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1. Motivation for the Special Issue

The application of microwave technologies in medical imaging and diagnostics is an emerging
topic within the electromagnetic (EM) engineering community. Technological developments in this
area have been accelerated by advances in antenna design and fabrication, computational methods,
imaging theory and algorithms, as well as measurement techniques. Parallel to these developments,
advancements in telecommunication industries have increased the capabilities and driven down the
cost and form factor of microwave equipment. These important developments are paving the way
for a new generation of low-cost, portable, and accurate microwave sensing/imaging systems, which
could tackle various current challenges in medical diagnostics.

Microwave medical imaging exploits the possibility of a significant dielectric contrast between
healthy and disease-affected tissues to detect a pathological condition. Arguably, breast cancer detection
has been the most popular microwave medical imaging application in the last twenty years [1]; many
techniques and systems have now advanced to clinical prototypes while also focusing on reducing cost
using custom-made electronics [2]. Several research groups have also been investigating the possibility
of using microwave imaging for various aspects of stroke treatment [3], including start-up companies
built around this idea [4]. A number of review articles, such as [5], have presented the challenges and
opportunities of these and other microwave imaging (as well as sensing) applications. In microwave
sensing, the objective is not to produce diagnostic images of the body but, rather, to use microwave
technology to monitor physiological parameters such as heart-rate [6], or disease-related biomarkers,
such as glucose, in the blood [7]. These are just a few examples of what is becoming a very broad area
of research, and we hope that this special issue can introduce this area to a new audience engaged in
more traditional medical diagnostics.

2. Overview of Contributions

These eleven manuscripts cover many different topics and applications, ranging from reviews of
the current state of the art to tools for their development, or techniques to tackle specific issues.
In [8], for example, Joachimowicz et al. present novel experimental breast and head phantoms,
fabricated from 3D-printed structures, which can be very useful for researchers worldwide who
want to test their microwave algorithms and prototypes. An example of such an effort is presented in
this issue by Rydholm et al. [9], who argue that the high plastic content of 3D-printed materials can
introduce additional challenges for microwave tomography reconstructions. Challenges in microwave
tomogaphy are also the topic of [10], which discusses the impact of measurement errors and how it
can be minimised through a data selection technique prior to inversion.

Diagnostics 2019, 9, 19; doi:10.3390/diagnostics9010019 www.mdpi.com/journal/diagnostics1
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Microwave tomography is also studied in [11] as a means to monitor thermal ablation,
with promising experimental results suggesting that this shows promise as a new medical application
where microwave technology can play an important role. A potential therapy application based on
microwave technology is also considered in [12], which presents a microwave-based snare inserted
into an endoscope, with promising results in simulations and heating experiments of the prototype
device. Another interesting application of microwaves in medical diagnostics is presented in [13],
which proposes radar technology as means of detecting stress and assessing well-being in a trial with
thirty-five healthy volunteers.

One of the most popular medical applications investigated by microwave researchers is breast
cancer detection, and this special issue includes three papers on this topic. First, Oliveira et al. present
an interesting overview of applying machine learning algorithms as a way to distinguish between
benign and malignant tumours, using ultra-wideband (UWB) radar data [14]. UWB imaging is also
presented in [15], which succeeds in comparing breast images obtained from patients using UWB radar
with X-ray mammography. Promising experimental results are also obtained by the UWB imaging
system presented in [16], which assesses the ability of the current prototype to detect tumor-like targets
in anatomically complex breast phantoms.

The special issue also includes two review papers, which discuss recent advances and remaining
challenges in two important areas of medical-related microwave research. In particular, La Gioia et al.
provide a very detailed review of dielectric measurement approaches and results for biological tissues
using the open-ended coaxial probe technique [17]. Finally, Yilmaz et al. [18] review recent efforts in
the microwave research community to tackle the “holy grail” challenge in diabetes research; that is,
non-invasive glucose monitoring.

In summary, this ensemble of articles constitutes a diverse account of current trends and challenges
in microwave medical applications. We hope that the readers will find these articles informative and
useful, whether their interest lies in algorithms, measurements, or in specific clinical applications.
We are also very pleased to see almost all of these papers presenting experimental or clinical results,
which suggests that the proposed techniques and applications are being actively pursued through
working prototypes. Finally, we are thankful to all the authors for their high-quality contributions,
which made the editing of this special issue a thoroughly enjoyable and interesting task.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: This paper deals with breast and head phantoms fabricated from 3D-printed structures
and liquid mixtures whose complex permittivities are close to that of the biological tissues within
a large frequency band. The goal is to enable an easy and safe manufacturing of stable-in-time
detailed anthropomorphic phantoms dedicated to the test of microwave imaging systems to assess
the performances of the latter in realistic configurations before a possible clinical application to breast
cancer imaging or brain stroke monitoring. The structure of the breast phantom has already been used
by several laboratories to test their measurement systems in the framework of the COST (European
Cooperation in Science and Technology) Action TD1301-MiMed. As for the tissue mimicking liquid
mixtures, they are based upon Triton X-100 and salted water. It has been proven that such mixtures can
dielectrically mimic the various breast tissues. It is shown herein that they can also accurately mimic
most of the head tissues and that, given a binary fluid mixture model, the respective concentrations
of the various constituents needed to mimic a particular tissue can be predetermined by means of a
standard minimization method.

Keywords: microwave imaging; breast cancer detection; brain stroke monitoring; dielectric
characterization; UWB breast and head phantoms

1. Introduction

Due their non-ionizing nature and to the low cost and portability of the equipment,
microwaves arouse a keen interest for biomedical applications. Furthermore, several studies have
shown that, at these frequencies, the various human biological tissues show significant differences
in their dielectric properties [1]. This is the reason why, at the present time, a lot of work is devoted
to biomedical microwave imaging, more specifically for breast cancer detection and brain stroke
monitoring. It can be noted that in these last two applications, the interest of microwave imaging
lies in the dielectric contrast which may exist between normal healthy tissues and malignant [2] or
stroke-affected [3] ones and, in turn, the magnitude of this contrast depends upon the nature of the
disease, i.e., ischemic or hemorrhagic for the stroke and located in fat or in fibroconnective-glandular
tissues for the breast tumor. For the latter case, contrasts as high as 10:1 are reported in Reference [2]
between malignant and healthy adipose breast tissues; however, those that can be found between
tumors and normal fibroconnective–glandular tissues are less than 10%, which renders the detection
of such tumors with microwave imaging challenging.

Diagnostics 2018, 8, 85; doi:10.3390/diagnostics8040085 www.mdpi.com/journal/diagnostics4
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Although microwave imaging is still an emerging technique that is not yet recognized as
an alternative to magnetic resonance imaging (MRI) or X-ray computerized tomography (CT),
several microwave imaging systems dedicated to breast tumor detection [4–8] (see Reference [9]
for a comprehensive comparison of the various systems that concern this application) and brain stroke
monitoring [10–13] are already at the clinical trial level.

However, before such a trial, the imaging systems need to be tested on reference anthropomorphic
phantoms in order to assess and compare their performances in controlled realistic configurations.
These reference phantoms should satisfy several requirements: Particularly, their structure must
be close to that of the targeted human body part (breast or head), the dielectric properties of their
constitutive materials must be close to that of the various biological tissues of the abovementioned part,
and finally, their shape and dielectric properties must be stable over time in order that the phantom
can be used as a benchmark.

One of the main difficulties encountered when looking for a tissue mimicking material (TMM) is
the large dispersivity of soft tissue dielectric properties in the microwave frequency range. Thus, a lot
of mixtures have been considered as TMMs [14], among which jelly mixtures based upon oil-in-gelatin
dispersions [15–18] or upon water–agar or water–gelatin blends [19] and gel substances based upon
water–polythene powder-TX-151 mixtures [20] are certainly among the most promising materials,
as, in addition to accurately simulating the dispersive dielectric properties of the various human
tissues in a large frequency range, they are relatively easy to produce and their mechanical properties
allow the construction of anthropomorphic phantoms. Hence, the abovementioned mixtures fulfill
the first two requirements outlined in the previous paragraph; however, they fail in satisfying the
last one. Indeed, the dielectric and mechanical properties of phantoms based upon these TMMs
are unstable over time. This is due either to evaporation or diffusion phenomena between layers of
different gelatin concentrations [15] for the water–gelatin-based mixtures or to interaction with air
if they are not very carefully shielded from the environment for the oil-in-gelatin dispersions [21,22].
Furthermore, with these materials, it is not always easy to avoid air bubbles getting trapped in
the mixtures without specific equipments. If such bubbles are present, they would behave as small
high-contrasted diffractors, which would greatly perturb the electromagnetic field within the phantom.
Solid TMMs do not present these drawbacks; however, phantoms made of such materials [23] are not
reconfigurable as solid TMMs are not adjustable in order to account for changes linked, for example,
to the appearance of a tumor or of a stroke. By contrast, liquid mixtures allow us to avoid air bubbles
and stability problems and they are adjustable, as they can easily be replaced.

Fluid TMMs based upon mixtures of Triton X-100 (TX-100, a non-ionic surfactant) and water
have already been used to mimic the various breast tissues [24,25]; however, they cannot account for
the high conductivity of many tissues at high frequencies. We have shown that adding salt to these
mixtures allows us to get both permittivity and conductivity close to that of the various breast tissues
over the 0.5–6 GHz range [22]. It is shown herein that, in fact, these mixtures are also good TMMs for
head tissues. Furthermore, the respective concentrations of the various constituents needed to mimic
a given tissue can be approximately deduced from a binary fluid mixture model involving TX-100
and salted water. In Reference [22], the dielectric properties of such mixtures were also shown to be
stable over time periods as long as 1 year. Such a time stability is obtained by taking the precaution of
extracting the TMMs from the phantom rigid structure required to contain and separate the TMMs
that correspond to the different tissues, and to keep them away from light in sealed containers to
avoid evaporation.

Concerning the phantom’s rigid structure, recent progress in additive manufacturing now
allows us to build up relatively easily reproducible 3D-printed complex structures from STL
(stereolithography) files that describe their surfaces. For anthropomorphic structures, these STL files
can be obtained from MRI or X-ray CT scans. Finally, one further advantage of 3D-printed phantoms is
that the STL file can also be used to perform numerical simulations along with experimental validations.
Before the design of the breast and head phantoms presented herein, other phantoms had already been
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built up in this way [25–28]; however, their structures were not suitable to be filled up with several
fluid TMMs, as one is made of a unique cavity while the others are made of several parts which are
intended to be used as temporary molds where gel-based breast or head parts are formed. The novelty,
herein, was that the phantoms comprise several cavities intended to be filled up with different fluid
TMMs. Since then, similar breast phantoms have been proposed [29–31].

2. The Phantoms

2.1. 3D-Printed Structures

Both breast and head phantoms are produced in the same way. Their structures are made of
acrylonitrile butadiene styrene (ABS) and built up by additive manufacturing from STL files obtained
by modifying original files available in the literature that describe anatomically realistic breast and
head structures derived from MRI scans. Hence, the original file corresponding to the breast phantom
comes from the University of Wisconsin–Madison [25], while that corresponding to the head phantom
comes from the Athinoula A. Martinos Center for Biomedical Imaging at Massachusetts General
Hospital [32]. These files have been modified by means of a computer-aided design software so as
to separate three distinct cavities. This results from a trade-off between the preservation of highly
dielectrically contrasted regions around the area of interest (i.e., the brain for the head phantom)
and the minimization of the number of ABS internal walls that raise leakage and field perturbation
issues. The phantoms are printed in several parts that are clipped and glued together and the seals
are weatherproofed. Figure 1 displays sagittal sections of the breast and head phantoms produced
from the original and modified STL files, while Figures 2 and 3 display exploded views that show the
different parts of the latter, respectively.

Figure 1. Sagittal sections of the breast (up) and head (down) phantoms derived from the original
STL (stereolithography) files (left) and from the modified ones (right). The red numbers indicate the
various cavities that contain the different TMMs corresponding to: (1) fibroglandular or heterogeneous
mix tissues, (2) fatty tissues (up-right), and (1) brain, (2) cerebrospinal fluid, (3) miscellaneous tissues
(down-right).

6
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Concerning the breast structure, it is denoted as the GeePs-L2S (or Supelec) breast phantom.
It has already been used as a reference phantom in the framework of Cost Action TD1301 MiMed
(http://cost-action-td1301.org) and several publications report experimental results collected with this
phantom by means of various microwave imaging systems [33–36].

In this phantom, cavities 2 and 1 (Figure 1—top right) correspond to a typical distribution of fatty
and fibroglandular or heterogeneous mix tissues, respectively, while the third one (Figure 2c) can be
placed at different locations in order to account for the presence of a tumor.

Figure 2. The different parts of the GeePs-L2S breast phantom: (a) The inner part contains the
fibroglandular or heterogeneous mix tissue mimicking material (TMM); (b) the outer shell contains the
fatty TMM; (c) the removable inclusion contains the tumor-like TMM; and (d) the support plate holds
the different parts in place.

As for the head structure, it includes three fixed cavities. Cavities 1 and 2 (Figure 1—down right)
are filled up from the top with brain and cerebrospinal fluid (CSF) TMMs, respectively, and cavity 3
can be filled from the bottom of the structure with mixtures whose dielectric properties can be adjusted
in order to fit those of various tissues, such as bone, muscle, blood or a medium whose properties are
an average of that of these tissues. Of course, the latter cavity must filled up before the former ones
with the head upside down and the filling hole must be tightly closed before turning the phantom right
side up. It can be noted that during this operation, it is difficult to avoid a little bit of air remaining in
the cavity; however, once the phantom is right side up, this air will rise to the level of the nasal cavity
where it is naturally present in a real human head.

Except for the outer shell of the head, which is relatively thick (≈8 mm, i.e., the thickness of
the skull) in order to get a good rigidity, for both phantoms, the thickness of the ABS structures
is 1.5 mm. This results from a trade-off between wall stiffness, structure tightness, and low field
perturbation. Indeed, at a frequency of 2.45 GHz, the values of the ABS dielectric parameters are εr = 3
and σ = 4 × 10−3 S/m, which is far from the dielectric properties of the various biological tissues
and, hence, leads us to opt for a thin structure in order to minimize the perturbation of the field inside
the phantoms. However, this trade-off is not satisfactory. Indeed, on one hand, a 1.5-mm thickness
is not sufficient to ensure a perfect waterproofing of the phantom, but leakages can be avoided by
smoothing the structure by means of acetone vapor and by coating it with epoxy resin. On the other
hand, despite their thinness, it has been experimentally [37] and numerically [38] shown that due to
the high dielectric contrast with respect to the various biological tissues, the ABS walls perturb the
field significantly. Concerning the breast structure, a solution proposed in Reference [29] consists of
using conductive ABS whose dielectric parameters (i.e., εr ≈ 10 and σ ≈ 0.4 S/m at 2.45 GHz, see [29])
are closer to that of adipose tissues (εr ≈ 5 and σ ≈ 0.1 S/m, see Table 1) than the normal one. It can
be noted that at 1 GHz, which should be the central frequency of the band considered for brain stroke
monitoring, as will be seen later on, the parameters of conductive ABS are also very close to that of the
bone (εr ≈ 12 and σ ≈ 0.2 S/m, see Table 2 and Reference [29]); hence, this material is appropriate
for the outer shell of the head that represents the skull and it could be used to print parts “b” and “c”
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(see Figure 3) of future versions of the head phantom. However, this material is not adequate for the
inner walls of the phantom and a printable material whose parameters are close to that of the brain
is still to be found. Finally, although this has not been done therein, the phantoms can be improved
by plastering their external shell with flexible skin mimicking mixtures based upon graphite, carbon
black, and silicone rubber [29,39] or urethane [40], that, in addition, could also solve the problems of
leakage through the external wall.

Figure 3. The different parts of the head phantom: (1) The inner tank (a) contains the brain TMM,
(2) the upper cavity contains the cerebrospinal fluid (CSF) TMM, and (3) the lower one contains an
average tissue medium mimicking mixture. The top and bottom of part (c) are clipped, respectively, to
the part (b) and to the plate (d) by means of a tenon–mortise system that runs all around the joints, and
the different parts are glued once in place, while the brain tank is held in place by several stops.

Table 1. Composition and properties of breast TMMs at 2.45 GHz and 37 ◦C (group: T = tumor,
G1 = fibroglandular tissue, G2 = heterogeneous mix tissue, G3 = fatty tissue).

Group Mixture Composition Averaged Measurements Debye Model

TX-100 NaCl εr σ εr σ
(vol %) (g/L) (S/m) (S/m)

T 18 4.0 56 ± 2 1.79 ± 0.06 53 1.8
G1 28 3.5 47 ± 1 1.61 ± 0.08 46 1.6
G2 41 0 37.8 ± 0.3 1.12 ± 0.05 37 1.1
G3 100 0 4.76 ± 0.04 0.18 ± 0.03 5 0.1
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Table 2. Composition and properties of head TMMs at 1 GHz and 37 ◦C versus the values inferred
from Cole–Cole models.

Tissue Mixture Composition Averaged Measurements Cole-Cole

TX-100 NaCl εr σ εr σ
(vol %) (g/L) (S/m) (S/m)

Brain 38 5.2 44 ± 2 0.84 ± 0.03 42 0.7
CSF 6 13.7 70 ± 7 2.7 ± 0.2 68 2.5

Muscle 24 5.0 54 ± 2 0.97 ± 0.03 55 1.0
Bone 75 0.8 16.7 ± 0.8 0.30 ± 0.04 12 0.2
Blood 14 9.4 61 ± 3 1.72 ± 0.07 61 1.6

2.2. Tissue Mimicking Mixtures

As underlined above, in addition to being good TMMs for breast tissues, liquid mixtures made
of TX-100 and salted water can mimic almost all the head tissues over a large frequency band with
good precision. Furthermore, given a temperature and a frequency band, the concentrations of TX-100
and salt in the mixture needed to mimic a specific tissue can be approximately predetermined with
a binary mixture model, such as the Böttcher’s one [41] that yields εm, the complex permittivity of
the TMM, as a function of (ε1, V1) and (ε2, V2), the permittivities and volume fractions of TX-100 and
salted water, respectively. By accounting for the fact that V1 + V2 = 1, εm can be expressed without V2:

εm = ε2 + [3 V1 εm(ε1 − ε2)/(2εm + ε1)] . (1)

Elsewhere, Debye [42] and Cole–Cole [43,44] models have been developed for most of the human
body tissues to describe the behavior of their complex permittivities εt as functions of the frequency.
Particularly, in Reference [42], an accurate Debye model can be found to describe the permittivity of
breast tissues with adipose tissue content in the range 85–100%, defined as group 3 in Reference [2], and
it has been shown in Reference [22] that, in the 0.5–6 GHz frequency band, the complex permittivity of
this tissue group is very close to that of TX-100, so that we have a model for ε1:

ε1(ω) = 3.14 + 1.6/(1 + j 13.56 × 10−12 ω) + 0.036/(j ωε0), (2)

where ω is the angular frequency, j is the imaginary unit, and ε0 the dielectric permittivity of vacuum.
It has been shown that the permittivity of TX-100 varies only very slightly with the temperature in the
range 15–37 ◦C. Concerning the salted water, a parametric model can be found in Reference [45] that
expresses ε2 as a function of the frequency, the salinity, and the temperature.

Hence, the mixture component concentrations needed to mimic a specific tissue can be determined
by fitting the mixture model εm to the permittivity of the tissue εt at several discrete frequencies f over
the frequency range of interest, i.e., by minimizing the following cost functional:

J = ∑ f w f |εm − εt|2f , (3)

where w f = 1/|εt|2f .
This can be done in an iterative way by means of a Gauss–Newton method [46]. The solution

x = (V1, Sm)† (where † indicates the transposition, V1 the volume fraction of TX-100, and Sm the NaCl
concentration of the mixture) at iteration step k + 1 then reads:

xk+1 = xk −H−1(xk)g(xk). (4)

In the above equation, g and H are the gradient and the approximate Hessian of J, respectively:
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g = 2 ∑ f w f �e[(εm − εt)∗f ε′m] f ,

H = 2 ∑ f w f �e(ε′ ∗m ε′ †
m ) f ,

(5)

where ε′m = (∂εm/∂V1, ∂εm/∂Sm)† and ∗ indicates the conjugate. By accounting for Equation (1),
ε′m becomes:

ε′m =

(
3 γ (ε1 − ε2) / (4δ)

[(γ (3V2 − 1) + 4ε1) / (4 V2 δ)] ∂ε2/∂S2

)
, (6)

with:

γ = δ − η , δ = (η2 + 8 ε1 ε2)
1/2

η = ε1 − 2 ε2 − 3 V1 (ε1 − ε2).

The term ∂ε2/∂S2 can be straightforwardly deduced from the salted water parametric model.
The above described iterative method converges very rapidly towards a stable solution that generally
depends very little on the initial guess, which allows us to choose x0 in an empirical way. It can be
noted that for a given mixture, due to the discrepancy between the dielectric parameter measured
values and those given by Böttcher’s model, the TX-100 and salt concentrations must be experimentally
refined around the solution given by the latter in order to get closer to the expected permittivity values.

Table 1 recalls the results of Reference [47] concerning the breast TMMs at a temperature of 37 ◦C
and a frequency of 2.45 GHz. It displays the TX-100 and salt concentrations obtained by fitting the
Böttcher’s and Debye models over the 0.5–6 GHz range and the measured and expected (given by the
Debye model) dielectric properties of the various mixtures. The “measured” values are the means
of measurements performed with three different apparatuses dedicated to the characterization of
liquid dielectric material properties, several measurements being made with each system. The first
one, denoted as S1 in the following, consists of a coaxial waveguide coupled to an Agilent E8364C
(Keysight Technologies, Santa Rosa, CA, USA) vector network analyzer (VNA) on one side and, on
the other side, to a circular cylindrical cell by means of a dielectric coaxial tight window; this cell
is made of a 7-mm-diameter circular waveguide intended to be filled up with the liquid dielectric
under test and is ended by a short circuit [48]. The other two systems consist of open-ended coaxial
sensors: A Keysight 85070D high-temperature dielectric probe coupled to an HP 8753E VNA (Keysight
Technologies, Santa Rosa, CA, USA) and a homemade one connected to a Rodhe & Schwarz ZVB8
VNA (Rodhe & Schwarz France, Meudon-la-forêt, France) and built up from a 3.6-mm-diameter,
15-cm-long, Teflon-filled copper rigid coaxial cable. The uncertainties that appear in Table 1 are the
standard deviations of all the measurements performed by means of the three systems and, below
4.5 GHz, these deviations are generally less than 5% of the mean values, except for the conductivity of
group G3, as the latter is very low.

The TX-100–salted water mixtures are very easy to produce; however, for TX-100 volume
percentages in the range 40–50%, at low temperature and salt concentration, the mixture is rather
viscous. It can be noted that very few TMMs are concerned by this problem (among those presented
herein, only G2 of Table 1 falls into this category), but, for the latter, the mixture components are
warmed separately, then mixed and vigorously stirred, left to rest at 45 ◦C for a few minutes until air
bubbles vanish, and poured into the cavity while it is still warm.

Table 2 displays the results obtained in the same conditions for the head TMMs at 1 GHz. Note that
the last two columns display the expected values given by the Cole–Cole models of References [43,44].
In this table, the brain is considered as a blend of white and grey matters (75% of white matter and
25% of grey matter) and “bone” refers to the cortical bone. Here again, the standard deviations are
generally less than 5% of the mean values, except for CSF. This exception is linked to system S1, whose

10



Diagnostics 2018, 8, 85

measurement results become less accurate as the permittivity increases, due to concomitant lowering
of the cutoff frequency in the measuring cell.

Figure 4 displays the results obtained over the 0.5–6 GHz band. Measured, predicted (from
Böttcher’s model) and expected (from the Cole–Cole model) properties are in good agreement for
almost all the tissues except, maybe, the measured values of conductivity for the brain and the bones
that deviate a little bit from the expected values. It is worth noting that the variability of human
tissue dielectric properties is very important. In the frequency band considered herein, it is evaluated
in Reference [1] to be in the range ±Δ% (where 5 ≤ Δ ≤ 10) of the permittivity values given by
the Cole–Cole models. Concerning the breast tissues considered in Table 1, the variability is even
more important as each group spans tissues with a large heterogeneity in their adipose content
(see [2]—Figures 9 and 10). This means that for almost all the TMMs considered herein except the bone
mimicking one, the measured values fall within the uncertainty range of the Debye and Cole–Cole
models, if the variability ranges of the tissue dielectric properties can be considered as the uncertainty
ranges of the parametric models.

Figure 4. Means of the dielectric properties of various TMMs measured with three different set-ups
(markers), compared to the results obtained by means of the tissue Cole–Cole models (full lines) and to
those obtained with Böttcher’s binary mixture law (dashed lines).

Furthermore, better fitting between predicted and expected properties of the various TMMs could
be obtained with a narrower operating frequency range, and, although a lower resolution should be
expected, the 0.6–1.5 GHz band would be more appropriate for brain stroke monitoring that requires
an important penetration depth of the interrogating wave and where the range 1.5–4 GHz is a kind of
“forbidden band” due to the strong attenuation of the waves within the head [3,49,50].

3. Conclusions

It has been shown herein that reference phantoms can be built up from 3D-printed structures and
fluid TX-100–salted water mixtures. Such mixtures can mimic most of the breast and head tissues
with a good precision concerning their dielectric properties over a large frequency range, and they are
easily adjustable and reproducible. Furthermore, the respective proportions of the different mixture
constituents needed to mimic a particular tissue can be approximately predetermined by means of a
binary mixture model. Admittedly, these phantoms are very simplified compared to the real human
breast or head and are less realistic than some other phantoms that can be found in the literature;
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however, they have the advantage of being stable over time and easy to produce and, in addition,
they preserve the areas of high dielectric contrast that are of interest to the applications considered
herein, so that they can be considered as anthropomorphic. Note that they could be refined to be more
realistic. Particularly for the head phantom, the lower part of the structure could be redesigned so as
to delineate the buccal and nasal cavities, the eyeballs, and the muscles; however, this would need
more ABS walls, which means field perturbation and leakage issues, for an improvement that should
probably be minimal, as these parts are far from the area targeted by the brain stroke monitoring
application. Furthermore, this would contradict the goal of this study that consists of the conception
of simple phantoms that anyone involved in the field of microwave imaging could easily produce.
The major drawback of these phantoms lies in the limited number of materials that can be used in
additive manufacturing, which does not allow us to get rigid structures whose dielectric properties are
close to that of some specific human tissues and particularly to that of the brain, but this drawback
will certainly be overcome in the near future due to the rapid progress of 3D-printing technology that
increasingly allows more and more materials to be processed.

Author Contributions: Study design and analysis, mixtures model, optimization, numerical and experimental
validation, and manuscript preparation and revision, N.J. and B.D.; Design, development, and realization of
phantom structures, N.J. and C.C.; Dielectric characterization, O.M. and C.C.
funding The part of this work that concerns the head phantom was partly supported by the Italian Ministry
of University and Research under PRIN project “MiBraScan—Microwave Brain Scanner for Cerebrovascular
Diseases Monitoring”.

Acknowledgments: The authors would like to express their thanks to the University of Wisconsin–Madison and
to the Athinoula A. Martinos Center for Biomedical Imaging for providing the original STL files of breast and head
phantoms, respectively. This work has been developed under the framework of COST Action TD1301-MiMed.
The authors would also like to thank V. Polledri and M. Police for carrying out measurements and 3D printings,
respectively, and the anonymous reviewers for their constructive comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gabriel, S.; Lau, R.; Gabriel, C. The dielectric properties of biological tissues: II. Measurements in the
frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 1996, 41, 2251–2270. [CrossRef] [PubMed]

2. Lazebnik, M.; Popovic, D.; McCartney, L.; Watkins, C.B.; Lindstrom, M.J.; Harter, J.; Sewall, S.; Ogilvie, T.;
Magliocco, A.; Breslin, T.M.; et al. A large-scale study of the ultrawideband microwave dielectric properties
of normal, benign and malignant breast tissues obtained from cancer surgeries. Phys. Med. Biol. 2007, 52,
6093–6115. [CrossRef] [PubMed]

3. Semenov, S.Y.; Corfield, D.R. Microwave tomography for brain imaging: Feasibility assessment for stroke
detection. Int. J. Antennas Propag. 2008. [CrossRef]

4. Meaney, P.M.; Fanning, M.W.; Li, D.; Poplack, S.P.; Paulsen, K.D. A clinical prototype for active microwave
imaging of the breast. IEEE Trans. Microw. Theory Tech. 2000, 48, 1841–1853. [CrossRef]

5. Klemm, M.; Craddock, I.J.; Leendertz, J.A.; Preece, A.; Gibbins, D.R.; Shere, M.; Benjamin, R. Clinical trials of
a UWB imaging radar for breast cancer. In Proceedings of the 4th European Conference on Antennas and
Propagation (EuCAP), Barcelona, Spain, 12–16 April 2010.

6. Fear, E.C.; Bourqui, J.; Curtis, C.; Mew, D.; Docktor, B.; Romano, C. Microwave breast imaging with a
monostatic radar-based system: A study of application to patients. IEEE Trans. Microw. Theory Tech. 2013, 61,
2119–2128. [CrossRef]
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Abstract: A breast phantom developed at the Supelec Institute was interrogated to study its suitability
for microwave tomography measurements. A microwave measurement system based on 16 monopole
antennas and a vector network analyzer was used to study how the S-parameters are influenced by
insertion of the phantom. The phantom is a 3D-printed structure consisting of plastic shells that can
be filled with tissue mimicking liquids. The phantom was filled with different liquids and tested with
the measurement system to determine whether the plastic has any effects on the recovered images or
not. Measurements of the phantom when it is filled with the same liquid as the surrounding coupling
medium are of particular interest. In this case, the phantom plastic has a substantial effects on the
measurements which ultimately detracts from the desired images.

Keywords: breast cancer; microwave imaging; phantom; tomography

1. Introduction

Microwave tomography is a method of imaging with potential for applications over a vast
range of fields. Medical applications are emerging in areas such as bone-density measurements [1],
brain imaging [2,3], cardiac imaging [4] and breast-cancer diagnosis [5,6] to name a few. Previous
studies have often been limited to idealistic simulations but the high dynamic range of modern vector
network analyzers (VNAs) makes it possible to study real data over a broad frequency band.

Several systems for microwave imaging of breast cancer have now reached clinical tests.
Techniques are broadly divided into three categories: (a) radar; (b) holographic; and (c) tomographic
techniques. Radar based systems have been developed at the University of Bristol [7], University of
Calgary [8], and McGill University [9] and have matured to the phase of phantom experiments and
clinical trials. Holographic approaches have been introduced more recently and have shown promise
in limited phantom studies [10]. 2D and 3D tomographic, or inverse-scattering methods, have been
studied extensively in simulation studies [11,12] with only a limited number advancing to the stage of
phantom experiments or clinical studies [13–15]. This study focused on phantom experiments utilizing
a tomographic system built at Chalmers University of Technology, based on the concepts of the system
developed at Dartmouth College [6].

Among women, breast cancer is the single most common type of cancer [16]. It has been estimated
that over 260,000 new cases will occur in the US during 2018 and that 41,000 women will die from
the disease [16]. Early detection and treatment is crucial for a likely recovery. The development
of new technology for diagnosis, such as microwave tomography, could potentially contribute to a
significant reduction of these numbers. X-ray based mammographic screening is the current gold
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standard. This technology has the advantage of high resolution; however, in dense breasts, it can be
particularly difficult to distinguish between malignancies and benign lesions and normal tissue [17].
Due to the differences in dielectric properties between different tissue types, microwave imaging
could be beneficial [18–20]. These differences originate primarily from differences in water content
between tumors and regular adipose and fibroglandular tissues [21]. More recently, studies indicate
that bound-water features may also contribute to these differences [6].

During the development and evaluation of microwave tomographic systems, measurements on
realistic phantoms are vital. Phantoms are models of body parts or organs that have been designed to
mimic the properties of their biological counterparts, not just in shape and size but also in physical
properties. For the case of microwave tomography, the permittivity and electrical conductivity dictate
the field propagation behavior as governed by Maxwell’s equations. Different materials have been
considered as suitable substitutes for biological tissue. Examples of such substitutes are gels [22],
Triton X-100 [23], rubber-carbon mixtures [24] and glycerin [25]. Common methods of modifying
the properties include mixing liquids with different ratios of water and varying the salt content.
However, there is considerable debate over what ranges of values of dielectric properties are most
representative of breast tissue. For example, Sugitani et al. [18] reported values for the relative
permittivity measured at 1.5 GHz of 45, 25 and 7 for malignant, fibroglandular, and adipose tissue,
respectively. Lazebnik et al. [26] studied the dielectric properties of normal and malignant breast tissue
for different ratios of fibroglandular to adipose tissue at a wide range of frequencies. Other recent
studies include those by Martellosio et al. [19], Cheng and Fu [20], and Gabriel [27]. Utilizing mixtures
of glycerin and water produces substantial variations for designing liquids of different properties [25].

Phantoms play an even more important role when it comes to breast cancer since there are no
suitable animal models compared with other anatomical sites. Phantom experiments are a good way
to test and validate a system before clinical evaluation after transitioning from just simulation studies.
Simulations are a necessary and important tool in the early process of developing a system, but,
to reach clinical studies and ultimately a functional system, controlled experimental measurements
using actual data are essential.

Phantoms used for the development of breast cancer diagnosis should replicate the complex
geometry of a human breast. A human breast is mainly comprised of two different tissue types:
adipose and fibroglandular. Due to different ratios of water, fat and protein, these tissues show
different dielectric properties and hence it is possible to distinguish them from each other [21].

A phantom with simplistic geometry can easily be fabricated by using canonically shaped
inclusions representing the fibroglandular tissue inside a larger vessel of liquid with properties
mimicking adipose tissue. However, to represent the complex geometry of an actual human breast,
more sophisticated phantoms are being developed. Examples of more realistic phantoms include
the ones developed by Burfeindt et al. at the University of Wisconsin [28], Joachimowicz et al. at the
Supelec institute [29] and similar ones designed by Herrera et al. at the University of Manitoba [30].

In this investigation, we expand on our previous study of the GeePS-L2S phantom [31] developed
at the Supelec institute. In that report, we were able to recover good images of the phantom using
a tomographic system. However, there is good reason to believe that the high plastic content of the
3D-printed phantom boundaries prevents the interior of the phantom from being more accurately
recovered due to the high contrast scattering from the relatively thick, low dielectric plastic interfaces.
In this paper, we investigate more thoroughly how the plastic impacts the imaging.

The two separate chambers of the phantom (corresponding to adipose and fibroglandular tissue,
respectively) are studied and imaged one at a time. For each chamber, measurements are performed
with both the ordinary tissue-mimicking liquid and the same liquid as the surrounding coupling bath.
The reconstructed images are then compared to study the effects of the plastic. An MRI scan of the
phantom was performed to fully quantify the plastic shape and size at different layers.
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2. Materials and Methods

We have previously demonstrated that our microwave-tomography system is capable of imaging
the GeePS-L2S phantom [31]. However, the recovery of the phantom interior was less optimal. In the
previous study, a simpler cylindrical phantom of comparable size and comprised of the same tissue
mimicking liquids was also imaged for comparison. In that case, the fibroglandular-tissue mimicking
inclusion was clearly distinguishable. One hypothesis to explain this is that the high plastic content of
the GeePS-L2S phantom was significantly contributing to the overall dielectric property distribution
and subsequently adversely influencing the images.

This study focuses on the plastic shells of the GeePS-L2S phantom. The two shells of the phantom
are interrogated separately and reconstructions are performed for the shells filled both with their
ordinary tissue mimicking content and with the surrounding coupling liquid. In addition, the actual
measurements are also investigated to confirm that the plastic effects are evident in the raw data and
not just due to inadvertent features of the reconstruction algorithm.

2.1. The System

The measurement system is described in [32] and a photograph is shown in Figure 1. It is based
on sixteen monopole antennas arranged in a circle with a diameter of 15.2 cm surrounding the target
region. The antennas are connected via coaxial cables to a sixteen-port VNA (Rhode & Schwarz ZNBT8)
so that no external switching matrix is needed. The VNA operates over a frequency range from 9
to 8.5 GHz and has a dynamic range of more than 130 dB over the full operating frequency range.
The channel-to-channel isolation is greater than 150 dB.

Figure 1. The measurement system used for the study. To the left is the VNA and to the right is the
immersion tank containing the antennas and the coupling liquid.

A cylindrical tank surrounds the antennas, which is filled with a mixture of 80% glycerin and
20% water (volume percentage). This coupling medium has two purposes. Since a high permittivity
contrast contributes to large scattering, the liquid concentration is chosen to lower the contrast between
the breast and its surrounding environment. The second involves its attenuating properties which
are exploited to suppress effects from multi-path signals and surface waves [6,33]. For calibration,
a set of measurements in the homogeneous coupling liquid is performed as a reference which is
then subtracted from the measurements of the actual phantom submerged in the liquid. In this
manner, the measured difference or projection is effectively only due to the target being present in the
immersion tank.

Measurements are performed at multiple frequencies between 1 and 1.9 GHz using an IF
bandwidth of 10 Hz and an output power of 0 dBm. Averaging was performed over 10 measurements.
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The complex-valued S-parameters are then collected and utilized in the reconstruction algorithm
described in [34].

2.2. The Phantom

The GeePS-L2S-breast phantom is a 3D printed plastic phantom made out of Acrylonitrile
butadiene styrene (ABS) derived from an MRI-based numerical phantom available from the UWCEM
Numerical Breast Phantom Repository [35] and is shown in Figure 2. It consists of two parts,
each forming a chamber corresponding to the different tissues of a real breast, i.e., the fibroglandular
tissue for the inner zone and the adipose tissue for the outer zone. Different research groups around
the world are currently testing the phantom in their respective imaging systems [31,36–38].

(a) (b)

Figure 2. The two shells of the GeePS-L2S phantom: (a) a top-down view; and (b) a view from the side.
To the left is the inner fibroglandular shell. To the right is the outer adipose shell.

To present an accurate visual rendering of the phantom interior and to calculate the amount of
plastic of each imaged layer, an MRI scan was performed (water was used as the contrast liquid).
Figure 3 shows the MRI image for a single transversal plane through the phantom. It can clearly be
seen that the low permittivity plastic forms a significant proportion of the overall phantom.

Figure 3. Cross section of an MRI scan of the GeePS-L2S phantom. The positions of the five imaging
planes are marked out.

The plastic forms a 1.5 mm thick interface between the different regions [38]. The wrinkled surface
of the interior chamber implies that the effective thickness of the wall is probably considerably larger
in many planes. Wide frequency-range data were not provided for the ABS-plastic but it has been
reported to have a relative permittivity of roughly 3 at 2.4 GHz [38], which is significantly lower than
that for the liquids used in this experiment. The combination of its thickness and high contrast with
the relevant liquids could act to skew the desired measurements.
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A mixture of 88% glycerin and 12% water was used for the adipose region, and a corresponding
ratio of 72:28 was used for the fibroglandular region. While there is considerable debate within the
community as to optimal breast-tissue properties and, subsequently, what the most suitable phantom
material recipes are, the glycerin:water mixtures allow for easy variability and a freedom to choose
from a wide range of dielectric properties [25]. Given that this study focuses on the differences between
when the plastic is present or not, the glycerin–water mixtures are suitable liquids for this experiment.
The two shells were studied individually, filled with their corresponding tissue mimicking liquid.
To investigate the effects of the phantom plastic, image reconstructions were also performed for when
these liquids were exchanged for the surrounding coupling bath. This provides the opportunity to
assess the effects of just the shells. It is also worth noting that pure adipose fat in certain studies has
been reported to have a lower permittivity than that for the 88:12 mixture, corresponding to a higher
glycerin ratio [27]. In this study, adipose tissue corresponding to a radiographically scattered breast
has been considered with properties based on clinical studies [39]. The choice of liquid can here be
altered to some extent to account for different radiographical densities.

Due to the 3D variability nature of the phantom, it is also informative to explore whether different
layers of the phantom are reconstructed equally well. The exposed parts of the monopole antennas
are 3 cm long. The effective imaging plane corresponds to the center of this but in practice provides
a weighted average of contributions from parts slightly below and above this plane. The first layer,
corresponding to the nipple being placed in the imaging plane, was performed followed by layers
spaced 1 cm apart from each other. Five layers were imaged until the fixture, from which the phantom
was suspended, contacted the antennas.

2.3. Inverse Problem

The measurements consist of 240 complex data (16 transmitters by 15 receivers per transmitter)
which describe the shifts in amplitude and phase compared to the reference. The data for the reflections
(Si,i) were not used. These data were fed into the Gauss–Newton iterative reconstruction algorithm.
The algorithm converges towards an appropriate image based on minimizing the differences between
the measured amplitudes and phases compared with that for the forward solutions computed at
each iteration. Incorporation of the log transform and a reduced step size at each iteration have been
instrumental in eliminating the need for a priori information [34].

The algorithm can be divided into two steps. First, 50 iterations of a smoothed Levenberg–
Marquardt regularization are performed. This is followed by 20 iterations of a Tikhonov regularization
with a Euclidean distance penalty term where the final image of the first step is used as the initial
estimate of the latter. The algorithm is further described in [34].

During the Levenberg–Marquardt step, the cost function is written as:

fLM(k) = ||Γm − Γc(k2)||2 + ||Φm − Φc(k2)||2 (1)

Here, Γ and Φ are logarithmic magnitudes and phases, and the superscripts m and c denote the
measured and computed values, respectively. k is the wave number which can be expressed in terms
of the relative permittivity εr and conductivity σ through

k2 = ωμ0ε0εr + jωμ0σ. (2)

Here, ω is the angular frequency and ε0 and μ0 are the free-space permittivity and permeability,
respectively. The weighting between the two terms of Equation (1) have, in accordance with a previous
study [40], been set to unity.

The cost function for the Tikhonov step is similar but carries an extra penalty term:

fT(k) =||Γm − Γc(k2)||2 + ||Φm − Φc(k2)||2
+ λ||k2 − k2

init||2
(3)
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The notation is the same as in Equation (1) with the addition of λ being an empirically determined
regularization parameter and k2

init being the intermediate solution that was obtained from the
Levenberg–Marquardt step.

2.4. Measurements

Images were reconstructed at five frequencies in the range from 1100 to 1900 MHz. For frequencies
lower than 1 GHz, the inherent liquid attenuation was too low to fully suppress unwanted effects
of surface waves and multi-path signals [6]. To minimize the occurrence of image artifacts due to
surface reflections, the surface level of the coupling liquid was kept constant at 3 cm above the antenna
tips at all measurements. Three different mixtures of glycerin and water were used for the phantom.
For the adipose tissue, the glycerin to water ratio was 88:12; for the fibroglandular, it was 72:28.
In addition, to study the effects of the plastic, a mixture of the same ratio as the coupling liquid (80:20)
was used. The dielectric properties of these mixtures over the operating frequency range can be found
in Figure 4. These ratios have been determined to be good representations for a scattered breast (88:12)
and fibroglandular tissue (72:28) in a previous study [39].
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Figure 4. Dielectric properties of the associated glycerin–water mixtures as function of the frequency.
This should be compared to the plastic having a permittivity of roughly 3 at 2.4 GHz.

In total, four measurements series are performed. Two series are performed where just the outer
shell is used (the adipose region) and two series when only the inner shell is used (the fibroglandular
region). The contents of the phantom for these series are presented in Table 1.
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Table 1. Glycerin content (volume percentage) of the two chambers for the different measurement
series. An asterisk (*) denotes that this part was not included for the particular series.

Series A B C D

Outer chamber 88 80 * *
Inner chamber * * 72 80

For example, by comparing the data for series C and D, it is possible to determine the effects of
the plastic of the fibroglandular part alone. For each of these series, five layers of the phantom were
reconstructed, starting from the nipple and moving in increments of 1 cm towards the chest wall.

3. Results

In the first section, we examine the amplitude and phase projections of the measured signals.
In this case, the projections refer to the calibrated case where the measurements (in dB for amplitude
and degrees for phase) for the homogeneous bath case are subtracted from those for the different
phantom cases. Since the reconstructions of associated images are directly related to the actual
measurements by virtue of the algorithm’s minimization process, trends observed in the measurements
will also be visible in the images. For this analysis, the former is especially relevant since it is effectively
presented without associated features of the reconstruction algorithm. The recovered images are shown
in Section 3.2 along with concomitant MR images of the different imaging planes for comparison with
observations of the measurement data and actual geometrical features.

3.1. Amplitude and Phase Projections

Figure 5 shows a schematic diagram of the 2D measurement configuration. The data are presented
in projection form with respect to the local receiver numbers. For example, the 15 relative receiver
numbers for Transmitter 1 consist sequentially of Antennas 2–16. For Transmitter 5, the 15 relative
receivers consist of Antennas 6–16, followed in order by Antennas 1–4. Figure 6 shows the phase
projections at 1500 MHz and Layer 4 for Transmitters 1, 5, 9, and 13 for measurement series D where
only the fibroglandular shell is present and the 80:20 glycerin:water mixture is used for liquid inside and
outside of the plastic shell. In this case, the phase projections are essentially all in the negative direction
which generally corresponds to a strongly lower permittivity object than that of the background.
In fact, if the plastic were to have no impact, these measurement projections would be zero for all
receivers. While the shape and location of the principle parts of each projection vary as a function of
the object since it is not symmetric and not located exactly in the center of the target zone, the overall
size and magnitude of the greatest portions of the projections are quite similar from all directions.
This has been a consistent feature of this imaging configuration and has been exploited in previous
studies [39]. Primarily, it indicates that a measurement from a single transmitter is sufficient to provide
a representative example of the projections from all directions. Both amplitude and phase projections
approach zero for the receive antennas closest to the transmitter (1–3 and 13–15).

Figure 7 shows the amplitude and phase projections at 1500 MHz for Antenna 1 for series C
and D (the inner part filled with 72:28 and 80:20 glycerin–water mixtures, respectively) for the five
interrogated layers. From these plots it is clear that there are significant similarities between the
data from series C and D. For the lower layers, the projections are virtually identical, despite the
different liquids. This is largely due to the fact that plastic constitutes a quite high proportion of
the cross-sectional area. At higher layers, the measurements deviate more but the similarity is still
substantial. It is also worth noting that, due to the 72:28 solution of series C having a higher permittivity
than the 80:20 coupling bath, the phase would be expected to be positive. However, the plastic has
a permittivity low enough to cancel this and in fact yields an overall negative phase shift. It is clear
that the higher permittivity interior liquid appears to increase the phase for the 72:28 solution case but

22



Diagnostics 2018, 8, 61

it is insufficient to overcome the effects of the plastic shell. Similar observations can be made for the
amplitude projections.
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Figure 5. Schematic representation of the of the antenna numbering. The outer circle denotes the global
node numbers (in black) used for the antennas when transmitting. The inner circle denotes the local
node numbers (in red) used for the antennas when receiving, counting from the transmitter. In this
example, Antenna 5 is transmitting.
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Figure 6. Projection data for four different transmitters: Antennas 1, 5, 9, and 13. Data are acquired at
fourth layer and the inner shell is filled with the surrounding 80:20 glycerin–water mixture.
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Figure 7. Projection data of the signals transmitted from Antenna 1 at 1500 MHz for the five
interrogated layers. Measurements of the inner shell filled with the 72:28 and 80:20 glycerin–water
mixtures, respectively.

Similarly, Figure 8 shows the corresponding amplitude and phase projections for series A and B,
where only the outer shell is present and the inner region is comprised of 88:12 and 80:20 glycerin:water
mixtures, respectively. The trends are similar to those above, where the phase projections for just the
plastic layer are quite significant in the negative direction. The phase projections for the 88:12 cases
increase further in the negative direction, as would be expected, because the permittivity of the inner
liquid is also less than that of the background. The proportional cross-sectional area occupied by the
plastic is considerably less than that for the inner chamber. This percentage also decreases as the layers
progress for Layer 1–5. In addition, the size of the object (in this case the area enclosed by the plastic
shell) is considerably larger than that for the inner chamber. Consequently, it would be expected that
the interior liquid would have a greater impact than that for previous case. However, the impact of the
outer shell is still considerable both with respect to the phase and amplitude.
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Figure 8. Projection data of the signals transmitted from Antenna 1 at 1500 MHz for the five
interrogated layers. Measurements of the outer shell filled with the 88:12 and 80:20 glycerin–water
mixtures, respectively.

Finally, it is important to examine the measurement behavior with respect to the operating
frequency. Figure 9 shows the amplitude and phase projections for series D, Layer 4 and Antenna 1 for
a range of frequencies. It is worth noting that the phase projections are fairly constant with respect to
frequency. In all cases, the impact of the plastic is consistently large across this considerable bandwidth.

25



Diagnostics 2018, 8, 61

2 4 6 8 10 12 14
-2

0

2

4

6

8

10

2 4 6 8 10 12 14

-60

-40

-20

0

20

Figure 9. Projection data as function of receiver for the frequencies 1100 MHz, 1300 MHz, 1500 MHz,
1700 MHz, and 1900 MHz. Antenna 1 is transmitting and the fourth layer is illuminated.

3.2. Image Reconstructions

By investigating the coronal planes of the 3D MRI, it was possible to study the amount of plastic in
the inner chamber. This was determined by using a custom graphical tool which allows us to manually
discretize a boundary of an image using a computer mouse, from which the software automatically
computes the area within it. The ratio of plastic compared to the total coronal cross-sectional area of
the inner chamber for the fibroglandular zone ranges from 14% at the lowest to 100% at the highest
with an average of 26%. The plastic of the fibroglandular piece thus forms a significant part of the total
cross sectional area of the phantom. MRI images for the associated layers are presented in Figure 10,
where the two chambers were filled with water for visibility purposes in the MR images due to its high
contrast with the low permittivity plastic.

As shown in Figure 10, the cross-sectional area, and thus the plastic percentage, varies significantly
between the different layers. In Figure 11, the plastic percentage of the fibroglandular part is plotted as
function of vertical position, i.e., distance from the nipple. This inner shell does not reach all the way
to the nipple and thus the data here start at 1.8 cm.

Were the plastic to have no effect on the measurements, the recovered images would only depict
a homogeneous bath when the phantom is filled with the surrounding liquid. Figure 12 shows the
reconstructed permittivity and conductivity images at 1500 MHz, where only the outer part is used
and filled with the 88:12 (series A) and 80:20 mixtures (series B), respectively. Clearly, the plastic of
this outer piece has only a minimal effect on the permittivity images, especially at Layers 3 and 4,
whereas there is still some shadow remnants present along with artifacts around the edges in the
conductivity images. For these particular layers, the plastic is only present in a small percentage of the
imaging plane. This is consistent with the measurement data from the previous section. Conversely,
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for layers closer to the nipple, the images clearly show that something is present in the imaging plane.
This is especially evident at Layer 1 and presumably occurs since a larger part of the imaging plane
is now comprised by plastic due to the shape of the phantom. The large elevated property object in
the conductivity image for Layer 5 along with the increased artifacts on the edges of both images for
Layer 5 are most likely due to the antennas being positioned relatively close to the air–liquid interface
where multi-path signal reflections are more prevalent than for other layers.

Figure 10. MRI scans of the five imaging layers.
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Figure 11. Plastic surface percentage of the cross sectional coronal planes of the fibroglandular shell as
function of distance from the nipple.

Figure 12. Reconstructed images at 1500 MHz of the outer chamber. Each row depicts a layer of
the phantom, starting from Layer 1 (closest to the nipple) up to Layer 5 (closest to the chest wall).
The columns correspond to (from left to right) the permittivity using the 80:20 mixture, the conductivity
for 80:20, the permittivity for 88:12, and the conductivity for 88:12, respectively.
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Similarly, the inner plastic piece is reconstructed at 1500 MHz and presented in Figure 13 for
the 80:20 and 72:28 mixtures, respectively. The piece is visible at all layers for both the permittivity
and conductivity cases. This piece has a “wrinkled” irregular shape that leads to a relatively high
proportional plastic content at each layer.

Figure 13. Reconstructed images at 1500 MHz of the inner chamber. Each row depicts a layer of
the phantom, starting from Layer 1 (closest to the nipple) up to Layer 5 (closest to the chest wall).
The columns correspond to (from left to right) the permittivity using the 80:20 mixture, the conductivity
for 80:20, the permittivity for 72:28, and the conductivity for 72:28, respectively.
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For both phantoms and for all layers, the recovered object for the permittivity has properties less
than that of the background. This is consistent with earlier observations that demonstrated strong
correlation between negative phase projections and lower property value recovered objects [39]. In this
situation, this negative property contribution can only be attributed to the low permittivity of the
plastic. In addition, the permittivity object is virtually identical for the two different internal liquids
for layers L–3. These correspond to plastic proportions of 51%, 35% and 26%, respectively (taken as
averages over a 2 cm thick portion of the MR images surrounding each layer). It is clear that, while the
plastic plays a somewhat minor proportion for the overall composition, its very high contrast with
respect to the properties of those of the two liquids results in an outsized influence on the effective
field measurements. The permittivity images for Layers 4 and 5 are still quite similar for the two
liquids, but differ slightly in regards to the shape and size. These observations are consistent with
the measurement analysis in the previous section. The conductivity images demonstrate similar
trends to that of the corresponding permittivity images. The recovered objects all exhibit property
values consistently less than that of the two liquids—the conductivity of the plastic is nearly 0.0 S/m.
In this case, the plastic has the predominant influence for driving the recovered properties down.
There is slightly more variation between the conductivity images for the two interior liquids than the
permittivity cases, but the difference is fairly inconsequential.

4. Discussion

The GeePS-L2S phantom has proved the possibility of producing geometrically realistic phantoms
via 3D printing. The intricate shape of the phantom captures the features of a real human breast,
in both exterior and interior.

The main rationale for developing a 3D printed structure is to provide a stable and versatile
universal phantom for which different groups can compare results. This particular incarnation
does not degrade over time and its hollow structure allows for great variability by changing its
content. Conversely, the printing material does not appear to possess the dielectric properties that are
conducive to these types of experiments. Molded gel based phantoms do not exhibit this problem but,
alternatively, are not stable over longer periods.

The GeePS-L2S phantom is a step towards a practical, realistic anthropomorphic breast phantom.
However, this study has identified issues related to the large dielectric-property contrast ratios between
the plastic and the phantom liquids. The dielectric properties of the plastic are quite low compared
to those of the remaining imaging zone and thus has a sufficient impact on the scattered signals
to such an extent that they can essentially form an image on their own. This further indicates that
interior structures will be hard to image. This is especially apparent for the inner structure, for which
the regular measurement was nearly indistinguishable from the control measurement when filling
the plastic shell with the surrounding coupling medium. In order for 3D printed phantoms to be
useful alternatives to other phantoms, the issue of the relatively thick, high contrast plastic needs to
be addressed. Potential ways to accomplish this include either identifying a suitable material with
properties closer to those of the tissue-mimicking liquids or developing new processes for generating
thinner shells. An alternative option could be to use the 3D printed structure as a mold for gel based
phantoms rather than as the actual phantom itself.

A 3D printable alternative with properties closer to those of biological tissue could be the
conductive ABS plastic used by Faenger et al. [41]. One could also argue for a simplified phantom.
Although an anthropomorphically realistic phantom is desired, signals at low microwave frequencies
are generally not able to fully capture all of the fine details because of their long wavelengths. It should
be possible to fabricate a more simplistic phantom that still resembles a human breast.

While the 3D-printing capability is compelling for being able to generate physically accurate
representations of actual body structures, constraints such as the printing material need to be closely
examined with respect to their influence and actual measurements need to be carefully evaluated.
Development of the GeePS-L2S breast phantom was a necessary exercise to establish bounds on current
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technological capabilities. There is still considerable effort and innovation required before a fully
functional phantom is available for realistic testing.

Finally, the phantom has only been tested with one particular system for these results. It was
found that the plastic has a significant effect on the obtained reconstructions and it is necessary to
understand this effect when interpreting their accuracy. It should further be emphasized that, although
this study has pointed out certain issues regarding the high plastic content, this single study can
neither reject nor confirm the general usefulness of the phantom. The authors would like to encourage
other research groups to conduct similar studies. The phantom has also been tested with one particular
choice of tissue mimicking properties. When studying the adipose region, the content can be varied to
account for different radiographical densities. However, this study has shown that care must be taken
when designing a phantom. Hopefully, the findings in this study will be useful for the community to
develop and build even better phantoms in the future.
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Abstract: This paper studies how limited information in data acquired by a wideband microwave
tomography (MWT) system can affect the quality of reconstructed images. Limitations can arise from
experimental errors, mismatch between the system and its model in the imaging algorithm, or losses
in the immersion and coupling medium which are required to moderate this mismatch. We also
present a strategy for improving reconstruction performance by discarding data that is dominated
by experimental errors. The approach relies on recording transmitted signals in a wide frequency
range, and then correlating the data in different frequencies. We apply this method to our wideband
MWT prototype, which has been developed in our previous work. Using this system, we present
results from simulated and experimental data which demonstrate the practical value of the frequency
selection approach. We also propose a K-neighbour method to identify low quality data in a robust
manner. The resulting enhancement in imaging quality suggests that this approach can be useful for
various medical imaging scenarios, provided that data from multiple frequencies can be acquired
and used in the reconstruction process.

Keywords: microwave tomography; medical imaging; reconstruction

1. Introduction

Microwave tomography (MWT) is emerging as a promising method for medical imaging [1], as it
is capable of producing quantitative diagnostic images by estimating the distribution of dielectric
properties in a tissue region. This requires solving an electromagnetic (EM) inverse scattering problem
using, for example, conjugate gradient techniques [2,3] and algorithms based on the Gauss-Newton
(GN) [4] or distorted Born iterative method (DBIM) [5,6]. EM inverse scattering algorithms typically
require a forward solver to model experimental data acquisition; therefore, MWT prototypes [7–11]
must be carefully designed to reduce the error between this forward model and the actual experiment.

In our previous work [12,13], we presented a novel DBIM approach which applied the two-step
iterative shrinkage/thresholding algorithm (TwIST) to solve the ill-posed linear system at each DBIM
iteration. The TwIST algorithm uses two previous iterates [14] to compute the update of the linear
solver at each DBIM iteration. This can lead to faster convergence and more accurate reconstructions
compared to conventional adaptive thresholding methods [15]. Our work first showed that the TwIST
algorithm can increase robustness relative to one-step iterative methods by optimising a set of flexible
parameters [12]. Subsequently, we presented a set of additional optimisation strategies, which can
improve significantly the quality of reconstructions in microwave breast imaging [13]. Recently,
we deployed the DBIM-TwIST algorithm with an in-house wideband microwave tomography system
to reconstruct cylindrical targets filled with water inside a background medium of 90% glycerol-water
mixture [16].

MWT algorithms are challenged by various sources of error which are inevitable in experimental
systems and cannot be accounted for in the forward model employed by any EM inverse scattering
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algorithm. These include, for example, antenna fabrication and soldering errors which result in
non-identical array elements, EM coupling not only by the antennas but also their coaxial cables,
and EM interference by the environment due to imperfect shielding of the measurement system.
In addition to these, signal contributions from surface waves and multiple reflections can also obscure
the signal due to the object of interest. We note that information loss is also caused by signal attenuation
due to the coupling liquid; although this can be accounted for in the inversion, increased losses in
the immersion-coupling liquid can have a deteriorating effect upon the reconstruction quality [13].
Designing a wideband measurement system that can diminish these errors and information loss is of
course impossible, but developing a strategy to discard frequencies for which data is dominated by
errors can improve reconstruction quality. To this end, we propose applying a correlation function
to select frequencies with highly-correlated data. Our results demonstrate that this is a simple but
effective way to improve reconstruction quality and avoid convergence into wrong solutions.

The remainder of this paper is structured as follows. Section 2 provides a summary of the hardware
and software features of our MWT prototype, which sets the context for the challenges and methods
presented in this work. It also discusses how information loss is caused in MWT, and illustrates its strong
impact on image quality, even if data is produced by numerical simulations without any experimental
errors. Finally the section proposes a simple strategy to reduce reconstructions errors by applying
a correlation metric to select highly correlated data and discard outliers which can be due to numerical
modeling or experimental errors. Results in Section 3 present reconstructions from simulated and
experimental data which demonstrate the benefit of this approach for improving image quality. Finally,
Section 4 provides a short summary and discussion of our findings with some further observations.

2. Materials and Methods

2.1. Overview of Our MWT System

2.1.1. Experimental System

Our MWT system was fully presented in [16], and is reviewed in Figure 1. The setup consists
of two concentric cylindrical tanks with 100 and 200 mm diameters. A target of 16 mm diameter
can be placed inside the inner tank to emulate the discontinuity in the homogeneous background
medium. We have surrounded the outer periphery of the larger tank with an absorber covered with
a metallic shield. Our eight-antenna configuration forms a circular ring of 130 mm diameter inside
the outer acrylic tank. Vertical and horizontal mounts allow us to control the antenna positions with
good precision.

The system’s antenna has been designed to operate inside various dielectrics, with a reflection
coefficient below −10 dB almost within the whole range of 1.0–3.0 GHz, and a voltage standing ratio
(VSWR) below 2.0. The antenna’s small size (12 × 15 mm2) can reduce unwanted multipath signals,
while its monopole-resembling operation allows it to be easily modelled by our imaging algorithm,
relative to more complex antenna designs. For cases of simple cylindrical targets with high dielectric
contrast, the system operates well with a 90% glycerol-water mixture as immersion liquid. In particular,
90% glycerol-water has shown to widen the antenna operation and reduce multipath signals without
attenuating signal transmission levels below the noise floor. Although the reflection coefficient of the
antenna is below −10 dB in the whole range 1.0–3.0 GHz, our initial reconstruction results are more
accurate around 1.5–2.0 GHz, where the antenna operates more efficiently inside 90% glycerol-water.
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(a) (b)

(c)

(d)

Figure 1. Overview of our employed microwave tomography (MWT) system. (a,b) Photos of the
experimental measurement prototype and the antenna element; (c) Schematic of the MWT system with
the cylindrical target inside the tank; (d) Reconstructed dielectric constant ε′ for a cylindrical target
filled with water, using experimental data at: (left) 1.0 GHz, and (right) 1.5 GHz.

2.1.2. The DBIM-TwiST Algorithm

The DBIM is an iterative inverse scattering algorithm which is commonly used to estimate the
spatial distribution of dielectric properties within a region V [17]. Under the Born approximation,
a linear integral equation at each iteration can be discretized for all transmit-receive pairs as,

A(ω)o = b(ω) (1)

where A(ω) is an M-by-K propagation matrix, with M the number of transmit-receive pairs in
the antenna array and K the number of elements in the discretisation in the reconstruction range
V. The K-by-1 vector o contains the unknown dielectric properties contrast for the K voxels in
V, while b(ω) is the M-by-1 vector of the scattered fields recorded at the recievers. The TwIST
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algorithm [14] can be introduced by considering the linear system described by (1) at each DBIM
iteration as an inverse problem where the goal is to estimate an unknown original image vector
x from an observation vector y, described by the linear equation Ax = y. Many approaches to
this Linear Inverse Problem (LIP) define a solution x̂ as a minimizer of a convex objective function
f : χ → R = [−∞,+∞], given by

f (x) =
1
2
‖y − Ax‖2

2 + λΦ(x) (2)

where Φ(x) is a regularization function for the convex optimization problem, λ ∈ [0,+∞] is a weighting
parameter, and ‖ · ‖p =

√
(∑n | · |p). The two-step iterative shrinkage thresholding (TwIST) algorithm

algorithm relies on splitting the matrix to structure a two-step iterative equation [14] as,

xt+1 = (1 − α)xt−1 + (α − β)xt + βΓλ(xt)

Γλ(x) = Ψλ(x + AT(y − Ax))
(3)

where α and β are the parameters of the TwIST algorithm, and Ψλ is the denoising function
corresponding to the regularization function Φ. The designation “two-step” stems from the fact
that the next estimate xt+1 depends on both the current solution xt and the previous solution xt−1,
rather than only on xt, as in conventional iterative shrinkage thresholding algorithms.

Our previous work has tested this algorithm extensively in microwave breast imaging simulations
based on phantoms from the UW-Madison repository. We first presented a methodology to increase
robustness by optimising the parameters of the TwIST algorithm in [12]. We also proposed to combine
multiple frequency information to enhance resolution, and to use a Pareto-curve regularization method
in cases of very strong noise. Finally, we argued that reconstructions of these numerical breast
phantoms can be improved significantly by a two-step process which estimates the average breast
properties prior to reconstructing the full breast structure [13]. After being tested extensively with
numerical breast phantoms, the algorithm was also applied to data from our measurement system [16],
which was acquired experimentally or was generated by simulating the full system and experiment
using the CST Microwave Studio EM solver. An example of reconstructed images from experimental
data presented in [16] is shown in Figure 1d. Information loss due to various factors inevitably
affects the reconstruction quality, producing for example ghost targets as in the bottom row plots.
The remainder of this paper will focus on investigating and dealing with this issue in more detail.

2.2. Information Loss in MWT Reconstructions

2.2.1. Simulation Models

We choose to first use simulation data to better understand the impact of information loss which
is not due to random errors such as radio frequency interference, effects of cable movements, etc.
To this end, we have simulated our experiment in CST Microwave Studio based on the computer-aided
design (CAD) model of Figure 1c. Data from these simulations includes signal contributions that
are not modeled by our forward solver, such as antenna coupling, surface waves, three-dimensional
(3-D) propagation and scattering effects, etc. Our forward solver uses a two-dimensional (2-D)
finite-difference time-domain (FDTD) model through the cross-section of the 3-D CST model where the
printed monopoles are centered, with line sources at the same planar positions as the eight antennas of
the 3-D model. To benchmark performance, we have also reconstructed data from this FDTD model,
which is perfectly matched with the forward solver of our algorithm (i.e., an “inverse-crime” problem).

As performance for 90% glycerol-water mixture has already been studied in [16], we have focused
on three other types of immersion liquids: Triton X-100, which exhibits low losses and has also been
proposed for mimicking breast tissues [18], 92% corn syrup mixture with 8% water (not very lossy) [19],
and 80% glycerine mixture with 20% water (very lossy) [4]. We derived first-order Debye parameters
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for these background media in the 1.0–3.0 GHz range by curve-fitting data from experimental
measurements of their dielectric properties, which were acquired using the dielectric probe kit by
Keysight. The resulting parameters are shown in Table 1. In addition to these immersion/coupling
liquids, we used pure water to fill the cylinder representing the target. As the target size is small,
we approximated water as non-dispersive material in our simulation models.

To study the impact of information loss on the signal scattered from the target of interest,
we have simulated cases with and without the target using the aforementioned CST and FDTD
models. We have compared these two datasets by plotting the transmitted signals recorded by the
antenna array using a relative location ordering, in which the receiver is counted relative to the current
transmitter anti-clockwise. The advantage of this receiver ordering scheme is that we can compare
signal data (amplitude or phase) at different receivers due to the same transmit antenna in one figure.
An example is shown in Figure 2, which is associated with “Antenna 1” transmitting and the remaining
seven receiving.

(a) (b)

(c) (d)

(e) (f)

Figure 2. Amplitude (in dB) and phase differences due to the water-filled cylindrical target, recorded at
each receiver for the first antenna used as transmitter, and for different background media. (a,b) Triton
X-100; (c,d) 92% Corn syrup; (e,f) 80% Glycerine. The plots compare results from simulations of the
physical experiment in CST Microwave Studio, using the computer-aided design (CAD) model of
Figure 1c, with a 2-D simplified finite-difference time-domain (FDTD) model, which is also used as a
forward solver in our imaging algorithm.
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Plots Figure 2a,b show a similar trend between the 3-D CST and 2-D FDTD models for Triton-X-100
at 1.5 GHz. This suggests that the 2-D FDTD model is a good approximation of the experimental
prototype for this dataset. The inflection points of these v-shape plots at Receiver 3 rightly suggest
a target location between Antennas 1 and 4. However, there are also clear differences at 2.5 GHz
in Figure 2a and at 2.0 GHz in Figure 2b. This means that the mismatch between the two models
becomes more significant for higher frequencies where signal losses increase and the antenna is less
efficient. In Figure 2c–f, higher signal losses for the more lossy corn and glycerine mixtures result not
only in an increased mismatch between the CST and FDTD models, but also in irretrievable loss of
signal information from the target. For 80% glycerine–water, in particular, there seems to be very little
correlation between the received signals and the target location which suggests that reconstructing the
target using these frequencies is almost hopeless.

Table 1. Debye parameters for the considered immersion liquids (derived by experimental measurements
and data fitting in the range 1.0–3.0 GHz.

Medium ε∞ Δε σs τ

Triton 3.512 2.582 0.0655 5.3505 × 10−11

80% Glycerine 4.75 30 0.3779 1.2346 × 10−10

92% Corn syrup 4.124 12.01 0.3405 1.6667 × 10−10

Cylinder 3.5 0 0.055 0
Pure Water 78 0 1.59 0

2.2.2. Calibration

In microwave imaging experiments, measured data will inevitably include random noise such as
environmental noise, thermal noise, coupling due to cable movement, and machine noise. The impact
of these errors can be reduced by applying denoising techniques directly to the measured data, or as
regularisation in the reconstruction process. A method to calibrate measured and simulated datasets is
also required to deal with errors due to differences between the physical experiment and its numerical
model used in the imaging algorithm. This calibration step is also necessary if CST-simulated data
is used as the “measured data”, as the CST model of Figure 1c is very different from its 2-D FDTD
version used by our imaging algorithm.

To this end, we apply a simple calibration step based on “tank-only” signals measured and
simulated in the absence of the target. The calibrated data used in the first iteration of our algorithm
can be calculated as,

ΓEmeas = |Einh
meas|dB + ΔΓdB

ΦEmeas = Φ(Einh
meas) + ΔΦ

(4)

where ΔΓdB and ΔΦ are given by,

ΔΓdB = |Ehom
cal |dB − |Ehom

meas|dB

ΔΦ = Φ(Ehom
cal )− Φ(Ehom

meas).
(5)

In these equations, Γ denotes the magnitude of the received signals in the frequency domain, and
Φ denotes the corresponding phase. Ehom

cal is generated by running the FDTD forward solver for an
empty tank filled with any of the background media modeled by the Debye parameters of Table 1.
Ehom

meas is the signal measured by the corresponding “tank-only” experiment, while Einh
meas is the signal

measured with the target. As mentioned previously, the notation “measured” can also correspond to
data produced by the 3-D CST model that simulates the physical experiment.
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2.2.3. Representative Reconstruction Results

To confirm our predictions on the impact of information loss on reconstruction quality, we have
applied our DBIM-TwIST algorithm to data from the CST and FDTD simulation models analysed
in Section 2.2.1. Depending on whether the data comes from the 3-D CST or the 2-D FDTD model,
we implement a 3-D/2-D or 2-D/2-D reconstruction approach, respectively (our imaging algorithm
always uses a 2-D forward solver). The DBIM-TwIST algorithm and a frequency hopping approach are
employed in the range 1.5–2.7 GHz with a 100 MHz step. The algorithm is initialised by filling the
tank with the known background medium dielectric properties.

The resulting reconstructed images are shown in Figures 3 and 4. These plots present estimated ε′

and ε′′ distributions, which are calculated from the Debye models at 1.5 GHz. The target is detected for
both datasets when low loss Triton X-100 is used as the background medium. Performance degrades
significantly for the other two media, even for the FDTD-generated dataset. This degradation is
correlated with inconsistencies in the transmitted signals observed in Figure 2. These results motivate
our proposed strategy to evaluate the data produced by our MWT system and select a set of optimal
frequencies for our imaging algorithm. To this end, we propose a frequency selection method based on
correlation analysis, which is presented in the next section.
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Figure 3. 2-D reconstructed complex permittivity distributions from 3-D CST simulated data for the
three different background media considered, using a frequency hopping approach in the range
1.5–2.7 GHz. Top images reconstruct the real part ε′ for (a) Triton X-100; (b) 90% corn syrup;
and (c) 80% glycerine, and the bottom images correspond to ε′′ for (d) Triton X-100; (e) 90% corn
syrup; and (f) 80% glycerine.
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Figure 4. Same as Figure 3 for data produced by the 2-D FDTD model that is also used as forward
solver in our imaging algorithm. Top images reconstruct the real part ε′ for (a) Triton X-100; (b) 90%
corn syrup; and (c) 80% glycerine; and the bottom images correspond to ε′′ for (d) Triton X-100; (e) 90%
corn syrup; and (f) 80% glycerine.

2.3. Improving Reconstructions by Frequency Selection

Plots such as those in Figure 2 offer a way to compare the relative measured magnitude between
adjacent frequencies across the range of operation for the MWT system. Taking into account that
signals measured by a MWT system should carry similar information at adjacent frequencies [20],
we can relate data quality in a frequency range with a high correlation of measured data between
adjacent frequencies. This concept has been applied successfully to other disciplines [21,22], but it
has never been presented, to the best of the authors’ knowledge, in the context of microwave or other
imaging modalities. This comparative information can be used to discard low quality data, for example
by selecting frequencies for which the amplitude plots in dB are not highly correlated with each other.
To this end, our approach aims to provide a simple but systematic method of discarding low quality
data by classifying frequencies with similar trends into a “high-correlation group”, and the rest into
“moderate” and “low-correlation” groups. We note that we have focused only on correlation maps of
the transmitted signals’ magnitudes (in dB) , to take advantage of the approximate linear magnitude
change vs. frequency which can be observed in MWT measurements [20].

A simple metric for this purpose is the Pearson’s correlation coefficient for variables X and Y,
which is defined as,

ρ(X, Y) =
cov(X, Y)

σXσY
(6)

where cov is the covariance, and σX and σY denote the standard deviation of X and Y respectively.
For an array of N antennas measuring at M frequencies, we can define the variable Fn

m(m = 1, 2, . . . M)

representing a series of received magnitudes [Rn(m, i), i = 1, 2, . . . N − 1] for all N − 1 receivers
regarding the nth transmitter at the mth frequency,

Fn
m = [Rn

(m,1), Rn
(m,2), . . . , Rn

(m,N−1)]
T (7)
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We can then obtain the correlation coefficient matrix Pn for the nth transmitter by combining
Equations (6) and (7),

Pn =

⎡⎢⎢⎢⎢⎣
ρ(Fn

1 , Fn
1 ) ρ(Fn

1 , Fn
2 ) . . . ρ(Fn

1 , Fn
M)

ρ(Fn
2 , Fn

1 ) ρ(Fn
2 , Fn

2 ) . . . ρ(Fn
2 , Fn

M)
...

...
...

...
ρ(Fn

M, Fn
1 ) ρ(Fn

M, Fn
2 ) . . . ρ(Fn

M, Fn
M)

⎤⎥⎥⎥⎥⎦ (8)

We can also calculate an aggregate cross-correlation matrix by averaging Pn over all
transmitters as,

P̄ =
1
N

N

∑
n=1

Pn (9)

For our MWT system, we chose M = 21 frequencies equally spaced in the 1.0–3.0 GHz range.
A conformation that high correlation values suggest high quality data is presented in Figure 5a,

which corresponds to the same dataset as this of Figure 2a,b. The dataset was generated using the
simple 2-D FDTD model with low-loss Triton X-100 as background medium. The contributions from
the signal scattered from the cylindrical target are highly correlated for this simple model, as shown in
Figure 5b for 1.3–1.7 GHz. This is captured well by the correlation map of the relative signal magnitude
differences (“target”-“empty”) in dB shown in Figure 5a, which shows cross-correlation values of 0.85
or higher.

We can use the same approach using Equation (9), which provides a single average matrix to
select frequencies with the highest correlation across all receivers. An example is illustrated in Figure 6
for the more challenging case of 3-D CST-produced data in 90% corn syrup presented in Figure 2c,d.
For this more lossy background medium, the overall correlation values are lower than the 2-D FDTD
Triton X-100 model considered in the previous case of Figure 5. Similar to that case, the map in
Figure 6a can assist in selecting the higher correlation “sub-bands” to consider in the reconstruction
process. This approach can improve reconstruction performance, as demonstrated in Section 3.

(a) (b)

Figure 5. (a) Cross-correlation calculation using Equation (8) for Transmitter 1 and 2-D FDTD data
in Triton X-100 (the dataset in Figure 2a,b). These correlations were calculated on relative signal
(“target”-“empty”) magnitudes in dB (b) Example of a “sub-band” with highly-correlated data selected
from the map in (a).
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3. Results

3.1. Application to Simulated Data

To illustrate how our proposed frequency selection method can be used to improve reconstructions,
we consider the case of 3-D CST-produced data in 90% corn syrup, with the cross-correlation map
shown in Figure 6. The map is used to identify frequencies of low correlation against all other
frequencies, such as 1.2 or 1.3 GHz, which can be removed from the reconstruction process. The plot in
Figure 6b confirms that the scattered signals at 1.3 GHz differ from those of neighbouring frequencies.
The cross-correlation map also suggests two “sub-bands” of high correlation as representatives of
low (1.5–1.8 GHz) and high (2.5–2.8 GHz) frequency ranges, confirmed by the plots in Figure 6b.
The reconstructed images using these two sub-bands are shown in Figure 7. In comparison with the
results in Figure 3b,e, these images estimate more accurately the target location.

(a) (b)

Figure 6. (a) Average cross-correlation map in Equation (9) using 3-D CST data in 90% corn syrup
(the dataset in Figure 2c,d); (b) Example of amplitude plots for Transmitter 1 in two “sub-bands” of
highly-correlated data selected from the map in (a), and how they differ from an “outlier” at 1.2 GHz.
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(c) (d)

Figure 7. 2-D reconstructed complex permittivity distributions from 3-D CST data in 90% corn syrup,
using our frequency selection approach illustrated in Figure 6. Resulting distributions of (a) ε′ and (b)
ε′′ by frequency hopping in 1.5–1.8 GHz; and (c) ε′ and (d) ε′′ by frequency hopping in 2.5–2.8 GHz.
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Despite this improvement, errors are still present in these images. This is because high
cross-correlation values do not necessarily guarantee accurate reconstructions in related frequencies,
as they may be the result of systematic errors in the data acquisition process. Our method, however,
can be used to identify low cross-correlation values as outliers dominated by random measurement
errors. These frequencies can be excluded from the reconstruction process, as in the case of 1.2 GHz
for the example of Figure 6b. We note that we considered cross-correlation of total received signals
(i.e., data with target) rather than relative received signals , i.e., magnitude differences with and without
the target in dB, which can be equally used. The “relative signal” approach was used, for example,
in Figure 5. These two different correlation maps should provide common but also complementary
information. In particular, relative signal correlations will be more sensitive to small signals differences
due to the target. Total signal correlations will be higher on average and less sensitive to the target,
but can detect more safely frequencies where measurements are dominated by error, such as the
“outlier” of 1.2 GHz in Figure 6b.

3.2. Application to Experimental Data from a Two-Layer Cylindrical Phantom

We demonstrate the impact of our frequency selection method further in this section,
by considering measured data from an imaging experiment with a two-layer phantom. The two-layer
phantom geometry is as in Figure 1, where the inner tank diameter is 100 mm and the diameter of the
target container is 31 mm. The target is again filled with water, but safflower oil is used in the inner
tank. The eight-antenna array forms a ring of 130 mm diameter, and the antennas are immersed in 90%
corn syrup. As the transmitted waves propagate mostly in low-loss safflower oil, the loss in signal
information in this case is mostly due to experimental errors. This is different to the previous one-layer
model simulations, which resulted in significant signal attenuation inside the lossy corn-syrup or
glycerol-water immersion liquids.

Figure 8a presents cross-correlations calculations using Equations (8) and (9) from relative received
signals, similar to the previous section. The map shows low correlation values for frequencies up
to 1.4 GHz, where the antenna is less efficient and radiation from the antenna cables can become an
important experimental error. This error was of course absent from the simulations of the previous
sections, but our frequency selection method can detect it and discard these low frequencies from our
dataset based on observing this cross-correlations map. To illustrate our argument further, we present
single-frequency reconstructions from this dataset in Figure 9. It is clear that from these images that
reconstructions up to 1.4 GHz, where correlations are low, are indeed not accurate.

(a)
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Figure 8. (a) Average cross-correlation map using Equation (9) for all transmitters and experimental
data in a two-layer phantom with 90% corn syrup as immersion, and safflower oil surrounding the
target; (b) Example of using the 1-neighbour and 2-neighbour approach to assess the correlations of the
map in (a) through calculating moving averages of correlation coefficients.
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Figure 9. (a–t): Single-frequency reconstructions of the Debye parameter ε∞ from 1.0 to 2.9 GHz using
the experimental dataset from our two-layer cylindrical system.

Relying on correlation maps for discarding frequencies may not be always straightforward.
Therefore, we propose here a selection process which relies on the observation that signal magnitudes
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at adjacent frequencies should be highly correlated. Taking this into account, we can consider the
average value of correlation coefficients at K-neighbour frequencies [21] as a metric for the degree
(low or high) of data quality at a given frequency. For example, we can use a 1-neighbour frequency
approach to obtain the correlation average at 1.5 GHz by an arithmetic mean of ρ(F1.5GHz, F1.4GHz) and
ρ(F1.5GHz, F1.6GHz). The explicit definition of this K-neighbour approach for N sampling frequencies
[ f1, f2, ..., fN ] is [21],

QK( fi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ(1, 2) i = 1

∑2i−1
m=1 ρ(i, m) 1 < i ≤ K

∑i+K
m=i−K ρ(i, m) K < i ≤ N − K

∑N
m=2i−N ρ(i, m) N − K < i < N

ρ(N − 1, N) i = N

s.t. K ≤ N/2 (10)

where ρ has been defined in (8), and QK denotes the average correlation at K-neighbour frequencies.
This function QK is designed to smooth out fluctuations between adjacent frequencies and provide
longer-term trends. In practice, the value of K will depend on the sampling frequency step and the
calculated correlation map.

After this smoothing process, we can set a threshold by calculating the mean of
QK( fi), i = 1, 2, . . . N. The frequencies for which the corresponding QK( fi) is below this threshold
will then correspond to a ”low degree” of data quality, and will be discarded in the reconstruction
process. Figure 8b presents an example of the 1-neighbour and 2-neighbour approaches based on the
correlation map in Figure 8a. Based on their corresponding thresholds, the 1-neighbour approach
would discard frequencies 1.0, 1.1, 1.2, 1.3 and 1.6 GHz, while the 2-neighbour approach would discard
frequencies from 1.0 to 1.5 GHz. As expected, using more samples for averaging (higher K) improves
the selection performance.

4. Discussion

This paper argued the impact of information loss on microwave tomography by presenting
reconstructions of a simple imaging problem (a cylindrical target inside another cylinder filled with
a background medium) from a wide range of datasets. We showed that reconstruction quality can
deteriorate significantly even in “inverse crime” scenarios where the models for the forward and
inverse solver are identical (Figure 4). This will occur in situations where signals propagate inside quite
lossy media such as corn syrup or glycerol water mixtures, which can attenuate the signal scattered
from the target to levels that could not be recovered from our imaging algorithm. We must note that, in
addition to loss, failure to reconstruct the target in these “inverse-crime” cases may be due to a “higher
degree of non-linearity” that a shorter wavelength experiences when propagating inside corn syrup or
glycerol water mixtures, where the dielectric constant is also high.

Beyond numerical simulations, we considered experimental data from a case where signal loss
was less significant, but experimental errors dominated low-frequency data. For both of these imaging
scenarios, we presented a simple cross-correlation method that can be used to select “high-quality”
data. We used this technique to select frequencies with high correlation values, and demonstrated that
it can improve reconstruction results significantly. The method relies on simple calculations from data
that is readily available (numerically or experimentally), and can therefore be useful as a pre-processing
step in imaging algorithms used by practical experimental systems. The same rationale could also be
used to create correlation maps focusing on other system parameters; for example, one could correlate
receiver data at a fixed frequency to exclude certain antenna elements (rather than frequencies) which
may be dominated by experimental errors.

Finally, me must emphasize that this analysis is by no means a complete assessment of our MWT
system performance. For example, it does not include an error metric to quantify the accuracy of
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reconstructions, or a more thorough investigation of the impact of working frequency, number of
antennas, and immersion liquid on system performance. These matters will be investigated further
in our future work which aims first to build a new prototype which can improve the quality of our
measured data. In this respect, the cross-correlation methodology presented in this paper can be
used as an easy tool to evaluate (and improve) a MWT measurement system without having to face
additional challenges introduced by the inversion process.
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Abstract: Thermal ablation treatments are gaining a lot of attention in the clinics thanks to their
reduced invasiveness and their capability of treating non-surgical patients. The effectiveness of
these treatments and their impact in the hospital’s routine would significantly increase if paired
with a monitoring technique able to control the evolution of the treated area in real-time. This is
particularly relevant in microwave thermal ablation, wherein the capability of treating larger tumors
in a shorter time needs proper monitoring. Current diagnostic imaging techniques do not provide
effective solutions to this issue for a number of reasons, including economical sustainability and
safety. Hence, the development of alternative modalities is of interest. Microwave tomography, which
aims at imaging the electromagnetic properties of a target under test, has been recently proposed for
this scope, given the significant temperature-dependent changes of the dielectric properties of human
tissues induced by thermal ablation. In this paper, the outcomes of the first ex vivo experimental study,
performed to assess the expected potentialities of microwave tomography, are presented. The paper
describes the validation study dealing with the imaging of the changes occurring in thermal ablation
treatments. The experimental test was carried out on two ex vivo bovine liver samples and the
reported results show the capability of microwave tomography of imaging the transition between
ablated and untreated tissue. Moreover, the discussion section provides some guidelines to follow in
order to improve the achievable performances.

Keywords: microwave imaging; thermal ablation; microwave ablation; image-guided; monitoring;
dielectric properties

1. Introduction

Thermal ablation is a therapeutic procedure used to destroy unhealthy tissue by way of a very
high and localized temperature increase. In thermal ablation, the target temperature is close to 60 ◦C in
the zone of ablation, which for tumor treatment should include the pathologic lesion plus a 5−10 mm
safety margin of healthy tissue [1,2]. At this temperature, an almost instantaneous cell death by way of
coagulative necrosis is achieved [1].

The increase in temperature can be obtained using different energy sources, such as radiofrequency
currents, ultrasounds, lasers [3]. Among the others, microwave thermal ablation (MTA), in which the
energy source is an electromagnetic field in the Industrial, Scientific and Medical (ISM) frequency band
(typically at 915 MHz or 2.45 GHz), is gaining an increasing attention in the clinical practice [4,5], owing
to its capability of treating larger tumors in a shorter time with respect to other ablation modalities [2].
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As a matter of fact, MTA is increasingly used to treat different types of solid tumors, as those of the
liver, kidney, lung, etc. [6–10].

The MTA clinical set-up is typically made by a minimally invasive interstitial applicator
(i.e., a microwave ablation antenna), whose diameter is in the order of a few mm, a microwave power
generator, and a cooling system used to keep the antenna’s shaft at safe temperatures. The clinical
procedure foresees the introduction of the antenna into the patient’s body, percutaneously or following
natural paths, and the onset of the microwave generator with a power value and for a time duration
depending on the dimension of the tumor to be treated (typically, 60–100 W for about 5−10 min) [4,5].
Commercial systems give coagulative performances of the devices based on experiments performed
either ex vivo or in vivo on animals [11,12]. Clinicians use these data to define the clinical protocol,
i.e., the power value and time of irradiation to be used in a defined pathological situation. Moreover,
software tools have been recently developed to help defining the best insertion path for the antenna [13].

Before the treatment, to help targeting the applicator in the center of the tumor to be treated,
clinicians use image-guidance techniques such as ultrasounds (US), computerized tomography (CT),
or magnetic resonance imaging (MRI). During the treatment, temperature is monitored by temperature
sensors (usually thermocouples), whose positions are carefully chosen to assure safe temperatures in
critical organs close to the tumor to be treated [14–24]. Techniques which could be used to monitor
the evolution of the thermally ablated area during the treatment include US, CT, and MRI. However,
all these techniques show drawbacks, which prevent their integration into MTA systems. In particular,
US would be the most natural choice for MTA real-time monitoring, due to its widespread availability,
low cost, and real-time imaging up to sub-millimeter resolutions [17]. However, US can be scarcely
effective for the real-time monitoring of MTA procedures, because it is blinded by a hyper-echogenic
cloud caused by water vaporization in the heated tissue, which conceals the applicator and the
tumor [1,18].

With reference to CT, studies investigated the best sequences to be used for real-time thermometry
of radiofrequency thermal ablation [19–21]. The contra-indications of CT are mainly related to the
exposure of the patient and the clinician to the ionizing radiation of CT, with a dose that depends on
the duration of the MTA procedure and on the number of performed scans. Moreover, CT scanners do
not have real-time capabilities, and perform fixed imaging in the axial plane, which leads to difficulties
in treatments to be performed under the diaphragm or in other areas where oblique imaging planes
are desirable [17].

MRI is potentially the most accurate and safe technique to perform real-time thermometry during
the procedure [14,23], since temperature can be obtained from T1 relaxation time or proton resonance
frequency (PRF) shift [24]. However, MRI use is limited by technical difficulties related to (unavoidable)
motion artefacts, electromagnetic compatibility issues with the microwave antenna, and, last but not
least, the high cost of the MRI equipment, which entails a significant impact in terms of economical
sustainability for health systems [18].

Accordingly, the lack of a reliable, low-cost, real-time imaging system represents a weak point of
thermal ablation procedures, especially those using microwave power, thus impairing their widespread
use in the clinics [16]. For this reason, research is pushing towards the development of a non-invasive
real-time monitoring system, both trying to improve existing techniques and looking for brand
new solutions.

Microwave tomography (MWT) has been recently proposed as an alternative imaging modality
for non-invasive real-time monitoring of thermal ablation procedures [25–27]. MWT images the
variation of the electromagnetic properties with respect to an unperturbed situation, by recording
(and properly processing) the electromagnetic field backscattered by the region of interest when probed
by a known incident wave. Given the experimentally observed evidence that tissues undergo dramatic
changes during ablation treatments [28–30], MWT is in principle viable for thermal ablation monitoring.
Moreover, MWT involves low-cost and portable equipment as it exploits standard components—such
as microwave (MW) antennas, MW generators, amplifiers—whose size and cost have considerably
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reduced in the last years thanks to the progress in the field of telecommunications. Finally, MWT is
completely harmless, being based on the use of low-power non-ionizing radiations.

The basic principle of MWT thermal ablation monitoring is to probe the treated region with
an array of antennas, external to the patient body, and record the evolution of the back-scattered
field during the treatment. The variations of the recorded data between different time instants are
then processed by means of a suitable inverse scattering algorithm, whose output is an image of the
changes occurring in the electromagnetic properties of the scenario under test. In particular, to enable
real-time operations, linearized inversion models can be exploited, based on the circumstance than
only localized variations occur during the treatment and that the main (or first) clinical goal is to detect
the boundary between treated and untreated tissue.

The potential of MWT monitored thermal ablation has been so far investigated in silico.
In particular, Scapaticci et al. [27] showed the possibility of imaging the evolution of thermal ablation
within a sample of liver tissue, whereas [31] simulated the monitoring of an interstitial heating
procedure of a brain tumor. In this paper, the first experimental proof-of-concept of thermal ablation
monitoring via MWT is reported. In particular, the results from two MTA procedures carried out on ex
vivo liver tissue are described and discussed. The tomographic approach is the same as the one assessed
in the previous in silico study [27], properly adapted to the measurement configuration adopted in the
experiments. In particular, the changes occurring in the samples before and after microwave ablation
are imaged, with the aim of appraising the boundary between treated and untreated tissue.

The paper is structured as follows. In the next section, the adopted material and methods are
described. In particular, the experimental set-up developed for the validation is described along with
the protocol adopted for thermal ablation. Then, the MWT algorithm is recalled and particularized to
the adopted configuration. The results are presented in the subsequent section, preceded by the visual
analysis of the ablated specimens, which provides the information necessary to assess the imaging
outcomes. Discussion and conclusions follow.

2. Materials and Methods

2.1. Experimental Set-Up

The conceptual scheme of the experimental setup developed for the present proof-of-concept
experiments is depicted in Figure 1. The setup consisted of two main parts: the ‘therapeutic’ one, on
the right side of the picture, which was in charge of performing MTA, and the ‘monitoring’ part, on
the left side, which gathered the data required for the MWT processing.

The MTA subsystem was based on a commercial ablation apparatus (HS AMICA, HS Hospital
Service S.p.A., Rome, Italy), consisting of a programmable microwave power generator (available
power: 100 W continuous wave (CW), frequency: 2.45 GHz), connected through a coaxial cable to
a 14-gauge cooled-shaft percutaneous applicator. The MTA applicator was a coaxial dipole antenna.
The antenna was equipped with a mini-choke to confine the energy emission in the zone to be
treated [32]. The applicator was cooled by means of water pumped by a peristaltic pump (at a constant
velocity of 40 mL/min), circulating into the shaft up to the mini-choke section.

The MW power, fed to and reflected from the applicator, was monitored by a two-channel
digital power meter (Agilent E4419B, Agilent Technologies Inc., Santa Clara, CA, USA) and a Type-N
dual-coaxial reflectometer coupler (Narda 3022, Narda Microwave Corp., Hauppauge, NY, USA).

MTA was performed on specimens of ex vivo bovine liver taken from a slaughter house. A box
of polymethyl-methacrylate (PMMA)—a material typically with negligible losses and low dielectric
constant (e.g., about 2.9) [33], i.e., almost transparent to MW fields—with internal dimensions of
120 × 100 × 100 mm3, was used to hold the tissue specimens (size 120 × 100 × 80 mm3) and to allow
an accurate and repeatable insertion of the MTA applicator (Figure 2). Specifically, the MTA applicator
was introduced in the specimen through a hole located at the center of the front-side wall of the box,
along the x-axis (see Figure 2), so that the distal tip of the applicator was inserted into the tissue
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specimen at a depth of about 7 cm, and the feed was approximately located in correspondence of the
barycenter of the tissue specimen (Figure 2).

Figure 1. The experimental setup developed for the proof of concept. Tx and Rx denote part of the
transmitted signal (Tx) and part of the reflected one (Rx) collected by the directional coupler to measure
the actual power fed to the MTA antenna. The green line represents the connection between the vector
network analyzed (VNA) and the MWT antenna. The red lines represent the connection of the MW
power generator with the bidirectional coupler and with the peristaltic pump, and of the peristaltic
pump with the MW applicator. The blue lines represent the connections of the power meter with the
bidirectional coupler, and of the bidirectional coupler with the MW applicator. The black arrows refer
to conventional symbols used for bidirectional coupler, which identify the directions of propagation of
the direct power (forward) and of the reflected power (backward).

 

Figure 2. Plastic box containing an ex vivo tissue specimen of bovine liver. The MWT antenna is visible
on the top of the specimen connected to the arm of the scanning system. The MTA applicator is visible
on the right of the specimen, partially inserted into it. The reference system is shown on the bottom left
in red color.
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The MWT subsystem consisted of a microwave antenna connected to a vector network analyzer
(VNA, Keysight E5071C ENA, 9 kHz–4.5 GHz, Keysight Technologies, Santa Clara, CA, USA)
measuring the reflection coefficient (S11, magnitude and phase). A multi-monostatic acquisition
was performed moving the antenna along a rectilinear path (oriented along the y-axis) above the
specimen surface (Figure 2), by means of a remotely controlled three-dimensional (3D) scanning system
with 0.1-mm spatial resolution (ITALMETRON, Rome, Italy). The scanning system was controlled by
a purposely developed routine in LabviewTM.

2.2. MTA Experiments

The MTA experiments were performed on two different ex vivo tissue specimens of bovine liver.
In both cases, an average net power of about 60 W at 2.45 GHz (CW) for a time of 8 min was delivered
to the applicator. The ablation protocol (power and time) was chosen in such a way to achieve an
ablated zone completely included in the specimen, with a margin of untreated tissue between the
boundary of the ablation and the surface of the specimen [34].

In order to assess the outcomes of the imaging procedure, the algorithm’s results were compared
to the actual scenario. To obtain a description of such a ‘ground truth’ a visual inspection of the zone
of ablation was performed. To this end, at the end of the MTA procedure, the specimen was sectioned.
In particular, the specimen was cut in the xy plane (see Figure 2), at a depth corresponding to the
height at which the applicator was inserted. In the xy plane, the zone of ablation achieved with the
considered cooled-shaft applicator typically consists in an ellipsoidal-shaped thermally coagulated
area of ablated-but-not-carbonized tissue encompassing an arrow-shaped central region of carbonized
tissue [29]. In the transversal plane—i.e., the plane orthogonal to the shaft of the applicator (yz in
Figure 2)—the thermal lesion has typically a circular shape with a rim of white coagulated tissue
surrounding the central carbonized area [29].

The characteristic dimensions of the ablated zone, defined in terms of maximum extension in
the longitudinal (i.e., parallel to the shaft of the applicator, x-axis in Figure 2) and transverse (y-axis
in Figure 2) directions, were measured with a ruler (accuracy ±0.5 mm). Likewise, the maximum
extension of the central carbonized region was measured in the longitudinal and transverse directions.
Moreover, the height of the specimen in the antero-posterior direction (z-axis in Figure 2) was measured
prior and after completion of the ablation procedure, to assess possible deformation of the specimen
linked to ablation-induced tissue modifications [34,35]. The distance between the upper boundary of
the ablated zone and the surface of the specimen was measured post-ablation to assess the extension
in the antero-posterior direction of the margin of untreated tissue.

2.3. MWT Measurements

For each MTA experiment, MWT measurements (S11, magnitude and phase) were performed in
two different conditions, i.e., pre-ablation (untreated tissue) and right after completion of the MTA
procedure. The resulting differential scattering parameters provide the data required for the MWT
processing, since the changes in the dielectric properties of the specimen due to the ablation are
expected to be reflected by the variations of the scattering coefficients [28].

MWT measurements were carried out in the 1–4 GHz frequency band (201 frequency points)
at 13 evenly spaced positions along the y-axis, in correspondence of the applicator’s feed (x = 0).
In particular, the antenna was moved from y = −30 mm to y = +30 mm with a spatial step of 5 mm,
as shown in Figure 3 (red dots in the figure). It is to be noted that both the measurements performed
before and those performed after ablation were conducted with the applicator inserted into the
specimen, but turned off.
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Figure 3. Positioning of the MTA applicator in the tissue specimen (green line) and MWT measurement
points (red dots). View on a coronal plane at a height of about 40 mm from the applicator. Distances
are expressed in cm. The blue lines denote the coordinate axes, while grey square and white arrow
indicate the applicator and its insertion direction, respectively.

For each experiment, MWT measurements were carried out for two heights of the antenna.
In particular, measurements were taken with the antenna in contact with the surface of the specimen,
that is at z = 30 mm, putting the origin (z = 0) in correspondence to the shaft of the applicator, and with
the antenna at a height z = 40 mm. For this latter case, considering the transverse dimension of the
tissue specimen (height of about 8 cm) and the insertion position of the applicator (at the height of
about 5 cm from the bottom of the specimen) and by neglecting not predictable ablation-induced tissue
deformation [34,35], this corresponds to an average distance of about 10 mm between the distal edge
of the MWT antenna and the surface of the tissue specimen.

In order to make fully independent experiments, the two MTA procedures were monitored
employing two different ultra-wide band antennas. The first antenna (Figure 4a) consisted in a
coplanar antipodal configuration with a ‘half-heart’ geometry (dimension 50 × 85 mm2) printed on
a Rogers substrate (RO4003, relative permittivity εr = 3.38) [36]. The second antenna (Figure 4b) is
a coplanar Vivaldi configuration (dimension 54 × 68 mm2) printed on a Taconic substrate (RF-35,
εr = 3.50) [37].

  
(a) (b) 

Figure 4. MWT antennas: (a) half-heart shape; (b) Vivaldi shape.

It is worth noting that the two antennas were not specifically designed for the purpose of this
experiment. Nevertheless, see Appendix A, they showed an acceptable behavior throughout the
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measurement bandwidth, when operated in presence of the specimen, in particular when they were
not in contact with it (as expected, given the fact they were not optimized).

2.4. Imaging Algorithm and Assessment Criterion

To form the image of the monitored ablation scenario, a differential microwave tomography
approach based on the Born approximation was adopted, similar to the one considered in previous
studies [28,29]. Such an approach allows to image (in a qualitative fashion) the variations occurring
in the scenario under test, which was indeed the scope of this initial experimental study. Notably,
the approach uses the truncated singular value decomposition (TSVD) algorithm [38], which allows
real-time results, since its computationally intensive part can be run off-line before data acquisition.
In the following, the TSVD inversion algorithm, as particularized for the experimental configuration,
is recalled, whereas the formulation details are given in Appendix B.

The experimental data were acquired along a rectilinear domain, hence, the available information
was not adequate for imaging a 3D region. Accordingly, a 2D domain corresponding to the cross
section of the specimen along the yz plane, i.e., orthogonal the applicator shaft, in correspondence of the
line of scan, was taken as region of interest Ω. Such a domain was then discretized into P = Ny × Nz

square pixels of 0.5 mm resolution. In particular, Ny = 201, and Nz = 79 when the antenna is at
z = 30 mm and Nz = 99 when the antenna is at z = 40 mm.

In the TSVD scheme, the unknown vector is directly retrieved by applying the inversion formula
to the data vector ΔS:

Δχ = K+
R ΔS (1)

where Δχ denotes the P × 1 column vector of the unknowns (the 2D matrix encoding the contrast
is rearranged into a 1D vector for the sake of implementation of the TSVD algorithm), whose
generic element encodes the differential contrast value, assumed non-dispersive, in the relevant
pixel, defined as

Δχj =
Δε j

εL
, j = 1, . . . , P (2)

where Δε j is the variation of the complex permittivity in the j-th pixel due to the ablation profile and
εL is the complex permittivity of liver, assumed to be homogenous and with the properties of liver
tissue at 2.45 GHz, as taken from the literature [28].

ΔS is the [Nf × Nm]× 1 column vector of the (complex) differential data, given by the difference
between the scattering parameter measured after ablation and the scattering parameter measured
before ablation with Nf = 201 being the number of frequency points and Nm = 13 the number
of antenna positions. The differences between the measured S-parameters are directly fed into the
inversion algorithm, without any scaling or calibration.

K+
R is the regularized pseudo inverse of the kernel matrix K, which, in the adopted model, is an

M × P matrix, whose rows are ordered according to ΔS and whose generic entry Kmp is given by

Kmp = − j
2

πk f ρJ1

(
k f ρ
)

H2
0

(
k f
∣∣rq − rp

∣∣)H2
0

(
k f
∣∣rq − rp

∣∣) (3)

where f = 1, . . . Nf ; q = 1, . . . Nm; p = 1, . . . , P; ρ is the radius of a circle having the same area of the
pixel, J1 is the first order Bessel function, H2

0 denotes the 0-th order second kind Hankel function, rq is
the q-th position of the antenna and rp denotes the position of the p-th pixel, k f = ω f

√
εLμo is the

(complex) wavenumber in liver at the f -th pulsation ω f , μo is the magnetic permeability in vacuum.
To obtain K+

T , let us introduce the singular value decomposition (SVD) of K, defined as

K = U Σ VT (4)

where U is the M × M matrix whose columns are the left singular vectors (which span the space of
differential data), V is the P × P matrix whose columns are the right singular vectors (which span
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the space of visible contrast functions) and Σ is the M × P matrix of the singular values, whose
elements are all zeros but for those lying on the diagonal of the M × M submatrix (being in our case
M < P). These scalars, say s1, . . . , sM are ordered in decreasing fashion and accumulate to zero, that is
s1 > s2 . . . , sM−1 > sM, with sn → 0, n → ∞ .

Due to the unavoidable presence of noise on data, the direct inversion of K is unstable, since the
exponentially fast growth of 1/sn for increasing values of n results in an uncontrolled amplification of
noise. To overcome this drawback, the regularized pseudo inverse K+

R is introduced by truncating the
singular value decomposition (SVD) to the first R values, with R < M, thus obtaining

K+
R = VR Σ−1

R UT
R (5)

where UT
R is the M × R matrix whose columns are the first R left singular vectors, VR is the P × R

matrix whose columns are the first R right singular vectors and Σ−1
R is the R × R diagonal matrix,

whose elements are the inverse of the first R singular values, 1/si i = 1, . . . , R.
Note that the SVD (4) is computed off-line (and only once), so that the solution (1) is achieved in

real-time with a standard laptop, since it only involves (a few) matrix vector operations.

2.4.1. Choice of the Regularization Parameter R

The truncation index R is the regularization parameter of the TSVD algorithm, and represents a
degree of freedom in its implementation. In particular, a threshold as large as possible is in principle
desirable to improve the accuracy. On the other hand, as mentioned before, this may induce an error
amplification effect. As such, the threshold R is chosen as a trade-off between accuracy and stability.

For the considered measurement configuration, R also affects the maximum depth of visible
targets. Such a circumstance can be appreciated from the spatial coverage of K+

R , defined as the
squared amplitude of the elements of matrix VR summed along the columns and rearranged on the
Ny × Nz grid. Figure 5 shows the spatial coverage of K+

R for different values of R in the yz plane at
x = 0 (see Figure 2 for the reference system). In the adopted colormap, the black regions represent
those portions of the imaging domain that are expected to be poorly retrieved. As can be observed,
the larger the threshold, the larger the portion of the domain which is ‘covered’ by the imaging
algorithm. In particular, it can be noted that R = 20 only allows imaging the shallow part of the
specimen. Considering that the applicator is positioned in the origin of the reference system and that
an ablation zone in the order of a few centimeters is typically dealt with, the threshold was set to
R = 48, as this value allows imaging a sufficiently deep portion of the specimen, while keeping the
number of unknown lower than R = 60, which is helpful to ensure a stable result in the unavoidable
presence of noise.

2.4.2. Assessment Criterion

To assess the obtained imaging results, the ex-post visual inspection of the ablated specimen was
exploited to build reference images to be compared with the one obtained from the processing of the
experimental (differential) data. In particular, the observed size of the treated region, together with the
expected values of the dielectric properties of ablated tissue [36] were used to build a 2D reference
differential contrast Δχre f . Then, the ideal imaging result is given by the projection onto the first R = 48
right singular functions, computed as

Δχid = VRVT
RΔχre f . (6)

Equation (6) provides the ideal output of the adopted imaging procedure in the
considered conditions.
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(a) 

 
(b) 

 
(c) 

Figure 5. Spatial coverage of the operator K+
R for R equal to (a) 20; (b) 48; and (c) 60. In the study,

R = 48 was set. Refer to Figure 2 for the reference system.

3. Results

3.1. Ex Vivo Post-Ablation Analysis

At the end of the MTA procedure, the specimens were sectioned along the xy plane, displaying
the coagulative necrosis for visual inspection, and the characteristic dimensions of the zone of ablation
were measured.

Figure 6 shows the sectioned specimens from the two experiments with the relevant measurement
superimposed. In particular, LA (mm) and DA (mm) represent the maximum extension of the ablated
zone in the longitudinal (i.e., the length) and transverse (i.e., the diameter) directions, respectively.
Likewise, LC (mm) and DC (mm) represent the maximum extension of the central carbonized zone in
the longitudinal and transverse directions, respectively. H (mm) represents the distance between the
upper boundary of the ablated zone and the surface of the tissue specimen measured post-ablation,
which is the upper margin of untreated tissue in the transverse direction.
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(a) (b) 

Figure 6. Characteristic dimensions of the zone of ablation in a coronal plane as appraised from the
visual inspection. (a) Vivaldi experiment. (b) Half-heart experiment. The yellow dotted lines denote
the position of interfaces of interest, while the two-way arrows identified distances.

As it was shown in previous works [35], ablation-induced tissue deformation is highly
heterogeneous and eventually not predictable, resulting in both tissue shrinkage and expansion,
owing to interactions between the contracting thermally-coagulated tissue and the untreated tissue
encompassing the zone of ablation, as well as to expansion of water steam diffusing from the inner zone
of ablation. As discussed in the following, this aspect represents a non-trivial issue in the assessment
pursued in this work.

In Table 1, the characteristic dimensions of the zone of ablation are summarized, along with
the net power (mean value ± standard deviation, W) supplied to the applicator during the MTA
procedure. From the reported data, it is apparent that in both MTA experiments tissue specimens
showed ablation-induced deformation in the transverse direction (DA/2 + H − 30, being 30 mm the
distance pre-ablation between the applicator and the surface of the specimen). Specifically, in the
experiment with the Vivaldi antenna the specimen was characterized by a contraction of about 7 mm,
whereas in the half-heart antenna case, the specimen exhibited an expansion of about 5 mm. Such
an outcome cannot be easily foreseen or modeled. As an ex-post observation, it can be noted that,
as summarized in Table 1, the experiment with the half-heart antenna lead to a larger transverse
ablation diameter (DA) with respect to the one in the experiment with the Vivaldi antenna, i.e., 44 mm
vs. 38 mm. Therefore, it can be argued that the more superficial ablation achieved in the experiment
with the half-heart antenna may have facilitated the upwards propagation of vapor gases, thus causing
tissue transverse expansion. However, such an outcome cannot be generalized, since the ultimate result
of an ablation procedure (and then of ablation-induced tissue deformation) relies on heat propagation,
which is also affected by tissue morphology around the applicator (e.g., presence of small blood vessels
or local non-homogeneities).

Table 1. Characteristic dimensions of the ablation zone achieved in the MTA experiments

MWT Antenna Power (W) LA (mm) DA (mm) LC (mm) DC (mm) H (mm) Remarks

Vivaldi 54.8 ± 0.8 56 38 36 8 4 transverse contraction ~7 mm
Half-heart 57.8 ± 1.2 54 44 31 8 13 transverse expansion ~5 mm

3.2. Microwave Tomography Results

The expansion of the liver sample observed in the post-ablation visual inspection in the case of
half-hearth experiment confirmed a difficulty occurred when performing the MWT measurements
with the antenna in contact with the liver. As a matter of fact, due to the swelling, the antenna was
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somehow ‘immersed’ in liver in some positions. For this reason, the relevant dataset was excluded
from the tomographic processing.

For the remaining three available datasets, Figure 7 shows the ideal contrast functions Δχre f
according to the visual analysis of the post-ablation liver specimens described in the previous section.
In these images, the variations between the two states are evidenced: the green areas identify the
ablated tissue, whereas the yellow areas correspond to modifications of the specimen caused by
shrinkage in the Vivaldi experiment and swelling in half-heart case. Of course, given the heterogeneous
and not predictable nature of tissue ablation and deformation, these images cannot provide an accurate
model of the ground truth, nevertheless, they retain the features which are mostly relevant for the
imaging task.

(a) 

(b) 

(c) 

Figure 7. Ideal differential contrast for the analyzed cases. Each figure represents the yz cross-section
of the ground truth as deduced from visual inspection. The green areas are ablated tissue, the yellow
areas are specimen surface modifications. The MTA applicator is located at (0 m, 0 m). The MWT
antenna moves along the top border of each figure. (a) Vivaldi experiment with antenna in contact;
(b) Vivaldi experiment with antenna at 10 mm from the specimen; (c) Half-heart experiment with
antenna at 10 mm from the specimen. The bar chart of each sub-figure are in the same scale and they
denote the absolute value of the differential contrast for the three analyzed cases.
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In Figure 8, the imaging results for the processed datasets are reported in terms of the normalized
amplitudes of the estimated differential contrast, i.e., |Δχ| for the tomographic images and |Δχid|
for the ideal reconstructions. As a matter of fact, while the algorithm actually provides an estimate
of the (complex) differential contrast Δχ, the very limited amount of available data and the aspect
limited nature of the measurement configuration, which prevents a complete estimate of the unknown
function, do not allow retrieving the actual quantitative values. For this reason, the images are given
in terms of the retrieved differential contrast amplitude, as this provides a qualitative estimate of
the main variations occurring in the imaged zone. As said, such information corresponds to the first
clinically relevant goal to achieve.

  
(a) (d) 

  
(b) (e) 

  
(c) (f) 

Figure 8. Comparison between tomographic results and ideal reconstructions. Each figure reports the
plot of a cross-section in the yz plane of the retrieved contrast (normalized modulus). In the images,
the main features (in terms of qualitative variations) of the differential contrast appear. Left side,
tomographic images: (a) Vivaldi experiment with antenna in contact with liver sample; (b) Vivaldi
experiment with antenna at 1 cm from sample; (c) Half-heart experiment with antenna at 1 cm height.
Right side, (d–f) ideal reconstructions. Red contours denote the contour of the ideal differential contrast,
as identified in Figure 7. All mps are normalized to their maximum. As such, colorbars range from
0 to 1. 0 values represent areas where no variation occurrs, while 1 values denote areas where the
maximum variation is observed.

In the figure, the left column shows the tomographic image obtained from processing the
experimental data, whereas the right column reports the ideal reconstructions, obtained by applying
Equation (6) to the differential contrast of the relevant reference scenario shown in Figure 7. On the
images on the right of the figure, the contour of the ablated area and the surface modifications are
superimposed to facilitate interpretation. To allow better appraisal of the results, taking into account
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the differential nature of the imaging approach, the adopted color bar forces the false colors to white in
the areas where the amplitude of the differential contrast is estimated as zero. It is worth noting that
obtaining these images requires less than 1 s on a standard desktop pc.

4. Discussion

The comparison between the tomographic images and the ideal images allowed both to interpret
the results as well as to appraise their quality and the open issues that emerged from the present study.

The ablated specimens underwent significant surface changes during the thermal treatment. In a
differential imaging framework, such modifications are retrieved by the algorithm and appear as
‘targets’ in the images. As such, the obtained images will not just report the contrast variations due to
the ablation of the tissue, but also the variations related to the post-ablation specimen deformation.
Such a circumstance is confirmed by the observation of the ideal images in the right column of Figure 8,
wherein the deformation is clearly visible. In the tomographic results, such features are also visible
and are correctly positioned.

As far as the transition between treated and untreated tissue is concerned, in the Vivaldi
experiment, the separation between the surface of the sample and the ablated tissue (i.e., the margin
of untreated tissue in the z direction) is lower than 0.5 cm, due ablation-induced shrinkage of the
specimen. Such a distance is in the order or even below the expected spatial resolution of MWT at
the adopted frequency band (δ = C

2B , with c being the velocity of propagation in the liver and B the
bandwidth of the signal), which—for the case at hand—is about 8 mm. Accordingly, the experimental
conditions did not allow to appreciate the separation between untreated (and shrunk) tissue and
treated tissue. This is confirmed by the observation of the ideal images, wherein indeed the position of
the treated-to-ablated tissue boundary cannot be discriminated. Nevertheless, despite this limitation,
the tomographic images obtained from the experimental data are consistent with the ideal ones.

For the half-heart case, the swelling of the specimen had an opposite effect, so that no overlap
is expected and the transition from treated to untreated tissue is expected to be properly imaged, as
confirmed by the ideal images. This is fully confirmed by the experimental result, wherein both the
effect of the swelling and the treated-to-untreated boundary are correctly imaged. Besides, a good
agreement with the ideal results is obtained.

Accordingly, a first experimental evidence of the capability of MWT of detecting the transition
between treated and untreated tissue was achieved, using a procedure which can be easily implemented
in real time. This is indeed one of the main clinical goals to pursue, to propose a new technique for
real-time monitoring the evolution of thermal ablation treatment.

5. Conclusions

In this paper, the outcomes of the first experimental proof-of-concept of thermal ablation
monitoring via MWT were presented. The study aimed at assessing the feasibility of MWT as a
real-time monitoring tool for thermal ablation treatments. To this end, a laboratory set-up was
designed to set an ex vivo experiment in which the changes in the electromagnetic properties of two
bovine liver specimens where imaged by means of MWT measurement and processing. Overall,
the results confirmed the anticipated potential of MWT, but a number of interesting issues aroused,
which deserve further investigation in future research work.

The main drawback occurred due to the modification of the specimen volume during ablation.
Although this effect was to some extent expected in ex vivo experiments, whether it actually occurs
in vivo or in clinical situations is not clear. In fact, the liver-air system herein dealt with is a much
simpler scenario from a thermodynamic point of view than the actual scenario, wherein the treated
region is surrounded by the parenchyma or other biological tissue. To partially cope with this issue,
and also move to a more complex ex vivo scenario, future experiments will deal with a three-layer
structure, in which a matching medium (whose properties have to be properly chosen) is positioned
between the antennas and the liver specimen. This layer may both mimic the tissue surrounding the
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liver and provide a surrounding medium which may absorb the tissue deformation. In addition to
this, the use of a matching medium can improve the performance of the antennas, which in turn can
reduce uncertainty on data and therefore allow inspecting more in depth. To this end, the design of ad
hoc antennas is of course a crucial aspect, since the antennas used in this study provide sub-optimal,
yet acceptable, performances in the measurement frequency band.

The presented experiments aimed at pursuing the initial goal of observing and assessing the two
extreme cases of non-ablated and ablated tissue. Their positive outcome stimulates a campaign of
experiments that will address the monitoring of an ongoing treatment, by performing measurements
at intermediate ablation stages also. In this respect, the need of coping with measurements taken
during the operation of the thermal applicator represents an interesting issue to investigate, not only
to understand the effect of the MW heating signal onto the measured data (possible interference), but
also to examine the possible cooperative role of the applicator as well as the possibility of devising
interleaved treatment/measurement protocols in which the thermal ablation and the monitoring are
performed alternatively.

Finally, performing a number of linear scans along parallel rectilinear paths can be foreseen as
way to gather a sufficient amount of data in order to build more accurate, possibly 3D maps of the
monitored scenario. In this respect, the use of an array of antennas could be envisaged in order to keep
the measurement time as low as possible, by resorting to electronic rather than mechanical scanning.
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Appendix A

In this appendix, the measured scattering parameters (S11) for the two antennas adopted in the experiment
are reported.

Figure A1 shows the scattering parameter measured with the antenna located in correspondence of the
applicator axis (y = 0) in contact with the liver tissue or placed at 1 cm distance from the surface of the liver.
In particular, Figure A1a reports the data for the half-heart antenna, while Figure A1b shows the data related to
the Vivaldi antenna.

As can be seen, despite the antennas were not designed for this particular application, the value of the S11
parameter (on average) in the considered frequency band is below −5 dB which is quite acceptable. In addition, a
better performance is observed for the half-hearth antenna trough out the whole band.
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(a) (b) 

Figure A1. Amplitude of the S11 scattering parameters as measured for the antenna in the central
position (in correspondence of the applicator): (a) Half-heart antenna. (b) Vivaldi antenna.

Appendix B

This appendix provides the formulation of the inverse scattering method adopted to process the data
gathered in the experimental study.

The input data is given by the difference between scattering parameters collected by each antenna before
and after ablation. Hence, for each of the 201 frequency points in the measured bandwidth and for each of the 13
antenna positions, a differential scattering parameter, say S, is obtained.

For a given position rx of the MWT antenna and for each pulsation ω in the measurement bandwidth,
the differential scattering parameter can be expressed as

ΔS = Sa
11 − S0

11 = K[Δχ] (A1)

where Sa
11 is the scattering parameter measured after ablation and S0

11 is the scattering parameter measured before
ablation, respectively.

Δχ is the differential contrast, which encodes the changes occurring in the electromagnetic properties of the
specimen due to the ablation. Such a function is defined as

Δχ(r, ω) =
εa(r, ω)

εL(r, ω)
− 1 (A2)

where r = (x,y) denotes the generic position in the imaged region Ω, εa is the complex permittivity profile in
Ω after the ablation and εL is the complex permittivity profile in the liver specimen before ablation, which is
assumed as homogeneous, with the same properties as liver tissue at 2.45 GHz. K is the short notation for the
integral operator encoding the imaging kernel, whose explicit expression is given by

K[Δχ] =
∫

Ω
G(k, rx, r)G

(
k f , r, rx

)
Δχ(r, ω)dr (A3)

where rx is the position of the antenna, k = ω
√

εLμo is the (complex) wavenumber in liver at the working frequency
and G is the Green’s function for the unperturbed scenario, that is the solution of the Helmholtz equation

∇2G(r, rx)− k2G(r, rx) = −jωμo δ(r − rx), (A4)

with G(r, rx) = G(rx, r) by virtue of reciprocity. The Born approximation is adopted to cast (A4), since the Green
function both models the radiation of the induced current to the receiving antenna, G(rx, r), as well as the field
induced by the antenna in the region of interest, G(r, rx).
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In our approach, the Green function is simply modeled as the Green function pertaining to an unbounded
homogeneous medium having the properties of liver, which reads

G(r, rx) = H2
0(k|r − rx|), (A5)

with H2
0 denoting the 0th order second kind Hankel function. Of course, more sophisticated modeling could be

adopted by using for instance a numerical model of the actual antennas placed on the specimen-filled box, but a
simpler model is intrinsically more robust against uncertainties arising in the actual scenario (e.g., actual shape of
the sample, actual radiation pattern of antenna in presence of the specimen).

The above model provides the basis for the equation to be inverted. In particular, by discretizing Ω into
Nx × Ny square pixels and gathering all the differential data into a [Nf × Nm]× 1 column vector ΔS, with Nf being
the number of frequency points and Nm the number of antenna positions, the discretized data-to-unknown
relationship that has to be inverted is given by

ΔS = K Δχ (A6)
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Abstract: Currently, minimally invasive treatments that insert various treatment devices into an
endoscope are actively being performed. A high-frequency (HF) snare is commonly used as an energy
device inserted into an endoscope. However, using a high-frequency snare, problems usually occur,
such as the obstruction of the visual field caused by smoke. On the other hand, microwave heating
produces less smoke and provides a better visual field. In this study, a snare using microwave energy
inserted into an endoscope is proposed, and its characteristics are evaluated.

Keywords: microwave; EMR; snare; numerical calculation

1. Introduction

In recent years, electromagnetic field techniques have been widely used in medical applications.
Examples of these applications are microwave hyperthermia [1], microwave coagulation therapy
used for liver cancer [2,3], cardiac catheter ablation for ventricular arrhythmia [4], and hyperthermia
treatment for benign prostatic hyperplasia. These technologies are used to simulate the thermal effect
of living tissue by the electromagnetic field.

One of the applications of the thermal effect is endoscopic mucosal resection (EMR) [5].
A schematic diagram of EMR is shown in Figure 1. EMR is mainly used for lesions of the stomach
and the esophagus. The medical doctor inserts the endoscope into the mouth of the patient, and a
snare is inserted into the forceps channel of the endoscope. The snare diameter can be changed to
a certain extent. The doctor can put the snare on the location of the lesion and then squeeze and
heat the lesion with the snare. An image of the surgery being performed can be viewed from a video
monitor. The doctor can remove the lesion areas while stopping bleeding. EMR is performed at various
medical institutions, and many cases have been reported [6,7]. However, as the current snare works
at high-frequency (HF) currents (300 kHz to 5 MHz), the tissue will be carbonized, and smoke
will be generated because of the excessively high temperature. The occurrence of perforations
is also reported [8]. In addition, to the best of the author’s knowledge, there are no studies on
snare development.

In this study, we designed an EMR snare using microwave energy. Microwave heating is derived
from the vibration of water molecules. There are three advantages of using microwave energy. First,
it has high tissue coagulation ability. Second, it does not generate smoke at the time of surgery because
of mild heating. Third, tissue coagulation can be performed even under liquid conditions. With the
use of HF currents, such currents are dispersed in the liquid, so the heating capability is lowered.
By contrast, microwave energy does not have these limitations. For these reasons, microwave snares
are considered to improve the quality of treatment.

In this study, the heating characteristics of a high frequency snare and a microwave snare are
examined by numerical analysis and in vivo experiments.
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Figure 1. Schematic diagram of endoscopic mucosal resection (EMR).

2. Materials and Methods

2.1. Device Structure

Figure 2 shows the schematic diagram of the proposed microwave snare. It consists of a coaxial
cable and a connecting wire. The inner and outer conductors are connected, and the connecting wire
configures the main body of the snare. The coaxial cable is covered with a movable heath. This device
operates like a loop antenna by exciting microwave energy from the end of the coaxial cable. The target
part is grabbed and heated. Then, the snare is tightened while heating, and the target part can be
removed. Figure 3 shows a schematic diagram of a commercially available snare. This snare consists of
a wire electrode and a sheath electrode. The HF current runs between these two electrodes and causes
Joule heating to be generated in the target tissue.

 

Figure 2. Schematic diagram of the proposed microwave snare.
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Figure 3. Schematic diagram of a commercially available snare.

2.2. Electromagnetic Field Analysis

The numerical analysis is shown in Figure 4. Analysis of the snare using microwave energy
was performed with a self-developed program by utilizing the finite difference time domain (FDTD)
method [9]. In addition, the HF current was analyzed with the finite element method (FEM) of CST
(Computer Simulation Technology) EM Studio 2018. As FEM performs analysis in the frequency
domain, this calculation takes time in the HF region. However, FEM is better than the FDTD method in
the low-frequency region because it takes time for the signal to decay in the FDTD method. The electric
field distribution near the device is first calculated.

Figure 4. Numerical analysis procedure. FE—finite element.
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Then, the specific absorption rate (SAR) in the biological tissue is determined. The SAR can be
calculated by Equation (1):

SAR =
σ

ρ
E2 (1)

In this equation, σ is the conductivity (S/m), ρ is the density (kg/m3), and E is the electric field
(V/m) (r.m.s). Using this calculated SAR distribution as the heat source, the temperature distribution
can be determined by solving the bioheat transfer equation [10]. The analytical parameters are shown
in Table 1. The values in Table 1 are set considering realistic use at each energy. Therefore, the powers
and the time of the “microwave” and the “HF” are not the same. In the HF snare, electric current flows
directly to the living tissue, so its power is smaller than that of the microwave snare.

Table 1. Analytical parameters.

Parameters Microwave Snare High Frequency Snare

Calculation method FDTD FEM
Power (W) 60 30

Heating time (s) 10 3

The analytical model is assumed to be used in EMR, and the situation is simulated, where the
snare is used in stomach tissue on air. To simulate the grasping process of stomach tissue with the
snare, a grasped stomach tissue is protruded. Three patterns of the length of the exposed snare are
calculated to consider the squeezing process.

For each model, the electric field is obtained by inputting a voltage of 2.45 GHz for the microwave
and 500 kHz for the HF voltage from the end of the cable to calculate the SAR distributions.
Other electrical parameters are shown in Table 2 [11].

Table 2. Electrical constants.

Electrical Constants Frequency Stomach

Relative permittivity 500 kHz 2060
2.45 GHz 43.0

Conductivity (S/m) 500 kHz 0.55
2.45 GHz 1.69

2.3. Temperature Analysis

The bioheat transfer equation used to obtain the temperature distribution of the living tissue is
shown in Equation (2).

ρc
∂T
∂t

= κ∇2T − ρρbcbF(T − Tb) + ρ·SAR (2)

T is the temperature and t is the time in the equation. ρ is the density (kg/m3) of the tissue and ρb
is the density of blood. c is the specific heat (J/kg/K) of the tissue and cb is the specific heat of blood.
κ is the thermal conductivity (W/m/K), and F is the blood flow rate (m3/kg/s). The first term on the
right side of this equation shows the diffusion of heat in the living body, the second term shows the
dispersion of heat by blood flow, and the third term shows the heat generation source in the living
body. The initial temperatures of the tissue, blood, and air are all 37 ◦C. Thermal constants are shown in
Table 3 [11]. When the temperature reaches about 100 ◦C by microwave heating, moisture evaporates,
so no further temperature increase occurs. Therefore, in the temperature analysis of microwave energy,
the maximum temperature is limited to 100 ◦C. On the other hand, the temperature rises abruptly,
and the tissue will be carbonized with the use of a HF current. An increase in temperature of 100 ◦C or
more is considered. Therefore, the temperature was not limited.
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Table 3. Thermal constants.

Thermal Constants Objects Values

Specific heat (J/kg/K)
Stomach 3690

Fluororesin 1000
Blood 3960

Thermal conductivity (W/m/K) Stomach 0.53
Fluororesin 0.23

Density (kg/m3)
Stomach 1088

Fluororesin 2200
Blood 1050

Blood flow rate (m3/kg/s) Stomach 1.43 × 10−5

3. Results

3.1. Calculated Results

The temperature distributions at the xy plane at z = −0.3 mm are shown in Figure 5 when the
snare using a HF current is utilized. These are also shown in Figure 6 when the microwave snare is
used. The observation surface in Figure 6 is set to be the same as that for a HF current. Regarding the
exposed part’s length, (a), (b), and (c) represent 1/2 λ, 3/8λ, and 1/4λ, respectively. λ represents a
wavelength of 2.45 GHz microwave energy in stomach tissue. Table 4 shows the relationship between
the total length and the size of the snare. The lengths A and B are shown in Figures 2 and 3, respectively.
The white lines in Figures 5 and 6 indicate snare outlines. In addition, cross sections of x = 0 when
the snare’s exposed part length is 1/2λ are shown in Figures 7 and 8. The white lines in Figures 7
and 8 indicate the boundary between the stomach and air. In Figures 5–8, the device body is grayed
out because this part is excluded from the temperature evaluation. In Figure 5, high temperatures
are observed at the xy plane (z = −0.3 mm) at x = y = 0 in all cases. This is the root of the snare.
It can be inferred that perforation is caused by this localized heating. Compared with the temperature
distribution in Figure 5a–c), it can be estimated that most of the current is concentrated at the root of
the snare, so there is no difference in temperature distribution for different snare lengths. On the other
hand, in the microwave snare, the entire gripping part is heated in Figure 6. This is advantageous
for tissue removal by the snare. From Figures 7 and 8, the maximum tissue coagulation depth over
60 ◦C, which is the tissue coagulation temperature, is 1.5 mm and 5.8 mm with the HF current and
the microwave energy, respectively. Because microwave energy heats to a greater depth than the HF
current does, caution may be required in clinical application. The SAR distribution of the microwave
snare is shown in Figure 9. In this figure, a high SAR is observed at the vicinity and root of the snare.
Therefore, the microwave snare can be heated regardless of the shape of the snare.

 

Figure 5. Temperature distributions of the high frequency snare at z = −0.3 mm.
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Figure 6. Temperature distributions of the microwave snare at z = −0.3 mm.

Table 4. Relationship between the total length and size of the snare.

Sizes A (mm) B (mm)

1/2λ 15 23
3/8λ 11 15
1/4λ 8 13

 

Figure 7. Temperature distributions of the high frequency snare at x = 0 mm.

 

Figure 8. Temperature distribution of the microwave snare at x = 0 mm.
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Figure 9. SAR distribution of the microwave snare at z = −0.3 mm.

3.2. Experimental Validation

Figure 10 shows an image of the prototype device. The dimensions of the device are the same
as those of the numerical model. The snare is made of annealing copper. The device is connected to
the experimental system, shown in Figure 11. The 2.45 GHz microwave energy is inputted from the
microwave generator through the power reflection meter to the end of the prototype device. Porcine
liver was used because it can be easily obtained in this experiment, and discoloration can be easily
observed. The dielectric and thermal properties of porcine liver are similar to those of human liver,
and there are no substantial differences in electrical properties between the stomach and the liver.
The center of porcine liver is protruded to simulate the surgical condition of EMR. The protruding
part is squeezed with a snare, coagulated, and removed by reducing the exposed diameter of the snare
while heating. The input power is 58 W.

 

Figure 10. Prototype device.
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Figure 11. Experimental system.

The liver tissue surface after the experiment is shown in Figure 12a, and the removed tissue is
shown in Figure 12b. It can be confirmed that discoloration occurs in the entire gripping part, even in
the center part, which is the furthest part from the snare. In addition, there is no blackened part in
the discolored portion of the tissue. It can be concluded that the entire gripping part can be heat
coagulated by the device, and the tissue can be heated without charring by the device. Figures 13
and 14 show the overall view during the heating process. In Figure 13, during the HF current heating,
smoke and sparks are observed. On the other hand, during the microwave heating, these are not
observed (Figure 14).

 

Figure 12. Liver tissue surface after the experiment.

 

Figure 13. Heating with the high frequency current snare.
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Figure 14. Heating with the microwave snare.

4. Discussion

In this study, we proposed a snare using microwave energy for EMR. The effectiveness of this snare
was evaluated by numerical analysis and a heating experiment. In the numerical analysis, analytical
models were made for the HF current and the microwave, and the temperature distributions of the
target part were obtained for comparison and evaluation. The temperature distribution was calculated
by using the bioheat transfer equation with SAR as the heat source. The results confirm that sufficient
heating for tissue coagulation was possible with the proposed device. From the heating experiment of
the prototype device, it was also confirmed that the entire gripping part could be coagulated without
carburization. We plan to develop devices that can be used for animal experimentation.
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Abstract: Psychophysiological state monitoring provides a promising way to detect stress and
accurately assess wellbeing. The purpose of the present work was to investigate the advantages of
utilizing a new unobtrusive multi-transceiver system on the accuracy of remote psychophysiological
state monitoring by means of a bioradar technique. The technique was tested in laboratory conditions
with the participation of 35 practically healthy volunteers, who were asked to perform arithmetic and
physical workload tests imitating different types of stressors. Information about any variation in vital
signs, registered by a bioradar with two transceivers, was used to detect mental or physical stress.
Processing of the experimental results showed that the designed two-channel bioradar can be used
as a simple and relatively easy approach to implement a non-contact method for stress monitoring.
However, individual specificity of physiological responses to mental and physical workloads makes
the creation of a universal stress-detector classifier that is suitable for people with different levels of
stress tolerance a challenging task. For non-athletes, the proposed method allows classification of
calm state/mental workload and calm state/physical workload with an accuracy of 89% and 83% ,
respectively, without the usage of any additional a priori information on the subject.

Keywords: stress detection; bioradar; psychophysiological state monitoring; unobtrusive monitoring

1. Introduction

Stress is a normal organism response to changing environmental conditions, as defined by Selye [1].
In [2], Selye differentiated between “dis- and eustress”, or pathological stress (negative, distress) vs.
health-promoting stress (positive, eustress). While eustress helps us deal successfully with everyday
challenges, distress leads to physiological and psychological health problems. In the short term, distress
may result in fatigue, decrease in the ability to work, anxiety, etc. However, chronic stress, which is
one of the fundamental problems of today’s society, may result in irreversible physiological and
psychological shifts that increase, in the long-term perspective, the risk of socially-significant health
problems such as cardiovascular diseases [3,4], obesity [5], diabetes [6], sleep disorders [7,8], different
types of psychosis [9,10] and depression [11]. That is why stress detection techniques may be helpful
tools allowing the prevention of health problems associated with prolonged stress. These methods
should provide scientifically reliable results as well as be comfortable for the user.

At present, to detect stress and estimate its level, numerous psychological questionnaires are
used. The main drawback of their usage is the necessity to interpret results by an expert (professional
psychologist). Moreover, there are stress detection techniques based on measuring physiological
parameters, such as level of cortisol [12,13], event-related brain potential [14], electrodermal activity or
galvanic skin response [15,16], blood pressure [17], heart rate variability (HRV) [18], respiration [19], etc.
The main drawback of these methods is their need for direct contact such as electrodes or sensors with
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the human body or taking saliva samples (in the case of measuring cortisol level), which makes them
inappropriate for everyday usage.

Some stress detection methods are based on analyzing information about pupil diameter [20],
eye movements [19] and facial expression [21] extracted from the video data. In comparison to contact
methods, these are much more comfortable for the user; however, they are known to be extremely
sensitive to lighting conditions as all methods are based on analyzing data from video cameras.
Therefore, the reliability of their results is questionable.

Furthermore, there are mobile applications and wearables that claim to be able to monitor mental
stress [22]. For the majority of them, the main limitation is that they only consider HRV registered
by a smartphone camera. Moreover, in the majority of cases, there is no data about the accuracy of
HRV and stress detection algorithm verification in realistic conditions for these apps, which reduce the
confidence held in the reliability of the results.

One of the methods that can be used for prolonged daily unobtrusive stress detection and
monitoring is the bioradar technique [23]. This method has been known since the 1970s [24,25]. It is
based on the modulation of a radar probing signal reflected from the human by the movement of
a body’s surface, which may be caused by respiration, heartbeat, vocalization, gut motility, limb
movements, etc. The main advantage of bioradiolocation is its non-contact nature, since any direct
physical contact with the user is not required. Over the last decade, the scientific community
and manufacturers have experienced a growing interest in non-contact methods thanks to its high
acceptance by patients and users [26].

Research activities dealing with the application of bioradars for the estimation of user’s
psychophysiological states and detection of mental stress have been carried out at the Remote Sensing
Laboratory of Bauman Moscow State Technical University (BMSTU) since 2011 [27,28].

It should be noted that, until now, the majority of work dealing with the monitoring of a human
psychophysiological state by means of bioradars has been mainly focused on bioradar signal processing,
which allows the registration of heartbeat and respiration patterns [29–31]. In the present paper,
we propose using the features of vital signs registered by bioradar for detecting the presence of
external stress factors by analyzing them.

This paper deals with two main challenges that arise while applying the proposed technique
in realistic conditions and suggests methods for their solution by using the experience of previous
works along with new experimental data. The first one is caused by a high impact of the subject
orientation toward radar on the level of the desired signal and the accuracy of the estimation of
vital signs. The second challenge is determined by the variability of subjects’ reaction to a stressor,
which depends on the level of individual stress tolerance.

The purpose of the present study was to investigate the advantages of utilizing a multi-transceiver
system on the accuracy of psychophysiological state monitoring by means of a bioradar technique.
This is explicitly due to the capability of such bioradar architecture to overcome one of the challenges
that arise while applying the proposed technique in realistic conditions, which is a high impact of the
subject orientation toward radar antennae on the level of the desired signal and the accuracy of the
estimation of vital signs from previous works [32]. The novelty of the present work lies in the proposed
architecture of the bioradar using two transceivers, which allows the observation of the subject from
different angles, and thus increases classification accuracy compared to using a standard bioradar with
a single transceiver. Moreover, the present paper discusses the method to overcome another challenge
of using a bioradar for stress detection, which is determined by the variability of subjects’ reaction to
a stressor due to individual stress tolerance.

2. Materials and Methods

2.1. Experimental Setup

The architecture of the bioradar used in the present work is shown in Figure 1.
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Figure 1. Two-channel bioradar scheme.

The bioradar was designed using two single-chip, high-sensitivity, dual-channel transceivers
K-LC5 (RFbeam) [33], a photo of which is shown in Figure 2. The transceivers operate at a frequency of
24 GHz and provide output signals of two quadratures (I and Q). To prevent interference between the
probing signals of two transceivers, we use VCO input of the second transceiver to make the probing
frequency 24.2 GHz. As the K-LC5 sensors do not have an integrated amplifier, we designed a variable
gain amplifier adapted to monitor human vital signs by limiting bandwidth to around 0.1–15 Hz.
The gain can be adjusted in the range of 0–30 dB, depending on the range to the examinee and his
orientation towards the transceiver antenna.

Figure 2. K-LC5 transceiver [33].

As an analog-to-digital converter (ADC), we used a higher-precision ADC ADS1115, which provides
16-bit precision at 860 samples/second over I2C and can be configured as four single-ended input channels.
As a micro-controller (MC) board, an Arduino UNO board was used, which sent the data registered by
the bioradar via Serial Port to the personal computer (PC) for further off-line analysis.

The maximum power density radiated by the radar is less than 3 μW/cm2, which satisfies the
Russian standard for microwave emission, which is 25 μW/cm2 in the frequency range 3–300 GHz (for
24 h exposure).

2.2. Description of the Experimental Procedure

Experiments were conducted to determine whether the usage of a bioradar with two spaced
transceivers increases the accuracy of detecting mental and physical stress in humans as compared
to a single transceiver bioradar and to evaluate the corresponding accuracy gain. Using spaced
transceivers should allow the observation of a biological object from different angles, which results in
different amplitude levels of a received signal. Moreover, such architecture allows separating the vital
signs patterns of two different, simultaneously observed humans if needed, which is described in [34].

During the experiment, a subject sat in front of the bioradar at a distance of 0.5–1.0 m from the
antennas. The distance to the subject varied depending on the individual anthropomorphic features of
the subject and the way he/she sat in the chair during the experiment. Each transceiver was oriented
to the surface of the examinee’s chest, and the distance between centers of the transceiver antennas
was 0.3 m. The scheme of the experiment is given in Figure 3.
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Figure 3. Scheme of the experiment.

Experiments were carried out at BMSTU from March to April 2018. For the experiments involving
human participants, an ethical approval was obtained on 1 March 2018 from the ethics committee of
BMSTU. The test population of 35 young healthy adults consisted of 14 males and 21 females in the
age group of 19–22 years. All subjects gave their oral as well as written informed consent prior to the
start of the experiments. In addition, each volunteer provided information about his/her individual
fitness state, which may affect an organism individual reaction to stress. Four examinees turned out to
be athletes.

In the previous work [35], we found that estimates of vital signs made by bioradars are less
accurate for overweight people than for people with a normal weight. This is reasonable because the
movements of the subjects’ thorax caused by respiration and heartbeat are damped by a subcutaneous
fat layer. That is why, in the present work, height and weight measurements were taken for each
subject prior to the experiment to calculate their Body Mass Index (BMI). Information about the studied
subjects is given in Table 1.

Table 1. Information about the studied subjects.

Dataset Characteristics Values

Male : Female 14 : 21
Age (Years) 20.1 ± 0.6 (19–22)

Body Mass Index (kg/m2) 22.0 ± 3.6 (17.4–30.4)
Respiration rate (breath per minute) 16.9 ± 5.0 (7–36)

For each volunteer, experiments of three of the following types were carried out.

• Calm breathing test: During this test, an examinee was asked to sit relaxed and breathe normally.
If the subject was in a state of psycho-emotional agitation, then vital signs estimation should be
performed only after the respiratory and heart rates dropped stationary levels, which corresponded
to the calm state of the examinee. It took, in general, between 1 and 2 min for vital signs to stabilize
after the beginning of the experiment as shown in [27]. That is why, to prevent the influence of the
psycho-emotional agitation of some examinees at the start of the experiment, 2 min were added to
the experiment duration. In total, calm breathing test lasted for 5 min; however, only the last 3 min
of data were used in further analysis.

• Mental workload test: The volunteer was asked to perform a mental arithmetic task, which was
more complex that the one from our previous papers dealing with mental stress monitoring [27,28].
The usage of a more complex arithmetic task was needed to present a challenge that resulted
in a physiological response (increasing of cerebral oxygen consumption) in the examinees.
The duration of this experimental stage was 3 min for each subject. We did not use standard
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stress-inducing procedures such as the Trier social stress test because it requires communication
with the examinee during the experiments, which may significantly reduce the quality of useful
signals registered by the bioradar.

• Exercise tolerance test: Each volunteer was asked to perform some physical exercises (30 bobs or
plank exercise for 1 min). After that, the examinee’s vital signs were registered by a bioradar for
3 min.

2.3. Signal Processing Technique

The bioradar signal processing algorithm used in the present work was designed utilizing
Matlab2018a. It consisted of pre-processing and classification algorithms. The former is required for
accurate extraction of the features that are used by the latter for detection of stress.

2.3.1. Pre-Processing Algorithm

The scheme summarizing the steps of the signal pre-processing algorithm is depicted in Figure 4.

Figure 4. Scheme of the pre-processing algorithm.

The first stage consists of the baseline trend and movement algorithm suppression. These tasks
are performed utilizing a highpass Butterworth filter with a cut-off frequency of 0.05 Hz for baseline
trend filtering, and the algorithm proposed in [36] for movement artifact (MA) removal. In Figure 5,
raw quadratures delivered by a single transceiver with the detected movement artifact are shown.
After that, the examinee vital signs were registered by a bioradar for 3 min. The artifact periods were
excluded from further analysis of the signal.

Figure 5. Raw bioradar quadratures.

The second stage deals with the selection quadrature for further analysis over the I and Q channels
for two transceivers. As is known, in realistic conditions, phase demodulation of two quadratures
received by the radar does not always provide good results due to the clutter caused by reflections
from surrounding objects and the walls of the room where the examination takes place. Thus, in the
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present work, we did not use phase demodulation. Instead, we picked one quadrature with a higher
peak-to-peak variation for each transceiver. Selected quadratures were used for further analysis.

After that, respiration and heartbeat patterns were extracted from chosen quadratures by
sixth-order bandpass Butterworth filters with bandwidth [0.05; 0.7] Hz and [0.7; 2.0] Hz, respectively.

After filtration, peaks and troughs were detected in extracted respiration and heartbeat patterns
by a search of local maximums and minimums using the function findpeak from Signal Processing
Toolbox in Matlab. Peaks were detected as turning points in the signal with the minimum distance of
0.5 s and 1.5 s for heartbeat and respiratory patterns, respectively. In Figure 6, the respiration signal
filtered from the chosen quadrature is shown. Moreover, the ends of inhaling and exhaling phases,
corresponding to the local minimums and maximums of the filtered signal, are depicted.

Figure 6. Respiration pattern with detected peaks and troughs.

Time and frequency domain features of respiration and heartbeat patterns filtered from the
bioradar signal were extracted for further classification.

Time Features: The number of positive peaks was computed in a time window of 30 s and 10 s
to estimate respiration and heartbeat rates, respectively. For these variables, the average, median,
Inter Quartile Range (IQR), median-IQR rate, variance and skewness were computed. In addition,
we estimated the same parameters for respiration circles (intervals between peeks), exhaling (time
between peaks and troughs) and inhaling (time between troughs and peaks) periods. For more details,
see Figure 7.

Figure 7. Time features for respiration pattern: respiration circle (a), exhaling (b) and inhaling
(c) intervals.

Frequency Features: The average respiration and heartbeat frequencies were detected by frequency
spectrum analysis. A standard Matlab function providing Discrete Fourier Transform was used for
this purpose. Estimation of respiratory and heartbeat frequencies was done in a time window of 30 s
and 10 s, respectively, by detecting a global maximum in a frequency spectrum in corresponding
filtered signals. Such widths of time windows allow considering the analyzed fragments as being
quasi-stationary.
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2.3.2. Classification Algorithm

To discriminate between the calm breathing test and workload of different types (mental and
physical), we used a support vector machine (SVM) classifier with a linear kernel realized in MATLAB.
We chose this classifier because it showed the best performance using the cross-validation k-folds
technique with k = 5 , which was applied to prevent overfitting.

3. Results

The classifier was trained to distinguish between the calm state of the examinee and his/her state
under mental or physical stress. Firstly, training was carried out using features extracted from data
recorded by transceivers No. 1 and 2 (Ftr1 , Ftr2, respectively) independently. After that, the same
was done using a superposition of features for both transceivers (Ftr1&2). To estimate the performance
of the proposed classifier, the confusion matrix and accuracy were calculated. The results listed
below show how usage of additional transceivers may help to improve the accuracy of examinees
psychophysiological state classification.

3.1. Classification Calm State/Mental Workload

Table 2 presents the results of classification of steady state/mental stress for using data for
a transceiver No. 1. In Table 3, the accuracies of classifiers trained on Ftr1, Ftr2, and Ftr1&2 are listed.
It can be seen that the accuracy of the classifier using features for both transceivers Ftr1&2 is slightly
higher than for classifiers using features for a single transceiver.

Table 2. Classification results for transceiver No. 1.

Predicted Class

Steady State Mental Stress

True Class
Steady state 26 9

Mental stress 9 26

Accuracy, %

Sensitivity, % 74.3

Specificity, %

Table 3. Steady state/mental stress classification results.

Ftr1 Ftr2 Ftr1&2

Accuracy, % 74.3 64.7 77.5

The classifiers’ relatively low accuracies (less than 80% ) were caused by nine ”outliers”;
persons whose reactions to the mental stress was completely different from the other 26 subjects.
Their cardiorespiratory system reacted by increasing frequencies of respiration and heartbeat.

Four outliers were experienced swimmers, which is why their cardiorespiratory system
responded to the mental workload by increasing amplitudes of respiratory and heart muscles
contractions, while the frequencies of these processes remained mostly unchanged, which is typical for
trained persons.

Five other outliers had tachypnea. Their respiration rate during the calm breathing test was
higher than 0.5 Hz, which is known to be too high for normal calm breathing. These examinees’
respiration and heartbeat systems react to the mental workload by decreasing the analyzed vital signs
frequencies. Moreover, eight out of nine outliers had BMI > 25, which may cause less accurate detection
of respiration and heartbeat patterns, and thus influence the classifier accuracy.
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The re-trained classifier for experimental dataset without nine outliers showed much better
performance (Table 4) than the previous one (88.5% for dataset without nine outliers vs. 77.5% for
the whole dataset). Moreover, it should be noted that using classification data for both transceivers
resulted in higher accuracy than the same estimation using singe transceiver data (88.5% vs. 84.6% ).

Table 4. Steady state/mental stress classification results (dataset without nine outliers).

Ftr1 Ftr2 Ftr1&2

Accuracy, % 84.6 78.8 88.5

3.2. Classification Calm State/Physical Workload

Table 5 presents the results of classification of steady state/physical stress using Ftr1, Ftr2,
and Ftr1&2. It can be seen that the accuracy of classifiers using features for both transceivers Ftr1&2 is
higher than for classifiers using features for a single transceiver (Ftr1 and Ftr2).

Table 5. Steady state/physical stress classification results.

Ftr1 Ftr2 Ftr1&2

Accuracy (dataset for all 35 examinees), % 69.1 73.5 77.9
Accuracy (dataset without 9 outliers), % 75.0 80.8 82.7

4. Discussion

Psychophysiological state monitoring provides a promising way for detecting stress and accurate
assessment of wellbeing. The major advantage of the proposed technique, compared to other stress
detection methods, is its unobtrusive nature that does not require any direct contact between the
device and the person. The technique was tested in laboratory conditions with the participation of
35 young, healthy volunteers who were asked to perform arithmetic and physical workload tests
that imitated different types of stressors. The information about variations of vital signs registered
by a bioradar with two transceivers was used to detect mental or physical workload. The usage of
two transceivers provides the benefit of observing a subject from different angles, which results in
increasing classification accuracy as compared to using a bioradar with a single transceiver. A drawback
of the proposed approach might be given by the increasing complexity of the device architecture.

The analysis of the experimental results showed that the physiological responses to mental and
physical workload differ for trained and untrained persons as well as for persons with tachypnea.
This individual specificity of physiological responses to mental and physical workload makes the
creation of a universal stress detector suitable for people with different level of stress tolerance
a challenging task. One of the possible solutions of this issue may be training different classifiers for
athletes and non-athletes without tachypnea. In the present paper, using such an approach allows
increasing accuracy for classification of the calm state/mental workload from 78% to 89% as well as
increasing AUC values (Figure 8).

The achieved results should be accepted with caution because the experimental data used for the
classifier training are only for young, practically healthy examinees. The relatively low number of
volunteers who were declared to be athletes or having tachypnea does not allow the training of the
classifier for these groups; however, in the future, we are planning to enrich the experimental dataset
and add heuristics to make the classifier consider individual information of the person (BMI, chronic
tachypnea, etc.), which should increase the accuracy of psychophysiological monitoring.

The work might contribute to the development of a noncontact system for evaluating individual
reactions of a user to mental stress factors in everyday life.
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In future work, it is planned to extend the research to the evaluation of different stress levels using
standard stress-inducing procedures. This activity will be carried out in cooperation with psychologists
and medical researchers from Lomonosov Moscow State University (Moscow, Russia).

Figure 8. ROC curve of the calm state/mental workload classifier for the whole dataset (1), and for
non-athletes dataset (2).

Funding: The reported study was funded by RFBR according to the research project No. 18-29-02013.

Acknowledgments: The author would like to thank A. Turetskaya and K. Kaleyeva for their help with conducting
the experiments.

Conflicts of Interest: The author declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ADC Analog-to-Digital Converter
AUC Area Under the Curve
BMI Body Mass Index
BMSTU Bauman Moscow State Technical University
HRV Heart Rate Variability
I2C Inter-Integrated Circuit
MA Movement Artifact
MC Micro-Controller
PC Personal Computer
ROC Receiver Operating Characteristic
SVM Support Vector Machine
VCO Voltage-Controlled Oscillator
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Abstract: Currently, breast cancer often requires invasive biopsies for diagnosis, motivating
researchers to design and develop non-invasive and automated diagnosis systems. Recent microwave
breast imaging studies have shown how backscattered signals carry relevant information about
the shape of a tumour, and tumour shape is often used with current imaging modalities to
assess malignancy. This paper presents a comprehensive analysis of microwave breast diagnosis
systems which use machine learning to learn characteristics of benign and malignant tumours.
The state-of-the-art, the main challenges still to overcome and potential solutions are outlined.
Specifically, this work investigates the benefit of signal pre-processing on diagnostic performance,
and proposes a new set of extracted features that capture the tumour shape information embedded
in a signal. This work also investigates if a relationship exists between the antenna topology in
a microwave system and diagnostic performance. Finally, a careful machine learning validation
methodology is implemented to guarantee the robustness of the results and the accuracy of
performance evaluation.

Keywords: machine learning; automated breast diagnosis; microwave imaging

1. Introduction

1.1. Motivation

Microwave Breast Imaging (MBI) for breast cancer detection has seen significant academic and
commercial development in recent years. At least 4 studies have reported findings from clinical
trials [1–7], indicating that MBI has the potential to match state-of-the-art breast imaging methods,
such as mammography. To date, the main goal of microwave imaging and signal processing algorithms
has been the detection of tumours, i.e., to identify the presence of tumours within the breast, as shown
by the literature in the area [8–12].

The development of automated breast diagnosis systems is relevant to the clinical environment,
particularly considering recent reports showing minimal benefit of continuous mammographic
screening in terms of long-term survival rates [13,14]. Many automated breast diagnosis systems have
been proposed, and usually integrate signal or image pre-processing and segmentation, and diagnosis
through machine learning [15,16]. Such systems have proved useful in aiding clinicians diagnose
breast cancer, as they can identify features in a signal or image that may otherwise be missed through
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visual inspection. Automated diagnosis systems for microwave breast systems could play a key role in
further establishing MBI as an early-stage breast cancer screening and monitoring method.

In the context of microwave breast diagnosis, a number of possibilities theoretically allow
diagnosing breast tumours as benign or malignant. For example, the presence of microcalcifications
in areas of the breast representing malignancy [17–20] and the difference in the dielectric properties
between benign and malignant breast tumours [2,21]; however, further investigations characterising
microcalcifications, and benign and malignant tissues in the microwave range are needed before
microwave diagnosis systems based solely on these properties are viable. Finally, the shape and
spiculation of tumours are widely recognised markers for their malignancy [22–25].

Benign tumours are roughly elliptical and usually have well circumscribed margins,
and malignant tumours have irregular shapes and are surrounded by a radiating pattern of spikes,
commonly referred to as spicules [22–26]. Previous studies have already shown how microwave
backscattered signals may change if tumours of different sizes or shapes are present within the
breast [27–38]. These studies have also demonstrated that classification and machine learning
algorithms are able to learn from the shape differences in backscattered signals, albeit in relatively
simple datasets. It is yet to be determined whether the performance of classification algorithms is
adequate in clinically-complex scenarios.

This paper presents a comprehensive analysis into the fundamentals of microwave breast cancer
diagnosis—as opposed to detection—systems. The main challenges are addressed, such as those arising
from complex backscattered signals and appropriate machine learning methodology, and potential
solutions are identified to overcome them. This work investigates, for the first time, whether
a relationship exists between the predictive power of backscattered signals and the distribution
of antennas in a microwave scan.

In the remainder of Section 1, the findings from previous studies using machine learning with
microwave technology are reviewed in Section 1.2, and the main challenges still to be addressed
in diagnosing breast tumours with microwaves are discussed in Section 1.3. The methodology is
discussed in Section 2, which proposes a three-stage diagnosis system for addressing some of the
primary challenges. The results are listed in Section 3 and Section 4 discusses and concludes the study.

1.2. Machine Learning and Microwave Technology: State-of-the-Art

With microwave breast prototype systems, a patient may sit or lie down while the breast is
illuminated with low energy microwaves, and the resultant backscattered signals are recorded.
In principle, it is possible to diagnose the type of tumour (benign or malignant) by examining the
backscattered signals and recovering the tumour signature therein contained; in fact, previous studies
indicate that backscattered signals may change if tumours of different sizes or shapes are present
within the breast. In this section, a review is presented of the most significant studies to date to propose
the use of machine learning to diagnose breast tumours based on their signatures.

In [29–32], several feature extraction methods (principal component analysis, discrete wavelet
transforms, and independent component analysis) were used in combination with different classifiers
(linear discriminant analysis, quadratic discriminant analysis, and supoprt vector machines) to
diagnose breast tumours with backscattered signals. The analysis was based on numerical breast
models composed mostly of adipose tissue; tumours were modelled with several sizes and shapes,
and were located in the centre of the breast. These studies showed promise in using backscattered
signals to diagnose tumours, and suggested that classifying tumour size ahead of tumour shape may
improve diagnostic performance.

The suitability of neural networks to classify backscattered signals was also assessed.
A combination of genetic algorithms and neural networks with discrete wavelet transforms was
proposed in [33,34], and tested on a similar numerical dataset to the study above. As before, diagnostic
performance was improved by separating tumours based on their size ahead of classification, and by
investigating which transmit-receive antenna pairs provide the most useful information.
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The same numerical dataset was also used in [35] to investigate the potential of self organising
maps to track the development of a tumour from a benign state to different levels of malignancy.
This study showed promise in distinguishing between different shapes of tumours.

In 2015, the authors of the present paper investigated the effect of signal pre-processing
on diagnostic performance, by windowing the backscattered signal to contain only the tumour
signature [38]. Clinically-realistic breast models were derived from the University of Wisconsin
Computational Electromagnetics (UWCEM) repository [39], and tumour models of several sizes and
shapes were located in various positions within the breast. The classification framework relied on
principal component analysis in combination with support vector machines. The authors noted that
the windowing methodology helped improve diagnostic performance when examining more complex
and heterogeneous breast models.

Experimental datasets have also been used to assess the performance of diagnosis systems,
namely by using principal component analysis in combination with support vector machines,
linear discriminant analysis and quadratic discriminant analysis. In [36,37], tumour phantoms with
various sizes and shapes were immersed in a breast phantom with dielectric properties matching
those of adipose tissue. Importantly, the experimental results presented in these studies are in general
agreement with previous numerical data.

The breast tumour diagnosis studies summarised in this section indicate that the shape of a breast
tumour influences its signature within a backscattered signal, potentially allowing machine learning
models to learn how to distinguish between benign and malignant tumours. These studies have
also looked at the effect of intelligently using the most informative transmit-receive antenna pairs.
In addition, these studies have concluded that it is beneficial to separate tumours according to size
before final diagnosis, and also, that further signal pre-processing methodologies should be explored
when dealing with more complex breast models, for example, breast models with increased content of
glandular tissue.

Additionally, other authors have implemented comparable machine-learning approaches for
detection, i.e., to determine whether a tumour is present in the breast [40–49]. While an in-depth
review of the detection studies based on machine learning performed to date is beyond the scope of this
work, their main findings are summarised here for completeness. Detection studies indicate that there
is sufficient information in the backscattered signals to inform about the presence of a tumour. These
studies show that detection performance can be improved by using differential signals which highlight
the tumour signature and by extracting time-frequency features of the signals ahead of classification.
Similarly to the diagnosis studies discussed above, selecting the transmit-receive antenna pairs with
the most meaningful classification information also seems to positively impact detection performance.

1.3. Challenges with Microwave Breast Diagnosis Systems

In the previous section, a review was presented of the main microwave studies that use machine
learning to diagnose breast tumours as benign or malignant. In this section, the remaining challenges
in the development of microwave breast diagnosis systems are discussed, as well as potential
solutions, from two perspectives: addressing the complexity of backscattered signals gathered in
clinically-realistic conditions; and developing a validation methodology for the classification models.

1.3.1. Complexity of Clinically-Realistic Data

Benign and malignant tumours may present a wide range of sizes, shapes and spiculations at their
margin, which can change the backscattered energy received at a given antenna. In addition, the shape
of the human breast changes from person to person, and so does the distribution of adipose and
glandular tissues inside the breast, which effectively alters the attenuation along each propagation path.
This diversity leads to equally diverse backscattered signals, making the design of a single platform
for diagnosis a complex task. Some of the challenges related to breast and tumour composition can be
summarised as follows:
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(i) Difficulty in capturing the tumour signature from the backscattered signal due to: (1) presence
of skin, the response of which can be orders of magnitude larger than the tumour signature;
(2) presence of glandular tissue clusters, which can be confused with tumour tissue, due to
similarities in composition (water content and generally higher dielectric properties); (3) tumours
can occur in different locations within the breast, embedded in various breast structures.

(ii) Differences in the tumour signature for a given transmit-receive antenna pair due to: (1) tumours
of different shapes, meaning antennas in different locations have a different view of the tumour;
(2) various angles between transmit and receive antennas, which can affect the phase of the tumour
signature; (3) varying distances between the antennas and the edge of the tumour.

Particularly regarding Section 1.3.1, a number of strategies have already been proposed in
previous studies. Artefact removal algorithms have been proposed, which deal with large skin
reflections and decrease the glandular tissue influence on the backscattered signals, for example [50,51].
As mentioned in Section 1.2, previous studies have also suggested that: pre-processing signals by
means of windowing could highlight and time-align the tumour signature [38]; extracting features
based on time-frequency representations of the data could further capture the essence of the tumour
signature while disregarding the background noise [48,49]; and classifying a dataset according to
tumour size before attempting at classification based on the level of malignancy [29–31,33].

Concerning Section 1.3.1, while some studies have observed an improvement in diagnostic
performance by restricting the classification to the backscattered signals captured with the most
informative transmit-receive antenna pairs [33,41,43,45–47], no thorough investigation of optimal
antenna topology and optimal use of the information from each channel was found in the literature.

A further set of challenges exists in translating microwave breast diagnosis systems to
experimental and clinical evaluation: patient positioning and movement; intra-patient variation due to
menstrual cycle and hormonal changes; inter-patient variation in breast size, shape and composition.

1.3.2. Challenges in Building Robust Machine Learning Classification Models

Ideally, a machine learning algorithm trained with a particular dataset should be generalisable
to new, unseen datasets. Common practice is that a model should first be trained on a subset of the
data, and then tested on another unseen subset of the data. The training set should be as large as
possible, to minimise the variance in training the model, but the unseen subset of the data should also
be representative of the original dataset, so the performance evaluation is meaningful.

However, performance evaluation commonly observed in the literature is prone to variations in
approach, and often some degree of error, leading to overly-optimistic performance reports. Poor model
validation is often due to: (1) overfitting of the learning model during the training phase; (2) overfitting
during model selection; and (3) contamination of the information across the dataset.

Cross-validation has long been regarded as a good method to prevent overfitting of the model
during training, and it is widely used as the basis for model selection. However, it has also been
shown that using the performance obtained from cross-validation during model selection as the overall
performance of the model might be overly-optimistic, and not generalisable. This effect is often referred
to as selection bias [52,53].

Careful construction of a machine learning-based system should also consider the type of
pre-processing and feature-based algorithms applied to the original dataset. As noted in the previous
section, the extraction of features from the original dataset could be key to diagnostic performance;
however, pre-processing or feature-based methods could also play a part in the contamination of
information between the training and test sets. Typically, to prevent contamination, any method
involving computation of the relationship across multiple observations, should first be applied to the
train set, and the training transformations should then be applied onto the test set.

Many of the issues listed above have not been explicitly addressed in previous studies
proposing detection or diagnosis algorithms through machine learning for microwave breast systems.
Implementing careful and consistent methodologies for model validation and performance evaluation
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should, however, become best practice. Ultimately, creating learning models without proper validation
methodologies could compromise the usability of microwave breast diagnosis systems.

2. Materials and Methods

In this study, the authors have implemented an integrated methodology of detecting and
diagnosing breast tumours using backscattered signals. The proposed methodology is 3-fold,
comprising data acquisition, data processing and diagnosis. The overall diagnostic architecture
is depicted in Figure 1.

Figure 1. 3-stage diagnosis platform implemented in this study. Stage 1 consists of data collection in
a microwave breast prototype. Stage 2 consists of data processing by means of tumour windowing
(TW) and feature extraction (FE); the relative importance of each algorithm is compared by applying
TW in combination with FE, or TW only, or FE only. Stage 3 is the diagnosis stage, which uses random
forests as the classifier, includes an antenna grouping algorithm, and ends with a final diagnosis of
benign or malignant.

Stage 1 consists of the microwave breast scan. To address some of the issues in dealing with
clinically-realistic datasets (as highlighted in Section 1.3.1), a data processing stage was implemented
next (Stage 2), comprising a tumour windowing approach to select signal segments of interest,
combined with feature extraction. The relative benefits of both algorithms are analysed by comparing
the diagnostic performance of applying one of the following: only tumour windowing; only feature
extraction; tumour windowing in combination with feature extraction, i.e., feature extraction performed
after the tumour signature is windowed from the original backscattered signal.

Stage 3 consists of the diagnosis and encompasses classification of the dataset through a range
of techniques, including random forests, antenna grouping, and final decision as benign or
malignant. The authors explore the concept introduced in previous studies that some channels
(i.e., transmit-receive antenna pairs) might be more useful to improve diagnostic performance,
by implementing three classification models, where each classification model makes different use of
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the information from each channel. The three classification model types will be described in greater
detail in Section 2.3.2. With the algorithms implemented in Stage 3, this study aims to understand:
(1) if the angular distance between the transmit and receive antennas in a channel determines its
predictive power; (2) if the distance between the tumour and the channel has an impact on diagnostic
performance; (3) finally, how to better use the information from each channel while adhering to best
machine learning practices. In addition, a careful model validation methodology was implemented
in Stage 3, to prevent issues like the ones detailed in Section 1.3.2. The three stages of the proposed
microwave breast diagnosis platform will be described in greater detail in the following sub-sections.

2.1. Microwave Scan—Breast and Tumour Modelling and Electromagnetic Simulation

For the purposes of this study, a numerical dataset of breast and tumour models was created
through electromagnetic simulation with the Finite-Difference Time-Domain (FDTD) formulation.
This method is well-established in the literature and widely used in the field of microwave breast
cancer imaging to model the propagation and scattering of microwave signals within the breast [54].

MRI-derived breast models were taken from the repository created by the UWCEM laboratory [39].
All breast models in the repository are mapped to the dielectric properties of normal and malignant
breast tissues as established by Lazebnik et al. [55]. In total, 3 heterogeneous breast models were
used in this study. In terms of percentage composition, the breast models used in this study range
between 1% to 27% of glandular tissue by volume of breast, with the remainder percentage of tissue
corresponding to adipose tissue.

For the creation of tumour models, the clinically-informed tumour modelling algorithm previously
developed by the authors [56] was used to generate 72 unique tumour models, with average sizes
ranging from 6 mm to 20 mm in diameter. Several degrees of spiculation were used to create tumours
grouped into two distinct classes: smooth borders to represent benign tumours (with 0 ≤ s ≤ 0.25),
and spiculated borders for malignant tumours (with 0.50 ≤ s ≤ 0.90), where s is the spiculation
parameter from [56] with 0 ≤ s ≤ 1. The tumours were placed in 5 different positions within the
breast as described in medical reports, corresponding to locations in the four breast quadrants and the
central portion.

The electromagnetic measurement system was modelled with a concentric ring of
equally-distanced 12 Hertzian dipole antennas around the breast in a fully multistatic setup
(which means the angle between two adjacent antennas is 30°. Each antenna element is modelled as an
electric current source. The antennas were immersed in a medium with dielectric properties equivalent
to those of adipose tissue. The FDTD simulations were performed using a differentiated Gaussian
pulse with centre frequency of 6 GHz and a −3 dB) bandwidth (of 6 GHz). The spatial resolution of the
system is 1 mm, and the sampling frequency is 600 GHz. Additionally, a reference simulation was also
performed. This reference signal is later used to remove antenna effects in the backscattered signals
from simulations of the full breast with tumours.

Figure 2 displays a schematic representation of the acquisition setup designed for FDTD
simulation in this study, where the antennas are represented by the black diamonds surrounding the
breast. A coronal slice of one of the breast models used in the study is shown, including fibroglandular
tissue in the interior, and a malignant tumour in one of the lower quadrants (the spiculated shape in
black). To aid the visualisation of the setup, the path from one transmitting antenna (Tx) to the tumour
and from the tumour to the receiving antenna (Rx) is shown in dash and dot-dash lines, respectively.

With the proposed setup, one microwave breast scan is composed of backscattered signals
collected from 78 independent channels. In total, 1080 microwave scans were performed (3 breast
models each combined with 72 tumour models in 5 different positions within the breast). A dataset
containing a total of 84,240 backscattered signals is used in this study.
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Figure 2. Representation of the acquisition setup designed for this study, where the antennas are
represented by the black diamonds surrounding the breast. A coronal slice of one of the breast models
is shown; the breast has fibroglandular tissue in the interior, and a malignant tumour in one of the
lower breast quadrants (represented by the black spiculated shape). The path from one transmitting
antenna (Tx) to the tumour and from the tumour to a receiving antenna (Rx) is shown in the dash and
dot-dash lines, respectively; the 30° angle between two adjacent antennas is also shown.

2.2. Data Processing

This section describes the processing methods used to prepare the data ahead of classification.
Two methods are used to process the backscattered signals, either by means of tumour windowing or
feature extraction.

2.2.1. Tumour Windowing

In this paper, the authors expand on the tumour windowing concept initially proposed in [38].
Once the tumour location is identified, the round-trip propagation delay between the tumour and
each channel is calculated, based on the average propagation speed through three media: immersion
medium, skin and interior of the breast; the estimated tumour response is then windowed from the
backscattered signal. In this paper, the ideal tumour location is used. The approximate window length
was decided empirically. Visual assessment of a subgroup of backscattered signals gathered with
different tumour models embedded in breast models with varying background contents found that
a window length of 2.5 times the pulse width is appropriate to extract the full tumour response from
the signals.

The propagation delay is highly dependent on the average dielectric properties of each medium;
consequently, reflections yielding from different tumours propagating through different paths will
be hard to align. To compensate for this effect, the windowing algorithm looks for the peak energy
in each backscattered signal, and time-aligns the tumour responses on this basis. Each windowed
tumour response is finally downsampled to a sampling frequency of 30 GHz. After downsampling,
the window length of the tumour signatures consisted of 60 time samples.

By implementing the proposed tumour windowing algorithm: the reflection from the skin is
eliminated; a high level of clutter resulting from the glandular clusters is potentially removed; signals
collected from different channels are time-aligned. As a result, the tumour response is isolated,
potentially simplifying the task given to the classification algorithm. To compensate for antenna effects
in the signals, an artefact removal step can be performed prior to windowing.

When only tumour windowing is applied during Stage 2 of the 3-stage diagnosis platform
(Figure 1, TW), the windowed time-domain signatures are treated as independent observations,
which are then passed as input to the classification model.
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2.2.2. Feature Extraction

Feature extraction is frequently applied to capture meaningful information embedded in a signal,
and is helpful in reducing the dimensionality of the problem when compared to the original data.

Visual analysis of backscattered signals reveals that benign tumours result in signals that tend
to preserve the original morphology of the gaussian peak, while malignant tumours result in more
irregular signals, due to increased reflections from tumour spicules. Therefore, this paper examines
the use of a set of features that capture signal morphology and frequency content for diagnosis.
The proposed feature extraction method relies on peak analysis of different time and frequency
representations of the original data, where each group of features is calculated for the signal collected
by each channel of each scan. As the extraction of features is done independently on each observation,
no calculations are made across the dataset and between tumour signatures, which prevents accidental
data contamination issues, as those described in Section 1.3.2.

By way of example, Figure 3 displays some of the differences identified by visual analysis of
benign (Figure 3a) and malignant signatures (Figure 3b). The signals were collected under ideal
conditions to highlight the potential differences between types of tumours, with an adipose-only
breast model; for both tumour types, two tumour models were simulated of different sizes and
shapes. The resultant signals have been time-aligned and windowed. As observed in Figure 3a,
the backscattered signals from the benign tumour models exhibit little distortion and the original
Gaussian shape is preserved well; conversely, in Figure 3b, the malignant tumour models result in
backscattered signals with a higher level of waveform distortion.

(a) (b)

Figure 3. Example of tumour signatures from benign tumour models (a) and malignant tumour
models (b), captured in ideal conditions, with a fully adipose breast model. In (a), the benign tumour
signatures are smooth, and the shape of the gaussian curve is preserved to a reasonable extent; In (b),
the malignant tumour signatures are subject to a greater degree of irregularity, exhibiting an increased
number of peaks.

In total, 30 features were extracted from each signal, divided into four sub-groups, as shown
in Table 1. If feature extraction is performed on the original backscattered signals, the method is
referred to as FE; if feature extraction is performed after the backscattered signals have been processed
with the tumour windowing algorithm, the method is referred to as TW + FE.
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Table 1. Description of all 30 features used in this study, divided into four sub-groups: Time-domain
features, Autocorrelaton features, Power spectral density (PSD) features based on Welch’s method,
and PSD features using the periodogram method.

Time-Domain Features, Calculated From the Windowed Signals

#1–#4 Amplitudes and locations of the maximum positive and negative peaks
#5 Variance

#6 Root-mean-squared error
#7–#8 Number of positive and negative peaks

#9–#10 Mean amplitude of the positive and negative peaks
#11–#12 Mean full-width half-maximum (FWHM) of the positive and negative peaks

#13–#14 Mean separation between positive and negative peaks
#15 Number of zero crossings

#16 Integral of the signal
#17 Integral of the absolute value of the signal

#18 Positive percentage area of the signal
#19 Negative percentage area of the signal

Autocorrelation features, which involves calculating the autocorrelation sequence of each
signal [57,58]. The following features are then extracted from the autocorrelation sequence

#20 Mean value of the autocorrelation sequence
#21 Number of peaks in the autocorrelation sequence

#22 Mean amplitude of the peaks
#23 Mean FWHM of the peaks

#24 Mean separation between the peaks

PSD features—estimate of the psd of the signal, using Welch’s method [59]

#25 Mean value of the Welch estimate

PSD features—estimate of the psd of the signal, using the periodogram method [60,61]

#26 Mean value of the periodogram estimate
#27 Number of peaks in the periodogram

#28 Mean amplitude of the peaks
#29 Mean FWHM of the peaks

#30 Mean separation between the peaks

2.3. Computer Aided Diagnosis

This section describes, in detail, Stage 3 (Diagnosis) of the 3-stage microwave diagnosis platform
described in Figure 1. An overview of random forests, the classification algorithm, is first provided in
Section 2.3.1. Section 2.3.2 describes the three types of classification models implemented in this study.
The antenna grouping algorithm is detailed in Section 2.3.3. The validation methodology is described
in Section 2.3.4, and the metrics to assess diagnostic performance are discussed in Section 2.3.5.

2.3.1. Classification Algorithm: Random Forests

In this study, random forests [62] were implemented to classify backscattered signals as benign
or malignant.

The method of random forests is an ensemble method that essentially works by generating
many single classification trees [63] and outputting the class that is the mode of the classes of all
individual trees. Each tree is grown (i.e., trained) using a randomly sampled subset of observations
and features from the entire dataset. Due to the inherent randomness in the process, the generated
trees are uncorrelated, which ultimately contributes to the algorithm’s low bias and low variance.
Random forests provide generalisable models that tend not to overfit, are quick to run and are easy
to interpret [62].

For the operation of a random forest, one-third of the observations in the original dataset are left
out when training each tree. These observations are referred to as out-of-bag (oob) and are used as
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a separate set to assess the performance error of each tree. The out-of-bag error provides a measurement
of the generalisation ability of the process, which is useful, for example, when optimising the internal
parameters of the random forest. Random forests also allow measuring the importance of each feature
in the training of each tree. In the context of diagnosing backscattered signals as benign or malignant,
a measure of feature importance could provide the means to further refine classification models.

In this study, the following hyperparameters of the random forest were optimised to ensure good
trained models: number of trees, number of features, leaf size. A Bayesian optimisation algorithm was
implemented to perform the search for the best hyperparameters. The best hyperparameters were
deemed to be those yielding the smallest out-of-bag misclassification error (that is, the hyperparameters
yielding the highest accuracy).

2.3.2. Antenna Topology: Types of Classification Models

Although all channels in a given scan may contain information about a tumour, the tumour
signature varies between channels depending on: the location of the tumour relative to the antennas
in a channel; and the relative distance between the transmit and receive antennas in a channel.
The angular distance between transmit and receive antennas in a channel is referred to as channel
angle in the remainder of this work.

This variance in the tumour signatures between channels may impact the performance of the
classification model, as the variance between channels may be as large as the variance between the
signatures of benign and malignant tumours. To explore the significance of intra-channel variance,
three types of classification models were designed, which differ in the way signals from different
channel angles are utilised by the classification algorithm. The three types of classification models are
shown in Figure 4. Differences in the performance of the three types of classification models may help
identify if an optimal antenna pair topology exists in terms of the channel angle, which can ultimately
contribute to improving diagnostic performance.

Figure 4. Description of the three types of classification models implemented: EA (equal angles),
MA (multiple angles) and EAC (equal angles combined). The classification models vary in the way
signals from different channel angles are utilised by the classification algorithm, where Z represents
the channel angle (Z varies between 0° and 180°, and increases in steps of 30°). EA models only classify
signals from a single channel angle. MA models classify signals collected at channels where the transmit
and receive antennas are separated by different angles. Through majority voting, EAC models combine
the predictions from multiple EA models at different channel angles to produce a final diagnosis.

The assumed system architecture is as described in Section 2.1, with one ring of 12 antennas
equally distributed around the breast. Let Z be the angle between the transmit and receive antennas in
a channel; here, Z ∈ [0, 180]°, and Z increases by steps of 30°.
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Equal Angle (EA) classification models only receive information from channels with an equal
angle between transmit and receive antennas. Seven EA models were built to assess if channels with
equal angles contribute to a higher diagnostic performance.

Multiple Angle (MA) models use information from channels where transmit and receive antennas
are separated by different angles. If such a model underperforms, it will serve as an indication
that the information captured by channels with different angles varies significantly, and that the
classification model cannot adequately learn the similarities within benign and malignant tumours
across signals collected at different angles. In total, six MA models were built using all antenna pairs
in the interval [0, i.Z]°, where Z = 30° and i = 1, 2, ..., 6, until all antenna pairs were used.

Equal Angle Combined (EAC) models use all possible EA models (one for each channel angle),
and the predictions from each one are combined (through majority voting) at the end to produce
a final diagnosis. By combining the predictions from each individual model, models which yield
an incorrect result are likely to be disregarded, ultimately contributing to an increase in diagnostic
performance. As before, a total of six EAC models were built using all antenna pairs in the interval
[0, i.Z]°, with Z = 30°, until all antenna pairs were used. Table 2 summarises the models of each type,
in particular the range of angles considered in this study.

Table 2. Summary of the total of number of classification models built for this study, and the channel
angles used in each model. In EA models, only signals from channels at the specified angle are used
in the process. In MA models, all signals from channels in the specified range are used. In EAC
models, individual EA models in the specified range are combined through majority voting to produce
a final diagnosis.

Classification Model Number EA MA EAC

(1) 0° – –
(2) 30° 0–30◦ 0–30◦
(3) 60° 0–60◦ 0–60◦
(4) 90° 0–90◦ 0–90◦
(5) 120° 0–120◦ 0–120◦
(6) 150° 0–150◦ 0–150◦
(7) 180° 0–180◦ 0–180◦

2.3.3. Antenna Grouping

At this stage, it is important to define how backscattered signals (or the features extracted from
each backscattered signal) are used in the decision-making process.

Each patient scan is comprised of signatures collected from 78 different channels (as per the system
architecture described in Section 2.1), which are classified independently. However, in a realistic,
clinical diagnostic system, a diagnosis is given based on a full scan, and not on the basis of a single
signature. This means that the independent channel predictions need to be combined to form
a final diagnosis. In the existing literature, either the procedure in determining the final diagnosis is
not thoroughly discussed, or the diagnostic performance is reported based on the results from the
independent channels.

To address this, an antenna grouping algorithm is implemented in this study, by which the
predictions of the independent channels are grouped, and a majority vote is completed to determine if
a scan is benign or malignant. The advantages of implementing such an algorithm are two-fold.

Firstly, with microwave diagnosis systems, the possibility should be considered that a signal
comprises lower quality information about the tumour shape, which could result in incorrect
predictions about its malignancy (e.g., signals from channels that may have poor signal-to-noise
ratios). By implementing the antenna grouping algorithm, a mechanism is created that effectively
allows disregarding incorrect predictions from lower quality channels.
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Secondly, channels closer to a tumour should intuitively produce more useful information
for its diagnosis. By implementing a ranked version of the antenna grouping algorithm, it is
possible to investigate if the proximity between tumour and channel translates into higher diagnostic
performances. The ranked version of the antenna grouping algorithm operates as follows. Let W
be the number of channels used to perform antenna grouping, ordered by proximity to the tumour.
Antenna grouping is performed by increasing W in steps of 1, until all available channels are used.
For example, if W = 3, the majority vote is taken from the signals collected by the 3 channels closest to
the tumour, before concluding on the final diagnosis.

2.3.4. Assessing Diagnostic Performance

In this study, the authors have implemented a validation methodology based on the idea of nested
cross-validation [53] to assess diagnostic performance, and mitigate sources of contamination when
optimising the classification model. It has been shown that nested cross-validation helps prevent overly
optimistic reports of model performance [52,53]. An overview of the process is shown in Figure 5,
and can be summarised as follows:

Figure 5. Nested cross-validation methodology implemented in this study to perform model
optimisation and estimate model performance. In each fold, the random forest model is optimised
on the train set, and new predictions are made on the test set. The predictive power of the model
corresponds to the average performance obtained in the test sets across all outer folds.

• The entire dataset is divided into k stratified folds, containing equal representations of each
class. In this study, the authors chose k = 5 outer folds as it offers a good compromise between
a statistical performance analysis and speed of implementation. All signals from one breast scan
are kept together when splitting each fold into training and test.
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• For each outer fold, the model is trained and the classifier hyperparameters optimised.
As previously detailed, random forests directly provide the out-of-bag error, which serves
as an unbiased estimate of the model performance when optimising its hyperparameters.
When using other classifiers another inner cross-validation loop can be implemented at this stage.

• The predictive power of the model is then reported as the average performance obtained in the
test sets across all outer folds.

2.3.5. Performance Metrics

In this study, the performance of a classification model is assessed by plotting the Receiver
Operating Characteristic (ROC) curves. ROC curves are created by plotting the false positive rate
achieved by the classification model in the horizontal axis, against the true positive rate in the vertical
axis [64]. ROC curves provide with a simple graphical representation of the diagnostic ability of
the classification model, by varying the decision threshold that is used in producing the final binary
decision, i.e., whether breast tumours are benign or malignant.

The Area Under the ROC Curve (AUC) is also used as a measure of classification performance.
Generally, the higher the AUC, the more generalisable the model is, and the better it performs.

3. Results

This section is divided into three sub-sections. Section 3.1 discusses the issue of antenna topology
and antenna grouping. Here, a relationship between the channel angle (angle between transmit and
receive antennas) and predictive power is investigated, resulting in the proposal of a useful method to
use the information from several multistatic scan channels. In Section 3.2, the effect of increasing tissue
heterogeneity on overall diagnostic performance is discussed. Section 3.3 identifies possible avenues
to expand on the knowledge gained with the extraction of features.

3.1. Antenna Topology

This section details the analysis of optimal antenna topology to be used in a breast model
containing 5% of glandular tissue by volume.

Three types of classification models were defined in Section 2.3.2: EA, MA, EAC. Figure 6a–c
detail the diagnostic performance achieved by all models produced, for each of the processing methods
under analysis, TW, TW + FE and FE, respectively. The effect of antenna grouping (as defined in
Section 2.3.3) is also investigated in Figure 6, by comparing diagnostic performance before antenna
grouping (full lines) and after the antenna grouping algorithm is applied (dashed lines), using all
available channels in the majority vote.

Firstly, the positive impact of antenna grouping is clearly noticeable. The diagnostic performance
when antenna grouping is applied is always superior (as shown by the dashed lines in Figure 6).
By taking the majority vote of all individual decisions from one single breast scan, a minority of
incorrect predictions are cancelled by a majority of correct classifications. A more in-depth analysis
of the effect of the ranked version of the antenna grouping algorithm (not shown in Figure 6 for
conciseness) reveals that at least 3 channels are necessary to achieve a reliable diagnostic performance;
above 3 channels, the performance tends to stabilise and only minor improvements are observed at the
cost of more complex models. This result is seen across all classification model types (EA, MA and
EAC), and by applying either of the pre-processing methods (TW, TW + FE and FE).

In Figure 6, it is also noticeable that EA and EAC models generally seem to outperform MA
models. This result confirms the hypothesis that classification models perform better when dealing
with signals collected under the same conditions:

• With the TW pre-processing method (Figure 6a), tumour windowing and time alignment of
the signals have been performed; however, it is likely that the TW processing is not sufficient
to completely neutralise the inherent differences from channels at different angles, especially
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considering that the intra-channel variability is likely to increase when noisy experimental or
clinical data is used. One additional factor to consider with the TW processing is that knowledge of
tumour location is fundamental, and localisation errors might also impact accurate time-alignment
of tumour signals from different channel angles;

• In the TW + FE and FE pre-processed datasets (Figure 6b,c, respectively), comparable conclusions
are observed. Models classifying signals from the same channel angles perform better. In addition,
the dataset pre-processed only with FE, which does not require previous knowledge of the tumour
location, slightly outperforms the TW + FE pre-processed dataset.

(a)

(b) (c)

Figure 6. Diagnostic performance for the EA (blue), MA (orange) and EAC (green) models produced
when features are extracted from the original dataset: (a) TW; (b) TW + FE; (c) FE. A.Grouping refers to
the antenna grouping algorithm (using all available channels towards the majority vote). The full lines
correspond to the diagnostic performance when antenna grouping was not applied, and the dashed
lines when antenna grouping was applied. The horizontal axis shows the channel angles used to build
each model; for the MA and EAC models, the models contain all channel angles between 0° and the
angle shown in the horizontal axis.
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It is also interesting to note that channel angles below 90° in the EA models lead to higher
diagnostic performance when compared to channels at higher angles, which might indicate that
reflected backscattered signals keep more information about tumour shape than transmitted signals.
EAC models seem to benefit from this; when combining information from individual EA models,
the predictions made by the EA models at lower channel angles dominate, ultimately contributing to
disregarding incorrect predictions made at higher channel angles. Regardless of the pre-processing
method, the best result seems to be achieved with EAC 0–30◦.

In summary, optimal diagnostic performance is achieved when EAC models were used,
particularly when combining channels with reflected backscattered signals. Antenna grouping is
needed to achieve one final diagnosis per scan, and it helps increase diagnostic performance of the
system, as it provides the means to disregard random incorrect predictions. Using all channels in the
antenna grouping algorithm provides with best performance, although, the authors observed that
most of the relevant information is contained in the channels closest to the tumours.

3.2. Effect of Tissue Heterogeneity

Increasing tissue heterogeneity is a concern when designing platforms for the diagnosis of
breast cancer based on microwave backscattered signals. As glandular and tumour tissues are both
characterised by higher dielectric properties, the response due to glandular clusters in the breast might
sometimes be confused with the response of a tumour, causing an increased rate of false positives.
In this study, the authors examine if the proposed windowing and time-alignment methodology is
sufficient to handle breast heterogeneity, and if the extraction of the above-mentioned features provides
meaningful and sufficient information.

From Section 3.1, one of the best performing antenna topologies was that in the EAC model at 0–30◦,
using all available channels when performing antenna grouping; here, the TW and FE processing methods
performed the best among all considered tests. The effect of increasing tissue heterogeneity is shown
in Figure 7, by plotting ROC curves obtained for the TW dataset (Figure 7a), and FE dataset (Figure 7b)
using the optimal antenna topology. Separate classification models were built to diagnose scans from
breast models with 1% (blue line), 5% (orange line) and 27% (green line) of glandular tissue by volume.

(a) (b)

Figure 7. ROC curves showing diagnostic performance with the EAC 0–30◦ classification model using
all channels in antenna grouping, for (a) TW dataset; (b) FE dataset. The blue line corresponds to the
performance of a breast model with 1% glandular tissue by volume, orange line 5%, and green line 27%.
The black dotted line represents the null hypothesis in the ROC curve.
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The random forest classifier appears to be robust to tissue heterogeneity. The average performance
across breast models with increasing glandular tissue content is comparable, when using either the
TW or the FE methods during the pre-processing stage of the system. However, in an experimental
or clinical setup, the performance of the TW pre-processed dataset is likely to decrease as tissue
heterogeneity increases; noisier experimental backgrounds lead to an increased number of reflections,
and the localisation of the tumour signature in the backscattered signal might be affected. Conversely,
the extracted features are able to capture the differences between benign and malignant tumours,
even with signals recorded in more heterogeneous breast models.

Finally, the ROC curves indicate that diagnostic performance may also be optimised by varying
the decision threshold. Commonly used as a fixed threshold of 0.5, the range of optimal decision
thresholds identified in this study range between 0.36 and 0.52 (not shown in Figure 7 for conciseness),
which could carry further importance when translating the microwave diagnosis system to clinic.

3.3. Relative Feature Contribution

Previous sections examined the effect of antenna grouping, and the impact of tissue heterogeneity
on the best performing system from initial baseline tests. In this section, an analysis of feature selection
is presented, by means of the relative feature contribution map provided as one of the outputs of the
random forest classifier. Investigating which features mostly contribute to the training of each tree
inside a random forest could help refine the classification models, ensuring their robust and stable
performance in complex scenarios, such as in experimental systems prone to high noise levels.

In Figure 8a,b, the relative feature contribution map is shown, for the breast model with 27%
glandular tissue, for the TW and FE pre-processed datasets respectively. Classification was performed
with the EAC 0–30◦ model, which uses all channels in the antenna grouping algorithm. This model is
shown as an example, although the authors observed similar feature contributions across all breast
and classification models.

(a) (b)

Figure 8. Map of relative feature contribution calculated during the training of the random forest
model for the breast model with 27% glandular content by volume. The EAC 0–30◦, with all channels
in antenna grouping, is used. (a) refers to the dataset pre-processed with TW method; the horizontal
axis shows the time samples (TS) which make up the time-domain tumour responses; (b) refers to the
dataset pre-processed with the FE method, where F1 to F30 shown in the horizontal axis correspond to
Features 1 through 30.
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Firstly, Figure 8a (TW) shows that the classification model using tumour windowing is heavily
reliant on one single feature. This feature is time sample 34 in the example shown. All classification
models used in this study display the same reliance on one feature, which varies between time
sample 33 and 36. This result suggests that any errors in the tumour windowing and alignment
algorithm could indeed have a large impact in the performance of the classification.

Regarding classification with the FE method (Figure 8b), a larger number of features appear
to contribute to the performance of the random forest model. Feature #4 (location of the negative
peaks in the tumour signature) ranks highest, which is visible across all classification and breast
models used in this study. Nine other extracted features are also identified as being particularly
important in the training of the classification models. In decreasing order of contribution: amplitude
of the negative peaks in the tumour signature (feature 3 shown in Figure 8b), amplitude and mean
full-width half-maximum (FWHM) of positive peaks (#1, #11), mean amplitude of the peaks in the
auto-correlation curve (#22), integral of the tumour signature (#16), integral of the absolute value of
the signature (#17), mean power spectral density using the Welch estimate (#25), mean amplitude and
FWHM of the peaks in the periodogram (#28, #29).

The features listed above were some of the features to mostly contribute to the classification of
shape and spiculation of benign and malignant tumours. Particularly, the authors note the contribution
of the features derived from the autocorrelation and power spectral density analysis, which reflect
information otherwise not available in the time-domain tumour signatures.

4. Discussion and Conclusions

Microwave breast diagnosis systems could play a key role in further establishing microwave breast
imaging and diagnosis as a tool for continuous and safe breast cancer monitoring. While diagnosis of
breast tumours as benign or malignant could theoretically be performed through a number of avenues,
shape and spiculation at the margin of a tumour are widely accepted as markers for malignancy,
and previous studies have already demonstrated how backscattered signals are influenced by the
shape of a tumour.

In this study, the authors extend previous analysis to further confirm that diagnosis of microwave
backscattered signals by means of machine learning is feasible, however, there are many factors that
affect performance and system optimisation must be performed with care.

Firstly, antenna grouping was identified as a key step for an increased diagnostic performance.
Individual signals which compose one breast scan are independent observations, and are classified
accordingly receiving a label of benign or malignant. By performing antenna grouping, those individual
predictions are grouped into one final diagnosis (majority vote) for each scan. The results of this study
show the benefit behind this approach, as, by doing so, a mechanism is created to disregard minor
incorrect predictions. In addition, the authors observed that a relatively small number of antennas
closest to the tumour guarantee the correct prediction; above this number of channels, performance
tends to stabilise, but importantly, does not decrease. In this study, the 3 channels closest to the
tumour were found to yield correct diagnosis; however, this may change in microwave prototypes or
equipment with different setups.

Secondly, the results showed how signals collected at channels with different angles between the
transmit and receive antennas have to be appropriately used by the classification model. By building
individual classification models that only classify signals from channels with the same angle, diagnostic
performance is increased. The predictions of individual classification models can later be combined into
a fused-type model, which once again contributes to increasing the diagnostic performance. In addition,
the results also showed how channels containing reflected backscattered signals performed better over
channels with transmitted signals. In this study, the optimal channel angle was 0–30◦.

Thirdly, data pre-processing was also shown to have an impact on diagnostic performance.
When dealing with time-domain signals, knowledge of tumour location is required. With this
information, a tumour windowing and time-alignment algorithm can be implemented to isolate
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the tumour response, while decreasing the influence of the background. A new set of 30 features
was also proposed, which are extracted per backscattered signal; these features mostly rely on peak
analysis of the time-domain signal, and of the frequency content of the signal. Both methods performed
comparably, however, in practice, additional factors come into play which will impact performance:

• With currently available algorithms, localisation of the tumour signature in the response could
be prone to error, which would impact the performance of the tumour windowing and could
ultimately decrease diagnostic performance. This factor should not be neglected when building
systems to classify time-domain signals.

• The extraction of features performed well, even when the time-domain signal was not
pre-processed by windowing. This method appears as an alternative when exact tumour location
is not available to the user. In addition, a reduced set of features of maximised contribution was
identified, which could lead the way into finding an optimal set of features towards more robust
classification models for microwave systems.

Finally, good machine learning practice is extremely important when designing microwave breast
diagnosis systems. Without adequate feature processing methods and model validation strategies,
reports of performance could be overly optimistic and not reproducible, ultimately impeding clinical
acceptance of microwave diagnosis tools.

Further investigations are needed to assess the robustness of microwave breast diagnosis systems
given the complexities of experimental and clinical data, such as, patient positioning and movement,
intrapatient variation due to menstrual cycle and hormonal changes, and interpatient variation in
breast size, shape and composition.
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Abbreviations

AUC Area Under receiver operating characteristic Curve
EA Equal Angle
EAC Equal Angle Combined
FDTD Finite-Difference Time-Domain
FE Feature Extraction
FWHM Full-Width Half-Maximum
MA Multiple Angle
MBI Microwave Breast Imaging
PSD Power Spectral Density
ROC Receiver Operating Characteristic
TW Tumour Windowing
UWCEM University of Wisconsin Computational Electromagnetics
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Abstract: Hemispherical and cylindrical antenna arrays are widely used in radar-based and
tomography-based microwave breast imaging systems. Based on the dielectric contrast between
healthy and malignant tissue, a three-dimensional image could be formed to locate the tumor.
However, conventional X-ray mammography as the golden standard in breast cancer screening
produces two-dimensional breast images so that a comparison between the 3D microwave image and
the 2D mammogram could be difficult. In this paper, we present the design and realisation of a UWB
breast imaging prototype for the frequency band from 1 to 9 GHz. We present a refined system design
in light of the clinical usage by means of a planar scanning and compare microwave images with
those obtained by X-ray mammography. Microwave transmission measurements were processed to
create a two-dimensional image of the breast that can be compared directly with a two-dimensional
mammogram. Preliminary results from a patient study are presented and discussed showing the
ability of the proposed system to locate the tumor.

Keywords: microwave breast imaging; UWB diagnostics; patient study

1. Introduction

Breast cancer had the highest mortality in women in the European Union towards the end
of the 1990s and the beginning of the 2000s, and a steady decrease in mortality is reported by
Malvezzi et al. [1]. This trend could be explained with the implementation of screening programs that
enable early breast cancer detection and treatment. However, according to the same authors, breast
cancer still has the second highest predicted mortality rate in women with about 92,700 deaths in the
European Union in 2018. These numbers show the need to develop and improve medical diagnosis
techniques for the detection of breast cancer.

Microwave techniques have potential importance for medical diagnosis given by complementary
diagnostic information about breast tissues compared to established techniques such as X-ray,
ultrasound or MRI [2–5]. A classification of the available prototype systems for microwave-based
diagnostics can be made in terms of the antenna array arrangement that can be either three-dimensional
(hemisperical or cylindrical) or two-dimensional. In most of the available three-dimensional microwave
imaging systems, the patient lies in a prone position on an examination table with the breast immersed
in a hemispherical cup or cylindrical tank. Several three-dimensional prototype systems should be

Diagnostics 2018, 8, 54; doi:10.3390/diagnostics8030054 www.mdpi.com/journal/diagnostics110
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briefly introduced: a multi-static radar-based breast imaging prototype operates in the 3 to 8 GHz
band and is validated in a patient study [6]. Flexible antenna arrays for microwave breast imaging
are demonstrated in [7,8]. Further multistatic prototype systems are reported in Helbig et al. [9] and
Yang et al. [10]. Song et al. [11] propose a hand-held impulse radar and report successful application
in breast phantoms and patients. A monostatic breast imaging system is proposed in [12,13], which
adaptively conforms to the breast’s shape by means of a laser positioning system. Besides the radar-based
three-dimensional imaging systems, a number of tomography-based microwave breast imaging systems
can be found in the literature—proposed, for example, by Zhurbenko et al. [14] and Rydholm et al. [15].

Only a few two-dimensional imaging systems for breast cancer detection are reported so far.
Tajik et al. [16] performed a two-dimensional scanning of a compressed breast phantom and show
quantitative microwave holography imaging in real time in the frequency band from 3 to 8 GHz. A UWB
system for estimating the bulk dielectric properties of breast tissues is demonstrated in [17] for the frequency
band from 1.5 to 10 GHz. The system consists of five transmitting and receiving microwave antennas on
top and below the breast. Although the latter system accounts for different breast shapes and sizes by
means of breast compression, limitations are given by only a few measurement positions.

O’Loughlin et al. [18] studied the currently available microwave breast imaging systems and
came to the conclusion that operational microwave imaging systems have to address the following
challenges to clinical practice:

• developing quality systems to ensure repeatability and safety,
• designing sufficiently powered, large-scale clinical trials to address sensitivity and specificity,
• identifying how microwave imaging can have a positive impact in the current patient pathway,
• refining system design in light of clinical usage.

The proposed microwave imaging (MWI) in this paper contributes to the last two items. A positive
impact of microwave imaging is demonstrated here by comparing X-ray images to microwave images
in a patient study to show the value of microwave imaging. This potential additional diagnostic
information may lead to an improvement in the current patient pathway. Moreover, the proposed MWI
method is not harmful for the patient because non-ionizing radiation is used. A refined system design
is achieved by compressing the breast, similar to mammography, to guarantee a good mechanical
contact and to account for different breast shapes and sizes in a simple but effective way. On top of
that, the UWB antennas are designed in light of the permittivity of the skin so that a coupling medium
that potentially increases measurement uncertainty can be avoided.

The novelty of the proposed prototype system in relation to those breast imaging systems
described in literature is given in the way the diagnostic image is computed. In contrast to other image
reconstruction techniques, the amount of signal attenuation could be exploited, which is higher in
malignant than healthy tissue [19]. A root-mean-square (RMS) analysis of the transmitted UWB radar
pulses is calculated that does not require information about the wave speed, which is challenging in
every digital beamformer approach. Moreover, this indicator is used to produce two-dimensional
projection from a three-dimensional breast, similar to X-ray mammography. In addition, the proposed
methodology does not need iterative computations, which is beneficial compared to image formation
in tomography systems. The image reconstruction method described in this paper is simple and
effective, and provides real-time capabilities.

2. Materials and Methods

2.1. Ethical Approval

For the experiments involving human participants in this work, an ethical approval with the reference
number 2/16 was obtained from the ethics committee of the J. W. Goethe-Universitätsklinikum. The ethical
approval was issued at 6 April 2016 and is valid for 3 years.
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2.2. Experimental Setup

Figure 1a shows a photo of the microwave breast imaging system where the breast is compressed
by two 5 mm thick plexiglass plates with a low loss at microwave frequencies. While the lower plate
had a fixed position, the upper plate was adjustable in vertical direction to account for different breast
shapes and sizes as depicted in Figure 1b. The setup consists of two UWB bowtie antennas [20] that are
connected to a 8720C vector network analyzer (Keysight Technologies Deutschland GmbH, Böblingen,
Germany) using flexible high frequency coaxial cables. Measurements are performed in the frequency
domain from 1 GHz to 9 GHz using 101 frequency points and a total sweep time of 90 ms. Each antenna
is mounted to an LES 4 cross table (Isel, Eichenzell, Germany). The transmitting antenna (top) and the
receiving antenna (bottom) point to each other and scan the breast in a meander geometry. The cross
tables are moved by an iPU-EC servo unit (Isel, Eichenzell, Germany). The whole system is controlled
by an iPC25 (Isel, Eichenzell, Germany) using a Matlab interface.

(a) (b)

8720C vector 
network analyzer

IPC and motion
control unit

Figure 1. (a) Experimental setup, after [21]; (b) spring-based mechanism for vertical adjustment of the
top antenna to provide a good mechanical coupling even in the case of variable breast sizes and shapes.

2.3. Signal Processing Techniques

In this work, we assume that the upper compression plate is not tilted and bended during
compression and maintains parallel with respect to the lower compression plate. This assumption is valid
here due to the solid guiding bar on both sides of the compression mechanism. The frequency-domain
data measured with the VNA are transformed to the time-domain using an inverse Fourier transform.
This leads to the time-domain radar signal s(x, y) measured at position (x, y). A qualitative
two-dimensional microwave image I(x, y) can be computed by the root mean square (RMS) according to

I(x, y) =

√√√√ 1
n

nuL

∑
i=nlL

si(x, y)2, (1)

where n denotes the number of samples in time-domain between a lower bound nlL and an upper
bound nuL. The lower bound can be defined e.g., by the direct path from the transmitting to the
receiving antenna in air. On the other hand, the upper bound depends on the tissue properties.
This value must be chosen in such a way that effects related to multipath, e.g., reflections from metallic
parts of the measurement setup, should be minimized as much as possible.
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2.4. Description of the Clinical Work Flow

The clinical work flow is in accordance with the ethical approval and is described in the following:
inclusion criteria for a selection of suitable patients were a minimum age of 18 years, occurrence
of a tumor in the breast tissue, detected in a routine clinical examination, and oral as well as
written informed consent of patients according to the GCP and respective national and international
regulations. The patients had undergone a standard X-ray mammography before and afterwards were
considered for the proposed examination.

At the beginning, the research physician informed the patient regarding the study, examination
procedure and the microwave data acquisition. The patient was asked to undress the upper body prior
to the examination. Before starting, a test run of the microwave acquisition system was performed to
check the functionality and safety of the system. The patient sat on a height-adjustable chair in front
of the measurement system such that the breast was at the same level as the compressing plexiglass
plates. The study physician localized the tumor through manual examination. Additionally, the
mammography image acquired before was also opened on the clinical workstation, located next to
the microwave system, in order to find the tumor position more precisely. The patient placed her
tumorous breast between the plates such that the tumor area was located within the 50 mm × 50 mm
scan field, which was indicated on the upper plexiglass plate. The size of the scan area was limited
by the available time period for the measurements of 3 min. The upper plate was brought down to
compress the breast (as it is performed in standard mammography examinations) and was then fixed.
After completion of the scan, the contour of the compressed breast was marked on the upper plate
for the purpose of comparison and accordance of the acquired data with the mammography image.
Finally, the plexiglass plate was lifted, the breast was released and the patient was accompanied to the
changing room. The acquired microwave data were saved anonymously on the systems controlling PC.

3. Results

Figure 2 shows a comparison between X-ray images and microwave images for two different
patients, i.e., patient A (age: 80 years) and patient B (age: 75 years). The blue rectangle in the
X-ray images indicates the limited scan area during microwave data acquisition. In both cases,
the tumor can be identified on the images of both modalities (red circle) revealed by lower pixel
intensities at the tumor location coming from higher signal attenuation of cancerous tissue. In addition,
some anatomical features inside the breast next to the tumor can be recognized (see yellow and green
ovals in Figure 2a–d).

Figure 3 depicts two radar signals in the time-domain that were measured at two different
positions on the breast as marked in Figure 2b. One radar signal is measured at the location of the
tumor and the other is measured outside the tumor region. Given by the higher relative permittivity
and conductivity of malignant tissue, a difference in time of arrival and signal amplitude can be
observed. Moreover, this figure illustrates the time-domain gating (characterized by a lower and upper
limit) used for the RMS computation in Equation (1).
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Figure 2. Comparison between X-ray image and microwave image for patient A (a,b) and patient B (c,d).
The RMS was normalized by the maximum RMS of the scanned region of the present patient. The lowest
intensity values occur in the area of the tumor location given by stronger attenuation of cancerous tissue.
The final thickness of the compressed breast during microwave examination is very similar for patients A
and B, i.e., 4.4 cm for patient A and 4.3 cm for patient B. During X-ray examination, the breast was slightly
more compressed, i.e., 4.1 cm for patient A and 3.7 cm for patient B.
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Figure 3. Comparison of UWB radar signals measured at two different positions on the breast as
illustrated in Figure 2b. It can be observed that a difference in time of arrival and signal amplitude
occurs. Attenuation and time delay are much higher for the tumor location given by a higher
conductivity of the malignant tissue and a higher relative permittivity (i.e., smaller wave speed).
The time-domain gatings are illustrated that show the signal regions used for RMS computation.

114



Diagnostics 2018, 8, 54

4. Discussion

After successful application of the breast imaging prototype in the laboratory by means of breast
phantoms [21], the present work shows first imaging results from breast cancer patients. The clinical
measurements represent an important step forward towards the larger acceptance of microwave
imaging techniques for medical diagnostics. A major advantage of the proposed system compared to
other microwave methodologies is given by simple image formation, which does not require large
computational resources. For each measurement, only the inverse Fourier transform must be computed
followed by the calculation of the RMS-value for the pixel amplitude at a specific x–y coordinate.
This means that the whole processing chain can be implemented on a microcontroller platform rather
than a powerful work station, which is beneficial in terms of reduced system costs and reduced
computation time. Portability is an additional feature due its compact size.

The dielectric properties within the breast change locally and beamforming procedures
struggle with finding the optimal values for the relative permittivity to realize a proper focussing.
Digital beamformers might be improved by studying more complex techniques that take the
distribution of relative permittivity into account [22]. In any case, generally the information about
the breast’s permittivity is not available on a patient-specific basis and can only be estimated on
average [23]. An advantage of the proposed RMS-approach is given by the fact that information about
wave propagation inside the breast, e.g., in terms of wave speed, is not required.

Another benefit of the proposed system is the ability to deal with variable breast sizes and
shapes by compressing the breast similar to X-ray mammography. This approach avoids inserts that
are often used in three-dimensional imaging systems [6] to compensate for variations in breast size.
Exploiting the transmission signals through the breast also eliminates the need for surface artifact
removal algorithms before the image formation [24]. A drawback of the proposed approach might be
given by the compression-induced pain during examination. According to the patients’ feedback, this
pain was acceptable.

We are aware that the study has limitations in terms of the number of patients that have been
examined. Further limitations are given by the relatively long scan time, which limits the inspection
area to about 50 mm by 50 mm. This could be improved by additional engineering that uses multiple
transmitters and receivers either in a static or moveable linear array. In that case, the measurement
time can be reduced to about 20 seconds with a full coverage of the breast. Finally, it can be said
that the preliminary results shown here are encouraging to study the planar microwave imaging
system in more detail in the future. With that being said, we aim at “designing sufficiently powered,
large-scale clinical trials to address sensitivity and specificity” [18]. Such clinical trials are important
for a statistical analysis to evaluate the MWI systems performance.

5. Conclusions

In this paper, a UWB microwave breast imaging prototype system is presented that operates in the
frequency range from 1 to 9 GHz. In contrast to many other prototype systems, the proposed approach
compresses the breast similar to X-ray mammography. Based on the analysis of the transmission
signals, it was possible to identify the tumor by exploiting the stronger attenuation of malignant tissue.
It was demonstrated by two patients that breast cancer could be successfully detected. The results
were validated by clinical X-ray images.
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Abstract: This paper presents the Wavelia microwave breast imaging system that has been recently
installed at the Galway University Hospital, Ireland, for a first-in-human pilot clinical test. Microwave
breast imaging has been extensively investigated over the last two decades as an alternative imaging
modality that could potentially bring complementary information to state-of-the-art modalities such
as X-ray mammography. Following an overview of the main working principles of this technology,
the Wavelia imaging system architecture is presented, as are the radar signal processing algorithms
that are used in forming the microwave images in which small tumors could be detectable for disease
diagnosis. The methodology and specific quality metrics that have been developed to properly
evaluate and validate the performance of the imaging system using complex breast phantoms that
are scanned at controlled measurement conditions are also presented in the paper. Indicative results
from the application of this methodology to the on-site validation of the imaging system after its
installation at the hospital for pilot clinical testing are thoroughly presented and discussed. Given that
the imaging system is still at the prototype level of development, a rigorous quality assessment and
system validation at nominal operating conditions is very important in order to ensure high-quality
clinical data collection.

Keywords: breast cancer diagnosis; microwave imaging; medical radar; on-site validation;
breast phantoms

1. Introduction

Microwave imaging for medical applications has been of interest for many years. The microwave
images are maps of the electrical property distributions in the body. The electrical properties of various
tissues may be related to their physiological state; notably, there has been some evidence of changes in
the properties of cancerous tissues when compared to normal tissues. Cancer detection with microwave
imaging is based on this contrast in electrical properties. Microwave imaging, as an alternative imaging
modality to X-ray mammography for breast cancer detection, has interested many researchers during
the last 20 years [1–5].

Among them, at least four research teams have performed clinical testing of their experimental
prototypes [6–11], demonstrating numerous positive results and a potential added value of the
microwave technology toward a better specificity and/or sensitivity in breast cancer diagnosis when
combined with the state-of-the-art modalities. The potential for regular follow-up of the patient during
breast cancer treatment has also been envisaged using the microwave technology [8]. The interested
reader is directed to a series of review papers that have been recently published [12–14]; these papers
provide an extensive overview of the microwave breast imaging system prototypes that have been
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clinically tested, the principal technical features and differences among them, as well as the most
important results reported so far.

One of the most appealing features of the microwave technology is the use of non-ionization
radiation; thus, it is very safe for the patient and could open up the possibility for scheduling
regular three-dimensional (3D) scans of the breast, as often as required, for optimal diagnostic and/or
follow-up of rapidly evolving pathologies. In conjunction with the design of appropriate radar signal
processing algorithms, automated tumor detection can be naturally integrated with the microwave
image formation process, providing clinicians with useful tools for computer-aided diagnosis (CAD).
Several CAD systems for breast cancer have been proposed during the last decade [15–17], especially
on X-ray mammography systems. Although they are not yet part of the routine clinical practice,
they have proved useful in aiding clinicians to diagnose breast cancers in cases where simple visual
inspection is ambiguous. The Wavelia microwave breast imaging system, as presented in this paper,
is being developed for such an intended future use.

The Wavelia system is a low-power electromagnetic wave breast imaging device for cancer
screening purposes. The device consists of two subsystems, both performing a non-invasive
examination: the microwave breast imaging subsystem, and the optical breast contour detection
subsystem. The device has been recently installed at the Clinical Research Facility of Galway University
Hospital (CRFG) in Ireland, for a first-in-human pilot clinical test. In this paper, the methodology and
indicative results from the on-site validation of the device, using anthropomorphic breast phantoms,
are presented. The developed methodology is meant to be applied after each installation of the device
in hospital, in order for the device functioning to be carefully verified and validated, before any patient
recruitment is authorized.

The paper is structured as follows. All of the materials and methods used for the on-site validation
of the imaging system are presented in Section 2 of the paper. In Section 2.1, a description of the
Wavelia imaging system is provided. In Section 2.2, the fundamental working principles of the
microwave breast imaging technology are summarized. In Section 2.3, the anthropomorphic breast
phantoms which have been used for the design and testing of the Wavelia imaging system are
presented. In Section 2.4, the main steps of the microwave breast imaging algorithm are outlined.
In Section 2.5, an introduction to the optical scanner which is integrated in the Wavelia system is
included; indicative results as used for the on-site validation of the optical scanner, are also shown in
this subsection. In Section 2.6, the on-site validation test procedure used for the site acceptance of the
Wavelia microwave breast imaging system is detailed. In Section 3, indicative validation test imaging
results are shown. The presented results are grouped into two parts: in Section 3.1, images formed at
a single vertical position of the sensor network are presented, whereas in Section 3.2, images formed
using data collected at multiple vertical scan positions of the sensor network are shown. In Section 4,
a summary of quality assessment (QA) results from the on-site validation of the system is included,
followed by a short discussion on the potential sources of mismodeling of the breast with the available
phantoms, which may inevitably lead to adjustments of the system when working with clinical data.

2. Materials and Methods

2.1. The Wavelia Microwave Breast Imaging System Prototype

Wavelia is a prototype medical device that employs low-power electromagnetic waves for the
detection of breast cancer. A photo of the device, as installed in the CRFG examination room, in Galway,
Ireland for first-in-human pilot clinical testing, is shown in Figure 1.

As mentioned in the introduction, the device consists of the microwave breast imaging subsystem
and the optical breast contour detection subsystem. The microwave breast imaging subsystem is
an active device that illuminates the breast with non-ionizing low-power electromagnetic waves in
the microwave frequency spectrum, which penetrate the breast under examination. The subsystem
collects the scattered electromagnetic waves and recovers pertinent information about the breast tissue
consistency based on the dielectric contrast of these tissues. The optical breast contour detection
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subsystem serves to provide the total volume and boundary contour of the breast, as a priori
information for the microwave breast imaging subsystem.

 

Figure 1. The Wavelia breast imaging system, which was recently installed in Galway University
Hospital, for a first-in-human clinical test.

During the examination, the patient will be lying in a prone position on the examination table.
A dedicated circular opening on the examination table will permit the immersion of the breast in
a specific liquid, which will serve as a coupling (transition) medium between the imaging system and
the breast. The coupling liquid has been appropriately manufactured such that it has electromagnetic
properties favoring the penetration of the electromagnetic wave in the breast.

The intended performance of the device is to unambiguously detect the presence of breast
malignant lesions and estimate their 3D location within a given level of accuracy. While the ultimate
goal is the diagnosis of breast cancer at an early stage of development, in the course of the pilot
first-in-human trial, the achievable performance of the device will only be verified against benchmark
cases of prediagnosed palpable cancers. To this extent, co-registration of the imaging results with
available images from reference modalities (X-ray mammogram and/or ultrasound scans) will be
performed. Thus, a “ground truth” will be available to assess the performance of the prototype device
under test.

In Figure 2, a top view of the Wavelia microwave breast imaging subsystem examination table,
as well as a zoomed view on the transition liquid in which the breast is immersed during the scan,
are shown.

  
(a) (b) 

Figure 2. Wavelia microwave breast imaging system: (a) Top view of the examination table; (b) Zoomed
view on the transition liquid in which the breast is immersed during the scan.
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2.2. Microwave Breast Imaging at Prone Position: The Principle

The microwave imaging scan is performed using a network of 18 wideband Vivaldi-type antennas
in a horizontal circular configuration. The sensors are located outside a container that hosts the
coupling liquid. The sensors are piloted to perform a vertical motion such that the full breast volume
is appropriately illuminated during the scan. The scan takes approximately 10 min for a breast of
medium size, as the breast phantom used for the on-site validation of the system.

A schematic description of the prone examination setup is shown in Figure 3.

 

Figure 3. Microwave breast imaging examination: the principle.

The technology is very safe. The emitted microwave power level inside the breast is limited
physically by the capacity of the radiofrequency components, such that the maximum radiated level
inside the breast is always lower than 50 mW. Calculations have been performed for the localized
specific absorption rate (SAR) in the breast. The maximum localized SAR in the breast complies
with the International Commission on Non-Ionizing Radiation Protection (ICNIRP) recommendations
and the European Union (EU) Directive 1999/519/CE on the limitation of exposure of the public to
electromagnetic fields (compliance with a safety factor of four). The Radio-Frequency (RF) front end
is based on vector network analyzer architecture. The resulting emission/reception RF chain has
a dynamic range of 75 dB.

From the perspective of microwave imaging, the anatomy of the breast can be simplified to the
following [14]:

• An adipose layer directly below the skin. This layer consists of vesicular cells filled with fat,
which are aggregated into lobules and separated by Cooper’s ligaments;

• The mammary glands: the innermost tissue of the breast consists of about 15–20 sections, termed
lobes, with many smaller sections of mammary glands, which are arranged in a circular fashion.
These lobes and ducts are also surrounded by Cooper’s ligaments, which have the function of
maintaining the inner structure of the breast and supporting the tissue attached to the chest wall;

• Posterior to the breast is the major pectoral muscle, as well as ribs two to six.

Breast tumors typically originate in the glandular tissue. The increased volume of water within
the cancerous tissue is responsible for the strong electromagnetic scattering associated with microwave
imaging. The increase of sodium and water, particularly inbound water within the tumor cells, leads
to the greater conductivity and permittivity of the tumorous tissues [18,19].

Several studies have examined the dielectric properties of normal and cancerous breast tissue.
Indicatively, in 1992, Campbell and Land measured in vitro the complex permittivity of female breast
tissue at 3.2 GHz [20]. They reported a significant dielectric contrast between normal (fatty tissue and
all other healthy breast tissues) and tumor tissue. They also suggested that due to the similarity in the
dielectric properties of malignant and benign tumors, it might not be possible to distinguish between
the two based on dielectric properties alone.

121



Diagnostics 2018, 8, 53

Some additional characteristics that are inherent to benign and malignant tumors have the
potential to be helpful for tumor classification using microwave imaging, such as the tumor shape and
surface texture [21–23]. Malignant tumors usually present the following characteristics: irregular and
asymmetric shapes, blurred boundaries (lack of sharpness), rough and complex surfaces with spicules
or microlobules, non-uniform permittivity, distortion in the structure of the breast, and irregular
tissue density (due to masses and calcifications). Conversely, benign tumors tend to have the
following characteristics: spherical, oval, or at least present well-circumscribed contours, compactness,
and a smooth surface.

In the Wavelia microwave breast imaging device, multistatic radar detection technology [24,25] is
employed. In multistatic radar imaging systems, each element of a fixed-element array illuminates
the imaging scene in turn, while the other antennas record scattering at various angles from the
transmitter boresight. Due to the spatial diversity of the receiving antennas, the multistatic approach
acquires enhanced information about the scatterers, using received signals that propagate outwards
via different routes. The number of illuminating paths is limited by the array geometry.

Due to the dielectric contrast between the different breast tissues at the microwave frequency
range [19,20,26], back-scattered radar signals are physically generated. The received radar echoes
are appropriately processed in order to detect and localize any significant scatterers (tumors) in the
breast. An increased level of coherence of reflections originating from a given location results in the
high intensity of the radar image at the given location in the breast, thus suggesting the presence of
a significant scatterer.

Prior to radar imaging of the interior of the breast, pre-processing of the backscattered signals
is performed to remove artifacts in order to accentuate the useful radar echoes of weak power
level. The strong artifacts mainly consist of direct coupling between the antennas, skin reflections,
and antenna reverberation. Following artifact removal, an effective radar-imaging algorithm is
employed to unambiguously detect the presence of tumors and accurately localize them, while
simultaneously suppressing clutter due to the normal heterogeneity of breast tissue.

Apart from using reflected microwave energy to reconstruct images of the breast, the radar
target signatures may contain additional information on the shape, size, and other features of the
tumor. This information could potentially be exploited for discrimination between benign and
malignant lesions.

2.3. The Breast Phantoms

During the design phase, but also for the on-site validation, the imaging device has been deployed
with phantoms, which simulate the real breast. These phantoms have been manufactured considering:

� Realistic breast shapes extracted from a publicly available database of real MRI breast images [27];
� The state-of-art knowledge in terms of dielectric properties of the breast normal and malignant

tissues in the frequency range of interest [26,28–30];
� Realistic asymmetric tumor shapes and sizes [22,23,31];

The manufactured breast phantoms have been presented in further detail in [32,33], by
A. Fasoula et al.

The breast phantom repository, as published by the University of Wisconsin [27], has been
used to define MRI-based realistic breast geometries. Based on this, rigid plastic molds have been
3D-printed for the breast outer surface, as well as for the segmented fibroglandular tissue in the
breast MRI image, after the minimum required simplification, such that the geometry is printable
in a limited number of compartments. For the imaging tests, both molds are filled with liquids
mimicking the adipose and fibroglandular tissue [34]. Either liquid is poured in the corresponding
mold compartment; the compartment walls are sufficiently thin to avoid significant impact on
electromagnetic wave propagation.
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Solid mixtures of graphite, carbon black, and urethane are used to manufacture the skin and
tumor phantoms. The formula published in [35] by J.Garrett et al. has been slightly adjusted to achieve
solid mixtures with appropriate dielectric properties mimicking the corresponding types of tissues.

In Figure 4, the geometry of one of the breasts of class ACR3 (heterogeneously dense) that has been
selected from the database for the on-site validation of the imaging system, as well as the corresponding
3D printed molds, are depicted. The selected adipose tissue-mimicking liquid has a mean dielectric
constant εr = 5, while the fibroglandular tissue-mimicking liquid has a mean dielectric constant εr = 36.

 
(a) (b) 

Figure 4. The breast molds: (a) Bottom view of the outer breast surface mold (on the left), covered with
the black 2-mm thick skin phantom, and the outer fibroglandular tissue mold; (b) Original geometry of
the breast, segmented from an MRI breast image.

As depicted in Figure 4, a 2-mm thick skin layer with mean dielectric constant εr = 38 is attached to
the breast outer surface mold. The selected material, apart from its adequate mean dielectric properties,
also has a dispersive profile of complex permittivity well-fitting to the skin dielectric properties,
as reported in the relevant literature [28].

A tumor is simulated by use of a microlobulated solid having a diameter of 14 mm and a mean
dielectric constant εr = 52 within the frequency band of interest. The shape of the tumor phantom
is based on a Gaussian random sphere (GRS) model of the breast lesions [21–23]. Aside from its
adequate mean dielectric properties, the selected material used for this phantom has a dispersive
profile of complex permittivity that fits well with the one of malignant breast tissue, as reported in the
literature [29].

A photo of the tumor phantom used during the validation tests of the microwave breast imaging
device is shown in Figure 5.

 

Figure 5. The tumor phantom: microlobulated shape, average radius of 14 mm, dielectric properties
matching the measured dielectric properties of excised malignant tissue.
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Two snapshots from the preparation of the experimental setup, before a typical validation test of
the device, are shown in Figure 6.

  
(a) (b) 

Figure 6. Preparation of the breast phantom for the microwave breast imaging test: (a) Immersion of
the breast in the circular opening of the examination table, filled with transition liquid; (b) Inclusion of
the tumor phantom in the fibroglandular tissue-mimicking liquid.

2.4. The Imaging Algorithm

2.4.1. The Physical Considerations and Modeling

In order to properly design the data processing algorithms for such a device, it is fundamental to
take into consideration the anatomy of the human female breast and translate it into an electromagnetic
wave propagation problem to be resolved. As depicted in Figure 7, the breast skin layer, the fat, and the
network of glandular tissue lobules and ducts of the human female breast have been considered to
model the wave propagation path through the breast, before potentially reaching a tumor. As stated
earlier, a network of sensors encircles a cylinder about which a vertical microwave imaging scan
is performed.

Figure 7. Realistic modeling of the near-field, non-planar, multi-layer, high permittivity transmission
medium for electromagnetic wave penetration.
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The cylinder is filled with coupling transition liquid into which the breast is immersed.
The transition liquid allows for optimizing the transmission of the electromagnetic waves from the
antennas into the breast (similar function as for the gel used in ultrasound echography for optimizing
the transmission of the ultrasound waves from the probe to the interior of the body). Thus, the transition
liquid has been designed to have real permittivity that well matches the permittivity of the human
skin, as specified by Lazebnik et al. [28]. At the same time, the conductivity of the liquid has been
designed to be such that it introduces non-negligible propagation losses, thus mitigating the strong
multipath waves that propagate in the cylinder without ever entering the breast, as initially suggested
in [36] by P. Meaney et al. The real permittivity of the transition liquid ranges between 25 and 30,
and its conductivity ranges between 0.2 S/m and 1.2 S/m in the working frequency band F = [1–4]
GHz. The liquid is based on organic oil and deionized water mixed at a given proportion such that the
desired dielectric properties are achieved.

Given the above considerations, the data processing algorithms of such a device should be
designed such that useful information for breast imaging is acquired if the electromagnetic wave that is
emitted from a sensor is received by another sensor of the network in a bistatic configuration. This step
comes after transition from the following chain of non-planar layers with distinct dielectric properties
(real permittivity and conductivity), which are each:

Transmitting antenna → Cylinder → Transition liquid → Skin → Fat → Glandular tissue → Tumor
Receiving antenna ← Cylinder ← Transition liquid ← Skin ← Fat ← Glandular tissue ← Tumor

The contrast in terms of the dielectric properties of the consecutive layers is responsible for the
intensity of the echoes that are generated due to the transition of the electromagnetic wave via the
respective layers. Thus, a significant tumor echo would be evoked that is conditioned on sufficient
dielectric contrast between the normal glandular tissue and the cancerous tissue.

In addition, both the breast tissue and the transition liquid are materials of non-negligible
conductivity that introduce noticeable radar wave propagation losses. This means that even if sufficient
dielectric contrast exists to evoke significant reflection from tumors, the propagation losses along the
path between the sensors and the tumor will lead to reflected signals of weak intensity compared
to the unwanted reflections originating closer to the sensors. Namely, it is the interaction (coupling)
between the antennas themselves, as well as the reflections that are generated by the skin layer once
the electromagnetic wave impinges on the external surface of the breast, which represent signals that
are several orders of magnitude larger in intensity than the weak reflections originating from the
interior breast tissues.

Given the above principles, which are related to the physical nature of the problem, an imaging
algorithm that is carefully customized for the application has been designed.

2.4.2. The Data Pre-Processing Steps

Several pre-processing steps are applied to the data measured by each couple of
transmitting/receiving antennas, before this data can be efficiently used for imaging. The objective
of the pre-processing steps is to mitigate the strong coupling between the antennas and the strong
interference originating from the skin and other interwall reflections close to the breast surface.
In the actual experimental setup, the effective employment of the data pre-processing steps reveals
useful radar target echoes 30–40 dB below the raw measured data power level. However, the data
pre-processing steps, being directly linked to the nature of the measured signal, are susceptible to
evolving once the imaging system is employed in the clinical setting.

• Data calibration at the presence of the breast

As a first step, drift correction, with respect to a reference channel, is applied to the raw data
measured by each couple of transmitting/receiving antennas; any time-varying drifts are thus
eliminated before further processing of the signal.
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The presence of the breast at a close vicinity to the sensor network significantly modifies the
measured coupling between sensors. For this reason, a calibration process is employed to dynamically
estimate the coupling signal based on a bunch of data from the scan that has been measured at similar
conditions. The data-driven estimation is performed in the frequency domain at each vertical scan
position and for each Tx/Rx couple in the network. The estimated coupling signal DCalTxi/Rxj,Hn

(f),
is further subtracted from the drift-corrected raw data DatDriftCorr,Txi/Rxj,Hn

(f).
A multiplicative compensation factor PhCenCorr,Txi/Rxj(f, er,trans(f)) is then applied to the

calibrated data in order to geometrically align the data. The phase-center compensation term is
computed for each Tx/Rx couple in the network for each operating frequency point and is subject to
the dielectric constant er,trans(f) of the transition liquid, as a function of the frequency. Conditioned on
temperature preservation in the operating limits of the device, such that the transition liquid dielectric
properties are known, this term does not require dynamic data-driven estimation; it is a priori defined
and stored during the system characterization at factory.

DatCAL,Txi/Rxj,Hn
(f) =

(
DatDriftCorr,Txi/Rxj,Hn

(f)− DCalTxi/Rxj,Hn
(f)
) · PhCenCorr,Txi/Rxj(f, er,trans(f)) (1)

• Reconstruction of the breast external envelope

This estimation module uses as input a reduced set of data from the microwave breast imaging
system, which after calibration for removal of the strong antenna coupling, is used to reconstruct the
external surface of the breast with limited accuracy. The calibrated data is used in conjunction with
an active contour model to estimate a simple closed contour representing the skin return boundary,
based on bistatic wave-front detection, at each vertical scan position. The algorithm has been presented
in more detail in [37] by P. Lawrence et al.

• Independent Component Analysis, in the frequency domain

The independent component analysis (ICA) is a well-known method for finding underlying
factors, or components, from multivariate statistical data [38,39]. The ICA method has been used
extensively in various application domains, among which medical imaging is included, for feature
extraction and selection, or even pathology identification [40,41].

What distinguishes ICA from other methods is that it looks for components that are both
statistically independent and non-Gaussian. Given a set of observations of stochastic processes
x1(t), x2(t), . . . , xm(t), where t denotes the sample index, assume that they are generated as a linear
mixture of independent components y = W·x, where W is some unknown matrix. Independent
component analysis consists of estimating the mixing matrix W, such that the non-Gaussianity of
the components yi(t) is maximized. The kurtosis and the negentropy are two of the most commonly
employed measures of non-Gaussianity for estimating the mixing matrix W [38].

In the case of radar signals, ICA can be performed either in the time domain, or in the frequency
domain [42–45]. In our data processing chain, we have opted for the frequency-domain ICA, applied
to the calibrated data DCalTxi/Rxj,Hn

(f) per Tx/Rx couple at each vertical scan position Hn.
Segmentation of the data vector in frames of appropriate length, via application of a sliding

window in frequency, is initially applied. Principal component analysis (PCA) is subsequently
performed for data pre-whitening and dimensionality reduction [46], prior to input into the
ICA algorithm. The selected sliding step in frequency is an important parameter that is
directly linked to the spectral properties of the underlying signal and the principal modes
to be preserved after pre-processing. The ICA operation is denoted in Equation (2), where
DatPCA−TAB,Txi/Rxj,Hn

, (M · Nf) is the block of M principal modes that is provided as input to the
ICA algorithm, DatICA−TAB,Txi/Rxj,Hn

, (M · Nf) is the block of M ICs, as estimated by the algorithm,
M corresponds to the number of sliding windows in the frequency that is initially selected, and Nf is
the number of frequency samples in the measured data vector.

DatICA-TAB,Txi/Rxj,Hn
= WH · DatPCA−TAB,Txi/Rxj,Hn

, ∀Hn and Txi/Rxi (2)
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• Data filtering: IC Selection with Appropriate Spectral and Geometry-based Features

The clear function of the ICA data pre-processing step is to classify/separate useful against
interference (strong clutter components), based on:

� The distinct spectral properties of the various radar target echoes i.e., frequency dispersion is
normally translated to higher kurtosis [47,48].

� The estimated location from which each IC radar echo originates: an inverse fast Fourier transform
(IFFT) for transformation of the IC from the frequency domain to the time domain is applied
for this purpose; the correspondence between time and distance is established using as input
the prior estimate of the breast contour, the known dielectric properties of the transition liquid,
and an assumption on the average dielectric properties in the interior of the breast (directly
derived from an assumption on the percentage of fibro-glandular versus adipose tissue in
the breast).

Given the above considerations, two filtering steps are sequentially applied to the data:

� Filtering-out ICs with spectral profile incompatible with radar target echoes originating from the
breast tissues, given the expected level of frequency dispersion; in the future, additional pattern
features may be identified and employed at this filtering step, based on measurements with real
breast tissues.

� Filtering-out ICs that are associated with radar target echoes originating from either very short
distances (residual coupling) or very long distances (multipath) with respect to the sensors;
the ICs that are filtered out at this step cannot physically correspond to the breast tissues, in terms
of geometry.

• Propagation Loss Compensation

In order for the imaging algorithm to work properly, it is important to compensate for the
electromagnetic wave propagation losses, which vary significantly along the working frequency band
in the case of the highly-dispersive breast tissues.

Given the estimate of the distance from which the radar target echo that is associated with
each IC originates (as estimated for the purpose of the distance-based filtering), a multiplicative
propagation loss compensation term that is both frequency and distance dependent is applied to each
IC. A characterization of the propagation loss model, which is applicable to the specific near-field
radar imaging setup, is required to perform a good compensation. For now, an estimate, which is
planned to be further refined in the future, is applied which achieves partial compensation of the
propagation losses.

The energy focusing level, which is retrieved on the images, is expected to be degraded in the case
of target sources for which the propagation loss compensation has not been properly performed at this
pre-processing step. The propagation loss compensation term being dependent on the distance between
the sensors and the target location to which each IC is associated means that it is also dependent
on an assumption of the percentage of fibroglandular tissue pcfib present along the specific bistatic
radar path.

Given all of the above considerations, a filtered version of DCalTxi/Rxj,Hn
(f) is reconstructed using

the ICs obtained from the two filtering stages. A multiplicative propagation loss compensation term is
applied separately to each IC before concatenation.

DCal − FiltTxi/Rxj,Hn(f) = ∑
i∈{ICrem}

DatICA−TAB,Txi/Rxj,Hn(i, f). LossComp (f, di, pcfib), ∀Hn and Txi/Rxi (3)

In Equation (3), ICrem denotes the set of IC indices that have been maintained after the two-step
filtering, while di denotes the bistatic radar distance of the target echo that has been associated with
the ith IC.
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2.4.3. The TR-MUSIC (Time-Reversal Multiple Signal Classification) Imaging Algorithm

After pre-processing the signals, as measured by various combinations of transmitting/receiving
antennas—thus in various bistatic configurations—are combined in a multistatic radar imaging
algorithm to generate an image of the interior breast tissues. The combination of multistatic radar
paths in the same imaging algorithm enhances the angular diversity of the input information, thus
making the algorithm more robust against clutter (unwanted distributed interference echoes from the
interior of the breast) and enhancing the focusing of the image energy on small pronounced targets.

The imaging algorithm that is used is the time-reversal multiple signal classification (TR-MUSIC)
algorithm, which was originally conceived for the detection of obscured radar targets in heavily
cluttered environments, in the case of surveillance and tracking defense radars [49]. The original
definition of the algorithm works optimally for a finite collection of point targets, as is the case when
small targets are observed by a radar with limited spatial resolution, or when the first-order Born
approximation is valid for the scattering mechanisms that dominate the imaging scene [50]. Further
studies have been subsequently performed to generalize the algorithm in cases of multiple scattering
phenomena [51] or extended targets, as is the case when a target is large relative to the size of the radar
resolution cell [52]. More recently, the algorithm has been also proposed for breast cancer detection in
dense breasts [53–58], albeit limited to simulations and no experimental data.

The main steps of our implementation of the algorithm are outlined as follows:

� A limited number of Nfsel frequency points is selected from the total of measured frequency
points in the operating band.

� Sectorization is performed, such that multiple images are formed at each frequency and each
vertical position of the sensor network, each time using a different sector of the circular network.
The selected number of sensors in the sector is further denoted as Ns. The total number of sectors
required to scan over the full 360◦ around the breast is denoted as Nsect.

Both the selection of specific frequency points, and the physical size and number of elements
in the sub-arrays (sectors) used for the elementary image formation, can be critical to the achievable
system performance in terms of unambiguous target (tumor) detection in the breast.

Monochromatic (single frequency) images are formed for each selected frequency point and each
sector of sensors as follows:

• The multistatic frequency response matrix (MFRM) is formed using the calibrated and filtered
data at the specific frequency:

Ssect(f) =

⎡⎢⎢⎢⎢⎢⎣
STx1/Rx1 STx1/Rx2 . . . STx1/RxNs

STx2/Rx1

. . . . . .
...

...
. . . . . .

...
STxNs /Rx1 . . . . . . STxNs /RxNs

⎤⎥⎥⎥⎥⎥⎦, f = 1 : Nfsel (4)

where:
STxi/Rxj(f) = DCal − FiltTxi/Rxj,Hn(f), ∀Hn and Txi/Rxi (5)

as defined in Equation (3).
• The time-reversal operator is subsequently formed as:

Tsect(f) = Ssect(f)
H · Ssect(f) (6)

with H denoting the Hermitian transpose.
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• Eigenvalue decomposition is performed on Tsect(f), and an appropriate model order selection
criterion is used to separate the resulting eigenspace into signal and noise subspaces [59]:

{Signal subspace : {λs, Qs} = {λi, Qi}Mord
i=1 , Noise subspace : {λN, QN} = {λi, Qi}Ns

i=Mord+1} (7)

where Mord is the selected model order. The separation can be a challenging task, if in the imaging
scene there are multiple interacting non-point targets, as is typically the case for breast imaging.
The effective separability between the signal and noise subspace has a significant direct impact
on the final imaging result, given that the principle for the formation of this type of image is the
orthogonality between the two subspaces.

QH
S · QN = 0 (8)

• The image, or the so-called TR-MUSIC pseudospectrum at the pixel p and the frequency f, when
using the sector of sensors sect at the vertical scan position hj, is formed as:

Imsect,hj(p, f) =
1

‖(QN
H · Gsect(p, f))H · (QN

H · Gsect(p, f))‖
(9)

where:

Gsect(p, f) =
[

g0

(
pTRxsect,1

, p, f
)

g0

(
pTRxsect,2

, p, f
)

. . . g0

(
pTRxsect,Ns

, p, f
) ]T

(10)

is the illumination vector of the sector sensor array sect at the frequency f and the pixel location p
in the imaging zone.

In Equation (10), g0

(
pTRxsect,i

, p, f
)

denotes the elementary Green function (i.e., the impulse
response function of the propagation path) from the individual antenna at position pTRxsect,i

to the
arbitrary point p in the scanning region at the frequency f, while T denotes the matrix transpose.

The TR-MUSIC pseudospectrum in Equation (9) gets maximized, thus highlighting a target
presence, at the pixel location p, at which the orthogonality constraint between the sensor array
illumination vector and the signal noise subspace is better met.

This arises from the assumption that a linear decomposition of the illumination vector Gsect(p, f)
in the signal subspace Qs exists such that:

Gsect(p, f) = Qs · B(m), with B(m) =
[

bm
1 bm

2 · · · bm
Mord

]T
a set of linear coefficients (11)

and the orthogonality constraint in Equation (8).

2.4.4. The Composite Image Formation

The monochromatic (single-frequency) image, as defined in Equation (9), may be difficult to
be exploited as such for unambiguous and comprehensive interpretation of the imaging scene, due
to inevitable corruption of the signal by residual noise and interference, even after pre-processing.
Frequency diversity is commonly employed to mitigate the presence of frequency-dependent clutter
(unwanted interference) radar echoes. The multi-frequency TR-MUSIC image at the sector sect and the
vertical scan position hj is defined in Equation (12):

Imsect,hj(p) =
Nfsel

∑
f=1

1

‖(QN
H · Gsect(p, f))H · (QN

H · Gsect(p, f))‖
(12)

In order to assure visibility of the breast over the full azimuth domain of 360◦, integration
is performed on multiple partial images, computed per sectors of sensors all around the breast.
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The composite image that is formed using all the Nsect elementary multi-frequency images at a given
vertical position of the sensor network is defined in Equation (13):

ImTOT,hj(p) =
1

Nsect
·

Nsect

∑
i=1

Imsect,hj(p) (13)

The composite image of Equation (13) is the first type of image that is used for the validation of
the imaging system using a well-controlled breast phantom, imaged at a single vertical position of the
sensor network, in the vicinity of the tumor phantom.

Integration of multiple partial images of the complete imaging scene, computed all along the
vertical scan of the sensor network, is further applied to form the full 3D image of the breast.

The composite image using data from multiple vertical scan positions of the sensor network is
defined in Equation (14):

ImTOT,MultiH(p) =
1

Nh
·

Nh

∑
j=1

ImTOT,hj(p) (14)

where Nh is the number of vertical scan positions of the sensor network that are used to form the full
3D image.

2.4.5. The Focusing Metrics, as a Means of Adjustment of the Breast Mean Permittivity

In order to map the multistatic radar echoes to the imaging grid under investigation, a model for
the electromagnetic wave propagation modes is employed, as defined in Equations (9) and (10).

In the actual version of the microwave imaging device, propagation in two homogeneous lossless
media is considered in the model. Lossless media are justified, given that loss compensation has been
applied to the pre-processed signals before entering the imaging algorithm, as defined in Section 2.4.2.

Separation of the space in two media is assumed, given that the heterogeneous distribution of the
tissues in the interior of the breast is unknown and sought to be estimated by the imaging algorithm.
Thus, the two media that are provided as a priori to the imaging algorithm are: the transition liquid
between the antennas and the exterior breast surface, and then the interior of the breast associated
with an “average” dielectric permittivity, which remains homogeneous per coronal slice of the breast.
The breast external surface has been estimated prior, using a subset of the calibrated data, as mentioned
briefly in Section 2.4.2; this information is exploited here to define the border between the two distinct
media of propagation.

The elementary Green function g0

(
pTRxsect,i

, p, f
)

involved in Equation (10) is further defined as:

g0

(
pTRxsec t,i

, p, f
)
= j · H

(1)
0

(
kbg(f) · ‖p − pTRxsect,i

‖+ Dk̂breast(f) · d̂InBreast,i,p

)
(15)

where:

� H
(1)
0 is the Hankel function of first kind and zero order: H

(1)
m (x) = (−j)m+1 · ej·x

x , with m = 0,
� kbg(f) = 2πf

c0
·√er,trans(f) is the wavenumber for propagation in the transition liquid,

� Dk̂breast(f) = 2πf
c0

·
(√

êr,InBreast(f)−
√

er,trans(f)
)

is an ‘average’ differential wavenumber for
propagation in the breast,

� c0 is the speed of light in vacuum,
� er,trans(f) is the known dielectric constant of the transition liquid,
� êr,InBreast(f) is an estimate of the average equivalent dielectric constant of the breast, and
� d̂InBreast,i,p is an estimate of the propagation path in the breast, in the case of a wave propagating

from the sensor TRxsect,i to the pixel p, knowing the wavefront corresponding to the external
surface of the breast.

130



Diagnostics 2018, 8, 53

The “average” equivalent dielectric constant of the breast is defined in Equation (16) as a function
of the dielectric constant of the adipose and fibroglandular tissue, mixed at proportion pcfib.

êr,InBreast(f) =
(
pcfib · êr,fibroglandular(f) + (1 − pcfib) · êr,adipose(f)

) · 10−2 (16)

êr,InBreast(f) is plotted in Figure 8 for various assumptions pcfib, while considering for the adipose
and fibroglandular tissue dielectric properties the ones of the corresponding tissue-mimicking liquids
used to fill the breast phantom molds of the Wavelia microwave breast imaging system, as defined in
Section 2.3.

Parametric images are generated under varying assumptions of percentage of fibroglandular tissue
pcfib along the propagation path from a given transmitting antenna, to the breast and back to a given
receiving antenna. The parameter pcfib impacts on both the estimate of the lossless elementary Green
function g0

(
pTRxsect,i

, p, f
)

, as defined in Equation (15), but also on the computation of the propagation
loss compensation term LossComp (f, di, pcfib), in Equation (3) of the data pre-processing chain.

Figure 8. “Average” equivalent dielectric constant along a bistatic path through the breast, under
various assumptions on the percentage of fibroglandular tissue pcfib. Applicability to the breast
phantoms used for the design validation of the microwave breast imaging system.

The generated set of parametric images is further evaluated in terms of focusing, using appropriate
image focusing measures [60–62]. The optimal pcfib assumption is automatically selected based on
maximization of the focusing capability of the imaging algorithm, under the specific pcfib assumption.
Given the varying consistency of the heterogeneous breast along the vertical scan, the focusing
operation is performed per vertical position of the sensor network, thus on the image type defined in
Equation (13).

For the analysis presented in this paper and used for the on-site validation of the Wavelia imaging
system before its pilot clinical test, the image curvature, as defined in [60] by S. Pertuz et al., is used as
the focusing metric (FM) for the parametric images. The intensity of the TR-MUSIC pseudospectrum of
Equation (13) is interpolated by means of a quadratic surface f(x, y) = c0 · x + c1 · y + c2 · x2 + c3 · y2,
where the vector of coefficients C = [c0 c1 c2 c3]T is computed through least squares by applying two
convolution masks, as defined in [60] by S. Pertuz et al. The curvature of the quadratic surface is used
as the focusing metric (FM) for the image:

FM = |c0|+ |c1|+ |c2|+ |c3| (17)

The quadratic surface fitting and FM computation is actually performed per regions of interest
(ROIs) of limited size on the image. The selected ROI size is related to the image resolution, as well
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as the size of detectable scattering objects in the radar imaging scene. The maximal image curvature
(FM) over all of the ROIs is computed per parametric image. The pcfib associated with the image with
overall maximal curvature is selected as optimal at a given vertical section of the breast (coronal breast
size) in front of the sensor network. The composite multi-height image, as defined in Equation (14),
is automatically formed via concatenation of all the coronal slices with maximal curvature (FM).

At the current stage of system development, the image formation is performed offline. It may take
a few hours for the focusing algorithm to run the multiparametric (multi pcfib) multi-sector images for
all the vertical (coronal) slices of the breast. The total duration for the composite image formation will
depend on the size of each breast (= i.e., number of coronal slices to be processed) and the number of
assumptions on the background breast permittivity under test (=size of the parameter set pcfib).

The actual implementation is valid, as such, in the case of a single dominant target (tumor) in each
coronal slice of the breast. Both the breast phantoms and the clinical setting for the pilot first-in-human
testing of the device are compliant with such a physical assumption. Appropriate complexification of
the algorithm is planned for the near future in order to properly handle the realistic case of multiple
lesions being present, sought to be detected, and accurately localized per coronal slice of the breast.

An example of the computed FM for a set of five pcfib-parameterized images, as well as the result
of optimal pcfib selection, is shown in Figure 9. The FM values are appropriately rescaled by the
algorithm, such that the resulting values are comparable among various coronal cross-sections of the
breast. The depicted images are normalized to maximum intensity.

Figure 9. Example of focusing evaluation on a coronal breast slice. Parametric images generated for
five assumptions in terms of percentage of fibroglandular tissue in the breast. Optimal pcfib = 45%,
automatically selected based on maximization of the focusing metric (FM). Single tumor (dominant
scatterer) detected on the specific breast coronal slice.

2.5. The Optical Breast Scan and Metrology

As mentioned in Section 2.1, the Wavelia medical device consists of two subsystems, both
performing a non-invasive examination: the microwave breast imaging subsystem, which is the
main part of the system, and the optical breast contour detection subsystem, which plays an auxiliary
role. The objective of the optical subsystem is triple:
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� Compute the volume of the patient’s breast, thus indirectly deriving the required volume of
transition liquid such that the container of the microwave breast imaging subsystem is optimally
filled after immersion of the breast;

� Compute the vertical extent of the pendulous breast, in order to optimally dimension the vertical
scan of the microwave breast imaging system;

� Reconstruct fully the external envelope of the breast, with high precision; such information will
further serve to control the potential level of deformation of the breast due to immersion in the
transition liquid during the microwave imaging scan. It may also serve as an intermediate step
when registering the 3D microwave image with reference to the 2D mammographic projections
of the patient’s breast, for comparison and validation of the microwave breast imaging modality.

The optical scan of the breast will be performed just before the microwave imaging scan, during
the clinical testing of the Wavelia system. In order for the optically reconstructed breast envelope to be
useful a priori information for the microwave imaging system, it is important that the patient is lying
in the same prone position during both examinations. Thus, an identical examination table as the one
used for the microwave imaging and shown in Figure 1, is integrated with the optical breast contour
detection subsystem as well.

The patient is lying on the examination table, with her breast under examination inserted in the
circular opening of the examination table. For this examination, there is no coupling liquid, as shown
in Figure 2 for the microwave imaging system. The breast is in the air, hanging below the examination
table. A 3D infrared camera is placed below the examination table at a distance of several tens of
centimeters below the breast. A motorization system enables the azimuthal motion of the camera in
one single horizontal plane. The azimuthal scan of the 3D camera permits reconstructing the external
envelope of the breast with sub-millimetric precision.

In Figure 10, the reconstructed outer surface for the breast phantom that has been specified in
detail in Section 2.3 and is used for the validation of the Wavelia imaging system on site is shown.
Both a side view and a bottom view are indicatively shown, as provided to the system user for
acceptance of the scan.

  
(a) (b) 

Figure 10. Reconstructed outer surface of the breast phantom #1 (a) Screen capture from the Wavelia
Optical Breast Contour Detection subsystem, as provided to the user, (b) Zoomed bottom view of the
reconstructed outer surface of the breast.
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In Figure 11, the reconstructed outer surface of a second breast phantom of different shape and
a significantly bigger size is illustrated.

  
(a) (b) 

Figure 11. Reconstructed outer surface of a second breast phantom #2, of significantly bigger size,
(a) Screen capture from the Wavelia Optical Breast Contour Detection subsystem, as provided to the
user, (b) Zoomed bottom view of the reconstructed outer surface of the breast.

In Table 1, the measurement results for both breast phantoms are given, for one optical
scan performed at factory and another scan performed after the installation of the system on site.
Reproducible results have been achieved with very good accuracy; these results served for the site
acceptance of the optical system at the hospital.

Table 1. Breast Phantom Metrology, Based on the Optical Scan.

Measures
Breast Phantom #1 Breast Phantom #2

Site Factory Site Factory

Breast Volume (mL) 698 696 1099 1097
Breast Vertical Extent

(mm) 85 84 108 108

The achievable level of accuracy for both the computation of the breast volume and the
computation of the vertical extent of the pendulous breast is compatible with the expected values and
independent of the breast size and shape, as long as the breast is within the limits of acceptable sizes
specified in the clinical protocol NCT03475992 [63].

2.6. The On-Site Validation Test Procedure for the Microwave Breast Imaging System

2.6.1. Controlled Environmental Conditions for Nominal Operation of the Imaging System

At this stage of prototype development, the imaging system is required to operate in a controlled
environment, for the nominal system performance to be assured. The examination room temperature
should range between 20–25 ◦C during the full examination, which takes approximately 1 h, including:
the optical and microwave scan of both breasts of the patient, all the intermediate system preparation
steps, the transition liquid preparation steps, and the system quality checks.
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In order to assure compliance with these temperature limits during the examination, it is
recommended that the room temperature does not exceed 21–22 ◦C at the beginning of the examination.

For the system on-site validation tests with breast phantoms, the temperature is monitored both at
the beginning and at the end of each test. The monitoring is performed at the following control points:

� container filled with transition liquid: measurement at the center and close to the borders of
the container

� breast mold compartments filled with fibroglandular tissue-mimicking liquid: measurement at
three different points, or compartments

In Table 2, the temperature monitoring data for an on-site system validation test, which has been
marked as compliant with the nominal operating conditions, is indicatively provided.

Table 2. Temperature Measurement Conditions: Breast Phantom Validation Test.

Transition Liquid Fibroglandular Tissue

Before the Scan After the Scan Before the Scan After the Scan

22.7 ◦C–23.3 ◦C 23.0 ◦C–24.1 ◦C 20.6 ◦C 21.2 ◦C

2.6.2. System Stability Verification

A series of systematic tests are regularly performed at system installation in order to assess the
repeatability of the measuring capability of the system. The assessment of the repeatability before
performing a RF scan is fundamental to assure that a reliable and exploitable measurement can
be performed.

A procedure for quantitative assessment of the system reliability has been developed. A reduced
version of this is also performed automatically by the system before the examination of each patient.
It consists of repeating a dummy (no breast immersion) measurement several times and performing
three tests to quantify the level of variability of the complex measurements, both in terms of amplitude
and phase.

• Verify that the amplitude envelope of the raw measured data keeps consistent with the lower and
upper-level masks, as predefined at factory;

• Perform first and second-order statistics on raw measured data after drift correction: evaluate the
stability, both in amplitude and phase, of the reference channel

• Perform first and second-order statistics on calibrated data: evaluate the multi-run stability, both
in amplitude and phase, on a limited set of Tx/Rx couples.

2.6.3. Imaging Test with Complex Breast Phantom at Two Azimuthal Rotational Positions

For the on-site validation of the system imaging performance after installation, a controlled test
with a complex breast phantom is performed. A tumor phantom is included at a given known position
in the breast. Quantitative evaluation of a series of metrics is performed for the quality assessment and
validation of the scan. For this reason, it is important that repeated testing with the exact breast and
tumor location configuration has been prior performed and thoroughly characterized at the factory.
The breast and tumor phantoms that are used for the on-site system validation have been defined in
Section 2.3.

The scan is repeated for two distinct azimuthal rotations of the phantom (azimuthal rotation
of both the breast and tumor by 180◦, such that the relative location of the tumorous inclusion in
the breast remains constant). The purpose of the breast rotation is to identify and characterize any
“non-symmetries” in the system imaging performance, due to residual uncalibrated imperfections
of the system circular network. For the definite on-site validation of the system after installation,
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a follow-up of the system imaging performance, as evaluated on the two azimuthal rotations of the
breast phantom, is performed over several days.

After the system acceptance on site, and while the pilot clinical test is running on patients, the scan
of the two breast phantom positions is recommended to be repeated and evaluated at regular intervals
in time (e.g., regular monthly, or bi-monthly, interventions by the device manufacturer on site for
control and maintenance). It is important to put into place such a regular follow-up in order to better
assure the pilot clinical trial data quality, using a system at the prototype level of development.

In Figure 12, a top view of the Wavelia examination table, after installation of the breast phantom
for the regular validation test, is shown. The breast phantom is maintained at the known position,
using a supporting ring structure. The tumor is inserted at the predefined 3D location, using a rigid
string of known length, inserted via a hole at a precisely known (x, y) position on the phantom
support structure. A photo of the two azimuthal rotation positions of the phantom, as used for system
validation, is shown in Figure 12a,b.

  
(a) (b) 

Figure 12. Breast phantom ready for the microwave imaging test: examination table top view (a) Breast
phantom rotational position #1; (b) Breast phantom rotational position #2.

2.6.4. Centering Assessment of the Reconstructed Breast Outer Surface

The breast-centering quality test is performed each time on a single breast contour that is
associated with a single vertical scan position of the sensor network predefined by the user. A coronal
slice close to the middle vertical extent of the pendulous breast is normally selected for the evaluation
of the centering of the breast with respect to the imaging zone.

Given the breast contour estimate gc chosen for the breast-centering assessment, at each point X
along this test contour, the minimum bistatic distance rgc(x) between this point and any pair of RF
sensors (among the reduced set of pairs preselected for use with this estimation module) that can “see”
that point, is computed.

In order to assess the centering quality of the estimated contour, an ideally centered reference
contour is derived by translating the estimated contour by a varying amount xT around the 2D region
of interest until it yields the largest value of

∮
gcT

rgcT(gcT(s))ds, where gcT = gc + xT is the translated

contour and rgcT(x) denotes the minimum bistatic distance to a point x on this translated contour. For
this ideal centered reference contour, the minimum bistatic distances, associated to each point x of this
curve, denoted by rc(x), are similarly calculated as for the estimated contour.

For brevity, the notation x is used in the sequel of this section to refer to a given point along the
estimated breast contour, and also to refer to the corresponding point x + xT on the ideally centered
reference contour.

The centering assessment is then performed by comparing the bistatic ratio:

br := max
x∈gc

(∣∣rc(x)− rgc(x)
∣∣

rc(x)

)
(18)
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to the threshold value Br · pdist_thresh where Br is the largest bistatic ratio of any possible translation of
the estimated contour, and pdist_thresh is a user-defined parameter, which is by default set to 0.85 for
the system validation test.

If br exceeds Br · pdist_thresh, then the estimated breast contour is marked as remarkably
off-centered, and the breast centering confidence level P is set to a minimal value that is preset
via the parameter percat_max_dis tan ce. Otherwise, the ratio br/(Br · pdist_thresh) is used to compute the
breast centering confidence level, as defined in Equation (19):

p =

{
100 · percat_max_distance, if br > Br · pdist_thresh
100 − 100(1 − percat_max_distance)

br
Br·pdist_thresh

, otherwise (19)

To this extent, the centering assessment will have a confidence level percentage ranging between
a maximum of 100 (if the test contour is coincident with the ideal centered contour) and a minimum of
100 · percat_max_distance. For the on-site validation tests, the minimal value 50% has been used for all of
the centering assessment tests.

In Figure 13a,c the breast surface contour estimate chosen for the breast centering assessment
(depicted in blue) and the associated ideally centered contour (depicted in cyan) are shown for the
tests at the breast rotational position #1, on Test Date 1 and Test Date 2, correspondingly. The red
dots depict the location of the sensors, while the black circle represents the inner wall of the transition
liquid container.

 
(a) 

 
(b) 

 
(c) (d) 

Figure 13. Breast rotational position #1: (a) Test Date 1, estimated outer breast surface at a given coronal
slice; (b) Test Date 1, breast centering assessment map; (c) Test Date 2, estimated outer breast surface at
a given coronal slice; (d) Test Date 2, breast centering assessment map.
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The associated spatial map of breast-centering assessment is shown in Figure 13b,d for the two
test dates of the breast rotational position #1, correspondingly.

In either figure, the purple square represents the location of the center of mass of the breast surface
contour estimate that was used for the breast-centering assessment; the resulting breast-centering
confidence level is marked on the title of each figure. The black circle depicts the inner wall of the
transition liquid container.

The results for the breast rotational position #2 are given in Figure 14a,b for the data recorded on
Test Date 1, and in Figure 14c,d for Test Date 2. All of the notations are consistent with the definitions
provided earlier as explanation to Figure 13.

 
(a) (b) 

 
(c) (d) 

Figure 14. Breast rotational position #2: (a) Test Date 1, estimated outer breast surface at a given coronal
slice; (b) Test Date 1, breast centering assessment map; (c) Test Date 2, estimated outer breast surface at
a given coronal slice; (d) Test Date 2, breast centering assessment map.

The breast-centering confidence levels, as computed for all four test cases, are comparatively
presented in Table 3.

Table 3. Confidence Level for Breast Centering.

Breast Test Date 1 Test Date 2

Rotational position #1 82.97% 83.40%
Rotational position #2 87.42% 85.86%
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It is shown that the natural off-centering of the breast phantom at the selected coronal slice
is repeatedly identified with a fair level of accuracy, associated with centering confidence levels
varying between 83–87.4%. It is worth noting that a slight offset is repeatedly identified between
the estimates for the two distinct rotational positions of the breast phantom. This is an indication of
a slight non-symmetry in the reconstructed geometry, introduced either by the sensor network itself,
or possibly due to a non-homogeneous thermal distribution in the interior of the examination table.

2.6.5. Image Quality Assessment (QA) Metrics for System Performance Acceptance

The microwave breast imaging system evaluation and acceptance is performed based on a series
of quality metrics which are computed on multistatic radar images of the breast phantoms, as defined
in Equations (13) and (14).

• QA Metric 1: Focusing Metric (FM) evaluated on the composite image formed at single
vertical position of the sensor network (as per Equation (13)), in front of the tumor:

The FM is evaluated on a series of images, parameterized by the assumed percentage of
fibroglandular tissue pcfib in the breast.

◦ Acceptance Criterion (AC) #1: The optimal pcfib value, for which the focusing measure is
maximized, should remain constant at every repetition of the controlled imaging test, and for
every rotational position of the breast phantom (testing with pcfib intervals equal to 5%).

◦ AC#2: the value of the focusing measure, for the optimal pcfib, should exceed a preset threshold
value thrQA_1.

• QA Metric 2: Intensity of the TR-MUSIC pseudospectrum at the tumor location (Immax),
evaluated on the composite image formed at a single vertical position of the sensor network
(as per Equation (13)), in front of the tumor:

The Immax is evaluated for a series of images parameterized by the assumed percentage of
fibroglandular tissue pcfib in the breast:

◦ AC#3: The optimal pcfib value for which Immax is maximized should remain constant at every
repetition of the controlled imaging test, and for every rotational position of the breast phantom
(testing with pcfib intervals equal to 5%).

◦ AC#4: The value of Immax, for the optimal pcfib value, should exceed a preset threshold
value thrQA_2.

◦ AC#5: The two patterns FM(pcfib) and Immax(pcfib) should be consistent with each other, meaning
that maximization and identical slope(s) are observed for the same pcfib values on both patterns.

• QA Metric 3: Variation of the maximal achievable focusing FM over the height, evaluated
for images formed using various vertical scan positions of the sensor network (as per
Equation (14)):

◦ AC#6: The maximal FM should be observed at the same height: the one closer to the tumor,
at every repetition of the controlled imaging test, and for every rotational position of the
breast phantom.

◦ AC#7: The contrast between the maximal FM and the FM achievable at all of the other heights
should exceed a given threshold thrQA_3.

• QA Metric 4: Ratio between the average image intensity at the exterior of the breast and the
Immax in the interior of the breast: Evaluation on the composite image formed using data
from multiple vertical scan positions of the sensor network (as per Equation (14)):

The multi-height image is formed via concatenation of the single-height images with pcfib
automatically selected to allow optimal image focusing independently per height.

◦ AC#8: The ratio should not exceed a preset upper-limit value ULQA_4.
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3. Results

In this section, indicative results are presented from the test campaign that has been recently
carried out for the site acceptance of the Wavelia microwave breast imaging system after its installation
at the Galway University Hospital for a pilot first-in-human clinical test [63]. The series of image
quality assessment (QA) metrics, as defined in Section 2.6.5, have been evaluated on four scans of
a realistically complex breast phantom, as detailed in Section 2.6.3.

3.1. QA Metrics 1 and 2: Images Formed at Single Vertical Position of the Sensor Network

3.1.1. Breast Rotational Position #1

In Figure 15, the experimental setup for the tests at the rotational position #1 of the breast phantom
is illustrated. For these tests, the microlobulated tumor of average size (14 mm) has been immersed in
the fibroglandular tissue-mimicking liquid, at the location (x, y, z) = (20, 0, 110) mm (=center of the
tumorous lesion).

The test has been repeated on two distinct dates. Imaging results from the two identical tests are
presented and compared in this section.

  
(a) (b) 

 
(c) 

Figure 15. Experimental setup for the breast rotational position #1: (a) Photo—Top view of the breast
phantom, installed on the examination table; (b) Schematic definition of the tumor location (red sphere
with a 14-mm diameter, equal to the average diameter of the microlobulated tumor phantom), in the
fibroglandular tissue of the breast (the outer surface of both the fibroglandular mold and the outer
breast surface mold are depicted with orange color)—Top View; (c) Schematic definition of the tumor
location in the fibroglandular tissue of the breast—Side View.
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In Figure 16, the composite TR-MUSIC pseudospectra, as formed using Equation (13) and data
from a single vertical scan position of the sensor network, are depicted for the two data snapshots
recorded on two different dates. The full imaging domain, both in the interior and the exterior of the
breast phantom, is evaluated. The objective of such a visualization is to highlight the absence of any
significant artifact radar echoes at the exterior of the breast, in the case of both measurements.

These composite images have been formed with the integration of monochromatic (single-frequency)
TR-MUSIC pseudospectra, computed as per Equations (9)–(13), using:

� a given number Nfreq of frequency points, uniformly spanning the working frequency band,
� a given number Nsec of sectors of antenna sub-arrays spanning the full 360◦ azimuth domain

around the breast.

The images that have been formed under the assumption pcfib that resulted in maximized focusing
are here depicted. The optimal pcfib has been automatically selected with the method that has been
defined in Section 2.4.5.

The applied data processing chain is meant to result, ideally, in the formation of very spiked
images indicating the probability of the target presence on each pixel of the imaging domain.
The unambiguously detected and accurately localized targets are expected to be associated with
constellations of very small bright spots, highlighting the target position in an overall dark spatial
map. In Figure 16a,b, a clear and pronounced peak of the TR-MUSIC pseudospectrum is visible on
both images in the vicinity of the ground truth location of the tumor.

It is noticeable that the intensity of the TR-MUSIC pseudospectrum is slightly higher on the first
Test Date 1, as compared to Test Date 2. In addition, two secondary radar echoes (of significantly lower
intensity compared to the dominant echo, which is clearly attributed to the tumor) are present on the
image of Test Date 1. These secondary echoes can be attributed to a “cavity” of adipose tissue that is
formed in between the three compartments of the mold filled with fibroglandular tissue-mimicking
liquid in the breast phantom. This adipose ‘cavity’, which has significant negative dielectric contrast
with respect to the surrounding fibroglandular tissue, is visible in Figure 17a, and can be spatially
correlated with the secondary radar echoes seen in Figure 16a.

  
(a) (b) 

Figure 16. Breast rotational position #1—image formed at a single vertical position of the sensor
network, in front of the tumor; top XY view of the full imaging domain (the antennae center positions
are depicted with purple dots): (a) Test Date 1; (b) Test Date 2.
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In Figure 17a,b, the same images as Figure 16a,b are shown, but after having filtered out the parts
corresponding to the exterior of the breast phantom. The breast external contour has been a priori
extracted from the data as defined in Section 2.4.2, and is used here for spatial filtering in order for
the image to be easier interpretable from a physical point of view. The borders of the fibroglandular
tissue-mimicking molds, which are a priori known, and a red sphere with diameter equal to the
average size of the microlobulated tumor, have also been superimposed on the images in Figure 17a,b.
The objective of this second visualization is a straightforward linking of the bright spots on the images
of Figure 16a,b and the experimental setup.

In Figure 17c,d, an alternative viewpoint is provided for the same images of the breast interior.
The selected viewpoint would correspond to a front-side view of the breast, while the patient is
in the standing position. The borders of the fibroglandular tissue mimicking molds have not been
superimposed with the images in this third visualization.

Clean images that can be clearly associated with unambiguous detection of the tumor have been
retrieved on both tests of the rotational position 1 of the breast phantom.

 

  
c

Figure 17. Breast rotational position #1—image in the interior of the breast only, formed at a single
vertical position of the sensor network, in front of the tumor: (a) Test Date 1, top XY view, superposition
of the fibroglandular and outer breast surface molds (blue color), red sphere indicating the tumor
location; (b) Test Date 2, top XY view, superposition of the fibroglandular and outer breast surface
molds (blue color), red sphere indicating the tumor location; (c) Test Date 1, 3D view, superposition
of the outer breast surface mold (blue color), red sphere indicating the tumor location; (d) Test Date
2, 3D view, superposition of the outer breast surface mold (blue color), red sphere indicating the
tumor location.
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The evaluation of the QA metric 1 is shown in Figure 18a,b for the two images, formed on Test
Date 1 and Test Date 2 correspondingly. It can be observed that maximal focusing is achieved for
pcfib = 40% on Test Date 1, while on Test Date 2, the optimal pcfib value is 45%.

 

 
c

Figure 18. Breast rotational position #1: (a) Test Date 1, image quality assessment (QA) metric 1; (b) Test
Date 2, image QA metric 1; (c) Test Date 1, image QA metric 2; (d) Test Date 2, image QA metric 2.

The acceptance test (AC) #1 would strictly fail in such a case. However, given the proximity of the
‘average’ breast tissue dielectric properties that are associated with the two pcfib values, as depicted
in Figure 8, and also considering the constrained and yet non-optimized stability and robustness
of both the imaging system and the transition liquid itself against slight variations in the nominal
environmental operating conditions (e.g., slight temperature variations), such a variation in the optimal
pcfib value, in terms of focusing, is still considered acceptable for the on-site validation tests of the
actual version of the imaging system prototype.

The threshold value for the optimal focusing metric (FM) per image has been set to
thrQA_1 = 0.0004. This is valid for the specific experimental setup, which has been reproduced both at
factory and after system installation on-site. This is the threshold value that is used with acceptance
test #2 all along the on-site validation of the imaging system. Both tests at the rotational position 1 of
the breast are thus validated in terms of AC #2.

The evaluation of the QA metric 2 is shown in Figure 18c,d for the two images, formed on Test
Date 1 and Test Date 2, correspondingly. It can be observed that the maximal intensity Immax of the
TR-MUSIC pseudospectra is maximized for the same pcfib values as the FM. Concerning acceptance
test #3, the same considerations hold as for AC#1. In terms of acceptance test #4, the threshold value for
the image intensity at the target (tumor) position has been set to thrQA_2 = 0.0001, while performing
tests with the same experimental setup as at the factory. This is the threshold value that is used with
the AC #4 all along the on-site validation of the imaging system. Both tests at the rotational position
1 of the breast are thus validated in terms of AC #4. Finally, the two patterns FM (pcfib) and Immax

(pcfib) remain consistent between each other, as far as the dependence on pcfib is concerned, with the
exception of the outlier point: Immax (pcfib), pcfib = 30%. Acceptance test #5 is validated in such a case
of similarity between the two patterns at the given prototype state of the imaging system.

3.1.2. Breast Rotational Position #2

In this section, the same QA metrics 1 and 2 are evaluated for the two imaging tests that have
been performed at the rotational position 2 of the same breast phantom on two distinct dates: Test
Date 1 and Test Date 2. The breast phantom is rotated by 180◦, with respect to the two first tests, which
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have been thoroughly evaluated and validated in terms of QA 1 and QA 2 in the previous section.
In Figure 19, the experimental setup for the tests at the rotational position #2 of the breast phantom
is illustrated.

  
(a) (b) 

 
(c) 

Figure 19. Experimental setup for the breast rotational position #2: (a) Photo—Top view of the breast
phantom, installed on the examination table; (b) Schematic definition of the tumor location (red sphere
of diameter 14 mm, equal to the average diameter of the microlobulated tumor phantom) in the
fibroglandular tissue of the breast (the outer surface of both the fibroglandular mold and the outer
breast surface mold are depicted with orange color)—Top View; (c) Schematic definition of the tumor
location in the fibroglandular tissue of the breast—Side View.

For these tests, a microlobulated tumor of average size (14 mm) has been immersed in the
fibroglandular tissue-mimicking liquid at the location (x, y, z) = (−20, 0, 110) mm (=center of the
tumorous lesion).

In Figure 20, the composite TR-MUSIC pseudospectra, as formed using the Equation (13), and data
from a single vertical scan position of the sensor network are depicted for the two data snapshots
recorded on two different dates.
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(a) (b) 

Figure 20. Breast rotational position #2—image formed at a single vertical position of the sensor
network, in front of the tumor, top XY view of the full imaging domain (the antennae center positions
are depicted with purple spots): (a) Test Date 1; (b) Test Date 2.

These images have been formed in exactly the same way, as detailed in Section 3.1.1 for the images
in Figure 16. A clear and pronounced peak of the TR-MUSIC pseudospectrum is visible on both images
in the vicinity of the ground truth location of the tumor. However, when comparing these images with
the ones in Figure 16, it is noticeable that the maximal intensity of the TR-MUSIC pseudospectrum
in Figure 20b is lower than the maximal intensity in the three other images. The dominant peak that
is unambiguously associated with the tumor multistatic radar echo is also slightly misplaced with
respect to the ground truth location of the tumor. The observed shift can be better seen in Figure 21b.
The four images in Figure 21 have been formed in exactly the same way as the corresponding images
in Figure 17 in Section 3.1.1.

Clean images that can be clearly associated with unambiguous detection of the tumor have been
retrieved from both tests at rotational position 2 of the breast phantom. The imaging performance
is slightly degraded on Test Date 2; however, such a level of degradation lies within the limits of
acceptable variability in the system performance at this stage of development. All four datasets
presented in the article are thus examples of test data that have served the on-site validation of the
imaging system. The quantified evaluation of the system performance, in terms of the QA metrics 1
and 2, is shown in Figure 22 for the two tests at rotational position 2 of the breast phantom.

The result representation in Figure 22 is identical to the one in Figure 18 for the two tests at
rotational position 1 of the breast phantom, which has been detailed in Section 3.1.1.
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c

Figure 21. Breast rotational position #2—image in the interior of the breast only, formed at a single
vertical position of the sensor network, in front of the tumor: (a) Test Date 1, top XY view, superposition
of the fibroglandular and outer breast surface molds (blue color), red sphere indicating the tumor
location; (b) Test Date 2, top XY view, superposition of the fibroglandular and outer breast surface
molds (blue color), red sphere indicating the tumor location; (c) Test Date 1, 3D view, superposition
of the outer breast surface mold (blue color), red sphere indicating the tumor location; (d) Test Date
2, 3D view, superposition of the outer breast surface mold (blue color), red sphere indicating the
tumor location.

It can be observed in Figure 22a,b that maximal focusing is achieved for pcfib = 35% on both test
dates. The optimal pcfib value remains constant between the two test dates, as required by acceptance
test #1; however, this value is lower than the optimal value identified for rotational position 1 of the
breast phantom. This phenomenon of slightly shifted optimal pcfib, depending on the orientation
of the breast phantom with respect to the sensor network, has been consistently observed on more
validation test datasets of the imaging system, and could be attributed to the slight inhomogeneity in
the temperature spatial distribution in the interior of the device, at its actual version. This is accepted as
such, and validated for the clinical pilot testing of the system; a thermoregulation of the device interior
is planned to be put in place when upgrading the device design in the future, such that this type of
inhomogeneity can be avoided. The ‘average’ breast tissue dielectric properties that are associated
with each pcfib value are defined in Figure 8.
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Considering the threshold value thrQA_1 = 0.0004 for the optimal focusing metric (FM) per image,
as defined in Section 3.1.1, acceptance test #2 is clearly validated on Test Date 1, but it is hardly reached
on Test Date 2, as can be observed in Figure 22a,b.

The evaluation of the QA metric 2 is shown in Figure 22c,d. It is shown that the maximal intensity
Immax of the TR-MUSIC pseudospectra is maximized for the same pcfib values as the FM, such that
AC #3 is validated on both test dates. Given the threshold value for the image intensity at the target
(tumor) position, thrQA_2 = 0.0001, as specified in Section 3.1.1, AC #4 is clearly validated on Test Date
1 and just met on the Test Date 2.

The two patterns: FM (pcfib) and Immax (pcfib) remain consistent between each other, as far as the
dependence on pcfib is concerned; acceptance test #5 is validated on both test dates.

  

c

Figure 22. Breast rotational position #2: (a) Test Date 1, image QA metric 1; (b) Test Date 2, image QA
metric 1; (c) Test Date 1, image QA metric 2; (d) Test Date 2, image QA metric 2.

3.2. QA Metrics 3 and 4: Images Formed at Multiple Vertical Positions of the Sensor Network

In Figure 23, the maximal focusing metric (FM), as extracted from Figure 18a,b and Figure 22a,b for
the four test datasets at single H = 118 mm (sensor network in front of the tumor), is plotted as evaluated
on images that have been formed using six different vertical scan positions of the sensor network
(vertical sampling rate = 5 mm). The result, which is QA metric 3 as defined in Section 2.6.5, is plotted
in Figure 23a,b for the breast rotational position 1, Test Date 1, and Test Date 2, correspondingly.
In Figure 23c,d, QA metric 3 is plotted for the breast rotational position 2, Test Date 1, and Test Date 2,
accordingly. The maximal FM is observed at the same height, H = 118 mm, for both rotational positions
of the breast phantom, and for both repetitions of either of the two controlled imaging tests. AC #6 is
validated based on the results presented for the four test datasets, as shown in Figure 23.

Ideally, an overall contrast between the maximal FM (at H = 118 mm, coronal slice of the breast
on which the tumor is better ‘seen’ by the sensor network) and the FM that is achievable at any other
coronal breast slice should exceed a given threshold thrQA_3 = 1.2, as is the case in Figure 23b for breast
rotational position 1 on Test Date 2. While such a case represents the goal in terms of unambiguous
retrieval of the tumor echo along the vertical scan of the heterogeneous breast, AC #7 is validated also
in the case of Figure 23a,c, where the contrast in terms of FM exceeds the value thrQA_3 = 1.1. In the
case of Figure 23d, the computed contrast is 1.08. It has been concluded in the course of the on-site
validation of the imaging system that the three first test datasets are validated in terms of AC #7, while
the fourth test dataset hardly meets the set threshold value. It is interesting to notice that the breast
rotational position 2—Test Date 2 scan is the only one that has been marked as invalid (or potentially
critically valid) by the total of three quantitative evaluation tests: AC#2, AC#4, and AC#7.
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(a) 

 
(b) 

 
(c) (d) 

Figure 23. Imaging focusing analysis on 3D multi-H data: (a) Rotational position #1—Test Date 1;
(b) Rotational position #1—Test Date 2; (c) Rotational position #2—Test Date 1; (d) Rotational position
#2—Test Date 2.

In Figure 24, a top and side view of the composite image formed using the data from the six vertical
scan positions of the sensor network (as per Equation (14)) are shown for breast rotation position
1 on Test Date 1. The ground truth location of the tumor phantom is illustrated with a spherical
inclusion with a diameter of 14 mm, which is equal to the average size of the microlobulated tumor
that is superimposed on the images. This type of multi-height composite image has been formed via
concatenation of the single-height images with automatically selected pcfib, to allow optimal image
focusing independently per height, as explained in Section 2.4.5. The sensor positions, as mapped
on the inner wall of the container filled with transition liquid, are illustrated with the purple dots
that are overlaid on the images. Overlapping zones exist in the 3D imaging domain among the
elementary images formed from data at a single vertical scan position of the sensor network. Intensity
normalization operations are also involved in the concatenation of the elementary images for formation
of the composite multi-height image; this is the reason why the scaling of the intensity is different for
the single-height (formed as per Equation (13)) and the multi-height images (formed as per Equation
(14)). The difference in scaling depends on the number of integrated vertical scan positions and the
amount of overlap among the elementary images. These parameters are not detailed any further in
this paper.

In Figure 25, a top and side view of the composite image formed using the data from the six
vertical scan positions of the sensor network (as per Equation (14)) are shown for breast rotation
position 1 on Test Date 2.

By comparing the imaging results in Figures 24 and 25, it is clear that while unambiguous
detectability of the tumor in the breast interior is assured all along the six vertical scan positions,
the maximal intensity of the composite TR-MUSIC pseudospectrum in the breast (tumor constellation
of echoes) is lower in Figure 25 as compared to Figure 24. Few spots of unfiltered clutter/interference
close to the sensor network are also visible in the images in Figure 25. It is well seen on the side
view in Figure 25b that the unfiltered interferers appear a bit higher than the tumor (=closer to the
examination table).
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(a) 

 
(b) 

Figure 24. Breast rotational position #1—Test Date 1—image formed using six vertical positions of the
sensor network in the vicinity of the tumor—image in the interior of the breast superimposed with the
image of the full imaging domain: (a) top XY view; (b) side XZ view.

 
(a) 

 
(b) 

Figure 25. Breast rotational position #1—Test Date 2—image formed using six vertical positions of the
sensor network, in the vicinity of the tumor—image in the interior of the breast superimposed with the
image of the full imaging domain: (a) top XY view; (b) side XZ view.

In Figures 26 and 27, a top and side view of the composite images formed using the data from
the same six vertical scan positions of the sensor network (as per Equation (14)) are shown for breast
rotation position 2, on Test Date 1 and Test Date 2, correspondingly. The image intensity associated
with the constellation of tumor radar echoes is a bit lower on both test dates, as compared to the images
in Figure 24. The constellation of more than a single peaked spot is associated with the tumor on the
TR-MUSIC pseudospectra of Figure 26. This is acceptable, given the size and irregular shape of the
target, as seen in Figure 5.

In both Figures 26 and 27, a slightly higher level of overall intensity in the exterior of the breast
phantom (level of residual interferer echoes) is observed, as compared to the images in Figures 23
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and 24. This is an indicator of the slightly degraded imaging performance of the system in the case of
breast rotational position 2 on both test dates. This is quantifiable by means of QA metric 4, i.e., the ratio
between the average image intensity in the non-focused image in the exterior of the breast versus the
maximal image intensity in the focused image in the interior of the breast (clearly associated with the
tumor radar echo on all the presented images). The values of QA metric 4 are given in Table 4 for all
four composite images in Figures 24–27. Ideally, QA metric 4 should not exceed the upper limit value
ULQA_4 = 10% for on-site acceptance of a test scan using the specific controlled imaging scenario.
The scans of both breast rotational positions on Test Date 2 (this is not the same date for both scans) are
thus at the limit of being marked as incompatible in terms of AC #8.

 
(a) 

 
(b) 

Figure 26. Breast rotational position #2—Test Date 1—image formed using six vertical positions of the
sensor network, in the vicinity of the tumor—image in the interior of the breast superimposed with the
image of the full imaging domain: (a) top XY view; (b) side XZ view.

 
(a) 

 
(b) 

Figure 27. Breast rotational position #2—Test Date 1—image formed using six vertical positions of the
sensor network, in the vicinity of the tumor—image in the interior of the breast superimposed with the
image of the full imaging domain: (a) top XY view; (b) side XZ view.

150



Diagnostics 2018, 8, 53

Table 4. QA Metric 4, Evaluated for the Four Analyzed Test Datasets.

Breast Test Date 1 Test Date 2

Rotational position #1 7.41% 10.38%
Rotational position #2 4.68% 11.42%

4. Discussion and Conclusions

In Table 5, a summary of the acceptance test results is reported for the four breast phantom scans,
which have been thoroughly analyzed in Section 3.

Site acceptance of the imaging system is suggested, if more than Ntest/2 valid tests are consistently
reported, at every scan repetition, during a one-week test validation period (Ntest = 8 is the total number
of acceptance tests performed and evaluated after each scan, as defined in Section 2.6.5).

Table 5. Summary of Acceptance Test Results.

Acceptance Test (AC)
Rotational Position #1 Rotational Position #2

Test Date 1 Test Date 2 Test Date 1 Test Date 2

#1 - - - -
#2 + + + ×
#3 - - - -
#4 + + + -
#5 - + + +
#6 + + + +
#7 - + - ×
#8 + - + -

+, Valid; -, Critically Valid; ×, Invalid.

This summarized result presentation makes clear the degradation that has been observed for the
scan at breast rotational position #2, on Test Date 2, when compared to the other three scans, in terms
of the defined QA metrics. This is indicative of the expected and acceptable level of variability in the
performance of the imaging system prototype.

At this stage of system development, and toward pilot clinical testing, all the “critically valid” AC
test results in Table 5 have been considered acceptable. On-site acceptance of the imaging system is
validated with such results, provided that such a performance is consistently achieved along the total
duration of the one-week validation period.

In the case of the breast phantom defined in Section 2.3 and used for the validation tests of
the system, even if a single tumor model is inserted in the breast phantom under test, the complex
geometry of the plastic molds, filled with either adipose or fibroglandular tissue-mimicking liquid,
may result in unfiltered radar echoes originating from the corners on the mold surface, which may be
erroneously seen as “scattering objects of interest”. This complexity renders the test scenario, which
is used for system validation, particularly challenging (from a radar point of view), and does not
necessarily correspond to a physical complexity that is expected to be found in the real breast; less
discontinuous transitions and a less structured multi-layered configuration is naturally expected to be
found in the real breast, but cannot be easily reproduced in a phantom.

On the other hand, it is clear that any perturbation that may be introduced in the microwave
breast scan due to either an intentional motion of the patient or unintentional ‘micromotions’ of living
body cells during the scan, has not been considered so far, and its impact will be investigated based
on clinical data only. Interference due to blood flow in the breast, or due to the interface between
the examination table and the patient’s chest wall have not been investigated either. The inherent
interpatient anatomical variability and its impact on the pre-processing modules for sensor coupling
and breast skin echo suppression will also need to be carefully investigated during the pilot clinical

151



Diagnostics 2018, 8, 53

test. Finally, the interpatient variability in terms of: normal and cancerous breast tissue dielectric
properties and associated contrasts, breast density, and skin texture depending on age, are all examples
of physical phenomena that have not been modeled by the phantoms used for the system design
and validation.

Given the above considerations on potential sources of mismodeling of the breast with the
available phantoms, it is inevitable that some adjustments of both the hardware and software modules
of the system architecture may need to be performed as a conclusion of the planned pilot clinical
testing. Such adjustments may be required such that the intended imaging performance, as validated
with the indicative results presented in this paper, is assured and validated when processing the
clinical data from patient breast scans as well.
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Abstract: Electromagnetic (EM) medical technologies are rapidly expanding worldwide for both
diagnostics and therapeutics. As these technologies are low-cost and minimally invasive, they have
been the focus of significant research efforts in recent years. Such technologies are often based on
the assumption that there is a contrast in the dielectric properties of different tissue types or that the
properties of particular tissues fall within a defined range. Thus, accurate knowledge of the dielectric
properties of biological tissues is fundamental to EM medical technologies. Over the past decades,
numerous studies were conducted to expand the dielectric repository of biological tissues. However,
dielectric data is not yet available for every tissue type and at every temperature and frequency.
For this reason, dielectric measurements may be performed by researchers who are not specialists
in the acquisition of tissue dielectric properties. To this end, this paper reviews the tissue dielectric
measurement process performed with an open-ended coaxial probe. Given the high number of
factors, including equipment- and tissue-related confounders, that can increase the measurement
uncertainty or introduce errors into the tissue dielectric data, this work discusses each step of the
coaxial probe measurement procedure, highlighting common practices, challenges, and techniques
for controlling and compensating for confounders.

Keywords: dielectric measurements; biological tissues; open-ended coaxial probe; equipment-related
confounders; tissue-related confounders

1. Introduction

The interaction of electromagnetic (EM) fields with the human body is dependent on the
inherent dielectric properties of each tissue. Based on these properties, electromagnetic waves are
transmitted, absorbed, and reflected by biological tissues in different ratios. Accurate knowledge of
these properties is crucial for dosimetry (safety) calculations and for medical diagnostic, monitoring,
and therapeutic technologies.

The dielectric properties of tissues can be incorporated into highly accurate computational and
physical models, and the generated preliminary data can be used to assess the technical risk, efficacy,
and safety of the medical device or treatment. For instance, numerical models based on tissue dielectric
parameters are used to calculate the specific absorption rate (SAR) in biological tissues. SAR levels are
regularly calculated to validate the safety of many medical technologies, including magnetic resonance
imaging (MRI) and implantable devices. Since SAR is a complex function of the dielectric properties
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of tissue, accurate knowledge of these properties are the foundation upon which SAR safety analysis
is built [1,2]. Furthermore, accurate knowledge of the dielectric properties of biological tissue have
prompted the development of a wide range of novel diagnostic and therapeutic technologies.

EM imaging ranges from the low-frequency Electrical Impedance Tomography (EIT) to
higher-frequency Microwave Imaging (MWI). Both of these techniques rely on dielectric contrasts
between organs or on contrasts between healthy and diseased, or inflamed, tissue. These imaging
methods have gained significant academic and commercial interest, since both EIT and MWI
are non-invasive and low-cost techniques [3–7]. While EIT is now established commercially for
lung-function monitoring applications [8,9], MWI, similarly, has made considerable progress toward
clinical usage in the past two decades as tissue dielectric properties enable the differentiation of benign
and malignant tissues in breast cancer imaging [10–14], the monitoring of bladder volume in the
treatment of enuresis and urinary incontinence [15,16], and the detection of stroke in intracranial
imaging [17–20].

From a therapeutic perspective, knowledge of the relevant dielectric properties is used in
the design and optimisation of hyperthermia (HT) [21–23], radiofrequency ablation (RFA) [24–26],
and microwave ablation (MWA) systems [27–31]. Hyperthermia consists of elevating the temperature
of a diseased tissue to just above a normal physiological level in order to sensitise tumour cells,
making the cancerous tissue more susceptible to chemotherapy and radiotherapy [32]. Targeted HT
has been demonstrated to be particularly effective in the treatment of cervical cancer, breast cancer,
cancers of the head and neck, and sarcoma in adults [21] and germ cell tumours in young children [23].
In EM-based hyperthermia systems, heating is achieved by coherently adding signals at the tumour
location. In order to achieve coherent summing of the waves at the appropriate location, knowledge of
the wave propagation speed is required, which depends on the dielectric properties of the tissues in the
region. Similarly, radiofrequency ablation (RFA) and microwave ablation (MWA) are two treatments
for liver, kidney, and lung cancer [33,34]. Both methods cause the direct necrosis of disease, and the
relative high frequencies allow for good selectivity in terms of targeting the cancerous tissue, while
protecting the surrounding healthy tissue [35]. Knowledge of the dielectric properties of tissues in the
ablation region are factored into the design of ablation probes, where they are used to optimise the
probe antenna efficiency and directivity, along with the size and shape of the ablation zone [36].

Thus, an accurate knowledge of the tissue dielectric properties not only has the potential
to improve SAR estimates and reduce undesired tissue heating, particularly in newly developed
RF-induction powered implantable sensors, but is also of key importance for the design of novel
EM-based imaging and therapeutic technologies.

Due to the fast-paced development of novel, low-cost medical technologies and wearable devices,
knowledge of new dielectric tissue data may be required. Thus, dielectric data may be acquired by
researchers who are not specialists in the measurement of dielectric properties. For this reason, this
paper reviews the most common measurement techniques for the acquisition of dielectric properties of
biological tissues and references the most relevant dielectric studies in the literature.

There are several methods to measure the dielectric properties of biological tissues, including:
The transmission line, cavity, tetrapolar (or multi electrode) probe, and open-ended coaxial
probe techniques. Amongst these methods, the coaxial probe technique is the most commonly
used [11,29,30,37–44]. Although the dielectric measurement process with an open-ended coaxial
probe appears straightforward, different confounders can result in two types of errors in the
measured data: Equipment-related (or system) and tissue-related errors. System errors relate to
measurement equipment choice, measurement uncertainties, and measurement calibration and
validation. Tissue-related errors are due to factors including: Temperature, probe-sample contact,
probe-sample pressure, sample handling procedure, in vivo versus ex vivo experiments, tissue sample
properties, and heterogeneity. Historically, equipment-related errors have been reduced with the
development of a standard error correction calibration and good benchmarks have been defined
to reduce or compensate for tissue-related errors. However, many tissue-related errors have yet
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to be investigated in detail. Both equipment- and tissue-related errors are addressed in this work.
In particular, this paper focuses on the most common methods and best practices used to reduce
or compensate for confounders affecting each step of the open-ended coaxial probe measurement
process. Confounders are defined, here, as factors that affect the outcome (i.e., the measured dielectric
properties) other than the intended cause (the actual tissue properties).

The remainder of the paper is organised as follows: Section 2 introduces the physical principles of
the dielectric properties of biological tissues and summarises the most relevant works in the literature,
highlighting the different aspects to consider in the process of tissue dielectric measurement. Section 3
describes the techniques used for dielectric measurement of biological tissues, and highlights why the
open-ended coaxial probe method has, historically, been the most widely used for tissue measurements.
In the following sections, the steps involved in an open-ended coaxial measurement are detailed.
In Section 4, the standard calibration method is described and, in Section 5, the typical system validation
procedure and the measurement uncertainty estimation are discussed. Tissue-related confounders are
analysed in Sections 6 and 7. Lastly, the paper concludes in Section 8, with a discussion proposing
methods to refine the dielectric characterisation of human tissues and improve the interpretation of
both historical and new dielectric datasets. It is hoped that this paper will be a useful reference text for
those who are not experts in the field of dielectric data acquisition, but who are interested in using the
resulting dielectric data or EM-based medical technologies that rely on this data.

2. Tissue Dielectric Properties: Background and Relevant Works

This section provides the necessary theoretical background for understanding dielectric properties
and their measurement. Firstly, dielectric properties are defined and their characteristics described.
Then, a concise historical review of dielectric property measurements of tissues is detailed, highlighting
the progress in the dielectric measurement of biological tissues to date.

2.1. Basics of Dielectric Properties

The dielectric properties of biological tissues (and polar materials) are defined by the complex
permittivity, ε(ω)*, which describes the interaction of the tissue with an external electric field. When
an electric field is applied, a charge displacement in the tissue causes dielectric polarisation. The real
and the imaginary terms of the complex permittivity are related by:

ε(ω)∗ = ε′(ω)− j ε′′ (ω) = ε′(ω)− j
σ(ω)

ωε0
, (1)

where ω is the angular frequency. The real part of the complex permittivity, ε’, also called the “dielectric
constant” or “relative permittivity”, expresses the ability of the tissue to store energy from an external
electric field. The imaginary part of permittivity, ε”, reflects the dissipative nature of the tissue, which
absorbs the energy and partially converts it to heat. The conductivity, σ(ω), is linked to the imaginary
part of the complex permittivity by the relationship defined in Equation (1).

Equation (1) expresses the dependence of complex permittivity on the frequency of the applied
external electric field. In particular, at specific frequencies, polarisation occurs and contributes to the
tissue dielectric behaviour [45,46]. The dielectric spectrum of a tissue is characterized by three main
dispersion regions, α, β, and γ, along with other minor dispersions, including the δ dispersion. These
dispersion regions reflect the mechanisms occurring in various components of the biological material.
Details regarding these biophysical mechanisms are thoroughly reported in [45,46].

Mathematical functions have been developed to model the dielectric behaviour of biological
tissues and polar materials. These models are generally used to fit dielectric data, thus, reducing
measurement data points to closed form equations and convenient graphical representations [11].
Dielectric models allow the calculation of the relative permittivity and conductivity values at any
desired frequency within the range for which the relaxation equation is valid [47,48]. Importantly,
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these models allow for the dielectric properties of biological tissues to be easily incorporated into
sophisticated computational models.

The most common models used to describe the electrical behaviour of either aqueous electrolytic
solutions or tissues are the: Debye, Cole-Cole, and Cole-Davidson models [49]. In general, the Debye,
Cole-Cole, and Cole-Davidson models can be represented collectively by the Havriliak–Negami
relaxation, which is an empirical modification of the Debye relaxation model, accounting for the
asymmetry and broadness of the dielectric dispersion curve:

ε(ω)∗ = ε∞ +
εs − ε∞[

1 + (jωτ)1−α
]β

+
σs

jωε0
(2)

where ω is the angular frequency, ε∞ is the permittivity at infinite frequencies due to electronic
polarizability, εs is the static (low frequency) permittivity, σs is the static conductivity linked to charge
movements, ε0 is the permittivity of the vacuum, α and β are empirical variables that account for the
distribution of the relaxation time and the asymmetry of the relaxation time distribution, respectively,
and τ is the characteristic relaxation time of the medium, which is the time necessary for the material
molecules or dipoles to return to the relaxation state that was perturbed by the application of the
electric field. When α = 0 and β = 1, Equation (2) corresponds to the Debye model. For 0 < α < 1
and β = 1, Equation (2) results in the Cole-Cole equation, which accounts for the distribution of the
relaxation time. Lastly, for α = 0 and 0 < β < 1, Equation (2) corresponds to the Cole-Davidson equation,
which is characterised by an asymmetrically broadened distribution of relaxation times [49]. While all
of these models are used for fitting polar aqueous solutions, biological tissue data is generally fitted
with the Debye and Cole-Cole models.

Equation (2) describes a single relaxation; however, if the dielectric behaviour of a material is
analysed across a wide frequency range, all dielectric relaxations occurring over that frequency range
must be taken into account and more poles (corresponding to the different relaxation times of the
material) should be introduced to adequately describe the material. Biological tissues are generally
described in terms of multiple Cole-Cole poles, which is a physics-based compact representation of
wideband frequency-dependent dielectric properties [47].

2.2. Dielectric Property Studies in the Literature

Since the late 1940s, researchers have examined the dielectric properties of human and animal
tissues across different frequency ranges, often using varied measurement procedures [50–53].
In the 1980s, the dielectric relaxation processes of biological tissues were further examined
and modelled [45,46], and, increasingly, the open-ended coaxial line became the most common
sensor for the acquisition of the dielectric properties of animal and human tissues [38–41,54–58].
The open-ended coaxial measurement technique was preferred to the transmission line, cavity
perturbation, and tetrapolar probe methods, since the open-ended coaxial technique is non-destructive
and allows for ex vivo and in vivo broadband measurements [39,59–61].

In the same decade, considerable progress was made on the measurement system and procedure,
and several dielectric studies were conducted. Along with the dielectric characterisation of animal
and human tissues [39,54,62,63], the tissue dielectric properties were analysed as a function of
their physiological properties [45,55,64]. For instance, the dependence of the dielectric properties
on tissue water content at microwave frequencies was analysed [56,65], the in vivo and ex vivo
dielectric properties were compared [40], the difference between healthy and malignant tissues were
examined [64,65], and the change in tissue dielectric properties post-mortem were reported [55].

A decade later, in 1996, Gabriel et al. published a comprehensive literature review reporting
animal and human dielectric data across ten frequency decades, from 10 Hz to 20 GHz [66]. Dielectric
data from a wide literature search was gathered and compared. Some inconsistencies were noted due
to the use of different equipment and samples, and, therefore, Gabriel et al. sought to supplement

159



Diagnostics 2018, 8, 40

these datasets with newly acquired data. Gabriel et al. completed in vivo and ex vivo animal and
human tissue studies over a frequency range from 10 Hz to 20 GHz [42,47,67]. With this work,
Gabriel et al. bridged gaps in the literature and consolidated the available dielectric data into one
large dielectric repository. The experimental measurements were performed using three different
techniques, depending on the acquisition frequency. To ensure quality, wherever possible, in vivo
measurements on human patients were selected in preference to ex vivo or animal measurements.
Where ex vivo/in vitro tissue was used, measurements were acquired as soon as possible after death.
The data collected and measured by Gabriel et al. quickly became the generally accepted standard for
dielectric properties of human tissues. This work was made publicly available on, firstly, the Federal
Communications Commission (FCC) website [68] and on the Italian National Research Council (CNR)
website, subsequently [69]. This broad availability allowed widespread use of the data among the
scientific community and contributed to its diffusion.

In the subsequent years, dielectric measurement instrumentation and procedures were further
improved. Specifically, the volume of the sample interrogated by the probe was investigated to
accurately assign the acquired dielectric data to the actual tissue contributing to the dielectric
measurement [70–72]. Based on the analysis of the probe sensing volume, precision probes were
manufactured for localised dielectric spectroscopy of both low and high permittivity tissues [73].

In 2005, following an extensive measurement programme to measure the dielectric properties of
several animal tissues, Peyman et al. described many measurement challenges related to the dielectric
properties of biological tissues and corresponding methods to deal with them [43]. In 2006, Gabriel and
Peyman reviewed tissue dielectric properties, with the aim of examining measurement uncertainties
and their effect on existing dielectric measurements. The uncertainties were divided into random
(“Type A”) and systematic (“Type B”), according to the guidelines defined by the National Institute of
Standard and Technology (NIST) in 1994 [74,75].

In 2007, Lazebnik et al. examined the dielectric properties of breast tissue, with the aim of
assessing the viability of using microwave imaging to detect early-stage breast cancer [11,76]. Through
careful histological categorisation of each breast tissue sample, Lazebnik et al. found the breast to be
dielectrically heterogeneous, and the dielectric contrast between fibroglandular tissue and cancerous
tissue to be as little as 1.1:1 in the range between 0.5 GHz and 20 GHz. These findings were in
conflict with almost all existing datasets, which had predicted considerably higher dielectric contrast
(some as large as 10:1) [77,78]. The findings of Lazebnik et al. had a very significant impact in the
community of researchers developing microwave breast imaging systems, since the data suggested
that the dielectric contrast between healthy and cancerous tissue may be too low to clinically detect
cancer using this technology. More recent works characterising healthy and cancerous breast tissue
found a high variability in the properties across each tissue type and across patients, which complicates
the dielectric differentiation between healthy and malignant tissue [12,58,79]. However, in Martellosio
et al., a contrast in relative permittivity ranging from 1.1 to 5 was found between healthy and cancerous
breast tissue across the range of 0.5–20 GHz [79], which is in broad agreement with the results of
Lazebnik et al. [11,76].

In 2014, Sugitani et al. suggested that the inconsistency in the reported dielectric properties of
breast tissue may be at least partially attributed to variations in the number of cells of each tissue type
(e.g., fat or tumour) within a dielectric sample [12]. The findings in Sugitani et al. underscored the
need to take into consideration tissue heterogeneity and histopathology within the sensing volume
when completing dielectric studies.

In order to define the sensing volume to account for histological analysis of heterogeneous
biological tissues, Meaney et al. and Porter et al. examined the sensing volume of the common
commercial dielectric probes and evaluated the dependence of the measured dielectric properties on
the sample tissue composition [80–83].

Recently, numerous studies investigating the contrast in dielectric properties between healthy and
malignant tissues have been conducted in order to improve the design of existing medical devices or
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to expand the clinical application of both imaging and therapeutic devices [10,37,84–86]. In particular,
a number of works investigated the dependence of the dielectric properties of biological tissues on
temperature for the optimisation of therapeutic technologies, such as RF/MW ablation [26–31,35].

To summarise, over the last three decades, notable progress has been made in the improvement
of dielectric measurement equipment and in the refinement of the measurement protocol, aimed at
further improving existing dielectric repositories. However, today, there is still a need for additional
dielectric data to cover all tissue types, temperatures, and frequency ranges. This data provides the
foundation for safety studies involving electromagnetic fields and for the design or optimisation of
novel medical technologies. Therefore, in the next sections, the dielectric measurement procedure is
discussed in detail and, along with each step of the procedure, the corresponding confounders that
can introduce error into the results are discussed. Compensation techniques for mitigating the impact
of confounders are also provided.

3. Measurement Approaches

Different techniques have been used to measure the dielectric properties of tissue, including the
transmission line and waveguide; open-ended coaxial probe; tetrapolar (or multi electrode) impedance;
and perturbation cavity methods. In this section, an overview of each technique is provided, along
with the known advantages and drawbacks of each. Then, the focus is on the most common method,
the open-ended coaxial probe technique. This section underscores why the coaxial probe technique is
the most used approach for dielectric tissue measurements. The state-of-the-art in modern open-ended
coaxial probe measurement equipment is also presented.

3.1. Overview of Measurement Techniques

Among the measurement techniques used in previous dielectric studies, the most common
methods are presented and briefly discussed in this subsection.

3.1.1. Transmission Line

In transmission line measurement methods, a sample is placed in a coaxial line or, in the
case of anisotropic tissue, in a rectangular waveguide so that the field polarisation may be varied.
The transmission line is connected to two ports of a Vector Network Analyser (VNA) in order to
acquire the scattering parameters (S11 and S21) [62,87], which are then converted into the complex
permittivity (dielectric properties) of the tissue. The two most commonly used conversion methods
are the Nicolson-Ross-Weir (NRW) method [88,89] and the NIST iterative conversion method [90,91].
The NRW method provides a direct calculation of permittivity from the complex reflection coefficient
and the complex transmission coefficient obtained from the S-parameters [88,89,91,92]. Other common
conversion methods are iterative and receive the initial guess from the NRW method or users’ input.
The algorithm developed to implement the NIST iterative conversion method is reported in detail in
Baker-Jarvis et al. [90].

The transmission line method allows measurement over a large frequency range, but only at
low temperatures [87,93,94]. Waveguides are suitable for measuring larger samples (i.e., samples the
size of the waveguide) at frequencies of up to 2.45 GHz, which is the frequency point normally used
in microwave ablation. Smaller samples can be measured in the coaxial line, although this method
also requires careful sample preparation in order to shape the sample to fit the line, and the method
generally assumes that there are no air gaps in or around the sample and that the sample has smooth
flat faces [95]. Thus, the transmission line method can be suitable for the measurements of biological
fluids, but is unsuitable for in vivo measurements and not recommended for ex vivo measurements of
semisolid or solid biological samples.
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3.1.2. Cavity Perturbation

The cavity perturbation method consists of a resonant cavity that resonates at specific frequencies.
The tissue samples are inserted into the cavity and analysed by measuring the resonant frequency
(f) and quality factor (Q), which are altered by inserting the tissue sample [94–98]. The tissue
dielectric properties are then computed using the frequency, the Q-factor, and the sample volume.
Details regarding the mathematical formulation to obtain the permittivity of the sample are reported
by Campbell et al. [99]. However, the resonant frequency and quality factor are generally computed
with a VNA. Since the maximum change in resonant frequency is achieved when a small perturbation
occurs at the maximum intensity of the cavity mode, the cavity perturbation method requires a small
sample [94,97]. Dielectric measurements performed using the cavity perturbation method can be
accurate, but only provide dielectric data at a single frequency (in the upper microwave frequency
range of 1–50 GHz). While the equipment needed for cavity perturbation measurements is readily
available and cost-effective, the sample preparation is relatively complicated, requiring an excised
tissue sample to be cut and moulded to a precise size and shape to fit into the cavity [95,97]. This process
may introduce air pockets within the sample or between the sample and the cavity, loss of fluid in
the tissue (which would affect its properties), and an increase in density from pushing the tissue
into the cavity (which could also affect its properties) [97]. Due to the required sample size and,
thus, sample preparation, biological tissue measurements with the cavity perturbation method are
highly challenging.

3.1.3. Tetrapolar Impedance

Unlike the previous two techniques, the tetrapolar (or multi electrode) impedance method is
non-destructive and allows for in vivo tissue measurements. The tetrapolar probe is composed of four
electrodes: Two of the electrodes are driven with a current source and the other two electrodes are
used for voltage measurements. The two electrode pairs are used for impedance measurements,
avoiding interference from effects related to the electrode-tissue interface [100,101]. The tissue
dielectric properties are easily evaluated from the measured impedance with knowledge of the sample
dimensions. Although the tetrapolar probe method does not require tissue processing and is very
sensitive to tissue anisotropies [19,101], it is only suitable for specific low frequencies (in the range
of 10−6–100 MHz) [101]. For the tetrapolar probe technique, the electrode configuration should vary
according to the interrogated tissue. In order to increase the number of applications, tetrapolar probes
may be replaced by spring-loaded multi electrode probes [102]. The multiple surface electrodes permits
the setting of a current pattern so that the resulting measured voltage is more sensitive to a local area
and less sensitive to other regions. Multi electrode probes can provide improved bioimpedance and
anisotropy measurements [102].

3.1.4. Open-ended Coaxial Probe

The coaxial probe technique does not suffer from many of the disadvantages associated with
the techniques described above. The open-ended coaxial probe consists of a truncated section of
a transmission line. The electromagnetic field propagates along the coaxial line and reflection occurs
when the electromagnetic field encounters an impedance mismatch between the probe and the
tissue sample. The open-ended coaxial probe measurement set-up and the probe cross-section are
schematised in Figure 1. The reflected signals at different frequencies are measured and then converted
into complex permittivity values.
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Figure 1. Open-ended coaxial probe technique: (a) Schematised measurement set-up, including the
Vector Network Analyser (on the right), the cable connecting one port of the VNA to the coaxial probe,
the probe bracket, and the liquid sample being measured; (b) top and side cross-sections of the coaxial
probe, with electric field orientation indicated.

Different methods have been developed to convert the measured reflection coefficient to
permittivity [60,103–107]. However, today, this process is generally done automatically by software
embedded in the VNA [108]. Therefore, details on the various methods are not discussed in detail
here, but more information can be found in [103–107,109–111].

The open-ended coaxial probe has become the most commonly used method to measure the
dielectric properties of tissues for several reasons: The method is simple; sample handling is minimal
and non-destructive; and both ex vivo and in vivo measurements over a broad frequency range are
possible [39,42,43,72,94]. However, the open-ended coaxial method assumes a homogeneous sample
that is in good contact with the probe; therefore, air bubbles and uneven sample surfaces can result in
inaccurate measurements [95], and heterogeneous samples present a particular challenge. There are
also limits to the magnitudes of material properties that can be measured reliably [95]. The limits
of what can be measured depend on a number of factors, including the probe design and materials
(and, therefore, its impedance), precision of the probe fabrication procedure, calibration procedure
(standards used), and the capabilities of the measurement device (i.e., the VNA). Furthermore, what
is classified as a “reliable measurement” depends on the experiment and the required accuracy.
Although theoretical limits of the measurement set up can be estimated analytically, they are generally
estimated experimentally by measuring materials (usually liquids) with different extreme values of
relative permittivity and conductivity. Then, the accuracy of the measurement can be estimated in
different ranges of complex permittivity and it can be determined if the accuracy is appropriate for the
experiment of interest.

Overall, many challenges associated with tissue dielectric property measurements may arise in
each of the above measurement techniques, for example, issues related to temperature change and
tissue heterogeneity. Since the coaxial probe technique is by far the most commonly used method
for tissue measurements [10–12,39–42,44,59,60,62,112,113], it will be examined in more detail in the
subsequent sections.
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3.2. Evolution of the Coaxial Probe Design and Fabrication

In the 1980s and 1990s, researchers conducting studies on dielectric measurements of biological
tissues focused on probe design and fabrication, system development, and systemic error correction
techniques [39,40,60–62,73]. The majority of the custom probes were fabricated from 50 Ω semi-rigid
coaxial cables [39,40,60–62,94]. Probes were customised depending on the type and size of the tissue
sample to be investigated and on the desired frequency range of the dielectric properties study.

Several custom-made probes were made of metal and Teflon [39,40,61,62]. Burdette et al. used
a 2.1 mm diameter probe to perform in vivo and ex vivo measurement on animal tissue over
the frequency range 0.1–10 GHz. This probe had a flange (i.e., a ground plane) to contain the
electromagnetic field at the tip [39]. Kraszewski et al. performed in vivo animal measurements
over the frequencies 0.1–12 GHz using a Teflon-filled metal probe with a 3.2 mm external diameter [40].
Gabriel et al. used two Teflon-filled metal probes for in vivo and ex vivo animal studies in order
to acquire tissue dielectric properties at both low and high frequencies [42]. The probe used in the
low frequency range (10−4–200 MHz) had an external diameter of about 10 mm and the smaller
probe, used for dielectric measurements at the frequency range between (0.2–20 GHz), had an external
diameter of 2.9 mm [109]. Larger probes require a larger sample size due to the increased sensing
volume (i.e., the region of the tissue that is interrogated by the electric field of the probe). In both
Burdette et al. and Gabriel et al., the probe tips of the inner and outer conductors were plated with
an inert metal, such as gold and platinum, to modify the effect of electrode polarisation, which is
a manifestation of chemical reactions between the probe and the electrolytes (water molecules and
hydrated ions) in the tissue [39,42]. Specifically, this plating process shifts the electrode polarisation,
normally occurring at low frequencies, to even lower frequencies [39,46,109]. Popovic et al. reported
that Teflon-filled copper probes, usually used for broadband reflection coefficient measurements, can
cause inaccurate measurements because the probe aperture deteriorates easily and mechanical flaws
can occur. The effects of small mechanical imperfections at the probe tip were quantified by the
measured reflection coefficient and it was found that mechanical flaws at the probe tip can impact
measurements by altering the reflection coefficient by up to 30% [114]. Notably, Teflon-filled copper
probes do not meet bio-compatibility requirements nor can they be autoclaved (steam sterilised), both
of which are required for safe in vivo measurements on human patients [73].

More recently, borosilicate glass-filled, stainless-steel, open-ended coaxial probes were designed
and fabricated [73,115]. The use of thermally constant and matched, inert, refractory materials made
the probe biocompatible and suitable for high-temperature sterilisation [73].

Over the last decade, a growing number of dielectric studies have been conducted using
commercial probes [10,44,84,86]. Modern commercial probes are accurate [115], yet require specific
sample dimensions and characteristics. In particular, Keysight probes, including the slim form probe,
the performance probe, and the high temperature probe, have been used in most of the recent tissue
dielectric studies [12,44,79,86,116]. Out of these, the slim form probe is a common choice for tissue
measurements due to its small diameter and the fact that it can be steam-sterilised and, thus, used
in vivo. The tissue dielectric measurements performed using these commercial probes are summarised
in Table 1.

As the open-ended coaxial probe has been demonstrated to be the most applicable to measuring
the dielectric properties of biological tissues, the remainder of this work will focus on the dielectric
measurement process using this probe, from system calibration to biological sample preparation and
analysis. In the next section, the calibration procedure for open-ended coaxial probes is discussed.
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4. Calibration and Confounders

A standard calibration procedure, involving both the coaxial probe and the VNA, must be
performed before recording dielectric measurements [40,60,62,117]. In this section, a description of the
calibration process is provided, followed by an in-depth analysis of the related confounders.

4.1. Standard Calibration

In general, coaxial probe measurements use a three load standard calibration procedure for
one-port error correction. Any three different standard materials can be used for calibration, as long as
the dielectric properties of those standards are well known [117–119]. The choice of standard materials
to use may be based on ease of use, availability, or similarity to the materials under test [94,117].
The three most common standards used for coaxial probe calibration are: Open circuit, short circuit,
and a broadband load [114,115]. We note that the use of the term “broadband load” here does not
indicate a perfectly matched load, but rather, the broadband load can be any liquid with known
dielectric properties. The calibration is performed at the reference plane of the probe, while the probe
is connected to the VNA. The probe may be connected directly to the VNA or through a phase-stable
cable. The calibration procedure aims to find a relation between the measured complex reflection
coefficient and the expected one. This procedure allows for all post-calibration measurement data to be
corrected [120]. If performed correctly, a good calibration procedure results in reliable measurements.
The quality of the calibration depends on the accuracy in the measurements of the three standards and
on the level of control over the factors that can affect the process. In the following subsection a list of
the calibration steps required to reduce the confounders is reported. In addition, the confounders and
methods for their compensation are summarised in Table 2.

Table 2. The standard calibration process: Common errors or confounders that occur for each step
in the calibration process, along with the possible correction or compensation techniques. The open
circuit, short circuit, and a liquid load material are shown as the three calibration standards.

Calibration Steps Error or Confounder Action for Correction or Compensation

Equipment set-up

• Environmental parameter change [95]
• Probe contamination [27,37,39,121]
• Imperfect connection [39]
• Cable movement [43,76,80,115]

• Control environmental parameters [113,122]
• Inspect and clean probe [29,41–43]
• Check connections [39]
• Fixing cable position (if not phase-stable) [29,44,86]

Open

• Particles on probe tip [95]
• Cleaning probe [29,41–43]
• Checking the Smith Chart [123] to ensure

open-circuit impedance is being measured

 
Short

• Poor probe-short block contact [95]

• Cleaning short block and probe [95]
• Reposition or re-contact short block with probe [95]
• Checking the Smith chart [123] to ensure

short-circuit impedance is being measured

Load

• Accuracy of liquid model [94,117]
• Liquid temperature [43,94,124,125]
• Air bubbles [48,71,126]
• Liquid contamination [43]
• Probe position in liquid [71]

• Deionised water model has best accuracy [117]
• Monitor or control temperature [29,43,44,95,121]
• Re-immerse probe in liquid [95]
• Limit exposure to air [43]
• Place probe distant from beaker sides [71]

4.2. Calibration Procedure and Confounders

4.2.1. Equipment Set-Up and Confounders

Before performing the calibration, environmental parameters, such as temperature, pressure, and
humidity, should be controlled or monitored [122,127] because environmental changes may impact
measurement results [74]. Furthermore, system components should be checked [39], the probe tip cleaned and
verified by visual inspection [29,41–43], and the cable (if not phase-stable) fixed in place [29,44,86] as imperfect
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connections [39], probe contamination [27,37,39,121], and cable movement [10,27,43,44,76,80,86,95,115] can
all result in a poor calibration and, thus, unreliable measurements.

4.2.2. Signal Settings and Confounders

Prior to calibration, the frequency range needs to be selected based on the planned experiment.
Subsequently, the number of acquisition frequency points must be defined. Frequency points may
be equidistant according to a linear or a logarithmic scale. The use of a logarithmic scale can be
advantageous when data is acquired over a larger frequency range as there will be more points taken at
the frequency points where the largest change in dielectric properties occurs (due to dispersions) [128].
The signal power and measurement bandwidth must also be selected in the VNA software. The number
of points and bandwidth requires a trade-off between the measurement accuracy and speed of
data collection.

4.2.3. Measurement of the Three Standards and Confounders

Once the measurement settings are selected, the calibration measurements of the open-circuit,
short-circuit, and broadband load can be performed. The common errors and confounders likely to
occur during the calibration process are highlighted in Table 2, along with the recommended correction
and compensation techniques. As noted in the table, while performing calibration, (when using
modern VNAs) visualisation of the complex impedance on the VNA Smith chart is key to identifying
the unwanted presence of particles at the probe tip and confirming the quality of the open or short
circuit [56,95]. In particular, having a good quality short circuit is vital to a successful calibration [94].
Therefore, proper contact between the short and the probe must be ensured prior to completing the
calibration. Other than this, the open and short measurements are relatively straightforward and do
not require any additional consideration. In the case that the VNA does not allow visualisation of the
Smith chart during calibration, the quality of the calibration can then be verified by performing the
validation procedure, as described in Section 5.

Conversely, several confounders can introduce error into the load measurement. Different liquids
have been examined as potential load materials. The permittivity of the standard liquid should be
selected such that the complex impedance of the load is considerably different from the other two
standards [129]. The most typical liquid used as a load is deionised (DI) water [12,27,80,86,116,130].
Polar liquids (for example, ethanol, methanol, and saline) also meet the requirements [129] and exhibit
high conductivity and permittivity as a function of frequency. Nyshadham et al. examined the effect
of the uncertainty of the models of different standard materials on the uncertainty of the measured
permittivity [117]. In this study, different liquids (having different models) were used for calibration
and it was verified that DI water has smaller uncertainties in the Debye model than that of other
standard liquids (in other words, the dielectric properties of deionised water are the most well-known
and well-characterised) [117]. Indeed, the accuracy of the model represents one of the confounders
affecting the calibration procedure and the uncertainty of the measured permittivity. Specifically,
a quantitative analysis that examined the impact of errors in the model of one of the calibration
standards (in this case, acetone) found that model errors of 2% induced a similar magnitude of error
into the measured relative permittivity [131]. However, despite the impact of model uncertainties,
the best calibration material depends on the measurement scenario as the uncertainty will be lower for
materials measured with properties similar to those of the calibration material.

Temperature of the Liquid

During the calibration process, the temperature of the load liquid needs to be maintained and
monitored, since dielectric parameters are temperature-dependent [43,94,124,125]. The permittivity
of liquids vary by up to 2.2% per degree Celsius [125]. The measurement of deionised water, or
any standard liquid, as a calibration load may be performed at room temperature or at any fixed
temperature. In the first case, the liquid temperature can be monitored using a thermometer [95]. In the
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second case, the temperature may be maintained using a water bath [29,43,44,121]. In addition, if the
temperature of the liquid is different from the temperature of the probe, it is recommended to wait for
the temperature to stabilise before proceeding with the measurement. We note that this information on
the liquid temperature also applies to the liquid used in the validation step.

Other Confounders in the Liquid Measurement

Aside from the liquid temperature and model accuracy, other confounders, such as liquid
contamination [43], air bubbles between the probe and the liquid [48,71,95,126], and probe position in
the liquid-filled beaker [71], have been investigated. These confounders affect the load liquid used
during calibration and the liquid used in the validation step equally—indeed, the same types of
reference liquids can be used either for calibration or for validation.

In order to avoid any impurity in the water, the beaker filled with liquid should be kept closed [43].
The presence of air bubbles between the probe tip and the standard liquid can result in deviations in
the dielectric measurement data by up to 20% due to the fact that the material within the sensing region
is then a mixture of air and liquid [126]. A transparent beaker is recommended so that air bubbles
can clearly be seen. If bubbles are present, they need to be removed prior to measurement. This may
be completed by gently tapping the probe tip on the bottom of the beaker, or lowering the beaker
away from the liquid and then re-immersing it on an angle [95]. A soft brush (non-metallic, to avoid
scratches) may also be used to remove any bubbles without having to move the probe or the beaker.
In addition, the probe should be immersed in the liquid and positioned in the beaker such that the
liquid is the only material within the probe sensing volume. Accurate positioning avoids undesirable
reflections from the beaker walls. Hagl et al. provided a process for finding the minimum distance
between the probe and the beaker sides according to the probe size; these distances also depend on the
properties of the liquid material in the beaker and the frequency range of interest [71].

4.3. Confounders Introduced in the System after Calibration

Following the calibration procedure, two additional system confounders can introduce errors
in dielectric measurements: VNA drift over time and cable movement, although the movement of
a phase-stable cable should not compromise the performance of the system [10,27,43,44,76,80,86,115].
The system drift should be characterised and taken into account in the measured dielectric data [43,44].
This factor can be quantified by taking several measurements on a standard liquid at defined time
instants in the period after calibration [43]. When a cable that is not phase-stable is moved, given the
difficulty in precisely characterising the systematic error introduced by the cable movement, a new
calibration is required. However, low loss and phase-stable cables should be used to minimise the
impact of the error of the cable stability on the results [71,76,94]. In some works, the cable was fixed in
place (using adhesive tape) to limit the effect of the cable movement in the dielectric data [29,44,86].
An alternative approach may be to replace the cable with a right-angle connector, when the rigid set-up
does not overly restrict dielectric data acquisition [128].

After each calibration, it is good practice to first confirm proper calibration by re-measuring one of
the calibration standards, commonly the short [44]. Note that re-measuring the properties of materials
used during calibration does not guarantee that the system is functioning error-free, it just indicates
that the calibration error-correction algorithms were successfully applied. Thus, a measurement of
a known liquid, other than the one used in calibration, is also required in order to validate the accuracy
of the calibration. Details about the validation procedure and the measurement uncertainty calculation
are discussed in the next section.

5. Validation and Measurement Uncertainty

The validation procedure consists of measuring the dielectric properties of a known reference
liquid. To ensure that the measurements are accurate in materials with different properties,
the validation material should not be the one used during the calibration (i.e., typically not deionised
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water). Validation enables determination of the quality of the calibration and the monitoring of
systematic errors [43,44,75], such as VNA drift and noise due to cable movement [43]. Thus, it is good
practice to perform validation immediately following calibration [39,43,71,121,132] and after acquiring
a set of tissue dielectric data [76]. The validation should also be completed whenever anomalies
are observed in the dielectric data of the investigated material in order to isolate the source of error.
For instance, if the same anomalies are observed in the reference liquid dielectric trace, the error is due
to changes in the system and a new calibration is needed; if the anomalies are not evident in the liquid
trace, the error is sample-related and further investigation is needed to identify the source of the error.

During the validation procedure, monitoring or controlling the temperature of the liquid during
the validation process is required, since the dielectric properties of reference liquids are temperature-
and frequency-dependent [43,44,132].

Although system validation is a simple procedure, several confounders can introduce errors
in the process. The factors that affect the validation quality are similar to those present in the load
measurement during the calibration procedure. Thus, details regarding confounders in the liquid
dielectric measurement and how they are addressed can be found in the previous section.

In this section, after describing the most common validation liquids, the role of the validation
procedure in the calculation of the uncertainty of dielectric data is detailed.

5.1. Validation Liquids: Models, and Their Advantages and Disadvantages

Alcohols and saline are the most common polar reference liquids [39,71,75,76,125,133]. Polar
solutions are particularly suitable as validation liquids because they have comparatively high relative
permittivity and high dielectric loss at radio and microwave frequencies. Both the relative permittivity
and conductivity have a strong frequency dependence, which is a feature of the pronounced molecular
dielectric relaxation behaviour [94]. Liquids, in general, are selected for validation purposes as they are
homogeneous and are free of many of the confounders affecting solids or semi-solids (e.g., incorrect
probe-sample contact, inconsistent probe-sample pressure).

5.1.1. Alcohols

Methanol, ethanol, ethanediol, and butanol are the types of alcohols generally used to characterise
the system and calculate the uncertainty in the dielectric measurements [44,71,72,76,117,125,132]
prior to tissue measurements. Methanol, ethanol, and butanol, in particular, are used as standard
liquids because they represent the high, intermediate, and low dielectric property values, respectively,
within the range of those expected for human breast tissues at microwave frequencies [71,72,76,132].
They also have well-established permittivity models [72,76,125,132]. Ethanediol, which has also been
modelled in the microwave frequency range [44,132–134], has a static permittivity about half that of
pure water [134]. Standard methods for obtaining the known dielectric property values for each of
these alcohols have been detailed thoroughly [132].

Although alcohols present properties similar to those of biological tissues at microwave
frequencies (0.5–20 GHz), there are some constraints that must be taken into account when using them
as reference liquids. For instance, the alcohol models are accurate in restricted frequency ranges and
at discrete temperatures only [117,124,132,134,135]. Furthermore, the dielectric properties of alcohols
can change during storage and handling. For example, methanol has very low vapour pressure and
evaporates rapidly. This can contribute to a decrease in the liquid temperature and, consequently,
to a dielectric property change over the course of just a few minutes when exposed to air [72,132].
In order to minimise these effects, the dielectric properties of methanol should be measured almost
immediately after it is poured into the measurement beaker [72] and the temperature should be kept
constant and monitored. Lastly, since alcohols are inflammable and have an acute inhalation toxicity,
working with these liquids requires a safety protocol, such as the use of special fire-proof storage
cabinets and handling under a fumehood [132].
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5.1.2. Saline

The dielectric properties of different concentrations of NaCl (saline) solutions at various
temperatures have been modelled in the microwave frequency range [49,75,136–138]. Specifically,
Stogryn provided models in the gigahertz range for computing the complex permittivity of saline as
a function of temperature and concentration (between 0.25 M and 0.5 M) in order to allow these liquids
to be used as references [136]. More recent models, based on extended experimental data, are now
available for solutions having concentrations between 0.001 mol/L and 5 mol/L in the frequency range
of 0.10–40 GHz, for any temperature between 0 ◦C and 60 ◦C [49,130,133,137,138]. Although alcohol
models are, generally, more accurate than saline models, saline solutions are the most convenient
reference liquids used [133].

Among all of the saline solutions, 0.1 M NaCl solution is the most commonly used reference
liquid to assess the uncertainty in measuring the dielectric properties of biological materials, since it
has similar dielectric properties to those of biological tissues [43,44,133]. Furthermore, 0.1 M NaCl is
stable in temperature and electrical properties during storage and handling. At room temperature,
saline does not evaporate quickly like alcohols. Saline solutions are also straightforward to prepare
(hence, commercially-bought solutions are cost-effective) [133] and to use. Saline solutions are also less
dangerous than alcohols and, thus, they do not require the use of fire-proof storage cabinets or handling
under a fumehood. For 0.1 M NaCl, models that cover relatively wide frequency and temperature
ranges are available [133]. However, saline may not be the best choice as a validation liquid when
DI water is used as calibration, since these two liquids have very similar dielectric properties in
the microwave range. Furthermore, due to poor traceability of the data used to obtain the models
in [133] (since the data was acquired with only a single measurement system and a single measurement
technique, and then compared to reference data measured under unknown conditions), the saline
models are likely not as accurate as the models for alcohols.

To this extent, future studies aimed at improving the reliability and accuracy of saline models
have the potential to support dielectric data validation and uncertainty calculations.

5.1.3. Other Liquids

Several other liquids, such as formamide [75,84,134,137], DI water [94,124,132], dimethyl
sulphoxide (DMSO) [94,132,139], and acetone [94,132,140], have been used as reference liquids.

Formamide is a polar organic solvent, which has a relative permittivity of approximately 110
at low frequencies that drops down to a high-frequency value of around 7 [134] (when handled at
room temperature). The temperature-dependent model for characterising the dielectric properties
of formamide across the microwave frequency range was developed by Jordan et al. and, more
recently, by Barthel et al. using waveguide interferometry [75,134,135]. The parameters of different
models were found at discrete temperatures in the frequency range between 0.2 GHz and 89 GHz.
The reliability of the model in Jordan et al. is affected by the limited discrete frequency points used in
the dielectric measurements from which the model has been obtained [134]. In both Jordan et al. and
Barthel et al., the dielectric models are available only for limited discrete temperatures [134,135]. Also,
since formamide is toxic, a custom handling protocol is required.

When it is not used as the broadband load in the calibration procedure, DI water represents
an advantageous validation liquid [117,124]. In fact, DI water has dispersive properties similar to
those of biological tissues and has been accurately modelled in the microwave frequency range for any
temperature between −4.1 ◦C and 60 ◦C [124]. DI water also has the advantage of being a stable liquid
and does not require special handling.

Dimethyl sulphoxide (DMSO) is a highly polar organic reagent that has a high relaxation frequency.
DMSO has relative permittivity values similar to those of muscle tissues. Dielectric models for DMSO
have been developed that cover a wide frequency range [139] and different temperatures [132]. DMSO
is hygroscopic [94,132] and when it evaporates the liquid temperature increases, causing an increase in
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relative permittivity values [132]. Therefore, like with many alcohols, care should be taken to keep the
liquid in a closed container as much as possible.

Acetone is a polar organic solvent that has intermediate permittivity values, which have been
modelled only in the upper microwave frequency range [140]. Acetone requires special handling
because it has a boiling point of 56 ◦C and has the potential to soften some plastics [94,132].

Liquid properties and information about available models and storage/handling procedure
related to the most common categories of reference liquids are reported in Table 3. The column
“Models” contains the most referenced models, i.e., those which cover the widest frequency range and
largest, most continuous temperature interval.

Table 3. Reference liquid properties, available models, and storage and handling procedures (where
f = frequency, T = temperature).

Liquid Models Storage and Handling

Methanol
(alcohol with intermediate permittivity
values similar to breast tissue)

Debye model [132]:
• f = 0.1–5 GHz
• T = [10 ◦C, 50 ◦C], 5 ◦C increments

Inflammable and acute inhalation toxicity.
Fire-proof storage cabinets required.
Handling in fumehood required.

Cole-Cole model [134]:

• f = 0.01–70 GHz
• T = [10 ◦C, 40 ◦C], 10 ◦C increments

Rapid evaporation may occur and should
be avoided.

Ethanediol
(alcohol with high permittivity values
similar to breast glandular tissue)

Cole-Davidson model [132]:

• f = 0.1–5 GHz
• T = [10 ◦C, 50 ◦C], 5 ◦C increments

Inflammable and acute inhalation toxicity.
Fire-proof storage cabinets required.
Handling in fumehood required.
Ethanediol is hygroscopic and when it
evaporates the liquid temperature increases,
causing an increase in relative permittivity [132].

Ethanol
(alcohol with intermediate permittivity
values similar to breast tissue)

Debye-Γ model [132]:

• f = 0.1–5 GHz
• T = [10 ◦C, 5 0◦C], 5◦C increments

Inflammable and acute inhalation toxicity.
Fire-proof storage cabinets required.
Handling in fumehood required.

Butanol
(alcohol with low permittivity values
similar to fat tissue)

Double Debye model [132]:

• f = 0.1–5 GHz
• T = [10◦C, 40◦C], 5 ◦C increments

Inflammable and acute inhalation toxicity.
Fire-proof storage cabinets required.
Handling in fumehood required.

Saline (NaCl)
(polar liquid having dielectric
properties similar to biological tissues)

Cole-Cole model [133]:

• Concentrations = [0.001 mol/l, 5 mol/l]
• f = 0.13–20 GHz
• T = [5 ◦C, 35 ◦C] (any intermediate T)

Storage in sealed containers.
No special handling required.

Cole-Davidson model [49]:

• Concentrations = [0.001 mol/l, 1 mol/l]
• f = 0.1–40 GHz
• T = 17 temperatures in the interval [10 ◦C,

60 ◦C]: 10 ◦C, 20 ◦C, increments of 2 ◦C in
[24 ◦C, 50 ◦C], and 60 ◦C.

Formamide
(polar organic solvent having wide
permittivity spectrum at microwave
frequencies)

Cole-Davidson model [135]:

• f = 0.2–89 GHz
• T = [10 ◦C, 25 ◦C], 5 ◦C increments
• T = [25 ◦C, 65 ◦C], 10 ◦C increments

Toxic through inhalation, oral, or skin exposure.
Fire-proof storage cabinets required.
Handling in fumehood required.

DI water
(polar liquid having well-known
modelled properties)

Debye model [124]:

• f = 1.1–57 GHz
• T = [−4.1 ◦C, 60 ◦C] (any intermediate T)

Storage in sealed containers.
No special handling required.

Dimethyl sulphoxide (DMSO)
(highly polar organic reagent having
high permittivity)

Debye model [132]:

• f = 0.1–5 GHz
• T = [10 ◦C, 50 ◦C], 5 ◦C increments

Cole-Davidson model [139]:

• f = 0.001–40 GHz
• T = 25 ◦C

DMSO is exceptionally hygroscopic and needs to
be measured as soon as the container is opened
[132].

Acetone
(polar organic solvent having
intermediate permittivity values)

Static permittivity (since acetone has very high
relaxation frequency) [132]:

• f = 0.1–5 GHz
• T = [10 ◦C, 50 ◦C], 5 ◦C increments

Acetone boiling point is at 56 ◦C [132].

Budo model/confined rotator models [140]:

• f = 50–310 GHz
• T = 20 ◦C

Special handling is required, since it is a powerful
liquid able to soften some plastics [94] and it is
inflammable.
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5.2. Uncertainty Calculation

It is always good practice to report uncertainty along with measured values. However, in dielectric
measurement studies, the definitions used for uncertainty, including how they are calculated and
reported, have varied widely.

Today, the uncertainty of measurements is generally calculated according to the guidelines defined
by the National Institute of Standard and Technology (NIST) [43,44,75]. Multiple measurements
performed on the same material of known dielectric properties enables determination of uncertainty
of the measurement system in terms of the repeatability and accuracy. Considering the definition of
uncertainty reported in [43,75], the repeatability of the measurement may be expressed quantitatively
in terms of the characteristics (e.g., standard deviation) of data repeatedly acquired under the
same measurement condition, as defined also in [74]; while the accuracy may be defined as the
average percentage difference between the dielectric properties of the acquired data and those of the
model [43,44]. These definitions represent practical methods of calculating these parameters. In this
way, the repeatability varies between measurements and gives the extent of random errors, while the
accuracy is constant across measurements.

The uncertainties in repeatability and accuracy both contribute to the total uncertainty in the
dielectric measurements [43,44,74,75]. For example, the combined standard uncertainty may be
calculated as the root sum squared of the standard uncertainties [43,75]. In Peyman et al., the standard
uncertainties associated with Type A errors (repeatability), Type B errors (in the calibration and
measurement of the reference liquids), VNA drift, and cable variations, were estimated and included
in the combined standard uncertainty calculation [43]. These uncertainties were determined for 0.1 M
NaCl and, undoubtedly, tissue measurements will be impacted by more and/or different uncertainties.

Alternatively, in Gregory et al., uncertainties associated with specific input parameters were
thoroughly evaluated by means of Monte Carlo modelling [141]. Notably, this modelling technique
also enables estimation of uncertainties in measurement scenarios when there are no suitable reference
materials available (e.g., with similar material properties or frequency range) [141].

According to the NIST guidelines, the best practice for expressing uncertainty is to report the mean
measured value along with a confidence interval (CI) of 95% [74]. For dielectric measurements, one
may wish to present these parameters separately for both the real and imaginary parts of permittivity.

In the next section, techniques related to minimisation or compensation of tissue-related
confounders are described.

6. Tissue Sample Preparation and Measurement Procedure

Tissue-related confounders may be the major cause of measurement uncertainty, since the total
combined uncertainty for measurements on liquids is relatively small compared to that of tissue
measurements [43]. Uncertainties associated with measuring tissue properties seem to be primarily
related to the complex structure of biological tissues [39,43,122].

In order to reduce tissue-related confounders, it is useful to plan each set of measurements
according to the experimental goal. The first step involves the choice of the target animals (since their
age or weight could affect the dielectric properties [43,122,142]) and the sample tissue type. Aside
from the source species, the number of samples should be chosen based on the scientific question.
The following steps include the analysis of the various tissue-related confounders and the evaluation
of different methods that aim to reduce or compensate for these confounders.

In the next subsection, the confounders related to probe choice, sample preparation, and handling
are first described. Then, a discussion of the confounders that need to be considered during the
measurement procedure is provided.
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6.1. Probe Selection Considerations

Open-ended coaxial probes are suitable for use with materials that are liquid or semi-solid [95],
homogeneous [95], have flat surfaces [66,95], and have a semi-infinite thickness [39,43,95]. Tissues are
generally semi-solid (with the exception of bone), but they are not always homogeneous or have flat
surfaces, and tissue samples that are much thicker and larger than the probe tip are not always easy to
prepare. Hence, probe selection is affected by three main biological factors: Sample size, heterogeneity,
and tissue surface. The desired frequency range of the measurement may also impact the choice of
the probe.

6.1.1. Sample Size, Sensing Volume, and Heterogeneity

Dielectric spectroscopy techniques permit the acquisition of the average complex permittivity
of the interrogated volume. Thus, the probe should be selected such that the sensing volume only
contains the tissue sample of interest and no other material. Since probes with a small diameter have
smaller sensing volumes compared to large flanged probes, the sample size has to be taken into account
and compared to the sensing volume of the probe [71,72,76].

The sensing volume may be evaluated by performing preliminary experiments with different
combinations of materials. To this end, Meaney et al. analysed the dielectric property change in
two-layer materials, consisting of saline or DI water with Teflon or acrylic, by varying the thickness
of the liquid layer to determine the influence of materials at different depths on the measurement.
The experimental results suggested that the dielectric properties are dominantly influenced by the
material present within only the first 200–400 microns from the probe tip, and that this depth did not
vary significantly across frequency or material properties [80]. This was a key finding as previous
studies had assumed a much larger region on the order of several millimetres [11]. While Meaney et al.
and Hagl et al. both investigated the depth into a tissue that contributes to the dielectric measurement,
they defined the depth parameter differently [71,80]. More recently, Porter et al. demonstrated
how different definitions of the sensing depth can impact the determined sensing depth value and
highlighted that, for some definitions, the value does depend on the frequency and dielectric properties
of the tissues occupying the sensing volume [83]. The work of Porter et al. also confirmed the findings
of Meaney et al., in that the experimental results demonstrated that the tissue in contact with the probe
has a greater impact on the measured dielectric properties than deeper tissues [82]. Nevertheless,
because the sensing volume may be affected by the intrinsic dielectric properties of the investigated
sample, further experiments involving the analysis of materials with more complex structures across
both radial and axial directions are needed in order to define the sensing volume accurately for complex
tissue samples.

Heterogeneity of biological samples is a further factor to consider when choosing a probe, since it is
challenging to determine the tissue-specific dielectric properties in an extended heterogeneous volume
interrogated by the probe [39,43,76]. To date, the impact of tissue heterogeneity with only simplified
configurations has been thoroughly modelled. For example, in Chen et al., it was demonstrated that,
for bilayer materials, the permittivity of either layer can be calculated from the reflection coefficient
without the need for information on the thickness of the first layer or the probe capacitances [143].
Models for the effective dielectric properties of bilayer materials, in general and in particular for
coaxial probes, have also been presented in [107]. These results were also extended to a general
multilayer material scenario [107]. Furthermore, Huclova et al. used a numerical three layer skin
model to examine how variations in the layer properties (including thickness and permittivity), impact
the dielectric measurement across frequency [144]. More complex heterogeneities have yet to be
thoroughly investigated or quantified. Specific challenges associated with heterogeneous tissues (aside
from their impact on probe selection) are discussed in Section 7.
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6.1.2. Tissue Surface Characteristics

In addition to the sample size and heterogeneity, the quality of the tissue surface is another
consideration when selecting the appropriate probe to use. Surface irregularities may contribute
to inadequate probe-tissue contact and poor repeatability of dielectric measurements [42,43,60].
Characterisation of the tissue surface permits the identification of the tissue area or points that are
most suitable for the acquisition of dielectric information [145]. For instance, thick samples and even
surfaces are preferable to thin and uneven surfaces in order to ensure good probe contact with the tissue
sample [42,60,95]. From the authors’ experience, the use of a smaller probe on uneven tissue surfaces
results in more reliable measurements, especially if these areas are limited or spatially restricted. Lower
uncertainty in the measurements from smaller probes on uneven surfaces may be attributed to smaller
forces being applied on smaller surfaces. Indeed, large uneven surfaces require the application of
higher forces (and, consequently, higher pressures) to prevent the presence of air gaps between the
probe and the tissue. An increased probe-sample pressure may cause fluid accumulation at the probe
tip [39,43] or tissue damage [95], both of which can affect the tissue dielectric properties and lead to
inaccurate data.

In summary, the probe should be selected not only on the basis of the probe characteristics and
specifications (i.e., frequency range, permittivity range, temperature range, mechanical resistance)
discussed in Section 3, but also based on the properties of the tissue under investigation. The size of
the selected probe has to be consistent with the sample surface, size, and heterogeneity in order to
achieve good probe-tissue contact and accurate measurements in a homogeneous region.

After selecting the probe, but before measuring the dielectric properties, it is recommended
to carefully plan the tissue preparation and handling procedures in order to reduce tissue-related
confounders, such as sample cooling, dehydration, and damage.

6.2. Tissue Preparation and Handling

Tissue measurements can be performed in vivo or ex vivo; the tissue preparation and handling
will be different in each case. Often, for reasons of convenience (i.e., patient safety, ethics) or due to
difficulties in establishing a good probe-sample contact with in vivo tissues, dielectric measurements
of animal and human tissues are performed ex vivo.

6.2.1. In Vivo vs. Ex Vivo Measurements

Several authors have reported on whether or not differences exist in tissue dielectric properties
acquired in vivo and ex vivo. These works will be discussed here in chronological order. Initially,
Burdette et al. performed in vivo measurements on canine muscle, kidney cortical tissue, and fat tissue,
and differences were found between acquired in vivo data and reported ex vivo data [39]. In particular,
for in vivo canine fat tissue, the measured permittivity values were a factor of approximately 1.5 to
3 times larger than the in vitro permittivity values acquired previously by other authors [39,52,146].
This difference in dielectric properties was most likely due to differences in water content, in
temperature, or actual physiological differences between living and non-living tissues [39]. Next,
Kraszewski et al. performed both in vivo and ex vivo dielectric measurements on rat and cat
tissues, finding only dielectric changes less than the uncertainty at frequencies between 100 MHz and
8 GHz [40]. Schwartz observed that the permittivity and conductivity of frog heart, in the frequency
range 0.2–8 GHz, were higher in vivo than ex vivo, with the difference being attributed to blood
perfusion changes [41]. More recently, a variation between in vivo and ex vivo dielectric properties
was found by Gabriel et al. and Peyman et al. in skin, spinal cord, skull, long bone, and bone marrow
in the microwave frequency range [42,43,66,142]. Similar differences were not observed in other tissues,
but might indicate unavoidable contamination of tissues with blood or other body fluids [43]. From the
analysis of normal and malignant human liver tissues, O’Rourke et al. found a statistically significant
difference between in vivo and ex vivo normal liver tissue, but not between in vivo and ex vivo
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malignant liver tissue [37]. Furthermore, Halter et al. evaluated the changes of breast cancer dielectric
properties between in vivo and ex vivo measurements and found about a 30% drop in the magnitude
of the permittivity in tissues analysed 300 min after excision [10]. More recently, Shahzad et al. found
that over the 210 min following excision, the relative permittivity of liver tissue, as measured on the
surface of the sample, decreased by 32 points [147]. However, this decrease was attributed fully to
dehydration of the surface of the tissue sample as dielectric measurements conducted on the interior of
the sample did not change considerably over the same time period [147]. The exact magnitude of the
change in dielectric properties from time of excision to time of measurement, caused by dehydration
and temperature effects, will vary based on the tissue type, the environment that the tissue is stored in,
and the tissue handling conditions.

As is clear from the varied results of these studies, there is no consensus on: (i) Whether
a difference in the dielectric properties of in vivo and ex vivo tissues exists over the microwave
frequency range; and (ii) if a difference does exist, the magnitude and direction of it. Despite these
results, the difference between in vivo and ex vivo data in the microwave frequency range is, generally,
attributed to the temperature change and tissue dehydration [10,30,39,43,86], and recent studies
following best practice in dealing with these confounders suggest no significant difference in the
dielectric properties measured from in vivo and ex vivo measurements [84,148]. Therefore, following
best measurement practice, it is advantageous to keep the temperature constant during dielectric
measurement using a temperature controlled container or a water bath [29,40,43,44,122,127,142]
and to minimise dehydration by limiting the time between excision and measurement to a few
hours [27,30,40,42,43,62,65,76,78,86,127,142,149–151]. At frequencies lower than 100 MHz, a larger
variation between in vivo and ex vivo properties is found. This difference is attributed to physiological
parameters, such as blood flow in vessels [27,39,65,86,151], ischemia [10,86,150,151], heart rate [43],
arterial pressure [43,86,150], respiration rate [43], and air content in lungs [149], which can affect the
permittivity and conductivity values at these frequencies.

In the following subsections, the best-practice steps involved in both in vivo and ex vivo
measurements are described: From surgical intervention, to sample access and excision, transportation,
handling, and processing. In each step, all potential tissue-related confounders, as well as the different
methods used in previous works to compensate for them, are reported.

6.2.2. Surgical Intervention, Sample Access, and Excision

The first step in defining a sample handling procedure involves identifying the surgical methods
to be used for tissue access and excision. It is necessary to define a surgical protocol that minimises
tissue property modification. The main factors interfering with the dielectric acquisition concern
the use of chemicals [39,127], which alter the body physiological condition, the use of tools or
techniques [10], which may damage tissues, and the tissue exposure and cooling during the surgical
operation [39–41,43,152].

It is useful to test for, and take into account, the effect of anaesthesia or other pharmaceuticals,
which are used on animal/human tissues and physiological parameters. For instance, Burdette et al.
observed a decrease in body temperature due to anaesthesia [39].

During the surgery, contact with the tissue should be minimised in order to avoid any damage or
contamination. For human in vivo studies, the measurement tools need to be sterilised prior to surgery.
Normally, steam sterilisation is performed prior to calibration [10,37] and a calibration refresh could be
performed in the sterile environment before the in vivo measurements [10]. Furthermore, for in vivo
measurements, the temperature tolerance of the probe (that depends on the probe fabrication materials)
needs to be taken into account when selecting the sterilisation (or autoclave) procedure. For instance,
steam sterilisation is, generally, performed at temperatures within 125 ◦C, while dry heat sterilisation
can be conducted at temperatures up to 190 ◦C.

Other important confounders to take into consideration in the operating room during in vivo
measurements are those related to the tissue exposure to air. Specifically, air contributes to tissue
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cooling (from body temperature to room temperature) and to tissue dehydration. Different techniques
have been adopted in in vivo measurements to prevent tissue cooling and dehydration. For example,
Ranck and BeMent performed experiments within a few minutes from the surgical cut used to expose
the interior tissues, and used warm saline to wet the measurement region [152]. Schwartz et al.
rinsed the tissues and kept them moist with frog physiological solution [41]. Hart and Dunfee
applied Ringer’s solution with a medicine dropper to the muscle to prevent drying between the
measurements [153]. However, these methods to reduce dehydration can impact the dielectric property
measurement, since the solutions used have their own dielectric properties that will then contribute to
the dielectric measurement of the tissue. Thus, the use of solutions, especially saline, should be avoided.
More commonly, tissue dehydration during an in vivo measurement is minimised by reducing the time
between the surgical cut performed to expose the tissue and the dielectric measurement, and covering
the area of interest with another tissue between measurement times [39,40,43]. This technique does
not alter the tissue properties and also minimises tissue cooling. The tissue temperature should be
measured frequently, so that any temperature change is taken into account during data analysis.

In previous works, the in vivo tissue temperature was monitored using thermocouple
probes [27,29,62] and, more recently, fibre-optic thermometers [29,30]. Infrared thermometers may
also be used for tissue temperature monitoring, since they are portable and do not require sample
contact [79]. The same sensors can also be used in ex vivo measurements. A further crucial point in
in vivo measurements concerns the probe positioning. Typically, in ex vivo scenarios, the probe–tissue
contact can be verified by visual inspection; however, this approach can be challenging in a surgical
setting. The probe positioning cannot be accurately planned prior to surgery; thus, it is normally
decided in the surgical theatre.

6.2.3. Tissue Transportation

When ex vivo measurements are performed, the excised sample may be transported from the
operating theatre to a secondary location for measurement, characterisation, or histology (details on
histological analysis are presented in Section 7). The time between excision and ex vivo measurements
is minimised to prevent tissue dehydration [27,30,40,42,43,62,78,86]. Aside from water content change,
care should be taken during tissue transportation to avoid changes in the sample temperature.
Since the temperature has a systematic impact on the measured dielectric spectrum of biological
tissues, it is usually necessary to transport the tissue in hermetically-sealed, temperature-controlled
containers [29,44,76,142].

6.2.4. Tissue Handling

In order to prevent tissue contamination, dehydration, and damage, sample handling prior to
the ex vivo measurements should be minimised [39,71,76,142]. The sample temperature can be kept
constant during the measurements using a water bath [29,40,43,122,142]. As the temperature setting of
the water bath may not be equivalent to the tissue temperature, the tissue temperature should still
be verified using an infrared or fibre-optic thermometer [29,30]. In this way, the tissue temperature
variation can be taken into account during data analysis. Details on how tissue temperature affects the
measured dielectric properties are reported in Section 6.3.3.

If the tissue sample is to be analysed histologically, the measurement points should be marked.
Sample marking is necessary to ensure that the histological analysis involves the portion of tissue
corresponding to the volume interrogated by the probe. Thus, a good correspondence between
the tissue histological and dielectric properties can be found. Further details about the histological
characterisation of tissue samples are reported in Section 7. In previous works, acrylic ink [76,79] or
pins [10] have been used as sample markers. When ex vivo measurements are performed at the same
locations where in vivo measurements were taken, it would be wise to test the effect of the marker on
tissue dielectric properties before experimental implementation in order to prevent tissue modification
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or damage by the marker. Lastly, in order to maintain the integrity of the tissue, the use of additive
and preservatives should be avoided until the measurement is completed [127].

Having presented the confounders that should be considered during the planning of the tissue
measurement procedure, in the next subsection the actual measurement procedure and the key
confounders that affect tissue dielectric property measurements are discussed.

6.3. Procedure for Tissue Measurements

After the equipment set-up, calibration, and validation, the measurements on in vivo or excised
tissues can be performed. It is important to note that some confounders cannot be minimised even
with careful preplanning. These confounders need to be controlled, monitored, or compensated for
during the measurement phase. In order to minimise the effects of the environmental parameters on
tissue dielectric properties, it is advantageous to perform measurements in a climate (temperature,
pressure, and humidity) controlled room [43,127].

In the following paragraphs the main confounders occurring during the measurement phase, such
as measurement region choice, probe-tissue contact, and pressure, as well as tissue sample temperature,
are discussed.

6.3.1. Measurement Region Choice Confounders

The confounders mentioned in Section 6.1 (i.e., probe sensing volume, tissue thickness, tissue
surface, and sample heterogeneity) need not only be considered in the planning phase, but also
need to be controlled and managed in relation to the choice of the measurement region. Additional
considerations may also be needed, for instance, in order to prevent undesirable reflections negatively
affecting the measured data, Abdilla et al. placed a shorting block under the sample to check for any
reflections from the sample boundaries [44].

Confounders intrinsic to the tissue type include: Fibre orientation in anisotropic tissues, presence
of blood vessels, and high heterogeneity. It was observed that anisotropic tissues, such as muscles,
present different dielectric properties according to the measurement directions along or across the fibre.
Specifically, it has been found that in the microwave frequency range (from 200 MHz to 20 GHz) the
permittivity values between the two sets of measurements are not substantially different. On the other
hand, at lower frequencies (10−5–1 MHz) the fibre direction can change the relative permittivity by
100% [42]. Blood vessels are non-uniformly distributed in tissues and may make up roughly 30% of
their volume [144], so the probe position relative to that of blood vessels should be checked by visual
inspection [65,151]. In highly heterogeneous and mechanically stiff tissues the uncertainty is generally
higher and, in order to minimise the random errors arising from tissue heterogeneity and complexity,
it is useful to repeat the measurements at multiple points [43,44,75]. For instance, Peyman et al. stated
that as many measurements as possible should be taken on each sample tissue and, in her study
conducted in 2005, at least six measurements were taken on each tissue [43]. In most other dielectric
studies, three to five measurement locations were, generally, selected on each tissue sample [27,40,44].

6.3.2. Probe-Tissue Contact

Having selected the most suitable measurement region, the probe is placed in contact with the
sample. From the authors’ experience, in order to reduce the uncertainty due to probe and cable
movement, in both ex vivo and in vivo measurements (in in vivo measurements only when the animal
size is relatively small), it is convenient to move the sample towards the probe using a lift table until
the entire probe aperture makes firm contact with the tissue sample as opposed to moving the probe
during the measurement procedure.

Measured reflection coefficient data is extremely sensitive to the probe positioning relative to
the sample surface. A high variability in the dielectric properties can be attributed to variability in
probe-tissue contact. Thus, a firm contact between the probe and the tissue [76,93] is key. A good
quality contact reduces the impact of confounders that increase the measurement uncertainty, such

177



Diagnostics 2018, 8, 40

as pressure differences [39,43,80,97,149], air gaps [70,93,95,126], and biological fluid accumulation
at the probe tip [39,43]. In most works, these factors have been monitored by a close visual
inspection [29,41,43,76,95]. In order to keep the applied pressure constant in ex vivo measurements,
weighing scales or force sensors can be placed underneath the sample holder [79]. In fact, the
application of a steady pressure contributes to more repeatable measurements [39]. However, in the
literature to date, there is no work that quantifies the error in the measured data in terms of the variation
of the applied pressure. The authors have performed a number of experiments to quantify the error
introduced by probe pressure variations, but observed that the outcome found for one measurement
point could not be extended to all the measurement points across the sample. For instance, within
the same tissue sample, there can be some differences in terms of sample thickness, tissue mechanical
properties, water content, and surface irregularities, which may require the application of different
probe pressures on the same sample. Thus, no specific, fixed pressure can be reported for all samples.
However, a technique that may be used to obtain a good quality contact is as follows. First, a low
pressure is applied to the probe to contact the sample. This low pressure, if too low, can lead to
data inconsistencies when repeated measurements are taken at the same point (due to air gaps).
If this occurs, a pressure adjustment can be undertaken until measurements at the same location are
repeatable. Conversely, the application of high pressure, if too high, can cause tissue compression
and can prompt fluid from within the tissue to rise to the tissue surface, or worse, can cause tissue
damage [127,149]. In previous works, sample contamination by biological fluids has been reduced by
using cotton wipes/swabs [43,99,127,142,152] or suction [43]. However, it should be noted that the
suction method is more invasive and has the potential to dehydrate the sample.

6.3.3. Temperature Effects

During dielectric measurements, as discussed in Section 6.2.1, the temperature needs to be
controlled and monitored. While different techniques used to monitor or control the temperature
have been discussed in earlier sections, in this subsection the effect of temperature on tissue dielectric
properties is examined.

In previous studies, the dielectric properties of biological tissues at discrete frequencies and
temperatures were measured and, for small temperature variations, they were presented in terms
of linear temperature coefficients, which are defined as the percent change in either permittivity or
conductivity per degree Celsius [53]. The provided linear temperature coefficients are limited to
a number of specific discrete frequencies and temperatures [27,30,62]. Outside of these frequencies and
temperatures the impact of temperature on the dielectric properties may no longer be linear [30].
A brief summary of the previously published temperature-dependent dielectric properties data
is presented in Lazebnik et al. [30]. In the microwave frequency range, the change in relative
permittivity is, at most, 2% per degree Celsius and the change in conductivity is between 1% and 2%
per degree Celsius, depending on the tissue and on the frequency and temperature range considered.
Generally, the relative permittivity and conductivity trends with temperature differ over frequency.
However, the magnitude change in both permittivity and conductivity per degree Celsius tends
to be higher at lower frequencies in most biological tissues [27,30,62]. Lazebnik et al. developed
a model to characterise the temperature-dependence of liver tissue dielectric properties over the
microwave frequency range [30]. In particular, from the liver dielectric measurements, Lazebnik et al.
identified different “cross-over” points in the trends of both relative permittivity and conductivity
with temperature. In relative permittivity, the cross-over point was found at about 4 GHz. Below the
cross-over point, the permittivity decreases slowly as temperature increases and, above the cross-over
point, the permittivity increases with temperature. For conductivity, two cross-over points were found:
One near 2–3 GHz and the other near 16 GHz. Below the first cross-over point, the conductivity
increases slowly as temperature increases. Between the two cross-over points, the trend reverses,
and above the second cross-over point, the conductivity again increases as temperature increases.
The same trends were also found for water [30].
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More recently, temperature coefficients were provided for a wider temperature range (up to 100 ◦C)
at the discrete frequencies of 915 MHz and 2.45 GHz, which are of interest for microwave liver tissue
ablation [31,154]. Brace et al. found that linear temperature coefficients across the 5–50 ◦C range agreed
well with the results of Lazebnik et al., with coefficients of −0.22 and −0.18 in relative permittivity
for the two frequency points, respectively, and coefficients of 1.29 and −0.2 for conductivity [31].
From 50 ◦C to 100 ◦C, both relative permittivity and conductivity were found to decrease by as
much as 50%, due to both irreversible damage of the tissues and tissue dehydration [31]. In summary,
the temperature coefficients for both permittivity and conductivity depend on tissue-type, on frequency,
and on the considered temperature range. Knowledge of these temperature coefficients can be used to
compensate for the effect of the temperature change during tissue dielectric measurements.

In this section, the importance of preplanning the measurement procedure was highlighted,
the measurement process overviewed, and the main confounders involved in the measurement were
described. The most common practices adopted to minimise tissue-related errors are summarised in
Figure 2. In the next section, histological analysis of tissue samples is discussed as a method to reduce
the confounders related to the intrinsic heterogeneity of biological tissues.

 

Figure 2. Flow chart of the common steps to minimise tissue-related errors in in vivo and ex
vivo measurements.
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7. Tissue Sample Histological Analysis

Histology is the study of the microscopic structure of cells and tissues; while histopathology
refers to the same, but with diseased tissue [155,156]. There are multiple steps involved in the
histological analysis of a tissue sample: The sample must be fixed, embedded in wax, sliced, mounted
on slides, stained, and then imaged [157]. Following these steps, the slices are ready to be analysed by
a pathologist. The pathologist is able to examine the images and determine: (i) The types of tissues
present; (ii) if diseased tissue is present, the disease grade and other characteristics (for example,
with breast cancer, the hormone receptor status) [156]; and (iii) the distribution of the tissue types
within the sample. Histological analysis is, especially, required after the acquisition of the dielectric
properties of a heterogeneous tissue sample in order to determine the tissue types present in the
sample and their relative spatial distribution. This is important because the dielectric properties of
a sample are determined by those of its constituent tissue types; thus, the histological analysis enables
the attribution of measured dielectric properties to the appropriate tissue type.

Many studies performed in the literature involve only homogeneous (or assumed homogeneous)
tissues and, thus, the samples do not undergo histological analysis (for example, liver tissue [27,44]).
In this section, the focus is on heterogeneous tissue samples. Measuring the dielectric properties of
heterogeneous tissues is inherently challenging as spectroscopy has the effect of averaging the dielectric
properties throughout the sensing volume that is illuminated by the electromagnetic field [11]. Thus,
in the next subsection, confounders that can contribute to any histological analysis are detailed, along
with ones that are of specific concern for dielectric measurements of heterogeneous tissues. Finally,
histological analysis methods used for attributing dielectric properties to heterogeneous tissues from
the literature are overviewed, and the best practice techniques that are known are highlighted.

7.1. Factors Impacting Histological Analysis

The procedures involved with histological preparation of the tissue are applied by pathologists
thousands, if not millions, of times per year. In fact, there are more than 14 pathology tests examined
per person in the UK each year, and pathological analysis is a part of 70% of all diagnoses [158].
However, the methods are not without flaws. In particular, poor fixation of the sample can lead
to changes in the tissue structure [11,157] and uneven levels of staining can result in images that
are incomplete or out of focus [157]. Slide digitation can have variations in lighting conditions
and magnification that can affect interpretation of the results, particularly when comparing across
slices [157]. Each of these issues increases the challenge of interpreting the dielectric measurement of
heterogeneous samples based on the histology of tissues samples and makes it especially difficult to
compare between studies. Furthermore, the histological interpretation of a slice itself is subjective and
variability in results between pathologists are possible [159–161]. Computer-aided diagnosis (CAD)
and prognosis (CAP) methods are currently being investigated to create a fully automated analysis
that is faster and more consistent than a human-based analysis [157]. An excellent review of challenges
associated with histopathological analysis can be found in Veta et al. [157].

7.2. The Link between Heterogeneity, Histology, and Sensing Volume

When performing histology to support interpretation of the tissue content contributing to
a dielectric measurement, it is important to include in the histological analysis all of the tissues
that are within the sensing volume. However, at the same time, the histological analysis should not
include any tissues that are outside of the sensing volume. In this way, only, and exactly, the tissues
that have contributed to the measurement are analysed.

As an example, Figure 3 demonstrates the importance of matching the sensing depth with the
number and thickness of slices taken into consideration in the histological analysis. If only Slice 1 is
analysed, the tissue is found to be composed entirely of homogeneous glandular tissue. If the sensing
depth is equal to the thickness of Slice 1, then the measured dielectric properties will be entirely the
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result of this layer of homogeneous gland tissue. Alternatively, if the sensing depth is equal to, say,
the combined thickness of Slices 1 and 2, then the total sensing depth region is occupied by 25% fat
tissue and 75% glandular tissue (as Slice 1 is 100% gland, and Slice 2 is 50% gland and 50% fat). Both
of these tissue types will contribute to the measured dielectric properties. However, the contribution is
not proportional to the tissue type representation (i.e., 25% fat and 75% gland) as the layer closest to
the probe has the dominant effect [11,80,81]. Furthermore, not all of a given tissue is occupied fully by
cells of that tissue type [12], thus, an additional layer of complication comes into the example based on
how to determine what regions are actually “fat” and which are “gland”. Obviously, as more slices are
involved in the analysis and the tissue becomes more heterogeneous, the more challenging it becomes
to conclusively determine the tissue composition breakdown. It is also important to re-emphasise here
that the sensing volume is dependent on the tissue content (namely, the tissue dielectric properties), so,
ideally, the change in the sensing volume should be taken into account on a sample-to-sample basis, as
discussed in Section 6.

Figure 3. Diagram of sample composition by tissue type (fat—orange, gland—blue). A side view of
the sample is shown, with slices marked. The dielectric probe measurement location is denoted with a
black oval on the top of Slice 1.

7.3. Histological Analysis Techniques in Dielectric Studies

A limited number of works involving histological analysis for attributing the measured dielectric
properties of heterogeneous tissues have been presented in the literature. Of these, some use pathology
to categorise tissue samples by type [79,86], while a select few process the tissue for microscopic
analysis [10–12,76]. In general, histology for dielectric characterisation is an area that requires further
investigation [43]. The most common strategy is to obtain an average estimate of the tissue types
present in the sample below the probe [10,11,76]. However, most recently a more quantitative method
of counting each cell and corresponding the proportion of tissue with the measured properties has been
proposed [12]. These techniques are described and compared in this section. For dielectric property
measurements of heterogeneous tissue, breast tissues are by far the most common that have been
analysed due to the need for these properties in medical microwave imaging of the breast. As a result,
all pathology techniques discussed in this section have all been performed on breast tissues.

In Lazebnik et al., several hundred dielectric measurements were taken from normal and
malignant excised breast tissue samples using an open-ended coaxial probe [11,76]. The measurement
sites were marked on the tissue samples using a spot of black ink. The authors conducted a histological
analysis of each sample based on the tissue composition inside the region of the sensing volume of the
probe (3 mm deep × 7 mm across, for this measurement scenario, as determined in Hagl et al. [71]).
In this way, a cross-section of each tissue sample was taken directly below the measurement location
(i.e., the ink spot). Digital microscopy images were obtained and visually inspected. The tissue
composition within the sensing volume was quantified based on the percentage of each tissue type
residing within the slice under consideration. The two-dimensional cross-section was used to obtain
an estimate of the tissue composition in the full three-dimensional sensing volume. The percentages of
each tissue type (adipose (fat), glandular and fibroconnective tissue, along with benign and malignant
tissue) were estimated visually by qualified pathologists [11,76]. A Kappa statistic was used to confirm
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consistency in the analysis between different pathologists. Several exclusion criteria were applied
during the histological process. In particular, samples were eliminated from further consideration if
the ink spot was not visible, if the ink had leaked into the tissue, or if the cross-sectional slice was
deformed. In this study, nearly half of all samples (49.8%) were excluded based on difficulties during
the histological procedure [76].

Following the studies by Lazebnik et al., Halter et al. performed a study that also examined
the region under the probe using histological analysis. In Halter et al., the dielectric properties of
in vivo and ex vivo breast tissues were measured in the microwave frequency range with open-ended
coaxial probes [10]. After the in vivo tissue measurement was recorded, a biopsy clip was embedded
in the tissue at the measurement location. The tissue was then excised and sectioned into 5 mm thick
pieces. The excised samples were measured again (at the same site as for in vivo, as identified by the
clip). Initially, the pathologist examined a 1 cm × 1 cm square area around the measurement location
and, thus, the tissue types were estimated based on a large area. Later, the strategy was improved by
inserting two pins covered in ink into the tissue on either side of the depression left by the probe in
order to mark the measurement location. The tissue sample was fixed with formalin, stained, and then
slides were prepared. The pin holes were then used during the analysis to determine the probed region
in which the tissue types were estimated by the pathologist. In this study, details were not provided
regarding whether or not samples had to be excluded from consideration due to histological challenges.
The pathologist examined the tissue histology within the ~1 cm × 1 cm region, which was a horizontal
slice relative to the probe position (i.e., perpendicular to the plane of the probe axis), unlike the vertical
(or parallel) slice used in Lazebnik et al. However, in both cases, the full tissue composition within the
sensing volume was estimated based on the given slice. Furthermore, as only one pathologist was
involved in the study, a Kappa analysis similar to that in the study by Lazebnik et al. was not needed.

Most recently, in Sugitani et al., excised breast tissue samples were obtained and their complex
permittivities measured using an open-ended coaxial probe [12]. The samples contained a combination
of tumour tissue, normal fat tissue, and normal stroma (connective) tissue. The work aimed to
calculate the effective permittivity of the tumour tissue based on the idea that each sample is
an inhomogeneous mixture of cells with different permittivities. It was proposed, and confirmed,
that, since the “tumour” tissue is composed of cancer cells mixed in with normal cells, the volume
fraction of cancer cells in a sample affects the dielectric properties. In particular, the sample was
treated with a hematoxylin-eosin stain and then digital images of each slice of the sample were taken.
The slide images were analysed by counting the number of pixels of cancer cells and cells of other
tissue types presented. The ratios of each type of tissue cell, relative to all of the cells in the slice,
were calculated. The three-dimensional fractional volume of each cell type was calculated based on
the two-dimensional slice using Bruggeman’s effective medium approximation theory [162]. This
method has the advantage of being highly quantifiable—each cell is counted—however, the process is
tedious and time-consuming. The work does not mention if any samples had to be discarded or were
contaminated during the histological procedures. Furthermore, the sample analysis was not restricted
to a specific sensing depth region (sample sizes ranged from 5 cm to 30 cm). A similar study on various
types of malignancies was presented in Sugitani et al. [85], for which the pathological procedures were
the same as those in Sugitani et al. [12].

Overall, there is no consensus in the literature to date on the best practice for conducting histology
in relation to dielectric measurements. Furthermore, there has been no reported comparison of the
different histology techniques used in the above-mentioned works, therefore, it is not known if some
methods are more accurate than others. However, it is likely that some features from each of the
studies lend themselves to obtaining more accurate data, for example, involving multiple pathologists
and using Kappa analysis to verify consistency between them (as in the study by Lazebnik et al.) could
only add to the study quality.
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8. Discussion and Conclusions

Although notable progress has been made in achieving accurate dielectric data, the coaxial probe
design still represents a limit for certain types of dielectric experiments. An improved probe design
that could allow measurements over a wider spectrum of frequencies and across multiple tissue
samples would be useful for future studies. Moreover, during the measurement procedure, the use of
appropriate force and position sensors could considerably increase the stability of the measurement
system and reduce tissue-related confounders that are strictly dependent on the expertise of the
operator conducting the dielectric measurement (i.e., probe-tissue contact and probe-tissue pressure).

Furthermore, interpretation of dielectric data acquired with the open-ended coaxial probe can be
improved by quantitatively examining and compensating for tissue-related confounders that cannot be
fully eliminated during the measurement procedure. To this extent, dielectric studies have modelled
the effect of temperature, tissue dehydration, and animal age on the dielectric measurement of tissues.
The quantitative characterisation of tissue-related confounders improves the interpretation of the
acquired data and could support the interpretation of dielectric data from historic studies that did not
provide information on all confounders. In order to clarify how such a characterisation could be done,
a series of examples demonstrating how to determine the total uncertainty in a dielectric measurement
are provided below.

This example scenario considers the case of dielectric measurement of mouse liver in the
microwave frequency range, as the effect of the time from excision, temperature, and age of the
mouse have all been quantified on liver tissue at these frequencies. In this example, it is assumed
that the confounders of time from excision (TFE), temperature (T), and age (A), are the only ones
impacting the dielectric data. The uncertainties introduced by these confounders are denoted as μTFE,
μT, and μA, respectively. The relative permittivity of liver has been acquired at room temperature,
3.5 h from excision from a 70 day old mouse. From the literature it is known that at the frequency
of 900 MHz, the relative permittivity changes by 0.13% per degree Celsius [30], decreases by about
25% after 3.5 h from excision [147], and decreases by approximately 15% within 70 days of life [142].
This quantitative information needs to be taken into account for the calculation of the combined
standard uncertainty according to the NIST guidelines [74,75], which provides μ, the total uncertainty
added to dielectric data. A series of hypothetical studies are listed in Table 4, along with the resulting
uncertainty. The technique of calculating combined standard uncertainty to achieve a total estimate on
the uncertainty introduced in dielectric measurement studies due to tissue-related confounders can
and should be applied to all datasets, which lack quantitative information on confounders.

Given the importance of modelling the effect of the confounders for the interpretation and
comparison of existing dielectric datasets, further investigation is needed to quantitatively examine the
main tissue-related confounders (i.e., temperature, dehydration) on other tissue types and to analyse
confounders not yet quantified (i.e., heterogeneity, probe pressure). Such quantitative analysis will not
only improve the analysis of new dielectric data, but will also support the interpretation of historical
dielectric datasets.

In conclusion, this work has presented the dielectric measurement process with an open-ended
coaxial probe and reviewed the most relevant works, with a critical discussion of known equipment-
and tissue-related confounders. This work supports the aim of achieving accurate dielectric
measurements of biological tissues. As these properties are fundamental to electromagnetic safety
studies and medical technology design and improvement, an understanding of the measurement
process is of interest to a wide ranging community of scientists and medical professionals.
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Table 4. Example calculations of total uncertainty in dielectric data resulting from tissue-related
confounders under different measurement scenarios: Uncertainty due to time from excision (μTFE),
due to temperature (μT), and due to age (μA). μ is the total uncertainty added to dielectric data,
calculated as combined standard uncertainty. Uncertainty data is for the relative permittivity of mouse
liver at 900 MHz, obtained from the literature. Note that 0.91% is 0.13%/◦C · 7◦C.

Case Scenarios μT μTFE μA μ

Known TFE,
Known age,
Unknown T (between 18 ◦C and 25 ◦C)

0.91% N/A N/A 0.91%

Known T,
Known age,
Unknown TFE (within 3.5 h)

N/A 25% N/A 25%

Known T,
Known TFE,
Unknown age (within 70 days old)

N/A N/A 15% 15%

Known T,
Unknown TFE (within 3.5 h),
Unknown age (within 70 days old)

N/A 25% 15% 29.15%

Known TFE,
Unknown age (within 70 days old),
Unknown T (between 18 ◦C and 25 ◦C)

0.91% N/A 15% 15.02%

Unknown TFE (within 3.5 h),
Unknown age (within 70 days old),
Unknown T (between 18 ◦C and 25 ◦C)

0.91% 25% 15% 29.17%
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Abstract: This paper reviews non-invasive blood glucose measurements via dielectric spectroscopy at
microwave frequencies presented in the literature. The intent is to clarify the key challenges that must be
overcome if this approach is to work, to suggest some possible ways towards addressing these challenges
and to contribute towards prevention of unnecessary ‘reinvention of the wheel’.

Keywords: blood glucose levels; non-invasive measurement; glucose-dependent dielectric properties; RF
sensing; microwave resonators; microwave spectroscopy; dielectric spectroscopy; on-body antennas

1. Introduction

The prevalence of Type 2 diabetes has been rapidly increasing through the latter half of the twentieth
and into the twenty-first century. It has been associated with changes in life style during that period,
including increasing adoption of unhealthy dietary habits and limited daily activity. In 2014, the prevalence
of diabetes among adults older than 18 years globally had increased to 8.5%, from 4.7% in 1980 [1].
Mortality resulting directly from diabetes was estimated to be 1.6 million in 2015. Diabetes is a chronic
condition and must be managed well to prevent complications of the disease, including (but not limited to)
cardiovascular disease, blindness, kidney failure, increased risk of stroke and lower limb amputation [2].
A large number of techniques have been considered for non-invasive glucose monitoring, including the
analysis of sweat, urine (e.g., [3]), tears (e.g., [4]), and saliva (see the recent review in [2]), breath analysis
(relating blood glucose levels to acetone, which is produced during ketosis [5–8]), as well as various
spectroscopic methods, with limited or no success to date [2,9,10]. Furthermore, few of these techniques
are suitable for continuous monitoring (particularly those requiring samples of saliva, urine and breath),
although potentially still of use for non-invasive validation, or even calibration, of other wearable sensors.

Currently, blood glucose levels are mostly monitored with ambulatory monitoring devices, where
a drop of blood has to be drawn via a lancet and placed onto a chemically pre-treated strip inserted
in a device [2]. When the blood is dropped onto the strip, the glucose creates a low-level current.
The monitoring device quantifies the blood glucose level via the intensity of the current. These ambulatory
devices suffer from error rates as high as 20% for older devices and 15% for devices meeting the current
International Standards Organisation standard for blood-glucose monitoring systems [10,11]. Furthermore,
these devices measure the capillary blood glucose levels (since the blood sample is usually drawn from
finger tips, or sub-cutaneous measurements using ‘needle-patches’ placed on the torso for more modern

Diagnostics 2019, 9, 6; doi:10.3390/diagnostics9010006 www.mdpi.com/journal/diagnostics

193



Diagnostics 2019, 9, 6

‘continuous monitoring’ systems) and it is known that the capillary blood glucose levels lags behind the
actual glucose levels (e.g., [2,10]). The main disadvantage of the current ambulatory monitoring devices are
the invasiveness, after the relatively recent development of commercial ‘continuous monitoring’ systems
(such as Dexcom’s G6 system, Abbott’s FreeStyle Flash/Libre system and Medtronic’s Guardian systems,
some of which have sensor lifetimes up to 14 days [10]). Off-the-shelf monitoring devices have a number
of practical obstacles, however, for example, the blood glucose levels is known to be affected from the
sanitation of the measurement site, it is advised that the measurement site should be washed with warm
water to increase the circulation, the patient is vulnerable to infections, the tissue becomes increasingly
deformed at the measurement site over time and the cost of the measurement. Therefore, there is a need
for new technologies that can offer reliable and continuous measurements while being unobtrusive to the
patient and reducing costs. It is worth noting that blood glucose monitoring would also be of interest for
non-diabetic people, such as astronauts, elite athletes and security personnel.

One such technique that has captured the attention of researchers is the RF/microwave sensing of
blood glucose levels. Within the last decade, with the development of wireless technologies, an increased
interest in the interaction of electromagnetic waves and biological tissues has emerged. With the motivation
of designing medical diagnostic and therapeutic devices, many studies focussed on characterization
of dielectric property profiles of biological tissues and anomalies, with applications including burn
or wound monitoring and detection of cancerous tissue (for example, [12–14]). The possibility of
using radio-frequency (RF) or microwave sensing for blood glucose level characterization has also
been investigated during this period (in fact, such technologies have been investigated throughout the
twenty-first century at least, including various unsuccessful attempts at commercialisation; an interesting
perspective on research into non-invasive glucose monitoring can be found in [10]). In this paper, we review
the studies conducted to investigate the interaction of electromagnetic waves with glucose molecules,
covering frequencies between approximately 1 kHz and 100 GHz, with a focus on ‘microwave’ frequencies
(which we take to mean 0.1–20 GHz in this paper). We will mostly use the term ‘microwave spectroscopy’
to describe this technique, but will also use dielectric spectroscopy interchangeably (although the latter is
the more general). A related term, impedance spectroscopy, is used at low radio frequencies (below about
1 MHz), where it is more convenient to represent the material properties as resistances, capacitances and
inductances. As these are related directly to the complex permittivity (and complex permeability, where
relevant), we will mostly avoid this terminology to avoid confusion.

The paper is organized as follows: we begin by examining the glucose-dependent properties of
human tissues, with the intent being to highlight the first major obstacle to non-invasive monitoring via
microwave spectroscopy, sensitivity. We also briefly discuss the second major issue, selectivity, or how
to attribute measured changes in dielectric properties to changes in blood glucose. We then review the
various frequencies used in the literature and discuss how the operating frequency might be chosen
in the light of the sensitivity and selectivity issues. A survey of resonators and antennas used in the
literature follows, with some comments based on the frequency and mode of operation and the sensitivity
and selectivity issues. We conclude with a brief discussion of possible ways to meet the sensitivity and
selectivity challenges.

2. Glucose Dependent Dielectric Properties

The dielectric properties of a material govern the wave behaviour in that medium. Therefore,
the dielectric properties of a medium are one of the primary design parameters of RF/microwave
structures. The growth of, first, mobile (cellular) communications, followed by body-centric
communications (including various wearable and implantable communications devices), together with
the possibility of using such devices for physiological monitoring, has encouraged a great deal of interest
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in how the human body affects electromagnetic waves, whether for health and safe exposure, maintaining
links between a cellular phone and base station or maintaining links between that same phone and a
Bluetooth headset [15]. To provide the necessary database, the dielectric properties of biological tissues,
including those with biological anomalies, have been extensively reported in the literature [16–19]. Since the
success of microwave diagnostics and treatment applications depend on the dielectric property discrepancy
between the normal and abnormal tissues (e.g., [13,14]), the evaluation of the dielectric properties is
critical. Recently, the possible application of microwaves for non-invasive and continuous blood glucose
monitoring has motivated many researchers to investigate the glucose-dependent dielectric properties
of blood and other liquids. To this end, dielectric properties of blood plasma, blood, saline solutions
and deionized water have been reported in the literature. The remainder of this section summarizes
the reported literature on glucose-dependent dielectric properties. We first provide a brief primer on
terminology.

The permittivity is a complex quantity, with the imaginary part representing the loss, which includes
heating and conductive effects. Key terms include:

• permittivity—a bulk (that is, volume-average) material property quantifying the ability of the medium
to store electrical energy;

• electric constant—also called the vacuum permittivity or permittivity of free space, this is the
permittivity for an ideal vacuum and a physical constant;

• relative permittivity—the permittivity of a medium normalised by the electric constant (this is often
applied to the real part of the normalised permittivity only);

• dielectric loss factor—another name for the imaginary part of the permittivity (often referring to the
imaginary part of the normalised permittivity);

• effective permittivity—the permittivity of a composite (heterogeneous) material (for example,
a layered structure, where each homogeneous layer has different properties) represented as
an equivalent homogeneous medium (this could be used for the relative effective permittivity,
which should be evident from context);

• loss tangent—a means of representing the loss in a dielectric as the ratio of imaginary to real parts
(usually denoted ‘tan(δ)’);

• conductivity—the ability to transfer charge, which is a loss mechanism for dielectrics;
• phantom—a digital or physical object that allows the parameter of interest to be changed in

a controlled manner;
• tissue-mimicking material—a material designed to have the same dielectric properties as the tissue of

interest, for use in physical phantoms;
• Q factor—a term used to quantify the performance of resonators, where greater Q-factors imply

stronger resonances and more narrow bandwidths. A distinction is made between the ideal
(‘unloaded’) performance and the ‘measured’ (‘loaded’) performance;

• resonant frequency—strictly, this is the frequency at which the input impedance of a resonator is
purely real (resistive); in practice, this can be used for the frequency of a maximum (transmit-mode)
or minimum (reflect-mode) of the resonator response. Changes in the dielectric properties ‘loading’
the resonator can affect some or all the resonant frequency, the bandwidth at resonance and the
magnitude of the resonance (maximum or minimum) in detectable amounts.

2.1. Measurements Performed with Biological Tissues

In [20], glucose levels of blood plasma, collected from ten adults with ages ranging from 18 to 40 years,
were changed in-vitro by adding 5% dextrose solution to the plasma to achieve values between 0 mg/dL
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to 16,000 mg/dL. The blood glucose concentration was changed by doubling the previous level; that is,
first the plasma glucose levels were increased from 0 mg/dL to 250 mg/dL, then from 250 mg/dL to
500 mg/dL, etc. The dielectric properties of the blood plasmas were measured for each glucose level
between 0.5 GHz and 20 GHz. A meaningful change was observed when the glucose levels were increased
from 2000 mg/dL to 4000 mg/dL. The dielectric properties were measured with Agilent’s Open-ended
Coaxial Dielectric Probe Kit [21]. As a continuation of this study, the Cole–Cole equation was fit to the
collected dielectric property data [22]. The Cole–Cole equation is a mathematical expression that has been
utilized in the literature to model dielectric property behaviour with a minimum number of variables.
In [18], the four-pole Cole–Cole equation was utilized to model the dielectric properties of biological
tissues; however, it was concluded in more recent studies that a single-pole Cole–Cole equation is adequate
to model dielectric property behaviour of biological tissues over an ultra-wide frequency range. The
single-pole equation is [23]:

ε̂(ω) = ε∞ +
εs − ε∞

1 + (jωτ)(1−α)
+

σi
jωε0

(1)

where ε∞ is the relative permittivity at field frequencies, εs is the static permittivity, τ is the relaxation time
for a dispersion region, α represents the broad distribution of the relaxation time constant and σi is the
ionic conductivity. The difference εs − ε∞ is denoted as Δε and the effective permittivity ε̂ is a function of
frequency f = ω/2π.

In [22], after fitting the Cole–Cole parameters to blood plasmas with different glucose concentrations,
the Cole–Cole parameters were represented as polynomial equations to depict the glucose-dependent
change of dielectric properties. These polynomial equations for the Cole–Cole parameters are used in this
work with the intention to demonstrate quantitatively the dielectric property behaviour of tissues when
changing the glucose level. The polynomial equation is a quadratic, of the form:

u(χ) = anχ2 + bnχ + cn (2)

with u a dummy variable representing a given parameter and χ representing the glucose concentration.
Coefficients an, bn and cn are given in [22] for each Cole–Cole model parameter. The polynomials with
numerical coefficients are also given below:

ε∞(χ) = 0.99 × 10−2 × χ2 + 0.47 × 10−1 × χ + 2.3 (3)

Δε(χ) = 0.93 × 10−2 × χ2 − 0.21 × χ + 71.0 (4)

τ(χ) = 0.12 × 10−2 × χ2 + 0.23 × χ + 8.7 (5)

σi(χ) = 0.63 ∗ 10−2 ∗ χ2 − 0.14 ∗ χ + 2.0 (6)

The Cole–Cole equations are plotted using the polynomials and coefficients for glucose concentrations
of 72 mg/dL, 216 mg/dL, 330 mg/dL and 600 mg/dL (equivalently, 4 mmol/L, 12 mmol/L, 18.3 mmol/L
and 33.3 mmol/L, respectively). Figure 1a,b show the change in relative permittivity and conductivity,
respectively. This range of glucose concentrations was chosen based on the following: first, the blood
glucose of a healthy human changes between 72 mg/dL to 216 mg/dL; second, a glucose level of
330 mg/dL was reported in [24] for a diabetic patient and is here used as a realistic value that must
be detectable; and the maximum glucose level that can be measured by the current commercial ambulatory
monitoring devices [25], 600 mg/dL. It can be seen that both relative permittivity and conductivity
decrease as the glucose concentration increases from 72 mg/dL to 600 mg/dL. More importantly, however,
it is evident that the sensitivity of the dielectric properties to realistic values is extremely small, being
around 0.2 units for the relative permittivity and 0.1 S/m for the conductivity. The decrease in relative
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permittivity with the increase in blood glucose levels is slightly greater than the decrease in conductivity,
but monitoring of both parameters may still be required. Furthermore, highly sensitive sensors will be
required to detect small changes if continuous monitoring is desired, especially when including the effects
of system noise and other factors that also affect the tissue dielectric properties. Although [22] presents a
model to represent the glucose-dependent dielectric properties, the Cole–Cole parameter fittings show
that εε increases with the increase in glucose levels. This is not consistent with the measurement results
and the fitting provided for the Δε. Nevertheless, to the best of the authors’ knowledge, both the approach
and utilization of blood plasma provides the most realistic insight to the glucose-dependent dielectric
property change.

(a)

(b)

Figure 1. Dielectric properties of blood plasma with glucose variations graphed with Cole–Cole parameters
polynomials given in [22]: (a) relative permittivity εr; (b) conductivity σ.
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In another study [24], blood samples were collected from twenty patients (two per patient),
where eight of the patients were diabetic and twelve of the patients were non-diabetic. One blood
sample per volunteer was placed in a vial containing Ethylenediaminetetraacetic acid, utilized to prevent
blood clots forming in the withdrawn sample; the other samples were kept without additives. The volume
of each blood sample was 3 mL. The blood samples were then transferred to 5-mL dishes and the dielectric
properties of the samples in the dish containers measured with Agilent’s high temperature dielectric probe
kit [21]. The blood glucose levels of the collected blood samples varied between 79 mg/dL to 330 mg/dL.
A modified two pole Cole–Cole model was fit to the collected dielectric property measurements. It was
concluded that the relative permittivity of blood drops five units between 80 mg/dL and 140 mg/dL.
It should be noted that the measurement results were noisy and this could be due to the small sample
size. The sensing volume of the probe could be larger than the sample thickness. Also, the number of
measurements was not given in detail in the reported study.

2.2. Measurements Performed with Phantom Materials

Performing measurements using biological tissues is necessary for obtaining realistic results,
but carries legal, ethical and financial implications. In addition, the complexity of real tissues can make
the task of interpreting measurements challenging. The use of phantoms in place of tissues is common,
particularly in the earlier stages of research and product development, to minimise these issue, although
in vivo studies will always be required at some stage. In one study [26], tissue-mimicking phantoms
replicating the dielectric properties of blood and other tissues were fabricated with oil-in-gelatin dispersion
phantoms to quantify the realistic glucose-dependent dielectric properties. Oil-in-gelatine dispersion
phantoms are used in the literature to imitate the dielectric properties of all biological tissues [27]. Such
phantoms mainly include deionized water, gelatin, oil, a surfactant (e.g., dishwasher detergent) and salt
(NaCl). The gelatin helps to solidify the phantom, deionized water is both used for dissolving the gelatine
and increasing the dielectric properties. The surfactant is used increase the homogeneity when mixing the
oil and other ingredients. Oil has very low dielectric properties and thus, decreases the dielectric properties
of the mixture; finally, NaCl is utilized for increasing the conductivity of the phantom. Most (all) human
body tissues can be obtained by using the same base recipe; however, the amounts of the ingredients have
to be adjusted to obtain the desired tissue dielectric properties. For high water-content tissues, the amount
of oil should be reduced and the reverse is true for low water-content tissues. Examples of the recipes for
fat-, skin-, muscle- and blood-mimicking materials are given in Table 1 [26].

Table 1. Recipes of Tissue-Mimicking Materials including low, intermediate and high water-content tissues
from 300 MHz to 20 GHz [26] (food colouring is used to distinguish the materials).

Ingredient (g) Wet Skin Fat Blood Muscle

Deionized Water 230.0 57.4 230.0 230.0
Gelatine 34.1 15.0 34.1 34.1

NaCl 1.4 0.0 1.2 1.2
Oil 75.0 329.6 15.0 35.0

detergent1 40.0 0.0 40.0 40.0
detergent2 0.0 10.0 0.0 0.0

food colouring 1.3 0.0 0.0 1.3

After characterizing the blood-mimicking material, different amounts of powdered dextrose was
added to four blood-mimicking phantom materials. Note that the dextrose is the naturally available form
of glucose in the blood and it can either be obtained in powder form or dissolved in water. The amount
of dextrose added to the phantoms is equivalent to the blood glucose levels between 0 mg/dL and
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216 mg/dL. This captured the realistic dielectric property change, since the blood glucose levels of a
healthy person varies between 72 mg/dL and 216 mg/dL. The phantoms were prepared and left overnight
to solidify. Next, the dielectric properties of the phantoms were measured with Agilent’s high temperature
open-ended coaxial dielectric probe kit. The measurements were repeated twenty times for each phantom
and the median values of the measurements were taken as the dielectric properties of the phantom
materials. This process was important, since the commercially available open-ended coaxial probes suffer
from high measurement error rates, 5% for off-the-shelf open-ended coaxial probes [21]. According to the
authors’ experience, the reported error rate may increase depending on the equipment wear off, cable type,
calibration quality and cable/probe movements. Considering that the change of blood glucose levels does
not result in high dielectric contrast, the accuracy of the dielectric property measurements becomes critical
to quantify the glucose-dependent dielectric property change.

A one-pole Cole–Cole equation, given by (1), was fit to the measured dielectric properties to quantify
the glucose-dependent dielectric property change [26]. The accuracy of the fitting was checked by
calculating the Euclidean distance, given in Equation (7). The accuracy of the fitting is also critical to
minimize error that would hinder accurate detection of the dielectric property change due to a change in
glucose levels.

e =
1
N

N

∑
i=1

⎡⎢⎣
⎛⎝ ε′ωi

− ε̂′ωi

median
[
ε′ω̄i

]
⎞⎠2

+

⎛⎝ ε′′ωi
− ε̂′′ωi

median
[
ε′′̄ωi

]
⎞⎠2
⎤⎥⎦ (7)

where ε′ωi
and ε′′ωi

are the measured real and imaginary parts of the permittivity, ε̂′ωi
and ε̂′′ωi

are the
equivalent fitted dielectric properties and N is the number of points used within the measurement
frequency range.

When the fitted Cole–Cole parameters were analysed, it was seen that the Δε parameter decreased
with the increase in the dextrose levels in the blood-mimicking phantoms. This is consistent with the
previously reported results, where it was concluded that the increase in dextrose levels decreases the
permittivity of the blood plasma [20]. The change in Δε parameter is shown in Figure 2; it can be seen that
Δε parameter changed by one unit when the dextrose levels increased from 0 mg/dL to 216 mg/dL. This
again emphasises how the sensitivity of the measurement system will be critical in successfully tracking
changes in blood glucose level, particularly in continuous measurement scenarios.

Figure 2. Glucose-dependent change in Δε parameter collected from the blood-mimicking phantoms with
glucose levels ranging from 0 mg/dL to 216 mg/dL, reported in [26].
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The authors of [28] also used recipes for blood mimicking phantom materials (proposed in [29]). The
phantoms were composed with water, salt, flour and sugar [28]. The recipe for the blood-mimicking
material required 66.9%, 0.8%, 25.0%, and 7.3% by weight for water, salt, flour, and sugar,
respectively [28]. A change of glucose level was emulated by adding varying amounts of sugar. In
particular, the results from real blood samples (Section 2.1) were used to predict the equivalent amount of
sugar to use in the phantom recipe (in place of the amount specified in the provided phantom recipe [28]).
Reasonable agreement at the higher frequencies used (approximately 2.2–6 GHz) were observed between
the blood measurements and phantoms fabricated for all sugar amounts (two phantoms were made for
each amount of sugar), with greater divergence at the lower frequencies.

Most of the reported work in the literature was performed to characterize the glucose-dependent
dielectric property change with broadband measurement techniques; namely, open-ended coaxial
probes. Although the technique offers a number of advantages, including minimal sample preparation
requirements and broadband measurement capabilities, it suffers from greater measurement errors.
Therefore, a more narrow-band resonator technique was employed in [30] to retrieve the dielectric
properties of phantom materials made using flour, water and sugar (note that these phantoms were not
blood mimicking material, but were used to represent the lossy medium of the human body). With the
proposed analytical method, highly accurate permittivity results were obtained, despite the fact that the
resonator was not fully optimised for this task. The loss in the phantom (human body) acts to increase the
bandwidth of the resonator, increasing the noise included with the measurement and reducing sensitivity.
An extremely narrow-band (high Q-factor) resonator may give even greater sensitivity, also improving
accuracy. Importantly, the methodology employed [30] gave accurate results despite the limitations of the
narrow-band resonator employed.

2.3. Measurements Performed with De-Ionized Water

In an attempt to simplify the sample preparation, some research groups approximate blood with
water. In some studies, this was justified by the fact that the blood plasma is a high water-content tissue
and, since the mineral percentages in blood plasma are very low, the minerals can be ignored. Others
argued that a ‘physiological solution’ (0.9% NaCl solution) tends to imitate blood and can thus, be used as
a base for measuring the change in dielectric properties with respect to change in glucose levels. The rest
simply investigated the glucose-dependent dielectric properties of de-ionized water, since it is free of other
interactions and this helps with quantifying the effect of only glucose to dielectric properties.

In [31], blood-simulating solutions were obtained by adding 10, 20, 30, 40 and 50 percent-by- weight
table sugar into the de-ionized water. The dielectric properties of the solutions were measured from
200 MHz to 5 GHz. As expected, the permittivity of the solutions decreased with the increase in sugar
levels, whereas the conductivity increased. Essentially, this work shows the macro trends in dielectric
property behaviour with respect to changes in sugar levels. However, this may not represent the dielectric
property behaviour for realistic glucose levels.

In [32], the dielectric properties of physiological solutions and de-ionized water were measured,
having seven different glucose amounts varying from 0 mol/L to 6 mol/L at 1 mol/L increments (that is,
from 0 mg/dL to 108,000 mg/dL with 18,000 mg/dL increments). As noted earlier, the normal range
of glucose is between 72 mg/dL and 216 mg/dL for a healthy person. A Type 2 diabetes patient can
experience higher blood glucose levels. Ambulatory devices are unable to measure glucose levels above
600 mg/dL [25]. If the blood glucose levels are above 600 mg/dL, the patient is at high risk of experiencing
hyperosmolar hyperglycaemic state (HHS). Therefore, an increase of 18,000 mg/dL is much higher
than the realistic glucose level changes. Also, this study does not specify the type of glucose used to
obtain the mixtures. The reported measurement results confirm that the increase in the glucose levels
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decreases the relative permittivity of the mixture at lower frequencies. However, it concludes that, at
higher frequencies, the increase in glucose levels increases the relative permittivity of the mixture. For
conductivity, it was concluded that the increase in glucose levels has an effect on conductivity and this effect
is frequency-dependent; also, the amount of change in conductivity is smaller when compared to relative
permittivity. It should also be noted that the reported measurements were performed with Agilent’s
open-ended coaxial performance probe between 500 MHz and 67 GHz. The technical specifications
indicate that the probe is reliably operational between 500 MHz and 50 GHz [21]. Therefore, the reported
measurements above 50 GHz are higher than the recommended operation range of the probe. Unlike other
reported studies, the measurements presented in [32] were performed at 37 ◦C (that is, at human body
temperature). It was concluded that the sensitivity of both relative permittivity and conductivity values
to the glucose was between 0.01% to 0.02% per mmol glucose change in one litre of blood-mimicking
material. Considering that the relative permittivity of blood in the 2.45 GHz license-exempt Industrial,
Scientific and Medical (ISM) band is 58.2 units [17,18], the relative permittivity change will be 0.05 units if
the blood glucose is increased from 72 mg/dL to 216 mg/dL.

The dielectric properties of glucose–water solutions were used to model the glucose-dependent
dielectric property change at 25 ◦C in [33–35], with glucose concentrations between 0 mg/dL and
16,000 mg/dL. The measurements were performed with an in-house fabricated open-ended coaxial
probe and an in-house algorithm. The dielectric properties were retrieved using artificial neural networks
that fit the Debye model to the measurements for each glucose concentration. The Debye model is very
similar to the Cole–Cole model; in the Debye model, the α parameter in Equation (1) is zero and the ionic
conductivity is also ignored (σi = 0). The Debye parameters were then again expressed as polynomials
with variables representing the change in glucose levels, with the same basic polynomial model given in
Equation (2) used. The coefficients of the polynomials are given in Table 2 for ε∞, εs and τ.

Table 2. Polynomial coefficients fitted to the Debye parameters [33]. Reproduced with permission from
Turgul V., Kale I., Sensors and Actuators A: Physical, Elsevier, 2018.

u an bn cn

ε∞ −8.214 × 10−8 2.148 × 10−3 8.722
εs 2.318 × 10−9 −2.793 × 10−4 81.015
τ −8.370 × 10−9 5.150 × 10−4 8.776

The approach used in [22] was modified for the Debye parameters and adopted in this study to
characterize the glucose-dependent dielectric properties of de-ionized water. Equation (2) and the Debye
parameter coefficients are used to obtain Figure 3, depicting the dielectric property change as the glucose
levels increase from 72 mg/dL to 600 mg/dL. As seen from the magnified plots inset in the figures, the
relative permittivity of the de-ionized water decreases with the increase in glucose concentration, while the
conductivity of the deionized water increases. In fact, the observed behaviour of the conductivity changes
when the frequency is increased above 9 GHz. The conductivity of the mixture started to decrease with
the increase in glucose concentration. Although the trend in relative permittivity agrees with the earlier
publications, the trend in conductivity is different when compared to other reported work. As explained
earlier, the broadband dielectric property measurement techniques are prone to errors. Since the change in
conductivity is expected to be even smaller than the change in permittivity, the conductivity change due to
glucose concentration might have been lost.

The dielectric properties at four different frequencies (0.5 GHz, 2.5 GHz, 5.0 GHz and 10.00 GHz) are
listed in Table 3, generated using the dielectric property graphs given in Figures 1 and 3. These frequencies
were chosen since 500 MHz is close to the Medical Device Radiocommunications Service (MedRadio) and
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Wireless Medical Telemetry Service (WMTS) bands [36,37], 2.5 GHz and 5.0 GHz are close to license-exempt
ISM bands in common use for wearable devices and 10 GHz represents the glucose-dependent dielectric
behaviour at higher frequencies. The conductivity of blood plasma is higher than the conductivity of
the deionized water at frequencies lower than 10 GHz. This could be due to sodium and other minerals
present in the blood plasma. The change in conductivity is very small at all frequencies. Figure 3b does
suggest that the conductivity change between 18–20 GHz is greater than other frequencies. It should
be noted, however, that measurements at higher frequencies require special equipment and this change
might merely due to the greater measurement/fitting errors at higher frequencies. The relative permittivity
change is somewhat greater than the conductivity change and seems to be greatest at 10 GHz, among the
frequencies shown in Table 3.

This quantitative comparison of models from the literature serves to confirm that the dielectric
property changes due to changes in glucose levels are very small. The relative permittivity displays
a consistent trend: an increase in glucose level corresponds to a decrease in the relative permittivity of
blood plasma and other blood mimicking materials. Since the glucose-dependent relative permittivity
change is very small, there is a need to develop structures that are sensitive to dielectric property change
and algorithms that can sense the glucose-dependent change among other factors that may affect the
dielectric properties of the biological tissue.

In [38], an impedance analyser was utilized in the frequency range of 1 kHz to 1 MHz. Two sets of
measurements were performed. The first used aqueous solutions of glucose, with concentrations from
0 mmol/L (0 mg/dL) to 225 mmol/L (4050 mg/dL), at steps of 25 mmol/L (450 mg/dL); hence, this set
of measurements did not address the sensitivity issue. It was observed that both the permittivity and
conductivity of the glucose solutions were decreasing with the increase in the glucose concentrations [38].
Similar to other studies, the dielectric properties were modelled with the three pole Cole–Cole equation,
while the changes in Cole–Cole parameters with respect to change in glucose concentration was modelled
with polynomials. The change in the Δε1 plotted to demonstrate that the εs − εinf is decreasing with the
increase in glucose concentration [38]. The second set of measurements examined the effect of changes
in blood volume during the cardiac cycle and used the bio-impedance parameter directly, rather than
extracting permittivity and conductivity [38]. These are discussed further in Section 3.2.
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(a)

(b)

Figure 3. Dielectric properties of water with glucose variations graphed with Debye parameters
polynomials given in [33]: (a) relative permittivity; (b) conductivity.
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Table 3. Dielectric property change of blood plasma (BP) and water–glucose with respect to glucose
concentration at 0.5, 2.5, 5.0 and 10 GHz based on the Cole–Cole and Debye parameter polynomials given
in [22,33]. (d-water—de-ionised water)

Glucose
Frequency

εr εr σ σ
Concentration

(GHz)
BP d-water BP [22] d-water [33]

(mg/dL) [22] [33] (S/m) (S/m)

72 0.50 72.75 80.94 2.065 5.55 × 10−2

219 72.73 80.9 2.046 5.57 × 10−2

330 72.71 80.87 2.030 5.58 × 10−2

600 72.66 80.79 1.995 5.62 × 10−2

72 2.50 69.74 79.64 3.498 13.62 × 10−1

219 69.70 79.58 3.482 13.67 × 10−1

330 69.67 79.54 3.470 13.70 × 10−1

600 69.59 79.43 3.441 13.78 × 10−1

72 5.00 64.62 75.86 7.078 51.59 × 10−1

219 64.56 75.76 7.069 51.71 × 10−1

330 64.51 75.69 7.062 51.80 × 10−1

600 64.39 75.51 7.046 52.01 × 10−1

72 10.00 53.24 64.07 16.91 17.00
219 53.14 63.90 16.91 17.00
330 53.07 63.76 16.91 16.99
600 52.88 63.44 16.90 16.97

2.4. Discussion

It is clear, from the qualitative review and quantitative examples given, that the application of
dielectric spectroscopy for glucose detection is both possible (as seen by the in vitro experiments) and
extremely challenging, due to the small magnitude changes in permittivity associated with the small
changes in glucose encountered in realistic scenarios. The next section discusses the issues around selection
of the operating frequency and bandwidth.

A few comments must be made here regarding the selectivity issue. All the studies reported on above
have examined the behaviour of the dielectric properties under the controlled change of sugar level and
our discussion has focussed on the sensitivity issue. In reality, these properties will be affected by other
inter-related factors, such as:

• temperature—much of the above research was conducted at standard laboratory temperature and
there is little-to-no research available on the combined effect of temperature and glucose-level changes
on the dielectric properties. Furthermore, the effect of temperature on various tissues is known to be
frequency-dependent with complex behaviour [39];

• perfusion—the volume of blood in the measured region during the measurement period will obviously
affect the data and this volume will change with temperature, pulse rate, activity level and clothing
(for example, tight sleeves or watch bands can restrict the flow of blood);

• sensor positioning and motion—different locations on the body have been considered for sensor
placement (such as the ear lobe, the wrist, the thumb and the torso, as discussed in Sections 3.2 and 4),
either for convenience of testing, comfort for continuous-monitoring scenarios, or for tissue properties
at that location (e.g., the ear lobe has a relatively thin skin layer and no bone or muscle). Small motions
of the test subject can induce errors in the measurement (e.g., introduction of a small air gap between
sensor and skin), potentially even for static test scenarios. For the ideal of continuous monitoring, any
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sensor must be robust to motion-induced artefacts from small changes in sensor position, as well as
related issues (e.g., activity level, contamination of the test site from sweat, dirt and other materials);

• other biological activity—tissues are dynamic inhomogeneous materials, with many bio-chemical and
bio-physical process occurring. Examples that may affect the dielectric properties include (but are not
limited to) changes in the levels of blood gases (particularly oxygen and carbon dioxide), urea, lactic
acid (affected by activity level), as well as changes induced by injury or infection.

Amperometric glucose-sensing, such as used with minimally invasive needle-type bio-sensors,
use specific enzymes and filtering membranes to provide selectivity, sensitivity and sensor longevity [2].
A major challenge for non-invasive spectroscopic detection methods is to achieve the selectivity necessary
to properly attribute dielectric changes to blood glucose changes.

Another aspect that must be considered is the subject-specific variation in tissues. In particular, there
can be significant variation across the population in tissue thickness for various locations on the body,
possibly correlating across one or more of gender, age, ethnicity and affluence (and its impact on physical
health and fitness), among other factors. Any system that could not accommodate such variation into its
model for extracting the dielectric properties would be restricted in application at best. Those systems
attempting to penetrate furthest into the body will need to account for variation in muscle and fat tissues,
plus other internal tissues (dependent on the location of the device on the body); all systems must account
for skin thickness variation. To illustrate this issue, we summarise some key points of a recent paper on
measuring the dielectric properties of skin (not aimed at glucose monitoring [12]).

As described in [12] and elsewhere (e.g., [26,40]), there are at least five different ways of modelling
skin (ignoring voxelized phantoms from MRI scans). The skin can be considered as a single homogeneous
layer in its simplest form, with one effective permittivity. This can be perfectly acceptable and accurate,
electromagnetically speaking, depending on the application. Increasing complexity comes by sub-dividing
the skin into constituent layers, with the most complex in use being a four-layer model, consisting of
the [12]:

• stratum corneum (the outermost and driest layer);
• viable epidermis;
• dermis;
• subcutaneous fat layer.

Intermediate-complexity models come from merging one or more of these layers into homogeneous
effective media. (Some also may argue against including the fat layer; from an electromagnetic perspective,
there is no particular problem with this, so long as the effective medium averages the constituent media
correctly.) The stratum corneum is approximately 20 μm thick, but can be thicker, dependent on body
location (and likely varying between subjects to some extent) [12]. The epidermis is normally between
0.06–0.1 mm thick and the dermis is between 1.2–2.8 mm thick [12]. It is noted that a blood layer may be
added for glucose-monitoring applications. Furthermore, resonators will typically include at least one
dielectric layer in their construction, which must be included in models appropriately.

The models and the effect of the various layers, were investigated numerically between 26.5 GHz and
40 GHz, using models of open-ended coaxial probes and open-ended waveguide (two common probes
used in material characterisation) [12]. Further measurements were made at several body locations on three
test subjects [12]. The important sources of both modelling and measurement errors were also investigated.
Accuracies of up to 85% and 95% were reported for relative permittivity and relative dielectric loss factor,
respectively [12].

In addition to this, it has been shown that non-invasive blood glucose sensing at finger-tips is affected
by layer thickness and even the presence of small air-gaps caused by finger-prints [41,42]. A shift in
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resonant frequency of around 20 MHz was observed due to these air-gaps [41] and potentially as much as
100 MHz, depending on fingerprint depth [42]. Given that the air-gaps will differ depending on how the
finger is placed on the sensor [41,42], in addition to the effect of pressure on the tissues in the finger tip, it
is clear that this effect must be carefully considered, given that frequency shifts as low as 8 MHz [43] could
be produced by changes in glucose concentrations, at least for resonators with relatively low Q-factors.

It is also worth noting that the models discussed above assume planar layers of uniform thickness in
most instances. The effect of pressure (e.g., of a finger pressed on a sensor, or a smart watch strap on the
wrist) will be to reduce the thickness of at least some of the layers in a non-uniform manner, in addition to
affecting the flow of blood and interstitial fluid through the tissues.

3. Frequency of Choice

3.1. An Empirical Approach

Different frequencies have been utilized for blood glucose level detection in the literature, ranging
from radio frequencies to millimetre waves. Although some applications at terahertz and infrared range
have also been investigated (e.g., [44,45]), the scope of this review is limited to RF/microwave and some
millimetre-wave applications. Most of the work reported focusses on narrow-band applications, with a few
reporting wide-band behaviour. Since microwave diagnostic and treatment applications are based on the
dielectric property discrepancies between the anomalous and healthy tissues, the behaviour of dielectric
properties that is dispersive with respect to frequency is one of the primary constraints for frequency of
choice.

Another related factor in frequency selection is penetration depth: as conductivity increases with
frequency for all tissues, the electromagnetic wave encounters greater loss at higher frequencies, which can
be related directly to how much tissue the wave can pass through and still be detectable at the system’s
minimum threshold for detection. (A related parameter is the skin depth; we do not discuss this here, but
the penetration depth is always greater than the skin depth.) For most implementations of sensors for
glucose monitoring, a reflection mode is used; a few use a transmission mode (e.g., for systems placed on
the ear lobe). The penetration depth is essentially a reflection-mode parameter; transmission-mode systems
can be expected to have a maximum allowed sample thickness approximately twice that of the penetration
depth (because the reflected wave passes through the tissues twice). Penetration depth decreases with
frequency for all tissues. At low frequencies (e.g., below 100 MHz), the penetration depths for skin, fat
and muscle would be more than thicknesses typically encountered; above 10 GHz, however, very little
penetration into muscle can be expected, while penetration depths for skin and fat are of less than or equal
to typical thicknesses [46]. We note that the limits on exposure, particularly the Specific Absorption Rate
[SAR], place an upper bound on transmit power, which translates into a maximum penetration depth for a
tissue of given loss.

As noted before, microwave frequencies have been employed for breast cancer imaging and treatment
purposes due to the dielectric property discrepancy between the benign and malign tissues [47]. In
microwave imaging, the employed frequency range is between 3 GHz and 7 GHz. The resolution of the
microwave images increases at higher frequencies; however, penetration depth and wavelength decrease.
To illustrate the penetration depth and wavelength in tissue, we plotted the behaviour two values with
respect to frequency in muscle tissue. The muscle tissue dielectric properties have been utilized before
in the literature to represent the lossy medium of the human body [40]. The relative permittivity and
conductivity of muscle tissue is shown in Figure 4a; the change of wavelength and penetration depth in
muscle tissue medium with respect to frequency is shown in Figure 4b. Similar to high water-content
tissues, the relative permittivity of the muscle tissue decreases with the increase in frequency, while
the conductivity of the muscle tissue increases. Both the dielectric property change and the increase in
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frequency affects the wavelength and penetration depth. From Figure 4b, it can be seen that both the
wavelength and the penetration depth is less than 5 mm. This demonstrates that, above 10 GHz, the body
tissues will be even more lossy and the propagating wave will quickly attenuate.
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Figure 4. Muscle tissue dielectric properties and wave behaviour in muscle tissue medium: (a) relative
permittivity and conductivity of muscle tissue between 200 MHz and 20 GHz; (b) wavelength and
penetration depth in muscle medium.

One other criterion that can be considered while choosing the frequency of operation is looking into the
utilization of the bands. For example, the US Federal Communications Commission’s MedRadio spectrum
allocation covers the 413–419 MHz, 426–432 MHz, 438–444 MHz, 451–457 MHz and 2360–2400 MHz
ranges. These bands are specifically useful for implants and body-worn devices for off-body, on-body
and in-body communications, since the signal is still quite strong for these bands. Other possible bands
include the license-exempt 2.4–2.5 GHz and 5.725–5.875 GHz ISM bands. At 2.45 GHz, the wavelength
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and penetration depth in muscle tissue is around 22 mm for both quantities. At 5.8 GHz, the wavelength
and penetration depth in muscle tissue is around 7.6 mm and 7.4 mm, respectively.

Lastly, it can be concluded from Section 2 that the glucose-dependent dielectric property change
is very limited, especially in the microwave region, such that the glucose-dependent change does not
display a significant variation between the frequencies. This indicates that the limited change in blood
dielectric properties due to the glucose variations can only be measured by employing a highly sensitive
technique. Broadband dielectric property measurement techniques, such as the open-ended coaxial probe,
are known to suffer from accuracy and repeatability limitations, whereas narrow band measurement
techniques are known to be more precise. Therefore, empirically we can conclude that a narrow-band
technique will be more sensitive to glucose-dependent dielectric property changes. Ultimately, the
sensitivity of a resonator also depends on the measurement technique and the performance of the employed
technique at the operation frequency. The Q factor, which is indicative of the measurement sensitivity, of
narrow-band resonators is expected to increase at higher frequencies (that is, higher order modes for a
given resonator tend to have higher Q factors). Considering the constraints imposed by the lossy nature of
the biological tissue media (higher loss and smaller penetration depth with increasing frequency) and the
band availability, plus the fact that resonators tend to be some multiple of a half-wavelength in size (hence,
physically larger at lower frequencies), a narrow-band resonator operating at a narrow band frequency
between 4 GHz and 7 GHz can be a viable option. Of course, it is still possible to employ other frequencies,
both higher and lower, as can been seen in the literature. We now review these choices, with a discussion
following in Section 3.3.

3.2. Frequencies Employed in the Literature

Different frequencies have been employed in the literature to sense the glucose change. For example,
in [48], a monopole antenna operating between 1–6 GHz was designed. The antenna response between
1.5–3 GHz was observed to shift during simulations and while testing it with blood mimicking phantoms.
However, it is known that the response of wideband and ultra-wideband antennas are less sensitive to
the dielectric property changes in a medium. For instance, Vivaldi antennas are frequently employed for
microwave medical imaging applications to both provide a wideband signal and prevent the antenna
detuning due to close proximity to human body. Additionally broadband dielectric property measurement
methods known to suffer from low measurement accuracy. Considering that the realistic dielectric property
change with respect to change in glucose levels is very limited, there is a need to employ more sensitive
techniques.

As mentioned above (Section 2.3), an impedance spectroscopy approach was used in [38];
here, we describe the second set of measurements using the bio-impedance parameter directly, measured
using a system from Biopac. Initially, measurements were performed on agar phantoms with aqueous
solutions using varying quantities of glucose: 0 mmol/L, 50 mmol/L (900 mg/dL), 100 mmol/L
(1800 mg/dL) and 200 mmol/L (3600 mg/dL); again, it must be stated that these are not realistic values,
so questions regarding the sensitivity are not addressed. The bio-impedance of glucose solutions with
solutions having different glucose concentrations were calculated at 10 Hz and supported the expectation
that the change in bio-impedance decreased with increasing glucose concentration. An additional set of
measurements were performed on a non-diabetic test subject, in conjunction with direct measurements
with a commercial portable blood glucose meter (ACCU-CHEK Performa). Measurements were taken
over the course of a 135-minute period, at five-minute intervals for the bio-impedance and thirty-minute
intervals for the blood meter, during a type of oral glucose tolerance test. After some signal processing and
curve-fitting, it was observed that there was an inverse correlation between the measured bio-impedance
and the measured glucose level [38]. This work reported that the temperature, minimum and maximum
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blood volume and other components of blood (such as haemoglobin) might effect the bio-impedance
calculations.

A spiral resonator operating between 628 and 677 MHz was introduced in [30]. This resonator was not
tested with realistic glucose values and the response was explored to retrieve the relative permittivity of
the tissues. The sensitivity of the resonator can not be judged. It should be noted that the wavelength and
penetration depth is quite large at these frequencies. Therefore, the response of the structures operating
close to MedRadio bands can be affected by other factors, such as the size of the tissue loaded to the
resonator. When the final application is considered, this could emerge as a problem when setting a
calibration standard.

Another resonator was presented in [26,43], operating close to 2.45 GHz when loaded with four- and
five-layer tissue-mimicking materials (composed of dry skin, wet skin, fat, blood and muscle tissue). This
resonator, which was not optimised for the wearable glucose monitor application, consisted of a microstrip
patch resonator with two capacitively coupled feeding strips and had a Q-factor of around 4, making it
relatively poor in terms of sensitivity. The penetration depth and wavelength at this frequency is still quite
large (around 20 mm in muscle tissue); therefore, the calibration problem may still emerge at a smaller
scale. One option to achieve matching for different loads is to utilize a impedance-matching circuit at
these frequencies. However, this approach should be implemented so that glucose-dependent change in
impedance will not be masked.

A serpentine-shaped capacitive structure operating between 3.0 GHz and 6.0 GHz was presented
in [33,49]. The sensitivity of this structure was analysed for the best matching. Initially, the structure
was designed to operate at 4.8 GHz; this frequency was chosen after analysing the penetration depth
and reflections between different tissue boundaries. It is worth noting that most of the simulations were
performed in commercial electromagnetic simulation programs; when the RF/microwave sensors are
loaded with lossy materials (such as four-layered tissue-mimicking materials with frequency-dispersive
dielectric properties), the simulations take longer to complete than simulations in air. Therefore, it is
advised to run such simulations on workstations; even then, the cost of optimizing these sensors to operate
at a certain frequency is high.

Two patch antennas operating at 2.45 GHz and 5.8 GHz were designed and tested with dextrose
solutions in an attempt compare the performance of the antennas at these two frequencies [50].
The antennas are mounted at the bottom of two 3D printed cups. The cups were filled with dextrose
solutions having concentrations ranging from 0 mg/dL to 5000 mg/dL. From 0 mg/dL to 1000 mg/dL, the
amount of dextrose was increased by 200 mg/dL. When the behaviour of the patch antenna was analysed
while changing the dextrose amount, it was observed the operation frequency did not change. However,
the matching of the antennas changed with the increase in dextrose levels. Although the change was not
linear, it was observed that the matching of the antenna operating at higher frequency was more sensitive
to the dextrose change. The response of both antennas are given in Table 4. Since the antenna types were
identical, the glucose-dependent change in antenna matching is attributed to the frequency of operation.

Table 4. Comparison of patch antennas operating at 2.45 GHz and 5.8 GHz tested with deionized
water–dextrose solutions [50].

Dextrose Levels (mg/dL) S11 Response (dB) at 2.45 GHz S11 Response (dB) at 5.8 GHz

0 −14.87 −26.32
200 −14.82 −30.19
400 −15.4 −38.85
600 −14.45 −38.52
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A resonator operating at 1.4 GHz was proposed in [51]. The sensor, which had a Q-factor of about 800
in air [51], was proposed to be placed on the abdomen region of the body, where its Q-factor was reduced
to about 80 [51]. The sensor was tested with humans and the response compared with the commercial
glucose sensors. Also, an in vitro interference test technique was proposed to test the sensor performance
with glucose and other materials. The resonator response shifted 600 kHz when the glucose levels were
increased from 0 mg/dL to 600 mg/dL. The in vitro performance of this resonator does not only depend on
the frequency; the structure itself also has an important role. Therefore, in the abdomen region the tissue
should not be considered homogeneous in the 1.4 GHz frequency range. Changes in other parameters are
likely to affect the resonator response. In [51], the effect of other parameters was mitigated with a reference
structure that was separated spatially from the tissue and main resonator, but otherwise identical to it.
Hence, the change in resonant response (frequency and bandwidth) for the reference resonator can be
used to track temperature via a calibration curve, thus allowing detection of permittivity changes with
the main resonator caused by other factors. A clinical trial of this sensor involving 24 human subjects
(eight non-diabetics, four Type-1 diabetics and 12 Type-2 diabetics) undergoing an oral tolerance test was
reported [52] and assessed using the Clarke Error Grid and the mean absolute relative difference (MARD)
parameter. Two versions of the sensor were used (12 subjects per sensor); some differences between sensors
were possibly evident, based on MARD values of 11% and 14% for the respective test groups, although no
detail is provided on the test subject groups to allow identification of other possible causes. An overall
MARD value of 12.5% was calculated. Although the majority of test samples were in regions A and B of the
Clarke Error Grid, there were some values in the upper C region (attributed to unexpected movement by
the test subjects in [52]), demonstrating further work is necessary to enhance robustness. The comparison
in time between the sensor and the reference glucose readings (taken using a YSI 2300 Glucose and Lactate
Analyzer) was visually close in both papers [51,52]; curve-fitting models were developed in [51] that have
presumably been used in [52] to produce estimated blood glucose levels (in mg/dL) directly.

Another microwave resonator operating at 6.53 GHz was proposed in [53]. When a container of
de-ionized water–glucose solution, with a concentration of 0.75 mg/mL, was placed on the resonator, the
resonance frequency shifted to 3.43 GHz. The glucose concentration was then increased to 1 mg/mL, then
in 1 mg/mL increments to 5 mg/mL. The resonance frequency shifted to 3.53, 3.93, 4.23 and 5.03 GHz for
glucose concentrations of 1 mg/mL, 2 mg/mL, 3 mg/mL, 4 mg/mL and 5 mg/mL, respectively. Although
a very good resonance shift is observed, it should be noted that the sensitivity can not be merely attributed
to frequency of operation. Both the resonator structure and the frequency of operation, thus, the Q factor,
are all parameters that needs to be considered in this work. The readers should note the units used,
which have a factor of 100 difference to those used in this work, such that the normal range of glucose
concentration is stated as from 0.75 mg/mL to 2.16 mg/mL by the authors of [53]. The concentrations
used are therefore similar to the values used in this review for quantitative comparisons.

A microstrip-line-based multi-band resonator, operating between 100 MHz and 500 MHz and 1.4 GHz
to 1.8 GHz, was proposed in [54]. The resonator was tested using glucose solutions, with concentrations
from 0 mg/dL to 5000 mg/dL. The resonance shift, as well as the matching of the resonator, was observed
for both frequencies. It was concluded that the resonator displayed a better sensitivity to the glucose
change at higher frequencies.

In [55], three versions of a resonator, operating at 1.92 GHz, 5.16 GHz and 7.16 GHz, was designed
for measurement of glucose concentrations in microlitre volume solutions. A dielectric sensing cup with
a microlitre volume was designed and integrated to these structures to hold the liquid. The Q factor of
all three structures was investigated with solutions having different glucose concentrations. The Q factor
changed by up to five units for glucose concentration ranging from 0% to 10%.

A spiral resonator was proposed in [56], operating at 7.65 GHz when placed in aqueous glucose
solution and operating at 7.77 GHz when placed in a sample of pig blood. During the tests, the sample
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under test was put into a Petri dish with a diameter of 8 mm, which was placed in turn on the resonator
(first, the aqueous solutions were tested, followed by the blood samples). Glucose concentrations for the
aqueous solutions were from 0 mg/dL to 600 mg/dL; for the pig blood samples, concentrations from
100 mg/dL to 600 mg/dL were tested. The observed shift in operating frequency was negligible; thus, the
authors reported the change in matching of the resonator. For the aqueous samples, with concentrations
ranging from 0 mg/dL to 600 mg/dL; the S11 response decreased from −40 dB to −55 dB; for pig blood
samples (concentrations ranging from 100 mg/dL to 600 mg/dL), the S11 response decreased from −18 dB
to −25 dB. The change in the S11 response with respect to volume was also reported in this work. To the
best of the authors’ knowledge, the sample volume should be chosen in such way that the electromagnetic
energy completely attenuates within the material under test (MUT) at the operating frequency, in order to
explore the true performance of the structure during such experiments. The effective permittivity of the
medium measured by the resonator will then only depend on the permittivity of the substrate and the
permittivity of the MUT. Since the glucose-dependent dielectric property change is very limited, this is a
paramount parameter to explore the full potential of a microwave sensor for blood glucose monitoring.

A metamaterial-based resonator operating at 2 GHz was proposed in [57]. In this work, the change
in both amplitude and phase of S21 was tracked. The resonator was simulated with digital phantoms,
with the relative permittivity of the digital phantoms changed based on the glucose-dependent dielectric
property change equations described in [24]. To simulate the change in blood glucose levels between
0 mg/dL and 250 mg/dL, the relative permittivity of the digital blood-mimicking phantom was changed
from 69.4 units to 47.5 units, respectively. When compared to the conclusions drawn in [26], where the
change in relative permittivity was expected to be 1 unit for glucose levels from 0 mg/dL to 216 mg/dL,
these changes in permittivity values are very large. Since no experimental validation was performed, the
performance of the proposed structure can not be fully judged.

The millimetre-wave part of the spectrum, specifically around 60 GHz, is the operating band selected
by a company called MediWise for their GlucoWise system [58,59]. This was chosen “. . . as the wavelength is
short enough for a relatively compact antenna sensor and the penetration depth is large enough for interrogation of
thin human tissue regions with sufficient blood concentration” (Saha et al., 2017 [59]). The developed sensors
are intended to work either on the ear lobe or the fleshy part of the hand between thumb and first finger
and are based on a pair of patch antennas (resonators) acting in transmission mode. Standard in vitro
measurements were conducted using aqueous solutions of glucose and the authors stated the system “can
detect as low as 0.025 wt% of glucose in water” [59]. Ten non-diabetic male subjects underwent an intravenous
glucose tolerance test (IVGTT) while wearing the system. Results for two subjects showed reasonable
correlation; poor results for the other test subjects were attributed to hand motion and “. . . gradual sliding of
the holder during the session, possibly due to fatigue or stress” [59], emphasising the challenges introduced by
external factors. The lag between direct blood measurements and indirect tissue measurements was also
evident [59]. A more recent study involving an anaesthetised pig was reported [58], again using an IVGTT
to introduce glucose ‘spikes’ to the blood stream. The sensor was compared with a “spectrophotometric
clinical blood chemistry analyzer (iLab 650 by Diamond Diagnostics) and a commercially available glucometer
(Contour Next EZ by Bayer)” [58]. The antennas were located at different positions on the ear of the pig and
with varying separations, to investigate variability and the detuning effect. The spikes in glucose level
were evident in the sensor response, with a lag of about thirteen minutes. This lag was attributed, in part,
to the distance from the injection site and to the known lag between venous blood samples and interstitial
fluid. It was also stated that “although the area is convenient for the sensor placement, it is not particularly rich in
blood and contains significant amounts of interstitial fluid” [58].
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3.3. Discussion

As seen from the literature reviewed above, there is no settled choice of frequency for non-invasive
blood glucose monitoring using dielectric spectroscopy. Some systems use lower frequencies to gain
tissue penetration, others use higher frequencies to avoid penetration and most do not specify the reason
behind the frequency selection, or else are making it for pragmatic reasons related to design issues, such as
device size (a lower frequency means a larger resonator), cost of electronic components (higher frequency
components are generally more expensive than lower-frequency components), or wanting to operate in
licence-exempt ISM bands. The question of measurement location is affected by and affects, the choice of
frequency, via the penetration depth: a finger tip or ear lobe, for example, may require a smaller penetration
depth, thus, supporting selection of a higher frequency (e.g., [58,59]). The electronic system must also be
capable of sufficient accuracy and precision at the proposed frequency (have sufficient dynamic range and
be low-noise).

While there are various arguments for using lower or higher frequencies, it should be mentioned
that no system chooses the operating frequency based on the observed spectroscopic behaviour of the
glucose molecule. Ideally, measurements would be performed at a frequency ‘near’ to a resonance in
the spectroscopic response for glucose, as this would maximise the dielectric property change induced
by a change in glucose concentration. We say ‘near’, as it is possible that the human tissues modify the
response. Unfortunately, these molecular resonances are almost entirely in the terahertz (THz) part of
the spectrum, between roughly 1 THz and the lower end of the infra-red part of the spectrum [10,60].
This is problematic for a number of reasons, including the extremely poor tissue penetration and current
technological limitations for operating in this band. Although selective detection of glucose (and other
similar molecules) has been successfully demonstrated using THz nano-antennas [60], with resonances
between 0.5–2.5 THz, this approach has yet to be translated for work with human tissues, to the authors’
knowledge. Given the poor penetration depth, it remains far from clear that a change in blood glucose
concentration could be detected in this band. There would also need to be studies to determine how these
resonances appear within tissue samples and whether the resonances of other molecules might obscure
that of glucose.

4. Utilized Microwave Resonators and Antennas

In this section, we review the resonator geometries utilised in the literature, to try and identify any
useful trends. We note that there are different terms used for the microwave sensor in the literature, namely
‘antenna’ and ‘resonator’. Since most antennas are resonant elements, the distinction is somewhat vague
(even artificial). Nevertheless, to avoid confusion from the respective camps, we have split the review
along these lines, which perhaps arises from the respective backgrounds of the researchers: antennas
researchers see the sensor as ‘radiating’ into the body tissues and its response being ‘de-tuned’ by those
tissues; resonator designers, perhaps coming from filter design or material characterisation backgrounds,
may think in terms of loaded and unloaded Q factors, field distribution across the sample under test
and similar things. Essentially, these describe the same responses, but there can be some subtleties in the
descriptions.

4.1. Antennas

Antennas employed for glucose-dependent dielectric property change include both wide and
narrow-band antennas. A wideband monopole antenna operating between 1 GHz and 6 GHz was proposed
in [48]. This antenna was simulated with a hand phantom and the S11 response of the antenna was tracked
during the simulations. In addition to the drawbacks listed for employing a wideband method, a monopole
antenna has an omnidirectional radiation pattern, suggesting that the S11 response of the antenna will
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be vulnerable to the changes in the vicinity of human body and the antenna. Considering that the
glucose levels are only slightly changing the dielectric properties, the variations in S11 response due to
glucose-dependent dielectric property change might be lost in uncontrolled environment.

Patch antennas, operating at 2.45 GHz and 5.8 GHz when loaded with deionized water and glucose
solutions, are given in [50]. The antennas were printed on FR4 substrate and also covered with an FR4
superstrate to prevent the shorting of the antenna. When the end application is considered, a superstrate
can be useful for managing the SAR within the allowed limits. As a side note: since non-invasive
measurements are also envisioned for continuous use, the proposed materials should either be built with
bio-compatible materials or should be covered with a bio-compatible material. During the experiments, it
was observed that the matching of the antennas were changing with the change in glucose levels. The
change was non-linear and the antenna operating at a higher frequency was more responsive to the change
in glucose levels.

In [61], a patch antenna was proposed, operating at 5 GHz in air and around 2 GHz (depending on
glucose concentration) when loaded with a phantom. The antenna was tested with two liquid phantoms,
namely physiological solutions and pig blood, with glucose levels ranging from 0 mg/dL to 500 mg/dL.
Simulations predicted a linear shift in resonant frequency of 5 MHz for the physiological solution;
measurements did not display any correlation, which was attributed to possible differences in temperature
and volume between test samples. Simulations using pig blood digital phantom predicted shifts of
200 MHz (comparing 125 mg/dL to 0 mg/dL) and 300 MHz (comparing 250 mg/dL to 125 mg/dL).
When the antenna was tested with pig blood, smaller shifts were observed. A linear fit was performed;
the resonant frequency increased by 43 MHz when increasing the concentration from 0 mg/dL to
125 mg/dL and from 125 mg/dL to 250 mg/dL and by 86 MHz when increasing glucose concentration
from 250 mg/dL to 500 mg/dL. The number of sample points is relatively low, however and further
experimental investigations seem advisable.

In [33], a serpentine-shaped antenna with passive coupling was proposed, designed to operate at
4.8 GHz in air. The antenna was envisioned to be placed on the finger tip in the end application. The
proposed structure was simulated with a finger model and measured in vivo, with the S11 response tracked
(with no monitoring of glucose). It was observed that the antenna had a very narrow bandwidth when
operating in air; however, when the antenna was loaded with the finger (finger model), it was observed
that the bandwidth increased (a result of the loss of the loading tissues) and it becomes impedance-matched
(at the 10 dB return loss level) between 2.8 GHz and 5.5 GHz (or roughly 2.6–3.6 GHz for the simulation).
This suggests that the proposed sensor essentially has a wideband behaviour. Since the human body is
lossy, the permittivity and conductivity affects the characteristics of the antenna. To quantify the response
of the antenna to the change in glucose levels, it was simulated with phantoms representing glucose
solutions using de-ionized water. The glucose concentration changed from 0 mg/dL to 2000 mg/dL,
resulting in a maximum shift in resonant frequency of 32 MHz. Simulations using a four-layer tissue
model of the finger were also performed. The resonance peak shifted from 3.288 GHz to 3.292 GHz when
the glucose levels were increased from 0 mg/dL to 2000 mg/dL, a shift of only 4 MHz, demonstrating
again the sensitivity challenge.

One other aspect was discussed, namely the effect of the geometry on the electric field, by comparing
the proposed serpentine geometry with the patch resonator from [43]. The serpentine resonator was seen
to have a higher sensitivity to glucose variation, which is in accord with the idea that geometries with
narrow-band responses give more sensitivity. Another way of understanding this is in the effect on the
electric field, with the serpentine structure having both greater field intensity and greater field localisation
in the central portion of the resonator, when compared with the patch structure. This illustrates another
trade-off in the design process: compact geometries tend to achieve greater field intensities in smaller
cross-sections, implying greater penetration depths and, potentially, improved sensitivity to changes
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in effective permittivity. The proviso is that smaller cross-sections also imply less averaging across the
monitored volume, implying sensitivity to sensor location (and subject variability) could also increases.
(SAR limits obviously still apply, as a constraint on the field intensity.) This study was recently extended
in [62] to include the spiral resonator from [30,63] (see Section 4.2), with similar results. The spiral was
deemed to be more sensitive than the patch structure and less sensitive than the serpentine structure
(again in accord with the Q-factors), with the patch structure achieving greater field intensities. The greater
uniformity of electric field for the spiral (compared to the patch) was seen as a contributing factor in the
greater sensitivity, as well as in improving measurement uncertainties [62].

4.2. Resonators

An open-ended spiral resonator was presented in [63]. The resonator is basically a spiral-shaped
microstrip transmission line and has two ports, with two straight microstrip lines capacitively coupled to
the spiral line. The spiral shape was chosen to minimize contact orientation errors, due to the symmetry of
the structure and to form a standing wave. The amplitude of the standing wave was tracked by measuring
the amplitude of S21. The resonator was modified to accommodate typical human thumbs and tested with
human subjects. The tests were performed with healthy subjects using an informal oral glucose tolerance
test, where the subjects were given a soda drink and the sensor response tracked over time, while the
blood glucose levels were tracked with a commercial glucometer. A good agreement was reported in this
study.

Following the reported study in [63], an open-ended spiral resonator with direct coupling was
designed and tested with flour-and-water phantoms with varying permittivities in [30], as described
in Section 2.2. The goal in this study was to retrieve the dielectric properties from the response of the
resonator for a single frequency. This is performed by using polynomials that related the S11 response
to the permittivity of the material placed on the resonator. The dielectric properties of the material were
retrieved around 600 MHz.

A patch resonator operating in the 2.45 GHz ISM Band (when placed on a four-layered
tissue-mimicking phantom) was designed and tested in [26]. The input impedance of the resonator
was tracked at the operating frequency to quantify the blood glucose change. The blood layer of the
four-layered phantom was changed, with the blood-mimicking materials having different concentrations
of dextrose. It was concluded that the change in the real part of the input impedance was approximately
0.04% per unit change in glucose concentration of the blood-mimicking material.

Printed resonators operating at three different frequencies were proposed in [55], with dielectric
microlitre cups to hold the liquid samples. The resonators were tested with deionized water and glucose
solutions, with concentrations ranging from 0% to 10%. The response of the resonator to glucose
concentration change was quantified by tracking the Q factor of the resonator. The maximum change in
Q-factor (comparing 10% to 0%) was less than seven units, but the response was fairly linear and good
agreement between simulation and measurement was observed. This reported study is not suitable for
measuring the blood glucose levels continuously, however.

In [51], a ring resonator sensor was proposed. As noted before (Section 3.3), a reference resonator
is used to calibrate the sensor for temperature changes in the sensing environment. An interference test
system was proposed and the fabricated resonator tested with water solutions to quantify the change
in sensor response, both with respect to glucose change and with respect to change of other vitamins
and sugars present in the blood. It was concluded that the glucose levels caused greater changes in the
resonant frequency and bandwidth of the resonator than other factors, such as ascorbic acid and maltose.

A resonator designed by combining a spiral inductor and interdigital capacitor was introduced in [64].
The resonator was printed on a GaAs substrate and operated at 5.8 GHz in air. The resonator was tested
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with glucose–water solutions by dropping the solution on the resonator. The experiments were also
repeated with the blood plasma (denoted as human serum/human sera) with varying glucose levels.
When the blood plasma was placed on the resonator, the resonant frequency shifted to 0.642 GHz; the
resonant frequency then increased with the increase in the glucose levels. A sensitivity of 199 MHz per
mg/mL change in glucose levels of the sample was reported.

In [53], a cross-coupled stepped-impedance resonator was designed and printed on a GaAs substrate.
The resonator operated at 6.53 GHz in air: when loaded with the lossy material (that is, deionized-water
and glucose solutions and blood plasma, denoted as human sera in the reported work) with varying
glucose levels, the resonance frequency shifted to 3.4 GHz. The sample was dropped on the resonator
and the relative permittivity of the samples retrieved from the resonator response. A change in the shunt
capacitance of the resonator corresponds to an effective permittivity change and thus, the change in glucose
levels. The S11 response of the resonator was tracked; the resonance peak shifted 978.7 MHz per mg/mL
change in glucose levels of the sample.

4.3. Discussion

The majority of the work reported in the literature has used ‘standard’ geometries (e.g., ring resonators,
patch resonators, strip/line resonators, spiral resonators). The geometries with greater Q-factors (more
narrow-band responses) show greater sensitivities to glucose changes, as suggested throughout this
paper. Resonators with spirals and interdigitated capacitors may have the greater sensitivities [33,62].
There seems to be an opportunity to further investigate the resonator geometries most suited for the
glucose-monitoring application. There is also no real discussion of electrode geometries for systems
using impedance spectroscopy for glucose monitoring in the engineering literature, although the body of
literature for monitoring bio-electric signals (such as from the heart and muscles) may be of use. Some
allusion to this issue is also made in patent documents and publications by Biovotion, with minimal or no
detail or justification; Biovotion are discussed below in Section 5.1.

One aspect not widely considered or explained in any depth is the effect of resonator geometry on the
field distribution around the resonator and into the tissues, the notable exceptions being [33,62]. (Again,
some allusion to this issue is also made in patent documents and publications by Biovotion, with minimal
or no detail or justification.) This also stands out as a research opportunity.

Although some of the sensors described have undergone some optimisation (e.g., for the intended
body location, such as the finger [41,62,63]), much of the reported work has not considered this aspect. This
is a gap in the literature, in the opinion of the authors, indicating a research opportunity. This is particularly
true for sensors intended for wearable continuous glucose-monitoring systems. Here, there should be
some consideration for the form factor of the final device. For wearable systems, there seem to be two
main possibilities: a device strapped to the arm (e.g., a smart watch, or a specific device, as in [65,66]) or a
‘smart plaster’ for use on the torso, (upper) arm or (upper) leg. Such a smart plaster could offer greater
surface area for accommodating larger resonator structures, but the issue of powering the sensor becomes
more complicated.

5. Addressing the Selectivity Challenge

Thus far, we have described (in Section 2) the ability to detect changes in glucose level via dielectric
spectroscopy and emphasised the challenge of sensitivity. Although there is possibly some scope for
improvements in recipes for tissue-mimicking materials, we believe the sensitivity issue has been clearly
demonstrated in the literature and that future research must have a greater focus on addressing the
sensitivity and selectivity challenges. We further suggest that a multi-band approach seems preferable to
single narrow or wide band sensors (Section 3). The justification for this is that narrow band resonators
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will give greater sensitivity to the observed small changes in effective permittivity than wide-band sensors,
but insufficient selectivity against other factors affecting the relative effective permittivity. This limitation
would be mitigated, in part, by multiple narrow-band resonances. The research (not to say, commercial)
challenge then becomes the selection of the resonant frequencies and realisation of the resonator, which
are affected partly by the form-factor and location of the wearable device on the body (Section 4). The
use of multiple frequencies is unlikely to be sufficient, however, even with improved electromagnetic
models for extracting the permittivity (e.g., compensating for small air-gaps). Additional sensors are
almost certainly required to compensate for the ‘external factors’ and substantial (large-scale) studies
required to understand the ‘internal factors’ (Section 2.4). In the following, we briefly review some existing
approaches to multi-parameter sensing, before discussing how the remaining limitations may be overcome
and then describing how this might work within an integrated diabetes management system, through
comparison with studies conducted using commercial glucose monitors.

5.1. Multi-Parameter Sensing

The monitoring of various physiological signals is of broad interest, with applications in healthcare,
sports (elite/professional and amateur), security and space [67,68]. Indeed, the growth of fitness
trackers and smart watches attest to the growing trend to monitor personal activity in order to meet
personal ‘well-ness’ goals. The value of monitoring such factors for use in glucose monitoring has
also been recognised in the literature. For example, Choi et al. account for the effect of temperature via
a dual-resonator approach [51,52], while the GlucoWise system “includes two thermometers (one to measure the
sample or skin temperature and one to monitor the ambient air temperature) and a solid-state three-axis accelerometer
to detect movement” (Saha et al., 2017) [59]. This system of additional sensors is not yet used to automatically
correct the data, however, which would be required for realistic use.

One of the more developed systems in the literature is the ‘Multi-Sensor’ by Biovotion [65,66,69–73].
This has a long history, with predecessor companies being Pendragon and Solianis (some of the principals
for Biovotion were involved in one or both of these predecessors) [10] and patent applications dating back
to 2001. The elements of the Multi-Sensor are [65,66]

• dielectric property monitoring using resonators optimised for three frequency ranges:

– 1–200 kHz, to ‘monitor sudomotor activity’ [65] (that is, sweat monitoring);
– 0.1–100 MHz, to ‘monitor the effect of glucose variations’ (using three different resonators at the

low, high and central parts of the band) [65];
– 1 GHz and 2 GHz (separate electrodes), to ‘monitor water migration’ [65];

• two temperature sensors;
• one humidity sensor;
• an accelerometer (it is unclear how many axes);
• optical ‘diffuse reflectance’ sensors, to ‘monitor hemodynamic changes’ [65].

A sketch of the layout of the bottom of a printed circuit board used to form the various resonators is
shown in Figure 5, based on drawing of a recent iteration of the Multi-Sensor from a patent document [74].
A number of different geometries have been used, including ring-type, line-type and inter-digitated
capacitor ‘electrodes’ (this term is used to describe the Multi-Sensor resonators in the various publications
and reflects the impedance spectroscopy perspective).
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Figure 5. A sketch of the Biovotion Multi-Sensor arm-band, showing the various electromagnetic sensors
(some of the sensors described in the text, including the humidity sensor and accelerometer, are within
the housing and not visible in this image), based on a drawing from a recent patent document [74]:
(a) inter-digital electrode operating in 1–20 kHz band as a sweat sensor; (b) ‘short’, (c) middle and (d) ‘long’
MHz-band electrodes; (e) ‘short’ and (f) ‘long’ GHz electrodes; (g) optical reflection sensors consisting of
light sources and detectors. (Not to scale; geometries have been simplified) [65,74].

The Multi-Sensor is designed to be worn on the upper arm and has daily calibration
requirements [65,66]. It is relatively bulky and not necessarily suited for continuous monitoring on
some practical and aesthetic criteria, but it can be argued that the important task is to develop
a fully functioning and reliable non-invasive monitoring device, with such considerations left as future
refinements. In the most recent study, twenty Type-1 patients used the system for a total of 1072 study days
in home and clinical settings. Training was required to ensure the patients could place the Multi-Sensor on
the arm comfortably. One of the objectives of the study was to obtain a larger dataset, over a longer period,
than currently available, to guide further refinements and this is an objective that should be considered by
other researchers as well.

The results of the study were evaluated using the mean absolute relative deviation (MARD)
and the Clarke Error Grid. As expected, there were subject/device-specific variations and a lower
accuracy in uncontrolled (home) compared to controlled (clinical) settings. An overall MARD of
35.4 mg/dL was reported, which is still higher than the current state-of-the-art minimally invasive
devices (using biosensors); furthermore, although 86.9% of points fell in the A and B zones of the Clarke
Error Grid, 0.6% fell in the C zone, 12.1% in the D zone and 0.4% in the E zone. The algorithm used to
modify the raw impedance spectroscopy data based on the other sensor inputs is not disclosed in detail,
although the improvements in mean absolute deviation (MAD) are discussed. Previous papers suggest the
use of principal component analysis and linear regression models (e.g., [73,75]), suggesting one possible
source of error is an inadequate sample population. Thus, the potential to detect changes in glucose has
again been clearly demonstrated, but not yet in a system that is clinically viable.
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5.2. Case Study

In this case study illustrating the above issues, we present previously unpublished results from
a small-scale study with human subjects conducted by the authors in 2014, investigating the effect of
pressure on the response of a patch resonator placed on the wrist. As described above, the patch resonator
was previously tested with tissue-mimicking phantoms to verify the proper functioning [26]. The ultimate
test domain, to understand the true performance of the structure, requires measurements with human
subjects, implying carefully designed experiments to minimize the effects of other changes in the body to
the resonator response. One factor that is known to affect the resonator response from earlier observations
is the applied force. This effect is due to the change in superstrate geometry and in return effective
permittivity changes when the tissue is pressed, squeezed or stretched. Thus, there is a need to calibrate
the response of the resonator in order to gather the data relating to the permittivity change due to the
glucose levels. However, this approach requires both a multiple sensor system and a smart algorithm to
detect the relevant data. As a necessary preliminary step towards this objective, this study conducted
initial human experiments performed under controlled conditions. We will use the terms ‘force’ and
‘pressure’ somewhat interchangeably below, possible as the area of the sensor used is fixed.

A measurement platform monitoring both the applied force and the resonator response was built
by embedding the patch resonator inside a wooden block and placing two commercial force sensors on
the two ends of the resonator. Measurements were performed on one male and four female subjects. The
subjects were asked to fast overnight; this was deemed necessary so that the blood glucose levels of the
subjects were at the minimum level before the experiment. The effect of the applied force to the resonator
response was measured for the different subjects while the blood glucose levels were at a minimum, to
establish a baseline and understand the potential measurement uncertainties due to changes in pressure.
For this preliminary study, however, the focus was on the development of a robust and reliable test
procedure for use in clinical environments; hence, no direct blood glucose measurements were made at
this stage.

The patch resonator presented in [26] was mounted on a wooden test bench with the dimensions
of 140.5 × 360 × 18 mm3. The dielectric properties of the wooden bench were measured at the design
frequency of 2.45 GHz, giving εr = 1.8 and tan(δ) = 0.15. Two force sensors were taped at both end
of the resonator, leaving 2 mm space between the resonator and the force sensors. The force sensors
were identical and the length, width and thicknesses of the sensors were 100 mm, 14 mm and 0.203 mm,
respectively. Both of the force sensors used in this study were A201 type FlexiForceTM commercial thin-film
type sensors [76]. The transparent cover of the commercial sensors was polyester (Mylar) with dielectric
properties of εr = 3.2 and tan(δ) = 0.005. The experimental configuration of the test bench is shown in
Figure 6. The simulation configuration is identical to the experimental set-up. Note that the force sensors
were considered as homogeneous Mylar materials during the simulations.

The commercial force sensors can measure applied forces between 0 N and 440 N. The conditioning
circuit, used for each force sensor, is shown in Figure 7. The conditioning circuits were built on a breadboard
and output voltage of the force sensors were measured with multimeters. The variable resistances were
fixed to 203 kΩ.
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(a) (b)

Figure 6. Configuration of the test bench: (a) the resonator and force sensors; (b) wooden test bench.

Figure 7. Conditioning circuit for thin-film force sensors [76].

The sensors were calibrated to express the applied force, as given by the output voltage, in terms of
weight. Calibration was performed by placing a disk of known mass onto the sensing area of the force
sensors to concentrate the weight only on the sensing area of the sensors; precise masses were then placed
on top of the disk and the output voltages of the sensors measured with multimeters. The calibration
graph for the sensor are shown in Figure 8a, where the plotted points are the median values of two sets of
data taken from the first and second sensors. The coefficients for the power fitting function is a = 0.085 and
b = 0.678. The R-square value is 0.965, quantifying the goodness of the fitting. Residual plots are given in
Figure 8b.

Force measurements were performed with one male and four female healthy subjects. The Body
Mass Index (BMI) of the each subject is given in Table 5. The age of the subjects were ranging from
25 to 40. The blood glucose levels of the subjects were expected to be constant and low (around 72 mg/dL,
or 4–5 mmol/L), as the subjects were fasting overnight before the experiment. The subjects were asked to
press the inner part of their right arms to the bench where the resonator and the sensors were mounted.
The subjects’ arms were also marked with arm bands, to ensure the same tissue block on each subject
was measured and to ensure the placement of the arm matched with the previous measurements for each
subject, maximising the repeatability.
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Table 5. Body mass index (BMI) of the subjects.

Subject BMI Subject BMI

Female1 22.1 Female4 21.9
Female2 25.0 Male1 22.1
Female3 22.5
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Figure 8. Calibration measurements: (a) the power fitting to the calibration values; (b) residuals of the
power fitting.

During the force experiments, the subjects were asked to apply the same amount of force to both
force sensors on either side the resonator. The experimenter recorded the resonator response when the
same level of force was reached on both sensors (implying an equivalent force was applied evenly across
the resonator). For each force level, the resonator response was recorded five times. The subjects applied
four different levels of force as determined by the force sensor output voltages, from 0.5 V to 2 V in 0.5 V
increments, with force determined from the calibration curve in Figure 8a when required (the results given
below are expressed in terms of the directly measured sensor output voltages). The median of the collected
response was taken for each force level for each subject, shown in Figure 9. In Figure 9, the red curve,
expressed by y = axb + c where a = 0.12, b = −1.13, c = 2.49, shows the median of all measurements.
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The median fitting indicates that the superstrate permittivity increases with the increase in applied
force. When the applied force is very low, for example at 0.5 V output, an air gap might be introduced
between the tissue and the resonator, minimising the effect of the tissue superstrate on the resonator output
(note that the resonance shift has a 5.3% decrease between 0.5 V and 1 V outputs). As the applied force
increased, the magnitude of the resulting resonance shift decreases. The decrease in resonance is 1.7% and
0.8% for an increase in applied force from 1 V to 1.5 V and from 1.5 V to 2 V, respectively. This could be due
to the tissue displacement: it is hypothesized that the fat tissue is displaced with the increase in applied
force (also suggested recently in the literature [42,62]). This experiment was important to assess the effect
of the applied force to the resonator. From the change observed in Figure 9, it is clear that the applied
force has a significant effect on the resonator response; thus, it should be kept constant to differentiate the
effect of the glucose change to the resonator response, ideally. In real-world scenarios, appropriate models
should be utilised to remove the effect of pressure changes. Note that during the experiments subjects
were not be able to apply greater forces consistently (the sensor output can reach up to 5 V).
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Figure 9. Change in sensor S11 response with the applied force voltage output.

After the force measurements were completed, the subjects were asked which force level was most
comfortable. The subjects reported that the 1 V output was the most comfortable force level. The standard
deviation from the mean (σ) on each applied force level among the five measurement was also calculated
and are shown in Table 6; the 1 V applied force level shows least deviation. Although obviously only
a small and unrepresentative sample, this type of information could be useful in the design stage for
resonators and effective permittivity models, by looking for deviations from the target pressure and having
models for changes in tissue properties (such as from compression) and air gaps.
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Table 6. Standard deviation from the mean (σ) on each applied force level.

Force Female1 Female2 Female3 Female4 Male1

(V) σ (MHz) σ (MHz) σ (MHz) σ (MHz) σ (MHz)

0.5 25.954 9.5513 24.954 13.257 29.681
1 4.2943 4.6416 8.5015 1.1808 12.343

1.5 17.162 4.7459 25.373 12.159 10.428
2 6.7883 2.4348 2.7803 0.88977 19.459

5.3. Discussion

We have reached a point in this review where we believe we have demonstrated that the detection of
glucose via dielectric spectroscopy requires highly sensitive systems that can account for a large number of
external factors (such as temperature variability, the effect of pressure and the effect of sweat) to accurately
determine the effective permittivity of glucose. This is independent of the frequency (or frequencies)
used for the spectroscopic measurement, the optimum choice of which is far from clear. The fact that
systems accounting for one or more of these external factors (e.g., [51,52,65,66]) still fall short of the
required accuracy for acceptance by clinicians and regulatory bodies demonstrate that it is the biological
factors—what we have called ‘internal factors’, plus issues of variation between subjects—that are the
main hurdle (although we do not rule out the possibility for improvements in compensation of external
factors, we do not believe these to be the primary limitation at this stage). Unfortunately, we do not believe
that some clever design of wearable resonator operating at some ‘special’ frequency will overcome these
limitations; hence, microwave engineers and other electromagnetic experts will not be able to address this
challenge alone. We reiterate we are considering wearable microwave sensors for non-invasive monitoring;
we are not considering implants, or whether THz sensors near the molecular resonance of glucose may
be able to operate on the skin successfully. Even for these cases, of course, we would expect strong,
multi-disciplinary teams to be necessary; it is possible, however, that the problems of sensitivity and
selectivity would be less severe in these scenarios.

One possible research strategy to find answers to the above issues is as follows: in addition to
continued improvements in capturing good permittivity data and isolating ‘unexplained’ variations from
variations explained by other sensor outputs, more work is required to look at how the tissue permittivity
varies with changes in other substances in tissues, both in vitro (including the use of phantoms) and in
vivo. This will help build up a mass of knowledge that can be used to design better regression models,
or even use in machine-learning and artificial intelligence techniques (e.g., fuzzy logic classifiers, neural
networks and decision trees [8]), to build predictive systems. Real-time tracking is obviously important,
but it is predictive capability that will save lives by warning of potential hypo- and hyperglycaemic
events [10]—even if the action by (initial versions of) the system is to warn the user to confirm blood
glucose level via a blood sample. Recent improvements in the use of technology in medical studies—such
as the use of Apple’s HealthKit, CareKit and ResearchKit (e.g., [77,78]) to capture data, the improvements
in ambulatory monitoring devices in comfort and form-factor, the use of commercial wearables to provide
activity and other data (although the accuracy of such systems has been questioned, they appear adequate,
with the possible exception of low-intensity activities [79–81])—should all be leveraged to help achieve the
required dataset. Commercially-available minimally invasive systems from the likes of Abbott, Dexcom
and Medtronic now communicate with smart phones and to the cloud, allowing diabetics (as well others,
such as spouses and healthcare professionals) to receive alerts for high and low glucose excursions,
improving patient outcomes and peace-of-mind. A similar approach, potentially capturing other data,
could be used to collect the necessary dataset across a wider sample population (e.g., [82–84]). Personalised
models have been shown to have greater predictive power than global models (e.g., [73]), implying a period

222



Diagnostics 2019, 9, 6

of calibration or learning by the system to realise the full potential. This would be in conjunction with
traditional monitoring by blood samples and transition the system from the (acceptable but less accurate)
global model to the personalised model.

6. Conclusions

In this review article, we have sought to convey both the potential and the challenges associated with
measuring blood glucose levels non-invasively via microwave dielectric spectroscopy. We have shown
(qualitatively, via the review of the literature and quantitatively, by applying realistic glucose levels to
models from the literature) how changes in glucose levels produce only small changes in the dielectric
properties, even under controlled conditions. This implies a highly sensitive sensor will be required
to detect the small changes, which in turn implies low-noise electronics and a ‘high-Q’ (narrow-band)
resonator to reduce the impact of noise and maintain the system dynamic range.

We have further discussed the issue of selectivity: the measured dielectric properties are the
‘effective’ properties of a medium equivalent to an average of the constituent tissues, each of which
has biological process that affect the individual contributions. These ‘internal factors’ are temperature-
and frequency-dependent and are coupled with ‘external factors’ that include such things as external
temperature, activity level and even the fit of the clothes worn. A accurate method for retrieving the
effective permittivity of the tissue(s) from the resonator response was briefly discussed (Section 2), but this
is independent from relating the effective permittivity to the blood glucose level. We have described a
number of ‘multi-parameter’ sensing strategies designed to mitigate or remove the effect of the ‘external
factors’ and discussed the challenges of dealing with the ‘internal factors’.

Given these challenges, it may seem that dielectric spectroscopy is unsuitable for the task at hand.
Indeed, with the decision to suspend activities into a smart contact lens for glucose monitoring by Verily
(part of Alphabet, owner of Google) [85], the dream of non-invasive monitoring may seem unachievable
(although the early work by Noviosense, which also works with tears and notably uses an enzyme-based
approach to achieve selectivity, offers some hope [9,86]). Rather than concede this, we have suggested
avenues for further exploration that may enable true non-invasive, continuous monitoring of blood glucose
levels to be achieved. In particular, we have suggested that a number of frequencies must be monitored
and combined with data from other sensors in a suitable fashion.

Admittedly, there may be some scepticism [10] that adding additional sensors will overcome the
fundamental issues of the low sensitivity of the effective dielectric to changes in blood glucose level and
the sensitivity of the dielectric properties to other factors and this cannot be dismissed out-of-hand. On the
other hand, it is certainly true that signal processing techniques can be used to ‘clean up’ a received message
or radar return in order to extract low-amplitude variations in the presence of large-magnitude variations,
given suitable measurements and models. Furthermore, there are now methods for identifying otherwise
unrecognisable patterns in data that could help tease out the relationship between blood glucose level and
effective permittivity, given a large enough dataset. As the availability of computational resources and
machine-learning techniques is far greater now than even five years ago, as are new ways of collecting the
data required from a suitably large sample population at a reasonable cost (e.g., using Apple’s ResearchKit,
coupled with smart watches that can collect other data, including heart rate and activity level). We suggest
that there is still scope for progress, but believe that it will ultimately require even greater cross-disciplinary
collaboration than seen to date. It has been suggested [10] that, for non-invasive continuous monitoring of
blood glucose to be realised,

“. . . a reasonable chance at success requires in-depth knowledge of all the
following disciplines:
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• The engineering disciplines related to [the] primary technology, e.g., optics, electronics,
software, mechanical engineering, etc.

• Biochemistry, especially knowledge of the glucose molecule and its relation to the chosen
field of technology.

• Physiology, especially the distribution of glucose in fluids and tissue.
• Metabolism, especially glucose sources and sinks.
• Diabetes, especially aspects of the disease that will affect [the primary] technology—the

more understanding of endocrinology, the better.
• The history of non-invasive investigations, especially in [the primary] technology

field—what didn’t work and why.
• The regulatory requirements for a diagnostic device and the evolving structure of the

market for existing devices.” (Smith, 2018 [10])

We also suggest the engineering expertise required must include specialists in signal processing and
computational intelligence, as well as microwave and electromagnetics specialists, medical professionals
and patients. Attention should focus on the design of compact, highly sensitive resonators (preferably
at multiple frequencies, although the selection of these frequencies remains an open research question),
coupled with methods of removing the effect of the various external factors from the measured signal
and then analysing the signal in the context of a sufficiently large dataset to extract reliable glucose data
while accounting for subject-specific variations and the complex internal factors also affecting the effective
permittivity.
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