are becoming increasingly evident. Cybersecurity risks are one of the most
significant challenges that need to be addressed during the integration of EVs into smart
cities. With the integration of information and communication technologies (ICT) in the
energy sector, the power grid components and utility servers of a smart city are susceptible
to malware attacks from EVs [27]. Previous research on cybersecurity of the smart grid
has largely focused on local attacks that impact specific components of the grid. This is
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because local attacks are often more straightforward to execute and require less skill and
fewer resources than global attacks that impact the entire grid. As a result, local attacks
remain the most common cyber threats to the smart grid, with malicious actors employing
various techniques such as jamming, denial of service (DoS), controller malfunction, and
load alteration attacks. Jamming attacks involve degrading the quality of communication
signals between grid components, resulting in information loss and system malfunction [28].
Similarly, DoS attacks aim to disrupt normal communication channels by flooding them
with traffic, and degrading the components of the grid. The issue of cybersecurity in
smart cities has been well documented in different pieces of literature. In [29], the authors
categorized the risk of cybersecurity in smart cities into passive and active attacks. A passive
cyberattack in a smart city refers to a type of cyber threat where an attacker attempts to
gain unauthorized access to sensitive information or systems without actively disrupting
or altering their normal functioning. These attacks often target the vulnerabilities in the
smart city’s infrastructure, such as communication networks, sensors, data repositories,
and control systems. The attacker aims to exploit weaknesses in these systems to gain
access to sensitive data, monitor activities, or gather information for further malicious
activities. The active cyberattack typically involves actions taken by an attacker to gain
unauthorized access, disrupt operations, manipulate data, or cause damage to critical
infrastructure components. The attacker may employ various techniques, such as hacking,
malware, social engineering, or denial-of-service attacks, to compromise the security and
integrity of the smart city’s systems. Ref. [30] carried out a comprehensive literature review
detailing the various privacy and security concerns in a smart city and proposed various
solutions to addressing them.

A model was designed in [31] to detect attacks on the industrial control system (ICS)
of smart cities, and by using interactive visualization, false alarms can be filtered out. The
risk of cyberattacks originating from online social networks was studied in [32], where
focal structure analysis (FSA) and deviant cyber flash mob detection (DCFM) techniques
were used to develop a model to prevent damage from such attacks. Ref. [33] presented
the Application, Communication, Infrastructure, Data, and Stakeholders (ACIDS) security
framework to develop security measures and identify possible threats in the various
layers of a smart city system. The overall security of a smart city system was improved
by this proposed layered approach. Different cybersecurity issues and their associated
risks in the operations of a smart city as well as different strategies for reducing such
cyber-attacks in a smart city have been well documented in [34,35], respectively. The
charging infrastructure of EVs are typically connected to a network, making them potential
targets for cyber-attacks. The authors in [36] conducted a semi-quantitative analysis of
the vulnerabilities between the various end-to-end subsystems of an EV. Malicious actors
can exploit the connection between EVs and the grid to disrupt power supply, potentially
causing widespread blackouts or other disruptions. In [37], the authors presented the
various challenges and issues that can be exploited to seriously harm the charging stations
of EVs, the power grid, or both. The communication protocols between EVs, chargers,
and back-end systems are vulnerable to tampering. The protocols used to communicate
the state of charge, the authentication of the charging process, and the billing systems can
be manipulated by hackers to steal personal data and query the charging status of the
vehicle. The report presented by the Kaspersky Lab in [38] indicated that the threats of
cyber-attacks were linked to the charge points of home electric vehicle supply equipment
(EVSE) units. This report validated the previous research done by the authors in [39], which
outlined the risks associated with the deployment of EVSE devices. The various authors
in [40–43] identified potential areas of vulnerabilities associated with EVSE. These could
lead to security breaches in a smart city such as spoofing, data loss, and DoS. The phasor
measurement unit (PMU) networks and electric vehicle infrastructure (EVI) in a smart city
are vulnerable to cyberattacks, with potential consequences ranging from grid instability
and power disruptions due to compromised PMU data, to unauthorized access and control
of EV charging infrastructure leading to service disruptions and potential safety risks. This
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is well discussed and highlighted in [44] where the authors researched on the vulnerability
of EVI and PMU networks to cyberattacks. Overall, cyberattacks on phasor measurement
units (PMUs) in smart cities can lead to inaccurate power system measurements, faulty
control strategies, and pose a significant threat to the overall reliability and safety of the
power grid.

The use of third-party libraries in implementing various features such as navigation
and communication in an EV makes it vulnerable to cyberattacks, thereby posing a sig-
nificant risk in smart cities. Attackers may target vulnerabilities in the EV’s software or
network connectivity to gain unauthorized remote access to the vehicle’s systems [45].
Once inside, they can potentially manipulate or disrupt critical functions, such as braking,
acceleration, or steering. Electric vehicles often use keyless entry systems or wireless
key fobs for authentication and remote access. Attackers may use various techniques to
intercept or clone these key fobs, allowing them to gain unauthorized access to the vehicle
without physical contact. The vulnerability of EVs with regards to third party libraries is
well documented in [46], where a vulnerable application in a Tesla car was well exploited
by a hacker to remotely access the features of the car and even bypass its keyless entry to
start the vehicle. In [47], the infotainment system of an EV was attacked using third-party
libraries to remotely perform software updates on the vehicle. While the integration of
third-party libraries in EVs integrated into a smart city offers numerous advantages, it
is crucial to carefully consider and address the associated risks. By prioritizing security
measures, conducting thorough evaluations, and fostering collaboration, we can harness
the benefits of these libraries while safeguarding the integrity, privacy, and safety of the
smart city ecosystem. Only through diligent risk management can we ensure the success-
ful integration of third-party libraries in EVs within smart cities, paving the way for a
sustainable and secure future of transportation.

3.2. Data Privacy Risks

With the increasing adoption of EVs in smart cities, there has been a significant increase
in the amount of data generated by these vehicles and their supporting infrastructure. The
data generated include information about the location of the vehicle, battery life, driving
patterns, and more. All of these data provide valuable information that can be used in
many ways, including optimizing traffic management, predicting maintenance needs, and
developing new business models. However, there are significant privacy risks associated
with collecting these data. In particular, the collection of personal data and driving patterns
is a major concern. This information can be used to identify an individual’s behavior,
movements, and preferences, creating a high risk of identity theft, stalking, and other
privacy violations. Moreover, as seen in [48], these data can also be used for targeted
marketing or insurance pricing, exposing drivers to financial risks. The data collected
from EVs, when combined with other datasets, can lead to the identification and tracking
of individuals. For example, by correlating location data from EVs with other publicly
available information, it may be possible to determine an individual’s home address,
workplace, or frequently visited locations. This personal identifiability increases the risk
of privacy breaches and surveillance. In some cases, EV data may be shared with third
parties, such as service providers, government entities, or researchers, for various purposes,
such as traffic management or infrastructure planning. However, the sharing of data raises
concerns about who has access to the data, how they will be used, and whether individuals’
privacy rights are adequately protected. According to [49], it is estimated that by the year
2030, global profits from vehicle generated information could reach a staggering USD 75
billion, making EVs an ideal target for hackers to steal data from.

As EVs become increasingly connected and integrated into smart city ecosystems, they
generate vast amounts of data that can include personally identifiable information (PII),
vehicle telemetry, location data, and more. Understanding the sensitivity of these data is
essential for implementing appropriate security measures and ensuring privacy protection
in the smart city. It is important to note that different data from the EV require different
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amounts of protection based on their sensitivity. It is therefore important to determine the
sensitivity of EV data. Data classification involves categorizing data based on their levels of
sensitivity, enabling organizations to allocate appropriate security controls and determine
access privileges. By applying data classification techniques to EV data, it becomes possible
to identify and differentiate between different types of information based on their potential
impact if compromised. The authors in [50] determined the sensitivity of EV data using
data classification techniques. These data have been grouped into confidential, sensitive,
unclassified, and secret by the authors in [45,51] and depicted in Figure 3.

Figure 3. Data classification in EV [52].

One approach to data classification is the use of metadata tags [53], which can be at-
tached to individual data elements to indicate their sensitivity level. For example, PII, such
as driver’s license numbers, social security numbers, or credit card information, would be
classified as highly sensitive, while anonymized vehicle telemetry data may be considered
less sensitive. Another technique is automated machine learning (AutoML) [54,55], which
can analyze large volumes of EV data and classify them based on patterns, features, or
predefined rules. By training machine learning models on labeled datasets, it becomes
possible to automate the classification process and identify sensitive data accurately. By
leveraging data classification techniques, EV manufacturers, smart city operators, and other
stakeholders can gain insights into the sensitivity of EV data. This knowledge enables them
to implement appropriate security measures, such as encryption, access controls, and data
anonymization, to protect sensitive information effectively. Additionally, data classification
aids in compliance with data protection regulations, such as the General Data Protection
Regulation (GDPR) or other regional privacy laws.

4. Challenges of EV Integration into Smart Cities

The integration of electric vehicles (EVs) into smart cities represents a transformative
shift in urban transportation and sustainability. With the potential to reduce greenhouse
gas emissions, decrease reliance on fossil fuels, and enhance overall energy efficiency,
EVs offer numerous benefits for smart cities. However, this integration also presents a
range of complex challenges that must be addressed to ensure the successful adoption
and integration of EVs within the urban fabric. This section will explore and analyze the
key challenges associated with EV integration into smart cities, covering aspects such as
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infrastructure, charging networks, grid capacity, policy and regulations, consumer adop-
tion, and environmental considerations. These challenges have been broadly categorized
into four groups in this research paper: technical, economic, social, and environmental.
Each category presents unique hurdles and considerations that need to be addressed for
successful integration of EVs into the smart city.

4.1. Technical Challenges

One of the primary technical challenges of integrating EVs into a smart city is estab-
lishing an extensive and robust charging infrastructure to meet the charging needs of EVs.
This includes deploying a network of charging stations that are conveniently located, easily
accessible, and equipped with the necessary charging equipment. There has been a lot
of focus in this research area lately. The charging infrastructure for electric vehicles is a
critical component of their integration into smart cities. The charging infrastructure of an
EV comprises a communication and power system [56]. It encompasses the network of
charging stations, equipment, and supporting systems necessary to provide convenient and
reliable charging options for EVs. EVs are an integral part of sustainable transportation and
reducing carbon emissions. In a smart city, where the focus is on environmentally friendly
and efficient mobility solutions, the lack of charging infrastructure can hinder the adoption
of EVs. Insufficient charging stations may discourage people from choosing electric vehicles
as their primary mode of transportation, limiting the city’s progress towards achieving
sustainable mobility goals. Ensuring an adequate number of charging stations to meet the
increasing demand as the number of EVs grows requires strategic planning, coordination
with stakeholders, and proactive expansion of charging infrastructure to prevent bottle-
necks. One of the challenges for widespread electric vehicle adoption, especially in the
context of a smart city, is the availability and accessibility of charging infrastructure. This
has been well researched and highlighted by the various authors in [57–60]. Insufficient
public charging stations can also create range anxiety among potential electric vehicle own-
ers, as they may be concerned about the availability of charging points and the possibility
of running out of power during their daily commutes or longer journeys. The authors
in [61] identified the charging infrastructure location for EVs as an optimization problem
and approached it by proposing a genetic algorithm to solve this problem.

In as much as it is important to ensure an adequate number of charging stations, there
is also a concern about the type of charge available to the EV in a smart city as well as
charging time and waiting time of such charging stations. Offering charging stations with
various charging speeds (e.g., level 1, level 2, and DC fast charging) to cater to different
EV models and user preferences, ensuring compatibility and interoperability between
charging connectors and vehicle charging systems, is crucial for user convenience. The
different types of charging available to EVs have been well documented in [62]. Level 1
charging refers to using a standard household outlet (120 volts AC) to charge an EV. It
is the slowest charging option, typically providing around 2 to 5 miles of range per hour
of charging. Level 1 charging is suitable for overnight charging at home or in locations
where the vehicle remains stationary for an extended period. However, there is no support
for communication control and this can negatively impact the grid such as grid power
congestion. Level 2 charging operates at higher voltages (240 volts AC) and provides faster
charging compared to Level 1. It typically offers 10 to 30 miles of range per hour of charging,
depending on the EV and charging equipment. Level 2 charging is commonly found in
residential settings, workplaces, public parking areas, and commercial establishments. As
seen in [17], though level 2 charging has a lot of advantages, there are drawbacks with it,
such as a surge in power consumption up to 25%. DC fast charging (also known as Level 3
charging) provides the fastest charging speeds and is typically found along highways, at
rest areas, and in commercial areas. DC fast chargers can charge an EV up to 80% in 30 min
or less, significantly reducing charging time. These chargers operate at higher voltages
and convert AC power directly into DC power, bypassing the vehicle’s onboard charger. A
significant challenge is the slow charging speeds of certain charging stations. While EVs
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can be charged using a regular household power outlet, it can take several hours to fully
charge the vehicle. However, the deployment of fast-charging stations can mitigate this
issue. Though DC fast charging has numerous advantages such as a high-power output,
the chargers are quite bulky [62]. The authors in [63,64] have documented the different
drawbacks of such charging infrastructure. The type of charging infrastructure for an
EV impacts a smart city by influencing charging speed, availability, load management,
grid stability, demand response capabilities, integration with mobility solutions, and data-
driven decision-making. Despite the attractiveness of fast charging for EVs, this presents a
significant complex problem that requires traffic flow, utility considerations, and integration
of energy supply in the smart city.

The integration of EVs into smart cities holds great promise for sustainable transporta-
tion and improved energy efficiency. However, this integration also introduces a significant
challenge into the distribution network of the smart city. As the number of EVs on the road
increases and their charging demands grow, the electrical grid may face unprecedented
challenges in meeting the energy requirements of these vehicles. The increased energy
demand from charging EVs requires careful management to ensure grid stability, prevent
overloads, and accommodate the growing energy needs of transportation. Without careful
planning and infrastructure upgrades, the influx of EVs can strain the existing power grid.
The studies carried out in [65–67] emphasize the need for long-term smart grid investment
planning, showing the effects of EVs on the distribution network planning. Table 1 presents
a summary of the significant challenges that the integration of EVs can pose for electric
utilities in smart cities.

Table 1. Impacts of grid integration of EVs in a smart city.

Impacts Description

Power loss [66,68]

The significant penetration of EVs into the smart
grid can lead to a large consumption of real power,
leading to power loss in the distribution system.
This can reach a high of 40% during off-peak hours.

Voltage and
phase unbalance [69]

Since the chargers used in EVs are majorly single
phased, charging large numbers of EVs
simultaneously and using same phase can lead to
phase unbalance and current unbalances, which
create voltage unbalances.

Increase in load demand
[70]

The uncontrolled charging of EVs during peak times
can lead to an increase in load levels.

Stability [71–73]

Since EVs are regarded as nonlinear loads and can
draw large amounts of power within a short time,
they can cause the power system to become unstable.
Additionally, a significant penetration of EVs into
the grid makes the power system more susceptible
to disturbances.

Injection of harmonics
[69,72,74–76]

A higher penetration of EVs in the grid can lead to
the injection of harmonics in the grid, causing
harmonic pollution if not well managed. Although
some research has concluded that the total harmonic
distortion (THD) level caused by EV charging is well
below 1%, this can increase with the number of
chargers connected per time in the smart city.

Network component overloading [77–79]

Without a corresponding upgrade of the network
infrastructure in the power system, the high energy
demand of EVs can lead to a reduction in the
lifespan of network equipment such as transformers
and cables due to overload.
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Establishing standardized communication protocols, charging connectors, and interop-
erability among various charging networks and EV models is essential to enable seamless
charging experiences and compatibility across different systems within a smart city. The
challenge of interoperability and standardization is a significant hurdle when integrating
electric vehicles (EVs) into a smart city environment. EV charging infrastructure comes in
various types, such as different plug designs, power levels, and communication protocols.
The lack of interoperability and standardization means that EV owners may encounter
compatibility issues when trying to charge their vehicles at different charging stations. This
can lead to inconvenience, decreased user experience, and even situations where certain EV
models are incompatible with specific charging stations, limiting the options for EV owners.
Different regions and countries may have varying regulations, standards, and protocols for
EV charging, making it challenging for manufacturers, service providers, and policymakers
to align their efforts. The lack of harmonization can slow down the deployment of charging
infrastructure and hinder the adoption of EVs on a broader scale. The United States, Europe,
Japan, and China all have different standards for EV charging as reported in [80]; however,
the two most widely used standards that deal with EV charging are the International
Electro-technical Commission (IEC) and Society of Automotive Engineers (SAE) standards
used in Europe and the United States, respectively. Table 2 describes the different globally
recognized regulatory bodies and their established standards, which oversee different
aspects of EVs. Since different countries follow different charging standards, different EV
manufacturers are trying to avoid conflicts in charging standards by coming up with a
common charging connector [81], as shown in Figure 4a,b [80]. From Figure 4, it can be
concluded that there is a need to urgently harmonize the various charging standards and
have a universal solution of EV charging devices. These standards play a very crucial role
in the grid integration of EVs into a smart city.

Table 2. Standards associated with EV.

Organization Standard Detail

Institute of Electrical and Electronics
Engineers (IEEE) [82]

P1547 Grid connection of EVs
P2030 Standard for the interoperability of smart grids
P2030.1 Electrified transportation infrastructure draft
P2100.1 Charging system standardization and wireless power transfer

National Electric Code (NEC) [83]
625 Standard for offboarding charging system

626 Requirements for parking lots for electrified trucks

Deutsches Institut fuer Normung (DIN,
Germany) [84]

43538 Specifications for battery systems
EN50620 Specifications on charging cable
VDEO510-11 Specifications on testing procedures of Li-ion batteries

Society of Automotive Engineers (SAE) [85]

J2293 Requirements for EV and offboard EV supply equipment for
charging from the utility grid.

J2847 Communication standard between EVs and utility grid.
J2931 Standard for digital communication between EV and utility grid.
J2894 Power quality requirements and testing procedure for EVs
J1772 Conductive charging standards
J1773 Contactless charging standards

Japan Electric Vehicle Association (JEVA) [86]

C601 Standard for charging plugs and receptacles.
D001-002 Standardizes the battery characteristics for EV.
G106-109 Contactless charging standards
G101-105 Quick charging standards

Standardization Administration of China [87] GB/T 20234 Standards for plugs, sockets, and connectors for EV conductive
charging
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(a) 

 
(b) 

Figure 4. Schematic of (a) charging ports, (b) charging connectors [80].

4.2. Economic Challenges

Historically, one of the main barriers to widespread EV adoption has been the higher
upfront cost compared to conventional internal combustion engine vehicles (ICEVs). Af-
fordability and cost competitiveness will play a crucial role in encouraging consumer
adoption. The initial cost of an EV is one factor; another factor is the lifetime cost of such
vehicles, often expressed as the total cost of ownership (TCO) [88]. It is worth noting that
while the purchase cost of EVs has been declining, there may still be a price premium
compared to similar-sized ICEVs. The TCO of an EV includes factors such as the purchase
price, maintenance costs, fuel/charging costs, and resale value. However, the lower oper-
ating costs, potential savings in maintenance, and the long-term benefits of reduced fuel
consumption can help offset the initial investment and make EV ownership economically
viable for many consumers. The specific pricing and cost dynamics of electric vehicles
can vary across manufacturers, models, and regions, so it is advisable to research and
compare different options to find the best fit for individual budgets and requirements.
A lower TCO makes EVs more affordable and financially attractive to consumers. In a
smart city, where sustainable transportation is a priority, a lower TCO encourages more
individuals and businesses to consider purchasing EVs. It increases the likelihood of EV
adoption and integration into the city’s transportation ecosystem. The authors in [89]
carried out a detailed literature review on the total cost of owning an EV while the research
in [90] predicts that by 2030, the prices of EVs will be significantly similar to the prices of
conventional vehicles. The prices of EVs will to a large extent determine their integration
into smart cities.

The significant investment required to build a comprehensive charging infrastructure
network can pose financial challenges towards integrating EVs into a smart city. Balancing
the costs associated with installation, operation, and maintenance of charging stations is
a key consideration. Underdeveloped public charging infrastructure, particularly rapid
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charging, remains a challenge in the deployment of EVs in smart cities. One of the reasons
for this is the cost of building charging stations or upgrading existing infrastructure. The
authors in [91] discussed the possibility of smart or managed charging. Managed or
smart charging entails scheduling EV charging during periods when the cost of generating
and delivering power is less expensive, while still meeting the needs of the vehicle owner.
Electricity pricing, sophisticated technology, and the best location of charging infrastructure
can all be used to control EV charging. Incorporating more renewable energy sources into
EV charging can maximize the use of the current network infrastructure and reduce the
need for additional investment. Managed charging can help EVs operate more affordably
and give them a competitive edge over gas-powered vehicles. The authors in [92] identified
available charging infrastructure as a significant factor in the deployment of EVs. The
costs associated with installing a charging infrastructure on private premises to enable
stationary charging adds further costs to the purchase and installation of EVs. An analysis
of the costs of stationary charging infrastructure is carried out in [93] where the authors
identified and carried out an analysis of various factors influencing the economic suitability
of different charging infrastructure and the impact on EV deployment. The cost of charging
infrastructure can influence the rate of EV adoption within a smart city. If the cost is
relatively low, more businesses, homeowners, and municipalities may be willing to install
charging stations. This expanded charging network can help increase the confidence of
individuals considering purchasing EVs, knowing that they will have convenient access
to charging facilities. Conversely, high infrastructure costs may slow down the adoption
rate, as potential EV owners may hesitate to invest in a vehicle without an adequate
charging infrastructure.

The cost of batteries is a crucial component of the overall price of an electric vehicle.
Batteries serve as the primary energy storage system, providing power to propel the
vehicle and support various onboard systems. The price of batteries has been a significant
concern for consumers and a barrier to the widespread adoption of EVs, especially in
smart cities. However, there have been notable advancements and cost reductions in
battery technology in recent years. Historically, lithium-ion batteries, which are the most
commonly used batteries in EVs, are expensive to produce due to several factors. Firstly, the
materials used in lithium-ion batteries, such as lithium, cobalt, nickel, and manganese, have
limited availability and are subject to price fluctuations in the global market. Secondly, the
manufacturing processes for battery cells are complex and require specialized equipment
and expertise, further driving up costs. The authors in [94] emphasized the importance of
reducing the cost of lithium-ion batteries. The authors noted that despite the reduction in
costs of batteries for EVs, these costs still remain high when compared to the set targets, and
therefore remain a hinderance to the wide scale adoption of EVs. It is therefore expected
that as the cost of lithium-ion batteries continues to decline, the number of EVs in smart
cities will increase.

Grid upgrades and integration costs play a crucial role in the successful integration of
EVs into a smart city. EVs require charging infrastructure, which puts an additional load
on the electric grid. The existing grid infrastructure may not be capable of handling the
increased demand for electricity that comes with widespread EV adoption. Grid upgrades
are necessary to accommodate the charging needs of EVs. These upgrades can involve
increasing the capacity of power distribution networks, installing new transformers, up-
grading substations, and implementing smart grid technologies. Insufficient grid upgrades
can lead to challenges such as voltage drops, power outages, and increased stress on the
grid during peak charging times. These issues can hamper the widespread adoption of
EVs and create a negative user experience. Adequate grid upgrades ensure a reliable and
robust infrastructure capable of supporting the charging needs of EVs, facilitating their
integration into a smart city. To promote the successful integration of EVs into a smart city,
it is essential to address both grid upgrades and integration costs. Governments, utility
companies, and stakeholders need to collaborate to ensure that the grid infrastructure is
upgraded to meet the increased demand from EV charging. Simultaneously, efforts should
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be made to reduce integration costs through economies of scale, incentives, and public–
private partnerships. By effectively managing these factors, the integration of EVs into a
smart city can be accelerated, leading to a cleaner, more sustainable transportation system.

4.3. Environmental Challenges

The integration of EVs into smart cities holds tremendous potential for reducing
greenhouse gas emissions, improving air quality, and mitigating the environmental impacts
associated with traditional transportation systems. However, this transition is not without
its environmental challenges. One of the primary environmental challenges is the upstream
impact of EVs. While EVs themselves produce zero tailpipe emissions, the electricity used
to charge them is generated from various sources, which may include fossil fuels such
as coal or natural gas. The carbon intensity of the electricity grid plays a crucial role in
determining the overall environmental benefit of EVs. Therefore, a key challenge is to
ensure that the electricity powering EVs is generated from renewable and low-carbon
sources [95].

The production of EVs requires the extraction of raw materials such as lithium, cobalt,
and rare earth elements. Irresponsible extraction practices can have severe environmental
and social consequences, including deforestation, water pollution, and human rights
violations. Additionally, the end-of-life management of EV batteries raises concerns about
recycling and proper disposal. As EVs reach the end of their lifespan, proper disposal and
recycling becomes crucial. EV batteries contain valuable materials that can be recovered
and reused. Without a proper recycling infrastructure and processes, there is the risk
of hazardous waste and environmental contamination as reported in [96]. Recycling of
lithium-ion batteries is a research area that has continued to gain attention. The authors
in [97] have presented a comprehensive overview of various technologies relevant for
recycling lithium-ion batteries. It is also important to note that improper recycling or reuse
of lithium-ion batteries can generate a lot of toxic waste, as recorded in [98]. However,
in [99], the author noted that the price of permanently disposable materials used in an
EV battery is far less than the price of the fully used battery. EV batteries can be reused,
especially for less demanding applications as shown in [100], prompting the concept of
second demonstration use of EV.

Typically, when an EV reaches the end of its useful life for personal transportation, it
still retains a significant portion of its battery capacity. Instead of retiring the vehicle entirely,
the second demonstration use concept aims to repurpose these EVs to serve other functions,
maximizing their lifespan and optimizing resource utilization. The batteries in EVs can store
surplus electricity generated from renewable sources, such as solar or wind power, and
discharge it back to the grid during times of high demand. By integrating EVs into energy
storage systems, they can help balance the grid, smooth out fluctuations in renewable
energy generation, and improve overall grid stability. This approach promotes renewable
energy integration and enhances the efficiency and reliability of the electricity system. The
research in [101] showed that batteries with potential reuse had more ratings than the
ratings of batteries increasingly suitable for recycling [102]. However, several challenges
remain, including technical considerations, regulatory frameworks, and standardization
of interfaces and protocols. Ensuring compatibility and interoperability among different
EV models and systems is crucial for the widespread adoption and success of the second
demonstration use concept.

Choosing between reuse and recycling depends on factors such as battery condition,
feasibility of secondary applications, recycling infrastructure availability, and market de-
mand for recycled materials. A comprehensive approach may involve a combination of
both strategies, maximizing the lifespan of batteries through reuse and recovering valuable
resources through recycling. This approach will help to optimize resource utilization, mini-
mize waste, and contribute to a more sustainable and circular economy for EV batteries
within a smart city.
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4.4. Social Challenges

The integration of EVs in smart cities can be limited by societal obstacles just like the
technical and economic challenges. A consumer’s choice of an EV can be affected by a mix
of various emotions and practicality. It is therefore important to investigate the perceptions
of consumers to support large-scale acceptance of EVs within the smart city. The social
challenges associated with integrating EVs into smart cities encompass various aspects of
society, including accessibility, equity, and behavioral changes. These challenges arise from
the need to ensure that the benefits of EV adoption are accessible to all members of the
community and that the transition is inclusive and fair.

One of the primary social challenges of adopting EVs in a smart city is vehicle safety.
Consumers prioritize safety when considering any vehicle purchase, and EVs are no excep-
tion. Perceptions of EV safety can be influenced by factors such as battery performance,
crash test ratings, and overall vehicle design. Providing accurate information about the
safety features and crashworthiness of EVs, along with conducting rigorous safety testing
and certification processes, helps build trust and confidence among consumers. Battery
safety is a significant concern for EV consumers. While lithium-ion batteries used in EVs
have a strong safety record, isolated incidents of battery fires or thermal runaway events
can create negative perceptions. Enhancing battery safety through robust design, engineer-
ing, and advanced thermal management systems is crucial. Transparent reporting and
effective communication about battery safety measures, emergency response protocols,
and real-world safety data can help address consumer concerns.

Resiliency and range anxiety is another social challenge that has impacted negatively
on consumers embracing EVs [103]. Range anxiety, the fear of running out of battery charge
with limited charging infrastructure, can impact consumer perceptions of EV resiliency.
Consumers may worry about the availability and accessibility of charging stations, particu-
larly during long-distance travel or in areas with limited charging infrastructure. The time
required to charge an EV can also contribute to range anxiety. While charging technology
is continuously improving, longer charging times compared to refueling a conventional
vehicle can create concerns about travel delays or inconvenience, especially during long
trips. The estimated range provided by EVs is based on various factors such as driving
conditions, weather, and battery condition. If drivers perceive that the estimated range is
not accurate or may not account for real-world driving scenarios, it can exacerbate range
anxiety. Uncertainty about how far the vehicle can travel on a single charge can lead to
concerns about being stranded.

Equity is another important social consideration in the integration of EVs into smart
cities. The benefits of EV adoption, such as reduced emissions and improved air quality,
should be shared equitably across communities. It is essential to avoid exacerbating existing
socio-economic disparities and ensure that the transition to electric transportation does not
disproportionately affect vulnerable populations or contribute to environmental injustice.
This requires proactive policies and programs that address the specific needs and concerns
of disadvantaged communities, promoting access to EVs, charging infrastructure, and
associated benefits for all.

Furthermore, integrating EVs into smart cities requires significant behavioral changes
from both individuals and organizations. The widespread adoption of EVs necessitates
a shift in attitudes, habits, and infrastructure planning [104]. Encouraging public accep-
tance and awareness of EV benefits, supporting behavior change initiatives, and providing
education on charging infrastructure and maintenance are crucial to facilitate a smooth
transition. Additionally, fostering collaborations between public and private sectors, in-
cluding automakers, utilities, and urban planners, is essential for effective integration and
to address the complex social dynamics involved.

5. Case Studies of Successful EV Integration into Smart Cities

In recent years, the integration of EVs into smart cities has emerged as a key strategy
for promoting sustainable urban transportation. Cities around the world are actively
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exploring innovative solutions to reduce carbon emissions, enhance energy efficiency, and
improve the overall quality of life for their residents. Though the integration of EVs into
smart cities is not without its challenges, there have been notable success stories from
various regions across the globe. These success stories showcase the potential and benefits
of EV integration despite the complexities involved. Through case studies of successful EV
integration into smart cities, we can gain insights into the transformative impact of this
technology on urban mobility.

Amsterdam, the capital city of the Netherlands, has emerged as a leading example
of successful EV integration into a smart city. The city has embraced sustainable urban
planning and has taken bold steps to promote electric mobility as a key component of
its transportation system. One of the key factors behind Amsterdam’s success is the es-
tablishment of an extensive charging infrastructure. The city boasts over 3000 public
charging points, ensuring that EV owners have convenient access to charging facilities
throughout the city. This widespread availability of charging infrastructure has helped
alleviate range anxiety and encourage the adoption of EVs. In addition to the charging
network, Amsterdam has implemented various smart mobility solutions to optimize EV
usage. Real-time data analytics are utilized to monitor and manage the charging infrastruc-
ture effectively. This data-driven approach enables the city to identify high-demand areas,
optimize charging schedules, and efficiently allocate resources. Furthermore, Amsterdam
has embraced dynamic charging infrastructure, allowing EVs to be charged while driving.
This innovative approach eliminates the need for extended charging stops and provides
continuous power to EVs, further enhancing their convenience and usability.

San Diego, located on the southern coast of California, is another city that has made
significant strides in integrating EVs into its smart city infrastructure. The city has been
proactive in promoting sustainable transportation and has implemented various initiatives
to support EV integration. One of the key achievements of San Diego is the establish-
ment of a robust charging infrastructure. The city has partnered with public and private
stakeholders to install thousands of EV charging stations across the region. These charg-
ing stations are strategically located in public spaces, workplaces, and residential areas,
ensuring convenient access for EV owners. To maximize the efficiency of EV charging,
San Diego has implemented a smart grid infrastructure. This intelligent system optimizes
energy usage and load balancing, allowing for intelligent charging management. EVs can
be charged during off-peak hours when electricity demand is lower, reducing strain on
the grid and minimizing the overall energy consumption. San Diego has also emphasized
the integration of renewable energy sources into its charging infrastructure. The city has a
strong commitment to clean energy, and a significant portion of its electricity comes from
renewable sources such as solar and wind. By integrating renewables into the charging
infrastructure, San Diego ensures that EVs contribute to a lower carbon footprint and align
with the city’s sustainability goals. Furthermore, San Diego has implemented various
incentive programs to encourage EV adoption. These include financial incentives, such as
rebates and grants for EV purchases, as well as perks like free or discounted parking for
EVs. By providing these incentives, the city aims to make EV ownership more accessible
and attractive to residents.

Shenzhen, a bustling metropolis in southern China, has emerged as a global leader
in the successful integration of EVs into its smart city infrastructure. The city has made
remarkable strides in electrifying its transportation system and has become a prominent
example of sustainable urban mobility. One of the standout achievements of Shenzhen is its
electrification of the entire bus fleet. With over 16,000 electric buses in operation, Shenzhen
boasts the world’s largest electric bus fleet. This transformation has not only significantly
reduced air pollution and greenhouse gas emissions, but has also enhanced the overall
quality of life for residents. Shenzhen’s success in EV integration can be attributed to its
comprehensive charging infrastructure. The city has established an extensive network of
charging stations to support the growing number of electric buses and private EVs. These
charging facilities are strategically located throughout the city, including bus terminals,
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public parking lots, and residential areas, providing convenient access to charging for
EV owners.

To facilitate the efficient management of EV charging, Shenzhen has implemented
advanced technologies. This includes the use of smart charging stations that can monitor
and control the charging process, optimize charging schedules, and ensure a stable power
supply. Additionally, the city has developed intelligent dispatch systems for its electric
bus fleet, enabling efficient routing and reducing downtime. Shenzhen’s success in EV
integration can be attributed to strong government support and incentives. The city
provides financial subsidies for EV purchases, making them more affordable for residents.
It has also implemented favorable policies such as preferential treatment for electric vehicles,
including access to dedicated bus lanes and exemption from certain traffic restrictions. The
integration of EVs into Shenzhen’s smart city ecosystem has had significant environmental
and social benefits. The electric buses have improved air quality and reduced noise
pollution, contributing to a cleaner and healthier urban environment. The increased
adoption of EVs has also spurred the development of a vibrant ecosystem of charging
infrastructure and related services, generating employment opportunities and fostering
technological advancements.

Yokohama, a vibrant city in Japan, has achieved significant success in EVs into its
smart city initiatives. The city has been at the forefront of sustainable urban mobility and
has implemented a range of innovative measures to promote the adoption of EVs and
build a greener transportation system. One of the notable achievements of Yokohama is the
successful integration of electric buses into its public transportation network. The city has
introduced a considerable number of electric buses, reducing emissions and noise pollution.
This transition has not only improved the overall air quality but has also enhanced the
commuting experience for residents and visitors. To support the growing number of EVs,
Yokohama has developed a comprehensive charging infrastructure. The city has deployed
numerous charging stations across key locations, including public parking lots, residential
areas, and commercial centers. This extensive network ensures that EV owners have con-
venient access to charging facilities, promoting the use of electric vehicles and alleviating
range anxiety. Yokohama has also implemented an intelligent transportation system that
optimizes the management of EV charging and overall traffic flow. Through the integration
of smart technologies, the city can monitor the status of charging stations, provide real-time
information to drivers regarding the availability of charging points, and optimize the rout-
ing of electric buses for maximum efficiency. Furthermore, Yokohama has been proactive
in utilizing renewable energy sources to power its EV charging infrastructure. The city has
integrated solar panels and other clean energy generation systems into selected charging
stations, reducing the reliance on conventional energy sources and contributing to a lower
carbon footprint. The successful integration of EVs into Yokohama’s smart city framework
has had numerous benefits. It has significantly reduced greenhouse gas emissions, en-
hanced energy efficiency, and improved the overall sustainability of the transportation
system. Additionally, the transition to electric mobility has increased the use of renewable
energy and helped Yokohama move closer to its ambitious environmental targets.

Oslo, the capital city of Norway, has been a pioneer in the successful integration of EVs
into its smart city infrastructure. The city has implemented a comprehensive set of measures
and incentives to promote EV adoption, making it one of the leading EV-friendly cities in the
world. One of the key factors behind Oslo’s success is its strong policy support for EVs. The
city has implemented a range of financial incentives to encourage EV purchases, including
tax exemptions, reduced toll fees, and access to bus lanes. These incentives have made EV
ownership more attractive and affordable for residents, resulting in a significant increase in
EV sales. Oslo has also focused on developing a robust charging infrastructure. The city
has established an extensive network of public charging stations, making it convenient for
EV owners to charge their vehicles throughout the city. Moreover, the charging stations are
strategically located in public spaces, parking areas, and residential buildings, ensuring
easy access for EV users. To further support EV integration, Oslo has prioritized the use of
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renewable energy for charging infrastructure. The city has increased the share of renewable
energy sources in its electricity grid, ensuring that EVs are charged using clean energy. This
approach contributes to a significant reduction in carbon emissions from the transportation
sector, aligning with Oslo’s commitment to sustainability and climate change mitigation.
In addition to these measures, Oslo has actively promoted electric public transportation.
The city has electrified a significant portion of its bus fleet, making electric buses a common
sight on the streets of Oslo. This transition has not only reduced emissions, but has also
improved air quality and provided a quieter and more pleasant commuting experience
for residents.

6. Discussion

One of the key aspects of successfully integrating EVs into smart cities is comprehen-
sive planning and collaboration among various stakeholders, including city authorities,
utility providers, transportation agencies, and private businesses. This approach ensures
that all parties work together towards a shared vision of sustainable mobility. Comprehen-
sive planning involves assessing the current infrastructure and identifying the gaps and
requirements for EV integration. This includes evaluating the existing charging infrastruc-
ture, grid capacity, and transportation networks. It also involves developing long-term
strategies and roadmaps for scaling up the charging infrastructure and aligning it with
the city’s renewable energy goals. Collaboration is essential to leverage the expertise and
resources of different stakeholders. Public–private partnerships can play a crucial role
in funding and implementing charging infrastructure projects. Additionally, collabora-
tion with utility providers helps in managing grid capacity and integrating EV charging
with smart grid technologies. Engaging with transportation agencies can facilitate the
integration of EVs into public transportation systems, promoting multimodal options, and
seamless connectivity.

Public–private partnerships (PPPs) have proven to be effective in accelerating the
integration of EVs into smart cities. These partnerships bring together the resources,
expertise, and innovation of both the public and private sectors, leading to faster and more
efficient deployment of charging infrastructure and supportive services. PPPs can provide
funding and investment for charging infrastructure projects, which often require significant
capital investment. Private companies can contribute their knowledge and experience
in building and operating charging stations, while the government provides regulatory
support and incentives. This collaboration can result in a more extensive and diversified
charging network, catering to the needs of different user groups, such as residential,
commercial, and public transport.

Integrating EV charging with the smart grid is essential for managing the increased de-
mand for electricity and optimizing energy usage. Smart grid technologies enable efficient
charging management, load balancing, and demand response capabilities. Smart grid inte-
gration involves utilizing advanced technologies such as communication systems, sensors,
and control mechanisms to monitor and manage EV charging. This integration allows for
dynamic load management, optimizing charging schedules to avoid peak demand periods
and balance the grid’s load. Additionally, demand response programs incentivize EV
owners to adjust their charging patterns based on grid conditions, promoting grid stability
and reducing strain during peak hours. A case study is Tokyo, Japan, which has made
significant progress in smart grid integration for EV charging. The city has implemented
demand response programs that encourage EV owners to charge during off-peak hours by
offering time-of-use pricing incentives. This approach not only helps manage grid demand
but also supports renewable energy integration by aligning EV charging with periods of
high renewable energy generation.

Future-proofing EV charging infrastructure is crucial to ensure its long-term viability
and scalability. As the EV market continues to grow, it is essential to design and deploy in-
frastructure that can accommodate the increasing demand for charging services and adapt
to technological advancements. Future-proof infrastructure entails considering factors such
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as charging station capacity, power supply requirements, and flexibility for upgrades. It
involves deploying charging infrastructure that can support various charging standards,
including fast charging and high-power charging, to cater to the evolving needs of different
EV models. Scalability is another critical aspect of future-proofing infrastructure. As EV
adoption increases, the charging network must expand to meet the growing demand. This
may involve deploying charging stations in strategic locations, such as highways, public
parking lots, and commercial areas, to ensure convenient access for EV owners. Further-
more, future-proofing infrastructure involves integrating smart features and connectivity.
This includes implementing technologies such as Internet of Things (IoT) connectivity,
real-time data monitoring, and remote management capabilities. These features enable
efficient operation, maintenance, and monitoring of the charging infrastructure and support
advanced functionalities such as dynamic pricing, user authentication, and grid integration.

The integration of EVs into smart cities involves various aspects, and one crucial
element for seamless operation is interoperability [105]. Interoperability refers to the ability
of different systems, technologies, or devices to communicate, exchange data, and work
together effectively [106]. In the context of EV integration into smart cities, interoperability
plays a pivotal role in enabling efficient charging infrastructure, grid management, and
overall sustainable transportation systems. Interoperability in charging infrastructure
ensures that EVs can be charged at different charging stations, regardless of the vehicle
manufacturer or charging infrastructure provider. Standardization of charging protocols,
such as CHAdeMO, CCS (Combined Charging System), and Tesla’s Supercharger network,
facilitates interoperability by allowing EVs to charge at any compatible charging station.
These protocols ensure that EVs can access charging services irrespective of the charging
station’s operator, ensuring convenience and eliminating the need for multiple member-
ships or access cards. Interoperability extends beyond physical charging connections. It
also involves the seamless exchange of data and communication between EVs, charging
stations, the power grid, and other components of the smart city ecosystem. Standardized
communication protocols, such as Open Charge Point Protocol (OCPP) and OpenADR
(Automated Demand Response), enable interoperability between different devices and
systems. This allows for dynamic pricing, load management, demand response programs,
and efficient grid integration of EVs. EVs have the potential to act as distributed energy re-
sources, providing storage capacity and grid stabilization services. Interoperability enables
bidirectional communication between EVs and the power grid, allowing for vehicle-to-
grid (V2G) capabilities. V2G systems enable EVs to feed surplus energy back into the
grid during peak demand periods or provide ancillary services, promoting grid stability
and renewable energy integration. Interoperable systems enable seamless coordination
between EV charging, energy management systems, and the power grid, optimizing energy
utilization and reducing strain on the grid. Interoperability must also address the critical
aspects of data security and privacy. As various systems exchange data and communicate
with each other, it is essential to establish robust cybersecurity measures to protect sensitive
information. Standardization of security protocols and encryption methods ensures secure
data transmission and prevents unauthorized access or manipulation of EV-related data.
To achieve interoperability in EV integration into smart cities, standardization plays a
vital role. Governments, industry stakeholders, and standards organizations collaborate
to develop common technical standards, protocols, and interfaces. These standards en-
able interoperability between different vendors, manufacturers, and service providers.
Policy frameworks and regulations also play a crucial role in driving interoperability by
mandating compliance with specific standards and encouraging open access to charging
infrastructure and data. The need for stakeholder engagement and collaboration cannot be
overemphasized: collaboration among various stakeholders, including EV manufacturers,
charging infrastructure providers, utility companies, government agencies, and technology
developers. These stakeholders must work together to define and implement interoperable
solutions, ensuring compatibility across different systems and technologies. Collabora-
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tive efforts foster innovation, enhance user experience, and drive the adoption of EVs in
smart cities.

7. Future Trends and Outlook

One of the key future trends in EV integration into smart cities is the deployment
of high-power charging infrastructure. As the demand for EVs continues to grow and
battery technology improves, high-power charging solutions will be necessary to address
the issue of charging time and provide a seamless experience for EV owners. High-power
chargers allow for faster charging times and increased convenience for EV owners. As
EV battery technology improves, high-power chargers will become essential to meet the
growing demand for fast and efficient charging. These chargers will be capable of delivering
significantly higher power levels, reducing charging times to a matter of minutes rather
than hours. This advancement will encourage greater EV adoption by addressing the
issue of charging convenience and range anxiety. High-power charging infrastructure may
become more tailored to specific EV models, taking into account their battery technology,
charging capabilities, and power requirements. This approach can optimize charging
efficiency and ensure compatibility between the charger and the vehicle, maximizing the
charging speed and battery health. The establishment of high-power charging hubs at
key locations, such as shopping centers, airports, and rest areas, can further enhance
the convenience and accessibility of fast charging. These hubs could feature a cluster
of high-power charging stations, providing a centralized and efficient charging solution
for EV owners. High-power charging infrastructure can also support battery swapping
systems, where EV owners can exchange their depleted battery with a fully charged one at
designated stations. This approach eliminates the need for long charging times and allows
for instant battery replenishment, making it suitable for commercial and fleet applications.

Vehicle-to-Grid (V2G) technology is an innovative concept that allows EVs to not only
draw energy from the grid but also to feed excess energy back into the grid when needed.
V2G technology enables bidirectional energy flow between EVs and the electrical grid,
transforming EVs into mobile energy storage units and facilitating a more flexible and
resilient energy system. As V2G technology continues to advance, several developments
are expected in the future. The establishment of common standards and protocols for
V2G communication and interoperability will be crucial for widespread adoption. Stan-
dardization ensures compatibility between different EV models, charging infrastructure,
and grid systems, enabling seamless integration and scalability. Integration between V2G
technology and advanced grid management systems, such as smart grids and distribution
management systems, will enhance the efficiency and coordination of EV charging and
discharging. This integration will optimize the use of renewable energy, improve grid
stability, and enable more sophisticated grid services.

Wireless charging technology is an emerging trend that has the potential to revolu-
tionize the way EVs are charged in smart cities. Wireless charging eliminates the need for
physical cables and connectors, enabling convenient and automated charging experiences.
With wireless charging, EVs can be charged simply by parking over a charging pad or
driving over a charging lane embedded in the road surface. This technology offers seamless
integration of charging infrastructure into existing urban infrastructure, reducing clutter
and visual impact. Wireless charging solutions will become more prevalent, especially in
public spaces, residential areas, and fleet operations, enhancing the overall user experience
and encouraging greater EV adoption. As wireless charging technology continues to evolve,
several developments are expected in the future. Wireless charging systems will be able to
deliver higher power transfer rates, reducing charging times and increasing the efficiency
of charging EVs. The development of dynamic wireless charging systems will enable EVs
to charge while on the move. This technology can be integrated into roadways or high-
ways, allowing EVs to replenish their battery levels during long-distance travel, without
the need for frequent stops. Furthermore, the establishment of common standards and
interoperability between different wireless charging systems will be crucial for widespread
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adoption. Standardization ensures compatibility between various EV models and charging
infrastructure, allowing EV owners to use any wireless charging station, regardless of the
vehicle brand.

Vehicle-to-Infrastructure (V2I) communication is a key aspect of integrating EVs into
smart cities. It refers to the exchange of information between EVs and the surrounding
infrastructure, such as traffic lights, charging stations, parking systems, and grid networks.
V2I communication enables seamless interaction between EVs and the urban environment,
facilitating efficient and optimized transportation and charging experiences. V2I communi-
cation allows EVs to receive real-time traffic information, such as traffic congestion, road
conditions, and signal timings, from the infrastructure. With these data, EVs can optimize
their routes, avoiding congested areas and selecting the most efficient paths. This not only
reduces travel time for EV owners but also helps alleviate traffic congestion and improve
overall traffic flow in the city. As V2I communication technology progresses, standard-
ization of V2I communication protocols and connectivity standards will be essential for
widespread implementation. Common standards will ensure interoperability between
different EV models, infrastructure providers, and cities, enabling seamless communica-
tion and integration. The deployment of 5G networks and Cellular Vehicle-to-Everything
(C-V2X) technology will enhance V2I communication capabilities. Networks that are 5G
offer increased bandwidth, low latency, and high reliability, enabling fast and reliable data
exchange between EVs and the infrastructure, facilitating real-time communication and
ensuring quick response times. Ongoing advancements in 5G and C-V2X will focus on
improving the reliability of V2I communication. This includes developing robust communi-
cation protocols, redundancy mechanisms, and ensuring uninterrupted connectivity, even
in challenging urban environments.

8. Conclusions

The integration of electric vehicles (EVs) into smart cities presents both challenges and
opportunities. While there are hurdles to overcome, successful case studies from around
the world demonstrate that the benefits of EV integration are substantial. As we move
towards a more sustainable future, the electrification of transportation plays a crucial role
in reducing carbon emissions, improving air quality, and enhancing energy efficiency.

The case studies of Amsterdam, San Diego, Shenzhen, Yokohama, and Oslo highlight
the diverse approaches and strategies employed by smart cities to overcome challenges and
create successful EV integration models. These cities have demonstrated the effectiveness
of comprehensive planning, infrastructure development, policy support, and collaboration
among stakeholders.

To further accelerate the integration of EVs into smart cities, several key recommen-
dations emerge. First, governments and city planners must prioritize the development of
robust charging infrastructure to alleviate range anxiety and promote EV adoption. This
includes deploying fast-charging stations in strategic locations, incentivizing private and
public entities to invest in charging infrastructure, and leveraging smart grid technologies
to manage the increased demand.

Secondly, collaboration and partnerships among different stakeholders are crucial.
Governments, utilities, automotive manufacturers, technology companies, and the commu-
nity must work together to create an integrated ecosystem that supports EV integration.
This involves aligning policies, sharing data and resources, and fostering innovation in
areas such as vehicle-to-grid (V2G) integration and smart charging solutions.

Thirdly, incentives and supportive policies can play a significant role in accelerating
the transition to electric mobility. These can include financial incentives for EV purchases,
tax incentives, preferential parking, and dedicated EV lanes. Governments should also
consider promoting EV sharing services and electrifying public transportation to reduce
private vehicle usage and promote sustainable mobility options.

Furthermore, leveraging smart city technologies and data analytics is essential for
optimizing EV integration. Intelligent traffic management systems, integrated energy
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management systems, and advanced data analytics enable efficient charging infrastructure
planning, grid management, and demand-response strategies. By leveraging real-time
data, cities can anticipate and respond to EV charging needs, balance energy supply and
demand, and optimize charging infrastructure utilization.

Future research on the risks and challenges of electric vehicle integration into smart
cities should primarily focus on the development of advanced charging infrastructure
and energy management systems. These efforts will aim to optimize the placement and
density of charging stations, as well as enable efficient utilization of the power grid through
smart charging algorithms and V2G capabilities. Additionally, future research should be
directed towards developing energy management systems that can effectively balance
the energy demand from EVs with the available supply, considering grid constraints
and renewable energy generation. By addressing these areas, future research directions
will contribute to the seamless integration of electric vehicles into smart cities, fostering
sustainable transportation and enhancing the overall efficiency of urban environments.

In conclusion, the successful integration of EVs into smart cities requires a compre-
hensive and multi-faceted approach. It involves investment in charging infrastructure,
supportive policies, collaboration among stakeholders, and the utilization of smart city
technologies. With careful planning, effective governance, and the engagement of citi-
zens, smart cities can realize the full potential of electric mobility, creating sustainable,
connected, and livable environments for their residents while contributing to global efforts
in combating climate change.
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Abstract: The behind-the-meter technologies integrating “all-in-one” photovoltaic plants, storage
systems, and other technological solutions can transform consumers into active prosumages to both
reduce their energy costs and provide flexibility to the grid. To exploit those flexibility services,
it is necessary to manage the end-users in an aggregated form. End-user aggregation is currently
becoming a suitable solution to manage energy flows to obtain environmental, economic, and social
benefits. In this scope, the paper presents an algorithm to opportunely manage the energy flows
inside this aggregation operating in a Power Cloud framework. The algorithm schedules the energy
flows that the end-user storage systems must exchange inside the aggregation to maximize the use of
renewable sources, provide grid flexibility services, and simultaneously provide balancing services.
The algorithm is organized into three different steps: the day-ahead step, the real-time step, and
the balancing one. Some simulation results are illustrated to demonstrate the effectiveness of the
proposed algorithm.

Keywords: power cloud; energy aggregation; energy management

1. Introduction

The widespread presence of both prosumers and prosumages (a prosumage is a pro-
sumer integrating a storage system) allows the implementation of several solutions to reduce
the cost of energy and to provide grid flexibility services in the energy transition scenario.

There are some studies in the literature that provide analysis concerning the partici-
pation of end-user aggregation in providing services to the transmission or distribution
grids. In [1], the authors introduce the concept of a distributed resource aggregator, which
is an active part of the distribution system that enables small resources to participate in
the electricity market, providing ancillary services. In this framework, the aggregator
covers the role of a system coordinator. In [2,3], the aggregation of electric vehicles (EVs)
to provide ancillary services in the presence of V2G (vehicle-to-grid) charging stations is
considered. In particular, in [2], real-time EV charging controllers allowing participation in
the ancillary services markets have been implemented. One of the parameters utilized is
the charging efficiency. In [3], the EV aggregations provide a secondary frequency response
considering the EV user’s preferences.

The management of the aggregation to reduce congestion and provide flexibility using
distributed energy resources is also an important issue. In [4], a heuristic dispatching
approach is used. In [5], distributed resources are involved in providing voltage support
and optimizing real-time operations in the distribution and transmission networks.

The aggregation can provide services to the grid both using storage systems and by
opportunely managing the loads in real-time or scheduling them in advance. In [6–8],
home appliances are considered flexible resources to provide services to the grid if they
are required; algorithms to manage them in real-time for a 24-hour time horizon are also
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implemented. This operating mode can lead to modifying the users’ habits or, in any case,
can require the user’s interaction, often leading to the impossibility of providing flexible
services with the possibility of penalties for the aggregator, as in [9]. On the contrary,
if energy storage systems (ESSs) are used, several features can be carried out without
requiring users’ interaction [10,11].

In [12], a review of the different management models of storage systems is carried
out. It is highlighted how, among the different dispatching domains, between financial and
technical, the financial one is the most requested and used by users who require greater
profits. On the contrary, the technical ones are most requested by network operators. In
the model that will be discussed in this paper, a technical approach has been considered,
but without neglecting the financial one, considering the earning possibilities for the users
themselves that will interact with the grid operator. Different from other methods, this one
considers both users and grid necessities.

In [13], an energy management system for the minimization of the daily cost of energy
and the maximization of self-consumption for a community microgrid is discussed. It
is shown how the participation of a community microgrid allows it to have significant
economic benefits. Such benefits are also increased using a peer-to-peer (P2P) mechanism.

In [14], a two-stage approach is proposed to manage a community, allowing sepa-
rate energy management operations and economic aspects; they show that in the French
framework, the user’s bill savings belonging to the community are 10% more convenient
compared to the users not belonging to the community.

In [15], an examination of the possible aggregation of users and how they can be
managed is performed. Among the different models, the flexibility of aggregation has
been introduced. Since market access is difficult for small consumers, the implementation
of aggregations allows them to access the market and, at the same time, provide flexible
services to the grid.

In [16], an energy management approach is presented. The main characteristic is
that it is based both on a minimization cost algorithm and, at the same time, integrates a
demand-side approach.

In [17], an energy management strategy that uses fuzzy logic to allocate electricity to
hydrogen storage and electricity storage is proposed. It is applied to a near-zero-energy
community. The proposed multi-objective optimization strategy allows for a percentage
greater than 80% of renewable energy. In [18], an aggregation of users is considered,
and an approach to managing the internal microgrids is presented. In particular, the
internal aspects, from different points of view—market, environmental, and economic—are
examined. In this energy management strategy, a dispatchable biomass plant is considered
to increase flexibility.

To provide flexibility services, it is necessary to forecast the available flexibility. The
purpose of [19] is to predict the flexibility of a local energy community (LEC), so the use of
power consumption of controllable loads is useful to this aim. Such available flexibility
was predicted using a particular artificial neural network (ANN).

1.1. Contribution of the Paper

This paper, starting from the concept of Power Cloud [20] and its related advantages,
proposes an algorithm to opportunely manage the energy flows inside an end-user aggre-
gation from day-ahead to real-time. The Power Cloud concept is a solution to facilitate the
integration of distributed renewable energy systems with new environmentally friendly
and smart enabling technologies for final end-user active participation. Specifically, dis-
tributed flexibility resources, such as storage systems, are managed to maximize the use
of RES and provide transmission system operator (TSO) and/or distribution system op-
erator (DSO) ancillary services. At this scope, EVs may also be easily introduced into the
algorithm as other flexibility resources, like those considered by the authors in [21].

The proposed algorithm is organized in three steps: the day-ahead step, the real-time
step, and the balancing one. The first one determines the charge/discharge of storage sys-
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tems present in the aggregation to maximize the renewable energy prosumers/prosumages
self-consumption using forecasted hourly production and consumption. A reference power
profile is determined to exchange with the grid. The second one determines in real-time
how to modify that profile if flexibility services are required by the TSO/DSO, and in the
last step, the third one, to compensate for errors in forecasting production and/or con-
sumption. Differently from [22,23], where particular bidding and optimization strategies
are proposed to work in real-time in the reserve market, the proposed algorithm operates
in a deterministic way under the existing electricity market rules.

The implemented algorithm is divided into steps that can operate separately, and one
of its advantages is that it does not strictly need field communication among and with
end-users to operate. Indeed, if some communication problems occur, it keeps working,
still guaranteeing acceptable results; only the balancing action needs measurements from
the field. Another advantage is that the algorithm can be implemented on a management
platform with relatively low computational efforts if the platform that enables the ex-
change of data, mainly the charge/discharge of the storage systems between the aggregator
and end-users, is blockchain-based in order to assure transparency, immutability, and
security [20].

1.2. Structure of the Paper

This paper is structured in four sections. After a summary of the principal issue to be
faced, Section 2 describes some aspects concerning end-user aggregation. Sections 3 and 4
describe, respectively, the day-ahead and real-time steps of the proposed algorithm, with a
specific focus on the balancing one. In Section 5, a case study and the related simulation
results are illustrated and discussed.

2. Technical and Economic Issues of Power Cloud Management Model

The end-user aggregations are new energy management models to produce, consume,
and share energy in the Power Cloud framework as proposed in [20]. The end-users
virtually operate within a geographical local perimeter to reduce the energy exchange
outside the aggregation and maximize its economic, environmental, and social benefits.

To allow them to achieve those benefits, the implementation of the proposed algorithm
must consider the electricity and energy market framework and its rules.

For most of the structure of the electricity markets in Europe, it is necessary to define
in advance the energy schedule for both injected and absorbed power, the so-defined
day-ahead schedule of the exchanged power. Specifically, in the presence of renewable
energy sources, it is necessary to schedule their production.

At the same time, considering that the ESSs are the most important resources to
provide grid flexibility services [20], it is necessary to define in advance the flexibility
schedule that they can offer. It is equally important to have a day-ahead schedule of
the power that the ESSs may exchange to maximize the use of the energy produced by
renewable sources.

To this purpose, two issues must be faced: the first is the use of accurate consumption
and production forecasting algorithms to evaluate a reliable power profile schedule and
avoid power imbalances between the scheduled and real power profiles; the second is to
have reliable measures from the field in terms of the power produced by all renewable
energy sources, absorbed by the loads, exchanged with the grid and with the ESS, and the
state of charge (SOC) of the ESSs.

For the first issue, there are several studies that correlate the positive effect of forecast-
ing models with imbalance charges [21]. In this paper, the forecasting algorithm described
in [24] is used to forecast PV power production. Moreover, the balancing step is introduced
to compensate for possible forecasting errors that may occur and to avoid charges for not
having fulfilled the undertaken commitments.

For the second issue, although the above-mentioned measures do not intervene in the
day-ahead step, they become necessary in the balancing step. For this reason, the use of
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a smart meter with a small measurement time range (from minutes up to a few seconds)
is assumed.

3. Power Cloud Day Ahead Energy Management Algorithm

The aim of the proposed algorithm is the optimal use of renewable energy source
generation inside an end-user aggregation in a Power Cloud framework, with the possibility
of providing grid flexibility services. The management algorithm consists of a three-
step algorithm. The first step is the day-ahead step (DA), which receives as input the
consumption and production forecasts, as well as the forecasts of the ESS SOC. It provides
the scheduling of power and the availability of flexibility services, sharing both the surplus
and deficit of energy among the end-users equipped with the ESSs. Starting from the DA
results, the real-time algorithm (RTA) is processed. It considers the flexibility requests
sent by the grid operator, and it operates for each hour using the results of the first step,
changing the scheduled power profile. In this step, the flexibility services, determined by
the availability of ESS, are offered, processed, and executed. In the end, based on the real
measures of the exchanged power and of the storage system parameters, the third step,
the balancing step, operates in real time to reduce any imbalance between the scheduled
power profile and the real one.

3.1. Day-Ahead Step

The day-ahead step operations are illustrated in Figure 1. It consists of many functions
that are carried out, one in sequence to the next, starting from the forecasting of production
and consumption for the single users, aggregating them until the exchange of battery
profiles and the availability to provide services to the grid are calculated. Such operations
are represented by different equations that are reported below.

Figure 1. Day-ahead step flow chart.

Let us consider an aggregation of n end-users: np is the number of end-users equipped
with a PV plant, nc is the number of consumers, and ns is the number of end-users equipped
with an ESS.

Starting from np hourly energy production forecasts
(

E f ,u
p,h

)
and nc hourly energy

consumption forecasts
(

E f ,u
c,h

)
, the aggregated hourly energy consumption and production

forecasts, respectively, E f
c,hand E f

p,h, are obtained.

E f
c,h =

nc

∑
u=1

E f ,u
c,h (1)
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E f
p,h =

nc

∑
u=1

E f ,u
p,h (2)

The exchange energy profile with the grid for each end-user (E f ,u
ex,h) and for the aggre-

gation (E f
ex,h) can be obtained as the difference between production and consumption.

E f ,u
ex,h = E f ,u

p,h − E f ,u
c,h (3)

E f
ex,h = E f

p,h − E f
c,h (4)

Using the rated capacity of each ESS and their SOC forecast for the last hour of the
day before (SoC f ,u

24 ), the energy that can be stored in the ESS for each end-user (E f ,u
av,ch) and

for the aggregation (E f
av,ch) is determined.

E f ,u
av,ch = Cu·

(
1 − SoC f ,u

24

)
(5)

where Cu is the capacity for each ESS.
The hourly energy surplus (E f ,u

sur,h) and deficit (E f ,u
de f ,h) for the day ahead are determined

for each end-user.

E f ,u
sur,h = E f ,u

p,h − E f ,u
c,h i f

(
E f ,u

p,h − E f ,u
c,h

)
> 0 (6)

E f ,u
de f ,h = E f ,u

c,h − E f ,u
p,h i f

(
E f ,u

p,h − E f ,u
c,h

)
< 0 (7)

At the same time, the daily energy surplus
(

E f ,u
sur,d

)
for each end-user and for the

aggregation is obtained ( E f
sur,d

)
.

E f ,u
sur,d = ∑

h

(
E f ,u

p,h−E f ,u
c,h ) i f

(
E f ,u

p,h − E f ,u
c,h

)
> 0 (8)

E f
sur,d =

n

∑
u=1

E f ,u
sur,d (9)

Similarly, the energy deficit for each end-user (E f ,u
de f ,d) and for the aggregation (E f

de f ,d)
can be determined.

E f ,u
de f ,d = ∑

h

(
E f ,u

c,h −E f ,u
p,h

)
i f

(
E f ,u

p,h − E f ,u
c,h

)
< 0 (10)

E f
de f ,d =

n

∑
u=1

E f ,u
de f ,d (11)

Once such variables have been determined, at this point, it is necessary to calculate
opportune distribution coefficients to maximize the amount of energy to be shared among
the n end-users. These distribution coefficients (Fu

d ) are determined starting from E f ,u
av,ch,

referred to each end-user equipped with an ESS. Defining E f
av,ch the overall available

charging energy for the aggregation, Fu
d is determined as the ratio between E f ,u

av,ch and E f
av,ch.

E f
av,ch =

n

∑
u=1

E f ,u
av,ch (12)
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Fu
d =

E f ,u
av,ch

E f
av,ch

(13)

An example of Fu
d calculation is reported in Figure 2. Five different end-users equipped

with ESS are considered. The ESSs have different SOCs and capacities. The values of Fu
d are

determined and reported.

Figure 2. An example of distribution coefficients (Fu
d ) calculations.

Such distribution coefficients are used to determine the energy that each end-user u
has to store during the following day (E f ,u

crg,d); it will be function both of E f
sur,d and of E f ,u

av,ch.
It is defined as:

E f ,u
crg,d = min

(
Fu

d ·E f
sur,d, E f ,u

av,ch

)
∀ u ∈ aggregation (14)

Once E f ,u
crg,d has been calculated, the power profiles that each end-user has to exchange

with the ESS are available. The energy profile for the ESS (E f ,u
bat,ch,h) is obtained considering

the distribution coefficient Fu
d in (11) and the aggregation hourly energy surplus (E f

sur,h) if
it exists.

E f
sur,h = ∑

u

(
E f ,u

p,h−E f ,u
c,h ) (15)

where, i f E f
sur,h, E f ,u

crg,d,res,> 0

E f ,u
bat,ch,h = min

(
E f

sur,h·Fu
d , E f ,u

crg,d,res

)
(16)

where E f ,u
crg,d,res is calculated iteratively as follows:

E f ,u
crg,d,res = E f ,u

crg,d f or h = 1 (17)

E f ,u
crg,d,res = E f ,u

crg,d,res − E f ,u
bat,ch,h f or h > 1 (18)

If the hourly aggregate energy production profile is lower than the aggregate consump-
tion energy profile, an energy deficit occurs (E f

de f ,h > 0). Thus, the energy that the ESS must

supply is calculated (E f ,u
bat,ds,h) as in (15). Only the load of the end-users equipped with the

ESS can be supplied by that ESS. The E f ,u
bat,ds,h is determined as the minimum between E f ,u

de f ,h
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and the residual energy in the ESS that is useful to supply the load (E f ,u
dis,res,h). Naturally, it

can be defined only if the SOC f ,u
h of the ESS is greater than the minimum admissible value

of SOC (SOCmin).
E f ,u

bat,ds,h = min
(

E f ,u
de f ,h, E f ,u

dis,res,h

)
(19)

where, i f
(

E f ,u
c,h − E f ,u

p,h

)
> 0

E f ,u
de f ,h = E f ,u

c,h − E f ,u
p,h (20)

and E f
de f ,h =

n

∑
u=1

E f ,u
de f ,h (21)

E f ,u
dis,res,h =

(
SOC f ,u

h − SOCmin

)
·Cu (22)

SOC f ,u
h+1 = SOC f ,u

h +
(

E f ,u
bat,ch,h − E f ,u

bat,ds,h

)
/Cu (23)

The baseline grid power exchange profile (E f ,u
grid,h), with an hourly time step, can be

defined for each end-user and for the entire aggregation.

E f ,u
grid,h = E f ,u

c,h − E f ,u
p,h + E f ,u

bat,ch,h − E f ,u
bat,ds,h (24)

At this point, the flexibility and availability of the single end-user must be estimated.
At this scope, a fundamental assumption is that only the reduction of the baseline can be
carried out, so the hours where E f

de f ,h is greater than zero are considered. The number of

hours when E f
de f ,h> 0 is calculated (nde f ). It is used to determine the hourly energy amount

that end-users make available to modify their power profile. Indeed, the available capacity
(E f ,u

av,var) to vary the power profile is determined as the difference between SOC f ,u
24 , and the

SOC under which it is not possible to modify the profile (SOCmin,var).
The flexibility availability of the single end-user profile E f ,u

av,var,h is so determined by

comparing the load profile of the single end-user and the ratio between E f ,u
av,var and nde f .

The aggregation availability E f
av,var,h can be determined as the sum of the availability

of the single end-user profiles.

E f ,u
av,var =

(
SOC f ,u

24 − SOCmin,var

)
·Cu (25)

E f ,u
av,var,h = min

(
E f ,u

c,h ,
E f ,u

av,var

nde f

)
(26)

E f
av,var,h =

n

∑
u=1

E f ,u
av,var,h (27)

After this step, DA can be considered concluded, so both E f ,u
grid,h and E f ,u

av,var,h are
evaluated and can be communicated to the grid operator, representing the interface with
the aggregator.

3.2. The Real-Time Algorithm (RTA) Step

The real-time step operation is illustrated in Figure 3.
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Figure 3. Real-time step flow chart.

The results of the DA are used to operate the real-time step (RT). Starting from E f
av,var,h,

the grid operator can send a flexibility request to the aggregation. Such a request, consid-
ering the end-users’ flexibility and availability and the end-user distribution coefficients
(Fu

d,var), is distributed among the n end-users. The new ESS and grid exchange power

profiles (E f ,u
bat,h,var, E f ,u

grid,h,var) are so calculated for each end-user as follows:

Fu
d,var =

E f ,u
av,var

E f
av,var

(28)

E f ,u
bat,h,var = E f ,u

bat,ch,h − E f ,u
bat,ds,h − E f ,u

av,var,h (29)

At the end of the process, there is a check to avoid overcharging (SOC > 100%) and
overdischarging (less than SOC = 5%) of each ESS.

3.3. Balancing Step (BS)

The previous steps were performed using only the production and consumption
forecasts as input. Therefore, it is possible that forecast errors occur, causing corresponding
power imbalances and, consequently, significant imbalances in costs. For this issue, the
balancing step becomes useful (Figure 4).

The BS considers, first of all, the configuration data (n, np, nc, ns) for the aggregation,

the measured and forecasted grid power (Pm
grid, P f

grid,h,var), the ESS energy (E f ,u
bat,h), the

ESS capacity of the aggregation (Cagg). The SOC for the entire aggregation (SOCagg) is
determined as the weighted average of the end-users ESSs SOC, considering the capacity
as an element to provide such weight. The applied criterion is to store the energy starting
from the ESS that has a measured SOC less than the forecasted one and vice versa when a
deficit of energy occurs, as described in [25]. First, it can be observed that for the end-users
belonging to the aggregation, it is possible to significantly reduce imbalances, thanks also
to self-dispatching.
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Figure 4. Balancing step flow chart.

In the balancing step, three main scenarios ‘S’ are analyzed:

- S1, where the power exchange with the grid is equal to the scheduled one (output of
the DA step);

- S2, where the real grid exchange power profile is less than the scheduled one;
- S3, where the real grid exchange power profile is greater than the scheduled one.

In the case of S1, no operation is required; the schedule is operated.
In cases S2 and S3, it is necessary to operate to reduce as much as possible the error

between the scheduled grid exchange power profile and the real one.
In the case of S2, two different events can occur: in the first event, the actual SOCagg

is greater than the forecasted value; in the second one, it is lower. In this second event,
no correction is necessary because a possible operation of the ESS could invalidate the
following time steps.

In the first event, instead, the variation in the power that the ESSs have to supply is
determined (Pagg

batt).

Pagg
batt = P f

bat,h,var + min

⎛
⎝

(
P f

grid,h,var − Pm
grid

)
,(

SOCagg − SOC f
h,var

)
·Cagg

100

⎞
⎠ (30)

where P f
grid,h,var and P f

bat,h,var are determined, respectively, from E f ,u
grid,h and E f ,u

bat,h,var con-

sidering the constant power during the hour; SOC f
h,var is the forecasted weighted average

SOC for the ESSs of the aggregation.
Similarly, the BS can operate in S3. In this case, the SOC of the aggregation, SOCagg,

is evaluated: if it is equal to 100%, no operation is necessary; if it is less than 100%, the
variation in the power that the ESSs have to supply is determined (Pagg

batt) as follows:

Pagg
batt = P f

bat,h,var − min

( (
Pm

grid − P f
grid,h,var

)
,

(100 − SOCagg)·Cagg

100

)
(31)
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At the end of the BS, the variation in the power that the ESSs have to supply Pagg
batt is

distributed among the end-users of the aggregation. The power Pagg
batt can be distributed

according to different criteria. The criteria used in the paper is to sort the end-user and dis-
tribute according to the difference between the real and the forecasted SOC in a proportional
way, prioritizing the ESS that is less charged.

4. Case Study Description and Results

To test the proposed algorithm, a case study has been considered. It consists of
20 residential end-users located in the south of Italy, where 15 of them (from User A to User
O) are provided with a PV plant, and 10 (from User A to User J) are also equipped with an
ESS. The configuration of each end-user in terms of load, generation, and storage capacity
is summarized in Table 1. The end-users are really monitored using a smart meter installed
for each end-user.

Table 1. End-user configuration data.

End-Users
Load Contracted

Power [kW]
Generation Contracted

Power [kW]
Storage Capacity

[kWh]

User A 3 3 5
User B 3 2 3
User C 4 3 6
User D 6 4 3
User E 3 3 6
User F 3 2 4
User G 3 3 3
User H 6 3 6
User I 10 6 12
User J 6 5 8
User K 3 3 -
User L 3 2 -
User M 15 10 -
User N 3 2 -
User O 6 3 -
User P 3 - -
User Q 3 - -
User R 6 - -
User S 3 - -
User T 15 - -

The forecasted and instantaneous power data have been used for testing the algorithm,
considering the month of March 2018.

4.1. DA Test Results

To carry out the test, the SOCmin,load has been set to 50%, and the SOCmin,var has been
set to 15%.

First, to show how the algorithm operates, a single day is considered. The load and
production aggregated power profiles are reported in Table 2. The energy surplus E f

sur,d is

equal to 223.5 kWh, while the deficit E f
de f ,d is equal to 231.7 kWh.

Table 2. Aggregated load and production profile.

Time [h] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E f
c [kWh] 7.68 9.37 7.32 5.57 5.39 7.94 10.40 13.67 12.28 14.65 15.45 16.13 13.43 11.52 12.32 10.00 14.34 16.76 19.76 22.13 27.70 17.61 17.76 12.17

E f
p[kWh] 0.00 0.00 0.00 0.00 0.00 0.00 0.36 9.08 23.85 34.47 41.37 44.06 45.66 41.67 35.74 24.37 10.61 1.88 0.00 0.00 0.00 0.00 0.00 0.00
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The parameter SOC f ,u
24 is equal to 50% for each ESS of the aggregation. For the

considered day, E f
av,ch is equal to 43.5 kWh, determined using Equation (8). In this case,

E f
av,ch limits the power that can be stored because E f

av,ch < E f
sur,d.

The distribution coefficients Fu
d are determined (Table 3) and used to obtain E f ,u

av,ch.
Therefore, the energy profiles that the ESSs can exchange to be charged and to supply the
load are scheduled.

Table 3. The distribution coefficients and the ESS energy to store.

User A B C D E F G H I J

Fu
d [%] 9.2 12.6 10.3 6.9 12.6 8.0 6.9 10.3 12.6 10.3

E f .u
av.ch [kWh] 4 5.5 4.5 3 5.5 3.5 3 4.5 5.5 4.5

The forecast ESS energy profiles for every end-user are obtained (Figure 5). It is
possible to observe that generally, the ESSs are charged in the first part of the day when a
surplus exists, and they are discharged in the evening.

Figure 5. Day-ahead ESS forecasted profiles.

Once the day-ahead scheduling has been carried out, the availability of flexibility for
the next day can be planned.

First E f ,u
av,var is determined to obtain the hourly energy profile for each user E f ,u

av,var,h.

Then, the availability to provide flexible services to the grid for the aggregation E f
av,var,h is

determined using Equation (23). Such variables are reported in Tables 4 and 5. Starting
from such results, it is possible to proceed with the RTA step. It is assumed that there are
grid operator flexibility requests for the aggregation (see Table 6). These requests must be
distributed among the end-users according to E f ,u

av,var. Then, using Equation (29), E f ,u
bat,h,var is

obtained (see Table 7).

Table 4. Overall flexibility and availability.

User A B C D E F G H I J

E f .u
av.var [kWh] 2.8 3.70 3.15 1.94 3.77 2.14 2.1 1.20 3.62 3.05
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Table 5. Hourly aggregated flexibility and availability.

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E f
av,var,h [kWh] 1.86 1.65 1.63 1.72 1.61 1.59 1.61 1.82 0 0 0 0 0 0 0 0 1.65 1.65 1.73 1.90 1.72 1.73 1.74 1.89

Table 6. Grid operator flexibility requests.

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Flex Request
[kWh] 1.85 0 0 1.72 0 0 1.61 0 0 0 0 0 0 0 0 0 0 1.64 0 0 0 1.72 1.73 1.88

Table 7. Real-time forecasted battery profile.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

A −0.18 0 0 −0.18 0 0 −0.18 0 1.06 1.82 1.11 0 0 0 0 0 −1.06 −2.04 −1.07 0 0 −0.18 −0.18 −0.18
B −0.24 0 0 −0.24 0 0 −0.22 0 1.46 2.51 1.53 0 0 0 0 0 −1.06 −2.08 −2.28 −0.29 0 −0.24 −0.24 −0.24
C −0.20 0 0 −0.20 0 0 −0.20 0 1.20 2.05 1.25 0 0 0 0 0 −1.06 −2.07 −1.57 0 0 −0.20 −0.20 −0.20
D −0.09 0 0 −0.10 0 0 −0.13 0 0.80 1.37 0.83 0 0 0 0 0 −1.06 −2.00 −0.07 0 0 −0.13 −0.13 −0.13
E −0.24 0 0 −0.24 0 0 −0.17 0 1.46 2.51 1.53 0 0 0 0 0 −1.06 −2.11 −2.28 −0.29 0 −0.24 −0.24 −0.24
F −0.15 0 0 −0.10 0 0 −0.11 0 0.93 1.59 0.97 0 0 0 0 0 −1.06 −2.02 −0.57 0 0 −0.15 −0.15 −0.15
G −0.13 0 0 −0.13 0 0 −0.13 0 0.80 1.37 0.83 0 0 0 0 0 −1.06 −2.00 −0.07 0 0 −0.13 −0.13 −0.13
H −0.20 0 0 −0.18 0 0 −0.04 0 1.20 2.05 1.25 0 0 0 0 0 −1.06 −1.90 −1.57 0 0 −0.02 −0.03 −0.18
I −0.24 0 0 −0.19 0 0 −0.24 0 1.46 2.51 1.53 0 0 0 0 0 −1.06 −2.11 −2.28 −0.29 0 −0.24 −0.24 −0.24
J −0.20 0 0 −0.16 0 0 −0.20 0 1.20 2.05 1.25 0 0 0 0 0 −1.06 −2.01 −1.57 0 0 −0.20 −0.20 −0.20

In Figure 6, for end-user A, the comparison between the ESS power profile scheduled
(output of the DA step) and the ESS power profile evaluated in the RTA step is shown. The
difference is limited, and the two profiles are comparable.

Figure 6. End-user A—comparison between the day-ahead ESS power profile (orange) and the
real-time ESS power profile (blue) with a grid operator flexibility request.

In the end, the forecasts of the ESSs SOC are determined; their variation depends only
on possible forecasting errors.

4.2. BS Results

At the end of the RTA, the BS starts. Firstly, it compares the hourly production and
consumption forecasts with the measures (real power values) every 10 min. Starting from
the results of DA, the SOC f ,agg

h,var and the SOCagg must be determined.
If an error between the forecasted and measured power occurs, it is necessary to verify

if such error can be covered by the ESSs.
When an excess of power exists, the BS operates with the aim of storing the excess

energy as far as possible, as expressed in Equation (27), while when a deficit occurs,
Equation (26) is used.

Once the contribution to the balancing step has been determined, it will be possible to
calculate the power that the ESSs have to exchange after such a correction. Thanks to the
balancing step, it is possible to significantly reduce the imbalances. Based on the accuracy
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of the forecasts and the type of day, it is possible to cover more than 60% of the imbalances
that would have occurred if the algorithm had not been used.

4.3. Long-Term Performance Analysis

After the results for a single day have been presented to understand the operation of
the algorithm, an overall analysis of the results for the considered month is carried out.

The results are discussed, considering three cases:

- Case A, which is the base case described before;
- Case B, where SOCmin,load is decreased to 40%;
- Case C, where the capacity of the ESSs is increased (50% more than the base case).

4.3.1. Case A

For the considered period, the energy surplus obtained for the entire aggregation is
equal to 3629 kWh, while the energy deficit is equal to 6328 kWh.

In the first step of the algorithm, in the day ahead, the energy surplus adsorbed by the
ESSs is equal to 1373 kWh, while the energy supplied by the ESSs is equal to 1110 kWh.

The energy stored in the ESSs is about equal to 30% of the aggregation energy surplus;
this is due to the limit of the overall ESS capacity and to the possibility of scheduling the
ESS in this step until a deep of discharge (DoD) of 50% to supply the load.

On the other hand, the overall availability provided to carry out flexibility services
to the grid is equal to 600 kWh, while the grid operator flexibility services actually re-
quested and supplied (unless forecast errors) are equal to 227 kWh, which is 38% of the
communicated availability for flexibility services (Figure 7).

Figure 7. Use of stored energy in supplying loads and providing services—Case A.

In summary, the energy used to carry out services to the grid is about 16.5% of the
stored energy surplus; the remaining part, about 83.5%, is scheduled to supply the loads.

Such values obviously depend both on the overall capacity of the ESSs and on the
limits imposed on the possibility of being able to discharge the storage system under the
defined DoD.

4.3.2. Case B

If SOCmin,load is decreased (setting it equal to 40%), it can be observed that the energy
surplus absorbed in this case by the ESSs is equal to 1512 kWh, while that supplied to the
loads is equal to 1318 kWh. The energy stored is approximately equal to 42% of the energy
surplus from the aggregation. On the other hand, an overall availability to carry out grid
operator flexibility services equal to 433 kWh is provided, while the services requested
and provided (unless forecast errors) are equal to 165 kWh, equal to 38% of the availability,
which is similar to the previous case (Figure 8). In this case, only 10% of the stored energy
surplus is used to provide flexibility.
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Figure 8. Use of stored energy in supplying loads and providing services—Case B.

It is possible to observe that after changing SOCmin,load, the energy stored and dis-
charged from the ESSs (supplying the load and providing flexibility services) is greater,
compared to the previous case.

4.3.3. Case C

The overall capacity of the ESSs is increased to 50% while maintaining the SOCmin,load
equal to 50%. The energy surplus absorbed in this case by the ESSs is equal to 1926 kWh,
while the supplied energy is equal to 1547 kWh. The energy stored in the ESSs is equal to
53% of the surplus of the aggregation (Figure 9).

Figure 9. Use of stored energy in supplying loads and providing services—Case C.

The overall availability to provide grid operator flexibility services is equal to
861 kWh, while the services requested and provided (except for forecast errors) are equal
to 325 kWh, or approximately 38% of the available resources.

4.3.4. Summary

To obtain a complete picture, the results obtained in the three different cases are
summarized below (Table 8).

Table 8. Long-term analysis performance.

Case A
Base Case

Case B
SOCmin,load = 40%

Case C
ESSs Capacity Increased

ESSs Stored Energy 1373 kWh 1512 kW 1926 kWh

ESSs Supplied energy 1110 kWh 1318 kWh 1547 kWh

Flexibility Services Availability 600 kWh 433 kWh 861 kWh

Provided Flexibility Services 227 kWh 165 kWh 325 kWh

Starting from the base case, it is possible to observe how the possibility to supply the
loads until a SOC of 40% (CASE B) allows both to supply and store more energy with the
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ESSs; naturally, it also increases the ESSs capacity, but not proportionally. On the contrary,
reducing the minimum SOC to supply the loads to 40% does not allow for more flexibility
services, while increasing the ESS capacity makes it possible to increase the amount of
energy for flexibility services.

To find a better solution to maximize both energy used to supply the loads and to
provide services to the grid, it becomes necessary to combine the correct parameters used,
depending on the PV production and the loads.

5. Conclusions

In this paper, an algorithm to opportunely manage the energy flows inside an aggrega-
tion operating following the Power Cloud concept has been presented. In this framework,
different kinds of users (prosumers, consumers, and prosumages) connected via a public
distribution network are aggregated. The main objective was to verify the possibilities
of exploiting the flexibility of behind-the-meter technologies integrating “all-in-one” pho-
tovoltaic plants, storage systems, and other technological solutions in order to maximize
benefits to end-users.

The algorithm schedules the energy that the end-user ESSs must exchange inside the
aggregation to maximize the use of renewable sources, provide grid flexibility services, and
simultaneously provide balancing services. The algorithm is organized into three different
steps: the day-ahead step, the real-time step, and the balancing one.

The first step determines the charge/discharge of storage systems present in the
aggregation to maximize renewable energy self-consumption using forecasted hourly
production and consumption. A reference power profile is determined to exchange with
the grid.

The second one determines in real-time how to modify that profile if flexibility services
are required by the TSO or DSO, and the third one compensates for errors in forecasting
production and/or consumption.

A test has been implemented to illustrate a real aggregation of 20 end-users, demon-
strating the effectiveness of the proposed algorithm in reducing by about 60% the power
imbalances that can occur if forecast errors and/or grid flexibility requests exist.

One of the principal characteristics of the proposed algorithm to be highlighted is that
it can manage the charge/discharge phases of the ESSs present on the user side in a blind
manner for the final user. So, an adequate level of aggregate self-consumption and the
ancillary services required by the power system operator are met without any change in
user habits. The energy storage systems are used to increase self-consumption and provide
real-time grid operator flexibility services.

The main drawback of the proposed algorithm is related to considering some variables
(especially power) as deterministic ones while some kind of uncertainty exists, especially
in the day-ahead step.

In the future work of the authors, (i) the above-mentioned uncertainty will be con-
sidered in order to avoid errors deriving from deterministic assumptions; (ii) a possible
improvement in the benefit of the proposed algorithm will be investigated considering the
use of an opportune ICT platform, respecting the concept of Power Cloud, able to exchange
data among aggregators and end-users in order to increase the end-users advantage from
self-consumption and flexibility services delivered to the system without changing their
power consumption behavior and habits.
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Abbreviations

EV Electric vehicle E f ,u
de f ,d Aggregated daily energy deficit

EC Energy Community E f
de f ,d Aggregated daily energy deficit

ESS Energy storage System E f
sur,h Aggregated hourly energy surplus

P2P Peer-to-peer E f ,u
bat,ch,h Charging Energy profile for the ESS

LEC Local energy community E f ,u
crg,d Energy that each user has to store daily

ANN Artificial neural network Fu
d Surplus distribution factor

SOC State of charge E f ,u
crg,d,res Daily residual energy that each user has to store

DAA Day-ahead algorithm E f ,u
bat,ds,h Hourly energy that the user equipped with ESS

has to supply
RTA Real-time algorithm E f ,u

dis,res,h Hourly residual energy in the ESS is useful to
supply the load

TSO Transmission system operator SOCmin,load SOC under that the ESS discharge cannot be scheduled
np Number of producers E f ,u

grid,h Hourly profile to be exchanged with the grid (baseline)

nc Number of consumers E f ,u
av,var Daily available capacity to vary the profile

ns Number of end-users equipped with ESS SOCmin,var SOC, under which it is not possible to modify the profile
E f ,u

p,h Hourly production forecasts for each user E f ,u
av,var,h Hourly flexibility availability of the single end-user

E f ,u
c,h Hourly load forecasts for each user nde f Number of hours where a deficit exists

E f
c,h Aggregated hourly consumption forecast E f

av,var,h End-users aggregation availability

E f
p,h Aggregated hourly production forecast Fu

d,var User availability and the distribution factor

E f ,u
ex,h Exchange power profile with the grid for each user E f ,u

bat,h,var New ESS power profiles

E f
ex,h Aggregated exchange power profile with the grid E f ,u

grid,h,var New grid power profiles

SoC f ,u
24 SOC forecast for the last hour of the day before Cagg Aggregated ESS capacity

E f ,u
av,ch Energy that can be stored in the ESSs for each user SOCagg SOC for the entire aggregation

E f
av,ch Aggregated energy that can be stored in the ESSs Pm

grid Measured grid power

Cu Capacity for each ESS P f
grid,h,var Forecasted grid power

E f ,u
sur,h Hourly energy surplus for each user Pagg

batt Aggregated power variation that ESSs have to supply

E f ,u
de f ,h Hourly energy deficit for each user P f

bat,h,var Forecasted ESS power

E f ,u
sur,d Daily energy surplus for each user SOC f ,agg

h,var Forecasted weighted average SOC for aggregation ESSs

E f
sur,d Aggregated daily energy surplus V2G Vehicle to Grid
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Abstract: As Smart Cities development grows, deploying advanced technologies, such as the Internet
of Things (IoT), Cyber–Physical Systems, and particularly, Artificial Intelligence (AI), becomes
imperative for efficiently managing energy resources. These technologies serve to coalesce elements
of the energy life cycle. By integrating smart infrastructures, including renewable energy, electric
vehicles, and smart grids, AI emerges as a keystone, improving various urban processes. Using the
PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) and the Scopus
database, this study meticulously reviews the existing literature, focusing on AI technologies in four
principal energy domains: generation, transmission, distribution, and consumption. Additionally,
this paper shows the technological gaps when AI is implemented in Smart Cities. A total of 122 peer-
reviewed articles are analyzed, and the findings indicate that AI technologies have led to remarkable
advancements in each domain. For example, AI algorithms have been employed in energy generation
to optimize resource allocation and predictive maintenance, especially in renewable energy. The
role of AI in anomaly detection and grid stabilization is significant in transmission and distribution.
Therefore, the review outlines trends, high-impact articles, and emerging keyword clusters, offering
a comprehensive analytical lens through which the multifaceted applications of AI in Smart City
energy sectors can be evaluated. The objective is to provide an extensive analytical framework
that outlines the AI techniques currently deployed and elucidates their connected implications
for sustainable development in urban energy. This synthesis is aimed at policymakers, urban
planners, and researchers interested in leveraging the transformative potential of AI to advance the
sustainability and efficiency of Smart City initiatives in the energy sector.

Keywords: smart cities; energy sector; artificial intelligence

1. Introduction

The concept of Smart Cities can be interpreted in many different ways, which high-
lights the importance of having a universally accepted definition. An example of this
is highlighted in [1], where the concept of “smartness” in the context of Smart Cities is
addressed as the unification of sustainability objectives, which ensures that technology inte-
gration serves a purpose beyond mere automation and actively engages users in achieving
environmental goals. However, it is also recognized that the definition of Smart Cities is
flexible and can be adapted to suit specific situations and contextual factors [2]. The integra-
tion of communication and information technologies in Smart Cities offers a wide range of
potential benefits. The primary objective of Smart Cities is to effectively manage resources
and achieve efficient energy consumption while facilitating seamless data communication
to ensure smooth Smart City operations [3]. To cope with increasing power demands while
protecting citizens from the detrimental effects of Greenhouse Gases (GHGs) emissions, it
becomes crucial to monitor and manage energy in an efficient manner throughout its entire
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life cycle, which encompasses generation, transmission, distribution, and consumption pro-
cesses. By adopting comprehensive energy management strategies, Smart Cities can play a
pivotal role in promoting sustainability and mitigating environmental impacts [4]. Indeed,
the integration of smart energy management is vital to further enhance the efficiency of
Smart Cities. This integration can be achieved through the incorporation of Artificial Intel-
ligence (AI) techniques. AI has the potential to significantly contribute to the performance
and integration of alternative energy sources within the Smart City infrastructure. By
leveraging AI algorithms, smart energy management systems can intelligently analyze
large amounts of data from various sources, including renewable energy generation, energy
consumption patterns, weather conditions, and demand forecasts. This enables the opti-
mization of energy distribution and consumption, leading to more efficient utilization of
resources and reduced reliance on traditional fossil fuel-based energy sources. AI also plays
a crucial role in enhancing the integration of renewable energy into the existing energy
grid. With its ability to adapt and learn from real-time data, AI can dynamically adjust
energy distribution and storage strategies, ensuring the seamless integration of fluctuating
renewable energy sources like solar and wind power. Furthermore, AI-driven predictive
analytics can aid in anticipating energy demand fluctuations and identifying potential areas
for energy savings and optimization. This empowers Smart Cities to proactively manage
energy resources, reduce waste, and minimize carbon emissions, contributing to a more
sustainable and eco-friendly urban environment. The incorporation of AI techniques into
smart energy management systems holds significant promise for improving alternative
energy performance and integration in Smart Cities, fostering a more sustainable and
energy-efficient future [5]. Various AI algorithms are currently under study and review
for diverse applications in industries that have shown increasing interest in them. This
includes the implementation of the Smart City concept [2].

One of the definitions of AI can be found in [6]. In this context, the concept of Artificial
Intelligence (AI) is initially defined as the capacity of an entity to function effectively in
response to its environment. Therefore, AI involves the development of machines endowed
with this characteristic, enabling them to perform functions within their environment,
effectively mechanizing human thought processes.

In the domain of energy systems, AI finds several valuable applications. In particular,
it can be employed for energy management to achieve savings, enable control functions,
and optimize the forecasting of alternative energy generation. AI also facilitates accurate
demand forecasting, consumption prediction, and the efficient monitoring of energy grids,
contributing to enhanced operational efficiency and sustainability in the context of Smart
Cities and beyond [7]. Therefore, the use of AI methods is an important tool to be used
to improve different stages of the energy cycle in Smart Cities. AI has some important
features that can be used in the energy sector, as shown below:

1. Learning: This aspect of AI relies on data collection and analysis to create algorithms
that facilitate the development of efficiency-promoting processes. By processing large
data sets, AI systems can identify patterns, trends, and correlations, enabling them to
learn from past experiences and make informed decisions.

2. Cognition: The cognitive capabilities of AI help to recognize similarities and patterns
in previous processes. Drawing on past experience and knowledge, AI can interpret
complex data, recognize trends, and generate valuable insights, improving decision-
making processes.

3. Actions: AI is capable of making automatic decisions within specified time frames.
This involves the real-time processing of data to generate responses and take actions
based on predetermined rules or learned behaviors. Such automation can streamline
various tasks, leading to increased efficiency and precision. These fundamental AI
functionalities play a crucial role in a wide array of industries, including energy man-
agement in Smart Cities, predictive analytics, natural language processing, robotics,
and more. As AI continues to advance, its potential for transformative impact across
diverse fields remains substantial [8].
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To recognize the main elements in which Artificial Intelligence helps Smart Cities
in the generation, transmission, distribution, and consumption of energy, the following
questions are formulated for answering through the literature review:

• How can the implementation of AI methods address crucial challenges in the en-
ergy sector?

• What AI methodologies are currently being employed in Smart Cities to address
challenges in the energy sector?

• What advantages does the application of AI in the energy sector offer that conventional
methods cannot achieve?

• What are the latest trends in applying AI in Smart Cities to improve the energy sector?

This paper presents a review of the literature conducted using the Scopus search
engine employing the PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) methodology. PRISMA primarily focuses on the reporting of reviews
evaluating the effects of interventions but can also be used as a basis for reporting systematic
reviews with objectives other than evaluating interventions [9]. This methodology is a
guideline for writing clear, detailed reports on systematic reviews and meta-analyses,
ensuring transparency and reliability. The guidelines include a Title and Abstract, which
should be clear and concise, summarizing the reviewer’s goals, methods, results, and
conclusions. The Introduction section explains the rationale and objectives of the review.
The Methods section describes the criteria for selecting studies and the data collection and
analysis methods. In the Results section, the study selection process is illustrated (often
with a flow chart), together with the characteristics of the studies and the main findings.
The Discussion section interprets the results, considering the strengths and weaknesses of
the evidence, and discusses the generalizability and applicability of the findings. PRISMA
also assists authors in ensuring that they include all essential information and improve
the transparency of their review or analysis. This research focuses on the utilization of
Artificial Intelligence (AI) in the energy sector for Smart Cities. This includes the use of AI
for control, the integration of renewable energy, smart grids, energy production, and the
forecasting of energy consumption, as well as other AI applications. As the main results,
statistical information is presented, such as the annual scientific production, most relevant
sources, most cited articles, most relevant words, and keyword co-occurrence. These results
can help in visualizing the trend of publications for each category, identifying areas of
opportunity for publications, identifying the main concepts that appear for each category,
highlighting the potential of using AI in the energy sector, and showing some case studies
where it has been successfully implemented.

This document is divided into four main categories: energy generation, transmission,
distribution, and consumption. Statistical data are presented about the annual publications,
the most cited articles, and principal keywords. In addition, a keyword co-occurrence
network is presented for each section in order to recognize the main concepts of each
category and the relationship between the principal topics.

2. Methodology

This research article employs the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA 2020) as the proposed methodology. PRISMA 2020 offers
effective reporting guidance for systematic literature reviews. The PRISMA method can be
summarized using the chart presented in Figure 1. The initial phase involves the identifica-
tion and screening of relevant papers to be included in the research. The exploration of
articles was conducted by performing a comprehensive search on Scopus using specific
terms related to “Smart Cities”. The search targeted these terms within the title, abstract,
and keywords of the articles. In addition, the following terms are used: “AND Energy
AND Artificial Intelligence OR AI” (Smart Cities-Energy-Artificial Intelligence). The articles
had to meet certain eligibility criteria, including being of the document type “journal” and
published in English within the last ten years prior to conducting the research (from 2013
to 2023). Subsequently, the base search was repeated by incorporating additional terms,
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Generation, Transmission, Distribution and Consumption, including one term at a time after
the term Energy of the base term. The potential articles identified during the initial search
were subjected to a rigorous full-text review, and those that met all the specified criteria
were included for further analysis. The subsequent phase involved data extraction and
synthesis, which required retrieving relevant information using a standardized approach,
including statistical meta-analysis. The search results derived from Scopus, with the base
term, were exported and subjected to statistical analysis using the “Blibliometrix” software
version 4.1.4. Additionally, a keyword co-occurrence network (KCN) was generated using
the “VOSviewer” software version 1.6.19.

Preliminar 

Search

PRISMA Method
Obtained 

Results
Discussion

SOA Review

Title-Abstract-Keyword Identification

Screening

Elegibility

Included

Title-Abstract-Keyword

Selection

Figure 1. PRISMA method flowchart for paper inclusion/exclusion.

3. Results

3.1. Literature Review and Content Analysis

Using the methodology described in the previous section, the following results were
obtained for the base terms. One way to easily analyze the results is by having a keyword
co-occurrence network. Figure 2 shows a map made with the VOSviewer software; in
this map, concepts such as IoT, energy efficiency, machine learning and smart grids are
presented. A separate map was created for each category: energy generation, transmission,
distribution and consumption. The purpose was to identify which category showed a
higher prevalence of concepts in the overall map.

The following subsections analyze the statistical results of the search by adding a term
each time, these terms being Generation, Transmission, Distribution and Consumption, in the
Smart City Energy sector.

3.1.1. Energy Generation

The initial search was conducted on Scopus once more, incorporating the term “Genera-
tion” into the query. The search parameters were configured as follows: “Smart Cities” AND
“Energy” AND “Generation” AND “Artificial Intelligence” OR “AI” (Smart Cities-Energy-
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Generation-Artificial Intelligence). This yielded a total of 45 journal publications published
since 2013. For this search, 35 sources were examined, involving 200 different authors.

Figure 3 illustrates the yearly scientific output on this subject. Given the relatively
limited number of articles yielded by the initial search, the screening process primarily
relied on keywords within titles and abstracts. However, a notable average annual growth
rate of 42.62% was observed. The year 2023 has the highest publication count, totaling
12 publications. Notably, this observation was made at the midpoint of the year, suggesting
the likelihood of additional publications during this period. This potential for further
contributions could continue the upward trajectory in the research output.

Figure 2. Keyword co-occurrence network for Smart Cities-Artificial Intelligence-Energy.
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Figure 3. Annual scientific production (articles per year) for Smart Cities-Artificial Intelligence-
Energy-Generation.

These publications involve authors from a variety of countries, the most prominent na-
tionalities being China (38), India (20), Canada (12), the UK (12), Saudi Arabia (11), Iran (10),
South Korea (10), the USA (10), Spain (9), and Japan (7). Additionally, when considering
the number of citations received by articles originating from different countries, the leading
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nations are as follows: USA (423), China (127), South Korea (71), Romania (66), Turkey (36),
India (29), South Africa (25), the United Kingdom (18), Qatar (14), and Bulgaria (6).

Table 1 shows the most relevant journals for paper publishing, exhibiting the number
of articles published by each one of the journals, ranking in first place “Sustainable Cities
and Society” with a total of 4 articles.

Table 1. Most relevant sources for Smart Cities-Energy-Generation-Artificial Intelligence.

Rank Publisher No. of Articles

1 Sustainable Cities and Society 4
2 IEEE Access 3
3 Sensors 3
4 Applied Sciences 2
5 IET Smart Cities 2

Table 2 shows the most cited articles worldwide for Smart Cities-Artificial Intelligence-
Energy Generation. The most cited article is that of Ghadmai et al. with 75 citations,
published in 2021 for Sustainable Cities and Society.

Table 2. Most globally cited articles published for Smart Cities-Energy-Generation-Artificial Intelligence.

Authors, Year Title Citations Source

Ghadami N. et al. [2021] [10]
Implementation of solar energy in Smart Cities
using an integration of artificial neural network,

photovoltaic system, and classical Delphi methods
75 Sustainable Cities and

Society

Serban AC. et al. [2020] [11]
Artificial Intelligence for smart renewable energy
sector in Europe—smart energy infrastructures for

next-generation Smart Cities
66 IEEE Access

Azzaoui AE, [2020] [12] Block5GIntell: Blockchain for AI-enabled
5G networks 55 IEEE Access

Lee YL, [2021] [13] 6G massive radio access networks: Key
applications, requirements and challenges 52 IEEE Open Journal of

Vehicular Technology

Zhang, N., [2016] [14] Semantic framework of Internet of Things for
Smart Cities: Case studies 47 Sensors

The keyword search for Smart Cities-Artificial Intelligence-Energy-Generation yielded the
following most common keywords: Smart Cities (23), Artificial Intelligence (19), Internet of
Things (16), Energy Utilization (14), Mobile Communication Systems (11), Energy Efficiency (10),
Deep Learning (9), Learning Systems (8), Decision Making (7), and Economics (7) as shown
in Figure 4.

To analyze the word co-concurrency, VOSviewer software was utilized to generate
a KCN (keyword co-concurrence network). Figure 5 shows the map obtained from the
file with the Scopus search containing the data from articles previously referenced. This
map or KCN shows that words like sustainable development, decision making, and energy are
closely related to Artificial Intelligence and energy generation. While bigger nodes show
the frequency of occurrence of each word as can be seen on the KCN, the biggest nodes
(not containing Smart Cities) are Internet of Things, learning systems, deep learning, mobile
communications systems, energy utilization and energy efficiency, which have the greatest
occurrence, which coincides with the previous keyword analysis.
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Figure 4. Most relevant words for Smart Cities-Energy-Consumption-Artificial Intelligence.

Figure 5. Keyword co-occurrence network for Smart Cities-Artificial Intelligence-Energy-Generation.

3.1.2. Renewable Energy Sources within Smart Cities

To highlight the significance of renewable sources in previous years and their prospec-
tive impact in the coming years, a subsection was created under the category of Power
Generation. This subsection is dedicated to underscoring the contribution of renewable
energy sources. A search was performed on Scopus to identify the currently relevant topics
and potential future trends in the use of two of the most widely adopted renewable energy
sources, namely solar and wind energy, within the context of Smart Cities. The search query
employed was as follows: “Smart Cities AND Energy AND Generation AND Solar AND

Wind” (Smart Cities-Energy-Generation-Solar-Wind). For this search, the selected timeframe
ranged from 2013 to 2023, and only journal publications in the English language were
considered eligible. This search yielded a total of 47 articles, yet only 23 met the specified
criteria outlined above. The average annual growth rate for this search is calculated at
1.84% from the start of the chosen period to its conclusion; this trend can be attributed
to the publications between 2013 and 2016 showing a declining pattern. However, in
subsequent years, there has been a consistent and continuous upward trend in the number
of publications. Figure 6 illustrates the annual scientific production, revealing a significant
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increase in article output from 2013 to 2023. This underscores the recent upward trajectory
in the field.

Indeed, it is crucial to recognize that at the time of composing this paper, there may
still be forthcoming publications for 2023, rendering the final count for articles in this year
subject to potential change. Concerning the search results, the volume of articles published
on this topic emphasizes “Energy” as the most prominent source, boasting six articles.
“Renewable Energy” closely follows with four articles, and “Energies” holds the third
position with three articles, establishing these as the top three journals with the highest
number of publications. Furthermore, Table 3 shows other notable sources identified in
this search section.

Among the total of 47 published articles, the production per country indicates that
India is the largest contributor to this renewable energy section, with 27 authors originating
in this country. Saudi Arabia and China are closely behind, with 24 and 20 authors,
respectively. Additionally, significant contributions are observed from authors hailing from
Italy, with 18 of them. Furthermore, several countries have actively participated in this
research area, including South Korea (12), the USA (8), Iran (6), Singapore (6), Canada (5),
and the United Arab Emirates (5). This international involvement underscores the global
significance and collaborative efforts in advancing knowledge related to renewable energy
generation sources for applications in Smart Cities.
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Figure 6. Annual scientific production for Smart Cities-Energy-Generation-Solar-Wind.

Table 3. Most relevant sources for Smart Cities-Energy-Generation-Solar-Wind.

Rank Publisher No. of Articles

1 Energy 6
2 Renewable Energy 4
3 Energies 3
4 Energy Reports 3
5 Applied Energy 2

Table 4 shows the articles from the search with the most citations; ref. [15] is the one
that has the most citations.

From this search made, Figure 7 shows the most relevant words obtained; Renewable
Energies (42) and Solar Power Generation (28) are the ones that appear the most in the
search. Going deeper into the relevant words, it can also be seen that Smart City (16),
Wind Power (16), and Smart Grid (15) also appear frequently in the articles. Economic
Analysis (8) and Electric Power Transmission Networks (8) are also important concepts for
the introduction of alternative energy sources, as they allow us to know the feasibility of
an energy project and energy transportation, respectively. Sustainable Development (7) is
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also an important concept mentioned, as one of the main goals of these energy sources is
to reach this sustainable development in Smart Cities and reduce fossil fuel dependency.
Other relevant words are Power Generation (7) and Energy Storage (6).
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Figure 7. Most relevant words for Smart Cities-Energy-Generation-Solar-Wind.

Table 4. Most globally cited articles published for Smart Cities-Energy-Generation-Solar-Wind.

Authors, Year Title Citations Source

Ramli Mam et al. [2018] [15]
Optimal sizing of PV/wind/diesel hybrid

microgrid system using multi-objective
self-adaptive differential evolution algorithm

345 Renewable Energy

Yang D. et al. [2013] [16]
Solar irradiance forecasting using

spatial–temporal covariance structures and
time-forward kriging

121 Renewable Energy

Oldenbroek V, et al. [2017] [17]

Fuel cell electric vehicle as a power plant: Fully
renewable integrated transport and energy

system design and analysis for
Smart City areas

76 International Journal of
Hydrogen Energy

De Luca G. et al. [2018] [18]
A renewable energy system for a nearly zero
greenhouse city: Case study of a small city in

southern Italy
51 Energy

Soliman Ms et al. [2021] [11]
Supervisory energy management of a hybrid

battery/PV/tidal/wind sources integrated into
a DC-microgrid energy storage system

42 Energy Reports

A KCN was obtained using VOSviewer by introducing the information obtained
from the Scopus search. Figure 8 illustrates the KCN focusing on solar power generation
and its interconnected nodes, including renewable energy, hybrid systems and electric
power. Another important concept depicted in the KCN is wind power, highlighting the
frequent association between smart grids, Smart Cities, and wind energy generation. This
diagram serves as a valuable tool to analyze crucial topics related to the integration of
renewable energies into Smart Cities. One notable relationship showcased in this diagram
is the energy storage and photovoltaic systems. It exemplifies the essential role of storage
devices in supporting the operation of photovoltaic systems. Additionally, the diagram
features an economic analysis component closely tied to solar power generation. This
economic analysis can be linked to the feasibility assessment of solar photovoltaic (PV)
systems from a financial perspective. This type of graphical representation effectively
illustrates associations between commonly co-searched keywords. An examination of data
extracted from Bibliometrix reveals that topics such as energy utilization, economics, and
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greenhouse gases are currently capturing the attention of scientists as indicated by their
relevance and ongoing development. These subjects are intricately linked to the global
issue of climate change and represent a pressing global concern. Furthermore, emerging
themes highlighted in the diagram include forecasting, deep learning, solar radiation, and
weather stations. This aligns with the consensus that the use of renewable energy sources
is key to achieving the Sustainable Development Goals. The prominence of Artificial
Intelligence underscores its increasing relevance and growth in the current year. Overall,
this KCN offers a comprehensive overview of the interconnections and areas of interest
within renewable energy and Smart City development. It serves as a valuable resource for
understanding the evolving landscape of sustainable energy solutions and their critical
role in addressing global challenges such as climate change.

Figure 8. Keyword co-occurrence network for Smart Cities-Energy-Generation-Solar-Wind.

3.1.3. Energy Transmission

For the Transmission section, a Scopus search was performed by adding the aforemen-
tioned term to the base structure, resulting in “Smart Cities AND Energy AND Trans-
mission AND Artificial Intelligence OR AI” (Smart Cities-Energy-Transmission-Artificial
Intelligence. It has a total of 31 articles, with an average annual growth rate of 14 percent
from the year 2013 to 2023. Figure 9 shows the Annual Scientific production. It is essential
to note that the analysis excludes articles published from 2013 to 2015 for this specific topic
or area, as there were no publications during that period. Therefore, the graph and statistics
presented focus only on the years following 2015.

As is evident from the analysis, there is a clear tendency to increase the number of
publications over time. However, it is noteworthy that there is a notable lack of publications
specifically focused on energy transmission. It is essential to acknowledge that this paper’s
analysis was conducted before the end of 2023, leaving room for additional publications
during the remaining part of the year. Therefore, the number of publications for 2023 may
still witness growth, potentially shedding more light on the area of energy transmission in
the context of Smart Cities. The most relevant sources are presented in Table 5, IEEE Access,
Sustainable Cities and Society, Wireless Communications and Mobile Computing being the three
sources with the most publications in this field, each having three publications.
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Figure 9. Annual scientific production of energy transmission keyword co-occurrence network for
Smart Cities-Artificial Intelligence-Energy-Transmission.

Table 5. Most relevant sources for Smart Cities-Artificial Intelligence-Energy-Transmission.

Rank Publisher No. of Articles

1 IEEE Access 3
2 Sustainable Cities and Society 3
3 Wireless Communications and Mobile Computing 3
4 Sustainability 2
5 Computer Communications 1

Indeed, it is crucial to highlight that China exhibits the highest number of authorships,
with 29 articles featuring at least one Chinese author. Following closely are Germany and
Saudi Arabia, each with 11 publications. South Korea and India also demonstrate a signifi-
cant presence in the research, with 10 and 9 articles published by authors of their respective
nationalities, respectively. Furthermore, countries such as France, Lebanon, the United
Kingdom, and Malaysia, among others, have contributed to the research in the selected
category, although to a lesser extent, each having eight articles. The diverse international
participation underscores the global interest and participation in this subject matter.

Table 6 presents the articles with the most citations on this research. The work pre-
sented in [3] is the most cited, with 258 citations.

Table 6. Most globally cited articles published for Smart Cities-Energy-Transmission-Artificial Intelligence.

Authors, Year Title Citations Source

Ullah N. et al. [2020] [3] Applications of Artificial Intelligence and Machine
learning in Smart Cities 258 Computer

Communications

Serrano W. et al. [2018] [4] Digital systems in Smart Cities and infrastructure 66 Smart Cities

Aguilar J. et al. [2021] [19]
A systematic literature review on the use of

Artificial Intelligence in energy self-management
in smart buildings.

53
Renewable and

Sustainable Energy
Reviews

Sharma H, [2021] [20] Machine learning in wireless sensor networks for
Smart Cities: a survey. 52 Electronics

Khan N., [2021] [21]
DB-Net: A novel dilated CNN-based multi-step

forecasting model for power consumption in
integrated local energy systems.

50 International Journal of
Electrical Power

The most relevant words for Smart Cities-Artificial Intelligence-Energy-Transmission are
presented using Figure 10, having electric power transmission networks (17) as the category
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with the highest occurrence. Other important concepts can be identified as smart power
grids (12) and Internet of Things (11), which are part of AI and Smart City, which are part of
the base structure.

The map obtained from VOSviewer with the information from the Scopus search is
presented in Figure 11. A relationship between Smart City and Artificial Intelligence is
shown; while Smart City is closely related to Internet of Things and Energy Utilization, on the
other hand, AI is related to Smart Power Grids, and this word to Electric Power Transmission
networks. These are interesting relationships, as smart power grids have AI applications in
electric power transmission networks.
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Figure 10. Most relevant words for Smart Cities-Artificial Intelligence-Energy-Transmission.

Figure 11. Keyword co-occurrence network for Smart Cities-Artificial Intelligence-Energy-Transmission.

3.1.4. Energy Distribution

This time, a search on Scopus for the base structure was performed, adding Distribu-
tion, resulting in “Smart Cities AND Energy AND Distribution AND Artificial Intelligence
OR AI” (Smart Cities-Energy-Distribution-Artificial Intelligence. A total of 21 articles were
found, with an average annual growth rate of 10. 41% from 2013 to 2023. Figure 12 shows
the annual scientific production; similarly to the Energy Transmission subsection, Energy
Distribution has no reported articles found by Scopus from 2013 to 2016. For this reason,
the previously mentioned years are not considered in Figure 12.

For the Energy Distribution topic, an intermittent pattern in the number of publications
is identified, with notable fluctuations over the years. Specifically, there was an increase in
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the number of publications in 2019 and 2021, indicating a surge in research activity during
those periods. However, a decrease in publication frequency was observed in 2020 and
2022. Additionally, as mentioned earlier, the year 2023 is subject to the constraint of limited
publications in the area of energy transmission and distribution. This intermittent trend
in research output underscores the dynamic nature of the field and suggests that further
research is required to determine the factors influencing these fluctuations.
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Figure 12. Annual scientific production of energy transmission keyword co-occurrence network for
Smart Cities-Artificial Intelligence-Energy-Distribution.

After analyzing the number of articles published regarding this topic, the most relevant
source was Sustainability with four articles, followed by Applied Sciences with three. The
most relevant sources of this section search are presented in Table 7.

Table 7. Most relevant sources for Smart Cities-Artificial Intelligence-Energy-Distribution.

Rank Publisher No. of Articles

1 Sustainability 4
2 Applied Sciences 3
3 Energy and Buildings 2
4 Energy 1
5 Future Generation Computer Systems 1

Upon analyzing production by country, China emerges as the leading contributor in
the distribution section, with 18 articles authored by nationals. Following behind are Spain
and Lebanon with eight and six articles, respectively. Noteworthy contributions are also
observed from India, Japan, and Saudi Arabia, each with six articles, among several other
countries that have actively participated in this area of research. The diverse international
participation emphasizes the global interest and collaboration in advancing knowledge
related to energy distribution within Smart Cities.

In Table 8 are presented the articles with the most citations of this research, with [22]
being the most cited, having a total of 182 citations.

The most relevant words obtained for the distribution can be seen in Figure 13, being
Artificial Intelligence (7) and Smart Cities (6). As they are part of the base search, some
of the relevant words were Energy Efficiency (5) and Data Analytics (4). Energy efficiency
is an important concept to consider for distribution networks since most articles seek to
minimize energy losses to obtain better efficiency. For data analytics, it is important to
monitor the distribution of energy, as AI could help to perform this task. Other relevant
words are Economics (4) and Deep Learning (4).
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A KCN was obtained using VOSviewer by feeding the information obtained from the
Scopus search; Figure 14 shows this KCN. The KCN shows that the main topic is Artificial
Intelligence which is connected to several nodes, such as Learning Systems, Sustainability,
Machine Learning, and Energy Efficiency. This last keyword is connected to the second-
highest co-occurrence word, which is Smart Cities, which shows that AI and Smart Cities
are often paired with energy efficiency.

Table 8. Most globally cited articles published for Smart Cities-Artificial Intelligence-Energy-Distribution.

Authors, Year Title Citations Source

Le L.T. et al. [2019] [22]

A comparative study of PSO-ANN, GA-ANN,
ICA-ANN, and ABC-ANN in estimating the

heating load of buildings’ energy efficiency for
Smart City planning

182 Applied Sciences

Idowu S. et al. [2016] [23] Applied machine learning: Forecasting heat load
in district heating system 152 Energy and Buildings

Zhou Z. et al. [2019] [24]
Blockchain and computational intelligence

inspired incentive-compatible demand response in
internet of electric vehicles

91

IEEE Transactions on
Emerging Topics in

Computational
Intelligence

Le L.T, [2019] [25]
Estimating the heating load of buildings for Smart
City planning using a novel Artificial Intelligence

technique PSO-XGBoost.
71 Applied Sciences

Ingwersen, P., [2018] [26] Smart City research 1990–2016. 36 Scientometrics
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Figure 13. Most relevant words for Smart Cities-Artificial Intelligence-Energy-Distribution.

3.1.5. Energy Consumption

A search was conducted on Scopus for articles containing the terms “Smart Cities
AND Energy AND Consumption AND Artificial Intelligence OR AI” (Smart Cities-Energy-
Consumption-Artificial Intelligence). The results of the previously mentioned search show a
total of 103 documents published from 2013 to 2023, having been published by 60 sources
with a total of 432 authors. Figure 15 shows the number of articles published each year since
2014 (there were no publications during 2013); an interesting pattern can be observed in
the publication trends. In 2015, there was a significant drop in the number of publications,
reaching zero. However, in the subsequent years, there was a steady increase in the number
of articles published, indicating a rising trend. Although 2023 shows a lower production
number so far, it is essential to consider that the year has not concluded, leaving room
for additional articles to be published, potentially continuing the upward trend from
previous years.
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The average annual growth rate for publications containing the specified terms stands
at 35.11%, demonstrating a notable increase in research activity over time. Furthermore,
the average number of citations per article is 27.54, highlighting the impact and relevance
of the research output in this field. These metrics emphasize the significance and growing
interest in the subject of AI applications in the energy sector within Smart Cities.

Figure 14. Keyword co-occurrence network for Smart Cities-Artificial Intelligence-Energy-Distribution.
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Figure 15. Annual scientific production (articles per year) for Smart Cities-Artificial Intelligence-
Energy-Consumption.

The most relevant sources are presented in Table 9, IEEE Access (nine publications),
Sustainable Cities and Society (with nine articles) and Sustainability (with six papers) are
the three sources with the most publications in this field.

The publications encompass authors from various countries, with the most prevalent na-
tionalities among the authors being China (109), the USA (32), India (31), Saudi Arabia (30),
Spain (27), the United Kingdom (23), South Korea (21), Italy (11), Japan (11), and Canada (10),
which comprise the top ten contributors in this category. In particular, South Korea stands
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out as the country with the highest number of citations, with an accumulated total of
148 citations for its contributions in this area. This indicates the significant impact and recog-
nition of research conducted by authors from South Korea in the field of AI applications in
the energy sector within Smart Cities. The wide array of contributing nations reflects the
global interest and collaboration in advancing knowledge in this domain.

Table 9. Most relevant sources for Smart Cities-Artificial Intelligence-Energy-Consumption.

Rank Publisher No. of Articles

1 IEEE Access 9
2 Sustainable Cities and Society 9
3 Sustainability 6
4 Energies 5
5 Sensors 5

Table 10 shows the most globally cited articles for the period comprehended from
2014 to 2023 based on the search Smart Cities-Artificial Intelligence-Energy-Consumption. The
article with the most citations is [27] with a total of 423 citations, which was published in
Applied Energy in the year 2018.

Table 10. Most globally cited articles published for Smart Cities-Artificial Intelligence-Energy-Consumption.

Authors, Year Title Citations Source

Rahman A., [2018] [27] *
Predicting electricity consumption for

commercial and residential buildings using
deep Recurrent Neural Networks

423 Applied Energies

Ullah, Z., [2020] [28] Applications of Artificial Intelligence and
machine learning in Smart Cities 258 Computer

Communications

Alsamhi, S. [2019] [29]
Survey on collaborative smart drones and

Internet of Things for improving smartness of
Smart Cities

195 IEEE Access

Vázquez-Canteli, J. R., [2019] [30]
Fusing TensorFlow with building energy

simulation for intelligent energy management
in Smart Cities

113 Sustainable Cities
and Society

* ref. [27] also appears in the search for energy generation but the topic better fits energy consumption.

The search for keywords related to Smart Cities-Artificial Intelligence-Energy-Consumption
provided the following results: Energy utilization (73), Artificial Intelligence (56), Smart City (52),
Energy Efficiency (30), Internet Of Things (25), Learning Systems (18), Deep Learning (15), Sus-
tainable Development (14), Decision Making (10) and Economics occupy the top ten keywords
results for this search.

As in all previous subsections, a KCN was performed using VOSviewer software,
allowing to visualize the most frequent occurrence of a word and how often words are
searched together. As previously mentioned, it can be corroborated using Figure 16. The
analysis of the keyword frequency of occurrence reveals that terms such as “energy utiliza-
tion”, “energy efficiency”, “Artificial Intelligence ”, “learning systems”, and “deep learning”
are among the most frequently mentioned keywords. In the visual representation of the
data, the larger nodes correspond to terms with the highest frequency of occurrence. On the
other hand, terms with more links represent keywords with a greater co-occurrence with
other terms. This graphical representation provides valuable insights into the prominence
and relationships among the key concepts in the research domain of AI applications in the
energy sector within Smart Cities.
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Figure 16. Keyword co-occurrence network for Smart Cities-Artificial Intelligence-Energy-Consumption.

4. Discussion

This section delves into a more detailed analysis of the selected papers that met
all the specified eligibility criteria. Using the PRISMA methodology, this paper aims to
provide a comprehensive overview of the existing literature on AI applications in the
energy sector within Smart Cities. This systematic review allows to identify common
patterns, consistencies, and trends in each category. By doing so, the reader can gain
valuable insight into the advancements and developments within these research areas. The
following subsections will present the findings for each of the topics in a structured and
coherent manner.

Table 11 shows the articles obtained after screening and will be referred to in the
following sections. The table presents the rich landscape of research in Smart Cities and
energy applications, showcasing the evolution of methodologies and technologies over
time. The diversity of the methods with which researchers have approached the areas
described previously varies from algorithms of machine learning, fuzzy logic, optimization,
and structural analyses; this diversity indicates the interdisciplinary nature of the research
performed in the Smart Cities context and the application that AI has in the same area.
Future research could focus on validating and standardizing approaches to ensure the
compatibility and reproducibility of results in terms of real-world implementation. Possible
areas of exploration include the scalability of the proposed solutions, addressing challenges
in deployment and integration into existing urban infrastructure. Articles from the early
years (2018–2020) showcase a keen interest in topics such as wind characterization, digital
systems for transmission networks, and microgrid management. As emerging technologies
continue to evolve, IoT technologies are becoming increasingly popular. This trend is
evident in the table, where a search for the frequency of the term in the “Method” column
shows a total of 13 occurrences, starting from the year 2020. Climate change is a pressing
issue globally, as evidenced by the increasing number of papers on renewable energy being
integrated into Smart Cities. It is highly recommended to continue research on renewable
energy sources since this topic is still in its nascent stages and remains critical for achieving
long-term energy goals and the Sustainable Development Goals (SDGs). The articles related
to renewables focus on wind turbines, solar energy, hydrogen production, and renewable
energy in high greenhouse-gas-emitting sectors. Methods include structural and modal
analyses, fuzzy methods, social and political analysis, and optimization algorithms.

77



Energies 2024, 17, 353

Table 11. Articles that fulfilled all eligibility criteria.

Area of Application Author(s) Year Category Method Source

Generation Miyasawa A. et al. [31] 2023 Demand forecasting
Smart metering,
nonparametric
regression models.

IET Smart Cities

Generation Shafiullah M. et al. [32] 2023 Energy Systems Artificial Intelligence, IoT Smart Cities

Generation Wu Z. et al. [33] 2023 Wind power forecasting

Probabilistic
Physics-informed AI for
completing dataset caused
by ocassional shutdwon

CMES—Computer
Modeling in Engineering
and Sciences

Transmission Fakhar A. et al. [34] 2023 Smart Grids with
Renewable Energy

Cloud Computing,
IoT, Blockchain

International Journal of
Green Energy

Consumption Bayer D. and
Pruckner M. [35] 2023 Energy Systems in

Buildings Digital Twin Energy Informatics

Consumption Alymani M. et al. [36] 2023 Forecasting energy
consumption

Stacked Autoencoder (SAE),
Deep Neural Network
(DNN), Bidirectional Long
Short-Term Memory
(BiLSTM)

Sustainable Energy
Technologies and
Assessments

Consumption Al-Habaibeh A. et al. [37] 2023 Estimate crowds in
cities Internet of Things (IoT) Ain Shams Engineering

Journal

Consumption Selvaraj R. et al. [38] 2023 Energy consumption
management

Artifitial Intelligence
Technique for Monitoring
Systems in Smart Buildings
(AIMS-SB)

Sustainable Energy
Technologies and
Assessments

Consumption Feng Y. et al. [39] 2023 Energy Saving Reinforcement Learning IEEE Access

Consumption Jiang R. et al. [40] 2023 Demand Prediction Deep-chain echo state
network (DCESN)

IEEE Transactions on
Industrial Informatics

Consumption AlHajri I. et al. [41] 2023 Urban Planning Long-Short Term memory
networks Energy

Renewables Fantin Irudaya Raj E.
et al. [42] 2023 Wind turbines in smart

cities

Structural, modal, and
harmonic analyses
performed using ANSYS

MRS Energy and
Sustainability

Generation Khan N. et al. [43] 2023 Power Generation
Forecasting

Multi-Head Attention
(MHA)-based deep
Autoencoder(AE) with
Extreme Gradient Boosting
(XBG) algorithm

IEEE Internet of Things
Journal

Renewables Ulpiani G. et al. [44] 2023
Renewable energy in
high GHG’s emitting
sectors in cities

Social and Political analysis
Renewable and
Sustainable Energy
Reviews

Renewables Kedir N. et al. [45] 2023 Solar/PV Systems Fuzzy Hybrid Methods Energies

Consumption Icaza-Alvarez D. et al. [46] 2023 Estimation on the power
demand Energy Plan tool Energy Reports

Generation Moon J. et al. [47] 2022 Electrical load
forecasting

Explainable Electrical Load
Forecasting (XELF)
Methodology

Sustainable Energy
Technologies and
Assessments

Transmission Said D. [48] 2022 Demand-Side
Management

Big data, Blockchain,
Machine learning (ML), IoT

IEEE Engineering
Management Review

Generation Heidari A. et al. [49] 2022 Smart cities power and
energy management

Convolutional Neural
Network (CNN) Long
Short-Term Memory (LSTM)

Sustainable Cities and
Society

Generation Chang E.-C. et al. [50] 2022 PV tracking and control Finite Time Terminal
Attractor (FFTA)

Wireless Communications
and Mobile Computing

Transmission Liu Z. et al. [51] 2022 Smart Power Grids,
Power Systems Machine learning (ML) Energy Reports

Transmission Khosrojerdi F. et al. [52] 2022 Smart Grid Artificial Intelligence
Analytics (AIA)

International Journal of
Energy Sector
Management
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Table 11. Cont.

Area of Application Author(s) Year Category Method Source

Consumption Chavhan S. et al. [53] 2022 Energy-efficient
transport AI-IoT System ACM Transactions on

Internet Technology

Consumption Al-Hawawreh
M. et al. [54] 2022 Smart decision making Deep Reinforcement

Learning (DRL) IEEE Sensors Journal

Consumption Singh S. et al. [55] 2022 Clustering for Wireless
Sensors Networks

Improved gray wolf
optimization (IGWO) Sensors

Consumption Huang J. et al. [56] 2022 Building energy forecast Three ML algorithms (SVR,
XGBoost, and LSTM) Applied Sciences

Consumption Mohamed H. et al. [57] 2022 Reduce energy
consumption TOPSIS fuzzy Electronics

Consumption Ren Y. et al. [58] 2022 Data management in
energy consumption

Quantum-inspired
Reinforcement Learning
(QRL)

IEEE Transactions on
Green Communications
and Networking

Consumption Murthy Nimmagadda S.
and Harish K.S. [59] 2022 Building smart cities

Internet of Things (IoT),
Connectivity, Cloud
computing and AI

Multimedia Tools and
Applications

Consumption Islam N. et al. [60] 2022 Data management
Secured protocol with
collaborative learning for
IoT using AI techniques

Sustainability

Consumption Zamponi M.E. and
Barbierato E. [61] 2022 Forecast energy

consumption Different AI algorithms Smart Cities

Consumption Naveed Q.N. et al. [62] 2022 Transportation data
management

Improved phase timing
optimization (IPTO) Sensors

Consumption Akkad M.Z. et al. [63] 2022 Energy consumption
and emissions

IoT, Smart bins,
multi-percentage sensors Designs

Consumption Garlik B. [64] 2022 Energy consumption
reduction in buildings

Artificial Intelligence with
IoT Applied Sciences

Consumption Saba D. et al. [65] 2022 Smart home electricity
management

Decision-making tool
(IRRHEM) Applied Sciences

Consumption Zaimen K. et al. [66] 2022 Wireless Sensor
Networks

Generic algorithm, particle
swarm optimization, flower
pollination, and ant colony
optimization

IEEE Access

Consumption Serrano W. [67] 2022 Smart Buildings Neural networks with deep
learning structure

Neural Computing and
Applications

Renewables Li J. et al. [68] 2022 Hydrogen production
and conversion Fuzzy Methods Sustainable Cities and

Society

Renewables Doosti R. et al. [69] 2022 Industrial Building
renewable energy CPLEX Solver IET Smart Cities

Renewables Vyas M. et al. [70] 2022 Urban Space Utilization Use of PV Trees on urban
areas Renewable Energy

Renewables AlHammadi A. et al. [71] 2022
Hybrid renewable
systems for vehicle
charging

Hybrid Optimization of
Multiple Energy Resources Energies

Renewables Balabel A. et al. [72] 2022 Solar energy in building
sectors

Solatube technology
analysis

Alexandria Engineering
Journal

Renewables Nuvvula R.S.S. et al. [73] 2022
Optimal configuration
of PV and wind
conversion system

Particle Swarm
Optimization

Sustainable Energy
Technologies and
Assessments

Renewables Ponce P. et al. [74] 2022 Solar/PV Systems Fuzzy TOPSIS Energies

Generation Konhäuser W. [75] 2021 Local energy generation Blockchain Technology
(BCT)

Wireless Personal
Communications

Generation Pérez-Romero
Á. et al. [76] 2021

Operation and
Maintenance of PV
plants

Five AI-based models Applied Sciences
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Table 11. Cont.

Area of Application Author(s) Year Category Method Source

Generation Zhou H. et al. [77] 2021 PV energy generation
forecasting Hybrid Deep Learning Wireless Communications

and Mobile Computing

Generation Saini G.S. et al. [78] 2021 Resource Management Fuzzy Logic
Recent Advances in
Computer Science and
Communications

Transmission Antonopoulos I. et al. [79] 2021 Smart Grid Smart City
(SGSC) project

Energy Demand Response
Modeling Energy and AI

Distribution Wang K. et al. [2] 2021 Decision making in
Smart Cities

IoT and Artificial
Intelligence Sustainability

Distribution Calamaro N. et al. [80] 2021 Energy losses detection Energy fraud detection
algorithm Sustainability

Consumption Manman L. et al. [81] 2021 Energy efficiency Distributed Artificial
Intelligence (DAI)

Sustainable Cities and
Society

Consumption Li J. et al. [82] 2021 Decision Support
Systems Internet of Things (IoT) Computers and Industrial

Engineering

Consumption Ghadami N. et al. [10] 2021 Forecast energy
consumption

Artificial Neural Network
(ANN)

Sustainable Cities and
Society

Consumption Cirella G.T. et al. [83] 2021 Smart Electricity Different AI algorithms Energies

Consumption Hu Y.-C. et al. [84] 2021 Energy decomposition
in smart meter Neuro-fuzzy classifier Processes

Consumption Mahmood D. et al. [85] 2021 Energy Management Demand Side Management
(DSM)

International Journal of
Advanced and Applied
Sciences

Consumption Wang X. et al. [86] 2021 Energy consumption of
ac-grid system Fuzzy Logic Journal of Intelligent and

Fuzzy Systems

Generation Kanase-Patil A.B.
et al. [87] 2020 Power generation in

Smart City Different AI algorithms Environmental Technology
Reviews

Generation Serban A.C. and Lytras
M.D. [11] 2020 Renewable Energy in

Smart Cities Different AI algorithms IEEE Access

Generation Jiang Y. et al. [88] 2020 Improvement of Urban
Development IoT IEEE Access

Transmission Cheng Y. et al. [89] 2020 Demand Forecasting Neural Network IET Smart Cities

Transmission Ullah Z. et al. [3] 2020 Energy Efficiency of
Smart Grids

Machine learning (ML),
Deep Reinforcement
Learning

Computer
Communications

Distribution Loose N. et al. [90] 2020 Smart grids, energy
networks Unified energy agent Sustainability

Distribution Fattahi J. et al. [91] 2020 Financial Resources
Distributed Energy
Management System
(DERMS)

Sustainable Cities and
Society

Consumption Sharma S. [92] 2020 Infrastructure Smart vs Intelligent
comparison

International Journal of
Advanced Research in
Engineering and
Technology

Consumption Marinakis V. et al. [93] 2020 Energy consumption
reduction

Novel framework with
reward schemes Sensors

Consumption Ullah A. et al. [28] 2020 Energy consumption
prediction Clustering based analysis Sensors

Consumption Shah A.S. et al. [94] 2020 Energy consumption in
smart buildings Bat algorithm, fuzzy logic IEEE Access

Consumption Azzaoui A.E. et al. [12] 2020 Energy saving Blockchain and AI IEEE Access

Consumption Guo Y. et al. [95] 2020 Minimizing cost of
energy consumption

Ant colony optimization
(ACO) IEEE Access

Consumption Zhuang H. et al. [96] 2020 Building energy
management

ANN and Fuzzy Logic
Controller

Environmental Modeling
and Software
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Table 11. Cont.

Area of Application Author(s) Year Category Method Source

Renewables Algieri A. et. al. [97] 2020
Biofuel Rankine Cycle
combined with
Renewable sources

Multivariable optimization Energies

Renewables Kumar D. [98] 2020 Urban energy system Simulation of hybrid urban
renewable energy systems

Energy Exploration and
Exploitation

Generation Aghajani D. et al. [99] 2019 Wind Turbines
Monitoring

Geographic information
system and RETSCREEN
software

International Journal of
Environmental Science
and Technology

Generation Oun A. et al. [100] 2019 Energy rationalization
of a steel plant

AI, Smart Metering (SM),
Automated Decision
Making (ADM)

International Journal of
Advanced Computer
Science and Applications

Consumption Salehi H. et al. [101] 2019
Structural Health
Monitoring Energy
Consumption

Data mining with pattern
recognition, an innovative
probabilistic approach, and
machine learning

Expert Systems with
Applications

Consumption Dong Y. et al. [102] 2019 Energy consumption
management

Fairness cooperation
algorithm (FCA)

IEEE Internet of Things
Journal

Consumption Krayem A. et al. [103] 2019 Energy consumption
prediction Archetypal classification Energy and Buildings

Consumption Marin-Perez R. et al. [104] 2019 Energy consumption
improvement

PLUG-N-HARVEST
architecture Sensors

Consumption Vázquez-Canteli J.R.
et al. [30] 2019 Energy saving and

demand response
Advanced machine learning
algorithms

Sustainable Cities and
Society

Consumption Aymen F. and
Mahmoudi‘ C. [105] 2019 Electric Vehicles energy Support vector classification Energies

Renewables Khoury D. and
Keyrouz F. [106] 2019 Wind and Solar power

forecasting
Convolutional Neural
Network (CNN)

WSEAS Transactions on
Power Systems

Consumption Alhussein M. et al. [107] 2019 Microgrid energy
management Deep learning model Energies

Consumption Risso C. [108] 2019 Energy demand control Combinatorial optimization
dispatch models

Revista Facultad de
Ingeniería

Generation Njuguna Matheri
A. et al. [109] 2018 Waste quantification for

biofuel

Simple Multi Attribute
Rating (SMART) of Multiple
Criteria Decision Analysis
(MCDA)

Renewable and
Sustainable Energy
Reviews

Transmission Serrano W. [4] 2018 Digital Systems,
Transmission Networks

Digital as a Service (DaaS),
IoT, Blockchain, Virtual
Reality

Smart Cities

Consumption Chui K.T. et al. [110] 2018 Electricity consumption

Hybrid genetic algorithm
support vector machine
kernel learning approach
(GA-SVM-MKL)

Energies

Consumption Rahman A. et al. [27] 2018 Medium-long term
energy predictions

Recurrent Neural Network
(RNN) Applied Energy

Renewables Ramli M.A.M. et al. [27] 2018 Microgrid Systems

Multi-Objective
Self-Adaptive Different
Evolution (MOSaDE)
algorithm

Renewable Energy

Renewables Ashfaq A. and
Ianakiev A. [111] 2018

Technical and cost
design to decarbonize
the heating network

Large Scale heat pump and
thermal heat storage Energy

Generation Laiola E. and
Giungato P. [112] 2018 Wind characterization

Statistical methods used for
meteorological and
economic data

Journal of Cleaner
Production

Renewables Oldebroek V. et al. [17] 2017 Fully Renewable
integrated transport

An energy balance and cost
analysis

International Journal of
Hydrogen Energy
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Transmission Rekik M. et al. [113] 2016 Smart Grid Ant Colony Optimization
(ACO)

Sustainable Cities and
Society

Consumption De Paz J.F. et al. [114] 2016 Optimization of energy
consumption and cost

Artificial neural networks
(ANN), multi-agent systems
(MAS)

Information Sciences

Consumption Peña M. et al. [115] 2016
Energy inefficiencies
detection in smart
buildings.

Data mining Expert Systems with
Applications

Consumption Huang J. et al. [116] 2016 Energy consumption
of train Decision tree, data mining IEEE Transactions on

Computers

Consumption Sȩdziwy A. and
Kotulski L. [117] 2016 Lighting system energy

consumption
Dynamic street lighting
control Energies

Transmission Lützenberger
M. et al. [118] 2015 Energy in Smart Cities Distributed Artificial

Intelligence Laboratory

Journal of Ambient
Intelligence and
Humanized Computing

Consumption Fernández C. et al. [119] 2014 Energy consumption
modeling

Automated vacuum waste
collection (AVWC) Sustainability

Consumption Yang D. et al. [16] 2013 Solar irradiance
forecasting Time-Forward kriging Renewable Energy

Generation Park C.J. et al. [120] 2013 Forecasting of
renewable energy Spatio-Temporal correlation

International Journal of
Multimedia and
Ubiquitous Engineering

4.1. Energy Generation

The Scopus search yielded a total of 46 articles as a result of the initial exploration.
After filtering the search to focus solely on articles with a primary emphasis on energy
generation, a total of 17 articles were identified that met all eligibility criteria and were
not duplicated in other sections. These 17 articles will form the basis of our analysis and
in-depth examination of the advancements and research trends related to energy generation
in the context of AI applications in Smart Cities.

For the renewable energy section, a total of 48 articles were obtained, but after filtering
these articles, choosing just the ones that were mostly related to renewable energy gener-
ation in Smart Cities, a total of 24 articles were obtained. These articles are added to the
energy generation section in order to have a more complete review.

Energy generation forecasting, particularly of alternative sources, emerged as one of
the main topics identified in this section. The selected articles delve into the application
of AI methodologies for predicting energy generation from renewable and sustainable
sources. This area of research is of significant importance in the context of Smart Cities, as
it contributes to enhancing the integration and utilization of alternative energy sources to
meet the growing energy demands sustainably. The analysis of these articles will provide
valuable insights into the advancements and challenges in accurately forecasting energy
generation from renewable sources, enabling better energy planning and management in
Smart City environments. In [31], the authors developed a method based on non-parametric
regression models that forecasts the demand and generation of energy with information
provided by smart meters. Another application for forecasting purposes can be reviewed
in [33], where a physics-informed AI is applied that forecasts wind power generation, with
information on a wind farm in China and ML methods. Reference [45] shows an extensive
review of Fuzzy Hybrid Methods, future possible challenges, and opportunities in this
sector. This study shows that combining fuzzy logic systems can enhance the efficiency
of solar energy applications, and the approach outlined in this research can be applied to
investigate various renewable energy sources.

Another application found was the Maximum PowerPoint Tracking of photovoltaic
panels, which is the point where solar PV panels produce the maximum energy possible,
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and the tracking of this point increases their energy efficiency; in [50], a Finite-Time Terminal
Attractor (FFTA) is combined with Gradient Particle Swarm Optimization (GPSO) to track
MPPT of a solar PV system. Another application in solar energy can be found in [10], in
which an Artificial Neural Network (ANN) is applied to create a decision-making tool
based on the generation and consumption of solar PV systems that can aid decision makers
in creating strategies towards energy generation; these strategies include reducing costs
and/or maximizing solar energy generation.

Hence, a trend that can be noticed is that AI has been applied for energy generation
forecasting and also to increase the energy efficiency from PV systems, which increases the
power generation. AI helps to manage large amounts of data to predict these forecasting
models and also manages generation data to track the MPPT for PV panels. In addition, AI
has been applied in decision-making tools that consider generation and consumption to
provide alternatives that can bring benefits in terms of economic and energy efficiency.

In addition, the study presented in [121] primarily concentrates on employing fuzzy
decision-making tools in supply chain management rather than tackling energy issues
directly. The paper mainly emphasizes developing and applying dynamic spherical fuzzy
aggregation operators (AOs) for multi-period decision making (MPDM) within supply
chain management. This concentration differs significantly from typical areas of interest
in energy-related studies in Smart Cities, which generally include energy generation,
distribution, consumption, efficiency, renewable sources, and sustainable energy practices.
Furthermore, the technical approach, involving mathematical models and algorithms for
decision making, is designed to manage uncertainty and imprecision in these processes.
Although these methodologies benefit their respective fields, they do not contribute directly
to advancing energy systems or technologies in Smart Cities, particularly those utilizing
AI in the energy sector. The case studies and examples provided in the paper focus on
supply chain management, an essential aspect of urban systems. However, they do not
cover critical elements of energy management in Smart Cities, such as energy generation,
conservation, or optimization strategies, often involving smart grids and the integration of
renewable energy.

The paper [122] shows a unique approach, focusing on and contributing to energy
management and sustainability. It searches the expansion of renewable energy, exploring
its applications and open research problems. It emphasizes the evolution, theoretical
underpinnings, and practical applications of various renewable energy sources, including
solar, wind, bioenergy, hydraulic energy, and waste-to-energy conversions. Conducting
an extensive literature review, it covers developments from 2010 to 2022 and proposes
innovative ideas and cost-effective models for implementing renewable energy across
different sectors.

In contrast, this review paper is oriented towards integrating Artificial Intelligence
(AI) in the energy sector within Smart Cities. It employs the PRISMA methodology and
the Scopus database to review the literature, systematically analyzing 122 peer-reviewed
articles. This review underscores the pivotal role of AI technologies in improving urban
energy processes across four key domains: generation, transmission, distribution, and
consumption. It identifies trends, high-impact articles, and emerging keyword clusters,
providing a comprehensive analytical framework on the multifaceted applications of AI in
the energy sectors of Smart Cities.

While the study in [122] is aimed primarily at researchers and practitioners in the
field of renewable energy, offering innovative solutions and pinpointing open areas for
future research, this review paper is geared towards policymakers, urban planners, and
researchers. It emphasizes the use of AI to achieve sustainable and efficient energy manage-
ment in Smart Cities. Although both articles contribute to the larger conversation on energy
management and sustainability, they have distinct focal points: [122] centers on the various
applications of renewable energy, while this review paper focuses on the transformative
impact of AI in managing energy resources in the context of Smart Cities.
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4.2. Energy Transmission

After conducting a thorough search using the method described above, a total of
31 articles were obtained for this section. The filters applied considered both energy and
transmission; however, it is worth noting that some of the results were centered on IoT
networks and data transmission (not energy transmission). To ensure precision, only
articles that focused on energy transmission in their abstract were considered, resulting in
a total of 10 relevant articles.

In [34], the authors elaborate on various concepts related to energy transmission lines
in Smart Cities, particularly with the introduction of smart grids. Smart grids are advanced
systems that integrate automation, data transmission, and energy monitoring at each
stage of the energy supply chain, from generation to final consumption. This integration
facilitates seamless communication and coordination between different components of the
energy transmission network within a Smart City. This paper emphasizes that concepts such
as the Internet of Things (IoT) and cloud computing play a vital role in enhancing energy
transmission. These technologies enable efficient data management, as they can handle
vast amounts of information exchanged between various energy transmission networks
within a Smart City. By leveraging IoT and cloud computing, smart grids optimize the
management and distribution of energy resources, contributing to the achievement of Smart
Cities’ objectives. The implementation of smart grids in energy transmission is pivotal for
effectively carrying energy from its source to the end-users consumption. The integration
of these advanced systems enables greater energy efficiency, sustainability, and alignment
with the goals of Smart City development. Smart grids integration is also mentioned
in [3,52,79], so there is a close connection between smart grids and energy transmission for
AI applications in Smart Cities.

In [89], it is stated that in order to have an appropriate electric transmission, an
anomaly detection system is required to avoid power losses. In this article, an AI method
called PowerNet, which is based on neural networks, is proposed to detect anomalies
for electricity theft detection in the smart grids, so the AI could make a contribution to
automatically detect these problems and report them. Even though the main contribution
of this article is regarding energy forecasting, the proposed AI method is explored in this
article, and its application for transmission is reviewed.

The work presented in [48] mentions several methodologies for the demand side
management (DSM) application in power grids, which is again mentioned for energy
transmission and the application of IOT, but also introduces the SM, which is a mixture
between software and hardware that helps to give real-time data, with valuable precision,
about the energy consumption, which can be useful for monitoring purposes and home
area networks (HANs), which are utilized to connect electric devices at home.

4.3. Energy Distribution

Using the methodology this time for Energy Distribution, a total of 21 relevant articles
were obtained. Among these, some discussed the heating load in buildings, some others
focused on electric vehicles, which briefly mentioned the Smart City concept. To narrow
down the selection of the articles, the criterion used was to include articles whose abstract
prominently features energy distribution as one of the main topics. Upon careful review,
it was found that only four papers either focused solely on energy distribution or made
significant contributions in this area. These selected articles will be subject to a thorough
examination to identify their key findings, contributions, and emerging trends in the
field of energy distribution within Smart Cities. Although the number of articles in this
category may be relatively small, their significance lies in the valuable insights they provide
regarding energy distribution strategies and advancements in the context of smart cities.

The work presented in [2] shows Artificial Neural Networks (ANNs) and machine
learning algorithms like Support Vector Machine (SVM) to train energy prediction models
that could contribute to obtaining the amount of energy consumption of buildings in Smart
Cities, helping distribution systems to be more efficient.
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From the literature review, in [90], a multi-agent-based simulation of the distribution
networks of a city in Germany reached the objective of the article of successfully simulating
the dynamic model of the city energy network, and this simulation was compared to
professional simulation tools, which had a relative error lower than 0.0000084%. Another
important approach to the application of AI in energy distribution is present in [80], which
explains the development of an algorithm to solve energy fraud detection to minimize
energy loss in the electricity grid. This algorithm used Convolutional Neural Networks
(CNNs) and Robotic Process Automation (RPA) to detect precise fraud identification in
electricity networks, the main objective of which was to separate electricity fraud from the
many other anomalies that could be presented in the network. The last article reviewed in
this section is the work presented in [91], which is considered an energy internet architecture
to reach an economic mechanism for clean energy management. This work is not completely
focused on an energy distribution approach, but the work could contribute to clean energy
integration, which is an important part of Smart Cities. Indeed, a noticeable trend can
be observed in the area of energy distribution. This trend revolves around three key
aspects: simulating distribution networks, detecting faults in distribution networks, and
predicting energy.

4.4. Energy Consumption

The search conducted for the base terms followed by energy consumption resulted
in a total of 103 articles. After the screening, 49 articles of this set fulfilled the eligibility
criteria, and said articles are listed in Table 11 under Consumption Area of Application.
Common topics among the reviewed articles were forecasting, data mining, economy,
energy management, user profiling, behavior modeling, electric vehicles, and computing.

A paper that alludes to forecasting found during this research is [35], which proposes
a smart meter time series from generation sources, the electric grid, and localized buildings
to attain a Digital Twin of the entire system with the added benefit of allowing geospatial
information to be fed to the twin. The results show that when geospatial data are not
available, a 7% overestimation of the grid level is performed during the summer days. A
different approach to forecasting the energy consumption of individual residential house-
holds is the one proposed in [89]; this case study presents a neural network architecture
named PowerNet, which can incorporate historical supply and demand, weather data, and
date information to forecast energy consumption. Some of the machine learning algorithms
used by PowerNet are Gradient Boosting Tree (GBT), Support Vector Regression (SVR),
Random Forest (RF), and Gated Recurrent Unit (GRU). Additionally, PowerNet can also
be used for anomaly detection in power systems. The use of Recurrent Neural Networks
is proposed in [27] to forecast the consumption of commercial and residential buildings
in medium- to long-term time horizons (greater than a week). The model proposed in
this article demonstrates the capability to predict unknown transient responses, making it
promising for forecasting hourly electricity consumption as well. In [74], the Fuzzy-TOPSIS
decision-making method is used to evaluate the selection of Mexican manufacturing compa-
nies for installing solar panels. Additionally, the S4 framework is implemented to improve
the decision-making process by Fuzzy-TOPSIS.

One of the articles that focuses on building energy management to minimize power
consumption is [67], This paper examines the application of deep learning structures.
Initially, sensory neurons are spread throughout the smart building, collecting data from
the environment. Subsequently, a reinforcement learning algorithm is employed to predict
values and trends, thereby aiding the building managers with the decision-making task.
The proposal called iBuilding is validated using a public research data set, demonstrating
that Artificial Intelligence within smart buildings allows the real-time monitoring and
accurate predictions of its variables.

Previously mentioned examples show a growing trend of the use of AI in the fore-
casting of the energy consumption sector due to the availability of more information on
weather conditions and domestic appliances’ energy consumption. It is possible to use the
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data gathered to train neural networks and models to have more precision. The historical
patterns can be studied.

4.5. Research Gaps

As detailed in this literature review, AI applications in the energy sector reveal the
current state of research and uncover several technological gaps that present opportunities
for future innovation. The role of AI in forecasting alternative sources like wind and solar
is well established in energy generation. However, a technological gap remains in the
accurate energy output prediction under varying environmental conditions. Additionally,
while AI has made strides in the operation and monitoring of these sources, there is
a need for more advanced AI systems that can dynamically adapt to changing energy
demands and integrate seamlessly with traditional energy grids. This gap is particularly
evident in the context of hybrid energy systems in Smart Cities, where a diverse array
of energy sources must be efficiently managed. In transmission and distribution, AI has
significantly contributed to smart grid management and energy loss detection. However, a
notable gap exists between the long-distance transmission efficiency and the integration
of distributed energy resources. Current AI models often struggle with the complexity of
large-scale, interconnected networks. There is a need for more sophisticated AI algorithms
capable of optimizing energy flow across massive and varied geographical areas. On
the consumption side, AI has been instrumental in reducing energy usage, forecasting
demand, and managing building energy systems. Yet, a technological gap is evident
in personalizing energy consumption strategies. AI systems that can learn and adapt
to individual user behaviors and preferences in real time are in progress. Such systems
could significantly enhance energy efficiency at the consumer level. While AI applications
in forecasting and EV charging are advancing in the renewable energy sector, there is
a gap in the comprehensive integration of various renewable sources. Research heavily
focuses on solar, wind, and hydrogen, but other sources like hydropower, geothermal,
and bio-energy are less explored. AI applications in these areas are not as developed,
indicating a gap in diversifying renewable energy sources within Smart Cities. In addition,
integrating AI systems is a cross-cutting technological gap across all these sectors. Figure 17
shows a brief description in this section. While AI is being applied in siloed aspects of the
energy sector, there is a lack of holistic, interconnected AI frameworks that can manage the
energy life-cycle from generation to consumption in a unified manner. Such integration
is crucial for the development of truly smart, efficient cities. Finally, while AI has made
significant inroads in the energy sector, our review highlights several technological gaps.
Addressing these gaps requires focused research and development efforts, aiming for more
sophisticated, adaptable, and integrated AI solutions that can meet the complex demands
of modern energy systems, particularly in the context of Smart Cities.

Generation

Forecasting
Dynamic 
adaption to 
changing 
demands

Hydropower
Geo-Termal
Bio-Energy

Transmission Distribution Consumption

Energy loss detection
Long distance 
efficiency

Large scale 
interconnected 
network

Demand forecasting
Personalazing energy 
consumption demand
Enhancing energy 
efficiency at consumer 
level

Figure 17. Illustrative description on research gaps section.
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5. Conclusions

This paper contributes to understanding the integration and application of Artificial In-
telligence (AI) within the energy sector, especially in Smart Cities. The study systematically
delineates the existing literature into four key domains, energy generation, transmission,
distribution, and consumption, meticulously reviewing a compendium of 122 articles
sourced from Scopus. A salient feature of this paper is its temporal analysis, revealing an
exponential surge in publication growth over the years. In energy generation alone, publi-
cations have increased from a single article in 2016 to 45 in 2023, representing a staggering
annual growth rate of 42.62 percent. Comparable ascendant trajectories are discerned in
other domains, such as energy transmission and distribution. Furthermore, the paper sheds
light on renewable energy, focusing on the integration of solar and wind energy in Smart
Cities, outlined in the Energy Generation section. A crucial aspect of this research lies in
keyword co-occurrence analysis, enabling the identification of predominant AI techniques
in current practice. Concepts such as artificial intelligence, economics, energy efficiency,
data analytics, renewable energy, and deep learning have emerged as integral to the for-
mulation of intelligent energy solutions. This comprehensive analysis provides a robust
framework for deciphering the multifarious AI techniques and their application. From
machine learning algorithms, such as Ant Colony Optimization and neural networks, to the
nascent trends in smart grids, these innovations are pivotal in spearheading advancements
in energy forecasting, consumption prediction, and intelligent control systems. The aim of
this paper is to present a profound and up-to-the-minute overview of the influential role
of AI in the energy sector of Smart Cities. It meticulously tracks the evolution and impact
of research in this field and pinpoints the foremost technologies and methodologies ex-
pected to shape forthcoming innovations. This paper serves as a repository of information
on current trends and a compass pointing toward the future trajectories in AI-mediated
intelligent energy solutions within the progressive ecosystems of Smart Cities.
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The following abbreviations are used in this manuscript:

AI Artificial Intelligence
ACO Ant Colony Optimization
ADM Automatic Decision Making
AIA Artificial Intelligence Analytics
AIMS-SB Artificial Intelligence Technique for Monitoring Systems in Smart Buildings
ANN Artificial Neural Network
AVWC Automated Vacuum Waste Collection
BCT Blockchain Technology
BiKSTM Bidirectional Long Short-Term Memory
CNN Convolutional Neural Network
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DaaS Device as a Service
DAI Distributed Artificial Intelligence
DCESN Deep-Chain Echo State Network
DCNN Dilated Convolutional Neural Network
DERMS Distributed Energy Management System
DNN Deep Neural Network
DRL Deep Reinforcement Learning
DSM Demand Side Management
FCA Fairness Cooperation Algorithm
FFTA Finite-Time Terminal Attractor
GA Genetic Algorithm
GHG Greenhouse gas
GPSO Gradient Particle Swarm Optimization
IGWO Improved Gray Wolf Optimization
IOT Internet of Things
IPTO Improved Phase Timing Optimization
LSTM Long Short-Term Memory
MAS Multi Agent Systems
MCDA Multiple Criteria Decision Analysis
MKL Machine Kernel Learning
ML Machine Learning
MPPT Maximum Power Point Tracking
PV Photovoltaic
QRL Quantum-Inspired Reinforcement Learning
RNN Recurrent Neural Network
SAE Stacked Autoencoder
SM Smart Metering
SMART Simple Multi-Attribute Rating
SVM Support Vector Machine
XELF Explainable Electrical Load Forecasting
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Abstract: Photovoltaic panels play a pivotal role in the renewable energy sector, serving as a crucial
component for generating environmentally friendly electricity from sunlight. However, a persistent
challenge lies in the adverse effects of rising temperatures resulting from prolonged exposure to
solar radiation. Consequently, this elevated temperature hinders the efficiency of photovoltaic
panels and reduces power production, primarily due to changes in semiconductor properties within
the solar cells. Given the depletion of limited fossil fuel resources and the urgent need to reduce
carbon gas emissions, scientists and researchers are actively exploring innovative strategies to
enhance photovoltaic panel efficiency through advanced cooling methods. This paper conducts
a comprehensive review of various cooling technologies employed to enhance the performance
of PV panels, encompassing water-based, air-based, and phase-change materials, alongside novel
cooling approaches. This study collects and assesses data from recent studies on cooling the PV panel,
considering both environmental and economic factors, illustrating the importance of cooling methods
on photovoltaic panel efficiency. Among the investigated cooling methods, the thermoelectric
cooling method emerges as a promising solution, demonstrating noteworthy improvements in energy
efficiency and a positive environmental footprint while maintaining economic viability. As future
work, studies should be made at the level of different periods of time throughout the years and for
longer periods. This research contributes to the ongoing effort to identify effective cooling strategies,
ultimately advancing electricity generation from photovoltaic panels and promoting the adoption of
sustainable energy systems.

Keywords: photovoltaic panels; cooling techniques; environmental and economic study;
future recommendations

1. Introduction

The continued population growth has resulted in the need for more energy resources
to satisfy different sectors of life [1–4]. Further, the continued use of fossil fuels has led to
depletion of resources and increases in price and CO2 in the atmosphere. Therefore, current
research focuses on finding alternative solutions through renewable energy resources [5,6]
and heat recovery systems [7–10].

Solar energy forms an important factor in renewable energy resources, mainly through
photovoltaic (PV) panels. Solar-energy-based PVs constitute a widely used technology in
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modern life based on the principle of converting sunlight into electricity through semicon-
ductor materials. This technology enabled a great leap forward in the world of renewable
energy resources due to its environmental impact on the reduction in CO2 emissions, its
fast payback period, and its long maintenance period (every 25–30 years). However, the
need for innovative installation techniques on modern roofs, the high prices, and the low
power generation on rainy days are obstacles to the installation of this technology.

The main obstacle in this technology is its low efficiency due to high temperatures. The
constant contact of sun rays at the surface of the PV panel increases its temperature, thus
decreasing its efficiency and output power. It was found that the efficiency of crystalline
silicon solar cells falls by 0.45–0.6% for every 1 ◦C rise above STC (standard test conditions)
in solar cell temperatures and varies according to the type of cell [11].

To increase the efficiency and the affordability of the panels, different approaches
were recorded in the trial to reduce solar cell temperatures. In the literature, four cooling
techniques are demonstrated with their different methods. The first technique is using
passive and active cooling methods of water. The second cooling technique is the use of
free and forced convection of air. The third cooling technique is the use of phase-change
materials (PCM) to absorb the excess of heat produced by the PV panel. Then the last
cooling technique is a sum of uncategorized and modern methods.

Table 1 portrays a collection of recent studies on different cooling techniques of
photovoltaic panels using novel approaches. The studies cover research and review articles.

Table 1. Recent research conducted on cooling PV panels using different novel methods.

Objective Methodology Outcomes References

Review on photovoltaic–thermal collector
technology and advances in thermally

driven cycles for PVT collectors.

Literature review on PVT collector types,
discussion of cooling solar systems, their
limitations, and future recommendations.

Electrical and thermal efficiency
enhancement up to 11% and 22.02%

maximum, respectively. The minimum
payback period for PVT systems is

8.45–9.3 years.

Jiao et al. [12]

A comprehensive review of different
cooling techniques used for concentrated

PV cells.

Literature review on cooling CPV cell
categories, discussion of CPV cooling

systems, mentioning their advantages and
disadvantages, and future

recommendations.

Agreement between experimental and
numerical results on enhancing the

efficiency.
Ibrahim et al. [13]

Review on state-of-the-art photovoltaic
thermal collectors and their abilities to
increase energy production and CO2

reduction.

Literature review on PVT systems,
classification, discussion on performance

enhancement, applications, and future
recommendations.

The curve of emissions (Remap) could be
reduced by 16% by 2030 if PV technology

was used.
Herrando et al. [14]

Review on water-based PV systems and
factors affecting them.

Literature review on cooling PV panels
methods, classification of water-based

cooling methods, discussion and analysis of
these methods in a statistical manner.

Water-based cooling was shown to be
effective in unused water spaces and has
the potential to increase PV performance.

Ghosh [15]

A comprehensive review on cooling PV
systems.

Literature discussing the different factors
affecting the solar systems. Providing
discussions on temperature mitigation

strategies and cooling methods.

Discusses power plant performance,
performance-affecting factors, and solutions

to reduce the effect of those factors.
Aslam et al. [16]

Review on photovoltaic thermal systems in
buildings and their application in heating,

cooling, and power generation.

Literature discussing PVT systems and their
integration into buildings, state-of-the-art
systems designed for cooling, heating, and

power production, and their limitations.

Hybrid systems showed the best
performance, highlighting that PVT

technology is still under development.
Herrando et al. [17]

Review on PV cooling technologies and
their environmental impacts.

Literature review on PV technology, cooling
techniques, advances in cooling technology,

and future recommendations.

Air cooling was found to be cost-effective
and simple, liquid cooling was found to be
efficient but expensive, PCM cooling was
found to enhance thermal efficiency but

bulky, and nanomaterial was found to be
efficient but expensive.

Hajjaj et al. [18]

Review on PV cooling using floating and
solar tracking systems.

Literature review on PV panels, cooling
methodologies, solar tracking, floating PV

systems, and future recommendations.

Solar tracking and floating PV systems were
found to reduce land usage and increase PV

performance.
Hammoumi et al. [19]

Review of PV cooling technologies and
their abilities in temperature reduction and

power enhancement.

Literature review on cooling methods,
discussing experimental studies and

cooling systems limitations.

PCM combined with nanoparticles was
found to be the most effective in cooling

compared to water and air-based systems.
Sheik et al. [20]
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Table 1. Cont.

Objective Methodology Outcomes References

Review on photovoltaic thermal systems
combined with PCM cooling.

A literature review was conducted about
different cooling methods, traditional and

advanced PV-T with PCM systems, and
their potential, analyzing their performance,

mentioning the challenges, and future
recommendations.

Combined PV-T PCM systems are owed a
3–5% increase in electrical efficiency,

20–30% in thermal efficiency, and cost
reduction by 15–20% with a payback period

of less than 6 years compared to PV-T
systems without PCM.

Cui et al. [21]

Review on PV passive cooling techniques.

Literature review on passive PV cooling
methods, discussing the passive cooling
methods while mentioning the unsolved

challenges, and recommending future
work.

Natural air ventilation and floatovoltaics
cooling systems were found to be the most
effective among the other passive cooling

methods.

Mahdavi et al. [22]

Review on nano-based cooling techniques.

Literature review on nano-based PV
cooling, classifying and discussing each

method, and proposing designs and future
recommendations.

Compared to conventional cooling
methods, the hybrid nano-based cooling

method could reduce PV’s surface
temperature by up to 16 ◦C and increase

electrical efficiency by up to 50%.

Kandeal et al. [23]

Review on and comparison of solar
tracking systems.

Literature review on PV panels, and solar
tracking systems while categorizing them
and focusing on dual-axis tracking, giving

insights and future recommendations.

Dual-axis solar tracking systems were
found to be more efficient at the level of

PVs’ performance compared to single-axis
tracking systems and fixed systems.

Awasthi et al. [24]

In summary, this review paper aims to comprehensively explore various aspects of
photovoltaic cooling methods. Most research concentrates on discussing specific cool-
ing systems or evaluating them from a performance perspective, including photovoltaic–
thermal collectors, concentrated PV cells, PVT systems in buildings, environmental impacts
of cooling technologies, and various cooling methods such as air cooling, water-based
systems, phase-change materials, and passive cooling techniques. The manuscript’s novelty
lies in its discussion of different technologies used in cooling PV panels while providing
insights into the economic and environmental benefits of each cooling method.

This comprehensive review paper takes a unique and methodical approach to explor-
ing various cooling methods for photovoltaic panels, distinguishing itself from previous
research that often narrowly focused on specific systems or performance aspects. The goal
is to provide a thorough and current analysis of advanced cooling technologies for solar
systems, shedding light on both their economic and environmental benefits. Covering a
diverse array of topics, from photovoltaic–thermal collectors to concentrated PV cells, the
review showcases advancements in electrical and thermal efficiency, resulting in significant
reductions in payback periods. This study emphasizes the critical role that cooling methods
play in enhancing the sustainability and efficiency of PV systems. Noteworthy findings
include the effectiveness of hybrid systems, thermoelectric, phase-change materials, and
nano-based cooling methods in improving overall PV performance. Through this system-
atic categorization and assessment, coupled with insightful economic and environmental
considerations, this research contributes valuable recommendations for future studies and
advances in the realm of PV cooling methods, making a substantial contribution to the
field.

The manuscripts mentioned in Table 1 provides valuable insights on future work and
limitations that should be addressed that could be conducted in this field such as

• PVT collectors should take into consideration the available space of installation.
• Heat pipe PVT collectors are better in cooling than PVT collectors with refrigerants.

However, their manufacturing and installation could be challenging.
• BIPVT collectors reduce the use of fossil fuels through offering savings at the level of

electricity production and the materials that could be used.
• The PCM selection to be used for cooling could be challenging and depend on many

factors. Studies should be performed at the level of the PCM to select the optimal one
for this study.

• Pulsating flow for CPV cooling was found to increase the PV performance. It is
suggested that this could be overcome through experimentation with the vibrations
that come with pulsating flow for CPV collectors.
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• It is suggested to study CPV cooling with the integration of porous media, PCM, or
nanofluids.

• Building artificial intelligence devices to remove accumulated dust on PV panels as a
means of cleaning and increasing efficiency.

• Despite the amount of research conducted in this field, more research needs to be
performed to cover the different aspects of PV deterioration.

2. Theoretical Background

2.1. Principle

The phenomenon of photovoltaic energy was first discovered by Edmund Bequerel.
The principle behind it is that when a photon reaches a semiconductor, two conductors
are created: the free electron and the electron hole through rejection of the electrons by the
negative transitional surface of the polarity. The released electrons flow to the upper layer.
In the bottom layer, the electrons are transferred from one atom to the other in order to fill
the empty spaces. Free electrons are conducted from the upper layer into the electric field,
where the solar cell is located. The constant contact of sunlight on the surface of the solar
panel ensures the continuity of electricity generation.

2.2. Parameters Affecting Panel Efficiency

Scientists and engineers found through experimental and numerical studies that dif-
ferent parameters other than panel temperature would affect its efficiency. Jathar et al. [25]
reviewed the different environmental factors affecting PV panel efficiency. Environmental
factors affecting panel efficiency are shown in Figure 1.

Figure 1. Environmental factors affecting the efficiency of PV panels [25].
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2.3. Effect of Temperature on Panel Efficiency

Among all the mentioned parameters in Figure 1, temperature is dominant in efficiency
deterioration. A PV panel absorbs approximately 80% of the incident radiation, but not
all of it is converted into electricity. A definite range of wavelengths can be converted
into electricity and all the others are converted into heat [26]. The remainder unconverted
wavelengths can increase the solar cell temperature above the atmospheric temperature [27].

The current literature has proven the decrease in temperature coefficients (such as PV
voltage and open-circuit current) with the increase in temperature [28]. Chander et al. [29]
carried out an experimental study employing a solar cell simulator with varying cell
temperatures, and the results showed that cell temperature has a significant effect on the
PV parameters and controls the quality and performance of the solar cell.

The current literature has also shown that there are many advantages and disad-
vantages of using each cooling method. The advantages and disadvantages of using the
standardized cooling methods of air, PCM, and water are represented in Figure 2.

Figure 2. Advantages and disadvantages of cooling methods.

2.4. Governing Equations

Every PV panel has a length L, a width W, and a thickness t. To calculate the total area
of a PV panel, then,

A = L × W (1)

where
A: Area of the P panel (m2).
L: Length of the PV panel (m).
W: Width of the PV panel (m).
However, the effective area of the PV panel is the area which yields power. This area

can be calculated as:
Ae f f = Acell × nbcell (2)

where
Ae f f : Effective area of the PV panel (m2).
Acell : Area of one cell (m2).
nbcell : Number of cells in a PV panel.
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The power received from the sun is:

Qsolar = G × Ae f f × α × τ (3)

where
Qsolar: Solar energy falling perpendicularly on the frontal surface of the PV panel as

an input power (W).
G: Solar radiation intensity incident on the panel in (W/m2).
α: Glass absorptivity.
τ: Glass transmissivity.
The power output of the PV panel is calculated by:

Pelect = V × I (4)

where
Pelect: Electric power output of the PV panel (W).
V: Output voltage (V)
I: Output current (A).
The output voltage and currents could be measured by mustimeters, where the voltage

is measured in parallel and the current in series.
The electric efficiency of a PV panel is measured using:

ηelect =
Pelect
Psolar

× 100 (5)

where
ηelect: Electric efficiency (%).
Pelect: Output electric power (W).
Psolar: Input electric power (W).
The solar incident angle is the angle between the perpendicular and the incoming

light from the sun. It is quantified by:

AOI = cos−1
[
cos(Θz) cos(θT) + sin(Θz) sin(θT) cos(θA − θAarray)

]
(6)

where
Θz: The solar zenith angle.
θT : The tilt angle of the array.
θA: The solar azimuth angle.
θAarray : The azimuth angle of the array.
The installation angle of a PV panel is the same as the tilt angle. It is the angle between

the horizontal surface and the PV panel. It is quantified as:
For the northern hemisphere:

α = 90◦ − (φ − δ) (7)

For the southern hemisphere:

α = 90◦ + (φ − δ) (8)

where
φ: The latitude.
δ: The angle of declination.

3. PV Cooling Methods

Efficiency improvement of PV panels depends mainly on mitigating panel temperature.
Figure 3 shows the three main cooling techniques in addition to other not-well-known
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and new techniques. The water cooling technique involves an earth water heat exchanger,
solar water disinfection, a heat pipe system and an automotive radiator system. These
methods are classified as either active or passive methods. The phase-change material
(PCM) cooling technique is divided into organic PCM and non-organic PCM, while the air
cooling method is divided into the installation of heat sinks, jet impingements, air duct or
cavity air flow systems to the PV panel. These air cooling methods are classified as forced
or free convection systems. Finally, non-categorized cooling methods are divided into the
thermoelectric cooling method, the coating method and nanofluids. These methods are
either new or not well known compared to the other cooling techniques.

Figure 3. Classification of cooling techniques.

3.1. Air Cooling Methods

The air cooling method for PV refers to the technique of dissipating heat from PV
modules by circulating air around them. It can be implemented in free or forced convection,
using heat sinks, fans, or blowers to increase airflow. As shown in Figure 4, natural
convection occurs by the means of circulation and heat exchange between hot and cold
fluids, this circulation is caused by the buoyancy effect. When the PV panel becomes hot,
it warms up the layer of air surrounding it, thus the temperature of air increases, and the
density increases accordingly. Consequently, hot air rises, causing a movement called a
natural convection current.

Figure 4. PV panel under free convection with or without a heat sink.
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Forced convection is considered one of the most effective heat transfer mechanisms. It
is characterized by using external sources such as fans, pumps, and suction devices to aid
fluid transportation.

Air cooling is relatively simple and cost-effective, making it a popular choice for
cooling PV systems. However, its effectiveness depends on various factors such as ambient
temperature, humidity, and wind speed. Heat sinks can be used in conjunction with air
cooling to further improve heat dissipation and maintain a stable operating temperature
for the PV modules.

Below, we present a summary table that outlines various cooling techniques with both
free and forced convection methods for photovoltaic panel cooling.

Table 2 summarizes various cooling methods applied to photovoltaic panels to enhance
their efficiency under different convection conditions. The studies cover a spectrum of
techniques, including forced convection with ducts and fans, free convection using multi-
level fin heat sinks, and hybrid approaches combining free and forced convection with
phase-change materials. Results indicate notable improvements in efficiency, ranging from
2.1% to 21.68%, with specific configurations achieving enhanced performance in different
climates. Additionally, studies explore novel strategies such as curved eave and vortex
generators, graphite-infused PCM, and heat spreaders with cotton wicks. Overall, the
studies explore a range of cooling methods and their impacts on PV panel performance,
contributing valuable insights to the field of renewable energy.

Moreover, the numerical studies in Table 2 have shown more novel approaches in the
designs of the cooling methods used in cooling the PV panel. Numerical investigations
shown a temperature reduction ranging between 5.89 ◦C and 27 ◦C while mainly focusing
the studies on using free convection. However, experimental investigations were combining
both free and forced convection and comparing their results. Air cooling was found to be
effective in significant solar radiation climates, where the temperature of the air is lower
than the temperature of the PV’s operating temperature.

Table 2. Free and forced convection cooling methods.

Convection Method Cooling Method Test Methodology Results Climate Author

Forced convection PV 1: Lower duct with blower.
PV 2: Duct with DC fans

Experimental and
Numerical

Enhanced efficiency by 2.1%
and 1.34% using fans and

blower, respectively
Benha, Egypt Hussein et al. [30]

Free Convection Truncated multi-level fin heat
sink Numerical

Recorded a 6.13% temperature
decrease and a 2.87% increase

in output power
- Ahmad et al. [31]

Free convection and
forced convection

PV 1: Heat sink under free
convection. PV 2: Duct under
forced convection. PV 3: Fins

in a duct under forced
convection. PV 4: PCM

(White petroleum jelly with a
melting point of 37 ◦C)

Experimental

Improvements in efficiency by
0%, 33%, 53%, and 72% for
PCM, heat sink under free

convection, duct under free
convection, and duct under

forced convection, respectively

Kumasi, Ghana Abdallah et al. [32]

Free convection

PV 1: Free convection using
through-holes in the PV panel.
PV 2: Active water spraying
on the surface. PV 3: Passive

and active cooling using
through-holes in the PV and
water spraying on surface

Numerical Hybrid cooling resulted in an
average reduction of 17.24 ◦C - Pomares-Hernández

et al. [33]

Forced convection Curved eave and vortex
generators Numerical Achieved a 5.89 ◦C temperature

reduction - Wang et al. [34]

Forced convection PVT system under forced
convection by DC fans Experimental

Electric efficiency between 12%
and 12.4% with 0.05 m channel

depth and 0.018 kg/s to 0.06
kg/s air mass flow rate

Tehran, Iran Kasaeian et al. [35]

Free convection

PV 1: 30 mm graphite-infused
PCM (paraffin wax with a

melting point of 40 ◦C). PV 2:
Finned heat sink. PV 3:
Finned heat sink with
graphite-infused PCM

Experimental and
Numerical

Finned heat sink with
graphite-infused PCM

demonstrated an overall
efficiency increase of 12.97%

New Zealand
(Laboratory) Atkin et al. [36]
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Table 2. Cont.

Convection Method Cooling Method Test Methodology Results Climate Author

Free convection Heat spreader with cotton
wicks Experimental

Recorded a 12% decrease in
temperature and a 14% increase

in electric output

Tamil Nadu,
India Chandrasekar et al. [37]

Free convection Twisted baffle at the rear
surface of the PV Numerical

Efficiency increases by 1.21%
and 3.36% for solar radiation of

200 W/m2 and 1000 W/m2,
respectively

- Benzarti et al. [38]

Free convection

PV 1: L-profile aluminum
fins with parallel

configuration. PV 2: L-profile
aluminum fins randomly

positioned

Experimental
Electric efficiency increased by
2% for L-profile aluminum fins

with random distribution
Split, Croatia Grubišić-Čabo et al. [39]

Forced convection PV/T system with
rectangular finned plate Experimental

Recorded a maximum efficiency
of 13.75% for 4 fins under solar
radiation of 700 W/m2 and a
mass flow rate of 0.14 kg/s

Malaysia Mojumder et al. [40]

Free convection Cooling tower with PV
module Numerical Averaged 6.83% increase in

annual efficiency of the PV - Abdelsalam et al. [41]

Forced convection

PV 1: Air from above and
water from below. PV 2: Air
from above and below. PV 3:

Air from above. PV 4: Air
from below. PV 5: Water

from below

Numerical
Water below the PV panel

decreased the temperature by
21 ◦C

Sakaka Al-Jouf,
KSA Soliman [42]

Free convection

Effect of using the racking
structure of the PV panel

system as a passive heat sink
for cooling

Experimental and
Numerical

Achieved a 3% increase in
electric efficiency with a 6.3 ◦C

PV temperature reduction

Dammam, Saudi
Arabia El-Amri et al. [43]

Free convection

Investigated the use of
different dimensions of a

finned plate in cooling the PV
panel

Experimental

Utilizing a 7 cm by 20 cm
staggered fin array resulted in
the best performance with an
energy efficiency of 11.55%

Elazig, Turkey Bayrak et al. [44]

Free convection

Studied the effect of dust
accumulation density on the

convective heat transfer
coefficient for a large-scale

PV panel array

Experimental
Increased convective heat

transfer coefficient by 4.13%
compared to a clean PV module

Zhongwei,
Ningxia province

in China
Hu et al. [45]

Free and forced
convection

PV 1: PV-duct under free
convection. PV 2: PV-duct

under forced convection. PV
3: PV-duct under forced

convection with L-shaped
barrier

Experimental

The highest electric efficiency of
21.68% was recorded by the PV
panel under forced convection
with an L-shaped barrier in its

duct

India Kumar et al. [46]

Free convection PV–heat sink system with
different fin dimensions Numerical

The initial heat sink model was
able to cool the PV panel by 27

◦C
Dubai, UAE Mankani et al. [47]

Free convection

PV module with porous
material. This study was

performed on three porous
fins, a porous layer, and five

porous fins

Numerical

Increase of 6.73%, 8.34%, and
9.19% in efficiency for the three
porous fins, porous layer, and
five porous fins configurations,

respectively

- Kirwan et al. [48]

Forced convection PV-compressed air module Numerical

This method improved the
output power of the PV panel
and as a result, improved its

efficiency

- Li et al. [49]

3.2. Water Cooling Methods

PV water cooling methods are a set of techniques that involve the use of water or
other fluids to absorb and dissipate heat from PV panels, with the goal of improving their
electrical performance and prolonging their lifespan. These methods can be implemented
through passive or active means and may involve the use of heat sinks, heat exchangers,
direct water immersion, or other related approaches. The effectiveness of PV water cooling
methods depends on various factors, such as water flow rate, temperature, and quality, as
well as the design and construction of the cooling system. Table 3 represents the different
cooling techniques that are either passive or active.
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Table 3. Classification of passive and active water-based cooling techniques.

Passive Cooling Techniques Active Cooling Techniques

Liquid immersion Earth water heat exchanger
Heat pipe Solar water disinfection

Automotive radiator

Passive cooling techniques for cooling PV systems refer to natural methods used for
reducing the temperature of PV modules without the use of mechanical or electrical devices.
They rely on convection, radiation, and evaporation to dissipate heat and improve the
performance and lifespan of PV modules.

Tina et al. [50] have increased the electrical efficiency by approximately 10% after
experimentally submerging a PV panel inside water in a study of enhancing PV temperature.
Figure 5 represents the submerged PV inside a vessel containing water.

 

Figure 5. PV panel immersed in water [50].

On the other hand, active water cooling for PV required a mechanical or electrical
devices to actively reduce the temperature of PV modules. This may include circulating
water or other fluids through a heat exchanger. They are useful in hot climates or high-
power output systems and provide greater cooling efficiency and control over operating
temperature than passive cooling methods.

Irwan et al. [51], carried an indoor experiment in order to investigate the effect of
water flowing at the surface in cooling the PV panel. Results showed that a decrease in PV
temperature by 5–23 ◦C increases the output power of the PV panel by 9–22%.

On the other hand, Moradgholi et al. [52] experimentally investigated the effect of heat
pipes in cooling PV panels, and the module used in his experimental study is represented in
Figure 6. Results showed an increase of 5.67% in power when using methanol as a working
fluid in spring and an increase of 7.7% in power when using acetone as a working fluid in
summer.

Figure 6. Heat pipes module [52].
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Moreover, Sandeep Koundinya et al. [53] investigated experimentally and by simula-
tion the effect of a finned heat pipe with water as the working fluid in cooling photovoltaic
panels. Results showed a total decrease of 13.8 K in PV panel temperature and good
agreement was found between experimental and computational studies.

Below, a summary table is presented for several studies about cooling PV modules
with passive and active cooling techniques.

Table 4 presents a wide array of outcomes across various cooling methods for photovoltaic
panels. Passive approaches, like water-saturated microencapsulated phase-change materials
(MEPCM) and immersion in dielectric liquids, effectively reduce temperatures, leading to
improved electric efficiency. Passive cooling techniques exhibit diverse results, with efficiency
enhancements ranging from 2.7% to 12.4% and a temperature reduction of up to 13.8 K. Active
cooling methods, such as spraying water and flowing water on the PV surface, consistently
boost power generation and efficiency, demonstrating improvements from 8% to 9% to a
significant 24 K temperature decrease. Innovative methods like floating PV on water surfaces
and geothermal cooling systems show efficiency increases of 2.7% and up to 13.8%, respectively.
The choice between passive and active cooling depends on factors like climate, available
resources, and desired efficiency levels. These findings collectively contribute to advancing PV
panel cooling, facilitating more efficient and sustainable solar power generation.

Table 4. Summary of several studies on water-based cooling techniques for PVs.

Cooling Method
Cooling

Classification
Test Methodology Key Outcomes Climate Author

Water-saturated
microencapsulated

phase-change material
(MEPCM)

Passive Numerical

A layer of PCM of 5 cm thickness
with a melting temperature of 30 ◦C

gave the best performance in
enhancing the electric efficiency.

- Ho et al. [54]

Liquid immersion of
solar cells in 4 different

dielectric liquids.
Passive Numerical

Immersing the solar cells in the
dielectric liquids maintained a low

temperature in the solar cells.
- Liu et al. [55]

Spraying water on
frontal and rear surfaces. Passive Experimental Increase in power and efficiency by

16.3% and 14.1%, respectively. Croatia Nizetic et al. [56]

Finned heat pipe system
with water as a working

fluid.
Passive Experimental and

Numerical

A total decrease of 13.8 K in PV
panel temperature and good

agreement was found between
experimental and computational

studies.

India Koundinya et al. [53]

PV/T system with water
and ethylene glycol as

working fluids.
Passive Experimental and

Numerical

Water was found to be a better
coolant than ethylene glycol with an
overall efficiency enhancement by

25%.

Joy et al. [57]

Spraying water on
surface. Active Experimental and

Numerical

Cooling system have good
performance in hot and dusty

regions.
Egypt Moharram et al. [58]

Flat-plate PV/T system
with and without glass

cover.
Active Numerical

Empirical correlations were
performed and conclusions were

conducted.
- Bajestan et al. [59]

Flowing water on PV
surface. Active Experimental Increase in power by 8–9% Laboratory Krauter [60]

Heat pipe. Active Numerical

As the convective heat, transfer
coefficient increases the solar cells

temperatures decreases when
operating at low flow rates and at
high optical concentration ratios.

- Sabry [61]

Spraying water on the
PV surface. Active Experimental Increase of 2.7% in electrical

efficiency and 21 W in power. Alexandria, Egypt Elnozahy et al. [62]

Flowing water on the
surface. Active Experimental Increase in the power generated and

in total efficiency. Iran Kordzadeh et al. [63]

Water system with air
blowing to the back of

the PV.
Active Numerical Yearly improvement of 5% in

efficiency. - Arcuri et al. [64]

Earth water heat
exchanger. Active Numerical

Increasing the length of the feed
pipe to 60 m would decrease PV

temperature by 23 ◦C.

Pilani, Rajhasthan,
India Jakhar et al. [65]
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Table 4. Cont.

Cooling Method
Cooling

Classification
Test Methodology Key Outcomes Climate Author

Concentrated PV/T
system. Active Numerical

Empirical correlations were
performed and conclusions were

conducted.
- Mittelman et al. [66]

Automotive radiator. Active Experimental and
Numerical

Theoretical heat rejection by 91%
and experimental efficiency

increased by 4.46%.

Kuala Lumpur,
Malaysia Chong et al. [67]

Solar desalination
combined with an

intermittent
solar-operated cooling

unit.

Active Experimental A 13.75% energy efficiency for the
system. Cairo, Egypt Ibrahim et al. [68]

PV/T system laminated
with polymer matrix

composite with water as
a coolant.

Active Experimental and
Numerical

The maximum efficiency recorded
was 20.8% with a 53.5% thermal

efficiency.
- Korkut et al. [69]

PV 1: single-pass ducts.
PV 2: multi-pass ducts.

PV 3: tube-type heat
absorber.

Water is used as a fluid.

Active Numerical Cell temperature achieved a
maximum of 38.310 ◦C. Islamabad, Pakistan Sattar et al. [70]

Flowing water on the PV
surface. Active

Experimental
(laboratory and real-life

conditions)

The system showed a temperature
decrease of 24 K with a power

generation increase of 10% with a
return on investment of less than 10

years.

Krakow, Poland Sornek et al. [71]

Floating PV on the water
surface. Passive Experimental

An efficiency increase of 2.7% was
recorded with a temperature

decrease of 2.7 ◦C
Cagliari, Italy Majumder et al. [72]

A new innovative
cooling box acting as a

thermal collector.
Active Numerical

Electric efficiency of 17.79% and a
thermal efficiency of 76.13% when

the system was studied with a mass
flow rate of 0.014 kg/s and an inlet

water temperature of 15 ◦C.

- Yildirim et al. [73]

Water flows on the
surface of the PV panel. Passive Experimental An increase in exergy efficiency

from 2.91% to 12.76%.

Sisattanark district,
Vientiane Capital,

Laos
Chanphavong et al. [74]

Comparison between
water flowing on the

surface of the PV panel
and wet grass cooling.

Passive Experimental
Running water on the upper surface

of the PV helps in cooling it and
increasing its efficiency.

Gwalior, India Panda et al. [75]

Comparison between
conventional PV panels,

concentrated PV
systems, and
water-cooled

concentrated PV
systems.

Active Experimental and
Numerical

Significant increase in the efficiency
and power output of the

water-cooled CPV system to 17%
and 23%, respectively. The overall
output power of the water-cooled

CPV was 24.4%.

Duhok, North of Iraq Zubeer et al. [76]

A geothermal cooling
system containing a

mixture of water and
ethylene glycol.

Active Experimental
An increase in electric efficiency up
to 13.8% using a constant coolant

flow rate of 1.8 L/min.

Alcalá de Henares,
Madrid, Spain Lopez-Pascual et al. [77]

Radiative cooling
module. Active Experimental

Increase in efficiency by 1.21% and
0.96% in summer and autumn,

respectively, for the system without
cold storage. For the system with a

cold storage, the efficiency increased
by 1.69% and 1.51% in summer and

autumn, respectively.

China Li et al. [78]

Porous media with
water as a cooling fluid. Active Experimental and

Numerical

Decrease by 35.7% of PV’s surface
temperature and increase by 9.4% in
the output power under a volume

flow rate of 3 L/m with a porosity of
0.35.

Jordan Masalha et al. [79]

Geothermal heat
exchanger with water
and ethylene glycol as

cooling fluids.

Active Experimental and
Numerical

Increase in PV’s electric power
generation by 9.8%. Turkey Jafari et al. [80]

Water cooling system
and phase-change

material (PCM) module
with OM35 as a PCM

with a melting point of
35 ◦C.

Passive Experimental
Increase in the electric efficiency by

12.4% compared to the other
configurations.

Chennai, India Sudhakar et al. [81]
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The use of evaporative cooling could be more beneficial than vapor compression at
the level of the cost. However, the system is not reliable or needs more design work [82].

Moreover, it was noticed in the water-cooled methods that the experimental studies
mentioned in Table 4 were greater than the numerical studies and the climates the water
cooling methods were studied in are hot such as India, Egypt, and Saudi Arabia.

3.3. PCM Cooling Methods

Phase-change materials (PCMs) are substances used in cooling systems for photo-
voltaic modules to absorb and store heat from the panels during peak sunlight hours.
PCMs have a high latent heat of fusion, which means they can absorb large amounts of
heat without a significant increase in temperature. PCMs can be integrated into PV panels,
or used in a separate thermal management system to enhance the overall efficiency and
lifetime of the PV system.

In a typical PV–PCM hybrid system, illustrated in Figure 7, the PCM functions as a heat
sink that absorbs excess heat from the PV panel, thereby reducing its temperature. During
the peak sun hours, the temperature of the PV panel exceeds the melting temperature of
the PCM. As a result, the PCM absorbs excess heat from the PV panel and maintain a stable
operating temperature for the PV system until it completely melts, transitioning from solid
to liquid phase. During the low sunlight period, as the ambient temperature decreases
and the temperature of the PV panel drops below the melting point of the PCM, the PCM
releases excess heat and solidifies again.

Figure 7. Typical PV–PCM system [83].

Table 5 summarizes the various cooling techniques using PCM with different combi-
nations and materials.

Table 5. Summary of PV cooling techniques based on PCMs.

PCM Used PCM Melting Point Cooling Method Test Methodology Key Outcomes Climate Author

Pure PCM: white petroleum
jelly. Combined PCM:

white petroleum
jelly + graphite + copper

36–60 Pure and combined PCM Exp.
Efficiency increased by an average of 3%

when using pure PCM and by an average
of 5.8% when using combined PCM.

Bekaa Valley,
Lebanon. Hachem et al. [84]

- 0–50 PV panel containing an
integrated layer of PCM Num. Efficiency exceeds 6% in some regions. - Smith et al. [85]

RT25 25 Impure PCM layer
integrated into the PV panel Num.

Maintain panel operating temperature
under 40 ◦C for 80 min under solar

radiation of 1000 W/m2.
- Biwole et al. [86]

Salt hydrate, CaCl2 ·6H2O
and eutectic of capric

acid–palmitic acid

CaCl2 ·6H2O: 29.8 and
eutectic of capric

acid-palmitic acid: 22.5

PCM layer with aluminum
alloy fins integrated into the

PV panel
Exp.

CaCl2 ·6H2O showed an increased power
output of 3% compared to capric-palmitic
acid in Pakistan. The two PCMs showed
better results in Vehari, Pakistan than in

Dublin, Ireland with a total of 13% in
power saving.

Dublin, Ireland and
Vehari, Pakistan Hasan et al. [87]

Paraffin wax 37.5–42.5 PV–PCM system Exp.
Average maximum efficiency and power

were increased by 1.63% and 1.35 W,
respectively.

Laboratory Xu et al. [88]

Rubitherm 28 HC and
Rubitherm 35 HC

Rubitherm 28 HC: 27–29
and

Rubitherm 35 HC: 34–36
PV–PCM system Num.

Increase by 10% in peak power and 3.5%
in energy produced throughout the whole

year round.
- Aneli et al. [89]
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Table 5. Cont.

PCM Used PCM Melting Point Cooling Method Test Methodology Key Outcomes Climate Author

Docosane paraffin wax 42 PV–PCM system Num. and Exp. An increase of 1.05% in efficiency and a
34% increase in life span. Doha, Qatar. Amalu et al. [90]

RT35HC 36 PV–PCM system Num. Temperature reduction by 24.9 ◦C and an
increase of 11.02% in electric output. - Zhao et al. [91]

RT35 35 PV–PCM system Num. Total increase of 5% in productivity. - Kant et al. [92]

- 24.85 PV–PCM system Num. and Exp. Increase of 1–1.5% in electric efficiency. Song-do, Incheon,
South Korea Park et al. [93]

RT28HC 28 PV–PCM system Exp. and Num. Increase in power by 9.2% experimentally
and 4.3–8.7% numerically. Ljubljana, Slovenia Stropnik et al. [94]

- 23 BIPV–PCM Exp. and Num. Maximum electric and thermal efficiencies
recorded were 10% and 12%, respectively. Lisbon, Portugal Aelenei et al. [95]

Paraffin wax 34.9–42 PV–PCM system and
PV–PCM thermal system Exp.

An electric output increase of 5.18% in the
PV–PCM system and 30.4% electric sum
was recorded in the PV–PCM-T system.

Shanghai, China Li et al. [96]

RT42 38–43 PV–PCM system Exp. Annual enhancement of 5.9% in electric
yield in hot climate.

Al Ain, United Arab
Emirates Hasan et al. [97]

RT27
&

RT31
RT27: 25–28 and RT31: 27–33 PV–PCM systems Exp.

Enhancement in energy by 4.19% and
4.24% when using RT27 and RT31,

respectively.
Chania, Greece Savvakis et al. [98]

Eutectic of capricpalmitic
acid and calcium chloride

hexahydrate and RT20 and
RT25 and RT35

Eutectic of capricpalmitic
acid: 22.5 and calcium

chloride hexahydrate: 29.8
and RT20: 25.73 and RT25

26.6 and RT35: 29–36

PV-T-nano-PCM system Num.
Increase in electric efficiency by 6.9% and

22% in winter and summer weather,
respectively.

Dhahran, Saudi
Arabia Abdelrazik et al. [99]

Paraffin A44 44 PVT–PCM system Exp. and Num. Electric performance increased by 7.2%
numerically and 7.6% experimentally.

Kuala Lumpur,
Malaysia Fayaz et al. [100]

Lauric acid 44–46 PVT–PCM system Exp.
PVT–PCM system increased the electric

efficiency of the PV by 1.2% under a
volume flow rate of 4 LPM.

Kuala Lumpur,
Malaysia Hossain et al. [101]

Paraffin wax 46–48
PVT–PCM system with pure
water and ethylene glycol as

working fluids
Exp.

Energy loss percentage was decreased by
9.28%, 23.33%, and 48.58% for the

PVT/water, PVT/ethylene glycol (50%),
and PVT/ethylene glycol (100%).

Mashhad, Iran Kazemian et al. [102]

RT25 26 PV–PCM and PV–PCM–fins
systems Num.

Increase of 2.5% and 3.5% in electric
efficiency in fair and sunny weather,

respectively.

Different weather
conditions Metwally et al. [103]

RT58, RT42, and C22-C40 RT58: 58 and RT42: 42 PV–PCM–heat sink system Num.
Temperature drop of 18.3 ◦K, 21.2 ◦K,

and 26.1 ◦K when using C22-C40, RT58,
and RT42, respectively.

Oujda, Morocco Bria et al. [104]

- 273.15 K PV–PCM matrix absorber
system Num. Analytical and numerical results were in

agreement. - Hassabou et al. [105]

- -
PV/T system with

nano-enhanced MXene-PCM
and R407C working fluid

Num. Power output increased by 535 KWh/year
and electric efficiency increased by 3.01%.

Derby, United
Kingdom Cui et al. [106]

- -
PV–PCM system with a heat
sink with convex/concave

dimples
Num.

PV cell temperature decreased by 7.14%,
4.65%, and 2.22% when studying the PV
cells at inclinations of 90◦ , 60◦ , and 30◦ ,

respectively.

- Soliman et al. [107]

Paraffin wax 38–43 PV–PCM system Exp.
Efficiency was improved by 14.4% when

using a PCM thickness of 3 cm and tilting
the PV at an angle of 30◦ .

Qena, Egypt Maghrabie et al. [108]

Paraffin wax
and vaseline

Paraffin wax: 45
Vaseline: 25

Water-cooled PVT system
with PCM Exp.

Increase in electric and thermal
efficiencies up to 13.7% and 39%,

respectively.

Indoor (Simulating
Iraq’s weather) Chaichan et al. [109]

RT28HC 25–29 PV–PCM system Exp. Enhancement by 2.5% in the power
output.

Mediterranean
climate Nizetic et al. [110]

Table 5 presents a comprehensive overview of different phase-change materials uti-
lized in conjunction with photovoltaic (PV) panels. Each entry includes details on the
specific PCM used, its melting point, cooling method, test methodology, key outcomes,
climate conditions, and the contributing authors. Noteworthy PCMs like white petroleum
jelly, paraffin wax, and specialized formulations such as Rubitherm 28 HC and Rubitherm
35 HC are explored across various cooling systems. Passive cooling methods incorporating
PCMs exhibit efficiency gains ranging from 1.05% to 12.4%. On the other hand, active sys-
tems like PV–PCM configurations and PV/T systems consistently showcase improvements
in electric efficiency and power output, reaching up to 24%. These findings underscore
the impact of factors such as climate, location, and PCM composition on the effectiveness
of these cooling techniques. Overall, Researchers have identified optimal PCM parame-
ters, thicknesses, and integration methods, contributing to the advancement of efficient
photovoltaic cooling strategies.

Moreover, cooling by PCM is shown to be used in hot climates where solar irradiation
is considered to be high such as in Egypt, Iran, Saudi Arabia, and United Arab Emirates.
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3.4. Other Cooling Methods

There are various cooling methods for photovoltaic systems other than air, water,
and phase-change materials. One of these methods is using encapsulated PCM, which
improves the PCM’s expansion property during melting. Another method is thermoelectric
cooling, which uses the Peltier effect to create a temperature difference and transfer heat
away from the PV module. Additionally, researchers have explored the use of nanofluids,
which are liquids containing nanoparticles that can improve the thermal properties of the
cooling fluid. Other methods include using refrigeration systems or hybrid systems that
combine multiple cooling methods. Each of these cooling methods has its own advantages
and disadvantages and can be suitable for different types of PV systems and operating
conditions.

Saleh et al. [111] numerically studied the effect of nanofluid and water in cooling
photovoltaic–thermal (PVT) collectors. Results showed that the use of 1% volumetric
fraction of nanofluids increases the thermal efficiency up to 19.5% and the electric efficiency
up to 55.45%.

Ghadiri et al. [112], experimentally studied the effect of cooling a PVT system by
ferrofluids shown in Figure 8. Different fluids were used at a constant and an alternating
magnetic field in order to discuss the effect of magnetic field on ferrofluids. Results showed
an increase of 45% in the overall efficiency when using ferrofluid and a total increase of
50% in the overall efficiency when using an alternating magnetic field of 50 Hz frequency.
Also, a total of 48 W of exergy was increased after using ferrofluid.

Figure 8. Ferrofluids cooling system [112].

Figure 9 illustrates the use of thermoelectric water-nanofluid cooling and thermoelec-
tric finned heat sink cooling in PV/T and PV systems respectively [113].

Figure 9. PV with thermoelectric plate and: (a) photovoltaic/thermal-thermoelectric water-nanofluid
(PV/T-TEG-NF) cooling system and (b) photovoltaic-thermoelectric finned heat sink (PV/TEG-Hs)
cooling system [113].
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Table 6 shows the recent studies performed on cooling the PV panel using different
methods.

Table 6. Different cooling techniques.

Cooling Method Test Methodology Key Outcomes Climate Author

Microencapsulated PCM heat
sink with a thermoelectric

generator
Experimental

Increase in efficiency by 2% in
the intermediate season and

by 2.5% in the summer.
Republic of Korea Kang et al. [114]

PCM-integrated PV system
with fins and nanofluid

(CPV/T/NF/FPCM)
Experimental

Electric efficiency was
improved up to 17.02% while

thermal efficiency was
improved up to 61.25%.

Tehran, Iran Kouravand et al. [115]

Photovoltaic thermal collector
with a nano-PCM and

micro-fin tube nanofluid
system

Experimental

The micro-fins, nanofluids,
and nano-PCM PV had a

thermal efficiency of 77.5%
with an increase in electric

power of 4.01 W.

Indoor (Solar Simulator) Bassam et al. [116]

Micro-fin tube
counterclockwise twisted tape

nanofluid and nano-PCM
Experimental Increase of 44.5% in electric

power. Indoor (Solar Simulator) Bassam et al. [117]

PV/nano-enhanced PCM heat
sink system Experimental

The GNP-CuO 3% mixture
has enhanced the thermal
conductivity by 91.81%,
reduced temperature by
6.6 ◦C, and enhanced the
electricity output by 3%.

Iran Moein-Jahromi et al. [118]

PCM, thermoelectric cooling,
and installing fins made of

aluminum in cooling the PV
panel

Experimental

The PV panel with aluminum
fins had the highest power
generation enhancement of

47.88 watts.

Elazig, Turkey Bayrak et al. [119]

PV/T with spectrum-splitting
module Numerical Conversion efficiency

exceeded 43%. - Xu et al. [120]

The outcomes presented in Table 6 highlight the diverse and innovative cooling
methods for photovoltaic panels. The utilization of a microencapsulated phase-change
material combined with a heat sink, and a thermoelectric generator, demonstrated a 2%
efficiency increase in the intermediate season and 2.5% in summer. The integration of PCM
with fins and nanofluid (CPV/T/NF/FPCM) showed significant improvements, achieving
an electric efficiency of 17.02% and a thermal efficiency of 61.25%. Indoor experiments
involving a photovoltaic thermal collector with Nano-PCM and micro-fin tube nanofluid
revealed a remarkable thermal efficiency of 77.5% and a 4.01 W increase in electric power.
Another noteworthy system, incorporating a micro-fin tube counter clockwise twisted tape
nanofluid and nano-PCM, demonstrated a substantial 44.5% increase in electric power. The
PV/nano-enhanced PCM heat sink system displayed enhancements, including a 91.81%
increase in thermal conductivity, a 6.6 ◦C temperature reduction, and a 3% improvement
in electricity output. Further experiments, incorporating PCM, thermoelectric cooling,
and aluminum fins, yielded the highest power generation enhancement of 47.88 Watts.
Additionally, a numerical simulation of a PV/T system with a spectrum-splitting module
revealed an impressive conversion efficiency exceeding 43%. These advancements hold
promise for improving the energy efficiency and sustainability of photovoltaic panels and
increasing the adoption of renewable energy sources.

4. Discussion and Analysis

The literature has provided numerous methods for cooling the PV panel and increasing
its efficiency, resulting in methods with more effectiveness over others. With different
methods of cooling, different ranges of efficiency arise that were obtained and illustrated in
Figure 10.
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Figure 10. Efficiencies of cooling methods.

According to the literature, efficiency ranged between 6% and 13% when PCM was
used as a cooling technique. This method had both advantages and disadvantages. Through
all the previous studies, the main problem that faced the researchers is the low thermal
conductivity of PCM, and the change in volume when PCM melts, which in turn leads
to poor temperature management. Researchers tried to solve these problems through
several ways such as mixing PCM with graphite and developing a shape-stabilized PCM.
In contrast, the advantages of this method were the simplicity of the cooling system, the
low cost, and the long lifetime. With the need for only a tank filled with PCM attached to
the back of the PV panel, the price of this system was low, and with the absence of electrical
instruments, there will be no need for maintenance.

The air cooling techniques literature revealed a range of efficiency between 6% and
15%, and several methods were tested experimentally and numerically based on natural
convection and forced convection. Several systems were tested by scientists such as
finned plates, fans and air ducts, finned plates combined with fans and air ducts, and
jet impingements. Others tried to combine the effects of the latent heat storage of PCM
along with finned plates under natural and forced convection. The simplest method and
most effective was using finned plates under forced or natural convection. Under forced
convection, a better efficiency was recorded but a higher cost compared with the use of
finned plates under natural convection. Therefore, there is no method better than another
in general; but in specific conditions, optimization between efficiency and cost can be
achieved. In a windy location, a finned free convective system will give great efficiency
with low cost, while in a non-windy location, a finned forced convective system would cost
a little bit more but will give a higher efficiency.

The highest efficiency was recorded when water cooling systems were tested. Different
techniques were taken into consideration, spraying water over the surface of the panel,
immersion of the panel in water, using water as a circulation fluid in heat pipes attached to
the back of the PV, etc. Efficiency with water systems ranged in the literature between 8%
and 17%, but designing systems to deal with water had a high cost because of the need
for pumps, pipes, fittings, etc. In addition, when taking the location of the project into
consideration, a water cooling system was the best technique in dusty or sandy places,
where high efficiency could be maintained by removing dust from the front surface of the
panel which would otherwise reduce the amount of irradiation received.

5. Economic Study

After cooling the PV panels, cooling techniques showed an increase in power for each
PV panel with different increased values. This increase in power showed a remarkable
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increase financially when compared to the standard PV. Economic and environmental
analyses were conducted on a PV panel with an area of 0.218 m2.

The governing equations used in the economic study are presented as follows.

E = I × Ae f f ective × ηelectrical × 30 (9)

where
E: The energy produced by the PV panel in kWh.
I: The average solar insolation per day in kWh

m2×day .

Ae f f ective: The effective area of the PV panel in m2.
ηelectrical : The electrical efficiency of the PV panel.
The relative efficiency is the relative difference between the cooled PV efficiency and

the standard PV. This relative efficiency is used to calculate the absolute electrical efficiency
of each cooled PV case and is quantified as:

ηrelative =
η2 − η1

η1
× 100 (10)

where
η2: The efficiency of cooled PV (%).
η1: The efficiency of standard PV (%).
Savings were quantified as:

Savings = E × S (11)

where
E: The energy produced by the PV panel in kWh.
S: The price of each kWh.

5.1. Water Cooling

The sun hours vary according to the months of the year. Figure 11 shows the variation
in the sun hours with respect to the months in Lebanon. As shown in the following figure,
July month reached the maximum of 438.2 h.

Figure 11. Number of sun hours versus months.

The solar insolation in Beirut, Lebanon is shown in Figure 12 [121].
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Figure 12. Solar insolation in Beirut, Lebanon [121].

As shown in Figure 12, the minimum solar insolation was recorded in December, with
a value of 2 kWh

m2 per day. The highest solar insolation was recorded in July, with a value of
6.67 kWh

m2 per day.
Water cooling methods were found to be effective in cooling the PV panels. As shown in

Figure 13, flowing water on the surface of the PV panel was found to produce the maximum
energy, with an average of 32.29 kWh compared to the other cooling methods. Following this
method, the liquid immersion method, with an average of 32.17 kWh, proved to be the next
best. Also, the heat pipe cooling system recorded an average of 31 kWh, while the automotive
radiator system recorded the least energy between the cooling methods, with an average of
30.55 kWh. The standard PV panel recorded an average of 29.24 kWh.

Figure 13. Energy produced versus months for water cooling methods.

Figure 14 shows that the maximum cost saving by the cooling methods was recorded
for flowing water on the surface cooling method, with an average cost saving of United
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States Dollar (USD) 0.273. The liquid immersion method follows, with an average cost
saving of USD 0.263, and the heat pipe cooling method showed an average cost saving
of USD 0.157. The automotive radiator cooling method showed the lowest average cost
saving, as shown in the following figure with an average compared to a standard PV panel
of USD 0.117.

Figure 14. Cost savings versus months for water cooling methods.

5.2. Air Cooling

In air cooling methods, the exhaust air cooling method was found to produce the
maximum energy output, with an average of 32.201 kWh. Figure 15 shows the variation in
energy produced for air cooling methods with respect to the months of the year.

Figure 15. Energy produced versus months for air cooling methods.

As shown in Figure 16, the exhaust air cooling method showed the highest cost savings,
with an average of USD 0.265.

112



Energies 2024, 17, 713

Figure 16. Cost savings versus months for air cooling methods.

5.3. PCM Cooling

Figure 17 shows that cooling by PCM increased the total energy produced compared
to the standard PV panel. An average of 31.733 kWh was recorded for cooling by PCM
compared to an average of 37 kWh recorded for the standard PV panel.

Figure 17. Energy produced versus months for PCM cooling method.

Cooling by PCM increased cost savings compared to the standard PV panel. Figure 18
shows that the maximum amount of money saved by PCM cooling was USD 0.223.
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Figure 18. Cost savings versus months for PCM cooling method.

5.4. Other Cooling Methods

As shown in Figure 19, the thermoelectric cooling method was found to produce the
maximum energy, with an average of 34.512 kWh.

Figure 19. Energy produced versus months for other cooling methods.

The maximum cost saving was recorded by the thermoelectric cooling method, with
an average of USD 0.473 recorded in July, as shown in Figure 20.
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Figure 20. Cost savings versus months for other cooling methods.

In the realm of photovoltaic panel cooling methods, the economic evaluation high-
lighted the significant benefits of these technologies, both in terms of increased energy
production and cost savings compared to standard PV systems. Water-based cooling meth-
ods, exemplified by flowing water on the PV panel, have exhibited the highest energy
production, yielding an average of 32.29 kWh. This translated into significant financial
gains, with cost savings averaging USD 0.273. Liquid immersion and heat pipe cooling
systems also demonstrated promising results, while automotive radiator-based cooling
methods exhibited slightly lower energy gains and cost savings. In the air cooling category,
exhaust air cooling proved to be the most effective, generating an average of 32.201 kWh
and yielding the highest cost savings of USD 0.265. Additionally, phase-change mate-
rial cooling strategies contributed to increased energy production, with an average of
31.73 kWh, resulting in notable cost savings of up to USD 0.223. Among various cooling
methods, thermoelectric cooling emerged as the leader in energy production, delivering
an average of 34.512 kWh and recording the highest cost savings—particularly in July,
with an average of USD 0.473. These results confirm the economic feasibility and financial
advantages of applying advanced cooling technologies in PV panel systems, enhancing
their ability to drive sustainable and cost-effective energy solutions.

6. Environmental Study

The increased use of fossil fuels has increased CO2 emissions, which pollutes the air
and leads to many serious problems, mainly global warming. Photovoltaic panels were
found to reduce CO2 emissions to the atmosphere as a renewable energy resource.

The governing equations used in the environmental study are as follows.
The CO2 reduction value is quantified as:

CO2 reduced = E × P (12)

where
CO2 reduced: The amount of CO2 reduced in kg.
E: Energy produced by a PV panel in kWh.
P: The amount of CO2 produced per 1 kWh of electricity kg

kWh .
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6.1. Water Cooling

Water cooling methods had a major impact on cooling techniques in reducing CO2
emissions as a renewable energy resource. A system of nozzles flowing water on the surface
of the PV panel was found to result in the maximum CO2 reduction of 26.509 kg with
respect to the other water cooling methods, as shown in Figure 21.

Figure 21. CO2 emission reduction versus month for water cooling methods.

6.2. Air Cooling

The air cooling technique CO2 emission reduction varies between the methods. How-
ever, as shown in Figure 22, the exhaust air system had the maximum CO2 emission
reduction, with an average of 26.437 kg, compared the other methods.

Figure 22. CO2 emission reduction versus months for air cooling methods.
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6.3. PCM Cooling

The PCM cooling method was found to reduce CO2 emissions by an average of
26.053 kg, as shown in Figure 23.

Figure 23. CO2 emission reduction versus months for PCM cooling method.

6.4. Other Cooling Methods

Other uncategorized cooling techniques had a good impact on the reduction in CO2
emissions. The thermoelectric cooling system had a maximum reduction in CO2 emissions,
with an average of 28.334 kg, as shown in Figure 24.

Figure 24. CO2 emission reduction versus months for other cooling methods.

In short, the escalating use of fossil fuels has led to an alarming rise in carbon dioxide
emissions, which has greatly contributed to worsening environmental issues such as global
warming. Photovoltaic panels have emerged as a renewable energy resource with the
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potential to mitigate these emissions. This study investigated different cooling technologies
and their effectiveness in reducing carbon dioxide emissions. Of these, water cooling
methods, particularly the nozzle-based system, showed the greatest impact, reducing
emissions by 26.509 kg. Air cooling technologies, especially the exhaust air system, also
played a decisive role, achieving an average reduction of 26.437 kg. PCM cooling methods
contributed to an average weight reduction of 26.053 kg. Even other unclassified cooling
technologies, such as the thermoelectric cooling system, succeeded in reducing CO2 emis-
sions, with an average reduction of 28.334 kg. These results underscore the pivotal role of
photovoltaic panels not only in generating renewable energy but also in combating carbon
dioxide emissions. As the world grapples with the necessity of tackling climate change,
innovative cooling strategies offer promising ways to reduce carbon dioxide emissions,
thus promoting a more sustainable and environmentally conscious future.

7. Payback Period

The payback period of each system was studied as investments in order to reveal how
much each system approximately costs and how much time it would need to pay the initial
investment.

The payback period is quantified by the following equation.

Payback period =
Income

Cost
(13)

where
Income: Profit produced by the system.
Cost: Initial cost of the system.
Figure 25 shows the payback period for the systems consisting of one PV panel each.

As shown in the following figure, the automotive radiator system needs approximately
7.576 years in order to pay the initial investment while the standard PV needs approximately
1.9 years.

Figure 25. Payback period of each system.

As shown in Figure 25, the return on invest period differs drastically based on the
initial investment paid for each system. The standard PV needs approximately 1.9 years to
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return the initial investment, while the automotive radiator and nanofluid cooling systems
need approximately 7.576 years to return the initial investment paid from their enhanced
electric output.

It is true that the payback period has increased when constructing a cooling technique
for the PV panel; however, the benefits of the cooling technique on the PV are far more
beneficial. The PV panel lifespan increases whenever a cooling system is used because a
cooling system decreases its temperature with time. The increase in green energy produced
by the PV panel with a cooling system could benefit the environment and be a smart
investment on bigger systems, where in the case of cooling, the system needs fewer PV
panels to operate and produce higher power outputs, while contributing with a decrease in
CO2 emissions.

8. Conclusions and Recommendations

This review paper addresses the importance of effective cooling strategies to enhance
the efficiency of photovoltaic panels. It highlights the negative impact of high tempera-
tures on the performance of photovoltaic panels and emphasizes the necessity of efficient
cooling technologies. This review thoroughly explores and discusses a variety of cooling
methods, including traditional methods such as water and air cooling, along with innova-
tive solutions such as incorporating phase-change materials, thermoelectric cooling, heat
pipes, evaporative cooling, and nanofluids. Furthermore, this review takes into account
environmental and economic factors to comprehensively assess the impact of cooling on
the performance of photovoltaic panels.

Additionally, the findings of this review emphasize that all evaluated cooling methods
have the potential to improve the electrical efficiency of PV panels. However, specific
techniques stand out for their superior performance. Notably, among these approaches,
the automatic water spraying system, exhaust ventilated air, phase-change materials, and
thermoelectric cooling methods exhibited the highest energy production levels. In terms
of cost-effectiveness, thermoelectric cooling outperformed evaporative cooling, water-
nanofluid cooling, and the automatic spraying system. Furthermore, thermoelectric cooling,
evaporative cooling, exhaust-ventilated air, and automatic water spraying demonstrated
the greatest reductions in CO2 emissions.

Moreover, the evaporative cooling technique, along with thermoelectric and PCM
cooling methods, showed the shortest payback period. Consequently, evaporative and
thermoelectric cooling emerge as particularly promising choices, offering substantial energy
improvements, positive environmental effects, and favorable returns on investment. These
results emphasize the importance of integrating cooling strategies to improve the efficiency
of photovoltaic panels and to maximize the generation of eco-friendly electricity. Given
the essential role of renewable energy in addressing climate change and the transition to
sustainable energy systems, the integration of efficient cooling technologies can contribute
significantly to the advancement of the renewable energy sector.

The development of a highly conductive phase-change material would increase the
effect of PCM cooling, enhancing the efficiency and performance of the PV panel. Studies
should be targeted on testing different combinations of PCM with other materials, and on
the PCM itself to reach a formula where the thermal conductivity is as high as possible
and the melting point of the PCM is as close as possible to the standard test conditions of
the PV panel. Also, as a future recommendation, the period of analysis at the level of the
cooling techniques and methods could be for longer periods, meaning that each cooling
method should be studied over different periods of time and for longer hours. Moreover,
not many review studies combine all of the cooling methods in one paper. This study
mentions nearly all of the cooling methods and a parametric investigation was conducted
at the level of environmental and economic analysis, a state-of-the art analysis.
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39. Grubišić-Čabo, F.; Nižetić, S.; Čoko, D.; Kragić, I.; Papadopoulos, A.M. Experimental investigation of the passive cooled
free-standing photovoltaic panel with fixed aluminum fins on the backside surface. J. Clean. Prod. 2018, 176, 119–129. [CrossRef]

40. Mojumder, J.C.; Chong, W.T.; Show, P.L.; Leong, K.W.; Abdullah-Al-Mamoon. An experimental investigation on performance
analysis of air type photovoltaic thermal collector system integrated with cooling fins design. Energy Build. 2016, 130, 272–285.
[CrossRef]

41. Abdelsalam, E.; Alnawafah, H.; Almomani, F.; Mousa, A.; Jamjoum, M.; Alkasrawi, M. Efficiency Improvement of Photovoltaic
Panels: A Novel Integration Approach with Cooling Tower. Energies 2023, 16, 1070. [CrossRef]

42. Soliman, A.M. A Numerical Investigation of PVT System Performance with Various Cooling Configurations. Energies 2023,
16, 3052. [CrossRef]

43. Al-Amri, F.; Saeed, F.; Mujeebu, M.A. Novel dual-function racking structure for passive cooling of solar PV panels–thermal
performance analysis. Renew. Energy 2022, 198, 100–113. [CrossRef]

44. Bayrak, F.; Oztop, H.F.; Selimefendigil, F. Effects of different fin parameters on temperature and efficiency for cooling of
photovoltaic panels under natural convection. Sol. Energy 2019, 188, 484–494. [CrossRef]

45. Hu, W.; Li, X.; Wang, J.; Tian, Z.; Zhou, B.; Wu, J.; Li, R.; Li, W.; Ma, N.; Kang, J.; et al. Experimental research on the convective
heat transfer coefficient of photovoltaic panel. Renew. Energy 2021, 185, 820–826. [CrossRef]

46. Kumar, P.S.; NaveenKumar, R.; Sharifpur, M.; Issakhov, A.; Ravichandran, M.; Maridurai, T.; Al-Sulaiman, F.A.; Banapurmath,
N.R. Experimental investigations to improve the electrical efficiency of photovoltaic modules using different convection mode.
Sustain. Energy Technol. Assess. 2021, 48, 101582. [CrossRef]

47. Mankani, K.L.; Chaudhry, H.N.; Calautit, J.K. Optimization of an air-cooled heat sink for cooling of a solar photovoltaic panel: A
computational study. Energy Build. 2022, 270, 112274. [CrossRef]

48. Kiwan, S.; Khlefat, A.M. Thermal cooling of photovoltaic panels using porous material. Case Stud. Therm. Eng. 2021, 24, 100837.
[CrossRef]

49. Li, D.; King, M.; Dooner, M.S.; Guo, S.; Wang, J. Study on the cleaning and cooling of solar photovoltaic panels using compressed
airflow. Sol. Energy 2021, 221, 433–444. [CrossRef]

50. Tina, G.M.; Rosa-Clot, M.; Rosa-Clot, P.; Scandura, P.F. Optical and thermal behavior of submerged photovoltaic solar panel: SP2.
Energy 2012, 39, 17–26. [CrossRef]

51. Irwan, Y.; Leow, W.; Irwanto, M.; Fareq, M.; Amelia, A.; Gomesh, N.; Safwati, I. Indoor Test Performance of PV Panel through
Water Cooling Method. Energy Procedia 2015, 79, 604–611. [CrossRef]

52. Moradgholi, M.; Nowee, S.M.; Abrishamchi, I. Application of heat pipe in an experimental investigation on a novel photo-
voltaic/thermal (PV/T) system. Sol. Energy 2014, 107, 82–88. [CrossRef]

53. Koundinya, S.; Vigneshkumar, N.; Krishnan, A.S. Experimental Study and Comparison with the Computational Study on Cooling
of PV Solar Panel Using Finned Heat Pipe Technology. Mater. Today Proc. 2017, 4, 2693–2700. [CrossRef]

54. Ho, C.; Chou, W.Y.; Lai, C.M. Thermal and electrical performance of a water-surface floating PV integrated with a water-saturated
MEPCM layer. Energy Convers. Manag. 2015, 89, 862–872. [CrossRef]

55. Liu, L.; Zhu, L.; Wang, Y.; Huang, Q.; Sun, Y.; Yin, Z. Heat dissipation performance of silicon solar cells by direct dielectric liquid
immersion under intensified illuminations. Sol. Energy 2011, 85, 922–930. [CrossRef]

121



Energies 2024, 17, 713
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Abstract: Urban energy systems planning presents significant challenges, requiring the integration of
multiple objectives such as economic feasibility, technical reliability, and environmental sustainabil-
ity. Although previous studies have focused on optimizing renewable energy systems, many lack
comprehensive decision frameworks that address the complex trade-offs between these objectives in
urban settings. Addressing these challenges, this study introduces a novel Multi-Criteria Decision
Analysis (MCDA) framework tailored for the evaluation and prioritization of energy scenarios in
urban contexts, with a specific application to the city of Bozen-Bolzano. The proposed framework
integrates various performance indicators to provide a comprehensive assessment tool, enabling
urban planners to make informed decisions that balance different strategic priorities. At the core of
this framework is the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS),
which is employed to systematically rank energy scenarios based on their proximity to an ideal
solution. This method allows for a clear, quantifiable comparison of diverse energy strategies, facili-
tating the identification of scenarios that best align with the city’s overall objectives. The flexibility
of the MCDA framework, particularly through the adjustable criteria weights in TOPSIS, allows
it to accommodate the shifting priorities of urban planners, whether they emphasize economic,
environmental, or technical outcomes. The study’s findings underscore the importance of a holistic
approach to energy planning, where trade-offs are inevitable but can be managed effectively through
a structured decision-making process. Finally, the study addresses key gaps in the literature by
providing a flexible and adaptable tool that can be replicated in different urban contexts to support
the transition toward 100% renewable energy systems.

Keywords: renewable energy; urban energy systems; multi-criteria decision analysis; EnergyPLAN;
performance indicator

1. Introduction

Recent events have underscored the urgent need to transition to a sustainable energy
system, including extreme weather phenomena [1,2], geopolitical tensions affecting fossil
fuel supplies [3–5], energy market volatility [6,7], the increasing frequency of natural
disasters [1,8], and rising pollution levels [9,10]. These events highlight the vulnerabilities
of current energy systems from both technical and economic perspectives [11,12]. As a
consequence, the ongoing energy transition needs an acceleration to buffer these pressing
current issues and, thus, to shift towards renewable and resilient energy solutions [7,13].
However, achieving such an ambitious goal as a 100% renewable energy system requires
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appropriate planning, taking into account the continuously changing socio-economic-
environmental conditions and the evolution of various technologies [14,15]. In this respect,
many aspects of the energy planning process need to be adapted to the new requirements,
starting from energy modelling [16] to the optimization methodology [17] for the various
objectives and finally to the decision-making process [18]. Thus, effective change toward a
renewable-based future requires concerted efforts and actions from countries, cities, and
individuals alike [19–21].

The 100% renewable energy system at the global and regional scale represents the
final goal and, as a consequence, exhibits various challenges and opportunities. Studies
emphasize the importance of transitioning towards cleaner energy sources to reduce
CO2 emissions and combat climate change [22–24]. The integration of renewable energy
sources like solar and wind power is crucial, with islands serving as ideal environments
for showcasing technical solutions and transition pathways [25]. Furthermore, the role
of energy storage technologies, such as batteries and hydrogen storage, is essential in
managing fluctuations in renewable energy sources and electricity demand, contributing
to the feasibility of a fully renewable energy system [26]. While there is a growing trend
towards 100% renewable energy systems, it is acknowledged that achieving this goal poses
technical and economic challenges that require innovative solutions and comprehensive
planning [27].

On a city scale, there have been several works to understand the technical and eco-
nomic feasibility of transitioning to 100% renewable energy in the urban environment,
which highlights the importance of factors like energy job sector growth, land requirements,
and investment recovery [28,29]. The potential benefits of this transition have been further
stressed in these works, which include the reductions in primary energy consumption, cost
and greenhouse gas emission while showing the inconsistencies in investment recovery
and emission reductions across different renewable energy systems in urban settings [29].
There is also a need for robust policies, infrastructure development, and multi-governance
approaches to accelerate the energy transition and achieve climate neutrality in cities by
leveraging renewable energy sources [28,30]. Additionally, there are other efforts to achieve
a 100% renewable energy system in places like the residential community of Huanglong
Township Island in Zhejiang province, China [31], the campus of Cornell University in the
United States of America (USA) [32] and the local municipalities in Fukuoka, Japan [33].

This paper bridges the gab that exist in the energy system modelling phase and the
decision making phase. It deals with the investigation of 100% solutions at an urban
scale for optimal planning through decision analysis; although it is the final step, it is
a crucial stage in the urban energy design process supporting the sensitive process of
the decision-making [34]. Decision analysis aims to analyze a set of solutions identified
through rigorous studies, which typically include energy system modelling and the search
for near-optimal configurations of scenarios [35] or pathways [36]. Multi-Criteria Decision
Analysis (MCDA) evaluates a pool of near-optimal solutions, enabling a comprehensive
analysis of trade-offs between various energy strategies. This analysis considers multiple
evaluation objectives (e.g., technical, economic, and environmental) and different sources
of uncertainty (e.g., climate scenarios and demographic trends) [37,38].

In energy systems planning, decision analysis plays a crucial role in managing the
complexities of shifting to sustainable energy sources [39]. Among the various approaches,
MCDA stands out for its ability to evaluate and balance multiple conflicting criteria [40],
such as technical feasibility [41], economic viability [42], and environmental impact [43].
This approach is particularly beneficial when planning for renewable energy systems, where
diverse factors have to be considered to develop effective and sustainable strategies [44].
MCDA allows planners to systematically assess different energy scenarios, weighing the
pros and cons of each option. It provides a structured framework that helps decision-
makers identify the best solutions from a pool of alternatives [45], considering not only
immediate costs and benefits but also long-term implications [46]. This comprehensive
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evaluation is essential for ensuring that selected energy strategies are both practical and
aligned with broader sustainability goals [47].

The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is es-
pecially useful within the MCDA framework. TOPSIS ranks alternative solutions based
on their closeness to an ideal solution that maximizes desirable attributes and minimizes
undesirable ones [48]. This method is advantageous because it offers clear, interpretable
rankings of different alternatives, making it easier for decision-makers to make informed
decisions [49]. By applying TOPSIS, we aim to provide energy planners with a tool capa-
ble of evaluating various energy scenarios in a systematic and transparent manner. This
method helps to identify the most balanced and effective options, considering all rele-
vant criteria [50]. As a result, TOPSIS supports robust, evidence-based decision-making,
ensuring that the chosen solutions are technically sound, economically feasible, and en-
vironmentally sustainable [51]. This approach can be strategic for achieving the goal of
effectively transitioning to renewable energy systems.

In this paper, the authors aim to seek the challenge of analyzing and interpreting the
near-optimal solutions for urban energy systems planning in the case of multi-objective
technical-economical-environmental optimization incorporating climate change. The main
novelty lies in the proposed MCDA-based methodology, which uses performance indicators
to flexibly analyze various conflicting aspects of energy planning (e.g., the cost of investing
in and implementing state-of-the-art technologies, the use of renewable resources such as
biomass and ensuring their sustainable use, and the environmental impact of the renewable
energy system configurations) while also providing robust solutions to support decision-
making processes. The proposed methodology is developed based on an urban case
study of the alpine city of Bozen-Bolzano, where a pool of near-optimal configurations of
the energy system according to technical, economic and environmental has been studied
in [52,53]. Based on these solutions, the authors implemented the MCDA using a series of
performance indicators covering different technical-economic-environmental aspects of
the solutions considered. The indicators involved covered critical aspects of the design of
urban renewable-based energy systems, such as Mismatch Compensation Factor, Emissions
Reduction Effectiveness, Biomass System Efficiency, and Curtailment Fraction, among
others. Instead, the MCDA proposes a comprehensive and robust investigation of the best
solutions with respect to different types of targets.

The remainder of the paper details a case study of the energy system in Bozen-Bolzano,
describing the materials and methodology, which include performance indicators and
multi-criteria decision analysis in Section 2. The study’s results are presented in Section 3,
followed by the final remarks in Section 4.

2. Case Study, Materials and Methods

2.1. Case Study

The Municipality of Bozen-Bolzano is the case study employed for developing and
testing the proposed methodology in Section 2.3. Bozen-Bolzano is a city found in the
North-Eastern part of Italy, in the centre of the Alps, with a population of 106,000. The
climate is characterized by cold winters and hot summers, with 2328 ◦C Heating Degree
Days (HDD) and 222 ◦C Cooling Degree Days (CDD)for the typical year [52,54,55]. This
city offers distinct opportunities and challenges for the energy transition due to unique
geographical and extreme climatic conditions [56].

The actual energy system of Bozen-Bolzano city is characterized by a transition to-
wards smart energy city (SEC) concepts spearheaded by the integration of renewable energy
sources, which includes photovoltaic and thermal solar panels, a growing district heating
system fed mainly by a waste-to-energy plant, hydropower storage and run of the river
plants, which aims to accelerate decarbonization efforts [57]. The city’s energy system
emphasizes the use of renewable energy sources to improve overall energy efficiency and
reduce its environmental impacts [58]. By combining various renewable energy sources,
energy storage devices and advanced technologies, Bozen-Bolzano is striving towards
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sustainable economic development and energy independence, setting a modern example
for other urban cities to follow [57,59]. More details are reported in [52].

2.2. Background Information

The background information forming the basis of the proposed decision analysis
is derived from two previous studies. The final outcomes of these studies, which serve
as inputs for the current decision analysis methodology, consist of a set of near-optimal
solutions representing different configurations of 100% renewable-based energy systems.
Menapace et al. (2020) [52] address the first steps in designing a 100% renewable energy
system in Bozen-Bolzano by 2050. They first proposed a path by focusing on the operation
between the sustainable use of biomass, replacement of traditional flexibility residing in
fossil fuels with modern ones based on smart energy systems, balancing import and export
of electricity and management of exchange of energy between the local energy system and
it surrounding systems. Their approach integrated the energy system modelling using
EnergyPLAN (a tool designed by the Sustainable Energy Planning Research Group at the
Aalborg University to support the analysis of complex energy system factoring in advance
technologies [60–62]) with multi simulations to accurately investigate the best technical
alternative to achieve the main aim of a 100% renewable energy system.

Building on this work, Battini et al. (2024) [53] further integrated energy system design
with the impacts of climate change on energy demand and renewable production. Then, the
optimal scenarios are searched by varying the installed capacity of Photo Voltaics (PV), Com-
bined Heat and Power (CHP) and Heat Pumps (HP) through a multi-objective optimization
approach considering economic, environmental and technical targets. Two methods were
adopted for the best scenarios identification: Grid Search and Non-dominated Sorting
Genetic Algorithm-II (NSGA2). For the purposes of this work, we consider the scenarios
resulting from the grid search as near-optimal due to their performance comparable to
NSGA2 but in a regular grid.

2.3. Decision Analysis Methodology

The overall energy planning strategy is described in Figure 1 from the beginning with
the data collection and the modelling of the actual energy system to the final best scenarios
identification. Specifically, steps 1–3 regard the energy modelling of the system, including
the actual year and climate projections, the optimization and selection of the near-optimal
scenarios [52,53]. The next steps 4–6 belong to the proposed work and include the definition
of the performance indicator for a wide-ranging evaluation of the different scenarios and a
comparison analysis of the best scenario through a new MCDA methodology.

Figure 1. Methodology scheme for urban energy planning.

Thus, this decision analysis includes these two main phases that merge the robustness
of the performance indicator and the flexibility of MCDA. Thus, specifically, the former
phase consists of the evaluation of the selected performance indicators that reflect the key
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targets of the 100% renewable energy system: environmental impact, economic feasibility
and technical reliability.

The performance indicators were carefully selected from a pool of advanced perfor-
mance indicators [60] well known for their efficiency and ability to access, analyze and
revolutionize the renewable energy space. For the benefit of this case study, we try to
regenerate and adapt them as well as group them into our targets, i.e., technical, economic
and environmental.

2.3.1. Technical Targets

To ensure a sustainable and reliable energy system, the technical targets primarily aim
to reduce the reliance on biomass and minimize electricity imports. For this purpose, we
have selected three key indicators, namely Relocation Coefficient (RC), Flexibility Factor or
System Flexibility (FF) and finally, Biomass System Efficiency (BSE).

1. Relocation Coefficient (RC) is defined as the measure of comparison between the
ability of different technologies in the supply system flexibility. It is the ratio between
the net electricity exchange between the plant and system and the electricity demand
minus intermittent electricity production. This indicator essentially helps evaluate
how well the energy system can adjust to changes in energy demand and production,
particularly when integrating renewable energy sources that may have fluctuating
output. Its formula is reported as follows:

RC =
Net electricity exchange between plant and system

Electricity demand - intermittent electricity production
(1)

2. Flexibility Factor or System Flexibility (FF) is an indicator first described by Paul
Denholm and Robert M. Margolis to be the lowest hourly value over the year divided
by the maximum hourly value with regard to the output of a simulation [63]. Thus,
this indicator was used to assess the flexibility of the system over the year used
in the simulation. We gave it a range between 0 and 1 with a value close to 0,
which means the system is not flexible, and a value close to 1 means the system is
flexible. In general terms, this metric helps determine how well the energy system
can maintain consistent performance despite fluctuations in energy production and
demand throughout the year.

FF =
Lowest hourly value of the year

Maximum hourly value of the year
(2)

3. Biomass System Efficiency (BSE) is used to assess the importance of biomass in the
energy system without the transportation system [64]. This indicator was helpful in
this work since it could help in the quantification and reduction of biomass in the
system. To attain this, the output from synthetic fuel is subtracted from the production
of all the fuel by biomass, which is then divided by the biomass used for transportation
subtracted from the input amount of biomass. Essentially, this efficiency metric shows
how effectively the system uses biomass resources, helping to minimize waste and
maximize energy output from the available biomass.

BSE =
Output of all fuel by Biomass − Output from synthetic fuel
Input Biomass amount − Biomass used for transportation

(3)

2.3.2. Economic Targets

Economic targets are characterized by the minimization of the annual cost of the
system and consist of Mismatch Compensation Factor (MCF) and Marginal Economic
Efficiency (MEE).

1. Mismatch Compensation Factor (MCF) was developed by Lund et al. [65] with
respect to zero-energy buildings. It relates cost balance (i.e., the installed capacity of
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renewable energy sources where the import costs and export incomes are balanced) to
energy balance (i.e., the installed capacity of renewable energy source (RES) balancing
aggregated annual imports to exports from the energy system). This indicator helps
measure how well the energy system can balance its energy production with its costs,
ensuring that it produces enough renewable energy to meet its own needs while
minimizing external energy purchases.

MCF =
Cost Balance

Energy Balance
=

Total RES Production − RES Used
Total Energy Demand − RES Used

(4)

2. Marginal Economic Efficiency (MEE) shows how the added cost of RES contributes to
the total cost of the system. It is expressed by dividing the change in the total system
cost by the change in the cost of RES [60]. In simpler terms, this indicator helps assess
how cost-effective the system is when adding renewable energy sources, showing
whether the investment in renewable technologies leads to efficient use of resources
and overall cost savings.

MEE =
ΔTotal System Cost

ΔRenewable Energy Sources Costs
(5)

2.3.3. Environmental Targets

The environmental target goal is to minimize the CO2 emissions of the system. It
is also related to the system’s renewable energy sources. It has three indicators, namely,
Curtailment Fraction, Marginal Primary Energy Supply and Marginal Export.

1. When a system is not able to hold excess production of RES within a given period, the
percentage of the RES production lost by the technology is called Curtailment Fraction
(CF). When the percentage is equal to 100%, we say the system has the capacity to
integrate the excess RES produced and vice versa. It is calculated by subtracting
the realized RES production from the potential RES production, and the results are
divided by the potential RES production. This indicator practically measures how
much renewable energy is wasted because the system cannot fully utilize or store it,
with higher curtailment indicating greater energy loss.

CF =
Potential RES production − Realized RES production

Potential RES production
(6)

2. Marginal Primary Energy Supply (MPES) compares the different RES where the factors
may be determined by marginal effects. Specifically, the MPES indicates how the
marginal Primary Energy Supply (PES) of the system is affected by a marginal change
in the PES from RES. If it is less than 1, the system cannot fully integrate marginal
RES production [60]. In other therms, this indicator shows how efficiently the system
can incorporate small increases in renewable energy supply, helping to assess the
system’s ability to handle additional renewable energy without performance losses.
This is represented by the formula below.

MPES =
ΔPrimary Energy Sources

(ΔPrimary Energy Source × Renewable Energy Sources)
(7)

3. Marginal Export (ME) is used to determine the relationship between marginal export
and marginal changes in PES, which are biomass-based [64].

ME =
ΔExport

ΔPrimary Energy Sources
(8)

These indicators were placed in a range between 0 and 1, where 0 indicates a poor
performance and 1 optimal performance. Furthermore, after obtaining the results for
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each indicator across their respective scenarios, the data were normalized between 0 and
1 to reflect the aforementioned range. Therefore, values close to 1 represent favourable
indicators, while values close to 0 represent unfavourable indicators. Table 1 represents the
first 10 indicators before normalization and after normalization to throw more light on the
above statement.

Table 1. Values of the performance indicators in different scenarios, the first 10 selected as examples.

Before Normalization

Scenarios RC FF CF MCF MPES MEE ME BSE

Scenario 1 0.981722 0.025282 0.104913 0.792006 2.189719 17.02612 0.963444 0.196561
Scenario 2 0.914448 0.010581 0.049434 0.871856 2.395090 1.176235 1.064378 1.098251
Scenario 3 0.957826 0.020870 0.092879 0.917171 2.333604 1.151019 0.915653 1.099818
Scenario 4 0.967399 0.018738 0.086294 0.871856 2.406525 1.152334 0.934797 1.049301
Scenario 5 0.894655 0.009454 0.045639 0830840 2.470161 1.210174 1.081707 1.048504
Scenario 6 0.977985 0.015756 0.075988 0.830840 2.506582 1.408031 0.955969 1.043592
Scenario 7 0.960285 0.013243 0.065025 0.793491 2.537576 1.840971 1.027957 0.947787
Scenario 8 0.983609 0.017858 0.086074 0.793491 2.518343 2.206353 0.967219 0.883702
Scenario 9 0.964461 0.021068 0.100287 0.793491 2.505681 2.551852 0.928922 0.840727

Scenario 10 0.952290 0.023275 0.109848 0.793491 2.496894 2.835778 0.904580 0.812299

After Normalization

Scenarios RC FF CF MCF MPES MEE ME BSE

Scenario 1 0.850946 0.277390 0.361767 0.451797 0.111556 1.000000 0.309250 0.000000
Scenario 2 0.286335 0.151160 0.218751 0.567825 0.202887 0.056067 0.839516 0.998265
Scenario 3 0.650396 0.239502 0.330747 0.633672 0.175544 0.054565 0.058171 1.000000
Scenario 4 0.730733 0.221197 0.313773 0.567825 0.207973 0.054643 0.158749 0.944072
Scenario 5 0.120217 0.141479 0.208970 0.508226 0.236273 0.058088 0.930552 0.943190
Scenario 6 0.819577 0.195596 0.287204 0.508226 0.252470 0.069871 0.269977 0.937751
Scenario 7 0.671030 0.174015 0.258943 0.453955 0.266253 0.095655 0.648173 0.831685
Scenario 8 0.866785 0.213642 0.313203 0.453955 0.257700 0.117415 0.329079 0.760737
Scenario 9 0.706079 0.241208 0.349842 0.453955 0.252069 0.137991 0.127884 0.713158

Scenario 10 0.603932 0.260161 0.374491 0.453955 0.248161 0.154900 0.000000 0.681686

2.4. TOPSIS-Based MCDA approach

The proposed approach consists in employing the TOPSIS to evaluate and rank dif-
ferent scenarios based on relevant criteria. This method is herein suggested because it
considers both the best and worst possible scenarios, providing a clear and balanced com-
parison of alternatives. The step-by-step procedure to implement the TOPSIS method is
outlined as follows.

• Construct the assessment matrix: first, compile the quantitative evaluations gij for each
alternative i across each criterion j. This matrix provides a comprehensive overview
of how each alternative performs under each criterion.

• Compute the normalized matrix, with the generic element zij representing the normal-
ized evaluation of alternative i under criterion j as:
Normalize the matrix: next, standardize the values in the assessment matrix to make
them comparable across criteria. The normalized value zij for each alternative i and
criterion j is calculated as:

zij =
gij√

∑n
i=1 g2

ij

. (9)

This step removes the units of measurement and scales the data, ensuring that each
criterion contributes equally to the analysis.

• Calculate the weighted normalized matrix: apply the assigned weights to the normal-
ized values to reflect the importance of each criterion. The weighted normalized value
uij is given by:

uij = wj × zij, ∀i, ∀j; (10)

where wj is the weight assigned to criterion j. This step adjusts the normalized values
according to the significance of each criterion.

• Determine the ideal solutions: identify the best possible (positive ideal) and worst
possible (negative ideal) values for each criterion. The positive ideal solution A∗ and
the negative ideal solution A− are defined as:
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A∗ = (u∗
1, . . . , u∗

k ) =
{
(max

i
uij|j ∈ I

′
), (min

i
uij|j ∈ I

′′
)
}

; (11)

A− = (u−
1 , . . . , u−

k ) =
{
(min

i
uij|j ∈ I

′
), (max

i
uij|j ∈ I

′′
)
}

; (12)

where I
′

includes criteria to be maximized and I
′′

includes criteria to be minimized.
These ideal solutions serve as reference points for comparison.

• Calculate the distances to the ideal solutions: measure the distances of each alternative
from the positive and negative ideal solutions. The distances S∗ and S− for each
alternative i are computed as:

S∗ =

√√√√ k

∑
j=1

(uij − u∗
ij)

2, i = 1, . . . , n; (13)

S− =

√√√√ k

∑
j=1

(uij − u−
ij )

2, i = 1, . . . , n. (14)

These distances quantify how far each alternative is from the ideal solutions.
• Calculate the closeness coefficient: determine the closeness coefficient C∗

i for each
alternative i, which indicates its relative proximity to the ideal solutions. The closeness
coefficient is calculated as:

C∗
i =

S−

S− + S∗ , 0 < C∗
i < 1, ∀i. (15)

This coefficient shows how closely an alternative aligns with the best possible scenario
while avoiding the worst.

• Rank the alternatives: finally, rank the alternatives based on their closeness coefficients
in descending order. For example, in comparison between two generic alternatives i
and z, if C∗

i ≥ C∗
z , then alternative i is preferred over alternative z. This ranking helps

in making informed decisions by highlighting the most favorable options.

By following these steps, the TOPSIS method provides a systematic and objective way
to evaluate and rank multiple alternatives based on a set of criteria, ensuring balanced and
well-informed decision-making.

After obtaining the final ranking by initially assigning equal weights to all criteria, we
will conduct a sensitivity analysis by varying the weights assigned to each criterion. This
analysis will help us understand the robustness of the rankings and the impact of different
criteria on the overall assessment. The criteria will be grouped based on their nature, such
as environmental, technical, and economic targets, allowing us to systematically explore
how changes within these groups affect the final rankings.

3. Results and Discussion

This section presents the findings of the proposed MCDA across various scenarios.
Firstly, the performance indicators are analyzed and grouped according to different targets,
i.e., environmental, technical, and economic. The relationship between each indicator and
the capacity of the key technologies is then illustrated. Subsequently, the MCDA of this
section dives deep into the performance of the scenarios across all targets and the sensitivity
of each scenario is analyzed. The analysed scenarios are the 52 near-optimal energy system
configurations resulting from the grid search in [53].

3.1. Performance Indicators of the Energy Scenarios

This particular session of the paper is dedicated to the performance indicator results,
where each scenario performance with each indicator is accessed. The indicator analysis
presented in Figure 2 focuses on three primary targets: Economic, Technical, and Envi-
ronmental. Each indicator within these targets offers insight into various aspects of the
scenarios’ performance, allowing for a comprehensive evaluation of its efficiency, reliability,
and adaptability across all the indicators.
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Economic targets are depicted through the Mismatch Compensation Factor (MCF)
and the Marginal Economic Efficiency (MEE) in Figure 2a. The MCF values exhibit a
variation ranging from 0.8 to 1.4, indicating shifts in the cost and energy balance within
the system. MCF values suggest effective compensation for mismatches in the various
scenarios, indicating the best solution that is closest to 1. On the other hand, the MEE
shows high variability with significant peaks over 4 in a few cases. This indicates that the
share of renewable costs on overall cost varies among the different scenarios.

(a) Economic Target (b) Technical Target

(c) Environmental Target

Figure 2. Performance indicator divided in three targets: Economic Target - Mismatch Compensation
Factor (MCF) and Marginal Economic Efficiency (MEE), Technical Target—Reliability Coefficient (RC),
Flexibility Factor or System Flexibility (FF) and Biomass System Efficiency (BSE), and Environmental
Target—Curtailment Fraction (CF), Marginal Primary Energy Supply (MPES), Marginal Export (ME).

Technical targets are evaluated in Figure 2a using the Reliability Coefficient (RC),
Flexibility Factor (FF), and Biomass System Efficiency (BSE). The RC values fluctuate
moderately between 0.95 and 1.02, indicating a high-reliability level of all the scenarios
with minor variability among them. This consistency underscores the system’s dependable
performance across different scenarios. The FF shows values between 0 and 0.2, indicating
the overall scarce flexibility of all the scenarios due to the specific characteristics of the
analysed urban case study. The BSE values range from 0.8 to 1.2, suggesting that the
biomass system efficiency consistently varies across scenarios. Despite this variability,
values close to 1 indicate overall effectiveness in biomass utilization.

Environmental targets are then examined by means of through the Curtailment Frac-
tion (CF), Marginal Primary Energy Supply (MPES), and Marginal Export (ME) reported in
Figure 2c. The CF is characterized by values ranging between 0 and 0.5, with an important
variation among the different scenarios. The highest values indicate scenarios with a
moderate capacity to integrate RES. The MPES values range around 2–2.5 with a spike of
4. This consistency reflects the system’s stability in integrating renewable energy sources,
with the spike indicating a potential anomaly or specific scenario causing a significant
reduction. The ME values are quite stable, fluctuating slightly around 0.9 to 1.1. This
stability suggests that the system maintains efficient performance in terms of energy export
across different scenarios, with only minor expected fluctuations. In summary, the analyses
of these indicators across economic, technical, and environmental targets reveal a complex
interplay of factors influencing its performance for each scenario. The varying trends and
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fluctuations observed in each indicator highlight the complex dynamic of energy system
configurations, emphasizing the nature of the analyzed case study.

The dependency between the eight indicators and the capacities of three key technolo-
gies (i.e., Combined Heat and Power (CHP), Heat Pump (HP), and Photovoltaic (PV)) is
investigated. The relationships are illustrated through scatter plots, providing a compre-
hensive representation of how each indicator is affected by the installed capacities.

The analysis of the Mismatch Compensation Factor (MCF) in relation to capacities
(Figure 3a) shows that the data points for CHP and HP are clustered without any pattern
in relation to MCF. Instead, PV capacities, while more broadly distributed, exhibit a negative
correlation with MCF. Thus, the MCF indicator, which focuses on cost balance and energy
balance, appears to be relatively independent of the capacities of CHP and HP, but not from PV,
suggesting that changes in PV capacity can significantly affect the marginal capacity factor.

The Marginal Economic Efficiency (MEE) indicator (Figure 3b) shows different be-
haviour with the different technologies. Specifically, PV and HP present a slight positive
correlation with MEE, while CHP seems to not have any influence. This means that both
HP and PV capacity play a positive effects on MEE.

The Reliability Coefficient (RC) indicator (Figure 3c) is again analyzed against the
capacities of CHP, HP, and PV. The scatter plot indicates that all three technologies do not
have a clear pattern on RC. This means that the contained variation of reliability does not
depend on a single technology but on the combination of all of them together with other
minor system configurations.

The Flexibility Factor or System Flexibility (FF) is also analyzed (Figure 3d). In this
case, the scatter plot demonstrates a pattern for all the technologies. Specifically, CHP and
HP are positively correlated with FF, with CHP showing a stronger relationship. Instead,
PV is negatively correlated with FF, highlighting a clearly different impact compared with
CHP and HP.

The Biomass System Efficiency (BSE) is analyzed through the scatter plot in Figure 3e).
This reveals that the data points for PV have no trend but are randomly spread among
various capacities over BSE values. A slight negative correlation is presented between
CHP and BSE. Instead, HP shows a more evident negative relationship with biomass
system efficiency. This suggests that the BSE indicator is relatively independent of PV
but not from CHP and HP, which the latter has a more important impact on the biomass
system’s efficiency.

Next, the Curtailment Fraction (CF) is examined. The corresponding scatter plot
(Figure 3f) shows that both CHP and HP capacities exhibit a positive correlation with CF
capacity. On the contrary, PV presents a negative correlation, highlighting an antithetical
behaviour between PV and the other two technologies.

In examining the Marginal Primary Energy Supply (MPES) (Figure 3g), the scatter plot
reveals that data points for CHP and HP are tightly clustered with no apparent variation in
MPES. PV capacities show a broader range, with a slight positive relationship with MPES.
This indicates that the primary energy sources and renewable energy integration are not
directly affected by the installed capacities of CHP, HP, and PV, suggesting that marginal
production efficiency is quite independent of the single technology capacities.

Finally, for the Marginal Export (ME) indicator (Figure 3h), the scatter plot shows that
data points for CHP, HP and HP capacities have no pattern with ME.

Briefly, the dependency analysis between these performance indicators and the ca-
pacities of CHP, HP, and PV systems reveals the complexity of energy system behaviour
across different technical, economic, and environmental dimensions. This finding suggests
that the performance captured by these indicators is essential for accurately describing the
complexity of various scenario configurations. Moreover, it highlights the importance of
thoroughly analysing these solutions using an MCDA methodology.
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(a) Mismatch Compensation Factor (MCF) (b) Marginal Economic Efficiency (MEE)

(c) Reliability Coefficient (RC) (d) Flexibility Factor or System Flexibility (FF)

(e) Biomass System Efficiency (BSE) (f) Curtailment Fraction (CF)

(g) Marginal Primary Energy Supply (MPES) (h) Marginal Export (ME)

Figure 3. Indicator analyses based on targets: Economic Target (Mismatch Compensation Factor
(MCF) and Marginal Economic Efficiency (MEE)), Technical Target (Reliability Coefficient (RC),
Flexibility Factor or System Flexibility (FF or SF) and Biomass System Efficiency (BSE)) Environmental
Target (Curtailment Fraction (CF), Marginal Primary Energy Supply (MPES), Marginal Export (ME))

3.2. Multi-Criteria Decision Analysis (MCDA) and Sensitivity Analysis

In this study, a MCDA was conducted to evaluate the performance of various energy
scenarios for urban energy system planning. The MCDA approach employed in this analy-
sis integrates economic, technical, and environmental targets, enabling a comprehensive
assessment of each scenario’s performance under different prioritization schemes. Results
are illustrated in the series of bar graphs and line charts provided, which depict the top 10
performing scenarios and the overall performance across all scenarios. In these figures, CC
values have been rescaled to a 0–100 range for improved interpretability.
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The baseline scenario assigns equal weight (1/3) to each of the three macro groups
of criteria, which are economic, technical, and environmental. Various indicators were
distributed among the groups. The performance of this scenario is illustrated in the top 10
CC values bar graph in Figure 4a. Scenario 41 emerged as the highest-ranking scenario,
consistently demonstrating superior performance across multiple criteria. This scenario’s
robust performance can be attributed to its balanced approach, which ensures that none of
the criteria groups are disproportionately prioritized, leading to a well-rounded energy
system design.

In the environmental target scenario, 60% of the weight was allocated to environmental
indicators, with the remaining 40% equally divided between technical and economic indica-
tors. The results (Figure 4b) indicate that this scenario favours configurations that maximize
environmental benefits, such as reduced emissions and efficient resource utilization. Sce-
nario 17, which stands out, is characterized by a substantial emphasis on curtailment
reduction and optimal biomass system efficiency, which are critical for minimizing the
environmental footprint of the energy system.

For the technical target scenario, 60% of the weight was assigned to technical indicators,
with the remaining weight equally split between economic and environmental indicators. The
top-performing scenarios (Figure 4c) in this case highlight the importance of system reliability
and flexibility. Scenario 41 in this case appears as the 2nd best while 32, which ranks highest
in this target, reflects its superior adaptability and technical robustness, which are crucial for
maintaining system stability and efficiency under varying operational conditions.

In the economic target scenario, 60% of the weight was allocated to economic in-
dicators, with the technical and environmental indicators each receiving 20%. The top
10 scenarios in this case (Figure 4d) underline the significance of cost-effectiveness and
economic efficiency in the system design. Scenario 45, which ranks highest in this scenario,
showcases a highly cost-efficient configuration, effectively balancing the trade-offs between
investment costs and system performance. In this case, we also see Scenario 41 performing
well by placing 5th.

The comparative analysis of the different scenarios (Figure 5) shows significant vari-
ability in Closeness Coefficient (CC) values across all scenarios, indicating that no single
scenario consistently outperforms the others under all target conditions. The sensitivity
analysis further reveals how changes in the weighting of criteria affect the rankings of the
scenarios, providing insights into the robustness of the decision-making process. Notably,
Scenario 41 frequently appears in the top ranks across multiple targets, suggesting that it
strikes an effective balance across all three target; technical, economic, and environmental.
Unlike other scenarios that may perform well in one area but fall short in others, Scenario 41
consistently delivers high performance across multiple indicators. Its configuration offers
optimal flexibility and reliability while maintaining economic efficiency and minimizing
environmental impact, making it a well-rounded choice for urban energy planning. This
scenario’s balanced approach aligns well with the overarching goals of transitioning to a
zero-carbon future without compromising on technical stability or affordability.

This MCDA result has highlighted the importance of considering multiple perspectives
when planning urban energy systems. By adjusting the weights assigned to different criteria,
decision-makers can tailor the energy system design to prioritize specific objectives, whether
environmental sustainability, technical reliability, or economic feasibility. The flexibility of the
MCDA approach ensures that the chosen scenario aligns with broader strategic goals while
accommodating the unique needs of the urban energy system under study.
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(a) Top 10 CC Values - Baseline Scenario (b) Top 10 CC Values - Environmental Target

(c) Top 10 CC Values - Technical Target (d) Top 10 CC Values - Economic Target

Figure 4. Closeness Coefficient (CC) values for the best 10 scenarios of the MCDA for the baseline
scenario, environmental target, technical target and economic target.

Figure 5. Overall Performance of Different Scenarios Across All Targets.
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Upon analyzing the sensitivity of each indicator to changes in criteria weights, we
further synthesized results in Table 2, including the best 10 scenarios across all targets,
and Table 3, related to the worst 10 scenarios across all targets. It is worth noting that
other scenarios may be preferable if greater importance is placed on specific targets, such
as Scenario 17, which performs particularly well under environmental considerations.
Additionally, certain scenarios may be more suitable depending on specific constraints, such
as the maximum installable capacity of a technology or budget limitations, highlighting
the adaptability of the proposed methodology to different planning contexts.

Table 2. Performance of Best Scenarios Across Different Targets.

BS CC ENV 60% CC TEC 60% CC ECO 60% CC

Scenario 41 0.5994 Scenario 17 0.4868 Scenario 32 0.7190 Scenario 45 0.7729

Scenario 45 0.5936 Scenario 1 0.4777 Scenario 41 0.6992 Scenario 38 0.7389

Scenario 32 0.5790 Scenario 45 0.4580 Scenario 44 0.6903 Scenario 33 0.7197

Scenario 38 0.5762 Scenario 44 0.4537 Scenario 22 0.6802 Scenario 24 0.7098

Scenario 23 0.5648 Scenario 41 0.4536 Scenario 39 0.6783 Scenario 41 0.6993

Scenario 39 0.5596 Scenario 46 0.4385 Scenario 31 0.6730 Scenario 34 0.6847

Scenario 33 0.5517 Scenario 38 0.4369 Scenario 12 0.6715 Scenario 47 0.6781

Scenario 44 0.5502 Scenario 32 0.4313 Scenario 46 0.6708 Scenario 36 0.6613

Scenario 12 0.5485 Scenario 39 0.4300 Scenario 23 0.6657 Scenario 14 0.6601

Scenario 22 0.5476 Scenario 31 0.4277 Scenario 30 0.6564 Scenario 26 0.6552

Table 3. Performance of worst Scenarios Across Different Targets.

BS CC ENV 60% CC TEC 60% CC ECO 60% CC

Scenario 8 0.4238 Scenario 8 0.3081 Scenario 2 0.4868 Scenario 50 0.3952

Scenario 15 0.4233 Scenario 6 0.3016 Scenario 17 0.4847 Scenario 51 0.3948

Scenario 48 0.4223 Scenario 9 0.2995 Scenario 26 0.4683 Scenario 27 0.3945

Scenario 50 0.4215 Scenario 10 0.2984 Scenario 36 0.4627 Scenario 3 0.3932

Scenario 4 0.4172 Scenario 48 0.2981 Scenario 10 0.4624 Scenario 15 0.3929

Scenario 3 0.4154 Scenario 52 0.2962 Scenario 5 0.4506 Scenario 4 0.3922

Scenario 19 0.4121 Scenario 50 0.2959 Scenario 49 0.4407 Scenario 37 0.3914

Scenario 51 0.3972 Scenario 3 0.2941 Scenario 1 0.4226 Scenario 19 0.3768

Scenario 9 0.3766 Scenario 4 0.2935 Scenario 52 0.4064 Scenario 9 0.3295

Scenario 10 0.3516 Scenario 51 0.2823 Scenario 20 0.4010 Scenario 10 0.3003

4. Conclusions

In the face of rapidly advancing urbanization and the escalating demand for sustain-
able energy solutions, this study has significantly contributed to urban energy system
planning. By introducing a novel Multi-Criteria Decision Analysis (MCDA) framework
tailored to Bozen-Bolzano, we have established an integrated approach to evaluating and
selecting energy scenarios.

The proposed framework balances economic, environmental, and technical targets in
decision-making. The economic aspect minimizes costs while maximizing energy output,
the environmental side reduces emissions and protects natural resources, and technical in-
dicators ensure system flexibility and reliability amid fluctuating renewable energy sources.
The MCDA framework allows for a careful comparison of energy options, considering
the efficiency, cost, and environmental impact of different technologies, ensuring that the
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chosen solutions are practical and sustainable.Moreover, the tool’s flexibility makes it
highly useful for decision-makers and energy policy-makers, allowing them to adjust the
weighting of different criteria based on their specific priorities and constraints. However, it
is important to note that this work does not delve into the integration of decision-making
processes or explore the implications of energy policy, as these topics are beyond the scope
of the current study.

The integration of the TOPSIS method into the MCDA framework was crucial, provid-
ing a quantifiable way to rank energy scenarios. TOPSIS simplified the decision-making
process by identifying scenarios closest to the ideal solution, offering flexibility to adjust
criteria weights based on evolving priorities and conditions. Scenario 41 stood out, per-
forming well across multiple criteria, making it a compelling choice for urban planners
aiming to balance economic viability, environmental sustainability, and technical reliability.

Our findings have far-reaching implications for urban areas striving to transition to
100% renewable energy. The study emphasizes the necessity of a holistic approach, ensuring
that selected energy systems are sustainable, economically viable, and technically sound.
This is critical to achieving broader goals of climate neutrality and energy independence.
Scenario analysis also played a key role in our study, allowing urban planners to anticipate
uncertainties and ensure that chosen strategies are resilient and adaptable.

Beyond Bozen-Bolzano, the MCDA framework we developed can be adapted to other
urban contexts, making it a versatile tool for cities facing similar challenges in energy system
planning. This study contributes methodologically by demonstrating the effectiveness
of integrating TOPSIS in MCDA to evaluate energy scenarios. This combination offers
structured decision-making guidance while allowing for adjustments based on specific city
needs, enhancing its practical application.

While our research offers valuable insights, it opens avenues for future exploration.
Future research could integrate additional factors like social acceptance and technological
innovation to provide a more comprehensive evaluation. Applying the MCDA framework
to other cities with different socio-economic and climatic conditions could yield further
insights, enhancing its generalizability.

Additionally, the dynamic nature of urban energy systems presents an opportunity to
develop adaptive frameworks using real-time data and advanced computational methods
like machine learning. This would allow planners to make informed, timely decisions, en-
hancing resilience and sustainability. Although this framework provides a comprehensive
tool for evaluating energy systems, its reliance on predefined performance indicators may
not fully capture future uncertainties. The study’s focus on Bozen-Bolzano, a relatively
small city, also means that implementing the proposed methodology on larger and complex
cities can bring challenging issues, such as data collection and energy systems modelling.

Future updates should address these limitations by incorporating real-time data and
diverse socio-political factors. In conclusion, this study represents a significant advance-
ment in urban energy planning. The framework offers a novel, adaptable tool to support
the transition to 100% renewable energy systems, with insights that are relevant not only to
Bozen-Bolzano but to urban energy planning worldwide.
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Natural disasters and energy innovation: Unveiling the linkage from an environmental sustainability perspective. Front. Energy
Res. 2023, 11, 1256219. [CrossRef]

9. Wu, D.; Xie, Y.; Liu, D. Rethinking the complex effects of the clean energy transition on air pollution abatement: Evidence from
China’s coal-to-gas policy. Energy 2023, 283, 128413. [CrossRef]

10. Dincer, I.; Aydin, M.I. New paradigms in sustainable energy systems with hydrogen. Energy Convers. Manag. 2023, 283, 116950.
[CrossRef]

11. Johansson, B.; Jonsson, D.K.; Veibäck, E.; Sonnsjö, H. Assessing the capabilites to manage risks in energy systems–analytical
perspectives and frameworks with a starting point in Swedish experiences. Energy 2016, 116, 429–435. [CrossRef]

12. Cuisinier, E.; Bourasseau, C.; Ruby, A.; Lemaire, P.; Penz, B. Techno-economic planning of local energy systems through
optimization models: A survey of current methods. Int. J. Energy Res. 2021, 45, 4888–4931. [CrossRef]

13. Hasselqvist, H.; Renström, S.; Strömberg, H.; Håkansson, M. Household energy resilience: Shifting perspectives to reveal
opportunities for renewable energy futures in affluent contexts. Energy Res. Soc. Sci. 2022, 88, 102498. [CrossRef]

14. Lund, H. Renewable energy strategies for sustainable development. Energy 2007, 32, 912–919. [CrossRef]
15. Kalair, A.; Abas, N.; Saleem, M.S.; Kalair, A.R.; Khan, N. Role of energy storage systems in energy transition from fossil fuels to

renewables. Energy Storage 2021, 3, e135. [CrossRef]
16. Lopion, P.; Markewitz, P.; Robinius, M.; Stolten, D. A review of current challenges and trends in energy systems modeling. Renew.

Sustain. Energy Rev. 2018, 96, 156–166. [CrossRef]
17. Kotzur, L.; Nolting, L.; Hoffmann, M.; Groß, T.; Smolenko, A.; Priesmann, J.; Büsing, H.; Beer, R.; Kullmann, F.; Singh, B.; et al. A

modeler’s guide to handle complexity in energy systems optimization. Adv. Appl. Energy 2021, 4, 100063. [CrossRef]
18. Ervural, B.C.; Evren, R.; Delen, D. A multi-objective decision-making approach for sustainable energy investment planning.

Renew. Energy 2018, 126, 387–402. [CrossRef]
19. Thompson, S. Strategic analysis of the renewable electricity transition: Power to the world without carbon emissions? Energies

2023, 16, 6183. [CrossRef]
20. Rozhkov, A. Applying graph theory to find key leverage points in the transition toward urban renewable energy systems. Appl.

Energy 2024, 361, 122854. [CrossRef]
21. Adanma, U.M.; Ogunbiyi, E.O. Assessing the economic and environmental impacts of renewable energy adoption across different

global regions. Eng. Sci. Technol. J. 2024, 5, 1767–1793. [CrossRef]
22. Moriarty, P.; Honnery, D. Feasibility of a 100% global renewable energy system. Energies 2020, 13, 5543. [CrossRef]
23. Akpan, J.; Olanrewaju, O. Towards a common methodology and modelling tool for 100% renewable energy analysis: A review.

Energies 2023, 16, 6598. [CrossRef]
24. Elazab, R.; Dahab, A.A.; Adma, M.A.; Hassan, H.A. Reviewing the frontier: Modeling and energy management strategies for

sustainable 100% renewable microgrids. Discov. Appl. Sci. 2024, 6, 168. [CrossRef]
25. Meschede, H.; Bertheau, P.; Khalili, S.; Breyer, C. A review of 100% renewable energy scenarios on islands. Wiley Interdiscip. Rev.

Energy Environ. 2022, 11, e450. [CrossRef]
26. Marocco, P.; Novo, R.; Lanzini, A.; Mattiazzo, G.; Santarelli, M. Towards 100% renewable energy systems: The role of hydrogen

and batteries. J. Energy Storage 2023, 57, 106306. [CrossRef]
27. O’malley, M. Towards 100% renewable energy system. IEEE Trans. Power Syst. 2022, 37, 3187–3189. [CrossRef]
28. Dahab, A.A.; Elazab, R.; Adma, M.A.A.; Hassan, H.F. Global Challenges and Economic Feasibility in Achieving 100% Renewable

Energy. Adv. Electr. Electron. Eng. 2024, in press. [CrossRef]

140



Energies 2024, 17, 5207

29. Sahoo, G.S.; Mathur, M.; Zaidi, T.; Sharma, R. Comprehensive Assessment of Land Requirements for 100% Solar Energy Transition
in Smart Cities. In Proceedings of the E3S Web of Conferences, EDP Sciences, Singapore, 7–9 June 2024; Volume 540, p. 04006.

30. Ulpiani, G.; Vetters, N.; Shtjefni, D.; Kakoulaki, G.; Taylor, N. Let’s hear it from the cities: On the role of renewable energy in
reaching climate neutrality in urban Europe. Renew. Sustain. Energy Rev. 2023, 183, 113444. [CrossRef]

31. Li, L.; Wang, J.; Zhong, X.; Lin, J.; Wu, N.; Zhang, Z.; Meng, C.; Wang, X.; Shah, N.; Brandon, N.; et al. Combined multi-objective
optimization and agent-based modeling for a 100% renewable island energy system considering power-to-gas technology and
extreme weather conditions. Appl. Energy 2022, 308, 118376. [CrossRef]

32. Tian, X.; Zhou, Y.; Morris, B.; You, F. Sustainable design of Cornell University campus energy systems toward climate neutrality
and 100% renewables. Renew. Sustain. Energy Rev. 2022, 161, 112383. [CrossRef]

33. Cong, R.; Fujiyama, A.; Matsumoto, T. An Optimal Scheme Assists the Municipalities in Fukuoka, Japan in Achieving their Goal
of 100% Renewable Energy Supply and Future Decarbonization. Energy Nexus 2024, 13, 100277. [CrossRef]

34. Liu, S.; Duffy, A.H.; Whitfield, R.I.; Boyle, I.M. Integration of decision support systems to improve decision support performance.
Knowl. Inf. Syst. 2010, 22, 261–286. [CrossRef]

35. Prina, M.G.; Johannsen, R.M.; Sparber, W.; Østergaard, P.A. Evaluating near-optimal scenarios with EnergyPLAN to support
policy makers. Smart Energy 2023, 10, 100100. [CrossRef]

36. Prina, M.G.; Lionetti, M.; Manzolini, G.; Sparber, W.; Moser, D. Transition pathways optimization methodology through
EnergyPLAN software for long-term energy planning. Appl. Energy 2019, 235, 356–368. [CrossRef]

37. Ren, J. Waste-to-Energy: Multi-Criteria Decision Analysis for Sustainability Assessment and Ranking; Academic Press: Cambridge, MA,
USA, 2020.

38. Brodny, J.; Tutak, M. Assessing the energy security of European Union countries from two perspectives–A new integrated
approach based on MCDM methods. Appl. Energy 2023, 347, 121443. [CrossRef]

39. Kumar, A.; Sah, B.; Singh, A.R.; Deng, Y.; He, X.; Kumar, P.; Bansal, R.C. A review of multi criteria decision making (MCDM)
towards sustainable renewable energy development. Renew. Sustain. Energy Rev. 2017, 69, 596–609. [CrossRef]

40. Kandakoglu, M.; Walther, G.; Ben Amor, S. The use of multi-criteria decision-making methods in project portfolio selection: A
literature review and future research directions. Ann. Oper. Res. 2024, 332, 807–830. [CrossRef]

41. Manoj, V.; Pilla, R.; Kumar, Y.N.; Sinha, C.; Prasad, S.V.; Chakravarthi, M.K.; Bhogi, K.K. Towards Efficient Energy Solutions:
MCDA-Driven Selection of Hybrid Renewable Energy Systems. Int. J. Electr. Electron. Eng. Telecommun 2024, 13, 98–111.
[CrossRef]

42. Islam, M.R.; Aziz, M.T.; Alauddin, M.; Kader, Z.; Islam, M.R. Site suitability assessment for solar power plants in Bangladesh:
A GIS-based analytical hierarchy process (AHP) and multi-criteria decision analysis (MCDA) approach. Renew. Energy 2024,
220, 119595. [CrossRef]

43. Halder, B.; Bandyopadhyay, J.; Sandhyaki, S. Impact assessment of environmental disturbances triggering aquaculture land
suitability mapping using AHP and MCDA techniques. Aquac. Int. 2024, 32, 2039–2075. [CrossRef]
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Abstract: This article presents a novel methodology for analyzing the resilience of an active distri-
bution system (ADS) integrated with an urban gas network (UGN). It demonstrates that the secure
adoption of gas turbines with optimal capacity and allocation can enhance the resilience of the ADS
during high-impact, low-probability (HILP) events. A two-level tri-layer resilience problem is formu-
lated to minimize load shedding as the resilience index during post-event outages. The challenge
of unpredictability is addressed by an adaptive distributionally robust optimization strategy based
on multi-cut Benders decomposition. The uncertainties of HILP events are modeled by different
moment-based probability distributions. In this regard, considering the nature of each uncertain vari-
able, a different probabilistic method is utilized. For instance, to account for the influence of power
generated from renewable energy sources on the decision-making process, a diurnal version of the
long-term short-term memory network is developed to forecast day-ahead weather. In comparison
with standard LSTM, the proposed approach reduces the mean absolute error and root mean squared
error by approximately 47% and 71% for wind speed, as well as 76% and 77% for solar irradiance
network. Finally, the optimal operating framework for improving power grid resilience is validated
using the IEEE 33-bus ADS and 7-node UGN.

Keywords: multi-energy system; optimal operation; resilient power system; adaptive distributionally
robust optimization

1. Introduction

Extreme weather conditions and man-made attacks have contributed to catastrophic
power grid failures, leading to a growing global need for improvements in power system
resilience. In this context, resilience refers to the ability of the power grid to meet an
acceptable level of electricity demand during HILP events, where most power outages are
limited to a few hours [1]. However, even short-time power outages can have significant
consequences, especially when CLs are involved. Therefore, it is important to improve the
resilience of ADS with economically efficient solutions for post-event load restoration.

A possible solution to improve system resilience is to connect a UGN and other local
sources, such as RES, and coordinate their operation with the ADS. Compared to installing new
components, using existing durable energy infrastructure is an effective approach, especially
under common geographical and techno-economical limitations. The underground infras-
tructure is also better protected from HILP events [2]. However, the coordination of multiple
energy systems for resilience enhancement is rarely considered. In addition, to the best of
our knowledge, existing strategies only couple ADS and UGN on a predefined common bus.
In the industrial practice of North American and European electric power utilities, ADS and
UGN are usually coordinated by optimizing the location and capacity of GTs supplied with
interruptible gas services [3–5]. Energy transfer is achieved through day-ahead gas-to-power
contracts, which are more economical and practical than real-time contracts [6].

There are two main challenges in the area of resilience-oriented integration of multi-
energy systems: (1) Modeling the intensity of the HILP events and their influence on ADS;
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and (2) Optimizing the operation of ADS with weather-related power generated from RES,
to determine appropriate locations and capacities of the coupling points. To address these
challenges, there is a need for innovative solutions to improve the resilience of multi-energy
systems and enhance the hardiness and stability of the power grid.

2. Literature Review

Optimization techniques for improving the resilience of the power grid have become
a new field of research and development, with numerous studies focusing on short- and
long-term improvements. Kwasinski [7] addressed the availability of power supply using
a risk assessment method to improve resilience to hurricanes. Ahmed et al. [8] proposed to
enhance resilience against false data injection attacks by equal power sharing in multi-area
power systems. Xu et al. [9] used a stochastic integer program to minimize the average
time that customers are without power. Similarly, Trakas and Hatziargyriou [10] described
a stochastic programming solution to increase the resilience of the distribution system and
minimize lsh during a wildfire. The authors considered uncertainties associated with s,
υ, and the direction of the wind. According to Sharma et al. [11], distributed generators
improved ADS resilience during islanding by mitigating the risks associated with uncer-
tainties in load demand and RES generation. Wang et al. [12] studied the restoration of
CLs in the presence of distributed generators and ESS using microgrid formation methods.
Xu et al. [13] considered a priority for supplying CLs in demand response to enhance
the resilience of distribution networks under extreme scenarios. Wang et al. [14] used
an iterative algorithm considering an unbalanced three-phase power flow to develop an
optimal decision-making method for serving CLs after blackouts. Robust tri-level planning
for distributed energy resources was proposed by Samani and Aminifar [15] to solve the
problem of enhancing resilience using column and constraint generation with BD. The use
of electric vehicles as a backup power resource and their positive impact on resilience were
discussed by Hussain and Musilek [16].

In addition to approaches based on locally distributed RES, the resilience of ADS
can also be improved through the integration of other energy systems, decreasing the
probability of load shedding. The technical and economic benefits of integrated energy
systems were previously discussed by the authors [17–19]. According to [17], UGN is one
of the most appropriate and readily available energy systems to integrate with ADS. There
have been several studies conducted to optimize IDGS operation, including different strate-
gies and coordination levels for coupling ADS and UGN. In general, IDGS optimization
approaches can be categorized as sequential or simultaneous. In sequential optimization,
the energy cost of ADS and UGN is minimized by defining two distinct objective functions.
In contrast, simultaneous optimization strategies use a fully coupled IDGS operated by a
single entity [20].

Due to the interdependence of multiple energy systems, a disruption in any of them
can compromise the energy supply of the other ones. Ravadanegh et al. [2] modeled
the effects of weather-related HILPs with various levels using multiphase performance
response curves. In this way, they determined the time-dependent performance levels of
the IDGS. Using the onsite supply strategy of the energy storage systems and demand
response, Darvish et al. [3] enhanced the resilience of IDGS considering reserve scheduling
and pre-event responses. Saravi et al. [21] introduced a resilience-oriented aggregator–agent
splitting framework for IDGS. Cong et al. [22] presented a robust three-stage optimization
model for the resilient operation of IDGS to minimize load curtailments imposed by
attacks. Manshadi and Khodayar [23] described a bi-level optimization problem to address
the optimal operation of multi-energy microgrids while considering the security and
resilience of the system. Correa-Posada and Śanchez-Martın [24] presented a unique MILP
approach for the power and gas flow considering security constraints for both normal
and contingency scenarios. Wang et al. [25] increased IDGS resilience by protecting its
most vulnerable components using tri-level MILP optimization. Sawas et al. [26] proposed
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a cyberattack-resistant scheduling model using supervised and unsupervised false data
detection techniques.

Due to the high penetration rate of RES in ADS and their impact on resilience, accurate
weather forecasting is crucial to formulate operating strategies. This can be accomplished
using data-driven algorithms that evaluate time series of meteorological data and predict
the power produced by RESs. To cope with the complex behavior of the weather and
related uncertainties, machine learning algorithms (such as support vector machines, linear
regression, or tree-based models) have often been used for this task [27]. However, these
algorithms are not easily scaled to large data sets. Shoaei et al. [28] conducted a compre-
hensive study on the applications of artificial intelligence in renewable energy systems. A
possible solution is to implement a robust technique with multivariate mapping capabilities.
To take into account the time-series nature of weather data, recurrent neural networks allow
feedback connections between their hidden layers. However, their applicability is limited
due to the vanishing gradient problem. This and other issues have been alleviated by LSTM
neural network models which have been successfully used for weather-dependent time
series [29]. For example, Abdel-Nasser et al. [30] used LSTM to predict solar irradiation
from input data aggregated by combining the Choquet integral using a fuzzy measure.
Wang et al. [31] implemented an LSTM with a novel least absolute shrinkage and selection
operator to increase the accuracy of short-term predictions. Zhou et al. [32] proposed a
technique to improve the accuracy of LSTM by extracting significant features from the
input. Two-dimensional convolutional neural networks and bidirectional LSTM units
were used to predict wind power by Dolatabadi et al. [33]. In addition, Li et al. [34] used
mathematical morphology to improve the accuracy of LSTM for wind speed forecasts.

This article deals with the optimal operation of ADS. The main objective is to improve
the resilience of the electricity grid by coupling it with the UGN through GTs. To determine
the capacities and locations of the GTs, we formulate a two-level tri-layer resilience-oriented
optimal operation problem. Due to the unknown post-event status of the system, the prob-
lem is solved by a set of distribution functions. As a result, the uncertain consequences of
HILP events are modeled by a probabilistic framework solved by an ADRO approach.

The required capacity of GTs depends on load specifications and generation from local
RESs, influenced by extreme weather conditions. Therefore, to model these uncertainties,
we construct moment-based probability distributions. Furthermore, by considering histori-
cal weather data, we propose an enhanced forecasting method based on a modified LSTM
algorithm to predict expected weather-dependent RES generation.

To provide proper context, existing studies are compared in Table 1 along with the
approach described in this article. Previous studies have addressed resilience in power
systems using various optimization methods such as MINLP [1] and MILP [2]. Neverthe-
less, these methods cannot effectively handle the complex and uncertain nature of HILP
events when RESs are involved. Although probabilistic approaches such as ARO [35] and
RO [36] have been employed for uncertainty modeling, they lack the ability to address
ambiguity sets created by more advanced uncertainty handling methods. In contrast,
the proposed approach utilizes ADRO in combination with ambiguity sets, offering a
more robust framework to handle both proactive and restoration processes. In addition,
the solution methodology requires an efficient approach to capture these complexities.
For instance, approaches like stochastic [10] and relaxation [12] methods are not efficient
due to their high computational cost and inability to properly incorporate the impact of
uncertainties. The proposed MCBD method provides a cost-effective and scalable solution
to overcome IDGS resilience improvement challenges.

The major contributions are as follows.

1. A new approach to enhancing the resilience of ADS with the following properties:

(a) A novel formulation of the resilience enhancement problem: Distribution
functions of random post-event consequences are used in the calculations to
address the probabilistic status of ADS. The performance of the proposed
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model is evaluated by extensive comparative simulations considering different
levels of robustness and resilience indices.

(b) A modified multi-cut decomposition method: To analyze the various effects of
each probabilistic consequence and to address the complexity of the prob-
lem, a modified version of the decomposition approach is implemented.
The multi-cut decomposition method captures more detailed information
about the system, which is critical for managing the random post-event status
of HILP events.

(c) Optimal use of the potential of existing natural gas infrastructure: The pro-
posed approach determines the most resilient, secure and cost-efficient coordi-
nation points between ADS and UGN.

2. A new momentum-based approach with the following properties:

(a) A learning-based approach to calculate the statistics of momentum: Training
does not require complex filtering or pre-processing methods. The data pre-
sentation is modified to ensure smooth domain variation, transforming the
prediction method from an hourly domain into a diurnal domain, and execut-
ing hourly predictive subtasks in parallel to construct probability distributions.

(b) Improved accuracy in comparison with conventional LSTM network: The
proposed diurnal learning approach is validated using multiple accuracy
indicators and compared with the conventional approach.

Table 1. Comparative analysis of resilience-oriented methods.

Ref.
Optimization
Method

Solution
Method

Enhancement
Method

Process Time Uncertainty
Handling

RSC IDGS
Proactive Restoration

[1] MINLP - RES � - - - -

[2] MILP - EH - � - - �
[36] MILP RO GT - � US - �
[6] MILP NC&CG GT � � RBN �
[10] MINLP Stochastic Hardening - � MC - -

[12] MISDP Relaxation ES and DG - � - - -

[26] - Classification BI - � NN - �
[35] ARO C&CG EH � - TI -

[37] RO BD and C&CG EH - � US -

[38] MINLP MCB - - � - - -

Proposed ADRO MCBD GT � � AS � �
MISDP: Mixed-integer semi-definite programming, NC&CG: nested column and constraint generation, MCB:
modified combinatorial Benders, EH: emergency handling, DG: distributed generation, RBN: randomized binary
numbers, BI: bidirectional interconnection, TI: three intervals, US: uncertainty set, NN: neural network, AS:
ambiguity set, RSC: resilient and secure coordination.

3. Problem Formulation

To analyze the resilience enhancement of the ADS, two phases of system operation
are defined: the pre-event and post-event, denoted by superscripts of 0 and 1, respectively.
The main assumptions of the proposed approach are:

• The load is considered event-independent. In other words, the load is the same
pre-event and post-event. However, since the specifications of an extreme event are
unpredictable, the necessity of load supply (i.e., criticality of the load, CL/NCL) is
randomly changed in the post-event phase.
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• Towers and lines of the analyzed system are assumed to have similar fragility functions.
Their restoration time is greater than the total optimization time interval T.

• Optimal AC power flow is used as a dispatch tool, assuming a reactive power balance
among buses.

• After a HILP event, damage on the supply side and isolation from different zones
and/or upstream power grid force reliance on local sources, such as RESs and ESSs.

• Interruption of any power source causes load shedding; the coordination with the
UGN through GTs provides improved resilience against load shedding in the ADS.

3.1. Pre-Event

Under normal operation, without any faults in the system, the primary objective is to
supply the load with the minimum power consumption.

Min
PP

T

∑
t=1

CP
t PP,0

t , (1)

where CP is the power price, PP and QP are the active and reactive power received from
the upstream grid, respectively, T is the total operation time, and D is the total number
of days in the data set. Symbols K, N, C, and Z express, respectively, the total number
of buses, nodes, coordination points, and zones. Superscript (.)0/1 is used to indicate
pre-/post-event notation, and subscript t is the time index.

The objective function (1) is subject to the following constraints:

PP,0
t + PWT

k,t + PPV
k,t + Pdch,0

k,t =
B

∑
k,j

P0
kj,t + rkj I0

kj,t + PL
k,t + Pch,0

k,t ∀t, ∀k (2)

QP,0
t + QWT

k,t =
B

∑
k,j

Q0
kj,t + xkj I0

kj,t + QL
k,t ∀t, ∀k (3)

(P0
kj,t)

2 + (Q0
kj,t)

2 ≤ I0
kj,tU

0
k,t ∀t, ∀k (4)

U0
k,t − U0

j,t = 2P0
kj,trij + 2Q0

kj,txij − I0
kj,t

(
r2

kj + x2
kj

)
∀t, ∀k (5)

PP,min ≤ PP,0
t ≤ PP,max ∀t (6)

QP,min ≤ QP,0
t ≤ QP,max ∀t (7)

Umin
k ≤ U0

k,t ≤ Umax
k ∀t, ∀k (8)

0 ≤ I0
kj,t ≤ Imax

kj ∀t, ∀k (9)

where PWT , QWT , and /PPV are the amounts of power generated from RESs, PL and QL

are active and reactive load demands, and Pch and Pdch are the charging and discharging
powers of ESS, respectively. Symbols r and x mark resistance and inductance, while I and
U represent the squared magnitudes of current and voltage, respectively. The superscripts
(.)max and (.)min are the maximum and minimum limitations.

Equations (2) and (3) describe the constraints on the active and reactive power, re-
spectively. They state that the amounts of power generated by different suppliers must be
balanced with the amounts consumed. Branch flow is calculated using (4) and (5). Finally,
the constraints on the active and reactive power, voltage and current received from the
upstream grid are specified in (6)–(9).
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The power generated from the RESs is formulated as follows [19].

PWT
t,k =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 ≤ υt ≤ υci or υt ≥ υco
PWT,max

k (υt−υci)

(υr−υci)
, υci ≤ υt ≤ υr

PWT,max
k , υr ≤ υt ≤ υco

∀t, ∀k (10)

0 ≤ PWT
t,k ≤ PWT,max

k ∀t, ∀k (11)

PPV
t,k =

⎧⎨
⎩

PPV,max
k ×st

sr
, 0 ≤ st ≤ sr

PPV,max
k , sr ≤ st

∀t, ∀k (12)

0 ≤ PPV
t,k ≤ PPV,max

k ∀t, ∀k, (13)

where parameters υci, υco, and υr are cut-in, cut-out, and rated wind speed. Additionally,
the rated solar radiation, solar radiation, and wind speed are shown by sr, s, and υ, respectively.

ESSs are commonly used to mitigate the unpredictable nature of nondispatchable,
intermittent RESs. The technical operating constraints of ESSs can be modeled as follows.

E0
k,t+1 = E0

k,t + [Pch,0
k,t .η − Pdch,0

k,t /η].Δt ∀t, ∀k (14)

0 ≤ Pch,0
k,t ≤ Ich,0

k,t .Pch,max
k ∀t, ∀k, Ich,0

k,t ∈ {0, 1} (15)

0 ≤ Pdch,0
k,t ≤ (1 − Ich,0

k,t ).Pdch,max
k .β ∀t, ∀k, Ich,0

k,t ∈ {0, 1} (16)

Emin ≤ E0
k,t ≤ Emax ∀t, ∀k (17)

E0
t=0 = E0

t=T ∀t, ∀k (18)

E and η are state of energy and efficiency. Also, Ich and Idch are the charging and discharging
status of ESSs, respectively.

The state of energy at time t + 1 depends on the state of energy and the charg-
ing/discharging rate of the ESS at the previous time slot (14). The constraints of ESS
include charging (15) and discharging (16) rates, state of energy limitation (17), and the
requirement of equality between the initial and final state of energy (18).

3.2. Post-Event

An extreme event, such as a weather-related disaster, can cause interruptions on
the supply side. As a result, the electric load cannot be served efficiently. In most cases,
locally distributed generators (such as PV, WT, and ESS) cannot entirely meet the load
demands. The use of other available energy infrastructure, such as the UGN, is a possible
approach to solve the problem of inadequate power supply. For example, power sources,
including the upstream power grid or RESs, may be interrupted after a HILP event. In such
cases, to avoid load shedding and substitute power shortage, GTs should be allocated to
appropriate buses. Coordination between the ADS and the UGN can provide an effective
approach to improve resilience.

Assuming C secure coordination points, the following objective function can be de-
fined using natural gas price CG, natural gas consumed by GTs GGT, and penalty of load
shedding ρ. The goal is to minimize the operational costs of the IDGS

Min
PP,GGT,

lsh

T

∑
t=1

{
CP

t PP,1
t +

C

∑
c=1

CG
t GGT,1

t,c +
K

∑
k=1

ρlsh,1
t,k

}
, (19)

subject to the following constraints
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PP,1
t + PWT

k,t + PPV
k,t + Pdch,1

k,t + lsh,1
k,t =

B

∑
k,j

P1
kj,t + rkj I1

kj,t + PL
k,t + Pch,1

k,t ∀t, ∀k (20)

QP,1
t + QWT

k,t =
B

∑
k,j

Q1
kj,t + xkj I1

kj,t + QL
k,t ∀t, ∀k (21)

(P1
kj,t)

2 + (Q1
kj,t)

2 ≤ I1
kj,tU

1
k,t ∀t, ∀k (22)

U1
k,t − U1

j,t = 2P1
kj,trij + 2Q1

kj,txij − I1
kj,t

(
r2

kj + x2
kj

)
∀t, ∀k (23)

PP,min ≤ PP,1
t ≤ PP,max ∀t (24)

QP,min ≤ QP,1
t ≤ QP,max ∀t (25)

Umin
k ≤ U1

k,t ≤ Umax
k ∀t, ∀k (26)

0 ≤ I1
kj,t ≤ Imax

kj ∀t, ∀k (27)

0 ≤ lsh,1
k,t ≤ PL

k,t ∀t, ∀k (28)

E1
k,t+1 = E1

k,t + [Pch,1
k,t .η − Pdch,1

k,t /η] ∀t, ∀k (29)

0 ≤ Pch,1
k,t ≤ Ich,1

k,t .Pch,max
k ∀t, ∀k, Ich,1

k,t ∈ {0, 1} (30)

0 ≤ Pdch,1
k,t ≤ (1 − Ich,1

k,t ).Pdch,max
k .β ∀t, ∀k, Ich,1

k,t ∈ {0, 1} (31)

Emin ≤ E1
k,t ≤ Emax ∀t, ∀k (32)

E1
t=0 = E1

t=T ∀t, ∀k (33)

where β is depth of discharge
Note that constraints (20)–(33) are similar to the formulations introduced in the previ-

ous subsection; however, load shedding is incorporated in the post-event model (20) as a
resilience index.

4. Resilience-Oriented Model

HILP incidents can result in supply-side disruptions that cause load loss lsh
t . Coor-

dination among multiple sources of energy can be used to enhance the resilience of the
system [14]. The proposed model addresses the optimal operational-planning strategy
that coordinates multiple energy sources, including the ADS and UGN, to minimize lsh

t .
First, the model incorporates the uncertainty of HILP events to capture potential damage.
Then, it optimizes the operation of the ADS. Finally, it plans the optimal capacity and
location for coordination. In addition to enhancing resilience during HILP events, this
coordination process allocates limited GT resources to supply critical loads for longer
periods and improves the handling of RES uncertainties.

For the system considered in this contribution, the resilience of the ADS can be en-
hanced by adding GTs to appropriate buses, as a backup. Since ADS has the priority to
supply CLs, their configuration, location, and ratio in the post-event situation must be mod-
eled. The optimal resilience-oriented operation problem can be mathematically formulated
using a tri-layer two-level approach. Level 1 includes determining the maximum value
of lsh

t as the worst-case (Layer 1) and identifying the best coordination points (Layer 2).
Layer 3 then checks the security validation of the IDGS plan in the Level 2 process. Details
of the proposed model are described in the following subsections.

This multi-layer, multi-stage approach requires significant computational resources,
particularly when dealing with large-scale systems or highly uncertain HILP events.
Nonetheless, this complexity is unavoidable to capture the full extent of uncertainties
and to enhance the resilience of the system in a realistic manner. While this may pose
practical challenges, especially for systems with limited computational capabilities, modern
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computational tools coupled with parallel processing techniques can efficiently manage
the computational load.

4.1. Level 1: Operation

The complex optimization problem at Level 1 of the proposed model is divided into
two layers: Layer 1 and Layer 2. In Layer 1, various scenarios are defined. The combination
of these scenarios generate multiple probability distributions. Then, the values of lsh

t is
calculated for the generated probability distributions. Finally, the maximum expected and
feasible value of lsh

t is found among all probability distributions and designated as the
worst consequence for the resilience of the system.

To differentiate between CLs and NCLs, a penalty factor ρ is implemented with a
different value for the two types of load such that ρcl 
 ρncl. Hence, the last term of (19)
can be reformulated by replacing the scenario-based penalty of load shedding

Min
PP,GGT,lsh

T

∑
t=1

{
CP

t PP,1
t +

C

∑
c=1

CG
t GGT,1

t,c +
B

∑
k=1

W

∑
ω=1

πω(ρ
cllsh|cl

t,k,ω + ρncllsh|ncl
t,k,ω )

}
. (34)

where lsh|cl and lsh|ncl are load shedding of critical and non-critical loads.

4.2. Level 2: Secure Integration

The Level 2 equations correspond to the security check of the IDGS coordination points.
To avoid the secure operational challenges of the UGN, associated with the interconnection
of ADS and GTs, the following constraints of the gas system must be satisfied:

q̄2
mn,t = C2

mn

(
p2

m,t − p2
n,t

)
∀t, ∀m, (35)

q̄mn,t = (qmn,t − qnm,t)/2 ∀t, ∀m, (36)

pmin
mn ≤ pmn,t ≤ pmax

mn ∀t, ∀m, (37)

LPmn,t = (qmn,t + qnm,t)Δt + LPmn,t−1 ∀t, ∀m, (38)
N

∑
m,n

LPmn,t=0 =
N

∑
m,n

LPmn,t=T ≥ LPmin ∀t, ∀m, (39)

PGT
k,t = αGGT

m,t ∀t, ∀m, (40)

PGT,min
k ≤ PGT

k,t ≤ PGT,max
k ∀t, ∀m, (41)

PGT
m,t − RDGT

m ≤ PGT
m,t+Δt ≤ PGT

m,t + RUGT
m ∀t, ∀m, (42)

where Cmn, pmn, and LP are the Waymouth constant, node pressure of the natural gas
network, and line-pack between nodes, respectively. In addition, α, q̃(t), and qmn,t are
gas-to-power conversion factor, average gas flow, and transmitted gas flow in a pipeline,
respectively. Furthermore, RUGT and RDGT are the ramp-up and ramp-down rates of
GT, respectively.

Formula (35) is the Weymouth equation of gas flow, expression (36) calculates the
average value of gas transmitted through pipelines, and the nodal pressure and line-pack
limits are described by (37)–(39). The GTs must be allocated at the coordination points
considering the constraints (40)–(42).

For the proposed IDGS, the ADS Level 1 power balance (20) is modified as follows.

PP,1
t + PGT

k,t + PWT
k,t + PPV

k,t + Pch,1
k,t + lsh,1

k,t =
B

∑
k,j

P1
kj,t + rkj I1

kj,t + PL
k,t + Pdch,1

k,t ∀t, ∀k. (43)

5. Handling of Uncertainties

The uncertainty challenges of the proposed scheduling problem are related to factors
that have a substantial impact on scheduling decisions, but cannot be controlled by the
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system operator. There are two major sources of uncertainty considered: the power
generated by the RESs and the load specifications.

5.1. Load Specifications and Extreme Events

Although historical data on load allocation in real-world scenarios exist, the accuracy
of this data may be compromised by various factors, including missing or unavailable data,
high costs associated with data acquisition, and other sources of uncertainty. To address
these issues, we utilize a moment-based ambiguity set for EC .

First, to generate multiple realization scenarios of load types at each bus, the randomly
variable elements of the EC matrix in (44) are created using a Monte-Carlo approach [10].

EC =

W1︷ ︸︸ ︷⎛
⎜⎝

EC11 . . . EC1W1
...

. . .
...

ECK1 · · · ECKW1

⎞
⎟⎠

⎫⎬
⎭K ∀ω1, ∀k, ECk,ω1 ∈ S1 (44)

where W1 and ω1 are the total scenario number and sample scenarios of EC.
The elements of EC are factors corresponding to the CL rate that have supplying

priority at bus k for scenario ω1, and S1 ⊆ [0, 1]ω1×k is a convex support set. For instance,
if ICk,ω1 is x, then x% of PL

k is CL, while the remaining (1 − x)% is NCL.
Second, the moment information of the uncertain variable EC can be defined based on

the mean and covariance as follows

ECM
(
S1, μ1, Σ1, ς1

1, ς2
1

)
=⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

W
∑

ωp1=1
πωp1 = 1

ωp1

(
Eωp1 [ECk,ω1 ]− μ1

)T
Σ1

−1
(
Eωp1 [ECk,ω1 ]− μ1

)
≤ ς1

1

Eωp1

[
(ECk,ω1 − μ1)(ECk,ω1 − μ1)

T ≤ ς2
1Σ1

]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

∀ECk,ω1 ∈ S1, ∀k (45)

where the probability factor and momentum-based ambiguity set are represented by π
and M, respectively. The ambiguity set ECM represents a range of possible distributions,
and the optimization problem is formulated to be robust against the worst-case distribution
within this set. For each bus, the total probability of distribution functions is one (45).
Moreover, the mean of any distribution should be within an ellipsoidal distance limited
by ς1, and the covariance matrix should be contained within a positive semi-definite cone
restricted by ς2Σ. The calculations of parameters μ, Σ, ς1, and ς2 are expressed in (46)–(51)
using the results of [39,40].

μ1 =
1

ω1

W1

∑
ω1=1

ECk,ω1 ∀ECk,ω1 ∈ S1, ∀k (46)

Σ1 =
1

ω1

W1

∑
ω1=1

(
ECk,ω1 − μ1

)(
ECk,ω1 − μ1

)T ∀ECk,ω1 ∈ S1, ∀k (47)

ς1
1 = A1 (48)

ς2
1 = 1 + A1 (49)
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A1 =
B2

1
ω1

(
2 +

√
2ln

(
4

1−√
1−κ

))2

1 − B2
1√
ω1

(√
1 − ω1

B4
1
+

√
ln

(
4

1−√
1−κ

))
−

(
B2

1
ω1

)(
2 +

√
2ln

(
4

1−√
1−κ

))2 (50)

B1 = Max
ECk,ω1

∥∥∥∥ 1(
ECk,ω1

−μ1

)∥∥∥∥
2

(51)

The mean and covariance matrix of randomly generated arrays of EC are calculated
in Equations (46) and (47), respectively. Controller parameters, ς1 ≥ 0 in (48) and ς2 ≥ 1
in (49) depend on the generated data to specify the size of the ambiguity set and the
conservatism of optimal solutions. The auxiliary parameter A, introduced to simplify
the equation, is presented in Equation (50), where κ represents the confidence level of
uncertainty. Furthermore, the auxiliary variable B (51) denotes a radius region of S1 that
includes ECk,ω1 ; here,

∥∥.
∥∥

2 indicates the second norm.

5.2. Renewable Energies and Extreme Events

To model renewable energies, the matrix ER is defined in (52). Based on historical data,
the values in the arrays ERk,ω2 can vary within an interval of 0 to the maximum power
generated from RESs for each bus. Therefore, the convex support set of ER can be defined
as S2 ⊆ [0, (PWT,max

k + PPV,max
k )]ω2×k.

ER =

W2︷ ︸︸ ︷⎛
⎜⎝

ER11 . . . ER1W2
...

. . .
...

ERK1 · · · ERKW2

⎞
⎟⎠

⎫⎬
⎭K ∀ω2, ∀k, ERk,ω2 ∈ S2 (52)

where W2 and ω2 are the total scenario number and sample scenarios of ER.
Similar to the EC, the ambiguity set ERM can be modeled by (53).

ERM
(
S2, μ2, Σ2, ς1

2, ς2
2

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

W
∑

ωp2=1
πωp2 = 1

ωp2

(
Eωp2 [ERk,ω2 ]− μ2

)T
Σ2

−1
(
Eωp2 [ERk,ω2 ]− μ2

)
≤ ς2

2

Eωp2

[
(ERk,ω2 − μ2)(ERk,ω2 − μ2)

T ≤ ς2
2Σ2

]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

∀ERk,ω2 ∈ S2, ∀k (53)

To compute the mean μ2, we use historical data to account for the uncertainty in the
RES output power. The power generation from WTs and PVs is influenced by the weather
conditions, which are represented by the time series of υ and s, respectively. We use the
compact notation u to denote the real datasets of υ and s. Using these real-world datasets,
we aim to accurately forecast the value of μ2.

Several studies have used deep learning methods for time-series forecasting. LSTM,
in particular, has shown great promise due to its advanced units and network topology [41].
LSTM’s memory units enable it to capture time-series correlations and grasp the long-term
behavior of underlying systems. In this study, we use an LSTM-based forecasting approach
that leverages diurnal model to calculate the values of μ2. This approach is described in
more detail below.

The conventional use of LSTM from Figure 1a is modified as shown in Figure 1b. This
allows us to capture rare events and increase the overall accuracy of the model. Since
pattern recognition at each time interval t is assessed on a daily basis, this modified version
of the network is qualified as diurnal and named DLSTM. Considering uncertain variable
ut,d, a daily prediction approach is used instead of solving the hourly time series prediction
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problem. Thus, the vertical analyses of time-series data can be transformed into a matrix-
based prediction with T rows and D columns corresponding to time intervals t and days d,
respectively. As shown in Figure 1b, the estimated data for each row with the same time
slot t are collected as the DA forecast data ūt,D+1.

LSTM
Model

u
1,D+1

u
1,D+1

u
1,D+1

u
T,D

u
T,D

u
T,D

u
1,2

u
1,2

u
1,2uT,1uT,1uT,1u1,1u1,1u1,1

LSTM
Model

LSTM
Model

LSTM
Model

LSTM
Model

u
T,D+1

u
T,D+1

LSTM
Model

Training and Testing data

Estimated DA data
~ ~~ ~~ ~ ~ ~~ ~~ ~ ~ ~~ ~~ ~ ~ ~~ ~~ ~ ~ ~~ ~~ ~

u
1,D+1

u
1,D+1

u
T,D

u
T,DuT,1u

1,1
u T,D+1u1,2u1,2

(a)

LSTM
Model

LSTM
Model

ut,2ut,2ut,2ut,1ut,1ut,1

LSTM
Model

ut,D+1ut,D+1

ut,2ut,1 ut,D+1

~ ~~ ~~ ~

ut,Dut,D

LSTM
Model

ut,D

Training and Testing data

Estimated DA data

(b)

Figure 1. Implementation of the LSTM. (a) Conventional approach. (b) Proposed DLSTM approach.

The operation of the DLSTM model can be illustrated as follows: the variable υ is
random and non-stationary; the high randomness and fast variation of wind speed make
it difficult to estimate wind speed data directly using the conventional method shown in
Figure 1a. As shown in Figure 1b, a pre-processing model based on the DLSTM splits
the entire data set into several time intervals for each day. This allows more effective
forecasting and mitigation of the adverse effects of the stochasticity of υ and s.

As shown in Figure 2, the cell sends and receives information at random intervals and
the gates f1, f2, f3 and f4 follow the data flow from the cell’s input to output. Furthermore,
a DLSTM network’s nodal formulations considering the sigmoid (σ) and the hyperbolic
tangent (tanh) as activation functions are shown in [42].

f1 = σ(w1[ht,d−1, ut] + b1) (54)

f2 = σ(w2[ht,d−1, ut] + b2) (55)

f3 = tanh (w3[ht,d−1, ut] + b3) (56)

f4 = σ(w4[ht,d−1, ut] + b4) (57)

ft,d = f1 × ft,d−1 + f2 × f3 (58)

ht,d = f4 tanh (ft,d) (59)

Training the historical data using the DLSTM structure, as illustrated in Figure 1 and
based on the cells depicted in Figure 2, yields deterministic DA forecasts for each time
slot. However, in the context of extreme weather conditions during a HILP event, these
forecasted values are designated as μ2.
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+
tanh

tanh σ σ σ 
f2f2 f3f3

ft,d-1ft,d-1

h t,d-1h t,d-1

ut,dut,d

f t,df t,d

ht,dht,d

f1f1
f4f4

Figure 2. The structure of a DLSTM model.

The calculations of parameters ECM in (47)–(51) are rewritten for ERM in (60)–(64).

Σ2 =
1

ω2

W1

∑
ω1=1

(
ERk,ω2 − μ2

)(
ERk,ω2 − μ2

)T ∀ERk,ω2 ∈ S2, ∀k (60)

ς1
2 = A2 (61)

ς2
2 = 1 + A2 (62)

A2 =
B2

2
ω2

(
2 +

√
2ln

(
4

1−√
1−κ

))2

1 − B2
2√
ω2

(√
1 − ω2

B4
2
+

√
ln

(
4

1−√
1−κ

))
−

(
B2

2
ω2

)(
2 +

√
2ln

(
4

1−√
1−κ

))2 (63)

B2 = Max
ERk,ω2

∥∥∥ 1
(ERk,ω2

−μ2)

∥∥∥
2

(64)

6. Solution Strategy

After modeling the uncertainties, an MCBD is adapted with ADRO to solve the pro-
posed problem. The flowchart in Figure 3 summarizes the proposed solution. The detailed
methodology is explained in the following subsections.

Layer 1: Maximizing post-event damages

Layer 3: Minimizing the operation cost of the IDGS in the 
basic scenario by security analyzing

Layer 2: Minimizing load shedding in the worst-case

Level 2: Secure integration

Level 1: Operation

Adaptive
 coordination

worst-case
 scenario

Normal
coordination

Adaptive 
coordination 
in worst-case 

scenario

Figure 3. Resilience enhancement of the ADS by making coordination with UGN through the
proposed two-level tri-layer ADRO model.

6.1. Modeling Equivalence

To facilitate analysis, the proposed problem can be expressed in a compact form.
The following formulation is a simplified version of the tri-layer two-level model for each
time interval.
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The deterministic mixed-integer nonlinear problem (19) can be formulated as follows

C(x, z) = Min
x,z

cT
1 x + cT

2 z (65)

s.t. Ax ≤ a (66)

Bz ≤ b (67)

D1x + D2z ≤ d, (68)

where A, B, D are matrices of auxiliary coefficients and a, b, d are vectors of auxiliary parame-
ters of the compact model. The objective function (65) is a compact matrix representation of
minimizing the cost function C in the post-event situation. For notational brevity, x and z are,
respectively, vectors of decision variables to model the energy consumed by ADS (i.e., power
and gas) and load shedding. These decision variables are minimized, considering constraints
(66)–(68). Constraints (66) and (67) are related to the capacity limitations (10)–(13), (21)–(33),
and (35)–(42). The last inequality (68) models constraints (20) and (43).

6.2. Final Model Formulation

The solution method must be adopted to post-event operational requirements for
various uncertainties and be able to deal with practical scheduling plans for HILP events.
The proposed tri-layer two-level problem can be solved using an adaptive mixed-integer
distributionally robust scheduling model considering the uncertainties raised from EC,
EZ, and ER. Correspondingly, to model the solution process the following adaptive robust
optimization model can be obtained from (65).

C(x, z) = Min
x,z

[
cT

1 x + Max
z|u

Min
z

cT
2 z

]
. (69)

The resilience enhancement factor z is closely related to the values of u. Hence,
the Level 1 solver finds the worst-case operation point of ADS to specify the most robust
interconnection with UGN considering various realization distributions. This is achieved
by a resilience-oriented max−min function. Then, a robust scheduling of supplied power
is achieved by incorporating the energy costs of IDGS at Level 2. The general form of
the tri-layer two-level ADRO model is presented as follows for each uncertain probability
distribution ωp constructed from sampled data of ω.

C(ωp)(x, z(ωp)) = Min
x,z

[aT
1 x + Max

π1,...,πW≥0
Min

zωp∈Z(ωp)(x,u)

W

∑
ωp=1

πωp aT
2 zωp ] ∀ωp,

subject to

Z(ωp)(x, u) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

zωp

∣∣∣∣∣∣∣∣∣∣∣

(66)–(68)
W
∑

ωp=1
πωp = 1

W
∑

ωp=1

∣∣∣πωp − π̂ωp

∣∣∣ ≤ (1 − Γ)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

∀ωp, (70)

As shown in (70), the resilience factor z is not known exactly in advance. Thus, a set
of random distributions with different probabilities π is castrated, considering the vector
Z(ωp). The value of z in each distribution depends on the values of x and u. By identi-
fying the worst-case through the max−min function, the distributionally robust energy
scheduling of the proposed IDGS can be achieved. The set of constraints (70) states that
the limits of the decision variables must be considered for each distribution of the ADRO
problem and that the sum of all probability factors must be equal to 1. Since the proposed
stochastic framework has a large sample space, the variation in the probability πω of realized
distributions with respect to the probability π̂ω derived from the data is limited to Γ.
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The proposed resilience-oriented ADRO problem is a complex two-level tri-layer
optimization program shown in Figure 3. The objective function in (70) is different from
the compact representation (65) because the ambiguity set of uncertainties are modeled by
distributions in the full model. It also differs from (69), because the full model specifies a
set of various probabilities for each random distributions. Moreover, while conventional
adaptive robust optimization is associated with a single worst-case scenario, ADRO is
driven by the statistical characterization of distributions developed at Level 1 of the model.
In this way, ADRO (70) can take into account ambiguous variations from the expected
values and simultaneously cover both the results obtained by solving (65) and (69).

6.3. The Proposed Methodology

To allow for the solution of the proposed problem using commercial software pack-
ages and to mitigate computational issues, we develop a MCBD algorithm considering
post-event ωp. The MCBD approach incorporates multiple cuts into the master problem.
A similar method for a stochastic (scenario-based) approach was proposed in [43]. In con-
trast to [43], this paper generates multiple cuts for each distribution rather than individually
for each scenario. Consequently, the master problem acquires more realistic and detailed
information, which definitely contributes to a more accurate outcome.

(1) Initialization: The BD algorithm requires a linear sub-problem. The power flow
constraint (22) and the Weymouth gas flow (35) cause the problem to become nonlin-
ear. In this paper, both constraints are linearized using an approach similar to [44].
First, the starting points of variables x̄ are calculated using the first-order Taylor
expansion. Then, an approximate canonical form is obtained by defining coefficients
H, h and M, m. Finally, based on the second-order cone approach, a convex form of
the nonlinear constraints is constructed, as shown below.

‖Hx‖2 ≤ hx, (71)

‖M1(x̄)x + M2(x̄)‖2 ≤ m1(x̄)x + m2(x̄). (72)

In addition, at the first iteration, the initial decision variables of Level 1 are set as
feasible solutions. These initial values are obtained by solving (65)–(68). The lower
and upper bounds are considered as ±∞. Furthermore, the convergence tolerance for
Level 2 is specified by ε > 0.

(2) Master Problem: To find the optimal Level 2 decision for the worst-case expected cost,
master problem (73) is minimized, under constraints (74)–(77).

Min
x,Φ(i)

cT
1 xi +

W

∑
ωp=1

πωp Φ(i) ∀ωp, ∀i, (73)

s.t.

Axi
ωp ≤ a ∀ωp, ∀i, (74)

(‖Hx‖2)ωp
≤ hxωp ∀ωp, ∀i, (75)(∥∥∥M1(x̄)xωp + M2(x̄)

∥∥∥
2

)
ωp

≤ m1(x̄)xωp + m2(x̄) ∀ωp, ∀i, (76)

Φ(i)
ωp ≥ γ(i−1)[e − Exi

ωp ] ∀ωp, ∀i, (77)

where Φ(0) is the set of initialized decision variables and Φ(i) is an approximation for
the cost of Level 1 in the ith iteration. In (73), the results of the master problem deter-
mine the lower bound of the proposed ADRO problem for each scenario. Inequalities
(74)–(76) indicate the convex formulation (71) and (72) should be applied for each ωp.
For constraint (68), including complicating variable z, dual variable γ is defined in
(77) to generate Benders’ cuts for each iteration.
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(3) Sub-problem: In the proposed MCBD compared to the conventional BD, the sub-
problem generates multi cuts to analyze the ADRO problem in more detail. The fol-
lowing model defines the sub problem SP(ωp).

Max
π1,...,πW≥0

Min
zi

ωp

W

∑
ωp=1

πωp aT
2 zi

ωp ∀ωp, ∀i, (78)

zi
ωp ≤ e − Ex∗,i

ωp
∀ωp, ∀i, : γ(i) (79)

Dzi
ωp ≤ d ∀ωp, ∀i, (80)

To calculate SP(ωp), W scenarios of each probability distributions ωp1 and ωp2 are
sampled. Since the nature of ωp1 and ωp2 are different, to achieve an efficient sampling
method, two different approaches that utilized random sampling and cluster sampling
were used.Since ωp1 is constructed based on the synthetic data, equal chance of being
selected is considered for every individual array using simple random sampling. On the
other hand, ωp2 is based on real historical data depending on extreme weather. Therefore,
a cluster sampling method is employed. Firstly, the data sets of s and υ are divided into
the various clusters (c) modeling the intensity of situations. Then, samples are chosen
systematically to ensure representation from each cluster using LHS. The total number of
selected sample is W. Finally, the dual sub-problem is degenerated feasible W cuts for the
same MP.

The sub-problems are solved in parallel and each sub-problem generates a cut added
to the master problem. Indeed, the multiple-cut sub-problem version (SP(ωp)) of BD is
generated from all sampled scenarios, which is different from the single-cut one (SP).
By implementing MCBD to solve the ARDO problem, the optimized value (maximum)
of (78) among multi-cuts returned to MP in each iteration.

7. Numerical Results

7.1. Case Study and Input Data

The efficiency of the proposed resilience enhancement strategy is demonstrated using
the test systems depicted in Figure 4. The network parameters are adopted from [45]. The
configuration of wind and solar, and the energy storage capacity have been selected such
that the IDGS operates under normal (pre-event) conditions, i.e., with no load shedding.
The configuration of wind and solar, and the energy storage capacity have been selected
such that the IDGS operates under a pre-event (normal) conditions, i.e., with no load
shedding. To properly implement the proposed optimization approach, the test ADS is
sectionalized into four distinct zones. These zones include RESs and ESs of various sizes.

Real-world data are used to train the model and calculate the power generated by
RESs. The two data sets include 4 years (D = 1462) of hourly values υ (at 10 m) and s (at 2 m)
collected on the South Campus of the University of Alberta, Edmonton, Canada, from 2018
to 2022. This data is recorded by weather stations operating in the province of Alberta and
provided by the Alberta Climate Information Service [46]. These time series are processed
using the proposed DLSTM method. Considering the hourly-based DA optimization
(T = 24), the raw time series data are distributed among 24 subtasks that operate in parallel.
Therefore, the proposed matrix-based prediction method has dimensions of 24 rows and
1462 columns. To achieve more practical results, avoid the need for filtering, and capture
rare events, each distributed data set is classified into three clusters using the k-means
algorithm. Thus, for each data set, the model is run 72 times to predict three variables in 24
time slots. Finally, as a case study, the predicted υ and s data for 15 February 2022 (chosen
arbitrarily) is used as the input to calculate the power generated by RESs. Theses predicted
values are μ2 used to construct matrix ER.
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Figure 4. Topology of the modified IEEE 33-bus ADS and seven-node UGN.

The proposed diurnal learning approach is implemented in Python 3.8.15 using pack-
age Keras 2.7.0 with TensorFlow 2.7.1 backend. For each hour (subtask), the data is divided
into training (75%), validation (15%), and testing (10%) subsets [33]. The DLSTM network
layout is identical for all hours using (54)–(59). It is a sequential model with 64 hidden
layers including 32 LSTM blocks/neurons with ReLU activation function, and a dense
output layer. MSE is used as a loss function to optimize the learning rate, epoch size,
and time step by Adam optimizer for each hour. The developed software is run on a virtual
server with NVIDIA GPU and 32 GB of RAM [47]. Figure 5 shows the generated input data
for handling of uncertainties in the post-event situation. Figure 5a depicts DA values of
υ and s obtained from all subtasks at each hour. This figure includes results of k-means
clustering for W = 3 (cf. the three semi-transparent areas of different colors) and DLSTM
results (solid lines) for each cluster as μ2. The weight of each data point is assigned by
evaluating the standard deviation and cluster density [48]. Figure 5b presents realization
scenarios of CLs’ factor at each bus generated by the MC method. Finally, using (44)–(53)
and (60)–(64), the results illustrated in Figure 5a,b are utilized to construct ωp1 and ωp2,
respectively.
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Figure 5. Data preparation (a) predicted wind speed and solar radiation by the proposed DLSTM
method, (b) critical load factors in each bus for 10 scenarios.

158



Energies 2024, 17, 6270

7.2. Results and Discussion

After modeling the uncertainties the proposed solution methodology is applied using
MCBD. The proposed methodology was simulated using CPLEX solver in GAMS 24.1.2 [49]
and executed on a PC with an Intel Core i7, 1.8 GHz CPU, and 8 GB of memory.

(1) Resilience enhancement:

The expected optimal problem-solving outcomes are illustrated for three distinct
phases to allow for a detailed comparison. In addition to the pre-event and post-event
phases, the base IDGS case (when both the integrated ADS and the UGN are operating
normally) is also considered.

To keep the presentations simple, the operation of the ESs is only depicted for the
pre-event phase, as shown in Figure 6. To prevent load shedding, the system has been
modified so that ADS exchanges power with ESs using their maximum capacities most
of the time. Consequently, this system is more vulnerable and should be made resilient
against potential outages in any zone.
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Figure 6. Optimal status of ESs.

By applying the solution in Layer 1, the worst-case scenario includes the outage of
lines that disconnect Zone 1 from the system (lines between buses 2–19 and 4–23). Taking
this outage into account, Layer 2 recognizes the appropriate buses for the installation of
GTs considering the lsh of each bus. This way, buses 19 and 24 are identified as the most
vulnerable. Finally, the results of Layer 3 determine the appropriate capacities and gas
nodes to coordinate between ADS and UGN so that the resilience of the system is enhanced.
This results in nodes N2 and N3 supplying the GTs in buses 19 and 24, with capacities of
approximately 750 kW and 800 kW, respectively.

Figures 7 and 8 show the results of the proposed two-level approach for PP and PGT,
respectively. As can be seen in Figure 7, the pattern of power received from the upstream
grid during normal pre-event operation of ADS follows the price of power, RESs generation,
and load profile.

Due to outages, the loads in Zone 1 are supplied by local suppliers. At the same time,
the secure power flow constraints of the ADS limit the power received from the upstream
feeder. Consequently, during the post-event phase, the DA values of PP are relatively low
compared to the pre-event phase.
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Figure 7. Optimal power received from upstream grid.
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To eliminate lsh and enhance the resilience of the ADS, GTs use the pattern of PP which
is almost the same as post-event in Figure 8. As shown in the same figure, the installed
GTs can be alternatively used as backup suppliers during the normal operation of the IDGS.
As a result, for peak load and high power price hours, the operation of GTs is cost-efficient as
they consume relatively inexpensive gas from UGN (GGT) to generate power for ADS (PGT).
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Figure 8. Optimal power generated by GTs.

Although the proposed solution for integrating ADS and UGN is the optimal method
for enhancing resilience, it is unlikely that the GT capacity determined this way would be
considered in a practical coordination scheme. In practice, additional operational variables,
such as the vulnerability of UGN and variation in gas load, should be included in the
security analysis. When the GTs are installed, the voltage stress of the ADS buses increases
significantly. In addition, the node pressure of the connected GTs drops to the minimum
level. The effect of different GT penetration rates on lsh, for the worst-case scenario, is
shown in Figure 9. According to the figure, the level of commitment between ADS and
UGN operators has a direct impact on the total DA load shedding and resilience of the
ADS. However, due to the operational limitations for higher penetration rate of GTs,
the amount of critical load shedding is higher than the non-critical load shedding in the
proposed decision-making approach. For the IDGS, the best commitment of GT capacity
for coordination can be selected using the results shown in Figure 9.
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Figure 9. Total day ahead lsh vs. GTs penetration rate considering two types of loads for the
worst-case scenario.

The optimization results of the proposed system depend on the degree of uncertainty
at Level 1. Table 2 compares the results obtained with two deterministic methods (MILP
and MINLP) using a sample scenario, and two robust models (ARO [35] and ADRO) using
a set of realization scenarios. It can be seen that linearization (MILP) results in lower lsh
compared to the basic nonlinear formulation (MINLP). The remaining two robust scenario-
based models demonstrate the effect of various uncertainty parameters on resilience metric
calculations. When uncertainties are incorporated into both optimization methods (ARO
and ADRO), the value of lsh increases. However, the results of the ADRO approach are more
realistic and practical than those of ARO for different levels of uncertainties. In other words,
in ARO, for different uncertainty budget percentages (Γ∗), the operation costs of Level 1
are higher than for the corresponding percentages Γ in ARDO. Indeed, the ARO method
constructs a deterministic calculation based on the most likely realization scenario as the
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worst-case. In contrast, the proposed ADRO method considers the occurrence probabilities,
or the symmetry in the uncertainty distributions. As a consequence, considering the
uncertainty distribution results in a smaller gap between the real-time and DA analyses.

Table 2. Resilience comparison of different optimization methods during post-event for Level 1.

MINLP MILP

lsh(MW) 18.21 lsh(MW) 17.51

ARO [35] ADRO

Γ∗(%) 95 90 85 80 Γ(%) 95 90 85 80

lsh(MW) 22.19 22.85 23.91 24.89 lsh(MW) 19.80 20.01 20.78 21.23

(2) Learning method:

Figure 10a and Figure 10b depict, respectively, the results of the DA forecasts for the
wind speed and solar irradiance test sets. For a fair comparison, the parameters for LSTM
and DLSTM neural networks are identical. The results shown in the figures confirm that the
new forecasting model can predict both variables effectively and with high accuracy. This
is due to the fact that the DLSTM network can decrease the sample variation by extracting
the hourly features leading to bias reduction.
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Figure 10. Comparison results of the proposed DLSTM for 15 February 2022. (a) wind speed, (b) solar
radiation.

Prediction accuracy is also evaluated using two commonly used error metrics: MAE
and MAPE. Forecast errors are listed in Table 3. Using DLSTM, the MAE and RMSE for υ
are reduced by about 47% and 71%, respectively, compared to the standard LSTM. For s,
the reductions are 76% and 77% for MAE and RMSE, respectively. This confirms that the
proposed DLSTM neural network can capture deep generalizations of various time-series
data by distributing them across several forecasting tasks. Thus, neither normalization nor
filtering is required because the data for each subtask are within its own logical range. This
allows DLSTM to generate accurate forecasts for complex time series.
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Table 3. Prediction error of conventional LSTM and proposed DLSTM.

Forecasting Method

Wind Speed Solar Radiation

RMSE
(km/h)

MAE
(km/h)

RMSE
(W/m2)

MAE
(W/m2)

LSTM 3.22 2.34 45.87 30.14

DLSTM 1.71 0.68 11.13 6.92

The illustrations in Figure 11, which demonstrate the error frequency of 24 subtasks,
confirm the results presented in Table 3. According to the entire data set of υ, the RMSE
and MAE values for the subtasks are improved between the ranges of [34%, 52%] and
[67%, 77%]. Similarly, each subtask of the s data set achieves RMSE and MAE improvement
ranges of [34%, 93%] and [57%, 95%], respectively. As indicated previously, to ensure
a fair comparison, the fitting model for both the LSTM and DLSTM approaches is the
same. However, the values in Figure 11 can be further improved by optimizing the
hyperparameters of the neural network in each subtask.
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Figure 11. Error distributions of subtasks: (a) Wind speed, (b) solar radiation.

8. Conclusions

This article proposes a two-level tri-layer problem to improve the resilience of ADS by
coupling it with UGN. The complex resilience-oriented problem is solved using an ADRO
approach based on the MCBD method. Compared to ARO, the proposed approach results
in approximately 11% and 15% reduction in load shedding for higher and lower uncertainty
budget percentages, respectively. To handle the uncertainty of the post-event structural
consequences, realization scenarios are modeled using the MC method. The results confirm
that the use of GTs with optimal capacity and location enhances the resilience of the system
against HILP events. Accordingly, optimizing the location and capacity for coordination
between ADS and UGN can reduce load shedding by approximately 94% compared to
uncoordinated systems. In summary, the most effective solution for the proposed resilience
enhancement approach is a learning-based optimization method for IDGS. An additional
contribution is the newly proposed diurnal learning method to address the uncertainties
of weather-related power generated from RESs. This method, DLSTM, achieves more
accurate and practical results than conventional LSTM. In future work, we plan to extend
the proposed solution to cover additional resilience enhancement mechanisms such as
demand response and electric vehicles.

The proposed approach has several limitations which offer opportunities for its further
development. First, it may be possible to develop a more streamlined version of the model
that balances the complexity of the resilience-oriented model with computational efficiency.
The model also relies on accurate data to effectively capture uncertainties. In scenarios
where adequate data are not available, the performance of the model may be compromised,
leading to suboptimal resilience outcomes. In addition, the presented study focuses mainly
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on the technical aspects of enhancing power system resilience, not considering social
and economic aspects such as costs, the regulatory environment, and public acceptance.
These considerations are critical for the real-world adoption of the proposed resilience
enhancement solutions and can be addressed in future work.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/en17246270/s1.

Author Contributions: Conceptualization, B.F. and P.M.; methodology, B.F. and P.M.; investigation,
B.F.; resources, P.M.; writing—original draft preparation, B.F.; writing—review and editing, P.M.;
supervision, P.M.; project administration, P.M.; funding acquisition, P.M. All authors have read and
agreed to the published version of the manuscript.

Funding: This research has been supported by the Natural Sciences and Engineering Research
Council (NSERC) of Canada grant (award number 2024-04565), and by the U.S.-Canada Center on
Climate-Resilient Western Interconnected Grid (NSF WIRED Global Center) funded jointly by the
National Science Foundation (award number 2330582) and NSERC (award number 2023-585094).

Data Availability Statement: Data are available on request due to restrictions (large data size).
Minimal data representing the original were provided at submission and are available in supplemen-
tary file.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

HILP High-impact low-probability
CL Critical load
NCL Non-critical load
UGN Urban gas network
RES Renewable energy source
ADS Active distribution system
GT Gas turbine
ESS Energy storage system
IDGS Integrated distribution and gas system
MILP Mixed integer linear programming
DLSTM Diurnal long short-term memory
ADRO Adaptive distributionally robust optimization
WT Wind turbines
PV Photovoltaic panels
DA Day ahead
MAE Mean absolute error
MAPE Mean absolute percentage error
MC Monte-Carlo
Cmn Waymouth constant
pmn Node pressure of natural gas network [bar]
q̃(t)/qmn,t Average/Transmitted Gas flow in pipeline [Mm3]
LP Line-pack between nodes [kcf]
α Gas to power conversion factor [kW/kcf]
RUGT/RDGT Ramp-up/Ramp-down rate of GT [kW]
ω ambiguity set
ω1/ ω2 Sample scenarios of EC/ ER
EC Encoding matrix of CLs
M Momentum-based ambiguity set
ER Encoding matrix of generated power from RESs
π Probability factor
S Support
μ Mean
Σ Covariance
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ς1/ς2 Controller of ambiguity set
f Forgetting gate output
h Hidden layer output
w Connection weight
ωp Probability distributions
ε Convergence tolerance of MCBD
W Total probability distributions
d Daily time intervals
i Iteration of MCBD
CP Power price [USD/kw]
(.)0/1 Pre-/Post-event notation
PP/QP Active/reactive power received from upstream grid [kW]
t Time [h]
T Total operation time [24 h]
D Total day interval of data set
K/N/C/Z Total bus/node/coordination point/zone
Pch/dch ESS’s charging/discharging power [kW]
Ikj Squared current magnitude from k to j [A]
Uk/Uj Squared voltage magnitude of bus k/j [V]
r/x resistance/inductance [Ω]
υci/ υco/ υr Cut-in/ cut-out/ rated wind speed [m/s]
sr Rated solar radiation [W/m2]
s Solar radiation [W/m2]
υ Wind speed [m/s]
(.)max/min Maximum/minimum limitation
E State of energy [kWh]
Ich/dch ESS’s charging/discharging status [binary]
η Efficiency of ESS [%]
CG Natural gas price [USD/kcf]
GGT Consumed natural gas by GTs [kcf]
ρ Penalty of load shedding [USD/kW]
W1/W2 Total scenario number of EC and ER
β Depth of discharge [%]
lsh|cl /lsh|ncl Load shedding of CL/NCL [kW]
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Abstract: The integration of energy generation and consumption is one of the most effective
ways to reduce energy-system-related waste, costs, and emissions in cities. This paper con-
siders a university district consisting of 32 buildings where electrical demand is currently
met by the national grid, and 31% of thermal demand is supplied by a centralized heating
station through a district heating network; the remainder is covered by small, dedicated
boilers. Starting from the present system, the goal is to identify “retrofit” design solutions
to reduce cost, environmental impact, and the primary energy consumption of the district.
To this end, three new configurations of the multi-energy system (MES) of the district
are proposed considering (i) the installation of new energy conversion and storage units,
(ii) the enlargement of the existing district heating network, and (iii) the inclusion of new
branches of the electrical and heating network. The configurations differ in increasing
levels of integration through the energy networks. The results show that the installation
of cogeneration engines leads to significant benefits in both economic (up to −12.3% of
total annual costs) and energy (up to −10.2% of the primary energy consumption) terms;
these benefits increase as the level of integration increases. On the other hand, the limited
availability of space for photovoltaics results in increased CO2 emissions when only total
cost minimization is considered. However, by accepting a cost increase of 8.4% over the
least expensive solution, a significant reduction in CO2 (−23.9%) can be achieved while
still keeping total costs lower than the existing MES.

Keywords: multi-energy system (MES); university district; MILP; economic–energy–
environmental optimization; decarbonization; primary energy saving

1. Introduction

The urgent need to reduce carbon emissions is driving the energy sector toward har-
nessing distributed resources, integrating generation and consumption at the local level,
and exploiting synergies between end-use sectors [1]. In fact, more interconnected energy
infrastructures allow increasing efficiency, reducing primary energy consumption and
increasing the penetration of renewable sources [2]. Accordingly, multi-energy systems
are emerging as promising configurations due to their holistic approach in decarboniz-
ing power, thermal, and other sectors while minimizing economic impacts [3]. These
benefits can be promoted by the increased flexibility deriving from the active role of end
users in energy management, including active participation in demand-side management
programs [4].

In general terms, a multi-energy system (MES) is an energy system of any geographi-
cal extension, from a single building to a national system, that combines multiple energy
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vectors (as, for instance, electricity, heat, and fuels) and fulfils the end users’ demand for
different forms of energy [5]. The design and operation of an MES is a challenging task that
requires proper optimization methods, due to the necessity of contextually considering
energy conversion, storage, delivery, and utilization [6]. The goal is to properly evaluate
the number, type, size, and management over time of the energy conversion and storage
units meeting the demand of the end users, as well as the type, layout, and capacity of
the energy networks needed for interconnection. This can be formulated, in general, as a
mixed-integer non-linear programming (MINLP) problem due to the coexistence of both
binary and continuous decision variables (as the existence of a component and its size,
respectively) and the presence of non-linearities (e.g., off-design maps) [7]. The large num-
ber of decision variables involved can easily make the problem unsolvable with currently
available computational technologies [8]. However, linearization approaches that trans-
form the problem into a mixed-integer linear programming (MILP) one allow simplifying
the optimization process, thereby drastically reducing computational requirements [9].
Rech [10] proposed a rigorous methodology for modeling the components of an energy
system within an MILP problem. This methodology is used in this work as well.

The aforementioned design and operation optimization of an MES is an inherently
integrated problem that requires being solved in “one shot”. However, the common
approach in the literature is to consider the optimization of energy conversion and storage
systems separately from the optimization of energy networks. This may lead to solutions
that are not optimal for the system as a whole. For instance, in a cost minimization problem,
the optimal solution for energy conversion may not be the global optimum because of the
failure to consider the interconnection costs with end users.

Few examples are provided of works dealing with the optimization of energy conver-
sion and storage units while neglecting the design of the networks. Dal Cin et al. [11] solved
the multi-objective design and operation optimization of an MES serving the electricity and
heating demand of a renewable energy community, with the goal of minimizing life-cycle
costs and CO2 emissions. They considered photovoltaic (PV) panels, cogeneration units,
and storage systems (both electrical and thermal) but did not model the energy networks.
Rech et al. [12] minimized the total cost of an MES providing electricity and heat to a small
mountain town by means of renewable plants. Heat is distributed to the users through
a district heating network (DHN) that is assumed ideal and modeled as a “black box”
connecting generators, storage systems, and consumers. Wirtz [13] proposed a web tool for
the optimal conceptual design of the generation mix in a district MES, to define the optimal
size of the energy conversion and storage plants available in an energy hub that fulfils
electricity, heating, and cooling demands. Heating and cooling networks can also be consid-
ered and optimized in terms of operation but not in terms of design (i.e., the capacity of a
line is assumed to be sufficient to transport all the energy required). Mashayekh et al. [14]
developed an optimization method for the design of the energy conversion and storage
plants supplying a multi-energy microgrid that involves both electricity and heating net-
works. The optimization addresses the generation mix selection and sizing, the resource
siting and allocation, and the operation scheduling. However, the design of the networks is
provided as input and cannot be improved.

On the other hand, works that optimize the topology and size (i.e., rated power that
can flow in each branch) of energy networks usually consider energy conversion systems
as input data, thereby neglecting their design. For instance, Pizzolato et al. [15] optimized
the topology and capacity of a DHN in Turin, Italy, and analyzed the inclusion of network
loops to increase the reliability of the system. They considered an existing heat generation
facility to provide the required thermal energy. Röder et al. [16] optimized the design of
a DHN serving a mixed residential–commercial district in Germany by searching for the
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cost-optimal solution with the inclusion of distributed thermal storage fixing in advance of
the position, type, and size of the energy conversion plants and storage systems.

Works in the literature that considered the design and operation optimization of both
the energy conversion and storage systems and energy networks of an MES as a single
problem applied many simplifications to ensure the achievement of a solution in a rea-
sonable time. For instance, Keirstead et al. [17] optimized the design and operation of the
electricity, heating, and gas networks, as well as conversion systems (mainly cogeneration
units), of an urban MES. The one-day operation of the MES is aggregated into two repre-
sentative time intervals that allow solving the problem in an acceptable time (the yearly
operation, composed of few representative days, is still described by a small number of
time intervals). The drawback is that the coarse representation of the simulated time frame
is not sufficient to properly model the short-term variability of time-dependent quantities
(e.g., availability of renewable sources, changes in energy demand). Sidnell et al. [18]
optimized the design and operation of a neighborhood MES integrating electricity and
heating networks with renewable plants (PV) and cogeneration units. They considered a
simplified network representation in which network lines are modeled as linear segments
that connect adjacent buildings, regardless of the real geographical layout of the MES.
Lerbinger et al. [19] provided a more detailed model of the DHN in an MES by constraining
heating network lines to follow only predetermined paths (such as the streets of a neighbor-
hood), thus avoiding unfeasible connections between nodes. Morvaj et al. [20] highlighted
that a “street-following approach” for the optimal design of energy networks guarantees
more realistic solutions than a “green-field approach”. Dal Cin et al. [21] adopted the street-
following approach to optimize the design and operation of a district MES including both
electricity and heating networks, as well as PV plants, cogeneration engines, heat pumps,
and both thermal and electrical storage systems. Moreover, they made use of typical days
obtained by K-medoids clustering to reduce computational complexity while ensuring
a sufficient accuracy of the simulated time frame. It should be emphasized that in the
mentioned paper, the authors also introduced the concept of “retrofit design”, which aims
at adding new components or additional installed capacities to an existing system in order
to improve its initial layout. Finally, the same authors presented in [22] a general method
for the integrated optimization of an MES considered as a whole, i.e., by considering energy
conversion units, storage units, and the energy network in the same synthesis, design, and
operation (SDO) optimization problem. However, the latter works [21,22] focus on the
optimization methodology, the validity of which is demonstrated through hypothetical case
studies. They lack, instead, implementations in real-case studies that further strengthen the
potential of the proposed method in real applications.

Among the several studies on MESs available in the literature, this paper focuses on
those related to university districts, where proposed MES systems have proven to be by far
superior solutions in terms of reducing cost and environmental impact compared to the
conventional systems based on boiler and electricity withdrawal from the grid. Moreover,
the analysis of this type of MES is interesting because the associated studies are often based
on measured demand data rather than simulated or standard consumption profiles, thus
providing realistic solutions to practical problems. Gabrielli et al. [23] optimized the MES
operation of a university facility in Zurich, Switzerland, by focusing on geothermal storage.
It turned out that CO2 emissions can be reduced by 87% compared to a conventional
system based on centralized heating and cooling. Martelli et al. [24] studied the subsidies
and taxes required to achieve specified decarbonization targets in MESs. Considering a
university campus in Parma, Italy, and optimizing both the design and operation of the
associated MES, they found that a carbon tax of about 160 EUR/ton favors the installation
of PV systems, thereby reducing CO2 emissions by 25%. Venturini et al. [25] also included
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a life-cycle assessment in the design and operation optimization problem. The analysis
of a university facility in Parma, Italy, showed that the optimal sizing and operation
of cogeneration systems results in primary energy savings of about 15% and total cost
reductions of about 12% over the life cycle of the MES. Testi et al. [26] developed a multi-
objective stochastic optimization methodology to evaluate the integrated optimal sizing
and operation of an MES under uncertainties in climate, space occupancy, energy loads, and
fuel costs. They considered a university campus in Trieste, Italy, as a test case by focusing
on the integration of heat pumps, which can increase the share of renewable energy, reduce
the operating cost of the system, and moderate the investment risk. Dos Santos et al. [27]
focused on the optimal design of the electrical microgrid serving a university campus in São
Paulo, Brazil. The authors of the study optimized the size and location of distributed energy
conversion and storage units (mainly photovoltaic plants and battery storage systems)
and also the capacity of the cables constituting the microgrid. Finally, Comodi et al. [28]
modeled the MES of a university facility in Singapore, with the goal of defining the optimal
mix of energy conversion and storage systems and energy network infrastructure needed
to meet electricity and cooling demands. They found that a district cooling network can
reduce the total installed capacity of electric chillers, which results in capital cost savings. It
is worth noting that the aforementioned design optimization studies modeled the MES of
the university districts “from scratch” regardless of the pre-existing system configurations,
thus achieving optimal layouts that are substantially alternative to the available ones. How
to apply “retrofit design” optimization to this type of MES in order to improve existing
system configurations (i.e., by starting with the components already available and replacing
or resizing them) requires further research.

This paper considers a university district in Padova, northern Italy, and explores new
and “smart” solutions to reduce the cost, primary energy consumption, and environmental
impact of meeting its electricity and heating demand. This study takes the existing system
configuration as a starting point and applies the retrofit design approach proposed in [21]
for the optimization of the associated MES. In the existing system layout, the heating and
summer-cooling demands of buildings are mostly covered by autonomous small boilers
fired by natural gas and compression refrigeration systems, respectively. The buildings
belonging to a part of the district are already interconnected through a district heating
network (DHN) and a local electrical distribution network (EDN). A centralized thermal
power generation system covers via the DHN the heat demand of this part, corresponding
to 31% of the total heating demand of the district. The goal of this study is to identify the
capacity and operation of the new plants to be installed, including photovoltaic (PV) panels,
air–water heat pumps (HPs), and gas-fired cogeneration internal combustion engines (CHP
ICEs), as well as the additional capacity and possible expansion of the available DHN and
EDN. More specifically, three new energy system layouts are proposed and compared to
determine the best solution for the district in terms of cost, primary energy consumption,
and environmental impact. The first layout maintains the same structure and capacity of
the existing DHN and EDN. The second and third layouts consider instead the expansion
of the DHN and EDN. The optimization approach proposed in [21] is then applied to
the three layouts to find the most cost-effective design and operation of the district MES
(Cost Minimization scenario, CM). It is worth emphasizing that the optimization problem
is based on electricity and natural gas consumption data measured over multiple years,
from which annual electricity and heating demands are derived with an hourly resolution.
This allows the optimization method proposed in [21] to be tested on a real-case study
(conversely, the original study made use of standardized demand curves). Two additional
scenarios are finally identified by imposing target reduction values on carbon emissions
(Low Carbon Emissions scenario, LCE) and primary energy consumption (Primary Energy
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Saving scenario, PES) as secondary objectives (“epsilon-constraints”) in the optimization
procedure. The goal is to identify the suitable trade-off between cost, energy efficiency, and
environmental impact.

What is new compared to the literature on MESs in university districts is the im-
plementation of the retrofit design problem to improve the economic and environmental
performance of the existing system and its components. This makes it possible to take into
account the energy infrastructure already available and to decide on new interventions
in the current system. This approach contrasts with that commonly used in the literature,
which is based on the design “from scratch” of new system configurations regardless of
the components already available, thus providing MES configurations that are completely
alternative to the existing ones. In addition, through the consideration of a real-case study
based on measured data, this paper provides a practical validation to the optimization
methodology proposed in [22], which has been used for “retrofit design” in other contexts
but has been applied so far only to hypothetical test cases.

The rest of this paper is organized as follows. Section 2 describes in detail the considered
university district with the existing energy infrastructure and outlines the three new MES
configurations proposed to improve the existing configuration. Section 3 concerns the method-
ology and focuses on the input data to be provided to the optimization problem, as well as
on the mathematical formulation of the optimization problem. Section 4 shows the results in
terms of installed capacities, investment and operational costs, primary energy consumption,
and CO2 emissions for the three new MES configurations in the considered scenarios (CM,
LCE, and PES). Section 5 discusses the results in order to determine the best solution for the
university district among those proposed. Finally, Section 6 draws conclusions.

2. System Description

This section describes the university district and the proposed configurations consid-
ered in the optimization problem in order to explore new solutions to reduce the costs,
primary energy consumption, and environmental impact of the district.

2.1. Reference Case

The multi-energy system (MES) considered as a case study is a university district
located in the northeast of Padova, Italy. The size of the district area is 422,000 m2, consisting
of 32 university buildings placed in a residential neighborhood. The entire district, shown
in Figure 1a, is crossed by a river that separates the north and south areas.

Currently, the yearly electrical demand of 22.5 GWh is covered by withdrawing
electricity from 14 PODs connected to the national grid, all referring to the same primary
substation. The yearly heat demand of 12.6 GWh is covered only by natural-gas-fired
boilers. The north area accounts for 50% of the electrical demand and 40% of the heating
demand, fulfilled mostly by a single POD and a centralized boiler, exploiting the existing
local EDN and DHN (see blue/red line connecting node 6 to 9/8 in Figure 1b). The energy
system of the south area presents a more fragmented situation; the electrical energy is
withdrawn by 11 PODs, and each building is equipped with small boilers.

Hourly data of the electrical consumption are available for each POD, starting from
2019 to 2022. For the heat demand, the only data available are the cumulative monthly gas
consumptions measured at each of the 21 gas delivery points (GDPs) during 2019 and 2020.

The MES outlined in Figure 1b is modeled as a multi-nodal system composed of
N = 20 nodes subdivided into two types, i.e., “aggregation” and “connection” nodes. The
former represent energy withdrawal points associated with aggregated buildings, whereas
the latter shape both existing and new energy networks by identifying key points where
network branches divide or join. Table 1 provides a comprehensive description of each
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node in the MES, including the existing installed capacity of gas boilers (GBs). The current
total capacity of GBs, most of which are condensing boilers, is 20.5 MW (including backup
units). “Aggregation” nodes are nodes 0 to 5, node 7, and nodes 9 to 12. The criteria
adopted for the aggregation of buildings are as follows:

• Sharing: buildings connected to the same POD, conversion unit, or pre-existing
distribution network;

• Proximity: nearby buildings, not separated by public streets;
• Space availability: availability of existing indoor rooms or usable outdoor spaces to be

used for technical rooms.

 
(a) 

 
(b) 

Figure 1. University district: (a) satellite image identifying university buildings and the locations of
PODs and GDPs; (b) multi-nodal representation of the MES (nodes are identified by black or gray
dots and numbered).
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Table 1. Characterization of the nodes of the starting MES layout.

Node Type POD Installed GB Capacity [kWth]

0 Aggregation node � 2427
1 Aggregation node � 2274
2 Aggregation node � 540
3 Aggregation node � 750
4 Aggregation node � 1291
5 Aggregation node � 1368
6 Connection node - -
7 Aggregation node � 9000
8 Connection node - -
9 Aggregation node - 220

10 Aggregation node � 1980
11 Aggregation node - 380
12 Aggregation node � 313
13 Connection node - -
14 Connection node - -
15 Connection node - -
16 Connection node - -
17 Connection node - -
18 Connection node - -
19 Connection node - -

“Connection“ nodes are all the remaining nodes (6, 8, and 13 to 20). Their location is
chosen to follow the paths of the existing network branches (nodes 6 and 8 identify the
existing EDN and DHN together with aggregation nodes 7 and 9, see Figure 1b) and to
draw possible new network branches, considering all constraints associated with their
installation in accordance with a street-following approach.

Despite its central location (1 km from the city center), the district presents a high
spatial density of energy consumption compared with residential neighborhoods; thus,
it represents a good test case for the study of energy intervention strategies, combining
the advantage of working on a relatively small area with the opportunity to affect a
substantial amount of consumptions and related emissions. However, the historical-interest
restriction on many of the buildings, the limited roof availability for PV systems, and the
absence of other renewable sources strongly limit the renewable share and possible range
of interventions.

2.2. Proposed Configurations

Three different MES configurations are considered in the optimization problem. Given
the limitations of the case study in terms of renewable energy share, the proposed configu-
rations consider the extension of energy networks that may favor centralized systems over
autonomous plants and lead to reduced costs while achieving a higher average conversion
efficiency. An increasing number of potential new network branches characterizes the three
MES configurations. This may lead to an increasing integration of the MES, intended as the
degree of interconnection between nodes through the energy networks and the consequent
flexibility in energy distribution:

A. Existing networks: only the pre-existing DHN and EDN are considered (Figure 1b);
B. Medium integration: the north, south-east, and south-west areas constitute three

independent DHNs and EDNs, each with a sufficient availability of technical space
to accommodate all types of energy conversion and storage units (Figure 2a);

C. High integration: a single DHN and EDN extend throughout the district (Figure 2b).
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(a) 

 
(b) 

Figure 2. Proposed new configurations: (a) medium integration; (b) high integration.

The design of each configuration starts with the current MES assets (i.e., existing
boilers, PODs, DHN, and EDN) and evaluates the installation of new energy conversion
and storage units and additional network infrastructure. In particular, the proposed
solutions combine the installation of PV systems, where possible, and HPs with an effective
use of the available fossil resources (natural gas). To this end, integration is promoted with
the installation of centralized combined heat and power internal combustion engines (CHP
ICEs). The possible installation of electric and thermal energy storage (EES and TES) units
is also considered.

The configurations are all characterized by the same dataset, reported in Table 2, which
defines the type and maximum size of the energy conversion and storage units that can
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be installed at the aggregation nodes. The possible locations and maximum sizes of new
installations have been identified by considering the available roof area and technical rooms
for PV systems (based on a feasibility study initiated by the University of Padova) and
CHP ICEs, respectively; the size of existing GBs for HPs (which can be installed at any
node associated with a heating demand); the installation of PV systems for small EESs;
and the installation of ICEs for large EESs and TESs. In this regard, the maximum sizes of
the EESs and TESs at nodes 1, 7, and 10 are intended as sufficiently large thresholds for
exploring the optimization results.

Table 2. Candidate energy conversion and storage units to be included in the optimal MES configura-
tion and their maximum capacities.

Node POD
Max GB

Capacity [kWth]
Max PV

Capacity [kWel]
Max CHP ICE

Capacity [kWel]
Max HP

Capacity [kWth]
Max EES

Capacity [kWh]
Max TES

Capacity [kWh]

0 � 3000 39 - 2500 250 -
1 � 3000 - 4000 2500 10,000 20,000
2 � 1000 - - 600 - -
3 � 1000 58 - 800 250 -
4 � 2000 - - 1500 - -
5 � 2000 - - 1500 - -
7 � 9000 272 4000 4000 10,000 20,000
9 - 500 - - 300 - -
10 � 2500 - 4000 2000 10,000 20,000
11 - 500 116 - 600 600 -
12 � 500 - - 600 - -

Finally, it is worth noting that the proposed optimization of the design considers not
only the installation of new units and network branches but also the retrofit of the existing
ones, i.e., the addition of new capacity to units and networks initially available in the
reference case.

3. Methods

Figure 3 provides an overview of the procedure used to optimize the design and
operation of the MES configurations in Section 2.2.

 

Figure 3. Flow chart of the procedure used to optimize the design and operation of the MES
configurations. Different colored boxes are used to identify different types of steps in the procedure.

The “design choices” are already discussed for each configuration in Section 2.2;
the “case study” and “techno-economic data” steps are described in Section 3.1. Finally,
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Section 3.2 describes the mathematical formulation of the “MILP design and operation
optimization problem” and the “criteria” adopted for each scenario.

3.1. Input Data

The optimization problem requires as input data the following time series with an
hourly resolution:

• electricity demand of each node associated with an electrical load;
• heating demand of each node associated with a thermal load;
• global solar irradiance, required to calculate the PV generation (source PVGIS [29]);
• ambient temperature, required to assess the coefficient of performance (COP) of HPs

(source PVGIS [29]).

The yearly time series of electricity demand has been obtained by averaging the
hourly data available for the years 2019 and 2022, neglecting 2020 and 2021 due to the
bias introduced by the COVID-19 pandemic. For the heating demand, only the cumulated
monthly gas consumptions of each GDP were available, requiring some assumptions in
order to build up the hourly time series needed to solve the optimization problem. A simple
approach has been adopted, assuming a flat demand curve during the scheduled operating
hours of the gas boilers on weekdays, Saturdays, and holidays, for each month of the
year. The resulting curves are then normalized with respect to the measured monthly
consumption, ensuring that the integral of the monthly demand equals the measured data.
Finally, data from PODs and GDPs are stacked into node demands, according to the criteria
adopted for the aggregation presented in Section 2 (energy demands of the aggregated
buildings are summed hour by hour).

To reduce the computational effort required to solve the optimization problem, the
yearly demand time series data are aggregated into K = 36 typical days, considering three
days for each month of the year, representative of the average weekday, Saturday, and
Sunday/holiday, respectively. Each typical day is defined as H = 24 hourly time steps and
is associated with a weight that is equal to the number of represented days in the year (the
sum of all weights is 365). Figure 4 shows the energy demand curves of two typical days at
one of the aggregation nodes. The shape of the demand profile is homogeneous throughout
the district and characterized by the simultaneity of the electrical and thermal demands
during the heating period. The choice of 36 typical days allows accounting for both weekly
and annual energy demand seasonality. The weekly seasonality is related to the different
occupancy of buildings during weekdays, Saturdays, and Sunday/holidays, while seasonal
seasonality is mainly related to different environmental conditions (e.g., ambient tempera-
ture and daylight hours). For instance, during the heating period (October 15–April 15),
the existing heating system (gas boilers) operates from 7 to 19 on weekdays and from 7
to 17 on Saturdays from November to March; from 7 to 17 on weekdays and from 8 to 14
on Saturdays in October and April; and is always off during holidays. Seasonality can be
observed in the electric and thermal energy balances (Figure 5), for each day of the year, in
the reference case. The heat balance shows clearly the periods when the heating system is
in operation (winter, weekdays, and Saturday, daytime); the electric balance shows that the
electrical demand during summer is the highest due to the use of compression refrigeration
systems. It is worth recalling that in the reference case, the entire heating demand is covered
by gas boilers, while the entire electricity demand is met by the national electric grid.

In addition, the data related to the system topology must be provided. These data
include the Cartesian position of each node with respect to two reference axes, the position
and capacity of the available network branches (identified by the extreme nodes), and the
position and capacity of each available conversion unit along with those new units that can
be installed. To this end, the considered technologies are as follows:
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• Photovoltaic (PV);
• Combined heat and power gas-fired internal combustion engine (CHP ICE);
• Gas-fired boiler (GB);
• Air–water heat pump (HP);
• Thermal energy storage (TES) based on hot water tanks;
• Electrical energy storage (EES) based on lithium batteries.

  
(a) (b) 

Figure 4. Daily energy demand curves of node 0, corresponding to the following typical days: (a) 0
(weekday of January); (b) 18 (weekday of July).

Figure 5. Electric and thermal energy balances in the reference case (each day of the year is replaced
by the typical day representing it).

The other information required to solve the model is the techno-economic data of the
energy conversion and storage technologies (e.g., lifetime of the units, investment costs),
which are summarized in Table 3.

Finally, Table 4 summarizes the specific costs of each energy carrier (i.e., electricity and
natural gas), which are evaluated by averaging the university bills collected from October
2022 to September 2023, and their CO2 emission factors are also provided, which consider
the Italian average generation mix of the electricity withdrawn from the national grid.
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Table 3. Linearized investment cost and lifetime of the energy conversion and storage units and
distribution networks.

Technology
Investment Cost (cinv) Lifetime

[Year]cinv,var cinv,fix

PV 1250 EUR/kW - 20
CHP ICE 1398 EUR/kWel 25.8 kEUR 20

GB 65 EUR/kW 1.6 kEUR 20
HP 343 EUR/kWth 6.3 kEUR 20
EES 880 EUR/kWh 3.5 kEUR 20
TES 244 EUR/kWh 1.0 kEUR 20

DHN 0.2 EUR/kWth/m 103 EUR/m 40

EDN 0.006
EUR/kWel/m 34 EUR/m 40

Table 4. Specific cost and emissions of the considered energy carriers.

Carrier Cost [EUR/MWh] Emission Factor [kgCO2/MWh]

Electricity from the grid 259 271
Natural gas 101 197

3.2. Optimization Problem

The design and operation optimization of the MES configurations in Section 2.2 is
formulated as a mixed-integer linear programming (MILP) problem:

Find x*
D and x*

O(t) ∈ R
n or Im that maximize f (xD, xO(t))Y = aTxD + bTxO(t)

subject to g(xD, xO(t)) = CxD + DxO(t) ≥ e
(1)

where f is the linear objective function; xD and xO(t) are the decision variables associated
with the design (constant in the whole period Y) and operation (time-varying) of the MES,
respectively; and g represents the linear equality/inequality constraints that make up the
model of the MES. The variables and equations involved in the problem in Equation (1) are
discussed in detail in the following.

The relationships g include (i) the electric and thermal balances of the MES, (ii) the
characteristic equations describing the performance of the energy conversion and storage
units, and (iii) the constraints related to the capacity of the energy networks lines.

The electric and thermal balances (relationships (i)) are defined for each node of
the MES (see Figure 1a) and written in accordance with [22]. Each balance, as shown
in Equation (2), imposes that the sum of all electric/thermal power flows that enter, are
produced, or discharged in the node must be equal to the sum of the electric/thermal
power flows that exit, are consumed, or charged in the node.

(
Fimp(t)

)
+ ∑

i
Pi(t) + ∑

j
Pj(t) + ∑

z
Tz(t)·(1 − λz(t)·lz)

=
(

Pexp(t)
)
+ Fdem(t) + ∑

i′
Fi′(t) + ∑

j′
Fj′(t) + ∑

z′
Tz′(t)

(2)

where Fimp(t) and Pexp(t) are included in the electric balances only and represent the
electric power flows that are imported and exported through the node POD, respectively;
Pi(t) is the power output of each energy conversion unit i in the node; Pj(t) is the power
flow discharged from each energy storage unit j in the node; Tz(t) and Tz′(t) are the power
flows entering and exiting the node through the local EDN/DHN, respectively; Fdem(t) is
the power flow associated with the electrical/thermal demand; Fi′(t) is the power input
of each energy conversion unit i′ in the node; and Fj′(t) is the power flow charged in each
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energy storage unit j′ in the node. In Equation (2), the subscripts i and j refer exclusively to
units that produce or store the considered energy carrier (electricity or heat) in the node,
while the subscripts i′ and j′ refer to units that consume or store the considered energy
carrier in the node. Note that the power flow entering a node through the local EDN/DHN
equals the power flow leaving the node at the other end of the branch, minus the losses
(λz(t) is the network-specific loss per unit of network length lz).

Relationships (ii) are written in accordance with [10,22], subdividing the energy con-
version units into dispatchable and non-dispatchable ones.

The input power (fuel of the unit, Fi(t)) of a dispatchable conversion unit i (i.e., CHP
ICE, GB, HP) varies linearly with the power output (product of the unit, Pi(t)), as given in
Equation (3), where ki(t) is a correction factor depending on the input data (e.g., ambient
temperature in the case of HP), Ci and Di are constant coefficients linearizing the off-design
performance map of the unit, and δi(t) is a binary variable describing the on/off status of
the unit.

Fi(t) = ki(t)·(Ci·Pi(t) + Di·δi(t)) (3)

The power output is upper and lower bounded according to the unit rated capacity
Pmax

i , as shown in Equation (4), which includes the auxiliary variable Mi(t) to avoid
non-linearities [30].

Pi(t) ≤ Pmax
i ·βi

Mi(t) ≤ Pmax
i ·δi(t)

Pi(t)− Mi(t) ≤ (1 − δi(t))·Pmax
i

mi·Pmax
i ≤ Pi(t) ≤ Pmax

i

(4)

In Equation (4), βi is a binary variable (constant in the total period) describing the existence
of the unit i, and mi is the minimum load of the unit i referred to its capacity Pmax

i . Note
that if βi = 0, the power output Pi(t) is zero for all the time steps in the total period (i.e.,
the unit i is excluded from the MES), whereas when βi = 1, the power output Pi(t) can
vary between the minimum (ki·Pmax

i ) and maximum (Pmax
i ) load when δi(t) = 1 (the unit i

is on) or is equal to zero when δi(t) = 0 (the unit i is off).
For CHP ICEs, only the additional linear relationship in Equation (5) is added to

calculate the available thermal power that can be recovered (second product of the unit,
Qi) as a function of the unit load (Pi)

Qi(t) ≤ C2,i·Pi(t) + D2,i·δi(t) (5)

The power output of PV is calculated using Equation (6), where the correction factor kPV(t)
is a function of the solar irradiance in the time step t.

PPV(t) = kPV(t)·Pmax
PV (6)

The state of charge of a storage unit j (TES or EES) is modeled as the sum of the contribution
from an intra-day state of charge (periodic within each typical day) and an inter-day state
of charge (periodic within the total period of one year) [31].

The intra-day state of charge (Ej(t)) accounts for the daily storage and is calculated
using the dynamic energy balance in Equation (7), where kj(t) is a correction factor depend-
ing on the input data and the relative coefficient of self-discharge losses of the unit, and
ηchar,j and ηdisc,j are the charging and discharging efficiencies, respectively.

Ej(t) = kj(t)·Ej(t − 1) + ηchar,j·Fj(t)− 1
ηdisc,j

·Pj(t) (7)
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Ej(t) is upper and lower bounded according to the maximum capacity of the storage unit
Emax

j , as shown in Equation (8). Moreover, it is assumed that each storage unit is completely
empty at the beginning of each typical day (second relationship in Equation (8)).

mj·Emax
j ≤ Ej(t) ≤ Emax

j

Ej(t = 0) = 0
(8)

The inter-day state of charge accounts for seasonal storage and is calculated as proposed
in [31].

The constraints at point (iii) above related to the capacity of the energy networks (EDN
and DHN) are taken from [22]. The capacity Tmax

z of each energy network branch z to carry
electricity (heat) between two connected nodes (see Figures 1 and 2) is upper bounded by
a “big-M constraint”, where Tz(t) is the power flow in the branch z, and Mz is a “large
enough” value, as given in Equation (9).

Tmax
z ≤ Mz (9)

Finally, Equation (10) constrains the power flow Tz(t) in each network branch to be lower
than the branch capacity.

Tz(t) ≤ Tmax
z (10)

For each dispatchable conversion unit i, the design decision variables (xD) include the
unit rated capacity Pmax

i and the binary variable βi in Equation (4), the latter describing
the existence of the unit i. For PV and TES/EES, the only design decision variable is the
maximum unit capacity (Pmax

PV and Emax
j ), as well as for the energy network branches (Tmax

z ).
A value of Pmax

PV , Emax
j , or Tmax

z equal to zero corresponds to the exclusion of the specific
unit/network branch from the optimal MES design.

For all dispatchable energy conversion units, storage units, and energy network
branches, the operation decision variables (xO(t)) include a power flow associated with
unit/branch load (Pi(t), Fj(t) and Pj(t), Tz(t)) for each of the 864 hourly time steps (24 h ×
36 typical days). In addition to these, all binary variables δi(t) describing the on/off status
of the dispatchable energy conversion units (Equation (3)), and the thermal power output
Qi(t) for CHP ICEs only (Equation (5)) are included among the operation decision variables.

The objective function to be minimized ( f in Equation (1)) is the annual cost of the MES,
i.e., the annual levelized cost of investments Cinv plus the annual operating costs Coper:

f (xD, xO(t))Y = Cinv + Coper = ∑i,j,z cinvi,j,z + Coper (11)

Cinv in Equation (11) is obtained as the sum of the annual levelized cost of investments of
each unit (cinvi,j,z ), which are calculated according to the following linear equations:

cinvi =
(

cinv,vari ·Pmax
i + cinv, f ixi

)
·FD for energy conversion units

cinvj =
(

cinv,varj ·Emax
j + cinv, f ixj

)
·FD for storage units

cinvz =
(

cinv,varz ·Tmax
z + cinv, f ixz

)
·FD for energy network branches

(12)

where cinv,vari,j,z and cinv, f ixi,j,z
are the variable and fixed linearization coefficients, respec-

tively; Pmax
i , Emax

j , and Tmax
z are the unit capacities; and FD is the discount factor based on

a 5% interest rate and the expected lifetime of the specific technology.
Finally, Coper is calculated as the sum of expenditures for the imported energy (gas

and electricity, subscript imp) and revenues for the exported electricity (subscript exp):

180



Energies 2025, 18, 413

Coper = ∑Y

(
Fimp(t)·cel,imp(t) + Gimp(t)·cgas(t)− Pexp(t)·cel,exp(t)

)
·h (13)

where Fimp(t), Gimp(t), and Pexp(t) are the power flows associated with the imported electricity,
imported natural gas, and exported electricity in each hourly time step, respectively; cel,imp,
cgas, and cel,exp are their specific costs/prices; and h is the considered time step size (1 h).

Optimization results also include the assessment of the annual carbon emissions
( f ′(xD, xO(t))Y in Equation (14)) and the annual primary energy consumption of the MES
( f ′′(xD, xO(t))Y in Equation (15)) due to the system operation.

f ′(xD, xO(t))Y = ∑Y

((
Fimp(t)− Pexp(t)

)·eel + Gimp(t)·egas
)·h (14)

where eel and egas are the average emission factors related to the electricity produced by
the Italian electric system and the combustion of the natural gas, respectively.

f ′′(xD, xO(t))Y = ∑Y

((
Fimp(t)− Pexp(t)

)
ηel

+ Gimp(t) + PPV(t)

)
·h (15)

where ηel is the average primary energy-to-electricity conversion efficiency of the Italian
electricity system, and PPV(t) is the electric power produced by the PV. Note that in
Equation (15), the contribution of photovoltaics to primary energy consumption is equal to
the electricity produced by this technology, as it is proposed in [32].

The solution of the optimization problem in Equation (1) with the only objective
of minimizing the cost of the MES (Equation (11)) falls under what is called the Cost
Minimization (CM) scenario.

The fixed objective values of the reduction in carbon emissions (Equation (14)) and
primary energy consumption (Equation (15)) compared to the CM scenario are imposed
in specific additional runs of the optimization problem (Low Carbon Emissions—LCE
scenario and Primary Energy Saving—PES scenario, respectively) to identify the optimal
trade-off between cost, energy efficiency, and environmental impact.

4. Results

The optimization problem of the design and operation of the MES has been solved for
each proposed configuration in the CM scenario. The following sections present the results
considering the reference case as a term of comparison. The results are then compared with
the other scenarios (LCE and PES) in which additional constraints are included to reduce
both the primary energy consumption and CO2 emissions.

All optimization runs were performed using the Gurobi (version 11.0.2) Python API [33]
optimization software library on a standard laptop equipped with a 9th Gen i7 processor and
16 GB RAM. Execution times varied widely, ranging from 30 min to 4 days depending on the
complexity of the configuration (the optimization runs involving configuration C are the most
time-consuming), with tolerances in the solution on the order of 1%.

4.1. Reference Case

The reference case represents the current operation of the district. It considers all
the electricity demand met by withdrawing electricity from the national grid and all the
heating demand covered by gas-fired boilers.

The investment costs of the existing units and networks are not included because the
capital cost of all the existing facilities is assumed to be already depreciated (all consid-
ered existing facilities are dated), thus the yearly cost of 7029.8 kEUR is only composed
of the operation contribution. The electrical energy withdrawn by the national grid is
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22,478 MWh/year, while the annual gas consumption is 11,960.5 MWh, resulting in a total
primary energy consumption of 59,183.2 MWh/year and 8447.8 t/year of CO2 emissions.

In the following, the electricity and heating demands of the reference case are named
“reference electricity demand” and “reference heating demand”, respectively, to provide
homogeneous terms of comparison for the proposed new configurations. In fact, in each
of the proposed configurations, the total electricity demand also includes the electricity
used by HPs and the EDN losses associated with the specific configuration, while the total
heating demand also includes the DHN losses associated with the specific configuration.

4.2. Configuration A: Existing Networks

The first configuration considers the design and operation optimization of the univer-
sity district MES without modifications to the topology of the pre-existing DHN and EDN.

Figure 6 shows the resulting position and size of the energy conversion and storage
units. The results (Table 5, column A) suggest that even if gas-fired boilers can completely
cover the heating demand, it is convenient to install CHP ICEs and HPs to minimize
the costs. ICEs and HPs contribute to meet the heating demand with 3027.7 MWh/year
(24% of the reference heating demand) and 4465.3 MWh/year (35.5% of the reference
heating demand), respectively. The installed PV capacity of 485 kWp fully exploits the
limited availability of roof area and contributes to the overall electrical generation with
704 MWh/year (3.1% of the reference electricity demand). The electricity generation from
CHP ICEs instead is 9835.3 MWh/year and covers 43.8% of the reference electricity demand.
No EES units are included in the solution due to the very limited PV capacity. In addition,
the shape of the heating demand is well met by the installed CHP ICE and HP units, with
no need for TES, while its simultaneity with the electrical demand favors cogeneration.
Finally, the design optimization shows that an increase in the capacity of the existing DHN
and EDN is not convenient (i.e., the existing energy networks’ capacity is sufficient to
distribute the flows produced by existing and new units in the optimal operation).

 

Figure 6. Configuration A, CM scenario: resulting network topology and size and position of the
energy conversion units.
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Table 5. Results of the design and operation optimization of the three configurations in the CM scenario.

Configurations
Reference

A B C

Total PV capacity [kWp] 485 485 485 0
Total CHP ICE capacity [kWel] 1705 2643 3723 0

Total GB capacity [kWth] 20,543 20,543 20,543 20,543
Total HP capacity [kWth] 2992 2448 3670 0

Overall yearly cost [kEUR/year] 6609.2 6367.9 6163.3 7029.8
Overall yearly cost [%ref] −6.0 −9.4 −12.3 -

Operation costs [kEUR/year] 6213.3 5862.3 5467.8 7029.8
Investment costs [kEUR/year] 395.9 505.7 695.5 0.0

Imported electricity [MWh/year] 13,079.9 4371.6 1059.0 22,478.0
Exported electricity [MWh/year] 30.0 53.2 23.5 0.0

Ren 1 electricity generation [MWh/year] 704.0 704.0 704.0 0.0
NRen 2 electricity generation [MWh/year] 9835.5 18,337.6 21,936.7 0.0

HP heat generation [MWh/year] 4465.3 3487.4 4602.5 0.0
GB heat generation [MWh/year] 5125.3 4608.3 2557.3 12,594.5

CHP heat generation [MWh/year] 3027.7 4597.5 5582.2 0.0
CHP factor [%] 30.8 25.1 25.4 -

Usage of natural gas [MWh/year] 27,464.7 45,850.8 50,202.7 11,960.5
HP usage of electricity [MWh/year] 1117.0 879.2 1172.8 0.0

PE 3 consumption [MWh/year] 55,647.4 55,738.8 53,131.4 59,183.2

PE 3 consumption [%ref] −6.0 −5.8 −10.2 -

CO2 emissions [t/year] 8955.2 10,217.3 10,176.9 8447.8
CO2 emissions [%ref] 6.0 20.9 20.5 -

1 Ren: renewable; 2 NRen: non-renewable; 3 PE: primary energy.

The resulting overall cost, composed of the operation and investment costs, is
6609.2 kEUR/year, 6% less than the reference case also considering the amortization of
investment costs for the new units, which is equal to 395.9 kEUR/year. This is because the
operation costs in the optimized configuration A are 6213.3 kEUR/year, 11.6% less than
the reference case. The primary energy consumption is 55,647.4 MWh/year, 6% less than
the reference case, while the annual CO2 emissions value of 9282.5 t is 6% higher than the
reference case.

Higher emissions are due to the relatively low CHP factor, i.e., the ratio between the
recovered waste heat and the electricity produced by the ICEs, which is equal to 30.8%.
Table 5 summarizes the results.

4.3. Configuration B: Medium Integration

The second configuration allows a partial integration of the university district accord-
ing to the possible network paths shown in Figure 2a. Figure 7 shows the resulting position
and size of the energy conversion and storage units, and the topology of the DHNs and
EDNs of the three distinct areas in which the system is divided.

The CHP ICEs’ capacity of 2643 kWel (Table 5, column B) contributes 18,337.6 MWh/year
(81.6% of the reference electricity demand) and 4597.5 MWh/year (36.5% of the reference
heating demand) to the electricity and heating production, respectively, with a CHP factor
of 25.1%. The optimal HPs’ capacity is concentrated into six nodes with an overall heat
production of 3487.4 MWh/year (27.7% of the reference heating demand). The remaining
36.3% of the overall heat production, which includes also the DHN losses, is covered by
the existing boilers, the capacity of which is not increased. The installed PV capacity is the
maximum available. PV and CHP ICEs together cover 84.7% of the reference electricity
demand. No energy storage capacities are included in the optimal solution.
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Figure 7. Configuration B, CM scenario: resulting network topology and size and position of the
energy conversion units.

All nodes are connected to the EDN, while the results exclude nodes 3 and 9 from the
DHN. As expected, the highest capacities of the DHN and EDN branches are concentrated
in the nodes where the CHP ICEs are installed and in adjacent nodes.

Finally, the results of the optimization problem show an overall cost of 6367.9 kEUR/year
(9.4% less than the reference case), with operation costs of 5862.3 kEUR/year (16.6% less than
the reference case) and investment costs of 505.7 kEUR/year. The resulting primary energy
consumption is 55,738.8 MWh/year, 5.8% lower than the reference case, and the annual CO2

emissions are 10,217.3 t, 20.9% higher than the reference. Both results are mainly influenced
by the large amount of electrical energy generated by the CHP ICEs without taking advantage
of the total available waste heat.

4.4. Configuration C: High Integration

The third configuration represents the highest integrated solution, with the whole
university district served by the DHN and EDN. Figure 8 shows the topology of the
networks and the resulting position and size of the energy conversion and storage units.

CHP ICEs are installed at nodes 1 and 7, with an overall capacity of 3723 kWel

(Table 5, column C), while the total capacity of HPs is 3670 kWth. Both capacities are
the highest among the three considered configurations. CHP ICEs and HPs contribute
5582.2 MWh/year and 4602.5 MWh/year, respectively, to cover 80.9% of the reference
heating demand. At 21,936.7 MWh/year, the electricity generation of ICEs covers 97.6%
of the reference electricity demand; thus, in this configuration, the autonomous electricity
generation of CHP ICEs and PV completely fulfills the reference electricity demand. Once
again, the optimal solution excludes electrical and thermal energy storage units.

Figure 9 shows the progressive expansion of both the DHN and EDN across the three
layouts resulting from the optimization in the CM scenario. In configuration C, the resulting
capacities of branches 6–16, 15–16, and 16–17, laid out for both the DHN and EDN, allow the
three main areas of the MES to be effectively interconnected. Only node 3 and branch 18–19
are excluded by the resulting DHN, while all the available links are installed in the EDN.
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Figure 8. Configuration C, CM scenario: resulting network topology and size and position of the
energy conversion units.

 
(a) (b) 

Figure 9. Resulting branch capacities in configurations A, B, and C of the CM scenario: (a) district
heating network; (b) electrical distribution network. Network branches are identified by the pairs of
connected nodes.
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The resulting overall cost of 6163.3 kEUR/year is the lowest among the three configu-
rations, 12.3% less than the reference case, with operation costs of 5467.8 kEUR/year, 22.2%
less than the reference. In contrast, the investment costs of 695.5 kEUR/year are the highest
among the proposed configurations, due to the higher capacity of CHP ICEs and HPs and
the greater extent of the distribution networks. Finally, this configuration also achieves the
best result in terms of primary energy savings, with a consumption of 53,131.4 MWh/year,
10.2% less than the reference case, while the annual CO2 emissions are 10,176.9 t, about the
same as configuration B.

4.5. Low Carbon Emissions and Primary Energy Saving Scenarios

In the CM scenario, an increased network integration (i.e., greater interconnection
between nodes) promotes the energy generation from CHP ICEs, leading the proposed
configurations to perform better than the reference case, both in terms of overall costs
(up to −12.3%) and primary energy consumption (up to −10.2%). On the other hand, the
installation of CHP ICEs, particularly with low CHP factors, increases the CO2 emissions
of the system, due to the lower share of the renewables of this “local” system compared to
that of the national grid.

Starting from these considerations, the Cost Minimization (CM) scenario is compared
with two different scenarios: Low Carbon Emissions (LCE) and Primary Energy Saving (PES).
Cost minimization remains the objective in both the LCE and PES scenarios, but the former
also considers a cap of −17% (referred to the reference case) on the maximum CO2 emissions,
while the latter imposes a cap of −11% (referred to the reference case) on the maximum
primary energy consumption and constrains the minimum hourly utilization of CHP ICE
waste heat to be equal to 10% to foster the CHP operation of ICEs. The caps are obtained by
minimizing the CO2 emissions and primary energy consumption of configuration A in two
separate optimization problems. Table 6 shows the results of the three scenarios.

Table 6. Results of the optimization of the proposed configurations A, B, and C in the three scenarios:
Cost Minimization (CM), Low Carbon Emissions (LCE), and Primary Energy Saving (PES).

CM Scenario LCE Scenario PES Scenario
ReferenceA B C A B C A B C

Total PV capacity [kWp] 485 485 485 485 485 485 485 485 485 0
Total CHP ICE capacity [kWel] 1705 2643 3723 387 0 0 2334 3318 3268 0

Total GB capacity [kWth] 20,543 20,543 20,543 20,543 20,543 20,543 20,543 20,543 20,543 20,543
Total HP capacity [kWth] 2992 2448 3670 9716 8136 7874 6682 3430 2864 0

Overall yearly cost [kEUR/year] 6609.2 6367.9 6163.3 6952.4 6904.9 6908.2 6819.8 6733.2 6683.9 7029.8
Overall yearly cost [%ref] −6.0 −9.4 −12.3 −1.1 −1.8 −1.7 −3.0 −4.2 −4.9 -

Operation costs [kEUR/year] 6213.3 5862.3 5467.8 6478.0 6531.4 6533.7 6207.6 6099.3 6077.8 7029.8
Investment costs [kEUR/year] 395.9 505.7 695.5 474.4 373.6 374.5 612.2 633.9 606.1 0.0

Imported electricity [MWh/year] 13,079.9 4371.6 1059.0 23,993.0 24,436.2 24,443.9 20,070.2 17,447.8 16,938.9 22,478.0
Exported electricity [MWh/year] 30.0 53.2 23.5 0.0 0.0 0.0 14.6 26.4 1.7 0.0

Ren. electricity generation [MWh/year] 704.0 704.0 704.0 704.0 704.0 704.0 704.0 704.0 704.0 0.0
NRen. electricity generation [MWh/year] 9835.5 18,337.6 21,936.7 480.5 0.0 0.0 3672.6 5462.0 5805.4 0.0

HP heat generation [MWh/year] 4465.3 3487.4 4602.5 10,550.9 10,611.8 10,670.5 7685.0 4390.8 3826.3 0.0
GB heat generation [MWh/year] 5125.3 4608.3 2557.3 1480 2081.5 2070.4 1480.9 3287.7 3858.9 12,594.5

CHP heat generation [MWh/year] 3027.7 4597.5 5582.2 587.4 0.0 0.0 3452.4 5016.0 5056.2 0.0
CHP factor [%] 30.8 25.1 25.4 122.2 - - 94.0 91.8 87.1 -

Usage of natural gas [MWh/year] 27,464.7 45,850.8 50202.7 2586.5 1976.7 1966.2 9804.7 15,313.9 16,383.2 11,960.5
HP usage of electricity [MWh/year] 1117.0 879.2 1172.8 2705.0 2667.8 2675.4 1959.8 1112.4 969.1 0.0

PE consumption [MWh/year] 55,647.4 55,738.8 53,131.4 53,695.9 54,017.3 54,022.9 52,673.0 52,673.0 52,673.0 59,183.2
PE consumption [%ref] −6.0 −5.8 −10.2 −9.3 −8.7 −8.7 −11.0 * −11.0 * −11.0 * -

CO2 emissions [t/year] 8955.2 10,217.3 10,176.9 7011.6 7011.6 7011.6 7370.6 7745.2 7817.9 8447.8
CO2 emissions [%ref] 6.0 20.9 20.5 −17.0 * −17.0 * −17.0 * −12.8 −8.3 −7.5 -

* Fixed objective values in the optimization procedure.

In the LCE scenario, the installed capacity of CHP ICEs is reduced to zero (a marginal
CHP ICE capacity is maintained only in configuration A) in favor of the HPs, whose
capacity in configuration A is more than tripled compared to the CM scenario. Again, in
this scenario, as well as in the PES scenario, PV capacity saturates roof availability (485 kWp)
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while the installation of EESs and TESs is not beneficial. It is worth noting that given the
limitations of PV availability and the absence of other renewable sources, a large reduction
in CO2 emissions can only be achieved by using the renewable share of the national electric
generation mix for heat generation as well, thus employing HPs. Installing HPs reduces
investment costs but increases operation costs, so that the overall yearly costs are the
highest among the three scenarios, although lower than the reference case (up to −1.8%).
HPs cover 84% of the reference heating demand in all three configurations of the LCE
scenario, which results in a lower primary energy consumption compared to the reference
case (between −9.3% and −8.7%). Regarding CO2 emissions, all the configurations reach
the −17% cap imposed by the scenario.

The constraints imposed on the PES scenario result in high CHP factors: 94%, 91.8%,
and 87.1% in configurations A, B, and C, respectively. The installed capacity of HPs is
higher in configuration A (6682 kWth), where a reduced network integration limits the
amount of cogenerated heat. In fact, CHP ICE heat generation is higher in configurations B
and C (up to 46.5% more in configuration C than in configuration A). CHP ICEs’ operation
results in lower overall yearly costs compared to the LCE scenario: 3%, 4.2%, and 4.9%
less than the reference case in configurations A, B, and C, respectively. Primary energy
consumption is 52,673 MWh/year in the three configurations, reaching the −11% cap
imposed by the scenario. Finally, regarding CO2 emissions, the best result within the PES
scenario is obtained in configuration A (12.8% less than the reference case), due to the higher
heat generation of HPs. In any case, compared with the CM scenario, the high CHP factors
in the PES scenario entail a strong reduction in CO2 emissions in all three configurations.

Finally, Figure 10 shows a comparison of the energy balances for configuration C of
the district MES for the three considered scenarios. In the CM scenario (Figure 10a), the
economic convenience of electricity generation from the CHP ICEs leads these conversion
units in operation throughout the entire year to cover 97.6% of the electricity demand
(green area in Figure 10a). In contrast, the operating conditions required to achieve the CO2

emissions target of the LCE scenario (Figure 10b) result in a completely different solution, in
which all the electricity is withdrawn from the national grid (except for the 3.1% produced
by PV), and HPs cover 84.7% of the reference heating demand. The additional constraint
on the minimum hourly utilization of CHP ICE waste heat (10%, PES scenario) leads to a
CHP factor of 87.1%, and therefore, ICEs’ operation is limited to the heating period.

(a) 

Figure 10. Cont.
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(b) 

(c) 

Figure 10. Electric and thermal energy balances of configuration C in the (a) Cost Minimization (CM)
scenario; (b) Low Carbon Emissions (LCE) scenario; (c) Primary Energy Saving (PES) scenario.

5. Discussion

In terms of overall annual costs and primary energy consumption, all the proposed con-
figurations in the three different scenarios perform better than the reference case. A higher
integration (i.e., greater interconnection between nodes through energy networks) is benefi-
cial from the economic point of view, with configuration C achieving the best result in both
the PES scenario and, in particular, the CM scenario, with an overall yearly cost 12.3% lower
than the reference case. In the CM scenario, network integration is also associated with
lower primary energy consumptions (10.2% less than the reference case in configuration C).
Both trends are related to the increased use of CHP ICEs promoted by a greater extension of
the DHN and EDN (note that CHP ICEs can only be installed at nodes 1, 7, and 10), which
allows for a better match with the district’s energy demands. In particular, the reduction
in primary energy consumption is associated with the increase in heat cogeneration: 84%
more in configuration C than in configuration A (CM scenario), with only a 3% increase in
HPs’ heat generation.

Network integration and CHP are also associated with a cost-effective reduction in pri-
mary energy consumption. This is evident in the PES scenario, where for the same primary
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energy consumption, configuration C achieves an additional 1.9% reduction in overall
yearly cost compared to configuration A, reducing both operation and investment costs.

On the other hand, when the goal is a strong reduction in CO2 emissions, the results
of the LCE scenario show that the installed capacity of CHP ICEs is reduced to zero in
favor of HPs. In this scenario, DHN integration in configuration B allows the reduction of
the total HPs’ installed capacity (16.3% less than configuration A), resulting in an overall
yearly cost reduction of 1.1% in configuration A and 1.8% in configuration B (referred to
the reference case). Configuration C, however, does not benefit further from the extended
network topology.

Nevertheless, a moderate reduction in CO2 emissions is still feasible in a hybrid
context of CHP ICEs and HPs, as shown by the three configurations in the PES scenario,
which achieve 12.8%, 8.3%, and 7.5% reductions in CO2 emissions compared with the
reference case, respectively.

Summarizing, in the context of this case study and considering the limited roof
availability for PV systems and the absence of other renewable sources, the extension of
the DHN and EDN combined with the introduction of CHP ICE units is effective in terms
of both overall yearly cost reduction and primary energy saving. The use of CHP ICEs,
however, limits the reduction in CO2 emissions otherwise achievable by installing only
HP units. It is also true that the penalization of CHP in this sense is strongly related to
the comparison with the electricity supply from the national grid coupled with heating
electrification, which can rely on a much larger renewable share: 42% in 2020 (source
IEA [34]) on a national basis versus 3.1% locally.

The use of gas boilers in the three different configurations deserves further considera-
tion. Although design optimization never affects their size, in all the proposed solutions, a
part of the heating demand is met by GBs (from 11.8% to 40.7% of the reference heating
demand). The cost-effectiveness of heat generation from GBs is partly biased by the high
installed capacity, which favors this solution over HPs; moreover, the absence of a mini-
mum load threshold in the GB model (unlike CHP ICEs and HPs) makes the use of boilers
necessary to fulfill the heating demand at very low load conditions. This is evidenced
by the results of configuration A in the LCE scenario, where despite the constraint of
minimizing CO2 emissions, HPs’ heat generation cannot completely replace GBs’ heat
generation (11.7% of total heat generation). In this sense, the optimization process would
benefit from the implementation of a database of commercial energy conversion units,
in order to consider the installation of units of discrete sizes (instead of considering size
as a continuous variable), thus improving the prediction of the part-load performance of
the MES.

It is worth noting that the obtained results can be easily extended also to other districts
of different sizes and similar characteristics in terms of the limited availability of renewable
sources (urban context) and use of the buildings (which results in an almost simultaneous
demand for electricity and heating). In fact, in these cases, the inclusion of district CHP
units and networks typically leads to reduced costs and primary energy consumption, as
demonstrated in [25,28], and a trade-off between cost reduction and the massive installation
of heat pumps must be found to limit emissions of CO2.

Finally, cost assumptions on technologies and energy carriers play a crucial role in the
optimization problem, driving the design choices and thus influencing the economic and
environmental outcomes. In this regard, the data available from the bills used to calculate
the average energy costs are affected by the increase in energy costs that occurred in Europe
in winter 2022–2023 due to the Russo–Ukrainian war. To this end, the subsequent reduction
in energy costs registered globally could lead to favorable economic conditions.
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In conclusion, it is important to emphasize that the retrofit design and operation
optimization approach applied in this paper is a completely general tool with broad
applicability. While this study focuses on a specific case in terms of renewable energy
availability, energy demands, and economic context, the approach can be applied to other
districts or systems characterized by very different technical (e.g., high availability of
different renewable sources) and economic constraints, yielding variable results tailored to
each specific case.

6. Conclusions

Identifying effective retrofit solutions to improve existing energy systems is a key
challenge to reduce energy-related costs and environmental impacts in cities. To this
end, design and operation optimization tools that consider both energy conversion and
storage units and energy distribution networks play a crucial role in choosing the best
investment strategy.

This paper investigates the case study of a university district in Padova, proposing
three new configurations of the multi-energy system (MES) with increasing possibilities
for DHN and EDN interconnection and optimizes the design and operation of additional
energy conversion units and energy distribution networks applying a new MILP optimiza-
tion approach suggested by the same group of authors. Three retrofit design and operation
optimizations are solved for each MES configuration, considering Cost Minimization (CM),
Low Carbon Emissions (LCE), and Primary Energy Saving (PES) scenarios. Results are
compared to search for a suitable trade-off between the economic, environmental, and
energy efficiency objectives.

All the optimized configurations in the three different scenarios (CM, LCE, and PES)
perform better than the reference case in terms of overall cost reduction and primary energy
saving. To this end, the results show that DHN and EDN expansion combined with CHP
installation are effective intervention strategies. In fact, the most integrated configuration
(C), in both the CM and PES scenarios, has the highest CHP penetration (43.8% and 39.7%
of cogenerated heat, respectively) and achieves the best economic results, with overall cost
reductions of 12.3% and 4.9%, respectively, compared to the reference case. In addition,
configuration C also achieves the best result in terms of primary energy consumption within
the CM scenario, 10.2% less than the reference case. On the other hand, the operation of
ICEs at low CHP factors results in high CO2 emissions (up to 20.9% more than the reference
case) in the CM scenario, and the LCE scenario shows that ICE installation is reduced to
zero if a strong reduction in CO2 emissions is required (17% less than the reference case),
albeit with a negative impact on total costs that still remain lower than in the reference
case (up to −1.8%). Nevertheless, a moderate reduction in CO2 emissions is still feasible in
hybrid solutions combining ICEs (operating at high CHP factors) and HPs, as evidenced
by the 8.3% reduction in CO2 emissions and the 39.5% of cogenerated heat achieved by
configuration B in the PES scenario.

In conclusion, current needs for drastic emission reduction and consumption contain-
ment make the environmental objective of any intervention imperative. To this end, MES
integration through expanded energy networks and cogenerating solutions that emerge
from the PES scenario represent cost-effective intervention strategies capable of mitigating
the environmental impact of the district while preserving the economic sustainability of the
investment. Further reduction in CO2 emissions is also possible at the expense of overall
annual cost and primary energy consumption.

Future developments of this work will consider the addition of the “synthesis” prob-
lem to the current design and operation optimization problem, i.e., the addition of the
variable associated with MES topology among the decision variables of the optimization
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problem. Moreover, the performance prediction of the energy conversion and storage units
will be improved by implementing a database of commercial units of known sizes. Finally,
a cost sensitivity analysis will be conducted to determine the influence of cost assumptions.
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