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The VII Conference on Quantum Foundations: 90 years of uncertainty was held during November
29th to December 1st, in 2017, at the Facultad de Matemática, Astronomía, Física y Computación,
Córdoba, Argentina. It gathered experts in the foundations of quantum mechanics from different
countries around the world, interested in promoting a multidisciplinary approach to the fundamental
questions of quantum theory and its applications, by taking in consideration not only the physical,
but also the philosophical and mathematical aspects of the theory. By those days, 90 years had
passed since the seminal paper of Werner Heisenberg [1], describing the reciprocal uncertainty relation
between position and momentum in the quantum realm. But the intriguing questions about the
interpretation of those relations in connection to the general problems of the interpretation of the
quantum formalism, still remain. This was reflected in the vivid discussions that were posed during
the Conference.

This special issue captures the main aspects of this debate in connection with other fundamental
questions of quantum theory and its applications, by incorporating a selected list of contributions that
we now present below.

In the paper “Evaluating the Maximal Violation of the Original Bell Inequality by Two-Qudit States
Exhibiting Perfect Correlations/Anticorrelations”, by Andrei Y. Khrennikov and Elena R. Loubenets [2],
a general class of symmetric two-qubit states with perfect correlations or anticorrelations between
Alice and Bob was introduced. It was proved that, for all states belonging to this class, the maximal
violation of the original Bell inequality is upper bounded by a factor 3

2 and the two-qubit states where
this quantum upper bound is attained were given. This is a step forward for solving the problem of
finding the quantum upper bound for the original Bell inequality. The experimental implications of
these results were also discussed.

In the paper “Revisiting Entanglement within the Bohmian Approach to Quantum Mechanics”,
by Claudia Zander and Angel Ricardo Plastino [3], the concept of entanglement was discussed in the
framework of the Bohmian approach to quantum mechanics. Using this approach, two partial measures
for the amount of entanglement corresponding to a pure state of a pair of quantum particles were
constructed. These measures were then put in connection with the notion of total entanglement—that
relies on the linear entropy of the single-particle reduced density matrix—which was shown to be equal
to their sum. A clear interpretation of the introduced measures was given in terms of the ontology of
Bohmian dynamics.

Entropy 2019, 21, 159; doi:10.3390/e21020159 www.mdpi.com/journal/entropy1
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In the paper “New Forms of Quantum Value Indefiniteness Suggest that Incompatible Views
on Contexts Are Epistemic”, by Karl Svozil [4], the problem of quantum probabilities and quantum
contextuality was addressed. Quantum logics used in extensions of the Kochen–Specker theorem were
discussed. The study of these logics and the structure of the probabilistic states that can be built using
them, lead the author to suggest a natural interpretation for the quantum formalism. According to this
view, quantum systems can be completely characterized by a unique context and a “true” proposition
within this context; this situation defines the ontic state of the quantum system. It was argued that,
unless there is a total match between preparation and measurement contexts, information about the
former from the latter cannot be ontic, but epistemic.

In the paper “Adiabatic Quantum Computation Applied to Deep Learning Networks”, by Jeremy
Liu et al. [5], the task of training deep learning networks was addressed. This was done by exploring
the possibility of using quantum devices. The authors do this by focusing on a restricted form of
adiabatic quantum computation known as quantum annealing, performed by a D-Wave processor.
They propose a particular network topology that can be trained to classify MNIST and neutrino
detection data. They compared their quantum annealing approach with other extant alternatives,
and showed that the quantum approach can find good network parameters in a reasonable time,
despite increased network topology complexity.

In the paper “Entropic Uncertainty Relations for Successive Measurements in the Presence of
a Minimal Length” by Alexey E. Rastegin [6], the generalized uncertainty principle for successive
measurements in the presence of a minimal length was discussed. Uncertainties were described
by appealing to generalized entropies of both the Rényi and Tsallis types. The specific features of
measurements of observables with continuous spectra were taken into account. It was first shown
that, since uncertainty relations formulated in terms of Shannon entropies involve a state-dependent
correction term, they will be different, in general, from preparation uncertainty relations. Next, it was
shown that state-independent uncertainty relations can be obtained in terms of Rényi and Tsallis
entropies. These have the same lower bounds as in the preparation scenario and were shown to
depend on the acceptance function of apparatuses in momentum measurements.

In the paper “Quantization and Bifurcation beyond Square-Integrable Wavefunctions”,
by Ciann–Dong Yang and Chung–Hsuan Kuo [7], nonsquare-integrable (NSI) solutions of the
Schrödinger equation are discussed. These solutions are ruled out in the majority of the formulations
of quantum mechanics, due to problems with the conservation of probability. Contrarily, in this paper,
a quantum-trajectory approach to energy quantization that includes the possibility of nonsquare-
integrable solutions of the Schrödinger equation was considered. It was shown that both, normalized
and unnormalized wavefunctions contribute to energy quantization. While square-integrable
wavefunctions help to locate the bifurcation points at which energy has a step jump, it turns out
that the non square-integrable ones form the flat parts of the stair-like distribution of the quantized
energies. The synchronicity between the energy quantization process and the center-saddle bifurcation
process was also discussed, in connection to the nonsquare-integrable wave functions.

In the paper “Gudder’s Theorem and the Born Rule”, by Francisco De Zela [8], the Born probability
rule was discussed. The author proves that it can be derived from Gudder’s theorem [9]. In doing so,
the author tried to identify the fundamental underlying assumptions that lead to a probability rule such
as Born’s. It was then argued that Born’s rule applies to both the classical and the quantum domains.

In the paper “Uncertainty Relation Based on Wigner–Yanase–Dyson Skew Information with
Quantum Memory” by Jun Li and Shao–Ming Fei [10], uncertainty relations based on Wigner–Yanase–
Dyson skew information with quantum memory were studied. The authors derive uncertainty
inequalities in product and summation forms. The lower bounds of these inequalities were found
and were shown to contain two terms. One of them is related to the degree of compatibility of two
measurements. The other one is connected to the quantum correlation between the measured system
and the quantum memory.
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In the review paper “Uncertainty Relations for Coarse-Grained Measurements: An Overview”,
by Fabricio Toscano et al. [11], the problem of uncertainty relations tailored specifically to
coarse-grained measurement of continuous quantum observables was addressed, including both
theoretical and experimental aspects. These inequalities have applications in detection of quantum
correlations and security requirements in quantum cryptography. In order to deal with continuous
variable systems, measurements are coarse grained, but the coarse-grained observables do not
necessarily obey the same uncertainty relations as the original ones. This leads to the study of
coarse-grained uncertainty relations associated to continuous variable quantum systems. This review
focused on such uncertainty relations as well as their applications in quantum information theory.

We hope that the selected papers will be of interest for the community of physicists and
philosophers working on the foundations of quantum mechanics.

Acknowledgments: We acknowledge all authors for their contributions, all participants of the VII Conference
on Quantum Foundations at Córodba (Argentina), as well as the anonymous reviewers of the articles here,
and editorial staff of Entropy.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: We introduce the general class of symmetric two-qubit states guaranteeing the perfect
correlation or anticorrelation of Alice and Bob outcomes whenever some spin observable is measured
at both sites. We prove that, for all states from this class, the maximal violation of the original
Bell inequality is upper bounded by 3

2 and specify the two-qubit states where this quantum upper
bound is attained. The case of two-qutrit states is more complicated. Here, for all two-qutrit states,
we obtain the same upper bound 3

2 for violation of the original Bell inequality under Alice and Bob
spin measurements, but we have not yet been able to show that this quantum upper bound is the
least one. We discuss experimental consequences of our mathematical study.

Keywords: original Bell inequality; perfect correlation/anticorrelation; qudit states; quantum bound;
measure of classicality

1. Introduction

The recent loophole free experiments [1–3] demonstrated violations of classical bounds for the wide
class of the Bell-type inequalities which derivations are not based on perfect (anti-) correlations, for example,
the Clauser–Horne–Shimony–Holt (CHSH) inequality [4] and its further various generalizations [5–14].
These experiments have very high value for foundations of quantum mechanics (QM) and interrelation
between QM and hidden variable models, see, for example, [15–22] for recent debates.

However, John Bell started his voyage beyond QM not with such inequalities, but with the original
Bell inequality [23,24] the derivation of which is based on perfect anticorrelations—the condition which
is explicitly related to the Einstein–Podolsky–Rosen (EPR) argument [25].

At the time of the derivation of the original Bell inequality, the experimental technology was not
so advanced and preparation of sufficiently clean ensembles of singlet states was practically dificult.
Therefore, Bell enthusiastically supported the proposal of Clauser, Horne, Shimony, and Holt, which is
based on a new scheme (without exploring perfect correlations) and the CHSH inequality [4].

The tremendous technological success of recent years, especially, in preparation of the two-qubit
singlet state and high efficiency detection, makes the original Bell’s project at least less difficult.
This novel situation attracted again attention to the original Bell inequality [26]. We also point to
related theoretical studies on the original Bell inequality which were done during the previous years,
see [27–31]. In [29,31], it is, for example, shown that, unlike the CHSH inequality, the original Bell
inequality distinguishes between classicality and quantum separability.

Finally, we point to a practically unknown paper of Pitowsky [32] where he claims that by
violating the original Bell inequality and its generalizations it would be possible to approach a higher
degree of nonclassicality than for the CHSH-like inequalities.

Entropy 2018, 20, 829; doi:10.3390/e20110829 www.mdpi.com/journal/entropy4
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This claim is built upon the fact that, for the CHSH inequality
∣∣BCHSH

clas

∣∣ ≤ 2, the fraction F(ρd)
CHSH

of the quantum (Tsirelson) upper bound [33,34] 2
√

2 to the classical one is equal to F(ρd)
CHSH =

√
2 for a

bipartite state ρd of an arbitrary dimension d ≥ 2, whereas, for the original Bell inequality, the fraction

F
(ρsinglet)

OB of the quantum upper bound for the two-qubit singlet (d = 2) to the classical bound (equal to
one see in Section 2) is given by [26,32]

F
(ρsinglet)

OB =
3
2
>
√

2 = F(ρd)
CHSH, ∀d ≥ 2. (1)

The rigorous mathematical proof of the least upper bound 3
2 on the violation of the original Bell

inequality by the two-qubit singlet was presented in the article [26] written under the influence of
Pitowsky’s paper [32]. In both papers—References [26,32], the considerations were restricted only to
the two-qubit singlet case.

However, for the violation F(ρd)
OB of the original Bell inequality by a two-qudit state ρd exhibiting

perfect correlations/anticorrelations, the CHSH inequality implies for all d ≥ 2 the upper bound
(2
√

2 − 1) (see in Section 3) and the latter upper bound is more than the least upper bound 3
2

proved [26,32] for the two-qubit singlet.
We stress that quantum nonlocality is not equivalent [35] to quantum entanglement and

that larger violations of Bell inequalities can be reached [36] by states with less entanglement.
Therefore, the proof [26] that, for the two-qubit singlet state (which is maximally entangled), the
least upper bound on violation of the original Bell inequality is equal to 3

2 does not automatically
mean that 3

2 is the least upper bound on violation of the original Bell inequality for all two-qubit states.
Moreover, the proof of the least upper bound 3

2 on violation of the original Bell inequality by the singlet
state has no any consequence for quantifying violation of this inequality by a two-qudit state of an
arbitrary dimension d ≥ 2.

In the present paper, we rigorously prove that under Alice and Bob spin measurements, the least
upper bound 3

2 on the violation of the original Bell inequality holds for all two-qubit and all two-qutrit
states exhibiting perfect correlations/anticorrelations. In the sequel to this article, we intend to prove
that, quite similarly to the CHSH case where the least upper bound

√
2 on quantum violations holds

for all dimensions d ≥ 2, under the condition on perfect correlations/anticorrelations, the least upper
bound 3

2 on quantum violations of the original Bell inequality holds for all d ≥ 2 (see in Section 6).
In Section 2 (Preliminaries), we present the condition [31] on perfect correlations or anticorrelations

for joint probabilities and prove, under this condition, the validity of the original Bell inequality in
the local hidden variable (LHV) frame. This general condition is true for any number of outcomes at
each site and reduces to the Bell’s perfect correlation/anticorrelation condition [23] on the correlation
function only in case of Alice and Bob outcomes ±1.

In Section 3, we analyse violation of the original Bell inequality by a two-qudit quantum state and
show that, for all dimensions of a two-qudit state exhibiting perfect correlations/anticorrelations and
any three qudit observables, the maximal violation of the original Bell inequality cannot exceed the
value (2

√
2− 1).

In Section 4, we introduce (Proposition 2) the general class of symmetric two-qubit density
operators which guarantee perfect correlation or anticorrelation of Alice and Bob outcomes whenever
some (the same) spin observable is measured at both sites. We prove (Theorem 1) that, for all states
from this class, the maximal violation of the original Bell inequality is upper bounded by 3

2 and specify
the two-qubit states for which this quantum upper bound is attained.

In Section 5, we consider Alice and Bob spin measurements on two-qutrit states. This case is
more complicated. Here, we are also able to prove the upper bound 3

2 for all spin measurements on
an arbitrary two-qutrit state, but we have not yet been able to find two-qutrit states for which this
upper bound is attained. In future, we plan to study this problem as well as to consider spaces of
higher dimensions.

5
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In Secton 6, we summarize the main results and stress that description of general density operators
ensuring perfect correlations or anti-correlations for spin or polarization observables may simplify
performance of a hypothetical experiment on violation of the original Bell inequality. In principle,
experimenters need not prepare an ensemble of systems in the singlet state since, by Proposition 2 and
Theorem 1, for such experiments, a variety of two-qubit states, pure and mixed, can be used and it
might be easier to prepare some of such states.

2. Preliminaries: Derivation of the Original Bell Inequality in a General Case

Both Bell’s proofs [23,24] of the original Bell inequality in a local hidden variable (LHV) frame are
essentially built up on two assumptions: a dichotomic character of Alice’s and Bob’s measurements
plus the perfect correlation or anticorrelation of their outcomes for a definite pair of their local settings.
Specifically, the latter assumption is abbreviated in quantum information as the condition on perfect
correlations or anticorrelations.

In this section, we present the proof [31] of the original Bell inequality in the LHV frame for any
numbers of Alice and Bob outcomes in [−1, 1] and under the condition which is more general than the
one introduced by Bell.

Consider an arbitrary bipartite correlation scenario with two measurement settings ai, bk, i, k = 1, 2,
and any numbers of discrete outcomes λa, λb ∈ [−1, 1] at Alice and Bob sites, respectively. This bipartite
scenario is described by four joint measurements (ai, bk), i, k = 1, 2, with joint probability distributions
P(ai ,bk)

of outcomes in [−1, 1]2. Notation P(ai ,bk)
(λa, λb) means the joint probability of the event that,

under a measurement (ai, bk), Alice observes an outcome λa while Bob—an outcome λb. For the
general framework on the probabilistic description of an arbitrary N-partite correlation scenario with
any numbers of measurement settings and any spectral type of outcomes at each site, discrete or
continuous, see [37].

For a joint measurement (ai, bk), we denote by

〈λai 〉 = ∑
λa ,λb∈[−1,1]

λaP(ai ,bk)
(λa, λb), 〈λbk

〉 = ∑
λa ,λb∈[−1,1]

λbP(ai ,bk)
(λa, λb) (2)

the averages of outcomes, observed by Alice and Bob, and by

〈λai λbk
〉 = ∑

λa ,λb∈[−1,1]
λaλbP(ai ,bk)

(λa, λb) (3)

the average of the product λaλb of their outcomes.
Let, under a joint measurement (ai, bk), Alice and Bob outcomes satisfy the conditions that either

the event
{λa = λb} :=

{
(λa, λb) ∈ [−1, 1]2 | λa = λb

}
(4)

or the event
{λa = −λb 
= 0} :=

{
(λa, λb) ∈ [−1, 1]2 | λa = −λb 
= 0

}
(5)

are observed with certainty, that is [31]:

P(ai ,bk)
({λa = λb}) = ∑

λa=λb

P(ai ,bk)
(λa, λb) = 1 (6)

or

P(ai ,bk)
({λa = −λb 
= 0}) = ∑

λa =−λb 
=0
P(ai ,bk)

(λa, λb) = 1, (7)

respectively.

6
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To demonstrate that, under conditions (6) or (7) on probabilities, outcomes of Alice and Bob are
perfectly correlated or anticorrelated, consider, for example, the plus sign case (6). From (6) it follows
that, for arbitrary λa 
= λb, the joint probability

P(ai ,bk)
(λa, λb)|λa 
=λb

= 0. (8)

Hence, under a joint measurement (ai, bk), the marginal probabilities at Alice and Bob sites are
given by

Pai (λa) = ∑
λb

P(ai ,bk)
(λa, λb) = P(ai ,bk)

(λa, λb)|λb=λa , ∀λa, (9)

Pbk
(λb) = ∑

λa

P(ai ,bk)
(λa, λb) = P(ai ,bk)

(λa, λb)|λa=λb , ∀λb.

Therefore, under this joint measurement, at Alice and Bob sites the marginal probability
distributions of observed outcomes λ ∈ [−1, 1] coincide Pai (λ) = Pbk

(λ) and, given, for example,
that Alice observes an outcome λa = λ0, Bob observes the outcome λb = λ0 with certainty, i.e.,
the conditional probability Pbk

(λb = λ0 | λa = λ0) = 1, ∀λ0. Also, under condition (6), the Pearson
correlation coefficient γcor, considered in statistics, is given by

γcor =
∑λa ,λb

(λa − 〈λa〉)(λb − 〈λb〉)P(ai ,bk)
(λa, λb)√

∑λa(λa − 〈λa〉)2Pai (λa)
√

∑λb
(λb − 〈λb〉)2Pbk

(λb)
= 1. (10)

Therefore, under the plus sign condition (6), Alice and Bob outcomes are perfectly correlated also
in the meaning generally accepted in statistics.

The minus sign case (7) is considered quite similarly and results in the relation Pai (λ) = Pbk
(−λ),

∀λ ∈ [−1, 1], for marginal distributions of Alice and Bob, the relation Pbk
(λb = −λ0 | λa = λ0) = 1,

∀λ0, for the conditional probability and the Pearson correlation coefficient γcor = −1. All this means
the perfect anticorrelation of Alice and Bob outcomes.

For a joint measurement with outcomes ±1, the general conditions (6), (7) are equivalently
represented by the condition on the product expectation

〈λaλb〉 = ±1. (11)

respectively, introduced originally in Bell [23]. However, for any number of outcomes in [−1, 1] at both
sites, Alice and Bob outcomes may be correlated or anticorrelated in the sense of (6) or (7), respectively,
but their product expectation 〈λaλb〉 
= ±1.

Thus, under a bipartite scenario with any number of different outcomes in [−1, 1], relations (6)
and (7) introduced in [31], constitute the general condition on perfect correlation or anticorrelation
of outcomes observed by Alice and Bob. This general perfect correlations/anticorrelations condition
reduces to the Bell one (11) only in a dichotomic case with λa, λb = ±1.

Let a 2× 2-setting correlation scenario with joint measurements (ai, bk, ) , i, k = 1, 2 and outcomes
λai , λbk

∈ [−1, 1] admit a local hidden variable (LHV) model for joint probabilities, for details,
see Section 4 in [37], that is, all joint distributions P(ai ,bk)

, i, k = 1, 2, admit the representation

P(ai ,bk)
(λa, λb) =

∫
Ω

Pai (λa|ω)Pbk
(λb|ω) ν(dω), ∀λai , λbk

, (12)

via a single probability distribution ν of some variables ω ∈ Ω and conditional probability distributions
Pai (· |ω), Pbk

(· |ω) of outcomes at Alice’s and Bob’s sites. The latter conditional probabilities are usually
referred to as “local” in the sense that each of them depends only on a measurement setting at the
corresponding site.

7
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Then all scenario product expectations 〈λai λbk
〉, i, k = 1, 2, admit the LHV representation

〈λai λbk
〉 =

∫
Ω

fai (ω) fbk
(ω) ν(dω) (13)

with

fai (ω) := ∑
λa∈[−1,1]

λaPai (λa|ω) ∈ [−1, 1], fbk
(ω) := ∑

λb∈[−1,1]
λbPbk

(λb|ω) ∈ [−1, 1]. (14)

If an LHV model (12) for joint probabilities is deterministic [37,38], then the values of functions
fai , fbk

, i, k = 1, 2, constitute outcomes under Alice and Bob corresponding measurements with settings
ai and bk, respectively. However, in a stochastic LHV model [37,38], functions fai , fbk

may take any
values in [−1, 1] even in a dichotomic case.

On the other side, if, for a scenario admitting an LHV model (12) and having outcomes λai ,
λbk

= ±1, the Bell perfect correlation/anticorrelation restriction 〈λai0
λbk0
〉 = ±1 is fulfilled under

some joint measurement (ai0 ,bk0), then, in this LHV model, the corresponding functions fai0
, fbk0

take
only two values ±1 and, moreover, fai0

(ω) = ± fbk0
(ω), ν-almost everywhere (a.e.) on Ω.

We have the following statement [31] (see Appendix, for the proof).

Proposition 1. Let, under a 2× 2-setting correlation scenario with joint measurements (ai, bk, ) , i, k = 1, 2
and any number of outcomes λai , λbk

in [−1, 1], Alice’s and Bob’s outcomes under the joint measurement (a2, b1)

be perfectly correlated or anticorrelated:

P(a2,b1)
({λa = λb}) = 1 (15)

or

P(a2,b1)
({λa = −λb 
= 0}) = 1 (16)

If this scenario admits an LHV model (12), then its product expectations satisfy the original Bell inequality:∣∣ 〈λa1 λb1〉 − 〈λa1 λb2〉
∣∣± 〈λa2 λb2〉 ≤ 1, (17)

in its perfect correlation (plus sign) or perfect anticorrelation (minus sign) forms, respectively.

We stress that, for the validity of the original Bell inequality (17) in the LHV frame, it is suffice for
condition (15) or condition (16) on perfect correlations or anticorrelations be fulfilled only under a joint
measurement (a2, b1).

Furthermore, it was proved in [31] that, in the LHV frame, the original Bell inequality (17)
holds under the LHV condition which is more general than conditions (15), (16) on perfect
correlation/anticorrelations, does not imply for the LHV functions (14) relations fa2(ω) = ± fb1(ω),
ν-a.e. on Ω and incorporates conditions (15), (16) on perfect correlation/anticorrelations only as
particular cases.

For many bipartite quantum states admitting 2× 2-setting LHV models, specifically, this general
sufficient condition in [31] ensures [30,31,39] the validity of the perfect correlation form of the
original Bell inequality for Alice and Bob measurements for any three qudit quantum observables
Xa1 , Xa2 = Xb1 , Xb2 with operator norms ≤ 1. Satisfying the perfect correlation form of the original Bell
inequality (17), these states do not need to exhibit perfect correlations and may even have a negative
correlation function (see relation (61) in [31]) whenever the same quantum observable Xa2 = Xb1 is
measured at both sites.

8
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For example, all two-qudit Werner state [35]

Wd,Φ =
1 + Φ

2
P(+)

d

r(+)
d

+
1−Φ

2
P(−)

d

r(−)d

, Φ ∈ [−1, 1], (18)

on Cd ⊗Cd, d ≥ 3, separable (Φ ∈ [0, 1]) or nonseparable (Φ ∈ [−1, 0)), and all separable two-qubit
Werner stated W2,Φ(Φ), Φ ∈ [0, 1], satisfy the general sufficient condition, introduced in [31], and do
not violate the perfect correlation form of the original Bell inequality (17) for any three quantum
observables Xa1 , Xa2 = Xb1 , Xb2 but do not exhibit perfect correlations whenever the same observable

Xa2 = Xb1 is measured at both sites. In (18), P(±)
d are the orthogonal projections onto the symmetric

and antisymmetric subspaces of Cd ⊗Cd with dimensions r(±)d = tr[P(±)
d ] = d(d±1)

2 , respectively.

3. Quantum Violation

Consider Alice and Bob projective measurements of quantum qudit observable Xa1 , Xa2 = Xb1 ,
Xb2 in an arbitrary two-qudit state ρ on Cd ⊗Cd.

In this case, Alice and Bob outcomes coincide with eigenvalues λa, λb of these observables and
restriction λa, λb ∈ [−1, 1] implies the restriction on operators norms ‖Xai‖ ,

∥∥Xbk

∥∥ ≤ 1. The joint
probability P(ai ,bk)

(λa, λb) that, under a joint measurement (ai, bk), Alice observes an outcome λa, while
Bob—and outcome λb is given by

tr[ρ{PXai
(λa)⊗ PXbk

(λb)}] (19)

where PXai
(λa), PXbk

(λb), i, k = 1, 2, are the spectral projections of observables Xai and Xbk
,

corresponding to eigenvalues λa and λb, respectively. The averages in (2), (3) take the form

〈λai 〉 = tr[ρXai ], 〈λbk
〉 = tr[ρXbk

], 〈λai λbk
〉 = tr[ρ{Xai ⊗ Xbk

}], i, k = 1, 2 (20)

The general conditions (15), (16) on perfect correlations or anticorrelations of Alice and Bob
outcomes under a joint measurement (a2, b1) reduce to

∑
λa=λb

tr[ρ{PXb1
(λa)⊗ PXb1

(λb)}] = 1, (21)

∑
λa=−λb 
=0

tr[ρ{PXb1
(λa)⊗ PXb1

(λb)}] = 1, (22)

respectively, and for observables with eigenvalues ±1, these conditions are equivalent to

tr[ρ{Xb1 ⊗ Xb1}] = ±1. (23)

Thus, under the considered quantum scenario, the left hand-side W(±)
ρd of the original Bell

inequality (17) takes the form

W(±)
ρ (Xa, Xb1 , Xb2) =

∣∣ tr[ρ{Xa ⊗ Xb1}]− tr[ρ{Xa ⊗ Xb2}]
∣∣± tr[ρ{Xb1 ⊗ Xb2}], (24)

where, for short, we changed the index notation a1 → a,and the general condition on perfect
correlations/anticorrelations of Alice and Bob outcomes under a joint measurement (b1, b1) is given
by (21)/(22).

It is, however, well known that the two-qubit singlet state ρsinglet satisfies the perfect
anticorrelation (minus sign) condition (in the form (23)) whenever the same qubit observable Xb
with eigenvalues ±1 is measured at both sites but, depending on a choice of qubit observables

9
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Xa, Xb1 , Xb2 , this state may, however, violate [23,24] the perfect anticorrelation form of the original Bell
inequality (17).

As it has been proven in [26,32], for the singlet ρsinglet, the maximal value of the left hand-side (24)
of the original Bell inequality (17) over qubit observables with eigenvalues ±1 is equal to 3

2 .
This value is beyond the well-known Tsirelson [33,34] maximal value

√
2 for the quantum

violation parameter
∣∣∣BCHSH

quant

∣∣∣ /
∣∣BCHSH

lhv

∣∣ of the Clauser–Horne–Shimony–Holt (CHSH) inequality [4]∣∣BCHSH
lhv

∣∣ ≤ 2 and, moreover, beyond the least upper bound
√

2 on the quantum violation parameter∣∣Bquant
∣∣ / |Blhv| for all unconditional Bell functionals B(·) for two settings and two outcomes per

site [40–43].
On the other side, the Tsirelson bound 2

√
2 on the quantum violation of the CHSH inequality [4]

holds for a bipartite quantum state of an arbitrary dimension. For different choices of signs, this implies

tr[ρ{Xa ⊗ Xb1}]− tr[ρ{Xa ⊗ Xb2}+ tr[ρ{Xb1 ⊗ Xb1}+ tr[ρ{Xb1 ⊗ Xb2}] ≤ 2
√

2
tr[ρ{Xa ⊗ Xb1}]− tr[ρ{Xa ⊗ Xb2} − tr[ρ{Xb1 ⊗ Xb1} − tr[ρ{Xb1 ⊗ Xb2}] ≤ 2

√
2

−tr[ρ{Xa ⊗ Xb1}] + tr[ρ{Xa ⊗ Xb2}+ tr[ρ{Xb1 ⊗ Xb1}+ tr[ρ{Xb1 ⊗ Xb2}] ≤ 2
√

2
−tr[ρ{Xa ⊗ Xb1}] + tr[ρ{Xa ⊗ Xb2} − tr[ρ{Xb1 ⊗ Xb1} − tr[ρ{Xb1 ⊗ Xb2}] ≤ 2

√
2

(25)

Combining the first line with the third one, for a two-qudit state exhibiting perfect correlations
(condition (21)), we get the following upper bound

W(+)
ρ (Xa, Xb1 , Xb2)|per f ect =

∣∣ tr[ρ{Xa ⊗ Xb1}]− tr[ρ{Xa ⊗ Xb2}
∣∣+ tr[ρ{Xb1 ⊗ Xb2}]

≤ 2
√

2− ∣∣ tr[ρ{Xb1 ⊗ Xb1}]
∣∣ (26)

on the left-hand side of the original Bell inequality. Similarly, combining the second line with the
fourth one under condition (22) on perfect anticorrelations, we derive

W(−)
ρ (Xa, Xb1 , Xb2)|per f ect =

∣∣ tr[ρ{Xa ⊗ Xb1}]− tr[ρ{Xa ⊗ Xb2}
∣∣− tr[ρ{Xb1 ⊗ Xb2}]

≤ 2
√

2− ∣∣ tr[ρ{Xb1 ⊗ Xb1}]
∣∣ (27)

Thus, for an arbitrary two-qudit state exhibiting perfect correlation/anticorrelations whenever
the same quantum observable Xb1 is measured at both sites we have

W(±)
ρ (Xa, Xb1 , Xb2)|per f ect =

∣∣ tr[ρ{Xa ⊗ Xb1}]− tr[ρ{Xa ⊗ Xb2}]
∣∣± tr[ρ{Xb1 ⊗ Xb2}]

≤ 2
√

2− ∣∣ tr[ρ{Xb1 ⊗ Xb1}]
∣∣ (28)

If observable Xb1 has only eigenvalues ±1, then conditions (21), (22) reduce to the Bell
condition (23) and the upper bound (28) takes the form

W(±)
ρ (Xa, Xb1 , Xb2)|per f ect ≤ 2

√
2− 1 (29)

and holds for a two-qudit state ρ of an arbitrary dimension d ≥ 2. For d = 2, this upper bound is more
than the maximal value 3

2 proved [26,32] for the two-qubit singlet.
Therefore, in the following section, we proceed to analyze the maximal value which the

left-hand of W(±)
ρ (Xa, Xb1 , Xb2)|perfect over all qubit observables Xa, Xb1 , Xb2 with eigenvalues ±1 and

all two-qubit states ρ, satisfying the perfect correlation/anticorrelation condition (23).

4. Two-Qubit Case

Consider the violation of the original Bell inequality (17) by a two-qubit state exhibiting perfect
correlations/anticorrelations whenever the same qubit quantum observable with eigenvalues ±1 is
projectively measured at both sites.

10
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We further consider only symmetric two-qubit states ρ (identical quantum particles), that is,
states on C2 ⊗C2 which do not change under the permutation of the Hilbert spaces C2 in the tensor
product C2 ⊗C2, and, for simplicity, change index notations b1 → r, b2 → c in (24).

For d = 2, a generic qubit observable X on C2 admits the representation

X = αIC2 + r · σ, (30)

r · σ = r1σ1 + r2σ2 + r3σ3 (31)

where α = 1
2 tr[X], r = (r1, r2, r3) is a vector in R3 with components

r1 =
1
2

tr[Xσ1], r2 =
1
2

tr[Xσ2], r3 =
1
2

tr[Xσ3], (32)

and
σ1 = |e1〉〈e2| + |e2〉〈e1|, σ2 = i(|e2〉〈e1| − |e1〉〈e2|), σ3 = |e1〉〈e1| − |e2〉〈e2| (33)

are self-adjoint operators on C2 with eigenvalues ±1, represented in the standard orthonormal basis
{e1, e2} in C2 by the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (34)

Every qubit observable with eigenvalues ±1 is represented in (30) by some unit vector ‖r‖ = 1
and constitutes projection σr := r · σ of the qubit spin along a unit vector (direction) r in R3.

Therefore, for Alice and Bob measurements of qubit observables with eigenvalues ±1, the
left-hand side (24) of the original Bell inequality takes the form

W(±)
ρ (σa, σr, σc) = | tr[ρ{σa ⊗ σr}]− tr[ρ{σa ⊗ σc}] | ± tr[ρ{σr ⊗ σc}] (35)

where a, r, c are unit vectors in R3 and the relation

tr[ρ{σr ⊗ σr}] = ±1 (36)

constitutes the perfect correlation/anticorrelation of Alice and Bob outcomes whenever the same spin
observable σr—the projection of qubit spin along the same direction r in R3—is measured at both sites.

Substituting representation (31) into (35) and (36), we rewrite these relations via scalar products
of vectors in R3 :

W(±)
ρ (σa, σr, σc) =

∣∣∣(a, T(ρ)r)− (a, T(ρ)c)
∣∣∣± (r, T(ρ)c), (37)

(r, T(ρ)r) = ±1, (38)

where (a, T(ρ)r) := ∑i,j T(ρ)
ij airj and T(ρ) is the linear operator on R3, defined in the canonical basis in

R3 by the matrix with real elements

T(ρ)
ij := tr[ρ{σi ⊗ σj}, i, j = 1, 2, 3, (39)

This correlation matrix is symmetric (since ρ is symmetric), has eigenvalues λm, m = 1, 2, 3, where
all |λm| ≤ 1, and is similar by its form to the matrix considered in [44].

11
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Let us first analyze when an arbitrary symmetric two-qubit state ρ may satisfy condition (38).
By decomposing a unit vector r = ∑m βmvm, ∑m β2

m = 1, in the orthonormal basis {vj, j = 1, 2, 3} of
eigenvectors of T(ρ), we rewrite condition (38) in the form

∑
m

β2
m(λm ∓ 1) = 0. (40)

Since all eigenvalues |λm| ≤ 1, relation (40) implies the following statement.

Proposition 2. A symmetric two-qubit state ρ exhibits perfect correlation/anticorrelations

tr[ρ{σr ⊗ σr}] = ±1 (41)

if and only if its correlation matrix T(ρ) has at least one eigenvalue equal to ±1, respectively. In this case:

(1) if only one of eigenvalues of T(ρ) is equal to ±1, say λm0 = ±1, then ρ satisfies the perfect
correlation/anticorrelation condition (41), respectively, only for the unit vector r = vm0 ;

(2) if T(ρ) has two eigenvalues equal to ±1, say λm1 , λm2 = ±1, then ρ satisfies the perfect
correlation/anticorrelation condition (41), respectively for every unit vector r = βm1vm1 + βm2vm2 ,
β2

m1
+ β2

m2
= 1 in the plane determined by the eigenvectors {vm1 , vm2} of T(ρ);

(3) if all three eigenvalues of T(ρ) are equal to ±1, then ρ satisfies the perfect correlation/anticorrelation
condition (41), respectively, for any unit vector r in R3.

For the two-qubit Bell states

φ(±) =
1√
2
(e1 ⊗ e1 ± e2 ⊗ e2) , ψ(±) =

1√
2
(e1 ⊗ e2 ± e2 ⊗ e1) , (42)

we have

T(φ+) =

⎛
⎜⎝1 0 0

0 −1 0
0 0 1

⎞
⎟⎠ , T(φ−) =

⎛
⎜⎝−1 0 0

0 1 0
0 0 1

⎞
⎟⎠

T(ψ+) =

⎛
⎜⎝1 0 0

0 1 0
0 0 −1

⎞
⎟⎠ , T(ψ−) =

⎛
⎜⎝−1 0 0

0 −1 0
0 0 −1

⎞
⎟⎠

(43)

and this implies.

Corollary 1. (1) The Bell state φ+ exhibits perfect anticorrelations under spin measurements at both sites along
the coordinate axis Y and perfect correlations under spin measurements at both sites along the same arbitrary
direction in the coordinate plane XZ;

(2) The Bell state φ− exhibits perfect anticorrelations under spin measurements at both sites along the
coordinate axis X and perfect correlations—under spin measurements at both sites along the same arbitrary
direction in the coordinate plane YZ;

(3) The Bell state ψ+ exhibits perfect anticorrelations under measurements at both sites of spin projections
along the coordinate axis Z and perfect correlations—under spin measurements at both along the same arbitrary
direction in the coordinate plane XY;

(4) The Bell state (singlet) ψ− exhibits perfect anticorrelations under spin measurements at both sites along
the same arbitrary direction in R3.

Let us now analyze the maximal value of the left-hand side (37) of the original Bell inequality for
a two-qubit state ρ exhibiting perfect correlations/anticorrelations (38).

12
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Under condition ‖a‖ = 1, the maximum of W(±)
ρ (σa, σr, σc) over a is reached on the unit vector

a = ± T(ρ)(r− c)∥∥T(ρ)(r− c)
∥∥ (44)

and is given by ∥∥∥T(ρ)(r− c)
∥∥∥± (r, T(ρ)c). (45)

Expanding vectors r = ∑m βmvm, ∑ β2
m = 1, c = ∑m γmvm, ∑m γ2

m = 1, in terms of the
orthonormal eigenvectors {vm} of T(ρ), we rewrite (45) in the form√

∑
m=1,2,3

λ2
m(βm − γm)2 ± ∑

m=1,2,3
λmβmγm, (46)

where, due to perfect correlations/anticorrelations condition (38), the coefficients βm are specified in
Proposition 2.

Consider the maximum of expression (46) over coefficients γm. By Proposition 2, expression (46)
reduces to √

∑λ2
m=1(βm − γm)2 + ∑λ2

m 
=1 λ2
mγm2 + ∑λ2

m=1 βmγm

=
√

2(1−∑λ2
m=1 βmγm)−∑λ2

m 
=1(1− λ2
m)γ

2
m + ∑λ2

m=1 βmγm

(47)

since ∑λ2
m=1 β2

m = 1. From (47) it follows that, for all choices of a direction r—coefficients βm in (47)
specified in Proposition 2, we have

sup
a,c

W(±)
ρ (σa, σr, σc)|perfect ≤ max

z∈[−1,1]

(√
2(1− z) + z

)
=

3
2

(48)

where the upper bound 3
2 is, for example, reached on every Bell state where all eigenvalues of the

correlation matrices λm ∈ {−1, 1}, m = 1, 2, 3.
Also, if a two-qubit state, exhibiting perfect correlations/anticorrelations (see Proposition 2),

has the correlation matrix with at least two eigenvalues, say λm1 , λm2 , with |λm1 | , |λm2 | = 1, then
the upper bound 3

2 is reached on the unit vector c which is in the plane of eigenvectors vm1 , vm2

corresponding to these eigenvalues (vector r is in this plane, see Proposition 2) and satisfies condition
c · r = ∑λ2

m=1 βmγm = 1
2 , that is, at angle π/3 to vector r.

Thus, we have proved the following new result.

Theorem 1. Let ρ be a symmetric two-qubit states on C2 ⊗C2 exhibiting perfect correlations/anticorrelations
whenever the same qubit observable σr is measured at both sites. Then the maximal value of the left-hand side
W(±)

ρ (σa, σr, σc) of the original Bell inequality is given by

max
ρ,a,r,c

W(±)
ρ (σa, σr, σc)|perfect =

3
2

(49)

and is reached on symmetric two-qubit states discussed in lines after Equation (48).

We stress that this maximal value is less than the upper bound (29) following from the
CHSH inequality.

5. Two-Qutrit Case

Consider now the violation of the original Bell inequality under Alice and Bob spin measurements
on a symmetric two-qutrit state ρ on C3 ⊗C3, exhibiting perfect correlations or anticorrelations.

13
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For Alice and Bob spin measurements in a two-qutrit state ρ, the left-hand side (24) of the original
Bell inequality and the condition on perfect correlations/anticorrelations take the forms

W(±)
ρ (Sa, Sr, Sc) = | tr[ρ{Sa ⊗ Sr}]− tr[ρ{Sa ⊗ Sc}] | ± tr[ρ{Sr ⊗ Sc}], (50)

tr[ρ{Sr ⊗ Sr}] = ±1, (51)

where a, r, c are unit vectors in R3 and

Sr = r · S = r1S1 + r2S2 + r3S3, S = (S1, S2, S3), (52)

is the qutrit observable with eigenvalues {1, 0,−1}, describing projection of qutrit spin along a unit
vector r in R3.

Note that if a two-qutrit state ρ exhibits perfect correlations/anticorrelations (51) under
measurements in this state at both sites of spin projection along a direction r, the probability of
event that either Alice or Bob observe at their site the outcome λ = 0 is equal to zero.

In the standard orthonormal basis {e1, e2, e3} in C3 these operators have the following
matrix representations:

S1 =
1√
2

⎛
⎜⎝0 1 0

1 0 1
0 1 0

⎞
⎟⎠ , S2 =

1√
2

⎛
⎜⎝0 −i 0

i 0 −i
0 i 0

⎞
⎟⎠ , S3 =

⎛
⎜⎝1 0 0

0 0 0
0 0 −1

⎞
⎟⎠ (53)

and

Sr =

⎛
⎜⎜⎝

r3
r1−ir2√

2
0

r1+ir2√
2

0 r1−ir2√
2

0 r1+ir2√
2

−r3

⎞
⎟⎟⎠ (54)

In view of (52), quite similarly to our techniques in Section 4 we introduce for a symmetric
two-qutrit state ρ the correlation matrix Z(ρ) with real elements

Z(ρ)
ij = tr[ρ{Si ⊗ Sj}], (55)

which is symmetric, diagonalized and has eigenvalues |λm| ≤ 1, and this allows us to rewrite (50), (51)
in the form:

W(±)
ρ (Sa, Sr, Sc) =

∣∣∣(a, Z(ρ)r)− (a, Z(ρ)c)
∣∣∣± (r, Z(ρ)c),

(r, Z(ρ)r) = ±1.
(56)

These expressions are quite the same by their form to expressions (37), (38) for a two-qubit state. By
using the same techniques as in a qubit case, we derive

sup
a,c

W(±)
ρ (Sa, Sr, Sc)|perfect ≤ 3

2
. (57)

We, however, do not know whether under the considered measurements this supremum is reached.

Theorem 2. Let ρ be a symmetric two-qutrit states on C3 ⊗C3 exhibiting perfect correlations/anticorrelations
whenever spin projection Sr along a direction r is measured at both sites. Then, under Alice and Bob spin
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measurements on these two-qutrit states, the maximal value of the left-hand side W(±)
ρ (Sa, Sr, Sc) of the original

Bell inequality (17) is upper bounded as

sup
ρ,a,r,c

W(±)
ρ (Sa, Sr, Sc)|perfectBell ≤ 3

2
. (58)

This two-qutrit upper bound is less than the upper bound (29) following from the
CHSH inequality.

6. Conclusions

As was pointed out in the Introduction, the recent tremendous developments in quantum
technologies make experiments to test the original Bell inequality at least less difficult. This stimulates
interest in novel theoretical, foundational, and mathematical studies on this inequality. In particular,
it is important to find the quantum bound, the analog of the Tsirelson bound, for the original
Bell inequality. It was well-known that in the two-qubit singlet case this bound equals 3/2, see,
e.g., [26,32]. A year ago, I. Basieva and A. Khrennikov came with the conjecture [45] that the
same upper bound holds in case of arbitrary two-qudit states and qudit observables coupled by
perfect correlations/anticorrelations. The question of quantum upper bound for the original Bell
inequality became actual in connection with studies on quantum-like modeling of psychological
behavior, see related paper [46].

In the present article, we have proven this conjecture for all two-qubit states and all traceless
qubit observables and all two-qubit states and spin qutrit observables. This is the first step towards
justifying this conjecture for an arbitrary two-qudit case, and the authors of the present paper plan to
continue studies on this problem. Since in the multi-dimensional case the analytical expressions are
very complex, it may be useful to try to perform preliminary numerical study, cf. [47]. We also point to
technique for evaluation of the quantum upper bound which was elaborated in [48,49] and tested on
the CHSH-like inequalities. In principle, this technique can be applied to the original Bell inequality.
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Appendix A

Consider the proof of Proposition 1.
Let, for a joint measurement (a2, b1), the perfect anticorrelation (16) be fulfilled and this scenario admit an

LHV model (12). This and (14) imply:

0 ≤
∫
Ω

∣∣ fa2 (ω) + fb1
(ω)

∣∣ ν(dω)

=
∫
Ω

∣∣∣∣∣ ∑
λa ,λb

(λa + λb) Pa2 (λa|ω)Pb1
(λb|ω)

∣∣∣∣∣ ν(dω)

≤
∫
Ω

∑
λa ,λb

|λa + λb| Pa2 (λa|ω)Pb1
(λb|ω)ν(dω) ≤ 2 ∑

λa 
=−λb

P(a2,b1)(λa, λb) = 0.
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Thus, under condition (16) on scenario joint probabilities, the LHV functions fa2 (ω) = − fb1
(ω), ν-a.e. on Ω.

Quite similarly, for the case of perfect correlations (15) we derive fa2 (ω) = fb1
(ω), ν-a.e. on Ω. These relations

and the number inequality
|x− y| ≤ 1− xy, ∀ x, y ∈ [−1, 1],

give: ∣∣〈λa1 λb1
〉 − 〈λa1 λb2 〉

∣∣± 〈λa2 λb2 〉

=

∣∣∣∣∣∣
∫
Ω

fa1 (ω) fb1
(ω)− fa1 (ω) fb2 (ω) ν(dω)

∣∣∣∣∣∣±
∫
Ω

fa2 (ω) fb2 (ω)ν(dω)

≤
∫
Ω

∣∣( fb1
(ω)− fb2 (ω))

∣∣ ν(dω)±
∫
Ω

fa2 (ω) fb2 (ω) ν(dω) ≤ 1.

This proves the statement.
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Abstract: We revisit the concept of entanglement within the Bohmian approach to quantum mechanics.
Inspired by Bohmian dynamics, we introduce two partial measures for the amount of entanglement
corresponding to a pure state of a pair of quantum particles. One of these measures is associated
with the statistical correlations exhibited by the joint probability density of the two Bohmian particles
in configuration space. The other partial measure corresponds to the correlations associated with
the phase of the joint wave function, and describes the non-separability of the Bohmian velocity
field. The sum of these two components is equal to the total entanglement of the joint quantum state,
as measured by the linear entropy of the single-particle reduced density matrix.

Keywords: Bohmian dynamics; entanglement indicators; linear entropy

1. Introduction

The de Broglie-Bohm approach to quantum mechanics [1–4], also referred to as the pilot-wave
theory, or the quantum theory of motion, has been, since the publication of the seminal works by Bohm,
a subject of constant interest in the field of the foundations of quantum mechanics. Indeed, there has
been a sustained research activity on the de Broglie-Bohm formulation along the years [5–29]. In an
article reviewing and celebrating the first 100 years of quantum physics, Tegmark and Wheeler
included the formulation of Bohmian mechanics within the list of the most significant events in the
development of this field of Science [30]. The Bohmian approach has provided stimulating new
perspectives on several fundamental aspects of quantum physics, among which we can mention
the quantum measurement problem [5–7], quantum chaos [8], entanglement [9,31,32], the thermal
equilibrium of quantum systems [10], the concept of quantum work [11], quantum cosmology [12–15],
quantum gravity [16], and quantum chemistry (in the latter case, both at the practical [17,18] and at the
conceptual-philosophical [19] levels). The Bohmian point of view also constitutes the starting point
of possible extensions of quantum theory, as the intriguing proposal made by Valentini illustrates,
leading to specific quantitative astrophysical and cosmological predictions that might be within the
reach of observational tests [20,21]. The formalism of Bohm theory has also been applied to the
treatment of problems in thermal physics, such as the classical Hamilton-Jacobi formulation of Fourier
heat conduction [22].

In Bohm’s model of quantum mechanics the particles constituting a physical system have well
defined positions in configuration space. The full description of the system is given by the particles’
configuration (i.e., the particles’ positions) and by a many-particle wave function. The particles’
configuration evolution is determined by the wave function through a “guiding” equation, while the
wave function evolves according to the standard many-particle Schrödinger equation. Even though the
particles are assumed to have, at each time, well defined positions, knowledge about these positions is
not accessible. All we can know about these positions is their probability density distribution, given by
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the squared modulus of the wave function. The position observable plays a dominant role within the
Bohmian formulation. In particular, within this approach, the outcome of an experiment in which
any physical observable is measured is registered by the final configuration of the particles of the
experimental apparatus. The Bohmian model thus highlights a basic feature of any measurement
process, which is that “... all experiments and certainly all measurements in physics are in the last
analysis essentially kinematic, for they are ultimately based on observations of the position of a
particle or of a pointer on a scale as a function of time” [33]. Other interesting recent approaches
to the foundations of quantum mechanics, such as the entropic dynamics formulation proposed by
Caticha [34], also stress the special role played by the position observable. It is worth emphasizing
that Bohm’s formulation of the quantum measurement process is fully consistent with Born’s rule
in standard quantum mechanics and, consequently, the experimental predictions of Bohm’s theory
coincide with those of the usual quantum mechanical formalism (see, however, Valentini’s Bohm-based
proposal for an extension of quantum theory [20,21]). The basic quantal non-locality is explicitly
expressed in the de Broglie-Bohm formalism. In point of fact, the Bell inequalities were inspired by
Bell’s reaction to the work of Bohm [35].

In spite of the intense research work that has been devoted to Bohmian dynamics and its
applications, relatively little attention has been paid to the quantitative analysis of entanglement within
the Bohmian approach. The aim of the present contribution is to advance two quantitative indicators of
the entanglement between two Bohmian particles. These quantities are explicitly formulated in terms
of the Bohmian formalism. One of them corresponds to the statistical correlations exhibited by the
joint probability density of the positions of the two particles. The other one is a quantitative measure
of the non-separability of the Bohmian flow in the two-particle configuration space. We explore
the main properties of these indicators and, as an illustrative application, we use these measures to
investigate the decoherence-like process associated with two particles evolving under the effect of
quantum friction.

The paper is organized as follows. In Section 2 we provide a brief review of the Bohmian theory.
In Section 3 we introduce two quantitative indicators of entanglement within the Bohmian approach
to quantum physics. In Section 4 we apply these measures to a system of two particles evolving under
quantum friction. Finally, some conclusions are drawn in Section 5.

2. Bohmian Formulation of Quantum Dynamics

Bohmian dynamics includes, as one of its components, most of the formal apparatus of standard
quantum mechanics. Indeed, a Bohmian quantum particle is endowed with a wave function ψ(r, t)
governed by the Schrödinger equation. On top of this, the Bohmian particle has a definite position r

that evolves in time according to the classical equation dr
dt =

p
m = v, where p and v respectively denote

the particle’s linear momentum and velocity. The position r of a Bohmian particle is the paradigmatic
example of a hidden variable in a quantum theory. Within the Bohmian formulation it is assumed that
the result of a position measurement is predetermined, even though it is not predictable. This state
of affairs propagates to any other kind of physical measurement, since all of them translate, at some
stage, into the position of some particles in the measuring device [34,35].

In spite of its classical flavor, there are fundamental differences between Bohmian dynamics and
standard classical dynamics. In contrast to what happens in classical mechanics, the velocity v and the
linear momentum p are not free variables anymore. They are instead determined, through the wave
function ψ(r, t), by the particle’s position r(t) at each time t. The particle moves according to a first
order differential equation,

dr

dt
= v(r, t), (1)

with the flow in configuration space given by the velocity field v(r, t), determined by
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v(r, t) = − ih̄
2m

[
1

ψ(r, t)
∇(ψ(r, t))− 1

ψ∗(r, t)
∇(ψ∗(r, t))

]
, (2)

where ψ(r, t) is a time-dependent solution of Schrödiner equation. When preparing a state of the
particle, one neither has control over, nor knowledge of, the particular initial value adopted by r.
In this regard, the only accessible knowledge consists of the probability density ρ(r, t) corresponding
to the different possible particle’s positions, given by

ρ(r, t) = |ψ(r, t)|2. (3)

Associated with the configuration space flow (1) there is a Liouville-like continuity equation for the
probability density ρ(r, t),

∂ρ

∂t
+∇ · (vρ) = 0. (4)

The form (2) of the velocity field, together with the Schrödinger equation and the continuity
Equation (4), have an important consequence: if the probability density of initial positions of the
Bohmian particle satisfies the relation (3), then it also satisfies this relation at all later times.

3. Entanglement Between Two Bohmian Particles: Configuration and Phase Entanglement

In this section, we are going to introduce two quantitative entanglement indicators, closely related
to the main features of the Bohmian approach, for pure states of a pair of quantum particles. We are
going to consider two spinless quantum particles moving in one spatial dimension (the extension of
the present developments to D dimensions is straightforward) with coordinates denoted by x1 and x2.
In terms of the standard quantum mechanical formalism, the two quantum particles are described by
the pure state

|ψ〉 =
∫

dx1dx2ψ(x1, x2)|x1〉|x2〉, (5)

where |x1x2〉 = |x1〉|x2〉, ψ(x1, x2) = 〈x1, x2|ψ〉 and |xi〉 is an eigenstate of the i-particle
position operator.

An important aspect of Bohm’s approach is the assumption that at each point in time particles
have well defined positions and, consequently, describe well defined orbits in configuration space,
although the initial conditions associated with these orbits are not experimentally controllable. At the
level of individual orbits of the pair of Bohmian particles that we are discussing here, quantum
entanglement manifest itself by the fact that the velocity field v(x1, x2) is not separable. That is,
v(x1, x2) 
= (v1(x1), v2(x2)). In other words, each of the two components (v1, v2) of the vector field
v depends, in general, on both particles’ coordinates (x1, x2). This means that the behaviors of both
particles are intertwined. Roughly speaking, one can say that each particle affects the behavior
of the other one, even if there is no interaction potential involved, and the particles are far apart.
This state of affairs is highly counter-intuitive and has been the focus of considerable attention in
the literature. In fact, virtually all discussions of entanglement within the Bohmian approach have
dealt, in one way or another, with this aspect of Bohmian dynamics (see, for instance [31,32] and
references therein). However, and in spite of its great theoretical-philosophical interest, the study of
individual Bohmian trajectories does not lend itself to a quantitative characterization of the amount
of entanglement associated with a two-particle system at a given time. In point of fact, at a given
instant t, two Bohmian particles following an individual trajectory are located at a specific point in
configuration space with coordinates (x1(t), x2(t)), where the velocity field is given by a specific vector
v(x1, x2). Now, it is not possible to assess the amount of non-separability that a vector field has at a
particular location (x1, x2). The non-separability of a vector field is a global property that is associated
with a region of configuration space. A sensible quantitative indicator of this non-separability can
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then be given by an average value, evaluated over such a region. In addition, Bohm’s theory does
involve a probability density in configuration space: the probability density ρ(x1, x2) = |ψ(x1, x2)|2 of
having the Bohmian particles at different locations. Consequently, it is reasonable to expect that an
appropriate quantitative measure of the degree of non-separability of the Bohmian velocity field should
be some sort of spatial average of non-sperability, related to the configuration space density ρ(x1, x2)

associated with the particles’ positions. We thus see that it seems inevitable that the probability
density in configuration space has to be involved in a quantitative treatment of entanglement within
Bohmian mechanics. Now, once this density has been incorporated to the discussion, there appears
another contribution to entanglement that has to be taken into account, which is the (classical-like)
statistical correlations present in the configuration space probability density itself. Mathematically,
these correlations are given by the non-factorizability of the density, ρ(x1, x2) 
= ρ1(x1)ρ2(x2). On the
basis of these considerations we are going to propose two indicators of the amount of entanglement
of two particles at a given time, that provide quantitative measures of the above mentioned aspects
of Bohmian mechanics: the non-separability of the velocity field and the classical-like correlations
of the probability density in configuration space. It is worth stressing that, even though we are not
going to refer explicitly to individual Bohmian orbits, our entanglement indicators are directly related
to the above explained essential aspects of the Bohmian approach which originate, in turn, from the
assumption that individual orbits exists. We can make here an analogy with the Gibbs approach to
classical statistical mechanics. When using the canonical statistical ensemble to describe a system
at thermal equilibrium one does not refer explicitly to individual orbits of a Hamiltonian system.
However, it is clear that Hamiltonian dynamics still plays a fundamental role in, and is indeed at the
foundations of, the canonical formulation of statistical mechanics.

The density matrix corresponding to the pure state (5) is

ρ̂ = |ψ〉〈ψ| =
∫

dx1dx2dx′1dx′2ψ(x1, x2)ψ
∗(x′1, x′2)|x1x2〉〈x′1x′2| (6)

and has matrix elements

〈x1x2|ρ̂|x′1x′2〉 = ψ(x1, x2)ψ
∗(x′1, x′2). (7)

The density matrix ρ̂ should not be confused with the spatial density ρ(x1, x2) mentioned before. The
spatial density corresponds to the diagonal elements of the operator ρ̂, that is ρ(x1, x2) = 〈x1x2|ρ̂|x1x2〉.
The marginal density matrix ρ̂1 = Tr2ρ̂ describing particle 1, has matrix elements

〈x1|ρ̂1|x2〉 =
∫
〈x1x3|ρ̂|x2x3〉dx3

=
∫

ψ(x1, x3)ψ
∗(x2, x3)dx3. (8)

The linear entropy of ρ̂1 constitutes a useful measure or indicator of the amount of entanglement of the
state ψ,

E = 1− Tr(ρ̂2
1), (9)

where one has,

Tr(ρ̂2
1) =

∫
〈x1|ρ̂1|x2〉〈x2|ρ̂1|x1〉dx1dx2

=
∫

ψ(x1, x3)ψ
∗(x2, x3)ψ

∗(x1, x4)ψ(x2, x4)dx1dx2dx3dx4. (10)

Alternatively, we can express this entanglement indicator in terms of the marginal density matrix
ρ̂2 = Tr1ρ̂ corresponding to particle 2, so one has
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E = 1− Tr(ρ̂2
1) = 1− Tr(ρ̂2

2). (11)

The quantity E constitutes a useful, practical way to assess quantitatively the amount of entanglement
exhibited by a two-particle pure state. In fact, it has been applied to the study of quantum entanglement
in many different settings (see, for instance, [36]) due to its various computational advantages,
both from the analytical and from the numerical points of view. However, this quantity does not have
a clear interpretation in terms of the Bohmian theory. Our aim, inspired by the Bohmian approach
to quantum mechanics, is to decompose the entanglement indicator E into two parts having a clear
meaning in terms of the two basic ingredients of the dynamics of two Bohmian particles: their joint
probability density in configuration space, and the joint velocity field describing the probability
density flow. The above mentioned two contributions to the total entanglement, as measured by
E , constitute quantitative indicators of entanglement that we shall respectively call configuration
entanglement Ec, and phase entanglement, Ep.

Following the Bohmian approach, we express the wave function as

ψ(x1, x2) = R
1
2 (x1, x2)eiα(x1,x2), (12)

where R and α are both real functions, and R ≥ 0. The quantity R(x1, x2) = |ψ(x1, x2)|2 satisfies
a continuity equation and represents the joint probability density of the two Bohmian particles
in configuration space. The wave function (12) can be entangled through R(x1, x2), through the
phase α(x1, x2), or through both these quantities. Entanglement through the density R means that
the probability density R(x1, x2) cannot be factorized as R(x1, x2) = R1(x1)R2(x2). This lack of
factorizability, which we refer to as “configuration entanglement” corresponds to a correlation (in
the classical sense) of the probability density R(x1, x2). On the other hand, entanglement through
the phase α(x1, x2) means that it cannot be additively decomposed as α(x1, x2) = α1(x1) + α2(x2).
This lack of additive decomposability means that the Bohmian dynamical equations of particles 1
and 2 are not independent. To clarify this last point, lets consider the equations of motion of the two
Bohmian particles,

dx1

dt
= v1(x1, x2) =

h̄
m

∂α

∂x1
,

dx2

dt
= v2(x1, x2) =

h̄
m

∂α

∂x2
. (13)

In general, if α(x1, x2) 
= α1(x1) + α2(x2), the two ordinary differential equations in (13) are coupled to
each other. On the contrary, if α(x1, x2) 
= α1(x1) + α2(x2), these two equations of motion decouple,
and one has,

dx1

dt
= v1(x1) =

h̄
m

dα1

dx1
,

dx2

dt
= v2(x2) =

h̄
m

dα2

dx2
. (14)

That is, in the latter case the equations of motion of the two Bohmian particles separate into two
independent equations.

In the following two Subsections we are going to propose two quantitative indicators for
configuration entanglement, and for phase entanglement, and determine some of their basic properties.

3.1. Configuration Entanglement

As a quantitative indicator of entanglement we propose,

Ec = 1−
∫

dx1dx2dx3dx4

√
R(x1, x3)R(x2, x3)R(x1, x4)R(x2, x4). (15)
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The quantity Ec can be interpreted as an indicator of classical correlations in the probability density
R(x1, x2). Indeed, if this density is factorizable, R(x1, x2) = R1(x1)R2(x2) we have,

∫
dx1dx2dx3dx4

√
R(x1, x3)R(x2, x3)R(x1, x4)R(x2, x4)

=
∫

dx1dx2dx3dx4R1(x1)R1(x2)R2(x3)R2(x4) = 1 (16)

due to normalization. Therefore, in the case that R(x1, x2) is factorizable we have Ec = 0.
Now, we have ∫

dx1dx2dx3dx4

√
R(x1, x3)R(x2, x3)R(x1, x4)R(x2, x4)

=
∫

dx1dx2

{∫
dx3

√
R(x1, x3)R(x2, x3)

}{∫
dx4

√
R(x1, x4)R(x2, x4)

}

=
∫

dx1dx2

{∫
dx3

√
R(x1, x3)R(x2, x3)

}2

≤
∫

dx1dx2

{∫
dx3R(x1, x3))

}{∫
dx4R(x2, x4)

}
=

∫
dx1dx2dx3dx4R(x1, x3)R(x2, x4)

= 1. (17)

The inequality in (17) is due to the Schwartz inequality and the final equality is due to the normalization
of R(x1, x2). It follows from (15) and (17) that the configuration entanglement Ec is always bounded
according to

0 ≤ Ec ≤ 1, (18)

achieving its lowest bound (that is, vanishing) when the joint probability density in configuration
space is factorizable.

3.2. Phase Entanglement

As a quantitative indicator of the amount of phase entanglement we propose,

Ep =
∫

dx1dx2dx3dx4
{

1− exp [i {α(x1, x3)− α(x2, x3)− α(x1, x4) + α(x2, x4)}]
}×

×R
1
2 (x1, x3)R

1
2 (x2, x3)R

1
2 (x1, x4)R

1
2 (x2, x4). (19)

We have that

Ep =

{∫
dx1dx2dx3dx4

∣∣∣ψ(x1, x3)ψ
∗(x2, x3)ψ

∗(x1, x4)ψ(x2, x4)
∣∣∣}

−
∣∣∣∣{∫ dx1dx2dx3dx4ψ(x1, x3)ψ

∗(x2, x3)ψ
∗(x1, x4)ψ(x2, x4)

}∣∣∣∣
≥ 0. (20)

In this last equation we used the fact that∫
dx1dx2dx3dx4ψ(x1, x3)ψ

∗(x2, x3)ψ
∗(x1, x4)ψ(x2, x4) = Tr(ρ̂2

1) (21)

is always a real positive number. It also follows from (17) and (19) (remembering that R
1
2 (x1, x2) =

|ψ(x1, x2)|) that Ep ≤ 1. Summing up, we have

0 ≤ Ep ≤ 1. (22)
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In the case that the phase α(x1, x2) is additively decomposable, α(x1, x2) = α1(x1) + α2(x2), we have

α(x1, x3)− α(x2, x3)− α(x1, x4) + α(x2, x4)

= α1(x1) + α2(x3)− α1(x2)− α2(x3)− α1(x1)− α2(x4) + α1(x2) + α2(x4) = 0, (23)

implying that Ep = 0. On the other hand, if Ep = 0 we must have that

exp [i {α(x1, x3)− α(x2, x3)− α(x1, x4) + α(x2, x4)}] = exp [iδ] (24)

for some real constant δ. Therefore (assuming α(x1, x2) to be a continuous function) we have

α(x1, x3)− α(x2, x3)− α(x1, x4) + α(x2, x4) = δ. (25)

This relation must hold for all values of x1, x2, x3, x4. Therefore, fixing some constant values x20 and
x40 for x2 and x4, respectively, we can write

α(x1, x3) = α(x1, x40) + α(x20, x3)− α(x20, x40) + δ. (26)

Defining now

α1(x1) = α(x1, x40)− 1
2

α(x20, x40) +
δ

2
α2(x3) = α(x20, x3)− 1

2
α(x20, x40) +

δ

2
(27)

we have
α(x1, x3) = α1(x1) + α2(x3) (28)

and therefore the function α is additively decomposable. In summary, Ep = 0 if and only if α is
additively decomposable.

Finally, it can be verified after some algebra that the total entanglement of the two-particle pure
quantum state, as measured by E (given by (9)), is equal to the sum of the entanglement of the
configuration and the phase contributions,

E = Ec + Ep. (29)

Please note that the bounds (18) and (22), respectively satisfied by the configuration and the phase
entanglement, are consistent with the bounds 0 ≤ E ≤ 1 satisfied by the total entanglement E . For a
factorizable quantum (pure) state of the two particles, both contributions Ec and Ep to the entanglement
between the particles achieve their respective lower bounds (that is, both of them vanish). However,
the configuration and the phase entanglements cannot both achieve their upper bounds (they cannot
both be equal to 1) because the total entanglement satisfies Ec + Ep ≤ 1. This means that a state with
high configuration entanglement must have low phase entanglement, and vice versa.

4. Entanglement Dynamics and Quantum Friction

We shall now apply the configuration and phase quantitative entanglement indicators to explore
the entanglement dynamics of two quantum particles evolving according to a nonlinear Schrödinger
equation incorporating quantum friction effects. Nonlinear Schrödinger equations have attracted
considerable attention in recent years, and have been applied to the description of diverse physical
phenomena. Closely related to Bohmian dynamics is the nonlinear Schrödinger equation proposed by
Nassar and Miret-Artés in [6],

ih̄
∂ψ(x, t)

∂t
=
[
H(x, t) + ih̄

(
Wc(x, t) + Wf (x, t)

)]
ψ(x, t) (30)
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where H = − h̄2

2m
∂2

∂x2 + V(x) is the standard Hamiltonian for a quantum particle of mass m moving in
one dimension under the potential V(x). We also have,

Wc(x, t) = −κ
[
ln |ψ(x, t)|2 − 〈ln |ψ(x, t)|2〉], (31)

and

Wf (x, t) = −ν

2

[
ln

ψ(x, t)
ψ∗(x, t)

−
〈

ln
ψ(x, t)
ψ∗(x, t)

〉]
, (32)

where

〈ln |ψ(x, t)|2〉 =
∫
|ψ(x, t)|2 ln |ψ(x, t)|2dx, (33)

and

〈
ln

ψ(x, t)
ψ∗(x, t)

〉
=

∫
|ψ(x, t)|2 ln

(
ψ(x, t)
ψ∗(x, t)

)
dx. (34)

In the above equations κ is a constant related to the resolution of position measurement and ν is a
friction coefficient. The nonlinear wave Equation (30) was proposed as an effective description of the
dynamics of a quantum particle undergoing a process of continuous position measurement including
dissipation effects [6]. The non-linear logarithmic term Wc advanced by Nassar in [5] was motivated by
Mensky’s path integral formulation of continuous quantum measurements [37], whereas the term Wf
considered in [6] was inspired by Kostin’s work in connection with friction in quantum systems [38].
Several aspects of these kind of nonlinear evolution equations have been investigated in [39–44].
In terms of Bohmian dynamics, the friction term Wf in the non-linear Schrödinger Equation (30) leads
to a new term in the equations governing the evolution of the Bohmian velocity field, that can be
interpreted as describing a drag force [6].

Please note that the friction effects described by the term Wf in the nonlinear Schrödinger
Equation (30) occur at the level of pure states. That is, the evolution of a quantum pure state is affected
by these friction effects, but the state stays pure as it evolves. The presence of the term Wf gives rise, for
instance, to the decrease (dissipation) of the energy of the time-dependent state, but not to an increase
of its entropy. Equation (30) is a Schrödinger-Langevin-like equation without the stochastic force
term. These kind of equations have been the focus of considerable attention and applied to diverse
problems [4,6]. Nonlinear wave equations like (30) can be regarded as incorporating phenomenological
descriptions of friction that describe only some aspects of the dynamics of an open system (for instance,
energy dissipation). In this sense, they differ from approaches based on master equations where,
in general, the entropy of the system changes as it evolves. A classical analogue may contribute to
clarify this situation. A classical conservative system, such as a standard harmonic oscillator, is both
conservative and deterministic. Energy is conserved during evolution, and complete knowledge of
the initial conditions (represented by a point in phase space) fully determines the state of the system
at a later time (represented, again, by a point in phase space). In summary: a point in phase space
deterministically evolves into another point in phase space. If we incorporate friction effects described
by drag forces (for instance, of the form F = −av) the system is no longer conservative. Energy is not
conserved. However, the system is still deterministic: a point in phase space still evolves into another
well defined point in phase space. If one also incorporates stochastic forces (like in the Langevin
equation) the system is no longer deterministic. Even if the initial conditions correspond to a point in
phase space, to describe the evolution of the system one needs a time-dependent probability density in
phase space. A quantum mechanical analogue of this situation is an open quantum system that evolves,
for instance, according to the Linblad equation, and that has to be described by a time-dependent
density matrix. On the other hand, a wave equation like (30) (or, more specifically, Equation (37) that we
are going to consider later), governing the evolution of a quantum system that is at all times described
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by a pure state, can be regarded as a quantum mechanical analogue of a classical system that is affected
by friction (drag forces) but is still deterministic. These classical systems have practical, conceptual,
and historical relevance, and their properties have been the focus of investigation since long ago (a nice
discussion can be found in Chapters 19 and 20 of [45]). Consequently, it is an interesting problem to
explore their possible quantum mechanical counterparts.

We are now going to apply the configuration and phase entanglement indicators previously
introduced, to explore the entanglement dynamics of two quantum particles governed by a particular
two-dimensional version of the wave Equation (30), incorporating the friction term Wf , but not
the nonlinear logarithmic term Wc. That is, in (30) we set κ = 0. We consider the evolution of a
two-dimensional Gaussian wave packet describing two (entangled) particles subjected to friction and
moving in one spatial dimension in a common harmonic potential well. The Gaussian ansatz is

Ψ(x1, x2, t) = eλ0(t)+λ1(t)x2
1+λ2(t)x2

2+λ3(t)x1x2+λ4(t)x1+λ5(t)x2 , (35)

where the coefficients λj(t) are complex functions of time,

λj(t) = λjR(t) + iλjI(t) for j = 0, . . . , 5 (36)

with λjR, λjI ∈ R. The λj(t)’s are then chosen so that (35) is a solution of a non-linear Schrödinger
equation incorporating a friction term. This evolution equation is given by

ih̄
∂Ψ(x1, x2, t)

∂t
=

[
− h̄2

2m

( ∂2

∂x2
1
+

∂2

∂x2
2

)
+

1
2

mω2(x2
1 + x2

2) + ih̄Wf (x1, x2, t)
]

Ψ(x1, x2, t), (37)

where
Wf (x1, x2, t) = −ν

2

[
2iα(x1, x2, t)− 2i

∫
dx1dx2R(x1, x2, t)α(x1, x2, t)

]
. (38)

The phase α(x1, x2, t) can be expressed in terms of the imaginary parts of the λj’s,

α(x1, x2, t) = λ0I(t) + λ1I(t)x2
1 + λ2I(t)x2

2 + λ3I(t)x1x2 + λ4I(t)x1 + λ5I(t)x2, (39)

while R(x1, x2) is given by the real parts of the λj’s,

R(x1, x2, t) = e2(λ0R(t)+λ1R(t)x2
1+λ2R(t)x2

2+λ3R(t)x1x2+λ4R(t)x1+λ5R(t)x2). (40)

Inserting the ansatz (35) into the nonlinear Schrödinger Equation (37) it is possible to prove, after some
algebra, that (35) constitutes a time dependent solution of (37), provided that the real and imaginary
parts of the λj(t)’s comply with the following set of twelve coupled ordinary differential equations,
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λ′0R(t) +
h̄
m

(
λ1I(t) + λ2I(t) + λ4R(t)λ4I(t) + λ5R(t)λ5I(t)

)
= 0

λ′0I(t) +
h̄
m

(
−λ1R(t)− λ2R(t)− 1

2 λ2
4R(t) +

1
2 λ2

4I(t)− 1
2 λ2

5R(t) +
1
2 λ2

5I(t)
)
+ h̄ν

(
λ0I(t)− 〈α〉(t)

)
= 0

λ′1R(t) +
h̄
m

(
4λ1R(t)λ1I(t) + λ3R(t)λ3I(t)

)
= 0

λ′1I(t) +
h̄
m

(
−2λ2

1R(t) + 2λ2
1I(t)− 1

2 λ2
3R(t) +

1
2 λ2

3I(t)
)
+ 1

2
mω2

h̄ + h̄νλ1I(t) = 0

λ′2R(t) +
h̄
m

(
4λ2R(t)λ2I(t) + λ3R(t)λ3I(t)

)
= 0

λ′2I(t) +
h̄
m

(
−2λ2

2R(t) + 2λ2
2I(t)− 1

2 λ2
3R(t) +

1
2 λ2

3I(t)
)
+ 1

2
mω2

h̄ + h̄νλ2I(t) = 0

λ′3R(t) +
h̄
m

(
2λ1R(t)λ3I(t) + 2λ1I(t)λ3R(t) + 2λ2R(t)λ3I(t) + 2λ2I(t)λ3R(t)

)
= 0

λ′3I(t) +
h̄
m

(
−2λ1R(t)λ3R(t) + 2λ1I(t)λ3I(t)− 2λ2R(t)λ3R(t) + 2λ2I(t)λ3I(t)

)
+ h̄νλ3I(t) = 0

λ′4R(t) +
h̄
m

(
2λ1R(t)λ4I(t) + 2λ1I(t)λ4R(t) + λ3R(t)λ5I(t) + λ3I(t)λ5R(t)

)
= 0

λ′4I(t) +
h̄
m

(
−2λ1R(t)λ4R(t) + 2λ1I(t)λ4I(t)− λ3R(t)λ5R(t) + λ3I(t)λ5I(t)

)
+ h̄νλ4I(t) = 0

λ′5R(t) +
h̄
m

(
2λ2R(t)λ5I(t) + 2λ2I(t)λ5R(t) + λ3R(t)λ4I(t) + λ3I(t)λ4R(t)

)
= 0

λ′5I(t) +
h̄
m

(
−2λ2R(t)λ5R(t) + 2λ2I(t)λ5I(t)− λ3R(t)λ4R(t) + λ3I(t)λ4I(t)

)
+ h̄νλ5I(t) = 0,

(41)

where
λ′jR,jI(t) =

d
dt

λjR,jI(t). (42)

The set of coupled, non-linear, first-order, ordinary differential Equation (41) need to be solved
numerically. Now, λ0R(t) is determined by the normalization of the state of the system (35). So, by
imposing the condition of normalization on the system, we can obtain an expression for λ0R(t) in
terms of the other λ’s:

1 =
∫

dx1dx2Ψ∗(x1, x2, t)Ψ(x1, x2, t)

= e2λ0R(t)
∫

dx1e2λ1R(t)x2
1+2λ4R(t)x1

∫
dx2e2λ2R(t)x2

2+2λ3R(t)x1x2+2λ5R(t)x2 . (43)

The integral appearing in the right hand side of the above equation only converges if

λ1R(t) < 0, λ2R(t) < 0 and λ2
3R(t) < 4λ1R(t)λ2R(t). (44)

Evaluating this integral and solving for λ0R gives

λ0R(t) =
1
2

ln

⎛
⎝
√

4λ1R(t)λ2R(t)− λ2
3R(t)

π

⎞
⎠

+
λ1R(t)λ2

5R(t) + λ2R(t)λ2
4R(t)− λ3R(t)λ4R(t)λ5R(t)

4λ1R(t)λ2R(t)− λ2
3R(t)

. (45)

Since a wave function which is normalized at some time t is then automatically normalized for all time,
it is sufficient to impose these conditions on the initial values of the λj’s.

Evaluating the nested integrals (see Equations (15) and (19)) in the expression for the total
entanglement (9), results in the following expression:

E(t) = 1− π2e4λ0R(t)e
− 4(λ1R(t)λ2

5R(t)+λ2R(t)λ2
4R(t)−λ3R(t)λ4R(t)λ5R(t))

4λ1R(t)λ2R(t)−λ2
3R(t)√

16λ2
1R(t)λ

2
2R(t)− 4λ1R(t)λ2R(t)λ2

3R(t) + λ2
3I(t)

(
4λ1R(t)λ2R(t)− λ2

3R(t)
) . (46)
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Substituting for λ0R(t) from (45) and simplifying leads to a final compact expression for the total
entanglement of the system:

E(t) = 1−
√

4λ1R(t)λ2R(t)− λ2
3R(t)

4λ1R(t)λ2R(t) + λ2
3I(t)

. (47)

Notice that the entanglement only depends on λ1R(t), λ2R(t), λ3R(t) and λ3I(t). As λ3I(t) is squared in
the total entanglement expression, the sign of λ3I(t) does not affect the total entanglement. By setting
λ3I(0) = 0 and λ3R(0) = 0, the total entanglement E(t) = 0 and so the state is separable and remains
separable. The configuration and phase entanglement of a separable state are also zero and remain
zero irrespective of the choice of parameters ν and ω. The total entanglement of the initial state can be
chosen to be maximal by making the numerator inside the square root in Equation (47) as small as
possible or the denominator as large as possible, which is achieved by choosing λ3R(0) such that it
approaches 2

√
λ1R(0)λ2R(0) or by choosing |λ3I(0)| to be very large. This makes sense as we would

expect the total entanglement of our initial state to depend strongly on λ3(0) since this is the coefficient
of the cross-term in the Gaussian state (35).

Table 1. Table of initial conditions.

Low Entanglement Intermediately Entangled Generally Entangled Highly Entangled

E(0) 0.086 0.395 0.70717 0.923

λ0R(0) 1
2 ln

(√
91

5π

)
− 5

7
1
2 ln

(
2
√

15
π

)
− 1

6 −122.79117 1
2 ln

(
2
√

15
π

)
− 1

6
λ0I(0) 1 1 4.21132 1
λ1R(0) −1 −4 −3.29371 −4
λ1I(0) 1 1 −3.51362 1
λ2R(0) −1 −4 −0.613171 −4
λ2I(0) 1 1 −0.86058 1
λ3R(0) 3

5 2 −2.54191 2
λ3I(0) 3

5 10 −3.28337 100
λ4R(0) 1 1 7.56778 1
λ4I(0) 1 1 3.99994 1
λ5R(0) 1 1 −4.69103 1
λ5I(0) 1 1 3.07785 1

We investigated numerically the evolution of the entanglement indicators for numerous initial
states and for a variety of values for ν and ω. We solved numerically the equations of motion (41) for
the λj’s and evaluated, on the corresponding time-dependent Gaussian wave packet, the configuration
and phase entanglement indicators, Ec and Ep. The conclusion was that the particular choices of initial
states given in Table 1, and of parameters ν (ν = 0 or 0.1) and ω (ω = 0 or 1), are representative of
the behaviour of states in general. For the initial state referred to as “generally entangled" (column 3
in Table 1) the coefficients were chosen randomly, whereas for the states with low, intermediate and
high entanglement listed in Table 1, the coefficients were specifically chosen. When choosing these
coefficients (randomly or otherwise) we actually choose all of them except λ0R, which is calculated in
terms of the other coefficients to satisfy normalization. The only difference between the coefficients
of the intermediately entangled and highly entangled states is that λ3I(0) is first taken to be 10 and
then 100. The time evolution of the entanglement indicators for the aforementioned initial states is
illustrated in Figures 1–11. Please note that for computing the numerical results displayed in the
Figures we have set h̄ and m to unity (i.e. we use atomic units).
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Figure 1. Plots of configuration entanglement Ec (left) and phase entanglement Ep (right) as a function
of time for a free particle without friction (ν = 0 and ω = 0). The randomly chosen initial conditions are
given in column 3 of Table 1. The total initial entanglement of the state is E = 0.70717. The quantities
Ec and Ep are dimensionless. Units of time, length and mass are chosen such that h̄ = 1 and m = 1.

Figure 2. Configuration entanglement Ec (left) and phase entanglement Ep (right) as a function of time
for an initial state of low entanglement. The initial conditions are given in column 1 of Table 1. The
system parameters are ν = 0.1 and ω = 1, and the total initial entanglement for the state is E = 0.086.
The quantities are measured in the same units as in Figure 1.

Figure 3. Total entanglement E as a function of time for the initial state of low entanglement considered
in Figure 2. The system parameters are ν = 0.1 and ω = 1, and the total initial entanglement for the
state is E = 0.086. The quantities are measured in the same units as in Figure 1.
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Figure 4. Configuration entanglement Ec (left) and phase entanglement Ep (right) as a function of time
for an initial state of intermediate (representative) entanglement. The initial conditions are given in
column 2 of Table 1. The system parameters are ν = 0.1 and ω = 1, and the total initial entanglement
for the state is E = 0.395. The quantities are measured in the same units as in Figure 1.

Figure 5. Total entanglement E as a function of time for the initial state of intermediate (representative)
entanglement considered in Figure 4. The system parameters are ν = 0.1 and ω = 1, and the total
initial entanglement for the state is E = 0.395. The quantities are measured in the same units as in
Figure 1.
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Figure 6. Plots of configuration entanglement Ec (left) and phase entanglement Ep (right) as a function
of time for a randomly chosen initial state (initial conditions are given in column 3 of Table 1). The
values of the physical parameters characterizing the system are ν = 0.1 and ω = 1, and the total initial
entanglement for the state is E = 0.70717. The quantities are measured in the same units as in Figure 1.
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Figure 7. Total entanglement E as a function of time. The system parameters, initial conditions,
and units used are the same as in Figure 6.
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Figure 8. Plots of configuration entanglement Ec (left) and phase entanglement Ep (right) as a function of
time for the same initial state as in Figures 6 and 7. The values of the physical parameters characterizing
the system are ν = 0.1 and ω = 0, and the total initial entanglement for the state is E = 0.70717.
The quantities are measured in the same units as in Figure 1.
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Figure 9. Total entanglement E as a function of time. The system parameters, initial conditions,
and units used are the same as in Figure 8.
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Figure 10. Plots of configuration entanglement Ec (left) and phase entanglement Ep (right) as a function
of time for a highly entangled initial state (initial conditions are given in column 4 of Table 1). The system
parameters are ν = 0.1 and ω = 1, and the total initial entanglement for the state is E = 0.923.

Figure 11. Total entanglement E as a function of time for the same highly entangled initial state
considered in Figure 10. The system parameters are ν = 0.1 and ω = 1, and the total initial
entanglement for the state is E = 0.923.

As already mentioned, the time evolution of the entanglement indicators for the initial states
listed in Table 1 is depicted in Figures 1–11. In Figure 1 we show the evolution of the configuration and
phase indicators of entanglement for an entangled state of two free particles (that is, with no confining
potential) moving under no friction. In this system the total entanglement Ec + Ep is conserved,
although Ec and Ep are individually time dependent. Consistently with the fact that Ec + Ep is constant
in time, we see in Figure 1 that the minima of one indicator coincides to maxima of the other one
(at these points one has (dEc/dt) = (dEp/dt) = 0 and (d2Ec/dt2) = −(d2Ep/dt2), implying that the
extrema of one quantity coincide with the opposite extrema of the other one).

Figure 2 shows the time evolution of Ec and Ep for a pair of quantum particles evolving under the
effect of friction while confined by a common harmonic potential well. The parameters characterizing
the friction term and the harmonic potential are ν = 0.1 and ω = 1, respectively. The initial state,
characterized by the coefficients appearing in the first column of Table 1, is a state of low entanglement
with E = 0.086. The time evolution of the total entanglement E = Ec + Ep is depicted in Figure 3 for
the same system and initial state as in Figure 2. The time evolution of Ec and Ep is depicted in Figure 4,
for a pair of particles starting with an initial state of intermediate entanglement (E = 0.395), for the
same system parameters as in Figures 2 and 3. The corresponding evolution of the total entanglement
is plotted in Figure 5. The evolution of Ec and Ep for a pair of particles for the same system parameters
as in Figures 4 and 5, for a randomly chosen initial state (corresponding to the third column in Table 1)
is shown in Figure 6. The evolution of the total entanglement is exhibited in Figure 7. For the same
initial conditions as in Figures 6 and 7, Figure 8 depicts the evolution of Ec and Ep for a pair of free
particles (that is, with no external confining potential; ω = 0) moving under the effect of friction
(ν = 0.1). The evolution of the total entanglement is shown in Figure 9. Finally, the evolution of Ec
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and Ep for a highly entangled initial state (E = 0.923) with ν = 0.1 and ω = 1 is shown in Figure 10.
The behavior of the corresponding total entanglement is depicted in Figure 11.

It can be appreciated in Figures 2, 4, and 10 that, when the particles evolve under friction in a
common harmonic potential, both the configuration entanglement and the phase entanglement exhibit
a strong oscillatory behaviour. The maximum values of one of the entanglement indicators tends to
coincide with the minimum values of the other one. This behaviour is inherited from the corresponding
behavior observed in the conservative case, which we have already discussed. This is due to the fact
that, in the cases that we have studied, the time-scale of the energy dissipation is slower than the
time-scale of the oscillations generated by the harmonic confining field. Consequently, during one
complete harmonic period the energy stays approximately constant, and the system approximately
behaves as in the conservative case.

The amplitude of the entanglement oscillations tends to decrease with time. This trend is due to
the decrease in energy of the system, associated with the friction term in the nonlinear Schrödinger
Equation (37). Notice that Equation (37) does not have a stochastic force term [4]. The solution of
the equations of motion (41) for the λ-coefficients characterizing the evolving Gaussian wave packet,
at large times, asymptotically evolves to λ0I = λ00−ωt, λ1R = λ2R = −mω

2h̄ , λ0R given by (45), and the
rest of the λ’s equal to zero. Here λ00 is a dimensionless constant. This asymptotic solution corresponds
to the wave function,

ψ(x1, x2, t)asympt =

√
mω

h̄π
exp [i (λ00 −ωt)] exp

[
−mω

2h̄

(
x2

1 + x2
2

)]
, (48)

which represents the ground state of the two particles in the harmonic potential 1
2 mω2 (x2

1 + x2
2
)
. It can

be directly verified that (48) is a solution of (37). Please note that the wave function (48) describes a
separable state. This is the reason, for the system here under consideration, that both entanglement
indicators Ec and Ep tend to zero for large times. In summary, as the system looses energy due to
friction, it relaxes towards its ground state, which has no entanglement.

The total entanglement, depicted in Figures 3, 5 and 11, also decreases in time, but in a more
smooth way, with the oscillatory features highly attenuated. We see that in this system the amount of
entanglement of the two-particle state (configuration entanglement, phase entanglement, and total
entanglement) tends to decrease in time due to the dissipative effects. A similar decreasing trend
can be observed in Figures 8 and 9, corresponding to a two-particle system experiencing friction
but with no confining potential. However, in this case, where the common harmonic potential is
absent, the oscillatory behaviour of Ec and Ep is less strong than the one exhibited in Figures 2,
4, and 10. The behaviour of the total entanglement in Figure 9 seems to have more structure
than the corresponding behaviour in Figure 3. Some further conclusions from all the numerical
investigations were that when ω 
= 0, then for smaller initial total entanglement the periodicity for
the total entanglement is more apparent compared to higher initial values for the total entanglement.
Also, as ω increases the frequency of the entanglement oscillations (total entanglement, configuration
entanglement and phase entanglement) increases, as expected for an oscillating system. As ν increases,
the amplitude of the entanglement oscillations decreases more rapidly, as expected when friction plays
a role.

5. Conclusions

We revisited the concept of entanglement within the Bohmian formulation of quantum mechanics.
We introduced two partial measures for the amount of entanglement corresponding to a pure state of a
pair of Bohmian quantum particles. These two quantities are directly related to the main ingredients
of the Bohmian dynamics, and admit a clear interpretation in terms of that dynamics. One of these
measures is associated with the statistical correlations exhibited by the joint probability density
in configuration space corresponding to a pair of Bohmian particles. The other partial measure
corresponds to the correlations associated with the phase of the joint wave function, and describes the
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non-separability of the Bohmian velocity field. We refer to these two measures, respectively, as the
configuration entanglement indicator and the phase entanglement indicator. The sum of these two
components is equal to the total entanglement of the joint quantum state, as measured by the linear
entropy of the single-particle reduced density matrix. We investigated the main properties of the
configuration and the phase entanglement indicators and, as an illustrative application, explored the
time evolution of these quantities, corresponding to the dissipative dynamics of an initially entangled
two-particle quantum system evolving under the effect of friction. The fact that the entanglement
indicators advanced here are directly defined in terms of the elements of the Bohmian formalism
allows for their application to the study of entanglement in extensions or modifications of Bohm’s
theory, such as the one recently advanced by Valentini [20,21], where some ingredients of the standard
quantum formalism might be problematic. In the present work we have restricted our considerations
to entanglement in pure states. It would be interesting to explore extensions to mixed states of the
entanglement indicators explored here, although the Bohmian dynamics of mixed states is, in general,
much less developed than that of pure states. Any further contributions along these or related lines of
inquiry will be very welcome.
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Abstract: Extensions of the Kochen–Specker theorem use quantum logics whose classical
interpretation suggests a true-implies-value indefiniteness property. This can be interpreted as
an indication that any view of a quantum state beyond a single context is epistemic. A remark by
Gleason about the ad hoc construction of probability measures in Hilbert spaces as a result of the
Pythagorean property of vector components is interpreted platonically. Unless there is a total match
between preparation and measurement contexts, information about the former from the latter is
not ontic, but epistemic. This is corroborated by configurations of observables and contexts with a
truth-implies-value indefiniteness property.

Keywords: quantum mechanics; Gleason theorem; Kochen–Specker theorem; Born rule

1. Quantum Contexts as Views on States

Contexts arise naturally in quantum mechanics: they correspond to the “greatest classical
subdomains within the expanse of conceivable quantum propositions:” for all empirical matters,
every observable within a particular fixed context can be assumed classical with respect to and relative
to that context. Therefore, according to Gleason [1], it appears prudent to assume that classical
probabilities should be applicable to such classical mini-universes; and in particular, when considering
observables within a given context. Gleason formalized this in terms of frame functions and proceeded
to show how the quantum probabilities, in particular, the Born rule, can be “stitched together” from
these classical bits and pieces. This paper can be seen as a prolegomenon to this approach; and as a
contribution to the ongoing search for its semantics.

Formally, the concept of context can be exposed in two ways: one is in terms of “largest possible”
sets of orthogonal pure states; that is, in terms of (unit) vectors and their linear spans. Another one
is by maximal operators and the perpendicular projection operators in their non-degenerate
spectral decomposition.

Let us start by supposing that contexts can be represented by orthonormal bases of Hilbert space.
Due to the spectral theorem, this immediately gives rise to an equivalent conception of context: that
as a maximal observable, which is formed by some (non-degenerate) spectral sum of the mutually
orthogonal perpendicular projection operators corresponding to the basis states. This is just the
expression of the dual role of perpendicular projection operators in quantum mechanics: they represent
both pure states, as well as observable bits; that is, elementary yes-no propositions.

For the sake of an elementary example, suppose one is dealing with (lossless) electron spin state
(or photon polarization) measurements. As there are two outcomes, the associated Hilbert space is
two-dimensional. The two outcomes can be identified with two arbitrary orthogonal normalized
vectors therein, forming an orthonormal basis. Suppose, for the sake of further simplicity, that we
parametrize this basis to be the standard Cartesian basis in two-dimensional Hilbert space, its two

vectors being (Equation (1.8), [2]) |0〉 =
(

1, 0
)ᵀ

and |1〉 =
(

0, 1
)ᵀ

, where the superscript symbol
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Entropy 2018, 20, 406

“ᵀ” indicates transposition. Their dyadic products E0 = |0〉〈0| =
(

1, 0
)ᵀ ⊗ (

1, 0
)

=

(
1 0
0 0

)
,

E1 =

(
0 0
0 1

)
form the corresponding (mutually) orthogonal perpendicular projection operators.

These contexts can be either represented in terms of vectors, like C = {|0〉, |1〉}, or in terms of
perpendicular projection operators, like C = {E0, E1}.

Any two distinct numbers λ0 
= λ1 define a maximal operator through the “weighted”
spectral sum:

A = λ0E0 + λ1E1 = λ0|0〉〈0|+ λ1|1〉〈1| =
(

λ0 0
0 λ1

)
. (1)

The term “maximal” refers to the fact that A “spans” a “classical sub-universe” of mutually
commuting operators through variations of f (A) = f (λ0)E0 + f (λ1)E1, where f : R �→ R represents
some real valued polynomial or function of a single real argument (§ 84, Theorems 1 and 2, p. 171, [3]).
In particular, this includes the context C = {E0, E1} through the two binary functions fi(λj) = δij,
with i, j ∈ {0, 1}.

2. Probabilities on Contexts in Quantum Mechanics

Let us concentrate on probabilities next. As already mentioned, Gleason [1] observed that classical
observables should obey classical probabilities (this should be the same for Bayesian and frequentist
approaches). Can we, therefore, hope for the existence of some “Realding”, that is some global ontology,
some enlarged panorama of “real physical properties”, behind these stitched probabilities? As it turns
out, relative to reasonable assumptions and the absence of exotic options, this is futile.

Formally, this issue can be rephrased by recalling that the main formal entities of quantum
mechanics are all based on Hilbert space; that is, on vectors, as well as their relative position and
permutations. A pure state represented as a vector |ψ〉 can be conveniently parameterized or encoded
by coordinates referring to the respective bases. Because of their convenience, one chooses orthonormal
bases, that is contexts, for such a parametrization. Why is convenience important? Because, as has
been noted earlier, in finite dimensions D, any such context C ≡ {|e1〉, |e2〉, . . . , |eD〉} can also be
interpreted as a maximal set of co-measurable propositions C ≡ {E1, E2, . . . , ED} with Ei = |ei〉〈ei|,
1 ≤ i ≤ D, as the latter refers to a complete system of orthogonal perpendicular projections, which
are a resolution of the identity operator ID = ∑D

i=1 Ei. For any such context, classical Kolmogorov
probability theory requires the probabilities P to satisfy the following axioms:

A1 probabilities are real-valued and non-negative: P(Ei) ∈ R, and P(Ei) ≥ 0 for all Ei ∈ C, or,
equivalently, 1 ≤ i ≤ D;

A2 probabilities of mutually-exclusive observables within contexts are additive: P
(

∑k≤D
i=1 Ei

)
=

∑k≤D
i=1 P (Ei) ;

A3 probabilities within one context add up to one: P(ID) = P
(

∑D
i=1 Ei

)
= 1.

How can probabilities Pψ (E) of propositions formalized by perpendicular projection operators
(or, more generally, observables whose spectral sums contain such propositions) on given states |ψ〉
be formed that adhere to these axioms? As already Gleason pointed out in the second paragraph
of (Section 1, p. 885, [1]), there is an ad hoc way to obtain a probability measure on Hilbert spaces:
a vector |ψ〉 can be “viewed” through a “probing context” C as follows:

(i) For each closed subspace spanned by the vectors |ei〉 in the context C, take the projection Ei|ψ〉 of
|ψ〉 onto |ei〉.

39



Entropy 2018, 20, 406

(ii) Take the absolute square of the length (norm) of this projection and identify it with the probability
Pψ (Ei) of finding the quantum system that is in state |ψ〉 to be in state |ei〉; that is (the symbol “†”
stands for the Hermitian adjoint):

Pψ (Ei) = (Ei|ψ〉)† Ei|ψ〉 = 〈ψ|E†
i Ei|ψ〉

= 〈ψ|ei〉 〈ei|ei〉︸ ︷︷ ︸
=1

〈ei|ψ〉 = 〈ψ|ei〉〈ei|ψ〉 = ‖〈ei|ψ〉‖2. (2)

Because of the mutual orthogonality of the elements in the context C, the Pythagorean theorem
enforces the third axiom A3 as long as all vectors involved are normalized; that is, has length (norm) one.
This situation is depicted in Figure 1.

The situation is symmetric in a sense that reflects the duality between observable and state
observed: Suppose now that the state |ψ〉 is “completed” by other vectors to form an entire context
C′. Then, one could consider this context C′, including |ψ〉 to be“probe” vectors, now identified as
states, in the original context C. Very similarly, probability measures adhering to Axioms A1–A3 can
be constructed by, say, for instance, PEψ

(Ei)

|e2〉

|e1〉

r = 1

|ψ〉

E1|ψ〉

E2|ψ〉

|ϕ〉

E1|ϕ〉

E2|ϕ〉

Eψ |e1〉

Eϕ |e1〉

Eψ |e2〉

Eϕ |e2〉

Figure 1. An orthonormal basis forming a context C = {|e1〉, |e2〉} represents a frame of reference
from which a “view” on a state |ψ〉 can be obtained. Formally, if the vectors |ψ〉 and |ϕ〉 are normalized,
such that 〈ψ|ψ〉 = 〈ϕ|ϕ〉 = 1, then the absolute square of the length (norm) of the projections
E1|ψ〉 = |e1〉〈e1|ψ〉 and E2|ψ〉 = |e2〉〈e2|ψ〉, as well as E1|ϕ〉 = |e1〉〈e1|ϕ〉 and E2|ϕ〉 = |e2〉〈e2|ϕ〉
adds up to one. Conversely, a second context C′ = {|ψ〉, |ϕ〉} grants a frame of reference from which a
“view” on the first context C can be obtained.

It is important to keep in mind that, although Gleason’s ansatz is about a single context C, it is
valid for all contexts; indeed, formally, for a continuum of contexts represented by the continuum of
possible orthonormal bases of D-dimensional Hilbert space. Every such context entails a particular
view on the state |ψ〉; and there is a continuum of such views on the state |ψ〉.

40



Entropy 2018, 20, 406

Furthermore, there is a symmetry between the two contexts C and C′ involved. We may call
C′ the “preparation context” and C the “measurement context,” but these denominations are purely
conventional. In this sense, it is a matter of convention if we consider “C probing C′” or “C′ probing C.”

There is one “privileged view” on the preparation context C′, that is the view obtained if both the
preparation and measurement contexts coincide: C = C′. Under such circumstances, the observables
are value definite: their values coincide with those of the preparation.

3. Contexts in Partition Logics and Their Probabilities

This section is a reminder rather than an exposition [4–10] of partition logics. Suffice it to say
that partition logics are probably the most elementary generalization of Boolean algebras: they are
the Boolean subalgebras associated with sets of partitions of a given set, which are “pasted” or
“stitched” together at their common elements; similar to contexts (blocks, subalgebras) in quantum
logic. The main difference is that the latter is a continuous logic based on geometrical entities (vectors),
whereas partition logics are discrete, finite algebraic structures based on sets of partitions of a given set.
Nevertheless, for empirical purposes, it is always possible to come up with a partition logic mimicking
the respective quantum logic [11]. Partition logics have two known model realization: automaton
logics [12–14] and generalized urn models [15–17].

Just like classical probabilities on Boolean logics, the probabilities on Boolean structures are
formed by a convex summation of all two-valued measures [9,10,18], corresponding to ball types.
Such probabilities will henceforth be called (quasi)classical.

4. Probabilities on Pastings or Stitchings of Contexts

From dimension D ≥ 3 onwards, contexts can be non-trivially connected or intertwined [1] in up
to D − 2 common elements. Such intertwining chains of contexts give rise to various apparently
“non-classical” logics; and a wealth (some might say a plethora) of publications dealing with
ever-increasing “strange” or “magic” properties of observables hitherto unheard of in classical physics.
The following logics have a realization in (mostly three-dimensional if not stated otherwise) Hilbert
space. For concrete parametrizations, the reader is either referred to the literature or to a recent survey
(Chapter 12, [10]).

On such pastings of contexts, (quasi)classical probabilities and their bounds, termed conditions of
possible experience by Boole (p. 229, [19]), can be obtained in three steps [8–10,18]:

(i) Enumerate all truth assignments (or two-{0, 1}-valued measures or states) vi.
(ii) The (quasi)classical probabilities are obtained by the formation of the convex sum ∑i λivi over all

such states obtained in (i), with 0 ≤ λi ≤ 1 and ∑i λi = 1.
(ii) The Bell-type bounds on probabilities and expectations are obtained by bundling these truth

assignments into vectors, one per two-valued measure, with the coordinates representing the
respective values of those states on the atoms (propositions, observables) of the logic; and by
subsequently solving the hull problem for a convex polytope whose vertices are identified with
the vectors formed by all truth assignments [20–23].

In what follows, some such quantum logics will be enumerated whose quantum probabilities
co-exist and sometimes violate their (quasi)classical probabilities, if they exist. Such violations can
be expected to occur quite regularly, as (although in both cases, the probability Axioms A1–A3 are
satisfied for mutually-compatible observables) the quantum probabilities are formed very differently
from the (quasi)classical ones; that is, not by convex sums as in the (quasi)classical case, but by scalar
products among vectors.
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4.1. Triangular and Square Logics in Four Dimensions

For geometric and algebraic reasons, there is no cyclic pasting of three or four contexts in three
dimensions, but in four dimensions, this is possible; as depicted in Figure 2. The (quasi)classical
probabilities are enumerated in Appendices A and B.

1

9

8

7 6 5 4

3

2

1121110

9

8

7 6 5 4

3

2

(a) (b)

Figure 2. Informally, Greechie (or, in different wording, orthogonality) diagrams [24] represent
contexts by smooth curves such as straight lines or circles. The atoms are represented by circles.
Two intertwining contexts are represented by “broken” (not smooth), but connected lines. (a) Greechie
orthogonality diagram of triangle logic in four dimensions, realized by (from the top) 1 : 1

2 (1, 1, 1, 1)ᵀ,
2 : 1√

2
(1, 0,−1, 0)ᵀ, 3 : 1√

2
(0, 1, 0,−1)ᵀ, 4 : 1

2 (−1, 1,−1, 1)ᵀ, 5 : 1√
2
(0, 1, 1, 0)ᵀ, 6 : 1√

2
(1, 0, 0, 1)ᵀ,

7 : 1
2 (1, 1,−1,−1)ᵀ, 8 : 1√

2
(0, 0, 1,−1)ᵀ and 9 : 1√

2
(1,−1, 0, 0)ᵀ. (b) Greechie orthogonality diagram

of triangle logic in four dimensions, realized by (from the top right) 1 : (1, 0, 0, 0)ᵀ, 2 : 1√
2
(0, 1, 0, 1)ᵀ,

3 : 1√
2
(0, 1, 0,−1)ᵀ, 4 : (0, 0, 1, 0)ᵀ, 5 : 1√

2
(1, 1, 0, 0)ᵀ, 6 : 1√

2
(1,−1, 0, 0)ᵀ, 7 : (0, 0, 0, 1)ᵀ and

8 : 1√
2
(1, 0, 1, 0)ᵀ, 9 : 1√

2
(1, 0,−1, 0)ᵀ, 10 : (0, 1, 0, 0)ᵀ, 11 : 1√

2
(0, 0, 1, 1)ᵀ, 12 : 1√

2
(0, 0, 1,−1)ᵀ. (Not all

orthogonality relations are represented.) The associated (quasi)classical probabilities are obtained from
a convex summation over all truth assignments, and listed in Appendices A and B.

Summation of the (quasi)classical probabilities on the intertwining atoms of the triangle logic
yields p1 + p4 + p7 = λ1 + λ2 + λ7 + λ12 + λ13 + λ14 ≤ 1. However, the axioms of probability theory
are too restrictive to allow for quantum violations of these probabilities: after all, these adjacent vertices
are mutually orthogonal and thus are in the same context (augmented with the fourth atom of that
context). Other inequalities, such as p1 + p2 = λ1 + λ2 ≤ p5 + p6 = (λ1 + λ3 + λ4 + λ8 + λ9) +

(λ2 + λ5 + λ6 + λ10 + λ11), compare vertices with the adjacent “inner” atoms; but again, due to the
probability Axiom A3, the quantum probabilities must obey these inequalities, as well.

Komei Fukuda’s cddlib package [25] can be employed for a calculation of the hull problem,
yielding all Bell-type inequalities associated with the convex polytope, the vertices of which are
associated with the 14 or 34 truth assignments (two-valued measures) on the respective triangle and
square logics. It turns out that all of them are expressions of Axioms A1–A3, which are mandatory
also for the quantum probabilities within contexts.

4.2. Pentagon (Pentagram) Logic

The pentagon (graph theoretically equivalent to a pentagram) logic is a cyclic stitching or pasting
of five contexts [26–32], as depicted in Figure 3. The (quasi)classical probabilities (p. 289, Figure 11.8, [9])
can be obtained by taking the convex sum of all 11 two-valued measures [26], as listed in Appendix C.
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Because of the convex sum of all λ’s adds up to one, the sum of the (quasi)classical probabilities
enumerated in Equation (A3), taken merely on the five intertwining observables, yields:

p1 + p3 + p5 + p7 + p9

= λ1 + λ4 + λ7 + λ9 + λ10 + 2 (λ2 + λ3 + λ5 + λ6 + λ8)

≤ 2
11

∑
i=1

λi = 2.

(3)

This inequality is in violation of quantum predictions [30,32] of
√

5 > 2. Note that, in order
to obtain the probabilities on the five intertwining observables (vertices), all of them need to be
determined. However, only adjacent pairs share a common context. Therefore, at least three
incompatible measurement types are necessary.

1

10

9

8

7 6 5

4

3

2

Figure 3. Greechie orthogonality diagram of the pentagon (pentagram) logic. The associated
(quasi)classical probabilities are obtained from a convex summation over all truth assignments,
and listed in Appendix C.

4.3. Specker Bug Logic with the True-Implies-False Property

A pasting of two pentagon logics, the “Specker bug” logic, has been introduced (Figure 1,
p. 182, [33]) and used (Γ1, p. 68, [34]) by Kochen and Specker and discussed by many researchers [35–37];
see also (Figure B.l, p. 64, [38]), (pp. 588–589, [39]), (Section IV, Figure 2, [40]) and (p. 39,
Figure 2.4.6, [41]). It is a pasting [27,42] of seven contexts in such a tight way (cf. Figure 4a) that
preparation of a (quasi)classical system in state a entails the non-occurrence of observable b. As has
been observed by Stairs (pp. 588–589, [39]) and Clifton (Sections II and III, Figure 1, [40,43,44] ), this is
no longer the case for quantum states and quantum observables. Therefore, if one prepares a system in
a state |a〉 and measures Eb = |b〉〈b|, associated with state |b〉, then the mere occurrence of |b〉 implies
the non-classicality of the quantized system.

Again, the (quasi)classical probabilities (p. 286, Figure 11.5(iii), [9]) enumerated in Appendix D
can be obtained by taking the convex sum of all 14 two-valued measures (p. 579, Table 7, [8]). Pták
and Pulmannová (p. 39, Figure 2.4.6, [41]), as well as Pitowsky in (p. 402, Figure 2, [36]) and (pp. 224,
225, Figure 10.2, [37]) noted that, for (quasi)classical probabilities, including ones on partition logics,
the sum of the probabilities on |a〉 and |b〉 must not exceed 3

2 . Therefore, both cannot be true at the
same time, because this would result in their sum being two. This might be called a true-implies-false
property [45] (also known as the one-zero rule [46]) on the atoms a and b.
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Figure 4. Greechie orthogonality diagram of (a) the Specker bug logic (Figure 1, p. 182, [33]). A proof
that, if the system is prepared in state a, then classical (non-contextual) truth assignments require b not
to occur proceeds as follows: In such a truth assignment, as per Axiom A3, there is only one true atom
per context; all the others have to be false. In a proof by contradiction, suppose that both a and b are
true. Then, all atoms connected to them (2,4,7,9) must be false. This in turn requires that the observables
(3,8) connecting them must both be true. Alas, those two observables (3,8) are connected by a “middle”
context {3, 11, 8} . But the occurrence of two true observables within the same context is forbidden
by Axiom A3. The only consistent alternative is to disallow b to be true if a is assumed to be true; or
conversely, to disallow a to be true if b is assumed to be true. (b) Greechie orthogonality diagram of a
Specker bug logic extended by two contexts, which has the true-implies-true property on a′, given a

to be true (Γ1, p. 68, [34]). (c) Greechie orthogonality diagram of a combo of two Specker bug logics
(Γ3, p. 70, [34]). If a is assumed to be true, then the remaining atoms in the context {a, c, b′} connecting
a with b′ and, in particular, c have to be false. Furthermore, if a is true, then b is false. Therefore, a′

needs to be true if b and c both are false, because they form the context {b, c, a′}. This argument is valid
even in the absence of a second Specker bug logic. Introduction of a second Specker bug logic ensures
the converse: whenever a′ is true, a must be true, as well. Therefore, a and a′ (and by symmetry, also b

and b′) cannot be separated by any truth assignment.
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Actually, this classical bound can be tightened by explicity summing the (quasi)classical
probabilities of a and b enumerated in Equation (A5). Because of the convex sum of all λ’s adds up to
one, this yields:

pa + pb = λ1 + λ2 + λ3 + λ6 + λ13 + λ14 ≤
14

∑
i=1

λi = 1. (4)

This inequality is in violation of quantum predictions for a system prepared in state |a〉; in this
case [47], 10

9 > 1.
Indeed, Cabello [47] (see also his dissertation (pp. 55–56, [48])) pointed out that in three

dimensions, |a〉 and |b〉 must be at least an angle ∠(a, b) ≥ arcsec(3) = arccos
(

1
3

)
= π

2 −
arccot

(
2
√

2
)

= arctan
(

2
√

2
)

apart. Therefore, the probability of finding a state prepared along

|a〉 ≡
(

1, 0, 0
)ᵀ

in a state |b〉 ≡
(

cos∠(a, b), sin∠(a, b), 0
)ᵀ

cannot exceed |〈b|a〉|2 = 1/9. Thus, in at
most one-ninth of all cases will quantum mechanical probabilities violate the classical ones, as the
classical prediction demands zero probability to measure b, given a (this prediction is relative to
the assumption of non-contextuality, such that the truth assignment is independent of the particular
context). For a concrete “optimal” realization (p. 206, Figure 1, [49]) (see also (Figure 4, p. 5387, [50])),

take |a〉 = 1√
3

(
1,
√

2, 0
)ᵀ

and |b〉 = 1√
3

(
−1,
√

2, 0
)ᵀ

, which yield |〈b|a〉| = 1
3 .

Another true-implies-false configuration depicted in Figure 5a has an immediate quantum
realization (Table 1, p. 102201-7, [51]) for |〈a|b〉|2 = 1

2 and can be constructively (i.e., algorithmically
computable) extended to arbitrary angles between non-collinear and non-orthogonal vectors.

4.4. Combo of Specker Bug Logic with the True-Implies-True, as Well as Inseparability Properties

This non-classical behavior can be “boosted” by an extension of the Specker bug logic
(Γ1, p. 68, [34]), including two additional contexts {a, c, b′}, as well as {b, c, a′}, as depicted in
Figure 4b. It implements a true-implies-true property [45] (also known as the one-one rule [46])
for a and a′. Cabello’s bound on the angle ∠(a, b) between a and b mentioned earlier results in
bounds between a and a′, as well as b and b′: since a and b′, as well as b and a′ are orthogonal, that
is, ∠(a, b′) = ∠(b, a′) = π

2 , it follows for planar configurations that ∠(a, a′) = ∠(b, a′)−∠(a, b) ≤
π
2 − arccos

(
1
3

)
= arccot

(
2
√

2
)
= arccsc (3) = arcsin

(
1
3

)
. For symmetry reasons, the same estimate

holds for planar configurations between b and b′. For non-planar configurations, the angles must be
even less than for planar ones.

True-implies-true properties have also been studied by Stairs (pp. 588–589, note added in
proof, [39]); Clifton (Sections II and III, Figure 1, [40,43,44]) presents a similar argument, based on
another true-implies-true logic inspired by Bell (Figure C.l, p. 67, [38]) (cf. also Pitowsky (p. 394, [52])),
on the Specker bug logic (Section IV, Figure 2, [40]). More recently, Hardy [53–55], as well as Cabello
and García-Alcaine and others [32,56–60] have discussed such scenarios.

Another true-implies-true configuration depicted in Figure 5b has an immediate quantum
realization (Table 1, p. 102201-7, [51]) for |〈a|b〉|2 = 1

2 and can be extended to arbitrary angles
between non-collinear and non-orthogonal vectors.

A combo of Specker bug logics renders a non-separable set of two-valued states (Γ3, p. 70, [34]):
in the logic depicted in Figure 4c, a and a′, as well as b and b′ cannot be “separated” from one another
by any non-contextual (quasi)classical truth assignment enumerated in Appendix D. Kochen and
Specker (Theorem 0, p. 67, [34]) pointed out that this type of inseparability is a necessary and sufficient
condition for a logic to be not embeddable in any classical Boolean algebra. Therefore, whereas both
the Specker bug logic, as well as its extension true-implies-true logic can be represented by a partition
logic, the combo Specker bug logic cannot.
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Figure 5. Greechie orthogonality diagram of a logic (Figure 2, p. 102201-8, [51]) realizable in R3

(a) with the true-implies-false property, (b) with the true-implies-true property and (c) with the
true-implies-value indefiniteness (neither true nor false) property on the atoms a and b, respectively.
(a,b) contain the single (out of 13) value assignment that is possible and for which a is true. All eight
value assignments of the logic depicted in (c) require a to be false.

4.5. Logics Inducing Partial Value (In)Definiteness

Probably the strongest forms of value indefiniteness [61,62] are theorems [51,63,64] stating that
relative to reasonable (admissibility, non-contextuality) assumptions, if a quantized system is prepared
in some pure state |a〉, then any observable that is not identical or orthogonal to |a〉 is undefined. That is,
there exist finite systems of quantum contexts whose pastings are demanding that any pure state |b〉
not belonging to some context with |a〉 can neither be true, nor false; else a complete contradiction
would follow from the assumption of classically pre-existent truth values on some pasting of contexts
such as the Specker bug logic.
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What does “strong” mean here? Suppose one prepares the system in a particular context C such
that a single vector |a〉 ∈ C is true; that is, |a〉 has probability measure of one when measured along
C. Then, if one measures a complementary variable |b〉 and |b〉 is sufficiently separated from |a〉
(more precisely, at least an angle arccos

(
1
3

)
apart for the Specker bug logic), then intertwined quantum

propositional structures (such as the Specker bug logic) exist, which, interpreted (quasi)classically,
demand that |b〉 can never occur (cannot be true); and yet, quantum systems allow |b〉 to occur.
Likewise, other intertwined contexts that correspond to true-implies-true configurations of quantum
observables (termed Hardy-like [53–55] by Cabello [60]) (quasi)classically imply that some endpoint
|b′〉must always occur, given |a〉 is true. Yet, quantum mechanically, since |a〉 and |b′〉 are not collinear,
quantum mechanics predicts that occasionally, |b′〉 does not occur. In the “strongest” form [51,63,64]
of classical “do’s and don’ts”, there are no possibilities whatsoever for an observable proposition to be
either true or false. That is, even if the Specker bug simultaneously allows some |a〉 to be true and |b〉
to be false (although disallowing the latter to be true), there is another, supposedly more sophisticated
finite configuration of intertwined quantum contexts, that can be constructively enumerated and that
disallows |b〉 even to be false (it cannot be true either).

For the sake of an explicit example, take the logic (Figure 2, p. 102201-8, [51]) depicted in Figure 5c.
It is the composite of two logics depicted in Figure 5a,b, which perform very differently at b given a to
be true: whereas (a) implements a true-implies-false property, (b) has a true-implies-true property for
the atoms a and b, respectively. Both (a) and (b) are proper subsets (lacking two contexts) of the logic
in Figure 5c; and apart from their difference in four contexts, are identical.

More precisely, as explicated in Appendix E, both of these logics (a) and (b) allow 13 truth
assignments (two-valued states), but only a single one allows a to be true on either of them
(this uniqueness is not essential to the argument). The logic in (c) allows for eight truth assignments,
but all of them assign falsity to a. By combining the logics (a) and (b), one obtains (c) which, if a is
assumed to be true, implies that b can neither be true (this would contradict the true-implies-false
property of (a)) nor can it be false, because this would contradict the true-implies-true property of
(b). Hence, we are left with the only consistent alternative (relative to the assumptions): that a system
prepared in state a must be value indefinite for observable b. Thereby, as the truth assignment on b is
not defined, it must be partial on the entire logic depicted in Figure 5c.

The scheme of the proof is as follows:

(i) Find a logic (collection of intertwined contexts of observables) exhibiting a true-implies-false
property on the two atoms a and b.

(ii) Find another logic exhibiting a true-implies-true property on the same two atoms a and b.
(iii) Then, join (paste) these logics into a larger logic, which, given a, neither allows b to be true nor

false. Consequently, b must be value indefinite.

The most suggestive candidate for such a pasting is, however, unavailable: it is the combination
of a Specker bug logic and another, extended Specker bug logic, as depicted in Figure 6. Such a logic
cannot be realized in three dimensions, as the angles cannot be chosen consistently; that is, obeying
the Cabello bounds on the relative angles, respectively.

The latter result about the partiality of the truth assignment has already been discussed by
Pitowsky [61], and later by Hrushovski and Pitowsky [62]. It should also be mentioned that the
logic (c) has been realized with a particular configuration in three-dimensional real Hilbert space
(Tables I and II, p. 102201-7, [51]), which are an angle ∠(a, b) = arccos

(
1√
2

)
apart, but as has been

mentioned earlier, this kind of value indefiniteness on any particular state b, given that the system has
been prepared in state a, can be constructively obtained by an extension of the above configuration
whenever a and b are neither collinear (in this case, b would be true) nor orthogonal (in this case,
b would be false). Therefore, basically, all states not identical (or orthogonal) to the state prepared
must be value indefinite.
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All three logics in Figure 6a–c have another non-classical feature: they are non-unital [49], meaning
that the truth assignments on some of their atoms can only acquire the value as false, regardless of
the preparation. That is, in this “state-independent” form, whenever a proposition corresponding
to such an atom is measured to be true, this can be interpreted as the indication of non-classicality
(note that one can always rotate the entire set of rays so that this particular atom coincides with some
observable measured.).

a

b

c

Figure 6. Greechie orthogonality diagram of a logic that is value indefinite on b (as well as on c for
symmetry reasons), given a is true; alas, such a logic has no realization in three-dimensional Hilbert
space, as the angles ∠(a, b) between a and b should simultaneously obey 1.2 ≈ arcsec(3) ≤ ∠(a, b) ≤
arccsc(3) ≈ 0.3.

5. Propositional Logic Does Not Uniquely Determine Probabilities

By now, it should be clear that the propositional structure does in general not uniquely determine
its probabilities. The Specker bug in Figure 4a serves as a good example of that: it supports
(quasi)classical probabilities, explicitly enumerated in(p. 286, Figure 11.5(iii), [9] ) and (p. 91,
Figure 12.10, [10]), which are formed by convex combinations of all two-valued states on them.

Other propositional structures such as the pentagon logic support “exotic” probability
measures [26], which do not vanish at their interlink observables and are equally weighted with
value 1

2 there. This measure is neither realized in the (quasi)classical partition logic setup explicitly
discussed in (p. 289, Figure 11.8, [9]) and (p. 88, Figure 12.8, [10]), nor in quantum mechanics. It remains
to be seen if a more general theory of probability measures based on Axioms A1–A3 can be found.

6. Some Platonist Afterthoughts

The author’s not-so-humble reading of all these aforementioned “mind-boggling” non-classical
quantum predictions is a rather sober one: in view of the numerous indications that classical value
definiteness cannot be extended to more than a single context, the most plausible supposition is that,
besides exotic possibilities [65,66], ontologically, there is only one such “Realding” (indeed, a rather
obvious candidate suggesting itself as ontology): a single vector, or rather a single context. Quantized
systems can be completely and exhaustively characterized by a unique context and a “true” proposition
within this context.

Suppose for a moment that this hypothesis is correct and that there is no ontology, no “Realding,”
beyond a single context. There is one preferred view, namely the context identical to the context in
which the system has been prepared, and all but one epistemic view.
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Yet, a confusing experience is the apparent ease with which an experimenter appears to measure,
without any difficulty, a context or (maximal) observable not (or only partly through intertwines)
matching the preparation context. In such a situation, one may assume that the measurement grants
an “imperfect” view on the preparation context. In this process, information, in particular the relative
locatedness of the measurement context with respect to the preparation context, is augmented by
properties of the measurement device, thereby effectively generating entanglement [67,68] via context
translation [69]. Frames of reference that do not coincide with the “Realding” or preparation context
necessarily include stochastic elements that are not caused or determined by any property of the
formerly individual “Realding.” One may conclude [70] with Bohr’s 1972 Como lecture (p. 580, [71])
that “any observation of atomic phenomena will involve an interaction with the agency of observation
not to be neglected. Accordingly, an independent reality in the ordinary physical sense can neither
be ascribed to the phenomena nor to the agencies of observation.” That is, any interaction between
the previously separated individual object and the measurement device results in a joint physical
state that is no longer determined by the states of the (previously) individual constituents [68,72].
Instead, the joint state exhibits what Schrödinger later called entanglement [67]. Entanglement is
characterized by a value definite relational [73] or collective (re-)encoding of information with respect
to the constituent parts, thereby (since the unitary quantum evolution is injective) resulting in the
value indefiniteness of the previously individual and separate parts. As a result, knowledge about
observations obtained by different contexts than the preparation context are necessarily (at least
partially in the sense of the augmented information from the measurement device) epistemic.

Another possible source of perplexity might be the various types of algebraic or logical structures
involved. Classically, empirical logics are Boolean algebras. Then, in a first step towards non-classicality,
there are partition logics that are not Boolean any longer (they feature complementarity through
non-distributivity), but nevertheless still allow for a certain type of (quasi)classicality; that is,
a separating and unital set of two-valued states. Then, further on this road, there are (finite) quantum
logics that do not allow any definite state at all.

One might be puzzled by the fact that there exist “intermediate” logics, such as the Specker bug
or the pentagon (pentagram) logic discussed in Sections 4.2 and 4.3 that still allow (even classical)
simultaneous value indefiniteness, although they contain observables that are mutually complementary
(non-collinear and non-orthogonal). However, this apparent paradox should rather be interpreted
epistemically, as means (configuration) relative [74]: in the case of the pentagon, we have decided
to concentrate on 10 observables in a cyclic pasting of five contexts, but we have thereby implicitly
chosen to “look the other way” and disregard the abundance of other observables that impose much
more stringent conditions on the value definiteness of the observables in the pentagon logic than the
pentagon logic itself.

Therefore, properties such as the true-implies-false, the true-implies-true properties, as well
as inseparability and even value indefiniteness are means relative and valid only if one restricts or
broadens one’s attention to sometimes very specific, limited sublogics of the realm of all conceivable
quantum logics, which are structures formed by perpendicular projection operators in Hilbert spaces
of dimension larger than two.

Pointedly stated, sets of intertwining contexts connecting two (or more) relevant complementary
observables a and b should be considered as totally arbitrary when it comes to the inclusion or
exclusion of particular contexts interconnecting them: there is neither a necessity nor even a compelling
reason to take into account one such structure and disregard another, or favor one over the other.
Indeed, in an extreme, sui generis form of the argument, suppose a single quantum is prepared in some
state a. Then, every single outcome of a measurement of every complementary (non-collinear and
non-orthogonal relative to the state prepared) quantum observable may be considered as “proof” or
“certification of non-classicality” (or, in different terminology, “contextuality”). Those observable can
be identified with the “endpoint” b of either some true-implies-false, or alternatively true-implies-true
configuration (say the one sketched in Figure 6a,b), depending on whether the classical false or true
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predictions need to contradict the particular outcome, respectively. For quantum logics with a unital
set of two-valued states, such as the logics depicted by Tkadlec (p. 207, Figure 2, [49]) or the ones
in Figure 6a,b, one could even get rid of the state preparation if b occurs and is identified with
an observable that, according to the classical predictions associated with that logic, cannot occur.
There is no principle that could prevent us from arguing that way if we insist on the simultaneous
existence of multiple contexts encountered in quantum mechanics. Indeed, are not intertwining
contexts scholastic [75] sophisms in desperate need of deconstruction?

An interesting historical question arises: Kochen and Specker, in a succession of papers on partial
algebras [33,34,76], have insisted that logical operations should only be defined within contexts and
must not be applied to propositions outside of it. Yet, they have considered extended counterfactual
structures of pasted context, ending up in a holistic argument involving complementary observables.
Of course, an immediate reply might be that without intertwined contexts, there cannot be any non-trivial
(non-classical, non-Boolean) configuration of observables that is of any interest.

For the reasons mentioned earlier, the emphasis should not be on “completing” quantum
mechanics by some sort of hidden parameter theory, such as, for instance, Valentini [77] envisioning a
theory that is to quantum mechanics as statistical physics is to thermodynamics, but just the opposite:
the challenge is to acknowledge the scarcity of resources, the “Realding” or physical state as a mere
vector, despite the continuum of possible views on it, resulting in an illusory over-abundance and
over-determination.

In this line of thought, the question of what might be the reason behind the futility to co-define
non-commuting quantum observables (from two or more different contexts) simultaneously should be
answered in terms of a serious lack of a proper perspective of what one is dealing with: metaphorically
speaking, it is almost as if one pretends to take a 360◦ panorama of what lies in the outside world,
while actually merely taking photos from some sort of echo chamber, or house of mirrors, partly
reflecting what is in it, and partly reproducing the observer (photographer) in almost endless reflections.
Stitching together photos from these reflections yields a panorama of one and the same object in
seemingly endless varieties. In this way, one might end up with a horribly distorted image of this
situation; and with the inside turned outside.

This is not dissimilar to what Plato outlined in the Republic’s cave metaphor (Book 7, 515c,
p. 221, [78]): “what people in this situation would take for truth would be nothing more than the
shadows of the manufactured objects.” In the quantum transcription of this metaphor, the vectors are
the objects, and the shadows taken for truth are the views on these objects, mediated or translated [69]
by arbitrary mismatching contexts.
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Appendix A. Two-Valued States, (Quasi)Classical Probabilities on the Triangular Logic in
Four Dimensions

The two-valued states (also known as truth tables) have been enumerated by Josef Tkadlec’s
Pascal program 2states [79].Implicitly, the convex sums over the respective probabilities encode the
truth tables, as, on any particular atom, the i’th truth table entry is one if λi appears in the listing of the
classical probability pi. Otherwise, the i’th truth table entry is zero.

The bounds for classical probabilities have been obtained by Komei Fukuda’s cddlib package [25].
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There are nine propositions forming three contexts {1, 2, 3, 4}, {4, 5, 6, 7} and {7, 8, 9, 1} allowing 14
(separating, unital) two-valued states whose convex sum yields the following (quasi)classical probabilities:

p1 =λ1 + λ2,

p2 =λ3 + λ4 + λ5 + λ6 + λ7,

p3 =λ8 + λ9 + λ10 + λ11 + λ12,

p4 =λ13 + λ14,

p5 =λ1 + λ3 + λ4 + λ8 + λ9,

p6 =λ2 + λ5 + λ6 + λ10 + λ11,

p7 =λ7 + λ12,

p8 =λ3 + λ5 + λ8 + λ10 + λ13,

p9 =λ4 + λ6 + λ9 + λ11 + λ14.

(A1)

Appendix B. Truth Assignments, (Quasi)Classical Probabilities on the Square Logic in
Four Dimensions

There are 12 propositions forming four contexts {1, 2, 3, 4}, {4, 5, 6, 7}, {7, 8, 9, 10} and
{10, 11, 12, 1} allowing 34 (separating, unital) two-valued states whose convex sum yields the following
(quasi)classical probabilities:

p1 =λ1 + λ2 + λ3 + λ4 + λ5,

p2 =λ6 + λ7 + λ8 + λ9 + λ10 + λ11

+ λ12 + λ13 + λ14 + λ15 + λ16 + λ17,

p3 =λ18 + λ19 + λ20 + λ21 + λ22 + λ23

+ λ24 + λ25 + λ26 + λ24 + λ28 + λ29,

p4 =λ30 + λ31 + λ32 + λ33 + λ34,

p5 =λ1 + λ2 + λ6 + λ7 + λ8 + λ9

+ λ10 + λ18 + λ19 + λ20 + λ21 + λ22,

p6 =λ3 + λ4 + λ11 + λ12 + λ13 + λ14

+ λ15 + λ23 + λ24 + λ25 + λ26 + λ27,

p7 =λ5 + λ16 + λ17 + λ28 + λ29,

p8 =λ1 + λ3 + λ6 + λ7 + λ11 + λ12

+ λ18 + λ19 + λ23 + λ24 + λ30 + λ31,

p9 =λ2 + λ4 + λ8 + λ9 + λ13 + λ14

+ λ20 + λ21 + λ25 + λ26 + λ32 + λ33,

p10 =λ10 + λ15 + λ22 + λ27 + λ34,

p11 =λ6 + λ8 + λ11 + λ13 + λ16 + λ18

+ λ20 + λ23 + λ25 + λ28 + λ30 + λ32,

p12 =λ7 + λ9 + λ12 + λ14 + λ17 + λ19

+ λ21 + λ24 + λ26 + λ29 + λ31 + λ33.

(A2)
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Appendix C. Two-Valued States, (Quasi)Classical Probabilities on the Pentagon (Pentagram)
Logic in Three Dimensions

There are five contexts {1, 2, 3}, {3, 4, 5}, {5, 6, 7}, {7, 8, 9} and {9, 10, 1} allowing 11 (separating,
unital) two-valued states [26] whose convex sum yields the following (quasi)classical probabilities:

p1 =λ1 + λ2 + λ3,

p2 =λ4 + λ5 + λ7 + λ9 + λ11,

p3 =λ6 + λ8 + λ10,

p4 =λ1 + λ2 + λ4 + λ7 + λ11,

p5 =λ3 + λ5 + λ9,

p6 =λ1 + λ4 + λ6 + λ10 + λ11,

p7 =λ2 + λ7 + λ8,

p8 =λ1 + λ3 + λ9 + λ10 + λ11,

p9 =λ4 + λ5 + λ6,

p10 =λ7 + λ8 + λ9 + λ10 + λ11.

(A3)

Appendix D. Truth Assignments, (Quasi)Classical Probabilities on the Specker Bug Combo Logic

The logic depicted in Figure 4c contains 27 propositions forming 16 contexts {a, 1, 2}, {2, 3, 4},
{4, 5, b}, {b, 6, 7}, {7, 8, 9}, {9, 10, a}, {3, 8, 11}, {a, c, b′}, {b, c, a′}, {a′, 1′, 2′}, {2′, 3′, 4′}, {4′, 5′, b′},
{b′, 6′, 7′}, {7′, 8′, 9′}, {9′, 10′, a′} and {3′, 8′, 11′}, allowing 82 non-separating on a/a′ and b/b′, unital
two-valued states (not enumerated here because of volume). Nine and nine of these permit a, as well
as a′ and b, as well as b′ to be true, respectively.

The logic depicted in Figure 4b contains 16 propositions forming nine contexts {a, 1, 2},
{2, 3, 4}, {4, 5, b}, {b, 6, 7}, {7, 8, 9}, {9, 10, a}, {3, 8, 11}, {a, c, b′} and {b, c, a′}, allowing 22
(separating and unital) two-valued states, which, through their convex summation, yield the
(quasi-)classical probabilities:
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pa =λ1 + λ2 + λ3,

pb =λ8 + λ21 + λ22,

pa′ =λ1 + λ2 + λ3 + λ5 + λ7 + λ10

+ λ12 + λ14 + λ16 + λ18 + λ20,

pb′ =λ5 + λ7 + λ8 + λ10 + λ12 + λ14

+ λ16 + λ18 + λ20 + λ21 + λ22,

pc =λ4 + λ6 + λ9 + λ11 + λ13 + λ15 + λ17 + λ19,

p1 =λ4 + λ5 + λ6 + λ7 + λ8 + λ9

+ λ10 + λ11 + λ12 + λ13 + λ14,

p2 =λ15 + λ16 + λ17 + λ18 + λ19 + λ20 + λ21 + λ22,

p3 =λ1 + λ4 + λ5 + λ6 + λ7 + λ8,

p4 =λ2 + λ3 + λ9 + λ10 + λ11 + λ12 + λ13 + λ14,

p5 =λ1 + λ4 + λ5 + λ6 + λ7 + λ15

+ λ16 + λ17 + λ18 + λ19 + λ20,

p6 =λ2 + λ4 + λ5 + λ9 + λ10 + λ11

+ λ12 + λ15 + λ16 + λ17 + λ18,

p7 =λ1 + λ3 + λ6 + λ7 + λ13 + λ14 + λ19 + λ20,

p8 =λ2 + λ9 + λ10 + λ15 + λ16 + λ21,

p9 =λ4 + λ5 + λ8 + λ11 + λ12 + λ17 + λ18 + λ22,

p10 =λ6 + λ7 + λ9 + λ10 + λ13 + λ14

+ λ15 + λ16 + λ19 + λ20 + λ21,

p11 =λ3 + λ11 + λ12 + λ13 + λ14 + λ17

+ λ18 + λ19 + λ20 + λ22.

(A4)

Note that, for all configurations, pa = λ1 + λ2 + λ3 ≤ pa′ , implying that, whenever a is true, a′

must be true, as well.
The Specker bug logic depicted in Figure 4a contains 13 propositions forming seven contexts

{a, 1, 2}, {2, 3, 4}, {4, 5, b}, {b, 6, 7}, {7, 8, 9}, {9, 10, a} and {3, 8, 11}, allowing 14 (separating and
unital) two-valued states:

pa =λ1 + λ2 + λ3,

pb =λ6 + λ13 + λ14,

p1 =λ4 + λ5 + λ6 + λ7 + λ8 + λ9,

p2 =λ10 + λ11 + λ12 + λ13 + λ14,

p3 =λ1 + λ4 + λ5 + λ6,

p4 =λ2 + λ3 + λ7 + λ8 + λ9,

p5 =λ1 + λ4 + λ5 + λ10 + λ11 + λ12,

p6 =λ2 + λ4 + λ7 + λ8 + λ10 + λ11,

p7 =λ1 + λ3 + λ5 + λ9 + λ12,

p8 =λ2 + λ7 + λ10 + λ13,

p9 =λ4 + λ6 + λ8 + λ11 + λ14,

p10 =λ5 + λ7 + λ9 + λ10 + λ12 + λ13,

p11 =λ3 + λ8 + λ9 + λ11 + λ12 + λ14.

(A5)

Note that, for all configurations, whenever a is true, b is false, and vice versa.
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Appendix E. Truth Assignments, (Quasi)Classical Probabilities on Truth-Implies-Value
Indefiniteness Logic in Three Dimensions

Figure 6c depicts 37 propositions {a, b, 1, 2, 3, . . . , 35} in 26 contexts {a, 1, 2}, {b, 2, 3}, {4, a, 5},
{b, 6, 7}, [{7, 10, 4}](a),(c), [{10, 12, 13}](a),(c), [{5, 29, 23}](b),(c), [{13, 31, 29}](b),(c), {3, 21, 23}, {4, 28, 22},
{22, 19, 3}, {b, 8, 9}, {9, 11, 5}, {28, 30, 15}, {15, 14, 11}, {6, 33, 17}, {17, 20, 21}, {7, 34, 27}, {27, 26, 23},
{22, 24, 25}, {25, 35, 9}, {15, 17, 1}, {13, 16, 1}, {16, 18, 19}, {16, 32, 8} and {25, 1, 27}, allowing eight
(non-separating, non-unital on a, 2, 13, 15, 16, 17, 25, 27) two-valued states whose convex sum yields
the following weights:

pa =p2 = p13 = p15 = p16 = p17 = p25 = p27 = 0,

pb =λ1 + λ2 + λ3 + λ4,

p1 =λ1 + λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ8 = 1,

p3 =+ λ5 + λ6 + λ7 + λ8,

p4 =λ1 + λ2 + λ5 + λ6,

p5 =λ3 + λ4 + λ7 + λ8,

p6 =λ5 + λ6 + λ7,

p7 =λ8, p9 = λ6, p22 = λ4, p23 = λ2,

p8 =λ5 + λ7 + λ8,

p10 =λ3 + λ4 + λ7,

p11 =λ1 + λ2 + λ5,

p12 =λ1 + λ2 + λ5 + λ6 + λ8,

p14 =λ3 + λ4 + λ6 + λ7 + λ8,

p18 =λ4 + λ5 + λ6 + λ7 + λ8,

p19 =λ1 + λ2 + λ3,

p20 =+ λ2 + λ5 + λ6 + λ7 + λ8,

p21 =λ1 + λ3 + λ4,

p24 =λ1 + λ2 + λ3 + λ5 + λ6 + λ7 + λ8,

p26 =λ1 + λ3 + λ4 + λ5 + λ6 + λ7 + λ8,

p28 =λ3 + λ7 + λ8,

p29 =λ1 + λ5 + λ6,

p30 =λ1 + λ2 + λ4 + λ5 + λ6,

p31 =λ2 + λ3 + λ4 + λ7 + λ8,

p32 =λ1 + λ2 + λ3 + λ4 + λ6,

p33 =λ1 + λ2 + λ3 + λ4 + λ8,

p34 =λ1 + λ2 + λ3 + λ4 + λ5 + λ6 + λ7,

p35 =λ1 + λ2 + λ3 + λ4 + λ5 + λ7 + λ8.

(A6)

The logics in Figure 6a,b contain 35 observables in 24 contexts, which are the same as before in
Figure 6c, lacking two contexts[{5, 29, 23}](b),(c) and [{13, 31, 29}](b),(c), as well as [{7, 10, 4}](a),(c) and
[{10, 12, 13}](a),(c), respectively.

The logic in Figure 6a allows 13 (non-unital on 16) two-valued states whose convex sum yields
the following weights:
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pa =λ1,

pb =λ2 + λ3 + λ4 + λ5 + λ6 + λ7,

p16 =0,

p1 =λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ8 + λ9 + λ10 + λ11,

p2 =λ12 + λ13,

p3 =λ1 + λ8 + λ9 + λ10 + λ11,

p4 =λ2 + λ3 + λ8 + λ9 + λ12,

p5 =λ4 + λ5 + λ6 + λ7 + λ10 + λ11 + λ13,

p6 =λ8 + λ9 + λ10 + λ12,

p7 =λ1 + λ11 + λ13,

p8 =λ1 + λ8 + λ10 + λ11 + λ13,

p9 =λ9 + λ12,

p10 =λ4 + λ5 + λ6 + λ7 + λ10,

p11 =λ1 + λ2 + λ3 + λ8,

p12 =λ2 + λ3 + λ8 + λ9 + λ11,

p13 =λ1 + λ12 + λ13,

p14 =λ4 + λ5 + λ6 + λ7 + λ9 + λ10 + λ11 + λ13,

p15 =λ12,

p17 =λ1 + λ13,

p18 =λ1 + λ5 + λ7 + λ8 + λ9 + λ10 + λ11,

p19 =λ2 + λ3 + λ4 + λ6 + λ12 + λ13,

p20 =λ3 + λ6 + λ7 + λ8 + λ9 + λ10 + λ11,

p21 =λ2 + λ4 + λ5 + λ12,

p22 =λ5 + λ7,

p23 =λ3 + λ6 + λ7 + λ13,

p24 =λ2 + λ3 + λ4 + λ6 + λ8 + λ9 + λ10 + λ11 + λ12,

p25 =λ1 + λ13,

p26 =λ1 + λ2 + λ4 + λ5 + λ8 + λ9 + λ10 + λ11,

p27 =λ12,

p28 =λ1 + λ4 + λ6 + λ10 + λ11 + λ13,

p30 =λ2 + λ3 + λ5 + λ7 + λ8 + λ9,

p32 =λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ9 + λ12,

p33 =λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ11,

p34 =λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ8 + λ9 + λ10,

p35 =λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ8 + λ10 + λ11.

(A7)

Therefore, whenever a is true, that is, pa = λ1 = 1, b has to be false, because pb = λ2 + λ3 + λ4 +

λ5 + λ6 + λ7 = 0.
Conversely, the logic in Figure 6b allows 13 (non-separating on 15/27 and non-unital on 16)

two-valued states whose convex sum yields the following weights:
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pa =λ1,

pb =λ1 + λ2 + λ3 + λ4 + λ5,

p16 =0,

p1 =λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ8 + λ9 + λ10 + λ11,

p2 =λ12 + λ13,

p3 =λ6 + λ7 + λ8 + λ9 + λ10 + λ11,

p4 =λ2 + λ3 + λ6 + λ7 + λ8 + λ9 + λ12,

p5 =λ4 + λ5 + λ10 + λ11 + λ13,

p6 =λ6 + λ7 + λ10 + λ13,

p7 =λ8 + λ9 + λ11 + λ12,

p8 =λ6 + λ8 + λ10 + λ11 + λ12 + λ13,

p9 =λ7 + λ9,

p11 =λ1 + λ2 + λ3 + λ6 + λ8 + λ12,

p13 =λ1 + λ12 + λ13,

p14 =λ4 + λ5 + λ7 + λ9 + λ10 + λ11,

p15 =p27 = λ13,

p17 =λ1 + λ12,

p18 =λ5 + λ6 + λ7 + λ8 + λ9 + λ10 + λ11 + λ13,

p19 =λ1 + λ2 + λ3 + λ4 + λ12,

p20 =λ3 + λ6 + λ7 + λ8 + λ9 + λ10 + λ11,

p21 =λ2 + λ4 + λ5 + λ13,

p22 =λ5 + λ13,

p23 =λ1 + λ3 + λ12,

p24 =λ2 + λ3 + λ4 + λ6 + λ7 + λ8 + λ9 + λ10 + λ11,

p25 =λ1 + λ12,

p26 =λ2 + λ4 + λ5 + λ6 + λ7 + λ8 + λ9 + λ10 + λ11,

p28 =λ1 + λ4 + λ10 + λ11,

p29 =λ2 + λ6 + λ7 + λ8 + λ9,

p30 =λ2 + λ3 + λ5 + λ6 + λ7 + λ8 + λ9 + λ12,

p31 =λ3 + λ4 + λ5 + λ10 + λ11,

p32 =λ1 + λ2 + λ3 + λ4 + λ5 + λ7 + λ9,

p33 =λ2 + λ3 + λ4 + λ5 + λ8 + λ9 + λ11,

p34 =λ1 + λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ10,

p35 =λ2 + λ3 + λ4 + λ5 + λ6 + λ8 + λ10 + λ11 + λ13.

(A8)

Therefore, whenever a is true, that is, pa = λ1 = 1, b has to be true, because pb = λ1 + λ2 + λ3 +

λ4 + λ5 = λ1 = 1.
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Abstract: Training deep learning networks is a difficult task due to computational complexity, and this
is traditionally handled by simplifying network topology to enable parallel computation on graphical
processing units (GPUs). However, the emergence of quantum devices allows reconsideration of
complex topologies. We illustrate a particular network topology that can be trained to classify MNIST
data (an image dataset of handwritten digits) and neutrino detection data using a restricted form of
adiabatic quantum computation known as quantum annealing performed by a D-Wave processor.
We provide a brief description of the hardware and how it solves Ising models, how we translate our
data into the corresponding Ising models, and how we use available expanded topology options to
explore potential performance improvements. Although we focus on the application of quantum
annealing in this article, the work discussed here is just one of three approaches we explored as part
of a larger project that considers alternative means for training deep learning networks. The other
approaches involve using a high performance computing (HPC) environment to automatically
find network topologies with good performance and using neuromorphic computing to find
a low-power solution for training deep learning networks. Our results show that our quantum
approach can find good network parameters in a reasonable time despite increased network topology
complexity; that HPC can find good parameters for traditional, simplified network topologies;
and that neuromorphic computers can use low power memristive hardware to represent complex
topologies and parameters derived from other architecture choices.

Keywords: deep learning; quantum computing; neuromorphic computing; high performance computing

1. Introduction

A neural network is a machine learning concept originally inspired by studies of the visual cortex
of the brain. In biology, neural networks are the neurons of the brain connected to each other via
synapses; accordingly, in machine learning, they are graphical models where variables are connected
to each other with certain weights. Both are highly useful in analyzing image data, but practical
considerations regarding network topology limit the potential of simulating neural networks on
computers. Simulated networks tend to divide neurons into different layers and prohibit intralayer
connections. Many-layered networks are called deep learning networks, and the restriction of intralayer
connections allows rapid training on graphical processing units (GPUs).
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We explain some current limitations of deep learning networks and offer approaches to
help mitigate them. For this article we focus on a quantum adiabatic computing approach,
which is one of a trio in a larger project to survey machine learning in non-traditional computing
environments, though we also describe the other approaches at a high level to offer comparison
and context for experiment designs. The second approach uses a high performance computing
environment to automatically discover good network topologies, albeit they remain restricted from
using intralayer connections. The third approach uses neuromorphic computing as a low-power
alternative for representing neural networks. Rather than explicitly choosing one solution or another,
these approaches are meant to augment each other. Describing these different approaches
necessitates a brief description of various machine learning models and networks including Boltzmann
machines (BMs), convolutional neural networks (CNNs), and spiking neural networks (SNNs).
Results obtained from CNNs and SNNs, while important to our project, are not the focus of this
article and are presented in the appendix.

1.1. Boltzmann Machines

A Boltzmann machine is an energy-based generative model of data. BMs contain binary units,
and each possible configuration of units is assigned a certain energy based on edge weights. The goal
of training is to find edge weights that result in low energy configurations for patterns more likely to
occur in data. Since BMs can be represented as Ising models, and because the D-Wave processor is
designed to natively solve Ising models, BMs are particularly attractive for our purposes. We tend
to view BMs as probabilistic neural networks with symmetrically connected units [1]. BMs are well
suited to solving constraint satisfaction tasks with many weak constraints, including digit and object
recognition, compression/coding, and natural language processing.

A common algorithm for training BMs exposes a BM to input data and updates the weights
in order to maximize the likelihood that the underlying model of the BM reproduces the data set.
This method requires computing certain quantities which, due to the specific form of the BM, turn out
to be the values of certain correlation functions in thermal equilibrium. However, training is a slow
and arduous task if we allow models with unrestricted topology. Connectivity loops slow down the
convergence of many algorithms used to estimate thermal equilibrium properties. Simulated annealing
is a generic and widely used algorithm to reach this thermal equilibrium, but this remains a slow and
expensive process for large networks. This forces us to either use tiny networks or to give up complex
topologies, with the latter option leading to the popular choice of using restricted Boltzmann machines
(RBMs) [2].

Units in RBMs are categorized as “visible” or “hidden.” During training, the visible units of
a RBM represent the input dataset whereas the hidden units represent latent factors that control the
data distribution. After undergoing the above training process, an RBM will produce a distribution of
visible unit states that should closely match the input dataset. Additionally, only bipartite connectivity
between the two types is allowed, which makes parallel computation feasible. Figure 1 shows an
example of this bipartite connectivity. Approximation algorithms make training tractable in practice,
and RBMs can be stacked together to form deep belief networks (DBNs) [3].

1.2. Convolutional Neural Networks

Of the many designs for deep learning networks, CNNs have become the most widely used
for analyzing image data [4]. As with other deep learning networks, CNNs contain many layers of
neural units with many connections between different layers but no connections between units
of a particular layer. They also use standard stochastic gradient descent and back-propagation
combined with labeled data to train. What separates a CNN from other networks are its unique
connectivity arrangement and different types of layers. See Figure 2 for a high-level diagram of the
CNN architecture.
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One type of layer in CNNs is the convolutional layer. Unlike in other neural networks,
a convolutional layer uses a kernel, or small set of shared weights, to produce a feature map of
the input to the layer, and many convolutional layers operate in succession. Other networks would
typically have every input unit connected to every processing unit in a layer whereas a CNN is satisfied
with using convolution to produce sparse connections between layers—see Figure 1 for the dense
connectivity of a BM and compare it against the sparse CNN connectivity shown in Figure 3. A kernel
captures a certain feature from the input, and convolving a kernel with the data finds this feature
across the whole input. For example, a kernel that detects diagonal lines can be convolved with an
image to produce a feature map that can be interpreted as identifying all areas of an image that contain
diagonal lines.

Figure 1. A Boltzmann machine is divided into a visible layer, representing the data input,
and a hidden layer, which represents latent factors controlling the data distribution. This diagram
shows the restricted Boltzmann machine, or RBM, in which intralayer connections are prohibited. Each
connection between units is a separate weight parameter which is discovered through training.

Figure 2. A convolutional neural network is composed of a series of alternating convolutional and
pooling layers. Each convolutional layer extracts features from its preceding layer to form feature maps.
These feature maps are then down-sampled by a pooling layer to exploit data locality. A perceptron,
a simple type of classification network, is placed as the last layer of the CNN.

The second type of layer is the pooling layer. Pooling layers use the many feature maps produced
by convolutional layers as input and subsample them to produce smaller feature maps to help take
advantage of data locality within images. CNNs use alternating layers of convolutional and pooling
layers to extract and abstract image features. Pooling operations makes feature detection in CNNs
resilient to position shifts in images [5].
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Figure 3. The connectivity in a CNN is sparse relative to the previously shown BM model. Additionally,
the set of weights is shared between units, unlike in BMs. In this illustration we symbolize this with
the red, green, and blue connections to show that each unit in the convolutional layer applies the same
operation to different segments of the input.

1.3. Spiking Neural Networks

SNNs differ from both BMs and CNNs by incorporating the extra dimension of time into
how information is processed. BMs and CNNs do not have a sense of time built into their
architectures—neural unit activity is iteratively calculated on a layer-by-layer basis. SNNs instead use
integrate-and-fire neurons, units that collect activation potential over time and fire or “spike” upon
reaching a threshold, after which they cannot fire during what is known as a refractory period.
Additionally, synapses in a SNN can include programmable delay components, where larger
delay values on the synapse correspond to longer propagation time of signals along that synapse.
Additionally, there is not necessarily a division of units into well-organized layers in a SNN, and input
is fed to the network over time.

SNNs have great potential in moving away from the traditional implementation of
machine learning algorithms on the CPU/memory von Neumann architecture. For example,
the CPU/memory model, while useful on many diverse applications, has the drawback of high
power requirements. Nature’s biological neural networks have extremely low power requirements
by comparison. There are many different ways to implement neuromorphic systems, but one of the
more promising device types to include in neuromorphic systems is memristors. Development of
memristive technology opens the potential of running spiking neural networks using low power
consumption on neuromorphic architectures.

A key challenge associated with SNNs in general and SNNs for neuromorphic systems in
particular is determining the correct training or learning algorithm with which to build the SNN.
Though there have been efforts to map existing architectures like CNNs to equivalent spiking
neuromorphic systems [6,7], there is also potential to develop independent deep learning architectures
that exploit the temporal processing power of SNNs.

1.4. Challenges

Complex networks pose enormous problems for deep learning, three of which we identify.
How we tackle each of these challenges is the basis of our project, where we seek relief from these issues
through quantum adiabatic computing, high performance computing, and neuromorphic computing.

The first of these challenges comes from complex network topology in neural networks.
By complex network topology we mean bidirectional connections and looping connectivity between
neural units, which slow training to a crawl. The training algorithms we know for such complex
networks have greater than polynomial runtime, making them effectively intractable and untenable
for practical purposes. Deep networks deployed on real-world problems, like the previously discussed
CNN architecture, instead impose limitations on network topology. Removing intralayer connections
or enforcing strict rules for network topology allows faster and tractable training algorithms to run.
However, doing so takes away some of the representational power of the network [8], and these
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restricted or limited networks do not reflect models found in nature. While tractable models perform
remarkably well on specialized classification tasks, we speculate that other more complex and
generalized tasks may benefit from the additional representational power offered by complex networks.
We believe quantum adiabatic computing offers part of a potential solution through its ability to
sample from complex probability distributions such as those generated by neural networks containing
intralayer connections.

The second challenge is automatically discovering optimal or near-optimal network
hyperparameters and topologies. Hyperparameters in deep learning refer to the model parameters, i.e.,
the activation function used, the number of hidden units in a layer, the kernel size of a convolutional
layer, and the learning rate of the solver. Currently the best deep learning models are discovered
by creating, training, testing, and tuning many models on some well-known reference dataset and
reporting the best model in the literature. However, if the dataset has not been examined before, it
is difficult to know how to tune networks for optimal performance. GPU-based high performance
computing provides an opportunity to automate much of this process—to train, test, and evolve
thousands of deep learning networks to find optimally-performing network hyperparameters and
network topologies.

The last challenge is power consumption, which we can help address through neuromorphic
computing. Machine learning’s computational needs have so far been met with power-hungry CPUs
and more recently GPUs. The switch from CPUs to GPUs has significantly sped up computation
and lowered computation costs, but GPU efficiency in training networks still pales in comparison to
the efficiency of biological brains. For an image recognition task, it might take many server farms
and a hydroelectric dam to compete with a mundane human brain running on a bit of glucose.
Neuromorphic computing offers a potential solution by developing specialized low-power hardware
that can implement SNNs approximating trained networks derived from more orthodox architectures.

This article focuses on deep learning’s challenges related to quantum adiabatic computing.
Though high performance and neuromorphic computing are an integral part of our project, we move
discussions of these topics to the appendix to better fit our focus for this journal, though mentions of
both appear as necessary through the rest of the article. Our experiments use the MNIST dataset [9],
an image dataset of handwritten digits, and a neutrino particle detection dataset produced by Fermi
National Accelerator Laboratory. Next, we will review works related to quantum computing; then we
provide our experimental approach, results, and future research.

2. Related Work

We look at the current state-of-art quantum computing as it relates to the previously discussed
challenges in deep learning. Work related to high performance computing and neuromorphic
computing are presented in Appendix A. Though the papers and articles referenced in the appendix
are not strictly related to quantum adiabatic computing, they provide context for the larger ORNL
project and present existing or proposed systems that can be compared against our own quantum
computing efforts.

Feynman first discussed quantum computing within the context of simulation, noting that
simulating a quantum system using a classical computer seems to be intractable [10]. Interest in
quantum computing surged with the introduction by Shor of a polynomial-time algorithm for
factoring integers [11], giving an exponential speedup over the best known classical algorithm and
threatening to break most modern encryption systems. As with Turing’s work, these theories for
quantum computing were developed before quantum hardware was available. Different models of
quantum computing have since been developed in order to explore the power of quantum information
processing. In the quantum circuit model (on which Shor’s original algorithm relies), a sequence
of unitary transformations are applied to a set of quantum bits (qubits), in a way analogous to the
logical gates that are applied to classical bits in classical computing. In the measurement-based
quantum computing model [12], a special quantum state is prepared beforehand, and a computation is
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performed by adaptively applying quantum gates to each qubit and measuring them. In the adiabatic
quantum computing (AQC) model [13], a quantum state encoding the solution of a problem is prepared
using the adiabatic theorem of quantum mechanics. All three models have the same computational
power but also offer different trade-offs. Quantum information is extremely fragile, and any source of
noise (like thermal fluctuations, unwanted interactions with an uncontrolled environment, etc.) can
destroy the quantum features that are expected to provide a computational speedup. The AQC model
has been considered as the most robust implementation, and hence the development of actual devices
based on AQC has led that of the other two approaches, both of which are more susceptible to noise
and require very large overhead to overcome the effects of that noise. However, currently available
devices such as the D-Wave processor are still limited in many aspects, the most important being the
fact that they operate at a finite temperature and that the effects of this noise in the performance of
the device is still an active area of research. We typically refer to these devices operating at a finite
temperature as quantum annealers.

Quantum annealers are in principle designed to solve a particular optimization problem,
typically finding the ground state of an Ising Hamiltonian. Unfortunately, thermal fluctuations
due to interactions with a finite temperature reservoir, in addition to unwanted quantum interactions
with other systems in the environment, tend to kick the system out of its ground state and into
an excited state. These unavoidable features make the quantum annealer behave more like a sampler
than an exact optimizer in practice. However, this seemingly counterproductive property may be
turned into an advantage since the ability to draw samples from complicated probability distributions
is essential to probabilistic deep learning approaches such as the Boltzmann machine, which relies
heavily upon sampling complex distributions in both training and output. Quantum annealers
could then help us overcome the problem of complex topologies mentioned before. BMs in their
unrestricted form are impractical to train on classical machines, a fact that led to the development
of RBMs that eliminate intralayer edges and introduce bipartite connectivity [2]. Bipartite graphs
allow the use of an algorithm known as contrastive divergence that approximates samples from
a RBM in linear time, which is a critical tool for the practical usage of BMs because sampling is
the core engine for training BMs. Quantum annealing hardware allows us to partially pull back
from this bipartite limitation. Quantum annealers provide a novel way to sample richer topologies,
and several approaches exploit this feature for different choices of graphs and topologies on D-Wave
hardware [14–16].

3. Approach and Data

Quantum adiabatic computation, high performance computing, and neuromorphic computing
differ significantly from each other in how they process data. As such, the amount of data each can
support dictated our choice of deep learning problem that could be adapted to each of these three
heterogeneous paradigms. At the time that the results were collected, D-Wave supported 1000 qubits
(now 2000 qubits), which limited the size of problems we could solve. With this in mind we chose to
examine two datasets we refer to as MNIST and neutrino data.

The Modified National Institute of Standards and Technology (MNIST) data set is a well-known
collection of hand-written digits extensively studied in the deep learning community. The dataset is
composed of images, each of which contains a handwritten digit and an associated label identifying
the digit. The digit images are only 28× 28 = 784 pixels, which fits within the 1000 qubit D-Wave
hardware and onto HPC and neuromorphic architectures. Our later experiments used neutrino particle
detection data down-sampled and adjusted to 32× 32 pixels.

The neutrino scattering dataset was collected at Fermi National Accelerator Laboratory as part of
the MINERvA experiment that is focused on vertex reconstruction [17]. In the Main Injector Experiment
for v-A (MINERvA) experiment, many scintillator strips were arranged in planes orthogonal to the
neutrino beam within the detector aligned across three different orientations or “views”. We utilized
both the energy lattice and the time lattice information in the dataset. In particular, we represented
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the energy lattice as an image, where the intensity of each pixel in the image corresponds to the
average energy over time in the detection event. The images show the trajectory of particles over
time from the view of one particular plane. We also used the time lattice in one of our experiments.
For the time lattice, each data point in a detection event corresponds to the time at which every level
exceeds a certain threshold. Associated with each detection event is a number corresponding to
a specific detection plate within the chamber; this number indicates which plate a neutrino strikes.
This number can then be utilized to determine in which detector region or segment the vertex of the
event was located.

In BM experiments we used down-sampled and collated image data from one single plane. We did
not use the original data because the quantum annealer has limited space for storing problems and
because BMs are not well-suited to handling temporal data. However, the SNN experiments did
take advantage of temporal data because SNNs are designed to handle such data. We offer more
explanation on SNNs in Section 1.3.

Consideration of which deep learning networks to study on these platforms came next. Initially,
CNNs seemed like an appropriate option, especially for HPC, but we ran into problems when
considering the quantum environment. CNNs had consistently provided superior performance
on standard datasets and had proven quite popular in the deep learning community. On a quantum
platform, however, it became unclear how to effectively implement a CNN. Neither the circuit nor
adiabatic optimization models offered good fits for CNNs, which operate using many successive
layers of units. On the other hand, BMs and their probabilistic units were more like the sort of
optimization problem that D-Wave hardware solves. Additionally, the quantum architecture allowed
for intralayer connections between units that would normally be intractable for conventional machines
to compute. Meanwhile, neuromorphic hardware running SNNs provided native time-based analysis
models. BMs running on D-Wave and SNNs running on neuromorphic hardware were potentially
offering distinct capabilities we believed could augment or strengthen CNN models trained in
an HPC environment.

With this in mind we hope the following sections will illustrate the benefits of these different
platforms. First we describe how we used a quantum annealer to train a BM containing intralayer
connections and utilized the hardware to approximate samples from more complex probability
distributions. Then, we show how we used a high performance computing cluster to automatically
discover near-optimal topologies and parameters with evolutionary algorithms. Finally, we discuss
how we natively implemented trained models produced by the previous two platforms on memristive
hardware running spiking neural networks.

Because the adiabatic quantum computation portion of this project is of particular interest for
this article, we next provide a more detailed description of the process and of the annealing hardware.
Descriptions of the corresponding HPC and neuromorphic portions are left to Appendices B.1 and B.2.

3.1. Adiabatic Quantum Computation

Adiabatic quantum computation (AQC) is an implementation of the ideas of quantum computing
that relies on the adiabatic theorem of quantum mechanics. This result states that if a system is in
the ground state of a particular Hamiltonian and the parameters of this Hamiltonian are changed
slowly enough, the system will remain in the ground state of the time-dependent Hamiltonian.
This idea was used by Farhi et al. [13] to propose an alternative to the quantum circuit model of
quantum computing. The main idea is to start with a Hamiltonian whose ground state is easy to
construct, and slowly change it into one whose ground state encodes the answer to a particular problem.

One application of AQC is to solve combinatorial optimization problems, a particular example
of which is finding the ground state of an Ising model. This model describes a system of interacting
magnetic moments subject to local biases. This problem was shown by Barahona [18] to be NP-hard,
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so many other optimization problems of practical interest can be recast in this form. If we consider
a set of spin variables Si = ±1, the energy of the system is given by a quadratic expression of the form

EIsing(s) = ∑
i

hi si + ∑
i,j

Jijsisj (1)

Solving this problem means finding a spin configuration that minimizes this energy function.
In a quantum approach, we consider a quantum system of interacting spins described by the
Ising Hamiltonian

HIsing = ∑
i

hi σz
i + ∑

i,j
Jijσ

z
i ⊗ σz

j (2)

where hi represent local magnetic fields and Jij are couplings between spin pairs. This Hamiltonian is
diagonal in the σz basis, and its ground state can be used to construct the corresponding configuration
that minimizes the Ising energy above.

To solve this problem in the context of AQC we can choose an initial Hamiltonian of the form

H0 = −∑
i

σx
i (3)

that represents the effects of a transverse field applied to all spins. The ground state of H0 consists in
all spins being in the |+〉 = (|0〉+ |1〉)/√2 state. If we consider the spins as little magnetic moments,
this corresponds to all spins pointing in the x direction. Quantum mechanically this state is separable,
easy to construct (just apply a strong magnetic field in the x direction), and when expressed in the
computational basis it is an equal superposition of all possible states.

The computation is performed by slowly changing the relative weights of H0 and HIsing during
the interval [0, T]

H(t) = (1− (t/T))H0 + (t/T)HIsing. (4)

This process is known as quantum annealing. The change must be slow compared to the time scale
associated with the minimum energy gap of the time-dependent Hamiltonian, where we define the
gap as the energy difference between the energies of the first excited state and the ground state [19–21].
If the change is too fast the system can transition to an excited state, and the state at the end of the
annealing will not be the ground state of the Ising Hamiltonian. On the other hand, if the change is too
slow the computation will take a long time. The main challenges in adiabatic quantum computing are
to understand the connection between this energy gap (i.e., the runtime) and the size of the problem,
and to find Hamiltonians that solve a given problem while possessing a larger gap [22]. However,
other issues are also important for practical implementations, in particular how unavoidable noise
affects the system due to the system’s interaction with the environment.

3.2. The Superconducting Quantum Adiabatic Processor

The architecture and physical details of the quantum adiabatic processor we studied are described
in detail in [23]. In essence, it is designed to represent the Ising Hamiltonian as an array of
superconducting flux qubits with programmable interactions. The qubits are implemented using
superconducting quantum interference devices (SQUIDs) composed of a Niobium loop elongated
in one direction. Several loops and Josephson junctions are added to the design to both allow for
the required controls to implement quantum annealing and to compensate for the slight differences
between the physical properties of any two SQUIDs due to fabrication variations. The processor has a
unit-cell structure composed of 8 qubits with four arranged horizontally and four vertically such that
each vertical qubit intersects every horizontal one. At these intersections another SQUID is placed to
control the magnetic coupling between the corresponding horizontal and vertical qubits. These are
the only couplings allowed (i.e., horizontal qubits are not coupled to other horizontal qubits). This
architecture results in a coupling graph that is fully bipartite at the unit cell level. The processor is

67



Entropy 2018, 20, 380

then built by adjoining more unit cells in a square lattice such that the horizontal qubits in one cell
are coupled to the horizontal qubits in the neighboring cells to the right and the left, and the vertical
qubits are coupled to the vertical qubits on top and on the bottom. A visualization of this setup, also
known as a Chimera graph, is shown in Figure 4.

Programmable interactions and biases are used to implement the Ising Hamiltonian in
Equation (2). The parameters hi represent local magnetic fields while the parameters Jij are the
couplings between two spins. Their values are restricted to the range [−2, 2] for the local local fields,
and [−1, 1] for the couplings. It is understood that the couplings Jij are only nonzero when there
is a physical coupler associated with that particular pair of qubits on the chip. A transverse field
term can also be implemented on each qubit, resulting in a driver Hamiltonian of the form shown in
Equation (3). The adiabatic quantum computation is implemented by combining the two Hamiltonians
above and changing their relative weight adiabatically, such that the system remains always in the
ground state. In other words, the processor implements the Hamiltonian

H(t) = A(t)Hx + B(t)HIsing (5)

where the functions A and B satisfy A(0) >> B(0) and A(T) << B(T), for some final annealing time T.
At t = 0, the system is in the ground state of the transverse field Hamiltonian Hx, corresponding to
all the qubits being in the same eigenstate of σx, or in other words, a superposition of all possible
states in the computational basis. For the closed system case (where there are no interactions with the
environment), if the quantum annealing is done slowly enough, the adiabatic theorem of quantum
mechanics guarantees that the state of the system at time T is with high probability the ground state
of HIsing. How slow is “slowly enough” depends on the details of the Hamiltonian, in particular the
inverse of the energy gap between the ground state and the first excited state, and this feature is the
main factor in determining a lower bound on the run time of the device. However, real devices are not
ideal closed systems, so unwanted interactions with the environment will try to kick the system out of
its ground state.

The current generations of D-Wave machines are designed for experimental use and are not
optimized for turnaround time, unlike relatively mature CPU or GPU platforms. Rather than directly
competing against existing classical solutions to machine learning, we focus on showing it is viable to
use a quantum annealer to help train a neural network with complex topologies using architectures
and approximations that differ from what has been used before [14–16]. For this reason, instead of
using clock timings, we measure error metrics against the number of training epochs. As quantum
annealing technology becomes more developed, machine learning algorithms may see benefits from
using this new type of hardware. Regardless, clock timings are still important to consider. We next
describe the computational workflow for each problem using D-Wave machines and communication
latency between a client machine and a D-Wave machine; later we describe the timings over various
operations on the hardware.

Each problem is sent across a network using D-Wave’s Solver API (Matlab or Python) to the
worker queue. Workers can concurrently process multiple requests and submit post-processed requests
to the quantum processing unit (QPU) queue. Each request is then run sequentially on the QPU.
Finally, the workers return the results back to the client. In one study D-Wave reported the mean
turnaround time for each request was approximately 340 ms. Timings can vary depending on network
latency-request latency can be reduced by placing the client physically next to the annealer, for example.

Communication latency aside, we also look at how long it takes to define and solve a problem
on D-Wave. Loading and defining a problem on D-Wave hardware takes around td = 10 ms.
Drawing a sample from the defined distribution via annealing takes around ta = 20 μs. Reading
out the unit states from a sample takes around tr = 120 μs. We repeat the sampling and read-out
stages k = 100 times for each MNIST image or neutrino detection instance in our experiments. So
for each data point within our datasets, it takes T = td + k(ta + tr) time to process. Currently the
problem definition time td and read-out time tr dominate wall-clock timing, but we again stress that
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we are looking to future developments and advancements in quantum annealing hardware that will
reduce such overhead. We find the low annealing time particularly appealing because it scales well in
algorithmic terms. That is, we can add additional hardware qubits or connectivity to produce more
complex networks but the sampling time (annealing time ta for our experiments) will not increase,
which is not the case for simulating equivalent networks in software.

The number of physical couplers restricts the set of problems that can be natively implemented
on the processor, and it represents one of the main limitations of the devices. Minor graph embeddings
can overcome this limitation but at the expense of utilizing more than one qubit per graph node [24].
As we will show in the next section, our approach turns this problem on its head. Instead of trying to
fit a problem into a particular topology, we start with our hardware topology using RBMs that have no
intralayer couplings and study the advantages gained from adding additional couplers.

3.3. Implementing a Boltzmann Machine on D-Wave

We used D-Wave’s adiabatic quantum computer located at the University of Southern California
Lockheed Martin Quantum Computing Center. We implemented a Boltzmann machine to represent
the MNIST digit recognition problem and neutrino particle detection problem. Deep learning using
BMs has been proposed before, but as discussed in Section 2, learning is intractable for fully connected
topologies because we need to compute expected values over an exponentially large state space [1,25].
RBMs address this by restricting network topology to bipartite connectivity to introduce conditional
independence among “visible” units (representing the dataset and RBM output) given the “hidden”
units (representing latent factors that control the data distribution), and vice versa, though they lose
some representational power in the process. The quantum annealing hardware gave us an opportunity
to first implement an RBM to establish baseline performance and then ease some topology restraints to
investigate how more complex topologies could improve our results.

Our RBM used 784 visible units to represent each pixel in a 28× 28 MNIST digit image and
80 hidden units on a D-Wave adiabatic quantum computer. We added an additional 10 visible units as
a digit classification layer where the unit with highest probability was chosen as the label. Similarly
we used 32× 32 = 1024 units to represent the neutrino data, 80 hidden units, and 11 classification
units to represent the 11 collision sites in the neutrino detection chamber, where the classification unit
with the highest probability was chosen as the BM’s guess for which plate the particle struck. The BMs
were trained over 25 epochs on a training set and then evaluated against a validation set.

Next, as mentioned above, we loosened some of the topology restrictions of RBMs. RBMs enforce
bipartite connectivity (see Figure 1), meaning hidden units are not connected to one another.
We partially removed this restriction and allowed some of our hidden units to communicate with
each other. We called this semi-restricted BM a “limited” Boltzmann machine (LBM). LBMs can be
viewed as a superset of RBMs, the only difference being a set of extra available connections between
hidden units. The previously described superconducting quantum adiabatic processor has physical
constraints that limit connectivity to a chimera topology, so LBMs remain a subset of BMs.

Because D-Wave hardware faces a physical constraint on the number of possible units and
connections, we would have had to employ the minor embedding approach mentioned above if we
wanted to represent all of a BMs units on hardware. This would result in a large overhead in the
number of qubits required, restricting our approach to small BMs. However, we can still try to exploit
the quantum features of the D-Wave by restricting the topology of our model and only embedding
part of it in the device. In our implementation we chose to represent only the hidden units, used the
annealer as a sampler for the interconnected hidden units to estimate required quantities needed
to update the weights, and left representation of the visible units to a classical machine. We were
primarily interested in the interaction between hidden/latent units because they can represent abstract
features extracted from the data. Figure 4 visualizes the extra connectivity we added to the LBM model
and Figure 5 shows how we represented LBMs on the D-Wave’s chimera topology.
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Using D-Wave hardware to adjust LBM parameters may help tackle the intractability issue because
the quantum annealer does not rely on conditional independence between units within a layer. We give
a short explanation of the training process for BMs to illustrate.

Figure 4. Our LBM model added connectivity between units in the hidden layer, shown in red.
RBMs prohibit such intralayer connections because they add too much computational complexity
for classical machines. We represented the hidden layer (outlined in blue) on the D-Wave device.
The connections between hidden units were 4-by-4 bipartite due to the device’s physical
topology constraints.

Figure 5. The hidden layer from Figure 4 is represented in one of D-Wave’s chimera cells here, with the
cell’s bipartite connectivity made more obvious. The input/visible units of the LBM are left on
a classical machine. Their contributions to the activity of the hidden units is reduced to an activity
bias (represented with ± symbols) on those units. Figure 6 shows the overall chimera topology of the
D-Wave device.

The configuration x of binary states s of units has an energy E defined by

E(x) = −∑
i

sibi −∑
i<j

sisjwij (6)

where b is the bias of a unit and wij is the mutual weight between two units i and j. The partition
function is ∑u e−E(u), and the probability the BM produces a particular configuration x is

P(x) = e−E(x)/ ∑
u

e−E(u). (7)

P(x) is difficult to compute in a full BM because it requires a sum over an exponentially large
state space. If we want to determine the probability of some hidden unit i is on (equal to 1) without
any guarantee of conditional independence, we would have to calculate P(hi = 1) = P(hi = 1|v, h−i)

where v is the state configuration of visible units and h is state configuration of the hidden units.
However, if we use RBMs to restrict ourselves to bipartite connectivity between v and h, this probability
factorizes and we can write P(hi = 1) = ∏n

j=1 P(hi = 1|vj). Our first RBM baseline experiment used
this standard procedure with 1-step Gibbs sampling. In our LBM experiment, we did not need to
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rely on conditional independence or Gibbs sampling because we used quantum annealing instead to
approximate samples from the more complicated probability distribution.

The training procedure for BMs compares the distribution of the data against the expected
distribution according to the model and uses the difference to adjust the weight matrix w. Sampling
from the model is difficult so we approximate using Markov Chain Monte Carlo (MCMC) sampling.
The first “positive” phase of training locks the states of visible units to a configuration determined by
the data—for example, a 28× 28 pixel image from the MNIST dataset. The hidden unit distribution
according to the data is found in this phase. The second “negative” phase unlocks the visible units and
the system is allowed to settle. Sampling during this phase is difficult so we approximate samples
using contrastive divergence with one step of MCMC and find the unit distributions according to the
BM model. The weight matrix is then updated with the following equation:

Δwij = ε(〈vihj〉data − 〈vihj〉reconstruction) (8)

where ε is the learning rate, 〈vihj〉data is the product of visible and hidden unit state probabilities in
the positive phase, and 〈vihj〉reconstruction is the product of visible and hidden unit probabilities in the
negative phase.

Figure 6. Chimera graphs are composed of 8-qubit cells featuring bipartite connectivity. Each cell’s
partition is connected to another partition in the adjacent cells.

For the MNIST problem we used 6000 images from the MNIST digit dataset to train the RBM and
LBM. Each 28× 28 image was represented with a 784-length vector with 10 units using 1-hot encoding
to represent the class of digit. In training the labels were hidden and the BM attempted to reconstruct
them to guess what the image label was. The classification unit with the highest probability of being
“on” was chosen as the BM’s label guess. The neutrino experiment used the same setup except the
images were 32× 32 pixels and thus there were 1024 visible units. The weight matrices were randomly
initialized from a standard normal distribution and updated using the rule in Equation (8).

We wanted to further explore how connections between hidden units, referred to as couplers,
contributed to problem solving in an LBM topology. To do so we limited the visible-to-hidden
connectivity in the next experiment such that each hidden unit was only allowed to see a 4× 4 box
of pixels in the input images. These boxes did not overlap with each other. Reconstructing the input
image became a much harder problem and the hope was that the addition of couplers would allow
hidden units to trade information about input pixels in boxes they normally could not communicate
with and improve results. This setup was somewhat inspired by CNN convolutional layers but we
decided to make the “convolution” non-overlapping to use fewer qubits. In the future we will expand
to use more qubits.

We believed this setup would make couplers relatively more important to the LBM
because we reduced the ratio of visible-hidden connections to couplers. An input image with
32× 32 = 1024 = 210 data points and 64 hidden units has 210× 26 = 216 visible-to-hidden connections

71



Entropy 2018, 20, 380

for 168 couplers. However, hidden units with only 4× 4 boxes of pixel visibility would instead have
24 × 26 = 210 visible-to-hidden connections for 168 couplers.

4. Results

We trained our RBM and LBM using the same parameters over 25 epochs (complete runs over all
the training data). We followed common guidelines for choosing and adjusting hyperparameters [26].
We selected the learning rate ε to be 0.1 for weights between visible-to-hidden weights and 0.1 for
hidden-to-hidden units for our experiments, excepting our first one shown in Figure 7. Setting ε too
low means a BM learns slowly and may get trapped in local minima whereas setting it too high can
cause the network to travel wildly in parameter space and be unable to learn coherently.

Before implementing the RBM running on MNIST data we wanted to get initial results indicating
there was some merit to the LBM topology. Using simulated data, we mapped a BM to a quantum
annealing simulator and trained two configurations, one where intralayer connections were disabled
and one that had random intralayer connections. Ten epochs of training an RBM and LBM in Figure 7
show that LBM has some advantage.
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Figure 7. An initial experiment to demonstrate LBM utility. Reconstruction error (sum of squared
error) of BMs trained on simulated data using no intralayer connections and using random intralayer
connections with a small (0.0001) hidden-to-hidden weight learning rate. Here we show five RBMs
(red) and five LBMs (blue), and the results suggest even just the presence of relatively static intralayer
connections gives LBMs a performance advantage over RBMs. We obtained these results from the
quantum annealing simulator provided by D-Wave.

As discussed, our first experiment was to establish performance baselines in RBMs so we could
later compare LBMs against them. Figure 8 displays reconstruction error (sum of squared error
between the actual data and BM reconstruction data mentioned in Section 3.3) and classification rate.
This figure is included to confirm that the RBM did indeed learn to model the MNIST digit data
distribution. Figure 9 contains a comparison of RBM performance and LBM performance on the
MNIST digit recognition problem.

The RBM and LBM were both implemented on D-Wave and on MNIST images using the same
number of hidden and visible units. For this test we trained over 10 epochs. The RBM configuration,
as discussed, had no intra-layer connections, whereas the LBM configuration had limited connections
between the hidden nodes.
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Figure 8. Reconstruction error and classification rate over 25 training epochs using 6000 MNIST images
for training and 6000 for testing. Reconstruction error decreases as classification rate rises, confirming
that the RBM learns the MNIST data distribution.

Figure 9. RBM and LBM performance on the MNIST digit classification task. The LBM tends to label
the digits slightly better and produces lower reconstruction error than the RBM.

One quirk we found was LBM configuration initially performed worse than the RBM
configuration. This was unexpected and we adopted a hybrid learning approach where the intralayer
connections were reassigned from a random normal distribution for the first three training epochs.
Afterwards the intralayer couplers were allowed to evolve according to the standard training rule.
Our choice of a 3-epoch delay for intralayer training was rather arbitrary; further exploration into
the mechanics involved will be explored in future work where we will pre-train models as RBMs on
classical machines and then later hand over training to a quantum annealer.
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The LBM achieved a classification rate of 88.53 percent, seen in Figure 7, and was comparable to
other RBM results on MNIST [27].

Our LBM setup mapped only the hidden units to the D-Wave hardware whereas most other
works map a whole BM. The latter approach requires down-sampling and graph embedding. We hope
our approach scales better with problem size because we represent the visible input units on classical
machines and still use contrastive divergence as a training method.

Our experiments on neutrino data and limited visible-to-hidden connectivity were run on both
simulation software and D-Wave hardware. We used both because hardware has physical limits
regarding parameter ranges and experiences parameter warping, so the inclusion of software results
provides additional support if both environments produce comparable results. Parameters on the
hardware for Ising models have around 4–5 bit precision and can only take on values within a small
range, typically [−2, 2] for h or [−1, 1] for J. Software simulators do not have this limited precision and
their parameters are not limited to any particular range.

We show the simulator results in Figure 10. Results from the simulator suggest the addition
of couplers in this new setup improved performance, which led to our move to experiment on the
quantum annealing hardware. Our experiments in Figure 11 were similar to the previous ones,
albeit we first trained an RBM on a classical machine. We then took this lightly trained RBM model
and moved it to the D-Wave hardware, used its semi-trained parameters to initialize the weights of the
D-Wave RBM and LBM, enabled 168 couplers, then continued training for an additional 20 epochs.
We again performed the RBM experiment five times and the LBM experiment five times.

Figure 10. Comparison of RBM against LBM trained on neutrino data using a software simulator.
Weights are randomly initialized from a normal distribution. The change in learning rate at epoch 5 is
due to a change in the momentum parameter in the algorithm that is designed to speed the rate of
training. The graph shows the mean performance of five different RBMs and five different LBMs and
suggests the mean reconstruction error of RBM and LBM are significantly different.

In the LBM experiment we did not remap qubits in any scheme more complicated that
a linear fashion. That is, we designated each qubit to oversee a 4 × 4 box in a horizontal order
and simply assigned each qubit to unit cells according to this order. In future work we will argue this
is suboptimal and that we can improve our results even more by considering smarter remappings
of qubits to take advantage of locality within image data. For now we leave the comparison as RBM
results versus LBM results without any special qubit remapping.

One aspect of superconducting technology worth mentioning is power consumption. The energy
consumption of a system such as the D-Wave hardware is dominated by the cooling of the processor.
When programming the device, the control signals inject some energy into the system that can increase
the temperature by a few million Kelvin. This energy needs to extracted, resulting in a few pico
Watts of power being dissipated in this step. However, the actual computation requires a negligible
amount of energy. The cooling requirement has remained flat for four generations of the D-Wave
device and is not expected to change in the foreseeable future. While the energy consumption of
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quantum annealers is typically not a highlighted advantage over classical systems, power efficiency
may eventually become an important reason for preferring quantum computing systems in the future.

Figure 11. Another comparison of RBM against LBM run on neutrino data using D-Wave hardware.
Both the RBM and LBM are initialized from the same pre-trained model. The pre-trained model is
an RBM run for three epochs on a classical machine. The graph shows the mean performance of five
different RBMs and five different LBMs, suggesting the performance difference between RBM and
LBM persists on hardware.

5. Alternative Approaches

We have mentioned HPC and neuromorphic technology as two other platforms that can be
utilized to benefit deep learning networks. Each has certain qualities that are not found in our
adiabatic quantum computation approach due to fundamental differences between the platforms.
Quantum annealers can handle complex topology but are limited in number; HPC exploits massive
parallelization for computation speed but still uses classical machines; neuromorphic hardware is low
power but tricky to train. We envision an integrated future where we can call upon the strengths of
each platform to augment machine learning efforts. In this section we describe results from our HPC
and neuromorphic efforts and how they can also contribute to training deep learning networks.

5.1. HPC

In previously reported work [28] we demonstrated that improved network hyperparameters
can be found by using an evolutionary algorithm [29] and the Titan supercomputer, a collection of
300,000 cores and 18,000 Nvidia Tesla K20x GPUs. These results demonstrated that near optimal
hyperparameters for CNN architectures can be found for the MNIST handwritten digit dataset by
combining evolutionary algorithms and high performance computing. The kernel size and the number
of hidden units per layer were the hyperparameters that were optimized. This work utilized 500 nodes
of Titan for 3 h in order to evaluate 16,000 hyperparameter sets.

An improved version of the aforementioned evolutionary algorithm has been developed such
that not only can hyperparameters of a fixed topology be optimized, but the topology of the network
itself can be optimized [30]. This improved algorithm can evolve the number of layers and the type of
each layer in addition to each individual layer’s hyperparameters. This work has been applied to the
MINERvA vertex reconstruction problem, which we have referred to as the neutrino particle detection
problem in this paper, and has yielded improved results over standard networks. This approach is
able to achieve an accuracy of 82.11% after evaluating nearly 500,000 networks on Titan in under 24 h
utilizing 18,000 nodes of Titan, which represents a significant improvement over the baseline network
that achieved 77.88%. Manually designing a network to attain such an improvement could take weeks
or months due to the limited ability of a human to design, evaluate, and interrogate the performance
of their networks in order to propose improved designs.

These HPC results are relevant to our quantum annealing approach because efforts to apply AQC
to deep learning networks can benefit from this ability to pick good hyperparameters. When we
designed our RBM and LBM experiments, we manually chose learning rates and topologies.
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Future work can incorporate our HPC findings here to find optimal hyperparameters for our deep
learning networks before using a quantum annealer to further tune the networks. Our LBM experiment
where we first trained an RBM on a classical machine before moving it to the annealer and adding
intralyer connections seems particularly amenable to such a procedure.

5.2. Neuromorphic

The neuromorphic approach fits into the context of our overall project through its potential
for low-power implementations of networks derived from the AQC and HPC portions of our work.
AQC needs hardware to be cooled as much as possible and HPC needs thousands of CPUs/GPUs.
The power consumption of either is far beyond what a neuromorphic solution requires to function.

For our neuromorphic comparison points we considered a two-phase experiment. The initial
phase was to demonstrate the feasibility of a native spiking neuromorphic solution by implementing
an SNN in a software-based simulation. The next phase was to collect energy estimates by simulating
the characteristics of the corresponding SNN implemented on memristive neuromorphic hardware. In
a previous work [28] for the MNIST task, we started by simulating a simple spiking neural network
trained to classify MNIST images.

We used evolutionary optimization (EO) to generate an ensemble of networks that classified
MNIST images with an accuracy of approximately 90%. The accuracy of the generated ensemble was
comparable to some other non-convolutional spiking neural network approaches [27]. The network we
considered for this experiment was one network in the ensemble. In particular, the network we chose
is one that distinguishes between images of the digit 0 and images of other digit types. For the second
phase of the experiment the energy consumption was also determined for a memristive implementation
of this network. Here the synapses consisted of metal-oxide memristors and represented both a weight
value and a delay value. Each synapse in the network had twin memristors to implement both positive
and negative weights [31] and a synaptic buffer to control the delays and peripheral connections.
The neurons used in the network are implemented using the mixed-signal integrate and fire approach.

The simulation of energy estimate leveraged the energy per spike values for each synapse and
neuron phases gathered from low-level circuit simulation. The network was simulated with a clock
speed of 16.67 MHz and the average power and energy calculated for the network was 304.3 mW
and 18.26 nJ. We note that this estimate includes the digital programmable delays as well. However,
if we consider the core analog neuromorphic logic, the energy per spike is 5.24 nJ and the average
power was 87.43 mW, which is consistent with similar memristor-based neuromorphic systems [32].
In contrast, MNIST classification tasks on GPU, field-programmable gate arrays (FPGA), or even
application-specific integrated circuit (ASIC) architectures were reported to be in the W range [33], far
above neuromorphic implementations like the one we described or IBM’s TrueNorth [34].

In previous work [35] we also applied this approach to estimating the energy usage of a memristive
based implementation on the Fermi data. As opposed to the MNIST task in which we trained multiple
SNNs to form an ensemble, we built a single SNN for the neutrino data with 50 input neurons and
11 output neurons where the 11 output neurons corresponded to the 11 class labels in the neutrino data.
We used a single view of the data (the x-view) rather than all three views. Instead of interpreting the
data as pixels in an image we utilized the time lattice of the data. In the time lattice each value in the
x-view corresponds to the time at which the energy at that point exceeded a low threshold. We used
these times to govern when spikes should appear as input in the SNN. This generated a natural
encoding for SNN-style networks as opposed to the somewhat unnatural mapping of non-temporal
data to an image format. We found a resulting network with 90 neurons and 86 synapses that
reached approximately 80.63% accuracy on the testing set, comparable to the approximately 80.42%
accuracy achieved by a CNN that was also restricted to the x-view [17]. We estimated the energy
usage of a memristive based neuromorphic implementation of the network for the neutrino data to be
approximately 1.66 μJ per classification. These results, more so than the MNIST results, demonstrate
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that leveraging the temporal nature of certain data may result in extremely efficient SNN solutions to
certain tasks.

6. Discussion

We compared a standard benchmark problem, MNIST digit recognition, on three different
platforms: quantum adiabatic optimization, HPC, and neuromorphic. Our results show each option
offers a unique benefit. Quantum adiabatic computation opens up complex topologies for use in
deep learning models that would normally prove intractable for classical machines. HPC allows
us to optimize CNNs on a large scale to find an optimal topology with its associated parameters.
Neuromorphic lets us implement low power neural network solutions derived from other platforms.
Figure 12 provides a summary of these platforms and their associated qualities. However, it is also
clear that the MNIST problem is not ideally suited to showcase the capabilities of either the quantum
or neuromorphic systems because it has been essentially solved using CNNs.

For example, the greater representational power of the quantum LBM approach is likely better
utilized on a more complex dataset. Similarly, spiking neuromorphic systems may be better suited
for use on datasets that include temporal components. In Figure 13 we propose an architecture we
believe provides the ability to leverage the strengths of each of these computing platforms for future,
more complex data sets.

The goal of this study is to explore how to address some of the current limitations of deep learning,
namely networks containing intralayer connections, automatically configuring the hyperparameters
of a network, and natively implementing a deep learning model using energy efficient neuron and
synapse hardware. We used quantum computing, high performance computing, and neuromorphic
computing to address these issues using three different deep learning models (LBM, CNN, and SNN).

The quantum adiabatic computing approach allows deep learning network topologies to be
much more complex than what is feasible with conventional von Neumann architecture computers.
The results show training convergence with a high number of intralayer connections, thus opening
the possibility of using much more complex topologies that can be trained on a quantum computer.
There is no time-based performance penalty due to the addition of intralayer connections, though there
may be a need to sample more often in order to reduce potential errors.

HPC allows us to automatically develop an optimal network topology and create a high
performing network. Many popular topologies used today are developed through trial and error
methods. This approach works well with standard research datasets because the research community
can learn and publish the topologies that produce the highest accuracy networks for these data.
However, when the dataset is relatively unknown or not well studied, the trial-and-error approach
loses its effectiveness. The HPC approach provides a way to optimize the hyper-parameters of a
CNN, saving significant amounts of time when working on new datasets, perhaps even bootstrapping
under-studied datasets into the regular publish-and-review iterative process.

Memristor-based hardware provides an opportunity to natively implement a low-power SNN as
part of a neuromorphic computing environment. Such a network has the potential to feature broader
connectivity than a CNN and the ability to dynamically reconfigure itself over time. Neuromorphic
computers’ benefits, including robustness, low energy usage, and small device footprint, can prove
useful in a real-world environment today if we develop a mechanism for finding good network
solutions for deployment on memristor-based devices that do not rely on conversions from non-spiking
neural network types.
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Figure 12. A comparison of the platforms, deep learning approaches, contributions, and significance of
the result from the MNIST experiment.

We can use the three different architectures together to create powerful deep learning systems to
go beyond our current capabilities. For example, current quantum annealing hardware is limited in
the size and scope of problems it can solve but does allow us to use more complex networks. We can
turn this into an opportunity by using a complex network as a higher level layer in a CNN as seen
in Figure 13. Higher layers typically combine rich features and can benefit from increase intralayer
connectivity; they also have smaller-sized inputs than lower layers, easing the limited-scope issue of
current quantum annealing hardware. Such an augmented CNN may improve overall accuracy.

The HPC approach of automatically finding optimal deep learning topologies is a fairly robust
and scalable capability, though quite expensive in development and computer costs. The ability to
use deep learning methods on new or under-studied datasets (such as the neutrino particle detection
dataset) can provide huge time savings and analytical benefit to the scientific community.

The neuromorphic approach is limited by the lack of robust neuromorphic hardware and
algorithms, but it holds the potential of analyzing complex data using temporal analysis using very
low power hardware. One of the most compelling aspects of this approach is the combination of a SNN
and neuromorphic hardware that can analyze the temporal aspects of data. The MNIST problem does
not have a temporal component, but one can imagine a dataset that has both image and temporal
aspects such as a video or our neutrino detection dataset. A CNN approach has been shown to perform
well on the image side, so perhaps a SNN can provide increased accuracy by analyzing the temporal
aspects as well. For example, a CNN could analyze an image to detect objects within the image and
output the location and/or orientation of those objects. This output can be used as input for an SNN.
As each video frame is processed independently by the CNN, the output can be fed into the SNN,
which can aggregate information over time and make conclusions about what is occurring in the video
or detect particular events that occur over time, all in an online fashion. In this example the CNN could
be trained independently using the labeled frames of the video as input images while the SNN could
be trained independently utilizing different objects with their locations and orientations as input.

These experiments provide valuable insights into deep learning by exploring the combination of
three novel approaches to challenging deep learning problems. We believe that these three architectures
can be combined to gain greater accuracy, flexibility, and insight into a deep learning approach.
Figure 13 shows a possible configuration of the three approaches that addresses the three deep learning
challenges we discussed above. The high performance computer is used to create a high performing
CNN on image type data. The final layer or two is then processed by the quantum computer using
an LBM network that contains greater complexity than a CNN. The temporal aspects of the data are
modeled using an SNN, and the ensemble models are then merged and an output produced. Our
belief is that this approach has the potential to yield greater accuracy than existing CNN models.
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Figure 13. A proposed architecture that shows how the three approaches, quantum, HPC, and neuromorphic
can be used to improve a deep learning approach. Image data can be analyzed using an HPC rapidly
derived CNN with the top layers using an LBM on a quantum computer. The top layers have fewer
inputs, and require greater representational capabilities which both play to the strength and limitations
of a quantum approach. The temporal aspect of the data can be analyzed using an SNN. Finally, the
image and temporal models will be merged to provide a richer and we believe a more accurate model,
with an aim to be deployed in very low power neuromorphic hardware.

Future Work

We will test the proposed architecture to determine if it provides improved accuracy, flexibility,
and insight into a dataset over methods derived from a traditional CNN approach. We will
apply this to neutrino particle detection data and compare the proposed architecture against other
contemporary methods.

We will also investigate how qubit mapping affects LBM results. Our experiment used a simple
1:1 mapping of hidden units to qubits by placing qubits in chimera cells in the order we defined them.
However, this does not take advantage of locality within data; we will examine which methods of
qubit mapping produce better results and see how they reveal patterns within our datasets.

7. Conclusions

Though inspired by biological neural models, deep learning networks make many simplifications
to their connectivity topologies to enable efficient training algorithms and parallelization on GPUs.
CNNs in particular have emerged as a standard high performance architecture on tasks such as
object or facial recognition. While they are powerful tools, deep learning still has several limitations.
First, we are restricted to relatively simple topologies; second, a significant portion of network tuning
is done by hand; and third, we are still investigating how to implement low power, complex topologies
in native hardware.

We chose three different computing environments to begin to address the issues respectively:
quantum adiabatic computing, high performance computing clusters, and neuromorphic hardware.
Because these environments are quite different, we chose to use different deep learning models
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for each. This includes Boltzmann machines in the quantum environment, CNNs in the HPC
environment, and SNNs in the neuromorphic environment. We chose to use the well-understood
MNIST hand-written digit dataset and a neutrino particle detection dataset.

Our results suggest these different architectures have the potential to address the identified
deficiencies in complex deep learning networks that are inherent to the von Neumann CPU/memory
architecture that is ubiquitous in computing.

The quantum annealing experiment showed that a complex neural network, namely one with
intralayer connections, can be successfully trained on the MNIST digit recognition and neutrino particle
detection tasks. The ability to train complex networks is a key advantage for a quantum annealing
approach and opens the possibility of training networks with greater representational power than
those currently used in deep learning trained on classical machines. High performance computing
clusters can use such complex networks as building blocks to compare thousands of models to find
the best performing networks for a given problem. Finally, the best performing neural network and
its parameters can be implemented on a complex network of memristors to produce a low-power
hardware device capable of solving difficult problems. This is a capability that is not feasible with
a von Neumann architecture and holds the potential to solve much more complicated problems than
can currently be solved with deep learning on classical machines.

We proposed a new deep learning architecture based on the unique capabilities of the quantum
annealing, high performance computing, and neuromorphic approaches presented in this paper.
This new architecture addresses three major limitations we see in current deep learning methods and
holds the promise of higher classification accuracy, faster network creation times, and low power,
native implementation in hardware.
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Appendix A.

Appendix A.1. Related Works for High Performance Computing

Deep learning, being an early adopter of GPU technology, has benefited greatly from the speedup offered
by these accelerated computing devices and has received great support from device manufacturers in the form
of deep learning-specific GPU libraries. General purpose GPUs are the basic building blocks of today’s HPC
platforms and next generation machines will rely on them to an even greater degree. Thus, deep learning provides
a great opportunity to fully utilize these machines, as they will have multiple GPUs per compute node. This
leaves the question of how to best utilize thousands of GPUs for deep learning, as previous work has only utilized
a maximum of 64 GPUs before encountering scaling problems when trying to exploit model parallelism to spread
the weights of the network across multiple GPUs [36]. HPC provides the unique opportunity to address the
problem of network specification. This refers to the problem of deciding upon the set of hyper-parameters needed
to specify the network and training procedure in order to apply deep learning to a new dataset.

For convolutional neural networks, this could involve specifying parameters such as the number of layers,
the number of hidden units, or the kernel size. For more general networks, such as RBMs, this could involve
defining much more complicated connectivity between neurons.

Previously, it has been shown that HPC can be utilized to optimize the hyperparameters of a deep
learning network [29]. This work utilized an evolutionary algorithm distributed across the nodes of Oak Ridge
National Laboratory’s (ORNL’s) Titan supercomputer in order to optimize the performance of deep learning
algorithms. We include the activation function used, the number of hidden units in a layer, the kernel size of a
convolutional layer, and the learning rate of the solver as hyperparameters. As the size of the network grows, the
hyper-parameter space grows increasingly larger. The size of deep learning networks used today have resulted
in a hyper-parameter space that cannot be searched on a single machine or a small cluster. This is a result of
the computational complexity of training and evaluating these networks. Without utilizing the computational
capabilities provided by supercomputers, evaluating a sufficient number of hyper-parameter sets to search the
enormous hyper-parameter space of these methods would be impossible.

Appendix A.2. Related Works for Neuromorphic Computing

There are two primary reasons that researchers have pursued the development of neuromorphic computing
architectures: to develop custom hardware devices to accurately simulate biological neural systems with the
goal of studying biological brains and to build computationally useful architectures that are inspired by the
operation of biological brains and have some of their characteristics. In developing neuromorphic computing
devices for computational purposes, there have been two main approaches: building devices based on spiking
neural networks (SNNs), such as IBM’s TrueNorth [37] or Darwin [38], and building devices based on traditional
or convolutional neural networks, such as Google’s Tensor Processing Unit [39] or Nervana’s Nervana Engine [40],
to serve as deep learning accelerators. The neuromorphic devices that have been built based on SNNs or built
to simulate more biologically-accurate systems have vastly different characteristics than those that have been
built based on deep learning networks, such as CNNs. The neurons in SNN-based systems are typically not
organized in layers and have fewer restrictions on connectivity between neurons, allowing for more complex
network topologies including recurrent networks. The neuron and synapse models also differ from those in
convolutional neural networks and recurrent neural networks such as long short term memories (LSTMs) [41].
Specifically, in SNN-based neuromorphic systems, the neuron is typically some form of spiking neuron, such as a
leaky-integrate-and-fire neuron, and the synapses usually have a delay value in addition to a weight value, thus
introducing a temporal component to the processing of the network.

The primary computational issue associated with SNN-based systems is that few algorithms that train native
networks for those systems have been developed. The key reason why algorithms have not been developed is the
computational difficulty introduced by the broader connectivity in the network and the inclusion of the temporal
component in both the neurons and synapses. One approach for training networks for neuromorphic computers
has been to train a CNN offline and then create a mapping process from the CNN to the associated SNN-based
neuromorphic hardware [42]. This mapping of an existing neural network trained with a well-studied algorithm (in
this case, backpropagation) has been used for a variety of other neural network types beyond convolutional neural
networks, such as spiking Hopfield networks and spiking restricted Boltzmann machines [43]. The algorithms
that have been developed for spiking neuromorphic systems typically impose some sort of restriction for the
network, or they have not yet been shown to be widely applicable. For example, a variation of back-propagation
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for spiking neural networks (SpikeProp) has been developed [44,45] but it is restricted to feed-forward networks
and simply learns the weight values for the synapses. Learning rules based on spike-timing dependent plasticity
or STDP have also been commonly used in spiking neural network architectures [46]. Though STDP has been
shown to be useful on some tasks, including unsupervised tasks, the true impact of STDP on real applications
has not yet been demonstrated. It is worth noting that STDP mechanisms have great potential to be used as
unsupervised weight training method, but it may need to be used alongside a supervised algorithm that can help
to determine network topology and parameters.

A key property of neuromorphic systems is their potential for more energy-efficient computation. To achieve
energy-efficiency, we (and many others) have explored an implementation of a spiking neural network system
utilizing memristors. Memristors are “memory resistors” in that their resistance can be altered depending on
the magnitude of the voltage applied. When no voltage is applied across a memristor, the most recent resistance
value is retained [47]. Memristors have similar behavior to biological synapses, and as such, have been frequently
utilized to implement neuromorphic systems [48–50].

Appendix B.

Appendix B.1. Description of High Performance Computing

The high performance computer we are using is the ORNL’s Titan computer with roughly 300,000 cores, and
18,000 GPUs. This is currently the fastest open science computer in the world.

Clearly a supercomputer is not needed to solve the MNIST problem; however, a supercomputer is extremely
valuable in automatically finding an optimal deep learning topology for such a problem. Rather than using a
trial-and-error method for finding a well performing network topology, we utilize an evolutionary optimization
on Titan to evaluate tens of thousands of topologies [29]; therefore, systematically finding the best performing
networks on this problem. If achievable, this would solve one of the major challenges in building deep learning
networks.

For this project we used a CNN as our deep learning network since CNNs currently produce the top results.
We approached the network topology problem of selecting optimal hyper-parameters as a massive search problem,
where Titan can be used to quickly search the space.

We represented each individual within the population of the evolutionary algorithm (EA) as a single
deep neural network or CNN. An individual consisted of a genome where the genes represented the various
hyper-parameters that defined the network topology, i.e., the number of layers, type of layers (convolution,
pooling, etc.), and order of the layers. We then applied parameters defined in the genes of the individual to
construct and train a deep learning network on the MNIST dataset. The results of the network’s performance
in testing were then used as the “fitness” of the individual in the EA population, i.e., individual networks that
had high accuracy were considered to be the most fit. Typically, generating the results for a single network on a
small dataset like MNIST requires a modest amount of GPU/CPU time, and memory. However, creating, training,
and evaluating tens of thousands networks requires a significant number of GPUs, like those in the Titan high
performance computer.

After all the individuals in the population were evaluated, the top performing individuals were selected to
generate a new population of individuals that represented the next generation of the EA. These new generations
contained a mix of the well performing hyperparameters from the best performing networks in the population.
Successive generations of individuals gradually led to an improved set of hyperparameters over time. This
method is called Multi-node Evolutionary Neural Networks for Deep Learning (MENNDL) [29].

For this experiment, we were looking to automatically discover hyperparameters of a well performing deep
learning network on the MNIST dataset. We used a simple EA that limited the search to the number of neurons
per layer and the kernel size of convolutional layers.

The network architecture utilized was LeNet [4] and featured two convolutional layers, two pooling layers,
and one hidden fully-connected layer. This is the network that is most often used with the MNIST dataset in the
literature.

We showed that even with this widely studied MNIST dataset, better hyper-parameters could be found
than those widely reported in the literature. An EA that can evolve the topology provides the opportunity for
improved results and the ability to process more challenging datasets. Such an EA also provides the opportunity
to meaningfully utilize the entirety of Titan’s capacity. It provides challenging data management problems on a
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machine designed primarily for modeling and simulation, as opposed to these deep learning algorithms which
require heavy amounts of data input in addition to heavy computation.

Appendix B.2. Description of Neuromorphic Computing

A spiking neuromorphic approach to the MNIST problem was not the ideal solution since there is not a
temporal component in the task of recognizing a handwritten digit. In order to leverage the temporal processing
capabilities of spiking neural networks, we added a temporal component to the task by using a streaming scan of
the digits as input to the SNN such that columns in the input image were received over time rather than all at
once. The SNN learned to recognize digits based on this scan pattern. For the results presented on the MNIST
task, the goal was to understand the deployment benefits of using an SNN in memristive hardware as opposed
to classification accuracy on this problem. For the neutrino data, where the data itself already had a temporal
component, there was a more natural mapping to SNNs. Thus, classification accuracy may be a more accurate
representation of potential performance of SNNs in general than for non-temporal data like MNIST.

As noted in Appendix A.2, there are not very many SNN training methods or neuromorphic training
methods that can be applied to spiking neuromorphic networks and operate within the characteristics and
constraints of a particular neuromorphic hardware implementation. To train both SNN models and neuromorphic
networks we utilized an evolutionary optimization (EO) approach to determine the structure (e.g., number of
neurons and synapses and how they are connected) and parameters (e.g., weight values of synapses and threshold
values of neurons) [51].

The neuromorphic system we used to explore both the MNIST and neutrino detection problem was a
memristive implementation of the neuroscience-inspired dynamic architectures (NIDA) system [52]. NIDA is
a simple SNN model composed of integrate-and-fire neurons and synapses with delays and weights that are
affected by processes similar to long-term potentiation and long-term depression in biological brains. The NIDA
model allows us to study neuromorphic models in software and determine how restrictions different in hardware
(such as weight resolution or connectivity) affect performance.

The EO approach for training networks in the MNIST problem was previously applied to the NIDA SNN [52].
An ensemble approach was utilized where each network in the ensemble was responsible for recognizing a
particular digit type. For example, a network may be trained to recognize zeros, in which case the network will
take the handwritten digit image as input and its output corresponds to either “yes, it is a zero” or “no, it is not a
zero”. Using this approach, ensembles that achieve around 90 percent accuracy were achieved.

The memristive device technology assumed for this simulation was characterized by a low resistance state
(LRS) of 60 kΩ, about an order of magnitude larger than the resistance of a typical deep-submicron complementary
metal–oxide–semiconductor (CMOS) transistor. This relatively high LRS for the memristor is desirable such that
the CMOS channel resistance can effectively be neglected. The on-off ratio was assumed to be 10, providing a
high resistance state (HRS) of 600 kΩ. Such characteristics for LRS, HRS and the associated on-off ratio have been
observed for a range of memristive devices, including hafnium-oxide (HfO2) [53], tantalum-oxide (TaO2) [54],
and titanium-oxide (TiO2) [55]. All of these memristive material stacks consist of an oxide layer sandwiched
between two metallic layers. Depending on the polarity and magnitude of an applied voltage bias, the oxide
layer transitions between being less or more conductive, providing the switching characteristics desirable for
representing synaptic weights.

Our memristive NIDA simulation setup also included analog integrate-and-fire neurons, implemented
using a 65 nm CMOS process technology. Neuromorphic elements (neurons and synapses) were simulated using
Cadence Spectre and system-level energy and power estimates were calculated using a high-level simulator
written in C++. Specifically, we verified the high-level C++ model versus the circuit level implementation using
small networks that were simulated using both Cadence Spectre and the high-level NIDA simulator. Larger
networks, specifically MNIST, were simulated using the high-level NIDA simulator to determine neuron and
synapse activity information.

The memristive NIDA simulation was based on two significant steps. Initially an evolutionary optimization
training process was used to generate optimized networks for the low level simulation. At the same time,
the transistor level simulation was done using Cadence Spectre simulator. Estimates were collected for the
design components in different conditions (neuron accumulating but not firing, neuron firing, etc.). These “per
component” energy estimates were used in conjunction with activity information from the high-level NIDA
simulation to calculate the total energy consumed.
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Abstract: We address the generalized uncertainty principle in scenarios of successive measurements.
Uncertainties are characterized by means of generalized entropies of both the Rényi and Tsallis types.
Here, specific features of measurements of observables with continuous spectra should be taken into
account. First, we formulated uncertainty relations in terms of Shannon entropies. Since such relations
involve a state-dependent correction term, they generally differ from preparation uncertainty relations.
This difference is revealed when the position is measured by the first. In contrast, state-independent
uncertainty relations in terms of Rényi and Tsallis entropies are obtained with the same lower bounds
as in the preparation scenario. These bounds are explicitly dependent on the acceptance function of
apparatuses in momentum measurements. Entropic uncertainty relations with binning are discussed
as well.

Keywords: generalized uncertainty principle; successive measurements; minimal observable length;
Rényi entropy; Tsallis entropy

1. Introduction

The Heisenberg uncertainty principle [1] is now avowed as a fundamental scientific concept.
Heisenberg examined his thought experiment rather qualitatively. An explicit formal derivation
appeared in [2]. This approach was later extended to arbitrary pairs of observables [3]. These traditional
formulations are treated as preparation uncertainty relations [4], since repeated trials with the same
quantum state are assumed here. This simple scenario differs from the situations typical in quantum
information science. Since uncertainty relations are now examined not only conceptually, researchers
often formulated them in information-theoretic terms. As was shown in [5], wave-particle duality can
be interpreted on the basis of entropic uncertainty relations. Basic developments within the entropic
approach to quantum uncertainty are reviewed in [6–8]. Interest in this approach has been stimulated
by advances in using quantum systems as an informational resource [9–13]. Among more realistic cases,
scenarios with successive measurements have been addressed in the literature [14–18]. Researchers are
currently able to manipulate individual quantum systems [19,20]. In quantum information processing,
our subsequent manipulations usually deal with an output of a latter stage. In effect, Heisenberg’s
thought experiment with microscope should rather be interpreted as related to uncertainties in
successive measurements [21]. Uncertainty relations in the scenarios of successive measurements have
received less attention than they deserve [15]. The authors of [15] also compared their findings with
noise-disturbance relations given in [22]. Studies of scenarios with successive measurements allow us
to understand whether preparation uncertainty relations are applicable to one or another question.

In principle, the Heisenberg uncertainty principle does not impose a restriction separately on
spreads of position and momentum. It merely reveals that continuous trajectories are unspeakable in
standard quantum mechanics, although such principles remain valid within Bohmian mechanics [23].
The generalized uncertainty principle is aimed to involve the existence of a minimal observable
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length. The latter is naturally connected with efforts to describe quantum gravity [24]. Some advances
in merging quantum mechanics and general relativity are summarized in [25]. It is believed that
quantum gravitational effects begin to be apparent at the scale corresponding to the Planck length
�P =

√
Gh̄/c3 ≈ 1.616 × 10−35 m. Below this scale, the very structure of space-time is an open

problem [26]. In addition, Heisenberg’s principle is assumed to be converted into the generalized
uncertainty principle (GUP) [27–29]. There exist proposals to test observable effects of the minimal
length, including astronomical observations [30,31] and experimental schemes feasible within current
technology [32,33]. The GUP case connects to many aspects that are currently the subject of
active research [34–38]. The generalized uncertainty principle declares a non-zero lower bound
on position spread. To reach such a model, the canonical commutation relation should be modified.
Deformed forms of the commutation relation were recently studied from several viewpoints. On the
other hand, the connections of the GUP with the real world represent an open question. In the
context of non-relativistic quantum mechanics, the corresponding formalism was proposed in [39].
Another approach to representation of the used observables was suggested in [40]. This way is very
convenient in extending entropic uncertainty relations to the GUP case [41].

In this paper, we aim to consider entropic uncertainty relations for successive measurements
in the presence of a minimal observable length. Of course, our presentation is essentially based on
mathematical relations given by Beckner [42] and by Białynicki-Birula and Mycielski [43]. This direction
was initially inspired by Hirschman [44]. For observables with finite spectra, basic developments
appeared due to [45–47]. We will largely use the results reported in [48,49]. The work in [48] is
devoted to formulating entropic uncertainty relations for successive measurements of canonically
conjugate observables. The case of position and momentum was addressed therein as a particular
example of the scheme developed in [50,51]. Entropic uncertainty relations in the presence of a minimal
length were examined in [49], and mainly focused on those points that were not considered in this
context previously. Combining these two aspects finally led to the generalized uncertainty principle
in scenarios of successive measurements. This paper is organized as follows. In Section 2, we review
preliminary material, including properties of used information-theoretic measures. In Section 3,
we briefly discuss successive quantum measurements in general. The main results of this paper are
presented in Section 4. Both of the typical scenarios of successive measurements will be examined.
In particular, we will see how formulating lower entropic bounds depends on the actual order in which
measurements of position and momentum have been performed. In Section 5, we conclude the paper
with a summary of the obtained results.

2. Preliminaries

In this section, we review the required material and fix the notations. To characterize measurement
uncertainties, we use entropies of the Rényi and Tsallis types. Let us begin with the case of probability
distributions with a discrete label. For the given probability distribution p = {pi}, its Rényi entropy of
order α is defined as [52]

Rα(p) :=
1

1− α
ln
(
∑i pα

i

)
, (1)

where 0 < α 
= 1. For 0 < α < 1, the Rényi α-entropy is a concave function of the probability
distribution. For α > 1, it is neither purely convex nor purely concave [53]. In the limit α → 1,
the formula (1) gives the standard Shannon entropy

H1(p) = −∑i pi ln pi . (2)

For the given probability distribution p = {pi} and 0 < α 
= 1, the Tsallis α-entropy is defined
as [54]

Hα(p) :=
1

1− α

(
∑i pα

i − 1
)
= −∑i pα

i lnα(pi). (3)
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Here, we use the α-logarithm expressed as lnα(y) :=
(
y1−α− 1

)
/(1− α) for positive variable y and

0 < α 
= 1. When α→ 1, the α-logarithm reduces to the usual one. Then, the α-entropy (3) also leads
to the Shannon entropy (2). An axiomatic approach to generalized information-theoretic quantities is
reviewed in [55]. In more detail, properties and applications of generalized entropies in physics are
discussed in [56]. In the present paper, we will deal only with entropies of probability distributions.
Quantum entropies of very general family were thoroughly examined in [57,58]. Quantum Rényi and
Tsallis entropies are both particular representatives of this family.

Let w(x) be a probability density function defined for all real x. Then, the differential Shannon
entropy is introduced as

H1(w) := −
∫ +∞

−∞
w(x) ln w(x)dx . (4)

Similarly, we determine entropies for other continuous variables of interest. For 0 < α 
= 1,
the differential Rényi α-entropy is defined as

Rα(w) :=
1

1− α
ln
(∫ +∞

−∞
w(x)α dx

)
. (5)

In contrast to entropies of a discrete probability distribution, differential entropies are not positive
definite in general. To quantify an amount of uncertainty, we often tend to deal with positive entropic
functions. One possible approach is such that the continuous axis of interest is divided into a set of
non-intersecting bins. Preparation uncertainty relations with binning were derived in terms of the
Shannon [59] and Rényi entropies [60]. To reach a good exposition, the size of these bins should be
sufficiently small in comparison with a scale of considerable changes of w(x). Keeping an obtained
discrete distribution, we further calculate entropies of the forms (1) and (3).

The generalized uncertainty principle declares the deformed commutation relation for the position
and momentum operators [39]. For convenience, we will use the wavenumber operator k̂ instead of
the momentum operator h̄k̂. It is helpful to rewrite this relation as

[
x̂, k̂

]
= i

(
1 + βk̂2) . (6)

Here, the positive parameter β is assumed to be rescaled by factor h̄2 from its usual sense. With the
limit β→ 0, the formula (6) gives the standard commutation relation of ordinary quantum mechanics.
Due to the Robertson formulation [3], the standard deviations in the pre-measurement state ρ̂ satisfy

ΔÂ ΔB̂ ≥
∣∣∣1
2
〈
[Â, B̂]

〉
ρ̂

∣∣∣ . (7)

By 〈Â〉ρ̂ = Tr(Â ρ̂), we mean the quantum-mechanical expectation value. Combining (6) with (7)
then gives

Δx̂ Δk̂ ≥ 1
2
(
1 + β〈k̂2〉ρ̂

) ≥ 1
2
(
1 + β(Δk̂)2) . (8)

The principal parameter β is positive and independent of Δx̂ and Δk̂ [39]. It directly follows
from (8) that Δx̂ is not less than the square root of β. As was shown in [40], the auxiliary wavenumber
operator q̂ allows us to mediate between (6) and the standard commutation relation. Let x̂ and q̂ be
self-adjoint operators satisfying [x̂, q̂] = i. In the q-space, the action of q̂ results in multiplying a wave
function ϕ(q) by q, whereas x̂ϕ(q) = idϕ/dq. Then, the wavenumber k̂ can be represented as [40]

k̂ =
1√

β
tan

(√
βq̂
)

. (9)

The auxiliary wavenumber obeys the standard commutation relation but ranges between
± q0(β) = ±π/(2

√
β ). The function q �→ k = tan(

√
βq)

/√
β gives a one-to-one correspondence
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between q ∈ (− q0;+ q0) and k ∈ (−∞;+∞). Hence, the eigenvalues of k̂ fully cover the real axis.
Further details of the above representation are examined in [40].

For any pure state, we will deal with three wave functions φ(k), ϕ(q), and ψ(x). The formalism
of [40] is convenient in the sense that it explicitly describes the space of acceptable wave packets. In the
q-space, these states should have wave functions that vanish for |q| > q0(β). Here, the auxiliary wave
function ϕ(q) is a useful tool related to ψ(x) via the Fourier transform. In the q-space, the eigenfunctions
of x̂ appear as exp(−iqx)

/√
2π. Thus, any wave function in the coordinate space is expressed as

ψ(x) =
1√
2π

∫ +q0

−q0

exp(+iqx) ϕ(q)dq . (10)

Wave functions in the q- and x-spaces are connected by the Fourier transform [40],

ϕ(q) =
1√
2π

∫ +∞

−∞
exp(−iqx)ψ(x)dx . (11)

The distinction from ordinary quantum mechanics is that wave functions in the q-space should be
formally treated as 0 for all |q| > q0(β).

Using the above connection, the author of [41] affirmed the following. The uncertainty relation
given in [42,43] is still valid in the GUP case. However, wave functions in the q-space are actually
auxiliary. In the GUP case, the physically legitimate wavenumber and momentum involved in the
relation (6) are described by wavefunctions in the k-space. A real distribution of physical wavenumber
values is determined with respect to φ(k) instead of ϕ(q). Let us examine the probability that
momentum lies between two prescribed values. In view of the bijection between the intervals (k1; k2)

and (q1; q2), this probability is expressed as

∫ k2

k1

|φ(k)|2 dk =
∫ q2

q1

|ϕ(q)|2 dq , (12)

so that |φ(k)|2 dk = |ϕ(q)|2 dq. Hence, two probability density functions u(k) and v(q) are connected
as u(k)dk = v(q)dq, in another form

u(k) =
v(q)

1 + βk2 . (13)

For pure states, when u(k) = |φ(k)|2 and v(q) = |ϕ(q)|2, the formula (13) is obvious. It can be
extended to mixed states due to the spectral decomposition. However, one is actually unable to obtain
the probability density functions u(k) and w(x) immediately.

In reality, any measurement apparatus is inevitably of a finite size. Devices with a finite extension
need a finite amount of energy. Hence, one cannot ask for a state in which the measurement of an
observable gives exactly one particular value of position. In more detail, measurements of coordinates
of a microparticle are considered by Blokhintsev ([61], Chapter II). The generalized uncertainty
principle imposes another limitation for position measurements. Although eigenstates of position and
momentum are often considered explicitly, they are rather convenient tools of mathematical technique.
The corresponding kets are not elements of the Hilbert space, but can be treated in the context of
rigged Hilbert spaces [62]. Instead, we aim to use narrow distributions of a finite but small width.
Measuring or preparing some state with the particular value ξ of position, one has to be affected by
a neighborhood of ξ. Therefore, we treat each concrete result only as an estimation compatible with
the GUP.

Thus, we cannot directly obtain probability density functions of the form u(k) and w(x).
Here, a finiteness of detector resolution should be addressed [15,48]. Measuring or preparing a
state with the particular value ξ of position, one is affected by some vicinity of ξ. In this way, we
refer to generalized quantum measurements. Let the eigenkets |x〉 be normalized through Dirac’s
delta function. As was already mentioned, such kets cannot be treated as physical states even within
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ordinary quantum mechanics. In a finite-resolution measurement of position, the set X =
{|x〉〈x|} is

replaced with some set N of operators of the form

N̂(ξ) :=
∫ +∞

−∞
dx g(ξ − x) |x〉〈x| . (14)

An acceptance function ξ �→ g(ξ) satisfies the condition
∫ +∞
−∞ |g(ξ)|2 dξ = 1. Then operators of

the form (14) lead to a generalized resolution of the identity,

∫ +∞

−∞
dξ N̂(ξ)†N̂(ξ) = 1 , (15)

where the right-hand side is treated as the identity operator. For the pre-measurement state ρ̂,
the measurement leads to the probability density function

Wρ̂(ξ) = Tr
(

N̂(ξ)†N̂(ξ)ρ̂
)
=

∫ +∞

−∞
|g(ξ − x)|2 wρ̂(x)dx . (16)

This should be used instead of wρ̂(x) = 〈x|ρ̂|x〉. When the acceptance function is sufficiently
narrow, we will obtain a good “footprint” of wρ̂(x). Let ζ �→ f (ζ) be another acceptance function that
also obeys the normalization condition. A finite-resolution measurement of the legitimate wavenumber
is described by some set N of operators

M̂(ζ) :=
∫ +∞

−∞
dk f (ζ − k) |k〉〈k| . (17)

Here, the initial resolution K =
{|k〉〈k|} is replaced with M =

{
M̂(ζ)

}
. Instead of uρ̂(k) =

〈k|ρ̂|k〉, we actually deal with the probability density function

Uρ̂(ζ) = Tr
(

M̂(ζ)†M̂(ζ)ρ̂
)
=

∫ +∞

−∞
| f (ζ − k)|2 uρ̂(k)dk , (18)

For good acceptance functions, a distortion of statistics will be small. The Gaussian distribution
is a typical form of such functions [15]. We will assume that a behavior of acceptance functions is
qualitatively similar.

3. On Successive Measurements of Observables in General

In this section, we generally formulate the question with respect to two successive measurements
of observables with continuous spectra. It is more sophisticated than an intuitive obvious treatment
of successive measurements on a finite-dimensional system. The latter allows us to deal with
projective measurements, since all observables have a discrete spectrum. Such an approach is not
meaningful for the case of position and momentum. On the other hand, the finite-dimensional case is
important for understanding basic formulations related to continuous observables. To motivate our
approach, we briefly review entropic uncertainty relations for successive projective measurements.
Further, we will present a suitable reformulation for the case of position and momentum. Together
with the entropic formulation, other approaches to express uncertainties in quantum measurements are
of interest. In particular, modern investigations are based on the sum of variances [63,64], majorization
relations [65–69], and the method of effective anticommutators [70]. The authors of [71] discussed
some surprising results that may occur in application of entropic measures to quantify uncertainties in
quantum measurements. These questions are beyond the scope of our consideration.

Scenarios with successive measurements are of interest for several reasons. The concept of
wave function reduction assumes that we perform at least two successive measurements on a system
(see for example Section 5.5 of [72]). By Λ̂a ∈ A, we denote a projector onto the a-th eigenspace of
finite-dimensional observable Â. For the pre-measurement state ρ̂, the probability of outcome a is
written as Tr(Λ̂aρ̂). Such probabilities form a discrete distribution, from which we calculate quantities
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of interest. By Rα(A; ρ̂) and Hα(A; ρ̂), we further mean the entropies (1) and (3) calculated with the
probabilities Tr(Λ̂aρ̂). After the measurement of Â, we measure another observable B̂. It is actually
described by the set B = {Π̂b}. Note that subsequent measurements are assumed to be performed with
a new ensemble of states. The latter differs from traditional uncertainty relations in the preparation
scenario. Scenarios with successive measurement are fixed by the used form of post-first-measurement
states [16].

In the first scenario, the second measurement is performed on the state immediately following
the first measurement with completely erased information. Here, the pre-measurement state of the
second measurement is expressed as [14]

ΥA(ρ̂) = ∑a Λ̂aρ̂Λ̂a . (19)

To characterize the amount of uncertainty in two successive measurements, we will use quantities
of the form

Rα(A; ρ̂) + Rγ

(B; ΥA(ρ̂)
)

, (20)

and similarly with the corresponding Tsallis entropies. In the second scenario of successive
measurements, we assume that the result of the first measurement is maintained. A focus on actual
measurement outcomes is typical for the so-called selective measurements. For example, incoherent
selective measurements are used in the formulation of monotonicity of coherence measures [73].
Coherence quantifiers can be defined with entropic functions of the Tsallis [74] and Rényi types [75].
In effect, the second measurement will be performed on the post-first-measurement state selected with
respect to the actual outcome [16,17]. Due to the Lüders reduction rule [76], this state is written as

τ̂a =
(
Tr(Λ̂aρ̂)

)−1 Λ̂aρ̂Λ̂a , (21)

whenever Tr(Λ̂aρ̂) 
= 0. Measuring the observable B̂ in each τ̂a, we obtain the corresponding entropy
Rγ(B; τ̂a). Averaging over all a, we introduce the quantity

∑a Tr(Λ̂aρ̂) Rγ(B; τ̂a) = ∑a Tr(Λ̂aρ̂) Rα(A; τ̂a) + ∑a Tr(Λ̂aρ̂) Rγ(B; τ̂a) . (22)

Of course, the first sum in the right-hand side of (22) vanishes. Measuring Â in its eigenstate
leads to a deterministic probability distribution, whence Rα(A; τ̂a) = 0 for all a. It is for this reason
that only the left-hand side of (22) is used in studies of uncertainties in successive measurements
of finite-dimensional observables. In a similar manner, we can rewrite (20) and (22) with the use of
Tsallis’ entropies. For α = γ = 1, the quantity (22) becomes the Shannon entropy averaged over all
a. The authors of [16] utilized the latter as a measure of uncertainties in successive measurements.
Uncertainty relations for successive projective measurements in terms of Rényi’s entropies were
analyzed in [17]. Formally, the sums involved in (22) are similar to one of several existing definitions
of conditional Rényi’s entropy. In more detail, these definitions are discussed [77]. The simplest of
them just leads to expressions of the form (22). Moreover, the two kinds of conditional Tsallis entropy
are known in the literature [78,79]. More properties of generalized conditional entropies are discussed
in [80].

Let us proceed to exact formulations for successive measurements of position and momentum.
One cannot provide states in which the measurement of position or momentum gives exactly one
particular value. Instead, we deal with well localized states of finite or even small scales. Following [48],
the right-hand side of (22) will be used in extending the second scenario to the position-momentum
case in the presence of a minimal length. Suppose that the first applied measurement aims to measure
momentum. The authors of [15] mentioned how the post-first-measurement state should be posed.
In our notation, we write
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ΦM(ρ̂) =
∫ +∞

−∞
dζ M̂(ζ)ρ̂M̂(ζ)† . (23)

This expression replaces the formula (19) suitable for observables with a purely discrete spectrum.
The following important fact should be pointed out. If we again measure momentum, but now
with the state (23), then it will result in the same probability distribution function. It can be derived
from (17) that

〈k|ρ̂|k〉 = 〈k|ΦM(ρ̂)|k〉 , Uρ̂(ζ) = UΦM(ρ̂)(ζ) . (24)

Such relations may be interpreted as a mild version of the repeatability concept. For strictly
positive α 
= 1, the Rényi α-entropy Rα(M; ρ̂) is given by substituting Uρ̂(ζ) into (5). The standard
differential entropy H1(M; ρ̂) can be obtained within the limit α → 1. Also, the Rényi α-entropy
Rα

(
p
(δ)
M ; ρ̂

)
is defined by (1) by substituting probabilities defined through a discretization of the ζ-axis.

When the first measurement is described by the set N , the post-first-measurement state is specified as

ΦN (ρ̂) =
∫ +∞

−∞
dξ N̂(ξ)ρ̂N̂(ξ)† . (25)

Let ρ̂ denote the state right before the sequence of successive measurements. In the first scenario
of successive measurements, we will characterize uncertainties by entropic quantities of the form

Rα(M; ρ̂) + Rγ

(N ; ΦM(ρ̂)
)

, Rα

(M; ΦN (ρ̂)
)
+ Rγ(N ; ρ̂) . (26)

The former of the two sums concerns the case in which momentum is measured. Another useful
approach is to calculate entropies with binning. For instance, sampling of the function (18) into bins
between marks ζ j gives a discrete probability distribution p

(δ)
M . In the second measurement, entropies

can be taken with binning between some marks ξk. By p
(δ)
N , we mean the corresponding probability

distribution. This approach leads to the characteristic quantities

Rα

(
p
(δ)
M ; ρ̂

)
+ Rγ

(
p
(δ)
N ; ΦM(ρ̂)

)
, Rα

(
p
(δ)
M ; ΦN (ρ̂)

)
+ Rγ

(
p
(δ)
N ; ρ̂

)
. (27)

In a similar manner, we formulate entropic measures of the Tsallis type. As was already mentioned,
such entropies will be taken only with binning.

The second scenario of successive measurements prescribes that each actual result of the first
measurement should be retained. Assuming Uρ̂(ζ) 
= 0 in the corresponding domain, we now consider
the normalized output state

�̂(ζ) = Uρ̂(ζ)
−1M̂(ζ)ρ̂M̂(ζ)† . (28)

Each �̂(ζ) is used as one of possible pre-measurement states in the second measurement. Similarly
to (22), we then consider the quantity

∫ +∞

−∞
Rα

(M; �̂(ζ)
)
Uρ̂(ζ)dζ +

∫ +∞

−∞
Rγ

(N ; �̂(ζ)
)
Uρ̂(ζ)dζ . (29)

When position is measured first, particular outputs are of the form

σ̂(ξ) = Wρ̂(ξ)
−1N̂(ξ)ρ̂N̂(ξ)† . (30)

To describe the amount of uncertainty here, we rewrite (29) with σ̂(ξ) instead of �̂(ζ) and
Wρ̂(ξ) instead of Uρ̂(ζ). We will also utilize entropic uncertainty relations with binning. Here, one
replaces (29) with
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∫ +∞

−∞
Rα

(
p
(δ)
M ; �̂(ζ)

)
Uρ̂(ζ)dζ +

∫ +∞

−∞
Rγ

(
p
(δ)
N ; �̂(ζ)

)
Uρ̂(ζ)dζ , (31)

and similarly with the Tsallis entropies. Quantities of the form (31) concern successive measurements,
in which position is measured after momentum. When position is measured by the first, we rewrite
such expressions with σ̂(ξ) and Wρ̂(ξ). In the paper [48], the above treatment of successive
measurements was considered for general canonically conjugate operators. This approach to the
concept of canonical conjugacy is based on the Pegg–Barnett formalism [50]. The Pegg–Barnett
formalism was originally proposed to explain a Hermitian phase operator [81,82]. Entropic uncertainty
relations on the base of this formalism were examined in [51,83,84].

4. Main Results

In this section, we shall formulate entropic uncertainty relations for successive measurements
within the GUP case. For this case, preparation uncertainty relations with a correction term were
derived in [49]. For the convenience of further calculations, the prepared pre-measurement state will
be denoted by ω̂. Due to [49], we have

H1(M; ω̂) + H1(N ; ω̂) ≥ H1(K; ω̂) + H1(X ; ω̂) ≥ ln(eπ) +
〈
ln(1 + βk̂2)

〉
ω̂

. (32)

The well-known bound ln(eπ) corresponds to the entropic uncertainty relation of Beckner [42]
and Białynicki-Birula and Mycielski [43]. The second term in the right-hand side of (32) reflects the fact
that the legitimate momentum of the commutation relation (6) is given by h̄k̂. Here, the wavenumber
operator q̂ plays an auxiliary role. Note that this correction term depends on the pre-measurement
state. As some numerical results in [85] later showed, the presented correction is sufficiently tight. It is
similar to the correction term obtained in the Robertson formulation (8). However, the inequality (32)
is a preparation uncertainty relation.

Suppose now that we measure momentum by the first and position by the second. In the first
scenario, the pre-measurement state ρ̂ leads to the post-first-measurement state ΦM(ρ̂). Due to (24),
we immediately write

H1(M; ρ̂) = H1
(M; ΦM(ρ̂)

)
,

〈
ln(1 + βk̂2)

〉
ρ̂
=
〈
ln(1 + βk̂2)

〉
ΦM(ρ̂)

. (33)

Substituting ω̂ = ΦM(ρ̂) into (32) and using (33), we easily get

H1(M; ρ̂) + H1
(N ; ΦM(ρ̂)

) ≥ ln(eπ) +
〈
ln(1 + βk̂2)

〉
ρ̂

. (34)

This is an entropic uncertainty relation in the first scenario of successive measurements such that
momentum is measured by the first. The corresponding lower bound is the same as in the preparation
scenario. It is not the case, when we measure position by the first and momentum by the second.
Putting ω̂ = ΦN (ρ̂) into (32) finally gives

H1(N ; ρ̂) + H1
(M; ΦN (ρ̂)

) ≥ ln(eπ) +
〈
ln(1 + βk̂2)

〉
ΦN (ρ̂)

. (35)

The correction term in the right-hand side of (35) is similar in form but should be calculated
with the post-first-measurement state ΦN (ρ̂). Taking β = 0, the above entropic bounds for successive
measurements do not differ from the bound in the preparation scenario. Here, we see a manifestation
of the deformed commutation relation (6). The latter disturbs a certain symmetry between position
and momentum.

Let us proceed to the second scenario of successive measurements. Suppose again that momentum
is measured by the first. Substituting ω̂ = �̂(ζ) into (32), we multiply it by Uρ̂(ζ) and then integrate
with respect to ζ. This results in the inequality

94



Entropy 2018, 20, 354

∫ +∞

−∞
H1

(M; �̂(ζ)
)
Uρ̂(ζ)dζ +

∫ +∞

−∞
H1

(N ; �̂(ζ)
)
Uρ̂(ζ)dζ

≥ ln(eπ) +
∫ +∞

−∞

〈
ln(1 + βk̂2)

〉
�̂(ζ)

Uρ̂(ζ)dζ . (36)

Using (28), the second term in the right-hand side of (36) can be simplified, viz.,

∫ +∞

−∞
dζ Uρ̂(ζ)

∫ +∞

−∞
dk ln(1 + βk2) 〈k|�̂(ζ)|k〉

=
∫ +∞

−∞
dζ

∫ +∞

−∞
dk ln(1 + βk2) 〈k|M̂(ζ)ρ̂M̂(ζ)†|k〉 (37)

=
∫ +∞

−∞
dk ln(1 + βk2) 〈k|ρ̂|k〉

∫ +∞

−∞
dζ | f (ζ − k)|2 .

In the right-hand side of (37), the last integral with respect to ζ is equal to 1. For the second
scenario of successive measurements, we obtain

∫ +∞

−∞
H1

(M; �̂(ζ)
)
Uρ̂(ζ)dζ +

∫ +∞

−∞
H1

(N ; �̂(ζ)
)
Uρ̂(ζ)dζ ≥ ln(eπ) +

〈
ln(1 + βk̂2)

〉
ρ̂

. (38)

Hence, entropic uncertainty relations (34) and (38) are obtained with the same lower bound
calculated with the pre-measurement state. Let us consider the case when position is measured by the
first. Substituting ω̂ = σ̂(ζ) into (32), we multiply it by Wρ̂(ξ) and integrate with respect to ξ, whence

∫ +∞

−∞
H1

(M; σ̂(ξ)
)
Wρ̂(ξ)dξ +

∫ +∞

−∞
H1

(N ; σ̂(ξ)
)
Wρ̂(ξ)dξ

≥ ln(eπ) +
∫ +∞

−∞

〈
ln(1 + βk̂2)

〉
σ̂(ξ)

Wρ̂(ξ)dξ . (39)

In the right-hand side of (39), the second integral is a correction term averaged over particular
outputs σ̂(ξ). In general, an expression for this term cannot be simplified without additional
assumptions. We have already seen how the relation (35) differs from (34). The formula (39) differs
from (38) in a similar vein. In the presence of a minimal length, the preparation uncertainty relation (32)
remains valid for successive measurements, when momentum is measured by the first. Otherwise,
it should be reformulated.

Entropic uncertainty relations with binning can be treated in a similar manner. Using some
discretization of axes, we take into account sufficiently typical setup. This approach also leads to
entropic functions with only positive values. In contrast, differential entropies can generally have
arbitrary signs. In the case of momentum measurements, values ζi denote the ends of intervals
δζi = ζi+1 − ζi. For the prepared state ω̂, we deal with probabilities

p(δ)i :=
∫ ζi+1

ζi

Uω̂(ζ)dζ , (40)

which form the discrete distribution p
(δ)
M . Using (40), one calculates the Shannon entropy H1(p

(δ)
M ; ω̂).

In a similar way, we discretize the ξ-axes into bins δξ j = ξ j+1 − ξ j with the resulting distribution p
(δ)
N .

It can be shown that

H1
(
p
(δ)
M ; ω̂

)
+ H1

(
p
(δ)
N ; ω̂

) ≥ ln
(

eπ

δζ δξ

)
+
〈
ln(1 + βk̂2)

〉
ω̂

, (41)
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where δζ = max δζi and δξ = max δξ j. The formula (41) gives a preparation uncertainty relation with
binning. It involves the same correction term due to the existence of a minimal length. To pose entropic
uncertainty relations in the first scenario of successive measurements, we again use reasons that have
lead to (34) and (35). Finally, one gets

H1
(
p
(δ)
M ; ρ̂

)
+ H1

(
p
(δ)
N ; ΦM(ρ̂)

) ≥ ln
(

eπ

δζ δξ

)
+
〈
ln(1 + βk̂2)

〉
ρ̂

, (42)

H1
(
p
(δ)
N ; ρ̂

)
+ H1

(
p
(δ)
M ; ΦN (ρ̂)

) ≥ ln
(

eπ

δξ δζ

)
+
〈
ln(1 + βk̂2)

〉
ΦN (ρ̂)

. (43)

In the second scenario of successive measurements, entropic uncertainty relations with binning
are obtained in the form

∫ +∞

−∞
H1

(
p
(δ)
M ; �̂(ζ)

)
Uρ̂(ζ)dζ +

∫ +∞

−∞
H1

(
p
(δ)
N ; �̂(ζ)

)
Uρ̂(ζ)dζ ≥ ln

(
eπ

δζ δξ

)
+
〈
ln(1 + βk̂2)

〉
ρ̂

(44)

∫ +∞

−∞
H1

(
p
(δ)
N ; σ̂(ξ)

)
Wρ̂(ξ)dξ +

∫ +∞

−∞
H1

(
p
(δ)
M ; σ̂(ξ)

)
Wρ̂(ξ)dξ ≥ ln

(
eπ

δξ δζ

)

+
∫ +∞

−∞

〈
ln(1 + βk̂2)

〉
σ̂(ξ)

Wρ̂(ξ)dξ .
(45)

In the presence of a minimal length, distinctions of (43) and (45) from the corresponding
preparation relations are concentrated in correction terms. In effect, these terms are not
state-independent. On the other hand, entropic bounds of preparation uncertainty relations remain
valid when momentum is measured by the first. The author of [49] also reported on state-independent
entropic uncertainty relations in the presence of a minimal length. Such relations were posed in terms
of the Rényi and Tsallis entropies with binning. An alteration of statistics due to a finite resolution of
the measurements is also taken into account. When acceptance functions of measurement apparatuses
are sufficiently spread, they lead to an increase of entropic lower bounds. To pose uncertainty relations
formally, we introduce the following quantity [49],

S f := sup
ζ

∫ +∞

−∞

| f (ζ − k)|2
1 + βk2 dk , (46)

where the acceptance function ζ �→ f (ζ) corresponds to momentum measurements. Let ω̂ represent
the prepared state. As was shown in [49], the existence of a minimal length leads to preparation
uncertainty relations of the form

Rα(M; ω̂) + Rγ(N ; ω̂) ≥ ln

(
κπ

S f

)
. (47)

Here, positive entropic parameters obey 1/α + 1/γ = 2 and

κ
2 = α1/(α−1)γ1/(γ−1) . (48)

In the limit α → 1, the parameter κ becomes equal to e. When β = 0, we clearly have S f = 1,
so that the right-hand side of (47) reduces to ln(κπ). The latter is a known entropic bound for the case
of usual position and momentum. For β > 0 and physically reasonable acceptance functions, we obtain
an improved lower due to S f < 1. It is important that the quantity (46) depends only on β and the
actual acceptance function in momentum measurements. Preparation entropic uncertainty relations
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with binning are posed as follows [49]. Let probability density functions Uω̂(ζ) and Wω̂(ξ) be sampled
into discrete probability distributions. Then the corresponding Rényi and Tsallis entropies satisfy

Rα

(
p
(δ)
M ; ω̂

)
+ Rγ

(
p
(δ)
N ; ω̂

) ≥ ln

(
κπ

S f δζ δξ

)
, (49)

Hα

(
p
(δ)
M ; ω̂

)
+ Hγ

(
p
(δ)
N ; ω̂

) ≥ lnν

(
κπ

S f δζ δξ

)
, (50)

where 1/α + 1/γ = 2 and ν = max{α, γ}.
Due to equalities of the form (24), the preparation uncertainty relations (47), (49), and (50) are

immediately converted into relations for successive measurements. In the first scenario, we obtain

Rα(M; ρ̂) + Rγ

(N ; ΦM(ρ̂)
) ≥ ln

(
κπ

S f

)
, (51)

where 1/α + 1/γ = 2 and the momentum measurement is assumed to be made by the first. When
position is measured by the first, we replace ρ̂ with ΦN (ρ̂) and ΦM(ρ̂) with ρ̂ in the left-hand side
of (51). For 1/α + 1/γ = 2 and ν = max{α, γ}, entropic uncertainty relations with binning are
written as

Rα

(
p
(δ)
M ; ρ̂

)
+ Rγ

(
p
(δ)
N ; ΦM(ρ̂)

) ≥ ln

(
κπ

S f δζ δξ

)
, (52)

Hα

(
p
(δ)
M ; ρ̂

)
+ Hγ

(
p
(δ)
N ; ΦM(ρ̂)

) ≥ lnν

(
κπ

S f δζ δξ

)
. (53)

The same entropic lower bounds hold, when position is measured by the first. We refrain from
presenting the details here. In the second scenario of successive measurements, one immediately gets

∫ +∞

−∞
Rα

(M; �̂(ζ)
)
Uρ̂(ζ)dζ +

∫ +∞

−∞
Rγ

(N ; �̂(ζ)
)
Uρ̂(ζ)dζ ≥ ln

(
κπ

S f

)
, (54)

where 1/α + 1/γ = 2 and the momentum measurement is assumed to be made by the first. Replacing
�̂(ζ) with σ̂(ξ) and Uρ̂(ζ) with Wρ̂(ξ), we resolve the case when position is measured by the first.
For 1/α + 1/γ = 2 and ν = max{α, γ}, entropic uncertainty relations with binning are expressed as

∫ +∞

−∞
Rα

(
p
(δ)
M ; �̂(ζ)

)
Uρ̂(ζ)dζ +

∫ +∞

−∞
Rγ

(
p
(δ)
N ; �̂(ζ)

)
Uρ̂(ζ)dζ ≥ ln

(
κπ

S f δζ δξ

)
, (55)

∫ +∞

−∞
Hα

(
p
(δ)
M ; �̂(ζ)

)
Uρ̂(ζ)dζ +

∫ +∞

−∞
Hγ

(
p
(δ)
N ; �̂(ζ)

)
Uρ̂(ζ)dζ ≥ lnν

(
κπ

S f δζ δξ

)
. (56)

When position is measured first, we merely replace here �̂(ζ) with σ̂(ξ) and Uρ̂(ζ) with Wρ̂(ξ).
Thus, state-independent entropic lower bounds of preparation uncertainty relation remain valid for
scenarios with successive measurements. The existence of a minimal length is taken into account due
to the quantity (46). In the case α = γ = 1, the above relations are expressed via the Shannon entropies.
We have also obtained state-dependent entropic uncertainty relations such as (35), (39), (43), and (45).
Their formulations differ from preparation uncertainty relations since they depend on the quantum
state immediately following the first measurement.
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5. Conclusions

We have formulated entropic uncertainty relations for successive measurements in the presence of
a minimal length. The presented formulation is explicitly dependent on the order of the measurements,
though the bounds themselves may not be optimal. The problem of a minimal observable length is
related to efforts to describe gravitation at the quantum level. In effect, the generalized uncertainty
principle restricts the space of acceptable wave packets. Scenarios with successive measurements
are interesting for several reasons. The traditional scenario of preparation uncertainty relations is
insufficient even from the viewpoint of Heisenberg’s thought experiment [1]. Successive measurements
of position and momentum cannot be treated as projective even within ordinary quantum mechanics.
The GUP case implies additional limitation for a spatial width of the acceptance function in position
measurements. Thus, entropic measures of uncertainty should be formulated differently from the
finite-dimensional case. One of distinctions concerns a proper form of the state immediately following
the first measurement. The post-first-measurement state was chosen according to the two possible
scenarios. Uncertainty relations in terms of Shannon entropies contain a state-dependent correction
term. Hence, entropic lower bounds for successive measurements generally differ from lower bounds
involved into preparation uncertainty relations. We also formulated state-independent uncertainty
bounds in terms of Rényi entropies and, with binning, in terms of Tsallis entropies. In the presence
of a minimal length, state-independent entropic lower bounds of preparation uncertainty relations
remain valid for scenarios with successive measurements. When acceptance functions of measurement
apparatuses are sufficiently well spread, the existing entropic lower bounds are improved.

Conflicts of Interest: The author declares no conflict of interest.
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56. Bengtsson, I.; Życzkowski, K. Geometry of Quantum States: An Introduction to Quantum Entanglement;

Cambridge University Press: Cambridge, UK, 2006.
57. Holik, F.; Bosyk, G.M.; Bellomo, G. Quantum information as a non-Kolmogorovian generalization of

Shannon’s theory. Entropy 2015, 17, 7349–7373. [CrossRef]
58. Bosyk, G.M.; Zozor, S.; Holik, F.; Portesi, M.; Lamberti, P.W. A family of generalized quantum entropies:

Definition and properties. Quantum Inf. Process. 2016, 15, 3393–3420. [CrossRef]
59. Białynicki-Birula, I. Entropic uncertainty relations. Phys. Lett. A 1984, 103, 253–254. [CrossRef]
60. Białynicki-Birula, I. Formulation of the uncertainty relations in terms of the Rényi entropies. Phys. Rev. A

2006, 74, 052101. [CrossRef]
61. Blokhintsev, D.I. Space and Time in the Microworld; D. Reidel Publishing Company: Dordrecht,

The Netherlands, 1973.
62. De la Madrid, R.; Bohm, A.; Gadella, M. Rigged Hilbert space treatment of continuous spectrum.

Fortschr. Phys. 2002, 50, 185–216. [CrossRef]
63. Huang, Y. Variance-based uncertainty relations. Phys. Rev. A 2012, 86, 024101. [CrossRef]
64. Maccone, L.; Pati, A.K. Stronger uncertainty relations for all incompatible observables. Phys. Rev. Lett. 2014,

113, 260401. [CrossRef] [PubMed]
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Abstract: Probability interpretation is the cornerstone of standard quantum mechanics. To ensure
the validity of the probability interpretation, wavefunctions have to satisfy the square-integrable
(SI) condition, which gives rise to the well-known phenomenon of energy quantization in confined
quantum systems. On the other hand, nonsquare-integrable (NSI) solutions to the Schrödinger
equation are usually ruled out and have long been believed to be irrelevant to energy quantization.
This paper proposes a quantum-trajectory approach to energy quantization by releasing the SI
condition and considering both SI and NSI solutions to the Schrödinger equation. Contrary to
our common belief, we find that both SI and NSI wavefunctions contribute to energy quantization.
SI wavefunctions help to locate the bifurcation points at which energy has a step jump, while
NSI wavefunctions form the flat parts of the stair-like distribution of the quantized energies. The
consideration of NSI wavefunctions furthermore reveals a new quantum phenomenon regarding the
synchronicity between the energy quantization process and the center-saddle bifurcation process.

Keywords: square integrable; energy quantization; Quantum Hamilton-Jacobi Formalism;
quantum trajectory

1. Introduction

In the statistical formulation of quantum mechanics, a wavefunction ψ has to be square integrable
(SI) to ensure the qualification of ψ∗ψ as a probability density function. SI solutions to the Schrödinger
equation can be used to determine the energy levels in a confined system. Nonsquare-integrable (NSI)
solutions to the Schrödinger equation otherwise are ruled out and their role has been unknown till now.
To investigate the role of NSI wavefunctions, we need a formulation of quantum mechanics, which
does not require the SI condition. Among the nine different formulations of quantum mechanics [1],
there is a formulation known as the quantum Hamilton-Jacobi (H-J) formalism [2,3], which meets our
purpose. The quantum H-J formalism has been developed since the inception of quantum mechanics
along the line of Jordan [4], Dirac [5] and Schwinger [6]. The main advantage of the classical H-J
formalism is to give the frequencies of a periodic motion directly without solving the equations of
motion. Analogous to its classical counterpart, the advantage of quantum H-J formalism is recognized
as a method of finding energy eigenvalues directly without solving the related Schrödinger equation.

Based on the quantum H-J equation, Leacock and Padgett [2,3] proposed an ingenious method
to evaluate energy eigenvalues by contour integral. This approach to energy eigenvalues En is
entirely independent of whether the related wavefunction is SI or not, and allows us to examine the
participation of the NSI wavefunctions in the process of energy quantization. Apart from providing
energy eigenvalues, quantum H-J formalism like its classical counterpart produces quantum Hamilton
dynamics [7], from which complex quantum trajectories can be solved to describe the quantum motion
associated with a given wavefunction. Probability interpretation isolates SI wavefunctions from NSI
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wavefunctions; on the contrary, under the quantum H-J formalism SI and NSI wavefunctions are
indivisible with continuously connected quantum trajectories. Because NSI wavefunctions ψ fail to
serve as probability density functions, we need an alternative operation to replace the expectation
(assemble average) 〈ψ|Ω̂|ψ〉 of a quantum observable Ω. The complex quantum trajectory method
developed from the quantum H-J formalism can provide the time average 〈Ω〉T to substitute for the
usual assemble average 〈ψ|Ω̂|ψ〉.

Based on the time-average operation 〈Ω〉T , which applies to both SI and NSI wavefunctions, we
can derive quantization laws more general than those based on the assemble average 〈ψ|Ω̂|ψ〉, which
applies only to SI wavefunctions. One of the general results shows that as the total energy E of a
confined system increases monotonically, the time-average kinetic energy 〈Ek〉T of a confined particle
exhibits a stair-like distribution in such a way that the step jumps occur as E equal to one of the energy
eigenvalue En and the flat part of the distribution is formed over the interval En ≤ E < En+1. During
the process as E increases continuously from En to the next energy eigenvalue En+1, we note that all
the corresponding wavefunctions are NSI, but they all yield the same value of 〈Ek〉T and form the flat
part of the stair-like energy distribution. In other words, the transition from the eigenstate ψn to the
next eigenstate ψn+1 can be connected smoothly by the NSI wavefunctions ψE with En < E < En+1,
which otherwise have been ruled out in standard quantum mechanics.

Compared to the complex quantum trajectory derived from the quantum H-J formalism, de
Broglie-Bohm (dBB) quantum trajectory [8–10] is real-valued. The equivalence between dBB trajectory
interpretation and probability interpretation of quantum mechanics has been well developed over the
last several decades. Although under the dBB formulation, particles follow continuous trajectories
with well-defined two-time position correlations, a recent paper by Gisin [11] pointed out that
Bohmian mechanics makes the same predictions as standard quantum mechanics: the violation
of Bell inequalities. The studies of dBB formulation of quantum mechanics [12–14] revealed that like
the way that thermal probabilities arise in ordinary statistical mechanics, the quantum probabilities
|ψ(x, t)|2 arise dynamically in a similar way that a simple initial ensemble with a non-equilibrium
distribution P(x, 0) 
= |ψ(x, 0)|2 of particle positions evolves towards the equilibrium distribution
via the relaxation process P(x, t)→ |ψ(x, t)|2 . Meanwhile, the speed of the convergence of P(x, t) to
|ψ(x, t)|2 was found to correlate with the degree of chaos of the involved Bohmian trajectories [15–17],
which in turn was shown to be related to the vortex dynamics generated by nodal points in the
wavefunction ψ(x, t) [18,19]. The degree of chaos produced by many interacting vortices ultimately
depends on the number and spatial distribution of the nodal points in the configuration space [20,21].

Parallel to the development of real-valued dBB trajectories, the study of complex-valued quantum
trajectories has evolved into a quantum trajectory method, which integrates the hydrodynamic
equations on the fly to synthesize the probability density by evolving ensembles of complex quantum
trajectories [22–24]. Due to the additional degree of freedom given by the imaginary part of a complex
trajectory, it is possible to synthesize the quantum probability |ψ(x, t)|2 by a single complex-valued
trajectory, instead of an ensemble of real-valued or complex-valued trajectories [25].

To date, the trajectory approaches to quantum mechanics, either using real-valued trajectories
based on dBB formulation or using complex-valued trajectories based on H-J formulation, mainly deal
with SI wavefunctions in order to show their consistency with the probability interpretation. Here
we will go beyond SI wavefunctions to find out what will happen, when statistical interpretation is
not applicable. On one hand we will use complex trajectories to demonstrate the energy quantization
process after releasing the SI condition, and on the other we will apply the quantum Hamilton dynamics
to demonstrate the sequential center-saddle bifurcations as the energy quantization proceeds. The
combined result manifests a new quantum phenomenon regarding the synchronicity between the
energy quantization process and the center-saddle bifurcation process.

NSI wavefunctions not only participate in the quantization and bifurcation process, but also
in the formation of spin degree of freedom. In spite of their distinct statistical properties, SI and
NSI wavefunctions have similar velocity fields with the only difference in their directions of rotation
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on the complex plane. As the third goal of the paper, we will contrast quantum trajectories of SI
wavefunctions with those of NSI wavefunctions to manifest the invisible spin degree of freedom as a
rotational motion on the complex plane.

The remainder of this paper is organized as follows: Section 2 presents quantum H-J formalism
and the related method of determining energy eigenvalues. In Section 3, time average operation for
NSI wavefunctions along a complex quantum trajectory is developed from the quantum H-J formalism
to replace the ensemble average. The proposed time average operation is then used in Section 4
to derive the universal quantization laws regarding the kinetic energy and the quantum potential.
Section 5 demonstrates the participation of NSI wavefunctions in the energy quantization process for a
harmonic oscillator. Section 6 proposes a quantum dynamic description of energy quantization, in
terms of which a new phenomenon regarding the synchronicity between quantization and bifurcation
is revealed. Finally, both SI and NSI solutions to the Schrödinger equation are considered in Section 7
and their relations to spin degree of freedom are explained.

2. Quantum Hamilton-Jacobi Formalism

While the quantum H-J theory is general, here we consider its application to bound states,
which have quantized energy levels and closed quantum trajectories. The quantum H-J approach
to determining energy eigenvalues can be conceived of as an extension of the Wilson-Sommerfeld
quantization rule [26]. In this approach, the quantum energy levels are given exactly by setting the
quantum action variable equal to an integer multiple of Planck constant:

J(E) =
1

2π

∮
c

p(x)dx = n�, n = 0, 1, 2, · · · , (1)

where p(x) is called quantum momentum function (QMF) and the contour c is defined on the complex
plane with the integer n being the number of poles of p(x) enclosed by c. The QMF p(x) is related to
the quantum action function S and the wavefunction ψ as:

p(x) =
∂S
∂x

= −i�
∂ ln ψ

∂x
, (2)

with S satisfying the quantum H-J equation:

∂S
∂t

+ H(t, x, p)|p=∂S/∂x =
∂S
∂t

+

[
p2

2m
+ V − i�

2m
∂p
∂x

]
p=∂S/∂x

= 0, (3)

and with ψ satisfying the Schrödinger equation:

i�
∂ψ

∂t
= − �2

2m
∂2ψ

∂x2 + Vψ. (4)

It appears that the quantum H-J Equation (3) and the Schrödinger Equation (4) are equivalent
expressions via the relation S = −i� ln ψ.

Leacock and Padgett [2,3] proposed an ingenious method to evaluate J(E) without actually
solving p(x) from the quantum H-J Equation (3). They showed that for a given potential V(x), J(E)
can be computed simply by a suitable deformation of the complex contour c and the change of variables
in Equation (1). Once J(E) is found, the energy eigenvalues En can be determined by solving E in
terms of the integer n via the relation J(E) = n�.

The quantum H-J approach to determining energy eigenvalues has two significant implications.
Firstly, this approach suggests that the energy eigenvalue En stems from the quantization of the action
variable J, rather than from the quantization of the total energy E itself. Precisely speaking, the energy
eigenvalue En is the specific energy E at which the action variable J(E) happens to be an integer
multiple of �, i.e., J(En) = n�. Inspired by this implication, the first goal of this paper is to reveal the
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internal mechanism causing the quantization of the action variable J and find out its relation to the
energy quantization.

Secondly, the quantum H-J approach implies that the SI condition is not required throughout
the process of determining energy eigenvalues, which means that whether wavefunctions are SI or
not is unconcerned upon evaluating eigen energies. Based on this observation, our second goal here
is to expose how SI and NSI wavefunctions cooperate to form the observed energy levels within
a confining potential. For a given wavefunction ψ(t, x) either SI or NSI, the associated quantum
dynamics can be described by the quantum Hamilton equations with the quantum Hamiltonian H
given by Equation (3):

dx
dt

=
∂H
∂p

=
p
m

, x ∈ C, (5a)

dp
dt

= −∂H
∂x

= − ∂

∂x
(V(x) + Q(t, x)), p ∈ C, (5b)

where Q(x) is the complex quantum potential defined by:

Q(t, x) = − i�
2m

∂p
∂x
|
p=∂S/∂x

= − i�
2m

∂2S
∂x2 = − �2

2m
∂2 ln ψ(t, x)

∂x2 . (6)

Quantum potential Q(t, x) is intrinsic to the quantum state ψ(t, x) and is independent of the
externally applied potential V(x). The quantum Hamilton Equations (5) are distinct from the classical
ones in two aspects: the complex nature and the state-dependent nature. The complex nature is a
consequence of the fact that the canonical variables (x, p) solved from Equation (5) are, in general,
complex variables. The state-dependent nature means that Equation (5) governs the quantum motion
specifically in the quantum state described by ψ. The Hamilton Equations (5), which is usually
regarded as the complex-extension of Bohmian mechanics, can be derived independently by the
optimal stochastic control theory [27].

For a given wavefunction ψ(t, x), the complex contour c traced by x(t) can be solved from
Equation (5a), along which the contour integral in Equation (1) then can be evaluated. The second
Hamilton Equation (5b) is an alternative expression of the Schrödinger Equation (4) as can be shown
by substituting p(t, x) from Equation (2) and Q(t, x) from Equation (6).

3. Time Average along a Complex Quantum Trajectory

The necessity of considering time average along a complex quantum trajectory comes from the
fact that the action variable J introduced in Equation (1) is equal to the time-average kinetic energy,
as will be shown below. For a particle confined by a time-independent potential V(x), we have
wavefunction ψ(t, x) = e−iEt/�ψE(x) and quantum action function S(t, x) = −Et− i� ln ψE(x), with
which the quantum H-J Equation (3) can be recast into the following form:

H(x, p) =
p2

2m
+ V(x) + Q(x) = −∂S

∂t
= E. (7)

This is the energy conservation law in the quantum H-J formalism, indicating that the conserved
total energy E comprises three terms: the kinetic energy Ek = p2/2m, the applied potential V(x), and
the quantum potential Q(x). When expressed in terms of the wavefunction ψE(x), Equation (7) and
Equation (4) become the time-independent Schrödinger equation:

�2

2m
d2ψE

dx2 + (E−V(x))ψE = 0. (8)

The energy conservation law (7) is valid for any solution ψE(x) to the Schrödinger Equation (8),
either SI or NSI. The Schrodinger Equation (8) has a continuum of solutions, unless it is supplemented
with appropriate boundary conditions. Without loss of generality, we consider V(x) in the form of a
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potential well with the property V(x)→ ∞ , as x → ±∞ . Due to the presence of the infinite potential,
the probability of finding the particle at infinity is zero, i.e.,

ψE(x)→ 0, as x → ±∞. (9)

This boundary condition gets rid of most of the solutions to Equation (8) and selects out only a
discrete set of ψE and E. Consequently, it is the boundary conditions in standard quantum mechanics
that actually enforce the quantization. The boundary condition (9) originates from the fundamental
requirement that wavefunctions must be SI, i.e.,

∫ +∞

−∞
ψ∗E(x)ψE(x)dx < ∞, (10)

which allows the normalization of the total probability to unity. If the SI condition (10) or the boundary
condition (9) is released, the total energy E will be still conserved, but no longer quantized, because
the participation of NSI wavefunctions ψE(x) in Equation (7) will result in an arbitrary total energy E
other than En. However, even if the total energy E is allowed to be varied continuously, there exist
intrinsic quantization laws from which the energy eigenvalue En can be recovered. In other words,
probability interpretation with the accompanying SI condition is not the only way to arrive at the
quantization. This issue was first addressed by Leacock and Padgett [2,3] and demonstrated in detail
by Bhalla [28,29].

Although NSI wavefunctions ψ fail to serve as probability density functions in the assemble
average 〈Ω(x, p)〉ψ = 〈ψ|Ω(x̂, p̂)|ψ〉, complex quantum trajectories for NSI wavefunction still exist,
along which time average of Ω(x, p) can be defined to substitute for the assemble average 〈Ω(x, p)〉ψ.
The complex quantum trajectory describing the particle’s motion in a confined system can be
solved from Equations (5a) and (2), which together with ψ(t, x) = e−iEt/�ψE(x) gives the governing
equation as:

dx
dt

= − i�
m

ψ′E(x)
ψE(x)

, (11)

where ψE(x) is a general solution to Equation (8) with given energy E. The resulting complex trajectory
x(t) serves as a physical realization of the complex contour c appearing in Equation (1), and allows the
contour integral to be evaluated along the particle’s path of motion.

By treating the quantum Hamiltonian H(x, p) defined in Equation (7) as a Lyapunov function, the
energy conservation law dH/dt = 0 implies that the autonomous nonlinear system (11) is Lyapunov
stable (neutrally stable) with equilibrium points in the form of centers, irrespective of whether ψE is SI
or not. The trajectory solved from Equation (11) coincides with the Lyapunov contour lines defined by
H(x, p) = E = constant, which are concentric curves surrounding equilibrium points.

The time average of Ω(x, p) along the particle’s trajectory x(t) is defined as:

〈Ω(x, p)〉T =
1
T

∫ T

0
Ω(x(t), p(t))dt, (12)

where T is the period of oscillation of x(t). The quantum action variable J defined in Equation (1)
is a ready example of taking time average along a complex contour. Letting c be a closed trajectory
solved from Equation (11), we can rewrite the contour integral (1) in terms of the time-average kinetic
energy as:

J =
1

2π

∮
c

p(x)dx =
1

2πm

∫ T

0
p2dt =

2
ω
〈Ek〉T , (13)

where ω = 2π/T is the angular frequency of the periodic motion. Therefore, the Wilson-Sommerfeld
quantization law J = n� is simply an alternative expression of the energy quantization law 〈Ek〉T =

n(�ω/2).
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In general, the time average of an arbitrary function Ω(x, p) can be expressed in terms of a contour
integral by using Equations (11) and (12):

〈Ω(x, p)〉T = i
mω

2π�

∮
c

Ω(x)
ψE(x)
ψ′E(x)

dx, (14)

where c is the closed contour traced by x(t) on the complex plane, and the symbol “prime” denotes
the differentiation with respect to x. Since QMF p(x) can be expressed as a function of x, we simply
write Ω(x, p) as Ω(x) in the integrand. According to the residue theorem, the value of 〈Ω(x, p)〉T is
determined only by the poles of the integrand enclosed by the contour c and is independent of the
actual form of c. We will see below that the discrete change of the number of poles in the integrant
leads to the quantization of 〈Ω(x, p)〉T .

4. General Quantization Laws without SI Condition

Let ψE(x) be a general solution to the Schrödinger Equation (8) with a given energy E. We can treat
the time average 〈Ω(x, p)〉T as a function of the total energy E by noting that 〈Ω(x, p)〉T is computed
by Equation (14) with wavefunction ψE(x), which in turn depends on the energy E. The time average
〈Ω(x, p)〉T is said to be quantized, if its value manifests a stair-like distribution as the total energy
E increases monotonically. We will derive several energy quantization laws originating from such a
stair-like behavior of 〈Ω(x, p)〉T , which are universal for all confined quantum systems. The energy
quantization defined here denotes the discrete change of the considered energy, which is different
from the definition in standard quantum mechanics, where energy quantization denotes the discrete
energies satisfying the SI condition (10).

Firstly, we consider the quantization of the time-average kinetic energy. By substituting Ω(x, p) =
p2/2m into Equation (14), we obtain:

〈Ek〉T =
1
T

∫ T

0

1
2m

p2dt =
�ω

4πi

∮
c

ψ′E(x)
ψE(x)

dx. (15)

To evaluate the above contour integral, we recall a formula from the residue theorem:

∮
c

Ω′(x)
Ω(x)

dx = 2πi
(

Zf − Pf

)
, (16)

where Zf and Pf are, respectively, the numbers of zero and pole of Ω(x) enclosed by the contour c.
Using this formula in Equation (15) yields:

〈Ek〉T =
�ω

2
(
Zψ − Pψ

)
=

�ω

2
nψ, (17)

where the integer nψ = Zψ − Pψ is the difference between the numbers of zero and pole of ψE(x).
It appears that the time average of the particle’s kinetic energy in a confined potential is an integer
multiple of �ω/2. This is an universal quantization law independent of the confining potential V(x).
Using Equation (17) in Equation (13), we recover the Wilson-Sommerfeld quantization law J = nψ�.

The other quantized energy is the quantum potential Q. The evaluation of Equation (14) with
Ω(x, p) = Q(x) gives:

〈Q〉T =
1
T

∫ T

0
Qdt =

�

2miT

∫ T

0

dp
dx

dt =
�ω

4πi

∮
c

p′(x)
p(x)

dx. (18)

Applying Formula (16) once again, we arrive at the second energy quantization law:

〈Q〉T =
�ω

2
(
Zp − Pp

)
=

�ω

2
np, (19)
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where integer np = Zp − Pp is the difference between the numbers of zero and pole of p(x). Like the
quantization of 〈Ek〉T , Equation (19) reveals that the value of 〈Q〉T is an integer multiple of �ω/2,
irrespective of the confining potential V(x).

The Kinetic energy Ek and the quantum potential energy Q, individually, are quantized quantities,
and their combination leads to another quantization law. This can be verified from the combination of
Equations (15) and (18):

〈Ek + Q〉T =
�ω

4πi

∮
c

[
ψ′E(x)
ψE(x)

+
p′(x)
p(x)

]
dx, (20)

where in the integrand can be simplified further as:

ψ′E(x)
ψE(x)

+
p′(x)
p(x)

=
d

dx
ln[p(x)ψE(x)] =

d
dx

ln ψ′E(x).

With the above simplification and the Formula (16), Equation (20) yields a new quantization law:

〈Ek + Q〉T =
�ω

4πi

∮
c

ψ
′′
E(x)

ψ′E(x)
dx =

�ω

2
nψ′ , (21)

where integer nψ′ = Zψ′ − Pψ′ is the difference between the numbers of zero and pole of ψ′E(x).
The three integers, nψ, np and nψ′ , are solely determined by the wavefunction ψE, which in turn

is solved from Equation (8) with a prescribed energy E. As E increases, the three integers can only
change discretely in response to the continuous change of E. Let E0 < · · · < En−1 < En < · · · be
the sequence of specific energies at which the integer nψ′ experiences a step jump, n− 1→ n . With
increasing E, the value of 〈Ek + Q〉T then assumes a stair-like distribution described by:

〈Ek + Q〉T =
�ω

2
n, En−1 < E ≤ En, n = 1, 2, · · · . (22)

The values of 〈Ek〉T and 〈Q〉T have a similar distribution. It is noted that the wavefunction ψE(x)
solved from Equation (8) with an energy E in the interval En−1 < E ≤ En is generally NSI. Our next
task is to clarify the roles of these NSI wavefunctions in the quantization process of 〈Ek〉T and 〈Q〉T .

5. Energy Quantization beyond SI Wavefunctions

To elucidate how SI and NSI wavefunctions cooperate to form the observed quantization levels,
we consider the typical quantum motion under a quadratic confining potential V(x) = x2/2. The
related Schrödinger equation in dimensionless form is:

d2ψE

dx2 +
(

2E− x2
)

ψE = 0, (23)

where the total energy E is allowed to be any positive real number. A general solution to the
Schrödinger Equation (23), which takes into account NSI wavefunctions, can be expressed in terms of
the Whittaker function W(k, m, z) as:

ψE(x) =
C1√

x
W
(

E
2

,
1
4

, x2
)

(24a)

= C1e−x2/2
[

F
(

1
4
− E

2
,

1
2

, x2
)

/Γ
(

3
4
− E

2

)
− 2xF

(
3
4
− E

2
,

3
2

, x2
)

/Γ
(

1
4
− E

2

) ]
, (24b)

where F(α, β, z) is the hypergeometric function, and Γ(α) is the Gamma function. Detailed
discussions on the above-mentioned special functions can be found in standard textbooks of physical
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mathematics [30]. For a given energy E, the obtained solution ψE(x) is generally NSI, except for the
energy eigenvalues En = n + 1/2, n = 0, 1, 2, · · · , at which Equation (24b) becomes:

ψn(x) = C1e−x2/2
[

F
(
−n

2
,

1
2

, x2
)

/Γ
(

1
2
− n

2

)
− 2xF

(
1
2
− n

2
,

3
2

, x2
)

/Γ
(
−n

2

)]
. (25)

Depending on whether n is even or odd, simplification of ψn(x) is given respectively by:

• n = 2m:

ψm(x) = C1e−x2/2F
(
−m, 1/2, x2

)
/Γ(1/2−m) = C1e−x2/2H2m(x). (26a)

• n = 2m + 1:

ψm(x) = C1e−x2/2F
(
−m, 3/2, x2

)
/Γ(−1/2−m) = C1e−x2/2H2m+1(x). (26b)

where we note 1/Γ(−m) = 0 in Equation (25) for negative integer −m. Combining the above two
equations yields the eigenfunctions ψn(x) = C1e−x2/2Hn(x) for the quantum harmonic oscillator.
The eigenfunctions ψn(x) are the only solutions to the Schrödinger Equation (23), satisfying the
boundary condition (9) and the SI condition (10).

All the existing discussions on energy quantization in the harmonic oscillator focus on the SI
eigenfunctions and their linear combinations. Here we are interested in the energy quantization related
to the NSI wavefunctions described by Equation (24) with E 
= n + 1/2. According to Equations (17)
and (21), the quantization of 〈Ek〉T and 〈Ek + Q〉T is determined by the numbers of zero and pole of
ψE(x) and ψ′E(x). Examining the expression for ψE(x) given by Equation (24b), we find that ψE(x)
and ψ′E(x) do not have any pole over the entire complex plane, because the hypergeometric function
F(α, β, z) and its derivative are analytic functions for any z ∈ C. Accordingly, we have Pψ = Pψ′ = 0,
and:

nψ = Zψ − Pψ = Zψ, nψ′ = Zψ′ − Pψ′ = Zψ′ , np = Zp − Pp = Zψ′ − Zψ. (27)

Hence the three quantum numbers, nψ, np and nψ′ , can be determined by the two independent
integers: Zψ and Zψ′ , the numbers of zero of ψE(x) and ψ′E(x), respectively. Regarding the computation
of Zψ, we can find the zero of ψE by solving the roots of the Whittaker function according to
Equation (24a):

W
(

E
2

,
1
4

, x2
)
= 0, x ∈ C, E ∈ R

+. (28)

For a given energy E, the resulting root is denoted by xs(E), and Zψ is the number of xs(E)
satisfying Equation (28). The blue line in Figure 1 illustrates the variation of Zψ with respect to the
energy E. Similarly, Zψ′ can be found by solving the roots of ψ′E(x) = 0:

(
2E + 1− 2x2

)
·W

(
E
2

,
1
4

, x2
)
+ 4·W

(
E
2
+ 1,

1
4

, x2
)
= 0, x ∈ C, E ∈ R

+. (29)
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Figure 1. The stair-like distributions of the numbers of zero of ψE(x) and ψ′E(x), as the total energy E
changes continuously

The resulting root is denoted by xeq(E) and the number of xeq(E) satisfying Equation (29) for a
given energy E gives the value of Zψ′ . The red line in Figure 1 illustrates the variation of Zψ′ with
respect to the energy E.

As can be seen from Figure 1, when the total energy E increases monotonically, Zψ′ and Zψ exhibit
a stair-like distribution in the form of:

Zψ′ = nψ′ = n + 1, Zψ = nψ = n, n− 1
2
< E ≤ n +

1
2

, n = 1, 2, · · · . (30)

and Zψ′ = 1, Zψ = 0, as 0 < E ≤ 1/2. Based on the above distributions of Zψ′ and Zψ, the quantization
laws derived in Equations (17), (19) and (21) now become:

〈Ek〉T =
nψ

2
=

n
2

, 〈Ek + Q〉T =
nψ′
2

=
n + 1

2
, 〈Q〉T =

1
2
(
nψ′ − nψ

)
=

1
2

, (31)

when the total energy E falls in the interval n− 1/2 < E ≤ n + 1/2. All the energies in Equation (31)
have been expressed in terms of the multiples of �ω. Consequently, as we increase the total energy
E monotonically, 〈Ek〉T and 〈Ek + Q〉T increase in a stair-like manner with the step levels given by
Equation (31), as shown in Figure 2. Up to this stage, the two components Ek and Q in the energy
conservation law (7) have been found to be quantized, while the third component, i.e., the externally
applied potential V(x), is not a quantized quantity, which otherwise changes continuously with E via
the relation:

〈V(x)〉T = E− Ek + QT = E− n + 1
2

. (32)
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Figure 2. The step changes of 〈Ek〉T and 〈Ek + Q〉T occur at the SI wavefunctions ψE with E = n + 1/2,
as the total energy E changes continuously in a harmonic oscillator. The flat parts of 〈Ek〉T and
〈Ek + Q〉T are constituted by the NSI ψE with E 
= n + 1/2.

The most noticeable point is that the step change of 〈Ek〉T and 〈Ek + Q〉T occurs at the specific
energies En = n + 1/2, which coincide with the energy eigenvalues of the harmonic oscillator. In
other words, the role of the SI condition amounts to determining the discrete energy En at which the
numbers of zero of ψE(x) and ψ′E(x) exhibit a step jump, while the role of the NSI wavefunctions
ψE(x) with E 
= En is to form the flat parts of the stair-like distribution as shown in Figures 1 and 2,
where the numbers of zero of ψE(x) and ψ′E(x), or equivalently the time-average energies 〈Ek〉T and
〈Ek + Q〉T , keep unchanged.

6. Quantum Bifurcation beyond SI Wavefunctions

As the total energy E increases, the wavefunction ψE(x) transits repeatedly from NSI states to
a SI state, once E coincides with an energy eigenvalue En. In this section, we will show that the
encounter with an energy eigenvalue not only causes a step jump of 〈Ek〉T and 〈Ek + Q〉T , but also
causes a nonlinear phenomenon - quantum bifurcation, where the number of equilibrium points of the
quantum dynamics experiences an instantaneous change.

With ψE(x) given by Equation (24a), the quantum dynamics (11) assumes the following
dimensionless form:

dx
dt

= −i
ψ′E(x)
ψE(x)

=
i

2x

(
2E + 1− 2x2

)
+

2i
x

W
(
E/2 + 1, 1/4, x2)

W(E/2, 1/4, x2)
, (33)

where the total energy E is treated as a free parameter, whose critical values for the occurrence of
bifurcation are to be identified. The quantum trajectories x(t) solved from Equation (33) provide
us with a quantitative comparison between SI and NSI wavefunctions, which otherwise cannot be
compared under the probability interpretation of ψE(x).

As can be seen from Equation (33), the equilibrium point xeq of the quantum dynamics is equal to
the zero of ψ′E(x), while the singular point xs is just the zero of ψE(x). Hence the step changes of Zψ

and Zψ′ shown in Figure 1 also imply the step changes of the numbers of the equilibrium points xeq and
the singular points xs, respectively. In other words, we can say that the following two processes occur
synchronously as E increases monotonically: one process is the quantization of 〈Ek〉T and 〈Ek + Q〉T
regarding the step changes of Zψ and Zψ′ as discussed previously, and the other is the bifurcation of
the quantum dynamics (33) regarding the step changes of the equilibrium points and singular points,
as to be discussed below.

(1) SI wavefunctions:
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Firstly, we consider the special cases that the total energy E happens to be one of the eigen energies:
E0 = 1/2, E1 = 3/2, and E2 = 5/2. The related eigenfunctions and the eigen-dynamics derived from
Equation (33) are given by:

ψ0(x) = e−x2/2 :
dx
dt

= ix, (34a)

ψ1(x) = 2xe−x2/2 :
dx
dt

= i
x2 − 1

x
, (34b)

ψ2(x) = 2
(

2x2 − 1
)

e−x2/2 :
dx
dt

= i
x
(
x2 − 5/2

)
x2 − 1/2

. (34c)

These three equations describe the velocity fields and their solutions give the eigen-trajectories
for the first three SI states of the harmonic oscillator. It can be shown that the equilibrium points of
Equation (34) are centers, while their singular points are saddles. For instance,

.
x = ix in Equation (34a)

has an equilibrium point at the origin with solution given by x(t) = ceit, whose trajectories on the
complex plane are concentric circles around the equilibrium point, showing that x = 0 is a center. To
show singular points in Equation (34) are saddles, we consider the following complex-valued system
with a singular point at the origin:

.
x = f (x) =

g(x)
x

, x ∈ C, (35)

where g(x) is analytic at x = 0. In a neighborhood of the origin, Equation (35) can be approximated by
.
x = λ/x, where λ = g(0) is the residue of f (x) evaluated at x = 0. The substitution of x = xR + ixI
and λ = α + iβ into

.
x = λ/x leads to the equivalent real-valued nonlinear system:

xR
.
xR − xI

.
xI = α, xR

.
xI + xI

.
xR = β. (36)

Its solution is a set of hyperbolas expressed by x2
R − 2(α/β)xRxI − x2

I = C, showing that the
singular point x = 0 in Equation (35) are saddles. The centers and saddles of Equation (34) generated
by the SI wavefunctions ψE(x) with E0 = 1/2, E1 = 3/2, and E2 = 5/2 are illustrated in Figure 3,
which displays the distribution and movement of the centers and saddles of the quantum dynamics
(33) on the horizontal x axis, as the total energy E changes continuously along the vertical axis. Detailed
discussions on the quantum trajectories of the SI wavefunctions ψn(x) for a harmonic oscillator were
reported in the literature [31,32]. Here our concern is the quantum trajectories of the NSI wavefunctions
ψE(x) with E 
= n + 1/2. Quantum trajectories in the first three quantization intervals of E will be
examined below, from which a global picture of center-saddle bifurcation can be drawn.

(2) NSI wavefunctions ψE(x) with 0 < E ≤ 1/2:

The wavefunction ψE(x) in this range of energy is NSI, except for E = 1/2. It seems to be a
reasonable conjecture that NSI wavefunctions naturally give rise to unbound quantum trajectories;
however, this is not the case. Figure 4 illustrates the quantum trajectories solved from Equation (33)
for the NSI wavefunctions ψE(x) with E = 0.1, E = 0.49, and E = 0.51. In spite of being generated
by NSI wavefunctions, the resulting quantum trajectories are bound with slight deviations from the
eigen-trajectories of E = 1/2, which are concentric circles around the equilibrium point at the origin,
as described by Equation (34a). It appears that SI eigenfunctions are not isolated from the neighboring
NSI wavefunctions, because their quantum trajectories can be deformed continuously into each other.
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Figure 3. The distribution and movement of the centers and saddles over the horizontal x axis, as the
total energy E changes continuously along the vertical axis.

Figure 4. The wavefunctions corresponding to E = 0.1, E = 0.49, and E = 0.51 are NSI, but their
quantum trajectories are bound and closely connected to the eigen trajectories of E = 0.5, which are
concentric circles around the equilibrium point at the origin.
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(3) NSI wavefunctions ψE(x) with 1/2 < E ≤ 3/2:

According to Figure 1, the number of equilibrium points Zψ′ of the quantum dynamics (33), jumps
from one to two as E across the energy eigenvalue E = 1/2. This bifurcation phenomenon is illustrated
in Figure 5. There is only one equilibrium point at the origin in the energy interval 0 < E ≤ 0.5, while
beyond the bifurcation point E = 1/2, two equilibrium points come out from the origin. Particular
attention is paid to the quantum trajectories of E = 0.51 depicted in Figure 4d. At first glance, it
looks like that the quantum trajectories of E = 0.51 have a single equilibrium point at the origin.
However, the enlargement of Figure 4d near the origin as illustrated in Figure 5a indicates that the
single equilibrium point at the origin for E = 1/2 splits into two equilibrium points as E increases to
0.51. When E increases to 3/2, the two equilibrium points (two centers) move further to xeq = ±1, as
described by the quantum dynamics (34b) and illustrated in Figure 5d.

(a) E=0.51 (NSI wavefunction) (b) E=0.6 (NSI wavefunction) 

(c) E=1.0 (NSI wavefunction) (d) E=1.5 (SI wavefunction) 

   

   

    

    

Figure 5. Velocity fields and quantum trajectories in the energy interval 0.5 < E ≤ 1.5 show the
quantum bifurcation that the number of equilibrium points jumps from one to two as energy across
E = 0.5. Part (a) is the enlargement of Figure 4d near the origin to illustrate the split of the single
equilibrium point at the origin into a pair of equilibrium points as E increases from 0.5 to 0.51. In this
energy interval, there are two equilibrium points and one singular point at the origin, corresponding to
the energy levels Zψ′ = 2 and Zψ = 1 as shown in Figure 1.

Coincident with the splitting of the equilibrium point at the bifurcation point E = 1/2, a singular
point emerges from the origin in the form of a saddle point. The resulting saddle point pattern in
the vicinity of the origin is clearly manifested in Figure 5. It turns out that at the bifurcation energy
E = 1/2, two kinds of bifurcation occur simultaneously: one bifurcation regards the change of the
number of equilibrium points from a single center at the origin into a pair of centers moving apart
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along the positive and negative real axis as E increases from 1/2 to 3/2, and the other bifurcation
regards the change from a center into a saddle at the origin.

(4) NSI wavefunctions ψE(x) with 3/2 < E ≤ 5/2:

At the energy eigenvalue E = 3/2, the value of Zψ′ experiences the second step jump, and a new
bifurcation is expected to form here. This prediction is confirmed in Figure 6a, where the enlargement
of the velocity field near the origin shows that the saddle-point singularity at the origin for E = 3/2
now transforms into a center for E = 1.51. As E increases further to E = 1.6 and E = 2, flow circulation
around the origin as a center becomes more apparent. Counting the new equilibrium point emerging
from the origin and the already existing pair of centers, the number of equilibrium points increases
from two to three as E across E = 3/2, and remains three in the interval 3/2 < E ≤ 5/2. Coincident
with the emergence of a new center from the origin at E = 3/2, the singular saddle point previously
residing at the origin now splits into a pair of saddles with their separation increasing with E. The two
saddles move to xs = ±

√
1/2 when E increases to 5/2, as described by Equation (34c) and illustrated

in Figure 6d.

(a) E=1.51 (NSI wavefunction) (b) E=1.6 (NSI wavefunction) 

(c) E=2.0 (NSI wavefunction) (d) E=2.5 (SI wavefunction) 

   

   

    

    

Figure 6. Velocity fields and quantum trajectories in the energy interval 1.5 < E ≤ 2.5 show the
quantum bifurcation that the number of equilibrium points jumps from two to three as energy across
E = 1.5. Part (a,b) are the enlargements of the velocity field near the origin to illustrate the emergence
of a new equilibrium point (a center). In this energy interval, there are three equilibrium points and
two singular points, corresponding to the energy levels Zψ′ = 3 and Zψ = 2 as shown in Figure 1. Part
(d) plots the eigen trajectories for E = 2.5 to show the three equilibrium points at xeq = 0, ±√5/2 and
two singular points at xs = ±

√
1/2.
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(5) Center-Saddle Bifurcation

When we proceed further, the bifurcations of the equilibrium centers xeq and the singular saddles
xs of the quantum dynamics (33) occur alternatively as E increases. To gain a global picture of
the bifurcation pattern, we solve the equilibrium points xeq(E) and the singular points xs(E) from
Equations (29) and (28), respectively, and then plot them as functions of E. The resulting plots
generate two sequences of pitchfork bifurcation diagram as shown in Figures 7 and 8 for xeq(E) and
xs(E), respectively. It can be seen that the bifurcations of xeq(E) and xs(E) occur alternatively at
the critical energies En = n + 1/2 in such a way that the branches of xeq(E) bifurcate sequentially
at E = 0 + (1/2), 2 + (1/2), 4 + (1/2), · · · , while the branches of xs(E) bifurcate sequentially at
E = 1 + (1/2), 3 + (1/2), 5 + (1/2), · · · .

Figure 7. A sequence of pitchfork bifurcation curves shows the variation of equilibrium points xeq(E)
with respect to the total energy E. The number of xeq(E) at each E, denoted by the blue dots, is equal
to the energy level Zψ′ as plotted in Figure 1. The branches of the xeq(E) curves start sequentially at
E = 0, 3/2, 7/2, · · · , and bifurcate sequentially at E = 1/2, 5/2, 9/2, · · · . Except for the bifurcation
points (the blue dots), the entire sequential bifurcation diagram is formed by the NSI wavefunctions
ψE(x) with E 
= n + 1/2.

Furthermore, it is worth noting that except for the bifurcation points (the blue dots in Figure 7
and the red dots in Figure 8), the sequential bifurcation diagram is constructed entirely by the NSI
wavefunctions ψE(x) with E 
= n + 1/2. Without the participation of the NSI wavefunctions, adjacent
eigenfunctions lose their interconnection and a continuous description of the bifurcation sequence
becomes impossible. The other perspective of center-saddle bifurcation can be gained from Figure 3,
where we can see that centers and saddles appear alternatively at the origin as the total energy E
increases monotonically along the vertical axis.
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Figure 8. A sequence of pitchfork bifurcation curves shows the variation of singular points xs(E)
with respect to the total energy E. The number of xs(E) at each E, denoted by the red dots, is equal
to the energy level Zψ as plotted in Figure 1. The branches of the xs(E) curves start sequentially at
E = 1/2, 5/2, 9/2, · · · , and bifurcate sequentially at E = 3/2, 7/2, 11/2, · · · . Except for the bifurcation
points (the red dots), the entire sequential bifurcation diagram is formed by the NSI wavefunctions
ψE(x) with E 
= n + 1/2.

(6) Synchronicity between quantization and bifurcation

We recall that the number of xeq(E) at each E is just the number of zero of ψ′E(x), which gives
the quantization level of 〈Ek + Q〉T . This relation indicates that the bifurcation of the equilibrium
center point xeq(E) and the quantization of 〈Ek + Q〉T occur synchronously. Similarly, because the
number of xs(E) at each E is the number of zero of ψE(x), which gives the quantization level of 〈Ek〉T ,
the bifurcation of the singular saddle point xs(E) is thus synchronous with the quantization of 〈Ek〉T .
Table 1 lists the numbers of saddles and centers, and the energy levels of 〈Ek + Q〉T and 〈Ek〉T for the
first several energy intervals. As can be seen, the numbers of saddles and centers change synchronously
with the change of 〈Ek + Q〉T and 〈Ek〉T . It is noted that as energy E varies continuously during the
quantization and bifurcation processes, the instantaneous changes of energy levels and equilibrium
points are triggered by the SI condition E = n + 1/2.

Table 1. The step changes of 〈Ek〉T and 〈Ek + Q〉T are synchronous with the changes of saddles
and centers.

Quantized Items 0 < E < 1
2 E = 1

2
1
2 < E < 3

2 E = 3
2

3
2 < E < 5

2 E = 5
2

5
2 < E < 7

2

Wavefunctions NSI SI NSI SI NSI SI NSI
Zeros of ψE(x) 0 0 1 1 2 2 3

Number of saddles 0 0 1 1 2 2 3
Levels of 〈Ek〉T 0 0 1/2 1/2 1 1 3/2
Zeros of ψ′E(x) 1 1 2 2 3 3 4

Number of centers 1 1 2 2 3 3 4
Levels of 〈Ek + Q〉T 1/2 1/2 1 1 3/2 3/2 2
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7. Spin Degree of Freedom beyond SI Wavefunctions

The role of the Schrödinger equation has long been considered as describing spinless particles
only, because the Schrödinger charge current for the s-states of a hydrogen-like atom vanishes and
produces no intrinsic angular momentum. However, based on the observation that in the absence of a
magnetic field, the Pauli equation reduces to the Schrödinger equation, it was pointed out [33] that the
Schrödinger equation must be regarded as describing an electron in an eigenstate of spin and not, as
universally supposed, an electron without spin. According to the dBB trajectory approach [34,35], spin
is interpreted as a dynamical property of electron motion and is attributed to a circulating movement
of a point, i.e., to a pure orbital motion, but not to an extended spinning object. To be consistent
with the Dirac theory and with the condition of Lorentz invariance, Holland [34] proposed that the
Schrödinger charge current must be supplemented by a spin magnetization current, which is generated
by a circulating flow of energy in the wave field of the electron [36,37].

The NSI solutions to the Schrödinger equation considered in the present paper might give an
alternative explanation for the origin of particle’s spin motion. The Schrödinger Equation (8) with given
energy E actually has two independent solutions. It is surprising to find that the quantum trajectories
generated by the two independent solutions are indistinguishable, except for their directions of rotation.
Inspecting the quantum trajectories shown in Figures 4–6, it appears that all the trajectories, either
generated by SI or NSI wavefunctions, rotate counterclockwise (CCW). In fact, all the trajectories
produced by the general wavefunctions given by Equation (24) rotate in the same direction, because
Equation (24) only gives one of the independent solutions. A complete general solution to the
Schrödinger Equation (23) comprises two independent parts:

ψE(x) = ψCCW(x) + ψCW(x) =
C1√

x
W
(

E
2

,
1
4

, x2
)
+

C2√
x

W
(
−E

2
,

1
4

,−x2
)

, (37)

where ψCCW(x) is the solution considered previously and ψCW(x) is the other independent solution,
whose quantum trajectories rotate clockwise (CW). The wavefunction ψCW(x) represents the second
half of solutions to the Schrödinger Equation (23), which is NSI for any energy E and we usually take
the neglect of it as granted.

The consideration of the wavefunctions ψCW(x) helps to identify the additional degree of freedom
independent of the particle’s orbital motion. To highlight the difference between ψCCW(x) and ψCW(x),
their velocity fields computed by Equation (11) with E = 1/2 are illustrated in Figures 9a,b, respectively.
The velocity field of ψCCW(x) is identical to Figure 4c, which shows circular flows surrounding the
origin counterclockwise. By contrast, the velocity field of ψCW(x) depicted in Figure 9b appears to be
clockwise circulation around the origin. The quantum trajectories generated by ψCW(x) are almost
indistinguishable from those generated by ψCCW(x), and the only difference between them is the
directions of rotation. In addition to the orbital motion, the new degree of freedom manifested in the
combination of ψCCW(x) and ψCW(x) is the dual directions of rotation, which is otherwise invisible
along a single trajectory generated by either ψCCW(x) or ψCW(x). Due to their same spatial motion
with dual directions, ψCCW(x) and ψCW(x) can be reasonably recognized as the same spatial solution
to the Schrödinger equation but with opposing directions of spin.
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Figure 9. The dual-rotation solutions to the Schrödinger equation with E = 1/2: (a) quantum trajectory
of the wavefunction ψCCW(x); (b) quantum trajectory of the wavefunction ψCW(x); (c) comparison
between |ψCCW | and |ψCW |, and (d) comparison between total potential VT(ψCCW) and VT(ψCW).

The reason underlying the opposite rotation of ψCCW(x) and ψCW(x) can be explained by using
the asymptotic expansion property for the Whittaker function:

W(±k, m,±z) = e∓z/2(±z)±k
[
1 +O

(
z−1

)]
. (38)

With this property, the asymptotic expansions of ψCCW(x) and ψCW(x) take the following forms:

ψCCW(x) =
C1√

x
W
(

E
2

,
1
4

, x2
)
≈ C1e−x2/2xE−1/2, (39a)

ψCW(x) =
C2√

x
W
(
−E

2
,

1
4

,−x2
)
≈ C2ex2/2x−E−1/2. (39b)

The asymptotic quantum dynamics of ψCCW(x) and ψCW(x) then can be derived as:

dx
dt

= −i
d

dx
ln ψCCW(x) = ix− i

E− 1/2
x

≈ ix, |x| � 0, (40a)

dx
dt

= −i
d

dx
ln ψCW(x) = −ix + i

E + 1/2
x

≈ −ix, |x| � 0. (40b)

Irrespective to the energy E, both of the asymptotic quantum dynamics converge to the
ground-state quantum dynamics (34a) with the only difference in their rotation direction. This
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similarity in the velocity field of ψCCW(x) and ψCW(x) has been ignored in the literature. Probability
interpretation is only concerned with the square-integrable condition of ψCCW(x) and ψCW(x), as
shown in Figure 9c, which obviously fails to explain the similarity in the quantum dynamics of
ψCCW(x) and ψCW(x).

The factor dominating the similarity in the quantum dynamics of ψCCW(x) and ψCW(x) can be
explained by Equation (5b):

dp
dt

= − ∂

∂x
VT . (41)

The total potential VT = V + Q, comprising the applied potential V and the quantum potential Q,
dominates the time evolution of the QMF p. For the case of a harmonic oscillator, VT turns out to be (in
dimensionless form):

VT(ψ) =
1
2

x2 − 1
2

d2

dx2 ln ψ(x). (42)

The evaluations of VT(ψ) at ψ = ψCCW and ψ = ψCW for E = 1/2 are plotted in Figure 9d.
Despite of the adverse nature between SI wavefunction ψCCW(x) and NSI wavefunction ψCW(x), their
total potentials exhibit a high degree of resemblance, which explains the observed similarity in the
velocity fields of Figure 9a,b. The comparisons regarding the magnitudes of ψ and the total potential
VT(ψ) for E = 3/2 and E = 5/2 are shown in Figure 10, where we observe that except for the region
neighboring the origin, VT(ψCCW) is close to VT(ψCW) and they become identical as |x| → ∞ . This
asymptotic identity leads to the dual velocity fields derived in Equation (40).

Figure 10. The comparisons between CCW solution ψCCW(x) and CW solution ψCW(x) regarding the
magnitudes of ψ and the total potential VT(ψ) for E = 3/2 and E = 5/2, respectively.

Schrödinger equation is a second-order differential equation with respect to its spatial coordinates,
and its complete solution should be composed of two independent solutions. The common belief that
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Schrödinger equation is unable to describe spin motion seems to stem from our disregard of one of the
independent solution. While probability interpretation of wavefunctions excludes the NSI solution
ψCW(x) from the general solution ψE(x), the spin degree of freedom is removed at the same time.
Under the framework of quantum H-J formalism, we have seen that by incorporating ψCW(x) with
ψCCW(x) to form a general wavefunction as expressed by Equation (37), both spatial and spin motion
can be described by the Schrödinger equation, and even for one-dimensional quantum motion, the
spin degree of freedom can be manifested as the dual rotations on the complex x plane.

8. Conclusions

Standard approach to energy quantization in confined quantum systems is to seek for the
allowable energies En for which the time-independent Schrödinger equation has square-integrable
solutions. The obtained energy eigenvalue En is recognized as the quantization level of the system’s
total energy. In this paper we have given a renewed interpretation for En and considered NSI solutions
ψE(x) to the Schrödinger equation by releasing the SI requirement. The release of this requirement
leads to several new findings as summarized in the following points:

• Universal quantization laws: The total energy E = Ek + Q(x) + V(x) derived from the
time-independent Schrödinger equation is shown to be conserved, but not quantized. Regardless
of the confining potential V(x), quantization always occurs in the kinetic energy 〈Ek〉T and the
quantum potential 〈Q〉T , whose values can only change by an integer multiple of �ω/2.

• Renewed meaning of the energy eigenvalues: The energy eigenvalues En derived conventionally
from the SI condition are shown to be the special energies at which the quantization levels of
〈Ek〉T and 〈Ek + Q〉T experience a step jump.

• The origin of energy quantization: Energy quantization in a confined system originates from
the discrete change of the numbers of zero of ψE(x) and ψ′E(x), whose values determine the
quantization levels of 〈Ek〉T and 〈Ek + Q〉T .

• Concurrence of Quantization and bifurcation: Bifurcations of equilibrium center points and
singular saddle points of the quantum dynamics are shown to be synchronous, respectively, with
the quantization process of 〈Ek〉T and 〈Ek + Q〉T , as the total energy E increases monotonically.

• Undivided SI and NSI wavefunctions: probability interpretation isolates SI wavefunctions from
NSI wavefunctions; however, under the quantum H-J formalism, SI and NSI wavefunctions are
indivisible with continuously connected velocity field and quantum trajectories.

• The role of NSI wavefunctions in energy quantization: Both SI and NSI wavefunctions contribute
to the energy quantization. SI wavefunctions help to locate the bifurcation points at which 〈Ek〉T
and 〈Ek + Q〉T have a step jump, while NSI wavefunctions form the flat parts of the stair-like
distribution of the quantized energies.

• The role of NSI wavefunctions in spin: The second-order Schrödinger equation generally contains
two independent solutions with opposite rotation on the complex plane. The inclusion of both
solutions allows the Schrödinger equation to describe the spatial motion as well as the spin motion.

At the present stage of this research, we can only say that if the SI requirement is released
tentatively, above information can be gained from NSI wavefunctions. We need further experimental
results to support the existence of NSI wavefunctions in confined quantum systems. The result of this
paper gives a clue to the design of such an experiment. Based on the SI condition, what we consider to
be quantized is the particle’s total energy. On the other hand, if the SI condition is released, what to be
quantized is the particle’s time-average kinetic energy. Experiments on particle’s motion in confining
potentials can be performed to verify which prediction is correct.
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Abstract: We derive the Born probability rule from Gudder’s theorem—a theorem that addresses
orthogonally-additive functions. These functions are shown to be tightly connected to the functions
that enter the definition of a signed measure. By imposing some additional requirements besides
orthogonal additivity, the addressed functions are proved to be linear, so they can be given in terms
of an inner product. By further restricting them to act on projectors, Gudder’s functions are proved
to act as probability measures obeying Born’s rule. The procedure does not invoke any property that
fully lies within the quantum framework, so Born’s rule is shown to apply within both the classical
and the quantum domains.

Keywords: Born probability rule; quantum-classical relationship; spinors in quantum and classical physics
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1. Introduction

Originally, Born’s probability rule was considered to be one of those salient features of quantum
theory which make it markedly depart from a classical description of physical phenomena. Born’s rule
was complemented by another one, which is a prescription that establishes how a system changes
when submitted to measurement: the so-called collapse rule. There have been some attempts to
derive the Born rule from basic concepts of probability theory, thereby reducing the axiomatic basis of
quantum mechanics. Notably, Gleason’s theorem [1] claims to achieve such a reduction by deriving the
Born rule from the properties of a probability measure. However, Gleason’s theorem does not hold for
two-dimensional quantum systems (i.e., for qubits). This is also the case with a prominent corollary of
Gleason’s theorem, the Bell–Kochen–Specker (BKS) theorem [2,3], which disproves the assumption that
it is always possible to assign noncontextual values to observables prior to measurement. Thus, in the
quantum framework, it is not possible to interpret measurement outcomes as revealing pre-existing
values of the measured observables. However, such a fundamental claim does not include qubits.
Moreover, Bell violations showing the impossibility of hidden-variable models require composite
systems [2,4]. It is thus possible to construct a hidden-variable model for a single qubit [3,5]. This state
of affairs has prompted some people to place qubits—and them alone—into a sort of limbo, as being
half quantum and half classical objects [6,7]. Indeed, as pointed out in [8], it is widely believed that
“a single qubit is not a truly quantum system”. No matter how appealing the motivations for such
a belief might seem, its untenability becomes clear when seen from the perspective of the quantum
formalism alone: there is nothing in this formalism that distinguishes two-level systems from other
systems of higher dimensionality. We should therefore simply admit that Gleason’s approach does not
meet its intended goal.

The inclusion of qubits was achieved in Busch’s extension [9] of Gleason’s theorem. Instead of the
pairwise orthogonal projectors Pi entering Gleason’s theorem, Busch addresses positive operator-valued
measures (POVMs) En. However, the inclusion of qubits in Busch’s approach was obtained at the cost
of departing from our most intuitive notion of a measure. The mathematical tool that corresponds to
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Entropy 2018, 20, 158

our basic notion of a measure is a non-negative function m over a σ-algebra. This function is required to
satisfy m(A ∪ B) = m(A) + m(B), whenever A ∩ B = ∅. The last condition must hold because in case
A∩ B 
= ∅, we should subtract m(A∩ B) from m(A) + m(B) in order to encompass our intuitive notion
of a measure. A particular and important case is the “probability measure”. In quantum mechanics,
this measure is defined over the projection lattice P(H) of a Hilbert spaceH, and it is thus consistent to
require for Pi, Pj ∈ P(H) that m(Pi + Pj) = m(Pi) + m(Pj), whenever PiPj = 0. On the other hand, it is
rather unnatural to call v a measure if it is required to satisfy v(En + Em) = v(En) + v(Em), even though
EnEm 
= 0. However, this is the case in Busch’s extension of Gleason’s theorem, in which projectors
are replaced by POVMs. As for the BKS theorem, Cabello [8] has similarly proved its validity in
the case of qubits by replacing projective measurements with POVMs, while Aravind [10] extended
Cabello’s proof to arbitrary finite dimensions. The introduction of POVMs in the quantum formalism as
a generalization of von Neumann’s projection-valued measures has been required for various reasons,
such as the quantum information approach to quantum mechanics, the employment of non-optimal
devices that deliver unsharp measurement outcomes, the description of composite measurements, etc.
However, none of these reasons bears any particular connection with two-state systems. It is thus
unclear why the inclusion of qubits in the aforementioned theorems should require the replacement of
projective measurements by POVMs.

Recently, we have presented an alternative derivation of the Born rule [11], starting from Gudder’s
theorem [12]—a theorem which is in a sense the reciprocal of Pythagoras’s theorem. Such a derivation
begins with two-dimensional systems and then extends to higher-dimensional ones, including both
pure and mixed states. By observing that the Born rule involves only two states, its derivation can be
generally reduced to the two-dimensional case, irrespective of the (finite or infinite) dimensionality
of the addressed vector space. Moreover, the derivation blurs the distinction between quantum and
classical measurements, so Born’s rule is shown to apply beyond its original purely quantum domain.
This opens the way for the construction of hidden-variable models of Bell violations produced by
maximally entangled states [13].

Hall [14] recently criticized our derivation of the Born rule, arguing that a non-linear
counterexample that shows why qubits are excluded from the scope of Gleason’s theorem also applies in
our approach. One of the purposes of the present work is to show that this is not so. The reason can be
stated very simply and in advance: the assumptions underlying our approach imply that any function
we deal with is a linear one. This was not explicitly shown in [11], but only implicitly, by deriving
Born’s linear expression. We present here an explicit demonstration of linearity, and moreover, go
beyond the goals of our previous work. Indeed, Hall’s criticisms represent a welcome opportunity to
expand the scope of Ref. [11], as well as to clear up the physical content of the proposed extension of
Gleason’s theorem.

We should stress that we do not attempt to solve the so-called “measurement problem”; that is,
we do not attempt to answer the question as to how measurements fit into the quantum formalism.
Instead, we follow a similar approach as in Ref. [15] and take measurements as something fundamental
that require a proper self-consistent description. Thus, we restrict ourselves to the probability rule,
leaving aside the collapse rule and the question as to whether collapse is a physical process or just
an updating of our system’s knowledge. On the other hand, we do address the question about the
placement of the Born rule with respect to the quantum–classical border. To this day, the latter remains
a controversial issue [16–24], to which the present work intends to make a contribution.

This paper is organized as follows. In Section 2 we recall Gleason’s theorem and in Section 3
we reproduce—for the sake of completeness—the essential points of Ref. [11]. At the same time, we
extend somewhat the results presented in Ref. [11], by completely fixing the orthogonally additive
function that we addressed there and that was left partially undefined in the cited work. We also
address Hall’s criticisms. In Section 4 we present an alternative derivation of the Born rule which
bypasses the reduction to two-level systems that was used in Ref. [11], and generally applies to N-level
systems, with N ≥ 2. We close the paper by discussing our results.
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2. Gleason’s Theorem and Its Restriction to Dimensions Greater Than Two

Let us recall Gleason’s theorem. It states that any probability measure over the lattice P(H) of
orthogonal projectors Pi ∈ P(H) acting on a Hilbert spaceH has the form given by the Born rule [1].
The defining properties of a probability measure m(P) : P(H)→ [0, 1] read as follows:

m(I) = 1, (1)

m

(
∑

i
Pi

)
= ∑

i
m (Pi) . (2)

It is straightforward to show that ∑i Pi ∈ P(H) implies that PiPj = 0, for i 
= j . Gleason proved
that whenever dimH ≥ 3, there exists a unique density operator ρ such that

m(P) = Tr (ρP) , ∀P ∈ P(H), (3)

which is the Born rule.
The exclusion of qubits from the scope of Gleason’s theorem may be traced back to the fact

that assumptions ((1) and (2))—in particular (2)—are not strong enough to imply Equation (3) in
the two-dimensional case. Indeed, Gleason’s proof requires showing that m is continuous. This
can be done only for dimH ≥ 3. In the 2D case, there are discontinuous measures satisfying
assumptions ((1) and (2)). While Gleason’s proof is technically difficult (and for this reason the
exclusion of the 2D case is not quite transparent), in the case of its prominent corollary, the BKS
theorem, it is easier to understand why the latter does not hold in the 2D case. Indeed, an independent
demonstration of the BKS theorem—i.e., not as a corollary of Gleason’s—can be reduced to the
task of coloring the surface of a unit hyper-sphere with two colors [7]. This is possible for two
dimensions—viz., in the case of the unit circle—but not for higher dimensions.

There is yet another way to show that the 2D case must lie outside the domain of Gleason’s
theorem. We observe that measure m(P) entering Born’s rule (see Equation (3)) is not only continuous,
but also linear. Hall [14] provided a non-linear measure m over the set of qubit-projectors which satisfies
conditions ((1) and (2)), thereby proving that Gleason’s theorem cannot hold for qubits. As for the
derivation of the Born rule that we reported in [11], the conditions we impose on the addressed
measures can be satisfied only by linear functions. This notwithstanding, Hall claimed to have
provided a non-linear function satisfying said conditions [14]. Below, we will discuss what went wrong
in Hall’s reasoning.

3. Gudder’s Theorem and the Born Rule for Two-Level Systems

Linearity is a central issue in the derivation of Born’s rule from any chosen
assumptions [9,15,25–28]. For instance, the derivation in Ref. [9]—which includes qubits—entails the
demonstration that the measure v(E) over POVMs is a positive linear functional that can be obtained
from a density operator. As we have seen, Gleason’s assumptions are instead too weak to enforce
linearity in the case of qubits. In our approach, linearity is enforced by imposing upon the concept
of a measure a series of requirements that reflect the most general experimental procedures. These
requirements generally apply when submitting any system to measurement. As stressed in Ref. [11],
our assumptions are not restricted to the quantum case, and therefore some classical measurements
can also be encoded in terms of the Born rule. Said assumptions are strongly driven by physical
considerations rather than by mathematical motivations.

Most measurement procedures in physics are essentially “counting” procedures. They consist
of counting how many times a given unit—a measure—fits into the observable that is submitted to
measurement. As already said, the primary standard mathematical tool that captures our basic notion
of a measure is a non-negative function m over a σ-algebra. The restriction to be non-negative is a
convenient one in some cases, such as integration theory. Instead, in physics it is often convenient to
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distinguish between, e.g., two sides (left and right), or to be able to add and subtract a given amount.
Hence, a generalization of the original concept of measure is convenient, to what is called a signed
measure μ. A signed measure is defined over a σ-algebra Aσ, as μ : Aσ → R, with μ(∪n An) =

∑n μ(An), for any sequence A1, A2, . . . , An of pairwise disjoint sets in Aσ. Besides these mathematical
requirements, we can include some additional ones that reflect our dealing with physical measurements.
First of all, we restrict ourselves to dealing with continuous functions f . This requirement captures our
basic notion that infinitesimal variations of the observable being measured should lead to infinitesimal
variations of the measurement result. Second, we restrict ourselves to dealing with functions f that
are defined over an inner product vector space V. With these restrictions, what was initially a signed
measure ends up being the subject matter of Gudder’s theorem [12]. Indeed, Gudder’s theorem
deals with an inner product vector space V and a continuous function f that is orthogonally additive.
The definition of such a function reads as follows:

Definition 1.

f : V → R is orthogonally additive if f (r + r′) = f (r) + f (r′) whenever r · r′ = 0. (4)

Gudder proves that the following result holds true:

Theorem 1. If f : V → R is orthogonally additive and continuous, then it has the form

f (r) = c(r · r) + k · r, (5)

where c ∈ R and k ∈ V.

Our aim is to show how Born’s rule arises from Gudder’s theorem. To this end, we first focus
on qubits. A qubit can be represented by a unit vector |φ〉 ∈ H2 of an equivalence class—a so-called
“ray”—or alternatively, it can be represented by the corresponding projector

Pφ ≡ |φ〉〈φ| = 1
2
(
I2 + n̂φ · σ

)
. (6)

Here, I2 is the identity operator inH2 and the unit vector n̂φ = Tr
(
σPφ

)
, with σ standing for the

triple of Pauli matrices. In general, for a non-normalized qubit |ψ〉 ∈ H2, we can write

Rψ ≡ |ψ〉〈ψ| = 1
2

3

∑
μ=0

rμσμ, (7)

with σ0 ≡ I2 and rμ = Tr
(
σμRψ

)
. We see that Rψ = Pψ whenever 〈ψ|ψ〉 = 1. There is a one-to-one

correspondence between operators Rψ and vectors r := (r0, r1, r2, r3) ≡ (r0, r). The latter span a
four-dimensional real vector space V4 that can be made an inner product space by defining the
Euclidean inner product

r · r′ =
3

∑
μ=0

rμr′μ. (8)

We now wish to define a measure fφ that is associated to a particular qubit |φ〉 ↔ rφ ≡ (1, n̂φ).
In a sense, fφ and |φ〉 represent one and the same physical object that is mathematically encoded in
two alternative ways [11]. To start with, fφ must satisfy the following requirements.

(1) fφ must satisfy the assumptions of Theorem 1.
(2) fφ(rφ) = 1, which corresponds to requiring that our unit of measure fits exactly one time

into itself.
(3) fφ(rφ⊥) = 0 for the vector |φ⊥〉 ↔ rφ⊥ ≡ (1,−n̂φ) that is orthogonal to |φ〉.
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On applying Gudder’s theorem with k = (k0, k), we obtain

fφ

[
(1, n̂φ)

]
= 2c + k0 + n̂φ · k = 1, (9)

fφ

[
(1,−n̂φ)

]
= 2c + k0 − n̂φ · k = 0. (10)

From these equations, we get 2c + k0 = 1/2 and n̂φ · k = 1/2. Up to this point, we have
been dealing with a function fφ that is not necessarily identifiable with a probability measure.
Let us further restrict fφ to satisfy the following requirement:

(4) fφ

[
(1, n̂ψ)

] ∈ [0, 1] for any four-vector (1, n̂ψ)↔ |ψ〉〈ψ| = Pψ.

In such a case, fφ

[
(1, n̂ψ)

]
= 2c + k0 + n̂ψ · k = 1/2 + n̂ψ · k ∈ [0, 1]; i.e.,

− 1
2
≤ |k| cos θ ≤ 1

2
, (11)

where cos θ = n̂ψ · k̂ spans the interval [−1, 1] under variation of n̂ψ. This implies that |k| = 1/2,
hence k = n̂φ/2, and we can finally write

fφ

[
(1, n̂ψ)

]
=

1
2
(
1 + n̂φ · n̂ψ

)
. (12)

Using Pψ = |ψ〉〈ψ| = (
I2 + n̂ψ · σ

)
/2 and similarly for Pφ = |φ〉〈φ|, we can write fφ(Pψ) in the

standard form
fφ(Pψ) = |〈φ|ψ〉|2 = Tr

(
PφPψ

)
. (13)

The measure fφ we have obtained under the above requirements can be consistently interpreted
as a probability measure. We have put our requirements on a function fφ that applies to vectors
r ∈ V4 in general. It is just in order to fix some of the parameters that define fφ (i.e., c and k =

(k0, k)) that we conveniently applied fφ to some particular vectors (1, n̂) ∈ V4. These vectors belong
to V4 in spite of carrying only two independent parameters—the ones fixing n̂. Now, as for the
function fφ, it has not been completely fixed. Though we know its action on vectors of the form (1, n̂)

(see Equations (9) and (10)), we do not know its action on more general vectors r ∈ V4. This is because
we have fixed only k = n̂φ/2, while c and k0 remain yet undetermined. In order to fix them, we can
consider the vector (−1, n̂φ), which is orthogonal to |φ〉 ↔ rφ ≡ (1, n̂φ). Thus, we must consistently
require that

3a) fφ

[
(−1, n̂φ)

]
= 2c− k0 + n̂φ · k = 2c− k0 +

1
2
= 0. (14)

On account of the above equation and 2c + k0 = 1/2, we get c = 0 and k0 = 1/2. Hence, k = rφ/2
and Theorem 1 establishes that fφ is a linear function given by fφ(r) = k · r; i.e.,

fφ[(r0, r)] =
1
2
(
r0 + n̂φ · r

)
. (15)

On view of (r0, r) ↔ Rψ ≡ ρψ = ∑μ rμσμ/2 (see Equation (7)), and (1, n̂φ) ↔ Pφ ≡ ρφ =(
I2 + n̂φ · σ

)
/2 (see Equation (6)), we can also write

fφ[(r0, r)] = Tr(ρ†
φρψ). (16)

In summary, under the above assumptions, fφ(r) has reduced to be a scalar product. It can be
specified either in vector space V4, where it is given by the Euclidean scalar product, or in the space
of linear operators acting on H2, where it is given by the Hilbert–Schmidt inner product Tr(A†B).
Of course, fφ(r) can be negative for some r ∈ V4. However, if we restrict ourselves to applying fφ(r) on
vectors (1, n̂ψ) ∈ V4, then fφ[(1, n̂ψ)] ∈ [0, 1], and in this case we may use fφ as a probability measure.
It is up to us to decide which mathematical tools we employ in order to describe our experimental
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observations. The probability measure fφ is just one of these tools. As discussed in [11], it is not
exclusively connected to quantum phenomena.

Let us now briefly refer to Hall’s criticisms [14] of our derivation of Born’s rule. Hall claims that
our defining conditions for a measure fφ are satisfied by the following non-linear measure:

fφ(Pψ) =
1
2
[
1 + f (n̂φ · n̂ψ)

]
. (17)

Here, f (x) “is any non-linear function mapping the interval [−1, 1] into itself, with f (−x) = − f (x)
and f (1) = 1” [14]. The above fφ can be proved to satisfy Gleason’s assumptions ((1) and (2)) in the
2D case, thereby showing that Gleason’s theorem does not hold for qubits. If f (x) is also required to
be continuous, then fφ should allegedly satisfy our defining conditions [14]. However, our function
fφ maps vectors in V4 to the reals. For instance, these vectors may be of the form (±1, n̂ψ). On the
other hand, the subject of the above definition, Equation (17), is a function whose domain is not V4.
Instead of Hall’s notation, fφ(Pψ), one should more properly write fφ(n̂ψ) on the lhs of Equation (17).
The domain of Hall’s fφ is thus the unit sphere. In particular, one cannot tell the results of applying
this fφ to vectors such as (1, n̂ψ) and (−1, n̂ψ). Hence, one cannot claim that this fφ(Pψ) satisfies, for
example, the requirement given by Equation (14): fφ

[
(−1, n̂φ)

]
= 0.

One can try to circumvent Hall’s technical flaw and still seek to object to our derivation of Born’s
rule by arguing that qubits should not be treated as belonging to V4. Such a claim connects with the
belief that qubits are bijectively mapped to the points on the surface of the unit (Bloch/Poincaré)
sphere, so that any given qubit |ψ〉may be represented by some unit vector n̂ψ. This is wrong. Qubits
(viz., spinors) span V4 ∼ C2 � |ψ〉 = α| ↑〉+ β| ↓〉, under variation of the complex-valued coefficients α

and β. In order to restrict spinors |ψ〉 so as to span only the unit sphere S2 :=
{

n̂ ∈ R3 : |n̂| = 1
} ⊂ R3,

we need to normalize |ψ〉 and discard a global phase. This amounts to neglecting some information that
we deem unimportant, whatever the reason. However, under different circumstances, this information
may turn out to be physically meaningful; see our closing remarks below, Section 5. An exhaustive
description of qubits should therefore be given by the elements of C2 ∼ V4.

The generalization of the above results to higher dimensional vector spaces and to mixed states is
straightforward, and has been discussed in Ref. [11]. The generalization is based on the observation
that two-dimensional Hilbert spaces are in fact general enough for dealing with the Born rule. Indeed,
this rule involves only two states and therefore effectively limits itself—in each concrete case—to
dealing with a two-dimensional subspace of the addressed vector space. This also holds in the case
of infinite-dimensional spaces with continuous basis vectors |φ(α)〉, which may be thought of as
eigenvectors of some observable with a continuous spectrum given by α. In such a case, one replaces the
probability fφ(Pψ) in Born’s formula (13) by d fφ(α)(Pψ) = |〈φ(α)|ψ〉|2dα, corresponding to measurement
results between α and α + dα. Although this procedure leads to our intended goal, it is instructive to
follow an alternative approach, in which we apply algebraic tools similar to those related to the Pauli
algebra. This puts the qubit case on the same footing as the higher-dimensional ones. We present this
approach next, restricted to systems of arbitrary finite dimension.

4. Gudder’s Theorem and the Born Rule for N-Level Systems

Let us first recall that the Pauli matrices are generators of the SU(2) group. Together with the
2× 2 unit matrix, they constitute an orthonormal basis, in terms of which we can express any operator
acting on the two-dimensional Hilbert spaceH2. When dealing with higher dimensional spacesHN ,
we can resort to the N2− 1 generators Gi = G†

i of the SU(N) group. These can be chosen so as to satisfy

Tr Gi = 0, Tr(GiGj) = Nδij. (18)
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Notice that our choice of normalization is best suited to our present purposes and differs from
the most commonly employed one, namely Tr(GiGj) = 2δij [29–32]. Any operator ρ = ρ† with
Tr ρ ≡ √Nr0 can be expressed as

ρr =
1√
N

(
r0IN +

N2−1

∑
k=1

rkGk

)
, (19)

where rk ∈ R, for k = 0, . . . , N2 − 1. This establishes a one-to-one correspondence between
Hermitian operators ρ acting on HN and vectors r ∈ VN . Let us now choose one of these vectors,
rφ = (r0, . . . , rd) ∈ VN , where d = N2 − 1. It corresponds to a fixed state ρφ, a Hermitian operator
that acts on HN . We can represent the state ρφ in an alternative way, namely by means of Gudder’s
measure fφ, the one that is the subject matter of Gudder’s Theorem 1. To begin with, we consider
a vector r⊥ orthogonal to rφ (i.e., rφ · r⊥ = 0), and require that our measure yields a null result in this
case: fφ(r⊥) = 0. The same requirement holds for vector −r⊥, so that on view of Gudder’s theorem
we have:

fφ(r⊥) = cφr⊥ · r⊥ + kφ · r⊥ = 0, (20)

fφ(−r⊥) = cφr⊥ · r⊥ − kφ · r⊥ = 0. (21)

The above requirements imply that cφ = 0. Thus, Gudder’s measure fφ reads fφ(r) = kφ · r in
our case, with kφ ∈ VN yet to be determined. With rφ and d = N2 − 1 additional vectors s(1), . . . , s(d),
we can conform an orthogonal basis, in terms of which we can write kφ = λrφ + ∑d

j=1 λjs(j). For the
same reasons as before, we require that fφ(s(j)) = kφ · s(j) = 0 for j = 1, . . . , d. This leads us to conclude
that kφ is parallel to rφ; i.e., kφ = λrφ. If we finally require that fφ(rφ) = 1, we end up with

fφ(r) =
1

rφ · rφ
rφ · r. (22)

By choosing the normalization rφ · rφ = 1, we have fφ(r) = rφ · r. The normalization in
Equation (19) has been chosen so as to render

Tr(ρrρs) = r · s. (23)

This allows us to write
fφ(r) = rφ · r = Tr(ρφρr). (24)

It is a matter of convention which normalization we use; e.g., that of Equations (19) and (22),
or else that of Equations (6) and (12). The Born rule is contained in Equation (24) when we restrict
ourselves to suitably normalized vectors and operators. In that case, Gudder’s measure may be used
as a probability measure. The general case corresponds instead to an inner product, which can be seen
as a signed measure.

5. Closing Remarks and Discussion

According to Bohr, all quantum measurements require the involvement of a classical device.
This assertion implies the unavoidable existence of two different domains—the classical and the quantal.
That is, the quantum domain cannot be extended to embrace all physical phenomena, because these
phenomena would include measurements themselves. Moreover, if we explicitly avoid dealing with
the physical process that takes place during a measurement—that is, with possible changes suffered
by a system when submitted to measurement—and focus on the quantification of the outcomes, then
we cannot expect that this quantification has peculiar features that are exclusively ascribable to the
quantum or to the classical domain. In other words, the Born rule by itself should equally well fit
into a quantum and into a classical framework. The derivation of the Born rule presented here is in
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accordance with such a view. There is nothing in the framework we have used that can be identified as
purely quantal. In particular, spinors—or their corresponding density matrices—are an appropriate
and useful tool in both the quantum framework (e.g., spin-1/2 particles) and the classical framework
(e.g., polarized light beams).

In order to obtain the Born rule, we drew upon Gudder’s theorem—a result that is tightly
connected with a signed measure. By adding some requirements to the orthogonally-additive functions
that are the subject matter of Gudder’s theorem, we got a twofold extension of Gleason’s theorem in
which, first, qubits are included within the scope of the theorem and, second, Born’s probability rule
arises as a special case of an inner product. Qubits may be understood as spanning a four-dimensional
real vector space V4 whose elements are of the form (r0, r). The function f in Gudder’s theorem acts
on this space, and is assumed to be continuous and orthogonally additive. When dealing with vectors
of the particular form (1, n̂), we impose some additional requirements on f . These requirements
let us interpret f as a probability measure fφ, which is defined in terms of some fixed state (1, n̂φ).
When fφ acts on more general vectors (r0, r), then it acts as an inner product. As pointed out in
Ref. [11], having discussed the two-dimensional Hilbert space, we have essentially discussed all
higher-dimensional Hilbert spaces, at least with respect to Born’s rule. It is worthwhile to stress that
the key requirements leading to the linearity of fφ (i.e., fφ(r) = kφ · r) are just two: fφ(r⊥) = 0 and
fφ(−r⊥) = 0, cf. Equations (20) and (21). From them, it follows that c = 0 in Theorem 1. Hence, as a
consequence of these assumptions, fφ turns out to be an odd function: fφ(−r) = − fφ(r). Reciprocally,
if fφ is assumed to be odd, then it must be linear [12].

Concerning dimensionality, we should emphasize why we have dealt with V4 in the case of qubits,
instead of dealing with a space of lower dimensionality. Qubits are usually defined as normalized
vectors in a two-dimensional Hilbert space, or equivalently, as projectors (i.e., density operators
acting on this space). They can thus be represented as points on the 2D surface of a unit sphere
that is embedded in 3D space. There are many ways in which one can embed a 2D surface in
a higher-dimensional space. One can then ask about the physical motivation for dealing with V4.
Why do we not stay dealing with a 2D sphere? The physical motivation is given by mixed states
in the case of spin-1/2 particles and by partially polarized light in the optical case. In these cases,
we must deal with the whole Bloch ball and with the whole Poincaré ball, respectively, and not
only with their surfaces. This is because the first component of a Poincaré or a Bloch vector r ∈ V4

generally carries some physical information. For example, the intensity of polarized light is encoded
in this first component. Although it might occur that we are not interested in knowing absolute but
only relative intensity values and we consequently normalize our vectors, our formalism should
nonetheless provide us with the option of accessing all the physical information that is connected with
the phenomenon it is supposed to describe. This brings us outside the unit ball, and so we have to
consider balls of arbitrary radii—the union of which makes up V4. In the case of spin-1/2 particles,
we naturally unit-normalize the density operator due to its interpretation in terms of probability.
In that case, we usually do not need to go beyond the unit sphere. However, we could find it useful
to connect probability with the actual number of particles we expect to detect in a given experiment.
This could happen because of practical reasons, for example in order to avoid saturation of some
detectors. In cases like this, we again need to go beyond the unit sphere in V4. As an example of current
theoretical interest, we may mention the study of qubits evolving according to quantum maps that are
not completely positive, and therefore generally map the unit ball onto a set that is not contained in this
ball [33]. The point in question seems to have been better appreciated by the classical community than
by the quantum community, at least in the case of classical and quantum optics. Indeed, in classical
optics one routinely uses either the Jones or the Mueller formalism. The latter deals with vectors in V4,
and perhaps no one would object that all four components of Mueller vectors have physical meaning.
Some researchers even think that the Mueller formalism is more general and better suited than the
Jones formalism to address physically-motivated inquiries [34]. Our approach acknowledges the fact
that by dealing with 2D spinors some portion of physical information has been discarded. To take full
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account of this information, a 4D formalism is required, with the corresponding generalization in the
SU(N) case.

Finally, we should emphasize that our goals substantially differ from Gleason’s. Indeed, we are
not interested in showing that the structure of the Hilbert space naturally arises as the scenario in
which quantum mechanics should be formulated. We have instead assumed that, say, qubits can be
represented by density matrices in a Hilbert space, or else by four-dimensional vectors of a linear
space. Our aim was to expose the fundamental underlying assumptions leading to a probability rule
that has the structure of Born’s rule. By so doing, we can see the extent to which these assumptions lie
in the quantum or in the classical domain.
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Abstract: We present uncertainty relations based on Wigner–Yanase–Dyson skew information with
quantum memory. Uncertainty inequalities both in product and summation forms are derived. It is
shown that the lower bounds contain two terms: one characterizes the degree of compatibility of
two measurements, and the other is the quantum correlation between the measured system and the
quantum memory. Detailed examples are given for product, separable and entangled states.
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1. Introduction

The uncertainty principle is an essential feature of quantum mechanics, characterizing the
experimental measurement incompatibility of non-commuting quantum mechanical observables
in the preparation of quantum states. Heisenberg first introduced variance-based uncertainty [1].
Later, Robertson [2] proposed the well-known formula of the uncertainty relation, V(ρ, R)V(ρ, S) ≥
1
4 |Trρ[R, S]|2, for arbitrary observables R and S, where [R, S] = RS− SR and V(ρ, R) is the standard
deviation of R. Schrödinger gave a further improved uncertainty relation [3]:

V(ρ, R)V(ρ, S) ≥ 1
4
|〈[R, S]〉|2 + |1

2
〈{R, S}〉 − 〈R〉〈S〉|2

where 〈R〉 = Tr(ρR), and {R, S} = RS + SR is the anti-commutator. Since then many kinds of
uncertainty relations have been presented [4–11]. In addition to the uncertainty of the standard
deviation, entropy can be used to quantify uncertainties [12]. The first entropic uncertainty relation
was given by Deutsch [13] and was then improved by Maassen and Uffink [14]:

H(R) + H(S) ≥ log2
1
c

where R = {|uj〉}, and S = {|vk〉} are two orthonormal bases on d-dimensional Hilbert space H,
and H(R) = −Σj pjlogpj (H(S) = −Σkqklogqk) is the Shannon entropy of the probability distribution
pj = 〈uj|ρ|uj〉 (qk = 〈vk|ρ|vk〉) for state ρ of H. The number c is the largest overlap among all
cjk = |〈uj|vk〉|2 between the projective measurements R and S. Berta et al. [15] bridged the gap
between cryptographic scenarios and the uncertainty principle and derived this landmark uncertainty
relation for measurements R and S in the presence of quantum memory B:

H(R|B) + H(R|B) ≥ log2
1
c
+ H(A|B)

where H(R|B) = H(ρRB) − H(ρB) is the conditional entropy with ρRB = Σj(|uj〉〈uj| ⊗
I)ρAB(|uj〉〈uj| ⊗ I) (similarly for H(S|B)), and d is the dimension of the subsystem A. The term
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H(A|B) = H(ρAB)− H(ρB) appearing on the right-hand side is related to the entanglement between
the measured particle A and the quantum memory B. The bound of Berta et al. has been further
improved [16–18]. Moreover, there are also some uncertainty relations given by the generalized
entropies, such as the Rényi entropy [19–21] and the Tsallis entropy [22–24], and even more general
entropies such as the (h, Φ) entropies [25]. These uncertainty relations not only manifest the physical
implications of the quantum world but also play roles in entanglement detection [26,27], quantum
spin squeezing [28,29] and quantum metrology [30,31].

In [32], an uncertainty relation based on Wigner–Yanase skew information I(ρ, H) has been
obtained with quantum memory, where I(ρ, H) = 1

2 Tr[(i[
√

ρ, H])2] = Tr(ρH2) − Tr(
√

ρH
√

ρH)

quantifies the degree of non-commutativity between a quantum state ρ and an observable H, which is
reduced to the variance V(ρ, H) when ρ is a pure state. In fact, the Wigner–Yanase skew information
I(ρ, H) is generalized to Wigner–Yanase–Dyson skew information Iα(ρ, H), α ∈ [0, 1] (see [33]):

Iα(ρ, H) = 1
2 Tr[(i[ρα, H])(i[ρ1−α, H])]

= Tr(ρH2)− Tr(ρα Hρ1−α H) α ∈ [0, 1]
(1)

Here the Wigner–Yanase–Dyson skew information Iα(ρ, H) reduces to the Wigner–Yanase skew
information I(ρ, H) when α = 1

2 . The Wigner–Yanase–Dyson skew information Iα(ρ, H) reduces to the
standard deviation V(ρ, H) when ρ is a pure state.

The convexity of Iα(ρ, H) with respect to ρ has been proven by Lieb in [34]. In [35], Kenjiro
introduced another quantity:

Jα(ρ, H) = 1
2 Tr[({ρα, H0})({ρ1−α, H0})]

= Tr(ρH2
0) + Tr(ρα H0ρ1−α H0) α ∈ [0, 1]

(2)

where H0 = H − Tr(ρH)I with I being the identity operator.
For a quantum state ρ and observables R, S and 0 ≤ α ≤ 1, the following inequality holds [35]:

Uα(ρ, R)Uα(ρ, S) ≥ α(1− α)|Trρ[R, S]|2 (3)

where Uα(ρ, R) =
√

Iα(ρ, R)Jα(ρ, R) can be regarded as a kind of measure for quantum uncertainty,
in the sense given by [35]. For a pure state, a standard deviation-based relation is recovered from
Equation (3). When α = 1

2 , it is reduced to the result of [36].
Inspired by the works [32,35], in this paper, we study the uncertainty relations based on

Wigner–Yanase–Dyson skew information in the presence of quantum memory, which generalize
the results in [32] to the case of Wigner–Yanase–Dyson skew information, and the results in [35], which
generalize to the case with the presence of quantum memory. We present uncertainty inequalities both
in product and summation forms, and show that the lower bounds contain two terms: one concerns
the compatibility of two measurement observables, and the other concerns the quantum correlations
between the measured system and the quantum memory. We compare the lower bounds for product,
separable and entangled states by detailed examples.

2. Results

Let φk = |φk〉〈φk| and ψk = |ψk〉〈ψk| be the rank 1 spectral projectors of two non-degenerate
observables R and S with the eigenvectors |φk〉 and |ψk〉, respectively. Similarly to [32], we define

UNα(ρ, φ) = ∑
k

Uα(ρ, φk) = ∑
k

√
Iα(ρ, φk)Jα(ρ, φk) as the uncertainty of ρ associated to the projective

measurement {φk}, and Uα(ρ, ψ) to {ψk}.
Let ρAB be a bipartite state on HA⊗HB, where HA and HB denote the Hilbert space of subsystems

A and B, respectively. Let V be any orthogonal basis space on HA and |φk〉 be an orthogonal basis
of HA. We define a quantum correlation of ρAB as
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D̃α(ρAB) = min
V

∑
k
[Iα(ρAB, φk ⊗ IB)− Iα(ρA, φk)] (4)

where the minimum is taken over all the orthogonal bases on HA, ρA = TrBρAB.
For any bipartite state ρAB and any observable XA on HA, we have Iα(ρAB, XA⊗ IB) ≥ Iα(ρA, XA),

which follows from Corollary 1.3 in [34] and Lemma 2 in [37]. Therefore, D̃α(ρAB) ≥ 0. Furthermore,
D̃α(ρAB) = 0 when ρAB is a classical quantum correlated state, which follows from the proof in
Theorem 1 of [38]. D̃α(ρAB) has a measurement on subsystem A, which gives an explicit physical
meaning: it is the minimal difference of incompatibility of the projective measurement on the bipartite
state ρAB and on the local reduced state ρA. D̃α(ρAB) quantifies the quantum correlations between the
subsystems A and B. We have the following.

Theorem 1. Let ρAB be a bipartite quantum state on HA ⊗ HB and {φk} and {ψk} be two sets of rank 1
projective measurements on HA. Then

UNα(ρAB, φ⊗ I)UNα(ρAB, ψ⊗ I) ≥∑
k

L2
α,ρA

(φk, ψk) + D̃2
α(ρAB) (5)

where Lα,ρA(φk, ψk) = α(1− α) |TrρA [φk ,ψk ]|2√
Jα(ρA ,φk)·Jα(ρA ,ψk)

.

Proof of Theorem 1. By definition, we have

UNα(ρAB, φ⊗ I)UNα(ρAB, ψ⊗ I)

= ∑
k

√
Iα(ρAB, φk ⊗ I) · Jα(ρAB, φk ⊗ I) ·∑

k

√
Iα(ρAB, ψk ⊗ I) · Jα(ρAB, ψk ⊗ I)

≥∑
k

Iα(ρAB, φk ⊗ I) ·∑
k

Iα(ρAB, ψk ⊗ I)

= [∑
k
(Iα(ρAB, φk ⊗ I)− Iα(ρA, φk)) + ∑

k
Iα(ρA, φk)]

·[∑
k
(Iα(ρAB, ψk ⊗ I)− Iα(ρA, ψk)) + ∑

k
Iα(ρA, ψk)]

≥ [D̃α(ρAB) + ∑
k

Iα(ρA, φk)] · [D̃α(ρAB) + ∑
k

Iα(ρA, ψk)]

≥ D̃2
α(ρAB) + ∑

k
Iα(ρA, φk)Iα(ρA, ψk)

≥ D̃2
α(ρAB) + ∑

k

α2(1− α)2|TrρA[φk, ψk]|4
Jα(ρA, φk)Jα(ρA, ψk)

� D̃2
α(ρAB) + ∑

k
L2

α,ρA
(φk, ψk)

(6)

where the first inequality is due to Jα(ρ, H) ≥ Iα(ρ, H) [35], and the last inequality follows from
Equation (3).

Theorem 1 gives a product form of the uncertainty relation. Comparing the results (Equation (3))
without quantum memory with those (Equation (5)) with quantum memory, one finds that if the
observables A and B satisfy [A, B] = 0, the bound is trivial in Equation (3), while in Equation (5), even
if the projective measurements φk and ψk satisfy [φk, ψk] = 0, that is, Lα,ρA(φk, ψk) = 0, D̃α(ρAB) may
still not be trivial because of correlations between the system and the quantum memory.

Corresponding to the product form of the uncertainty relation, we can also derive the sum form
of the uncertainty relation:
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Theorem 2. Let ρAB be a quantum state on HA ⊗ HB and {φk} and {ψk} be two sets of rank 1 projective
measurements on HA. Then

UNα(ρAB, φ⊗ I) + UNα(ρAB, ψ⊗ I) ≥ 2 ∑
k

Lα,ρA(φk, ψk) + 2D̃α(ρAB) (7)

Proof of Theorem 2. By definition and taking into account the fact that Jα(ρ, H) ≥ Iα(ρ, H) [35],
we have

UNα(ρAB, φ⊗ I) + UNα(ρAB, ψ⊗ I)

= ∑
k

√
Iα(ρAB, φk ⊗ I) · Jα(ρAB, φk ⊗ I) + ∑

k

√
Iα(ρAB, ψk ⊗ I) · Jα(ρAB, ψk ⊗ I)

≥∑
k

Iα(ρAB, φk ⊗ I) + ∑
k

Iα(ρAB, ψk ⊗ I)

While

∑
k

Iα(ρAB, φk ⊗ I) + ∑
k

Iα(ρAB, ψk ⊗ I)

= ∑
k

Iα(ρA, φk) + ∑
k

Iα(ρA, ψk) + ∑
k
[Iα(ρAB, φk ⊗ I)− Iα(ρA, φk)]

+ ∑
k
[Iα(ρAB, ψk ⊗ I)− Iα(ρA, ψk)]

≥∑
k

Iα(ρA, φk) + ∑
k

Iα(ρA, ψk) + 2D̃α(ρAB)

where the inequality follows from Equation (4). By using the inequality a + b ≥ 2
√

ab for positive
a = Iα(ρA, φk) and b = Iα(ρA, ψk), we further obtain

UNα(ρAB, φ⊗ I) + UNα(ρAB, ψ⊗ I)

≥ 2 ∑
k

√
Iα(ρA, φk) · Iα(ρA, ψk) + 2D̃α(ρAB)

≥ 2 ∑
k

α(1− α)
|TrρA[φk, ψk]|2√

Jα(ρA, φk) · Jα(ρA, ψk)
+ 2D̃α(ρAB)

� 2 ∑
k

Lα,ρA(φk, ψk) + 2D̃α(ρAB)

(8)

where the second inequality follows from Equation (3).

We note that Equation (7) reduces to an inequality that agrees with the result of [32] when α = 1
2 .

Theorem 2 is a generalization of the theorem in [32].
From Theorems 1 and 2, we obtain uncertainty relations in the form of the product and sum of

skew information, which are different from the uncertainty of [39], which only deals with the single
partite state. However, we treat the bipartite case with quantum memory B. It is shown that the lower
bound contains two terms: one is the quantum correlation D̃α(ρAB), and the other is ∑

k
Lα,ρA(φk, ψk),

which characterizes the degree of compatibility of the two measurements, just as for the meaning of
log2

1
c in the entropy uncertainty relation [15].

Example 1. We consider the 2-qubit Werner state ρ = 2−p
6 I + 2p−1

6 V, where p ∈ [−1, 1] and V = ∑
kl
|kl〉〈lk|.

Let the Pauli matrices σx and σz be the two observables and {|ψk〉} and {|ϕk〉} be the eigenvectors of σx and
σz, respectively, which satisfy |〈ψi|ϕj〉|2 = 1

2 , i, j = 1, 2. For all k, we have TrρA[ψk, ϕk] = 0, that is,
Lα,ρA(ψk, ϕk) = 0. The values of the left- and right-hand sides of Equation (5) are given by
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4(
2− p

12
− (3− 3p)α(1 + p)1−α + (1 + p)α(3− 3p)1−α

24
)

× (
4 + p

12
+

(3− 3p)α(1 + p)1−α + (1 + p)α(3− 3p)1−α

24
)

and

(
2− p

6
− (3− 3p)α(1 + p)1−α + (1 + p)α(3− 3p)1−α

12
)2

respectively; see Figure 1a for the uncertainty relations with different values of α.

(a) (b)

Figure 1. The y-axis shows the uncertainty and its lower bounds. (a) Blue (red) solid line for the value
of the left (right)-hand side of Equation (5) with α = 0.2; black dotted (red dot-dashed) line represents
the value of the left (right)-hand side of Equation (5) with α = 0.5. (b) Red solid (black dotted) line
represents the value of the left (right)-hand side of Equation (7) with α = 0.2; blue solid (green dotted)
line represents the value of the left (right)-hand side of Equation (7) with α = 0.5, which corresponds to
Figure 1 in [32].

Similarly, we can obtain the values of the left- and right-hand sides of Equation (7):

4

√
(

2− p
12
− (3− 3p)α(1 + p)1−α + (1 + p)α(3− 3p)1−α

24
)

×
√
(

4 + p
12

+
(3− 3p)α(1 + p)1−α + (1 + p)α(3− 3p)1−α

24
)

and
2− p

3
− (3− 3p)α(1 + p)1−α + (1 + p)α(3− 3p)1−α

6
respectively; see Figure 1b.

Here we see explicitly that, just as for the Shannon entropy, Rényi entropy, Tsallis entropy,
(h, Φ) entropies and Wigner–Yanase skew information, the Wigner–Yanase–Dyson skew information
characterizes a special kind of information of a system or measurement outcomes, which needs to
satisfy certain restrictions for given measurements and correlations between the system and the
memory. Different α parameter values give rise to different kinds of information. From Figure 1, we
see that for a given state and measurements, the differences between the left- and right-hand sides
of the inequalities given by Equation (5) or (7) vary with the parameter α. Moreover, the degree
of compatibility of the two measurements, Lα,ρA(φk, ψk), vanishes for α = 0 or 1, which is a fact in
accordance with Equation (3), the case without quantum memory. For p = 1/2, the state ρ is maximally
mixed. In this case, both sides of the inequalities given by Equations (5) and (7) vanish for any α.
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Example 2. Consider a separable bipartite state, ρAB = 1
2 [|+〉〈+| ⊗ |0〉〈0| + |−〉〈−| ⊗ |1〉〈1|], where

|+〉 = 1√
2
(|0〉+ |1〉), |−〉 = 1√

2
(|0〉 − |1〉).

We still choose σx and σz to be the two observables. By calculation we obtain the following: For product
states |+〉〈+| ⊗ |0〉〈0| and |−〉〈−| ⊗ |1〉〈1|, both the left- and right-hand sides of Equation (5) are zero, and
the right-hand side of Equation (7) is zero. For the separable bipartite state ρAB, the left- and right-hand sides of
Equation (5) are 1

2 and 0, respectively. Both the left- and right-hand sides of Equation (7) are zero.

Example 3. For the Werner state ρAB
w = (1− p) I

4 + p|ϕ〉〈ϕ|, where |ϕ〉 = 1√
2
(|00〉+ |11〉) is the Bell state,

p ∈ [0, 1], and the state is separable when p ≤ 1
3 .

We have the values of the left- and right-hand sides of Equation (5), respectively:

4(
1 + p

8
− (1− p)α(1 + 3p)1−α + (1− p)1−α(1 + 3p)α

16
)

× (
3− p

8
+

(1− p)α(1 + 3p)1−α + (1− p)1−α(1 + 3p)α

16
)

and

4(
1 + p

8
− (1− p)α(1 + 3p)1−α + (1− p)1−α(1 + 3p)α

16
)2

See Figure 2a for a comparison with different values of α.

(a) (b)

Figure 2. The y-axis shows the uncertainty and the lower bounds. (a) Blue (red) solid line is the value
of the left (right)-hand side of Equation (5) for α = 0.2; black (blue-green) solid line represents the value
of the left (right)-hand side of Equation (5) for α = 0.5. (b) Blue (red) solid line represents value of the
left (right)-hand side of Equation (7) for α = 0.2; black (blue-green) solid line represents the value of
the left (right)-hand side of Equation (7) for α = 0.5 .

We can also obtain the values of the left- and right-hand sides of Equation (7):

4

√
1 + p

8
− (1− p)α(1 + 3p)1−α + (1− p)1−α(1 + 3p)α

16

×
√

3− p
8

+
(1− p)α(1 + 3p)1−α + (1− p)1−α(1 + 3p)α

16

and
1 + p

2
− (1− p)α(1 + 3p)1−α + (1− p)1−α(1 + 3p)α

4
respectively; see Figure 2b.
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Moreover, when ρAB
w is separable, namely, p ≤ 1

3 , the differences between the left- and right-hand sides of
the inequalities are smaller than those of the entangled states. Figure 3 shows the differences for different values
of p.

(a) (b)

Figure 3. The y-axis shows the uncertainty and its lower bound; (a) p = 0.2 (ρAB
w is a separable state):

blue solid line represents the value of the left-hand side of Equation (5), and the line (very near the
x-axis) marked by triangles represents the corresponding lower bound; p = 0.5 (ρAB

w is an entangled
state): the black (red) solid line represents the value of the left (right)-hand side of Equation (5). (b)
Blue (red) solid line represents the value of the left (right)-hand side of Equation (7) for p = 0.2; black
solid (red dashed) line represents the value of the left (right)-hand side of Equation (7) for p = 0.5.

3. Conclusions

We have investigated the uncertainty relations both in product and summation forms in terms of
the Wigner–Yanase–Dyson skew information with quantum memory. It has been shown that the lower
bounds contain two terms: one is the quantum correlation D̃α(ρAB), and the other is ∑

k
Lα,ρA(φk, ψk),

which characterizes the degree of compatibility of the two measurements. By detailed examples, we
have compared the lower bounds for product, separable and entangled states.
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Abstract: Uncertainty relations involving incompatible observables are one of the cornerstones
of quantum mechanics. Aside from their fundamental significance, they play an important role
in practical applications, such as detection of quantum correlations and security requirements in
quantum cryptography. In continuous variable systems, the spectra of the relevant observables form a
continuum and this necessitates the coarse graining of measurements. However, these coarse-grained
observables do not necessarily obey the same uncertainty relations as the original ones, a fact that can
lead to false results when considering applications. That is, one cannot naively replace the original
observables in the uncertainty relation for the coarse-grained observables and expect consistent
results. As such, several uncertainty relations that are specifically designed for coarse-grained
observables have been developed. In recognition of the 90th anniversary of the seminal Heisenberg
uncertainty relation, celebrated last year, and all the subsequent work since then, here we give a
review of the state of the art of coarse-grained uncertainty relations in continuous variable quantum
systems, as well as their applications to fundamental quantum physics and quantum information
tasks. Our review is meant to be balanced in its content, since both theoretical considerations and
experimental perspectives are put on an equal footing.

Keywords: quantum uncertainty; quantum foundations; quantum information; continuous variables

1. Introduction

The physics of classical waves distinguishes itself from that of a classical point particle in several
ways. Waves are spread-out packets of energy moving through a medium, while a particle is localized
and follows a well-defined trajectory. It was thus most surprising when it was discovered in the
early 20th century that quantum objects, such as electrons and atoms, could exhibit behavior that at
times was best described according to wave mechanics. Moreover, it was shown that either wave
or particle behavior could be observed depending almost entirely upon how an observer chooses to
measure the system. This complementarity of wave and particle behavior played a key role in the early
debates concerning the validity of quantum theory [1], and has been linked to several interesting and
fundamental phenomena of quantum physics [2–5]. Though several complementarity relations have
been cast in quantitative forms [6,7], perhaps complementarity is most frequently observed in terms
of quantum uncertainty relations. In words, uncertainty relations establish the fact that the intrinsic
uncertainties associated to measurement outcomes of two incompatible observations of a quantum
system can never both be arbitrarily small. We note that this type of behavior appears in classical
wave mechanics, for example in the form of time-bandwidth uncertainty relations, which are quite
important in communications and signal processing [8]. In contrast, there is no aspect of a classical
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Entropy 2018, 20, 454

physics that prohibits us from measuring all of the relevant properties of a classical point particle,
at least in principle.

In addition to quantum fundamentals, quantum uncertainty relations play an important role
in several interesting tasks associated to quantum information protocols, such as the detection of
quantum correlations and the security of quantum cryptography [9]. In this paper, we focus on
continuous variable (CV) quantum systems [10,11]. Though many interesting results have been
found for discrete systems, they are outside the scope of this manuscript. We refer the interested
reader to Reference [9], being a comprehensive unification and extension of two older reviews on
entropic uncertainty relations, more focused on the physical [12] and information-theoretic [13] side
respectively. However, since the coarse-grained scenario situates itself somehow in-between the
discrete and continuous description, we make a short introduction to discrete entropic uncertainty
relations before discussing their coarse-grained relatives.

In CV systems, one encounters a fundamental problem when performing measurements. That is,
the eigenspectra of the corresponding observables are infinite dimensional, and can be continuous or
discrete. Since any measurement device registers measurement outcomes with a finite precision and
within a finite range of values, the experimental assessment of CV observables can be quite different
from theory. Of course, one can consider a truncation of the relevant Hilbert space [14], as well as some
type of binning or coarse graining of the measurement outcomes. This is similar to the idea of coarse
graining that was discussed by Gibbs [15] and used by Paul and Tanya Ehrenfest [16,17] in the early
20th century to account for imprecise knowledge of dynamical variables in statistical mechanics [18].
Coarse graining has also appeared in the quantum mechanical context as an attempt to describe the
quantum-to-classical transition, where the idea is that measurement imprecision could be responsible
for the disappearance of quantum properties [19–23]. Though this is quite an intuitive notion, it was
recently shown that one can always find an uncertainty relation that is satisfied non-trivially for any
amount of coarse graining [24]. That is, quantum mechanical uncertainty is always present in this type
of “classical” limit. This motivates the formulation of coarse-grained uncertainty relations.

In addition to the necessity of coarse graining, there could be practical advantages: for tasks
such as entanglement detection, it might be interesting to perform as few measurements as possible,
advocating the use of coarse-grained measurements. However, improper handling of coarse graining
can result in false detections of entanglement [25,26], pseudo-violation of Bell’s inequalities or the
Tsirelson bound [27,28], and sacrifice security in quantum key distribution [29], for example. Thus,
the proper formulation and application of uncertainty relations for coarse-grained observables is both
interesting and necessary.

In the present contribution we review the current state of the art of uncertainty relations (URs)
for coarse-grained observables in continuous-variable quantum systems. In Section 2 we review the
concept of uncertainty of continuous variable (CV) quantum systems in more depth and introduce
several prominent URs. In Section 3 we discuss the utility of CV URs in quantum physics and quantum
information, in particular for identifying non-classical states and quantum correlations. Section 4
presents the problem of coarse graining of CVs in detail, and two coarse-graining models are provided.
The current status of URs for these coarse-graining models is reviewed in Section 5, where we present a
series of coarse-grained URs previously reported in the literature [12,24,30–32]. In addition, we extend
the validity of some of these URs to general linear combinations of canonical observables. Section 6 is
devoted to the experimental investigation and application of coarse-grained URs in quantum physics
and quantum information. Concluding remarks are provided in Section 7.

2. Uncertainty Relations

The history of uncertainty relations traces back to the early days of the formalization of quantum
theory and begins with the celebrated work by Heisenberg in 1927 [33] (see [1] for an English version).
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The work discussed what later became known as Heisenberg’s uncertainty principle. The first
mathematical formulation for this principle, in [33], essentially reads:

ΔxΔp � h (1)

where Δx and Δp are the uncertainties of the position and linear momentum of a particle, respectively,
and h is the Planck constant. Although the existence of such a principle is ultimately due to the
non-commutativity of the position and momentum observables, it took almost 80 years for all the
physical meanings, scope and validity of this principle to be elucidated [34]. Distinct physical meanings
emerge from different definitions for “uncertainty” of position or momentum, and in each case a
proper multiplicative constant makes the lower bound sharp. All of these inequalities are known
by the generic name of Uncertainty Relations, from the beginning of this review referred to as URs.
Even though the inception of the URs was made in the context of position and momentum of a particle,
their existence can be extended to the “uncertainties” associated with any pair of non-commuting
observables in discrete or continuous variable quantum systems. Thus, generically we can define the
URs as inequalities that stem from the fact that the measured quantities involved are associated to
non-commuting observables.

Nowadays, we can say that it is clear that there are three conceptually distinct types of URs [34]:
(i) URs associated with the statistics of the measurement results of non-commuting observables after
preparing the system repeatedly in the same quantum state, or statistical URs for short, (ii) the
error-disturbance URs, also known as noise-disturbance URs, for the relation of the imprecision in
the measurement of one observable and the corresponding disturbance in the other, and, (iii) the
joint measurement URs associated with the precision of the joint measurements of non-commuting
observables. The error-disturbance URs has two main contributions: one in References [35–37] that
present state-dependent error-disturbance URs and the other in References [38–40] that argue for a
state-independent characterisation of the overall performance of measuring devices as a measure of
uncertainty that satisfies an UR of the form given in Equation (1). There was a certain controversy
involving these two contributions and we recommend the work [41] that discusses the limitations of
the state-dependent error-disturbance URs. The development of joint measurement URs has an early
contribution in Reference [42] and further developments were given in References [38,43–48].

The statistical URs are also referred to in the literature as preparation URs. This is because it
is impossible to prepare a quantum system in a state for which two non-commuting observables
have sharply defined values. However, here we prefer to call them statistical URs, as they express
the limits to the amount of information that can be obtained about incompatible observables of a
quantum system when it is repeatedly measured after being prepared in the same initial state in each
round of the measurement process. We emphasize that there is not any attempt to measure the two
non-commuting observables simultaneously. In each round of the measurement process only one
observable is measured, the choice of which could be made randomly. In this sense the “uncertainties”
contained in the statistical URs are of the statistical type: the more certain the sequence of outcomes of
one observable is in a given state, then the more uncertain is the sequence of outcomes of the other
non-commuting observable(s) considered.

This review focuses on statistical URs that are valid for coarse-grained measurements in continuous
variable quantum systems, although a similar approach can be made for the other two types of URs
mentioned above. There are two types of quantum mechanical degrees of freedom: the ones that can
be described by a Hilbert space of quantum states with finite dimension and the others in which it has
infinite dimension. In particular, we are interested only in continuous variable (CV) systems where
the Hilbert space,H, of pure states, |ψ〉, has an infinite dimension. The CV systems that we consider
consist of a finite set of n bosonic modes, sometimes called ”qumodes” [10], so thatH := H1⊗ . . .⊗Hn.
Each mode is described by a pair of canonically conjugate operators, x̂j and p̂j, such that

[x̂j, p̂k] = ih̄1̂δjk. (2)
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Alternatively, each mode can be described by a pair of ladder operators, âj := (1/
√

2h̄)(x̂j + i p̂j)

and â†
j := (1/

√
2h̄)(x̂j − i p̂j), with [âj, â†

k ] = 1̂δjk. Therefore, the separable Hilbert space of each
mode,Hj, has a enumerable basis {|nj〉}nj=1,...,∞ consisting of eigenstates of the number operator, viz.
n̂j|nj〉 = nj|nj〉, evidencing the infinite dimensionality of the Hilbert space of the quantum states. In the
case of mixed states we use density operators represented by greek letters with a hat, i.e., ρ̂, σ̂ etc.

Important examples of CV systems are the motional degrees of freedom of atoms, ions and
molecules, where x̂j and p̂j are the components of the position and linear momentum of the particles
(in this case h̄ in Equation (2) is the usual reduced Planck constant, i.e., h̄ = h/2π); the quadrature
modes of the quantized electromagnetic field where x̂j and p̂j are canonically conjugate quadratures
(in this case h̄ in Equation (2) is just h̄ = 1 ) [10]; and the transverse spatial degrees of freedom of single
photons propagating in the paraxial approximation (in this case h̄ in Equation (2) is h̄ = λ/2π where λ

is the photon’s wave length [49]).
In what follows, we summarize the principal statistical URs in CV systems that have been

generalised to coarse-grained measurements. The corresponding coarse-grained URs will be presented
in Section 5.

2.1. Heisenberg (or Variance) Uncertainty Relation

Let us consider two operators:

û := dT x̂ = aTq̂ + a′Tp̂ and v̂ := d′T x̂ = bTq̂ + b′Tp̂, (3)

where T means transposition and we define the 2n-dimensional vector of operators,

x̂ := (q̂, p̂)T = (x̂1, . . . , x̂n, p̂1, . . . , p̂n)
T , (4)

as well as the arbitrary real vectors,

d = (a, a′)T = (a1, . . . , an, a′1, . . . , a′n)T and d′ = (b, b′)T = (b1, . . . , bn, b′1, . . . , b′n)T . (5)

The commutation relation of û and v̂ is

[û, v̂] = ih̄dTJd′1̂ =: ih̄γ1̂, (6)

where J is the 2n× 2n-dimensional matrix of the symplectic norm [50]:

J =

(
O I

−I O

)
, (7)

and the n× n matrices in the blocks are the identity matrix I and the null matrix O. In this review,
matrices of an arbitrary shape not treated as quantum-mechanical operators are denoted in bold and
without a hat.

The parameter γ in definition Equation (6) is a scalar that in some sense quantifies the
non-commutativity of û and v̂. Commutation relations such as Equation (6) are called Canonical
Commutation Relations (CCR) (sometimes the name CCR is used in the case when γ = 1, however,
as h̄γ can be interpreted as an effective Planck constant, so the name CCR here is well justified).
However, a CCR between two operators û and v̂ does not guarantee that they are necessarily
Canonically Conjugate Operators (CCOs). For this to be true we additionally need that the eigenvectors
of û and v̂ must be connected by a Fourier Transform. In such a case we call û and v̂ CCOs (also note
that when two operators like the ones defined in Equation (3) have their eigenstates connected by a
Fourier Transform, they necessary satisfy a commutation relation like in Equation (6), as can be easily
shown. However the converse is not true. Take for example the single mode operators û = x̂ and
v̂ = x̂ + p̂, which satisfy [û, v̂] = [x̂, p̂] = ih̄ but are not a Fourier pair).
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Every pair of operators, û and v̂, that obey a CCR also satisfies the statistical UR:

σ2
Pu

σ2
Pv
≥ h̄2

4
γ2, (8)

where
σ2

Pu
:= 〈û2〉 − 〈û〉2, and σ2

Pv
:= 〈v̂2〉 − 〈v̂〉2, (9)

are the variances of the marginal probability distribution functions (pdf):

Pu(u) = 〈|u〉〈u|〉, and Pv(v) = 〈|v〉〈v|〉, (10)

where we have defined
〈. . .〉 := Tr(. . . ρ̂), (11)

with ρ̂ being an arbitrary n−mode quantum state. We call the UR in Equation (8) the Heisenberg
UR, or variance-product UR. For one mode CCOs, such as û = x̂ and v̂ = p̂ (therefore γ = 1),
the Heisenberg UR in Equation (8) was first proved by Kennard in 1927 [51], inspired by the inequality
in Equation (1) of Heisenberg’s seminal paper of the same year [33]. Later, it was also proved by Weyl
in 1928 [52]. In 1929 Robertson [53] extended the Heisenberg UR for any pair of Hermitian operators Â
and B̂:

σ2
PA

σ2
PB
≥ 1

4

∣∣〈[Â, B̂]〉∣∣2 . (12)

This result extends the Heisenberg UR in Equation (8) to û and v̂ that are not CCOs.
For every variance-product UR in Equation (12) there is an associated linear UR:

σ2
PA

+ σ2
PB
≥ ∣∣〈[Â, B̂]〉∣∣ . (13)

In fact, this UR is a consequence of Equation (12) and the trivial inequality (σPA − σPB)
2 ≥ 0, so that

σ2
PA

+ σ2
PB
≥ 2σPA σPB ≥

∣∣〈[Â, B̂]〉∣∣ , (14)

where it also follows that the linear UR is weaker than the variance product UR. In 1930
Schrödinger [54] improved the lower bound in Equation (12), so the new stronger UR reads:

σ2
PA

σ2
PB
≥ 1

4

∣∣〈[Â, B̂]〉∣∣2 + 1
4

∣∣〈{Â− 〈Â〉, B̂− 〈B̂〉}〉∣∣2 , (15)

where {· · · , · · · } is the anti-commutator.
One interesting property of the Heisenberg UR in Equation (8) is that the lower bound is

independent of the quantum state ρ̂ under consideration. Another property is that it can be seen as a
bona fide condition on the covariance matrix of an n−mode quantum state ρ̂, viz the matrix of second
moments of the CCOs, contained in the vector x̂, of the state ρ̂:

V :=
〈x̂x̂T〉+ 〈x̂x̂T〉T

2
− 〈x̂〉〈x̂T〉. (16)

Indeed, in [55,56] it was shown that the bona fide condition on the covariance matrix V of a
quantum state ρ̂ is,

V +
ih̄
2

J ≥ 0, (17)
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where the inequality means that the matrix on the left hand side is positive semi-definite, viz. all of
its eigenvalues are greater or equal to zero. Applying the inequality in Equation (15) to the canonical
conjugate operators x̂ and p̂, we have,

√
det(V) =

√
σ2

Px
σ2

Pp
− 1

4
|〈{x̂− 〈x̂〉, p̂− 〈 p̂〉}〉| ≥ h̄

2
. (18)

For one mode systems, this inequality is equivalent to the bona fide condition in Equation (17).
However, for multimode systems it is not enough. For multimode systems, a way to verify the bona fide
of the covariance matrix was given in [57,58]. It was shown that testing the condition in Equation (17) is
equivalent to verify the linear UR in Equation (13) for all the operators, û and v̂, defined in Equation (3).
Therefore, using Equation (14) we can write the series of implications:

σ2
Pu

σ2
Pv
≥ h̄2

4
γ2 ⇒ σ2

Pu
+ σ2

Pv
≥ h̄|γ| ⇔ V +

ih̄
2

J ≥ 0. (19)

Thus, it is enough to verify the violation of the Heisenberg UR for some pair of operators û and
v̂ to confirm that the bona fide condition on the covariance matrix of some n−mode operator ρ̂ is
not satisfied.

2.2. Entropic URs

The use of entropy functions to quantify uncertainty of a probabilistic variable dates back to
the early work of Shannon [59]. Since then, several different entropy functions have been defined,
with distinct relations to meaningful characteristics of the probability distributions considered.
A number of these entropy functions have found use in quantum mechanics and, in particular,
in QIT [9]. Here we outline the application of these functions to uncertainty relations between
non-commuting observables.

2.2.1. Shannon-entropy UR

The UR based on the differential Shannon entropy for operators defined in Equation (3) is:

h[Pu] + h[Pv] ≥ ln(πeh̄|γ|), (20)

where Pu and Pv are the marginal pdf defined in Equation (10) and the differential Shannon entropy of
a pdf, P, is defined as [60]:

h[P] := −
∫ ∞

−∞
dy P(y) ln P(y). (21)

For û and v̂ as CCOs, this uncertainty relation was first proved in 1975 by Bialynicki-Birula
and Mycielski [61]. In their derivation the authors used the Lp-Lq norm inequality for the Fourier
transform operator obtained by Beckner [62]. Please note that in the literature this inequality is
sometimes referred to as the Babenko-Beckner inequality (Equation 1.104 from [12] provides an
extension of this inequality to the case of arbitrary mixed states, using two variants of the Minkowski
inequality), because Babenko [63] had proved it before Beckner, but only for certain combinations
of (p, q) parameters. For the sake of completeness, we should also mention that Hirschman [64]
had derived a weaker version of (20) with the constant eπ inside the logarithm replaced by 2π. The
extension of the validity for operators û and v̂ that are not CCOs was provided very recently in
References [58,65].

The Shannon-entropy UR is in general stronger than the Heisenberg UR as the former implies the
latter. This can be seen by using the inequality for a pdf P [60]:

ln
(

2πeσ2
P

)
≥ 2h[P], (22)
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where σ2 is the variance of P. Therefore, we can write the chain of inequalities:

ln(2πeσPu σPv) ≥ h[Pu] + h[Pv] ≥ ln(πeh̄|γ|), (23)

that compress the URs in Equations (8) and (20). It is clear from Equation (23) that the verification of
the Shannon-entropy UR for any pair of the operators in Equation (3) is enough to guarantee the bona
fide condition in Equation (17) [58].

When the quantum state ρ̂ is Gaussian, viz when the Wigner function of ρ̂ is a multivariate
Gaussian probability distribution [11], the marginal pdfs, Pu and Pv, are also Gaussians. Remembering
that the differential Shannon entropy of a Gaussian pdf P, with variance σ2

P, is h[P] =

(1/2) ln
(
2πeσ2

P
)

[60], we can see that Gaussian states saturate the first inequality in Equation (23).
Therefore, for Gaussian states the Heisenberg UR and the Shannon-entropy UR are completely equivalent.
As we will see in Section 5 this is not the case for the coarse-grained versions of these URs.

2.2.2. Rényi-Entropy URs

The UR based on the differential Rényi entropy for the operators defined in Equation (3) that are
CCOs is given by the inequality:

hα[Pu] + hβ[Pv] ≥ ln

⎛
⎝ πh̄|γ|

α
1

(2−2α) β
1

(2−2β)

⎞
⎠ , (24)

where 1/α + 1/β = 2 with 1/2 ≤ α ≤ 1 and γ = 1 since we deal with CCO operators. As before,
Pu and Pv are the marginal pdfs defined in Equation (10) and the differential Rényi entropy of order α

relevant for an arbitrary pdf, P, is defined as [60]:

hα[P] :=
1

1− α
ln
(∫ ∞

−∞
dy [P(y)]α

)
. (25)

The Rényi-entropy UR was proved recently (in 2006) by Bialynicki-Birula [31] (see also [12]) again
with the help of the powerful mathematical tools developed in [62]. Please note that in the limit α→ 1

we also have β → 1, and consequently α
1

(2−2α) β
1

(2−2β) → 1/e. Therefore, in the limit α → 1 we have
hα[Pu]→ h[Pu] and hβ[Pv]→ h[Pv], so the expression in Equation (24) reduces to the Shannon-entropy
UR in Equation (20) for γ = 1. As far as we know, in contrast to the Shannon-entropy UR, the extension
of the Rényi-entropy UR to the general case of operators that are not necessarily CCOs is still a challenge
for the future. A first attempt in this direction was provided in Reference [65], where the authors show
that the Rényi UR in Equation (24) is still valid when the eigenvectors of û and v̂ are connected by a
Fractional Fourier Transform [8], which corresponds to rotation in phase space.

All of the URs mentioned in this section (this is a general pattern though) can be cast in a
general form

F(ρ̂; û, v̂; Pu, Pv) ≥ f (h̄|γ|), (26)

where F is an uncertainty functional [left hand side of inequalities Equations (8), (20) and (24) for
example] and f represents its respective lower bounds. In particular, we do not pay much attention
here to the Tsallis entropy and URs associated with it. Again such URs can be cast in the general form
stated above and their derivation is usually very similar in spirit to the case of the Rényi entropy.

In Section 3 we will summarise the relevance of the statistical UR in general and in particular
the URs in Equations (8), (20) and (24). In Section 5 we will present versions of the Heisenberg,
Shannon-entropy and Rényi-entropy URs for coarse-grained measurements.
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3. Utility of Uncertainty Relations in Quantum Physics

Uncertainty relations can be applied in several useful and interesting ways. First, they provide
a way to test if experimental results are consistent with quantum mechanics, since data from the
measurement of incompatible observables must verify any valid quantum UR. This is particularly
helpful in identifying systematic errors in the measurement process, in testing the experimental
reconstruction of density matrices, phase-space distributions (quantum state tomography), as well as
the covariance matrix [66], or any other set of moments of the CCOs of the modes.

URs can also be used to characterize non-classical states of light, such as squeezed states [67].
In this case observation of the variance σ2

Pu
≤ h̄/4 where û is a phase-space quadrature in Equation (3),

indicates noise fluctuations in this quadrature that are smaller than the vacuum state. As a consequence
of the Heisenberg UR, the noise fluctuations in the conjugate quadrature must be larger or equal to
h̄/4σ2

Pu
. In a similar fashion, in Reference [68] it was shown that violation of one out of an infinite

hierarchy of inequalities involving normally ordered quadrature moments is sufficient to demonstrate
non-classicality. We note that σ2

Pu
≤ h̄/4 corresponds to the lowest-order inequality of this set. Related

techniques have been developed based on the quantum version of Bochner’s theorem for the existence
of a positive semi-definite characteristic function [69,70]. Both of these methods have been used
experimentally in Reference [71]. More recently, these two techniques were unified into a single criteria
involving derivatives of the characteristic function [72], and put to test on a squeezed vacuum state.

To our knowledge, the first application of URs to identify quantum correlations was described in
Reference [73], in which the authors proposed a Heisenberg-like UR, similar to that in Equation (8),
to identify non-classical correlations between both the phases and intensities of the fields produced
by a non-degenerate parametric oscillator. It was shown by M. Reid [74] that these measurements
provide a method to demonstrate correlations for which the seminal Einstein-Podolsky-Rosen (EPR)
argument [75] is valid. An experiment using this UR-based method to demonstrate EPR-correlations
between light fields was realized shortly therafter [76]. It was later shown by Wiseman et al. [77,78]
that the Reid EPR-criterion was indeed a method to identify quantum states that violate a “local
hidden state” model of correlations. This type of correlation has been called “EPR-steering”, or just
“steering” [79], as this was the terminology used by Schrödinger when he discussed EPR correlations
in 1935 [80]. Since 2007, EPR-steering has been understood to make up part of a hierarchy of quantum
correlations, situated between entanglement [81,82] and Bell non-locality [83]. In addition to methods
utilizing variance-based URs [84], entropic URs, such as those in Section 2.2, can be used to identify
EPR-steering [85,86] and to quantify high-dimensional entanglement [87,88]. Some of these URs can
be used to test security in continuous variable quantum cryptography [89,90], and it has been shown
that violation of entropic EPR-steering criteria are directly related to the secret key rate in one-sided
device independent cryptography [91]. We also highlight techniques based on a matrix-of-moments
approach [92]. Continuous-variable EPR-steering has been observed in intense fields [76,93,94] as well
as photon pairs [85,95–97].

Perhaps one of the most important tasks in quantum information is identifying quantum
entanglement. In this respect, URs have also found widespread use in simple and experimentally
friendly entanglement detection methods, as we will now describe. Several early entanglement
criteria for bipartite CV systems were developed using URs [98–101]. A particularly convenient
method to construct entanglement criteria is to use the Peres-Horedecki positive partial transposition
argument [102,103] (PPT), and apply it to uncertainty relations [82,104–107]. The PPT argument is as
follows. A bipartite separable state σ̂12 can be written as [108]

σ̂12 = ∑
i

λi ρ̂1i ⊗ ρ̂2i, (27)

where ρ̂1i and ρ̂2i are bona fide density operators of subsystems 1 and 2, respectively. The transpose
of the state ρ̂2i, here denoted ρ̂T

2i, is still a positive operator, since full transposition preserves the
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eigenspectrum. Thus, partial transposition (with respect to second subsystem) of σ̂12 gives the valid
quantum state:

σ̂T2
12 = ∑

i
λi ρ̂1i ⊗ ρ̂T

2i. (28)

On the other hand, partial transposition of an entangled state �̂12, which cannot be written in the
form (27), can lead to a non-physical density matrix since partial transposition may not preserve the
positivity of the eigenspectrum. Thus, one can identify entanglement in a bipartite density operator by
calculating the partial transposition and searching for negative eigenvalues, and even quantify the
amount of entanglement via the negativity [109]. However, applications of this method in experiments
requires quantum state tomography and reconstruction of the density operator, which involves a large
number of measurements. A more experimentally friendly method to identify entanglement is to
evaluate an UR applied to the partial transposition of �̂12, which we describe in the next paragraph.
The PPT-argument is only a sufficient entanglement criteria in a general bipartition of m× (n−m)

modes, but is necessary and sufficient in the particular case of bipartitions of 1× (n− 1) modes in
CV Gaussian states [10,110]. Thus, there are no Gaussian states which are PPT entangled states in
bipartitions of the form 1× (n− 1). However, there do exist entangled CV Gaussian states that are
PPT in general bipartitions of the type m× (n−m). These are called bound entangled states [111].
In Gaussian states, this set of bound entangled states coincides with the set of all states whose
entanglement in a bipartition m × (n − m) cannot be distilled using local operations and classical
communication [112–114]. However, to our knowledge, for non-Gaussian states it is conjectured that
the set of bound entangled states in a given bipartition is only a sub-set of the set of undistillable states
in that bipartition.

For continuous variables, Simon showed that transposition is equivalent to a momentum reflection,
taking the single mode Wigner phase-space distributionW(x, p) −→ WT2(x, p) = W(x, Tp) [57],
where T is a diagonal matrix whose elements are +1 for non-transposed modes, and −1 for the
transposed ones. Thus, evaluating the “transposed” Wigner function is the same as evaluating the
original Wigner function with a sign change in the reflected p variables.

For simplicity, we consider now the particular example of global operators of a bipartite state:

û± = û1 ± û2, (29)

and
v̂± = v̂1 ± v̂2. (30)

We note that operators with the same sign satisfy the commutation relations [û±, v̂±] = 2ih̄γ ,
so that these non-commuting operators after being an input to the uncertainty functionals fulfill the
UR of the aforementioned form [note the factor of 2 in the argument of f (·)]

F(�̂12; û±, v̂±; Pu± , Pv±) ≥ f (2h̄|γ|). (31)

Using the transformation of the Wigner function under partial transposition described above,
one can evaluate the uncertainty functional of the partially transposed state �̂T2

12 via measurements on
the actual state �12 using the relation

F(�T2
12; û±, v̂±; Pu± , Pv±) = F(�12; û±, v̂∓; Pu± , Pv∓), (32)

which can be lower than f (2h̄|γ|) since the operators with different signs do commute. This possibility,
when experimentally confirmed, indicates that �T2

12 is not a bona fide density operator, and thus the
bipartite quantum state �12 is entangled.

Building on this general reasoning (PPT argument applied to an UR) several entanglement
criteria have been developed. A comprehensive list of the criteria contains those based on the
variances [115,116] and higher-order moments [117,118], Shannon entropy [105], Rényi entropy [106],
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characteristic function [119] as well as the triple product variance relation [120]. Particularly powerful
is the formalism developed by Shchukin and Vogel, which provides an infinite set of inequalities
involving moments of the bipartite state [121], such that violation of a single inequality indicates
entanglement. We note that some of these criteria can be applicable to any non-commuting global
operators. Uncertainty-based approaches (using the PPT method directly or not) have been developed
for multipartite systems [122,123], and a general framework to construct entanglement criteria
for multipartite systems based on the ”PPT+UR” interrelation was presented in Reference [107].
The Shchukin-Vogel hierarchy of moment inequalities has also been applied to the multipartite
case [124].

The PPT+UR approach has been used to identify continous variable entanglement experimentally
in several systems, including entangled fields from parametric oscillators and amplifiers [94,125,126] as
well as spatially entangled photon pairs produced from parametric down conversion [96,120,127], and
time/frequency entangled photon pairs [128,129]. A higher-order inequality in the Shchukin-Vogel
criteria [121] has been used to observe genuine non-Gaussian entanglement [130].

4. Realistic Coarse-Grained Measurements of Continuous Distributions

Coarse graining of observables with continuous spectra is a consequence of any realistic
measurement process. In the laboratory, an experimentalist is given the task of designing projective
measurements in order to recover information about probability densities of a continuous variable
quantum system. Naturally, only partial information about the underlying continuous structure of the
infinite-dimensional physical system is retrieved in a laboratory experiment. Whichever measurement
design is chosen, the experimentalist is faced with two main difficulties, namely the finite detector range
and finite measurement resolution, related to the size of the total region of possible detection events and
the precision in which events are registered, respectively. The detector range problem [25,29] results
from the finite amount of resource available to the experimentalist. For instance, consider a position
discriminator based on a multi-element detector array. The array has a spatial reach (in a single spatial
dimension) that increases linearly with the number of detectors. In a similar fashion, the sampling time
of a single element detector used in raster scanning mode increases linearly with the chosen detection
range. Continuous variables such as the position are also inevitably affected by the inherent finite
resolution of the measurement apparatus [32], such as the size of each individual detector in the array,
or the pixel size of a camera. Altogether, the finite detector range and measurement resolution restrict
the capability to probe the detection position, limiting the experimentalist to a coarse-grained sample of
the underlying CV degree of freedom.

The constraints imposed by the finite spatial reach and resolution of the measurement
apparatus are then important features that must be considered in the experiment design. Ideally,
the experimentalist would chose measurement settings producing the finest coarse-grained sample
possible. As a trade-off, the increased resolution entails the sampling of a greater number of pixels
(if the range of detection is preserved), increasing the amount of resources used in data acquisition and
analysis. The compromise between the used resource and chosen resolution depends on the specific
design and measurement technique. A single raster scanning detector is inherently inefficient and leads
to acquisition times that grow with the number of scanned outcomes. On the other hand, the acquisition
time is dramatically reduced by the use of multi-element detector arrays [131–134]. Other techniques
such as position-to-time multiplexing [135,136] allow the sampling of multiple position outcomes with
single element detectors, but at the expense of an increased dead-time between consecutive detections.
We have exemplified the finite detector range and finite measurement resolution problems in terms of
a detector that registers the position of a particle. However, similar considerations are valid for any
detection system that registers a digitalized value of a continuous physical parameter.

Under constraints of resource utilisation—such as the number of detectors and/or sampling
time—the experimentalist needs to set the number of possible detection outcomes for their
coarse-grained measurements. Therefore, a natural question that arises regards the coarse-graining
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design allowing the extraction of the desired information. Naively, one might think that usual
quantum mechanical features learnt from physics textbooks would be directly observable from the
coarse-grained distributions obtained in the laboratory. The most prominent counter-example is
the experimental observation of the Heisenberg UR in Equation (8). As shown in Reference [32],
coarse-grained distributions of conjugate continuous variables do not necessarily satisfy the well
known UR valid for continuous distributions. In order to accurately inspect the uncertainty product
of the measured distributions in accordance with the Heisenberg UR, the latter must be modified to
account for the detection resolution of the measurement apparatus. Another important quantum
mechanical feature that one usually fails to observe from standard coarse-grained distributions
is the mutual unbiasedness [137] relation between measurement outcomes of the incompatible
observables. That is, eigenstates of-say-the coarse-grained position operator do not necessarily present
a uniform distribution of outcomes for coarse-grained momentum measurements. In addition, some
authors [138–141] have demonstrated that one can define functions of incompatible observables that
indeed commute. Interestingly, it was shown in Reference [142] that one can indeed enjoy full quantum
mechanical unbiasedness using a specific periodic coarse-graining design rather than the standard one.
Other practical issues regarding false positives in entanglement detection [26,29] and cryptographic
security [25,29] must also be reconsidered when one deals with realistic coarse-grained distributions.

In this section, we will introduce the projective measurement operators both for the standard and
the periodic models of coarse graining. Practical features such as measurement resolution, detector
range and positioning degrees of freedom in the measurement design will be discussed. We will also
briefly discuss relations of mutual unbiasedness between coarse-grained measurement outcomes in
domains of incompatibles observables. A detailed discussion of uncertainty relations for coarse-grained
distributions will be presented in the next section.

4.1. Coarse-Graining Models

A laboratory experiment necessarily yields a discrete, finite set of measurement outcomes of
any observable in any physical system. This is also the case for an experiment probing a continuous
degree of freedom, û, for which measurement outcomes {uk} labeled by the discrete integer index
k ∈ Z relate to the underlying continuous real variable u ∈ R corresponding to the eigenspectra
of û. In the most general scenario, a coarse-graining model is obtained from an arbitrary partition
of the set of real numbers R, in intervals Rk with uk ∈ Rk. The orthogonality of the measurement
outcomes requires the subsets to be mutually disjoint: Rk ∩ Rk′ = ∅, ∀ k 
= k′. Even though the
continuous variable can be formally discretised into an infinite number of outcomes (with k an
unbounded integer), the experiment can only probe a finite range of the continuous variable. Thus,
the detection range, Rrange, can be formally defined by the union of the disjoint subsets associated
with the probed outcomes:

∪
k
Rk = Rrange ⊂ R. (33)

This relation limits the set of possible values of k to a finite subset of integers Zk ⊂ Z. Due to
the finite range, Rrange, of the measurement process it is important to secure under reasonable
experimental conditions that the underlying probability density is supported within the chosen
range of detection [25,29]. Mathematically, a faithful coarse-grained measurement design should
ensure that ∫

Rrange
Pu(u)du ≈ 1, (34)

where Pu is the marginal pdf defined in Equation (10).
The probability p(u)

k that the outcome uk is produced writes as an integral of the marginal
probability density, Pu, for the continuous variable:

p(u)
k =

∫
Rk

Pu(u)du, (35)
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where the integration is performed in the intervalRk. Due to the faithful coarse-grained condition in
Equation (34) we have

∑
k∈Zk

p(u)
k ≈ 1. (36)

We can define projective operators associated with the coarse-grained measurements:

Ĉ(u)
k =

∫
Rk

|u〉〈u|du, (37)

so that the probabilities (35) can be written as

p(u)
k = Tr(ρ̂Ĉ(u)

k ), (38)

with Pu(u) = 〈u|ρ̂|u〉. In order to study mutual unbiasedness and uncertainty relations, we shall
later in this and the following sections define coarse-grained operators like those in Equation (37)
for conjugate variables of the quantum state, such as the position and the linear momentum of a
quantum particle.

4.1.1. Standard Coarse Graining

The standard model of coarse graining describes, for example, the typical projective measurements
performed with an array of adjacent, rectangular detectors. A conventional example of such an
apparatus is the image sensor of a digital camera, for which the pixel size stands for the detection
resolution whereas the length of the full sensor embodies the range of detection. In the current
analysis, we shall consider a linear detector array along a single spatial dimension rather than the
two-dimensional area of a typical image sensor, as illustrated in Figure 1. The coarse-graining interval
representing the detection window of the k-th pixel of the linear array is then:

Rk :=
(

ucen + (k− 1
2
)Δ, ucen + (k +

1
2
)Δ
]

, (39)

where Δ is the detector or pixel size—also commonly referred to as the coarse-graining width or the
bin width. Using the definition Equation (39), the discretised outcomes uk represent the u value of the
center of the corresponding bin:

uk = ucen + kΔ. (40)

Multi-element detector 
array

Detection range

Figure 1. Multi-element detector array illustrating the standard coarse-graining geometry.

The parameter ucen sets the position of the central bin of the array, whose outcome label is k = 0,
yielding u0 = ucen. To illustrate the effect of the coarse-graining design on measured distributions, we
plot in Figure 2 coarse-grained distributions (blue bars) obtained using 3 different resolutions: Δ = 2
(left colum), Δ = 1 (central column) and Δ = 1/2 (right column). For each resolution, we plot two
distinct distributions obtained using ucen = 0 (top row) and ucen = Δ/2 (bottom row). In other words,
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the coarse-graining bins of the distributions plotted at the bottom part of the figure are displaced by
half a “pixel” in relation to the distributions at the top. Clearly, the distribution obtained using a fixed
resolution is not unique, but the effect of small displacements (smaller than the bin width) gets less
important as the resolution is increased. For comparison, the generating continuous distribution is
plotted in red.

-10 -8 -6 -4 -2 0 2 4 6 8 10 -10 -8 -6 -4 -2 0 2 4 6 8 10 -10 -8 -6 -4 -2 0 2 4 6 8 10

-10 -8 -6 -4 -2 0 2 4 6 8 10 -10 -8 -6 -4 -2 0 2 4 6 8 10 -10 -8 -6 -4 -2 0 2 4 6 8 10

(a)

(d) (e) (f)

(b) (c)

Figure 2. Coarse-grained distributions (blue bars) according to the standard model. The red solid line
indicates the underlying continuous distribution used to generate the discretised versions. The used
resolution Δ and positioning degree of freedom ucen is indicated beside each distribution. For each
resolution, two distinct distributions are shown, each of which associated with a different positioning
of the coarse-graining bins.

We shall now use this model for standard coarse graining to explicitly define the discretised
counterparts of the position and momentum operators given in Equation (3).

ûΔ = ∑
k

ukĈ(u)
k , (41a)

v̂δ = ∑
l

vlĈ
(v)
l , (41b)

where the projector Ĉk is defined in Equation (37) (with Ĉ(v)
l having an equivalent definition for v̂

measurements), and we used Δ (δ) as the detection resolution for û (v̂) measurements. According
to the definition in Equation (35), as a result of the the coarse-grained measurement of û and v̂ we
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obtain the discrete probabilities, p(u)
Δ,k and p(v)

δ,l .The discrete variances associate with these discrete
probabilities are:

σ2
P(u)

Δ
= ∑

k
u2

k p(u)
Δ,k −

(
∑
k

uk p(u)
Δ,k

)2

, (42a)

σ2
P(v)

δ

= ∑
l

v2
l p(v)

δ,l −
(

∑
l

vl p(v)
δ,l

)2

, (42b)

where we define the set of discrete probabilities:

P(u)
Δ := {p(u)

Δ,k} and P(v)
δ := {p(v)

δ,k }. (43)

One can see from the definitions (42) that if the bin widths Δ and δ are such that p(u)
Δ,k and p(v)

δ,l are
sufficiently close to unity for some value of k and l, we have σ2

P(u)
Δ

, σ2
P(v)

δ

−→ 0. Thus, naive application

of any of the variance-based URs given in Section 2.1 would indicate a false violation of a UR. It has
been shown in Reference [32] that the same argument applies to discretized versions of entropic URs,
such as those of Section 2.2. Thus, proper treatment of standard coarse-grained measurements is
essential in order to take advantage of the practical application of URs in QIT and quantum physics in
general. In Section 5 we show how this can be done.

4.1.2. Periodic Coarse Graining

A distinct model of coarse graining discussed in the literature [142,143] is refereed to as periodic
coarse graining (PCG). In this model, the partition of the whole set of real numbers R is performed in
a periodic manner, leading to a finite number d of subsets Rk, with k = 0, · · · , d− 1. The resulting
discretization utilizes the index k as a direct label for the detection outcomes, in a similar fashion to
what is usually defined for finite-dimensional quantum systems. The subsetsRk are defined as [142]:

Rk := {u ∈ R | ucen + ksu � u(mod Tu) < ucen + (k + 1)su} , (44)

where su plays the role of a bin width similar to the resolution Δ used for the standard coarse
graining. In the definition Equation (44), bins of size su are arranged periodically with the parameter
Tu representing the period, as illustrated in Figure 3 for the particular design using d = Tu/su = 5
detection outcomes. It is important to notice that this coarse graining design do not distinguish
detections in distinct bins associated with the same detection outcome k (ranging from 0 to 4 in
Figure 3). For example, a detection within any bin colored in red in (44) would lead to the same
detection outcome k = 1.

Figure 3. Periodic coarse-graining design with d = Tu/su = 5 detection outcomes. The parameter Tu

is the periodicity in which bins of size su are arranged.

An interesting feature of the PCG model is that the number of detection outcomes is utterly
adjustable by the choice of the parameters Tu and su, regardless of the chosen detection range.
For instance, doubling the range of detection allows one to design PCG measurement using twice
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as much periods in its design, while maintaining the same number d = Tu/su of detection outcomes.
As with the standard model, the reference coordinate ucen sets the center of the detection range also
for the PCG design. Using the subset definition given in Equation (44), we can explicitly write the
projector operators, Equation (37), for the PCG model as

Π̂(u)
k =

∫
Rk

|u〉〈u|du = ∑
n∈Z

∫ ucen+(k+1)su+nTu

ucen+ksu+nTu
|u〉〈u|du, (45)

where we extend the sum in n over Z without loss of generality, assuming that Equation (34) is satisfied.
Analogously, we also define the PCG projective operators over the conjugate variable v:

Π̂(v)
l =

∫
Rl

|v〉〈v|dv = ∑
n∈Z

∫ vcen+(l+1)sv+nTv

vcen+lsv+nTv
|v〉〈v|dv, (46)

where we define sv and Tv as the bin width and periodicity used in the PCG measurements of v.

4.2. Mutual Unbiasedness in Coarse-Grained Measurements

If a quantum system , with finite dimension, is described as an eigenstate of a given observable,
the measurement outcomes of complementary observables are completely unbiased: each one of them
occurring with equal probability, 1/d, where d is the dimension of the quantum system’s Hilbert
space. This unbiasedness relation is an important feature of quantum mechanics with no classical
counterpart, and is usually cast in terms of the basis vectors constituting the eigenstates of two (or more)
complementary observables. To be more precise, two orthonormal bases {|ak〉} and {|bl〉} are said to
be mutually unbiased if and only if |〈ak|bl〉|2 = 1/d for all k, l = 0, · · · , d− 1 [137]. The observation of
unbiased measurement outcomes is customary in experiments with finite dimensional quantum
systems. Not only routine, measurements in mutually unbiased bases (MUB) constitute a key
procedure in several quantum information processing tasks, such as verification of cryptographic
security [9], certification of quantum randomness [144], detection of quantum correlations [145–147]
and tomographic reconstruction of quantum states [148,149].

Mutual unbiasedness is also extendable to continuous variables quantum systems [150], for which
bases {|u〉} and {|v〉} such [û, v̂] = ih̄γ, satisfy |〈u|v〉|2 = 1/(2πh̄|γ|), i.e., the overlap of the basis
vectors |u〉 and |v〉 is independent (no bias) of their eigenvalues, u and v (note, however, that even
though û and v̂ are mutually unbiased observables, this does not imply that they are complementary,
as would be the case for operators in a discrete quantum system [151]. In continuous variable quantum
mechanics, mutual unbiasedness does not imply that û and v̂ are maximally incompatible [152]. In this
case, complementary observables are typically defined as CCOs, that is, forming a Fourier transform
pair). For CV systems, nevertheless, this relation is rather a theoretical definition than an experimentally
observable fact, since the experimentalist has neither the capability to prepare nor to measure the
(infinitely squeezed) eigenstates of the û and v̂. Instead, both the preparation and measurement
procedures are limited to the finite resolution of the experimental apparatus. As discussed previously
in this section, measurements of a CV degree of freedom render discretized, coarse-grained outcomes
whose probabilities, Equation (35), are provided by a coarse-graining model described by the projective
operators given in Equation (37). These coarse-grained probabilities obtained experimentally do not in
general preserve the mutual unbiasedness complied by the underlying continuous variables.

To elaborate the issue, let us consider sets of projectors {Ĉ(u)
k } and {Ĉ(v)

l } defining coarse-graining
measurements in the complementary domains u and v of a continuous variable quantum system ρ̂.
We assume measurement designs providing a number d of outcomes in each domain. In this scenario,
the requirement for mutual unbiasedness is thus that the coarse-grained probabilities for measurements
of one variable are evenly spread between all discretized outcomes whenever the quantum state
is localized with respect to the coarse graining applied to its conjugate variable (and vice-versa).
The subtlety in this requirement is the (infinite) degeneracy of normalizable quantum states that can
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be localized with respect to the chosen coarse graining. To emphasize this degeneracy, we refer to
the outcome probabilities, Equation (35), with explicit dependency on the quantum state in order to
mathematically phrase the condition for mutual unbiasedness in coarse-grained CV: the outcomes
of {Ĉ(u)

k } and {Ĉ(v)
l } are mutually unbiased if for all quantum states ρ̂ and k0, l0 = 0, · · · , d− 1 we

have [142]:
p(u)

k (ρ̂) = δk0k ⇒ p(v)
l (ρ̂) = d−1, (47a)

p(v)
l (ρ̂) = δl0l ⇒ p(u)

k (ρ̂) = d−1, (47b)

where, again, we stress that p(u)
k (ρ̂) = Tr(ρ̂Ĉ(u)

k ) and p(v)
l (ρ̂) = Tr(ρ̂Ĉ(v)

l ), as in Equation (35).
Having formulated the conditions for mutual unbiasedness, Equation (47), it is easy to perceive

that the adjacent, rectangular subsets defining the standard coarse graining [Equation (39)] will not
lead to unbiased measurement outcomes. Any CV distribution localized in a single coarse-graining bin
(for example in the u variable) generates a probability density that decays in the Fourier domain (the v
variable) along the adjacent bins within the detection range. This decay generates a non constante
coarse-grained distribution that, by definition, is biased. Furthermore, the number d of detection
outcomes in the standard design depends directly on the selected detection range, as well as on the
chosen resolution. As a consequence, even though a particular localized distribution could lead to
approximately unbiased coarse-grained outcomes in the Fourier domain, an extended detection range
would increase the number of outcomes, thus spoiling the unbiasedness.

It is thus evident that in order to retrieve unbiased outcomes from coarse-grained measurement,
a more contrived coarse-graining design is needed. As it turns out, it was shown in Reference [142] that
the PCG design exactly fulfils the requirements for unbiased measurements of finite cardinality stated in
Equation (47). A relation between the periodicities Tu and Tv used in the PCG of the conjugate variables
u and v was analytically derived as a single condition for unbiased coarse-grained measurements:

TuTv

2πh̄
=

d
m

, m ∈ N s.t. ∀n=1,··· ,d−1
mn
d

/∈ N. (48)

The unbiasedness condition stated in Equation (48) establishes infinite possibilities for the pair of
periodicities Tu and Tv that can be used to design the mutually unbiased pair of PCG measurements
defined in Equations (45) and (46), respectively. For instance, the simplest and most important
case is the condition with m = 1, since it is valid for all d and provides the best trade-off between
experimentally accessible periodicities: TuTv = (2πh̄)d. Conditions with m > 1 are also possible but
are not general since they depend on the chosen number of outcomes d [142]. For example, for d = 4,
valid conditions are found using m(mod d) = 1, 3 whereas for d = 5, valid conditions are found using
m(mod d) = 1, 2, 3, 4. Importantly, the case with m(mod d) = 0 is always excluded, since in this case
the PCG projectors describe commuting sets,

[
Π̂(u)

k , Π̂(v)
l

]
= 0, ∀ k, l [138–140]. In other words a joint

eigenstate of the product Π̂(u)
k Π̂(v)

l existis for all k and l whenever TuTv = 2πh̄/c with c ∈ N [153]. It is
also interesting to note that using the periodicity definition from the PCG design (T = ds), it is possible
to write the unbiasedness condition given in Equation (48) in alternative, equivalent ways:

(a) TuTv =
2πh̄
m

d, (b) Tusv =
2πh̄
m

, (c) suTv =
2πh̄
m

, (d) susv =
2πh̄
m

1
d

. (49)

Finally, in Reference [143] these results were generalized for PCG measurements applied to
an arbitrary pair of phase space variables other than the conjugate pair formed by position and
momentum. What is more, a triple of unbiased PCG measurements was also shown to exist for rotated
phase space variables, along the same lines as the demonstration of a MUB triple in the continuous
regime done in Reference [150]. Experimental demonstrations of unbiased PCG measurements were
also carried out in References [142,143], both of them utilizing the transverse spatial variables of a
paraxial light field.
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5. UR for Coarse-Grained Observables

A kind of a paradigm shift in the theory of uncertainty relations was brought by the observation
that everything can be efficiently characterized solely by means of probability distributions. As a
result, tools known from information theory, such as information entropy, Fisher information and
other measures, came into play. Additionally, the notion of uncertainty for discrete systems could
better be captured that way. Since products of variances calculated for observables such as the spin
are bounded in a state-dependent manner (so that the ultimate lower bound typically assumes the
trivial value of 0), information entropies provide an attractive alternative [154]. Written already in the
Rényi form,

Hα [P] =
1

1− α
ln ∑

k
[pk]

α, (50)

the above equation is a discrete counterpart of Equation (25), which corresponds to the discrete
counterpart of Equation (21) when α = 1.

In the finite-dimensional case given by an arbitrary state ρ̂ acting on a d-dimensional Hilbert
spaceH, and a pair of non-degenerate, non-commuting observables, Â and B̂, one usually defines the
probabilities associated to projective measurements:

p(A)
i = 〈ai| ρ̂ |ai〉 , p(B)

j =
〈
bj
∣∣ ρ̂

∣∣bj
〉

, (51)

where |ai〉 and
∣∣bj
〉
, i, j = 1, . . . , d are the eigenstates of the operators associated with both observables.

Disctrete entropic URs for the above probability distributions are of the general form

Hα

[
P(A)

]
+ Hβ

[
P(B)

]
≥ Bαβ (U) , (52)

with U ∈ U (d) being a unitary matrix with matrix elements Uij =
〈

ai
∣∣bj
〉
. We denote P(A) := {p(A)

i }
and P(B) := {p(B)

j } again with i, j = 1, . . . , d.
The first entropic uncertainty relation for discrete variables comes from Deutsch [154], who for

α = 1 = β found the lower bound BD
11 = −2 ln C, with C = (1 +

√
c1) /2 and c1 = maxi,j

∣∣Uij
∣∣2.

A substantially more renowned Maassen–Uffink (MU) bound [155] derived in 1988, is BMU
αβ = − ln c1.

This bound is however valid only for the conjugate parameters 1/α+ 1/β = 2. Very recently, a plethora
of new results [41,156–163] improving the celebrated MU bound has been obtained. In particular,
an approach based on the notion of majorization (suitable from the perspective of resource theories
and quantum thermodynamics [164]) provides a significant qualitative novelty [156,157,159,163],
which will also be touched upon in this section.

In this review we are concerned with the case in which continuous probability distributions Pu (u)
and Pv (v) are replaced (viz. they were measured this way) by their discrete counterparts (k, l ∈ Z).
According to the discussion in Section 4 we can use the definitions in Equations (35) and (39), and the
condition in Equation (33), to write the discrete probabilities:

p(u)
Δ,k =

∫ (k+1/2)Δ

(k−1/2)Δ
dy Pu (y) , p(v)

δ,l =
∫ (l+1/2)δ

(l−1/2)δ
dy Pv (y) , (53)

with k ∈ Zk ⊂ Z. In the following we describe a series of URs for these discrete probabilities that are
known as coarse-grained URs, derived in [24,30–32]. These are the coarse-grained counterpart of the
Heisenberg, Shannon entropy and Rényi entropy URs in Equations (8), (20) and (24) respectively. Here,
we will closely follow the treatment in [24,32]; however, before we start we give a short historical
overview and discuss a path towards extensions going beyond CCOs.

The idea that generic quantum uncertainty could be quantified by the sum of Shannon entropies
evaluated for discretized position and momentum probability distributions for the first time appeared
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in the contribution by Partovi [165]. He also derived the first coarse-grained UR which in the form
is reminiscent to the Deutsch bound for finite-dimensional systems [154] (please note that both
papers [154,165] have been published in 1983; however, Partovi in his first sentence refers to a
”recent letter” by Deutsch). Both bounds [154,165] were obtained by means of a direct optimization,
independently applied to every logarithmic contribution. Symmetry in developments of the URs
for finite-dimensional and coarse-grained systems happened to be much deeper as the second
coarse-grained result, by Bialynicki-Birula [30], is a counterpart of the MU bound [155]. The former
result is an application of the continuous variant of the Shannon entropy UR (so the Lp-Lq norm
inequality by Beckner [62]) supported by the Jensen inequality for convex functions, while the MU
bound is a direct consequence of the Riesz theorem for the lp-lq norms. Please note that relatively often,
integration limits in (53) were chosen as ”from kΔ to (k + 1)Δ” and ”from lδ to (l + 1)δ”; however
this choice causes a formal pathology in the limit of infinite coarse graining [166]. Thus, sticking to
terminology of Equation (39), in theory it is better to avoid borderline settings for the position of the
central bin, i.e., ucen = Δ/2.

To briefly report later developments, one shall mention that Partovi reconsidered the problem he
had posed several years ago, pioneering applications of majorizaiton techniques [167]. Also Schürmann
and Hoffmann [168] discussed the Shannon entropy UR from the perspective of the integral equation
associated to it, while the first author conjectured an improvement (later mentioned in detail) which
agrees with his numerical tests [169]. Finally, we mention (without details) an erroneous improvement
of [31] by Wilk and Wlodarczyk [170,171], mainly devoted to the case of the Tsallis entropy.

Although originally the URs were derived for CCOs, û and v̂, here we show which of the URs
in [24,32] can be valid also for operators û and v̂ that are arbitrary linear combinations of all positions
and momenta of the n−bosonic modes like the ones defined in Equation (3), viz. operators that
are not necessarily CCOs. In the general case, we stress that there is always a unitary metaplectic
transformation (so ÛS belongs to the metaplectic group Mp(2n,R) and it is always associated with a
matrix S that belongs the symplectic group Sp(2n,R) [50]), ÛS, that connects û and v̂, viz. v̂ = Û†

SûÛS.
However, this metaplectic transformation is not necessarily a π/2 rotation, which would be the case
if û and v̂ were CCOs. In order to see this, we first define two sets of operators (û, û′)T = (û =

û1, . . . , ûn, û′1, . . . , û′n)T =
√

γ S̃ x̂ and (v̂, v̂′)T = (v̂ = v̂1, . . . , v̂n, v̂′1 . . . , v̂′n)T =
√

γ S′ x̂, where S̃ and
S′ are some matrices belonging to the symplectic group Sp(2n,R), with the only restriction that
the first rows of S̃ and S′ correspond to the real coefficients d and d′ in Equation (5), respectively,
which define the operators û and v̂ in Equation (3). Due to the properties of symplectic matrices, all
the pairs ûi and û′j, and also v̂i and v̂′j, satisfy CCRs, viz. [ûi, û′j] = ih̄γδij and [v̂i, v̂′j] = ih̄γδij with

i, j = 1, . . . , n. However, it is immediate to see that (v̂, v̂′)T = S(û, û′)T where the matrix S := S′S̃−1

is a generic symplectic matrix. Then the Stone-von-Neumann theorem guarantees that the change
(û, û′)T → (v̂, v̂′)T is unitarily implementable by a metaplectic transformation ÛS [50]. In particular
we have Û†

S û ÛS = (S x̂)1 =: v̂.

5.1. URs Proved Only for CCOs

The key concept behind the treatment of coarse-grained URs in [24,32] is the introduction of the
piece-wise continuous probability density functions:

QΔ,u(u) := ∑
k∈Zk

p(u)
Δ,k DΔ(u, uk) and Qδ,v(v) := ∑

l∈Zl

p(v)
δ,l Dδ(v, vl), (54)

where DΔ(u, uk) and Dδ(v, vl) are called the histogram functions (HF) with uk (and vl in an analogous
way) defined in Equation (40). Generically, these functions are defined such that they are normalized
in each bin: ∫ (k+1/2)Δ

(k−1/2)Δ
DΔ(u, uk) du = 1 and

∫ (l+1/2)δ

(l−1/2)δ
Dδ(v, vl) dv = 1, (55)
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and approach the Dirac delta distribution for infinitesimal bin size:

lim
Δ→0

DΔ(u, uk) = δ(u− uk) and lim
δ→0

Dδ(v, vl) = δ(v− vl). (56)

Therefore, in the limit Zk,Zl → Z and Δ, δ → 0 we have QΔ,u(u) → Pu(u) and Qδ,v(v) →
Pv(v). We shall stress here that the HF can, in general, have any functional form as long as it is
non-negative, normalized and fulfills Equation (56). However, the most common histogram function
is the rectangular HF:

DR
Δ(u, uk) :=

{
1/Δ for u ∈

(
(k− 1

2 )Δ, (k + 1
2 )Δ

]
0 otherwise.

, (57)

with an equivalent definition for DR
δ (v, vl). In Figure 2 we show an example of coarse-grained

probability distributions functions QΔ,u(u) (the area beneath these functions are displayed in full)
using rectangular histogram functions and for different size bins Δ.

Here, we generalise the results in [24,32] through the following expression that will be
justified later:

hα[QΔ,u] + hβ[Qδ,v] ≥ ln

(
πh̄|γ| ehα [DΔ ]−ln Δ+hβ [Dδ ]−ln δ

εα(Γ/4)

)
, (58)

with 1/α + 1/β = 2 and 1/2 ≤ α ≤ 1. To simplify the notation we define the function:

εα (x) := min
{

α
1

2−2α β
1

2−2β ,
1
2

R2
00 (x, 1)

}
, (59)

where R00(x, y) denotes one of the radial prolate spheroidal wave functions of the first kind [172],
and introduce the joint coarse-graining parameter Γ = Δδ/(h̄|γ|). We stress that Equation (58) involves
the differential Rényi entropies of the piece-wise continuous distributions defined in Equation (54).

Let us see how the results in [12,24,30–32] can be derived from Equation (58). First, we observe
that the Rényi entropies of rectangular HFs, for every values of α and β, are:

hα[DR
Δ ] = ln Δ and hβ[DR

δ ] = ln δ, (60)

so Equation (58) reduces to:

hα[QΔ,u] + hβ[Qδ,v] ≥ ln
(

πh̄|γ|
εα(Γ/4)

)
. (61)

If we perform the limit Γ/4 → 0 in Equation (61), we have (1/2)R2
00 (Γ/4, 1) → 1/2,

and considering that 1/e < α
1

2−2α β
1

2−2β ≤ 1/2 when 1/2 < α ≤ 1 (see Figure 4) we recover the
Rényi-entropy UR in Equation (24) and when α = 1 the Shannon UR in Equation (20).

Now, we can decompose the differential Rényi entropies in the left hand side of Equation (58) as
(see Appendix A):

hα[QΔ,u] = Hα

[
P(u)

Δ

]
+ hα [DΔ] and hβ[Qδ,v] = Hβ

[
P(v)

δ

]
+ hβ [Dδ] , (62)

where we denote the set of discrete probabilities appearing in Equation (53) as P(u)
Δ := {p(u)

Δ,k} and

P(v)
δ := {p(v)

δ,k }, respectively. Please note that, for pdfs with bounded support, the Rényi entropy is
maximized for the uniform distribution [173], so we always have: hα [DΔ] ≤ ln(Δ) and hβ [Dδ] ≤ ln(δ).
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If we apply the result Equation (62) to the inequality Equation (58) we recover the result proved in
Reference [24] for the discrete entropies:

Hα[P
(u)
Δ ] + Hβ[P

(v)
δ ] ≥ ln

(
π

εα(Γ/4)Γ

)
. (63)
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Figure 4. In panel (a) the full line is the graph of the function f (α) = α
1

2−2α β
1

2−2β , with 0 < α ≤ 1,
and where β(α) = α/(2α− 1) that stems from the condition 1/α + 1/β = 2. The horizontal dashed
line is drawn to indicate the limit limα→1 f (α) = 1/e. In panel (b) we plot the behaviour of g(y) =
(1/2)R00(y, 1) as a function of y := Δδ/(4h̄|γ|). Although g(y) is shown in the range 0 ≤ y ≤ 50, it is
important to note that g(y) is continuous monotonically decreasing function in the positive real axis
such limy→∞ g(y) = 0.

This is the coarse-grained version of the Rényi entropy UR in Equation (24) (Schürmann
conjectured [169] that ε1 (z) defined in (59), in the context of Equation (63) could be replaced
by e−1R2

00 (2z/e, 1)). We shall also emphasize, as the title of this subsection suggests, that the
demonstration of the URs (63) presented in Reference [24] uses explicitly the fact that û and v̂ form a
CCO pair. Therefore, the UR in Equation (58) is, in principle, valid only for CCO pairs, since it can be
obtained from Equation (63) by adding hα [DΔ] + hβ [Dδ] to both sides, and using Equation (62).

The discrete Rényi entropy is always positive, and we have

lim
Γ→+∞

ln
(

π

Γεα(Γ/4)

)
= lim

Γ→+∞
ln

⎛
⎝ π

1
2 ΓR2

00

(
Γ
4 , 1

)
⎞
⎠ = 0, (64)

with the last line being valid because limx→∞(2x/π)R2
00(x, 1) = 1 (Equation (28) in [174] reads:

z
2π R2

00 (z/4, 1) ∼ 1− 2
√

πze−z/2. This result is based on the appropriate asymptotic expansion [175]
valid for z→ ∞). This results show that the coarse-grained UR in Equation (63) is non-trivially satisfied
for an arbitrary (even very large) values of the coarse-graining widths. However, this desired property
is not enjoyed by the UR

Hα[P
(u)
Δ ] + Hβ[P

(v)
δ ] ≥ ln

⎛
⎝ π

α
1

2−2α β
1

2−2β Γ

⎞
⎠ , (65)

first derived in [31]. This UR corresponds to Equation (63) in the coarse-grained regime Γ/4 � 1.79
in which ε1(Γ/4) = 1/e. Obviously, this is not a mere coincidence, as Equation (63) subsumes (65).
This is clearly visible inside the definition of ε which involves the minimum of two different bounds.
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When Γ/4 > 1.79 the lower bound in Equation (65) is negative so this UR is trivially satisfied, since the
discrete entropy is always non-negative.

From the above considerations we can obtain an UR for the variances, σ2
QΔ,u

and σ2
Qδ,v

, if we set
α = 1 in Equation (58) and use the inequality (22):

ln
(

2πeσQΔ,u σQδ,v

)
≥ h[QΔ,u] + h[Qδ,v] ≥ ln

(
πh̄|γ| eh[DΔ ]−ln Δ+h[Dδ ]−ln δ

ε1(Γ/4)

)
, (66)

where h[·] stands for the Shannon entropy. Now, we can use the decompositions:

σ2
QΔ,u

= σ2
P(u)

Δ
+ σ2

DΔ
and σ2

Qδ,v
= σ2

P(v)
δ

+ σ2
Dδ

, (67)

where the variances of the discrete probability distributions were defined in Equation (42), while σ2
DΔ

and σ2
Dδ

, are the variances of the generic HFs. Therefore, applying the above splitting to Equation (66)
we arrive at the lower bound [24]:(

σ2
P(u)

Δ
+ σ2

DΔ

)(
σ2

P(v)
δ

+ σ2
Dδ

)
≥ h̄2γ2

4
e2(h[DΔ ]−ln Δ+h[Dδ ]−ln δ−1)

ε2
1(Γ/4|γ|) . (68)

When the HF are rectangular, and in the coarse-grained regime Γ/(4|γ|) � 1.79 where
ε1(Γ/4|γ|) = 1/e, we recover the UR [32]:

(
σ2

P(u)
Δ

+
Δ2

12

)(
σ2

P(v)
δ

+
δ2

12

)
≥ h̄2γ2

4
, (69)

where we have used the fact that in this case

σ2
DR

Δ
=

Δ2

12
and σ2

DR
δ
=

δ2

12
. (70)

Both Equations (68) and (69) are the coarse-grained versions of the Heisenberg UR in Equation (8).
It is important to emphasize that Equation (69) cannot be obtained by the simple substitution σ2

Pu
→

σ2
P(u)

Δ

and σ2
Pv
→ σ2

P(v)
δ

done inside the Heisenberg UR.

Although both σ2
DΔ

and σ2
Dδ

are the variances of a generic HF, viz. DΔ(u, uk) and Dδ(v, vk) for any
value of k, it is interesting to associate them to the respective central bins, namely those that contain
the mean value of the probability distributions Pu and Pv. By doing this, together choosing the origins
of the coordinates in the middle of the central bin, we can see that the variances σ2

P(u)
Δ

and σ2
P(v)

δ

are free

from contributions associated with the statistics relevant for the central bins. Thus, if the widths of the
coarse graining increase in the measurement of û and v̂, the respective central bin-widths grow, so that
the variances σ2

P(u)
Δ

and σ2
P(v)

δ

only involve contributions from the tails of the probability distributions

QΔ,u and Qδ,v. Therefore, for large coarse grainings, the variances σ2
DΔ

and σ2
Dδ

become more important
in the inequalities Equations (68) and (69). Thus, in the regime when:

Γ ≥ πe⇒ Γ ≥ π

ε1(Γ/4|γ|) ⇒ Γ2 ≥ 1
4

e2(h[DΔ ]+h[Dδ ])

e2σ2
DΔ

σ2
Dδ

ε2
1(Γ/4|γ|) ⇒

⇒ σ2
DΔ

σ2
Dδ
≥ h̄2|γ|2

4
e2(h[DΔ ]−ln Δ+h[Dδ ]−ln δ−1)

ε2
1(Γ/4|γ|) (71)

both Equations (68) and (69) are satisfied trivially. Note, that in Equation (71) we have used the relation
4π2 ≥ e2(h[DΔ ]+h[Dδ ])/e2σ2

DΔ
σ2

Dδ
> 0 which can be obtained from the inequality in Equation (22).
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However, Equation (68) is only the starting point for the second construction, proposed in [24],
that is free from the above limitation, and cannot be trivially satisfied. This improved UR reads:

K

⎛
⎝σ2

P(u)
Δ

Δ2

⎞
⎠K

⎛
⎜⎝σ2

P(v)
δ

δ2

⎞
⎟⎠ ≥ π2

Γ2ε2
1(Γ/4)

, (72)

where K(t) is implicitly defined as

K(t) :=
exp

[
2tM−1(t)

]
erf2

(√M−1(t)/2
) ,

with erf(x) := (2/
√

π)
∫ x

0 e−y2
dy being the error function andM−1(t) denoting the inverse of the

invertible function

M(y) :=
exp(−y/4)

2
√

πy erf(
√

y/2)
.

The idea behind derivation of the coarse-grained UR in Equation (72) is the following. Let us
rewrite Equation (68) in the form:

ξ(h[DΔ], σ2
DΔ

, h[Dδ], σ2
Dδ
) :=

(
σ2

P(u)
Δ

+ σ2
DΔ

)(
σ2

P(v)
δ

+ σ2
Dδ

)
e2(h[DΔ ]+h[Dδ ]−1)

≥ 1
4Γ2ε2

1(Γ/4)
.

Now the function ξ is supposed to be minimized; however, because the Shannon entropy h[DΔ]

(h[Dδ]) is interrelated with (bounded by a function of) the variance σ2
DΔ

(σ2
Dδ

) the minimization needs
to be performed in two steps. For fixed values of the variances σ2

DΔ
and σ2

Dδ
, the function ξ achieves its

minimum when the Shannon entropies h[DΔ] and h[Dδ] are maximized with respect to the functional
form of the HFs, DΔ and Dδ. As already stated, the HFs are constrained by the requirement of
the fixed value for both variance. The form of the HF with maximum Shannon entropy [24] is a
Gaussian with support restricted to the central bin and whose variance is an appropriate function
of σ2

DΔ
(σ2

Dδ
) (for details see [24].) Therefore, for this optimal HF its Shannon entropy h[Dop

Δ ] (h[Dop
δ ])

is only a function of the variance σ2
DΔ

(σ2
Dδ

), thus we have G(σ2
DΔ

, σ2
Dδ
) = ξ(h[Dop

Δ ], σ2
DΔ

, h[Dop
δ ], σ2

Dδ
).

The second step is a direct minimization of G(σ2
DΔ

, σ2
Dδ
), which results in the left hand side product in

Equation (72).
According to the discussion above Equation (71) the coarse-grianed UR in Equation (72) has no

contributions from the statistics corresponding to the central bin. In the limit when Δ, δ→ 0 we recover
the Heisenberg UR in Equation (8) thanks to the identities [24]

lim
Δ→0

Δ2K

⎛
⎝σ2

P(u)
Δ

Δ2

⎞
⎠ = σ2

Pu
lim
y→0

1
M(y)

exp(2yM(y))
erf2 (√y/2

) = 2πeσ2
Pu

. (73)

In the opposite limit of infinite coarse graining, viz Δ, δ→ ∞, we have σ2
P(u)

Δ

, σ2
P(v)

δ

−→ 0 and

=1︷ ︸︸ ︷
lim

σ2

P(u)Δ

→0
K

⎛
⎝σ2

P(u)
Δ

Δ2

⎞
⎠

=1︷ ︸︸ ︷
lim

σ2

P(v)
δ

→0
K

⎛
⎜⎝σ2

P(v)
δ

δ2

⎞
⎟⎠ ≥

=1︷ ︸︸ ︷
lim

Γ→∞

π2

Γ2ε2
1(Γ/4)

. (74)
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It is important to note that since
π2

Γ2ε2
1(Γ/4)

> 1, (75)

whenever both Δ and δ are finite, it is forbidden to set σ2
P(u)

Δ

and σ2
P(v)

δ

as simultaneously equal to

zero, as it would contradict the coarse-grained UR (72). This means that any quantum state (pure or
mixed) cannot be localised in both observables û and v̂ that are CCOs. In other words, the associated
probability distributions cannot simultaneously have compact support.

This remarkable conclusion somehow threatens the scientific program to recover classical
mechanics solely from coarse-grained averaging, physically originating from the finite-precision
of the observations [19,176,177]. Indeed, quantum features can be observed in the measurement of û
and v̂ irrespective of the precision of the detectors. However, for very large coarse-graining widths
the variances σ2

P(u)
Δ

and σ2
P(v)

δ

are dominated by the contributions from the tails of the P(u)
Δ and P(v)

δ .

Thus, as these probabilities are likely very small, they would be particularly susceptible to statistical
fluctuations and it would in general require very long acquisition times to collect the sufficient amount
of data necessary to verify the UR (72) in the regime of extremely large coarse graining.

5.2. URs Valid for General Observables, û and v̂, Defined in Equation (3)

If we let α = 1 in Equation (58), use rectangular HFs such that Equation (60) is valid and restrict
the size of the involved bins such that ε1(Γ/4|γ|) = 1/e—this is the regime of the coarse graining
when Γ/4 � 1.79—we obtain the simplified coarse-grained UR of the form:

h[QΔ,u] + h[Qδ,v] ≥ ln (πeh̄|γ|) . (76)

Because the coarse-grained UR in Equation (58) was derived only for CCOs, û and v̂, a priori
it is not clear why the above UR could remain valid also for generalized observables defined in
Equation (3). This fact, however, can be proved with the help of the Shannon-entropy UR (20), that has
properly been extended to the desired observables, and the inequalities:

h[QΔ,u] ≥ h[Pu] and h[Qδ,v] ≥ h[Pv], (77)

whose detailed derivation based on the Jensen inequality is relegated to Appendix B. Passing to the
discrete entropies we find the coarse-grained UR:

H[P(u)
Δ ] + H[P(v)

δ ] ≥ ln
(πe

Γ

)
, (78)

which looks the same as the one derived in [30] for CCOs. Here, the validity of this UR has been
extended for any observables û and v̂ as defined in Equation (3). Also, following the same arguments
that lead from Equation (66) to the UR in Equation (69) we can see that the UR for the discrete variances
is also valid for general û and v̂ as defined in Equation (3).

To briefly summarize, entropic uncertainty relations for coarse-grained probability distributions
were almost only considered for position and momentum variables. As far as we know, the only
exceptions are given in References [58,65]. However, as we have shown here, the generalization of
entropic URs for differential probabilities associated with general observables û and v̂, which are linear
combinations of position and momentum, can be done in many cases. However, in each case a careful
analysis should be carried out to verify that the related coarse-grained URs are also valid for these
generalised operators. Here, we have done this only in the simple cases.
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5.3. Coarse-Grained URs Merged with the Majorization Approach

In [174] the coarse-grained scenario has been discussed with the help of the results obtained
in [156,157,159], namely the majorization-based approach to quantification of uncertainty. To say it
briefly, a majorization relation x ≺ y between two arbitrary d-dimensional probability distributions
means that for every n ≤ d the inequality ∑n

k=1 x↓k ≤ ∑n
k=1 y↓k holds, with an equality (normalization)

for n = d. Traditionally, by “↓” we denote the decreasing order, so that
(

x↓
)

k ≥
(
x↓
)

l , for all k ≤ l.
The Rényi entropy (and also others, such as the Tsallis entropy) is Schur-concave, which implies
Hα [x] ≥ Hα [y] whenever x ≺ y.

In the context of coarse-grained probability distributions it was conceptually simpler to consider
the so-called direct-sum majorization introduced in [159]. An advantage of the majorization approach
is that it covers a regime of (α, β) parameters, β = α to be precise, which in some way is perpendicular
to the conjugate choice 1/α+ 1/β = 2. In [174] an infinite hierarchy of majorization vectors, depending
on a single parameter Γ = Δδ/h̄, has been derived. The discussion is conducted for CCOs, thus one can
easily recognize the dimensionless Γ parameter as those which appears in all previous URs with γ = 1.

The main result, namely a family of lower bounds denoted as R(n)
α (Δδ/h̄) for n = 2, . . . , ∞,

has been presented in Equation (27) from [174], however, we refrain from providing its detailed
construction here. It seems enough to say that the bound in question is a function of R2

00 (j0Γ/4, 1)
with j0 being certain positive integers. In other words, in spirit, the majorization bound is close to
that derived in [24] and extensively discussed above. A comparison of the new bound and (63) for
α = 1 = β—the only value of both parameters for which the involved bounds describe the same
situation—-showed thatR(3)

1 outperforms (63) in the regime when the R00-term does contribute to ε1.
Asymptotic behavior of the new and previous coarse-grained bounds shows that for α = 1 = β

and large Γ, allR(n)
1 bounds improve (63) by a divergent factor Γ/4. Moreover, the typical behavior of

discrete majorization bounds has been confirmed in the coarse-grained setting. In the discrete case,
the majorization relations almost surely dominate the MU bound, with an exception being a small
neighborhood of the point for which the unitary matrix U is the Fourier matrix. The analog of the
Fourier matrix in the coarse-grained scenario is the continuous limit Γ→ 0. This probably intuitive fact
has been rigorously shown by means of the asymptotics ofR(∞)

1 for small Γ, which is equal to − 1
2 ln Γ.

5.4. Other Coarse-Grained URs

At the very end of this long section we would like to touch on a few coarse-grained URs which go
beyond the standard position-momentum conjugate pair. First of all, Bialynicki-Birula also provided
his major Shannon entropy UR in the case of angle and angular momentum [30], as well as (together
with Madajczyk) to the variables on the sphere [178]. Coarse graining in these physical settings is only
relevant for the periodic CVs (angle on a circle and two angles on a sphere), as the conjugate variables
are discrete (though infinite dimensional).

Also, the coarse-grained scenario has been developed [179] in relation to the memory-assisted
UR [180] relevant for quantum key distribution. The result, even though non-trivial, differs from
Equation (63) in a similar fashion as the MU bound differs from the UR in the presence of quantum
memory by Berta et al [180].

Going in a completely different direction, Rastegin [181] in his recent contribution proposed
an extension of (65) to the case of a modified CCR, which assumes the form [x̂, p̂] = ih̄(1 + β p̂2).
The parameter β is related to the so-called minimal length predicted by certain variants of string
theory and similar approaches (not to be confused with β playing the role of a conjugate parameter in
the MU bound and similar URs for the Rényi entropies).

Last but not least, some of us have very recently derived an inequality (see Equations 9–12
from [182]), which could be understood as an UR (valid for CCOs) in the setting relevant for periodic
coarse graining discussed in Section 4.1.2. As this UR involves additional averaging of p(x)

k (ρ̂) and

166



Entropy 2018, 20, 454

p(p)
l (ρ̂) defined below Equation (47) with respect to the positioning degrees of freedom, we do not

provide further details of this construction encouraging the interested reader to consult [182].

6. Applications of Coarse-Grained Measurements and Coarse-Grained Uncertainty Relations

As discussed above, when detecting the position and momentum of particles such as photons or
individual atoms, coarse-grained measurements are not just necessary but can be much more practical.
In this regard, URs that deal with coarse-grained measurements can be useful for several applications,
such as those discussed in Section 3.

Section 3 discussed the use of URs along with the PPT arguement for the convenient detection
of quantum entanglement in continous variable quantum systems. However, sufficient care must be
taken in regards to coarse-grained measurements. The pitfalls of applying the usual entanglement
criteria for continuous variables to coarse-grained measurements was discussed in Reference [26],
where it was argued that this can lead to false-positive identifications of entanglement, such that the
entanglement criteria based on uncertainty relations discussed in Section 3 can be (falsely) violated even
for separable states. For a simple illustration of this, consider the most trivial example of a separable
continuous variable state, the two-mode vacuum state [10]. Even though the state is separable,
improper application of entanglement criteria without correctly taking account of coarse graining can
lead to erroneous results. A demonstration of this is shown in Figure 5. We consider the results from
coarse grained measurements, and apply entanglement criteria based on an ideal continuous variable
UR and its coarse-grained version. The red circles show a variance-based entanglement criteria based
on the variance product UR Equation (8), using the global operators defined in Equations (29) and (30),
as developed in Reference [99]. Here we have subtracted the lower bound from the product of
variances, so that a negative value indicates entanglement. As can be seen, when the coarse graining
is large, one would erroneously conclude that the quantum state is entangled. On the other hand,
the coarse-grained variance product UR (69) applied to the global operators (29) and (30) never
indicates that the state is entangled, as indicated by the blue squares in Figure 5. Similar results hold
for other UR-based entanglement criteria.

To show how coarse-grained data should be properly handled to identify entanglement,
an experimental study was performed in a system of spatially-entangled photons [26]. In particular,
the same variance criteria based on (69) was tested for the global operators defined in
Equations (29) and (30), in which case entanglement was identified for a wide range of coarse-graining
widths. It was also shown that coarse-grained entropic entanglement criteria, for example based
on inequality Equation (58) (α = β = 1) applied to operators (29) and (30), can be superior to
coarse-grained variance-based criteria, identifying entanglement when variance criteria do not,
even for the case of Gaussian states. This is due to the fact that the coarse-grained probability
distributions functions such as those shown in Figure 2 are not Gaussian functions, even when the
quantum state under investigation is Gaussian.

An advantage of coarse-graining is that the measurement time can be drastically reduced.
In Reference [86] EPR-steering was tested for discrete distributions of measurements made
from standardized binning on the two-photon state produced from spontaneous parametric
down-conversion, using a coarse-grained version of the EPR-steering criteria of Reference [85].
Bi-dimensional steering was observed for sample sizes ranging from 8× 8 to 24× 24, representing
a considerable reduction in measurement overhead when compared with the quasi-continuous
measurements reported in Reference [85], which sampled about 100 data points per cartesian direction
(about 104 total measurements) to evaluate entropic EPR-steering criteria of continuous variables.

Standard coarse graining has been studied in the context of quantum state reconstruction of single
and two-mode Gaussian states, and the quantum to classical transition [183]. Two scenarios were
considered: direct reconstruction of the covariance matrix alone, and full reconstruction of the state
using maximum likelihood estimation. The reconstructed coarse-grained functions were compared to
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those of Gaussian states subject to thermal squeezed reservoirs, indicating that in this context coarse
graining does not produce a thermalized (decohered) Gaussian state.

/ Pu
, / Pv

C
rit

er
ia

entanglement “identified”

Figure 5. Numerical results testing entanglement criteria for the two-mode vacuum state, a separable
pure state. The entanglement criteria are based on URs following the PPT argument outlined in
Section 3. The criteria are evaluated as a function of the bin widths Δ = δ, which are given in
units of the standard deviations σPu and σPv . We note that σPu = σPv for the two-mode vacuum state.
The red circles show the variance product UR Equation (8), where we apply the naive approach
in which the variances of the continous variables are calculated from the discretized data using
Equation (42). One can see that in this case we obtain a false-positive for entanglement when the
coarse-graining widths are large. The blue squares show the coarse-grained variance product UR
Equation (69), both applied to the global operators Equations (29) and (30). Here the lower bounds for
both inequalities have been subtracted, so that a negative value indicates entanglement. The lines are
merely guides for the eye.

The work mentioned above considered standard coarse graining, as described in Section 4.1.
In some cases it is interesting to consider different models, such as that of periodic coarse graining
described in Section 4.1.2. The mutual unbiasedness of periodic coarse graining described in Section 4.2
has been tested experimentally for two [142] and even three [143] phase-space directions. It was shown
that mutual unbiasedness appears when the appropriate bin widths of the two or three conjugate
variables are chosen. Periodic coarse graining has also been used in the detection of spatial correlations
of photon pairs from SPDC [182]. Using a novel entanglement criteria based on the UR for characteristic
functions [153], it was possible to identify entanglement with as few as 2× 2 measurements in position
and momentum (8 total), representing a considerable reduction in measurement overhead.

Simple binary binning of homodyne measurements has been proposed as a means to test
dichotomic Bell’s inequalities in CV systems, while allowing for high detection efficency [184–187].
Other types of non-standard coarse graining have been proposed as a means to violate Bell’s inequality
using homodyne measurements on non-Gaussian states [188]. Though it was shown that one could
achieve maximal violation in principle, exotic non-Gaussian states are required. In Reference [27] it
was shown that imperfect binning could result in false violations of Bell’s inequalities, and even in
violations of Cirelson’s bound for quantum Bell correlations.

A closely related subject to periodic coarse graining of CVs is that of the so called modular
variables [189–191], for which phase-space variables u are rewritten as u = nu�+ ū, where nu is the
integer component and ū the modular component, such that 0 ≤ ū < �. Here � is a scaling parameter
of appropriate dimension. For two CCOs, such as x̂ and p̂ for example, the integer operator of one
observable-say-n̂x and the modular operator of the other observable- ˆ̄p satisfy URs that closely resemble
those of the angle and angular momentum variables [30]. The modular variable construction was first
introduced by Aharanov et al. [138,189] as a method to identify non-locality in quantum mechanics.
Since then, several interesting applications have been developed. Variance-based URs for the modular
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variable construction were proposed as a method to identify a novel type of squeezing, as well
as entanglement in pairs of atoms [192]. This entanglement criteria was used in References [193],
along with one based on entropic uncertainty relations, to identify spatial entanglement of photon
pairs that have passed through multiple slit apertures. Application to multiple-photon states was
studied in Reference [194]. It is worth noting that in this case the usual CV entanglement criteria
as discussed in Section 3 are incapable of detecting entanglement. Modular variables have been
proposed as a way to test for the Greenberger-Horne-Zeilinger paradox in CV systems [195], as well as
quantum contextuality [196–198] and as a method to construct algebras resembling that of discrete
systems [190,191,199].

Finally, we briefly mention that URs play an important role in the attempt to unify quantum
theory with general relativity. In this case, the Heisenberg uncertainty principle is modified to
become a generalized uncertainty principle, taking into account Planck scale effects, which impose
coarse-graining that is a fundamental part of nature, leading to minimum and maximum length
quantum mechanics. An extensive amount of literature exists on the subject, for two recent reviews,
see References [200,201].

7. Conclusions

Uncertainty relations play an important role in quantum physics, which is two-fold: on the one
hand they have historically represented the difference between classical and quantum physics, while on
the other hand they are a tool that can be used to identify and even quantify interesting quantum
properties. Beginning with the seminal work of Heisenberg in 1927, several uncertainty relations have
been developed for continuous variable quantum systems. However, in a realistic experimental setting,
one never has access to the infinite dimensional spectrum associated to these observables. Thus, coarse
graining is imposed by the detection apparatus to account for the measurement precision and range.

Here we have provided a review of several quantum mechanical uncertainty relations tailored
specifically to coarse-grained measurement of continuous quantum observables. Our aim was to
survey the state-of-the-art of the subject, from both the theoretical advances to experimental application
of coarse-grained uncertainty relations. We also extend the validity of some of the coarse-grained
URs, already in the literature, to general linear combinations of canonical observables in n-mode
bosonic systems.

Several interesting open questions remain. First, it would be interesting to see the generalization
of all the coarse-grained URs presented here for pairs of observables that are connected by general
unitary metaplectic transformations. Second, one can consider applying coarse graining to URs not
mentioned explicitely here, such as the triple variance product criteria [120,150], UR for characteristic
functions [153], among others, as well the plethora of moment inequalities arising from tests for
non-classicality [68,72] and entanglement [117,118,121]. Third, and more important, a deep discussion
of the role of coarse-grained URs within the scientific program to recover classical mechanics
solely from coarse-grained averaging should be developed. We hope that this review encourage
this discussion.

Author Contributions: All authors contributed equally to this work.

Acknowledgments: The authors acknowledge financial support from the Brazilian Funding Agencies CNPq,
CAPES (PROCAD2013 project) and FAPERJ, and the National Institute of Science and Technology—Quantum
Information. Ł.R. acknowledges financial support by Grant number 2015/18/A/ST2/00274 of the National
Science Center, Poland.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, and in the
decision to publish the results.

169



Entropy 2018, 20, 454

Abbreviations

The following abbreviations are used in this manuscript:

CV Continuous variable
UR Uncertainty relation
QIT Quantum information theory
CCR Canonical commutation relation
CCO Canonically conjugate operators
pdf probability distribution function
EPR Einstein-Podolsky-Rosen
PPT Positive partial transposition
PCG Periodic coarse graining
MU Maassen-Uffink
HF Histogram function

Appendix A

Following [24] we aim to prove the decomposition in Equation (62). To this end it is enough to
discuss the case of û since the proof for v̂ looks the same. We can write:

hα[QΔ,u] =
1

1− α
ln
(∫ ∞

−∞
du [QΔ,u(u)]α

)
=

1
1− α

ln

(
∑

k∈Zk

∫
Rk

du [QΔ,u(u)]α
)

=
1

1− α
ln

(
∑

k∈Zk

[
p(u)Δ,k

]α
∫
Rk

du [DΔ(u, uk)]
α

)
, (A1)

where we use the fact that the function QΔ,u(u) in the interval Rk is equal to p(u)
Δ,k DΔ(u, uk). Now,

because the shape of the HF, DΔ(u, uk), is the same for all values of k, the integral
∫
Rk

du [DΔ(u, uk)]
α

does not depend on k. Therefore, we can write:

hα[QΔ,u] =
1

1− α
ln

(
∑

k∈Zk

[
p(u)Δ,k

]α
)
+

1
1− α

ln
(∫
Rk

du [DΔ(u, uk)]
α

)
, (A2)

that corresponds to the decomposition in Equation (62).

Appendix B

Here, we prove the inequalities in Equation (77). As before, is enough to consider the single case
relevant for the variable u. In the next few lines, we actually closely follow the treatment presented
in [12]. First we define the mean value within the kth histogram bin:

〈. . .〉k :=
1
Δ

∫ (k+1/2)Δ

(k−1/2)Δ
. . . du. (A3)

Then, because the function f (x) = x ln(x) is convex we can apply Jensen’s inequality [60]
to obtain,

〈Pu ln Pu〉k ≥ 〈Pu〉k ln〈Pu〉k. (A4)

Now we can use the definition in Equation (53), multiply both sides by −1 and sum over k ∈ Zk:

− ∑
k∈Zk

p(u)
Δ,k ln p(u)

Δ,k +

(
∑

k∈Zk

p(u)
Δ,k

)
ln(Δ) ≥ − ∑

k∈Zk

∫ (k+1/2)Δ

(k−1/2)Δ
Pu(u) ln Pu(u) du. (A5)
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After using the condition in Equation (36), the definition of the discrete Shannon entropy
H[P(u)

Δ ] := −∑k∈Zk
p(u)

Δ,k ln p(u)
Δ,k, the decomposition in Equation (62) with α = 1 and h[DR

Δ ] = ln Δ,
and the definition of the differential Shannon entropy in Equation (21) we obtain:

h[QΔ,u] := H[P(u)
Δ ] + ln Δ ≥ h[Pu], (A6)

which is the desired result.
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163. Puchała, Z.; Łukasz Rudnicki.; Krawiec, A.; Życzkowski, K. Majorization uncertainty relations for mixed
quantum states. J. Phys. A Math. Theor. 2018, 51, 175306. [CrossRef]

164. Brandão, F.; Horodecki, M.; Ng, N.; Oppenheim, J.; Wehner, S. The second laws of quantum thermodynamics.
Proc. Natl. Acad. Sci. USA 2015, 112, 3275–3279. [CrossRef] [PubMed]

165. Partovi, M.H. Entropic Formulation of Uncertainty for Quantum Measurements. Phys. Rev. Lett. 1983,
50, 1883–1885. [CrossRef]

166. Rudnicki, Ł. Shannon entropy as a measure of uncertainty in positions and momenta. J. Russ. Laser Res.
2011, 32, 393.

167. Partovi, M.H. Majorization formulation of uncertainty in quantum mechanics. Phys. Rev. A 2011, 84, 052117.
[CrossRef]

168. Schürmann, T.; Hoffmann, I. A Closer Look at the Uncertainty Relation of Position and Momentum.
Found. Phys. 2009, 39, 958–963. [CrossRef]

169. Schürmann, T. A note on entropic uncertainty relations of position and momentum. J. Russ. Laser Res. 2012,
33, 52–54. [CrossRef]

170. Wilk, G.; Włodarczyk, Z. Uncertainty relations in terms of the Tsallis entropy. Phys. Rev. A 2009, 79, 062108.
[CrossRef]

171. Bialynicki-Birula, I.; Rudnicki, L. Comment on “Uncertainty relations in terms of the Tsallis entropy”.
Phys. Rev. A 2010, 81, 026101. [CrossRef]

172. Abramowitz, M.; Stegun, I. Handbook of Mathematical Functions; Dover: New York, NY, USA, 1964.
173. Lassance, N. Optimal RRnyi Entropy Portfolios. SSRN Electron. J. 2017, 1–15. [CrossRef]
174. Rudnicki, L. Majorization approach to entropic uncertainty relations for coarse-grained observables.

Phys. Rev. A 2015, 91, 032123. [CrossRef]
175. Fuchs, W. On the eigenvalues of an integral equation arising in the theory of band-limited signals. J. Math.

Anal. Appl. 1964, 9, 317–330. [CrossRef]
176. Ballentine, L. Quantum Mechanics: A Modern Development; World Scientific: Singapore, 1998.
177. Kofler, J.; Brukner, Č. A Coarse-Grained Schrödinger Cat; IOS Press: Amsterdam, The Netherlands, 2007.
178. Bialynicki-Birula, I.; Madajczyk, J. Entropic uncertainty relations for angular distributions. Phys. Lett. A

1985, 108, 384–386. [CrossRef]
179. Furrer, F.; Berta, M.; Tomamichel, M.; Scholz, V.B.; Christandl, M. Position-momentum uncertainty relations

in the presence of quantum memory. J. Math. Phys. 2014, 55, 122205. [CrossRef]
180. Berta, M.; Matthias Christandl and, R.C.; Renes, J.M.; Renner, R. The uncertainty principle in the presence of

quantum memory. Nat. Phys. 2010, 6, 659. [CrossRef]
181. Rastegin, A.E. On entropic uncertainty relations in the presence of a minimal length. Ann. Phys. 2017,

382, 170–180. [CrossRef]
182. Tasca, D.S.; Rudnicki, L.; Aspden, R.S.; Padgett, M.J.; Souto Ribeiro, P.H.; Walborn, S.P. Testing for

entanglement with periodic coarse graining. Phys. Rev. A 2018, 97, 042312. [CrossRef]
183. Park, J.; Ji, S.W.; Lee, J.; Nha, H. Gaussian states under coarse-grained continuous variable measurements.

Phys. Rev. A 2014, 89, 042102. [CrossRef]
184. Gilchrist, A.; Deuar, P.; Reid, M.D. Contradiction of Quantum Mechanics with Local Hidden Variables for

Quadrature Phase Amplitude Measurements. Phys. Rev. Lett. 1998, 80, 3169–3172. [CrossRef]
185. Gilchrist, A.; Deuar, P.; Reid, M.D. Contradiction of quantum mechanics with local hidden variables

for quadrature phase measurements on pair-coherent states and squeezed macroscopic superpositions of
coherent states. Phys. Rev. A 1999, 60, 4259–4271. [CrossRef]

186. Munro, W.J. Optimal states for Bell-inequality violations using quadrature-phase homodyne measurements.
Phys. Rev. A 1999, 59, 4197–4201. [CrossRef]

177



Entropy 2018, 20, 454

187. García-Patrón, R.; Fiurášek, J.; Cerf, N.J.; Wenger, J.; Tualle-Brouri, R.; Grangier, P. Proposal for a
Loophole-Free Bell Test Using Homodyne Detection. Phys. Rev. Lett. 2004, 93, 130409. [CrossRef]
[PubMed]

188. Wenger, J.; Hafezi, M.; Grosshans, F.; Tualle-Brouri, R.; Grangier, P. Maximal violation of Bell inequalities
using continuous-variable measurements. Phys. Rev. A 2003, 67, 012105. [CrossRef]

189. Aharanov, Y.; Rohrlich, D. Quantum Paradoxes; Wiley: Berlin, Germany, 2005.
190. Vernaz-Gris, P.; Ketterer, A.; Keller, A.; Walborn, S.P.; Coudreau, T.; Milman, P. Continuous discretization of

infinite-dimensional Hilbert spaces. Phys. Rev. A 2014, 89, 052311. [CrossRef]
191. Ketterer, A.; Keller, A.; Walborn, S.P.; Coudreau, T.; Milman, P. Quantum information processing in phase

space: A modular variables approach. Phys. Rev. A 2016, 94, 022325. [CrossRef]
192. Gneiting, C.; Hornberger, K. Detecting Entanglement in Spatial Interference. Phys. Rev. Lett. 2011,

106, 210501. [CrossRef] [PubMed]
193. Carvalho, M.A.D.; Ferraz, J.; Borges, G.F.; de Assis, P.L.; Pádua, S.; Walborn, S.P. Experimental observation

of quantum correlations in modular variables. Phys. Rev. A 2012, 86, 032332. [CrossRef]
194. Barros, M.R.; Farías, O.J.; Keller, A.; Coudreau, T.; Milman, P.; Walborn, S.P. Detecting multipartite spatial

entanglement with modular variables. Phys. Rev. A 2015, 92, 022308. [CrossRef]
195. Massar, S.; Pironio, S. Greenberger-Horne-Zeilinger paradox for continuous variables. Phys. Rev. A 2001,

64, 062108. [CrossRef]
196. Plastino, A.R.; Cabello, A. State-independent quantum contextuality for continuous variables. Phys. Rev. A

2010, 82, 022114. [CrossRef]
197. Asadian, A.; Budroni, C.; Steinhoff, F.E.S.; Rabl, P.; Gühne, O. Contextuality in phase space. arXiv 2015,

arXiv:1502.05799.
198. Laversanne-Finot, A.; Ketterer, A.; Barros, M.R.; Walborn, S.P.; Coudreau, T.; Keller, A.; Milman, P. General

conditions for maximal violation of non-contextuality in discrete and continuous variables. J. Phys. A
Math. Theor. 2017, 50, 155304. [CrossRef]

199. Asadian, A.; Erker, P.; Huber, M.; Klöckl, C. Heisenberg-Weyl Observables: Bloch vectors in phase space.
Phys. Rev. A 2016, 94, 010301. [CrossRef]

200. Chang, L.N.; Lewis, Z.; Minic, D.; Takeuchi, T. On the Minimal Length Uncertainty Relation and the
Foundations of String Theory. Adv. High Energy Phys. 2011, 2011, 493514. [CrossRef]

201. Tawfik, A.N.; Diab, A.M. Review on Generalized Uncertainty Principle. Rep. Prog. Phys. 2015, 78, 126001.
[CrossRef] [PubMed]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

178



MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Entropy Editorial Office
E-mail: entropy@mdpi.com

www.mdpi.com/journal/entropy





MDPI  
St. Alban-Anlage 66 
4052 Basel 
Switzerland

Tel: +41 61 683 77 34 
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-03897-755-1


	Blank Page

