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Preface

Eye-tracking has matured from a laboratory instrument into a versatile platform for cognitive

science, engineering, and applied AI. In curating this reprint, our aim was to present a coherent

snapshot of current capabilities and open questions. The chapters span algorithmic innovation,

validation methods, and use cases in transportation, reading and learning, and ophthalmic assessment.

We especially valued studies conducted in realistic settings, as these reveal the constraints that

shape robust measurement and interpretation. We hope this collection serves both newcomers and

experienced readers as a practical entry point into methods, datasets, and evaluation practices that

will inform the next generation of human-centred systems.

Zbigniew Gomolka, Damian Kordos, Ewa Dudek-Dyduch, and Bogusław Twaróg

Guest Editors
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Editorial

New Perspectives on Eye-Tracking: Theory, Methods,
and Applications

Zbigniew Gomolka 1,*, Damian Kordos 2, Ewa Dudek-Dyduch 3 and Boguslaw Twarog 1

1 College of Natural Sciences, University of Rzeszow, Pigonia St. 1, 35-959 Rzeszow, Poland; btwarog@ur.edu.pl
2 The Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow,

Poland; d.kordos@prz.edu.pl
3 Faculty of Electrical Engineering, Automatics, Computer Science, and Biomedical Engineering, AGH

University of Science and Technology in Krakow, 30-059 Krakow, Poland; edd@agh.edu.pl
* Correspondence: zgomolka@ur.edu.pl

1. Introduction

Eye-tracking technology has evolved into a cornerstone of modern behavioral and cog-
nitive research, providing precise insight into how individuals perceive, interpret, and inter-
act with their visual environments. Rapid progress in computer vision, artificial intelligence,
and sensor miniaturization has transformed traditional gaze-tracking systems into robust
analytical platforms capable of real-time monitoring and multimodal integration [1–4].
Recent transformer-based and semi-supervised architectures have markedly improved
the accuracy of gaze-estimation pipelines [1,5,6], while deep learning has enabled joint
modeling of eye landmarks, states, and visual context [2,6,7]. These developments expand
the applicability of eye-tracking to a wide spectrum of domains, from clinical diagnos-
tics [7–11] and neuroergonomics [12,13] to transportation safety [14–18] and immersive
virtual environments [4,19–22].

In the biomedical sphere, gaze-pattern analysis and oculomotor metrics have be-
come valuable tools for detecting visual and cognitive disorders. Studies have demon-
strated the potential of fixation-based modeling for the early detection of dyslexia [8,9],
schizophrenia [10], and diabetic retinopathy [23]. Deep-learning classifiers and recurrent
neural networks increasingly interpret complex eye-movement data for cognitive screen-
ing [6,8,11,23]. Simultaneously, advances in neuro-optometric research have connected
pupillometric dynamics with cortical plasticity and perceptual dominance [24,25], offering
promising biomarkers for neurological adaptation and rehabilitation. Similar bio-signal fu-
sion approaches, such as hybrid electrooculogram networks [7,11], reveal that eye-tracking
can complement physiological sensing in healthcare monitoring.

In applied psychology and ergonomics, eye-tracking serves as a direct window into
attention, situational awareness, and decision-making [12–18]. Studies focusing on pedes-
trians [14], drivers [15–18], and operators in complex human–machine interfaces reveal that
gaze behavior encodes both task-load distribution and hazard anticipation. Combining
gaze metrics with EEG or vehicle telemetry yields comprehensive measures of cognitive
load and safety risk [12,13,15,17]. These insights have inspired new approaches to automa-
tion design, intelligent driver-assistance systems, and augmented interfaces that respond
dynamically to user intent [19–22].

Parallel progress has emerged in virtual- and augmented-reality environments, where
gaze data enrich interactivity and immersion [4,19–22,26]. Applications range from retail
analytics and avatar-mediated communication [19,27] to clinical training and digital pathol-
ogy [7,28]. The fusion of real-time gaze tracking with spatial computing enables adaptive

Appl. Sci. 2025, 15, 11463 https://doi.org/10.3390/app152111463
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rendering, attention-aware simulation, and context-sensitive learning systems [21,22,26].
As vision science, machine learning, and interface design converge, eye-tracking is tran-
sitioning from a diagnostic and observational tool to an active component of intelligent
perception systems.

This Special Issue of Applied Sciences, entitled “Eye-Tracking Technologies: Theory,
Methods and Applications,” was conceived to reflect this interdisciplinary momentum.
It brings together contributions addressing both the methodological foundations and the
practical implementations of contemporary eye-tracking research. The articles encompass
computational modeling of gaze patterns, multimodal integration in human–machine
systems, clinical assessment using oculomotor data, and application-driven innovations
in immersive and assistive technologies. Collectively, these studies highlight the dual
role of eye-tracking as a research instrument and as a core enabler of next-generation
adaptive interfaces.

This Special Issue gathers contributions published between 2022 and 2024 from re-
search groups across Europe, Asia, and the Americas. The papers span core methodological
advances and diverse application domains. On the methodological side, this Special Issue
includes studies on stimulus-dependent oculomotor responses, remote and video-based
gaze detection for oculomotor assessment, event-camera imaging for robust pupil tracking,
and machine-learning pipelines tailored to eye-movement analysis. On the application side,
contributions address HMIs and operator monitoring, transportation (driver attention and
distraction, situational awareness), aeronautics (documentation use and maintenance proce-
dures), visual ergonomics and lens design, reading and educational assessment in children,
and clinical or pre-clinical screening (e.g., early indicators relevant to learning difficul-
ties). Collectively, they demonstrate how eye-movement data can inform design decisions,
support objective evaluation, and unlock new forms of human-centered automation.

In curating this Special Issue, our aims were to (i) showcase instrumentation and
signal-processing solutions that improve robustness and reproducibility in real-world
contexts; (ii) highlight analytics and machine learning methods that transform raw gaze
signals into actionable metrics; and (iii) present application case studies that connect those
metrics to outcomes in safety, training, usability, and health. Across the contributions,
common themes emerge: the need for principled handling of missing or noisy data; careful
task and stimulus design to elicit diagnostic oculomotor patterns; integration of gaze with
complementary modalities; and transparent evaluation protocols that enable cross-study
comparison and deployment.

The remainder of this editorial provides a concise overview of each paper, emphasizing
methodological innovations, datasets and experimental designs, and the implications of
the reported findings for future research and practice. We conclude by outlining open
challenges and opportunities for translating eye-tracking advances into reliable, ethical,
and scalable solutions across domains.

2. An Overview of Published Articles

In the paper by Gomolka et al. (contribution 1), the authors investigate how deep neu-
ral networks can enhance the recording and interpretation of operator attention within ad-
vanced human–machine interfaces. Combining high-resolution eye-tracking with artificial-
intelligence-based pattern recognition, they model cognitive states under varying workload
conditions. Through controlled experiments, the team demonstrates that neural represen-
tations can capture subtle variations in fixation duration, saccadic dynamics, and visual
focus stability corresponding to fluctuations in attention and fatigue. This integration
of gaze analytics and deep learning reflects wider advances in real-time cognitive-state
estimation [1–6,12,13]. The authors argue that such adaptive systems will play a key
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role in next-generation industrial automation, safety monitoring, and decision-support
environments-domains in which intelligent gaze-based feedback can significantly improve
operator performance and reliability [12,13,15,16].

The manuscript by Essig et al. (contribution 2) explores how optokinetic nystagmus
(OKN) parameters depend on specific stimulus properties. Using a precision eye-tracking
setup, the authors systematically vary contrast, motion direction, and texture to analyze
corresponding changes in OKN amplitude, frequency, and latency. Their results reveal
consistent modulation of reflexive eye movements by the physical structure of visual input,
complementing recent studies on predictive oculomotor control and perceptual coher-
ence [4,24,25]. The work contributes to both theoretical neuroscience and applied vision
technology by providing methodological guidance for designing visual environments that
elicit reliable involuntary eye responses-important for medical diagnostics and calibration
protocols in oculomotor research.

In the study by Madlenak et al. (contribution 3), eye-tracking methods were applied
to analyze the visual behavior of train drivers during real driving scenarios. The authors
measured fixation points, saccade paths, and gaze dispersion to assess how attention is
distributed among track signals, control elements, and the external environment. Their
findings confirm that visual focus is predominantly directed toward safety-critical areas
such as signals and speed indicators, while peripheral elements attract limited attention
results consistent with earlier studies on operator attention and visual load dynamics in
transport systems [29–32]. The discussion further considers how workload, environmen-
tal complexity, and route familiarity influence visual scanning strategies, aligning with
cognitive-ergonomic models of driver monitoring and vigilance [33–35]. Overall, this
contribution underscores the relevance of gaze analytics for enhancing driver training,
cab-interface design, and real-time safety assessment in railway operations.

In the study by Lin et al. (contribution 4), the authors explored how stereoscopic 3D
visual displays influence both ocular activity and motor performance. Using a controlled
laboratory setting, participants were exposed to 2D and 3D stimuli while their saccade
dynamics, fixation durations, and manual-response times were recorded. The results
revealed measurable differences in gaze stability and reaction accuracy when interacting
with 3D content, indicating an increased cognitive and oculomotor load. These findings are
consistent with prior investigations into depth perception, visual fatigue, and sensorimotor
coordination under immersive display conditions [29–32], which emphasize the complex
interplay between binocular disparity and attention control. The authors discuss the
ergonomic implications for prolonged use of 3D technologies in entertainment, education,
and simulation, aligning with broader research on visual comfort optimization and adaptive
display design [33–35]. Overall, the work contributes valuable insights into how advanced
visual media affect human performance and perception.

In the work of Concepcion-Grande et al. (contribution 5), an innovative eye-tracking-
based methodology is presented for assessing visual performance in users of progressive
lens designs. The authors developed a quantitative evaluation framework linking fixation
stability, gaze trajectory, and spatial attention metrics to optical lens parameters. Their con-
trolled experiments demonstrate that the proposed system can identify subtle differences
in visual adaptation and comfort between lens types, offering a reproducible, objective
complement to conventional subjective testing. The study’s approach resonates with recent
advances in visual behavior analytics and adaptive optics modeling [3,9,17,30], which
emphasize the importance of integrating physiological data into optical-product validation.
Moreover, the authors discuss how eye-movement signatures can inform ergonomic lens
design and user-specific calibration [26,33,34], highlighting the broader applicability of
gaze-based diagnostics in visual science research and ophthalmic engineering. This con-
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tribution provides a robust foundation for bridging laboratory-based measurements with
practical applications in the optical wear industry.

In the study by Madlenak et al. (contribution 6), an integrated eye-tracking and
A/B-testing approach is used to examine how outdoor advertising influences the visual
attention and decision-making of car drivers in realistic driving scenarios. The authors
collected gaze-distribution data from drivers exposed to various billboard designs differing
in color, message complexity, and placement, and correlated these findings with recall
and preference measures. The results indicate that vivid colors and concise message
layouts elicit stronger fixation density and higher recall, whereas complex or text-heavy
content tends to divert attention from the roadway. These outcomes correspond with
earlier research on driver distraction and gaze-allocation behavior in dynamic visual
environments [4,10,16,29,32], confirming the sensitivity of ocular metrics to perceptual load.
The paper further discusses implications for traffic-safety policy, advertising ergonomics,
and human-factors modeling [11,26,34], emphasizing the need to balance promotional
effectiveness with attentional safety requirements in transport contexts.

In the study by Kang et al. (contribution 7), a novel event-camera imaging frame-
work is evaluated as an emerging approach for remote pupil-tracking. Event cameras,
or neuromorphic sensors, register only brightness changes at microsecond resolution, en-
abling high-speed, low-power acquisition of dynamic visual information. The authors
demonstrate that this asynchronous imaging principle effectively captures rapid ocular
movements and luminance variations even under variable lighting and head motion, out-
performing conventional frame-based trackers. Their results are consistent with current
advances in high-frequency gaze-sensing architectures and neuromorphic vision model-
ing [3,4,12,17,29], which seek to minimize latency and energy consumption. The paper
highlights the potential of these sensors for automotive, mobile, and extended-reality sys-
tems, where motion blur and environmental variability often degrade optical performance.
By integrating hardware efficiency with temporal precision, this contribution sets a techni-
cal foundation for next-generation real-time human–machine-interface and assistive-vision
applications [11,33,34].

In their research, Kim et al. (contribution 8) analyzed how different reading modal-
ities (such as digital and printed text) and text types influence the reading behavior of
school-aged children through eye-tracking techniques. The study recorded fixation du-
rations, saccade amplitudes, and regression frequencies to compare visual and cognitive
processing across narrative and informational materials. Results revealed that digital
formats elicited shorter fixations and more frequent regressions, indicating differences
in comprehension strategies and visual strain. These findings correspond with prior
work on reading fluency, visual ergonomics, and cognitive adaptation in digital literacy
environments [15,17,25,30,32], highlighting developmental and media-related effects on
reading efficiency. The authors further discuss pedagogical implications, suggesting that
adaptive presentation and font optimization could mitigate ocular fatigue and support
individualized learning. This contribution broadens the application of eye-movement
analysis to educational technology and developmental psychology, offering a data-driven
foundation for improving reading interfaces and cognitive-assessment tools [18,33,35].

In the study by Paris et al. (contribution 9), eye-tracking technology was applied to
investigate how expertise level influences visual information processing during the use of
aircraft maintenance documentation. The authors compared professional engineers and
novice trainees as they performed diagnostic and procedural tasks, analyzing fixation den-
sity, gaze sequences, and information-search efficiency. Results show that experts exhibited
shorter fixations and more structured visual patterns, indicating greater task familiarity and
mental-model integration, whereas novices relied heavily on text scanning and repetitive
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verification. These outcomes align with established findings on expert–novice differences
in cognitive workload, attention control, and domain-specific visual search [13,14,17,30,34],
emphasizing how experience shapes perceptual organization. The paper concludes that
eye-movement metrics can serve as objective indicators of technical proficiency and train-
ing effectiveness [7,18,35], supporting the development of adaptive instruction systems
and digital maintenance interfaces optimized for safety and performance consistency.

In their work, Harpaz et al. (contribution 10) present an advanced video-based gaze-
detection system designed to identify and quantify oculomotor abnormalities through
precise, non-invasive measurement. The method combines high-resolution video acquisi-
tion with feature-tracking algorithms that automatically extract pupil position, velocity, and
microsaccade parameters. The authors validated their approach using datasets from clinical
and control populations, demonstrating high sensitivity in detecting subtle irregularities as-
sociated with neurological or visual motor disorders. The proposed framework aligns with
ongoing developments in computer-vision-based diagnostics and medical eye-movement
analytics [9,12,25,26,32], offering a practical balance between accessibility and diagnostic
accuracy. Beyond its clinical relevance, the system contributes to broader applications in
neuroergonomics, human–machine interaction, and rehabilitation monitoring [11,29,34],
where reliable eye-movement assessment supports real-time evaluation of cognitive and
sensorimotor functions. This study thus reinforces the potential of gaze-tracking technolo-
gies as robust, scalable tools for both research and applied health domains.

In their comprehensive literature review (contribution 11), Arias-Portela et al. analyze
the role of eye-tracking metrics in assessing and enhancing drivers’ situational awareness
within road-safety and human-factors research. The authors systematically synthesize
prior empirical findings on fixation behavior, gaze entropy, and attention distribution
under diverse environmental and cognitive-load conditions. Their review highlights that
gaze-based indicators-such as fixation duration, saccade variability, and visual search
efficiency can serve as reliable proxies for situational awareness, complementing subjective
workload and reaction-time measures. The paper emphasizes methodological challenges
related to dynamic-scene calibration, inter-subject variability, and cross-task comparability,
echoing concerns raised in earlier studies on driver monitoring, vigilance assessment, and
cognitive state estimation [4,8,10,29,32]. By outlining consistent analytical frameworks and
integrating results from both simulator and on-road experiments, the authors establish a
solid reference for future model development in adaptive driver-assistance systems and
intelligent-transport interfaces [11,17,26,34].

In their experimental study, Gugerell et al. (contribution 12) investigated how visu-
ospatial attention is distributed and managed during multitasking using the Multi-Attribute
Task Battery II (MATB-II) framework. Participants performed concurrent flight-control,
system-monitoring, and tracking tasks while their gaze patterns and response accuracy
were analyzed to quantify attentional resource allocation. Results revealed that increased
task complexity and switching frequency significantly altered fixation dwell times and
scan-path organization, confirming that visuospatial attention dynamically adapts to work-
load and task prioritization. These findings correspond with prior work on attention
management, visual cognitive control, and situational awareness in multitasking envi-
ronments [3,8,10,17,29,32], emphasizing the interdependence between gaze dynamics and
performance efficiency. The authors discuss implications for aerospace ergonomics and
cognitive modeling, noting that eye-tracking data can serve as a real-time indicator for
adaptive workload balancing in mission-critical systems. This contribution strengthens the
empirical basis for designing attention-aware operator-support tools [11,26,34] in complex
human–machine environments.
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In their study, Nagy et al. (contribution 13) proposed and evaluated advanced area-of-
interest (AOI) tracking techniques to detect and quantify visual distraction in simulated
driving environments. The authors developed algorithms capable of dynamically seg-
menting gaze data into functional regions, such as road center, mirrors, dashboard, and
peripheral zones, to capture momentary attention shifts and lapses. The method enables
real-time identification of distraction events based on fixation duration and gaze-transition
entropy, offering improved sensitivity over traditional AOI mapping. Results demonstrate
that subtle deviations in visual behavior correlate with delayed response times and de-
creased situational awareness. These findings align with prior research on driver-attention
modeling, visual load assessment, and gaze-based hazard prediction [6,10,16,17,29,32],
highlighting the diagnostic potential of eye-movement analytics for intelligent transport
safety. The study concludes that integrating AOI-driven metrics into driver-monitoring
systems [7,11,26,34] can enhance the early detection of cognitive distraction and support
adaptive vehicle-assistance technologies.

In their contribution, Zeslawska et al. (contribution 14) developed a hybrid diag-
nostic framework for early dyslexia detection that integrates eye-tracking metrics with
long short-term memory (LSTM) neural networks. The approach captures detailed gaze
trajectories and temporal features during children’s reading tasks, transforming them into
sequential data suitable for deep-learning analysis. The trained LSTM model successfully
distinguished dyslexic readers from typically developing peers with high classification ac-
curacy, demonstrating the diagnostic power of combining physiological and computational
methods. These results extend current research in machine-learning-assisted cognitive
assessment and reading analytics [3,4,8,10,29,32], illustrating how data-driven techniques
can complement traditional educational testing. The authors also discuss implications
for early intervention, individualized therapy, and digital screening tools [11,17,26,33,34],
emphasizing that integrating neural modeling with eye-tracking provides a scalable, non-
invasive approach to developmental learning evaluation. This study concludes the col-
lection by showcasing how modern AI- and vision-based analytics converge in applied
cognitive science.

3. Conclusions

This Special Issue, “Eye-Tracking Technologies: Theory, Methods and Applications,”
brings together a rich collection of studies that collectively illustrate the rapid matura-
tion and diversification of modern eye-tracking research. Across the contributions, the
papers reveal a strong convergence between technological innovation, cognitive model-
ing, and applied engineering. The works presented here address a wide spectrum of
topics, ranging from fundamental investigations of visual physiology and oculomotor
behavior to highly practical applications in transportation safety, industrial ergonomics,
clinical diagnostics, and educational assessment. Taken together, they demonstrate that
eye-tracking has evolved from a laboratory instrument for psychological inquiry into a
multidisciplinary framework for understanding and augmenting human performance in
complex environments [1–4,8,12].

Several contributions, including those by Gomolka et al., Kang et al., and Harpaz
et al., show how deep-learning architectures, convolutional, recurrent, or attention-based
can extract meaningful patterns from gaze dynamics in real time. These developments
move eye-tracking beyond descriptive statistics toward predictive and adaptive modeling,
mirroring advances in transformer-based architectures, semi-supervised learning, and neu-
romorphic sensing [1–7,12,13]. The resulting systems can automatically recognize cognitive
states, detect anomalies, and infer task intent. Such capabilities open new possibilities for
human–machine interaction, enabling interfaces that dynamically respond to the user’s
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level of attention, fatigue, or comprehension [12–18]. In parallel, improvements in compu-
tational efficiency and the use of consumer-grade imaging hardware lower the barriers to
deployment, expanding the reach of gaze-based analytics beyond specialized laboratories.

Another recurrent topic concerns visual attention and situational awareness in trans-
port and control domains. Papers by Madlenak et al., Nagy et al., and Arias-Portela et al.
collectively demonstrate the practical value of eye-tracking for monitoring operator perfor-
mance in driving, railway, and pedestrian-safety contexts. These studies show how fixation
sequences, scanning strategies, and AOI distributions correspond to safety-critical behav-
iors [14–18]. The insights gained have direct implications for the design of dashboards,
driver-assistance systems, and training programs, contributing to a deeper understand-
ing of human reliability in dynamic multitasking environments. At the same time, the
systematic review by Arias-Portela et al. underscores the importance of methodological
consistency and multimodal data fusion to ensure comparability and reproducibility across
driver-monitoring studies [12–18].

A third important line of research relates to visual ergonomics, perceptual comfort, and
human factors. The papers by Essig et al., Lin et al., and Concepcion-Grande et al. explore
how specific visual stimulus properties contrast, motion, stereoscopic depth, and calibration
strategy-shape ocular behavior and influence comfort, accuracy, and fatigue. These results
demonstrate that quantitative gaze analysis provides objective, reproducible indicators
of user experience, complementing subjective ratings and self-reports. Such evidence-
based assessment supports innovation in optical design, extended-reality visualization,
and human–machine interfaces [4,19–22,26]. More broadly, it illustrates how eye-tracking
contributes to the ergonomics of perception, offering measurable insight into how humans
adapt to increasingly immersive digital environments.

Equally prominent is the use of eye-tracking in education, training, and clinical di-
agnostics. The studies by Kim et al. and Gomolka et al. highlight how gaze metrics can
identify early indicators of dyslexia and other reading-related difficulties, while Harpaz
et al. and Madlenak et al. demonstrate how oculomotor and behavioral data can mon-
itor cognitive workload, fatigue, and attention dynamics [7–11,13,16]. These examples
show the transformative potential of gaze analytics in supporting individualized learning,
adaptive training, and accessible healthcare diagnostics. The integration of deep-learning
methods with biomedical signal processing [7–9,11,23] points toward a future where eye-
tracking acts as a non-invasive window into neurological and cognitive function, bridging
neuroscience, education, and clinical practice.

Beyond these thematic clusters, several cross-cutting methodological trends emerge.
A clear movement toward real-world data collection using wearable, mobile, or vehicle-
mounted sensors enables authentic behavioral monitoring in ecological contexts [4,14–17].
Simultaneously, the field is transitioning from purely descriptive analyses toward model-
based frameworks capable of linking gaze dynamics to decision processes, workload,
and affective states [12,13,16,21,22,26]. Contributions throughout the issue emphasize
the need for standardized data formats, transparent evaluation protocols, and ethical
handling of biometric information. Addressing these challenges will be vital for ensuring
reproducibility, privacy, and the responsible integration of eye-tracking into daily life.

Looking forward, future eye-tracking systems are expected to benefit from continued
advances in sensor miniaturization, neuromorphic imaging, and multimodal fusion with
physiological and behavioral data streams [3,4,7,11]. These innovations will support new
forms of intelligent, context-aware systems capable of continuous interpretation of user
intent and affect. At the same time, the democratization of hardware and software calls
for heightened attention to data governance, interpretability of machine-learning models,
and safeguards against misuse. Sustained interdisciplinary collaboration among engineers,
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neuroscientists, psychologists, clinicians, and educators remains essential for translating
technological progress into socially beneficial outcomes.

In conclusion, the contributions assembled in this Special Issue demonstrate both
the maturity and vitality of contemporary eye-tracking research. They collectively point
toward a future in which gaze-based sensing forms a cornerstone of human-centered design,
adaptive automation, and cognitive-health assessment. By bridging theoretical insight with
applied innovation, this volume highlights the enduring relevance of eye-tracking as a
means of exploring the interface between perception, cognition, and intelligent technology.
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Abstract: The conceptual framework for assessing the situational awareness (SA) of drivers consists
of three hierarchical levels: perception of the elements of the environment, comprehension of the
elements, and decision-making in the near future. A common challenge in evaluating SA is the
determination of the available subjective and objective techniques and their selection and integration
into methodologies. Among the objective techniques, eye tracking is commonly used, considering
the influence of gaze behavior on driving. This review is presented as an innovative approach
to the subject matter, introducing physiological metrics based on eye tracking and investigating
their application in assessing the SA of drivers. In addition, experiments and methodologies that
revealed patterns at the three levels of SA were identified. For this purpose, databases were searched,
and 38 papers were considered. Articles were clustered according to prevalent themes such as
eye-tracking metrics, eye-tracking devices, experiment design, and the relationship between SA and
eye-tracking. This review summarizes the main metrics and key findings for each article and reveals a
wide relationship between the eye-tracking metrics and SA. The influence of appropriately calibrated
equipment, refined data collection protocols, and adequate selection of the eye-tracking metrics was
examined. Further reviews are needed to systematically collect more evidence.

Keywords: situational awareness; eye tracking; driving; gaze behavior; naturalistic driving; simulation-
based experiments

1. Introduction

Understanding human cognitive capabilities and limitations in work environments
are the essential objectives and main requirements specified by the International Labor
Organization (ILO) for the design and management of work systems [1,2]. Among the cog-
nitive determinants that proficiently influence human behavior are some factors pertaining
to knowledge and strategic considerations. These factors play a pivotal role in realizing
the primary objectives of a given task despite the conflicting demands and attentional
fluctuations that govern the allocation of cognitive resources. The concept of situational
awareness (SA) is relevant in the realm of the aforementioned attentional dynamics [3].

“SA refers to the perception of the elements in the environment within a volume of
time and space, the comprehension of their meaning and the projection of their status
of the near future” [4]. This domain encompasses the examination of diverse cognitive
mechanisms, including the discernment of surroundings, assimilation of information,
and anticipation of choices. From the viewpoint of human factors engineering (HFE), SA
emerges as a focal point within an expansive realm of investigation pertaining to interactive
human–machine systems [5,6].

SA may be assessed through both subjective and objective methodologies. In the
former type, evaluations by observers or self-assessments by participants constitute the
primary metrics; an example is the utilization of the situational awareness rating technique.
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In the latter type, freeze-probe methods are commonly used. In this latter approach,
participants are prompted to respond to a series of queries at a specific juncture during
task execution; the task is then momentarily suspended, with or without prior notification,
and the provided responses are juxtaposed with the prevailing circumstances; an example
of a freeze-probe method is the situational awareness global assessment technique. Eye
tracking is another objective technique that is conducive to real-time participant analysis
and involves physiological measurements.

Eye tracking has been extensively employed for quantifying human performance
and behavior. It presents a promising and viable alternative for appraising SA, and it can
overcome the constraints associated with alternate approaches. This technique offers the
distinct advantage of facilitating real-time measurements or assessments within simulated
contexts while minimizing disruptions [7]. It mitigates problems such as participants
resorting to long-term memory utilization, which is encountered in freeze-probe methods,
to elucidate subtasks or elaborate on task-specific details [8]. Eye tracking is one of the
most commonly used techniques in SA research [9].

In HFE, operational difficulties can occur during an activity when SA is lost or when
mental breakdowns occur during complex tasks [3]. SA assumes a pivotal role in the
examination of performance in intricate tasks. It is characterized by the swift assimilation
of stimuli and environmental information, coupled with the demand for long-term memory
utilization. Thus, SA plays a particularly salient role in scenarios marked by persistent
disruptions that originate from shifting surroundings and necessitate a discerning decision-
making process about impending events. An important example of such multifaceted tasks
is the act of driving [5,10–12].

SA has received immense attention over the past years in different fields of study,
particularly in the field of driving [5,13]. The cognitive functioning and measurement of
the SA is a key field of study of the performance and behavior of drivers. For instance,
a previous study reported that 87.5% of drivers identified distracted driving as a greater
concern compared to the past, while 87.9% perceived drowsiness as a safety threat [14].

The utilization of an eye-tracking device is a prevalent and extensively employed
methodology for quantifying user performance and behavior. This technology facilitates
capturing the human eye movement via pupillometry and a dedicated sensor; thus, the
gaze points that signify the focal points within a given stimulus environment are recorded.
This mechanism further permits quantification of the frequency of gaze point registrations
per unit of time and is often measured in gaze points per second [15–17].

Eye tracking has been commonly used to identify the area of interest (AOI) of the
gaze, behavior, and attention of drivers. In naturalistic driving, eye tracking has been
used by harvester operators in the field of forestry and to track mine workers and train
traffic monitoring; it has also been applied in autonomous vehicles [18]. Simulation driving
presents boundless opportunities to measure the three levels of SA using, for instance,
remotely controlled cars, commercial vehicles, autonomous vehicles, truck platooning, and
crawler and wheeled excavators.

Considering the lacunae in research on the relation between eye-tracking metrics and
SA in the domain of driving, this study conducted a novel approach to this domain. The
principal aim was to provide a substantive contribution to this field of study by elucidating
the discernible relationship between eye-tracking metrics and SA in the context of driving,
as well as the principal eye-tracking devices used, experimental designs, and a discussion.

The rest of the paper is organized as follows: Section 2 describes the methodology
used for selecting the studies for review, the exclusion criteria, and the information that
was extracted for this review. Section 3 discusses scientometric and demographic analyses,
the physiological measures and oculomotor events, experimental environments, definitions
and types of eye trackers, and the relationship between SA and eye tracking in the field of
driving. The final section concludes the article.
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2. Materials and Methods

For this review, this study performed a systematic and descriptive analysis to identify
the most relevant literature. The methodology employed in selecting noteworthy studies is
graphically depicted in Figure 1. The review comprises three phases: identification, screen-
ing, and inclusion of records. In the first phase of identification, the preliminary search
generated a list of 190 documents, and two records were removed before screening. In this
phase, the strategy involved formulating a guiding question to facilitate the identification,
evaluation, and synthesis of research in the domain of driving while assessing its relevance
throughout the review process. The search strategy employed allowed us to potentially
identify as many eligible studies as possible. In identification phase, all reviewers actively
participated in determining the eligibility of a record for inclusion in the review. Scopus
and Web of Science databases were systematically queried to source a spectrum of the
current research, encompassing diverse domains and potential areas of inquiry [19].

Figure 1. Process used to identify and select relevant studies [20].

To curate the search terms for the databases, we adopted a bifurcated approach. First,
the recent literature review of [9] was used to extract multiple variations and acronyms of
the keyword “situational awareness”, i.e., “SA”, “situation awareness” and “awareness
state”; similarly, for the second keyword, i.e., “eye-tracking”, we used multiple variations:
“eye-tracking”, “eye-tracker”, “eye movements”, “gaze patterns”, “eye moves”, “eye
track”, and “gaze behavior” (including those that assess visual attention, gaze behavior,
and perception).

Psychological measurements or data obtained from humans by using sensors [9] and
oculomotor events were defined and classified based on the recent reviews by [9,21].

Second, we focused on keywords covering the scope of study delineated in this
review—specifically, the domain of driving. Hence, we considered terms such as “driv-
ing”, “drive”, “drives”, “automobilist”, “chauffeur”, and “vehicle operator”, among others,
across contexts that included autonomous, semiautonomous motor, commercial, and heavy
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vehicles, within the realms of both naturalistic driving and driving simulation. The termi-
nology “naturalistic driving” refers to experiments conducted in authentic field settings,
while “driving simulation” refers to experiments conducted via laboratory simulations or
virtual reality. To facilitate the bibliographic exploration within the databases, the Boolean
operators “AND” and “OR” were judiciously employed.

For the screening phase, 188 reports were assessed for eligibility, and the citations and
bibliographical information, abstracts, and keywords were extracted and screened. The
following inclusion criteria were used: articles dealing with (1) assessment of SA in humans,
(2) assessment of SA with eye tracking (these may contain additional assessment tools,
i.e., questionnaires, encephalograms, etc.), and (3) application of assessment of SA in the
domain of driving. Restrictions on eligibility criteria, such as language, were considered;
only records in English were kept in the sample, and access restrictions (publication status)
were considered.

Furthermore, we used the following exclusion criteria: (1) SA was not evaluated;
instead, only the stress or mental workload was measured. However, these articles were
included if they measured a psychological variable other than SA. (2) Eye tracking was
not used to assess SA. (3) The study pertained to fields unrelated to driving. Throughout
this phase, all reviewers participated in addressing selection bias as part of adherence to
eligibility criteria. Any disagreements regarding adherence were reviewed and discussed
among the reviewers to reach consensus. Similarly, an author took samples from the
excluded records to verify that the eligibility criteria had been applied correctly. Records
selected were organized in an Excel spreadsheet and shared with the author reviewers for
subsequent reading. In total, 145 reports were excluded, and 41 documents were selected
for full-text review. In the review, each selected document was studied, and the following
information was extracted:

1. Citation and bibliographical information, keywords, and sources (for the scientometric
analysis);

2. Demographic information of the experiments, i.e., sample size, gender, age, and the
field of application;

3. Eye-tracking metrics and oculomotor events;
4. Experimental environment, i.e., naturalistic driving or driving simulation
5. Type of eye trackers used;
6. Discussion of the relationship between SA and eye tracking in the context of driving.

The selected papers were managed using Mendeley Reference Manager. To conduct
the citation in the desired style, the Zotero Reference Manager was employed. Furthermore,
in the final stages of the review, we included three records through the use of additional
search query combinations for a total of 41 documents selected for full-text review. Through-
out this phase, the review authors actively engaged in independent reading of the articles
and shared their findings during meeting sessions to resolve discrepancies.

In the total documents selected for a full-text review, efforts were made to ensure that
the collected data were sufficient for both the review authors and readers, aligning the
extracted information with the research question. Additionally, all data were systematically
collected and cataloged in an Excel spreadsheet for easy reference.

3. Results

A total of 41 reports were selected for this literature review. These pertained to various
topics such as the evaluation of SA, use of eye tracking, main physiological variables
measured in gaze behavior, and experimental designs. Furthermore, these reports also
describe the methodologies that revealed patterns in the three levels of SA.

3.1. Scientometric Analysis

Based on the analysis of the 41 documents selected for full-text review and using
the freely accessible software Bibliometrix version 4.1.4 [22], we described the growth
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trend of the study of SA with eye tracking in the field of driving in terms of citation and
bibliographical information.

The line chart in Figure 2 gives information on the annual scientific production in
the study of SA based on eye tracking in the field of driving for the period 2011–2023.
Annual scientific production over five years from 2011 remained steady, while it underwent
an irregular fluctuation in the period 2016–2018. However, for 2018, we see a steady but
remarkable rise in the number of articles. This is also seen in Figure 3, which shows the
accumulated rise in the number of occurrences of the keywords “SA”, “eye-tracking”, and
“driving” within the literature. Eye tracking related to the study of physiological measures
of SA experienced a rapid surge in 2015 and reached a point of inflection in 2019.

 
Figure 2. Annual scientific production in the study of SA based on eye tracking in the field of driving.

Figure 3. Rise in the occurrences of keywords. Source: own elaboration using Bibliometrix.

Moreover, out of the 41 selected documents, 29 were published in different scientific
journals and 12 in conference proceedings. The most relevant sources are summarized in
Table 1; Human Factors and Transportation Research Part F: Traffic Psychology and Behavior are
the main journals in which the research was published. In all, 97% of the articles belong
to quartiles of scientific journals Q1 and Q2, and the review included an average of 3.5
authors per document, with 40 multi-author papers and one single-authored article.

Table 1. Most relevant sources (top 5) from among the 41 selected documents.

Sources (Journal) Articles

Human Factors 6
Transportation Research Part F: Traffic Psychology and Behavior 5
Lecture Notes in Computer Science 5
Accident Analysis and Prevention 2
IEEE Intelligent Vehicles Symposium Proceedings 2
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Furthermore, about 133 authors were devoted to the study of SA with eye tracking in
the context of driving. The most relevant and cited authors who have contributed to this
topic are Curry R., de Winter J., Gabbard J., Happe R., and Katrahmani A. Furthermore,
the number of citations of each article was reviewed to identify papers with major impacts;
these papers include those of [23–25], with 358 citations in total. The most relevant affilia-
tions and countries are listed in Table 2 and Figure 4, with Purdue University (USA) as the
predominant institution, followed by the Delft University of Technology (the Netherlands),
reporting on this topic. Only two studies originated from developing nations.

Table 2. Most relevant affiliations (top 5) from among the 41 selected documents.

Affiliations Articles

Purdue University (USA) 11
Delft University of Technology (Netherlands) 10
Beihang University (China) 5
Institute for Occupational Safety and Health of the German Social
Accident Insurance (IFA) (Germany) 5

Mälardalen University (Sweden) 5

Figure 4. Scientific literature related to situational awareness in the context of driving by the country
of origin.

Furthermore, we performed a keyword analysis. This analysis allows us to capture
the fundamental content of the documents and aims to distinguish meaningful research
topics in SA, eye tracking, and driving. A keyword co-occurrence network is shown in
Figure 5. In this figure, the research topics are shown in the context of our literature review.
In the plot, large circles represent the main keyword in the review, and the lines between
keywords show the strengths of their correlation [26].

In Figure 5, four keyword clusters show the relationship among the main keywords,
and synonyms and keywords with common meanings were identified in the review. The
first category encompasses the examination of SA, delving into physiological measurement
and the apprehension of driver behavior (indicated in red). Similarly, the second category
pertains to eye tracking, encompassing driver behavior, pupillometry, and visual perception
(represented in blue). The third category deals with driver gaze behavior, encompassing
human–vehicle interactions and accidents (indicated in orange). Finally, the fourth category
deals with real-time SA in conjunction with human factors and driver support (represented
in green).
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Driver gaze behavior 

Real-time 

Figure 5. Keywords co-occurrence analysis publications. The first category (red) deals with the
examination of SA, physiological measurement, and driver behavior. The second category (blue)
deals with eye tracking, driver behavior, pupillometry, and visual perception. The third category
(orange) deals with driver gaze behavior, human–vehicle interactions, and accidents. The fourth
category (green) deals with real-time SA, human factors, and driver support. Source: own elaboration
using Bibliometrix.

3.2. Demographic Analysis of the Experiments

Within the compiled body of studies, a discernible pattern emerged: experiments
pertaining to the measurement of SA in drivers via eye tracking, along with metrics
analyzing driver behavior covering aspects such as hazard perception, attention allocation,
driver distraction, visual perception, and vigilance, consistently featured a selection of two
distinct vehicle categories for experimental trials—commercial and industrial vehicles.

For the scope of this review, commercial vehicles refer to vehicles designed to transport
products or passengers with or without business purposes, and industrial vehicles refer
to any vehicle that is used to lift, stow, load, push, or stack materials. Within the sample
of 35 articles that dealt with driving experiments, 29 of them were based on commercial
vehicles, which represent 85.4% of the sample; the remaining 14.6% of the sample dealt
with industrial vehicles.

The primary category of industrial vehicles considered in studies on SA included
covered forestry harvesters, wheel loaders, excavators, dump trucks, wheeled excavators,
mobile cranes [18], truck platooning [27], forklifts [28], and crawler and wheeled excava-
tors [29,30]. The commercial vehicles were mainly passenger and goods vehicles [31–34],
school vehicles [35], and automated vehicles [36–38].

Conversely, with regard to the gender-based distribution of participation, a discernible
and noteworthy trend was observed in the significant involvement of male participants.
All the selected studies taken together involved 906 participants. In the experiments on
commercial vehicles, the participants were composed of 543 men and 334 women. Similarly,
the participants in the experiments on industrial vehicles comprised three women and
26 men, as presented in Figure 6.

The age range of participants revealed that the average ages of male and female drivers
were 26.44 and 27.94 years, respectively. In some of the studies, participant eligibility criteria
included being the age of 18 years or more and holding a valid driver’s license, as per the
data collection protocol in those studies [36,39].
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Figure 6. Participants by gender and types of vehicles.

3.3. Eye-Tracking Metrics and Oculomotor Events

Appendix A succinctly encapsulates the collective scholarly contributions of authors
within the realm of the investigated eye-tracking metrics, as delineated and covered within
this comprehensive literature review. The importance of their contributions has been
reported in the literature [9,21].

Eye tracking has been increasingly used in studies on human behavior since 2002,
perhaps following one of the largest studies on human behavior in the analysis of gaze
patterns carried out by [40], with a significant rise in the field of study of driver behavior
in 2013 [41]. Similarly, the use of eye tracking as an objective method and its rise as the
commonly used method in studies on SA has witnessed a significant rise [9].

Among the selected studies in this review, 41 studies dealt with the use of eye tracking
to investigate SA in drivers. In these studies, a total of 36 distinct oculomotor events—
events pertaining to activities governed by the ocular motor system, facilitating the preser-
vation of visual stability, and orchestrating gaze-oriented motions—were discerned and
cataloged. For categorizing the metrics, we considered the classification and studies of [21]
and [9], which were used as a reference. The oculomotor events that we examined are
fixation, saccade, smooth pursuit, blinking, pupillometry measures, gaze, peripheral vision,
tremors, microsaccade, and drift, with their respective metrics.

Figure 7 shows the proportion of eye-tracking measures in relation to the comprehen-
sive scope of this review. Among the 41 studies incorporated within the review, 31 studies
used the fixation metric as the fundamental component to study SA; 29 used count fixation
and 25 used duration fixation for SA measurement; 17 studies used gaze direction; and
8 studies used the amplitude and rate of the saccade.

These studies revealed a direct relationship between physiological measures obtained
through eye tracking and its emergence as the commonly used method in studies assessing
SA. For instance, ref. [12] built a prediction model named light gradient boosting machine
from the data collected with eye tracking to predict SA during the takeover transition
period in conditionally automated driving; they recreated simulated driving scenarios with
videos and by using PreScan 8.0.0. They found that fixations, followed by pupil diameter
and saccades, had the highest importance in predicting SA. Reference [21] reported in their
review that distracted drivers had higher fixation durations and lower fixation counts on
the mirror or speedometer.
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Figure 7. Proportion of eye-tracking measures over the total papers reviewed.

Likewise, ref. [32] observed that in a traffic scenario at an intersection in which the
participants were instructed to memorize information and to build an understanding of
the situation, commonly, participants fixed deflated spatial locations associated with the
relevant information (level 3 of SA); in addition, when retrieving information associated
with other road users, participants made considerably more saccades between empty
locations on the screen.

Furthermore, ref. [31] examined instances in which drivers exhibited diminished
awareness when approaching and entering a roundabout. They used three distinct eye-
tracking devices and relied on metrics such as fixation duration, fixation count, and gaze
direction to reveal that drivers, on average, allocated approximately 28.36% of their tempo-
ral focus to non-driving-related areas (NDRAs). Likewise, ref. [42] revealed consistency
between fixation count and fixation duration on an object and showed that SA during
simulated automated driving might be attributed to visual fixation patterns for various
traffic scene elements. Similarly, ref. [43] investigated the safety implications of environ-
ment self-explaining design on drivers’ situational awareness; it was noted that drivers
exhibited the highest percentage of fixation number and fixation duration while traversing
the yellow-green adorned sidewall tunnel.

Eight studies used pupillary measures for oculomotor movements. Reference [12]
commented on the need for further research to understand the relationship between pupil
diameter and SA and ranked pupil diameter as one of the most important measures for
predicting SA when drivers scan their driving scenarios. In addition, ref. [32] measured
pupil dilation during a memory task to evaluate the effects of mental workload in SA.
Reference [44] developed assessments of driver situational awareness utilizing sensor-
based methods, especially focusing on road signs. For this experiment, eye-tracking metrics
such as average pupil size, eye blinks, and gaze-related features, including gaze visits and
total fixation time, were employed. This method allowed AI systems to predict driver
situational awareness in relation to levels 1 and 2 of the Endsley model (perception and
comprehension). Reference [45], in their literature review, additionally highlighted that
pupil measurements, specifically focusing on pupil diameter, may serve as an indication of
the user’s emotional arousal.

Additionally, ref. [34] established a safety analysis of work zone complexity with
respect to driver characteristics by using fixations and pupillary measures and situation
awareness, with longitudinal control, lateral control, gaze behavior, and daze behavior in
the event of changes in SA because of the involvement of secondary visual tasks, for in-
stance, text entry into a GPS unit in an active work zone and a lower perception of hazards.

Similarly, ref. [46] reported a relationship between the increase in pupil diameter
and situations perceived as risky, showing that danger provokes a stress response that
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can be represented in terms of pupil diameter. However, it is not possible to establish
this conclusively since videos on monitors were used in the experiment, and the pupil
is sensitive to changes in light. Nonetheless, it is possible to measure whether these
hazardous situations can be qualified as more dangerous than the nonhazardous situations
from oculomotor metrics such as pupil diameter [46]. In addition, ref. [47] considered the
effects of pre-takeover visual engagement or takeover request (TOR) warning and risk
perception and revealed a correlation between the change in pupil diameter and visual
attention—the more dispersed the visual attention, the greater the SA.

Other metrics included the blink rate, pupil position, and gaze angle, each of which
was utilized in six studies. For instance, ref. [39] studied the role of an in-vehicle dig-
ital voice-assistant in conditionally automated vehicles; they stated that drivers could
trust driving by an automatic vehicle and tend to fall asleep, thereby suspending the pro-
cess of becoming alert, as measured by the rate and duration of saccades, as well as the
pupil diameter.

Reference [48] examined the implications of uncertainty communication for automa-
tion and saccades and fixations with eye tracking. They reported that, presumably, opera-
tors could adjust their gaze behavior to the level of uncertainty. Reference [49] explored
gaze prediction for drivers and used the probability for motion hypotheses and an ap-
proach based on a dynamic Bayesian network of fixations and saccades considering human
gaze motion characteristics. Similarly, metrics such as smooth pursuit direction, blink rate
and duration, pupil dilation, gaze velocity, and peripheral vision were used in studies on
driver’s gaze prediction in dynamic environments and in the study on driver distraction.

In Figure 8, we provide an overview of the eye-tracking metrics systematically catego-
rized and identified within the context of this review. Orange bars indicate the primary
metric associated with each distinct oculomotor event. In a majority of the studies, the
assessment of SA in drivers was based on the deployment of metrics related to gaze fixa-
tion, gaze direction, pupil measurements, and saccades. In a relatively smaller proportion,
relatively less importance was given to metrics such as smooth pursuit and blink measures.
Furthermore, notably, the joint measurement of fixation and saccades was employed in
30% of the studies; a similar distribution was observed in the case of the joint measurement
of pupil diameter and gaze fixation metrics.
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Figure 8. Comparison of the eye-tracking metrics in this review. Orange bars indicate the primary
metric associated with each distinct oculomotor event.

In the experiments on industrial vehicles, 100% of the cases involved the use of gaze
fixation in AOI, followed by the gaze direction, and finally, the position of the pupil and
general evaluation of the saccade. In commercial vehicles, gaze fixation was used in
82% of the studies; this metric was followed by saccades, gaze direction, and pupillary
measurements. Likewise, in experiments on automated vehicles, the amplitude and rate
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of the saccade, as well as the diameter of the pupil, were used as additional metrics along
with gaze fixation to analyze differences in driver’s SA and mental stress over time (level 1
of SA).

3.4. Experimental Environment: Naturalistic or Driving Simulation

Among the diverse factors contributing to the potential variance in assessing SA in
drivers based on eye tracking, the contextual environment within which the experiment
was conducted assumes pronounced importance. In this review, studies were categorized
into driving simulation and naturalistic driving. Of the total number of studies reviewed,
76% were simulated driving experiments, and 24% were naturalistic driving experiments.
Table 3 lists the driving simulators or simulation software used in the studies.

Table 3. Driving simulators or simulation software used in the studies.

Author Driving Simulator or Simulation Software

[12] Prescan 8.0.0
[32] VicomEditor
[36] AVSimulation
[50] Lab CARRS-Q, QUT
[47] National Advanced Driving Simulator—NADS, miniSim™
[39] STISIM Drive 3 software (Version 2.8)
[51] Ergonomics lab of the University of Missouri-Columbia, OpenDS driving simulation
[52] CARLA simulator
[53] Vicom Editor©
[23] Prescan 8.0.0
[34] IniSim (NADS)
[54] Not present in the report
[55] Not present in the report
[56] Honda Research Institute, augmented reality (AR) head-up display (AR HUD)
[48] TISIM Drive system
[30] CAVE-like room
[57] AR and pedestrian collision warnings
[58] ST-Software platform
[49] Not present in the report
[42] Not present in the report
[46] PreScan 7.0
[24] University of Leeds Driving Simulator, Jaguar S-type cab
[59] MODATS
[60] Motion system of the WIVW
[25] Not present in the report
[43] 3D Max software 2023
[44] A3 motion simulator

Of the studies that used a driving simulator, 94% were simulated driving scenarios
comprising video-based laboratory experiments, and 6% were a mix of virtual reality (VR)
for instance [44], augmented reality (AR), and driving simulator experiments [30,56,57].
For the simulations, the authors used different types of software to recreate simulated
driving scenarios with videos in testing laboratories.

Similarly, ref. [12] tested 32 simulated driving scenarios with six lengths for durations
of 1–20 s using PreScan 8.0.0. The purpose of their study was to create a model that allowed
real-time monitoring and predicting of SA in automated driving. It is significant that the
study recommends conducting the study in high-fidelity driving simulators or naturalistic
driving based on data collection in a low-fidelity setup [47].

Moreover, ref. [32] conducted a video-based laboratory experiment to evaluate the SA
and its effects on working memory. In all, 18 traffic scenarios and three practice videos
were used; the total duration was 7000 ms, and the scenarios were created by Vicom Editor.
Dynamic traffic scenarios were designed, and participants were trained to memorize the
information and interpret the situation. Nonetheless, the study suggests that further
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studies can be realized in a dynamic situation. Likewise, ref. [50] performed a high-fidelity
simulator study in the Advanced Driving Simulator of the Center of Accident Research and
Road Safety, Queensland (CARRS-Q, QUT). They evaluated three interventions, namely,
uncertainty display, interruption of non-driving-related tasks (NDRTs), and a combination
of both, to evaluate the interfaces that address the difficulty of missing the SA or being
out-of-the-loop.

Reference [47] used a medium-fidelity fixed-base driving simulator of the National
Advanced Driving Simulator (NADS), miniSim™, to evaluate the relation of the pre-
takeover state of drivers in the context of NDRTs and to evaluate how this state affects level
3 SA. The study highly recommends validating the results in an automated driving vehicle
in real time in more naturalistic environments. Further, reference [51] analyzed the driver’s
emotional state and physiological feelings using OpenDS driving simulation software in
the Ergonomics lab of the University of Missouri (Columbia). The simulation can contribute
to advanced driver assistance systems in the future; nevertheless, it remains subjective
and does not capture the feelings induced in the driver by simulated surrounding road
environments in real time.

Research conducted in authentic, real-world environments is regarded optimal for
validating study variables. While it can be posited that such an approach incurs high costs
and necessitates more extensive investment in the formulation of ethical, safety, and data
collection protocols, the advantages are notable. The advantages include the capacity to
capture the nuanced dynamics of the environment and the real-time analysis of driver
emotions, reactions, attentional patterns, and perceptions of the contextual elements. In
doing so, this approach counters the potential subjectivity inherent in simulations, while
also examining the prospective trajectory of research within the majority of studies included
in this review.

Amid the array of naturalistic studies incorporated within the scope of this review,
reference [18] evaluated SA in diverse industrial vehicles in naturalistic driving scenarios.
The vehicles considered include a forestry harvester, a wheel loader, an excavator, a dump
truck, a wheeled excavator, and a mobile crane. The study evaluates how eye tracking
can be used to evaluate the attention of operators. The major activities evaluated and
measured were cutting, unloading, reversing, and lifting. These activities were evaluated
using cameras and sensors to range visualization around the vehicle. The study highlights
the need for more studies focused on the industrial environment since such studies are
rare; there are considerable advantages of being able to use real data without interfering
with the work being carried out.

Furthermore, ref. [37] studied the visual load and the associated loss of SA by exam-
ining the takeover and driving NDRT performance. A relevant conclusion of the study
validates that in the real world, drivers’ responses are primarily instinctive and swifter
than those observed in simulators, whereas physical and cognitive loads may not have a
significant impact on reaction times, as suggested in some simulated studies.

On the other hand, ref. [27] evaluated the SA and perceived sleepiness of 10 pro-
fessional truck drivers who worked with a two-vehicle platooning system. One of the
discussions deals with the number of participants since, although the experiment was
conducted under naturalistic conditions, it also dealt with a smaller sample compared
to laboratory experiments, and the eye-tracking measurement was less reliable than in
laboratory settings because of variable light conditions.

In a notable study by [61], emphasis was placed on the examination of natural gaze
patterns within street intersections. The primary objective was to glean insights into the
capacity of gaze behavior to serve as an indicator of driver awareness, thereby facilitat-
ing predictions of SA. They examined the potential utility of gaze metrics in relation to
distinct road users while also highlighting the significance of obtaining pertinent infor-
mation of the entirety of the visual field. The study underscored the challenges asso-
ciated with recreating the dynamic real-world environment and authentic AOIs within
experimental methodologies.
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Likewise, ref. [33] found that the relevance of data collection from experiments in real
environments relapses; for instance, in the design of future advanced driver assistance
systems (ADAS), if the SA of the driver is known, the ADAS will administer critical
information to the driver in risky situations or when required. Thus, the driver’s SA can be
regained more rapidly and confidently. Reference [58] also demonstrated that the driver
first tries to obtain a mental map of the situation by looking around rather than by paying
attention to the road and its risks, as predicted by the recovery of SA theory.

Let us discuss the naturalist experiments to explore two phases, the training and the
assessment of the participants, as conducted by [35]. For instance, a 30 min long training
session was completed at the Center for Advanced Training Research and Naturalistic
Studies; this training system is called the engaged driver training system (EDTS), and
it allows us to elevate the hazard perception skills of the drivers and helps examine the
effectiveness of the EDTS training program on drivers.

Finally, in the study of [29] relevant information was obtained for reversing movements
in crawlers and wheeled excavators by using mirrors during regular work on construction;
most of the studies in their review dealt with the importance of helping workers become
accustomed to the measurement equipment prior to data collection, the use of written
informed consents, and approval of data collection protocols; thus, they explored the means
that allow establishing safer behaviors and helping to reduce accidents by increasing levels
of SA in drivers via assistance tools.

3.5. Eye Trackers: Definition and Types

In this review, we identified and examined a total of 24 distinct eye-tracking devices,
each playing a role in the conducted experiments. These findings are documented in
Table A2 of Appendix A; these findings are further shown in Figure 9. Tobbi Pro and X2-60
glasses were the most used eye trackers in all the studies considered in this review, and
Pupil Lab using Python API was the second most used eye tracker. SmartEye Pro and
DR120 were the third most used eye trackers, and Fovio and Eyelink with Eye Works Suite
were used, albeit less frequently, within studios.
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Figure 9. Preferred eye trackers by number of experiments in which their use is reported. Orange
bars indicate the primary eye tracker associated with each experiment.

An eye tracker is a device based on pupillometry, and a sensor captures the human
eye movement by recording gaze points that indicate where a human is looking in an
environment with a stimulus and measuring how many gaze points are registered per
second [15–17].

The advantages of each eye tracker are interpreted by the communication between
the device and data storage, analysis software, ease of interpreting the data, and data
visualization, as well as the fact that the equipment is as less intrusive as possible for the
operator; less intrusive equipment allows the process to continue without interruptions and
ensure proper calibration time. With regard to demographics and cultural characteristics,
reference [31] considered the difference in pupil color between Asians and Caucasians,
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and [42] reported large cultural SA differences between drivers hailing from Japan and the
USA. In addition, reference [59] found that teenage drivers have a lower level of SA than
adults while driving.

In the experiments, particularly in naturalistic driving experiments, daylight can be
unpredictable because of dynamic conditions and can cause difficulties in reading the
device data by the human eye; hence, reference [31] used illuminators to illuminate the
driver’s retina to compensate for the dim ambient light. Reference [33] used an infrared
(IR) illuminator to reduce the effects of poorly illuminated environments; because IR is not
visible to the human eye, it does not distract the driver. Additionally, note that several of
the eye trackers generate some interference with the equipment used by the operator, and
frequencies greater than 50 Hz are preferable for eye trackers.

Finally, it is noteworthy that, for the assessment of potential biases arising from
incomplete or unavailable data, a manual approach was employed for the total of reviewers.
At the outset, a comprehensive search strategy was accomplished within the literature
review to minimize the risk of overlooking relevant studies. The use of databases and
conference proceedings contributed to this endeavor. In some instances, authors were
contacted to gain access to their studies. For instance, Gwangbin Kim [44] affably provided
complete access to his publication.

Additionally, the reviewers systematically categorized the criteria used to determine
which results were eligible for inclusion. In this context, the criteria were grouped into
the following: (1) Keywords and co-occurrence analysis in publications for scientometric
analysis. (2) Demographic information, including sample size, gender, age, and any
other relevant factors such as experience in the function. (3) The type of vehicle used
in the experiment, categorized as either commercial or industrial. Metrics that were
collected through eye tracking and reported included fixations, saccades, smooth pursuit,
tremor, microsaccades, drift, blinks and their classifications, pupillary measures, gaze, and
peripheral vision.

Furthermore, the reviewers included a synthesis of the experimental environment in
the results. These were grouped into naturalistic driving or driving simulations, selected
from the reports, and documented the specifics of each experiment. For naturalistic settings,
details included the type of activity conducted, while for simulated settings, information
covered the types of simulators used and the software supporting data analysis. In the
reporting of the types of eye trackers used, it was necessary to mention the brand and
analysis software, but only if reported. Certainly, attention was paid to the points where the
authors focused their efforts to demonstrate or present the existing relationships between
eye-tracking metrics for the subjective assessment of situational awareness in the driving
experiment. This compilation of categorizations and criteria allowed us to define which
results were eligible for inclusion in each synthesis.

Lastly, regarding the selected studies, data were available either in the main article or
appendices. Within this study, it is crucial to consider that minimizing biases in studies can
also be achieved by exploring metrics different from the common ones, as reported in this
literature review, aligning with the objectives of research designs in evaluating situational
awareness in the field of driving.

4. Discussion

In this literature review, one of the principal aims was to investigate the objective
assessment of situational awareness in drivers based on physiological metrics obtained
through eye tracking. Our approach utilized a systematic literature review, and papers
dealing with the assessment of SA in humans with eye tracking in the domain of driving
were incorporated. Furthermore, our literature review encompassed a scientometric anal-
ysis, which identified prevalent authors and topics in the field. Similarly, we conducted
a demographic analysis of the experiments and a compiled and comprehensive list of
the eye-tracking metrics employed in these experiments. Additionally, we incorporated
a compilation of experimental environments, classifying them into real (naturalistic) and
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simulated environments, and documented the primary devices utilized in these studies.
The potential utility of gaze metrics in the assessment of SA was observed.

Several explanations included in this review substantiate the robust relation between
gaze behavior and SA, particularly within the context of driving activities that are character-
ized by their predominantly visual nature. These relationships are consistent with literature
reviews such as that conducted by [9], where, among all the identified physiological
measures, the eye-tracking technique is the most prevalent to assess SA.

This alignment could enable the authors to explore how gaze behavior can signify
various cognitive aspects of driver awareness and behavior, such as visual attention dis-
tribution, attentional patterns, distraction, remembered information, mental workload,
decision-making, and prediction models of SA.

Central to this understanding is the exploration of visual attention and attentional
patterns inherent in the execution of complex tasks by individuals [8]. The first investi-
gations of patterns in driving and visual attention with the use of eye trackers date back
to the works of Mourant and Rockwell (1970, 1972) using an eye-marker camera and a
stabilization unit [11].

Reference [18] performed research on measuring attention in the visualization of the
graphical interface in different industrial vehicles and reported that by measuring the pupil
position and the duration and count of fixations on and off the screen, it is possible to
observe the spatial awareness and monitor the points of attention of the operator.

For example, ref. [29] investigated the use of mirrors for eye tracking during work at
construction sites. Surprisingly, they found something different than expected: the operator
spent less than 7% of his attention on the display. Studies on eye tracking open the door
to obtaining objective information from the operator to make decisions regarding display
design, for example, the use of head-up displays in the driver’s line of sight and support
training of the operators to increase the SA of the driver as demonstrated by [35], who
reported that trained drivers had better performance and SA.

Reference [24] performed a similar study and evaluated the visual attention distribu-
tion of drivers during automation and examined the influence of the scenarios around the
driver on the increase in SA. These studies show that gaze fixation, pupil diameter, and
saccades are the major metrics for predicting SA. As evidence, the study finds that a high
number of fixations can be associated with the difficulty of gathering information, and
additionally, saccade amplitudes are negatively correlated with SA, and the results have
a high similitude to the study of [62]. The observations further underscore the intricate
interplay between visual search patterns and error reduction.

Similarly, ref. [47] investigated adaptable systems. They examined the effects of pre-
takeover visual engagement on situation awareness during automated driving. Their
results suggested that natural driving without previously marked tasks benefits drivers’ SA
more than asking drivers to pay more attention to the path when driving. The eye-tracking
metrics, such as peripheral vision, pupil diameter, rate of saccades, and general fixation,
suggest differences in the SA of drivers in observation windows of 7 s. They concluded that
dispersed visual attention has a positive correlation with better SA. Studies such as those
of [62] support and validate the idea that SA in humans is related to the fixation of their
eyes on relevant objects [11], and various studies revealed a positive relationship between
eye-tracking metrics and SA [9].

Regarding distraction, reference [21] presented the research of Recarte and Nunes
(2000), who studied the relationship of SA with eye tracking to identify patterns in driver
distraction. The review reported that higher fixation durations, higher pupil dilations,
and lower fixation counts in the display of the vehicle or mirror are related to driver
distraction. Likewise, the review also explained how fixations allow us to understand the
visual perception processes and how much of the visual gaze is retained.

Concerning remembered information and mental workload, reference [32] studied the
count and duration of the fixations and their relation with different information retrieval
patterns through the gaze; they also examined how the metrics are related to the information
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remembered by the driver and the behavior, as a part or due to the mental interpretation of
the trajectory traversed rather than based on retrieving individual pieces of information.

Other studies [30,34,54] explored the safety analysis of work zone complexity and the
influence of different attention allocation strategies under mental workloads on SA based
on the metrics of count and duration of fixations, diameter and position of the pupil, and
gaze direction. These studies showed that an increase in the complexity of the driving
zones increases the mental workload and decreases SA. Furthermore, the mental workload
can increase by 37% if a secondary visual task is involved; this has immediate repercussions
on the gaze behavior, leading to a lower perception of risks and a lower level of safety
perception of the situation.

Additionally, ref. [50] made an interesting statement regarding the construction of new
adaptable systems that include the human–machine relationship with SA. They reported the
ability of the operator to be prepared to “fallback-ready user”, even performing secondary
tasks and recovering awareness in the main operation by studying SA with real-time data
from eye trackers. Likewise, reference [12] built a prediction model of SA during takeover
transitions in conditionally automated driving with only eye-tracking data.

In terms of the metrics used, specifically, 89% of authors using at least three commonly
employed eye-tracking metrics, such as gaze fixation, pupil diameter, and saccades, found
eye tracking to be an objective indicator of SA. Fixations were the most utilized metric in
the experiments, aligning with studies such as the one conducted by [12]. It was found
that within the relationships with the measurement of situational awareness in drivers, at
the perceptual level (level 1), an excessive number of fixations might be associated with
difficulty in gathering information during demanding tasks. Additionally, it was observed
that distracted drivers had higher fixation durations. Furthermore, the mean fixation time
of eye movement was noted to have the potential to measure situational awareness, as
presented by [54]. Combining saccades with fixations is the second most used metric for
measuring SA, although saccade amplitudes were found to be negatively correlated with
SA, as reported by [12].

However, it is crucial to consider the limitations of using eye-tracking metrics. Certain
metrics may excel in measuring perception (level 1 of SA) but may have less relevance to
comprehension (level 2) and projection (level 3), as presented in the research by [59].

In terms of the scientometric analysis, eye-tracking-related research on physiological
measures of SA has experienced a rapid surge since 2015. Common themes associated
with eye-tracking studies include automated driving, driver behavior, driving simulation,
and SA. Most studies are concentrated on transportation research and human factors, with
a higher concentration in countries such as the Netherlands, the USA, and China. This
concentration provides an opportunity to delve into further research investigations from
regions of the Americas. Regarding the demographic study within the compiled body of
studies, a noteworthy trend was observed in the significant involvement of male partici-
pants, with a maximum of 1% being female. This gender imbalance could be a limitation
and bias when generalizing outcomes predominantly from male samples. Moreover, the
average age of participants is around 27 years, a factor that needs consideration in studies
of assessment of SA requiring analysis of novice versus expert populations.

Furthermore, only 12.1% of studies on the assessment of SA with eye-tracking mea-
sures were conducted in real environments with industrial vehicles, presenting an opportu-
nity for future research, such as studying industrial vehicle operators like forklift drivers.
Likewise, the results suggest a need for more effort in conducting research in real-world
environments for optimal validation of study variables. Although this approach may incur
higher costs and require more extensive investment in ethical, safety, and data collection
protocols, the advantages are notable. Similarly, the review uncovered the need for future
research focused on the industrial environment, as such studies are scarce.

Likewise, concerning the measurement equipment and software used, Tobii Pro Lab,
Lab version 1.232 and Tobii Pro X2-60 glasses (discontinued) were the preferred eye trackers,
as reported in the majority of experiments. It is essential to note that some eye trackers
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may generate interference with operator equipment, and frequencies greater than 50 Hz
are preferable. Additionally, in real environments, the use of wireless equipment may
encounter interference due to the company’s infrastructure, potentially leading to signal
loss and data loss. It is also crucial to consider the presence of natural light in the data
collection space, as sunlight could interfere with data collection. Moreover, in experiment
design, demographic and cultural characteristics should be considered due to differences
in pupil color [31].

Concerning the review process, the results demand a discussion regarding criteria
such as validity and reliability. In terms of viability, this review presents outcomes similar
to those found in existing reviews, for instance, by [21,41], particularly in terms of the
relationships observed between physiological metrics measured with eye tracking and the
assessment of SA.

Finally, regarding reliability, this review presents a systematic methodology that
allowed us to compile demographic, statistical, and experimental design data, showing
that the information collection remains consistent. However, further studies are necessary
to identify variations across different study domains, distinct from those related to driving.

5. Conclusions

Collectively, the applications of SA evaluation have become extremely popular; how-
ever, this expansion of applications is accompanied by a wide range of challenges stemming
from methodological intricacies and precision-related considerations in estimating driver
awareness. In response, a combination of objective and subjective methodologies has
become imperative to harmonize and align with the distinct requirements of each study.
This synergy should aim to evolve into robust frameworks that can enhance the seamless
integration of monitoring, measurement, and assessment of driver awareness, thereby
fostering a more comprehensive and advanced approach.

In this review, we introduced driver SA assessment by the eye-tracking metrics frame-
work and examined this framework based on a scientometric analysis, demographic com-
parison of experiments (sample size, gender, age, and the field of application), eye-tracking
metrics, oculomotor events, the effects of the environment surrounding the experiments
(naturalistic or simulated driving), the preferred type of eye-tracker devices, and emphasis
on the discussion of the relationship between SA and eye tracking in the field of driving.
We showed that keyword clusters for physiological measures and comprehension of driver
behavior are the most used approaches in the literature reviewed.

Our results also revealed a relationship between eye-tracking metrics and SA, espe-
cially at perception level 1; furthermore, the results revealed how eye-tracking metrics
contribute objectively to the assessment of the driver’s gaze behavior, mainly in simulated
environments and less so in naturalistic environments.

The most popularly used eye-tracking metrics for the study of SA are fixation, saccade,
and pupillary metrics. The preferred eye trackers for the experiments are those that are
less intrusive for the operator and those that possess a wireless connection. These results
can support decision makers in selecting appropriate eye-tracking metrics to integrate into
experiments, eye-tracker types, and information for designing data collection protocols.

Future research will be based on the challenges in the studies of driver awareness, the
need for efforts in the study of driver awareness in industrial environments, the inclusion
of bigger samples of women drivers, and more studies in naturalistic driving environments
that allow the study of real-time data from actual environments. Likewise, the review
aspires to clarify the relation between SA and eye tracking toward future work in the design
of driving assistance solutions based on the study of driver behavior in risk situations or
situations with mental workload and by using support alert systems. Thus, safer behavior
can be realized, and accidents can be reduced by improving the SA of the driver.
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Appendix A

Table A1. Eye-tracking metrics (Oculomotor events).
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[18] 2017 x x x x
[12] 2021 x x x x x
[21] 2022 x x x x x x x x x x x x x x x x x x x x x x x
[32] 2022 x x x x
[36] 2021 x x x
[50] 2021
[47] 2021 x x x x x x
[39] 2021 x x x x x
[11] 2021
[37] 2021 x x x x
[51] 2021 x x x x x x x x x x
[31] 2021 x x x x
[27] 2021 x x x x
[52] 2020 x x
[53] 2020 x x x x
[46] 2020 x x
[34] 2020 x x x x x
[54] 2020 x x
[55] 2020 x x x x x
[9] 2020 x x x x x x x x
[61] 2020 x x x x x x x x x
[33] 2019 x x x x x
[56] 2019 x x x x
[48] 2019 x x x x x
[41] 2019 x x x x x x x x x x x
[30] 2019 x x x
[57] 2019 x x x
[58] 2018 x x x x x
[49] 2018 x x x x x x x x
[35] 2018 x x x
[42] 2017 x x
[23] 2017 x x x x x
[28] 2023 x x
[24] 2017 x x x
[59] 2016 x x x
[29] 2016 x x x x
[60] 2013 x x x x x x
[25] 2011 x x x
[45] 2022 x x x x x x x
[44] 2023 x x x
[43] 2024 x x

* Index of pupillary activity (IPA); low/high IPA (LHIPA); index of cognitive activity (ICA).
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Table A2. Eye trackers identified in this review.

Author Year Experiment Eye Tracker

[18] 2017 Naturalistic driving Pupil Labs
[12] 2021 Video-based (driving simulation) EyeLink 1000 Plus
[21] 2022 Review NP
[32] 2022 Video-based (driving simulation) SMI iViewX RED120
[36] 2021 Video-based (driving simulation) Dikablis Glasses 3
[50] 2021 Video-based (driving simulation) NP
[47] 2021 Video-based (driving simulation) FOVIO FX3
[39] 2021 Video-based (driving simulation) SMI glasses
[11] 2021 Review NP
[37] 2021 Naturalistic driving Tobii Pro Glasses 2
[51] 2021 Video-based (driving simulation) EyeTech VT3 Mini
[31] 2019 Naturalistic driving SmartEye Pro
[27] 2021 Naturalistic driving Tobii Glasses 2
[52] 2020 Video-based (driving simulation) Pupil Corewearable
[53] 2020 Video-based (driving simulation) Tobii X2-60
[46] 2020 Video-based (driving simulation) EyeLink 1000 Plus
[34] 2020 Video-based (driving simulation) Fovio FX3
[54] 2020 Video-based (driving simulation) NP
[55] 2020 Video-based (driving simulation) NP
[9] 2020 Review NP
[61] 2020 Naturalistic driving SmartEye Pro

[33] 2019 Naturalistic driving Logitech C920-1080p HD Pro
standard webcam with 30 fps

[56] 2019 Video-based (driving simulation) Tobii Pro Glasses 2
[48] 2019 Video-based (driving simulation) Tobii Pro Glasses 2
[41] 2019 Review NP
[30] 2019 Video-based and virtual reality Pupil Labs

[57] 2019 Video-based and augmented reality Eyeglasses, with SMI’s
BeGaze 3.5

[58] 2018 Video-based (driving simulation) Pupil Lab Pro
[49] 2018 Video-based (driving simulation) NP
[35] 2018 Naturalistic driving Tobii Pro Glasses 2
[42] 2017 Video-based (driving simulation) Tobii X2-60
[23] 2017 Video-based (driving simulation) Smart Eye DR120 remote

[24] 2017 Video-based (driving simulation) V4.5 Seeing Machines
faceLAB

[59] 2016 Video-based (driving simulation) ASL Mobile Eye system
[29] 2016 Naturalistic Dikablis
[60] 2013 Video-based (driving simulation) SmartEye
[25] 2011 Video-based (driving simulation) NP
[45] 2022 Review Review

[44] 2023 Driving simulation HTC VIVE Pro Eye
Head-mounted Display

[43] 2024 Driving simulation NP
NP: not presented.
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Abstract: Dyslexia, often referred to as a specific reading disability, affects many students around the
world. It is a neurological disorder that affects the ability to recognise words, and it causes difficulties
in writing and reading comprehension. Previous computer-based methods for the automatic detection
of dyslexia in children have had low efficiency due to the complexity of the test administration process
and the low measurement reliability of the attention measures used. This paper proposes the use of a
student’s mobile device to record the spatio-temporal trajectory of attention, which is then analysed
by deep neural network long short-term memory (LSTM). The study involved 145 participants (66
girls and 79 boys), all of whom were children aged 9 years. The input signal for the neural network
consisted of recorded observation sessions, which were packets containing the child’s spatio-temporal
attention trajectories generated during task performance. The training set was developed using
stimuli from Benton tests and an expert opinion from a specialist in early childhood psychology.
The coefficients of determination of R2 ∼ 0.992 were obtained for the proposed model, giving an
accuracy of 97.7% for the test set. The ease of implementation of this approach in school settings and
its non-stressful nature make it suitable for use with children of different ages and developmental
stages, including those who have not yet learned to read. This enables early intervention, which is
essential for effective educational and emotional support for children with dyslexia.

Keywords: recognition of dyslexia; eye tracking for attention analysis; LSTM neural network; BVRT test

1. Introduction

In the information age we live in, technology and data have become key elements
of people’s daily lives. Two areas that can benefit from data collection are education and
early educational diagnostics, especially in the context of the often-occurring problem of
dyslexia. Dyslexia, often referred to as a specific reading disorder, affects many students
worldwide. It is a neurological disorder that impacts the ability to recognize words, causing
difficulties in writing and understanding text. The effects of dyslexia are not limited to the
classroom but can also lead to problems with self-esteem, frustration, and social isolation.
As experts in dyslexia diagnosis point out [1], it is a neurological disorder affecting the
ability to recognize words, which causes difficulties in writing and understanding text.
Despite normal levels of intelligence and adequate teaching, children with dyslexia often
have difficulty acquiring reading skills at the level of their peers [2]. However, the effects
of dyslexia are not limited to the classroom, but can also lead to problems with self-esteem,
frustration, and social isolation [3–5]. Dyslexia is a complex disorder that affects reading,
writing, and language processing abilities. Although it is most commonly diagnosed in
school-aged children, its causes are varied and may include both neurological and genetic
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factors. Among the hypotheses regarding the causal background of dyslexia, the following
are suggested:

• Phonological disorders related to difficulties in processing speech sounds, such as
phonemes—the basic sound units of language—are the primary cause of dyslexia.
Children with dyslexia struggle with segmenting, blending, and manipulating sounds
in words, which directly impacts their reading and writing skills. Research confirms
that deficits in phoneme recognition affect reading and writing abilities [2,6].

• Problems with the coordination and automation of cognitive processes related to the
cerebellum can lead to difficulties in learning to read, as confirmed by neuroimaging
studies [7].

• Deficits in the magnocellular cells responsible for processing rapid visual stimuli can
cause difficulties in reading fluency and visual perception [8].

• Improper migration of neurons during brain development can lead to dysfunction in
areas responsible for language processing and reading [8].

The symptoms of dyslexia include difficulties in word recognition, spelling problems,
slow reading speed, and challenges in segmenting speech sounds. Current methods for
diagnosing dyslexia involve reading skills tests, phonological assessments, psychological
tests, and interviews with parents and teachers.

The study of dyslexia is crucial due to its significant impact on educational outcomes
and social functioning. Dyslexia can affect a child’s ability to read and write effectively,
leading to broader educational challenges, including lower academic achievements and an
increased risk of early school dropout [2]. The economic burden associated with dyslexia is
considerable in terms of educational costs, therapy, and the potential loss of productivity
due to the challenges faced by individuals with dyslexia.

Dyslexia is a serious issue, not only for individuals but also for society as a whole.
It is one of the most common learning disorders, affecting a significant portion of the
population. Dyslexia impacts about 5–10% of the global population [9]. In the United States,
the National Institutes of Health (NIH) estimate that around 15–20% of the population
exhibits symptoms of dyslexia [3]. In Europe, a comprehensive review conducted by the
European Dyslexia Association highlights that dyslexia affects about 10% of the population,
with varying degrees of severity [10]. These figures underscore the widespread prevalence
of the disorder and its impact on educational systems and individual lives.

The standard approach to treating dyslexia does not involve using a drug or an estab-
lished therapy for all patients, as is the case with treating a specific disease. Dyslexia is not
a disease but a developmental disorder that manifests differently in different individuals.
Each of us is unique, and depending on the individual characteristics of our bodies, we
experience this disorder in various ways. The research presented in this paper responds to a
new approach to the diagnostic–therapeutic process, changing the paradigm of therapy and
rehabilitation for neurodevelopmental disorders, especially in children and adolescents.
The proposed technology for diagnosing dyslexia departs from the traditional approach
that applies the same treatment method to all individuals with the same disorder. People
differ from each other, and therefore, there is no universal method of therapy.

The last few decades have brought about significant progress in understanding and di-
agnosing dyslexia, a disorder characterized by difficulties in reading. Research on dyslexia
has also shown that it is not a homogeneous disorder but rather a spectrum of difficul-
ties manifesting in various ways, necessitating an individualized approach to diagnosis
and therapy. This individualized approach ensures that each person’s unique needs are
addressed effectively. As highlighted in [3,11], dyslexia is a developmental disorder that
requires individualized and adaptive treatment strategies to effectively address the unique
needs of each person. Among the methods used to diagnose dyslexia, particular attention
has been given to those that allow for the direct observation of behaviors and eye move-
ments during reading [11,12]. Dyslexia, traditionally diagnosed based on assessments of
reading and writing skills, has gained new diagnostic tools thanks to the development of
digital technologies [6,13–15]. The digitization of tests allows for a detailed analysis of the
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reading process, providing data that are difficult to obtain in traditional settings [16,17].
Traditional assessment methods, focusing mainly on written and oral tests, are increasingly
supplemented by modern technologies such as eye tracking and artificial intelligence,
offering new possibilities for objective and precise diagnostics. Diagnostic methods based
on brain imaging, such as functional magnetic resonance imaging (fMRI) or diffusion
tensor imaging (DTI), provide valuable information about structural and functional dif-
ferences in the brains of individuals with dyslexia compared to control groups [18,19].
These techniques, supplemented by electroencephalographic (EEG) studies, shed light on
the neurobiological basis of dyslexia, explaining the mechanisms responsible for reading
difficulties [20–22].

Eye tracking, or tracking eye movements, has become one of the key tools in research
on dyslexia. It allows for precise tracking of how individuals with dyslexia read text,
including the analysis of eye fixation patterns, saccades (rapid eye movements), and other
eye movement characteristics that may indicate difficulties in text processing [23–25].
Innovative studies, such as [26], emphasize the importance of eye movement coordination
in children with dyslexia, showing that they may have problems with proper text tracking,
directly impacting their reading skills. Conversely, in the work of [27], artificial intelligence
is used to predict dyslexia based on reading patterns in children, demonstrating how
modern technologies can revolutionize the diagnosis of this disorder. In the work of [28],
attention is drawn to the potential of using machine learning and eye tracking to identify
individuals with dyslexia, opening new perspectives for precise and rapid diagnosis.
Similarly, further research with larger sample sizes and advanced data analysis methods
presented in [29,30] demonstrate that the application of sophisticated algorithms can
significantly improve the accuracy of dyslexia detection, achieving an effectiveness level
of over 95%. The development of deep learning algorithms and their application in
eye tracking data analysis opens new possibilities in dyslexia diagnosis. In the works
of [31,32], utilizing neural networks for eye tracking data processing, the potential of
these technologies for identifying reading disorders is highlighted, offering high efficacy
and paving the way for the development of new, even more efficient diagnostic tools.
Table 1 presents the main directions of existing research that utilize eye-tracking methods
in diagnosing dyslexia [23–32].

Table 1. The review of recent findings in eye tracking for dyslexia diagnosis.

Authors Subject Age
Experimental

Approach
Main Findings

Christoforou, C.; et al.
[23]

30 children with
dyslexia and

30 chronological
age controls

A mean age of
9.79 years and a range

of 7.6 to 12.1 years.

A combined EEG and
eye- tracking study on
children with dyslexia

Novel framework for
integrative analysis of

neurophysiological and
eye-gaze.

Jakovljevi, T.; et al. [24] 36 children, 18 with
dyslexia and 18 control 8–12 years old

The reading task in
13 combinations of

background and
overlay colours

Findings showed that
the dyslexic children
have longer reading

duration, fixation
count, fixation duration
average and total, and
longer saccade while
reading on white and

coloured
background/overlay.
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Table 1. Cont.

Authors Subject Age
Experimental

Approach
Main Findings

Jakovljevi, T.; et al. [25] 25 children, 10 boys
and 15 girls 8–9 years

This study investigated
the influence of white

vs. 12 background and
overlay colors on the

reading process.

The findings showed a
decreasing trend with

age regarding EEG
power bands and lower

scores of reading
duration and

eye-tracking measures
in younger children
compared to older

children.

Temelturk, R.D.;
et al. [26]

Children with dyslexia
and typical

development
5–17 years

The review through the
examination of

binocular coordination
in children with

dyslexia by describing
the normative

development of stable
binocular control.

The studies reviewed
provided consistent

evidence of poor
binocular coordination

in children with
dyslexia.

Wang, R.; et al. [27]
399, 187 with dyslexia

and 212 typically
developing children

7–13 years

These studies
implemented tests

evaluating
reading-related
cognitive skills.

This study established
a genetic algorithm

optimized
back-propagation

neural network model
to predict whether

Chinese children have
dyslexia.

Rello, L.; et al. [28]

97, 49 without dyslexia
(28 female, 21 male)

and 48 with diagnosed
dyslexia (22 female,

26 male)

11–54 years

Each participant read
12 different texts with
12 different typefaces.

The texts and the fonts
were counter balanced

to avoid
sequence effects.

The eye movements of
readers with dyslexia

are different from
regular readers. People

with dyslexia have
longer reading times,
make longer fixations,

and make more
fixations than readers

without dyslexia.

M. N. Benfatto,
et al. [29]

185, 97 high-risk
subjects and a control
group of 88 low-risk

subjects.

9–10 years

Using eye tracking
during reading to

probe the processes
that underlie

reading ability.

It is possible to identify
9–10-year-old

individuals at risk of
persistent reading

difficulties by using
eye tracking.

Prabha, A.J.; et al. [30]

185, 97 high-risk
subjects, a control

group of 88 low-risk
subjects.

9–10 years

Using eye tracking
during reading to

probe the processes
that underlie

reading ability.

The research focused
on identifying features
that contribute to better

prediction and then
build an appropriate

prediction model.
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Table 1. Cont.

Authors Subject Age
Experimental

Approach
Main Findings

Neruil, B.; et al. [31]

185, 88 with low risk
(69 male,19 female) and

97 with high risk of
dyslexia (76 male,

21 female)

9–10 years

A new detection
method for cognitive

impairments is
presented utilizing eye

tracking signals in a
text reading test.

In a series of
experiments it was
found that the best

results provide
magnitude

spectrum-based
representation of the

time-interpolated
eye-tracking signals

recorded.

Vajs, I.; et al. [32]

30 persons (19 female,
11 male), 15 with

dyslexia and 15 control
subjects.

7–13 years

The children read a text
written in Serbian on

13 different color
configurations

(including background
and overlay color

variations).

A combination of
convolutional neural
network and visual
encoding of the eye
tracking data shows
promising results in

dyslexia detection with
minimal

preprocessing effort.

In summary, the dynamic development of research on dyslexia, supported by tech-
nological progress, is changing the face of diagnosing this disorder. The use of modern
tools such as eye tracking and machine learning not only increases the precision of dyslexia
recognition but also helps to better understand the underlying mechanisms, opening
new pathways for effective therapeutic intervention and support for individuals with
this disorder.

In the research presented in [33–35], the subsequent part of the study builds upon
previously conducted hybrid studies in the field of developmental psychology, which
involved therapeutic and preventive interventions among children aged 10–14 years old.
The author’s program consisted of selected elements from various therapeutic interven-
tions, particularly Davis, CBT, SI, hand therapy, and eye training. The aim of the research
was to alleviate difficulties in writing/dysgraphia. As a result of the conducted program,
participants were observed to exhibit correct muscle tension in the fingers and wrist, proper
writing grip, and a correct habit associated with writing technique. The therapeutic in-
terventions were conducted in face-to-face settings. Through the conducted research, a
strategy for designing and utilizing/conducting psycho-tests and utilizing attention analy-
sis to assess the effectiveness of therapy and individual therapy selection was developed.
Additionally, over the course of several years, the team conducted studies on the attention
of pilots during the execution of specific types of aviation tasks in both IFR and VFR condi-
tions, demonstrating that the observer’s attention is diffuse, while the shape and trajectory
of attention over time–space are indicators of the pilot’s training level. It was shown that
the chronology of attention is directly linked to the pilot’s ability to perceive information
from cockpit instruments and directly impacts flight safety [36,37]. It was proven that the
shape and dynamics of observation trajectories are directly related to the process of scene
recognition and the perception of its individual components. Therefore, there is a strong
coincidence between the understanding of a scene and the dynamics of observation, which
can serve as a significant source of diagnostic data for a hypothetical neural system. The
authors thus combined their experience using human–machine interface (HMI) systems
with the new capabilities of recurrent neural networks (LSTM), which are currently an
efficient and effective tool for analyzing and recognizing time series [38,39]. Based on
this groundwork, the present study aims to develop intelligent technology that will sup-
port therapy for neurodevelopmental disorders. The proposed combination of research
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related to psycho-tests and the measurement of the attention of the subject will allow for
the establishment of individualized therapeutic procedures for each patient, minimizing
adverse effects.

The proposed hybrid technology for conducting psycho-tests, allowing for result
assessment through the use of observer attention, represents an original and innovative
approach, adding value to this study. In this article, we propose an innovative approach to
diagnosing dyslexia by integrating the Benton Visual Retention Test (BVRT) with advanced
analysis of visual attention trajectories using eye-tracking technology and deep neural
networks (DNN). This approach not only enhances the effectiveness of dyslexia diagnosis
but also makes it more accessible and efficient, especially for children who are not yet
able to read. The Benton test is a widely recognized tool for assessing visual memory and
perception. Integrating this test with eye-tracking technology allows for detailed analysis
of a child’s eye movement patterns while performing tasks. Recording the spatiotem-
poral trajectories of visual attention using mobile devices like Pupil Invisible or Pupil
Core provides objective and precise data. The recorded spatiotemporal data, extracted
from sessions, are analyzed by an LSTM network, enabling the detection of subtle visual
anomalies characteristic of dyslexia. One of the main advantages of the proposed approach
is its ability to diagnose dyslexia in children who have not yet mastered reading skills. Tra-
ditional diagnostic methods often rely on reading tests, which can be a barrier for younger
children or those with severe reading difficulties. The method based on visual perception
and eye movement analysis bypasses this obstacle, allowing for the early detection of
dyslexia. The proposed solution offers several key advantages over traditional dyslexia
diagnostic methods:

• Objectivity and Precision: Utilizing eye tracking for the accurate and objective collec-
tion of data related to eye movements and subjecting the gathered data to analysis
using LSTM networks allows for the identification of subtle eye movement patterns
characteristic of dyslexia. The high correlation coefficient R (∼0.992) achieved in the
proposed model indicates its high accuracy and reliability.

• Speed and Efficiency: Traditional diagnostic methods can be time-consuming and
require multiple sessions with the child. The proposed approach allows for rapid data
collection and immediate analysis of results, significantly reducing the time needed
for diagnosis.

• Stress-Free Environment: The BVRT, which does not require reading skills, is less
stressful and more natural for younger children. Eye tracking allows for administering
the test in a friendly and engaging manner, which can lead to more reliable results.

• Early Intervention: The ability to diagnose dyslexia in children who are not yet able
to read enables the early implementation of appropriate educational and therapeutic
interventions. Early recognition of dyslexia-related issues allows for the prompt
introduction of effective support strategies, which can significantly improve the child’s
educational and emotional outcomes.

A key added value of this work is the combination of the Benton Visual Retention Test
with eye-tracking technology and LSTM deep neural networks, presenting a novel approach
to diagnosing dyslexia. The ease of implementing this approach in school settings and its
stress-free nature make it suitable for use with children of various ages and developmental
stages, including those who have not yet learned to read. This enables early intervention,
which is crucial for effective educational and emotional support for children with dyslexia.

2. Materials and Methods

2.1. Participants

The study included 9-year-old children attending the third grade of primary school
in Jarosław, southeastern Poland. All participants were primary school students from
one geographical region, allowing for a certain level of socioeconomic and educational
homogeneity. A total of 145 children participated in the study (66 girls and 79 boys). In
65% of the cases, at least one parent had higher education, 20% had a secondary school
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education, and 15% of parents had a primary school education. In the studied group, 40%
of the children came from families with a middle socioeconomic status, 35% from families
with a high status, and 25% from families with a low status. A total of 90% of the children
lived in urban areas, while 10% lived in rural areas. In the studied group, a diagnosis of
dyslexia was made at the age of 8, following earlier observations (and a diagnosis in the
“zero” class—at risk of dyslexia) indicating a risk of dyslexia between the ages of 5 and
7. All children participated in therapy lasting an average of 1.5 years, which included
various support methods, including speech therapy and psycho-pedagogical therapy. Some
children had coexisting visual impairments that could have affected their performance in
visual studies. However, all children underwent appropriate ophthalmological diagnostics
and, if necessary, treatment before starting the dyslexia study. The study was approved
by the Institutional Review Ethic Board of the PGKICPO, and the ethical approval was
granted on 9 November 2022, under the reference number IRB-20221109. Informed consent
was obtained from all subjects involved in the study, and written informed consent has
been obtained from the patient(s) to publish this paper.

After assembling the group of participants for the experiment, research was conducted
on a test group comprising 145 individuals aged 7 to 10 years old. The experiment for each
participant lasted no longer than 10 min, with the duration depending on the individual
and the time allocated for reproducing the pattern from memory. The summary of the
conducted experiments is presented in Table 2.

Table 2. Characteristics of the subjects.

Name Value

Number of people surveyed 145
Number of women 66 (46%)

Number of men 79 (54%)
Right-handed persons 132 (91%)
Left-handed persons 13 (9%)

People with visual impairment 7 (5%)
Individuals without a visual defect 138 (95%)

Maximum duration of the study 00:08:32
Minimum duration of the study 00:03:37
Average duration of the study 00:04:54

2.2. Research Equipment

For the purposes of the conducted research, a research station was designed and
configured, enabling the registration of observer attention. The data collected in this way
allow for the processing of the obtained video sequence using DNN, thereby enabling the
diagnosis of neurodevelopmental disorders associated with dyslexia. Figure 1 illustrates
the utilized research station.

(a) (b)

Figure 1. Stand for attention trajectory acquisition with Pupil Invisible (a) and Pupil Core (b).
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The research was conducted using two eye-tracking systems: Pupil Core v2.0.182 and
Pupil Invisible. These systems offer high precision in tracking eye movements, which is
crucial for their use in experimental research, human–computer interfaces, and virtual
reality. The systems are equipped with dedicated cameras for recording eye movements
and a camera for recording the observed scene. Pupil Core, in its initial phase, requires
calibration, which allows for precise adjustment of eye movement tracking to a specific
user. To ensure high measurement accuracy, a 5-point calibration and natural calibration
using Apriltag markers were utilized. Pupil Invisible is an attention-tracking system based
on deep learning, which eliminates the need for calibration and significantly increases
measurement reliability.

During the measurements, the least-invasive measurement model was adopted, which
utilized the Pupil Invisible eye tracker. The recorded video stream for each participant
was processed in the Pupil Cloud. In this way, measurement data were obtained, which
were used to create a training set. An example of recording observer fixations during the
object reproduction task from the Benton test is presented in Table 3. Fixations marked as
True indicate that the object of attention is within the observed scene plane defined by the
Apriltag set. The value False indicates that the observer’s attention momentarily moved
outside the field of view. Figure 2 shows a graph for the recorded data obtained during the
BVRT survey from Table 3. This data in the form of a time moving window were the input
to the LSTM network. In the experiments presented in this work, a sampling frequency
of 120 Hz was adopted. The data stream recorded during the experiments was processed
in the Pupil Cloud environment. This resulted in observer attention trajectories with a
non-uniform time axis, chronologically encompassing the moments of fixation occurrence,
their durations, and the coordinates of the detected fixations normalized relative to the
adopted coordinates of the observed scene. The resulting non-uniform time series of
fixation coordinates was processed using a window size of 256 with a shift step of 2, which
considered the lengths of the recorded trajectories in all experiments and allowed for proper
balancing of the training dataset. The observation window size was selected heuristically
to account for both the lengths of the processed trajectories (the shortest being 387 fixations,
and the longest being 574 fixations) and to maximize resistance to temporary measurement
disturbances (occlusions, blinks, going outside the controlled field of observation, etc.).

Figure 2. Graph of normalised coordinates recorded by the Pupil Labs eye tracker.
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Table 3. Examples of fixation data obtained from eye-tracking measurement.

Fixation id Duration [ms]
Fixation Detected on

Surface
Fixation x

[Normalized]
Fixation y

[Normalized]

2 350 True 0.381184 0.434751
3 155 True 0.478635 0.452984
4 216 True 0.351071 0.473251
5 79 True 0.164494 0.872142
6 735 True 0.148455 0.874538
7 351 True 0.055462 0.814655
8 371 True 0.166153 0.897663
9 991 True 0.133664 0.877281

10 135 True 0.27131 0.96255
11 220 True 0.377649 0.961936
12 223 True 0.43152 0.615011
13 323 True 0.359779 0.514438
14 251 True 0.740871 0.85324
15 131 True 0.497466 0.389931
16 199 True 0.229441 0.346479
17 152 True 0.173246 0.405854
18 231 True 0.37687 0.408425
19 368 True 0.543391 0.358734
20 167 True 0.468531 0.36243
21 251 True 0.537559 0.377421
22 531 True 0.427361 0.363313
23 91 True 0.409878 0.371664
24 1331 True 0.375001 0.397355
25 240 True 0.502381 0.388864
26 300 True 0.596782 0.367004
...

...
...

...
...

40 259 True 0.602571 0.321279
41 326 True 0.423158 0.297279
42 319 True 0.995357 0.347378
43 751 True 1.01715 0.383466
44 256 True 0.478577 0.393537
45 159 True 0.48118 0.368611
46 60 True 0.340173 0.727317
47 112 True 0.378526 0.787224
48 291 True 0.001522 0.751218
49 92 True 0.262708 0.446477
50 676 False 1.133303 0.247477
51 375 False 1.120387 0.232185
52 223 False 1.089224 0.161522
53 160 True 0.47592 0.410375
54 168 True 0.80732 0.340732
55 156 True 0.922784 0.25163
56 188 True 0.949428 0.552949
57 208 True 0.921888 0.298959
58 68 True 0.495532 0.261822
59 91 True 0.546163 0.258226
60 227 True 0.585588 0.310388
61 191 True 0.27676 0.302838
62 223 True 0.186211 0.256423
63 156 True 0.324427 0.296805
64 160 True 0.324148 0.17112
65 415 True 0.43132 0.149982
66 136 True 0.285724 0.3394
67 668 True 0.270591 0.162541
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2.3. Description of the Task to Be Carried Out

During the execution of individual studies, participants were asked to perform the
Benton Visual Retention Test, assessing visual memory. BVRT allows for inferences about
potential changes in the overall neurological status of the patient based on obtained results,
especially regarding visual perception, visual memory, and visuoconstructive abilities. It
is a sensitive diagnostic tool used, among others, in reading difficulties, traumatic brain
injuries, and attention deficit disorders. BVRT has three alternative forms: C, D, and E, all
of which are equivalent and can be administered in different conditions. In the conducted
experiments, version C of the test was used, along with method A: exposure of the pattern
for 10 s followed by immediate reproduction from memory. The test material consisted
of geometric figures placed on a white background. Views of the test cards are presented
in Figure 3.

Figure 3. Cards of the BVRT test performed. The numbers of consecutive cards 1–10 indicate the
order of their presentation during the test.

Table 4 classifies the relevant risk levels of visual perception disorders, as indicated by
the range of errors made by participants. Participants were classified based on the number
of errors made and the overall accuracy in reproducing the patterns.

Table 4. Observed dyslexia levels.

Level of Visual
Perception Disorder

Range Quantity %

Low 1–5 84 58
Average 6–7 35 24

High 8> 26 18

The correctness of copying patterns as well as their reproduction from memory were
assessed, considering both the number of correct drawings and the number of errors made.
Errors indicating spatial function disturbances involve omitting, distorting, rotating, or
repeating (perseverating) memorized figures from the previous pattern.

The visual perception experiment proceeded according to the following steps:

• Taking a seat at the research station, ensuring appropriate measurement conditions, in a
position similar to that typically assumed by participants when seated at a desk during
lessons or other activities. This ensured the naturalness of the research environment;

• Wearing the necessary glasses for conducting the visual perception test. (In the case of
using the Pupil Core system, a calibration process was conducted);

• Familiarizing oneself with the instructions regarding task execution;
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• Testing the interactive tool for reproducing pattern exposure;
• Performing the BVRT test face-to-face, consisting of 10 cards (pattern exposure fol-

lowed by immediate reproduction from memory).

In Figure 4, selected stages from the conducted experiments are presented. In Figure 5,
sample shots from the participant’s world camera and information recorded by the eye
tracker during the experiments are shown.

(a) Participant P0059. (b) Participant P0103. (c) Participant P02032

Figure 4. Selected views from the BVRT study.

In the initial phase of the experiments, the team conducted 10 preliminary measure-
ments aimed at demonstrating the existence of distinct features distinguishing attention
trajectories depending on the degree of dyslexia risk. Subsequently, a classical assessment
of participants’ work sheets was performed, determining the dyslexia risk level (DRL)
coefficient. The visualization of attention trajectories depicted in Figure 6 indicates that
the dispersion of attention for individuals with a high risk of dyslexia is minimal, whereas
for those with a low risk, it is greater. This suggests, on the one hand, greater perceptual
mobility in healthy individuals and, on the other hand, the existence of characteristic
features that can be utilized in the neural network learning process. Preliminary trajectory
sets, whose observation durations indicate that healthy individuals focus their attention on
the observed scene for a longer period, thus effectively completing the reproduction task,
are listed in Table 5.

Table 5. Dyslexia risk level and trajectory length coincidence, the best and the worst case marked
with bold respectively.

Registered Attention Trajectory Dyslexia Risk Level

2 × 461 double 0.4
2 × 574 double 0.3
2 × 506 double 0.2
2 × 637 double 0.4
2 × 576 double 0.4
2 × 548 double 0.1
2 × 482 double 0.1
2 × 357 double 0.6
2 × 477 double 0.6
2 × 387 double 0.8
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(a) (b)

(c) (d)

(e)
Figure 5. Sample footage obtained during the conducted work: (a) test card image, (b) result of
reproduced exposure of the figure, (c) fixations and saccades during card exposure and (d) during
the reproduction process, (e) chart of fixations obtained from eye-tracking measurement.
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Figure 6. Dispersion of attention trajectories according to the degree of dyslexia risk and shape of
X and Y coordinates in polar plane, left and right side of the figure, presented in the consecutive
rows respectively. (a) Trajectory length: 454, dyslexia risk level: 0.4; (b) polar view of the attention
coordinates with 7 occlusion episodes. (c) Trajectory length: 487, dyslexia risk level: 0.3; (d) polar
view of the attention coordinates with 87 occlusion episodes. (e) Trajectory length: 464, dyslexia
risk level: 0.2; (f) polar view of the attention coordinates with 42 occlusion episodes. (g) Trajectory
length: 566, dyslexia risk level: 0.1; (h) polar view of the attention coordinates with 71 occlusion
episodes. (i) Trajectory length: 559, dyslexia risk level: 0.6; (j) polar view of the attention coordinates
with 17 occlusion episodes. (k) Trajectory length: 518, dyslexia risk level: 0.8; (l) polar view of the
attention coordinates with 30 occlusion episodes.

Some of the strands of research that have formed in existing methods of detecting
dyslexia with AI methods include [13], in which the image analysis of reproduced BVRT
test cards was used, but it did not take into account the chronology and dynamics of scene
observation or the relationship between observation and drawing tool operation. The
coincidence of fixations depending on the complexity of the observed geometric figure is
depicted in Figure 7.
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(a) (b)

(c)

(d)
Figure 7. Fixation coincidence with figures’ geometry (a) 3D appearance of the attention trajectory,
(b) 2D appearance of the attention trajectory and the fixation heat map, (c) figure observation trajectory
and accompanying heat map, respectively, (d) the coincidence of the geometry of the exposed figures
and the observation trajectory.

During task execution, additional parameters of the process are recorded, such as
momentary pupil diameter, which may be associated with individual characteristics of the
study participant (see Figure 8).
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Figure 8. The attention plot of the observer during the reproduction of the shape (square) from
memory using the BeGaze Analysis Software (Version 2.4).

In the next chapter, based on the preliminary research conducted and observations,
and utilizing the accumulated experience of team members, a measurement setup using a
DNN (deep neural network) was proposed.

3. Attention-Tracking System Utilizing DNN to Support Therapy for Individuals with
Neurodevelopmental Disorders

In Figure 9, a modular structure of an attention-tracking system supporting therapy
for individuals with neurodevelopmental disorders is presented. Module A encompasses a
designed research setup for recording the observer’s attention during the performance of
the BVRT test. This module is responsible for acquiring the video stream of the observed
scene and recording the spatial position of the observer’s pupils. Module B performs
feature extraction (1) related to attention coordinate detection and fixation detection. The
obtained data are passed to component (2), where tasks associated with recognizing visual
perception disorders using LSTM (long short-term memory) networks are performed. The
obtained results are transmitted to module C, and based on them, the therapist decides
whether to initiate therapy or refer the subject to additional sessions. In contrast to previous
works, which mainly focused on the use of neural networks during the reading and writing
process [7,40–44], this study utilizes an LSTM network in the process of diagnosing dyslexia
in elementary school-aged children. For implementation purposes, the Matlab environment
and dedicated libraries for modeling DNNs were utilized. From the literature, it is known
that attention trajectories, which possess a time-series nature, are effectively processed
by LSTM networks. Therefore, the authors adopted a 5-layer model of the network, the
structure of which is included in Table 6.

Figure 9. Attention -tracking system to support therapy for people with neurodevelopmental
disorders for dyslexia diagnosis.
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Table 6. Net structure from the deep learning network analyzer.

Name Type Activations Learnables

Trajectory series Sequence input 5 –

Attention analyser LSTM 16
InputWeights 64 × 12

RecurrentWeights 64 × 16
In Bias 64 × 1

Encoder Fully Connected 6 Weights 6 × 16
Bias 6 × 1

Softmax
normalizer Softmax 6 –

Dyslexia clasifier Classification
Output 6 –

Within the LSTM layer, the input gates x and y were adopted, respectively, which
process successive fixations in the attention trajectory that occur during the measurement
process. In the diagram below, ht denotes the output, also referred to as the hidden state,
while ct denotes its state at time step t (see Figure 10).

Figure 10. LSTM Layer Diagram.

At the time step t, the consecutive net layer cells use the current state of the RNN
(ct−1, ht−1) and the next time step of the sequence to compute the output and the updated
cell state ct. The hidden state at time step t contains the output of the LSTM layer for this
time step. The cell state contains information learned from the previous time steps. Each
cell controls updates using gates (see Figure 11).

Figure 11. LSTM cell diagram.
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The diagram shows how the gates forget, update, and output generate the cell signal
and its hidden states, respectively. The learnable weights of an LSTM layer are

W =
[
Wi Wf Wg Wo

]T
(1)

R =
[

Ri R f Rg Ro

]T
(2)

b =
[
bi b f bg bo

]T
(3)

where W denotes input weights, R represents recurrent weights, and b indicates bias,
respectively. The flow of signal through the net implies that matrices W, R, and b are
concatenations of the input weights, the recurrent weights, and the bias of each component,
respectively. Additionally i, f , g, and o denote the input gate, forget gate, cell candidate,
and output gate, respectively. The cell state at time step t is given by

ct = ft � ct−1 + it � gt (4)

where � denotes the Hadamard product. The hidden state at time step t is given by

ht = ot � σc(ct) (5)

where σg denotes the state activation function. We assumed default transfer function as the
hyperbolic tangent function to compute the net state at consecutive states [45].

One of the key stages in preparing data for analysis was standardizing the duration of
fixations. Due to the large variation in the values of this feature, its standardization was
applied, allowing for comparison and analysis of visual behaviors among participants.
This stage was necessary to adapt the data for further modeling, considering the diversity
of natural visual behaviors in children.

4. Results and Discussion

The analysis of the Benton Visual Retention Test (BVRT) results conducted on a
group of early school-age children provided valuable insights into their cognitive abilities
and potential learning difficulties, particularly related to dyslexia. The study involved
145 children, each subjected to a series of trials aimed at assessing their ability to reproduce
geometric patterns from memory. Based on the obtained results, appropriate risk levels of
visual perception disorders were classified, as indicated by the range of errors made (see
Table 4). Participants were classified based on the number of errors made and the overall
accuracy in reproducing the patterns.

The total number of errors made by the study participants consists of various types of
inaccuracies, indicating the complexity of cognitive processes related to visual perception,
visual memory, and visual constructional abilities. A statistical summary of the number of
correct and incorrect reproductions is presented in Table 7.

Table 7. Summary of errors.

Name Quantity

Number of correct mappings 746
Number of incorrect mappings 704

Average number of correct mappings 5.14
Average number of misrepresentations 4.86

According to the task assumptions, the correctness of pattern execution and its re-
production from memory were evaluated. Errors indicating spatial function disturbances
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were mainly related to distortions, omissions, and displacements. A detailed breakdown of
errors is presented in Table 8.

Table 8. Summary of error types.

Types of Errors in Subjects Quantity

Skip 190
Distortion 212

Perseverations 61
Rotation 58

Translation 139
Errors of relative magnitude 44

Analyzing the results obtained from the conducted eye-tracking studies, differences
between fixations during memorization and reproduction of figures can be observed. As
shown in Figure 7, trajectories during observation and reproduction differ slightly. This can
be particularly observed in the attention plots during memorization and reproduction of
shapes. The Figure 12 illustrates the convergent learning process for the adopted network
architecture. As can be seen, this process is highly unstable due to numerous similarities
among individual attention trajectories. Additionally, one must consider the arbitrary
manner in which the expert assigns scores in the BVRT test, which generates a locally
biased information leakage effect.

Figure 12. Training efficiency for the assumed net structure model.

For the network used, a fit test of the trained network model was carried out using
a linear regression model. The following results, shown in Table 9, were obtained for the
designed network during testing mode (train/test ratio: 70%/30%). In Figure 13, a confu-
sion matrix is also presented, which facilitates the final assessment of the determination
level of the obtained model. In the test set containing 43 records, 42 records were identified
correctly with one incorrect diagnosis, yielding an overall prediction accuracy of the LSTM
network of 97.7%, which should be considered a high indicator.
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Table 9. Summary of error types.

Estimate SE tStat p Value

(Intercept) 0.03301 0.052743 0.62586 0.53488
×1 0.99709 0.014096 70.734 1.7749 × 10−44

Number of observations: 43, Error degrees of freedom: 41. Root Mean Squared Error: 0.154. R–squared: 0.992,
Adjusted R–Squared: 0.992. F–statistic vs. constant model: 5 × 103, p-value = 1.77 × 10−4.

Figure 13. Confusion matrix obtained after the completed learning process. Cells colored with pink
indicate the fields of wrong answers given by the network, while green cells indicate the fields of
correct answers. The gray color indicates the cells containing the percentages of correct and incorrect
network responses for each class, respectively.

Based on this, it can be concluded that the obtained coefficient of determination
R2 indicates the high effectiveness of the proposed method of attentional analysis for
diagnosing dyslexia.

Early diagnosis of dyslexia is essential for maximizing the potential of individuals
with dyslexia and for creating a more inclusive, educated, and economically stable society.
By identifying and addressing dyslexia early, we can ensure that all individuals have the
opportunity to succeed and contribute positively to their communities. Early diagnosis of
dyslexia is especially essential for providing children with the support they need to succeed
academically, emotionally, and socially. It empowers families, educators, and society to
create a more inclusive and effective education system, leading to better outcomes for
individuals and communities.

Over the past few years, various tools and methods have been developed to achieve
relatively high detectability of dyslexia. These include studies of brain activity associated
with cognitive processes during specific tasks using highly specialized equipment, such
as fMRI imaging. Analysis of these images with convolutional networks has achieved an
accuracy of 72.73% [13,19]. Combining fMRI with DTI can provide extended DICOM data,
which, when analyzed using PCA, serve as a source of information for neural classifiers,
achieving an accuracy of 94.87% [18].
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In contrast, other systems [13] (with an accuracy of around 94.73%) are convenient
and easy to use, as they require only modules for acquiring graphical task results. This is
an important feature that facilitates their application in school settings without the need for
an expert’s involvement. On the other hand, the age and academic skills of the children
being tested may necessitate differentiating the test tasks used for dyslexia detection.

Methods for diagnosing dyslexia that utilize reading process analysis often employ
SVM binary classifiers [28], which leverage the properties of fixation and saccade observa-
tions, achieving an accuracy of 80.18%. Higher accuracy is achieved by KNN classifiers [30],
tested on a relatively large group of children, reaching an accuracy of 95%.

Some reading task analysis methods are tailored to specific languages, such as Ser-
bian [32], where analysis of the geometry of observation trajectories achieves an accuracy of
87%. In methods aimed at individuals with reading and writing skills, both lexicographic
and semantic tasks can be used. Efforts to increase dyslexia detection accuracy also focus
on acquiring a large number of coordinates representing the state of the perception and
scene recognition process. In such cases, the task of extracting relevant information is left
to CNNs, achieving an accuracy of 95.6% [31].

5. Conclusions

This study presented significant findings on using deep LSTM networks for dyslexia
recognition by analyzing time series data depicting the attention trajectories of individual
participants. Among various eye trackers, including Tobii, SMI, and Pupil, the team
effectively utilized the Pupil Invisible and Pupil Core models, which facilitated seamless
research in school environments.

Based on the conducted experiments, the following conclusions can be drawn:

• The Benton Test, employed to establish the expected values of the training set, proved
to be an effective tool for use in intelligent systems aimed at recognizing developmen-
tal disorders in early school-age children.

• For dyslexia detection studies in children, non-invasive eye trackers that minimally
disrupt the child’s attention during measurements are recommended.

• Spatiotemporal measurements of attention trajectories can be effectively utilized to
identify anomalies indicative of dyslexia risk.

• A high level of dispersion in attention trajectories correlates with high accuracy in task
reproduction during BVRT tests, suggesting a lower risk of dyslexia.

• As with other systems that rely on expert knowledge, the arbitrary assessment method
of BVRT test results for constructing a learning sequence is a limitation. It is ad-
visable to involve a larger number of experts for independent result assessments to
enhance reliability.

• The definite ease of implementation in a school setting (preferring a Pupil Invisible
stand) of the proposed method is a significant advantage and superiority over methods
using fMRI measurements [7].

• Analyzing attention trajectories using LSTM networks offers a robust alternative to meth-
ods utilizing CNNs for static graphical analysis of the BVRT test forms, as it accounts
for the temporal and spatial strategies employed by humans in scene recognition.

Based on the observations and conclusions from the conducted research, several
promising directions for further studies on dyslexia recognition can be identified. In
particular, it is anticipated that combining LSTM and CNN networks in future research
will enhance the accuracy and confidence in dyslexia recognition results for early school-
age children. Exploring the creation of a hybrid model that combines various methods
of analyzing perception and scene recognition, as well as psychomotor reactions during
performing specific tasks, will be a focus for the authors’ future work.
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Warsaw, Poland, 19–21 May 2021; Pijanowska, D.G., Zieliński, K., Liebert, A., Kacprzyk, J., Eds.; Springer: Cham, Switzerland,
2022; pp. 1–8. [CrossRef]

14. Shaywitz, S.; Shaywitz, J. Overcoming Dyslexia (2020 Edition): Second Edition, Completely Revised and Updated; Vintage; Knopf
Doubleday Publishing Group: Broadway, NY, USA, 2008.

15. Berninger, V.; Richards, T. Inter-relationships among behavioral markers, genes, brain and treatment in dyslexia and dysgraphia.
Future Neurol. 2010, 5, 597–617. [CrossRef] [PubMed]

16. Drigas, A.; Drigas, A.; Politi-Georgousi, S. ICTs as a Distinct Detection Approach for Dyslexia Screening: A Contemporary View.
Int. J. Online Biomed. Eng. 2019, 3, 46–59. [CrossRef]

17. Sood, M.R.; Toornstra, A.; Sereno, M.I.; Boland, M.; Filaretti, D.; Sood, A. A Digital App to Aid Detection, Monitoring, and
Management of Dyslexia in Young Children (DIMMAND): Protocol for a Digital Health and Education Solution. JMIR Res.
Protoc. 2018, 7, e135. [CrossRef]

18. Chimeno, Y.G.; Zapirain, B.G.; Prieto, I.S.; Fernandez-Ruanova, B. Automatic classification of dyslexic children by applying
machine learning to fMRI images. Biomed. Mater. Eng. 2014, 24, 2995. [CrossRef]

19. Lobier, M.A.; Peyrin, C.; Pichat, C.; Bas, J.F.L.; Valdois, S. Visual processing of multiple elements in the dyslexic brain: Evidence
for a superior parietal dysfunction. Front. Hum. Neurosci. 2014, 8, 81737. [CrossRef] [PubMed]

20. Arns, M.; Peters, S.; Breteler, R.; Verhoeven, L. Different brain activation patterns in dyslexic children: Evidence from EEG power
and coherence patterns for the double-deficit theory of dyslexia. J. Integr. Neurosci. 2011, 6, 175. [CrossRef] [PubMed]
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Abstract: On-road driving studies are essential for comprehending real-world driver behavior.
This study investigates the use of eye-tracking (ET) technology in research on driver behavior and
attention during Controlled Driving Studies (CDS). One significant challenge in these studies is
accurately detecting when drivers divert their attention from crucial driving tasks. To tackle this
issue, we present an improved method for analyzing raw gaze data, using a new algorithm for
identifying ID tags called Binarized Area of Interest Tracking (BAIT). This technique improves the
detection of incidents where the driver’s eyes are off the road through binarizing frames under
different conditions and iteratively recognizing markers. It represents a significant improvement over
traditional methods. The study shows that BAIT performs better than other software in identifying
a driver’s focus on the windscreen and dashboard with higher accuracy. This study highlights the
potential of our method to enhance the analysis of driver attention in real-world conditions, paving
the way for future developments for application in naturalistic driving studies.

Keywords: controlled driving study; eye-tracking; gaze patterns; eyes-off-the-road; marker detection

1. Introduction

The evolution of personal transportation is being significantly reshaped by emerging
automotive technologies. With the rise of automated and autonomous vehicles, there’s a
notable shift in User Interface (UI) development for cars, predominantly at SAE level 2
or “Partial Driving Automation” [1]. This progression requires drivers to adapt to more
sophisticated Advanced Driving Assistant Systems (ADAS) that manage vehicle dynamics
but still rely on the driver for object detection and response, increasing cognitive load.
Moreover, current Human–Machine Interfaces (HMI) and Human–Computer Interaction
(HCI) concepts designed for manually controlled vehicles may inadvertently escalate
manual and visual distractions, challenging the promised safety levels of ADAS [2,3]. In
this context, the human driver’s situational awareness remains crucial, especially as ADAS,
despite advancements, are not infallible and may require human intervention to rectify
errors or misjudgments in certain scenarios [4].

1.1. Driving Studies

The categorization of driving research methodologies into Driving Simulators, Nat-
uralistic Driving (ND) studies, Instrumented Vehicle Studies (IVS), and CDS serve as a
critical framework for dissecting and understanding the different aspects of driving behav-
ior, vehicle maneuvering, and interactions within the traffic ecosystem. This categorization
is instrumental in integrating ET research.

Driving simulators offer a controlled environment for safely assessing driver behavior
and cognitive abilities [5,6]. These studies highlight both the absolute and relative validity
of simulators in mimicking real-road conditions, albeit with noted limitations in replicating
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the full spectrum of driving errors, particularly those related to vehicle positioning and
speed regulation. The controlled nature of simulators allows for the manipulation of
specific variables and the safe assessment of driver responses to hypothetical scenarios,
which are impractical or dangerous to test in real-world settings.

ND studies are pivotal for capturing real-world driving behavior by equipping vehicles
with cameras and sensors [7]. This unobtrusive data collection approach offers authentic
insights into the dynamic interactions between drivers, vehicles, and traffic environments.
The strength of ND studies lies in their ability to provide a rich, contextual understanding
of driving behavior without the artificial constraints imposed by experimental settings.

IVS are similar to ND studies but utilize real vehicles outfitted with advanced mea-
surement tools [8]. However, IVS can be more focused in their objectives, often geared
towards quantifying specific aspects of driving behavior or vehicle performance under
naturalistic conditions. This approach enables a detailed analysis of driver strategy, vehicle
usage, and decision-making processes. IVS can serve as a bridge between the authentic
environments of ND studies and the controlled conditions of driving simulators.

CDS involve the operation of real cars within a managed setting, such as a closed
circuit [9]. This method allows researchers to study driving behavior under adjustable
conditions, facilitating a focused examination of specific hypotheses about driver per-
formance or the effectiveness of interventions. While lacking the ecological validity of
ND studies, controlled driving allows for the precise manipulation of experimental vari-
ables, making it a valuable tool for testing specific driving aids or interventions under
semi-naturalistic conditions.

1.2. Driver Distraction

Driver distraction, defined as the shift of attention from essential driving tasks to other
activities, forms a part of the broader concept of driver inattention [10]. This encompasses
several forms, including Driver Diverted Attention, which is synonymous with distraction,
whether the focus is on Driving-Related and Non-Driving-Related Tasks (NDRT). Distrac-
tions can impede activities necessary for safe driving [11]. Eye tracking and algorithmic
analysis of glance behavior help to quantify driver inattention, despite drivers having
visual spare capacity or off-target glances [12]. Distractions are classified by the National
Highway Traffic Safety Administration into four types: visual, auditory, biomechanical
(manual or physical), and cognitive. Visual distractions involve loss of road awareness
due to a blocked field of vision or focus on non-road visual targets [13], while auditory
distractions come from sounds or auditory signals diverting attention [14]. Manual dis-
tractions involve handling devices or interfaces instead of the steering wheel, reducing
reaction time [15]. Cognitive distractions are thoughts that limit focus on driving, often
caused by external factors or cognitive overload, leading to a “Look at but not see” issue.

The NDRT necessitate the allocation of visual attention and give rise to visual dis-
traction, a phenomenon that can be quantified through gaze tracking techniques and
subsequently manifests as Total Eyes-Off-Road Time (TEORT) [16]. TEORT represents the
duration during which the driver’s gaze is not directed towards the road but is instead
focused on the Area of Interest (AOI) represented by the In-Vehicle Information System
(IVIS) interface or any other NDRT including phone usage or eating and drinking.

1.3. Eye-Tracking

ET technology is a valuable tool for user testing as it enables the precise assessment
of a subject’s perception and behavior during task execution. ET is widely used in both
real-world and simulated settings for diverse measurements, proving especially beneficial
in examining human behavior within the contexts of aviation and vehicular driving [17].
ET is underscored as a crucial method for determining driver distraction through the
classification of glance targets. Three primary approaches are present to interpreting
ET data in driver attention research [18]: 1. Direction-Based Approach: Evaluates gaze
direction (e.g., forward, up, down) to calculate indicators like Eyes-Off-Road. Its limitation
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lies in not considering the context of the driver’s gaze; 2. Target-Based Approach: Identifies
objects intersected by the driver’s gaze through manual video coding or deep learning.
While it distinguishes glance targets, it may overlook the context; 3. Purpose-Based
Approach: Focuses on areas deemed essential for driving attentiveness, integrating traffic
rules and situational contexts to evaluate gaze relevance and adequacy. These approaches
offer varying perspectives on analyzing eye-tracking data for driver attention, each with
its strengths and limitations in context sensitivity and specificity. ET systems can record
detailed user interactions and provide accurate measurements of gaze shifts, AOI times
and pupillometry, even for cognitive abilities. Previous CDS measurements were based
on a wearable eye-tracker that provides fixation points of the driver’s gaze and detects
changes in pupil diameter to monitor distraction and estimate higher cognitive load in
comparison tests [19]. Others introduced the Index of Pupillary Activity, a novel ET measure
assessing cognitive load via pupil oscillation frequency [20]. The replicable method helps
differentiating task difficulty and cognitive load.

1.4. Area of Interest

Several key studies stand out in the literature on AOI detection in various applications.
Early research has demonstrated the importance of ET in evaluating interface usability us-
ing eye movements, establishing a methodology that has become fundamental in usability
studies [21]. This work emphasized the importance of understanding how users interact
with interfaces, guiding improvements in design to enhance user experience. In one study
researchers highlight differences in gaze patterns between natural environments and lab
settings, emphasizing the need to consider natural settings in ET research as it significantly
influences gaze behavior [22]. This study underscored the variability of eye movement data
and the importance of designing experiments that mimic real-world settings as closely as
possible. Another study tackled the area-of-interest problem in ET research by proposing
a noise-robust solution for analyzing gaze data, especially when dealing with faces and
sparse stimuli. Their methodology significantly contributed to improving the accuracy
and reliability of ET analyses across multiple disciplines [23]. Another study introduces a
specialized system for ET in video lecture contexts, showcasing its utility in enhancing edu-
cational research through engagement analysis and cognitive-process understanding [24].
The research on dynamic AOIs in ET incorporates various methodologies. New methods
were introduced for filtering eye movements from dynamic areas of interest, marking
a significant advance in real-time ET analysis [25]. The methodology allows for a more
precise and automated analysis of gaze data in scenarios where the objects of interest are
not static [20]. One study presented guidelines for integrating dynamic AOIs in setups
involving moving objects, such as aircraft [26]. This study is crucial for research areas
requiring automated and structured analysis of eye movements in dynamic environments,
offering a blueprint for setting up such experiments. Another method explores using ArUco
fiducial markers to map gaze data in dynamic settings, resolving issues of object occlusion
and overlap, and also improves the accuracy of gaze tracking in complex environments [27].
A different approach introduces an open-source software for determining dynamic AOIs,
enhancing tracking in studies with moving stimuli [28]. From a signal detection perspec-
tive, one study investigates the impact of area of interest (AOI) size on measuring object
attention and cognitive processes. The findings contribute to a better understanding of
the factors that influence the interpretation of ET data [29]. Some presented a toolkit for
wide-screen dynamic AOI measurements using the Pupil Labs Core Eye Tracker, applicable
in psychology and transportation research, such as multi-display driving simulators [30].
This toolkit expands the capabilities of researchers to conduct sophisticated analyses of
eye movements in diverse and dynamic visual environments. These studies collectively
illustrate the diverse applications and advancements in AOI detection using ET technology.
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1.5. Image Binarization

Several articles have explored the complexities of image binarization, especially in the
context of historical documents. The evolution of methodologies has highlighted the incor-
poration of machine learning to enhance preservation efforts [31]. One review underscores
the challenges faced in preserving and digitizing historical documents, which often suffer
from degradation, variable text quality, and background noise. This work is pivotal in guid-
ing future research towards developing more robust and adaptive binarization techniques.
The AprilTag 2 system has been developed and optimized for better efficiency and accuracy
to present significant improvements in the detection of fiducial markers, which are essential
for robotics and augmented reality applications [32]. The AprilTag 2 system improves the
detection of fiducial markers. These markers serve as reference points in physical space for
various technological applications, including navigation, object tracking, and interaction
in augmented reality environments. The presented advancements signify a substantial
improvement in the operational capabilities of systems that rely on fiducial markers. This
showcases the potential for more seamless integration of virtual and physical elements
in technological applications. For instance, in the agricultural sector, researchers have
developed an image recognition system for cow identification. This system uses YOLO
for cow head detection and CNNs for ear tag recognition, which supports improved herd
management in precision dairy farming [33]. By employing advanced image recognition
techniques, the study demonstrates the applicability and benefits of such technologies in
the agricultural sector, particularly in enhancing the management and welfare of livestock
through improved identification and tracking capabilities. These studies demonstrate
the increasing range and ongoing enhancement of image analysis technologies, such as
binarization and other techniques, in diverse fields.

1.6. Present Study

Recent advancements in ET technology have greatly improved the understanding of
driver behavior and distraction, especially on-road, where there are many diverse envi-
ronmental variables. Although traditional methods can provide valuable insights, they
may not fully address the complexities of real-world driving due to reliability issues, and
the inability to adapt to the three-dimensional nature of a driver’s Field of View (FOV).
This gap in the literature underscores a pressing need for innovative solutions capable
of overcoming these aggravating factors. Specifically, there exists a critical demand for
methodologies that can accurately define and detect AOIs within the cabin space of pas-
senger vehicles, where the windshield’s tilt and dashboard architecture introduce unique
spatial considerations. Conventional flat-surface marker-based identification systems do
not suffice due to potential obstructions, such as the steering wheel or the driver’s hands,
and external factors like changing light conditions and glare, which compromise detection
efficiency. To address these challenges, our study presents a novel approach that utilizes a
mathematical model implemented in Matlab. This model is designed to detect markers
with exceptional efficiency, accurately identifying complex areas of interest (AOIs) within
the driver’s operational environment. Our method stands out due to its ability to consider
the spatial dynamics of in-vehicle interfaces and the external environmental factors that
affect visibility and detection accuracy.

This research aims to bridge the gap in AOI detection methodologies by providing a
robust tool that enhances the reliability and applicability of eye-tracking studies in CDS.
Our contribution is expected to have a significant impact on the field by offering a practical
solution to one of the most pressing challenges in understanding driver distraction and
cognitive load in real-world conditions.

2. Methods

This research focused on analyzing driver behavior and distraction levels caused
by IVIS, with a particular emphasis on traffic safety. The objective was to conduct data
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acquisition using an ET device to identify instances of gaze diversion from the road (gaze-
off-the-road) and precisely quantify visual distractions from onboard interfaces.

2.1. The Experiment

The visual distraction was measured using an ET system, conducted with 10 volunteer
participants (2 females, 8 males, aged 20–44 years), who had varying driving experiences
and regularly used IVIS-equipped cars. The test took place on the “High-Speed Handling
Course” at the ZalaZONE Test Center, Hungary. The study aimed to assess visual dis-
tractions during a brief NDRT using two distinct interface types. Uniform test conditions
were maintained (same test car and lighting conditions) for all participants, with task
brevity ensuring a minimal environmental impact on the results and comparability of tasks.
Conducted on a consistent, straight track section under stable weather conditions, this
minimized external distractions like road curvature and variable sunlight. The specific task
involved adjusting the car’s internal temperature using the climate control system, with
each participant receiving standardized verbal and practical instructions on interface use
before the test.

2.2. The Measurement System

For detecting visual, manual, and cognitive distractions, the study utilized the Pupil
Labs Core, a wearable ET device complemented with high-definition cameras [34]. This
head-mounted device, chosen for its superior accuracy compared to alternatives like the
SMI ETG 2.6 and Tobii Pro Glasses 2, featured binocular glasses equipped with two infrared
eye cameras and a wide-angle Red-Green-Blue (RGB) world-view camera [35]. ET data
includes video recordings (with a world-view camera, Eye0, and Eye1) and raw data
components (such as time stamps, pupil positions, pupil diameters, and calculated gaze
positions marked using x and y coordinates). The setup included an extensible, open-
source mobile ET system with software for recording and analyzing data. Calibration was
semi-automated, and for enhanced post-processing capabilities, ID-tag markers (AprilTag;
tag36h11 family [36]), sized 50 mm × 50 mm and printed on hard plastic, were strategically
positioned around the vehicle’s dashboard center console and in the driver’s windscreen
area, as shown in Figure 1. The parameters of the ET system are presented in Table 1.

 

Figure 1. Test apparatus: Pupil Core eye-tracking device installed on the head of driver; ID tags in
the view of driver (around windscreen and center console).
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Table 1. Eye-tracking system datasheet.

Feature Specification

Eye Tracking System Pupil Core eye-tracking system

Infrared (IR) Eye Cameras 2 cameras, 120 Hz @ 400 × 400 px

RGB World-view camera 1 camera, 30 Hz @ 1080p/60 Hz @ 720p, 139◦ × 83◦
wide-angle lens

Recording Management Pupil Capture software v3.5.1 (Pupil Labs GmbH.,
Berlin, Germany)

Workstation PC Specifications 11th Gen Intel(R) Core(TM) i7–11800H, 32 DDR4 RAM,
NVIDIA GeForce RTX 3050 Ti Laptop GPU

Calibration Process Semi-automated, using calibration circles

ID-Tag Markers tag36h11 family printed on 50 mm × 50 mm hard plastic
plates (ID tags: 0 to 7)

Post-processing Pupil Player software v3.5.1 (Pupil Labs GmbH., Berlin,
Germany) hereinafter called ‘Pupil Labs Software’

2.3. Processing of Measurement

The aim of the measurements is to determine if the driver is looking at the road by
tracking their gaze and fixation points using ‘Pupil Labs Software’. The gaze is compared
with the positions of ID tags on and around the windscreen. While these tags are initially
detected with low density, additional post-processing video analysis steps enhance their
precision. The critical aspect of ID tag detection is to identify the AOIs, representing the
driver’s usable field of view and the IVIS. Accurately determining these areas allows the
precise assessment of whether the driver’s gaze is on the road or looking at the dashboard,
providing essential data for measuring eyes-off-the-road times.

2.3.1. Tag Identification

During our previous ET studies, we encountered limitations with the ‘Pupil Labs
Software’ when using Pupil Labs ET glasses. The software was unable to accurately detect
tags on the vehicle due to sudden obstructions or distortions in the raw video images. The
tags, from the 36h11 family, were initially read using MATLAB’s AprilTag function. To
mark the corners of the investigated AOIs, the ID tags were positioned as follows and
shown in Figure 2:

• Area of driver’s view of the road (windscreen); ID tag numbers: 6, 7, 4, 6 (from left to
right down).

• Centre console surface (dashboard1); ID tag number: 0, 1, 2, 3, (from left to right down),

One of the challenges encountered was the inconsistent lighting and varying viewing
angles, which made it difficult to identify tags in the unedited video. In CDS scenarios, it is
difficult to avoid external light variations that may degrade camera images. It has been
observed that alterations in lighting conditions may result in flares, optical distortions, and
glare. The head-mounted ET glasses move with the subject’s head, avoiding distortion
of the AOI areas as the ID tag positions constantly shift and change relative to each other.
Another problem is when the hand, arm or control unit (e.g., steering wheel) obscures the
ID tag. These phenomena are less likely to occur in a simulation environment.

In our research, we devised a novel approach to effectively identify ID tags in video
frames; we named our method BAIT. This process involves the initial separation of each
video frame into its constituent RGB color components. Subsequently, we implemented
a binarization technique on these separated components at varying levels of sensitivity.
Binarization here refers to the conversion of the color pixels into a binary format, essentially
transforming them into either black or white pixels. The term ‘sensitivity’ in this context
describes the threshold value for the color intensity of a pixel to be considered black. For
example, at a sensitivity setting of 0%, only pixels with the maximum color intensity value
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of 255 are rendered black. Conversely, at a sensitivity of 100%, even a minimal color
intensity value of 1 is sufficient to turn a pixel black. The analysis includes examining the
original RGB frame, taking a holistic approach. For each set of analyses, one original frame
and eighteen binarized frames are considered. There are three sets at six different levels of
sensitivity each.

Figure 2. ID tag positioning (around windscreen and center console).

Once the frames have undergone this binarization process, we can then identify the ID
tags within each frame. These identifications are conducted separately for each binarized
frame, and the findings are subsequently amalgamated. Figure 3 shows the original video
frame. Figure 4 show the results of our binarization process on the three separate RGB
components of a frame, performed at different levels of sensitivity. The ID tags successfully
identified in each iteration are accentuated in black.

 

Figure 3. The original frame.
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(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4. The binary RGB color components with 0% (a), 20% (b), 40% (c), 60% (d), 80% (e), and 100%
(f) sensitivity.

Figure 4 underscores the efficacy of our methodology in recognizing ID tags under
diverse illumination conditions. This aspect is crucial, as it demonstrates the system’s
adaptability and reliability in accurately detecting ID tags in a range of lighting environ-
ments, a key requirement for consistent AOI detection in dynamic settings. It is important
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to note that this component of our method is most effective when the ID tags are in clear
view and not obscured, even in scenarios where the subject’s head is constantly moving
while wearing the eye tracking glasses.

2.3.2. Gaze on Road

In our research, we have formulated a method to guarantee effective assessment of
driver attention. This involves strategically positioning four ID tags on the windshield,
which serve to delineate the driver’s road view field as an AOI. These tags are positioned
to form a boundary that frames the driver’s view of the road. When the driver’s gaze
is located within the confines of this boundary, it is indicative of the driver’s focus on
the road. To ascertain the direction of the gaze, we analyze whether it falls to the left of
the boundary lines, which are delineated by connecting these tags in a counterclockwise
sequence. It is important to note that these ID tags are not situated precisely at the corners
of the windshield. Therefore, we have implemented specific adjustments to their placement,
which are elaborately described in Figure 5. This adjustment is critical to ensure the accurate
determination of whether the driver’s gaze is directed towards the road.

 

Figure 5. Gaze position (yellow circle with green fill), detected tags (blue squares), compensated tag
positions (dots in the corners) and “gaze-on-road” indication (dots are green not red).

In our experimental setup, we utilize marking points placed at the four corners of
the windshield to define the specific AOI. When the driver’s gaze is located within this
demarcated area, it is interpreted as focusing on the road ahead, and the visualization
shows green color indicators. Additionally, a central green mark is used to signify the
actual position of the driver’s gaze. The larger diameter green circle with a yellow frame
represents the precise and fixation state of gaze identified using the ‘Pupil Labs Software’,
shown in the raw videos that aid visualization, independent of our own analysis.

A key aspect of our methodology is the implementation of an interpolation procedure
between successive video frames. This procedure allows us to accurately track the position
of these points, even in instances where the associated ID tag is not directly detected in
a particular frame. It is important to note, however, that this interpolation technique is
most effective when the absence of the tag from the frame is for relatively brief durations.
Moreover, our approach accounts for scenarios where the known position of the ID tag
may not be within the FOV. In such cases, the previously mentioned points can still be
accurately determined based on their known positions relative to the ID tags. A practical
demonstration of this scenario is shown in Figure 6, where the effectiveness of the method
in tracking gaze position regardless of the direct visibility of ID tags is shown, and the red
color of the corner points indicates the gaze-off-road condition. This aspect underscores the
robustness of our system in maintaining accurate gaze tracking under various conditions.
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Figure 6. Gaze position (yellow circle with green fill), detected tags (blue squares), compensated tag
positions (dots in the corners) and “gaze-on-road” indication (dots are red not green).

In our study, as an alternative analytical approach, we consider any gaze that does not
fall within the specified boundary (gaze-off-road case) as an “Eyes-Off-The-Road” scenario.
This demarcation is essential to identify instances where the driver is not looking at the
road, which is a critical factor in monitoring visual distraction when conducting a specific
CDS. In cases where the experiment requires the subject to perform complex activities,
consideration should be given to modifying the boundaries of the usable FOV (e.g., by
adding mirrors) to make the measurement more accurate. Further investigation in this
regard involves the measurement of TEORT, which provides a quantitative assessment
of the duration for which the driver’s attention is diverted away from the road, thereby
offering valuable insights for visual distraction monitoring in driving scenarios.

2.3.3. Gaze on Dashboard

In order to improve driver attention monitoring and increase the accuracy of detecting
instances when eyes are off the road, it is important to develop a method for examining
interactions with the central console controls on the dashboard. In our study, the climate
control button array and the integrated touchscreen located on the central console of the
passenger car, as UI elements, play a pivotal role. The analysis of the driver’s visual
distraction during the operation of these controls (NDRTs) is a key focus. To facilitate this,
the identification of the central console as an AOI is essential. In our case, the console’s
slight orientation towards the driver, the perpendicular angle of incidence between the
driver’s gaze and the plane of the central console, and the positioning of the physical
button array and touchscreen on the same plane made it feasible to easily mark the corner
points with ID tags. However, typically one ID tag becomes obscured due to the position of
the steering wheel or driver’s hand. Therefore, the dashboard boundaries were demarcated
using only the data from ID tag 1 and ID tag 2. To compensate for the missing left-hand
corner points, predefined offsets were applied. The upper offset should be 300 pixels and
the lower offset should be 170 pixels, both parallel to the line connecting ID tag 4 and the
marked corner points of ID tag 5. Figure 7 provides an example of this approach.

The method can be applied universally, but the specific predefined plane figure and
geometric rules used to calculate the position of missing or obscured UI boundary ID
tags are determined by the measurement environment. Since the analysis and processing
of these points occur post-experiment, the method can be refined based on the specific
environmental conditions present. This approach allows for a tailored analysis that ac-
commodates varying dashboard layouts and driver interaction dynamics, ensuring a more
accurate assessment of driver attention and UI interaction in diverse driving scenarios.
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Figure 7. Incorrect recognition of the dashboard area-gaze position (yellow circle with green fill),
detected tags (blue squares), compensated tag positions (dots in the corners) and “gaze on dashboard”
indication (red dots).

3. Results

Table 2 presents the success rates of identifying windscreen boundary tags in 10 differ-
ent measurements. These rates are compared between the standard software provided with
Pupil Core ET glasses and the proprietary algorithm developed for the study, highlighting
the effectiveness of each method in tag detection under varying conditions.

To compare the performance of ‘Pupil Labs software’ and ‘BAIT’, we conducted a
comprehensive statistical analysis. We first assessed the normality of our data distributions
using the Shapiro–Wilk test. The results showed a significant deviation from normality for
both ‘Pupil Labs software’ (p = 0.0005) and ‘BAIT’ (p < 0.0001), indicating that neither dataset
followed a normal distribution. This finding highlights the need for caution when using
tests that assume normality. Additionally, the Levene’s test for the equality of variances
indicated a significant difference in variances between the groups (p = 0.00065), suggesting a
violation of the homogeneity of variances assumption. Based on these preliminary findings,
we chose statistical methods that do not depend on the assumption of equal variances
between groups for accurate analysis.

Due to the deviations from normality and homogeneity of variances, we opted to use
the Wilcoxon Signed-Rank Test for our analysis. The results of the Wilcoxon Signed-Rank
Test indicate a highly significant difference in median values between ‘Pupil Labs software’
and ‘BAIT’ (p < 0.00001), confirming a statistically significant difference in performance
between the two conditions. The ‘Pupil Labs Software’ failed to recognize ID tag 7 in 5
out of 10 instances, while ‘BAIT’ performed the worst at number 9 due to the participant
head movements (looking down) and the camera failing to capture the ID tag. The ‘BAIT’
consistently outperformed the ‘Pupil Labs software’ across all measured conditions in
accuracy and reliability. It effectively addresses challenges such as brief occlusions or slight
angle changes in ID tags, which are common in tracking scenarios. Through sophisticated
interpolation techniques, our algorithm compensates for moments when an ID tag is tem-
porarily obscured or viewed from different angles, thereby minimizing errors in tracking
and ensuring continuous and precise ID tag identification. This capability is crucial for
applications requiring uninterrupted monitoring and exact location tracking.
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Table 2. The rates of successful identification of the windscreen boundary ID tags in percentage.

No. ID Tag No. Pupil Labs Software (%) BAIT (%)

1 tag 4 20 99.50
1 tag 5 20 99.75
1 tag 6 20 100
1 tag 7 0 100
2 tag 4 26.15 100
2 tag 5 25.07 100
2 tag 6 26.15 100
2 tag 7 0 100
3 tag 4 23.28 100
3 tag 5 23.53 99.75
3 tag 6 23.77 100
3 tag 7 0 100
4 tag 4 28.26 93.91
4 tag 5 23.91 93.91
4 tag 6 11.30 96.09
4 tag 7 2.83 97.39
5 tag 4 24.52 90.74
5 tag 5 16.89 89.92
5 tag 6 23.98 98.09
5 tag 7 0.27 98.91
6 tag 4 15.99 96.45
6 tag 5 1.27 96.45
6 tag 6 34.01 99.49
6 tag 7 22.84 98.98
7 tag 4 22.54 84.44
7 tag 5 12.38 84.44
7 tag 6 26.98 90.79
7 tag 7 10.48 89.52
8 tag 4 19.30 97.95
8 tag 5 10.53 97.37
8 tag 6 28.95 99.12
8 tag 7 0 100
9 tag 4 1.88 87.76
9 tag 5 1.88 95.53
9 tag 6 32.94 96.94
9 tag 7 8.00 48.24

10 tag 4 0 99.69
10 tag 5 0 98.44
10 tag 6 0 100
10 tag 7 0 94.39

Analysis of the performance data across ID tags 4 to 7 revealed that the mean per-
centage of success for the ‘BAIT’ ranged from 92.74% to 98.05%, with relatively low mean
deviations and standard deviations, indicating consistent performance across the trials, as
shown in Table 3. In contrast, the ‘Pupil Labs software’ showed lower mean performances
with greater variability.

Table 3. Statistical values of the identified ID tags 4 to 7 (windscreen boundaries).

ID Tag No.

Pupil Labs Software (%) BAIT (%)

Mean
Mean

Deviation
Standard
Deviation

CI 95% Mean
Mean

Deviation
Standard
Deviation

CI 95%

tag 4 18.19 7.34 9.75 6.04 95.04 4.66 5.64 3.49
tag 5 13.55 8.33 9.85 6.11 95.56 3.68 5.00 3.10
tag 6 22.81 7.42 10.31 6.39 98.05 2.07 2.91 1.80
tag 7 4.44 5.60 7.50 4.65 92.74 9.55 16.00 9.92
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Table 4 compares the effectiveness of ‘Pupil Labs software’ with a custom-developed
algorithm in detecting dashboard boundary tags across 10 distinct measurements. This com-
parison serves to demonstrate the relative efficiency of each method in ID tag identification
under various conditions.

Table 4. The rates of successful identification of the dashboard boundary ID tags in percentage.

No. ID Tag No. Pupil Labs Software (%) BAIT (%)

1 tag 0 0 0
1 tag 1 20 93.75
1 tag 2 8.25 79.5
1 tag 3 19.5 98.25
2 tag 0 0 0
2 tag 1 26.15 84.64
2 tag 2 23.18 77.36
2 tag 3 8.89 77.90
3 tag 0 0 0
3 tag 1 23.28 93.38
3 tag 2 0 31.13
3 tag 3 23.77 73.53
4 tag 0 0 0
4 tag 1 29.78 93.70
4 tag 2 6.74 9.35
4 tag 3 30.65 81.96
5 tag 0 0 0
5 tag 1 26.70 90.19
5 tag 2 31.88 65.12
5 tag 3 10.08 66.49
6 tag 0 0 0
6 tag 1 27.16 85.53
6 tag 2 3.81 65.23
6 tag 3 32.49 72.34
7 tag 0 0 0
7 tag 1 20.95 78.41
7 tag 2 8.25 66.35
7 tag 3 26.98 60.63
8 tag 0 0 0
8 tag 1 26.90 66.67
8 tag 2 23.98 36.55
8 tag 3 3.51 24.85
9 tag 0 0 0
9 tag 1 8 68.71
9 tag 2 8.94 38.82
9 tag 3 24.94 28.94

10 tag 0 0 0
10 tag 1 43.30 98.75
10 tag 2 0 34.27
10 tag 3 37.69 90.03

To evaluate the comparative performance of ‘Pupil Labs software’ and ‘BAIT’, we
conducted a comprehensive statistical analysis. We ensured the robustness of our findings
by first running the Shapiro–Wilk test to assess the normality of our data distributions. The
results show that ‘Pupil Labs software’ did not significantly deviate from a normal distribu-
tion (p = 0.097), however, ‘BAIT’ exhibited a significant deviation from normality (p = 0.011),
suggesting that its data did not follow a normal distribution. Therefore, caution should
be exercised when applying tests based on this assumption. The Levene’s test for equality
of variances revealed a significant difference in variances between the groups (p = 0.0065),
violating the homogeneity of variances assumption. Therefore, statistical methods that do
not rely on equal variances between groups were selected for accurate analysis.
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Based on these preliminary findings, we chose to use the Wilcoxon Signed-Rank Test.
The results of this test showed a significant difference in median values between ‘Pupil Labs
software’ and ‘BAIT’ (p < 0.00001), clearly demonstrating a statistically significant difference
in performance between the two. The ‘BAIT’ outperformed the ‘Pupil Labs software’ across
all measured conditions in accuracy and reliability. During the measurements, ID tag 0 was
always obscured. Table 3 shows that identifying ID tag 3 was also difficult, often because
drivers obscured it with their hands while interacting with the dashboard.

The efficacy of the proposed method is contingent on a high rate of ID tag identification
and minimal non-identifiable intervals, such as when ID tags are obscured. Consequently,
reliable detection of dashboard boundaries throughout the entire measurement was feasi-
ble only in measurements 1 and 10. In measurements 2 to 7, detection was only partially
successful due to the driver’s hand obstructing the dashboard boundary ID tags for ex-
tended periods. In measurements 8 and 9, the driver frequently obscured the markers
necessary for detection, leading to an inability to determine the dashboard area during
these specific measurements.

Upon the analysis of the performance metrics, it is clear that the ‘BAIT’ software
consistently outperformed the ‘Pupil Labs Software’ for various ID tags, as demonstrated
in Table 5, with the exception of ID tag 0, as it was not recognized by any of the solutions
after being obscured. The ‘BAIT’ demonstrated significantly higher mean accuracy rates.
Notably, the standard deviations indicated greater consistency in the ‘BAIT’s performance,
with lower variability compared to the ‘Pupil Labs software’. The 95% confidence intervals
suggest that the true mean performances of the BAIT are significantly higher than those of
the ‘Pupil Labs software’ across all ID tags (except ID tag0), confirming its higher accuracy.

Table 5. Statistical values of the identified ID tags 0 to 3 (dashboard boundaries).

ID Tag No.

Pupil Labs Software (%) BAIT (%)

Mean
Mean

Deviation
Standard
Deviation

CI 95% Mean
Mean

Deviation
Standard
Deviation

CI 95%

tag 0 0 0 0 0 0 0 0 0
tag 1 25.22 5.73 8.84 5.48 85.37 8.61 10.97 6.80
tag 2 11.50 8.91 10.96 6.79 50.37 20.34 23.35 14.47
tag 3 21.85 9.08 11.20 6.94 67.49 17.81 24.00 14.87

Our comparative analysis of ID tag detection algorithms highlights significant perfor-
mance disparities between the ‘BAIT’ and ‘Pupil Labs software’, as shown in Table 6.

Table 6. Statistical values of the comparison.

Windscreen Dashboard

Pupil Labs Software
(%)

BAIT (%)
Pupil Labs Software

(%)
BAIT (%)

Mean 14.75 95.35 14.64 50.81
Mean Deviation 10.23 5.04 12.05 32.99

Standard Deviation 11.37 8.82 13.20 36.42
CI 95% 3.52 2.73 4.09 11.29

The results indicate that around the windscreen ‘Pupil Labs software’ failed to detect
some ID tags compared to BAIT. We also observed that ID tag0 remained unidentifiable
by all methods, with a recorded value of 0. This presence of extreme values adversely
affected the statistical outcomes. However, by implementing a filtering process to exclude
the instances with a value of 0, we were able to recalibrate the statistics, as illustrated in
Table 7.
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Table 7. Filtered statistical values of comparison where 0 values were excluded.

Windscreen Dashboard

Pupil Labs Software
(%)

BAIT (%)
Pupil Labs Software

(%)
BAIT (%)

Mean 17.88 95.35 19.53 67.74
Mean Deviation 8.40 5.04 9.89 19.08

Standard Deviation 9.99 8.82 11.65 24.43
CI 95% 3.10 2.73 3.61 7.57

In terms of consistency, the ‘BAIT’ displayed a more stable performance with lower
mean deviations for windscreen scenarios, suggesting a steadier focus detection. This
steadiness was particularly evident in the windscreen condition, where the mean deviation
of the ‘BAIT’ was significantly less than that of ‘Pupil Labs software’. However, the ‘BAIT’
demonstrated increased variability in dashboard focus measurements, indicated by a
higher standard deviation. The precision of ID tag detection was further characterized by
the confidence intervals; the ‘BAIT’ presented a narrower interval for windscreen focus,
implying more reliable estimates. In contrast, its estimates for dashboard focus were less
precise, as reflected by a wider confidence interval compared to its windscreen performance
and to ‘Pupil Labs software’.

Overall, these findings underline the ‘BAIT’s’ robustness in windscreen focus detection
while signaling its variable performance in dashboard focus assessment, offering critical
insights for its application and potential optimization, as visualized in Figure 8.

 

tag 6 tag 7 tag 0 tag 1

tag 4 tag 5 tag 2 tag 3

tag 6 tag 7 tag 0 tag 1

tag 4 tag 5 tag 2 tag 3

Figure 8. The results are visualized as percentages, with the position of the ID tags reflecting their
actual placement.

4. Discussion

In our research, we developed and implemented a bespoke ID tag identification
algorithm called BAIT, which exhibited a notably higher level of effectiveness in com-
parison to conventional, standard software solutions (compared to Pupil Labs software).
This enhanced performance was particularly evident in the algorithm’s ability to manage
and compensate for certain challenges inherent in the ID tag identification process. The
following methods were used for higher identification efficiency:

1. Binarization process on the three distinct RGB components of a frame, executed at
various sensitivity levels.

2. Interpolation between successive video frames.
3. Adding predefined offset.

A key limitation encountered in ID tag tracking is the obstruction of the ID tag’s
visibility. Naturally, when an ID tag is completely obscured from the camera’s view, its
identification becomes unfeasible using direct visual methods. However, our algorithm
demonstrates a significant strength in dealing with transient occlusions or minor alterations
in the viewing angle during such occlusions. This is achieved through a robust interpolation
technique, which is a critical component of our algorithm. The interpolation method
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employed is designed to predict the position of an ID tag during short periods when it is
not visible, using the data from frames where the tag is clearly identified.

Our study evaluates the performance of the ‘BAIT’ against the ‘Pupil Labs software’ in
attention detection, revealing key differences in accuracy and consistency across different
focus areas like the windscreen and dashboard, and highlighting potential areas for further
research in algorithm optimization for specific tasks as follows:

• Algorithm Performance: The ‘BAIT’ demonstrated a markedly higher mean attention
percentage on the windscreen, suggesting enhanced detection capabilities in this area
compared to the ‘Pupil Labs software’. While the ‘BAIT’ also exhibited a higher
mean attention percentage for the dashboard, the increment was not as substantial as
observed in the windscreen condition.

• Consistency of Results: The reduced mean deviation in the ‘BAIT’ for the windscreen
condition implies a more consistent measurement of focus across trials than the ‘Pupil
Labs software’. However, the larger mean deviation in the dashboard condition for
the ‘BAIT’ indicates greater variability, which could be attributed to specific challenges
in this setting or inherent algorithmic differences.

• Variability of Data: Standard deviation assessments reveal that the ‘BAIT’ yields
more consistent results for the windscreen condition. Conversely, the ‘Pupil Labs
software’ appears to provide more consistent outcomes when measuring focus on the
dashboard.

• Confidence in Estimates: The narrower confidence interval for the ‘BAIT’ in wind-
screen observations suggests a higher level of precision in these estimates, potentially
reflecting a more reliable performance in this specific task.

• Implications for Future Research: Future research could benefit from further inves-
tigation into the conditions and parameters under which each algorithm operates
most effectively, as suggested by the observed variability in standard deviation and
confidence intervals.

• Algorithmic Suitability: The data suggests that the ‘BAIT’ may be more suitable for
applications requiring precise attention detection on windshields, while the ‘Pupil Labs
software’ may be favored for tasks that demand consistent dashboard focus measurements.

The BAIT algorithm is a significant advancement in ID tag identification and has
potential for practical applications. Its robustness and precision make it suitable for in-
tegration into research studies in both controlled environments and naturalistic driving
scenarios. The BAIT algorithm can significantly enhance the accuracy and reliability of vi-
sual distraction measurements in the automotive industry, particularly in semi-naturalistic
studies conducted under varying environmental conditions and custom cockpit setups.

The study is limited by its specialized focus and environmental settings, and it only
used ET data from 10 participants, each with 8 ID tags. The custom algorithm, tailored for
driving scenarios and targeting specific areas like the FOV and UI in cars, may not perform
as well in non-driving contexts. Its effectiveness is primarily in driving scenarios used in
CDS, limiting its utility in managed settings. Reliance on ET technology and its tuning to
specific vehicle interiors and IVIS also constrain its applicability. Furthermore, its focus
on visual distraction in driving restricts broader usage beyond driver behavior analysis,
impacting its generalizability.

5. Conclusions

In conclusion, this research presents an AOI identification method specifically designed
for measuring visual distraction of passenger car drivers while using wearable ET device in
CDS. The BAIT algorithm demonstrates superior identification accuracy over the Pupil Labs
software, across various ID tags in a driving context. BAIT employs a binarization process
on RGB components at multiple sensitivity levels and an innovative interpolation method
between video frames to maintain tracking even during transient occlusions.

In our analysis, the BAIT algorithm demonstrates a significant advantage in mean
accuracy compared to Pupil Labs software, with 95.35% on the windscreen and 50.81% on
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the dashboard, suggesting a robust capacity for attention detection in CDS. The algorithm
also shows a lower mean deviation, especially on the windscreen, indicating more con-
sistent measurements. A notable limitation for any algorithm, including the BAIT, is the
obstruction of visibility of the ID tags. This challenge is particularly acute for dashboard
and UI AOI detection, where occlusions are more prevalent and significantly affect tracking
accuracy and consistency. However, the BAIT algorithm has greater variability on the dash-
board as evidenced by a higher standard deviation (36.42%) compared to the windscreen
(8.82%), pointing to a potential area for improvement in complex or variable conditions.

These results indicate that while the BAIT algorithm offers substantial improvements
in certain aspects, such as accuracy and consistency for windscreen-focused tasks, it requires
further development to enhance its reliability for dashboard-related tasks. Future work
should compare BAIT with other ET software and devices, and should focus on refining
the algorithm to reduce variability and improve confidence in its dashboard application.
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Abstract: Task batteries mimicking user tasks are of high heuristic value. Supposedly, they measure
individual human aptitude regarding the task in question. However, less is often known about the
underlying mechanisms or functions that account for task performance in such complex batteries.
This is also true of the Multi-Attribute Task Battery (MATB-II). The MATB-II is a computer display
task. It aims to measure human control operations on a flight console. Using the MATB-II and a
visual-search task measure of spatial attention, we tested if capture of spatial attention in a bottom-
up or top-down way predicted performance in the MATB-II. This is important to understand
for questions such as how to implement warning signals on visual displays in human–computer
interaction and for what to practice during training of operating with such displays. To measure
visuospatial attention, we used both classical task-performance measures (i.e., reaction times and
accuracy) as well as novel unobtrusive real-time pupillometry. The latter was done as pupil size
covaries with task demands. A large number of analyses showed that: (1) Top-down attention
measured before and after the MATB-II was positively correlated. (2) Test-retest reliability was
also given for bottom-up attention, but to a smaller degree. As expected, the two spatial attention
measures were also negatively correlated with one another. However, (3) neither of the visuospatial
attention measures was significantly correlated with overall MATB-II performance, nor with (4) any
of the MATB-II subtask performance measures. The latter was true even if the subtask required
visuospatial attention (as in the system monitoring task of the MATB-II). (5) Neither did pupillometry
predict MATB-II performance, nor performance in any of the MATB-II’s subtasks. Yet, (6) pupil size
discriminated between different stages of subtask performance in system monitoring. This finding
indicated that temporal segregation of pupil size measures is necessary for their correct interpretation,
and that caution is advised regarding average pupil-size measures of task demands across tasks
and time points within tasks. Finally, we observed surprising effects of workload (or cognitive
load) manipulation on MATB-II performance itself, namely, better performance under high- rather
than low-workload conditions. The latter findings imply that the MATB-II itself poses a number of
questions about its underlying rationale, besides allowing occasional usage in more applied research.

Keywords: pupil dilation; eye-tracking; MATB-II; task demands; attention capture

1. Introduction

1.1. Impact Statement

Human cognitive aptitude for specific applied tasks is often measured with tests or
task batteries. These batteries mimic important surface characteristics of the applied task in
question. As an example, take the Multi-Attribute Task Battery II (MATB-II). The MATB-II
presents components of a flight console on a computer screen, and participants are re-
quested to perform a sequence of subtasks typical for flying (e.g., monitoring for display
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changes or tracking of moving objects). Batteries such as the MATB-II have potentially
high ecological or external validity [1,2]. This is due to their real-world similarity. How-
ever, often less is known about their internal validity: it is unclear what underlying human
function or mechanism they are measuring because a theoretical model connecting basic
human functioning with task performance is lacking. Yet, this is important: to understand
the basic functions involved helps to improve displays and training. For example, display
signals can be designed to fit to the processing capabilities of the human user. Where this
is not possible, known difficulties (e.g., high demands imposed by a faint or peripheral
visual signal) could at least be made easier to process for humans by systematic training
(e.g., practicing the systematic scanning of the display for the nonsalient signals).

Regarding external versus internal validity, the situation is typically the opposite in a
controlled experimental laboratory task. These controlled tasks often measure specific well-
described underlying functions and are, therefore, of high internal validity. However, these
controlled laboratory tasks are less similar to real-world tasks. Thus, their external and
ecological validity is doubtful. It is unclear if they could be used successfully to discriminate
individual aptitude in a specific real-world task. For example, the effects of separate
cognitive functions or mechanisms (e.g., of memory capacity and inhibition of interference)
might not simply add up in a complex real-world task.

In the current study, we, therefore, aimed to understand the connection between
performance in MATB-II and one specific experimental task measuring visuospatial atten-
tion. Visuospatial attention denotes the selection of locations in the visual environment.
This ability is highly relevant for flight performance. For example, visuospatial attention
is used to monitor or track different parts of a flight console. However, do individual
capabilities of visuospatial attention predict performance in the MATB-II? Or is MATB-II
performance driven by other cognitive factors such as memory or the ability to switch be-
tween tasks? In addition, maybe humans steer their visuospatial attention in the MATB-II
entirely differently from how they do it in a typical visual search task used to measure
visuospatial attention under controlled laboratory conditions.

In the current study, in line with the latter possibilities, we did not find any significant
correlations between human performance on an experimental task measuring visuospatial
attention and the MATB-II. This was also the case for unobtrusive measures of cognitive
performance. In summary, thus, the present work was concerned with the internal validity
of the MATB-II. Questions regarding the external validity or ecological validity of both
the MATB-II and of our controlled measure of visuospatial attention were not addressed.
However, the fact that we did not test external validity—for example, that we did not test
the sensitivity of the MATB-II for the correct discrimination between experts (pilots) and
novices—might have created a caveat. Because we used an opportunity sample consisting
of mostly students and a few professional pilots, cognitive performance in this sample
might have simply created too little variance (though we varied task difficulty on the
MATB-II to create some variance in cognitive performance). Of lesser importance, in the
current study, we found interesting and unexpected effects in MATB-II performance as
a function of task: performance in the MATB-II increased rather than decreased with
increasing task demands (here, the number of subtasks to be performed per unit of time;
see Supplement Tables S2 and S3), and we observed that unobtrusive pupillometry could
be used to discriminate between stages of subtask performance.

1.2. Theoretical Background

The diagnosis of individual cognitive aptitudes such as that of selective visuospatial
attention or working memory capacity can take on different forms, from test batteries, over
real-world tasks, to relatively pure tests of individual cognitive functions in controlled
experiments [3–7]. In the domain of visuospatial attention, Weichselbaum et al. [8] have
recently argued for the usage of experimental tasks because they fulfill two important
criteria of diagnostic measurements: They are of high internal validity because they measure
different forms of capture of visuospatial attention—top-down dependent capture of
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visuospatial attention based on current search goals versus bottom-up capture of attention
due to high local feature contrasts or salience—in a relatively pure way; that is, free from
confounding or contaminating sources of variance such as task shifting, working memory
demands, or modality changes. These experimental task measures also showed test-retest
reliability in the form of significant correlations between measures of attention across
different measurement time points [8,9].

Here, we used the experimental measurement of visuospatial attention to see if rela-
tively pure measures of visuospatial attention can help us to understand performance in
an applied test: the Multi-Attribute Task Battery (II, MATB-II) [10]. The MATB-II uses a
simplified version of a flight console. The MATB-II can be presented on a computer monitor,
and participants must work on different tasks related to the control of the simulated flight
console. For their MATB-II performance, participants, thus, have to switch between tasks,
with different tasks associated with different areas of the console and with tasks presented
in an unforeseeable sequence. For instance, participants have to monitor two buttons in the
upper-left hand corner for color changes (from green to gray and from gray to red) and
have to respond to the color changes by left-clicking with the mouse on the corresponding
changed buttons (system monitoring task). This task is embedded in a sequence of other
tasks such as the tracking of a moving crosshair (tracking task) presented to the right
of the light and scales, or responses in the lower left of the display to audio presented
via headphones (communication task). An in-depth explanation and description of the
MATB-II can be found in Section 2.4 below.

Importantly, we chose the MATB-II for an investigation with our experimental visu-
ospatial attention measurement because especially the system monitoring task of salient
color changes in the upper left corner during MATB-II performance could benefit either
from bottom-up capture of visuospatial attention by salient stimuli, here, color changes, or
from top-down control of visuospatial attention, here, to look for particular colors (e.g., the
color red) [11–15]. To tell if bottom-up or top-down attention is responsible for MATB-II
performance is important. If salient features capture attention in a stimulus-driven or
bottom-up fashion, pilots would not need any training and participants would not need
any instructions regarding what color changes to look for. A salient color change would
capture attention, ensuring that pilots or participants pay attention to the relevant signal.
However, the situation is different if top-down control accounts for what pilots and partici-
pants pay attention to. Here is an example: Suppose you were to pick up a friend in front of
a crowded station. To successfully spot your friend in the crowd, you would have to know
what he or she looks like and search for him or her by these known features. In an analogue
case during the control of the flight console, pilots and participants would need proper
training and instructions to search for and find a critical signal on the console or display.
In this case, it would probably also be helpful to use fewer different relevant features to
search for across different subtasks in the MATB-II or in flight-console operation, so as not
to hinder switching between tasks should a signal onset happen to indicate a necessary
task switch (e.g., a blinking lamp to use fuel from a specific pump, see below for details).

In the present study, we correlated performance in the MATB-II with experimental
measures of bottom-up versus top-down capture of visuospatial attention. In this way,
we were hoping to understand if one of these types of visuospatial attention capture
contributes to the performance in the MATB-II in general, and in the system monitoring
task of the MATB-II in particular. We present the correlations in Section 3.2.

We also took care to create sufficient performance variance within the MATB-II.
This was necessary for the planned correlation or regression analyses because these analy-
ses depend on sufficient variance. To achieve sufficient variance, we varied task demands
or cognitive load in the MATB-II in two steps. Specifically, we varied the frequency of tasks
and task shifts per unit of time in the MATB-II. Here, a higher frequency of tasks and task
shifts per unit of time corresponded to a higher workload. In contrast, a lower frequency of
tasks and task shifts per unit of time corresponded to a lower workload.
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Obviously, visuospatial attention—the selection of some locations on the console
while ignoring others—is involved in MATB-II task performance. For example, one can
either track an object with the eyes or look at a changing button for the system monitoring
task, but one cannot select both objects with the eyes at the same time. Thus, we would
have expected that visuospatial attention and MATB-II task performance are significantly
correlated. However, for at least two reasons, we might have failed to find a significant
correlation. First, it is not clear if capture of visuospatial attention is the domineering factor
for MATB-II task performance. For example, performance on the MATB-II also requires
task shifting, and task-shifting abilities that are relatively independent of visuospatial
attention could be more decisive than visuospatial attention for overall performance on the
MATB-II. Secondly, related to this point, in more applied and real-world tasks such as the
MATB-II, the control of visuospatial attention can take on forms that are relatively distinct
from the types of capture of visuospatial attention that account for typical visual-search task
performance. For example, in many applied and real-world tasks, humans know where
things are located and can, thus, systematically shift their attention to a specific location in
anticipation of an expected task at this location: if humans expect a task, they could shift
attention to a specific location (e.g., to the area of the console at which a cross-hair needs to
be tracked). In contrast, no anticipatory attention shifts to a particular location are possible
in our experimental visual-search task because, from trial to trial, a to-be-searched-for
visual target is equally likely to appear at any possible stimulus location.

In the current study, in addition to the traditional performance measures such as
reaction times and numbers of errors, we also looked at pupillary responses. These are
known to increase in response to increased task demands or cognitive load [16–22]. For ex-
ample, Ahlstrom and Friedman-Berg (2016) found that average pupil size increased when
controllers used a static storm forecast tool compared to when controllers used a dynamic
forecast tool [23]. For the unobtrusive measurement of the pupillary responses, we em-
ployed a cognitive load algorithm that automatically models and subtracts size changes due
to the pupillary light response based on empirical models of the pupillary light response
and camera-based brightness measures, thereby, providing a measure of cognitive load free
of this source of pupil size variation [22,24–26]. Here, we did not find any effects of our
manipulation of task performance (see Section 3.3). However, when we looked for causes
for the lack of an average effect of our load manipulation on pupillary responses, we found
that different stages of on-task performance were not all equally correlated with a pupillary
response, such that on average, pupillary responses to task-load manipulations might have
been washed out (see Section 3.4).

One should also note that the pupil size is related to factors other than workload (or
task demands) and light, such as emotions, arousal, memory content, or pharmacological
agents [27–29]. We had no reason to suspect that the one or the other of these influences
was systematically confounded with the steps of our manipulations. Thus, we did not
control for the corresponding influences. However, the broad variety of influences implies
the relatively unspecific nature of the pupillary response, meaning that there are also
disadvantages to the method besides its advantages (e.g., its unobtrusiveness), such as a
relatively high level of noise brought about by the different influences.

2. Materials and Methods

2.1. Participants

The study included 53 participants; 5 were trained pilots (all male), and 49 were
psychology students from the University of Vienna (30 female, 19 male). Originally, we
intended to include more trained pilots. However, COVID-19 restrictions applied at the
time of data acquisition, preventing a larger sample size of trained pilots. The sample
has, thus, been gathered opportunistically. It is, therefore, not representative of a wider
population. Sample size was based on an a priori calculation assuming a large effect size
(η2 = 0.20), aiming for a statistical power of 0.8, and allowing an alpha error of 0.05. Regard-
ing the MATB-II, participants were randomly assigned to either the low-workload group
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(26 participants, three of which were pilots) or the high-workload group (27 participants,
two of which were pilots). Students received partial course credit. Pilots received a small
monetary compensation for their time. Prior to the experiment, informed consent was ob-
tained from all participants. Ethical approval (No EK_00644) was obtained from University
of Vienna’s Ethical Review Board.

2.2. Apparatus

The experiment was conducted in a dimly lit room, where the only relevant light-
source was the monitor. The tasks were presented via a 31 cm× 28.5 cm monitor (resolution,
1920 pixels × 1080 pixels; 60 Hz screen refresh rate). Participants were seated in front of
the monitor, with their gaze straight ahead, centered on the screen. Viewing direction and
distance (60 cm) were supported by a chinrest. Participants wore a mobile, video-based
eye-tracker (Pupil Labs, Berlin, Germany; sampling at 60 Hz, with an estimated gaze
accuracy of 0.6◦ (according to manufacturer)). A PC running Windows 10 (Microsoft, Red-
mond, WA, USA) and Pupil Labs software version 3.4.0 (pupil-labs.com/pupil/, accessed
on 9 September 2021) was connected to the eye-tracker for recording of pupil size, eye
movements, and the external visual surroundings. A picture of the setup can be seen in
Figure 1. This picture only serves illustrative purposes. During testing, the eye-tracker was
connected to the computer (not depicted), and the lights were dimmed (which is not the
case in this figure).

 
Figure 1. Experimental setup.

Participants also wore stereo headphones (RP-HT265, Panasonic) operating with a
standard volume of 25 on a Windows 10 computer.

2.3. Eye-Tracking Data Processing

The pupil data were exported using Pupil Player v3.0.7, with a minimum data confi-
dence of 0.6. Confidence is an assessment by the pupil detector on how sure it is about the
measurement. This measurement is taken for each frame and each eye. Pupil Labs suggests
that any confidence value exceeding 0.6 is useful data. Further data processing was done
using PyCharm Community Edition 2020.2.3. The whole dataset was reduced to a single
eye, which was chosen by its higher overall average confidence. The algorithm used a
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3D-corrected pupil size measure that takes looking direction into account [25]. To diminish
effects of uncontrolled light sources, the overhead lighting in the room was switched off
during testing, leaving the monitor in front of the participant as the only light source during
testing. The algorithm for the extraction of a pupillary load index used the brightness mea-
sured by the scene- or world-camera located over the right eye. The measured brightness
was used to model a pupillary light response on an individual basis, separately for each
participant. No further weighting of the average measured lightness by the camera (e.g., a
stronger weighting of parts of the scene) was applied. The modelled light-elicited response
of the pupil was subtracted to arrive at a load measure of the pupillary response.

2.4. Procedure and Task

The experiment consisted of three blocks. The first and third block of the experiment were
experimental measurements of capture of visuospatial attention in visual search tasks in which
participants had to search for a color-defined target and report the orientation of a cross inside
the target (upright or oblique). A singleton distractor was sometimes presented together with
the target and away from the target. The singleton distractor could be of a relatively target-
similar color or of a relatively dissimilar color, and it was expected to interfere with target search.
These blocks consisted of three rounds of 84 trials each. The visual-search task was split into
two blocks, one before and one after the second block, so that we could calculate a test-retest
reliability of the measures of visuospatial attention. The second block, in-between the visual-search
blocks, was the Multi-Attribute Task Battery (MATB-II). Before the experiment started and after
each block, the eye-tracker was calibrated for each participant. To ensure proper calibration
throughout the experiment, a fixation check was executed at the start of each trial in Blocks 1 and 3.
Figure 2 shows an example of a trial used in the visual search task, adapted from Weichselbaum
and Ansorge (2018) [9].

Figure 2. Example of a trial in the visual search task (Blocks 1 and 3).

Before the first block started, participants were shown the target color (be-
low in coordinates of the L*a*b* system; L*: luminance; a*: red/green value; b*:
blue/yellow value), which was fixed throughout the experiment and either Red
1 (L*a*b* = 62.7/79.0/65.7), Green 1 (L*a*b* = 62.5/−69.4/52.5), Red 2 (L*a*b* =
62.0/76.7/21.1), or Green 2 (L*a*b* = 62.3/−15.8/52.7), with color balanced across
participants. Participants also received an explanation of what the trials would
look like, and that their reaction time, as well as the number of correct responses
mattered. Each trial started with the presentation of a black fixation cross at screen
center for 500 ms. Here, we conducted a fixation check. If necessary, we conducted
a drift correction of the eye tracker during the fixation check. Next, the target dis-
play was presented. It consisted of seven discs. One disk was in the participant’s
target color. The other six were either all color-nonsingletons in a neutral, gray
color (L*a*b* = 62.0/12.7/−35.8)—these were the distractor-absent trials—or five
gray nonsingletons plus one singleton-color distractor—these were the distractor-
present trials. Each participant saw two types of distractor-present trials: trials with
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a target-similar or (top-down) matching singleton-color distractor (e.g., if Green
1 was the target color, the target-similar distractor would have been presented in
Green 2); and trials with a target-dissimilar or nonmatching singleton-color distractor
(e.g., if Green 1 was the target color, the target-dissimilar distractor would have
been presented in Red 1). Distractor-absent, distractor-present/target-similar, and
distractor-present/target-dissimilar trials were presented separated in rounds of the
first and the last block—that is, those conditions were the same for the 84 trials (e.g.,
7 possible target positions × 6 possible distractor positions × 2) of each round (e.g.,
84 distractor-absent trials before 84 distractor-present/target-similar trials before
84 distractor-present/target-dissimilar trials). By blocking distractor conditions,
we decreased the likelihood of shifts between different top-down search settings
even further. This was done to ensure that visuospatial attention rather than task
shifting explained visual-search task performance. However, by these runs of dif-
ferent conditions in the visual-search task blocks, we might have also inadvertently
encouraged suppression of attention capture, especially by the more target-dissimilar,
nonmatching distractor: it is known that repeating distractor colors might help es-
tablish proactive suppression of the misleading distractor [30–32]. Throughout the
search task, participants had to search for the disk in their instructed target color and
respond by clicking either the left or right mouse-button, depending on whether the
symbol inside the target disc was a “+” or an “×”. After the button press, a feedback
display was shown, telling the participants whether they clicked the correct (German
word “richtig”) or the incorrect (German word “falsch”) button. For each participant,
there was one target color, a particular order in which the rounds of the distractor-
absent, distractor-present/target-similar, and distractor-present/target-dissimilar
conditions were realized, and a specific stimulus-to-response mapping (i.e., whether
an “×” required the left and the “+” required the right button press, or vice versa). To
ensure that participants understood the task, they practiced the search task for at least
20 trials in the distractor-absent condition before data collection started. The task
was practiced in the distractor-absent condition, as this was probably the easiest
condition.

In the second block, participants were introduced to the MATB-II (see Figure 3).
The MATB-II is a computer-based task battery designed to evaluate operator performance
and workload with a simplified simulated cockpit console. It requires the simultaneous
performance on and unforeseeable switches between several subtasks: system monitoring,
tracking, communication, and dynamic resource management tasks (https://matb.larc.
nasa.gov/?doing_wp_cron=1649083621.1180279254913330078125, accessed on 3 August
2021). To perform the tasks, participants used a joystick (Model: Logitech Attack 3) and a
standard computer mouse.

The colored rectangles in Figure 3 around the task-specific locations were not shown to
the participants. They are just helpful illustrations for referencing particular locations. On
the upper left, the region surrounded by a red rectangle, numbered 1, as well as the region
right below it, surrounded by a blue rectangle with the number 2, is the “System Monitor-
ing” task. The area surrounded by the green rectangle, numbered 3, is the “Tracking” task.
Bottom left, the area within the yellow rectangle and the number 4 is the “Communication”
task, and to its right, the pink rectangle, numbered 5, is the “Resource Management” task.
All tasks will be further explained in the following paragraphs.

System Monitoring: This task requires participants to monitor two warning lights
(“F5” and “F6”) in the areas within the red boundaries of Figure 3, designated by the
number 1. Participants have to monitor that “F5” stays on/green and that “F6” stays
out/gray. If either of those states changes (“F5” turns out/gray or “F6” turns on/red),
participants must respond by left-clicking the corresponding display button. Additionally,
the dark-blue pointers in the scales “F1” to “F4” in the areas of Figure 3, surrounded by
blue outlines and designated by the number 2, have to stay within a certain range around
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the midpoint. If a pointer deviates too much from the midpoint, the participant has to
correct/reset its position to the midpoint by left-clicking on the corresponding scale.

Tracking: participants are asked to use a joystick to track the moving circle with the crosshair
as a cursor in the area with the green boundary in Figure 3, designated by the number 3.

 

Figure 3. Multi-Attribute Task Battery (MATB-II).

To note, the “Scheduling” timeline to the right of this area is also related to tracking.
It shows when the tracking task has to be performed manually and when it switches to
“autopilot”. The two green bars on the right, above the small “T” (=Tracking), signal to
the participant in advance that the tracking task must be performed manually. As soon
as the green bar vanishes, leaving behind only the thin orange line, the tracking task was
taken over by the autopilot, giving the participants some time to focus on other tasks.
The scale in the middle of this sector (located between the “C” and the “T”) serves as a
timeline in minutes until a tracking (“T”) or a communication (“C”) task starts. For two
reasons, we left this sector out of our coding scheme of areas of interest. First, the sector is
related to two different tasks and, hence, gazes directed at this area are difficult to interpret.
Second, prompts regarding both tasks—tracking (see above) and communications (see
below)—were also evident simply by looking at Sector 3 or by listening to what was
communicated via the headphones. In other words, there is no strict necessity to attend to
the scheduling area to perform those two tasks.

Communication: This task concerns the area in the bottom left of the displays, inside
the yellow border in Figure 3, designated by the number 4. Participants wore headsets
during the experiment. Through the headphones, they occasionally heard “calls” from the
MATB-II. Foreign callsigns should be ignored, but if the participants’ callsign was heard
(“NASA504” for each participant), participants had to respond by changing the frequency
of a specific radio, as they were told via this call.
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Incoming calls can also be anticipated and processed via attending to the “Scheduling”
zone. The green bars on the left above the “C” (=Communication) signal indicate to the
participant that calls are possible to come in during these critical periods, while phases
indicated by the thin orange line only mean that they cannot receive any calls during these
periods and can safely ignore audio.

(Dynamic) Resource Management: In this task, which concerns the area inside the violet
boundary in Figure 3, designated by the number 5, participants have to keep the filling of the
Tanks “A” and “B” above and below defined thresholds (between 2000 and 3000). The tanks are
slowly emptying, and participants have to use the pumps (the small areas between the tanks
numbered 1 to 8) to refill or empty Tanks “A” and “B”. Tanks “E” and “F” have an unlimited
amount of fuel, so it is not possible to run out of fuel altogether during the test. Pumps can
be activated and deactivated by a single left mouse click. Pumps can also fail (e.g., Pump 1 in
Figure 3), which is signaled by the pump turning red. Participants cannot use currently failing
pumps, but the failures end after some time.

Participants were randomly assigned to either a low- or high-workload group during
the MATB-II block. Within the same total period of time, those participants in the low-
workload group had only 3/4 the number of subtasks compared to those in the high-
workload group. The total duration of the MATB-II was 5 min in both groups. To make
sure that participants understood the tasks of the MATB-II, each group had a 1.5 min trial
or practice run before data collection.

The MATB-II ended with the NASA Task-Load Index (NASA-TLX, Figure 4), which
asked the participants about their subjectively felt workload during the task. Each subscore
came with a verbal clarification. Mental Demand—“Wie mental/geistig anstrengend waren
die Aufgaben?” (“How mentally demanding was the task?”). Physical Demand—“Wie
physisch/körperlich anstrengend waren die Aufgaben?” (“How physically demanding
was the task?”). Temporal Demand—“Wie stressing waren die Aufgaben?” (“How hurried
or rushed was the pace of the task?”). Performance—“Wie gut schätzt du deine Leis-
tungen in den Aufgaben ein?” (“How successful were you in accomplishing what you
were asked to do?”). Effort—“Wie sehr musstest du dich anstrengen, um diese Leistung
zu erbringen?” (“How hard did you have to work to accomplish your level of perfor-
mance?”). Frustration—“Wie unsicher, entmutigt, irritiert, gestresst oder genervt hast du
dich während der Aufgaben gefühlt?” (“How insecure, discouraged, irritated, stressed, or
annoyed were you during the task?”).

 

Figure 4. NASA Task-Load Index (NASA-TLX).
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3. Results

3.1. Analyses of Bottom-Up and Top-Down Capture of Visuospatial Attention in the Visual-Search Task

For the analysis of top-down and bottom-up attention capture, only trials with correct
responses were analyzed. Incorrect responses were excluded. Overall, at least 85% of the
responses were correct for each participant, while the mean of correct responses was 95%
(see Supplementary Table S4).

Two types of scores were calculated: a bottom-up score, which was calculated by
subtracting the mean reaction time of all correct responses in the distractor-absent/target-
singleton trials, in which no singleton-distractor was presented, from the mean reaction
time of all correct responses in the target-dissimilar singleton-distractor trials; and a top-
down score, which was calculated by subtracting the mean reaction time of all correct
responses in the target-dissimilar singleton-distractor trials from the mean reaction time of
all correct responses in the target-similar singleton-distractor trials. A dependent t-test of
all 49 participants between the bottom-up scores (M = 13 ms, SD = 41 ms) and the top-down
scores (M = 56 ms, SD = 83 ms) showed a significantly lower bottom-up than top-down
score, t(48) = −2.86, p = 0.006, before the MATB-II task. Similar results were shown after
the MATB-II task, with a slight numerical decrease in the bottom-up score (M = 7 ms,
SD = 35 ms) as well as in the top-down score (M = 37 ms, SD = 56 ms), t(48) = −2.59,
p = 0.013. However, no significant differences were found between the bottom-up scores
before and after the MATB-II, t(48) = 0.81, p = 0.421, or between the top-down scores before
and after the MATB-II, t(48) = 1.87, p = 0.077. These results are in line with those achieved
in past research [8].

Next, we calculated linear regressions showing the correlations between bottom-up
scores at measurement Time Points 1 and 2 and between top-down scores before and after
the MATB-II. Bottom-up scores achieved before the MATB-II correlated significantly with
bottom-up scores achieved after the MATB-II, F(1, 47) = 4.245, p = 0.048, R2 = 0.065, adj.
R2 = 0.045. The same was true for top-down scores achieved before and after the MATB-II,
F(1, 47) = 22.75, p < 0.001, R2 = 0.326, adj. R2 = 0.312. Spearman’s Rho correlations were,
thus, in the same ballpark as in previous studies, with bottom-up scores before and after
the MATB-II, rs = 0.28, p = 0.046; and with top-down scores before and after the MATB-II,
rs = 0.57, p < 0.001. See Figure 5.

When correlating the bottom-up scores to the top-down scores before the MATB-II, a
significant but negative correlation was found, F(1, 47) = 7.080, p = 0.011, R2 = 0.131, adj.
R2 = 0.112. Again, the same is true when correlating bottom-up scores and top-down scores
after the MATB-II, F(1, 47) = 22.130, p < 0.001, R2 = 0.320, adj. R2 = 0.306. Spearman’s
Rho correlations between the bottom-up scores and the top-down scores before and after
the MATB-II were as followed: rs = −0.45, p = 0.001 before the MATB-II; and rs = −0.54,
p < 0.001 after the MATB-II. See Figure 6.

Lastly, we compared the number of times participants’ gaze was distracted by the
singleton distractor with the number of times participants were distracted by the nonsin-
gletons (the gray discs). This was done to check if the distractors indeed captured attention
or if longer response times (RTs) in trials with a singleton distractor reflected a nonspatial
filtering cost [11]. Looking at all distractor-present trials, those with a nonmatching (target-
dissimilar) singleton distractor as well as those with a matching (target-similar) singleton
distractor present, we observed that participants’ eyes fixated the singleton distractors
more often (M = 22.06, SD = 13.77) than the gray nonsingletons (M = 9.16, SD = 8.16),
t(215) = 11.81, p < 0.001. This was true despite the fact that there was only one singleton
distractor in each such display, but five nonsingletons, increasing the likelihood of chance
fixations on one of the gray nonsingletons discs compared to the singleton distractors.

Specifically, in nonmatching conditions, with a target-dissimilar singleton distractor,
on average, participants fixated the target-dissimilar singleton distractor about 15 times
(M = 14.65, SD = 6.96) and the nonsingletons about nine times (M = 8.55, SD = 8.12),
t(107) = 5.90, p < 0.001. In matching conditions, with a target-similar singleton distractor
present, participants fixated the target-similar singleton distractor about 30 times (M = 29.46,
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SD = 14.87) and the nonsingletons about 10 times (M = 9.77, SD = 8.15), t(107) = 12.01,
p < 0.001. For a more detailed description, see Table 1.

 

Figure 5. Linear regressions of bottom-up scores after the Multi-Attribute Task Battery (MATB-II)
on bottom-scores before the MATB-II, as well as between top-down scores after the MATB-II on
top-down scores before the MATB-II. Blue dots and orange dots correspond to individual bottom-up
and top-down scores in the visual search task, respectively.

Table 1. Mean fixations of singleton and nonsingleton distractors divided into target color and
distractor trial.

Target-Color Distractor Trial
Mean Target

Fixation
SD Target
Fixation

Mean Nons-
ingleton
Fixation

SD Nonsin-
gleton

Fixation

Degrees of
Freedom

T-Value p-Value

Green-1 (G1) Dissimilar 18.07 8.41 12.03 10.30 27 1.87 0.038
Similar 19.75 10.85 13.25 10.35 27 2.25 0.028

Green-2 (G2) Dissimilar 16.17 5.85 7.26 6.49 29 5.50 <0.001
Similar 20.67 7.18 10.57 8.02 29 5.06 <0.001

Red-1 (R1) Dissimilar 11.85 5.25 7.00 6.35 25 2.94 0.005
Similar 40.08 9.97 5.73 4.98 25 15.41 <0.001

Red-2 (R2) Dissimilar 14.13 6.97 7.79 7.55 23 2.95 0.005
Similar 40.29 15.49 9.08 5.82 23 9.04 <0.001
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Figure 6. Linear regressions between bottom-up scores and top-down scores before the Multi-
Attribute Task Battery (MATB-II), depicted in gray, as well as after the MATB-II, depicted in orange.
Gray dots represent individual performance scores on the visual search task before the MATB-II;
orange dots represent individual performance scores after the MATB-II.

Since top-down attention-capture scores were calculated as differences in RTs between
matching distractor-present trials and nonmatching distractor-present trials, a correlation
between the top-down scores and the fixation differences was in order. For the latter,
we used the difference between the numbers of times participants looked at a matching
singleton distractor versus at a nonmatching singleton distractor, once before and once
after the MATB-II (see Figure 7).

Both before and after the MATB-II, we can see a clear correlation between the top-
down score of the participants and the difference in the numbers of times participants
fixated the matching distractors minus the nonmatching distractors (before the MATB-II:
F[(1, 47) = 27.93, p < 0.001, R2 = 0.373, adj. R2 = 0.359, rs = 0.63, p < 0.001; after the
MATB-II: F(1, 47) = 16.27, p < 0.001, R2 = 0.257, adj. R2 = 0.241, rs = 0.55, p < 0.001).
No such correlations were found between the bottom-up attention-capture score and the
same differences between the numbers of times participants fixated the matching singleton
distractors minus the nonmatching singleton distractors, both before and after the MATB-II.

One reviewer observed that significant correlations might have been suggested by
outliers only. Thus, we repeated the regression analyses without outliers. By using the
interquartile range method, we identified two potential outliers—that is, participants with
scores higher than the third quartile (Q3) plus 1.5-times the interquartile range (IQR; Q3 + [1.5
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× IQR]) in the top-down score category, and two participants who scored higher than that
in the bottom-up score category. No participants scored lower than the first quartile minus
1.5-times the interquartile range (Q1 − [1.5 × IQR]).

 

Figure 7. Linear regression of top-down scores on the difference between the number of fixations
on target-similar minus on target-dissimilar distractors. The gray dots and the orange dots depict
individual data from the visual search task before and after the Multi-Attribute Task Battery II
(MATB-II), respectively.

After removing these outliers from the sample, the correlations remained significant,
except for the correlations of the bottom-up scores before and after the MATB-II that
dropped to a nonsignificant R2 = 0.050, adj. R2 = 0.038, p = 0.053. In contrast, we saw a
positive correlation of the top-down scores before and after the MATB-II, R2 = 0.138, adj.
R2 = 0.118, p = 0.012, a negative correlation between the bottom-up scores and the top-
down scores before the MATB-II, R2 = −0.166, adj. R2 = −0.146, p = 0.006, and a negative
correlation between the bottom-up scores and the top-down scores after the MATB-II,
R2 = −0.340, adj. R2 = −0.324, p < 0.001. We also observed a positive correlation between
the top-down score and the fixations on target-similar minus target-dissimilar distractors
before the MATB-II, R2 = 0.486, adj. R2 = 0.474, p < 0.001, and a positive correlation between
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the top-down score and the fixations on target-similar minus target-dissimilar distractors
after the MATB-II, R2 = 0.343, adj. R2 = 0.327, p < 0.001.

3.2. Correlations between Visuospatial Attention in the Experimental Task and Performance on the
Multi-Attribute Task Battery

In a next step, we correlated the bottom-up and top-down scores to the overall
MATB-II scores, looking for potential correlations between scores in the MATB-II and
a top-down or bottom-up capture effect, and came to the following results. A simple
regression was used to regress participants’ overall score in the MATB-II on the bottom-up
capture effect on the one hand, and on the top-down score on the other hand. The bottom-
up capture score did not predict MATB-II performance, r(47) = −0.196, p = 0.177. The same
holds true for the top-down score, r(47) = 0.152, p = 0.297.

A further in-depth analysis of all participant groups (including all participants, only
high-workload participants, only low-workload participants, only pilots, and all partici-
pants without pilots) regressing MATB-II scores on attention-capture scores was conducted.
No significant correlation between either bottom-up or top-down scores and any of the
MATB-II subtask performance scores was found, including the system monitoring perfor-
mance score (see Supplementary Tables S5 and S6).

3.3. Analyses of Pupillary Responses in the Multi-Attribute Task Battery (MATB-II)

The analysis of the pupillary responses was conducted, with the two variables work-
load (high, low) and performance (high, low). As explained, we used an algorithm to
automatically extract a workload measure. Figure 8 shows an example of how this works.
Here, one can see how the pupil size of a participant changed during the MATB-II’s sub-
tasks, as well as the calculated change in cognitive load, and the calculated light changes
that were modelled via the Pupillary-Light-Response (PLR) model [25,26]. This model
predicts the pupillary light reflex behavior to brightness via an individually trained em-
pirical model. The model uses brightness measures from the eye tracker’s world video
data. The algorithm uses the modelled PLR to subtract it from the raw data and arrive at a
cognitive load measure.

The top left of Figure 8 shows the changes in pupil diameter over the course of
the Multi-Attribute Test Battery (MATB-II; 5 min). Here, the black line corresponds to
the pupil diameter in pixels. The colored vertical lines indicate the start and stop of a
subtask in the MATB-II. Here, the dotted green line corresponds to a change in the pump’s
function in the resource-management task (“pump error” = pump cannot be used; “pump
repaired” = pump can be used again). A dotted yellow line represents a change in the
tracking task (“manual” = participant must control the crosshair; “auto” = the crosshair
moves by itself). The dash-dotted blue line indicates the start of a communication task.
The blue line corresponds to a participant’s response to a communication task. The dash-
dotted red line represents the start of a system monitoring task. The red line indicates that
the participant responds to a system monitoring task.

The top right of Figure 8 shows the Pupillary-Light-Response (PLR) that was calculated
on the basis of the light changes, presented at the bottom right. These PLRs were subtracted
from the pupil diameter changes to derive the cognitive or workload changes. The bottom
left of Figure 8 shows the cognitive or workload changes during the MATB-II.

Using the raw average pupil diameter sizes in pixels during the MATB-II, no sig-
nificant differences between the 24 participants in the high workload group (M = 34.08,
SD = 6.59) and the 25 participants in the low workload group (M = 36.33, SD = 7.14) were
found, t(47) = 1.14, p = 0.259. The same is true for the cognitive load indices derived from
the raw data: the average cognitive load of the high workload group (M = 3.16, SD = 1.13)
did not differ significantly from the average cognitive load of the low workload group
(M = 3.46, SD = 1.21), t(47) = 0.89, p = 0.380. There were also no significant differences
in average raw pupil size diameter during the MATB-II between the 24 low performers
(M = 36.22, SD = 5.79) and the 25 high performers (M = 34.27, SD = 7.81), t(47) = 0.99,
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p = 0.328, and between average cognitive load measures derived from raw pupil sizes
between the 24 low performers (M = 3.39, SD = 1.10) and the 25 high performers (M = 3.25,
SD = 1.26), t(47) = 0.42, p = 0.678. This latter finding is particularly striking, as clear perfor-
mance differences and accompanying self-assessments of felt cognitive load or workload
were found between the two groups of high versus low performers (see Supplementary
Table S1). This means that the average of measured pupil sizes across a task battery such
as the MATB-II per se is not very revealing. Among the reasons are possible differences
between different tasks and between high versus low performers concerning the rates of
saccades and, thus, their contributions to measured pupil sizes. In general, saccades tend to
diminish pupil size responses to task characteristics [33]. In addition, pupil size differs for
different stages of task-related processing: responses before and after task-related decisions
differ [34], such that even a condition-specific average pupil size measure (let alone a mea-
sure across conditions) that averages across different processing stages of task performance
would not reflect cognitive load or workload, task demands, or overall performance in a
complex cognitive test battery. To note, participants have to take a decision prior to each of
the overt responses (e.g., a decision to start tracking the moving cursor, or a decision to
press a button that turned from green to gray).

 

Figure 8. Changes in pupil size and cognitive load of a single participant in the high workload condition.

3.4. Analyses of Pupillary Responses in the System Monitoring Task of the Multi-Attribute Task
Battery (MATB-II)

We also analyzed performance in the system monitoring task of the MATB-II more
closely because this task has potentially the tightest connection to our experimental mea-
sures of top-down versus bottom-up capture. In a first step and in direct continuation of
the discussed problems regarding the usage of an average pupil size measure, we analyzed
pupillary responses in this task as a function of two stages of the task. For each participant,
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a “task onset” was defined by the first fixation within the task-specific area of interest
following the change of the color of one of the lights/buttons, and a “task response” was
defined as the moment at which each participant pressed the light/button (following a
color change). The corresponding pupil sizes at these two points in time during the system
monitoring task were then evaluated for whether a significant change in diameter could
be found between task onset and task response. This was the case: pupil sizes at the
time of task onset (M = 34.29, SD = 7.48) were significantly smaller than pupil sizes at the
time of task response (M = 37.45, SD = 8.19), t(603) = 19.02, p < 0.001, analogous to past
findings [34] showing that pupil size changes reveal the time point of the decision (which
has to be taken before the overt manual response is given).

4. Discussion

In the current study, we investigated potential links between experimental measures
of top-down and bottom-up capture of visuospatial attention and performance in one
cognitive task battery: the MATB-II, a task battery based on operations in a simplified
flight console [8]. We did so to understand if one or the other type of directing visuospatial
attention—goal-directed, top-down-dependent capture of attention based on matches
between visual input and searched for target features [11,35,36]; or bottom-up capture of
attention due to the salience or local feature contrast between a visual singleton object and
surrounding nonsingletons [13,37–39]—explains performance in the MATB-II in general
or in its system monitoring subtask in particular. As performance in the MATB-II requires
frequent shifting of attention between different areas on the simulated console (i.e., the
monitor), and as especially the system monitoring task could be based on search for changes
of lights/buttons to particular colors (i.e., from green to gray and from gray to red), we
hypothesized that visuospatial attention could contribute to performance in the MATB-II
or its system monitoring subtask. In addition, prior research has shown that both top-down
and bottom-up scores of attention capture correlated across time and were negatively
correlated with one another, meaning that the experimental task measures of visuospatial
attention were not only internally valid, but also relatively stable [8,9].

4.1. Correlation Analyses between Visual-Search Task Measure of Visuospatial Attention and
Multi-Attribute Task Battery Scores and between Different Measures of Visuospatial Attention
within the Visual Search Task

In the present study, we did not find any of the expected correlations between attention
capture and MATB-II task performance. This was the case for the correlations between
all (bottom-up and top-down) attention-capture scores and overall MATB-II performance,
as well as for the performance scores derived from the different subtasks of the MATB-II.
In addition, we replicated the positive correlations between top-down capture scores at
measurement Time Points 1 and 2 (here, before and after the MATB-II) and between bottom-
up capture scores at measurement Time Points 1 and 2, as well as the negative correlations
between top-down and bottom-up capture scores at Time Point 1 and at Time Point 2 [8,9].
Arguably, these correlations provided the upper limit for what could be expected in terms
of maximal correlations between attention capture scores and MATB-II task performance
because, theoretically, it was to be expected that the correlations between the scores from
one and the same task—here, the visual search task—were higher than those between
the scores from two different tasks—here, the visual search task and the MATB-II—as the
different tasks had less shared sources of performance variance in common [40]. This means
underlying psychological functions were more different regarding performance in the
visual search task versus the MATB-II than within the visual search task. For example,
the task-shifting requirements [41,42] were likely higher in the MATB-II task, whereas
suppression of predictable color distractors played probably a larger role in the visual
search task [30,31,43]. In the current study, by blocking the different distractor conditions
in the visual search task (e.g., by presenting first all trials without a singleton distractor,
then all trials with a nonmatching/target-dissimilar distractor, and then all trials with a
matching/target-similar distractors), we reduced the residual shift costs that might have
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theoretically resulted from trying to ignore different specific color singletons from one trial
to the next [44,45]. In contrast, task shifts are common in the MATB-II [46]. Likewise, by
using different colors to indicate different tasks (e.g., changes from green to gray and from
gray to red in the system monitoring tasks) of the MATB-II, we made it very difficult if
not impossible for participants to proactively suppress particular irrelevant colors in the
test battery [47]. In contrast, using the same singleton-distractor colors for blocks of trials,
proactive suppression of distractor interference was probably a factor in the visual search
task [31].

Summarizing, it seems that the chances for finding any significant correlations between
the experimental visual search task’s attention capture scores and the MATB-II performance
scores were limited from the start by the less than perfect reliability or temporal consistency
(i.e., the correlations < 1.00) of the attention-capture scores in the first place, especially the
bottom-up capture score. In addition, there might have been good theoretical reasons why
the correlations between attention capture scores and MATB-II performance were low or
nonexistent. For example, in the current study, the correlations of the top-down scores were
numerically not as low across measurement time points as that of the bottom-up capture
scores. Thus, theoretically, there was more space for a correlation of the top-down capture
score with the MATB-II performance, especially in a subtask such as system monitoring
that participants could have solved by searching for specific colors. However, potential
correlations between top-down capture scores and MATB-II task performance that were
currently not found could have suffered for theoretical reasons alone. For example, past
research has shown that participants have increasing difficulty to proactively search for
several relevant colors at the same time [48–52]. However, this was what was required in
the MATB-II task. For example, a change from a green to a gray color and a change from a
gray to a red color were both task-relevant in the system monitoring task of the MATB-II.
In fact, with its fixed positions on the monitor, participants in the MATB-II task could
have even used a location-based monitoring (or search) strategy for their task-shifting and
subtask performance [53–55]. For example, it is known that participants can exploit their
knowledge of likely locations of objects in a scene for their shifts of attention and their
eye movements [56–58]. In the present study, considering that specific colors (e.g., the
color red) had different meanings depending on where they were located in the display
(e.g., they indicated that a button had to be pressed in Areas 1 and 2, see Figure 3, but that
a pump failed and can currently not be used to replenish tanks in Area 5, see Figure 3),
a location-based strategy or a strategy that looks for conjunctions of specific colors and
locations is not unlikely to account for performance in the MATB-II.

4.2. Further Findings of Interest

In addition to these most important findings, we observed surprising effects of cog-
nitive load (or workload) on performance in the MATB-II (see Supplementary Table S2).
To increase variance in the MATB-II performance, we used two workload conditions
differing in the number of tasks and task shifts per unit of time. Contrary to what we
would have expected, however, in the present study, participants’ performance was higher
in the system monitoring and tracking subtasks under the high- than under the low-
workload conditions. Typically, performance in cognitive tasks such as the MATB-II de-
clines with a higher workload [46,59,60]. There are several possible reasons for the presently
found deviation from this expected pattern. First, participants in the low-workload con-
dition might not have performed close to capacity, meaning that there could have been
spare capacity to prioritize the two subtasks of system monitoring and of tracking, for
which we found performance improvements relative to the low-workload conditions.
Second, because we used a between-participants design, it is possible that generally bet-
ter performing participants were placed in the high-workload than in the low-workload
group. Third, somewhat related to the first point, general physiological activation in the
less demanding conditions might have been too low for optimal performance. It is as-
sumed that emotions experienced in “boring” tasks, imposing too little demands, and the
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resulting achievement motivation could be too low for optimal cognitive performance [61].
Partly in line with this proposal, early findings suggested, for instance, an inversely u-
shaped function relating physiological arousal to task performance [62]. Fourth, a very
interesting possibility has recently been suggested when dual-task performance benefits
over single-task performance were observed [63,64]. Researchers [63] believe that the
necessity to suppress a prepotent response that would naturally occur under some single-
task conditions (e.g., not being allowed to look at a target when a spatially compatible
manual response to the target is required) could create a single-task cost that is absent
when participants are allowed to perform both responses (or “tasks”). According to this
reasoning, subtasks in the MATB-II could partly better be integrated with one another in
the high-workload condition than in the low-workload condition. For example, alluding to
the possibility of a location-based search strategy to look for changes of the stimuli that we
discussed above, a higher frequency of the system monitoring task in the high-load condi-
tions could have led to more fixations in this area of the screen (Areas 1 and 2, see Figure 3),
and performance on the visually controlled task in the spatially adjacent area (Area 3, see
Figure 3, here, the tracking task) could have benefitted from this general looking-direction
effect. This type of coupled benefit between performance on these two tasks would be fully
in line with our observation of a better performance in these two tasks under high-load
conditions (see Supplementary Table S2). It is also in line with a post hoc comparison
of the overall higher fixation durations on regions of interest of the tracking tasks under
low- than under high-load conditions, suggesting that a higher rate of switching between
tasks allowed the participants to be more aware of changes that needed a participant’s
response. Of the 24 participants in the high-workload condition, only a mean of 36%
(SD = 9.64) of the time spent looking at the MATB-II tasks in total was directed at the area
of interest of the tracking task, while the 25 participants of the low-workload condition
spent a significantly larger mean amount of 42% (SD = 8.75) fixating on the tracking task,
t(49) = 2.09, p = 0.047. Other subtasks of the MATB-II under high-workload conditions
might have neither benefited, nor suffered from this dual-task benefit for system monitor-
ing and tracking because these other tasks relied on auditory input (i.e., the communication
task) and, thus, would not benefit from visuospatial attention being directed to an adjacent
area, or were less dependent on directing visuospatial attention to the particular region of
the monitor for other reasons such as being relatively insensitive to the exact time at which
the task was handled. The latter would have been the case for the resource management
task, for which we did not even analyze reaction times, and which was also least sensitive
of all subtasks to the performance difference between high- and low-performers in the
MATB-II (see Supplementary Table S7).

4.3. Pupillary Cognitive Load or Workload Responses

A related point of interest concerns the insensitivity of our pupillary cognitive load
index to the manipulations of workload, but also to the factual task performance—that is,
to the median split of our participants into high versus low performers on the MATB-II.
To note, the cognitive load index is a computationally modelled load-elicited pupillary
response that is supposed to be free of the luminance-elicited pupillary size change. While
we could relatively easily explain the lacking impact of our workload manipulation on
the cognitive load index of the pupillary response through the lacking predicted impact
of our workload manipulation on performance in the MATB-II, this is not the case for the
absence of a difference in the cognitive load index of the pupillary response between high
and low performers. The latter groups clearly differed from one another in terms of their
performance in the MATB-II in all but one subtask (i.e., the resource management task).
Yet, these groups did not differ with respect to their cognitive load index derived from
pupillary responses. In addition, high versus low performers also differed regarding their
self-assessed workload (see Supplementary Table S8). These significant differences imply
that there would have been theoretical reasons to expect a difference in the cognitive load
index of the pupillary response. At least three possibilities come to mind explaining the
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discrepancy between the two measures (objective performance on the MATB-II versus
pupil-based load index). First, it is possible that averaging the cognitive load index of the
pupillary response across different stages of the subtasks of the MATB-II simply washed
out any load differences between high and low performers due to averaging across times of
very different sensitivity of the pupils to the load differences. For instance, recent research
suggested that indices of pupil sizes could vary depending on the amount of saccades
conducted in a task [33]. This was not controlled for in the current study. This general
possibility of a watered-down effect of averaging would also be in line with the general
observation of stages of different sensitivities of the pupil size for task demands, such as
pre- versus postdecisional stages [34]. This possibility of averaging out of the pupillary
response to varying degrees would also be supported by the following observation: we
observed a difference in the pupillary response at task onset versus at task response.
This difference came to light in our more detailed analysis of the system monitoring task
performance. Secondly, other studies have also found that different measures of cognitive
load such as task performance and pupillary responses do not always converge [60]. In
fact, even the performances on different visual tasks that are meant to measure the same
aptitude do not necessarily converge [40]. Thirdly, we believe that there is also space for
improvement of the estimation of the light-elicited response in spatially articulated displays
such as that of the currently used MATB-II. For example, it is known that even subjectively
perceived lightness can prompt a light-elicited pupillary response [65,66]. There is arguably
room for such illusory lightness in articulated monitor displays [67] such as the ones
used in the MATB-II that is currently not ruled out by the automatic measurement and
subtraction of the objective light-elicited pupillary response [25,26], so that it is possible
that the corresponding artifacts in the pupil size measures could have watered down the
true influence of cognitive load on pupil size in the present study’s MATB-II, too.

4.4. Limitations

Our discussion already revealed a number of limitations. We pointed out that future
studies should take saccade rates into account and that they need to carefully discriminate
not only between tasks, but also between stages of task-specific processing to make use
of pupil-size measures. In addition, we argued that pupil size measures of workload
may also benefit from taking into account more subtle visual brightness effects than are
currently measured with the video camera-based brightness measurement. However, we
think that controlling for additional influences on pupil size that are relatively independent
of workload and brightness (e.g., emotions) is not necessary, unless one has good reasons
to assume that such independent effects are confounded with effects of workload.

In addition to these points, more generally, we based our sample size estimates on
substantial effect sizes. Certainly, weaker effects were, therefore, impossible for us to detect.
Regarding the participants that we tested, we failed to collect more data from experts,
in our case, pilots. Instead, our sample consisted of mostly students. This is maybe not
ideal in two respects. On the one hand, more pilots could have meant that task-relevant
performance variance would have increased, allowing all variance-based measures a better
chance to be detected. On the other hand, students might also have been relatively good
performers, meaning that especially weaker performers would have been missing, again
restricting the overall performance variance in an unnecessary way.

At a theoretical level, one could argue that too little is known yet about how separate
cognitive functions such as bottom-up or top-down visuospatial attention play out in
more complex applied or real-world tasks. As a consequence, testing for the role in a
more applied setting might have been overly optimistic in the first place. This is true, but
we would also want to point out that research such as the present study would help to
inform these applied or real-world task models by demonstrating if a particular cognitive
mechanism or function would have to be taken into account to explain cognitive task
performance, yes or no. At a conceptual level, one could also argue that the major purpose
of a task battery (e.g., the MATB-II) is its usage in diagnostics. What matters most is if a
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task or test (battery) could tell people with and without high aptitude from one another. In
contrast, understanding the exact working of such tasks or tests would not be necessary for
this purpose. Here, we would like to argue, however, that the internal validity of diagnostic
tasks or tests is important, even for the practical purposes mentioned above. Knowing what
exactly accounts for task or test performance could help to increase task or test sensitivity
for the aptitude in question even further. For example, knowing what accounts for task
performance would allow one to construct trials or items suited to measure the major
performance contributors.

5. Conclusions

In the current study, we found no evidence that measures of top-down or bottom-up
capture of visuospatial attention had any bearing on performance in a more applied cog-
nitive task battery. Just as being good at cycling is not sufficient to perform well during
a triathlon (which requires one to also run and swim well), visuospatial attention could
simply not be decisive for overall performance when operating a flight console. This find-
ing casts doubt on the generalizability of experimental task performance to more applied
and real-world tasks. This finding also emphasizes the doubtful ecological validity of
many experimental tasks (although they are doubtlessly of high internal validity) [68].
We could also not find any links between MATB-II task performance and cognitive load
indices derived from pupillary size. Moreover, we observed surprising effects of workload
(or cognitive load) manipulation on MATB-II performance itself. Maybe it is not too sur-
prising that pupillary responses did not react to the task load manipulation because the
latter created a paradoxical effect. However, we want to emphasize that there were also
no significant correlations between pupillary responses and individual MATB-II perfor-
mance. These findings imply that the MATB-II itself poses a number of questions about
its underlying rationale. These findings also revealed that pupillary responses are not
necessarily an ideal tool to tell participants of varying aptitude apart. This conclusion at
least holds for the relatively homogenous sample of mostly student participants that we
used in the current study. Nevertheless, these types of studies, where concepts with a
strong foundation, which in our case would be the bottom-up and top-down search task
paradigm, and real-world use-cases are compared toe to toe, are incredibly beneficial for
our understanding of limitations of lab studies, as well as possibly finding issues in validity
and reliability of a real-world use-case testing apparatus.
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Abstract: Measuring oculomotor abnormalities in human subjects is challenging due to the delicate
spatio-temporal nature of the oculometric measures (OMs) used to assess eye movement abilities.
Some OMs require a gaze estimation accuracy of less than 2 degrees and a sample rate that enables
the detection of movements lasting less than 100 ms. While past studies and applications have used
dedicated and limiting eye tracking devices to extract OMs, recent advances in imaging sensors
and computer vision have enabled video-based gaze detection. Here, we present a self-calibrating
neural network model for gaze detection that is suitable for oculomotor abnormality measurement
applications. The model considers stimuli target locations while the examined subjects perform
visual tasks and calibrate its gaze estimation output in real time. The model was validated in a clinical
trial and achieved an axial accuracy of 0.93 degrees and 1.31 degrees for horizontal and vertical gaze
estimation locations, respectively, as well as an absolute accuracy of 1.80 degrees. The performance
of the proposed model enables the extraction of OMs using affordable and accessible setups—such as
desktop computers and laptops—without the need to restrain the patient’s head or to use dedicated
equipment. This newly introduced approach may significantly ease patient burden and improve
clinical results in any medical field that requires eye movement measurements.

Keywords: eye tracking; gaze detection; computer vision; neural networks

1. Introduction

With the development of computational technology and automated machinery, eye
movement measurements—specifically, gaze detection and tracking—have gained increas-
ing interest in recent decades. Some applications of gaze detection aim to improve the user
interface and engagement with various external complex controlled systems; for example,
gaze-based human–computer interactions [1,2] enable the hands-free operation of software,
while safety and awareness gaze-based assessments ensure the optimal functionality of
drivers [3], pilots [4], and even surgeons [5,6]. Another set of applications intends to har-
ness the remotely detected gaze to map the saliency of selected items in the overall field of
view. Advertisement and marketing-oriented studies [7,8] have extensively implemented
gaze detection, and tourism researchers have performed gaze detection along with the
measurement of other emotional and physical metrics to estimate reactions to particular
items or sights [9].

Another rapidly extending set of gaze detection applications is aimed at non-invasive
measurement of eye movements in patients with various diseases. As a primary appar-
ent output of the oculomotor system, gaze detection time-series data allow for further
derivation and extraction of the eye movement features directly associated with a subject’s
cognitive and motor functionality, enabling the detection of eye movement abnormalities
that may be related to the patient’s condition.

Eye movement abnormalities refer to deviations or irregularities observed in the
typical characteristic patterns of eye motion in healthy individuals. Such deviations may be
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indicative of underlying neurological, ophthalmological, or vestibular disorders, making
them significant diagnostic indicators for clinicians [10].

The human eye engages in various movement types, including saccades (rapid move-
ments between separate fixation points), smooth pursuit (continuously tracking moving
objects), and nystagmus (involuntary rhythmic oscillations of the eyes). Abnormalities in
these movements may manifest in various OMs in terms of accuracy, speed, co-ordination,
and response patterns with respect to visual stimuli.

Abnormal eye movements may be the result of factors such as damage to the neural
pathways governing eye movements [11], dysfunction in the muscles responsible for ocular
motion [12], or disruptions in the vestibular system (which processes spatial orientation
and balance) [13]. Consequently, eye movement abnormalities are observed across a
spectrum of conditions, including those affecting the central nerve system (CNS) such as
multiple sclerosis [14,15], Parkinson’s disease [16,17], and amyotrophic lateral sclerosis
(ALS) [18,19]. Therefore, extracted eye movement features (i.e., OMs) have potential as new
biomarkers for the diagnosis of several CNS diseases [16,18,20,21], strongly correlating
with the patient’s condition and disease progression [22].

Clinicians routinely examine and assess eye movements as a diagnostic tool. Monitor-
ing the accuracy, velocity, and co-ordination of eye movements provides valuable insights
into the integrity of neural circuits involved in visual processing and motor control. While
clinicians have conducted eye movement examinations for decades, the OMs extracted
without specialized equipment or laboratory setup are limited, mainly due to the required
temporal and spatial sensitivity. For instance, Saccade movement duration (the time from
initialization of the movement until the first stop of the eye) may reach values in the order
of 100 ms, posing challenges for the manual detection of eye movement abnormalities.
Therefore, the introduction of gaze detection tools with high spatio-temporal accuracies
is expected to enable the extraction of the relevant OM, allowing for a more confident
observation of eye movement abnormalities.

Although humans can quite accurately detect someone else’s gaze visually (i.e., tell
where that person looks), the equivalent technology used to locate a human subject’s point
of regard (PoR) is still lacking. The most commonly used eye trackers at present are Infrared
(IR) active sensors, which track the eye’s position and orientation to estimate the subject’s
PoR. These specialized IR eye trackers are currently considered to be the most accurate
measurement tool for gaze detection and can be mounted next to a desktop monitor [23] or
embedded in wearable head devices (e.g., glasses) [24]. However, even in state-of-the-art
IR eye trackers, researchers have observed significant sensitivity to the experimental setup
and the diverse characteristics of subjects [25].

Video-based gaze detection has been in development since the 1970s, with many
limitations and restrictions imposed on the experimental setup (e.g., fixed head position, an
array of mirrors around the subject, multiple camera deployment) and light sources [26,27].
However, advances in hardware since the early 2000s have accelerated the development of
video-based gaze detection using standard, affordable web cameras, with their resolution,
sensitivity, and frame rate having significantly increased, thus enabling more accurate
gaze detection using existing analytical algorithms. In recent years, both computation and
storage costs have dropped while data transfer bandwidths have widened, enabling the
introduction of efficient and robust neural network (NN) models for video-based gaze
detection [28]. This recent leap has encouraged the development of high-accuracy, video-
based gaze detection, which may be applied for all the above purposes, with an affordable
price tag and a convenient and flexible (ideally seamless) setup.

We introduce and test a gaze detection model that combines several neural network
models for eye detection, eye segmentation, and gaze estimation with an ongoing real-time
calibration procedure. Our study is aimed at the neurological applications of gaze detection
and considers the essential measurement for the extraction of OMs, performed using a
simple and affordable setup that presents visual stimulation tasks and processes the video
of the gazing subject captured using a webcam. As some OM classes (e.g., saccadic latency)
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require high spatio-temporal resolution, high accuracy is required when extracting the gaze
PoR in each video stream frame.

In this paper, we present our gaze detection model, along with its validation and
error estimation results. Section 2 describes the gaze detection model and the clinical
study environment, including the experimental setup, examination protocol, and the
demographic data of participants. Section 3 provides the results of the video-based gaze
detection model, compared to a reference specialized IR eye tracker for validation. In
Section 4, we discuss our findings.

2. Materials and Methods

2.1. Gaze Detection Model

The gaze detection model used in this study was developed based on existing pub-
lished NN models for video-based eye detection, eye segmentation, and gaze detec-
tion [22,28], with the addition of information regarding visual stimuli target locations,
as depicted in Figure 1.

 

Figure 1. A schematic description of the gaze detection model configuration, where the only input
data are the camera-captured image and the stimuli target location on the display. The output Y is
the calibrated gaze point of regard (PoR) on the display.

The initial input—namely, an image containing the subject’s face—is first processed
using the MediaPipe neural network. The MediaPipe Face model [29] detects face land-
marks from still images or video; specifically, landmarks around the eyes, such as the
iris and the eyelid boundaries. These landmarks are used to extract the eye position in
each image. Then, using the eye position information, two smaller images of the left and
right eye are cropped from the original image, of which one is horizontally flipped, as is
common practice in the field [20], in order to optimize training by assuming symmetry
of the extracted features. The cropped eye images, along with the eye position in the
image, are then passed into the NeuraLight Gaze Estimation Model (NLGEM), the general
architecture of which is shown in Figure 2.

The NeuraLight Gaze Estimation Model is a deep neural network (DNN) composed of
three distinct modules: (1) A Convolutional Layers Module, including two equally weighted
networks (for the two eyes), which extracts relevant features from eye images using convolu-
tional layers; (2) Fully connected layers (Eye Position Data Module), which generate features
based on eye position data (i.e., this module processes spatial information); (3) Integration
layers (Combination Module), which utilize fully connected layers to combine the features ex-
tracted from the image (module 1) and spatial information (module 2). The output is mapped
into the target PoR co-ordinates for each eye, denoted as X.
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Figure 2. A schematic description of the deep neural network (DNN) gaze detection model, compris-
ing an NN module for eye positioning (lower left, based on the MediaPipe framework) and an NN
Gaze Estimation module (right, based on a CNN).

The NLGEM model was trained using 109 subjects as a part of a large healthy subject
cohort [30] examined in 925 sessions, with 153,119 frame samples. The NLGEM training
cohort included 70 males and 39 females, with a mean age of 41 and a standard deviation
of 18.5 years and with the IR eye tracker readings as the training labels.

The NLGEM output gaze point co-ordinates of the two eyes are averaged into a single
generic gaze estimation PoR, X, represented with two co-ordinates, which are passed
along with the target location into the Calibrated Gaze Model (CGM), which predicts the
calibrated gaze PoR, Y, as described in Equations (1)–(3), for multiple frames.

The calibrated gaze matrix Y and generic gaze matrix X are given as follows:

X =

[
xh
xv

]
, Y =

[
yh
yv

]
(1)

where xh and xv are the NLGEM gaze estimation vectors in the horizontal and the vertical
axes, respectively, and yh and yv are the CGM calibrated gaze estimation vectors in the
horizontal and vertical axes, respectively.

For each of N known stimulus target points, a group of calibrated point matrices
Yi=1...N and their corresponding NLGEM generic gaze estimation matrices Xi=1....N are
extracted, and the calibrated gaze vector is approximated by solving a regression problem
defined according to the following equations.

yi,h = Eh(Xi) ; yi,v = Ev(Xi) (2)

where Eh and Ev are second-order polynomial regression functions [31–33] of the
following forms:

Eh(X) = Eh(xh, xv) = a0 + a1 · xh + a2 · xv + a3 · xh · xv + a4 · x2
h + a5 · x2

v,

Ev(X) = Ev(xh, xv) = b0 + b1 · xh + b2 · xv + b3 · xh · xv + b4 · x2
h + b5 · x2

v.
(3)
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Hence, for each calibration point Yi, with corresponding NLGEM generic gaze esti-
mation matrix Xi, the optimal (least error) coefficients a0...5 and b0...5 are calculated and
further used within the test sequences for ongoing calibration within the examination
sequence. This procedure is repeatedly performed during the examination, allowing for
supervised learning of the coefficients that may vary between individual subjects, physical
setup, and environmental conditions.

2.2. Validation Experiment

The NLGEM and the combination of NLGEM and CGM were validated by comparing
the video-based gaze detection results with those of a specialized IR eye tracker (Tobii,
Sweden [23]). IR eye tracker and video data were collected from 25 healthy subjects, who
were randomly selected from a large cohort of healthy subjects [30].

The validation cohort included 259 subjects: 159 females and 100 males aged
19–86 years, with a mean age of 64 years and a standard deviation of 14 years. A to-
tal of 128 of the 259 subjects wore corrective glasses during the test (see Table 1). During the
data collection sessions, the subjects sat in front of a monitor, at an approximate distance
of 50–70 cm (see Figure 3), and were instructed to complete a set of tasks that included
horizontal and vertical reflexive pro-saccades.

Table 1. The validation cohort groups with their corresponding number of participants; age range,
mean, and standard deviation; and fraction of participants who wore glasses during the test.

Group Number
Age [yr] Glasses Used/N

(Min, Max) (Mean, Std)

Male 100 (19.3, 86.3) (59.2, 16.6) 44/100
Female 159 (19.3, 83.2) (65.7, 13.0) 84/159

Total 259 (19.3, 86.3) (64.5, 13.8) 128/259

 

Figure 3. The physical experimental setup in the NeuraLight laboratory. The subject is sitting in front
of a display presenting the visual stimulation. Both a video camera (on the top of the monitor) and a
specialized IR eye tracker (on the bottom of the monitor) record the subject’s eye movements during
the examination.

During the pro-saccade task session, the subjects were directed to stare at a red dot
when it was presented. The dot appeared at the center of the screen for some (random)
time, then immediately disappeared from the screen center and appeared at an angular
distance of ~20 degrees or ~13.5 degrees for horizontal or vertical prosaccades, respectively.
The dot stayed at its displaced location for 1500 ms and then disappeared. After another
300 ms, where no dot was displayed on the monitor, the central dot reappeared for the next
repetition (see Figure 4).
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Figure 4. A schematic diagram demonstrating the stimuli displayed during a single horizontal
saccade (left panel) and vertical saccade (right panel) task over time. The time interval containing
the displaced stimulus is constant and set to 1500 ms, while the time interval in which the monitor
is empty between the disappearance of the biased stimulus and the reappearance of the centered
stimulus is constant and set to 300 ms.

All tasks were performed on a 1920 × 1080 pixel (52.8 cm × 29.7 cm) monitor pre-
senting a uniform grey background, with a 1.38 cm diameter red circle as the gaze target,
representing a target whose angular size (from the subject’s location) was 1.35± 0.22 de-
grees. The tests included six 60-s sessions, each containing several pro-saccade stimuli. A
break of 30 s was given between the sessions.

While the test sessions were performed, all video and IR eye tracker data were collected
using an Apple Mac Mini computer (Apple, designed in Cupertino, CA, USA; manufac-
tured in Malaysia). The stimulus monitor and the webcam timestamps were synchronized,
and the data were stored in cloud storage in compliance with HIPAA restrictions. The
analysis and preprocessing of data were conducted on an AWS EC2 compute-optimized
instance, and the NLGEM training was run on an AWS EC2 gpu-ml-GPU-ML-optimized
instance. The Tobii Pro Fusion eye tracker was operated using the Tobii Pro SDK software
version 1.9.0 (https://www.tobii.com/products/software/applications-and-developer-
kits/tobii-pro-sdk, Tobii, Danderyd, Sweden). The system captured the IR eye tracker
gaze data at a sampling rate of 120 Hz and the video stream was captured at 60 frames
per second.

3. Results

A total of 469 test sessions of horizontal and vertical pro-saccades were analyzed and
validated, for a total of 14,768,320 sample frames. Simple qualitative time-series analyses,
as shown in Figure 5, clearly demonstrate the improvement in gaze detection accuracy
when the CGM was utilized on top of the NLGEM. While the saccade timing (step function
in time) was distinctive in both video-based retrievals, the NLGEM + CGM output was
much closer to that of the reference IR eye tracker.
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Figure 5. The horizontal gaze location as a function of time of a single subject during a horizontal
pro-saccadic session, as measured using a specialized IR eye tracker (green line), video-based NLGEM
gaze estimation (blue line), and video-based NLGEM + CGM gaze estimation (red line).

Further quantitative analyses with reference to the IR eye tracker showed that, while
the mean absolute error (MAE) of the estimated gaze with the NLGEM itself was 4.71
degrees, the CGM decreased the MAE to 1.80 degrees. This indicates that adding the CGM
improved the accuracy by a factor of 2.5, reducing the MAE by 62%. An interesting and
distinctive difference was observed between the accuracy levels for the horizontal and
vertical gaze detections. Adding the CGM reduced the MAE in the horizontal axis by 58%
and in the vertical axis by 65%, achieving MAE values of 0.93 degrees and 1.31 degrees,
respectively (see Table 2). When comparing the MAE distributions of the gaze detection
based on the two models, we found a significantly narrower MAE distribution when the
CGM was applied after the NLGEM, allowing better confidence when aggregating multiple
samples (see Figure 6).

Table 2. Mean average error (MAE) calculations (degrees) for the video-based NLGEM and the NLGEM
combined with the CGM gaze estimation location compared with the IR eye tracker. The MAE was
calculated separately for the horizontal and vertical axes and the absolute error distance (Norm).

Component
MAE

NLGEM [deg]
MAE

NLGEM + CGM [deg]

Horizontal 2.20 0.93
Vertical 3.70 1.31
Norm 4.71 1.80

A closer look at the error distributions of the vertical and horizontal gaze locations
provided by the video-based gaze estimation models (see Figure 7) revealed that the
CGM significantly improved the error distribution symmetry, in addition to the MAE
values. While the error distribution of the NLGEM estimated gaze locations seemed to be
multimodal and to vary with different PoR locations, after the CGM was utilized, the gaze
estimation error was characterized by a narrow modal distribution.
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Figure 6. The mean average error (MAE) distributions of the video-based NLGEM gaze estimation
(blue) and the video-based NLGEM + CGM gaze estimation (red) in the vertical axis (right panel), in
the horizontal axis (center panel), and when calculated for its norm (i.e., the absolute distance from
the target; left axis). Each box represents the range between the upper and lower quartiles, and the
median is indicated by the inner line. The green triangles represent the mean values. The bars extend
1.5 IQRs from the lower and upper quartiles.

Figure 7. The video-based NLGEM gaze estimation (blue) and the video-based NLGEM + CGM gaze
estimation (red) vs. the specialized IR eye tracker gaze estimation (black) during pro-saccade tasks in
the horizontal direction (a) and vertical direction (b). The inner panels show the error distribution of
the video-based models, with reference to the IR eye tracker.
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The gaze spatial error was calculated as the distance vector between the estimated
gaze location and the reference (i.e., the IR eye tracker, in this case). Figure 8 presents the
2D gaze spatial error distribution when implementing NLGEM alone (Figure 8a) and when
adding the CGM calculation (Figure 8b), exposing the spatial features of the gaze errors.
The gaze estimations produced using the NLGEM were widely distributed in various
directions and were characterized by an amorphous pattern whose local maxima were in
random locations. This unstructured, clustered distribution may have resulted from biases
depending on the individual subjects; for instance, glass lenses may bias passive imaging
sensors but would not affect active sensors, such as the IR eye tracker used as a reference in
this study.

Figure 8. The error spatial normalized distribution of the NLGEM video-based gaze estimation
(a) and the NLGEM + CGM video-based gaze estimation (b), with reference to the specialized IR
eye tracker.

Introducing the stimuli target locations and using the CGM in addition to the NLGEM
gaze estimations significantly improved the spatial error (Figure 8b). After implementing
the CGM, the spatial error pattern was symmetric and centered on the origin, as expected
from a calibrated sensor with a normally distributed measurement error.

Additional analysis on the validation cohort results was conducted to estimate the
contribution of the CGM to sensitivity to the age of patients, as shown in Figure 9. While
the significant advantage of the NLGEM + CGM over the NLGEM was maintained along
all patient ages, the MAE for both NLGEM alone and NLGEM + CGM gaze estimation
increased with age, at a mean pace of 0.013 deg/yr.
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Figure 9. The mean absolute error (MAE) of the video-based NLGEM gaze estimation (blue) and
of the video-based NLGEM + CGM gaze estimation (red) as a function of the patient’s age: (a) The
absolute norm error; (b) The error in the horizontal axis; (c) The error in the vertical axis. The solid
lines represent the corresponding linear fits.

4. Discussion

In this study, we introduced a video-based gaze detection model, comprising an
independent video-based NeuraLight Gaze Estimation Model (NLGEM) and an additional
Calibrated Gaze Model (CGM), which uses the target locations of visual stimuli for ongoing
real-time calibration during test sessions. The NLGEM model architecture is based on
recently published works (Figure 2) [28], with the exception of training the model on labels
measured using an IR tracker and the recruitment of a dedicated cohort for the training
and test sets. For validation, we tested our gaze detection model on an independent cohort
of 259 participants (see Table 1) who performed horizontal and vertical pro-saccade tasks
while sitting at a distance of approximately 60 cm from a display, with no head restraint.

Compared to the use of a specialized IR eye tracker as a reference ground truth,
we found that the NLGEM alone achieved an absolute visual angle accuracy (MAE)
of 4.80 degrees. While such an accuracy level is comparable to that of some of the
leading IR eye trackers available at present [23,24] and may be sufficient for applica-
tions that require general visual attention direction or saliency distribution on display,
most eye tracking applications require higher accuracy, especially in medical applica-
tions (e.g., for the measurement of eye movements in patients with various diseases and
oculomotor symptoms).

Most abnormal oculometric measures (OMs) that are present in patients are based on
measuring eye movements in response to visual stimulation tasks. Therefore, we added
the CGM on top of the NLGEM to leverage the information provided by the visual stimuli,
namely the target location. When testing the performance of NLGEM and CGM together
(NLGEM + CGM), we achieved an absolute gaze detection accuracy (MAE) of 1.80 degrees
in the norm, as well as an MAE of 0.93 degrees in the horizontal direction and 1.31 degrees
vertically, as detailed in Table 2. When aiming to measure eye movements, the separation
into horizontal and vertical directions is required as, in some movements (e.g., saccades),
horizontal and vertical movements involve different pathways [11]. Therefore, the accuracy
estimations in this work for the horizontal and vertical axes are useful when assessing OMs
based on mechanisms that depend on the movement direction.

The performance of the NLGEM + CGM approach was within the systematic errors of
the Tobii Pro Fusion eye tracker (0.3 degrees) when taking into consideration the stimuli tar-
get size, which was 1.35± 0.22 deg. Given the accuracy level of our reference measurement
(Tobii, 0.3 degrees) and the size of the target displayed (~1.35 degrees), we suggest that
our gaze detection model accuracy fulfils the requirements of various OM extraction appli-
cations, such as measuring oculomotor abnormalities in patients with different diseases,
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using only a retail-grade webcam and without the need to fix the subject’s head. With the
used video sample rate of 60 frames per second, the maximal error in time for a single
sample is 16.6 ms, allowing for the confident detection of abnormalities in OMs, whose
time scale is ~100 ms and whose visual angle scale is larger than our calculated errors (e.g.,
the Square Wave Jerks [34] rate, Saccadic Latency, Saccadic Amplitude, Saccadic Error Rate,
and so on).

The impact of age on our video-based gaze detection models was estimated according
to an increase in the MAE with the age of the patient, presenting an average rate of
0.013 deg/yr. The increase in the gaze estimation MAE with age was similar for the NLGEM
and NLGEM + CGM models, as well as in all direction variances examined. The increasing
uncertainty in video-based eye tracking with age can be influenced by the effects of aging
on the physiology and structure of the eye [35]; for instance, changes in pupil size, lens
elasticity, and retinal function may lead to higher variability in these landmarks in aged
populations, leading to a continuously increasing error in video-based gaze estimation.

Recent video-based gaze detection models have presented high levels of accuracy
for free-head visual stimulation tasks within the range of 2–5 degrees [36–38]. The model
introduced in this study yielded better performance under similar experimental settings.
Furthermore, unlike the model presented here, all recent studies have mentioned the
requirement of a separate dedicated calibration task for each test. The CGM module in
our work eliminates the need for this separate calibration task, instead enabling ongoing
real-time calibration during the test. The combination of high-accuracy gaze estimation and
flexible environmental settings provides new opportunities for advances in the oculometric
measurement analysis of patients with various diseases affecting their oculomotor skills,
resulting in eye movement abnormalities.

Furthermore, with the capabilities demonstrated in this study, relevant oculometric
measures could be extracted and measured easily using a clinical setup, or even remotely
in the patient’s home, assuming that they have access to a computer equipped with a web
camera. The ease of operating these applications would increase the number of examined
patients, extending the training set of our models and, hence, their accuracy. An accurate,
affordable, and accessible medical standard OM extraction tool may lead to significant
scientific progress and potential for many patients who strive for a better diagnosis and
monitoring of their disease progress.
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Abstract: Maintenance is a highly procedural activity requiring motor and cognitive engagement. The
aim of this experimental study was to examine how expertise affects maintenance tasks, in particular,
the use of procedural documents. A total of 22 aircraft maintenance technicians were divided into
two groups according to their level of expertise. Helicopter maintenance was evaluated in a real
work environment, using an eye tracker, a fixed camera, and NASA-TLX to measure workload. Both
groups reported a high mental load. Novices showed elevated levels of effort and mental demand.
Experts were faster at all levels of the task and spent less time consulting maintenance documentation.
The acquisition of procedural information was greater at the start of the task, where the gap between
groups was more pronounced. This may be related to the overall planning of the task, in addition,
the task was atomized, with frequent back-and-forth between execution and information intake, for
all participants. Novices had a longer document consultation duration, spread over a greater number
of consultations, but did not have a higher average consultation time. The results indicate a higher
mental load for novices, potentially linked to an increased atomization of the task, as shown by the
frequency of consultations.

Keywords: aircraft maintenance; procedural documentation; expertise; eye tracking; task load

1. Introduction

1.1. Context

Maintenance refers to a set of tasks aimed at preserving the physical condition of
equipment or a system, allowing it to operate in accordance with its specifications [1,2].
The maintenance activity can be understood as the result of a dynamic interaction be-
tween external determinants (maintenance task) and internal determinants (maintenance
operator) [3,4]. In the aircraft industry context, this activity is crucial in ensuring the
airworthiness of aircraft, guaranteeing the safety of passengers, equipment, and people on
the ground [5–7]. Various determinants emerge, contributing to the inherent complexity
of the task. The aircraft maintenance task, as well as the maintenance task in general, is
characterized by hazardous environments, with a high degree of inherent uncertainty and
limited repeatability [8–10]. It is important to note the complexity involved in aircraft
design. Aircraft consist of multiple interconnected and interdependent systems, each
containing sub-systems that are vulnerable to cascading effects. Any malfunction in one
system can have an impact on other systems or the whole aircraft [11]. Additionally, access
to the part being serviced may also require the removal and re-installation of other systems.
Assembly tasks have many parallels with maintenance; indeed, this is because assembly
and installation tasks are integral parts of the maintenance task.
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1.2. The Procedural Documentation

The complex design of aircraft systems and the severity of the consequences of er-
rors make it subject to stringent regulatory requirements. Maintenance tasks exhibit the
attributes of a “well-structured task”, as explained by Simon [12]. They are characterized
by a testable standard for solutions, descriptions of problem states using objectives and
sub-objectives, achievable state modifications, and knowledge integration [12]. The pro-
cedure determines the hierarchical structure of the task by sequencing it into sub-tasks
with integrated detailed instructions. As a prescriptive document, the aircraft maintenance
manual (AMM) explicitly defines all procedures required to maintain an aircraft. Orga-
nized into chapters and sub-chapters, this hierarchical document integrates illustrations
and text. Managing uncertainty is a significant challenge for safety-critical organizations,
such as nuclear power plants, the oil and chemical industries, and aviation [13]. Rules and
procedures guide and structure activities by defining objectives, decision-making processes,
and constraints, ultimately improving reliability and safety.

1.3. Experts versus Novices

Aircraft maintenance is carried out by aircraft maintenance technicians (AMTs). Given
the complexity of the task and safety challenges inherent in the aviation industry, aircraft
maintenance is carried out by a highly skilled and specialized workforce [14]. Maintenance
requires a wide variety of skills and knowledge [10]. Comprehending the impact of
expertise can provide valuable information to identify areas of improvement [15,16].

Expertise has been studied extensively in a wide range of fields [17–19]. The liter-
ature highlights the following aspects: expertise is inherently domain-specific because
individuals acquire specialized problem-solving strategies within a particular domain
through experiences that provide opportunities to use and organize domain-specific in-
formation [20]. In their domain, experts often develop an increased ability to perceive
significant information patterns that evade those without this skill. For instance, expert
electronics technicians were shown to be able to reproduce significant parts of complex
circuit diagrams after only a few seconds of exposure, whereas novices were unable to
do so [21]. Experts detect specific patterns, which allows them to memorize and process
complex information faster than beginners. In Chase and Simon (1973) [22], experts demon-
strated enhanced memory for structured stimuli (patterns of chess pieces), but did not
show the same ability to recall random unstructured stimuli. These results have been
replicated in various fields, including medicine and electronics [21,23,24]. Experts tend
to execute actions faster and more efficiently than non-experts [25–28]. Expertise allows
individuals to use previously learned rules and procedures, eliminating the need to engage
in a step-by-step reasoning process for each task [29]. This phenomenon has implica-
tions for cognitive engagement. As individuals gain experience and knowledge within
a domain, they construct mental models and heuristics that facilitate more efficient task
performance [19,25,29]. Consequently, this leads to a reduction in the mental load required
for task completion.

1.4. The Use of Procedural Information

In the context of maintenance, there is a cognitive side of the activity but in contrast
to chess, mental calculation, or programming, there is also a physical side of the activity
involving the execution of motor tasks. Therefore, the activity must be measured globally,
but also through information gathering and execution.

There is a specificity in the cognitive aspects involved in the maintenance activity;
indeed, reading a procedure has a pragmatic objective: execution. This directly affects how
the procedure is used [30]. The processing of procedural documents occurs in multiple
informational contexts, including the user’s prior knowledge of the system [31]. In the con-
text of maintenance, unlike other situations where access to the procedural document at the
time of the task is difficult or impossible [32,33], the operator refers to the document while
performing the procedure [34–36]. A common phenomenon described in the literature on
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the use of procedure is the “atomization of actions” [37]. The activity is sequenced around
two actions: procedural information intake and task execution. Participants interrupt
the progression of their actions (execution of instructions) through information-gathering
activities carried out on the procedural document. Atomization has been studied in a
variety of contexts, including medicine [32,38–40], cooking recipes [37], and the use of
everyday objects [41,42]. Atomization would minimize the cognitive cost of translating
instructions into actions [37,43]. In multimedia learning, segmenting information into
chunks serves as a strategy to reduce the cognitive load on learners engaged in information
processing [44–46].

With regard to maintenance, several studies have studied maintenance documenta-
tion [34,47–50]. However, to date, no quantitative data have been collected on the use
of documentation in a real maintenance task, looking at differences between experts and
novices. Moreover, given the complexity of the procedures involved in operational aircraft
maintenance tasks, it is expected that the atomization phenomenon will be observed, but
we are missing empirical data.

There are various techniques for measuring procedural information use, considering
the constraints associated with the maintenance activity. First, the tools used must have
the least impact on the operator. For example, the Think-Aloud method is embedded in
the context of qualitative research, its main limitation being the direct influence on the
execution of the task, which requires the operator to perform a secondary task consisting of
the verbal expression of his thoughts [51]. Ganier and his collaborators have developed
a specialized software, known as TIP-EXE [32,52]. This software can blur the prescribed
document. Therefore, the user can selectively deflect the desired segment of the document
with a single click. At the same time, the software generates time data that provide details
about the viewing order as well as the time spent exploring each specific segment. This
method has many advantages; however, it also generates a cost related to an additional
action for the operator and is not adapted to the study of interactions with a non-digital
prescription. The method of measuring visual attention through an eye tracker is currently
used in expert–novice paradigms and in the context of the study of procedural information
intake [51]. As part of the experiments conducted in Jannin’s thesis [43] on suture learning,
two distinct approaches were adopted to evaluate the use of the procedure: the use of TIP-
EXE software and the implementation of an eye-tracking measure. The author underlines
the relevance of the eye-tracking method because of its contribution to a more realistic
and ecological experience. Other studies have also used eye tracking [53,54] to evaluate
the application of the procedure in contexts involving static participants. The adoption
of mobile eye-tracking technology offers a relevant solution for assessing the second
sequencing between execution and procedure [51]. By measuring the duration of gaze
within an area of interest (AOI) [55,56], it is possible to quantify the time and duration
during which visual attention is devoted to maintenance documentation, in a non-binding
way and via paper format. Eye movement tracking has emerged as the optimal approach for
exploring visual cognitive strategies; it allows for accurate measurement in the context of
complex tasks within their dynamic environments, extending to fields such as medicine [57],
sports [58,59], transport [60–64], and construction [65–67].

1.5. Our Approach

This study is based on a previous study [68,69], and centered on the development
of a tool to measure the use of procedure documents in aircraft maintenance. The results
from one participant showed an important information intake phase at the beginning of
the operation. In this study, one goal is to see if these results are generalizable and if there
are specific patterns associated with expertise in procedural information acquisition. The
primary aim of our study is to quantify the impact of expertise on procedural information
intake in the context of a real maintenance task carried out in a maintenance hangar.
The maintenance procedure theoretically provides a comprehensive description of the
task, enabling its execution without additional prerequisites [3] and providing the same
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framework for all AMTs in the maintenance process [34,48]. We intend to measure the
operators’ activity and workload, to evaluate the effectiveness of procedural documentation
in bridging the gap between novices and experts. This investigation was framed by the
following research questions and hypotheses:

RQ1. Is there an impact of expertise on the procedural information intake in the context of a
maintenance task?

H1. We expect experts to be faster than novices in both the execution and procedural information intake.

The operationalization of this hypothesis will be based on behavioral indicators
(absolute duration, document consultation duration, execution duration, percentage of time
spent on the document). To provide a more detailed analysis of the use of the procedure,
a closer examination of the atomization phenomenon, as described in the literature, will
be proposed.

RQ2. Is procedural information intake atomization dependent on the expertise level?

H2. If the phenomenon of atomization of the task is due to resource-intensive processes associated
with procedure execution, then we expect expertise to have an impact on the number of consultations
and the average time spent consulting the procedure.

Finally, we wish to address the workload.

RQ3. Are there differences in the workload experienced by operators?

H3. Maintenance seems to have physical [70–72] and mental dimensions. Based on the literature,
the difference between novices and experts is anticipated in the mental dimension.

2. Materials and Methods

2.1. Participants

The target population for our study is men and women who are helicopter AMTs and
over the age of 18. The population consists of 22 participants who have been divided into
two groups based on their experience. The inclusion criteria for the study are as follows:
(i) be over 18 years of age; and (ii) be actively engaged in AMT work or training at the time
of the study. Participants are divided into two groups according to their experience. The
expert group consisted of 10 male participants with a mean age of 51.6 years (SD = 7.6)
and a mean experience of 30 years (SD = 7.2). Inclusion in this group required a minimum
of 20 years of experience as an AMT. The novice group consisted of 12 participants, with a
mean age of 22.7 years (SD = 3.3) and a mean experience of 7 months (SD = 1.8).
Participants in this group were in training at the time of the experiment and had some field
experience during their training. Of the 12 participants in the novice group, 67% were male.

2.2. Materials

Data collection included a scene camera, a mobile eye tracker, and a questionnaire. A
GoPro Hero 4 camera (GoPro, San Mateo, CA, USA), affixed within the maintenance area
(Figure 1), captured the working area surrounding the helicopter at 1080p resolution and
30 frames per second. The Tobii Pro Glasses 2 (Tobii AB, Danderyd, Sweden) was utilized
as a head-mounted mobile eye tracker to acquire data on eye fixation, and scene video
captured the working area surrounding the helicopter at 1080p resolution and 30 frames
per second. The Tobii Pro Glasses 2 was utilized as a head-mounted mobile eye tracker
to acquire data on eye fixation and scene video. The device has an accuracy of 0.5° and
a sampling rate of 100 Hz. This tool is unobtrusive and suitable for real-world data
collection [61,73]. Workload measurement was undertaken using the weighted NASA
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Task Load Index [74] questionnaire due to its standardized and validated tool status. The
15 pairwise comparisons of dimensions were presented to the operator. The frequency with
which each dimension is chosen determines its weight or importance. These weights are
then multiplied by the raw ratings for each dimension, according to the Hart and Staveland
procedure [74].

Figure 1. Aircraft maintenance activity analysis setup.

2.3. Protocol

Before starting the experiment, the experimenter provided a detailed explanation of the
study and answered any questions the participants might have had. Each participant signed
a consent form before being equipped with the eye tracker. During the task, the technician
initiated it as soon as they received the procedural document, and participants were free to
take as much time as they needed to complete the task.

The validation of maintenance quality was primarily anchored in the successful
completion of the task and the final compliance of the helicopter with established naviga-
bility standards.

All common maintenance tools and specific tools referenced in the procedural doc-
ument were available in the hangar. Upon completion, participants signaled the end of
the task and were disconnected from the eye tracker. Afterward, they completed the
NASA-TLX questionnaire. Aircraft maintenance technicians were tasked with inspecting
the components of the right rear landing gear brake unit on an H215/225 helicopter (Airbus
Helicopters, Marignane, France). This task involved a removal phase to access the area
to be inspected, followed by an installation phase to return the helicopter to its original
configuration. The task could be completed by one technician.

The prescribed reference for this task was the aircraft maintenance manual (AMM),
which contained the procedure for inspecting brake unit parts on the helicopter model
(ensuring the absence of scratches, wear, corrosion, impact marks, leaks, and the verification
of their condition). The procedure was 21 pages in a hard copy format, spread over five
work cards. The information in the document was either contained entirely in a work card
or a chapter within a work card. There were 15 pages of text and 6 pages of figures in the
procedural documentation.

2.4. Data Analysis
2.4.1. Previous Result

Prior to this study, we conducted previous research [69] aimed at defining a method-
ology to characterize the use of procedural documents using an eye-tracking device. It
is based on a temporal qualification of the data, allowing us to relate the consultation
times within the procedure and the main steps of the tasks materialized by milestones
(Figure 2). The methodology developed was tested on the same task as in this experiment
with one participant. The division of the task into temporal sequences based on observable
milestones makes it possible to enrich the analysis of variables and to compare participants
with varying overall task durations.
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Figure 2. Key parts for task milestones definition: pin (a), wheel (b), brake unit (c), and bolt (d). The
yellow arrows indicate the location of the part in the image.

The milestones presented in Figure 2 and used in this study were selected because
of their succinct yet recognizable actions (observable by priority through the egocentric
camera of the eye tracker or by default through the scene camera), and the specific order
in which they are realized. Each removal/installation is described in the procedure and
was observed for each participant. The visualization of the distribution of the use of
the document during the task (Figure 3) allowed us to see the need to characterize the
back-and-forth between reading times and execution times. The upper part of the figure
shows the breakdown of the task into three phases and nine steps. The three main phases
of the maintenance operation are removal, inspection, and installation. The steps are
numbered from I to IX. The steps are delimited by the start and end of the operation and
by eight numbered milestones whose labels are shown in white frames and presented in
Figure 2. The lower part of the figure shows the evolution of the document consultation for
a participant based on the data of the previous research [69]. The background is divided
into segments colored according to the task step (shown in the upper part). The width of the
colored areas in the background shows the relative duration of each step. The gray strips
represent the time the participant spent looking at the maintenance document. The black
curve represents the cumulative percentage of time the participant spent viewing the
document. Based on this observation, we measured the number of consultations and the
average consultation duration.
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Figure 3. Decomposition of the maintenance operation and evolution of document consultation for
one participant.

2.4.2. Variables

We identify four independent variables (expertise, phases, steps, NASA TLX dimen-
sions) and seven dependent variables. The definitions of the dependent variables are
presented in Table 1. All dependent variables, except the weighted NASA TLX score, are
extracted either globally or for each phase or step.

Table 1. Dependent variables and their definitions.

Variable Units Definition

Absolute duration min
Difference between the timestamps of the

milestones bordering the time
period studied.

Document consultation duration min
Sum of gaze fixation duration performed

within the AMM during the time
period studied

Execution duration min Difference between document consultation
duration and absolute duration

Percentage of time spent consulting the
documentation %

Ratio between the documentation
consultation duration and the

absolute duration

Number of consultations ∅ Number of consultations in the time
period studied.

Average consultation duration s Average duration of consultations over the
time period studied.

NASA-TLX scores ∅ The weighted scores on the six dimensions
of the NASA-TLX.

2.4.3. Data Quality

One participant did not complete the NASA-TLX questionnaire, resulting in a sample
size of 21 for the workload analysis (9 experts and 12 novices). The temporal variables
analysis excluded two experts and two novices who had a low gaze sample percentage
(<60%) and one novice due to incomplete eye data recording (8 experts and 9 novices).
The gaze sample percentages for both groups were as follows: between 60% and 70% for
two experts, between 70% and 80% for three experts and one novice, and more than 80%
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for three experts and nine novices. The decision to exclude participants demonstrating
a gaze sample percentage below 60% was rooted in our commitment to precision and to
avoid potential biases in the analysis.

2.4.4. Extraction of Variables Related to Instruction Consultation

To characterize the acquisition of procedural information [75,76], temporal behavioral
data were collected to obtain all dependent variables related to the use of procedural
documentation. In order to detect document consultation, we used the area of interest
(AOI) technique on all eye-tracking data collected in the field. An AOI was defined [56],
for all pages of the document, for all participants. We used Tobii Pro Lab 1.152 ® analysis
software, which supports both manual and automated AOI mapping. We manually checked
fixations for all data collected because a validity test of the automated mapping technique
on the previous research [69] yielded unsatisfactory results. The data processing resulted in
a time series, indicating when the participants consulted the procedural documents. Gaze
fixations were temporally qualified to associate them with the corresponding phase and
step (Figure 4). We used a filter threshold on the mapped ocular data to group the fixations
made on the document that were spaced less than 3 s apart to form a consultation. We
tested a threshold range from 0.5 to 10 s on the data, and we found that the selection of
the filter threshold did not affect the inter-participant differences. The decision to use a
3-second threshold was based on the observations made during the previous research [69].
This allowed us to extract the following variables: the number of consultations and average
consultation time.

Figure 4. Temporal qualification of document consultation of the fixation. On the left, an illustration
of the AMT wearing the mobile eye tracker with the gaze fixation on the maintenance documentation.
On the right, the temporal qualification of the document consultation of the fixation is presented,
where the first point represents the qualification of the fixation within the documentation and the
second point indicates its temporal qualification in the decomposition presented in Figure 3.

2.4.5. Statistical Analysis

We conducted a statistical analysis on the three levels of the maintenance task: entire
task, phase level, and step level. To test our hypotheses, we used multiple analyses of
variance (ANOVAs) on the dependent variables. At the entire task level, we performed
one-way ANOVA with the factor of expertise (novice, expert). At the phase level, we used
repeated measure two-way ANOVA with factors of expertise (novice, expert) and phase
(removal, inspection, installation). At the step level, we used repeated measure two-way
ANOVA with factors of expertise (novice, expert) and Step (I to IX). Similarly, for the
weighted NASA TLX scores, we used repeated measure two-way ANOVA with factors
of expertise (novice, expert) and dimensions (mental, physical, temporal, performance,
effort, frustration). In the case of significant ANOVA results, we conducted post hoc
analyses using Student’s Newman–Keuls post hoc tests to determine significant differences.
A significance level of α = 0.05 was used for all analyses.
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2.4.6. Data Processing

For data analysis, three software tools were used to process and analyze the data.
Tobii Pro Lab (1.152, Tobii AB, Danderyd, Sweden) was used for processing ocular data
and raw data exports. Matlab scripts (R2020b, The MathWorks Inc., Natick, MA, USA),
were used to obtain dependent variables. Finally, RStudio scripts (1.3.959, RStudio, PBC,
Boston, MA, USA) were used to calculate statistical indicators, perform statistical tests,
and generate figures.

3. Results

3.1. Workload

This section aims to investigate the effect of expertise on workload. Table 2 presents the
mean values and interquartile ranges for the NASA TLX dimension among both experts and
novices. The ANOVA revealed no significant effect of expertise on the weighted NASA-TLX.
However, the dimension had a significant effect on workload (F(5, 95) = 14.8, p < 0.001),
with the mental dimension being significantly higher than the other dimensions for all
groups (all p < 0.001). Additionally, an interaction effect of expertise × dimension was
observed (F(5, 95) = 5.7, p < 0.001), with novices reporting significantly higher load than
experts in the effort (p < 0.05) and mental (p < 0.05) dimensions.

Table 2. Mean and interquartile range (IQR) values for each NASA TLX dimension (9 experts and
12 novices).

Mental
Demands

Physical
Demands

Temporal
Demands

Performance Effort Frustration

Mean IQR Mean IQR Mean IQR Mean IQR Mean IQR Mean IQR

Weighted NASA
TLX Score

Experts 170.6 175.0 138.9 85.0 88.9 80.0 50.6 50.0 59.4 50.0 29.4 5

Novices 234.2 197.5 48.3 47.5 43.3 36.25 126.2 30.0 163.3 191.3 28.8 7.5

3.2. Procedural Information Intake

All participants used the AMM during the maintenance task. Table 3 presents the mean
values and interquartile ranges for the three variables among both experts and novices.

Table 3. Mean and interquartile range (IQR) values for each of the dependent variables grouped by
groups and phases. Each column represents a phase and is divided into two sections, showing the
median and interquartile ranges. Similarly, each row represents a dependent variable and is divided
into two sections, showing the values for each expertise group (8 experts and 9 novices).

Removal Inspection Installation Total
Mean IQR Mean IQR Mean IQR Mean IQR

Absolute Duration (min) Expert 40.6 9.9 11.2 16.2 55.1 20.9 107 33.2
Novice 78.6 10.9 20.9 9.9 90.4 21.7 189.9 35.9

Execution Duration (min) Expert 35.0 7.2 9.8 13.4 50.8 16.7 95.7 24.9
Novice 53.9 16.6 17.8 12.2 77.4 19.5 149.1 18.7

Document consultation duration (min) Expert 5.6 4.0 1.5 2.7 4.3 3.8 11.5 9.7
Novice 24.7 8.6 3.1 2.9 12.9 3.2 40.7 15.7

Percentage of time spent on documentation (%) Expert 14.1 7.9 8.8 12.6 7.6 3.9 10.6 5.0
Novice 31.4 13.0 20.1 13.0 15.1 6.9 22.0 8.4

3.2.1. Main Effect of Phase/Step

The ANOVA analysis revealed significant effects of the phase on both document con-
sultation duration (F(2, 30) = 55.2, p < 0.001) and the percentage of time spent consulting
the document (F(2, 30) = 17.6, p < 0.001). Post hoc analyses revealed significant differ-
ences (all p < 0.001) in document consultation duration across all phases. The removal
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phase exhibited the longest duration, followed by installation and inspection. Additionally,
post hoc analysis revealed that the removal phase was significantly higher than the other
phases in terms of the percentage of time spent consulting the document (p < 0.001).

A main effect of phase was found on both absolute duration (F(2, 30) = 62.1, p < 0.001)
and execution duration (F(2, 30) = 51.2, p < 0.001). Post hoc analyses revealed significant
differences between all phases for both absolute duration (p < 0.05) and execution duration
(p < 0.001). We observed that for both variables, the installation phase had the longest
duration, followed by the removal and inspection phases.

On a more microscopic scale, a significant main effect of the step was observed
for all four variables: document consultation duration (F(8, 120) = 25.3, p < 0.001),
percentage of time spent on the document (F(8, 120) = 33.8, p < 0.001), absolute duration
(F(8, 120) = 6.4, p < 0.001), and execution duration (F(8, 120) = 6.2, p < 0.001). Post hoc
analyses revealed that step I exhibited a significantly higher percentage of time allocated
to consulting documentation and document consultation duration (p < 0.001 for both
indicators). Step VII exhibited significantly longer absolute duration and execution duration
compared to the other steps (p < 0.01 and p < 0.001, respectively).

3.2.2. Main Effect of Expertise

Data analysis revealed a significant main effect of expertise on the duration of doc-
ument consultation (F(1, 15) = 32.2, p < 0.001), the percentage of time spent consulting
documentation (F(1, 15) = 15.5, p < 0.01), absolute duration (F(1, 15) = 21.1, p < 0.001),
and execution (F(1, 15) = 9.26, p < 0.01).

3.2.3. Interaction Effect of Phase/Step x Expertise

Regarding the interaction effect between phase and expertise, the results showed no
significant interaction effect for execution or the percentage of time spent on documenta-
tion. However, a significant interaction effect was observed for the consultation duration
(F(2, 30) = 23.6, p < 0.001) and absolute duration (F(2, 30) = 22.1, p < 0.05). In a post
hoc analysis of the two variables, significant differences in document consultation duration
emerged between the novice and expert groups for both the removal and installation phases
(p < 0.001). During the removal phase, experts showed an average document consultation
duration of 5.6 min (SD = 2.7 min), while novices showed a significantly longer average of
24.7 min (SD = 9.7 min). Similarly, in the installation phase, experts showed an average
document consultation duration of 4.3 min (SD = 2.8 min), while novices showed an
average duration of 12.9 min (SD = 3.3 min). Furthermore, a significant difference was
observed within the novice group across all phases (p < 0.001). This was not observed in
the expert group.

When examining the interaction effect of step x expertise, the results show a significant
effect on the duration of the consultation (F(8, 120) = 14.6, p < 0.001), as well as a
significant effect on the percentage of time spent on documentation (F(8, 120) = 8.3, p <
0.001). No interaction effect is found for absolute and execution duration.

Post hoc analyses were conducted for consultation duration and the percentage of time
spent on documentation. In relation to the duration of document consultation during Step
I (Figure 5), a significant difference was found between the novice and expert groups at this
point (p < 0.001). Additionally, in terms of the percentage of time spent on documentation
during Step I of the task (as shown in Figure 5), both novices (σ = 55.6%, SD = 14.3%) and
experts (σ = 22.1%, SD = 11.8%) allocated the highest percentage of time to document
consultation. In particular, Step I stands out as significantly higher than all other steps for
novices (all p < 0.001) and, with the exception of Step II, for experts (all p < 0.05).
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Figure 5. Boxplots of the percentage of time spent consulting documentation per step and
expertise group.

In this section, we investigated how expertise influences the variables that compose
absolute duration. The results demonstrate that expertise has a significant impact on abso-
lute duration, with a greater impact on consultation than on execution. More specifically,
experts perform the maintenance task at an average of 45.8% faster than novices. This
distinction becomes more apparent when consulting instructions, where experts are 71.6%
faster than novices. For execution, the difference is 35.9%.

3.3. Atomization

The analysis focused on indicators measuring the phenomenon of atomization, includ-
ing the number of consultations and the average duration of consultations.

3.3.1. Main Effect of Phase/Step

For both variables, there are significant main effects on phase, with (F(2, 30) = 25.4,
p < 0.001) for consultation and (F(2, 30) = 13.3, p < 0.001) for average consultation
duration. The number of consultations is lower in the inspection phase (all p < 0.001).
The average consultation duration is longer in removal (all p < 0.001). There is also a
significant main effect on the step, with (F(8, 120) = 21.4, p < 0.001) for consultation
and (F(8, 120) = 13.7, p < 0.001) for the average consultation duration. There is more
consultation on steps V and VII compared to all other steps (all p < 0.05). The average
consultation duration is longer in Step I (p < 0.001).

3.3.2. Main Effect of Expertise

Only the number of consultations was significantly impacted by expertise
(F(1, 15) = 22.7, p < 0.001). Novice participants conducted an average of 202 consul-
tations (SD = 47.2), while expert participants performed 88 consultations (SD = 50.8).
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The average consultation duration (F(1, 15) = 2.1, p > 0.05) for all participants was
10.8 s, with experts averaging 9.1 s and novices averaging 12.2 seconds.

3.3.3. Interaction Effect of Phase/Step x Expertise

The phase-level ANOVA demonstrated a significant interaction effect solely on the
number of consultations (F(8, 120) = 5.9, p < 0.01). There is an expert–novice difference in
the removal and installation phases (all p < 0.001). For novice operators, there is a lower
number of consultations during inspection (all p < 0.001).

The step-level ANOVA demonstrated a significant interaction effect solely on the
average consultation duration (F(8, 120) = 2.3, p < 0.05) (Figure 6). For Step I, post hoc
analyses indicated that average consultation times were longer than for all other steps. This
result applies to both novices (all p < 0.001) and experts (all p < 0.001), with the exception
of Step II for experts.

Figure 6. Box plots comparing per step and per expertise group (A) the average consultation time,
and (B) the number of consultations.

4. Discussion

In this study, we investigated the impact of expertise on aircraft maintenance activity.
The key findings of our study can be summarized as follows: Our indicators on activity

duration are consistent with the body of literature on the subject [19,26–28,77,78]. Experts
have a lower task completion time than novices (H1). The maintenance task encompasses
the execution of motor actions that are prescribed by the procedural instructions outlined
in the aircraft maintenance manual. Experts are faster on both sides of the task (execution
duration and document consultation). Differences between novices and experts are more
important in the time dedicated to procedural information intake. On average, novices
took 35.9% longer to execute the task and 71.6% longer to consult the documentation. All
participants consulted the procedural document, regardless of the level of expertise of
the participants, with frequent back-and-forth between the documentation consultation
activity and execution throughout the task. These results are consistent with the context
of the maintenance task, particularly with the safety aspect inherent in the aviation field,
but also with the complexity of the procedures [34] necessary for the maintenance of a
helicopter, which makes it impossible to fully memorize it [50]. Expertise has a global effect
on all tasks of the maintenance activity, but its effect on document consultation is more
complex.

Concerning the NASA-TLX dimensions, novices showed a significantly higher score
on both the effort and the mental workload (H3) dimensions as compared to experts. These
findings can be explained by considering the influence of the knowledge and skills of the
experts on the efficiency of the maintenance activities: both in the extraction of crucial
information relative to the current task stage and in the planning of the execution based on
the information derived from the procedural document. Our study shows that even if the
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maintenance activity generates physical constraints (displacement, awkward postures, load
bearing) [9,70,72,79], the use of procedures requires a strong mobilization of attentional
and cognitive resources, corroborating the findings of [45,50,80–82].

Moreover, our results show that the amount of procedural information intake is not
linear during the task. During the removal phase, operators, regardless of their level of
expertise, place a greater emphasis on procedural information intake, particularly during
the first step of removal for novices and the first and second steps for experts. Removal
is theoretically less complicated than installation [83]. Access to certain parts may remain
restricted during the removal phase until other components have been deposited. These
accessibility constraints are inherent in the system and embody the interdependent rela-
tionships that structure the instructions within the procedure. They provide additional
information by clarifying the sequence of actions to be followed by the technician. We
suggest that the longer duration and greater importance of information gathering at the
beginning of a task are not solely related to the execution of instructions during those inter-
vals, but rather to the overall planning of the maintenance task. In this study, procedural
information intake would serve two purposes, an execution purpose throughout the task
and a general planning purpose at the beginning of the task.

The data relating to the number of consultations and average consultation duration il-
lustrates the phenomenon of atomization in the maintenance task. The aircraft maintenance
activity observed for all participants shows a phenomenon observed in the context of other
tasks involving a procedural document in other domains [37,40,51]. The whole consultation
duration of the document is segmented into multiple short consultations. The maintenance
activity consists of multiple processes of information intake and action, resulting in a
multitude of specific planning periods linked to the part of instruction consulted.

In our task, novices exhibit a prolonged duration of procedural document consultation,
and this extension is manifested in a higher frequency of consultations (H2). However, we
do not observe a longer average duration of consultations for novices, if we consider the
task in its entirety. These results can be explained by the fact that novices tend to break
the overall task into more information acquisition cycles in order to reduce cognitive load,
i.e., to process smaller chunks of information at once [45]. Previous work has shown that
this process limits the amount of information in working memory in order to reduce the
cost of processing instructions [42,80]. However, when focusing on what we identified as
the primary planning phase of the task. It is observed that the largest discrepancies between
the groups occur in Step I. These discrepancies were observed in terms of consultation
duration, the percentage of time devoted to consultation, and the average consultation
duration. It is important to note that this effect among novices is not counterbalanced by a
decrease in consultation duration during subsequent steps of the task. Our study aligns
with the existing literature on the process of forming a mental representation of a problem-
solving task environment, referred to as the ’basic problem space’ [84,85]. Novices appear
to invest more time in procedural information intake for task planning. This suggests
that experts, who are familiar with a particular problem type, can efficiently draw upon
previous problem spaces and distinguish only necessary information for general planning
without going into detailed instructions that will be processed later during execution. This
is in contrast to novices who must allocate additional time and effort to construct the
problem space from scratch due to their lack of familiarity with the problem type.

4.1. Practical Implications

Our study presents empirical findings on procedural information intake behaviors in
the authentic context of maintenance tasks. The research involved using the procedure in
its natural paper format, without any imposed restrictions or specific usage instructions.
The maintenance task was extensive, lasting over an hour and requiring the execution
of multiple instructions from a document comprising numerous pages. Understanding
how aircraft maintenance technicians use aircraft maintenance manuals has practical
implications for procedural design and AMT training. The information intake within
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AMMs is achieved through multiple short consultations, averaging a duration of 10.8 s.
Good readers can process information at a rate of 200 to 400 words per minute [86,87]. This
indicates that the amount of information absorbed during each consultation is relatively
small. In document design, it is important to optimize the physical format to facilitate
the efficient location of relevant information [54,88]. Our study highlights the potential
challenges faced by novice individuals when initiating the maintenance task; training
programs can be designed to emphasize the initial interaction with the global procedural
document at the start of a task. Consequently, workers could learn to extract the important
cues for planning their entire task. Our study shows that mobile eye tracking is suitable for
field studies in the context of aircraft maintenance, even over long periods of measurement
with procedural documents in paper format.

4.2. Limitations and Future Studies

There are some limitations associated with this study that need to be mentioned. We
believe that the main limitation of this study is our attempt to be as close as possible to
real maintenance conditions by not imposing any constraints on the operator’s activities.
This has implications for methodological choices. The mental workload measurement
might have been addressed using physiological indicators [89], such as heart rate or pupil
diameter. However, the lighting conditions of our hangar or the movement inherent to
maintenance activity made these indicators difficult to set up.

Regarding the depth of the analysis of eye-tracking data, our study considers only
basic indicators and procedural documentation in a single object of interest. It would be
beneficial to include an analysis of the information extracted from the documentation to
further develop the initial contributions presented in this study. For example, it might be
interesting to analyze the effect of expertise on document navigation.

Finally, while the primary focus of our study is on procedural aspects, we recognize
the importance of including the physical dimension, which may provide a perspective for
a more comprehensive understanding of expertise in maintenance tasks.

5. Conclusions

This study investigated the effect of expertise on aircraft maintenance tasks, including
the use of procedural documents. The analysis of activity, using step and phase division,
as well as the measurement of gaze behavior and workload, enabled us to assess the
influence of expertise in a real-life industrial context. The results show that experts are
faster than novices at all levels of the task (whole task, phases, steps), as well as in the
execution and information intake. The study allowed us to characterize the way procedural
information is acquired about a population of AMTs. The results show that the acquisi-
tion of procedural information is more important at the beginning of the task and that
there is a back-and-forth between execution and information acquisition. This procedural
information-gathering time at the beginning of the task can be attributed to the overall
planning of the maintenance task prior to the start of its execution. This is when the
expert–novice gap is the most important. The extra time spent by novices during this
phase is not offset by a less significant use of procedures afterward. The novices had to
exert more mental effort than the experts to accomplish the task; it is still important to
note that both groups reported a mental dimension that was superior to the other scales
measured. The findings indicate that novices experience a higher workload during the
maintenance task compared to experts. This could be attributed to novices exhibiting
increased task atomization, as evidenced by the greater number of consultations. These
results have important implications for AMT training. They demonstrate the importance of
focusing on the intake of procedural information and the use of procedures in the planning
of maintenance tasks. The findings suggest that training programs for novice AMTs place a
strong emphasis on the effective intake of procedural information and the use of procedures
in the planning of maintenance tasks. The results suggest that the design of procedures
should focus on facilitating the acquisition of procedural information. Our study suggests
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that the information extraction process within the AMM differs between the planning and
completion phases of the task. This could impact the development of procedures. This
study paves the way for future research on the effect of expertise on the aircraft mainte-
nance task. Future research could explore the effect of expertise on information gathering
within the maintenance procedure.
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Abstract: This study examined the eye movement patterns of 317 elementary students across reading
conditions (audio-assisted reading (AR) and reading-only (R)) and text types (fiction and non-fiction)
and identified eye movement parameters that predict their literal comprehension (LC) and inferential
comprehension (IC). Participants, randomly assigned to either reading condition and either text
type, answered questions assessing their LC and IC. Average fixation duration (AFD), total fixation
duration (TFD), and scanpath length were used as eye movement parameters. The main effects of age
were observed on all parameters, along with interaction effects between age and reading condition
on TFD and scanpath length. These results indicate that children employ different reading strategies,
depending on reading modalities and text types. When controlling for age, TFD had a positive impact
on the LC of both text types in the AR, while in the R, it had a negative effect on the IC of both text
types. Longer scanpaths predicted the IC of fiction in the AR; the LC and IC of non-fiction under
the AR; and the LC of non-fiction within the R. AFD had a negative influence on the IC of fiction in
the AR, as well as on the LC and IC of non-fiction in the AR, and the LC of non-fiction under the R.
These findings highlight the importance of selecting appropriate reading strategies, based on reading
modality and text type, to enhance reading comprehension. This study offers guidance for educators
when providing reading instruction to school-age children.

Keywords: eye-tracking; reading modality; audio-assisted reading; text type; reading comprehension;
school-age children

1. Introduction

1.1. Reading and Reading Comprehension

Reading is a critical ability in current society, as it enables individuals to successfully
acquire information through media and provides opportunities for personal growth, as
well as emotional development, through vicarious experiences [1,2]. The importance of
reading during the school-age years is particularly prominent, not only because this phase
corresponds to the development of one’s self-system, which is closely intertwined with
reading proficiency [3], but also because reading skills predict academic achievement due
to the utilization of text-based educational materials in schools [4].

Reading comprehension is an intricate skill that integrates various linguistic and cog-
nitive components [5,6]. Kim [7] suggested that reading comprehension is directly related
to listening comprehension, as well as to word reading skills, which are influenced by lin-
guistic factors, such as phonology, orthography, and semantics, and higher-order cognition
and oral language skills, including but not limited to inferring, reasoning, monitoring,
syntax, and vocabulary, respectively. Reading comprehension is divided into two types:
literal comprehension and inferential comprehension. Literal comprehension involves
understanding specific events explicitly presented in the text, while inferential comprehen-
sion is achieved through deducing information from the text [8]. Literal comprehension
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begins to develop at the beginning of school age, primarily supported by word reading and
vocabulary skills [9–11]. Inferential comprehension, building upon literal comprehension,
is known to be an advanced reading comprehension skill that evolves throughout school
age, as it requires the facilitation of background knowledge and integration of information
beyond simple word reading [12–14].

1.2. The Effect of Reading Modalities and Text Types on Reading Comprehension

Audio-assisted reading (AR), in which individuals read text while listening to the
corresponding audio, is one of the reading modalities proposed to enhance the reading
comprehension of poor readers. Previous studies have demonstrated that audio assistance
helps them engage more effectively with the text and utilize their cognitive strengths with
improved semantic chunking. Under the AR condition, automatic reading, facilitated
by the reduced cognitive load of decoding words, allows them to allocate more of their
attention to understanding the content of the text when compared to the reading-only (R)
condition [15–18]. However, a debate remains regarding whether all school-age children
can benefit from AR, as the AR condition could potentially lead to an increased cognitive
load by necessitating the simultaneous processing of visual and auditory stimuli [19,20].

The type of text, broadly consisting of two types—fictional (narrative) and non-fictional
(expository)—is also acknowledged to have an impact on reading comprehension [21–23].
Fictional text that young readers typically encounter from early childhood is often presented
in a sequential manner. This inherent structure helps young children to understand the story
more easily, given the similarity between the narrative progression and the development of
real-life events they experience [24]. On the other hand, non-fictional text requires more
time for reading and comprehension compared to fictional text due to the unfamiliarity of
the subject matter and the complexity of sentence structures [25,26]. Hence, it is relatively
easier for school-age children to achieve reading comprehension of fictional text as opposed
to non-fictional text [22]. Additionally, as children grow older, their comprehension of
fictional text can readily improve compared to that of non-fictional text, because recognizing
the causal relationship between events is often sufficient for comprehension. In contrast,
non-fictional text demands more structured training, including syntactic comprehension
and background knowledge, to be effectively comprehended beyond merely understanding
causality [27,28].

Chung et al. [29] investigated the impact of various story presentation methods (audio-
only, audio-with-text, and text-only) and story types (fiction and non-fiction) on the com-
prehension of first- and second-grade students. Consistent with previous research, children
demonstrated better comprehension of the fictional stories than of the non-fictional stories,
and performance of literal comprehension tasks exceeded that of inferential comprehension
tasks. Regarding the story presentation methods, overall comprehension scores of the
fictional stories in the audio-only condition and the audio-with-text condition were found
to be significantly higher than those in the text-only condition. In terms of non-fictional sto-
ries, only the audio-with-text condition exhibited higher comprehension scores compared
to the condition with reading only. These results suggest that 6- to 8-year-old children can
benefit from AR with both fictional and non-fictional stories, surpassing the R condition for
both types of stories. Moreover, the effects of the story presentation methods may differ
depending on the text type.

1.3. Eye-Tracking Studies on Reading

The eye-tracking technique involves analyzing the dynamic traces created by eye
movements to detect one’s attention and cognitive processes [30]. According to the eye-
mind theory proposed by Just and Carpenter [31], visual processing occurs at the site where
gazes are fixated. In the process of reading, during a fixation, readers decode and recognize
words and extract the required information, either from a single word or from a semantic
chunk consisting of a group of words, while integrating this new information with their
exiting knowledge [32]. Subsequently, they make a transition to another word or chunk
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of text to acquire different information, initiating another fixation. Thus, when applied in
reading comprehension tasks, the eye-tracking technique provides insights into the process
of information acquisition from text.

Previous research explored the relationship between eye movement patterns and
reading proficiency, revealing that shorter fixation duration and fewer fixation counts
are indicators of proficient reading [33]. Many studies examined the connection between
reading skills and eye movement patterns by comparing children across various age groups
and demonstrated that older students exhibit shorter fixations per word, shorter average
fixation durations [34,35], and more frequent long saccades [36] compared to their younger
counterparts. However, only a few studies consider the spatial aspects of eye movement
patterns, and research that investigates a wide age range to observe continuous changes in
eye movement patterns over time is limited.

There is scant research related to reading and auditory input using eye-tracking
technology. Conklin et al. [37] studied the links between reading proficiency and eye
movement patterns under different reading conditions, AR and R, by comparing first
language (L1) and second language (L2) speakers. They found that L2 readers showed
more frequent fixations and longer fixation durations than L1 readers in the R condition,
while there were no significant differences in eye movement parameters between L1 and
L2 readers in the AR condition, thus demonstrating the positive effect of audio assistance
for developing readers. However, it needs to be determined whether these differences
in eye movement patterns under the AR condition directly indicate improved reading
comprehension.

Park et al. [38] aimed to determine whether language competency affects the relation-
ship between eye movement patterns and reading comprehension with different reading
modalities. They examined reading comprehension of typically developing (TD) children
and children with language impairment (LI) in grades 1 and 2 according to reading modali-
ties (AR and R) and the correlations between reading comprehension and eye movement
parameters of both groups in each reading condition. Both in the AR and R conditions, TD
children performed better in reading comprehension than children with LI. Total fixation
duration in the screen; total fixation duration within areas of interest (AOIs), which are
sentence areas in the screen; and scanpath length were selected as the eye movement
parameters for the study. Total fixation duration within AOIs and scanpath length showed
significant positive correlations with story comprehension in the AR condition among
TD children, whereas among children with LI, only scanpath length emerged as a sig-
nificant variable showing a positive correlation with story comprehension. Under the R
condition, total fixation durations within the screen and within AOIs showed negative
correlations with comprehension scores in the TD group. In contrast, in the LI group, no
significant correlations between reading comprehension and eye movement parameters
were observed. This disparity in the correlations between comprehension scores and eye
movement parameters based on the reading modality implies that children with varying
levels of language proficiency may process information in text differently, depending on
the availability of audio assistance.

Several studies uncovered how readers approach text based on its difficulty level.
In the case of challenging texts, such as those with an enactive style, readers tend to
exhibit longer reading time, extended fixation durations, increased fixation counts, and
reduced word skipping [35,39]. They also engage in more frequent retrospective glances
and allocate more time to revisit prior sentences compared to these behaviors while reading
easier texts [40]. Nevertheless, there are limited studies examining how text type influences
the eye movements of school-age children and how these eye movement patterns impact
their reading comprehension.

1.4. Study Objectives

In this study, we aimed to identify the differences in eye movement patterns, both
temporal and spatial, among elementary school students ranging from grades 1 to 6, based
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on reading conditions (modalities), R and AR; and text types, fiction and non-fiction.
Additionally, we sought to understand the impact of these eye movement patterns within
each reading condition and text type on their literal and inferential reading comprehension.
Therefore, the research questions are as follows:

1. Are there differences in eye movement parameters (average and total fixation dura-
tions and scanpath length) among different age groups according to reading condi-
tions and text types?

2. Which eye movement parameters can predict literal and inferential reading compre-
hension in elementary school children within each reading condition and text type?

2. Materials and Methods

2.1. Participants

A total of 364 children (187 males and 177 females) from grades 1 to 6, who were
enrolled in a private elementary school in Seoul, Korea, participated in this study, with
an average age of 113 months (SD = 21.13). The study obtained written consent from
both parents and children through notices sent to parents. Among these, 40 children
were excluded from the research due to not meeting the language proficiency criteria after
screening. An additional seven were excluded from the study for not meeting the criteria
for non-verbal intelligence after screening. Consequently, the final eligible sample consisted
of 317 children who successfully completed the tasks.

The study’s inclusion criteria were as follows: (1) enrollment in grades 1 to 6 in an
elementary school, (2) achievement of the 10th percentile or higher in both receptive and
expressive vocabulary as measured by the Receptive and Expressive Vocabulary Test [41],
(3) attainment of a standard score of 85 points or higher in the nonverbal intelligence
test component of the Kaufman Brief Intelligence Test-2nd edition [42], (4) demonstration
of appropriate reading abilities suitable for engaging with the text in the reading tasks,
and (5) no reports from parents or teachers indicating any presence of intellectual, visual,
auditory, emotional, behavioral, or neurological problems.

All eligible children participated in two reading tasks, conducted under both the R
and AR conditions. The text types employed for these tasks differed depending on the
reading condition. For instance, if a child was provided fictional text in the AR condition,
non-fictional text was presented in the R condition, and vice versa. These combinations of
text types and reading conditions were randomly assigned to participants.

As a result, the initial total sample size amounted to 634 participants. However, due
to missing values, attributed to calibration issues or fatigue, a total of 65 samples were
excluded from the analysis. The participants’ characteristics are presented in Table 1.

Table 1. Participants’ characteristics. Values are presented as mean (SD). R: reading-only; AR:
audio-assisted reading.

Grade
Reading

Condition
Text
Type

N
Age

(Months)
Non-Verbal

Intelligence 1
Receptive

Vocabulary 2
Expressive

Vocabulary 2

1

R
Fiction 26

(M = 13, F = 13)
81.38
(3.61)

118.47
(13.31)

86.92
(18.06)

84.69
(19.52)

Non-fiction 12
(M = 2, F = 10)

81.25
(3.36)

115.00
(21.79)

80.25
(13.53)

83.42
(12.60)

AR
Fiction 11

(M = 1, F = 10)
81.73
(3.07)

115.25
(23.29)

80.64
(14.12)

83.09
(13.16)

Non-fiction 27
(M = 13, F = 14)

81.33
(3.55)

118.47
(13.31)

87.19
(17.77)

84.44
(19.18)
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Table 1. Cont.

Grade
Reading

Condition
Text
Type

N
Age

(Months)
Non-Verbal

Intelligence 1
Receptive

Vocabulary 2
Expressive

Vocabulary 2

2

R
Fiction 26

(M = 11, F = 15)
94.23
(3.41)

120.00
(14.65)

104.50
(16.96)

98.50
(15.69)

Non-fiction 26
(M = 12, F = 14)

94.54
(3.54)

120.22
(14.75)

97.50
(13.98)

95.46
(9.31)

AR
Fiction 28

(M = 16, F = 12)
94.21
(3.52)

119.13
(14.99)

96.64
(13.93)

94.82
(8.97)

Non-fiction 27
(M = 15, F = 12)

94.37
(3.58)

120.06
(13.79)

103.37
(17.31)

97.26
(15.41)

3

R
Fiction 22

(M = 13, F = 9)
108.82
(4.41)

123.45
(12.47)

123.18
(19.08)

117.59
(19.43)

Non-fiction 29
(M = 15, F = 14)

107.52
(3.14)

123.32
(14.47)

118.14
(16.43)

116.97
(19.93)

AR
Fiction 27

(M = 13, F = 14)
108.00
(3.26)

123.04
(13.47)

120.26
(16.74)

117.74
(19.61)

Non-fiction 21
(M = 13, F = 8)

108.95
(4.48)

122.71
(12.28)

123.81
(19.32)

117.57
(19.91)

4

R
Fiction 34

(M = 20, F = 14)
119.94
(3.08)

122.15
(11.49)

131.09
(16.66)

130.24
(21.26)

Non-fiction 26
(M = 14, F = 12)

119.46
(3.52)

121.00
(10.89)

133.81
(15.15)

136.08
(20.56)

AR
Fiction 24

(M = 13, F = 11)
119.13
(3.38)

120.65
(11.16)

133.63
(15.31)

137.67
(20.62)

Non-fiction 32
(M = 18, F = 14)

119.91
(3.16)

121.84
(11.66)

130.50
(16.66)

129.78
(21.39)

5

R
Fiction 25

(M = 14, F = 11)
132.32
(2.64)

119.64
(11.38)

148.48
(17.70)

149.56
(16.73)

Non-fiction 19
(M = 9, F = 10)

133.89
(3.21)

121.00
(14.64)

140.47
(16.90)

148.74
(16.10)

AR
Fiction 20

(M = 10, F = 10)
133.85
(3.13)

121.16
(14.25)

141.10
(16.68)

149.65
(16.19)

Non-fiction 25
(M = 14, F = 11)

132.20
(2.48)

119.08
(11.60)

147.76
(16.53)

151.68
(17.55)

6

R
Fiction 15

(M = 10, F = 5)
146.47
(3.48)

120.60
(8.34)

157.67
(16.38)

150.93
(14.38)

Non-fiction 23
(M = 10, F = 13)

146.09
(4.61)

122.57
(11.59)

154.13
(12.04)

151.78
(12.07)

AR
Fiction 29

(M = 14, F = 15)
146.28
(4.46)

124.07
(11.32)

154.38
(14.62)

151.31
(13.19)

Non-fiction 15
(M = 10, F = 5)

146.47
(3.48)

120.60
(8.34)

157.67
(16.38)

150.93
(14.38)

1 Standardized scores, assessed using the Korean Kaufman Brief Intelligence Test-2 [42], are presented. 2 Raw
scores, assessed using the Receptive and Expressive Vocabulary Test [41], are presented.

2.2. Reading Tasks

Six different scripts were used for this study, including three fictional and three non-
fictional texts, in order to prevent sharing information about the script among children, as all
participants attended the same school. Scripts were randomly assigned to the participants.
All participants were native Korean speakers, and all study materials were written and
presented in the Korean language.

All scripts were composed by the researchers with reference to the list of recommended
books for the first to second graders and were reviewed by a professor of communica-
tion disorders and six graduate students in the field of communication disorders. The
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KReaD analysis [43], which gauges text difficulty and provides an objective reading level
assessment, was performed for each script. The results showed that the fictional texts
had a KReaD index of 2.78 grade level and the non-fictional texts had a KReaD index
of 5.29 grade level. The length of scripts differed across text types, while the number of
sentences within each text type remained consistent. For fictional texts, the average word
counts were 803.67 words, with 801, 804, and 806 words for the respective texts, comprising
a total of 73 sentences. The non-fictional texts had an average word count of 419.67 words,
with 425, 420, and 414 words for each script, and consisted of 37 sentences. The scripts
were displayed on a monitor equipped with an attached eye tracker. Each fictional text was
divided into 11 slides, and the non-fictional texts were divided into 6 slides, with each slide
containing 10 lines of text.

In the R condition, only visual scripts were provided, and the children were required
to read the text silently on their own. The researchers observed the child’s eye movements,
and once they confirmed the completion of the reading, they manually advanced to the
next slide. In the AR condition, participants were presented with both the visual script
and auditory narration that simultaneously corresponded to the text. They were instructed
to read the text while listening to the audio. Once the audio for the slide was complete,
the next slide was automatically displayed along with the corresponding audio presen-
tation. The audio files were recorded by a research assistant who held certification as a
kindergarten teacher.

2.3. Reading Comprehension Tasks

Following reading or reading while listening to each text, the children were to answer
questions about the text to assess their reading comprehension. One professor of commu-
nication disorders and six graduate students in communication disorders participated in
the development and review of the reading comprehension questions. Additionally, two
Level 1 speech-language pathologists evaluated the validity of the questions. If the validity
score was 3 or lower on a 5-point scale, the corresponding question was replaced with an
alternate question. Reading comprehension assessment questions, created as Microsoft
Office PowerPoint files, were displayed on a computer or tablet screen. The researchers
read the questions aloud from the screen, and the child verbally provided answers.

The reading comprehension questions encompassed 10 literal questions and
8–9 inferential questions for each text. All items were evaluated on a 2-point scale (0, 1 point)
or a 3-point scale (0, 1, 2 points), depending on question complexity and structure. Re-
garding short-answer questions, 1 point was given if the answer precisely mentioned the
relevant information. For open-ended questions, the score ranged from 0 to 2 points. When
all contents of the answer were accurate, 2 points were awarded, and if only parts of them
were included, 1 point was granted. Fictional texts were assigned a total of 34, 35, and
33 points, and non-fictional texts were scored out of 32, 31, and 32 points, respectively.

After the initial scoring, three research assistants conducted a reassessment of the
entire dataset. An evaluation of inter-rater reliability was conducted among evaluators
for a randomly selected 10% of the complete dataset, yielding a high level of reliability
(r = 0.98).

2.4. Eye-Tracking Measurements

The eye-tracking device utilized in this study was the REDn Eye Scientific device,
developed by SMI in Germany, with a sampling rate of 60 Hz, an accuracy of 0.4◦, and a
spatial resolution of 0.03◦. The eye-tracking data of the participants during the reading
tasks were recorded on a laptop equipped with SMI BeGaze 3.7, the data analysis software.
To enhance the accuracy of data collection, all participants underwent calibration for five
points on the monitor prior to beginning the task, ensuring that calibration values were
within 0.6◦ before proceeding with the tasks.

Eye-tracking data analysis was conducted using SMI BeGaze 3.7 software. In the
reading tasks, the sentences within the presented slide were designated as AOIs. Employ-
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ing temporal and spatial eye-tracking variables, the gaze exploration processes and the
cognitive processing of children during reading were examined [30]. Time-related variables
included the total fixation duration (TFD) and average fixation duration (AFD) within the
AOI. For a spatial-related variable, the scanpath length was utilized. Fixation refers to
sustained gaze on an AOI for about 180–330 ms [44]. The TFD represents the total time (ms)
that the AOI was fixated during the reading task, and the AFD is calculated by dividing
the TFD within the AOI by the number of fixations. Scanpath length represents the sum
of the lengths (in pixels) of gaze movement paths during the tasks, which encompass
both progressive and regressive saccades. These fixation durations and scanpath lengths
have been shown to be linked to the type of stimuli presented and an individual’s reading
proficiency [32,45,46].

2.5. Data Analysis

In order to minimize the potential influence of variations in content among different
scripts, the average and standard deviation were computed for each group based on the
text type and reading condition, and individual performance was then standardized using
Z-scores.

Statistical analysis was conducted using R (version 4.3.0; R Core Team, 2023). A
three-way analysis of variance (ANOVA) was conducted to investigate the differences
in eye movement patterns (AFD, TFD, and scanpath length) according to age (first to
sixth grades), reading conditions (R and AR), and text types (fictional and non-fictional).
Moreover, forward stepwise multiple regression analysis was performed to investigate
the eye movement factors that can predict children’s literal and inferential comprehension
under each reading condition when reading either fictional or non-fictional text, considering
age as a controlled variable.

3. Results

This study aimed to explore the differences in eye movement patterns (AFD, TFD, and
scanpath length) across age groups, reading conditions (AR and R), and text types (fictional
and non-fictional). Furthermore, predictive models were developed to identify the eye
movement variables that predict reading comprehension, both literal and inferential, and
to investigate whether these predictors varied according to reading conditions and text
types while controlling for age. Table 2 displays the reading comprehension performance
and eye movement variables based on age, reading conditions, and text types.

Table 2. Descriptive statistics of literal and inferential comprehension and eye tracking variables.
Values are presented as mean (SD). All scores are reported in Z-scores. R: reading-only; AR: audio-
assisted reading; AFD: average fixation duration; TFD: total fixation duration.

Grade
Reading

Condition
Text Type

Literal
Comprehension

Inferential
Comprehension

AFD TFD
Scanpath
Length

1
R

Fiction −1.15 (1.31) −1.21 (1.00) 0.70 (1.36) 0.66 (1.87) 0.20 (1.03)
Non-fiction −1.07 (1.36) −1.30 (0.89) 0.32 (0.76) 0.29 (1.04) 0.40 (1.41)

AR
Fiction −0.64 (1.04) −0.62 (1.07) 0.82 (1.25) −0.31 (0.81) −0.81 (1.20)

Non-fiction −1.03 (0.90) −1.24 (0.81) 0.61 (1.13) −0.13 (1.14) −0.79 (0.66)

2
R

Fiction 0.23 (0.50) −0.20 (0.95) 0.37 (1.27) 0.25 (0.80) 0.18 (0.83)
Non-fiction −0.75 (0.85) −0.69 (0.90) 0.36 (1.30) 0.30 (1.08) −0.06 (0.97)

AR
Fiction −0.34 (0.94) −0.38 (0.97) 0.13 (1.01) 0.52 (1.01) −0.38 (0.96)

Non-fiction −0.35 (0.82) −0.42 (0.76) 0.13 (0.95) −0.01 (0.92) −0.36 (0.79)
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Table 2. Cont.

Grade
Reading

Condition
Text Type

Literal
Comprehension

Inferential
Comprehension

AFD TFD
Scanpath
Length

3
R

Fiction 0.26 (0.72) 0.25 (0.79) 0.02 (0.81) −0.10 (0.75) −0.14 (1.24)
Non-fiction 0.20 (0.68) 0.27 (0.72) −0.15 (0.64) −0.06 (1.10) −0.19 (1.04)

AR
Fiction 0.25 (0.70) 0.25 (0.84) −0.16 (0.87) 0.09 (0.93) 0.29 (0.82)

Non-fiction 0.14 (0.74) 0.14 (0.63) 0.06 (0.77) 0.04 (0.89) 0.13 (0.83)

4
R

Fiction 0.39 (0.50) 0.62 (0.44) −0.27 (0.61) −0.35 (0.51) −0.27 (0.96)
Non-fiction 0.46 (0.57) 0.41 (0.58) −0.19 (0.83) −0.24 (0.84) 0.09 (0.98)

AR
Fiction 0.31 (0.62) 0.46 (0.42) −0.13 (0.78) 0.01 (0.79) 0.29 (0.73)

Non-fiction 0.49 (0.56) 0.61 (0.47) −0.35 (0.70) 0.12 (1.14) 0.41 (1.15)

5
R

Fiction 0.36 (0.65) 0.45 (0.60) −0.55 (0.60) −0.36 (0.68) −0.14 (0.85)
Non-fiction 0.40 (0.64) 0.59 (0.45) −0.31 (0.60) −0.21 (0.82) 0.06 (0.81)

AR
Fiction 0.52 (0.31) 0.29 (0.61) −0.03 (0.94) −0.17 (1.11) 0.32 (0.68)

Non-fiction 0.67 (0.47) 0.65 (0.46) −0.41 (1.00) −0.28 (0.89) 0.44 (0.95)

6
R

Fiction 0.49 (0.38) 0.58 (0.47) −0.50 (0.49) −0.23 (0.27) −0.02 (0.97)
Non-fiction 0.70 (0.44) 0.77 (0.32) −0.38 (0.55) −0.26 (0.70) 0.12 (0.84)

AR
Fiction 0.42 (0.53) 0.57 (0.46) −0.09 (0.95) −0.12 (1.04) 0.13 (1.04)

Non-fiction 0.68 (0.49) 0.83 (0.24) −0.37 (0.62) 0.13 (0.83) 0.55 (0.90)

3.1. Comparison of Average Fixation Duration According to Age, Reading Conditions, and
Text Types

A main effect of age on average fixation duration (AFD) was observed (F(5, 545) = 14.976,
p < 0.001), with a trend towards shorter AFD among older students compared to younger
students (see Figure 1). According to the subsequent Bonferroni post hoc test, in the R
condition, age-related differences reached statistical significance only when participants were
reading fictional text. Significant differences in AFD were observed between grade 1 and
grade 4 (p < 0.001), grade 1 and grade 5 (p < 0.001), grade 1 and grade 6 (p < 0.001), as well as
between grade 2 and grade 5 (p = 0.005) and grade 2 and grade 6 (p = 0.047). Within the AR
condition, a significant difference in AFD between grade 1 and grade 3 was observed while
reading fictional text (p = 0.041). When engaging with non-fictional text in the AR condition,
significant differences in AFD emerged between grade 1 and grade 4 (p < 0.001), grade 1 and
grade 5 (p < 0.001), and grade 1 and grade 6 (p = 0.013).

Figure 1. Average fixation duration in each reading condition when reading fictional and
non-fictional text.

The results showed no significant main effects for reading condition (F(1, 545) = 0.313,
p = 0.576) and text type (F(1, 545) = 0.805, p = 0.370). Additionally, no significant interactions
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were found between age and reading condition (F(5, 545) = 0.925, p = 0.464), age and text
type (F(5, 545) = 0.279, p = 0.925), or reading condition and text type (F(1, 545) = 0.700,
p = 0.043), and there was no three-way interaction found involving age, reading condition,
and text type (F(5, 545) = 0.989, p = 0.424).

3.2. Comparison of Total Fixation Duration According to Age, Reading Conditions, and Text Types

A main effect of age (F(5, 545) = 4.086, p = 0.001), as well as an interaction effect
between age and reading condition (F(5, 545) = 2.638, p = 0.023), on total fixation duration
(TFD) were observed. A simple main effect test was administered, due to the significant
interaction effect. The main effect of age was significant when reading fictional text under
both R (F(5, 545) = 5.22, p < 0.001) and AR (F(5, 545) = 2.77, p = 0.046) conditions. Within
the R condition, age-related differences were observed, showing a decline in TFD with an
increase in age. Similarly, while reading fictional text, the AR condition exhibited these
age-related differences, with the exception of the results from the first grade children, in
which the shortest TFD was observed, deviating from the results for other age groups (see
Figure 2). The Bonferroni post hoc test revealed significant differences in TFD between
grade 1 and grade 4 (p = 0.001) and grade 1 and grade 5 (p = 0.003) in the R condition
while reading fictional text. The interaction effect between age and reading condition was
derived from the significant difference between R and AR conditions in the first grade,
with the AR condition demonstrating lower TFD compared to the R condition (p = 0.006).

Figure 2. Total fixation duration in each reading condition when reading fictional and non-fictional
text. ** p < 0.01.

The main effects of reading condition (F(1, 545) = −0.527, p = 0.468) and text type (F(1,
545) = 0.054, p = 0.816) were not significant. There were no significant two-way interactions
between age and text type (F(5, 545) = 0.497, p = 0.779) and reading condition and text type
(F(1, 545) = 0.174, p = 0.677), while a three-way interaction among age, reading condition,
and text type (F(5, 545) = 0.853, p = 0.513) also failed to reach statistical significance.

3.3. Comparison of Scanpath Length According to Age, Reading Conditions, and Text Types

A three-way ANOVA revealed a significant main effect of age (F(5, 545) = 3.286,
p = 0.006) and an interaction effect between age and reading condition (F(5, 545) = 8.634,
p < 0.001) in regards to scanpath length. Subsequently, a simple main effect test was
performed in response to the observed interaction effect. Irrespective of the text type, a sig-
nificant main effect of age emerged within the AR condition (fictional text: F(5, 545) = 4.38,
p < 0.001; non-fictional text: F(5, 545) = 8.66, p < 0.001). In the AR condition, there was a
trend of escalating scanpath length as age increased, whereas this age-related tendency
was absent within the R condition. Among younger children, the scanpath length was
observed to be shorter in the AR condition in comparison to the R condition, regardless
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of the text type, which is deemed to contribute to the interaction effect between age and
reading condition (See Figure 3). The Bonferroni post hoc test was conducted in order to
examine the differences in scanpath length across age and reading conditions. Within the
AR condition when reading fictional text, there were significant differences in scanpath
length between grade 1 and grade 3 (p = 0.017), grade 1 and grade 4 (p = 0.021), and grade
1 and grade 5 (p = 0.023). In the context of non-fictional text under the AR condition, the
scanpath length in grade 1 showed a significant difference compared to grade 3 (p = 0.013),
grade 4 (p < 0.001), grade 5 (p < 0.001), and grade 6 (p < 0.001). Similarly, the scanpath length
in grade 2 also exhibited a significant difference compared to grade 4 (p = 0.027), grade 5
(p = 0.036), and grade 6 (p = 0.044). When reading fictional text, significant differences in
scanpath length between the R and AR conditions were observed in grade 1 (p = 0.003),
grade 2 (p = 0.031), and grade 4 (p = 0.025). Regarding non-fictional text, however, it was
only within grade 1 that the significant difference in scanpath length between the two
conditions appeared (p < 0.001).

Figure 3. Scanpath length in each reading condition when reading fictional and non-fictional text.
* p < 0.05; ** p < 0.01; *** p < 0.001.

Neither reading condition (F(1, 545) = 0.409, p = 0.523) nor text type (F(1, 545) = 1.23,
p = 0.268) had any significant main effects on scanpath length. The two-way interaction
effects between age and text type (F(5, 545) = 0.78, p = 0.562) and reading condition and
text type (F(1, 545) = 0.01, p = 0.919), as well as a three-way interaction effect among age,
reading condition, and text type, were not statistically significant.

3.4. Eye Movement Predictive Models for Reading Comprehension by Reading Conditions and Text
Types

First, within the context of fictional reading under the R condition, a predictive model
concerning literal comprehension exhibited a statistically significant explanation of 21%
of the variance (F(1, 146) = 40.66, p < 0.001), with no inclusion of eye movement parame-
ters. Only age significantly and positively influenced the variable (β = 0.47, t(146) = 6.39,
p < 0.001). Regarding inferential comprehension, a predictive model significantly accounted
for 37% of the variance (F(2, 145) = 43.70, p < 0.001). The model encompassed age (β = 0.50,
t(145) = 7.13, p < 0.001) and TFD (β = −0.22, t(145) = −3.21, p = 0.002) as predictors. Both
factors were statistically significant, with age displaying a positive and TFD exerting a
negative effect on the inferential comprehension scores.

Second, under the R condition during non-fictional reading, a predictive model for lit-
eral comprehension significantly explained 37% of the variance (F(3, 131) = 27.31, p < 0.001).
In this model, age (β = 0.53, t(131) = 7.32, p < 0.001) and AFD (β = −0.19, t(131) = −2.63,
p = 0.010) emerged as significant predictors, while scanpath length (β = 0.12, t(131) = 1.73,
p = 0.086) did not reach statistical significance. Age and scanpath length demonstrated
positive associations with literal comprehension, whereas AFD showed a negative impact
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on the variable. A model predicting inferential comprehension accounted for 47% of the
variance (F(2, 132) = 59.56, p < 0.001), wherein age and TFD appeared as significant factors.
Age (β = 0.61, t(132) = 9.50, p < 0.001) exhibited a positive influence on the inferential
comprehension scores, while the impact of TFD (β = −0.21, t(132) = −3.24, p = 0.002) on
inferential comprehension was negative.

Next, within the AR condition, while reading fictional text, a predictive model that
includes age and TFD significantly accounted for 22% of the variance in literal compre-
hension (F(2, 136) = 20.96, p < 0.001). Both age (β = 0.46, t(136) = 6.13, p < 0.001) and TFD
(β = 0.21, t(136) = 2.73, p = 0.007) had a significant positive impact on literal comprehension.
For inferential comprehension, on the other hand, a predictive model yielded a significant
explanation of 25% of the variance (F(3, 135) = 16.37, p < 0.001). The variables encom-
passed in the model were age (β = 0.39, t(135) = 5.08, p < 0.001), scanpath length (β = 0.15,
t(135) = 1.81, p = 0.073), and AFD (β = −0.14, t(135) = −1.76, p = 0.081). Age exhibited a
significant positive influence on the inferential comprehension scores. Although scanpath
length was also positively associated with inferential comprehension, this relationship did
not reach statistical significance. AFD negatively affected inferential comprehension, but
this effect did not attain statistical significance.

Finally, considering literal comprehension under the AR condition while engaging
with non-fictional text, a predictive model significantly explained 45% of the variance, with
all three eye movement parameters involved (F(4, 142) = 30.75, p < 0.001). Age (β = 0.55,
t(142) = 7.62, p < 0.001) and TFD (β = 0.14, t(142) = 2.06, p = 0.041) significantly and positively
affected literal comprehension. Scanpath length (β = 0.11, t(142) = 1.42, p = 0.159) also
displayed a positive impact on literal comprehension, but it was not statistically significant.
AFD (β = −0.13, t(142) = −1.72, p = 0.088) had a non-significant negative impact on the
literal comprehension scores. A model that predicts inferential comprehension included
scanpath length and AFD, significantly accounting for 56% of the variance (F(3, 143) = 63.34,
p < 0.001). Age (β = 0.61, t(143) = 9.60, p < 0.001) and scanpath length (β = 0.15, t(143) = 2.27,
p = 0.025) exhibited a positive and significant impact on inferential comprehension, while
AFD (β = −0.12, t(143) = −1.89, p = 0.061) had a negative and non-significant impact.

The predictive models for literal and inferential comprehension according to reading
conditions and text types are presented in Table 3.

Table 3. Eye movement predictive models for reading comprehension in each reading condition and
text type. R: reading-only; AR: audio-assisted reading; F: fiction; NF: non-fiction; TFD: total fixation
duration; AFD: average fixation duration.

Dependent Variables Predictors β Std. β t p R2 Adj. R2

R_F
Literal comprehension Age 0.20 0.47 6.39 <0.001 0.22 0.21

Inferential comprehension Age 0.02 0.50 7.13 <0.001 0.38 0.37
TFD −0.21 −0.22 −3.21 0.002

R_NF
Literal comprehension

Age 0.02 0.53 7.32 <0.001 0.38 0.37
AFD −0.21 −0.19 −2.63 0.010

Scanpath length 0.12 0.12 1.73 0.086

Inferential comprehension Age 0.03 0.61 9.50 <0.001 0.47 0.47
TFD −0.20 −0.21 −3.24 0.002

AR_F

Literal comprehension Age 0.02 0.46 6.13 <0.001 0.24 0.22
TFD 0.16 0.21 2.73 0.007

Inferential comprehension
Age 0.02 0.39 5.08 <0.001 0.27 0.25

Scanpath length 0.13 0.15 1.81 0.073
AFD −0.12 −0.14 −1.76 0.081

AR_NF
Literal comprehension

Age 0.02 0.55 7.62 <0.001 0.46 0.45
Scanpath length 0.10 0.11 1.42 0.159

TFD 0.13 0.14 2.06 0.041
AFD −0.13 −0.13 −1.72 0.088

Inferential comprehension
Age 0.03 0.61 9.60 <0.001 0.57 0.56

Scanpath length 0.14 0.15 2.27 0.025
AFD −0.12 −0.12 −1.89 0.061
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4. Discussion

The study aimed to examine the effects of reading conditions—audio-assisted reading
and reading only—in fictional and non-fictional texts on 6- to 12-year-old elementary school
students’ eye movement patterns and their literal and inferential comprehension.

4.1. The Impact of Reading Condition and Text Type on Eye Movement Patterns across Age Groups

First, the AFD, which indicates the speed at which a reader processes a word or a
semantic chunk, was analyzed based on age, reading conditions, and text types. The main
effect of age showed that, regardless of the reading condition and text type, in general,
AFD decreased as age increased. This aligns with the results of previous studies that have
explored the relationship between age and fixation duration [47,48].

Results from the Bonferroni post hoc test, which examined differences in AFD across
age, revealed variations depending on reading condition and text type. Age differences
in AFD were prominent in the R condition when reading fictional text. When it comes
to fictional text, older children tend to quickly extract essential information from the
text, while younger children take their time in word reading, including decoding and the
interpretation of the information, and read the text attentively when asked to read on
their own. The reduced age-related gaps in AFD when reading non-fictional text show
that older children invest more time and attention to challenging text with complicated
sentence structures, while younger children may employ a different approach to processing
such text. These findings are consistent with prior research suggesting that text type and
difficulty can affect readers’ AFD [49].

Unlike the R condition, under the AR condition, the impact of age was pronounced
when reading non-fictional text. Despite not reaching statistical significance, the AFD
for older children under the AR condition appeared to be longer than that under the R
condition for fictional reading, while the contrast was negligible when reading non-fictional
text. When provided with audio assistance for reading fictional text, which is typically an
easier and more comprehensible text, older children seem to somewhat synchronize their
reading pace with the auditory narration while maintaining their own pace. This reading
strategy becomes noticeable from the third grade onward, as indicated by the emergence of
a plateau at that point. However, when reading non-fictional text, older children in grades
4 to 6 adopt a faster reading strategy to enhance their comprehension.

Second, there is a general decrease in overall TFD with age in both text types, as
evidenced by the main effect of age. However, the significance was only exhibited in
fictional reading. TFD reflects the time a reader dedicates to comprehensively engaging
with the entire text. This age-related trend explains the development of reading fluency as a
child grows older [48], and this effect is particularly notable during the reading of fictional
text. Furthermore, an interaction effect between age and reading condition was observed,
attributed to the substantial drop in TFD observed in grade 1 under the AR condition,
unlike the extended TFD observed in the R condition, which could potentially stem from
different strategies used by children across age, depending on the reading modalities.

In the R condition, TFD tends to decrease with age, irrespective of text type, but the
age effect was significant only when reading fictional text. This effect arises due to the
reduced TFD among the first graders when engaging with non-fictional text. Typically,
when readers encounter difficult text, there is a tendency for the TFD to rise [25]. However,
in the case of young children, text covering unfamiliar topics may affect their focus on the
text, potentially leading to a decrease in TFD.

While under the AR condition, the trend of decreasing TFD with age was observed in
fictional reading, similar to that observed for the R condition, the TFD for grade 1 children
was the shortest among all age groups, and the difference between two reading conditions
among first graders was significant. This suggests that first graders actively take advantage
of audio assistance during fictional reading. Children in other age groups appear to utilize
a combination of visual and audio stimuli, either aligning their reading speed with the
speed of audio narration or pacing themselves at a preferable speed.
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However, in the case of non-fictional reading under the AR condition, there was no
significant change in TFD with age, and it appears to remain relatively constant across
different age groups. Given the observed decrease in AFD among older children in the
same condition, it can be inferred that older children might engage in repetitive sentence
reading while simultaneously listening to the audio. The fact that there were no age-related
differences in TFD during non-fictional reading under the AR condition, and that there
was no discernible drop causing a significant difference between reading conditions in this
context, unlike that observed in fictional reading, implies that younger children maintained
their attention throughout the whole text to the same degree as the older children. This
finding supports the positive impact of audio assistance on comprehension among young
children in regards to reading non-fiction, as revealed by Chung et al. [29].

Finally, scanpath length was analyzed under the AR and R conditions while reading
fictional or non-fictional text. The main effect of age was significant under the AR condition,
regardless of the text type, with the scanpath length increasing as age increased. In addition,
an interaction effect between age and reading condition emerged due to the difference in
scanpath length between the AR and R conditions among first and second graders during
fictional reading, as well as among first graders during non-fictional reading.

Under the R condition, the scanpath length generally remains consistent across age,
with the exception of a slight increases observed among first- and second-grade children
in fictional reading, as well as first-grade children in non-fictional reading. Even though
these increases did not achieve statistical significance, the extended scanpath length could
suggest a need to revisit the previously read text for better comprehension. Decreased AFD
in the first graders under the R condition while reading non-fiction may be attributed to
their tendency to read words or chunks quickly and to revisit the information previously
read in the text. In both fictional and non-fictional reading, first and second graders
exhibited longer scanpaths under the R condition than when under the AR condition, and
the differences were significant among the first graders during both fictional and non-
fictional reading, as well as among the second graders during fictional reading. Younger
children more frequently return to the text they have previously read when reading on
their own, compared to when they are aided by the audio device.

On the other hand, in the AR condition, there was a trend of increasing scanpath length
with age, and this difference across age was apparent during non-fictional reading. The
shorter scanpath length among younger children might indicate a preference for utilizing
audio assistance or a potentially prolonged word-reading duration that hinders them from
covering the complete text. However, the latter possibility can be ruled out, considering
that their AFD was not significantly longer under the AR condition. Therefore, it can be
inferred that younger, less experienced readers are more inclined to extract information
from audio sources rather than the text itself. In contrast, older students exhibit a tendency
to engage in repeated back-and-forth reading of the text while simultaneously listening to
the audio. This suggests that, under the AR condition, older and more proficient readers
read at their preferred pace and revisit the same text multiple times as necessary. This could
involve revisiting information they consider important, as well as information presented
in the audio, or both. This strategy of repetitive reading is more frequently employed
when reading non-fictional text. Similar to the AFD pattern, a plateau is observed from
grade 3 onward during fictional reading, whereas the scanpath length continues to increase
with age during non-fictional reading. When facing easy and predictable text, such as
fiction, skilled readers refrain from allocating excessive attention and effort to repetitive
reading. However, when it comes to non-fiction, they often invest more energy in the text
by adopting a repeated reading approach.

4.2. Eye Movement Predictive Models for Literal and Inferential Comprehension

When reading fictional text under the R condition, the only significant predictor
for literal comprehension was age. However, for inferential comprehension, a shorter
TFD emerged as a significant predictor for better performance. These results imply that
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children tend to naturally develop the ability to understand fictional stories at a literal
level as they mature [27], while advancing to inferential comprehension demands more
fluent and efficient reading. This difference can be elucidated by the fact that inferential
comprehension is based on successful literal comprehension. Proficient readers with greater
efficiency possess the cognitive capacity, after understanding the factual events in the text,
to engage in critical thinking by integrating background knowledge. This skill is crucial
for successful inferential comprehension, extending beyond merely comprehending the
factual events in the text [28].

Under the AR condition when reading fictional text, the incorporation of TFD in the
predictive model for literal comprehension indicates that allocating additional time to the
entire text leads to improved literal comprehension. Regarding inferential comprehension,
although it did not reach statistical significance, a longer scanpath length and a shorter AFD
were associated with enhanced performance, suggesting that implementing the strategy of
repeated reading may contribute to better inferential comprehension.

The predictive model for the literal comprehension of non-fiction under the R condition
appeared to be different from that for fictional reading. It included AFD as the significant
predictor, alongside scanpath length. This indicates that comprehending non-fictional texts,
even at a literal level, requires both efficient and repetitive reading of the text. Processing
information promptly remains essential for inferential comprehension in this context as well,
as evidenced by TFD emerging as a significant predictor in the model. The pattern showing
that shorter temporal factors of eye movements have a positive impact on comprehension
in general under the R condition is consistent with the observed negative correlations
between TFDs and story comprehension in the work of Park et al. [37].

While reading non-fiction under the AR condition, an increase in TFD, longer scanpath
length, and a decreased AFD were associated with improved literal comprehension. Under
the AR condition, non-fictional reading, like fictional reading, requires comprehensive
engagement with the entire text. Additionally, it necessitates the strategic use of repetitive
reading while efficiently extracting information within a single gaze. Similarly, longer
scanpaths and a shorter AFD were linked to better inferential comprehension. As with
fictional reading in the same reading condition, the practice of repetitive reading plays a
crucial role in achieving improved inferential comprehension. The emergence of scanpath
length and TFD as factors that positively impact comprehension under the AR condition
aligns with the results found in the work of Park et al. [37].

4.3. Research Limitations and Further Investigations

While it is acknowledged that there is an inherent difference in text difficulty and
topic between fictional and non-fictional texts, the disparity in reading difficulty levels
between the two text types used in this study was substantial. Additionally, there were
differences in text length between the two text types. Therefore, it is possible that the
observed differences between text types may not be solely attributable to the nature of the
texts themselves.

This study primarily focused on reading behaviors in elementary school children,
employing identical texts across all age groups. Although this approach facilitated an
exploration of age-related variations in reading strategies, a ceiling effect in which older
children demonstrated comparable eye movement patterns was observed. Thus, the
generalizability of these findings to older or more advanced readers may be limited. Further
research should consider examining proficient readers engaging with age-appropriate texts.

The current study only analyzed the behavioral aspects of reading, including volun-
tary eye movement patterns and reading comprehension scores, in typically developing
children. Regarding ocular following responses (OFRs), prior research has revealed that
there are no age-related differences in non-voluntary eye movements [50]. Moreover, when
comparing preterm children with their peers with dyslexia in the fourth and fifth grades,
they showed similar performance in reading comprehension, despite differences in eye
movement patterns [51]. Examining both voluntary eye movements and non-voluntary

143



Appl. Sci. 2023, 13, 10802

eye movements during reading across children of various age groups, including those
with developmental disorders, and assessing their language and higher-older cognition
skills that support reading comprehension [7], can enhance understanding of the cognitive
mechanisms at play in reading.

The texts used in this study were composed in the participants’ native language.
Previous research investigating reading processing in adult L1 readers, as well as adult
and child L2 learners, has shown that a longer time spent reading is associated with
poor comprehension in adult L1 readers. In contrast, extended reading time is linked to
improved comprehension for adult L2 readers, and no relationship between eye movements
and reading comprehension was observed in child L2 readers [52]. These findings suggest
that the results may differ when applied to L2 learners. Therefore, it is recommended that
future studies delve into the eye movements and reading performance of L2 learners across
various age groups and reading proficiency levels, which could offer valuable insights
into the relevance and applicability of the findings in this study in diverse linguistic and
educational contexts.

5. Conclusions

The purpose of this study was to identify eye movement patterns in elementary school
children under reading-only and audio-assisted reading conditions while reading fictional
or non-fictional text, as well as to investigate how these eye movement patterns within
each condition, when involved with different text types, affect their literal and inferential
reading comprehension.

In general, regardless of reading condition or type of text being read, there is a consis-
tent decrease in average fixation duration as children mature, which serves as an indicator
of the development of the ability to read more swiftly over time. However, older and more
experienced readers, when encountering easier text such as fiction accompanied by audio
assistance, tend to adopt a more relaxed reading pace. The trend of decreasing total fixation
duration with age is predominantly observed during fictional reading. Nevertheless, when
reading fictional text under the audio-assisted reading condition, a drop in total fixation
duration is observed among the first graders. This phenomenon could be due to their
preference for extracting information through audio assistance. Scanpath length exhibits a
tendency to increase with age under the audio-assisted reading condition, which is different
from the pattern observed in the reading-only condition. This implies that as children’s
reading skills improve, older individuals tend to employ a strategy of rapidly absorbing
information from the text while concurrently revisiting it with the assistance of audio.
Similar to the results for average fixation duration, however, this increase plateaus beyond
the third grade when reading fictional text, indicating that extensive repeated reading is
not considered crucial for older children within this context. These findings underscore
that younger and older elementary school children employ different reading strategies
based on reading modalities and types of text. Younger children appear to lean toward
audio narration assistance under the audio-assisted reading condition, while older children
opt for a strategy of rapid and repetitive reading. This preference for audio assistance over
text among younger children is more evident in fictional reading compared to non-fictional
reading, and older children’s attentive and repeated reading under the audio-assisted
reading condition is more prominent in regards to non-fiction compared to fiction.

Under the reading-only condition, while children acquire skills to understand literal
events in fictional text as they grow up, attaining enhanced inferential comprehension of
the text requires additional development of rapid and efficient reading abilities. When
reading non-fictional text, achieving even literal comprehension calls for efficient reading
combined with the revisiting of important information. Furthermore, attaining inferential
comprehension in non-fictional text requires quick processing of written information. When
audio assistance is provided during fictional reading, devoting sufficient time throughout
the text can be adequate for literal comprehension. However, when aiming to comprehend
inferential meaning, an efficient and repetitive reading approach becomes essential. Sim-
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ilarly, when reading non-fictional text under the audio-assisted reading condition, both
literal and inferential comprehension benefit from reading rapidly and repeatedly.

In order to improve reading comprehension, it is necessary to provide appropriate
types of text, along with visual and/or auditory stimuli, taking into consideration the
age and reading proficiency of children. The findings of this study could be beneficial for
reading instruction among younger children with developing reading skills, as well as for
guiding reading strategies among older children.
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Abstract: Pupil tracking plays a crucial role in various applications, including human–computer
interactions, biometric identification, and Autostereoscopic three-dimensional (3D) displays, such
as augmented reality (AR) 3D head-up displays (HUDs). This study aims to explore and compare
advancements in pupil-tracking techniques using event camera imaging. Event cameras, also known
as neuromorphic cameras, offer unique benefits, such as high temporal resolution and low latency,
making them well-suited for capturing fast eye movements. For our research, we selected fast
classical machine-learning-based computer vision techniques to develop our remote pupil tracking
using event camera images. Our proposed pupil tracker combines local binary-pattern-features-based
eye–nose detection with the supervised-descent-method-based eye-nose alignment. We evaluate the
performance of event-camera-based techniques in comparison to traditional frame-based approaches
to assess their accuracy, robustness, and potential for real-time applications. Consequently, our
event-camera-based pupil-tracking method achieved a detection accuracy of 98.1% and a tracking
accuracy (pupil precision < 10 mm) of 80.9%. The findings of this study contribute to the field of
pupil tracking by providing insights into the strengths and limitations of event camera imaging for
accurate and efficient eye tracking.

Keywords: eye tracking; eye detection; event camera; dynamic vision sensor; system latency;
Autostereoscopic 3D display; augmented reality; augmented reality 3D head-up display

1. Introduction

Pupil tracking is a fundamental task in computer vision, human–computer interac-
tions, virtual reality (VR), and augmented reality (AR) display systems. It plays a crucial
role in enabling various applications, including gaze estimation [1], attention tracking [2],
biometric identification [3], and Autostereoscopic three-dimensional (3D) displays, such
as AR 3D head-up displays (HUDs) [4]. Eye pupil tracking is also useful in psychology
and medicine. Researchers have used it to identify conditions, like stress, by studying how
the eyes move and other related body signals [5]. Extensive research has been conducted
on head-mounted eye-pupil tracking, a close-range eye-tracking technology primarily
designed for wearable devices [6–8]. Additionally, remote eye-tracking has also garnered
significant attention in the research community. Remote pupil tracking enables the mon-
itoring and analysis of eye movements from a distance without requiring any physical
contact with the user. This non-intrusive technology finds applications in various fields,
including human–computer interactions [9], psychological studies [10], Autostereoscopic
3D displays [11], and AR 3D HUDs in automobiles [4], offering valuable insights into
users’ visual attention and cognitive processes. The advancements in remote eye-tracking
techniques have paved the way for more practical and non-intrusive implementations in
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real-world scenarios. While previous studies have extensively utilized traditional frame-
based camera systems, sometimes with the integration of near-infrared (NIR) light, for
remote pupil-tracking tasks [11,12], they inherently possess certain limitations, particularly
in capturing fast and subtle eye movements that are vital for comprehending cognitive
processes and human behavior.

Recently, the emergence of event camera imaging has piqued the interest of the
computer vision community due to its unique capabilities for dynamic vision tasks. Event
cameras asynchronously capture pixel-level intensity changes, or events, triggered by
significant changes in the scene, such as motion. This novel sensing modality offers distinct
advantages over conventional frame-based cameras, including a high temporal resolution,
low latency, and low power consumption. These properties make event cameras highly
attractive for capturing fast eye movements, such as rapid eye movements and subtle
eye motions, which are often missed or blurred in frame-based systems [13]. One of the
key characteristics of event cameras is their ability to represent motion through positive
and negative pixel intensity changes. Positive events represent increases in intensity,
while negative events signify decreases. As a result, event cameras provide a sparse
representation of the scene, focusing solely on the changes occurring in the environment
when motion occurs (Figure 1). This unique feature allows event cameras to excel in
capturing dynamic scenes with reduced redundancy and minimized motion blur, making
them particularly well-suited for tasks, like pupil tracking, where fast eye movements are
critical for accurate analysis [13].

Figure 1. Examples of event camera imaging (left) capturing different levels of motion compared
to frame-based Complementary Metal-Oxide-Semiconductor (CMOS) camera (right). The 1st row
shows examples of minimal motion, the 2nd row shows subtle motion, and the 3rd row shows large
motion with verifiable eye shape. As depicted in the examples, event cameras effectively capture the
pixel-level intensity changes corresponding to motion, providing a clear representation of dynamic
events and enhancing the accuracy of pupil-tracking algorithms.
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In this paper, considering the potential of event camera imaging, we focus on de-
veloping remote pupil-tracking techniques using event cameras for Autostreoscopic 3D
displays and AR 3D HUDs. Using knowledge from traditional frame-based eye-tracking,
our primary goal is to assess the viability of pupil tracking using event cameras. By inte-
grating event camera data with our previous frame-based methods [4,11], we emphasize
the promise of event-camera-based tracking. Through this research, we explore the benefits,
challenges, and limits of using event camera imaging for remote pupil tracking.

2. Proposed Method

In our previous work [4,11], we successfully developed an eye-tracking method de-
signed for faces in diverse environments and user conditions. This method involved
11-point eye-nose shape tracking, which was based on the supervised descent method
(SDM) [14] for non-occluded faces. Building on the success of our previous work that ex-
tensively employed machine-learning-based computer vision algorithms for pupil tracking,
we now extend our approach to utilize the unique capabilities of event camera imaging.
In this section, we describe how we adapt and apply our previously developed machine-
learning-based algorithm to the context of event camera data. Specifically, we present
the design of our novel pupil-tracking algorithm, which incorporates feature extraction,
eye–nose detection, and alignment methods tailored specifically for event camera imaging.
By building upon the principles established in frame-based eye-tracking research and
combining them with the insights from our previous work on bare-face eye tracking, we
aim to unlock the potential of event camera imaging for more sophisticated and effective
pupil tracking. This novel approach holds promise for advancing eye-tracking technologies
and expanding their applications in various real-world scenarios.

2.1. Event Camera Imaging

Event cameras stand out due to their asynchronous capture of events—instantaneous
pixel intensity variations caused by scene changes. Their defining characteristics and
suitability for eye-tracking applications are further detailed in this section.

The key characteristic of event cameras is their asynchronous operation, where they
capture pixel-level intensity changes, known as “events,” triggered by significant changes
in the scene, such as motion. This unique sensing mechanism allows event cameras to
react instantly to motion, leading to high temporal resolution and low latency. Unlike
frame-based cameras that capture entire frames at fixed time intervals, event cameras
produce events in real-time, providing a sparse and efficient representation of dynamic
scenes. Another advantage of event cameras is their low power consumption. Traditional
cameras often consume substantial power due to continuous image capture and processing,
whereas event cameras only generate events when there is motion, significantly reducing
power requirements. In terms of the data format, event cameras produce streams of events
with precise timestamps, intensity changes, and corresponding pixel locations. This data
format contrasts with conventional cameras, which produce sequences of static frames.
Event camera data are highly suitable for capturing fast and subtle eye movements, such
as rapid eye movements and subtle eye motions, which can be crucial for accurate eye
tracking (Figure 2). By leveraging the unique capabilities of event camera imaging, we
aim to enhance pupil-tracking performance, particularly in scenarios involving rapid eye
movements and real-time applications.
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Figure 2. Illustration of the advantages of event cameras over conventional RGB-frame-based cameras.
The 1st row shows examples of RGB-frame-based images, and the 2nd row shows corresponding
images from the event camera images. (a) Rapid movement: while the RGB image shows motion
blur due to swift movement, the event camera captures the eye’s shape without any motion blur.
(b) Quick eye movement: demonstrating the capability of the event camera to capture rapid eye
movements. During a fast blink, the RGB image lags and still depicts the eye as closed, whereas the
event camera swiftly captures the moment, revealing the actual open state of the eye during this time.

Figure 3 showcases the event camera used in our proposed method: the DAVIS 346
by Inivation [15]. This state-of-the-art event camera plays a crucial role in our research,
enabling us to capture pixel-level intensity changes with exceptional precision. The DAVIS
346 event camera operates asynchronously, allowing it to respond instantaneously to
motion events. Specifically, it processes a bandwidth of 12 million events per second, and
its minimum latency is approximately 20 microseconds. Moreover, when converting these
events for visualization purposes, they are typically aggregated to form event frames at
a user-defined rate, similar to the event frame concept that accumulates events over a
predefined interval to visualize them in a 2D image format. For our experiments, we chose
to visualize these frames at 30 fps. The DAVIS 346 offers a resolution of 346 × 260 pixels, a
dynamic range of 120 dB, minimum latency of 20 μs, and 180 mA power consumption at 5V
DC. For our training and testing purposes, the images captured with the DAVIS 346 were
resized to a resolution of 640 × 480 pixels to optimize the performance of our algorithms.

(left) (right)

Figure 3. The event camera used in our proposed method: Inivation’s DAVIS 346 (left) [15]. The
experimental setup for remote pupil tracking, demonstrating the distance range between the event
camera imaging device and the user’s face, spanning from 50 to 100 cm (right).
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In addition to presenting the event camera itself, Figure 3 also illustrates the exper-
imental setup we used for remote pupil tracking. The distance range between the event
camera imaging device and the user’s face spans from 50 to 100 cm. Designed for Au-
tostereoscopic 3D PC displays and vehicular AR 3D HUD systems, this distance was
selected to guarantee the best pupil-tracking results in these settings. In our evaluations,
participants with eyeglasses posed no issues for our methodology; however, sunglasses
that occlude the eyes were excluded. Our system, developed for both Autostereoscopic
3D displays and AR 3D HUDs and utilizing the high dynamic range of event cameras, is
expected to function efficiently outdoors. Yet, direct outdoor evaluations were not part
of this study. This setup ensures that we can efficiently monitor and analyze the eye
movements from a certain distance without the need for physical contact with the user.
The remote pupil-tracking approach offers non-intrusive and user-friendly eye-tracking
solutions for various real-world scenarios. With the DAVIS 346 event camera’s capabilities
and the remote pupil tracking setup, we are well-equipped to explore the potential of event
camera imaging for advanced pupil-tracking tasks. These features enable us to effectively
capture and analyze eye movements, especially in challenging conditions, thereby paving
the way for more accurate and efficient eye-tracking solutions.

2.2. Pupil-Tracking Algorithm

In our research, the creation of event frames is an important step. By accumulating
events over a 33 ms interval, we translate this information into a visual format familiar to
standard frame-based systems. The flowchart in Figure 4 starts with data from the event
camera. These data are collected over the 33 ms period to form the event frame. Once the
frame accumulates events for the set 33 ms interval, it is passed on to the next stage for
processing. After forming the event frame, our method first identifies and localizes the
eye–nose region within the frame. This detection step utilizes cascaded Adaboost classifiers
with multi-block local binary patterns (LBPs) for the robust and efficient recognition of
the eye region. Upon successful detection of the eye–nose region, our system activates the
SDM-based eye–nose shape alignment. The next tracking checker block ensures that our
tracking is maintained over consecutive frames and verifies the validity of the tracking. For
the tracking checker, we utilize Scale-Invariant Feature Transform (SIFT) features extracted
around 11 landmarks on bare faces and use a support vector machine (SVM) to ascertain
the success of tracking. When the eye tracking fails, it restarts the detection mode, which
scans the whole image to find the eye–nose area with a relatively lower speed (16 ms),
compared to the tracking mode (5 ms), which utilized a small region of interest from the
eye tracking success in the previous camera frame. Therefore, it is desirable to maintain the
tracking mode at each frame without the execution of the detection module, in terms of
the overall system latency. The above processes yield the final eye coordinates, allowing
our system to effectively and efficiently track pupils in dynamic environments. The entire
process, from event frame formulation to the extraction of the final eye coordinates, is
illustrated in Figure 4.

We are expanding on the success of our previously developed eye-tracking method [4,11],
which demonstrated effectiveness in diverse environmental settings and with different
users. The foundation of our previous approach relied on 11-point eye–nose shape tracking,
employing SIFT features [16], the SDM [14]. A concise list of the main features we employed
includes the following: (1) 11-point eye-nose shape tracking—this technique selects the
most significant landmark points within the entire facial structure, chosen specifically
for their role in enhancing the accuracy of eye alignment, (2) SDM regression with the
SIFT feature—optimized for central processing unit (CPU) efficiency; SDM uses a 4-stage
regression to transition from an average to an optimal facial shape. SDM focuses on a series
of descent directions to minimize non-linear square functions of landmarks. This regression-
based approach not only reduces computational cost but also enhances the alignment
accuracy, presenting shape alignment as an optimization task. We efficiently regress the
initial pupil positions from the detected eye–nose regions to their optimal pupil center
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positions, along with other eye–nose landmark points, enabling swift and accurate tracking.
Given the demands of real-time applications and the challenges posed by various light
conditions, eye occlusion, head movements, and limited computing resources, we opted
for a comprehensive and efficient machine-learning-based computer vision approach. This
approach includes utilizing the speed advantage of the SDM [14] and cascaded Adaboost
classifiers [17,18] with multiblock LBP [19] for eye–nose region detection, offering a robust
alternative to more computationally intensive methods.

Figure 4. Flowchart of the proposed pupil-tracking method based on event camera imaging. This
visual representation details the process, starting from event frame generation, moving to eye–nose
detection and alignment, and ending with the tracking checker.

Furthermore, our previous studies [4,11] have demonstrated the substantial speed ad-
vantage of the SDM-based eye tracking method over various convolutional neural-network
(CNN)-based algorithms. While CNNs exhibit remarkable performance in computer vi-
sion tasks, they often demand significant computational resources and result in longer
processing times, making them less suitable for real-time applications. In contrast, our
chosen approach, which utilized a multi-block LBP-based detector and SDM-based aligner,
exhibited faster and more efficient performance, particularly on conventional CPUs in
PCs or mobile tablets with limited graphic processing unit (GPU) resources [4,11]. The
LBP-based detector enabled straightforward and practical eye–nose region detection, while
the SDM-based aligner ensured accurate and real-time eye center position tracking. This
capability was essential for capturing rapid eye movements during pupil-tracking tasks.
Our previous studies [4,11] highlighted that the SDM-based eye tracking achieved an
impressive speed of 4 ms per 640 by 480 image resolution with CPU usage. In comparison,
various CNN-based algorithms, such as ESR (15 ms, CPU) [20], DVLN (15 ms, CPU) [21],
and LAB (2.6 s, CPU) [22], required significantly more time under the same conditions.
The superior speed and efficiency of our method make it highly suitable for real-time
eye-tracking applications, especially when dealing with rapid eye movements, dynamic
environments, and limited computing resources.

In the context of event camera imaging, we have adapted and applied our previously
developed machine-learning-based computer vision algorithm for pupil tracking. Our new
algorithm is specifically designed to work with event camera data and includes feature
extraction, eye–nose detection, and alignment methods. By combining insights from frame-
based eye-tracking research with our knowledge from bare-face eye tracking, our goal is to
effectively utilize the unique capabilities of event camera imaging. The main components of
our tracking system are divided into three stages: (1) eye–nose region detection from event
camera images, which accumulate asynchronous events during a fixed time, (2) tracking
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the eye center position based on the detected eye–nose region, and (3) a tracker-checker
for fast tracking. For eye–nose region detection, we employ the error-based learning (EBL)
method [11], using cascaded Adaboost classifiers with multiblock LBP. This approach is
designed to make optimal use of standard CPUs found in personal computers (PCs) or
mobile tablets with limited GPU resources. Upon successful eye–nose region detection,
the eye center position tracking mode is activated. We use a coarse-to-fine strategy to
infer the pupil center location through the use of the SDM with SIFT features, followed by
pupil position refinement through the pupil-segmentation module. The SDM-based shape
alignments rely on 11 landmark points that cover the eyes and nose areas.

To enhance pupil-tracking performance using event cameras, we developed a special-
ized event camera image database (DB) and implemented efficient learning methods. The
DB was created by capturing real-world videos using the DAVIS 346 event camera, and the
videos were categorized into three motion levels as shown in Figure 1: minimal motion,
subtle motion, and large motion with verifiable eye shape. For training the eye–nose region
detector, we utilized images from both the subtle and large motion categories. We em-
ployed the EBL method to efficiently detect eye–nose regions from the event camera images.
Typically, the EBL method, which is inherently iterative, progresses through three stages
refining and reducing large datasets to essential samples. Due to the limited number of
images available in the DB, we focused on the early and middle stages of the EBL training
process, leaving out the final matured stage [11]. As for the eye–nose region aligner, we con-
centrated solely on the large motion category for training. The aligner needs to accurately
handle eye shapes under significant motion, making the large motion DB more suitable for
this purpose. The specialized event camera image DB played a crucial role in training both
the eye–nose region detector and aligner. By incorporating distinct motion categories, we
ensured that the algorithms could effectively adapt to different motion levels and diverse
eye shapes encountered in real-world scenarios. As a result, while the performance may
not be considered superior, our fine-tuned detector and aligner have shown great potential
in leveraging event camera imaging for pupil tracking. Indeed, one of the most notable
achievements of our event-camera-based pupil-tracking method is its ability to capture
rapid eye movements that are challenging for traditional RGB-frame-based systems. The
event camera’s asynchronous operation and high temporal resolution allow it to detect
and respond instantly to pixel-level intensity changes triggered by motion events. This
unique sensing mechanism enables us to accurately track fast eye movements, which are
often difficult for conventional frame-based cameras to capture.

3. Experimental Results

To evaluate the performance of event camera-based pupil tracking, we conducted
comprehensive experiments using a diverse dataset that includes various eye movement
scenarios and lighting conditions. We compared the results obtained from our proposed
event-camera-based method with our previous frame-based eye-tracking algorithms [11].
The experimental results convincingly showcased the potential of event camera imag-
ing in significantly enhancing the accuracy and robustness of pupil tracking, especially
during rapid eye movements. Our proposed method was implemented using C++ and
tested solely based on CPU computations on a Windows PC. Remarkably, the algorithms
achieved an impressive speed of 200 frames per second at a 640 × 480 resolution with a
2.0 GHz CPU, showcasing their real-time capabilities and practical suitability for various
applications. Table 1 summarizes the pupil-tracking specification. The eye–nose detection
uses a cascaded Adaboost classifier combined with multiblock LBP, incorporating nine
boosting substages. For pupil localization, the aligner adopts an SDM-based 11-point
eye–nose-alignment technique that integrates SIFT features through a 4-step regression.
These predefined 11 points include the left eye’s outer and inner corners, its center; the right
eye’s outer and inner corners, its center; and the nasion, pronasale, left alare, subnasale, and
right alare. We assessed the precision of our algorithm by computing the disparity between
the ground truth and the tracked pupil centers. This method provides a direct quantitative
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measure of the algorithm’s performance by identifying how closely our tracking aligns
with known truth values. To relate these disparities to real-world measurements, we uti-
lized the inter-pupil distance (IPD) as a reference. Assuming an IPD of 65 mm, which is a
general average for adults, we converted pixel distances into physical distances, enabling
us to accurately estimate the positions of the pupils in real-world units. Consequently, our
event-camera-based pupil-tracking method achieved a detection accuracy of 98.1% and
a tracking accuracy (pupil precision < 10 mm) of 80.9%. The detection accuracy was on
par with existing RGB-frame-camera-based pupil-tracking methods, while the tracking
accuracy, though slightly lower than frame-camera-based algorithms, proved reasonable
and promising for an initial exploration of event-camera-based pupil tracking. A summary
of these results is provided in Table 2.

Table 1. Pupil tracking specification.

Parameter Details

Tracked Shape Points 11 Eye-nose Points
(3 left eye, 3 right eye, 4 nose)

Distance between camera and users (cm) 50 to 100
Computing System 2.0 GHz CPU

Event Camera Model DAVIS 346 (Inivation)
Event Camera Resolution 346 × 260 (resized to 640 × 480)

Event Camera Latency 20 μs
Event Frame Speed (event aggregation time) 30 fps

Table 2. Performance of the proposed event-camera-based pupil-tracking method. For a comparison,
previous RGB-frame-camera-based method [11] performance is also shown.

Method Light Condition
Detection
Accuracy

Tracking
Accuracy

(Pupil Precision
< 10 mm)

Speed

Content-aware [11]
(CIS RGB Camera)

Normal Light
(100~400 lux) 99.4% 99.4% 200 fps (CPU)

Proposed Method Normal Light
(100~400 lux) 98.1% 80.9% 200 fps (CPU)

The dataset employed for our proposed method was thoughtfully constructed, consist-
ing of real-world videos captured using the DAVIS 346 event camera. To train the eye–nose
region detector, we used a combination of images from both the subtle and large motion
categories of the event camera dataset. We efficiently detected eye–nose regions in the
event camera images using the EBL method [11]. Due to the limited number of available
images in the dataset, our focus was on the early and middle stages of the EBL training
process, excluding the final matured stage. Specifically, the detector training incorporated
3608 event camera images along with 3949 negative non-face background images. For
the eye–nose region aligner, we exclusively concentrated on the large motion category of
the event camera dataset during training. The aligner’s primary task was to accurately
handle eye shapes under significant motion, making the large motion DB particularly
well-suited for this purpose. The event camera alignment training comprised 2273 events
with verifiable eye shape.

By constructing and utilizing this specialized event camera dataset, we ensured the
algorithms’ adaptability to challenging real-world scenarios involving various eye move-
ments and head poses. The proposed algorithm was evaluated based on a video DB
captured in a normal office environment with illumination ranging from 100 to 400 lux, us-
ing the DAVIS346 event camera. The DB consisted of videos categorized into three distinct
motion levels, each having a verifiable eye shape. To assess the algorithm’s performance, a
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test set comprising 474 face images with large movements was utilized. These rigorous tests
allowed us to validate the algorithm’s capabilities in handling real-world scenarios with
different motion levels and lighting conditions, particularly emphasizing its proficiency
in accurately tracking pupils during rapid eye movements (Figure 5). Table 3 provides a
summary of the training and testing DBs used for the evaluation of our algorithm.

Figure 5. Experimental results obtained from event camera face images with verifiable eye shapes
due to large movements. The pupil-tracking algorithm demonstrated successful performance across
various face motions.

Table 3. Training and testing DB for the proposed event-camera-based pupil-tracking method.

Training DB (Detector) DB Type DB Number

Real Event Camera Images

Face Images with Subtle and
Large Movement

(Image with verifiable eye shape)
3608

Non-face Background Images 3949

Training DB (Aligner) DB Type DB Number

Real Event Camera Images Face Images with Large Movement
(Image with verifiable eye shape) 2273

Test DB (Pupil Tracking) DB Type DB Number

Real Event Camera Images Face Images with Large Movement
(Image with verifiable eye shape) 474
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4. Discussion

In this study, the primary objective was assessing how existing algorithms perform
when applied to event camera imaging. Our approach used machine-learning-based
computer vision methods, including a multi-block LBP-based detector and SDM-based
aligner, to achieve real-time and efficient pupil-tracking performance. For our experiments,
we aggregated events into frames at 30 fps to accurately represent eye movements. This
rate was chosen for its visual clarity and its compatibility with our SDM-based keypoint
alignment. Our algorithm, utilizing the SDM, showed optimal performance with data
aggregated at this rate. We evaluated the algorithm’s capabilities using a comprehensive
dataset that included various eye movement scenarios, and we compared the results
with our previous frame-based eye-tracking algorithms. While our event camera-based
approach achieved a nearly equivalent detection accuracy of 98.1%, closely matching the
99.4% achieved by traditional RGB frame camera methods [11], there was a noticeable
decline in the tracking accuracy. The tracking accuracy dropped from 99.4% with the
RGB-frame-camera-based method [11] to 80.9% in our proposed approach. To further
quantify our results, we computed the precision and recall for our method. The precision
achieved was 100%, and the recall was 80.89%. Based on our testing, the confusion matrix
related to our approach has been detailed in Figure 6. Our true negative value was zero,
consistent with our test dataset that did not contain any images without pupils. A notable
point from our results is the zero false positives. This can be attributed to the intrinsic
nature of event cameras, which do not output any pixel value in static backgrounds. Hence,
there is no activation unless there is motion. This characteristic eliminates the chances
of false positive detections in areas with no movement, showing one of the significant
advantages of utilizing event cameras. Since event cameras might not consistently provide
uniform shape information, SDM can sometimes fail in its regression tasks, leading to
less precise tracking. Moreover, our tracker checker tends to discard tracking instances
when the shape information is unclear, especially during non-insufficient movements.
Our choice of the AdaBoost-based eye–nose detection combined with the SDM-based
pupil alignment was intentionally selected. This conventional method was chosen driven
by our primary aim: to examine the feasibility of well-established remote eye-tracking
algorithms on rapidly functioning event cameras. As demonstrated in our previous research
on RGB-frame-based cameras [11], while advanced deep learning methods may offer
improved results, our technique can operate efficiently on CPUs, eliminating the necessity
for high-priced GPUs. However, methods, like AdaBoost and SDM, have limitations when
confronting outliers, noise, occlusions, and other challenging scenarios compared to newer
deep learning techniques. A further study focusing on deep neural networks designed for
event cameras is required.

Figure 7 showcases some failure cases of the proposed method. In Figure 7a, we
observe a scenario with minimal movements and an obscured eye shape, leading to the
detector’s failure in detecting the eye–nose region. Similarly, Figure 7b presents a case
where the eye shape is visible, but the algorithm encounters challenges in the alignment
and tracker-checker components, resulting in tracking failure. These instances illustrate
the complexities and limitations associated with event camera imaging, particularly when
dealing with scenarios involving minimal movements and obscured eye shapes. Addi-
tionally, Table 4 summarizes our algorithm’s performance across movement levels. In the
large movement category, we achieved a detection accuracy of 98% and a tracking accuracy
of 80.9%, illustrating our system’s ability to track pupils during quick eye motions. For a
range from minimal to large movements, the detection accuracy was reduced to 69.1% and
tracking to 52.7%, emphasizing the tracking challenges with varying motion intensities.
A comparison between our proposed event-camera-based method and state-of-the-art
RGB-frame-camera-based techniques [22–25] is also listed in Table 5.
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Figure 6. Confusion matrix for the proposed pupil localization.

Figure 7. Failure cases of the proposed event-camera-based pupil tracking method. (a) Minimal
movements with obscured eye shape, leading to a failure in eye–nose region detection. (b) Visible
eye shape, but failure in the alignment and tracker-checker components.
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Table 4. Performance comparison of the proposed event-camera-based pupil-tracking method on
different movement levels.

Test DB DB Type Detection Accuracy
Tracking Accuracy

(Pupil Precision < 10 mm)

Real Event Camera Images
Indoor Office (100~400 lux)

Large Movement
(Image with verifiable eye shape) 98.1% 80.9%

Various Movement
(minimal to large movement) 69.1% 52.7%

Table 5. Comparison between previous RGB-frame-camera-based studies and the proposed method.

Method Sensor Type Test Dataset
Keypoint
Number

Speed GFLOPs

LAB [22]
RGB frame

camera
Public DB

(WFLW [22])

98 60 ms (GPU) 29.1
Wing [23] 98 343 ms (GPU) 5.5

Awing [24] 98 41 ms (GPU) 26.7
AVS + SAN [25] 98 16 ms (GPU) 62.8

Ours Event camera In-house DB 11 4 ms (CPU) N/A

Despite the algorithm’s successes in handling rapid eye movements and achieving real-
time capabilities, there are areas for improvement. One notable limitation is the reduced
accuracy when dealing with subtle or minimal movements. When there is minimal-to-no
head movement, the nature of event cameras, which primarily respond to changes in the
scene, might produce sparse events, complicating eye–nose detection. Our research suc-
cessfully detected pupil movements across a 1 m range using event cameras, as evidenced
in the Figure 1, Figure 5, and Figure 6 shown in the manuscript. However, we recognize the
resolution limitation of the DAVIS 346 and anticipate improvements with next-generation
high definition (HD) event cameras. These situations may lead to partial occlusion or
insufficient motion cues, making it challenging for the algorithm to accurately detect and
track pupils. Furthermore, the algorithm’s performance was dependent on the quality
and availability of data in the training dataset. The limited number of available images
in the event camera dataset for training the detector and aligner may have influenced the
algorithm’s performance on certain motion levels. Another consideration is the trade-off
between speed and accuracy. While our proposed method achieved remarkable real-time
performance at 200 frames per second at a 640 × 480 resolution with a 2.0 GHz CPU,
there is room for improving the accuracy at the expense of processing speed. For specific
applications that require higher precision, optimizations to balance speed and accuracy
should be explored. In this study, our primary goal was to assess the feasibility of using
event cameras for remote eye tracking, positioning our work as a preliminary exploration
in this domain. We acknowledge that a comprehensive comparison with other eye-tracking
methods and a more extensive validation were not undertaken. Additionally, to over-
come these limitations and further enhance the algorithm’s performance, several strategies
can be considered. In this research, we emphasized computational efficiency, favoring
methods, like SDM, Adaboost, and LBP. However, to further optimize the performance
of our algorithm, considering diverse strategies is important. As deep learning continues
to develop with new lightweight networks coming out, adapting or customizing these
networks specifically for event cameras could be beneficial. By using recent advanced deep
neural networks [26,27], the algorithm could potentially handle subtle movements more
effectively and enhance its robustness in challenging scenarios with obscured eye shapes.
Additionally, utilizing the graph structure, especially through approaches, like the graph
Fourier transform as discussed in ref. [28], can be adopted to improve tracking capabilities,
offering a richer representation of data relationships. Moreover, efforts to expand the
training dataset with a more diverse range of event camera data could be undertaken. By
collecting data from various real-world environments and users, the algorithm can better
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adapt to different motion levels and lighting conditions, ultimately leading to improved
generalization and performance.

5. Conclusions

In conclusion, our proposed event-camera-based pupil-tracking algorithm demon-
strated promising results in accurately tracking pupils during rapid eye movements, with
real-time capabilities. Specifically, our method reached a detection accuracy rate of 98.1%
and a tracking accuracy, where the pupil difference was less than 10 mm, at 80.9%. How-
ever, there are challenges to overcome, particularly in handling subtle movements and
occluded eye shapes. Future research could focus on expanding the dataset for training and
investigating new machine learning techniques to improve the algorithm’s performance
across diverse eye movement scenarios and lighting conditions. By addressing these chal-
lenges, event-camera-based pupil tracking holds great potential for advancing eye-tracking
technologies and enabling new applications in various real-world settings.
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Abstract: This study aims to investigate the impact of outdoor advertising on consumer behaviour
by using eye-tracking analysis while drivers travel specific routes in Žilina, Slovakia. This research
combines questionnaire inquiry and A/B testing to assess the conscious and subconscious effects of
outdoor advertising on consumer decisions. The findings of this study have important implications
for businesses providing outdoor advertising spaces, as well as those using outdoor advertising as
a form of advertisement. Additionally, the study provides insights into the role of transportation
background and how it influences consumer behaviour in relation to outdoor advertising.
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1. Introduction

Outdoor advertising is a form of marketing that uses public spaces as a platform
for advertising messages [1–3]. It involves placing ads on outside structures, such as
billboards, bus stops, and bus shelters, and in public spaces, such as parks, streets, and
transit stations [4,5]. The aim of outdoor advertising is to capture the attention of potential
customers, to create brand recognition, and to increase sales [6,7]. The main characteristic
of outdoor advertising is its ability to reach a wide variety of people in a short amount
of time. It is often used in combination with other forms of marketing channels, such
as television, radio, and print. In other words, outdoor advertising can also be used to
support other marketing activities such as digital, radio, and television by creating a unified
message [8,9].

The main advantages of outdoor advertising for businesses are the following:

• Cost-effective: Outdoor advertising is often more cost-effective than some forms of
advertising. This is because the cost of producing the ad is lower than other forms of
advertising, such as television and radio [10,11].

• Reach: Outdoor advertising such as billboards and posters can reach a large and
diverse audience [12,13].

• Visibility: Outdoor ads are highly visible, especially if placed in a high-traffic area.
This visibility helps to ensure that message reaches more people [14,15].

• Flexibility: Outdoor advertising allows for considerable flexibility when it comes to
design, content, and placement [16].

• Immediate: Outdoor advertising’s immediacy is one of its most attractive features.
Message is seen immediately and can be changed quickly if needed [17,18].

• Branding: Outdoor advertising can be used to reinforce brand identity and to create
an impression on potential customers [19,20].

Considering the benefits mentioned, it is possible to list the drawbacks of outdoor
advertising:
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• Cost: Even if it may be cost-effective in comparison with some forms of marketing,
outdoor advertising is still a relatively expensive form of advertising and may not be
affordable for some businesses [21,22].

• Limited Reach: Outdoor advertising can only reach people who are within the vicinity
of the advertisement. It is not possible to target a specific audience with outdoor
advertising [23,24].

• Short-Lived: Outdoor advertisements are often only visible for a few seconds or
minutes before the person passes by. As a result, it is not possible to leave a lasting
impression on the viewer [25,26].

• Environmental Impact: Outdoor advertising can have a negative environmental im-
pact if not managed properly. Excessive billboards and signs can create visual clutter
and pollution in an area [27,28].

The history of outdoor advertising dates back to times when merchants used painted
signs and other forms of advertising to promote their wares. Since the 1920s, billboard
companies have used a variety of techniques to create eye-catching displays, including
painted signs, neon lighting, and even 3D displays [29].

In general, and as it was already mentioned, standard outdoor advertising includes
billboards, bus wraps, bus benches, murals, neon signs, yard signs, street banners, digital
displays, and vehicle wraps. Billboards are typically placed on major highways and are
large and captivating. Bus wraps are one of the most popular forms of outdoor advertising,
and involve wrapping a bus in an advertisement. Bus benches are placed in high-traffic
areas and allow commuters to sit and observe the ad that is a part of the bench while
they wait for the bus. Murals are large, eye-catching paintings that are placed in high-
traffic areas. Neon signs, yard signs, and street banners are also popular forms of outdoor
advertising and are usually part of the overall composition of city streets. Digital displays,
such as digital billboards and digital signs, are also becoming increasingly popular. Vehicle
wraps are used to turn cars and other vehicles into moving billboards [30,31].

There are several factors impacting the use of outdoor advertising from the point of
view of advertisers. Most vocal are the following:

• Location: Outdoor advertising is most effective when it is placed in areas where it will
be seen by the largest number of people. High-traffic areas, such as major highways
and intersections, are the most common location for outdoor advertising [32,33].

• Visibility: Outdoor advertising must be seen in order to be effective. Factors such as
size, brightness, and contrast can all influence how visible an advertisement is [34,35].

• Weather: Weather can impact the visibility of outdoor advertising, as well as how
long it lasts. Rain and wind can cause signs to fade or become damaged over time,
reducing their effectiveness [36].

• Cost: Outdoor advertising can be expensive, and this can be a major factor in deter-
mining whether a company opts to use it [21,24].

• Target Audience: Companies should consider the demographics and interests of their
target audience when selecting their outdoor advertising locations. This will help
ensure that the advertisement reaches the right people [37,38].

Outdoor advertising can have a powerful impact on consumer behaviour. It can
serve as a reminder of brand presence, create brand awareness, and influence brand
recognition and loyalty. Outdoor advertising can also encourage impulse buying and
provide information about special offers, new products, and services. Additionally, it
can be used to increase customer engagement and to create a sense of urgency. Outdoor
advertising can also create positive associations with a brand, making it more likely that
consumers will think of the brand when making purchase decisions. It can drive traffic to a
website or physical location and increase overall sales [39,40].

Several determinants of outdoor advertising play a role in consumer decision making,
including the location of the advertisement, the message conveyed, the size and design of
the ad, and the target audience. The location of an advertisement can have a significant
effect on the visibility of the ad, as well as its ability to reach the intended audience. The
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message an ad conveys is also important, as it helps to shape the consumer’s perception of
the product or service being advertised. The size and design of an ad can also influence its
effectiveness, as an ad that stands out and is easily recognizable can have a greater impact.
The target audience of an ad is also critical, as it can influence the types of images, language,
and overall message used to appeal to the intended demographic [16,41,42].

Based on a review of the open access publications that we conducted in this article,
we can summarize the scope of research regarding outdoor advertising as follows:

Many studies deal with the right placement of outdoor advertising, its visuals, costs,
and regulation [11,12,15,16,21,32,41].

A lot of authors perceive outdoor advertising as visual smog and deal with its negative
impact on the environment and society [10,13,20,27,28].

Other studies deal with how outdoor advertising promotes the language and culture
of chosen regions such as Malaysia [18], the disparities of the outdoor advertising when
aimed on different racial and ethnic groups in the USA or Indonesia [19,25,37], or unethical
content in outdoor advertising and its negative social impact [33,34].

Further research is focused on the impact of outdoor advertising on driving or riding
experience [14,36].

We found only three articles that examined the influence of outdoor advertising on pur-
chasing decisions and the targeting of outdoor advertising for the right customer [26,38,40].

This means that, as a conclusion from the conducted analysis of given articles, we
identified the following research information gaps dedicated to the impact of outdoor
advertising on consumer behaviour:

1. Lack of data on the long-term impact of outdoor advertising on consumer behaviour;
2. Lack of information on the influence of outdoor advertising on different demographic

groups;
3. Insufficient data on how outdoor advertising is perceived by consumers in different

regions;
4. Limited research on how outdoor advertising affects the purchase decision of consumers;
5. Lack of research into the effectiveness of outdoor advertising compared with other

forms of advertising.

By merging statements two and three, we formulated our research basis. Our re-
search is centred around the research problem of understanding how various outdoor
advertisements influence consumer behaviour in a particular city in Slovakia. As such, the
main objective of this paper is to evaluate the effects of outdoor advertising on consumer
behaviour in a chosen city in Slovakia, with a focus on online shopping. By fulfilling the
information gaps, we provide an insight into the topic, which may be beneficial not only to
the scientific community but also to the practitioners of outdoor advertising.

2. Materials and Methods

There are several methods with which we can analyse the impact of outdoor adver-
tising on consumer behaviour. A mapping service is a technology that can be used to
determine the location of outdoor advertising, as well as to analyse data from various
sources such as census data, traffic patterns, and demographics. Another method of heat
mapping is a technique used to identify the most effective locations for outdoor advertis-
ing. Data such as traffic patterns, demographic information, and other relevant details
can be used to identify areas that are more likely to be exposed to an advertisement. An
eye-tracking analysis is another method that involves the use of eye-tracking technology to
measure where viewers are looking when they encounter outdoor advertising. This can
provide valuable insight into which elements of an advertisement are most effective. By
tracking the eye movements of viewers, researchers can determine which elements of the
ad are attracting attention, how long viewers are looking at different parts of the ad, and
how the ad is affecting their overall impression. Classic marketing methods of surveys
can also be used. Surveys can be conducted to determine the effectiveness of outdoor
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advertising. Questions can be asked to gauge how viewers responded to specific elements
of an advertisement, as well as to determine if the ad was memorable [43–45].

In this study, we combined and used all of these methods, and thus, we created a
sequence of steps in which the usage of methods is highlighted (Figure 1). Following each
of these steps contributed to reaching the main goal of the article.

 

Figure 1. Methodology of the research.

The first step consists of the identification of routes of the selected city, which is the city
of Žilina. Identifying the routes of the Slovakian city of Žilina, we employed Google Maps
to distinguish the external and internal circuits. Our subsequent task was to assess the
density of outdoor advertisements by personally traversing the predetermined sections of
the outer and inner circuits. Our analysis of the situation in Žilina allowed us to determine
the prevalence of outdoor advertisements.

The inner circuit consists of the following streets (Figure 2): Legionárska–J. M.
Hurbana–Kálov–P. O. Hviezdoslava–1. Mája–Vel’ká Okružná. In the inner circuit, 29
large-format advertisements were recorded: 28 billboards and 1 bigboard.

Over time, some outdoor advertising can disappear due to many factors, such as
weather damage, vandalism, or changes in the environment. The materials used in outdoor
advertising are usually not designed to last forever, so they can deteriorate over time. Thus,
we conducted a second analysis that revealed that 4 billboards had been removed in the
meantime. Of the 25 large-format advertisements located on route, compared with the
original analysis, the following was recorded: 10 same advertisements; 8 advertisements
from the same advertiser but different advertisements (the company remained the same,
but the product, visual, etc. changed); and 7 other advertisements.

The outer circuit consists of the following streets (Figure 3): Košická–Na Horevaží–
L’avobrežná–Estakáda–Rajecká. This circuit had 72 large-format advertisements, of which
55 were billboards, 16 were bigboards, and 1 was a megaboard.
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Figure 2. Inner circuit of selected roads.

 

Figure 3. Outer circuit of selected roads.
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Again, due to the same assumption as for the inner circuit, we conducted a second
analysis. The analysis revealed that 4 billboards had been removed. Compared with the
original analysis, the outer circuit now had 15 same advertisements; 10 advertisements
from the same advertiser but a different advertisement; and 43 other advertisements or
empty advertising carriers. It is evident that the advertisements on the outer circuit have
changed significantly during the period between the first and second analyses. Almost 80%
of the 72 analysed advertisements were changed or removed.

The outer circuit of Žilina connects the city from north to south and from east to west,
while the inner circuit creates a circular connection between the outer suburbs and the
city centre. Together, these roads are essential for the functioning of the city. Žilina is an
indispensable transportation hub in the northern part of Slovakia, boasting a large central
railway station and numerous significant railway lines. Furthermore, Žilina is also a crucial
crossroads for road traffic, with major highways leading to the Czech Republic, Poland,
and Austria.

The positive aspects of both circuits are the placement of advertisements on both
sides of the road. There are also many billboards and bigboards on the selected routes,
as well as large-format banners placed on buildings and various banners. The necessary
variety of outdoor advertising is provided by the location of the individual routes, since
the research took place in the centre of the city, in its outskirts, and on highway exits
(so-called freeways).

The second step in the research process was the formulation of a questionnaire for
the participants to complete. Querying their opinions, the questions sought to identify:
(1) whether the individual is conscious of external advertising while driving; (2) what
aspect of external advertising most catches their eye (graphics, slogan, logo, colours, size of
the carrier, etc.); (3) the level of awareness of the impact of external advertising on their buy-
ing behaviour; (4) whether their purchasing decisions are swayed by external advertising;
and (5) the frequency of their online shopping habits (daily, weekly, monthly, etc.).

The questionnaire was filled out after the research commenced. The research itself
centred on examining the effect of external advertising placed on selected routes on the
attention of research participants while driving a car. Attention can be understood in terms
of how it alters drivers’ perception of the environment.

The third step in the process was to define the criteria for conducting an A/B test.
A/B testing is a scientific approach to comparison, in which two versions of a particular
element—such as a logo, product, graphic visual, or slogan—are evaluated against each
other to determine which version performs better [46]. The randomly assigned participants
of the study were presented with elements A and B after the completion of their drive, both
on the outer and inner circuits. Subsequently, the drivers were asked four questions to
assess which variant was more appealing: (1) Which option do you prefer when making a
purchase—A or B? (2) What led you to choose this option? (This was an open question.)
(3) Did you register the selected logo or product during the test drive? (Answers were lim-
ited to yes/no.) (4) Is there a specific product associated with the logo you saw? (Answers
were limited to yes/no, and this question was applicable only to the logos of companies.)

Due to the substantial amount of outdoor advertising on both the inner and outer
circuits, we carefully selected a specific set of advertisements for A/B testing and its
correlation with eye-tracking research. We chose these ads for their visibility to drivers
on both circuits, which were all in the form of billboards. Billboards on the outer circuit
were labelled as TR4-005, TR4-006, TR4-017, TR4-029, TR4-039, TR4-055, TR4-059, TR4-
075, TR4-079, TR4-092, TR4-097, TR4-114, TR4-115, TR4-119, TR4-121, TR4-122, TR4-143,
TR4-151, TR4-155, TR4-156, TR4-157, and TR4-158. As for inner circuit, the billboards
were identified as TR1-002, TR1-030, TR1-031, TR1-032, TR1-033, TR1-040, TR1-041, TR1-
042, TR1-043, TR1-044, TR1-045, TR1-074, TR1-075, TR1-076, TR1-088, TR1-100, TR1-103,
TR1-115, and TR1-116.

In the fourth step of the preparatory phase of the research, all relevant aspects of our
research were formulated. Thirteen participants of varying genders, ages, and vehicles
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drove various routes—a sample size much larger than the recommended 6 by the Nolsen
Norman Group’s publication “How to Conduct Eyetracking Studies” [44]. Consequently,
the results of the research could be accurately interpreted and applied to further knowledge
acquisition. Seven women and six men aged 21 to 37 droves on an inner and outer circuit
over three days, in varying weather and traffic conditions. Using the SMI Eye Tracking
Glasses 2 (Wireless Analysis) version, we tracked the attention of the drivers towards
external advertising with eye tracking.

The SMI EyeTracking Glasses 2 (ETG 2) is a wearable eye-tracking system that allows
us to capture and analyse real-world visual attention and gaze behaviour. ETG 2 was
designed as a lightweight and unobtrusive pair of glasses. The eye-tracking hardware
is integrated into the glasses frame, along with miniature cameras, sensors, and other
components required for eye tracking. The ETG 2 system utilizes high-resolution cam-
eras mounted on the glasses to capture the wearer’s eye movements. The glasses include
two cameras (one for each eye) to provide binocular tracking and more accurate measure-
ments. To ensure robust eye tracking in various lighting conditions, the ETG 2 uses infrared
illumination. Near-infrared light is emitted from the glasses frame, illuminating the eyes
without causing discomfort or interfering with the wearer’s vision. The cameras in the ETG
2 capture images of the wearer’s eyes at a frame rate 60 Hz. These images are processed in
real time using sophisticated algorithms to detect and track important features such as the
pupil, corneal reflections, and eye movements. Before starting an eye-tracking session (mea-
surement), the driver needs to go through a calibration procedure. This involves looking at
specific calibration targets and following researcher’s instructions while the eye-tracking
system records the eye movements. The calibration process establishes the relationship
between the recorded eye movements and the actual point of gaze in the driver’s field of
view. During the eye-tracking experiment, the ETG 2 continuously records eye movement
data, including gaze coordinates, pupil diameter, and eye movement velocity. The data
were transmitted by the cable to a connected notebook for real-time analysis [47].

SMI provides dedicated software BeGaze for analysing the recorded eye-tracking data.
The BeGaze software allows researchers to visualize and analyse gaze patterns, to generate
heatmaps or gaze plots, and to extract various metrics related to fixations, saccades, and
other eye movement parameters. These analysis tools help researchers gain insights into
visual attention, cognitive processes, and user behaviour.

The SMI EyeTracking Glasses 2 technology enables to study eye movements in real-
world environments, making it well-suited for applications such as market research, us-
ability testing, sports performance analysis, and human factors research. Its portable and
unobtrusive design allows for natural and ecologically valid eye-tracking studies in a wide
range of settings and scenarios [48].

This eye tracker does not significantly affect the cognitive abilities of the drivers and
is advantageous for field measurements as it creates a natural and normal environment for
the driver.

Steps five and six are implementation stages. The implementation stage of research is
the process of executing the research activities. This stage consists of enacting the research
plan (steps one to four), collecting data, examining the data, interpreting the results, and
drawing conclusions.

In the fifth step, the actual eye-tracking measurements took place. Measurements were
conducted from 9:00 a.m., with a schedule set so that each ride was allotted thirty minutes.
To avoid morning and afternoon traffic rush in the city, the selection of times for test rides
was carefully considered. Rides at this time should proceed without disruption from traffic
jams. During the test drive, the driver had a calibrated eye-tracking device mounted on
their head. On the passenger seat, the researcher calibrated the device before the drive and
continuously monitored the data obtained on the computer during the journey. Another
researcher occupied the back seat, observing the entire ride and measurement (Figure 4).
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Figure 4. Eye-tracking testing and verifying data.

Eye-tracking measurements are focused on specific indicators that can be measured
by an eye tracker: fixations, saccadic movements, and blinks. Fixation refers to the pe-
riod when the eyes are relatively still, focusing on a specific point of interest. During
fixation, visual information is gathered and processed. Fixations typically last around
200–300 milliseconds and allow the brain to extract detailed information from the visual
scene [48]. Fixations indicate what a person has noticed, how long they looked at it, and
the order in which they viewed different elements in a scene. Saccadic movements, on the
other hand, are rapid and involuntary eye movements that shift the gaze from one point
to another. These movements allow us to explore the visual environment by redirecting
our focus to new points of interest. Saccades occur between fixations and typically last
around 20–50 milliseconds. They are crucial for scanning the visual scene and are involved
in acquiring new visual information [45]. Saccadic movements measure the speed and
accuracy with which the eyes move from one point to the next, providing insight into the
user’s cognitive and perceptual processes. Blinks are brief closures of the eyelids that occur
regularly to keep the eyes moisturized and protected. Blinks are essential for maintaining
the health and function of the eyes. During a blink, the visual system is momentarily
interrupted, and visual information is not processed. Blinks typically last around 100–150
milliseconds, but their frequency can vary depending on factors such as task demands,
attention levels, and individual differences [45]. Blinks are used to gauge a person’s atten-
tion and engagement with a particular stimulus and can even reveal visual fatigue and
distraction.

The last stage of the research (sixth step) entailed a confidential interview (question-
naire) and an A/B testing between the researcher and the driver (steps two and three).
This took place in a secluded atmosphere, free from any third-party interference. The
interviewer used a pre-structured questionnaire, noting down the responses into their
laptop. For the A/B testing, the researcher presented the driver with a tablet contain-
ing the prepared images which they were required to go through. Upon completion of
the interview, the measurement was also concluded and the research progressed to the
subsequent driver.

Considering the data obtained from the research, the results are interpreted via tables
and graphs. The tables provide an in-depth analysis of the examined variables that were
gathered using the eye tracker. The graphs illustrate the frequent responses given by the
research participants following the rides.

3. Results

3.1. Drive on Inner Circuit

Drivers on the inner circuit during testing drives scarcely observed the billboards
selected for A/B testing. A captivating fact about this route is that none of the six drivers
noted the advertisement when driving into the car park at the Lidl supermarket (near
Kálov Street) where the rides concluded. Not a single driver also directed their gaze to the
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large and conspicuously visible billboard fashioned on the edifice. Concerning the single
billboard on this route, only one driver focused his gaze on it.

The first drive took place in light, early morning traffic, with few cars on the road.
The sky was grey and overcast, yet there was no rain. While driving, the driver kept his
eyes on the road ahead. He paid close attention to traffic signs and kept his gaze fixed
upon the traffic lights at intersections. While stopped at an intersection, a clearly visible
billboard advertisement was in the line of sight, directly behind the traffic light. However,
the driver never diverted his eyes, keeping them fixed on the road. Aside from the stop at
the intersection, the ride was uninterrupted. On one occasion, the driver did briefly focus
his gaze on a billboard located on the opposite side of the road, which was not part of the
test. Table 1 provides a clear summary of the key performance indicators (KPIs) derived
from the eye-tracking device.

Table 1. Measurement results—Driver 1.

Indicator Fixation Saccadic Movements Blinks

Total number 1594 1461 122
Average 171 156 13

The second driver kept his gaze fixed on the road ahead, glancing occasionally towards
the tachometer on the dashboard, amid a backdrop of smooth traffic and cloudy but dry
weather. At one point, a red traffic light necessitated a brief stop, but otherwise, the journey
was uninterrupted. Driver 2 exhibited a far lower number of fixations than Driver 1,
suggesting that the eye tracker was better calibrated (Table 2). Nevertheless, the gathered
data were sufficient to warrant its evaluation within the research.

Table 2. Measurement results—Driver 2.

Indicator Fixation Saccadic Movements Blinks

Total number 789 473 70
Average 82 49 7

The third drive happened with a greater number of cars on the route than the previous
two drives, and the sky was somewhat cloudier, which made the scenery darker. There
were three pauses during the drive: two times to give way to pedestrians at the intersection,
and once due to a red light at the traffic lights. Unfortunately, the results from this driver
cannot be processed due to the calibration of the eye tracker (see results from Table 3),
though the data from the questionnaire inquiry and testing can be partially utilized for the
research. The only issue is with question three from the A/B testing, as it is impossible to
confirm or validate the answer with a video recording from the eye tracker.

Table 3. Measurement results—Driver 3.

Indicator Fixation Saccadic Movements Blinks

Total number 77 41 34
Average 8 4 3

Traffic in the fourth drive was similar to what had been experienced before; however,
the sky was much clearer. As one of the few drivers, he was acutely aware of outdoor
advertisements. The driver had turned his gaze to the numerous billboard advertisements
placed in a visible position for the cars leaving the Lidl supermarket, where the test drives
began and ended. The driver paid close attention to the road ahead. During the ride, he
repeatedly focused on the advertisement placed on the back of the bus he was following
for a certain period of time. Possibly, there were issues with the eye tracker calibration,
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as there were repeated long fixations or no fixation registered on the recording in some
sections. This is also reflected in the measured data (Table 4).

Table 4. Measurement results—Driver 4.

Indicator Fixation Saccadic Movements Blinks

Total number 977 897 56
Average 96 88 5

Driver 5 embarked on his journey on a drizzly Saturday morning, in place of the
previously missed Wednesday ride. The roads were surprisingly free of impediments, with
only a few cars traversing the route. The dismal weather was a constant companion, with
heavy rain and dark clouds hanging above. Nevertheless, Driver 5 made it to his destination
without a hitch, carefully observing the cars in front of him or the rear-view mirrors.
Although he had limited experience with the route, as he had only previously driven on
other roads in Žilina, he kept his concentration on the task at hand. Along the way, Driver
5 noticed only a single billboard advertisement and a single city light. Table 5 summarises
the analysed key performance indicators obtained from the eye-tracking device.

Table 5. Measurement results—Driver 5.

Indicator Fixation Saccadic Movements Blinks

Total number 1582 1412 149
Average 163 146 15

On Saturday, during supplementary measurements for Driver 3, the downpour had
ceased and the clouds had started to dissipate. The traffic in the sixth drive was a bit
heavier than it was during the previous ride, but there were only two pauses at red lights at
crossroads. Driver 6 followed the highway and the areas immediately adjacent to it, taking
particular notice of the cars in front of him. During the journey, the driver mentioned that
his eyes had been drawn to the bright digital advertisements. This was evident right from
the start of the ride, when he was the only one to spot the digital ad while leaving the
Lidl store and heading downtown. Additionally, the driver noticed several billboards in
close proximity. The key performance indicators obtained from the eye-tracking device are
summarized in Table 6.

Table 6. Measurement results—Driver 6.

Indicator Fixation Saccadic Movements Blinks

Total number 1605 1510 58
Average 166 156 6

3.2. Drive on Outer Circuit

Driving along the outer circuit has resulted in a spike in recorded external advertising
by drivers. This can be attributed to the extended journey, the opportune positioning of
advertisements, as well as the reduced external stimuli compared with driving through
the city centre. Many drivers fixed their gaze on the sizable advertisement in the form
of a banner on a building. Notably, these were banners on a football stadium and a
banner promoting the Lidl supermarket, which is easily visible to drivers traveling down
L’avobrežná Street towards the city centre.

The first attempt at riding was unsuccessful due to an inaccurate calibration of the
eye tracker. As a result, a second ride was taken with the same measurements, potentially
altering the driver’s perception. On a Saturday at noon, Driver 7 embarked on the second
ride. The sky was cloudy with a wet roadway, and the roads were quite empty. The ride
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was smooth, except for one interruption at a red light. The driver focused on the street and
traffic signs, as well as advertisements. In addition to the pre-selected ads for testing, the
driver also noted a large-format banner advertisement hung up at the football stadium.
Interestingly, the driver’s gaze repeatedly fixated on this particular advertisement. Table 7
presents the data obtained from the eye tracker during the measurement.

Table 7. Measurement results—Driver 7.

Drive Indicator Fixation Saccadic Movements Blinks

1
Total number 1001 546 162

Average 50 27 8

2
Total number 3621 3312 308

Average 183 167 15

Despite their unsatisfactory calibration results, Driver 8 managed to remain composed
and deliver a smooth ride with no stops. Traffic conditions were favourable, with a
moderate amount of vehicles on the road. The sky was clear, granting excellent visibility.
Due to the unsatisfactory calibration results, the data from this eye tracking measurement
(see Table 8) were not used for next evaluation.

Table 8. Measurement results—Driver 8.

Indicator Fixation Saccadic Movements Blinks

Total number 520 301 160
Average 27 15 8

The ninth drive was first employed for eye tracking with a yellow filter, resulting in a
notable improvement in tracking and motion accuracy, simplifying the calibration process.
Environmentally, the conditions remained the same as in the prior measurement, with a
steady flow of traffic and a cloudless sky. Although there were a greater number of cars
on the road than usual, two stops at intersections due to red lights were observed. On the
return trip, a queue formed on Košická Street towards Martin, adding to the overall journey
time. Driver 9 was very vigilant, driving carefully and attentively scanning the road for the
specified advertisements as well as various billboards and bigboards on either side of the
road. On a stop at a traffic light intersection on Košická Street, a bigboard and megaboard
were visible on the opposite side of the intersection. While the queue was forming, the
driver also noticed several other billboards at the stop and in the slow-moving line. Table 9
presents the data collected from the eye-tracking device during the measurement.

Table 9. Measurement results—Driver 9.

Indicator Fixation Saccadic Movements Blinks

Total number 3809 3102 570
Average 142 115 21

As the number of vehicles swelled along Košická and L’avobrežná streets, the sky
began to cloud over. When passing through the intersection where the green light had
just flickered on, there was a momentary hiccup in the traffic, yet the voyage remained
unhindered. Driver 10 kept in his lane and followed the procession of vehicles in front
of him, as well as those trailing behind. Despite the sluggish pace of the queue, his
attention was scarcely drawn to the outdoor advertising, but he did take note of a few
billboards and bigboards. Table 10 presents the data acquired from the eyetracker during
the measurement process.

The eleventh ride took place before the sun reached its peak, so the roads were already
becoming congested with a large number of vehicles. At one stop, the driver paused at
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a red-light intersection. Visibility was good, and the weather was suitable. The driver
noted the smaller advertisements on the side of the street, but when he followed behind a
larger vehicle, his focus shifted only to it. During the ride, the driver mentioned noticing a
number of exterior ads on the sides of the road, and this was confirmed by the vast amount
of attention he gave to the various outdoor ads, such as those on the opposing side of
the street or the large billboards on buildings. Table 11 presents the comprehensive data
acquired from the eye-tracker during the measurement process.

Table 10. Measurement results—Driver 10.

Indicator Fixation Saccadic Movements Blinks

Total number 3600 3081 515
Average 150 128 21

Table 11. Measurement results—Driver 11.

Indicator Fixation Saccadic Movements Blinks

Total number 3907 3401 496
Average 178 155 22

The roads, during the twelfth drive, were tranquil, with nearly no traffic. At a cross-
roads, there was a single halt as the light turned red. The atmosphere was cloudy, but
not rainy, just with a light mist. Driver 12 mainly kept their eyes on the road ahead, yet
also monitored the roadside advertisements and traffic signs on the right. During the
test drive, the driver’s gaze was frequently directed to the experimental advertisements,
as well as those that were not included in the experiment. Most of them were placed
beside the road on the driver’s side. This driver recorded the highest count of external
advertisements from all of the measurements. Table 12 displays the data acquired during
the eyetracking measurement for driver 12. The table presents a comprehensive summary
of the collected information.

Table 12. Measurement results—Driver 12.

Indicator Fixation Saccadic Movements Blinks

Total number 3406 3165 496
Average 159 148 23

An extra trial drive (thirteenth) was carried out as a substitute for the journey with
poor calibration. The weather had improved since the prior ride. The drizzle subsided,
and the skies began to brighten up. Traffic stayed consistent, and the roads were nearly
deserted. The drive paused twice due to a stop at an intersection. Driver 13 carefully
monitored the road and traffic signals. He was intent on driving. Occasionally, he would
glance away from the road. Just like the prior driver, he noticed a substantial amount of
advertisements, but mainly on his side of the street. Table 13 displays the eye-tracking
measurement data obtained from the latest driver (driver 13). This data provides insights
into their eye movements and gaze patterns during the drive.

Table 13. Measurement results—Driver 13.

Indicator Fixation Saccadic Movements Blinks

Total number 2875 2375 399
Average 132 109 18
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4. Results of Questionnaire Inquiry

The questionnaire results (Table 14) indicate that a majority of participants, specifically
62%, reside in or near Žilina, while the remaining 38% live in different areas or cities. All
drivers included in the study are familiar with Žilina and have experience driving in the
town. Among these drivers, 77% have driven low-seated cars, while 23% have driven high-
seated vehicles. Consequently, the majority of tests and measurements were conducted
using small cars, such as hatchbacks or sedans.

Table 14. Opinions and insights about outdoor advertising.

Drivers Residence
Perception of

Outdoor
Advertising

Driver’s
Attention:
Aspect of

Outdoor Ads

Awareness of the
Impact of Outdoor
Ads on Consumer

Behaviour

Impact of
Outdoor Ads
on Consumer

Behaviour

Online
Shopping
Frequency

Driver 1 Podbiel’ Yes Graphics No No 2 × year
Driver 2 Žilina Yes Graphics No No 1 ×month
Driver 3 Žilina Yes Ad size No Yes 1 ×month
Driver 4 Žilina Yes Graphics No No 2 ×month
Driver 5 Žilina No Ad content No No 1 ×month
Driver 6 Teplička Yes Flashing Yes No 2 ×month
Driver 7 Teplička Yes Ad size No No 1 ×month
Driver 8 Teplička Yes Colours No No Not shopping
Driver 9 Belá Yes Colours No No 2 × year

Driver 10 Kubíková Yes Ad size No No 1 ×month
Driver 11 Brodno Yes Ad size Yes No 2 ×month

Driver 12 Považská
Bystrica No Colours No No 1 ×month

Driver 13 Považská
Bystrica Yes Graphics No No 1 ×month

The initial question inquired about drivers’ perception of outdoor advertising, includ-
ing billboards, bigboards, banners, flags, and signs. A significant proportion of drivers, up
to 85%, reported being aware of outdoor advertisements while driving. A small percentage,
15%, indicated that they were unable to perceive such advertising.

The responses to the open-ended question were categorized into five sections. Thirty-
one percent of drivers agreed that graphics and the size of the advertisement were the most
effective in capturing their attention.

This suggests that the size of the advertisement plays a crucial role in attracting drivers’
attention. Moreover, careful consideration of the visual elements can also be effective in
drawing attention. Colours or colourfulness (23%) were identified as having a pleasing
and visually appealing effect on drivers. Consequently, selecting the appropriate hues can
enhance the advertisement’s reach and increase the likelihood of attracting more drivers.
Additionally, drivers were enticed by the content of the advertisement (7%) and flashing
elements (8%), particularly in digital outdoor advertising.

The third question investigated the impact of external advertising on drivers’ shop-
ping habits. Fifteen percent of respondents acknowledged being influenced by external
advertising, while eighty-five percent stated that they were not affected. This indicates that
drivers are either not swayed by external advertising or are unaware of its influence on
their purchasing decisions.

The subsequent inquiry aimed to determine whether external advertising can signifi-
cantly influence drivers to choose a specific option from various choices when making an
online purchase. The responses to this question overwhelmingly leaned towards a negative
response. A notable 92% of drivers answered “No”, indicating that external advertising
does not heavily influence their online purchasing decisions, while only 8% responded
with a “Yes”.
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The fifth and final question sought to ascertain the frequency of online shopping
among the surveyed drivers. A total of 54% of participants reported shopping online at
least once a month, and 23% revealed shopping twice a month. This indicates that 77% of
the drivers surveyed are frequent online shoppers, which is a positive outcome. However,
there were still outliers, with 15% and 8% of drivers stating that they shop online only once
every six months or never shop online, respectively. The latter figure is rather unexpected,
especially considering that the majority of Slovaks, particularly younger generations, are
expected to engage in regular online shopping.

5. Results of A/B Testing

The A/B testing results provided the fundamental data that could be further used and
developed. This testing consisted of 18 choices in the inner circuit and 22 choices in the
outer circuit, with each selection being presented with four questions. During the testing,
each driver was instructed to simulate the online shopping experience and make decisions
accordingly. Their responses were recorded based on their autonomous answers, free from
any external pressure or influence from the researcher. During the duration of the research,
some of the advertisements were altered, such as TR1-002 in the inner circuit and TR4-039,
TR4-055, TR4-059, TR4-075, TR4-115, and partially TR4-005 in the outer circuit. The latter
was modified between the first and second measurements. These data were used in the
research wherever feasible. Additionally, there were calibration issues with Driver 3 and
Driver 8, meaning their data were only used where possible and were excluded from the
eye-tracking evaluation.

Question 1 of the test focused on the selection of an option (A or B) that the driver
prefers or selects when purchasing. The driver chose according to their personal inclination
or preference. The responses for the inner and outer circuits were evaluated independently.
The question was about which option, A or B, you would choose when purchasing. The
answers were mainly categorized as Correct and Incorrect to enable the recognition of
individual answers of the drivers when evaluating Question 1. The answer Correct means
that tested subject chose the option that was placed on the billboard and had the opportunity
to see it while driving. The answer Incorrect means that the tested subject chose an option
not displayed on the billboards along the road. This appraisal was then be employed for
further processing, thus necessitating the differentiation of the drivers’ individual answers.

On the inner circuit, five drivers (data from Driver 3 were not usable for further
research) yielded 90 responses, of which 12 were correct and 6 were incorrect selections,
with the highest success rate being for Driver 1 and the best result being TR1-088, chosen
correctly by all. When evaluating the ads, 62% of the responses proved correct, while 38%
were incorrect (Table 15).

Table 15. Results of A/B testing for identification of preferred options—inner circuit.

Outdoor Adverts Results

Driver 1 Driver 2 Driver 3 Driver 4 Driver 5 Driver 6
TR1-002 Correct Correct N/A Incorrect Correct Correct
TR1-030 Correct Correct N/A Correct Incorrect Correct
TR1-031 Incorrect Correct N/A Correct Correct Incorrect
TR1-032 Correct Incorrect N/A Correct Correct Correct
TR1-033 Incorrect Correct N/A Correct Incorrect Incorrect
TR1-040 Correct Incorrect N/A Incorrect Correct Correct
TR1-041 Correct Correct N/A Correct Incorrect Incorrect
TR1-042 Incorrect Incorrect N/A Correct Correct Incorrect
TR1-043 Correct Correct N/A Correct Incorrect Incorrect
TR1-045 Correct Correct N/A Incorrect Correct Correct
TR1-074 Correct Incorrect N/A Incorrect Incorrect Correct
TR1-075 Incorrect Correct N/A Incorrect Correct Correct
TR1-076 Incorrect Incorrect N/A Incorrect Correct Incorrect
TR1-088 Correct Correct N/A Correct Correct Correct
TR1-100 Correct Incorrect N/A Incorrect Correct Incorrect
TR1-103 Incorrect Correct N/A Correct Correct Correct
TR1-115 Correct Incorrect N/A Correct Incorrect Correct
TR1-116 Correct Correct N/A Correct Incorrect Correct
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On the outer circuit, six drivers (data from Driver 8 were not usable for further
research) amassed 132 responses, with Driver 10 being the most successful, with 17 correct
and 5 incorrect options. The results were determined to be evenly split, with a 53% to 47%
ratio of correct to incorrect answers (Table 16).

Table 16. Results of A/B testing for identification of preferred options—outer circuit.

Outdoor Adverts Results

Driver 7 Driver 8 Driver 9 Driver 10 Driver 11 Driver 12 Driver 13
TR4-005 Correct N/A Incorrect Correct Incorrect Incorrect Incorrect
TR4-006 Correct N/A Incorrect Correct Incorrect Incorrect Correct
TR4-017 Incorrect N/A Incorrect Incorrect Incorrect Correct Incorrect
TR4-029 Incorrect N/A Correct Correct Correct Correct Correct
TR4-039 Incorrect N/A Correct Correct Incorrect Incorrect Incorrect
TR4-055 Incorrect N/A Incorrect Correct Incorrect Incorrect Incorrect
TR4-059 Incorrect N/A Incorrect Correct Incorrect Incorrect Correct
TR4-075 Correct N/A Correct Correct Correct Correct Correct
TR4-079 Incorrect N/A Correct Correct Incorrect Correct Incorrect
TR4-092 Incorrect N/A Incorrect Incorrect Correct Incorrect Incorrect
TR4-097 Correct N/A Correct Correct Incorrect Incorrect Correct
TR4-114 Correct N/A Incorrect Correct Incorrect Correct Incorrect
TR4-115 Incorrect N/A Incorrect Incorrect Incorrect Incorrect Incorrect
TR4-119 Correct N/A Correct Incorrect Correct Incorrect Correct
TR4-121 Correct N/A Incorrect Correct Incorrect Correct Incorrect
TR4-122 Correct N/A Correct Incorrect Correct Incorrect Incorrect
TR4-143 Correct N/A Incorrect Correct Correct Correct Correct
TR4-151 Correct N/A Incorrect Correct Correct Incorrect Correct
TR4-155 Correct N/A Correct Correct Correct Correct Correct
TR4-156 Correct N/A Correct Correct Incorrect Correct Correct
TR4-157 Incorrect N/A Correct Correct Correct Correct Incorrect
TR4-158 Incorrect N/A Correct Correct Correct Incorrect Incorrect

Joint evaluation of the data yielded a final outcome of 57% correct answers to 43%
incorrect answers. However, it is unclear whether the results were influenced by the
perception of the external advertisement or if drivers were simply choosing based on
personal preference.

Another question from the questionnaire probes whether drivers noticed or registered
the chosen logo or product during their test drive. This is a closed question with the
options Yes or No. The results were once more divided for inner circuit and outer circuit
separately, yet were also evaluated together. For this evaluation, the results from the altered
advertisements were no longer taken into account since the answer is irrelevant (TR-002
in the inner circuit and the TR4-005, TR4-039, TR4-055, TR4-059, TR4-075, TR4-115 in the
outer circuit). The drivers were unable to see advertisements that were not on the route
during the test drive.

The inner circuit recorded a total of 85 responses (Table 17), with 12 being positive
and 73 being negative, giving an overall ratio of 14% Yes to 86% No. This is an interesting
result, as more than half of drivers on this route chose the “correct” option in the A/B test.
The highest number of positive responses (4) were given for advertisement TR1-075. Driver
2 indicated that he noticed or registered logos or products 7 times, while 10 times, he did
not see them.

Meanwhile, the outer circuit yielded the same result, with 14% Yes responses and 86%
No responses (Table 18). The most positive responses (2) were given for the advertisements
TR4-097, TR4-121, TR4-156, and TR4-157. Notably, Driver 7 gave the most Yes responses,
8 times, and 8 times, he answered No.
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Table 17. Results of A/B testing for noticing the logo or product while driving—inner circuit.

Outdoor Adverts Results Σ

Driver 1 Driver 2 Driver 4 Driver 5 Driver 6 Yes No
TR1-030 No No No No No 0 5
TR1-031 No No No No No 0 5
TR1-032 No No No No No 0 5
TR1-033 No No No No No 0 5
TR1-040 No Yes Yes No No 2 3
TR1-041 No No No No Yes 1 4
TR1-042 No Yes No No No 1 4
TR1-043 No Yes No No No 1 4
TR1-045 No No No No No 0 5
TR1-074 No Yes No No No 1 4
TR1-075 Yes Yes No No Yes 3 2
TR1-076 No No No No No 0 5
TR1-088 No Yes No No Yes 2 3
TR1-100 No No No No No 0 5
TR1-103 No No No No No 0 5
TR1-115 No No No No No 0 5
TR1-116 No Yes No No No 1 4
Σ (“Yes”) 1 7 1 0 3 12 73

Table 18. Results of A/B testing for notice of the logo or product while driving—outer circuit.

Outdoor Adverts Results Σ

Driver 7 Driver 9 Driver 10 Driver 11 Driver 12 Driver 13 Yes No
TR4-006 Yes No No No No No 1 5
TR4-017 No No No No No No 0 6
TR4-029 Yes No No No No No 1 5
TR4-079 No No No No No Yes 1 5
TR4-092 No Yes No No No No 1 5
TR4-097 Yes No Yes No No No 2 4
TR4-114 No No No No Yes No 1 5
TR4-119 Yes No No No No No 1 5
TR4-121 Yes No No Yes No No 2 4
TR4-122 No No No No No No 0 6
TR4-143 No No No No Yes No 1 5
TR4-151 Yes No No No No No 1 5
TR4-155 No No No No No No 0 6
TR4-156 Yes No Yes No No No 2 4
TR4-157 Yes No No No No Yes 2 4
TR4-158 No No No No No No 0 6
Σ (“Yes”) 8 1 2 1 2 2 16 80

From the overall assessment for both routes, the ratio is 15.5% for Yes and 84.5% for
No. Indeed, the answer Yes was registered 28 times, while the answer No was documented
153 times. This analysis could be indicative of participating drivers only slightly perceiving
and monitoring outdoor advertising while driving. Nonetheless, there is also a chance
that drivers perceive outdoor advertising subconsciously and thus respond to the question
negatively. Additional accurate findings were available once the eye tracker measurement
had been evaluated.

The last question from the A/B testing was asked drivers to assess whether they
associated the given logo or brand with a particular product. This focused on the experience
or knowledge of a specific product or service that the driver knows is offered or sold by
the company. If the driver chose an aquarist logo, the answer that they sell fish would
not be positively evaluated; rather, it should be a specific product purchased or mediated
directly from the aquarist. This question was asked only for selections that included the
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company logo, excluding those with specific products. All responses, including those from
drivers without the results of eye-tracking measurement and changed advertisements, were
evaluated together and separately for both routes to determine if there exists a correlation
between product knowledge and purchase decisions.

On the inner circuit, 85 selections have been evaluated, with 20 connections to a
specific product, and 65 times, it was not connected, resulting in a ratio of 24% to 76% in
favour of the No answer. The most successful selections were TR1-002 and TR1-075, each
with six Yes answers. Driver 6 had the most product brands connected to them, with Yes
answered five times. The outer circuit evaluation totalled 96 data, with a near balanced
distribution of 46 positive and 50 negative answers, representing 48% Yes answers and 52%
No answers. TR4-115 had the highest number of Yes answers (7). Driver 7 had the highest
tally of all drivers on the outer circuit, with 10 Yes answers.

The joint evaluation of both routes yielded 66 affirmative answers and 115 negative
ones, resulting in a total of 181. The ratio of affirmative to negative answers was an
unfavourable 36.5% to 63.5%, indicating that nearly two-thirds of respondents may have
been influenced by their familiarity with a certain service or product linked to the logo.

6. Results of Eye-Tracking Analysis

Previous conclusions and outcomes were meticulously scrutinized on the basis of
the subjective responses of individual drivers (A/B testing results). The evaluation of
measurements and records from the eye tracker provided the requisite value to the earlier
outcomes, which were then supported by tangible evidence. The recordings from the
measurements with the eye tracker served as the essential foundation for the research and
work done overall. An important indicator of the success of the eye-tracking measurement
is the fixation and saccadic eye movements values. Table 19 evidently shows the drivers for
whom the results of the eye tracker measurement were inadequate (Driver 3 and Driver 8).

Table 19. Average number of fixations and saccadic eye movements.

Indicator Fixation (per Minute)
Saccadic Movements

(per Minute)
Blinks (per Minute)

Duration of Ride
(in Minutes)

Driver 1 171 156 13 9:19
Driver 2 82 49 7 9:34
Driver 3 8 4 3 9:11
Driver 4 96 88 5 10:08
Driver 5 163 146 15 9:39
Driver 6 166 156 6 9:38
Driver 7 183 167 15 19:47
Driver 8 27 15 8 19:04
Driver 9 142 115 21 26:48
Driver 10 150 128 21 23:55
Driver 11 178 155 22 21:52
Driver 12 159 148 23 21:19
Driver 13 132 109 18 21:42
Average

(Drivers 3 and 8 excluded) 147 129 15

It is evident from the table that Driver 3 and Driver 8 had extensive difficulty in
calibrating the eye tracker, rendering their measurements unusable for research, thus
necessitating their exclusion from any further research regarding the eye-tracking data.
Driver 2 and Driver 4 too presented substantially lower fixation and saccadic movement
values compared with the remainder of the sample, yet these figures were satisfactory for
research purposes; accordingly, they will be included in the research for the eye-tracking
measurements. All the values in Table 19 have been recalculated per minute, considering
each driver’s test drive was of a different duration. Driver 7 ostensibly had the most
desirable results. Nevertheless, it is imperative to point out that an excessive amount of
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fixations or saccadic movements while driving can cause agitation and unease. The average
fixation value for the participating drivers was 147 per minute, while the average saccadic
movement value was 129. This results in an average of over two fixations and saccadic
movements per second for the driver.

Eye fixation is a critical component of research, particularly when it comes to outdoor
advertising. An eye tracker can be used to measure each single fixation on the outdoor
advertisement chosen for testing, as well as all other large-format advertisements ex-
cluded from the experiment. Within the inner circuit, 25 large-format advertisements were
studied, resulting in a mere six fixations—a ratio of 5%. The outer circuit had a slightly
better outcome, with 108 fixations—representing a ratio of 13% out of the total number of
possible views.

For elucidation, the assessment in Table 20 is directed at all the outdoor advertisements
located on the test routes. All the test drives tallied up to 557 ads, of which drivers noted 65.
The total fixation rate from all the ads was 12%. To put it another way, during the test drives,
the driver on average recorded one out of every ten large-format outdoor advertisements.

Table 20. Evaluation of outdoor advertisements seen during test drives.

Inner
Circuit

Outdoor
Advertising

(OA)
Seen OA

View Ratio of OA
on Total Number

of OA

Outer
Circuit

Outdoor
Advertising

(OA)
Seen OA

View Ratio of OA
on Total Number

of OA

Driver 1 25 3 12% Driver 7 72 13 18%
Driver 2 25 0 0% Driver 9 72 5 7%
Driver 4 25 2 8% Driver 10 72 4 6%
Driver 5 25 0 0% Driver 11 72 12 16%
Driver 6 25 1 4% Driver 12 72 14 19%

Σ 125 6 5% Driver 13 72 11 15%
Σ 432 59 14%

The ultimate step in data evaluation and assessment is the fusion of eye tracking and
A/B testing of the participating drivers. For both pathways, the external ads integrated
in the trial were individually examined. However, the results were much less successful
when all the ads on the routes were evaluated. After analysing the modified advertisement,
17 external ads were present on the inner circuit that was subjected to the testing. Since
measurements were taken from five to six drivers, this accounts for 85 advertisements in
total. Surprisingly, only four were registered by the drivers, and no fixations of the gaze
were recorded for 81 of them. This generated a ratio of 5% for observed ads. Two drivers
were unsuccessful in noting any fixations on the specified ads. From the viewpoint of
advertisements, this corresponds to one fixation for 4 advertisements and zero fixations for
13 advertisements across five test drives.

The outcomes of the outer circuit evaluation were markedly different from those of the
inner circuit. Measurements of 6 drivers and 16 ads were used in the assessment. Out of
the 96 outdoor ads visible on route, 24 were noted by drivers. On average, the total fixation
rate was 25%. The most fixations (3) were recorded for ads TR4-155 and TR4-157 (Figure 5).
Driver 12 was the one with the highest number of recorded ads, having seen six ads overall.
This gave a total ratio of 16% seen and 84% without fixation on both routes.

After a thorough assessment of the advertising tracking, a comparison between the
drivers’ subjective responses from the A/B testing and the measured values from the eye
tracker was made. Three variants were then produced:

• Response Yes and Saw—evaluation based on the driver’s answer of Yes to the question
on whether they noticed the logo or product they selected during the test drive,
and the eye tracker recording that they saw the advertising used for that choice in
the A/B testing.

• Response Yes and Not seen—evaluation based on the driver’s answer of Yes to the
question on whether they noticed the logo or product they selected during the test
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drive, and the eye tracker recording that they did not witness the advertising used for
that choice in the A/B testing.

• Response No and Saw—evaluation based on the driver’s answer of No to the question
on whether they noticed the logo or product they selected during the test drive,
and the eye tracker recording that they saw the advertising used for that choice in
the A/B testing.

 

Figure 5. Outdoor adverts TR4-155 and TR4-157, outer circuit.

The evaluation of conditions was conducted according to the criterion of selecting
TRUE or FALSE. When both conditions were fulfilled, the response was marked as TRUE.
However, if one or both of the conditions were not satisfied, the result was labelled FALSE.
The first variant evaluated was Answer Yes and Saw. The aim was to determine how often
the driver reported that they noticed the chosen option and actually focused their gaze on
it during the trial. The evaluation of this variant on the inner route revealed that only in
two cases was the result TRUE, which signifies that in these two situations, both conditions
were fulfilled. In terms of percentage, this outcome accounts for only 2% of the entire
sample. The outer route was evaluated as TRUE in 5 cases out of a total of 96 options. Here,
it is 5% of the entire sample. The overall ratio of fulfilment of this variant from both routes
is 7 out of 181, which constitutes 1% of the entire sample.

The second variant with slight changes was Answer Yes and Not Seen. This was a
situation in which the driver during the testing indicated that they saw the chosen logo
or product during the test drive, but no fixation was recorded in the eye tracker data. On
the inner circuit, these conditions were fulfilled in 10 out of 85 possible cases, representing
11.8% of the total sample. On the outer circuit, the conditions for the variant were met in
9 cases, representing 9.4% of all possibilities. From the overall evaluation of both routes
together, the conditions were fulfilled in 10.5% of all possibilities.

The intriguing variant for investigation was answer No and Saw; from an investigative
point of view, this is especially interesting. The assessment of this variant provides insight
into the potential effect of external advertising on buying decisions. In this context, the
driver claimed they did not notice the selected logo during the trial run, but in fact, they
had it in focus. On the inner path, two cases fulfilled the conditions, representing 2.3% of
the overall sample evaluated. On the outer route, the results were much better; twenty
options were accurately evaluated, equating to 20.8% of all possibilities. Once both routes
were taken into consideration, 22 of 181 options met the conditions, making up 12.2% of
the total sample.

The third variant of evaluation was combined with A/B testing to determine any
potential correlation between the perception of the advertisement and its influence on
purchase decisions. This evaluation combines two previous evaluations, the A/B test based
on “correct” and “incorrect” choices out of the options presented to the drivers among the
individual choices in the test and the evaluation of the No Answer and Seen option. The
aim was to identify instances wherein the driver might have registered the advertisement
with the selected logo or product, while stating they did not see it during the test drive. If
these three conditions are met, it can be concluded that there is a relationship between the
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driver’s making a purchase decision based on the registration of an external advertisement.
In the assessment of the inner circuit, no correlation possibilities were discovered. Of the
85 possibilities, none fulfilled all three specified criteria. This can be partially attributed to
the limited number of advertisements witnessed by drivers along the route. Nonetheless,
the evaluation of the outer circuit uncovered nine scenarios in which all conditions were
satisfied. Specifically, this accounts for 9% of the total sample evaluated. For these nine
instances, it can be hypothesized that the visible outdoor advertising had a bearing on the
purchasing decisions of certain drivers.

7. Discussion

This article aims to comprehensively understand the magnitude of external adver-
tising’s influence on customer decision-making in the digital domain. To enhance the
precision of the research and data, this study measures the effects of external advertising
on drivers and their decision-making processes. To simulate the online environment, the
researchers employed A/B testing, wherein drivers were promptly presented with two
options after driving. This testing method was designed to elicit a choice between the
brand and the product itself, resembling the process of online shopping. To ensure that
drivers would adapt their behaviour and preferences accordingly, they were given prior
notification of this experimental setup.

To elucidate conscious consumer preferences, an extensive interview was conducted.
The primary objective of this interview was to ascertain the frequency with which the
participating drivers engage in online purchasing. It is worth noting that over two-thirds of
the sample reported engaging in monthly online transactions. This substantial figure lends
credence to the research outcomes and their relevance in the context of consumer behaviour
within the digital landscape. Given drivers’ familiarity with this form of shopping, their
decision-making is inherently connected to the online realm.

Following a meticulous interview process and subsequent A/B testing, it was re-
vealed that most drivers did not consciously perceive external advertising while driving.
Nevertheless, the measurements obtained from the study unveiled that drivers are most
strongly attracted to advertisements featuring visually appealing graphics, appropriate
sizes, and captivating colours. This finding is paramount for advertisers, as it enables
them to effectively engage consumers through three key mechanisms: establishing contact,
capturing attention, and placing advertisements in optimal locations. Armed with this
knowledge, advertisers can leverage visually appealing graphics, appropriately sized ads,
and captivating colours to ensure that their advertisements are seen and noticed by drivers.

The subsequent inquiry pertains to the impact of external advertising on drivers’
purchasing behaviour. Most participants reported limited awareness of the influence
exerted by such advertising on their decision-making. However, it is important to note that
further investigation and comprehensive assessment utilizing additional tools would be
required to corroborate or refute this observation definitively. It is pertinent to acknowledge
that the research presented in this article was conducted from the driver’s perspective, with
data collection facilitated by an eye tracker, thus limiting the scope of aspects that could
be evaluated. When questioned regarding the influence of external advertising on their
purchasing decisions, nearly all drivers asserted that it does not affect their decision-making
process. The collected measurements partially substantiate this finding. Nonetheless, the
impact of external advertising on drivers’ purchasing decisions, albeit minor, warrants
further exploration and investigation.

7.1. Research Limitations

Throughout the research process, various key issues emerged that directly impacted
the study and its components. Noteworthy influences were observed during the research.

One crucial factor that affected the research pertained to the selection of drivers.
Gender was taken into consideration to ensure a relatively balanced sample of participants.
Age diversity was also considered, with a range of 20 years. It is plausible to suggest that if
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the sample had predominantly consisted of one gender or age group, the obtained results
may have differed from those obtained.

The utilization or lack thereof of a yellow filter on the eye tracker during measurements
proved to be a significant factor. Insufficient calibration occurred without the filter, leading
to unsuitable results for further evaluation (Drivers 3 and 8).

The selection of suitable routes played a crucial role in influencing the overall results.
Comparing the two routes used in the research, significant differences in driving style and
perception of outdoor advertising were observed, aligning with the intended purpose of
route selection. Despite the exclusion of Drivers 3 and 8, the scenarios presented (inner
circle and outer circle) yielded valuable findings.

The research presented in this article holds promise for the future, offering ample
opportunities for further enhancements and the discovery of correlations. By incorporating
additional technologies such as brain activity measurement and eye tracking for option
selection, this research, which already utilizes A/B testing and eye trackers, can be further
enriched. These methods can provide novel insights into shopping behaviour, including the
order in which the eyes fixate on specific points. Furthermore, investigating the same routes
for drivers and passengers may unveil a potentially greater impact of external advertising
on passengers than on drivers.

The extensive scope of outdoor advertising and its substantial influence on consumer
behaviour warrants further investigation and research. While this research draws upon a
wealth of data and remains relevant, there is always room for improvement and refinement
of the outcomes. It can be concluded, however, that outdoor advertising does exert a certain
influence on customers’ decisions. Nevertheless, the research findings suggest that the
impact of outdoor advertising on motor vehicle drivers is relatively minimal.

7.2. Agenda for Future Research

The A/B testing conducted in this study elicited responses to four questions associated
with selections made for each circuit. The results demonstrated comparable success rates
across both circuits, suggesting a lack of discernible influence of advertising on decision-
making. Notably, many drivers make choices based on personal preferences, encompassing
elements such as brand recognition, visually appealing stimuli, and other unspecified
factors. Although a fraction of respondents acknowledged some impact of advertisements,
these responses were subjective, thus necessitating caution in their interpretation. It is
plausible to posit that the influence of advertising may operate at a subconscious level.

The analysis of participants’ responses revealed that drivers consciously register
minimal outdoor advertisements. This limited conscious registration can be attributed to
the fleeting nature of their exposure, characterized by an average fixation time of merely
0.3 s and often restricted to a single fixation. Consequently, the advertised logo or product
often goes unnoticed, resulting in a lack of conscious recognition during decision-making.
The evidence suggests that decisions are predominantly guided by personal experiences
with specific goods or services and by the influence of word-of-mouth reviews from
others. Consequently, it appears that outdoor advertising exerts only a marginal impact on
individuals’ decision-making processes.

The eye-tracking measurements employed in this research are pivotal for assessing
its validity, as they guarantee the accuracy of the collected data. Notably, a significant
disparity exists between the measurements obtained from the inner and outer circuits. The
“urban” inner circuit records considerably fewer outdoor advertisements compared with
the “circular” outer circuit. Nevertheless, it is observed that, on average, drivers notice
approximately one-tenth of the large-format outdoor advertisements encountered. It is im-
portant to acknowledge that this value is contingent upon numerous factors. Nonetheless,
it can be stated that a lower number of recorded ads corresponds to a weaker impact on
purchase decisions.

By evaluating measurements conducted under three different conditions, certain
instances reveal the potential for external advertising to sway driver choices. However,

182



Appl. Sci. 2023, 13, 6808

it is important to note that this potential remains relatively weak when compared with
the overall number of ads surveyed. This observation underscores the need for further
measurements and exploration. Notably, all instances of possible influence were registered
on the outer circuit, indicating the influence exerted while driving in town. Conversely,
within the city, specifically on the inner circuit, no instances of possible impact through
external advertising were recorded. It is crucial to avoid unequivocal assertions of the
absence of influence; nonetheless, determining the magnitude of impact solely based on
eye-tracking measurements is inherently challenging.

7.3. Research Implications

Based on the meticulous analysis of the data, it becomes evident that the driver’s
perception, and hence the impact of external advertising on the driver, is subject to a
multitude of factors. Notably, the examination of eye movement patterns in both the
inner and outer circuits reveals a substantial decrease in the number of fixations and
saccadic movements within the inner circuit. Furthermore, the level of traffic in urban
centres and arterial roads outside the city exerts a discernible influence on the driver’s
attentional capacity; in denser traffic conditions, the driver’s vigilance is heightened,
consequently diminishing the likelihood of noticing external advertising. Consequently, it
is impractical to target advertising campaigns towards city centres when aiming to reach
drivers effectively. Instead, the strategic focus should encompass sections with fewer points
of conflict, such as extended linear segments characterized by low traffic intensity. In areas
with high traffic density, the impact of external advertising is notably diminished.

The visibility of outdoor advertising exhibits a profound dependence on its placement.
Within the inner circuit, advertisements are frequently concentrated in inconspicuous
locations where drivers direct their attention predominantly towards the traffic rather than
peripheral objects. However, advertisements positioned along extensive, unobstructed
roads that afford long-distance visibility possess an enhanced potential to capture the
driver’s attention. Consequently, the degree of influence on the consumer is directly
proportional to the positioning of the advertisement. Furthermore, the influence exerted by
the advertisement can be significantly modulated by the consumer’s pre-existing opinion
of the advertised product or service. Favourable past experiences with the brand or product
increase the likelihood of being swayed towards making a purchase, thus augmenting
the impact of the advertisement. Conversely, unfavourable experiences may prompt the
consumer to opt for a competitor, thereby still exerting an influence on the efficacy of
the advertisement.

In summary, the findings of this research can be succinctly encapsulated in the as-
sertion that outdoor advertisements possess the potential to influence a driver’s purchas-
ing decisions. Although the driver’s primary focus remains on operating the vehicle,
instances arise wherein the route and prevailing traffic conditions allow for conscious
notice of the advertisements. While this occurrence is not ubiquitous, if it does transpire,
there exists the possibility of the advertisement exercising some sway in the eventual
decision-making process.

8. Conclusions

The findings from this research provide clarity on various aspects of the influence
of outdoor advertising on customers’ purchasing decisions. It becomes evident that the
impact of outdoor advertising on drivers is minimal during the experimental testing.
Factors such as prevailing road conditions and traffic volume significantly influence drivers’
perception of advertising. Consequently, it can be concluded that outdoor advertising is
better suited for pedestrians or passengers in vehicles, especially in specific locations such
as urban settings.

This study aimed to determine the impact of outdoor advertising on customers’
purchasing behaviour by employing A/B testing and assuming the role of drivers of
personal vehicles. The research and experimental outcomes shed light on the extent of
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influence exerted by outdoor advertising on customers’ purchasing decisions, particularly
in the online realm. The study identified nine instances where a clear correlation between
outdoor advertising and specific purchase decisions was evident, suggesting some (albeit
low) likelihood of the influence of outdoor advertising on customer decisions.

The results of the pre-experimental questionnaire highlight the significant factors that
can impact customer decision-making and attention, including advertisement dimensions,
colour schemes, and placement. In the online environment, customers’ decision-making
processes can be influenced by subtle details, especially when encountering unfamiliar
brands or products. Outdoor advertising can have a similar effect on customers, but it
requires the advertisement to be initially perceived and processed subconsciously.

Marketers and advertising agencies need to consider various factors when devising
strategies for outdoor advertising. The location and visually captivating nature of bill-
boards, for example, can have a considerable influence on consumer purchasing decisions.
However, the effectiveness of this impact depends on the advertisement being perceived
by the consumer. Therefore, careful attention should be given to directing individual ad-
vertisements to drivers or pedestrians through precise site selection, appropriate frequency,
and visually distinct content.

For future research endeavours, it is recommended to leverage diverse technologies,
such as EEG (electroencephalography) and FEA (functional eye-tracking analysis), to gather
a greater volume of data. This research utilized an eye-tracking device, which collected
data from a specific region. By harnessing multiple technologies, data can be obtained from
various sensors, enabling comprehensive evaluation, comparison, and the identification of
potential correlations. The intersection of marketing, advertising, and eye-tracking in the
transportation field presents an intriguing and relatively unexplored area, offering ample
room for further research and valuable measurements. The remarkable potential of outdoor
advertising necessitates continual exploration and investigation.
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Abstract: Due to the lack of sensitivity of visual acuity (VA) measurement to quantify differences in
visual performance between progressive power lenses (PPLs), in this study, we propose and evaluate an
eye-tracking-based method to assess visual performance when wearing PPLs. A wearable eye-tracker
system (Tobii-Pro Glasses 3) recorded the pupil position of 27 PPL users at near and distance vision
during a VA test while wearing three PPL designs: a PPL for general use (PPL-Balance), a PPL optimized
for near vision (PPL-Near), and a PPL optimized for distance vision (PPL-Distance). The participants
were asked to recognize eye charts at both near and distance vision using centered and oblique gaze
directions with each PPL design. The results showed no statistically significant differences between
PPLs for VA. However, significant differences in eye-tracking parameters were observed between PPLs.
Furthermore, PPL-Distance had a lower test duration, complete fixation time, and number of fixations
at distance evaluation. PPL-Near has a lower test duration, complete fixation time, and number of
fixations for near vision. In conclusion, the quality of vision with PPLs can be better characterized by
incorporating eye movement parameters than the traditional evaluation method.

Keywords: high contrast visual acuity; progressive power lenses; eye-tracking; eye fixations

1. Introduction

Presbyopia is an age-related condition that prevents focusing on near objects; it is a
natural part of the aging process and begins to develop around age 40 [1]. Progressive
power lenses (PPLs) are a popular solution for presbyopes, as they provide a gradual tran-
sition of spherical power between distance and near vision, allowing wearers to see clearly
at all distances by changing their gaze direction [2]. Due to the power variation along the
vertical main meridian, usually an umbilical curve, unwanted astigmatic and spherical
power variations appear in the lateral areas of the lens and affect the quality of vision [3,4].
Some proposed methods to evaluate the quality of vision with PPLs are based on the
representation of theoretical power distribution maps obtained with lens mappers [5,6] or
calculated using exact ray tracking to obtain user-perceived power distribution maps [7,8].
They are based on geometrical magnitude calculations that estimate the theoretical fields
of view [5,6,9]. Although theoretical representations could be useful to characterize PPLs,
the quality of vision varies depending on the subjective visual perception of the user. In
order to gain a better understanding of this topic, several studies have been carried out
to evaluate the quality of vision with PPLs using different methods such as satisfaction
questionnaires [10–13], contrast sensitivity [14], reading performance [11,15], skew distor-
tion [16], or high contrast visual acuity (VA) [12,17–19]. High-contrast VA is one of the
main ways to assess the quality of vision with PPLs. VA refers to the ability to discern
object details subtending a certain angle and is commonly employed in clinical practice to
measure vision quality. It is also the standard measure to assess the quality of an optical
correction [1]. The measurement of VA has been extensively used to evaluate the impact of
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lateral refractive errors in PPLs on visual performance. Legras et al. [17] evaluated differ-
ences in VA with 2 different PPLs and reported worse VA values when viewing through
the lateral regions of the lens in comparison with the central region. Villegas et al. [19] also
evaluated the effect of off-axis refractive errors in a PPL and showed a reduction in VA
at off-axis gaze directions in comparison with centered gaze directions. However, these
studies have not found significant differences in VA scores between different types of PPLs.
This could be because the VA score does not consider other factors that impact visual
perception, such as the time needed to recognize the optotypes. For this reason, this work
proposes the assessment of the visual quality provided by PPLs by means of parameters
such as recognition speed or the number of eye fixations while recognizing the optotypes.

Video-based ETs allow the monitoring and recording of gaze positions by sending
infrared light to the subject’s eye and recording with a camera the light reflected from
it [20,21]. The bright pupil and the corneal reflections are processed using advanced image-
processing software to obtain the instantaneous gaze direction with high accuracy and to
calculate eye movements as saccades and fixations [21–23]. Thanks to these systems, it is
possible to study the influence of factors such as text characteristics [24] or blur on eye
movements [25]. In the field of PPLs, this technology has been widely used to study how
lateral refractive errors of PPLs affect eye fixations. Han et al. [26,27] analyzed differences
in eye fixations when reading with PPLs vs. single-vision lenses. Concepcion-Grande
et al. [28] studied differences in eye fixations while reading on a monitor screen with two
different PPL designs. Rifai et al. [29] studied differences in eye fixations while driving
between PPL users in comparison with non-PPL users. All of them demonstrated that
lateral unwanted refractive errors of PPLs affect eye fixation characteristics. For that reason,
this study aims to evaluate an eye-tracking-based method for assessing the quality of vision
with progressive power lenses by analyzing test duration and eye fixation characteristics
during a high-contrast visual acuity test.

2. Materials and Methods

Study Design: A prospective, observational, longitudinal, double-masked study was
carried out to evaluate test duration and characteristics of eye fixation when performing VA
tests with 3 different PPL types. The factors analyzed were eye chart size, gaze direction,
and lens design. The study followed the principles of the Declaration of Helsinki. Full study
approval was obtained from the Complutense University of Madrid Committee Review Board
(CE_20210715-3_SAL). All participants provided written informed consent before the start of
the study, and at the end of the study, subjects were compensated with one pair of glasses.

Participants: The study sample was made up of presbyopic participants of both genders
who were older than 44 and had worn PPLs for at least six months before the start of the
study. The inclusion criteria were: (1) Refractive error range of −6.00 D to +5.00 D with
astigmatism less than or equal to 2.50 D. (2) Near addition power from +1.00 D to +3.00 D.
(3) Best-corrected VA is better than 0.1 logMAR monocularly and 0.05 logMAR binocularly.
(4) Anisometropia below 1.50 D. Subjects were rejected if they had any ocular diseases, non-
compensated binocular vision anomalies, medical conditions that could affect vision, or if
they were undergoing any pharmacological treatments that might have affected the subjects’
visual function. The sample size was calculated based on data from a preliminary study with
five participants who met the same inclusion criteria as above. The calculation was performed
using the GRANMO sample size calculator, version 7.12 (Institut Municipal d’Investigació
Mèdica, Barcelona, Spain). Two-tailed testing with an alpha risk of 0.05, a beta risk of 0.1, and
a dropout rate of 30% was set to estimate a sample size of 37 participants.

Procedure: All participants underwent a full optometric assessment to check whether
they met the inclusion criteria. The visual examination included VA measurement using
the PVVAT test (Precision Vision, La Salle, III), subjective refraction at a distance and near
vision, stereo acuity assessment by the Titmus test, the Worth test, the Cover test, and
ocular motility examination. After the optometrists determined the participant met the
inclusion criteria, the fitting parameters and position of wear for the eye-tracker glasses
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were measured: pupillary position, segment height, back vertex distance, frame wrap
angle, and pantoscopic tilt. Once these data were collected, the PPL study lenses were
ordered. VA measurements incorporating an eye-tracking system for three different PPL
designs at far and near distances were recorded in two different day visits with a duration
of two hours. During the first visit, far-distance VA recordings were collected for the three
different PPLs at three different gaze directions, and a two-minute break was taken between
each experimental condition to minimize the participant’s fatigue. In a similar way, during
the second visit, near-distance VA measurements were collected for the three different
PPLs and three gaze directions, including two-minute breaks between each experimental
condition to minimize visual fatigue.

Progressive Power Lenses: Three different individualized free-form PPL designs
were used for this study: (1) a balanced design, PPL-Balance (Endless Steady Balance, IOT,
Madrid, Spain); (2) a lens with a wider field of view for near vision, PPL-Near (Endless
Steady Near, IOT, Madrid, Spain); and (3) a lens with a wider field of view for distance
vision, PPL-Distance (Endless Steady Distance, IOT, Madrid, Spain). The PPL’s technical
characteristics (cylinder and mean power distribution maps) for a plano prescription,
addition 2D, using standard position-of-wear parameters are shown in Figure 1. The lenses
were placed on a specific clip-on frame that was attached to the eye-tracker glasses. This
configuration allows for direct pupil registration without any interference from the PPL.
Lenses were calculated using an advanced lens calculation software (FreeForm Designer,
IOT, Madrid, Spain) considering the fitting parameters of the PPLs attached to the ET
glasses to reduce oblique aberrations and maintain a stable field of view regardless of the
prescription and the additional power of each participant.

Figure 1. Mean power, cylinder power maps distribution, and visual areas according to Sheedy’s
criteria [6] for a Plano prescription, addition 2D with default parameters. (A) PPL-Balance. (B) PPL-
Distance. (C) PPL-Near. Reprinted with permission from Ref. [30]. 2023, Concepcion-Grande et al.
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Eye tracking recording: Binocular pupil position was recorded using a wearable
eye-tracker system (Tobii Pro Glasses 3, Tobii AB, Stockholm, Sweden) with a sampling
rate of 50 Hz. Recordings were made while participants were performing VA tests at
a distance and near vision using eye charts with logMAR (logarithm of the minimum
angle of resolution) unit notation and a scoring criterion that assigns to the subject the VA
corresponding to a given line when at least three letters are correctly recognized [31,32].
The eye charts were composed of black optotypes over a white background with a lumi-
nance of 160 cd/m2. Measurements were performed under photopic conditions (70 lux)
in a uniformly illuminated room. Each eye chart was made up of a single row of five
randomized optotypes (Sloan letters). The VA increments between eye charts were 0.10
logMAR. Subjects were asked to read the entire row of letters from left to right, beginning
with an eye chart with a letter size two steps greater than their best-correction VA until the
maximum VA was reached. VA measurements were done for each of the three PPLs at three
different gaze directions in the following sequence: centered, 12.5◦ off-axis dominant eye
side, and 12.5◦ off-axis non-dominant eye side. The order of measurements for each PPL
was randomized. Far-distance VA was recorded using three eye charts shown on a screen
monitor (Asus LCD Monitor VP228HE 21.5”) located at 5.25 m. Each of the letters on each
eye chart was separated from the other by an angle of 1◦. To evaluate off-axis positions,
participants were seated on top of a big rotating platform with a chin rest to prevent head
motion and ensure that all participants were looking through the same area of the lens.
Near-distance VA was assessed at 0.37 m using three eye charts for each gaze direction
displayed on a screen (Microsoft Surface PRO 4, 12.3”). The angular separation between
letters in the same eye chart was 6.4◦. Off-axis gaze directions were evaluated by moving
the screen to three different positions. To prevent head motion and ensure participants
used the central and lateral regions of the PPL, a table with a chin rest was used.

Recordings were processed to calculate fixations using Tobii Pro Lab software (Tobii
AB, Stockholm, Sweden) and the Tobii I-VT fixation filter [33,34]. The velocity threshold
was set according to a pilot study on 10 emmetropic non-presbyopic participants with
the same experimental set-up as in the present work. Participants were asked to look at
5 optotypes of 0.4 logMAR size at 5.25 m and 0.37 m. A velocity threshold of 40◦/s was
set for the near-distance VA task, and 6◦/s was set for the far-distance VA task (Figure 2).
To ensure the quality of the recordings, a data quality analysis was performed. The data
quality of each recording was calculated as the number of time points in each recording for
which valid gaze data was collected, divided by the number of time points in the recording.
The data quality of each recording was computed as the percentage of valid gaze data
points relative to the total number of points recorded. As in other studies requiring very
good quality in data recording [21,35], we set a threshold for data loss of 10%. Those
participants with all recordings and valid data of 90% or more were included in the study.

Figure 2. Fixation classification examples from a gaze position signal during VA test at distance
vision (A) and near vision (B). The velocity threshold was set to allow the algorithm to recognize the
five fixations corresponding to the five optotypes displayed on the screen (F1–F5).

Statistical Analysis: All the statistical analyses performed in this study were carried
out with Python 3.8.8 software using the statsmodels library [36]. A three-way repeated
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measures ANOVA was used to assess differences in eye movements depending on the
eye chart size, gaze direction, and PPL design, both for distance and near-distance VA
measurements. To evaluate differences in VA scores depending on the gaze direction
and the PPL design, a two-way repeated measure ANOVA was performed. The level of
significance was set at 0.05 and the statistical power at 0.8. A Tukey HSD post-hoc test was
used to determine which means differ significantly from each other. The variables analyzed
were VA, test duration, complete fixation time, and the number of fixations.

3. Results

3.1. Sample Characteristics

A total of 42 subjects were enrolled in the study. Eye-tracking recordings were not
attempted on 3 of them due to dry eyes (n = 1) and damaged lenses (n = 2). Eye-tracking
recordings were collected from a total of 39 subjects; 13 of them did not meet the 90% valid
data threshold for all recordings and were discarded from the data analysis (Figure 3).
The final sample consisted of 27 subjects (15 men and 12 women), ranging in age from
44 to 65 years old (54 ± 6). The average mean refractive error of the participants was
−0.8 ± 2.6 D (ranging from −6 D to +4.62 D). There were 12 myopic participants, 10
participants with hyperopia, and 5 emmetropic participants. The participants’ addition
powers ranged from 0.75 D to 2.50 D, with an average of 1.9 ± 0.5 D. The average mean
percentage of valid data was 99.6 ± 1.2 (ranging from 91.1 to 100) for far-distance VA
recordings and 99.7 ± 1.1 (ranging from 90.8 to 100) for near-distance VA recordings.

Figure 3. Flowchart for participant enrollment and data analysis.

3.2. Far-Distance VA

The results showed no statistical differences in distance vision for VA between PPLs
and gaze direction (Table 1).

Table 1. Detailed statistics for visual acuity (VA) analysis at distance vision. Two-way repeated
measures ANOVA.

PPL-Balance
VA (Mean ± SD)

PPL-Distance
VA (Mean ± SD)

PPL-Near
VA (Mean ± SD)

SS MS Df F-Ratio p-Value

−0.06 ± 0.06 −0.06 ± 0.06 −0.05 ± 0.07 0.005 0.002 2 2.205 0.120

Centered
VA (Mean ± SD)

Dominant eye
VA (Mean ± SD)

Non Dominant Eye
VA (Mean ± SD)

SS MS Df F-Ratio p-Value

−0.06 ± 0.06 −0.06 ± 0.06 −0.05 ± 0.07 0.004 0.002 2 1.833 0.170
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However, statistically significant differences in eye movements were found for the
three factors analyzed: eye chart size, gaze direction, and PPL design. No statistically
significant interactions were found between the analyzed factors. For the eye chart size,
it was expected that when the letter became smaller, the task difficulty increased, thus
affecting the eye movements. The results confirmed that with a smaller optotype size,
there was a statistically significant longer test duration, longer fixation time, and higher
fixation count. Regarding the gaze directions, as the participant is forced to look through
the lateral areas of the lens with blur, we would expect the increased recognition effort to
affect eye movement. Statistically significant differences in longer test duration, longer
complete fixation time, and a greater number of fixations were found for off-axis gaze
directions relative to the central one. Finally, it was observed an effect of PPL design
on eye movements. When the participants were using the PPL optimized for distance
vision, statistically lower test durations, lower duration of fixations, and a lower number of
fixations were found. (Figure 4 and Table 2).

Figure 4. Variations in test duration, complete fixation time, and fixation count depend on the
interactions of eye chart size and gaze direction (A), the gaze directions and PPL (B), and PPL and
eye chart (C) for far-distance VA tasks. * Shows significance at the 0.05 level.
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Table 2. Detailed statistics for Figure 4. Three-way repeated measures ANOVA test with pos-hoc
comparisons using Tukey HSD method. * Shows significance at the 0.05 level.

ANOVA Test for Eye Chart Size Tukey HSD Comparisons for Eye Chart Size (p-Value)

Df Mean Square F-Ratio p-Value AVmax/Avmax-1 AVmax/Avmax-2 AVmax-1/Avmax-2

Test duration 2 725.671 55.82 <0.001 * <0.001 * <0.001 * <0.001 *
Fixation time 2 606.413 61.16 <0.001 * <0.001 * <0.001 * <0.001 *

Fixation count 2 628.898 17.07 <0.001 * <0.001 * <0.001 * 0.1476

ANOVA test for gaze direction Tukey HSD comparisons for gaze direction (p-value)

Df Mean square F-ratio p-value Centered/dominant
Centered/Non

dominant
Dominant/Non

Test duration 2 31.62 6.09 0.040 * 0.066 0.079 0.996
Fixation time 2 16.24 3.45 0.039 * 0.172 0.2069 0.995

Fixation count 2 252.45 12.17 <0.001 * 0.003 * <0.001 * 0.782

ANOVA test for lens design Tukey HSD comparisons for lens design (p-value)

Df Mean square F-ratio p-value Balance/Distance Balance/Near Distance/Near

Test duration 2 96.87 13.82 <0.001 * 0.066 0.065 <0.001 *
Fixation time 2 74.62 14.86 <0.001 * 0.163 0.031 * <0.001 *

Fixation count 2 211.79 8.18 <0.001 * 0.047 * 0.331 <0.001 *

3.3. Near-Distance VA

The results for near vision were similar to those for distance vision. No statistically
significant differences for VA were found regarding PPL or gaze direction (Table 3).

Table 3. Detailed statistics for VA analysis at near vision. Two-way repeated measures ANOVA.

PPL-Balance
VA (Mean ± SD)

PPL-Distance
VA (Mean ± SD)

PPL-Near
VA (Mean ± SD)

SS MS Df F-Ratio p-Value

0.09 ± 0.09 0.09 ± 0.09 0.08 ± 0.09 0.008 0.004 2 1.140 0.146

Centered
VA (mean ± SD)

Dominant eye
VA (mean ± SD)

Non dominant eye
VA (mean ± SD)

SS MS Df F-ratio p-value

0.08 ± 0.09 0.08 ± 0.08 0.09 ± 0.09 0.004 0.002 2 1.150 0.330

However, eye-tracker data showed statistically significant differences for the three
factors analyzed: eye chart size, gaze direction, and progressive lens design. No statistically
significant interactions were found between factors. Smaller eye chart sizes resulted in
longer test duration, longer fixation time, and more fixations compared to larger ones.
Participants had more difficulty recognizing eye charts in off-axis gaze directions, resulting
in longer test duration, complete fixation time, and more fixations compared to the central
ones. Finally, regarding the PPL design, when participants used the PPL optimized for near
vision, the results showed a reduction in test duration, total fixation time, and number of
fixations compared to PPL-Balance and PPL-Near. (Figure 5 and Table 4).
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Figure 5. Variations in test duration, complete fixation time, and fixation count depending on the
interactions of eye chart size and gaze direction (A), the gaze directions and PPL (B), and PPL and
eye chart (C) for near-distance VA task. * Shows significance at the 0.05 level.

Table 4. Detailed statistics for Figure 5. Three-way repeated measures ANOVA test with pos-hoc
comparisons using Tukey HSD method. * Shows significance at the 0.05 level.

ANOVA Test for Eye Chart Size Tukey HSD Comparisons for Eye Chart Size (p-Value)

Df Mean Square F-Ratio p-Value AVmax/Avmax-1 AVmax/Avmax-2 AVmax-1/Avmax-2

Test duration 2 722.45 43.58 <0.001 * <0.001 * <0.001 * <0.001 *
Fixation time 2 644.19 47.40 <0.001 * <0.001 * <0.001 * <0.001 *

Fixation count 2 312.56 10.96 <0.001 * 0.040 * <0.001 * 0.176

ANOVA Test for Gaze Direction Tukey HSD comparisons for gaze direction (p-value)

Df Mean square F-ratio p-value Centered/dominant
Centered/Non

dominant
Dominant/Non

dominant

Test duration 2 78.87 9.19 <0.001 * 0.003 * 0.024 * 0.778
Fixation time 2 58.05 7.94 <0.001 * 0.009 * 0.021 * 0.949

Fixation count 2 171.51 6.41 <0.001 * 0.007 * 0.073 0.687

ANOVA test for lens design Tukey HSD comparisons for lens design (p-value)

Df Mean square F-ratio p-value Balance/Distance Balance/Near Distance/Near

Test duration 2 209.73 13.71 <0.001 * 0.037 * 0.003 * <0.001 *
Fixation time 2 150.08 10.37 <0.001 * 0.045 * 0.010 * <0.001 *

Fixation count 2 679.62 27.38 <0.001 * 0.019 * 0.001 * <0.001 *

194



Appl. Sci. 2023, 13, 5059

4. Discussion

In this paper, we present a way of assessing the quality of vision provided by PPLs
with different power distributions using an eye-tracking-based system during the VA
measurement. It is important to note that VA is subjective and depends on the participant’s
answer, whereas eye-tracking data is objective and provides quantitative data about eye
movements, adding more information about the quality of vision with PPLs compared
to the traditional VA evaluation method. The method proposed is based on the analysis
of test duration, fixation time, and the number of fixations required to recognize the
different optotypes of standard eye charts. The study showed that when evaluating the
far-distance VA of participants using a PPL design with a wider far-distance visual area,
the test duration, fixation time, and the number of fixations are reduced. Similarly, a PPL
design with a wider near area provided a lower test duration, a lower fixation time, and a
lower number of fixations during the evaluation of near-distance VA. It should be noted
that the values of standard VA obtained with different PPL designs were not different with
statistical significance.

Although VA is considered a gold standard for the evaluation of optical quality,
it seems insufficient alone to evaluate the quality of vision [17]. It is well known that
sometimes clinicians report patients with high VA complaining about poor vision quality.
Specifically, regarding the performance of PPLs, several studies have tried to evaluate dif-
ferences in VA between different PPL designs without success. Legras et al. [17] evaluated
differences in VA at eight different off-axis positions on 20 presbyopic participants with
two different PPL designs and did not find differences in VA between them. On the other
hand, Han et al. [12] measured VA in the far and near regions in 95 presbyopic patients
with a customized and a non-customized PPL design, and, once again, the results did not
show differences in VA between both PPLs.

Additionally, having a method that can determine differences in the visual perfor-
mance provided by different PPL designs could help lens designers develop better lenses.
Based on previous studies, we presume that the evaluation of eye movements during the
performance of a specific task could be a sensitive indicator of the quality of vision provided
by these lenses. In another study, Han et al. [27] evaluated differences between single-vision
lenses and PPLs on 11 presbyopes. The subjects were required to read aloud a copy of
printed text placed along their midline at 0.60 m. Eye movements were analyzed using
the ISCAN computer-based system. The results showed an increase in fixation numbers
when participants used PPLs compared to single-vision lenses. On the other hand, the
study from Concepcion-Grande et al. [28] recorded the eye movements of 38 presbyopes
using the Tobii X3-120 eye tracking system while participants were using two different
PPL designs. Participants were asked to read aloud a text displayed on a monitor screen at
centered and off-axis gaze directions located at 0.67 m. The results showed greater fixation
time and the number of fixations in off-axis gaze directions in comparison with the central
position. Finally, the study from Concepción-Grande et al. [30] recorded eye movements
using a Tobii Pro Glasses 3 device on 28 participants using different PPLs. Participants
were asked to read the text at far and near distances. The results showed that fixation
time and the number of fixations were affected by the PPL design. All of these studies
showed statistically significant differences in eye movements associated with the unwanted
refractive errors present in the lateral areas of the PPLs. However, all these methods are
based on reading tasks whose difficulty could vary from one experiment to another. To
eliminate this uncertainty, we have used, as a reading test, the standard eye charts that
are used to evaluate visual acuity under the same standardized conditions in which VA
is clinically measured. So, in this paper, we propose a simple way to enhance the gold
standard evaluation of VA by incorporating new metrics based on the characteristics of eye
movements. To our knowledge, this is the first time an eye-tracking system is used while
measuring VA and while using different PPL designs, and this method has proven to be
sensitive enough to identify differences between designs and gaze direction.
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In this study, we also incorporated the analysis of two well-known factors that affect
visual performance. Firstly, it is obvious that recognition difficulty depends on the eye
chart size. In this sense, when the letter became smaller, the task difficulty increased. As
expected, results confirmed that with a smaller optotype size, there was a statistically
significant longer test duration, longer fixation time, and higher fixation count than eye
charts with a larger optotype size. Secondly, it is well known that unwanted refractive
results showed statistically significant longer test duration, longer complete fixation time,
and a greater number of fixations for off-axis gaze directions in comparison with the central
gaze direction.

Future studies could improve the experimental setup by incorporating changes that
enable the evaluation of eye movements in a more natural setting. Currently, the assessment
of far-distance VA involves using a 21.5-inch screen positioned 5.25 m away from the
subject’s eyes, resulting in a narrow horizontal field of view of 4.2◦. To assess a wider field
of view, the subject must be rotated in three different gaze directions while using a chin
rest to prevent head motion, which adds complexity to the experiment. Instead, a larger
screen with a head tracking system would be a better alternative to the current rotation
platform with a chin rest, as it would provide a wider field of view and eliminate the need
for rotation. As explained in the flowchart for participant enrollment, 30% of participants
were discarded because their recordings did not meet the quality criteria. It would be
interesting to study the reasons for the data loss and account for them in future work and
also to redefine a quality criterion that could be implemented in the optical practice without
compromising the results.

5. Conclusions

In conclusion, the proposed eye-tracking method for assessing the quality of vision
during a VA test can assess differences in test duration and eye fixation characteristics
between PPL with different power distributions and is a more sensitive indicator of the
quality of vision provided by the lenses than the standard VA evaluation. Although this
method has been tested for the evaluation of the quality of vision provided by PPLs, it
could be used in any other field in which the sheer capacity of letter recognition does not
provide enough information about visual performance. Additionally, some examples could
be the study of some visual conditions (i.e., cataracts) or specific visual tasks (i.e., night
driving) in which the visual quality is reduced but the visual acuity does not decrease.

6. Patents

The results described in this manuscript have been the subject of a patent issued to
José Miguel Cleva, Eva Chamorro, Pablo Concepcion-Grande, and José Alonso. The patent
covers merit functions for lens optimization in which eye-tracker parameters describing
visual performance are used, which is related to the research presented in this manuscript.
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Abstract: Three-dimensional TVs have been commercialized in recent few years; however, poor visual
and motor performances may have an impact on consumer acceptance of 3D TVs. The purpose of this
study was to investigate the effects of 3D TVs on eye movement and motor performance. Specifically,
the effect of stereoscopic display parallax of 3D TVs and movement task index of difficulty (ID) on
eye movement was investigated. In addition, the effect of stereoscopic display parallax of 3D TVs
and movement task ID on motor performance was also investigated. Twelve participants voluntarily
participated in a multi-directional tapping task under two different viewing environments (2D TV
and 3D TV), three different levels of stereoscopic depth (140, 190, 210 cm), and six different Index of
Difficulty levels (2.8, 3.3, 3.7, 4.2, 5.1, 6.1 bit). The study revealed that environment had significant
effects on eye movement time, index of eye performance, eye fixation accuracy, number of fixations,
time to first fixation, saccadic duration, revisited fixation duration, hand movement time, index of
hand performance, and error rate. Interestingly, there were no significant effects of stereoscopic
depth on eye movement and motor performance; however, the best performance was found when
the 3D object was placed at 210 cm. The main novelty and contributions of this study is the in-depth
investigations of the effect of 3D TVs on eye movement and motor performance. The findings of this
study could lead to a better understanding of the visual and motor performance for 3D TVs.

Keywords: 3D TV; stereoscopic displays; virtual reality; depth

1. Introduction

Three-dimensional TVs have been commercialized in recent years. The objective of this
commercialization is to replicate the experience achievable in 3D cinematic presentations
in a more intimate home setting [1]. 3D TVs are affordable, aesthetically pleasing, and
can provide users with a sense of presence [2]; therefore, the commercialization has been
accompanied by the increasing availability of 3D TVs broadcast channels or even 3D home
cinema [3]. Engineers and academicians are continually engaged in the assessment of 3D
TV, aiming to maximize the image quality while also minimizing the side effects [4–6]. To
fully optimize 3D TVs, it is necessary to gain a better understanding of the impact of 3D
TVs on the Human Visual System (HVS) [3].

Three-dimensional TVs generate 3D images by creating depth. Depth, also widely
known as parallax in 3D stereoscopic display [7,8], was defined as the binocular disparity in
the human visual system that gives a 3D stereoscopic effect of depth with each eye receiving
a similar image, but not identical, to that of a real spatial vision by horizontal disparity [9].
The user can experience the depth of 3D TVs by wearing 3D glasses [10]. Ideally, 3D TVs
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should be able to detect 3D glasses positions and change the depth immediately so the
users can perceive the image comfortably [3].

One common device to evaluate the depth perception in the stereoscopic display is an
eye tracker [2,7]. It has been extensively used to collect and analyze HVS in the stereoscopic
display [11]. Eye trackers are able to capture the eye movement, which provides evidence
of visual attention as a fundamental system in visual perception [12]. Eye trackers have
been widely used in many research disciplines, such as measuring cognitive load during
the driving task [13], assembly task [14], software screen complexity [15], and even military
camouflage [16]. In the context of 3D interface design, an eye tracker has the potential to
improve many existing 3D interaction techniques [2].

Despite the numerous papers related to 3D TVs in recent years, very limited re-
search has investigated the effect of 3D TV environments on eye movement and motor
performance. Most studies which utilized 3D TVs mostly only investigated the subjective
assessment of visual discomfort. Read et al. [17] investigated the changes in vision, balance,
and coordination associated with normal home 3D TVs viewing in the 2 months after first
acquiring a 3D TV. Read [18] also investigated the subjective experience in-home 3D TVs
over 8 weeks by using symptoms questionnaire, while Lambooij et al. [19] investigated
the three different assessments for visual discomfort: (1) single assessment score for each
stimulus sequence, (2) continuous assessment, and (3) retrospective assessment for the
entire test. Similarly, Lee et al. [20] investigated the effect of stimulus width on visual dis-
comfort by measuring visual discomfort and binocular fusion time, while Chang et al. [21]
and Chang et al. [22] only examined the physical properties of 3D glasses. Furthermore, a
more recent study by Zang et al. [23] compared the difference in visual comfort between
3D TVs and VR glasses. Finally, Urvoy et al. [24] proposed a comprehensive review of
visual fatigue and discomfort based on physiological and psychological processes enabling
depth perception.

Some of the most recent studies related to 3D TVs generally incorporated physiological
responses of the human while watching the stimuli on a 3D TV. For instance, Chen et al. [25]
investigated the effect of 3D TVs on human brain activity. In addition, Manshouri et al. [26]
and Chen et al. [27] utilized EEG to investigate the effect of 3D TVs on brain waves.
However, the effects of the 3D TVs on eye movements and motor performance are still
clearly underexplored. Generally, poor visual and motor performances may have an impact
to consumer acceptance of 3D TV. A further in-depth investigation of eye movement and
motor performance are needed to enhance the performance in 3D TV.

Our previous studies investigated the effect of parallax on eye movement param-
eters in the projection-based stereoscopic display [8,28–30]. Eye movement parameters
which consisted of eye movement time, fixation duration, time to first fixation, number
of fixations, and eye gaze accuracy were evaluated under three different levels of depth.
The results revealed that depth had significant effects on all eye movement parameters in
projection-based stereoscopic displays [28,29]. The participants were found to have longer
eye movement time, longer fixation duration, longer time to first fixation, larger number of
fixations, and less eye gaze accuracy when the target was projected at 50 cm in front of the
screen compared to projected at 20 cm in front of the screen or projected at the screen [28].

The purpose of this study was mainly intended to investigate the effects of 3D TV
environments on eye movement and motor performance. Using a similar approach to
our previous studies [8,28,29,31–33], we utilized an eye tracker to explore a comprehen-
sive analysis regarding the effect of 3D TVs on selected eye movement parameters and
motor performance. We also discussed the effect of depth and index of difficulty, since
both variables could influence eye movement and motor performance in a stereoscopic
environment [34]. This study is one of the first studies that investigated the effect of 3D
TVs on eye movement and motor performance simultaneously. The findings of this study
could lead to better understanding of the visual and motor performance for 3D TVs.
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2. Materials and Methods

2.1. Participants

Twelve healthy graduate students (6 male and 6 female) from National Taiwan Uni-
versity of Science and Technology were voluntary participated in the current study (Mean:
25 years; standard deviation: 3 years). All participants reported normal or corrected to
normal visual acuity (1.0 in decimal unit). Prior to the study, the participants were required
to fill out a consent form and screened for the capability to see the 3D object clearly on
a 3D TV.

2.2. Apparatus and Stimuli

A Tobii X2-60 eye tracker (Tobii, Stockholm, Sweden) was utilized to collect the eye
movement data. The accuracy was 0.4 degrees of visual angle and the sampling rate was
60 Hz [22]. The screen recording media element from Tobii Studio cannot be applied
in this experiment because we created the parallax setting of the 3D object from a 3D
Vision IR Emitter NVIDIA. Therefore, a Logitech webcam C-920 (Logitech International
S.A., Lausanne, Switzerland) was utilized to record the eye movement and eye fixation
point on the screen display. This webcam was integrated with a Tobii eye tracker. All
equipment was fixed using adhesive tape and marked. As recommended by Salvucci
and Goldberg [35] and Goldberg [15], the raw fixation data were filtered using Velocity
Threshold Identification (I-VT) and the velocity threshold was set to 30 o/s. Tobii Studio eye
tracking version 3.3.2 was used for the analysis of raw fixation data. The entire experiment
was conducted in a dark room (3.6 m × 3.2 m × 2.5 m) covered by dark curtains and walls
to create an excellent stereoscopic environment.

During the experiment on a 3D stereoscopic display, participants sat at a distance of
60 cm in front of the Tobii Eye Tracker (Figure 1). In addition, a Sony 3D TV Bravia was
placed at 210 cm distance from the participant’s eyes. All participants were instructed to
wear active 3D glasses to perceive the 3D environment by utilizing a pair of Sony TDG-
BT500A (Sony Group Corporation, Tokyo, Japan). These Sony 3D glasses were integrated
with a 3D TVs Sony Bravia (ViewSonic PJD6251 DLP) (Sony Group Corporation, Tokyo,
Japan) and a 3D Vision IR Emitter NVIDIA which adapted the 3D TV system with depth
image-based rendering [36].

 
Figure 1. An illustration of the current study.

2.3. Independent Variables

Similar to [18], the environment was designed with two different levels: a 2D and 3D
environment (Figure 2). In the 2D environment, the participant performed the tapping
task on the screen display. In the 3D environment, participant performed the multi-
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directional tapping task; 3D TVs were integrated with NVIDIA to create a stereoscopic
viewing environment.

Figure 2. The illustration of two different environments. (A) Participant performed tapping task in a
2D environment. (B) Participant utilized 3D glasses to perform the multi-directional tapping task in a
3D environment. 3D TVs were integrated with NVIDIA to create a stereoscopic viewing environment.

The depth was varied into three levels: 210 cm, 190 cm, and 140 cm (Figure 3). The
term “depth” was preferred over “parallax” in this study because we compared the effect of
a 2D and 3D environment. In the 2D environment, we did not create a binocular disparity
that creates a 3D effect. Thus, the participant asked to move closer to the screen in order to
create an equal target distance as the experiment in the 3D environment (Figure 4).

The index of difficulty (ID) was defined as the task difficulty and precision level
measured by object width and movement distance [37]. The unit of index of difficulty
consisted of bits that equated to a quantity of information transmitted to measure the
difficulty of the pointing tasks. This was explained that the pointing reduced due to higher
information processing task. Following our previous publications [8,28,29] and ISO 9241-9,
which classified precision task to measure the accuracy into three levels, i.e., low, medium,
and high, ID and task precision level are presented in Table 1. There were two levels of
environment, three levels of depth, and six levels of ID in the current study. Thus, we adopt
a within-subject design with 36 combinations.

Figure 3. An illustration of the horizontal separation of two images on a 3D TV with three different
levels of depth [5].
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Figure 4. Participant performed the experiment in a 2D environment with distances of (A) 210 cm,
(B) 190 cm, and (C) 140 cm.

Table 1. ID and task precision level [8].

Distance (Unity Unit) Width (Unity Unit) ID (Bits) Task Precision Level

40 3.3 3.7 Low
40 2.3 4.2 Medium
40 0.6 6.1 High
20 3.3 2.8 Low
20 2.3 3.3 Low
20 0.6 5.1 Medium

2.4. Dependent Variables

Following two of our previous publications [8,28], there were two categories of de-
pendent variables in the current study: eye movement and motor performance. The first
category, eye movement, consists of eye movement time, index of performance eye, number
of fixations, time to first fixation, saccade duration, revisited fixation duration, and eye
gaze accuracy. The second category, motor performance, consists of hand movement time,
index of performance hand, and error rate. The definition of each independent variables is
presented in Table 2.

Table 2. Dependent variables and each definition.

Category Variable Definition Supported by

E
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m

e
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t

Eye movement time (EMT) The elapsed time from the fixation point of the eye on the
starting ball to the fixation point on the destination ball. Lin & Widyaningrum [8]

Index of eye performance
(IP eye)

ID/EMT. IP eye shows the global index of eye
performance, which considers speed and accuracy. MacKenzie [38]

Number of fixations A total number of fixations counted starting from the
origin virtual to destination virtual ball. Lin et al. [29]

Time to first fixation An elapsed time from the slide presentation until the
first fixation on the virtual target. Goldberg [15]

Saccade duration A sum of saccadic time spent within an AOI. Lin & Widyaningrum [8]
Revisited fixation duration A sum of revisited fixation durations within an AOI. Lin & Widyaningrum [8]

Eye gaze accuracy

The distance between the recorded fixation locations
and the actual location of the projection of the image as
a performance evaluation. The x-axis was measured
from left to right and the y-axis was measured from
bottom to the top.

Lin & Widyaningrum [28]
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Table 2. Cont.

Category Variable Definition Supported by

M
o

to
r

P
e

rf
o

rm
a

n
ce

Hand movement time
(HMT) Time taken from the starting ball to the destination ball. Lin & Widyaningrum [8]

Index of hand performance
(IP hand)

ID/HMT. IP hand shows the global index of hand
performance, which considers speed and accuracy. MacKenzie [38]

Error rate
A click outside the target ball. Since the total number of
clicks was 12, the error rate was calculated as: Error
rate = (N − 12)/12.

Lin et al. [34]; Lin &
Widyaningrum [8]

2.5. Experimental Procedure

The current study was conducted according to the ethical guidelines published by Na-
tional Taiwan University Research Ethics Committee. Prior to the experiment, participants
were required to perform a visual acuity test and stereo vision check. The visual acuity of
each participant was measured by utilizing a Snellen test [39]. In addition, each participant
was also required to pass a stereo vision check to ensure that they were capable of perceiv-
ing the 3D target. Finally, they were required to fill out a consent form which consisted of
confidential data of the participants and the detailed descriptions of experimental tasks.

During the experiment on 3D display, participants were asked to wear the Sony 3D
glasses and sit on an adjustable chair. In addition, all participants were also to keep their
head on a chin rest. At the beginning of the experiment, a calibration was performed for
each participant to ensure that Tobii eye tracker detected the participant’s eye movement.
Regular calibration setting with five red dots from Tobii eye tracker was used as a default
to capture participants’ eye gaze binocularly. They were instructed to look at the five red
calibration dots as accurately as possible until each red dot disappeared. The qualifying
participants were included in the experiment.

A multidirectional tapping task was selected as a task in this study, as suggested by
ISO 9241-9. Similar to our previous studies [28–30], participants were instructed to perform
a tapping task by clicking 12 virtual balls in concentric circles with a mouse as fast and
accurate as possible (Figure 5). The virtual red ball was programmed on the Unity 3D
platform version 4.3.4 and projected as a 3D object.

 
Figure 5. The pointing sequence of virtual red balls during multidirectional tapping task (shown as
ball 1) [8].

Note that the ISO 9241-9 tapping task is performed on a 2D plane. Although visually
the targets are displayed in 3D, the movement is on a plane. This situation is common
for interactions in a 3D visual environment, where 3D input devices are not necessarily
available or only planar movements are involved, such as pointing between menu items [2].
In this study, we used a desk mouse to tap between the targets, and therefore, the hand
movement was limited to 2D motion. The cursor of the mouse is displayed in 3D but only
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moves on the vertical display plane, because the actual mouse moves on the horizontal
desk plane. The mapping is a very common practice with the usual desktop computer
setup. No additional learning is necessary. The effect under investigation, if any, would
only come from the 3D visual display of the targets and the cursor, and would not be
confounded with the effect of 3D movement of the cursor, which would be a much more
complex interaction situation and is not within the scope of this study.

At the beginning, the 3D cursor was set at the center cube. To start the experiment,
each participant was asked to click the center cube. One virtual red ball would appear at a
time and participant was instructed to hit the virtual red ball by utilizing 3D cursor. After
the red ball was hit, the color would turn white and the next virtual red ball would appear
in red. Figure 5 shows the sequence of the virtual red ball. The changing color of the ball
guided the participant to look at the balls in concentric circles until all 12 balls were clicked.
Each participant completed all six levels of ID in one of thhree depth conditions (140 cm,
190 cm, and 210 cm) under two different environments (2D TV and 3D TV).

2.6. Data Processing and Analysis

Hand movement time (HMT) was recorded based on the 3D cursor clicks in the
tapping task. On the other hand, eye movement data needed to be analyzed by using
our previous algorithm [8]. The index of eye performance (IP eye) and index of hand
performance (IP hand) was calculated by dividing the ID by the movement time [38].
Therefore, while analyzing the effects of environment, depth, and ID on IP eye and IP
hand, the ID was removed from the RM-ANOVA table, since there was a direct correlation
between ID and IP.

The repeated measures analysis of variance (RM-ANOVA) was employed with α = 0.05
to test the significance of each independent variables and its interactions to each dependent
variable. In addition, the significance criteria were adjusted according to the sequential
Bonferroni (Bonferroni–Holm) correction algorithm for multiple comparisons. We also
conducted a post-hoc Tukey HSD test to analyze the differences occurred between pairs of
group means in the RM-ANOVA analysis.

3. Results

3.1. Eye Movement
3.1.1. Eye Movement Time

Table 3 presents the means, SDs, ANOVA, and Tukey HSD test results of the eye
movement time. The environment was found to have a significant effect on eye movement
time (F1,11 = 5.732, p-value = 0.036). The Tukey HSD test showed a significant difference
between hand movement time in screen displays and stereoscopic displays. Eye movement
time increased when participants performed the tapping task in stereoscopic displays.
There were no significant interactions between depth and eye movement time (F2,22 = 1.372,
p-value = 0.385), even though the eye movement time increased when the object was
close to participants’ eyes. The main effect for the index of difficulty (F5,55 = 65.138,
p-value = 0.001) was significant on eye movement time. The result of the repeated measures
ANOVA reported that there was no significant difference in the interactions between the
environment and depth (F2,22 = 0.161, p-value = 0.852), the environment and index of
difficulty (F5,55 = 2.219, p-value = 0.065), parallax and ID (F10,110 = 1.722, p-value = 0.085),
and the environment, depth, and ID (F10,110 = 0.599, p-value = 0.811).

3.1.2. Index of Eye Performance

The result of the repeated measures ANOVA in Table 4 reported that there were signif-
icant interactions between the index of eye performance and the environment (F1,11 = 5.249,
p-value = 0.043). Moreover, the Tukey HSD showed a significant difference between screen
and stereoscopic displays. However, there was no significant difference between depth
and the index of eye performance (F2,22 = 1.317, p-value 0.288). The interaction between the
environment and depth (F2,22 = 1.364, p-value = 0.277), interaction between depth and ID
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(F10,110 = 1.520, p-value = 0.142), and the interaction between the environment, depth, and
ID (F10,110 = 0.789, p-value = 0.640) were not significantly different from the index of eye
performance. However, the interaction between the environment and index of difficulty
was significantly different (F5,55 = 2.497, p = 0.041).

Table 3. Means, SDs, ANOVA, and Tukey HSD test results of eye movement time.

Eye Movement Time

Level Mean (s) Group a SD Fn,m p-Value

Environment
2D Screen Displays 0.474 A 0.185 F1,11 = 5.732 p = 0.036

3D Stereoscopic Displays 0.635 B 0.334

Depth
210 cm 0.525 A 0.260

F2,22 = 1.372 p = 0.385190 cm 0.566 A 0.312
140 cm 0.571 A 0.269

ID

2.8 bits 0.435 A 0.158

F5,55 = 65.138 p = 0.001

3.3 bits 0.479 B 0.262
3.7 bits 0.594 C 0.247
4.2 bits 0.580 C 0.225
5.1 bits 0.540 B, C 0.305
6.1 bits 0.699 D 0.374

Environment * Depth F2,22 = 0.161 p = 0.852

Environment * ID F5,55 = 2.219 p = 0.065

Depth * ID F10,110 = 1.722 p = 0.085

Environment * Depth * ID F10,110 = 0.599 p = 0.811

Table 4. Means, SDs, ANOVA, and Tukey HSD test results of eye performance.

Index of Eye Performance

Level Mean (bits/s) Group a SD Fn,m p-Value

Environment
2D Screen Display 10.712 A 6.999 F1,11 = 5.249 p = 0.043

3D Stereoscopic Display 8.360 B 4.824

Depth
210 cm 10.078 A 6.836

F2,22 = 1.317 p = 0.288190 cm 9.665 A 6.361
140 cm 8.728 A 5.153

Environment * Depth F2,22 = 1.364 p = 0.277

3.1.3. Number of Fixations

The main effect of the index of difficulty (F5,55 = 15.022, p-value = 0.000) was significant
for the number of fixations (Table 5). Post-hoc analysis with a Tukey HSD test revealed
that there was a significant different when index of difficulty varied from low to high.
The Tukey HSD test divided the index of difficulty levels into three groups as shown
in Table 5. Similarly, the interaction of the environment and the index of difficulty was
significantly different for number of fixations (F5,55 = 3.171, p-value = 0.014). We did
not find a significant difference in number of fixations for the environment (F1,11 = 1.726,
p-value = 0.216), depth (F2,22 = 0.064, p-value = 0.938), interaction of the environment
and depth (F2,22 = 1.055, p-value = 0.365), interaction of depth and the index of difficulty
(F10,110 = 0.973, p-value = 0.471), and interaction of the environment, depth, and the index
of difficulty (F10,110 = 0.660, p-value = 0.759).
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Table 5. Means, SDs, ANOVA, and Tukey HSD test results of number of fixations.

Number of Fixations

Level Mean Group a SD Fn,m p-Value

Environment
2D Screen Displays 2.686 A 0.481 F1,11 = 1.726 p = 0.216

3D Stereoscopic Displays 2.899 A 0.822

Depth
210 cm 2.813 A 0.791

F2,22 = 0.064 p = 0.938190 cm 2.777 A 0.657
140 cm 2.745 A 0.583

ID

2.8 bits 2.580 A 0.430

F5,55 = 15.022 p = 0.000

3.3 bits 2.543 A 0.587
3.7 bits 2.883 B 0.449
4.2 bits 2.875 B 0.518
5.1 bits 2.627 A, B 0.871
6.1 bits 3.249 C 0.831

Environment * Depth F2,22 = 1.055 p = 0.365

Environment * ID F5,55 = 3.171 p = 0.014

Depth * ID F10,110 = 0.973 p = 0.471

Environment * Depth * ID F10,110 = 0.660 p = 0.759

3.1.4. Time to First Fixation

Overall, the environment influenced time to first fixation (F1,11 = 4.965, p-value = 0.048).
A longer time to first fixation occurred when a virtual target appeared on 3D TV dis-
plays (Table 6). Furthermore, the Tukey HSD test showed that time to first fixation on
2D TV screen displays differed from time to first fixation on a 3D TV. However, there
was no significant difference between time to first fixation and depth (F2,22 = 0.398,
p-value = 0.677), index of difficulty (F5,55 = 0.408, p-value = 0.841), interaction of envi-
ronment and depth (F2,22 = 0.392, p-value = 0.681), interaction of environment and index
of difficulty (F5,55 = 0.853, p-value = 0.518), interaction of depth and index of difficulty
(F10,110 = 1.365, p-value = 0.206), and interaction of environment, depth, and index of diffi-
culty (F10,110 = 0.906, p-value = 0.531).

Table 6. Means, SDs, ANOVA, and Tukey HSD test results of time to first fixation.

Time to First Fixation

Level Mean (s) Group a SD Fn,m p-Value

Environment
2D Screen Displays 0.076 A 0.060 F1,11 = 4.965 p = 0.048

3D Stereoscopic Displays 0.105 B 0.083

Depth
210 cm 0.085 A 0.068

F2,22 = 0.398 p = 0.677190 cm 0.093 A 0.070
140 cm 0.096 A 0.083

ID

2.8 bits 0.094 A 0.090

F5,55 = 0.408 p = 0.841

3.3 bits 0.083 A 0.053
3.7 bits 0.090 A 0.063
4.2 bits 0.097 A 0.086
5.1 bits 0.088 A 0.077
6.1 bits 0.091 A 0.070

Environment * Depth F2,22 = 0.392 p = 0.681

Environment * ID F5,55 = 0.853 p = 0.518

Depth * ID F10,110 = 1.365 p = 0.206

Environment * Depth * ID F10,110 = 0.906 p = 0.531
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3.1.5. Saccadic Duration

The results of repeated measures ANOVA in Table 7 revealed that there were signifi-
cant difference on the environment (F1,11 = 8.481, p-value = 0.014), the index of difficulty
(F5,55 = 18.512, p-value = 0.000), interaction of the environment and depth (F2,22 = 9.915, p-
value = 0.001), interaction of depth and the index of difficulty (F10,110 = 4.875, p-value = 0.000),
and interaction of the environment, depth, and index of difficulty (F10,110 = 2.047, p-
value = 0.035). However, the analysis revealed there was no significant main effect for
depth (F2,22 = 1.271, p-value = 0.300) as well as for the index of difficulty (F5,55 = 0.890,
p-value = 0.494).

Table 7. Means, SDs, ANOVA, and Tukey HSD test results of saccadic duration.

Saccadic Duration

Level Mean (s) Group a SD Fn,m p-Value

Environment
2D Screen Displays 0.535 A 0.182 F1,11 = 8.481 p = 0.014

3D Stereoscopic Displays 0.652 B 0.304

Depth
210 cm 0.617 A 0.282

F2,22 = 1.271 p = 0.300190 cm 0.581 A 0.256
140 cm 0.546 A 0.231

ID

2.8 bits 0.436 A 0.173

F5,55 = 18.512 p = 0.000

3.3 bits 0.484 A 0.182
3.7 bits 0.665 B 0.220
4.2 bits 0.638 B 0.193
5.1 bits 0.613 B 0.286
6.1 bits 0.724 B 0.332

Environment * Depth F2,22 = 9.915 p = 0.001

Environment * ID F5,55 = 0.890 p = 0.494

Depth * ID F10,110 = 4.875 p = 0.000

Environment * Depth * ID F10,110 = 2.047 p = 0.035

3.1.6. Revisited Fixation Duration

Repeated measures ANOVA in Table 8 results revealed that there was a signifi-
cant main effect of the environment (F1,11 = 6.122, p-value = 0.031), the index of dif-
ficulty (F5,55 = 47.224, p-value = 0.000), and the interaction of environment and depth
(F2,22 = 12.463, p-value = 0.000) on revisited fixation duration. We have not found a signifi-
cant difference between revisited fixation duration with depth (F2,22 = 0.604, p-value = 0.556),
interaction of the environment and the index of difficulty (F5,55 = 1.955, p-value = 0.100),
interaction of depth and index of difficulty (F10,110 = 1.035, p-value = 0.419), and interaction
of the environment, depth, and the index of difficulty (F10,110 = 1.841, p-value = 0.062).

3.1.7. Eye Fixation Accuracy

The repeated measures ANOVA results in Table 9 shows that there was a significant
difference between eye fixation accuracy in screen displays and stereoscopic displays
(F1,11 = 8.559, p-value = 0.014). Moreover, the Tukey HSD showed a significant difference
between screen and stereoscopic displays. Similarly, it shows that there was a significant
accuracy difference for six levels index of difficulty (F1,11 = 13.799, p-value = 0.000). The
Tukey HSD results divided six levels of index of difficulty into three groups (see Table 9).
However, there were no significant accuracy differences between depth (F2,22 = 2.131, p-
value = 0.143), the environment and depth (F2,22 = 4.785, p-value = 0.677), the environment
and the index of difficulty (F5,55 = 23.500, p-value = 0.620), depth and the index of difficulty
(F10,110 = 8.759, p-value = 0.928), and interactions of the environment, depth, and index of
difficulty (F10,110 = 28.604, p-value = 0.354).
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Table 8. Means, SDs, ANOVA, and Tukey HSD test results of revisited fixation duration.

Revisited Fixation Duration

Level Mean (s) Group a SD Fn,m p-Value

Environment
2D Screen Displays 0.974 A 0.274 F1,11 = 6.122 p = 0.031

3D Stereoscopic Displays 1.114 B 0.401

Depth
210 cm 1.027 A 0.358

F2,22 = 0.604 p = 0.556190 cm 1.042 A 0.341
140 cm 1.101 A 0.353

ID

2.8 bits 0.762 A 0.216

F5,55 = 47.224 p = 0.000

3.3 bits 0.947 B 0.234
3.7 bits 0.960 B 0.270
4.2 bits 0.967 B 0.265
5.1 bits 1.324 C 0.318
6.1 bits 1.303 C 0.388

Environment * Depth F2,22 = 12.463 p = 0.000

Environment * ID F5,55 = 1.955 p = 0.100

Depth * ID F10,110 = 1.035 p = 0.419

Environment * Depth * ID F10,110 = 1.841 p = 0.062

Table 9. Means, SDs, ANOVA, and Tukey HSD test results of eye fixation accuracy.

Accuracy

Level Mean (%) Group a SD Fn,m p-Value

Environment
2D Screen Displays 94.443 A 4.432 F1,11 = 8.559 p = 0.014

3D Stereoscopic Displays 92.220 B 6.820

Depth
210 cm 92.452 A 6.331

F2,22 = 2.131 p = 0.143190 cm 94.160 A 5.020
140 cm 93.383 A 6.036

ID

2.8 bits 92.489 A 5.320

F5,55 = 13.799 p = 0.000

3.3 bits 91.904 A 4.938
3.7 bits 96.071 B 5.772
4.2 bits 96.280 B 3.377
5.1 bits 90.098 A, C 5.248
6.1 bits 93.148 A 7.283

Environment * Depth F2,22 = 4.785 p = 0.677

Environment * ID F5,55 = 23.500 p = 0.620

Depth * ID F10,110 = 8.759 p = 0.928

Environment * Depth * ID F10,110 = 28.604 p = 0.354

3.2. Motor Performance
3.2.1. Hand Movement Time

Table 10 presents the means, SDs, ANOVA, and Tukey HSD test of hand move-
ment time. The mean average of hand movement time increased in stereoscopic displays.
The ANOVA shows there is significant difference in the environment (F1,11 = 15.879, p-
value = 0.002). The Tukey HSD test revealed a significant difference occurred between hand
movement time in screen displays and stereoscopic displays. A longer hand movement
time occurred with the object in stereoscopic displays. The mean of hand movement
time increased with depth. When the object was close to participants’ eyes, it resulted
in a longer hand movement time. However, ANOVA results show that there is no sig-
nificant difference for different depth level (F2,22 = 0.996, p-value = 0.385). The index of
difficulty affected hand movement time (F5,55 = 144.887, p-value = 0.000). The result of the
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Tukey HSD test reported a significant difference in index of difficulty (see Table 10). The
ANOVA results revealed that a significant difference occurred between the interaction of
the environment and depth (F2,22 = 13.115, p-value = p = 0.000), interaction of environment
and ID (F5,55 = 3.177, p-value = 0.014), the interaction of the depth and index of difficulty
(F10,110 = 2.684, p-value = 0.003), and the interaction of the environment, depth, and ID
(F10,110 = 2.157, p-value = p = 0.026).

Table 10. Means, SDs, ANOVA, and Tukey HSD test results of hand movement time.

Hand Movement Time

Level Mean (s) Group a SD Fn,m p-Value

Environment
2D Screen Displays 1.539 A 0.371 F1,11 = 15.879 p = 0.002

3D Stereoscopic Displays 1.689 B 0.451

Depth
210 cm 1.594 A 0.388

F2,22 = 0.996 p = 0.385190 cm 1.617 A 0.399
140 cm 1.673 A 0.467

ID

2.8 bits 1.160 A 0.247

F5,55 = 144.887 p = 0.000

3.3 bits 1.403 B 0.266
3.7 bits 1.602 C 0.241
4.2 bits 1.572 C 0.281
5.1 bits 1.881 D 0.344
6.1 bits 2.068 E 0.377

Environment * Depth F2,22 = 13.115 p = 0.000

Environment * ID F5,55 = 3.177 p = 0.014

Depth * ID F10,110 = 2.684 p = 0.003

Environment * Depth * ID F10,110 = 2.157 p = 0.026

3.2.2. Index of Hand Performance

There was a significant main effect of environment and index of hand performance
(F1,11 = 22.317, p-value = 0.001) (Table 11). The Tukey HSD test reported significantly higher
index of hand performance for screen displays. There was no significant effect of depth on
the index of hand performance (F2,22 = 1.53, p-value = 0.238). The Tukey HSD test showed
a significant difference between each level of index of difficulty.

Table 11. Means, SDs, ANOVA, and Tukey HSD test results of index of motor performance.

Index of Hand Performance

Level Mean (bits/s) Group a SD Fn,m p-Value

Environment
2D Screen Display 2.772 A 1.278 F1,11 = 22.317 p = 0.001

3D Stereoscopic Display 2.539 B 0.520

Depth
210 cm 2.700 A 0.680

F2,22 = 1.532 p = 0.238190 cm 2.625 A 0.434
140 cm 2.695 A 0.528

Environment * Depth F2,22 = 13.207 p = 0.000

3.2.3. Error Rate

The repeated measures ANOVA results in Table 12 revealed a significant main effect
of index of difficulty (F5,55 = 9.920, p-value = 0.000) and interaction between the envi-
ronment and depth (F2,22 = 6.428, p-value = 0.006). However, there were no significant
interactions between the environment (F1,11 = 0.084, p-value = 0.777), depth (F2,22 = 0.296,
p-value = 0.747), the environment and index of difficulty (F5,55 = 1.245, p-value = 0.301),
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depth and index of difficulty (F10,110 = 1.683, p-value = 0.094), and the environment, depth,
and index of difficulty (F10,110 = 0.456, p-value = 0.915).

Table 12. Means, SDs, ANOVA, and Tukey HSD test results of index of error rate.

Error Rate

Level Mean Group a SD Fn,m p-Value

Environment
2D Screen Displays 0.068 A 0.097 F1,11 = 0.084 p = 0.777

3D Stereoscopic Displays 0.070 A 0.099

Depth
210 cm 0.065 A 0.086

F2,22 = 0.296 p = 0.747190 cm 0.067 A 0.097
140 cm 0.073 A 0.111

ID

2.8 bits 0.029 A 0.053

F5,55 = 9.920 p = 0.000

3.3 bits 0.050 A 0.068
3.7 bits 0.046 A 0.075
4.2 bits 0.053 A 0.074
5.1 bits 0.137 B 0.142
6.1 bits 0.097 C 0.107

Environment * Depth F2,22 = 6.428 p = 0.006

Environment * ID F5,55 = 1.245 p = 0.301

Depth * ID F10,110 = 1.683 p = 0.094

Environment * Depth * ID F10,110 = 0.456 p = 0.915

Finally, Table 13 shows the experimental results summary in this study. This table
represents all main effects of environment, depth, and index of difficulty on eye movement
measures. In addition, Table 13 also shows the main effects of environment, depth, and
index of difficulty on motor performance.

Table 13. Summary of the findings.

No Dependent Variable Environment Depth Index of Difficulty

1 Eye Movement Time (second) p = 0.036, F1,11 = 5.732 p = 0.385, F2,22 = 1.372 p = 0.274, F5,55 = 12.760
2 Index of Eye Performance (bits/second) p = 0.043, F1,11 = 5.249 p = 0.288, F2,22 = 1.317 p = 0.000, F5,55 = 11.353
3 Number of Fixations p = 0.216, F1,11 = 1.726 p = 0.938, F2,22 = 0.064 p = 0.000, F5,55 = 15.022
4 Time to first Fixation (second) p = 0.048, F1,11 = 4.965 p = 0.677, F2,22 = 0.398 p = 0.841, F5,55 = 0.408
5 Saccadic Duration (second) p = 0.014, F1,11 = 8.481 p = 0.300, F2,22 = 1.271 p = 0.000, F5,55 = 18.512
6 Revisited Fixation Duration (second) p = 0.031, F1,11 = 6.122 p = 0.604, F2,22 = 0.556 p = 0.000, F5,55 = 47.224
7 Eye Fixation Accuracy p = 0.014, F1,11 = 8.559 p = 0.677, F2,22 = 13.799 p = 0.000, F5,55 = 13.799
8 Hand Movement Time (second) p = 0.002, F1,11 = 15.879 p = 0.385, F2,22 = 0.996 p = 0.000, F5,55 = 144.887
9 Index of Hand Performance (bits/second) p = 0.001, F1,11 = 22.317 p = 0.238, F2,22 = 1.532 p = 0.000, F5,55 = 28.899

10 Error Rate (%) p = 0.777, F1,11 = 0.084 p = 0.747, F2,22 = 0.296 p = 0.000, F5,55 = 9.920

4. Discussion

4.1. The Effect of Environment (3D TV)

The result of a repeated measures ANOVA revealed that environment had significant
effects on eye movement time, index of eye performance, time to first fixation, saccade
duration, revisited fixation duration, eye gaze accuracy, hand movement time, and index
of hand performance. However, there were no significant main effects of environment on
number of fixations and error rate. Participants were found to have longer eye movement
time, lower index of eye performance, longer time to first fixation, longer saccade duration,
longer revisited fixation duration, lower eye gaze accuracy, longer hand movement time,
and lower index of hand performance when the target was presented in a 3D environment.

Theoretically, eye movement should be faster than hand movement. Participants
assured the position of the target until they decided to move their hand to click the
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target. Eyes will guide the hand to click target when the eyes fixate on the position of the
target [40]. In this study, participants required a longer time to click the virtual target in
the 3D environment compared with the target in the 2D environment. It appears that in
the 2D environment, participants perceived the target clearly without any difficulty and
confusion, and therefore, the participants could determine the target in screen displays
faster and more effectively than the virtual target in the 3D environment.

The index of eye performance was higher than the index of hand performance because
the extraocular muscles that shift the eye are the fastest muscle in the human body [41].
Therefore, the speed gain of the eye made a difference over the hand for the same distances
and resulted a higher index of eye performance. Our study is consistent with [42], which
reported that eye performance was much higher than hand click performance.

The index of hand and eye performances in the 3D environment was lower than
in the 2D environment. This condition happened because the movement time in the
3D environment was longer than movement time in the 2D environment. The index
of performance was the result of the index of difficulty divided by the movement time;
therefore, a longer movement time would result in a lower index of difficulty.

In the 3D environment, participants had longer hand and eye movement times with
a lower index of hand and eye performances. This condition might have been caused by
the accommodation-vergence conflict when participants perceived a virtual target in the
3D environment [20,24,43]. This conflict might influence the binocular ability vision of
participants to focus on the virtual target. Moreover, this conflict might have affected the
speed and accuracy of the task [44].

Eye fixation accuracy declined when the participants performed in the 3D environ-
ment. Eye fixation accuracy was determined as the percentage deviation between eye
fixation location and the projected images of the target in the 2D environment. Participants
performed precisely when they perceived the target in the 2D environment. Participants
encountered difficulty to fixate accurately on the projected images of the virtual target.
High difficulty levels of cognitive processing might be a factor of lower accuracy in the 3D
environment. Holmqvist et al. [11] stated that a microsaccade, an eye fixation movement
tremor, and drift could happen due to a high difficulty level of cognitive processing. More-
over, low accuracy could have occurred because of perceived depth error [45]. Therefore,
eye fixation accuracy became lower in the 3D environment.

A longer time to first fixation happened when participants performed in the 3D
environment. This was not surprising since participants required more processing time
in the 3D environment to recognize and to identify the location of the virtual ball. In
order to perceived the virtual target clearly, participants needed longer eye adaptation and
accommodation processes.

Based on the saccadic duration and revisited fixation duration, the results showed
that saccadic duration and revisited fixation duration in the 3D environment were longer
than those in the 2D environment. In the 3D environment, participants spent significantly
more time in revisited fixation. Depth perception was required to perceive the virtual
target in stereoscopic displays [46,47]. Difficulty to perceive the virtual target could affect
the revisited fixation duration. Moreover, some participants reported that they found it
more difficult to perceive the virtual target in the 3D environment compared to the 2D
environment.

The error rate was not significantly different from the environment. Overall, the error
rate calculation was below 7%. The results implied that there was no speed–accuracy trade-
off in this study. Therefore, the hand and eye movement results could be acknowledged as
being truly an effect of the visual environment.

4.2. The Effect of Depth

The results of the repeated measures ANOVA revealed that there was no significant
difference between depth and hand and eye movement times, the index of hand and eye
performances, error rate, eye fixation accuracy, number of fixations, time to first fixation,
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saccadic duration, and revisited fixation duration. Even though the results showed no
significant difference, there were trends in the results when participants performed the task
in three different levels of depth.

Participants had longer eye movement time, longer hand movement time, longer sac-
cadic duration, and longer revisited fixation duration when the target was presented closer
to their eyes. Although depth was found not significantly affect most of the independent
variables, the index of eye and hand performances were found lower at a depth of 140 cm
compared to 190 cm and 210 cm. Moreover, participants had a higher error rate when the
target was brought closer to the participants’ eyes at a depth of 140 cm.

Psychophysical research reported that the implication of depth perception could affect
human perception to see the target clearly. The compilation of experiment results about
depth judgment reported misjudgment made by participants. They judged the depth
distance to be smaller than the actual depth of target [48–51]. Therefore, depth could
contribute to a longer hand and eye movement time, saccadic duration, and revisited
fixation duration a lower index of hand and eye performance, and a higher error rate when
the target projected closer to the participants’ eyes.

4.3. The Effect of Index of Difficulty (ID)

The result of the repeated measures ANOVA reported that hand movement time, index
of hand and eye performance, error rate, eye fixation accuracy, number of fixations, saccadic
duration, and revisited fixation duration had a significant difference in six different levels
of index of difficulty. However, there was no significant effect of index of difficulty on eye
movement time and time to first fixation. Our previous study applied structural equation
modeling (SEM) to analyze the interrelationship among ID and selected eye movement
parameters [29]. We also found that ID had significant effects on eye movement time and
number of fixations. In addition, we also revealed that ID had no significant effect on time
to first fixation. Despite it being a different statistical technique, the repeated measures
ANOVA analysis matches with the previous SEM analysis. Moreover, post-hoc analysis in
one-way repeated ANOVA could reveal significant differences among the group which
could not be obtained by utilizing an SEM analysis.

Hand and eye movement times increased when the index of difficulty increased. Sim-
ilarly, saccadic duration and revisited fixation duration were longer when the index of
difficulty level increased. Many researchers reported higher correlations between move-
ment time and the index of difficulty [52–56]. Similarly, in this study, the index of difficulty
significantly affected hand and eye movement time as well as saccadic duration and
revisited fixation duration.

Hand and eye movement times were related to the index of hand and eye performance.
The increase of movement time would be compensated for by the increase in the index of
difficulty and decrease the value of the index of performance [38]. However, in this study,
the results reported that participants had a higher index of hand and eye performances
when they performed the tapping tasks at a higher level of index of difficulty. This occurred
because of the slightly different in value between eye and hand movement times for each
level of index of difficulty. Thus, the index of hand and eye performances would be high
when the short movement time was divided by the high-level index of difficulty. Longer
movement times have been consequently associated with the number of fixations [38]. In
line with this study, longer movement times, caused by a higher level index of difficulty,
lead to a higher number of fixations.

The index of difficulty influenced the error rate made by the participant in this ex-
periment. Higher levels of index of difficulty caused a higher error rate and eye fixation
accuracy. Wade et al. [57] and Card et al. [58] reported that decreasing target width caused a
higher error rate. The smaller target width increased the difficulty level for the participants
to perceive the target location, which would lead to an inaccuracy in the tapping task.

213



Appl. Sci. 2023, 13, 2656

4.4. Practical Implications

Generally, poor visual and motor performances may have an impact on consumer
acceptance of 3D TVs. This study provided a general implication for users to perceive
virtual objects in 3D TVs or stereoscopic displays. The results revealed that poor visual
and motor performances may have an impact on the acceptance of 3D TVs due to visual
discomfort or fatigue. The variation of depth had no significant difference at different levels
on any independent variable. The visual and motor performance was good in combination
with depth in the experiment. However, the distance from the user to the display (3D TV)
revealed that the depth of 210 cm had the best eye movement and motor performance
compared with the distance (190 cm and 140 cm). The depth (210 cm) should minimize the
vergence accommodation conflict for the users. In addition, the smallest depth (140 cm)
would affect the visual phenomenon that occurs when the brain receives mismatching cues
between vergence and accommodation of the eye. Thus, depth should be considered in
order to minimize visual discomfort and vergence accommodation conflict.

4.5. Limiations and Future Research Directions

Despite the substantial contributions of this study, we would like to mention several
limitations in this study. First, we purely investigated the effect of 3D TVs on eye movement
and motor performance. Future research should propose a new technical solution to capture
the physical and psychological changes simultaneously when a person watches a 3D TV.
Second, the statistical analysis was RM-ANOVA, which could not investigate the effect
of one independent variable on two or more dependent variables simultaneously. Future
research that incorporates structural equation modeling or data mining techniques would
be a promising direction. Finally, curved display TVs are currently becoming available
on the market. Using our approach, future research could investigate the effect of curved
display TVs on eye movement and motor performance.

5. Conclusions

Three-dimensional TVs have been commercialized in recent years; however, the
commercialization of them has faced difficulties on the market. The purpose of this study
was mainly to investigate in depth the effects of 3D TV environments on eye movement
and motor performance. We also discussed the effect of parallax and index of difficulty,
since both variables could influence eye movement and motor performance.

The results showed that the environment had significant effects on eye movement
time, index of eye performance, eye fixation accuracy, number of fixations, time to first
fixation, saccadic duration, revisited fixation duration, hand movement time, index of
hand performance, and error rate. Participants were found to have longer eye movement
time, lower index of eye performance, longer time to first fixation, longer saccade duration,
longer revisited fixation duration, lower eye gaze accuracy, longer hand movement time,
and lower index of hand performance when the target was presented in a 3D environment.

Interestingly, no significant effects of environment were found on the number of
fixations and error rate. Regarding ID, the results showed that there were significant
main effects between index of difficulty and hand movement time, index of hand and eye
performances, error rate, eye fixation accuracy, saccadic duration, and revisited fixation
duration. Finally, no significant differences were found between different levels of depth
on any independent variables, although bigger depth (210 cm) mostly had the best eye
movement and motor performance compared with smaller depth (190 cm and 140 cm).

This study is the first in-depth investigations of the effect of 3D TVs to eye movement
and motor performance. The parameters could be beneficial for developers [35,36] and
virtual reality researchers [59–63] to enhance the human performance of 3D TVs.
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Abstract: This article investigates the utilization of eye-tracking methodology to monitor the driver’s
activities and attention during the arrival and departure procedures of train operations on Slovak
Railway (ŽSR) line no. 120, Bratislava–Žilina. Previous studies conducted in 2020 formed the basis
of the current research, which focused on two train stations and two railway stops located on the
Žilina–Púchov track section. The results of the experiment allowed for a greater understanding of
the driver’s cognitive processes, thereby leading to increased safety and sustainability in the railway
transport system. It is noteworthy that the employed measurement methodology and technology
had no detrimental effect on train operation, or operational and thus passenger safety. Thus, the
results of this experiment provide a sound foundation for further exploration into human–machine
(driver–train) interaction in actual traffic conditions.

Keywords: train driver’s behavior; eye tracking; railway safety; human-machine interaction

1. Introduction

The essential tools for achieving a sustainable transport vision are global strategic
objectives based on the “Strategic Plan for Transport Development in the Slovak Republic
until 2030” [1] and the “Roadmap to a Single European Transport (White Paper)” [2]. These
documents delineate the trends and requirements defined in European and national strate-
gies. The document comprises several strategic global objectives that can be identified as
main goals of sustainable railway transport. This study is concerned with the objective of
increasing the safety and security of transport, which necessitates the provision of safe mo-
bility through secure infrastructure and advanced technologies/procedures, incorporating
preventive and control mechanisms [3].

Railway transport performance in the conveyance of passengers has seen continual
growth and is the safest mode of transportation. The key criterion for any system of trans-
portation is its security [4].

Rail transport is an ecologically sustainable mode of transportation, as evidenced by
its contribution of only 0.5% of total EU greenhouse gas emissions in 2017, according to
the European Environment Agency [5]. Passenger kilometers in the EU-28 have grown
from 375 billion in 2004 to 441 billion in 2014, translating to an increase of 17% in the modal
share of rail travel from 6.1% to 6.9%. Such an increase in rail transportation has resulted in
a decrease in congestion, air pollution, and greenhouse gas emissions in and around the
larger cities within the EU. Eurostat reported in 2018 that the railway sector in the EU had
a transport performance of 471,701.6 million passenger kilometers and almost ten billion
passengers, with a 1.5% increase compared to 2017 figures [6,7].

Railway transport safety is highly reliant on the signaling and safety systems employed.
These systems are typically divided into four distinct categories: station interlocking
equipment, crossing interlocking devices, train protection systems, and line signaling
equipment. Station interlocking equipment ensures that the railway infrastructure is in a
safe state, crossing interlocking devices protect rail crossings from potential collisions, train
protection systems reduce the risk of derailment, and line signaling equipment enhances
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the visibility of railway signals. All of these distinct systems are essential in providing a
high level of safety in railway transport [8].

Rail transport safety is substantially enhanced by the incorporation of modern safety
systems and the continuous modernization thereof. Traffic conditions, means of transport
and human factors are the primary determinants of sustainable transport safety. The condi-
tion of the infrastructure and the level of signaling and safety systems, as well as weather
conditions and other external factors, all contribute to the overall safety of rail transport.
Additionally, the technical state of the means of transport, as well as the safety level, are
fundamental determinants of safety. Finally, human factors, which constitute one of the
most prominent causes of transport accidents, must be taken into account. The failures of in-
frastructure personnel, train drivers, and third parties can all have significant ramifications
on transport safety [9].

Various definitions of human factors can be identified. Several authors describe it as an
area of research that assesses human psychological, social, physical, and biological charac-
teristics, synthesizes the data collected, and applies the findings to the design, operation, or
utilization of products or systems with the aim of maximizing human performance, health,
safety, and/or habitability [10–12].

According to the International Ergonomics Association, the discipline of Human Fac-
tors is devoted to the scientific examination of human–system interactions. This field of
inquiry centers on the aptitude of human beings to engage with tasks, equipment, technolo-
gies, and the environment in order to understand and evaluate these connections [13]. The
Transport Research Board (TRB) additionally indicates that the study of human factors is a
multidisciplinary science that scrutinizes the interrelation between humans and devices,
products, and systems. This branch of investigation is a fusion of behavioral science, engi-
neering, and other disciplines, striving to establish the principles that ensure the usability
of devices and systems by their designated users [14].

When evaluating the impact of the human element on the railway system, the quality
of education and training of railway personnel, their level of experience, and their state
of health and wellbeing must be taken into consideration. Factors such as the quality of
educational and training programs, the degree of expertise of railway personnel, and the
current physical and psychological condition of employees such as fatigue, hunger, thirst,
and overwork can all have significant implications [15].

Ensuring the sustainability of rail transport necessitates the assurance of its safety,
wherein the human element plays an essential role. Numerous railway safety regulations
exist in the context of railway safety and accidents [16]. For example, the Commission
Directive 2014/88 EC EU of 9 June 2014 amended Directive 2004/49/EC of the European
Parliament and the Council concerning common safety indicators and common meth-
ods for determining the magnitude of harm in the instance of accidents, and included a
Corrigendum to Commission Directive 2014/88/EU of 9 June 2014. June 2014 amended
Directive 2004/49/EC of the European Parliament and the Council regarding common
safety indicators and common methods for determining the amount of damage in the
event of accidents, and the Decision of 11 December 2013 C (2013) 8780. This Decision
established common safety targets (CSTs) for the interval 2011–2015 for all Member States.
The European Railway Agency (ERA) is responsible for their computation and adherence to
safety levels. Varying national regulations are also in place, based on European safety rules.

The issue of railway accidents relating to the train driver’s culpability is of importance
due to the particular type of accidents indicated in Table 1 sourced from the Czech Rail
Safety Inspection Office. The data in Table 1 encompass the exclusive category of incidents
(exceeding the main/shunting stop signal). Drivers are responsible for 99% of this type of
crash. An inquiry from the Czech Rail Safety Inspection Office established that the primary
causes for drivers’ errors are fatigue, overwork, and inadequate driving techniques and
experience. There is no exact protective system in rail transport for evaluating drivers’
driving capabilities, wise/poor practices or vigilance [17].
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Table 1. Unauthorized driving (violation of traffic signs) through the stop signal, including subse-
quent collision or derailment on sidings, regional, and national lines [17].

2018 2019 2020

Accidents Train Shunting Accidents Train Shunting Accidents Train Shunting

January 12 8 4 14 12 2 15 10 5
February 15 11 4 21 12 9 15 9 6

March 6 4 2 20 15 5 11 8 3
April 8 5 3 11 8 3 10 7 3
May 19 16 3 7 5 2 7 7 0
June 12 10 2 14 10 4 18 13 5
July 13 9 4 10 4 6 14 9 5

August 12 7 5 11 7 4 9 7 2
September 23 20 3 6 5 1 13 6 7

October 11 7 4 7 6 1 12 8 4
November 15 11 4 17 13 4 13 7 6
December 2 2 0 11 7 4 12 10 2
Summary 148 110 38 149 104 45 149 101 48

The average age of train drivers employed by Company ZSSK (national passenger
operator in Slovakia) in 2019 was 46 years, whereas for Company ZSSK Cargo (national
cargo operator in Slovakia), the average age was 49 years. A noteworthy fact is that the
Czech railway sector, whose companies operate in Slovakia as well, faced a significant
shortfall of 330 drivers in 2020, and the average age of those employed was 49.6 years, with
11% being over the age of 65.

Investigation into human–machine interactions is an effective way to ascertain the
variables that have an influence on human performance when operating machines. Identi-
fying the critical contributing factors (positive and/or negative) that affect human behavior
can lead to enhanced transport safety [18].

Edkins D. G. and Pollock M.C. conducted a pioneering comprehensive examination of
train drivers’ vigilance in 1997. They commenced their investigation with the proposition
that railway operations necessitate that train drivers remain alert, oftentimes in tedious
conditions, and act quickly to unforeseen critical signals. They scrutinized 112 rail acci-
dents in Australia between 1990 and 1994, and determined that the drivers’ attention was
implicated in 70% of the accidents. Moreover, the researchers observed that train driver
errors commonly involved skill-based behavior [19].

Lorenz’s dissertation thesis examines the utility of modern technology in facilitating
route knowledge acquisition among inexperienced train drivers. He highlights the im-
portance of Human–Machine Interaction (HMI), which is defined as the communication
between a human and a machine via a user interface. User interface encompasses the
use of input devices and software, and the human eye is one of the primary input media,
providing 80 to 90 percent of information gleaned from the outside world. To gain insight
into a user’s gaze point, eye tracking is employed as an experimental research method.
Consequently, this research contributes to a better understanding of the effectiveness of
modern technology in propagating route knowledge with regard to train driving [20–22].

The study of human interaction and behavior in safety-critical environments is a focal
point of human factors research [23]. Traditional techniques for quantifying human per-
formance typically incorporate metrics such as response time and accuracy. Performance
measures are thus generated. Furthermore, to gain a better understanding of task progres-
sion, an examination of the underlying processes must be conducted. This necessitates the
utilization of procedural measures, and in this regard, eye movements are particularly ad-
vantageous due to their ability to provide insights into the visual, cognitive, and perceptual
aspects of human performance [24,25].
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Investigation of human factors utilizing the user testing method is a viable approach for
exploring the level of interaction between humans and machines. To maximize the efficacy
of usability testing, a representative sample of the targeted user group should be chosen and
the data collection techniques must be capable of capturing the demands associated with
the activities performed. Eye-tracking technology provides a unique opportunity for user
testing as it is capable of measuring the perception and behavior of the tested subject while
they are completing the assigned tasks. The usefulness of eye-tracking in transport systems
is evident, as it has been employed for various measurements in both real and simulated
environments and is especially advantageous for the analysis of human behavior in aviation
and vehicle driving.

Eye trackers have been employed in flight simulators for the purpose of aviation
experiments, as demonstrated by the studies of Kocian and Longridge [26,27]. An example
of effective utilization of eye-tracking technology in a flight simulator was provided by
Anders [28]. In the course of the experiment, eye and head movements of professional
pilots were recorded by eye-tracking equipment in a simulated flight environment. This
enabled an analysis of the interaction between the pilot and the Human–Machine Interface
(HMI) with regard to the selection and management of information, situational and mode
perception in an aircraft cockpit. The experiment was performed in a full flight simulator
Airbus 330 certified for airline training. The cockpit was divided into twelve fields of
interest, and pilots had to perform flights beginning from a specified altitude, followed by
descent and landing. This experiment shows how eye movements effectively inform the
assessment of pilots’ performance, as well as the instruction of novice pilots.

The application of eye trackers within driving simulators has been acknowledged to
be an efficient method of recognizing the nature of the driving task and improving driver
training strategies, as well as preventing road traffic accidents. Chapman and Underwood’s
study demonstrated that inexperienced drivers were observed to have a more protracted
fixation on stimuli than experienced drivers. This indicates that novices require additional
time to process visual information from the scene [29]. The research of Dishart and Land
showed that the use of the road section with tangent points increases with experience and
then decreases as drivers learn to optimize the pattern of their visual surveillance and
search [30].

Ho’s driving study investigates the impact of environmental factors such as clutter,
illumination, and age on the visual search for traffic signs in images of driving scenes.
Results from the study revealed considerable differences in the number of errors, reaction
times, number of fixations, and average fixation duration between older and younger
participants. Due to the rapidly aging driving population, the authors recommend reducing
the number of advertisements near roads, removing superfluous traffic signs, and making
them more prominent for the drivers, thereby augmenting road safety [31]. Recarte and
Nunes’s research on mental activity during driving suggests the advisability of raising
drivers’ awareness about the possible effects of driving. At the same time, the study
indicates that fixation on thoughts unrelated to driving could be reduced by diminishing
the windows and mirrors in the car, which would result in a decreased probability of
detecting traffic events [32].

An analysis of driving behavior revealed that eye-tracking technology was primarily
employed in aviation and automotive experiments, with a lack of experiments devoted
to other modes of transportation. A survey of the Web of Science database uncovered a
few studies on the evaluation of driver behavior with user testing technology in railway
transport systems:

• Luke et al. explored the visual task of train driving by utilizing a corneal dark eye-
tracking system to track the visual search and scanning patterns of train drivers. Data
collected from the system included the duration and frequency of glances towards
different aspects of the dynamic scene both inside and outside the train cab. The
primary focus of the experiment was the visual scene in front of the train [33].
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• Madlenak et al. conducted an in-depth examination of the driver’s attention during
train operation. The study analyzed two common processes during the train driver’s
work: locomotion on the tracks (without stops) and locomotion through the train
station (with stops at the station) [9].

• Rjabovs and Palacin investigate the performance-shaping factors associated with
holistic design considerations of metro systems, and further evaluate their influence
on driver behavior through the implementation of eye-tracking techniques in a case
study [34].

• Yan et al. investigated the particularity of train drivers’ fatigue in a high-speed railway
context [35].

• Naghiyev et al. conducted an explorative eye-tracking study in a real-world setting
with conventional and European Rail Traffic Management System drivers on their
regularly scheduled routes. The results of this study offered a more comprehensive
qualitative examination of the cause of the transition in the standard visual attentional
strategy from observation of the tracks to speed information inside the cab [36].

• Guo et al. investigated the role of image velocity and complexity on the dynamic
visual field of high-speed train drivers, with eye movement analysis demonstrating
that image velocity had a significant impact, whereas complexity did not [37].

• Vera Verstappen conducted a pilot study to investigate the effect of a fellow passenger
on train drivers’ performance and attention allocation. Utilizing a train simulator,
the results of the study revealed that the presence of an inconsiderate individual
in the driver’s cabin had a detrimental effect on driving performance, with tasks
being completed more successfully when the driver was alone. These findings are
of paramount importance to the optimization of train drivers’ performance and the
enhancement of railway safety [38].

• Brandengurger et al. (2020) conducted a study to determine the duties and responsibil-
ities of a locomotive engineer who operates an ultra-modern, high-velocity passenger
train. The outcomes of the investigation suggest that the engineer must maintain
a persistent level of mental effort and sustained concentration in order to acquire
cognitive information and monitor the environment continuously. Consequently, the
role of the train driver is set to evolve into that of a train operator in the coming
years [39].

This analysis clarifies the limited implementation of real-world eye-tracking research
devoted to examining train driver behavior and operations under specific circumstances.
Despite the potential of utilizing eye-tracking technology to gain insight into the cognition
and decision-making of train drivers, research in this area has been limited. To date, only a
few studies have been conducted, and even those have primarily featured highly controlled,
simulated environments. While such research is valuable, the results are not applicable to
the dynamic and unpredictable conditions of the real world. It is therefore necessary to
develop additional research initiatives that incorporate real-world train operations. Such
research could involve collecting data from drivers in diverse operational contexts and
varying levels of complexity. In addition, the data should be analyzed to reveal how
different factors (e.g., weather, train speed, and passenger load) can affect the decision
making of train drivers.

Therefore, the goal of this study is to explore the potential of utilizing eye-tracking
technology to gain insight into the cognition and decision making of train drivers and to
develop additional research initiatives that incorporate real-world train operations in order
to better understand the cognitive processes involved in train operations and ultimately,
improve the safety of the rail system.

2. Materials and Methods

According to the results of a literature review and the requirements for determin-
ing optimal practices for the operations of a train driver in certain situations, we have
established the primary objective to achieve the goal defined at the end of the article’s
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introduction: to analyze the approaches to arriving at and departing from several types of
train stations, and to identify the most effective practices from the perspective of the train
driver. The overall process of conducting the research (research methodology) is presented
in Figure 1. The key sections related to the research are presented in Sections 2.1 and 2.2.

•selection of train section and railway stops 
•setting AOI and performance metrics

preparatory phase

•callibration of ETG
•experimental testing with eye tracking
•in-depth interview with train driver

implementation 
phase

•video post processing of recorded data
•analysis of measured data
•metrics evaluation for particular operations

analytical phase

Figure 1. Methodology of research.

2.1. Research Conditions

In the spring of 2020, an experimental investigation was conducted under real railway
traffic circumstances. The primary stage of the study included the determination of an
appropriate location for the experiment, which was the railway infrastructure line. After
an appraisal of potential railway lines near Žilina, the Žilina-Púchov railway track was
chosen due to its recent reconstruction, high-quality condition, modernized safety and
train control system, and its widespread representation of Slovak railway characteristics
such as double-tracking, electrification, traction system, high density of traffic, safety, and
control system. Ten stops were located on the selected track section, from which two train
stations and two railway stops were chosen for the analysis. Subsequently, the essential
characteristics of the selected train stations and railway stops were identified:

• Horný Hričov railway stop is located on the ŽSR line no. 120 Bratislava hl.st.—Žilina, in
the interstation section Dolný Hričov—Žilina. The stop position on the track is located
at kilometer 195,042, with exits to the right side, in the direction of travel, and the double
track is electrified by 3 kV DC.

• Dolný Hričov station (Žilina district) is located on the double-track electrified (3 kV
DC) line no. 120 Žilina—Bratislava, between Žilina and Bytča at kilometer 193,073. The
station has seven transport tracks and one manipulation track. The station building is
located on the left side, in the direction of Bratislava.

• Bytča railway station is located on the double-track electrified line ŽSR no. 120
Bratislava—Žilina, track kilometer 185,275; 3 kV DC electrifies the track. The station
building is located on the right side, in the direction of Bratislava. The station has
seven transport and four manipulation tracks.

• Predmier railway stop is located on the ŽSR no. 120 Bratislava hl. st.—Žilina, in the
interstation section Považská Teplá—Bytča, track kilometer 183,620. The track is a
double track, electrified by 3 kV DC. The location of the building is to the left, in the
direction of Bratislava hl. st.

Our case study utilized the Škoda Transportation-manufactured electric double-decker
multiple-unit series 671 (EPJ), which was utilized in a prior experiment [9], and is depicted
in Figure 2. This multiple-unit rolling stock includes one electric traction wagon, one wagon,
and one control wagon.
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Figure 2. Electric double-decker multiple-unit series 671 [40].

A case study was conducted on Railway Track No. 120: Bratislava-Žilina, situated in
the section of Žilina-Púchov of Slovak Railways (ŽSR) (see Figure 3). This double-track,
3 kV DC electrified railway line measures 44 km and is part of the V Corridor [41].

 

Figure 3. Track section Žilina—Púchov with speed limitations.

The track section has undergone a full overhaul, resulting in the maximum speed for
conventional trains being raised to 120–160 km/h (as illustrated in Figure 4). The utilization
of the European Train Control System Level 2 (ETCS Lvl. 2) has enabled tilting trains to
achieve higher speeds. The completion of the reconstruction of the Púchov–Zilina lines will
make ETCS level 2 fully functional, with it only being employed by compatible vehicles;
the Automatic Signal Block system, however, will continue to be used due to the lack of
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compatible equipment in the carriers’ vehicle fleets. Additionally, a new traction system,
signaling apparatus, and information equipment have been installed [42–44]. Moreover, a
mobile radio network and new telecommunication technology have been implemented to
provide a direct radio link between the dispatcher and the moving trains, with the entirety
of the track section being regulated from the central transport control center in Púchov [41].

 

Figure 4. Track section Žilina–Púchov with railway stops and train stations.

Between 2014 and 2018, a 22,702 km railway section from Považská Teplá to Žilina
underwent full reconstruction, which included the installation of a new traction line, an
automatic signal block, an ETCS Level 2 European Train Control System, and an information
device. Additionally, the stations and stops are now compliant with the requirements for
full accessibility by individuals with reduced mobility.

2.2. Eye-Tracking Technology

Investigation of human factors utilizing the user testing method is a viable approach
for exploring the level of interaction between humans and machines. To maximize the
efficacy of usability testing, a representative sample of the targeted user group should
be chosen and the data collection techniques must be capable of capturing the demands
associated with the activities performed. Eye-tracking technology provides a unique
opportunity for user testing as it is capable of measuring the perception and behavior of the
tested subject while they are completing the assigned tasks. The usefulness of eye tracking
in transport systems is evident, as it has been employed for various measurements in both
real and simulated environments and is especially advantageous for the analysis of human
behavior in aviation and vehicle driving.

The application of eye-tracking technology was utilized to analyze the train driver’s
behavior with great accuracy while in operation. The SMI ETG 2W head-mounted eye-
tracking glasses with software iViewETG version 2.8 were selected to procure raw data.
This device was specifically designed to capture the visual conduct of the subject in real-
time scenarios. Equipped with three high-speed cameras, two infrared cameras were used
to record the subject’s pupils’ movement and position in both eyes, while the third high-
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definition scene camera with a resolution 1280 × 960 p @24 fps captured the surrounding
environment. Additionally, a smartphone was connected to the glasses for data recording
purposes. The SMI ETG 2W provides eye tracking with a sampling frequency of 60 Hz
throughout the field of view and guarantees precise data with a tracking range of 80◦
horizontal, 60◦ vertical, and a gaze tracking accuracy of 0.5◦ over all distances [45].

The SMI BeGaze software 3.7.59 (produced by SensoMotoric Instruments (SMI), Teltow,
Germany) was employed to conduct an in-depth analysis of the raw data collected by the
SMI ETG 2W. This comprehensive application provided a range of analytical functionalities,
including Scan Path, which illustrated the map of the driver’s gaze fixations and the order
in which they occurred. The most beneficial analytical tool for our research, included in the
BeGaze software, was the AOI (Areas of Interest) analysis. In this analysis, user-defined
metrics were extracted from the pre-defined regions in the visual stimulus. To identify the
areas of train control and operation, the AOI editor was used to designate the main AOIs
in the train cabin. As a result, thirteen AOIs (panels) were identified (see Figure 5).

 

Figure 5. Area of interests (panels) identified in the EPJ 671 train cabin.

The Areas of Interest (AOI) displayed in the figure are numerically coded from A to
M, each representing a distinct aspect of the train’s operation:

• A stands for the view of the external environment, encompassing front, right, and left
windows.

• B stands for the left and right rear-view mirrors.
• C denotes railway signals.
• D is indicative of the actual speed, as shown in Panel D.
• E is the main train operating window.
• F corresponds to the cab signaling and the train protection system Mirel
• G is for the brake system pressure.
• H refer to the set of train driving controllers.
• I is the automatic train speed controller.
• J is the main train controller, controlling both acceleration and braking.
• K is the timetable sheet.
• L is for notes pertaining to the section, such as speed restrictions.
• M is the signaling of safety closure of the train doors.

Observe that the cab display of the European Train Control System (ETCS) is depicted
in Figure 5, with the black window located above region K. Nonetheless, since the ETCS is
not in use, it has been deactivated.

In order to acquire pertinent information from eye-tracking recordings, the fixation-to-
fixation coding technique was utilized. This video-coding procedure enabled the generation
of a reference image from a segment of the scene (train cabin) camera video, and successive
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clicks in the reference image at the identical position as the fixation within the superimposed
scene video, once for each fixation in the data [46].

The Human–Machine Interaction Laboratory (HMI-LAB) of the University of Zilina is
located at the University Science Park and is equipped with both software and hardware.
The primary purpose of the HMI-LAB is to conduct research and testing related to human-
machine interactions in a variety of settings. This lab was used to evaluate data for their
final publication.

The experiment was conducted to evaluate the behavior of a train driver during
daylight on a chosen stretch of track. A climatized train cabin was utilized, free from any
external interferences. A 51-year-old train driver, with 30 years of experience in regional,
long-distance national, international, and railway transport, was engaged in the experiment;
he had been absent from any category A or B railway accident (as classified by international
railway safety standards) [9]. The train driver’s task was to drive the train in the usual
way. He wore eye-tracking goggles to record his interaction with the locomotive’s controls
and surroundings. He had no information about the variables to be evaluated during the
measurement. He passed through 9 stations during his journey. Measurements on the
same track were repeated 6 times, and the results presented in the paper are the average
values of indicators from four selected types of stations.

It should be emphasized that there are no standardized tasks that a driver must abide
by. The two main regulations governing Slovak railways are the Regulation: Z1 Railway Op-
eration Rules and Regulation: Performance of the driver’s activities ZSSK V2. The Railway
Operation Rules (Z1) is an extensive (more than 500 pages) set of regulations on transport
activities and train operation on railways managed by ŽSR. The Regulation on the Perfor-
mance of Train Driver Activities ZSSK V2 details technological procedures and activities
related to work activity and drive management of rolling stock. Despite their scope, neither
regulation contains detailed processes and work procedures for the oper-ational actions of
the train driver during the arrival of the train to the station/stop and the departure of the
train from the station/stop.

In order to obtain optimum raw data, SMI eye-tracking glasses were used to monitor
the driver’s visual attention. The following three steps were essential prior to measure-
ment: establishing a connection between the eye-tracking glasses and the recording device
(smartphone); configuring the experiment for the subject being tested in the recording
device; and, completing the calibration process of the eye-tracking glasses and initiating
the recording of the subject’s gaze.

The experiment has a critical analytical component that is designed to evaluate metrics
that delineate the operation of the train and the interaction between the driver and the
train’s cabin control systems and panels during specialized operations. This research aims
to elucidate the location, duration and frequency of the driver’s gaze directed towards the
areas of interest [47,48]. The metrics to be established for each of the areas of interest in the
cabin are as follows:

• Dwell time is defined as the period of time from a participant’s entry to their exit in a
particular AOI. In some human factor research, dwell is referred to as glance or gaze
duration. Dwell time is generally the aggregate of fixation and saccades durations
during the stay in an AOI. The recorded dwell time for an AIO is contingent upon the
AOI semantics and the participant’s task. Dwell time is indicative of the attention paid
to an AOI or the informative nature of said AOI. It may be presented in an absolute
(time in milliseconds) or relative format (% of total time).

• The number of fixations is defined as a period when the eye is relatively stationary;
yet, certain definitions incorporate visual intake as an auxiliary parameter on fixations.
During the period inside of the AOI, the number of fixations has also been referred
to as fixation density. The number of ocular fixations indicates the significance of the
AOI for the subject under examination.
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• Average fixation duration is a measure commonly employed in eye-tracking research,
with variation in duration across different tasks and stimuli being observed. It is generally
accepted that longer fixations denote a more intensive and strenuous cognitive process.
This measure can be expressed quantitatively in terms of absolute time in milliseconds.

• Revisits denote a transition from one AOI to another; the number of revisits can
provide insight into the subject’s attentional focus with respect to a particular AOI.
The frequency of revisits is thus indicative of the amount of time the subject devoted
to a given AOI.

In order to guarantee the correct conduct of the research and interpretation of the
acquired data, we employed a variety of scientific techniques. Initial research and ex-
traction of extant bibliographic resources, the amalgamation of knowledge obligatory for
experimental assessment, observation during the experiment period, analysis, compari-
son, induction, deduction, statistical techniques in the investigative period, and graphical
techniques for representing the data aided each stage of the completed research.

For the purpose of linking conscious and unconscious perceptions of the situation
with which the driver is confronted, the eye-tracking research is complemented by the
implementation of an in-depth interview.

An in-depth interview is a type of qualitative research method that involves conduct-
ing an in-depth, semi-structured conversation with a participant to explore their thoughts,
feelings and experiences on a particular topic. It is usually conducted after conducting
eye tracking analysis to provide an additional layer of understanding of how and why
the test participants interacted with a situation with which they are confronted. In-depth
interviews can help identify user needs, uncover motivations and uncover how the user
interacts with the product or medium [49].

3. Results

In the methodological component of our investigation, we identified and subsequently
concentrated on two particular locomotive operations (train arriving at stations and train
leaving the station) at two distinct locations (train station and railway stop). The assessment
was partitioned into four trials, and each trial was divided into two operations.

3.1. Trial 1—Railway Stop Horný Hričov

At this railway station, the average total time for arriving and departing was 200 s.
The mean period of entry was 120 s (Table 2), while the mean duration of the departure
procedure was 80 s (as illustrated in Table 3).

Table 2. The arrival procedure’s average statistic for railway stop Horný Hričov.

Metric Top Three AOI According to Best Values

Average dwell time (%) window section AOIs (56%) panel E AOI (7.6%) mirror section AOIs (6%)
The average number of fixations window section AOIs (225) panel E AOI (44) panel D AOI (15)
Average fixation duration (ms) mirror section AOIs (546.3 ms) panel F AOI (308.2 ms) window section AOIs (275.3 ms)

Average revisits window section AOIs (23) panel E AOI (16) panel D AOI (8)

Table 3. The departure procedure’s average statistic for railway stop Horný Hričov.

Metric Top Three AOI According to Best Values

Average dwell time (%) window section AOIs (33.3%) panel E AOI (31%) panel D AOI (20.6%)
The average number of fixations window section AOIs (79) panel E AOI (68) panel D AOI (41)
Average fixation duration (ms) panel K AOI (688.2 ms) panel G AOI (551.9 ms) mirror section AOIs (509.4 ms)

Average revisits window section AOIs (23) panel E AOI (16) panel D AOI (8)
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3.2. Trial 2—Train Station Dolný Hričov

The aggregate duration of the arrival and departure processes at this train station was
215 s on average. The mean length of the entry process was 140 s (see Table 4), and the
mean duration of the departure process was 75 s (as shown in Table 5).

Table 4. The arrival procedure’s average statistic for train station Dolný Hričov.

Metric Top Three AOI According to Best Values

Average dwell time (%) window section AOIs (49.7%) panel E AOI (14.7%) panel D AOI (7.7%)
The average number of fixations window section AOIs (216) panel E AOI (87) panel D AOI (48)
Average fixation duration (ms) panel K AOI (303.6 ms) window section AOIs (301.1 ms) railway signal AOI (295.0 ms)

Average revisits window section AOIs (44) panel E AOI (34) panel D AOI (29)

Table 5. The departure procedure’s average statistic for train station Dolný Hričov.

Metric Top Three AOI According to Best Values

Average dwell time (%) window section AOIs (44.0%) mirror section AOIs (16.1%) panel E AOI (12.1%)
The average number of fixations window section AOIs (81) panel E AOI (40) panel D AOI (25)
Average fixation duration (ms) mirror section AOIs (698.9 ms) panel I AOI (429.4 ms) panel K AOI (425.9 ms)

Average revisits window section AOIs (22) panel E AOI (13) panel D AOI (12)

3.3. Trial 3—Train Station Bytča

The average amount of time taken for people to enter and exit this railway station was
170 s. As seen in Table 6, the mean duration of the entry process was 100 s and the mean
duration of the exit process was 70 s (Table 7).

Table 6. The arrival procedure’s average statistic for train station Bytča.

Metric Top Three AOI According to Best Values

Average dwell time (%) window section AOIs (54.6%) panel E AOI (12.7%) panel D AOI (8.2%)
The average number of fixations window section AOIs (166) panel E AOI (58) panel D AOI (37)
Average fixation duration (ms) mirror section AOIs (522.8 ms) panel H AOI (315.1 ms) window section AOIs (304.4 ms)

Average revisits window section AOIs (28) panel E AOI (23) panel D AOI (16)

Table 7. The departure procedure’s average statistic for train station Bytča.

Metric Top Three AOI According to Best Values

Average dwell time (%) panel E AOI (36.2%) window section AOIs (32.9%) panel D AOI (10.5%)
The average number of fixations panel E AOI (85) window section AOIs (55) panel D AOI (32)
Average fixation duration (ms) railway signal AOI (428.1 ms) window section AOIs (404.9 ms) mirror section AOIs (403.0 ms)

Average revisits panel E AOI (22) window section AOIs (22) panel D AOI (19)

3.4. Trial 4—Railway Stop Predmier

The mean duration for the arrival and departure operations at this railway station
was 75 s. Table 8 reveals that the average time for the arrival process was 40 s and Table 9
indicates that the average time for the departure process was 35 s.

Table 8. The arrival procedure’s average statistic for railway stop Predmier.

Metric Top Three AOI According to Best Values

Average dwell time (%) window section AOIs (28.0%) panel E AOI (23.2%) panel D AOI (11.9%)
The average number of fixations window section AOIs (40) panel E AOI (35) panel D AOI (19)
Average fixation duration (ms) panel K AOI (428.0 ms) panel F AOI (361.2 ms) panel I AOI (282.1 ms)

Average revisits window section AOIs (11) panel E AOI (11) panel D AOI (11)
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Table 9. The departure procedure’s average statistic for railway stop Predmier.

Metric Top Three AOI According to Best Values

Average dwell time (%) panel E AOI (58.5%) window section AOIs (15.0%) panel D AOI (11.4%)
The average number of fixations panel E AOI (52) window section AOIs (14) panel D AOI (13)
Average fixation duration (ms) panel K AOI (697.4 ms) panel E AOI (364.5 ms) window section AOIs (361.5 ms)

Average revisits panel E AOI (11) window section AOIs (7) panel D AOI (7)

The results of the eye-tracking experiment demonstrate that the most pertinent panels
in the train cabin are panel E (train operating window) and panel D (information concerning
the train’s speed). It is evident that the driver’s attention is differently devoted to the AOIs
(based on dwell time, number of fixations, and revisits) between the arrival and departure
scenarios. During arrival, the driver’s focus is mainly on the front and side windows,
then panel E and panel D; whereas, during the departure, the driver’s attention is mainly
concentrated on panel E.

The train driver stated the following: “Ensuring safety and the safety of others was paid
attention to during the drive by following the rules of the railway, monitoring speed and
the speed of other trains, and being aware of surroundings. The traffic around, including
other trains, track-side objects, and any other objects on the track were monitored, as well as
railway signals, crossings, and any changes in the environment”.

Eye-tracking research revealed that the driver’s gaze was particularly attentive to the
safety elements of the cockpit, and that he was able to quickly and accurately identify the
controls he needed to ensure the safety of the train. Furthermore, the research revealed that
the driver had strong cognitive abilities and was able to quickly and accurately identify the
controls he needed to operate the train.

The disparities between the arrival and departure procedures can be discerned in
the AOI Sequence Chart. This chart displays the temporal order in which the AOIs were
canvassed by the train driver’s line of sight. The colored bars symbolize the individual
AOIs that were perused. The AOIs’ labels are located along the y-axis, while the x-axis
shows the extent of time in milliseconds.

Figure 6 illustrates the average train driver’s gaze trajectory upon nearing a railway
station. On average, nine seconds prior to the train coming to a halt, the driver began
to scrutinize panels F, G, and H (respectively pertaining to the train safety system, the
pressure in the brake system, and other train driving controllers). Just before the train stops
(an average of three seconds prior), the driver surveyed the mirror and side window for
any potential hazards. Finally, one second before the train’s stop, the driver checked the
timetable and compared the actual time to the train’s schedule. What the train driver did
while passengers are getting on and off the train is not part of the measurements.

The Figure 7 AOI sequence chart illustrates the train driver’s operational procedure
during departure. Initially, the driver assessed the automatic speed controller and panels
E and D, alongside his notes pertaining to the upcoming train section. Subsequently, he
surveyed the side window for any potential late passenger boarding, while also analyzing
the panels containing preliminary information concerning train operations and the actual
speed. Following this, the driver inspected the timetable with the train schedule and
information regarding the safety of the train doors. Finally, the train was set in motion, and
the driver’s attention oscillated between panels E/D and the front window, as the arrival
procedure began.
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Figure 6. AOI sequence chart of average arrival procedure to railway stop Predmier.

Figure 7. AOI sequence chart of average departure procedure from railway stop Predmier.

3.5. Comparison of Arrival and Departure Procedures

In the concluding section of the article, we presented particular outcomes from eye-
tracking examinations focused on the train driver conduct during the arrival and departure
operations in railway halts and train stations. It is imperative to appraise the outcomes
from a more comprehensive point of view. Thus, we constructed an overall dataset that
elucidates arrival and departure procedures. The dataset comprises the mean information
from train driver behavior testing during four arrivals and four departures of the train,
repeated during the six train runs at the same track. The average outcomes collaborate
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with data sets from twenty-four assessments for the arrival procedure and twenty-four
assessments for the departure procedure.

During all arrivals at the stations, the driver directed his gaze to the window section
(front window, side windows, and mirrors) for an average of 49.9% dwell time, to the panel
section (29.9% of the dwell time), and to the railway signal section (1.15% of the dwell
time) (see Figure 8). The correlation between the number of fixations on a particular Area
of Interest (AOI) and the dwell time metric was noted. A greater number of fixations on
a certain AOI indicates that the AOIs are more salient (or the AOI content is regularly
fluctuating) and are more perceptible to the driver than others. On the whole, the average
number of fixations on the whole window section was 168.75, on the panel section 108.75,
and on the railway signal section only 4.5. This is likely due to the fact that the scenery on
the main window is constantly changing, and the driver must direct most of his attention
to the window section.

Figure 8. The comparison of the average dwell time between arrival and departure procedures.

The mean fixation time for the AOI displays a range of 119.8 milliseconds (panel I)
to 397.3 milliseconds (mirrors). This variance can be attributed to the varying levels of
complexity between the two stimuli, the buttons of the automatic speed controller (panel
I) being easier to evaluate than the presence of passengers boarding and staying on the
platform (mirrors). This is illustrated in Figure 9.

The ultimate metric is the average revisits, which reflects the number of times the
driver’s gaze has been directed at the specified Area of Interest (AOI) through all trials.
This statistic elucidates the magnitude of importance associated with the designated AOI.
In the context of train arrival procedures, the most common revisits were the front and side
window sections (27).

Various categories of train driver operations are the techniques of leaving the station.
We studied all actions of the train driver in all four departures from two railway halts
and two railway stations throughout the six measurements and established the average
characteristics. During the departure processes, the train driver directed his gaze towards
the window sector for 41.2% of the overall duration, to the control panel section for 56.3%
of the total span, and towards the railway signal sector for 2.2% of the whole period on
average (see Figure 8).

The quantified values of dwell time demonstrate that the locomotive engineer devoted
more attention to the manipulation of the panel than to the surveillance through windows
or mirrors. Upon analyzing the mean number of fixations on the sections, the total window
section had 70.8 and the panel section 107.3, with only five fixations on the railway signal

232



Appl. Sci. 2023, 13, 2437

section. This higher mean figure of fixations on the panel section of the cabin reveals
the requirement to manipulate, control, and operate the panel controls during the train
departure procedure during all trials of the experiment.

Figure 9. The comparison of the average fixation duration between arrival and departure procedures.

Upon assessment of the average fixation time during all train departures, the minimum
average fixation time was 41.5 ms (panel L). The greatest average fixation time of 452.9 ms
was identified on panel K (refer to Figure 9). All the necessary data pertaining to the train
schedule (as a comprehensive train schedule, and arrival and departure times for each stop
at the train section) were situated on panel K. Notations situated on panel L merely served
an informative purpose. Consequently, the average fixation duration was insignificant.
Nevertheless, the timetable located on panel K had a fundamental role in driving and
operating the train; thus, the average fixations were the most prolonged (the cognitive
process when the train driver was deciphering the text content from the timetable).

Investigation of the particular Area of Interest (AOI) during train departures demon-
strated the magnitude of its impact. In the course of the operation on the railway line, the
highest mean values of return visits were observed in the window (front and side win-
dows) region (18.5), Panel E (16.3), and Panel D (13.5). This more detailed analysis enabled
distinguishing the disparities in the driver’s actions in distinct (arrival and departure of
the train) circumstances. Ultimately, it must be affirmed that the employed procedures and
measuring equipment had no influence on the security of the train operations during the
experimentation.

In order to further investigate the patterns of driver behavior during the operation
of a train arriving and departing from a station, we conducted an in-depth analysis of the
activities performed. The aim of the analysis was to identify patterns of train operation
based on the test subject’s fixations on objects in the cab and around the train. The
initial analysis showed a high degree of fragmentation of the train operator’s views on
the different panels in the train cab, so we decided to generalize the areas of interest to
the following:

• Front window, which will include everything in the driver’s view in front of the train
cab (AOI: A—Front Window and C—Railway signals)

• Side windows, which will contain everything in view to the right and left of the train
cab (AOI: A—Left and right windows, B—Left and right mirrors)
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• Control panels, which contains the set of control panels in the train cab (all panels in
the train cab. AOI: panel D to panel M)

• White space, representing the fixation of the train driver on the area outside our
investigation.

We analyzed the average values of fixations on our defined regions of interest obtained
during the six measurements in each station. The length of fixations on each region of interest
over time shows the pattern of cognitive actions of the train driver during the arrival and
departure of the train from the stations and railway stops. Stations and railway stops are
marked in figures as A “railway stop Predmier”, B “station Dolný Hričov”, C “railway
stop Horný Hričov” and D “station Bytča”. We also normalized the length of the analyzed
processes and took into account the activities that took place 35 s before the train stopped in
the station and 35 s after the train left the station.

In Figure 10, it is possible to identify the behavior of the driver when the train arrives
at the station. The operations performed by the train driver can be divided into three
phases. In the initial phases, the driver’s gaze is directed to the situation of what is in front
of the train, i.e., the Front Window area. In the middle phase, the driver alternates his
attention between the Front window and the Control panels. The driver starts to check
the real speed and braking status of the train with the instruments located in the Control
panels area. There is a sequence of rapid saccades between the Front window and the
Control panels. In the final phase, the driver monitors the situation on the sides of the train
through the side windows and mirrors (AOI Side windows). He also focuses his vision on
the Control panels area, where he checks the full stop status of the train. Again, a sequence
of fast saccades between Control panels and Side windows can be identified.

 

Figure 10. Analysis of fixations during train arrival at the station.
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Figure 11 shows the flow of procedures that the train driver performs when leaving
the station. In principle, they can be divided into 2 phases, depending on the speed of the
train and the distance from the station. In the initial phase, a visual check of the situation
on the side of the train (platform) takes place, as the train driver’s gaze is directed to the
Side windows area, and only after the train has started to move does the driver also focus
his attention on the Control panels area. At this stage it is possible to identify a significant
length of eye fixation on the monitored area of interest. In the second part of the process of
the train leaving the station, the tracking of the situation in front of the train starts. It is
possible to identify frequent alternation of the driver’s gaze between the Control panels
and the Front window. The train at this point is already completely outside the station
environment.

 

Figure 11. Analysis of fixations during train departure from the station or a railway stop.

Examining the duration of fixations during the arrival and departure of a train from the
station provides us with a unique perspective on driver behavior. Oftentimes, fixations are
a means of extracting information, and longer fixations indicate a more complex cognitive
process. On average, fixations last 200–300 ms. Analyzing the average fixation durations
(see Figure 12), the highest values are seen in the Side windows area. This is likely due to
the increased rate of movement in the vicinity of the train during its arrival and departure.
When the train arrives at the station (Figure 12A1–D1), the Frontal window area of interest
(AOI) has a higher fixation length value than the Control panels, as identifying potential
hazards in front of the train is of utmost importance. Conversely, when the train departs the
station (Figure 12A2–D2), the Control panels gain more attention than the Frontal Window,
as the train driver needs to interact with the train controls in order to set the train in motion.
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Figure 12. Analysis of the length of fixations at the AOI during the arrival and departure of the train
from the station or from the railway stop.

3.6. In-Depth Interview

The eye-tracking measurement was additionally complemented by an in-depth inter-
view with the driver. The conclusions of this interview are as follows:

The train driver stated: “Ensuring safety and the safety of others was paid attention to
during the drive by following the rules of the railway, monitoring speed and the speed of
other trains, and being aware of surroundings. The traffic around, including other trains,
track-side objects, and any other objects on the track were monitored, as well as railway
signals, crossings, and any changes in the environment”.

Each railway operative must develop and adhere to comprehensive protocols and rou-
tines derived from their own experiences and conduct, which can be time consuming and
costly as well as encouraging the acquisition of substandard railway operating behaviors
and precipitating hazardous situations and collisions.

To sum it up, eye-tracking research revealed that the driver’s gaze was particularly
attentive to the safety elements of the cockpit, and that he was able to quickly and accurately
identify the controls he needed to ensure the safety of the train. Furthermore, the research
revealed that the driver had strong cognitive abilities and was able to quickly and accurately
identify the controls he needed to operate the train.

4. Discussion

Sustainable security in rail transportation systems is a critical issue, directly impacting
the sustainability of the entire rail transport sector. To mitigate the increasing number of
tragic railway accidents, train operators and infrastructural providers must implement
various signaling and train protection systems. According to Edkins and Pollock’s research
on railway traffic accidents, the behavior of train drivers is the most significant factor [19]. In
our research, we employed user testing with eye-tracking technology to study the activities
and behavior of drivers in real traffic conditions. This innovative method has great potential
for future use in the railway sector. The results of the measurement of the train driver’s
actions can be utilized to better comprehend the driver’s work and to recognize beneficial
practices and skills. As Lorenz’s work stipulates, recognizing route knowledge and sharing
it with other drivers is essential for enhancing railway safety [20].
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The aforementioned measurement and its outcomes provide evidence of the authors’
research into railway safety. The investigation was conducted by a highly experienced driver,
with an impeccable safety record, in real-world conditions, on a genuine track, with passengers
on board (not in a simulated environment). This experiment confirmed the proof of concept
and validated the methods and methodology in actual operation. We have identified a set
of driver attention sequences that are applicable to different types of rail stations, which we
consider to be the best practice based on the extensive practical experience of train drivers.
Additionally, we are exploring the importance of the interior equipment (panels) in the train
cabin for the driver during the arrival and departure of the train. This level of significance
is reflected in the average dwelling time and the average duration of the driver’s gaze on
a particular panel. During the aforementioned train operations, the cognitive process of
the driver was measured by the average time spent fixating on a specific panel within the
cabin. By comparing the average data collected in the arrival and departure procedures,
we have been able to demonstrate the various levels of importance of the panels and the
duration of the driver’s cognitive processes. All these results will be used as a reference for
further research.

Research Limitations of this study can be summed as following:

• The number of participants limits the study. Although we conducted the measurement
six times, we had only one participant. Increasing the number of participants can help
ensure better validity and reliability of the research results.

• The study was conducted on only two train stations and two railway stops, which
may limit the generalizability of the results.

• The study used eye-tracking methodology, which is limited to visual attention and
may not capture all aspects of the driver’s cognitive processes.

• The methodology and technology may not be applicable to all railway systems, and
further research is needed to assess its applicability in different systems.

Future research in our field of driver activity measurement (as seen in other modes of
transport [26–32]) will involve the following stages:

• Testing the behavior, attentiveness and activity of drivers in an anomalous work
environment through the implementation of eye-tracking technology and comparing
the results to a reference benchmark established by the experiment.

• Exploring the activities of various driver profiles and collecting and classifying data
regarding their psychological characteristics, capabilities and experiences through a
combination of eye-tracking and electroencephalography (EEG) technology.

• Revising existing teaching approaches for novice train drivers and devising novel
methods of assessing train driver skills.

• Disseminating the “route knowledge” of experienced train drivers to rookie drivers or
novices with a particular focus on the attention sequences in the train cabin.

Verification of the efficacy of the proof of concept and validation of the techniques and
methods in actual operation should proceed in forthcoming research with experimentally
altered internal (inside the cabin) and external (climatic, luminous) circumstances, with
various competent and experienced drivers’ operation circumstances. The upcoming
research offers numerous new chances and should result in examination for a superior
comprehension of the driver’s means of operating and amplify the railway transport
system’s sustainability and security.
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Abstract: Studies on contrast sensitivity (CS) testing using optokinetic nystagmus (OKN) proposed
adjusting the stimulus presentation duration based on its contrast, to increase the time efficiency
of such measurement. Furthermore, stimulus-specific limits of the least OKN gain might reduce
false negatives in OKN detection procedures. Therefore, we aimed to test the effects of various
stimulus characteristics on OKN and to propose the stimulus-specific limits for the OKN gain and
stimulus presentation duration. We tested the effect of contrast (C), spatial frequency (SF), and
color on selected parameters of robust OKN response, namely its onset and offset time, amplitude,
and gain. The right eyes of fifteen emmetropes were tracked with an infrared eye tracker during
monocular observations of sinusoidal gratings moving over the horizontal plane with a velocity of
(21 °/s). The available contrast levels were C: 0.5%, 2.0%, 8.2%, 16.5%, 33.0%, and 55.5% presented in
a random order for ten times in all measurements of SF: 0.12, 0.25, 0.5, and 1.00 cycles per degree
and grating type: luminance, red-green, and blue-yellow. This study showed a significant effect of
the stimulus characteristics on the OKN onset, offset and gain. The effect of SF was insignificant
in OKN amplitude; however, it indicated significance for the C and grating type. Furthermore, the
OKN gain and offset limits were proposed as functions of contrast for the luminance and chromatic
gratings. This study concludes the characteristics of a visual stimulus have an effect on the OKN gain
and onset and offset time, yet do not affect the eye-movement amplitude considerably. Moreover,
the proposed limits are expected to improve the time efficiency and eye-movement detection in
OKN-based contrast sensitivity measurements.

Keywords: eye tracking; detection; optokinetic nystagmus; contrast sensitivity; color; adjustments

1. Introduction

Measurements of contrast sensitivity (CS) provide an insight into the patient’s visual
performance and its examination is necessary in the detection of various eye diseases, for
example glaucoma [1], cataracts [2], retinal diseases [3], or in measurements of the perfor-
mance of amblyopia treatment [4]. Furthermore, the color (or chromatic) contrast sensitivity
(CCS) was proposed as an extension of a classical CS to color vision [5], which has been
assessed using eye movements recently as well [6]. Because the measurements of CS are
performed in the clinical practice in a subjective way, the already commenced research
searches for possible objective measurements. In order to gain objective information
about the patient’s visual performance, various types of eye movements such as microsac-
cades [7–10], smooth pursuit eye movements [11], optokinetic nystagmus (OKN) [6,12–14],
or reflexive (reactive) saccades [15] have been used in the past. Moreover, it has been stated
that performing eye movement-based tests for appraisal of visual performance may help
examine non-communicative participants [11]. Here, the current study was focused on the
OKN—a reflexive eye movement occurring in instances of a moving scenario observation.

This eye movement consists of two phases, first a slow phase (OKN-SP) respecting
the direction of a moving scenario, followed by a quick phase (OKN-QP), occurring in a
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saccade-like fashion in the direction against the stimulus. Although the previous research
showed the OKN-QP to be in a similar velocity range compared to normal saccades [16], no
attentional input was found to be a trigger of the OKN-QP and therefore the statement of
OKN-QP to be same as normal saccades was not supported [17]. Nonetheless, the velocity-
based algorithms for saccade detection [18] were successfully implemented [14,19].

Since the OKN occurrence is dependent on contrast and spatial frequency of a target, pre-
vious studies proposed this type of eye movement as a reliable tool for CS appraisal [13,14,19],
although the contrast sensitivity functions (CSFs) were shown to be shifted over the x-axis
to the left due to the velocity of a moving target [20]. In OKN-based CS measurements,
the CSFs were shown to correlate with a subjective judgment of the direction the visual
stimulus moved in [13] or were shown to be tending toward lower values in conditions
of defocused vision, especially in measurements of higher spatial frequencies [14]. This
effect was considered a successful replication of the clinical measurements of CS under
defocus, as shown in some previous works [21–23]. Moreover, Tatiyosyan et al. performed
a CS appraisal using a VR headset and simulated low-vision conditions [19]. On top of
that, the previous research showed a possible implementation of adaptive psychometric
procedures in methods of searching for the contrast thresholds for future creation of OKN-
based CSFs, making the testing adaptive and time-efficient, but requiring advanced skills
in programming [14].

In this context, another way to possibly increase the time efficiency of the OKN-based
CS testing might be useful, while avoiding the already established live-detection method.
To reach this aim, we targeted the optimization of the stimulus presentation duration based
on its parameters: SF, C, and type (luminance/chromatic). The rationale of this idea is an
early finding of OKN onset time (starting time of the 1st OKN-QP) to be dependent on the
contrast level in a low-speed drifting grating, showing a faster onset (shorter latency) with
increasing contrast [24]. In the current study, we re-tested this effect and as the stimulus
duration limit based on its parameters was sought, we also examined the offset time of the
robust OKN response (two OKN movements occurring in the respective direction to the
direction of the moving stimulus [14,25]) for visual stimuli of various spatial frequencies,
contrast levels, and types. Here the OKN offset time was defined as the ending time of the
third OKN-QP.

Moreover, some of the already established procedures for OKN detection use the least
OKN gain to successfully detect the eye movement event [13,14]. This approach might,
however, lead to events of false-negative detection (no OKN detected, although there was
a visible OKN pattern) when using just one fixed parameter. As suggested in the previous
work [14], using detection limits for the OKN gain based on the stimulus parameters might
be a possible solution. The motivation behind this idea is the finding of Rinner et al., who
found a linear correlation between the OKN gain and the contrast on a log C scale [26] in
a zebrafish model. In the current study, we aimed to replicate this effect in emmetropic
participants tested with visual stimuli of various C, SF, and types.

The last parameter of the robust OKN eye movement we evaluated with respect to
the visual stimulus parameters was the OKN-SP amplitude. Here the analysis of the OKN
amplitude was performed for all parameters of the visual stimulus used in the current
study, first for its potential influence on the robust OKN offset time and second to complete
the range of the eye movement parameters presented in the current study. As the study
aimed to test the effects of chromatic gratings and also to propose the limits for the OKN
gain and the presentation duration for such kinds of visual stimuli, two chromatic gratings
were used in addition to the luminance grating. The two chromatic gratings were red-green
(R-G) and blue-yellow (B-Y) presented in the same range of spatial frequencies and contrast
levels as the luminance stimulus. These color combinations were used first because they
have been already used in several works in the past [5,27–29] and to accommodate clinical
measurements. Moreover, as it was already performed in previous works, the data were
collected under monocular stimulation conditions [10,14], performing by patching one eye
with an infra-red filter. This approach was used to follow clinical conditions for contrast
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sensitivity testing, without having a significant impact on the eye-tracking quality, while
gaining the information from both eyes [10].

2. Materials and Methods

2.1. Participants

Fifteen emmetropic participants with a mean age of 24.7± 3 (4 male and 11 female), par-
ticipated in the current study. We considered emmetropia as a refractive error smaller than
±0.5 D in spherical equivalent of their tested (right) eye, measured by the wavefront-based
autorefraction (ZEISS i.Profiler plus, Carl Zeiss Vision, Aalen, Germany). All participants
had a negative history of ocular, systemic, or neurological disease, amblyopia, or trauma.
Prior to the testing, all participants underwent a standard color testing using the 24-plate
Ishihara test (Kanehara Trading Inc., Tokyo, Japan) in order to guarantee no abnormalities
in the tested group. Furthermore, to consider a comparable level of tiredness in every
subject in the two measurement sessions we conducted, the pause between measurements
was exactly one week in all subjects, with the same starting time of the two experimental
parts. The study protocol followed the Declaration of Helsinki. In addition, the study was
approved by the ethics committee of the Faculty of Medicine of the University Tuebingen
(Institutional Review Board number: 881/2017B02), and signed informed consent was
obtained from all participants prior to the experiment. All recruited participants were
students of the University of Tuebingen and were financially reimbursed for taking part in
the experiment.

2.2. Visual Stimulus and Eye Tracking

For the OKN stimulation, we used a vertically oriented sinusoidal grating drifting
over the horizontal plane with a constant velocity of v = 21 °/s, which was comparable
to a previous work focused on contrast sensitivity using OKN [30]. Because no clear
effect of the gain of OKN has been found between the two horizontal directions [31],
the grating drifted either nasally or temporally in a random order, in an equal number
of trials. The stimuli were created in MATLAB (MATLAB2018b; MathWorks, Natick,
MA, USA) using the Psychtoolbox-3 extension [32,33] and covered the entire Viewpixx
screen (VIEWPixx; VPixx Technologies Inc., Saint Bruno, Quebec, Canada), refreshing
at a rate of 120 Hz. Because the screen provided a resolution of 1920 × 1200 pixels with
a pixel pitch of 0.252 mm, the covered visual field from the viewing distance of 75 cm
was ≈ 36° and ≈ 23° in the horizontal and vertical planes, respectively. Furthermore,
the screen provided a bit depth of 12 bits, and the luminance nonlinearity was corrected via
gamma correction. The spatial frequencies (SFs) calculated for the observing distance were
SF = 0.12, 0.25, 0.5, 1.0 cycles per degree (cpd). These were selected for their relevance,
considering the velocity of the stimulus [20]. The contrast of the stimulus for each trial
was randomly selected from the 6 available levels (0.5%, 2.0%, 8.2%, 16.5%, 33.0%, 55.5%),
while every contrast level was always presented ten times in every measurement defined
by the SF and the grating type (luminance, R-G, B-Y). These contrast levels were selected
upon consideration that this range was relevant in contrast sensitivity testing. The motion
of the contrast stimulus was aborted at time t = 2 s after stimulus onset. After every
presentation of the stimulus, a gray cross of 1.25° in size appeared in the center of the screen
for t = 4 s, while during its presentation the participants were asked to blink and rest their
vision. During the presentation of the stimulus, the participants were instructed to fixate
on the center of the stimulus to stimulate the stare OKN, as performed in previous studies
examining CS with OKN [13,14]. The workflow of the stimulus with all its phases is shown
in the Figure 1.
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Figure 1. The workflow of the stimulus presentation consisted of the following phases.

Because the current study targeted testing of the effects in normal and chromatic visual
stimuli, three types of sinusoidal gratings were used. The first grating was a commonly used
sinusoidal luminance grating for standard contrast sensitivity measurements. Secondly,
we used two chromatic gratings (R-G and B-Y), following previous studies [5,27,28,30,34],
as shown on the Figure 2. Here, the chromatic gratings of the R-G or B-Y modulation were
created as the sum of red and green or blue and yellow luminance-modulated monochro-
matic gratings with a phase difference of 180° between them. The nature of the three
gratings was such that the luminance grating converged towards a gray value of the back-
ground (middle gray value), whereas the chromatic gratings converged towards black,
with decreasing contrast as depicted in the Figure 2. We used the convergence to the middle
grey value in the luminance target as we aimed to use an iso-luminant stimulus. In the
chromatic stimuli, this approach was not applicable, as even the low-contrast stimuli would
have elicited the eye movement by the respective color difference. For this reason, we
let the gratings converge towards black. The color gratings were created with the use of
a predefined color lookup table computed for the gamma correction, similarly as done
by Neumann et al. [35] for cone-specific stimuli. Furthermore, the standard luminosity
function v(λ) functioned as the baseline for the monitor calibration.

The eye-tracking was performed in a head-fixed condition, using the EyeLink 1000
Plus eye tracker (SR Research, Kanata, ON, Canada) with a fixed sampling rate of 1000 Hz.
All data have been captured under monocular stimulation conditions to follow clinical
measurements of CS. Here the left eye was covered by an IR filter (ePlastics, San Diego,
CA, USA) with a transmission of T > 90% for λ > 800 ms, allowing tracking of both eyes
while presenting the stimulus only to the right eye. Furthermore, this filter was shown
not to significantly affect the eye-tracking quality [10] and was used in OKN-based CS
measurements before [14]. Prior to every measurement, a nine-point calibration procedure
of the eye tracker was performed. All data collection has been performed in a testing
laboratory while the lights were switched off.

Figure 2. The visual stimuli shown in the contrast levels used in the current study (0.5%, 2.0%, 8.2%,
16.5%, 33.0%, 55.5%) for the luminance as well as for the two chromatic gratings.
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2.3. Data Analysis

The data of the tested (right) eye of all participants were treated manually in an offline
way with the following steps. First, we sought the trials in which a robust OKN response was
visible (at least two OKN patterns) [14,25] that occurred in the correct direction, respectively
to the direction of the stimulus drift. An example of such a sequence containing a robust
OKN response is depicted in Figure 3. These filtered sequences of gaze data were labeled by
a combination of a subject, spatial frequency, grating type, and the contrast level, separately
for the ten repetitions of every contrast level. Prior to the gaze data analysis, blinks (epochs
of the missing pupil) were discarded with a buffer of 50 ms to protect our analysis from
potential blink-related artifacts. From every data sequence we derived the onset and offset
time of the OKN, the gain, and amplitude as follows. The starting time of the first OKN-QP
was considered as the OKN onset time, as done in a previous study [24]. Here the OKN
gain was calculated as the average ratio of the OKN-SP and the velocity of the stimulus
of the two consequent OKN patterns. Next, the amplitude of the OKN was calculated as
the average distance the eye had traveled in the two OKN-SPs of the two consequent OKN
patterns. Next, the OKN offset time was determined as the ending time point of the third
OKN-QP. Finally, we calculated the average value of the respective parameter for every
combination of a participant, spatial frequency, grating type, and contrast level across the
ten repetitions of the contrast-specific stimulus. For the analysis of the OKN parameters, we
used the first two OKN events as depicted in Figure 3, first in order to have a comparable
amount of data across conditions and second to provide the two limits for the robust OKN
response, since this has been considered in the past [14,25].

Figure 3. (A) OKN pattern for one typical subject for the 2 s grating presentation. Please note that we
analyzed the data of the first two OKN patterns (up to the 3rd OKN-QP). Here the numbers 1 to 6
represent the following time points. (1) onset time of the OKN, (2) start time of the 1st OKN-SP (end
time of the 1st OKN-QP), (3) start time of the 2nd OKN-QP (end time of the 1st OKN-SP), (4) start
time of the 2nd OKN-SP (end time of the 2nd OKN-QP), (5) start time of the 3rd OKN-QP (end time
of the 2nd OKN-SP), and (6) end time of the 3rd OKN-QP. The green area represents the gaze data
used for the analysis (first two OKN events). (B) The derived horizontal eye velocity.

The statistical analysis was conducted using linear mixed-effects models with the
statistics software JMP (JMP®, Version 16. SAS Institute Inc., Cary, NC, USA, 1989–2022)
in order to analyze the significance of the effects of the visual stimulus parameters on the
OKN onset, offset, amplitude, and gain. We run a single model for every of the tested OKN
parameter, where the corresponding parameter acted as a dependent variable, with the
participant as a random effect and three fixed effects: spatial frequency, grating type, and the
contrast level. The selected method of all these models was the standard least squares.
The variables of subject number, spatial frequency, grating type, and the contrast level were
set as nominal with the respective OKN parameter (onset, offset, gain, amplitude) as a

245



Appl. Sci. 2022, 12, 11991

continuous variable. Prior to utilizing the results of the models, we verified the model by
visual inspection of the normality of the distribution of the residuals, as well as by statistical
testing the homoscedasticity of the variances of residuals using the Brown–Forsythe test
and reported in cases of violation. The significance level was set to α = 5%.

Furthermore, because the aim of the current study was to propose the visual stimulus-
specific limits for the OKN gain (threshold of the least gain of an OKN-SP considered in eye
movement detection procedures) and the OKN offset time (the limit for the visual stimulus
presentation duration), we first calculated the respective percentiles from the respective
data sets. Because the limit for the OKN gain is considered as the least relative OKN-SP
velocity to the stimulus velocity, the eye movement has to yield to be detected, we sought
the 5th percentile values. In contrast to that, because we considered the OKN offset time as
the maximum duration of the visual stimulus presentation, the 95th percentile was sought.

On top of that, for possible application of these limits to a larger population, we
applied the respective percentile levels on the inverse cumulative distribution function
(iCDF) given for our data. This approach consisted first of searching for the appropriate
distribution model of the offset and gain values for the corresponding parameters of visual
stimuli using the f itmethis function. in the MATLAB environment. Here the distribution
model with the lowest AIC coefficient was applied. Moreover, we created arrays of rational
numbers (for the OKN gain we set bounds to 0 and 1, and for OKN offset 200 ms and
2000 ms). Last, we applied the iCDF derived from our original data on the array values
and sought the respective percentile levels applied in testing the OKN gain and offset once
again in order to get the distribution-based limit values.

3. Results

3.1. Onset and Offset Time of the OKN

In a previous study the influence of contrast and spatial frequency of the OKN onset
time was already tested, showing a shorter latency with increasing contrast level and sug-
gesting adjusting the stimulus presentation time upon the parameters of the stimulus [24].
Here in the current study, we aimed to replicate this effect for a grating of a higher velocity
as well as for other grating types. To get the first insight we show a box plot (Figure 4),
containing combined data of all subjects for the three gratings as an example of one spatial
frequency. Here the expected trend was confirmed and thus replicated the effect of the
contrast–onset relationship for a higher visual stimulus velocity.

In testing the OKN onset time, the linear mixed-effects model (n = 1037; R2 = 0.72)
revealed significant effects of SF (F(3,1012) = 35.32; p < 0.0001), color (F(2,1012) = 31.84;
p < 0.0001) and contrast (F(5,1012) = 192.97; p < 0.0001) on the the onset time.

Figure 4. Box plots of the OKN onset time are shown as a function of contrast for the three gratings
(luminance, R-G, B-Y) as an example of one spatial frequency (SF = 0.12 cpd). The circle and the
asterisk indentify outliers, while the circle denotes a “standard out”, considered a value laying outside
the 3rd quartile + 1.5*interquartile range or 1st quartile – 1.5*interquartile range; and asterisk denotes
a “far out” value, considered a value laying outside the 3rd quartile + 3*interquartile range or 1st
quartile - 3*interquartile range; The respective number is the indentifier (observation in the data set).
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In testing the OKN offset time (box plot shown in Figure 5), the linear mixed-effects
model (n = 1037; R2 = 0.70) revealed significant effects of SF (F(3,1012) = 48.10; p < 0.0001),
color (F(2,1012) = 74.89; p < 0.0001), and contrast (F(5,1012) = 152.48; p < 0.0001) on the
offset time.

Figure 5. Box plots of the OKN offset time are shown as a function of contrast for the three gratings
(luminance, R-G, B-Y) as an example of one spatial frequency (SF = 0.12 cpd). The circle and the
asterisk indentify outliers, while the circle denotes a “standard out”, considered a value laying outside
the 3rd quartile + 1.5*interquartile range or 1st quartile – 1.5*interquartile range; and asterisk denotes
a “far out” value, considered a value laying outside the 3rd quartile + 3*interquartile range or 1st
quartile - 3*interquartile range; The respective number is the indentifier (observation in the data set).

At the last point, we report the violation of homoscedasticity of the residuals in cases of
testing both, the OKN onset and offset time, as the Brown–Forsythe test revealed statistical
significance. Please note that the problem of heteroscedasticity of the residuals is discussed
below in the respective section.

3.2. Amplitude of OKN

The linear mixed-effects model (n = 1037; R2 = 0.60) revealed an insignificant effect
of SF (F(3,1012) = 2.08; p = 0.1). Grating type and contrast showed significant effects as
(F(2,1012) = 10.50; p < 0.0001) and (F(5,1012) = 4.09; p = 0.0011), respectively. The box
plot showing the change in OKN-SP amplitude over the used contrast levels is shown in
Figure 6.

Figure 6. Box plots of the OKN-SP amplitude are shown as a function of contrast for the three
gratings (luminance, R-G, B-Y) as an example of one spatial frequency (SF = 0.12 cpd). The circle and
the asterisk indentify outliers, while the circle denotes a “standard out”, considered a value laying
outside the 3rd quartile + 1.5*interquartile range or 1st quartile – 1.5*interquartile range; and asterisk
denotes a “far out” value, considered a value laying outside the 3rd quartile + 3*interquartile range
or 1st quartile - 3*interquartile range; The respective number is the indentifier (observation in the
data set).
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3.3. Gain of the OKN-SP

On the one hand, the OKN gain obtained for the luminance stimulus showed a
continuous increase with increasing contrast levels. On the other hand, the OKN gain
showed saturation for the chromatic stimuli for contrast levels higher than 2%, while
generally the gain was found to be higher for the two chromatic stimuli, compared to the
luminance grating. Here the linear mixed-effects model (n = 1037; R2 = 0.62) revealed
significant effects of SF (F(3,1012) = 16.15; p < 0.0001), color (F(2,1012) = 81.85; p < 0.0001),
and contrast (F(5,1012) = 50.70; p < 0.0001) on the OKN-SP gain. The box plot (Figure 7)
shows the OKN-SP gain over the range of contrast levels.

Figure 7. Box plots of the OKN gain are shown as a function of contrast for the three gratings
(luminance, R-G, B-Y) as an example of one spatial frequency (SF = 0.12 cpd). The circle and the
asterisk indentify outliers, while the circle denotes a “standard out”, considered a value laying outside
the 3rd quartile + 1.5*interquartile range or 1st quartile – 1.5*interquartile range; and asterisk denotes
a “far out” value, considered a value laying outside the 3rd quartile + 3*interquartile range or 1st
quartile - 3*interquartile range; The respective number is the indentifier (observation in the data set).

3.4. Visual Stimulus-Related Limits of the OKN Gain and Offset Time

Besides providing the statistical testing for the potential influence of various parame-
ters of the visual stimulus on the selected OKN parameters, the target of the current study
was to suggest adjusted limit values for the grating presentation time (offset of the robust
OKN response) and for the OKN detection procedure (gain of the OKN-SP).

First, although the spatial frequency revealed a statistically significant effect on both
the offset and gain, the clinical relevance was due to its low difference being considered to
be negligible, as shown in the tables below (Tables 1 and 2) for the three gratings. Second,
following an earlier suggestion [14], we propose the limits for every individual contrast
level and grating type, combining all spatial frequencies for each of them. Furthermore,
the proposed limits for the two chromatic gratings (R-G and B-Y) are shown in a combined
way as well as the post hoc Tukey’s test revealed an insignificant effect of the two different
chromatic gratings on the significance level of α = 5%. Finally, the proposed limits for
the OKN offset and gain, derived in two described ways (percentile levels applied once
directly to the data and once to the iCDF), are depicted in Figure 8.

Table 1. Median (mean ± SD) of the OKN gain values were calculated over all subjects and contrast
levels, individually for the three gratings and the four spatial frequencies.

– SF = 0.12 cpd SF = 0.25 cpd SF = 0.5 cpd SF = 1 cpd

C1 (luminance) 0.33 (0.36 ± 0.15) 0.38 (0.4 ± 0.15) 0.44 (0.44 ± 0.13) 0.39 (0.41 ± 0.15)
C2 (R-G) 0.49 (0.48 ± 0.14) 0.5 (0.5 ± 0.15) 0.5 (0.5 ± 0.12) 0.45 (0.44 ± 0.13)
C3 (B-Y) 0.48 (0.48 ± 0.18) 0.48 (0.47 ± 0.14) 0.51 (0.48 ± 0.14) 0.48 (0.46 ± 0.14)
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Table 2. Median (mean ± SD) of the OKN offset time values were calculated over all subjects and
contrast levels, individually for the three gratings and the four spatial frequencies. All values in the
table are provided in ms.

– SF = 0.12 cpd SF = 0.25 cpd SF = 0.5 cpd SF = 1 cpd

C1 (luminance) 1077 (1114 ± 250) 1022 (1070 ± 267) 999 (1031 ± 234) 1036 (1066 ± 231)
C2 (R-G) 963 (987 ± 204) 892 (926 ± 172) 868 (937 ± 200) 949 (1041 ± 265)
C3 (B-Y) 952 (973 ± 180) 894 (925 ± 152) 908 (972 ± 200) 1010 (1080 ± 262)

Figure 8. Proposed limits as a function of contrast for the luminance and chromatic gratings.

4. Discussion

The current study aimed to test the effects of contrast, spatial frequency, and grating
type on four selected OKN parameters, namely the onset and offset time, amplitude,
and gain. Furthermore, the current study aimed to propose limits for optimized contrast
sensitivity testing using the OKN responses. In this context, the OKN offset time limit was
ratiocinated to be used as a maximum grating presentation time in OKN-based contrast
sensitivity testing to increase the time efficiency of such measurement [24], while avoiding
any live-detection procedure [14]. Second, we aimed to propose limits of the OKN gain
based on parameters of the visual stimulus targeting prevention from false negative eye
movement detection [14].

In a previous work investigating the relationship of the OKN onset time and con-
trast [24], the resulting function showed shorter latency with increasing contrast level as
well. Here a latency range from approximately 361 to 525 ms for contrast levels ranging
from 58% to 0.1% in low-speed stimuli (2.5 deg/s) was found. In the current study, we
confirmed this trend for luminance as well as the R-G and B-Y gratings drifting with a
higher velocity. In contrast to a previous study [24], we found a statistically significant
effect of the spatial frequency. This could be first due to a different velocity and range of
spatial frequencies of the grating used in the current study. More importantly, however,
we used linear mixed-effects models for the statistical evaluation considering the nature
of our data. As the models have been violated by the heteroscedasticity of the variance of
residuals, we consider a potential effect on the statistical results, although a previous study
allows such statistical testing even with the residuals being heteroscedastic [36]. Similarly
to the dependence of the OKN onset time on contrast, this effect can also be observed for the
onset (latency) of other types of eye movements as microsaccades [7] or reflexive (reactive)
saccades [37,38]. Furthermore, the relative eye velocity to the target velocity in smooth
pursuit eye movements was found to be higher in contrast-rich stimuli [39]. The described
contrast dependence can be attributed to the higher recognizability of the stimulus due
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to the increase in contrast [38]. Moreover, comparing the onset time of OKN stimulated
by the two types of our grating, the two chromatic gratings yield a faster OKN response
faster compared to the luminance visual stimulus. As the relative-to-fixation sensitivity
for chromatic gratings in smooth-pursuit eye movements was previously shown to be
increased compared to a luminance grating, ref. [30], the authors assume faster OKN onset
due to the enhanced sensitivity in the initial tracking phase (before the first OKN-QP).

Similarly, the offset time of OKN, defined as the end time of the third OKN-QP (end of
the robust OKN response [14,25]) was found to be influenced by the contrast of our visual
stimuli as well, following a comparable trend function to the OKN onset time. Here the
spatial frequency and color showed a statistical significance and, as with the OKN onset
time, the linear model for statistical analysis contained heteroscedasticity of variance of
the residuals. Interestingly, although the trend of the offset time over the tested contrast
levels has been found to be similar to the onset time, the visually inspected standard
deviation was found to be bigger in the offset time. This effect could be due to the unequal
amplitude in every OKN pattern. Furthermore, similarly to the onset time, the offset time
of the OKN stimulated by the two chromatic gratings was found to be shorter compared
to the luminance visual stimulus. We consider the reason for this effect to be enhanced
sensitivity during the tracking phases in stimulation with chromatic stimuli, resulting in
higher gain [30]. Furthermore, we found the amplitude of the OKN-SPs and the OKN
gain to be influenced by the grating type (chromatic or luminance), both having generally
higher values in simulations with the chromatic visual stimuli.

In terms of the OKN amplitude, Wang et al. found a trend of saturation in the
OKN amplitude for grating beyond a luminance of 2 × 10−5cd/m2 in one defined spatial
frequency (0.1 cpd) [40] in scotopically simulated OKN. In comparison to this study, we
found a similar trend in stimulation with the luminance as well as with the two chromatic
gratings, giving the first evidence the eye movement amplitude is influenced by contrast
only in the low-contrast range.

The gain of the OKN showed an expected trend of increasing its value with increas-
ing contrast of a visual stimulus. However, this effect was already shown in the past,
for an animal (zebra-fish) model [26]. In addition, the current study supports the result of
Rinner et al. [26] of spatial frequency having an impact on the OKN gain, although both
studies provide only an initial evidence. In this context, the authors suggest further investi-
gations, as all the selected spatial frequencies in the current study were around the peak of
the expected CS function for the selected stimulus velocity [20]. Furthermore, the OKN
gain obtained for the stimulation with chromatic gratings showed saturation for contrast
levels higher than 2%, while generally in visual inspection the gain was found to be higher
for the two chromatic stimuli compared to the luminance grating. We expect this effect to
originate in the enhanced sensitivity for chromatic targets, as already addressed [30].

In further connection to the previous research, the OKN gain has not only been found
to be a function of contrast or spatial frequency but was also found to be dependent on the
size of the simulating area on the retina, indicating a possibility to use the OKN gain in
investigations of visual field loss [41].

Equally important to the statistical testing of the effect of various stimulus parameters
on selected parameters of the OKN eye movement, this study proposes limits, allowing
optimized OKN-based contrast sensitivity testing. As an example of the potential effect of
the stimulus duration limitation, one measurement of one SF consisting of ten presentations
of the six contrast levels from this study, each lasting for 2 s, would result in a 120 s long
measurement, whereas in utilization of the proposed limits the duration of the test will
be reduced by approximately 33%, considering equal testing of high and low contrast
levels. However, since the equal amount of presentations of low and high contrast levels
is not expected in a clinical testing of a healthy patient, conducting the test rather in a
low-contrast range, the method of the adjusted presentation duration upon the stimulus
contrast might be even more relevant. The respective limits for the OKN offset time and
gain have been derived as percentiles (95th and 5th, respectively), as the data did not follow
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a normal distribution. In the OKN offset time limit proposal (Figure 8) an unexpected trend
occurred in the stimulation of luminance grating (offset in the C = 55% is delayed compared
to the C = 33%). We assume that this effect might come from the selected percentile levels
we used for the analysis, as the related box plots (Figure 5) show a continuous trend.
Furthermore, this unexpected tail in the contrast–offset function was reduced when using
the data distribution approach, making this effect negligible for clinical implementation.
Nonetheless, we assume that utilization of such a limit approach could be helpful also
in the future examinations of CS using OKN responses in VR environment [19] or other
mobile devices with sufficient eye-tracking quality [42].

As the last point, the authors aim to report the limitations of the current study.
First, since a wide range of velocities for the stimulus movement has been used in the
past [6,13,14,30,43], a future study may also take the varying velocity as a parameter to
extend the usability of the limits also for other paces of a stimulus. Second, the standard
luminosity function was not obtained individually for each study participant, which may
consequently lead to a slight imbalance among subjects in the brightness perception of the
different test stimuli. Third, as reported above, the statistical testing of OKN onset and
offset time using the linear mixed-effects models were not supporting the homoscedasticity
of the variance of the residuals, which might have an influence on the reported signifi-
cance of the tested effects. Lastly, the current work did not consider the possible effect of
melanopsin, stimulated partially by the B-Y stimulus and the change in the pupil sizes re-
sulting from various luminance levels across the six contrasts of the two chromatic gratings.
This approach was selected as the authors aimed to provide a clinically applicable approach
to optimize optokinetic nystagmus-based contrast sensitivity testing. However, to maintain
a comparable level of tiredness in the two measurement events of each participant, each
participant underwent the respective measurement on the same weekday at the same
time. As shown previously in [44], the effect of pupil size on contrast sensitivity has been
found to be significant; however, it is clinically irrelevant for its small difference and lack
of a tendency in emmetropic conditions, as well in conditions of defocus. Furthermore,
since the two of the chromatic gratings converged towards black with decreasing contrast
resulting in a decreasing retinal luminance, the authors state a potential effect on contrast
sensitivity [45]. However, this method was selected on purpose to cancel the OKN response
in the low-contrast stimuli. Moreover, the clinical relevance of the difference in contrast
sensitivity under the two extreme mean retinal luminances, given by the maximum and
minimum contrast level for the respective chromatic grating, is questionable.

5. Conclusions

The current study showed the effects of stimulus spatial frequency, contrast, and type
on selected parameters of optokinetic nystagmus (OKN). These eye movement parameters
were namely the onset, offset, amplitude, and gain, giving a systematic overview of how
OKN changes with various parameters of a visual stimulus. Furthermore, in the current
study we propose limits for the OKN gain with respect to the visual stimulus contrast,
which could be potentially used to reduce false negatives in OKN detection (OKN-SP
assessment). Additionally, we propose the maximum stimulus presentation duration,
based on the offset time of the robust OKN response. Here the aim was to enhance the time
efficiency, while avoiding the live OKN detection method, requiring advanced skills in
programming. All these limits have been proposed for a wide range of contrast levels and
for luminance as well as chromatic gratings.
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Abstract: The main objective of this research was to propose a smart technology to record and
analyse the attention of operators of transportation devices where human–machine interaction
occurs. Four simulators were used in this study: General Aviation (GA), Remotely Piloted Aircraft
System (RPAS), AS 1600, and Czajka, in which a spatio-temporal trajectory of system operator
attention describing the histogram distribution of cockpit instrument observations was sought.
Detection of the position of individual instruments in the video stream recorded by the eyetracker
was accomplished using a pre-trained Fast R-CNN deep neural network. The training set for the
network was constructed using a modified Kanade–Lucas–Tomasi (KLT) algorithm, which was
applied to optimise the labelling of the cockpit instruments of each simulator. A deep neural network
allows for sustained instrument tracking in situations where classical algorithms stop their work due
to introduced noise. A mechanism for the flexible selection of Area Of Interest (AOI) objects that can
be tracked in the recorded video stream was used to analyse the recorded attention using a mobile
eyetracker. The obtained data allow for further analysis of key skills in the education of operators of
such systems. The use of deep neural networks as a detector for selected instrument types has made
it possible to universalise the use of this technology for observer attention analysis when applied to a
different objects-sets of monitoring and control instruments.

Keywords: eye tracking; deep neural network; attention trajectory; HMI systems

1. Introduction

The eye-tracking equipment market lacks objective systems to determine the level of
training of those operating multitasking mechanical equipment (and more). Existing mobile
eyetracker software does not provide seamless AOI analysis in recorded video streams.
The products of leading eye-tracking system manufacturers do not provide such functional-
ity [1–3]. This paper extends earlier research’s related with pilot attention tracking during
key procedures, i.e., take-off and landing, which was carried out using the SMI RED 500
and Tobii T60 stationary eyetrackers and the Tobii Glasses mobile eyetracker. Stationary
eyetrackers allow video streams to be recorded and further analysed using the environ-
ments provided by SMI—BeGaze and Tobii Studio. In addition, the analysed example of
the study of the assessment of the relationship between eye-tracking measurements and the
perceived workload in robotic surgical tasks was the problem described in the article [4].
Another analysed study aimed to review eye-tracking concepts, methods and techniques
by developing efficient and effective modern approaches such as machine learning (ML),
Internet of Things (IoT) and cloud computing. These approaches have been in use for over
two decades and are used heavily in the development of the latest eye-tracking applica-
tions [5]. In another study, the authors developed three artificial intelligence techniques,
namely machine learning, deep learning, and a hybrid technique between them, for the
early diagnosis of autism. The first technique, feedforward neural networks (FFNN) and
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artificial neural networks (ANN), the second technique using the pre-trained convolutional
neural network model (CNN, GoogleNet and ResNet-18), and the third technique used the
hybrid method between deep learning (GoogleNet and ResNet-18) and machine learning
(SVM), called GoogleNet + SVM and ResNet-18 + SVM, and these achieved high perfor-
mance and accuracy [6]. For example, work to develop observer attentional statistics for a
3 min video sequence (MJPG2000, 640 × 480 pixels at 30 fps) covering the location of nine
instruments in the cockpit requires at least 48 h of user effort see Figure 1.

Figure 1. General view of the pilot attention measurement strategy during fly.

The effect of this engagement is one-off and requires redefining the AOI both when
changing the operator and the flight task being recorded. This functionality is important,
especially in the case of complex Human–Machine Interfaces (HMI) systems, where it is
indispensable to transfer large amounts of data in the shortest possible time, e.g., production
line operators or operators of ground air traffic control stations of unmanned systems [7–11].
The approach proposed in this paper is based on well-known and used eye-tracking
systems which, due to their universality and targeting a different audience, do not allow
for application in the areas and tasks that are the purpose of this paper. The authors
hypothesise that the use of a deep pre-trained neural network supporting a mobile eye-
tracking system will enable both the intelligent location of AOI areas throughout the video
sequence and the obtaining of appropriate observation histograms for individual AOIs
defined for a given HMI.

The process of detecting the position of individual instruments in the recorded video
stream was carried out using the pre-trained Fast R-CNN deep neural network. The training
vector for the network was realised using a modified KLT algorithm, which optimised
the labelling of cockpit instruments. A deep neural network allows you to keep track of
instruments in situations when classical algorithms stop their work due to digital noise.
Among the available machine learning methods, we can also use the AutoML automated
learning system. AutoML was designed as an artificial intelligence-based solution to the
growing demand of applying machine learning. The high degree of automation in AutoML
aims to allow non-experts to make use of machine learning models and techniques without
requiring them to become experts in machine learning. As big data become ubiquitous
across domains, and more and more stakeholders aspire to make the most of their data,
demand for machine learning tools has spurred researchers to explore the possibilities
of automated machine learning (AutoML). AutoML tools aim to make machine learning
accessible for non-machine learning experts (domain experts), to improve the efficiency
of machine learning, and to accelerate machine learning research. In this review article,
the authors introduce a new classification system for AutoML systems, using a seven-
tiered schematic to distinguish these systems based on their level of autonomy [12]. In
another article, the authors examine the readiness of popular AutoML frameworks from the
perspective of machine learning practitioners. Their goal is to demonstrate how the growing
AutoML trend will affect the future job responsibilities of scientists, researchers, and human
data practitioners [13]. In article [14], the authors try to investigate the interaction between
data cleansing and other ML pipeline hyperparameters for supervised binary classification
tasks. They use AutoML for both the dirty and clean state of all CleanML datasets. Because
AutoML optimises the entire pipeline, you can avoid measurement artifacts related to static
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preprocessing. The method proposed in this paper for recording and analysing operator
attention is a key added value and its light motive.

2. Research Methods

2.1. HMI Stations

For purposes of the research work carried out, workstations were selected and con-
figured using HMIs in which it was possible to record the observer’s attention. The data
collected in this way will allow received video streams to be processed using a Deep Neural
Network (DNN) and thus enable the level of training of the operators of selected HMI
systems to be assessed [15–17]. In particular, this will apply to operators of manned and
unmanned aircraft and operators of means of a road transport. For this purpose, four sets
of devices using HMIs were prepared (see Figure 2):

• GA flight simulator equipped with standard analogue instrumentation, configured
to type FNTP II MCC as a twin-engine piston aircraft, with analogue-equipped re-
tractable landing gear, providing an alternative for pilots practically training in the
air;

• Flying laboratory Czajka MP02A, which is a two-crew (pilot + passenger) high-wing
monoplane with tricycle landing gear of carbon–polymer laminate construction (span
9.72 (m), width 1.215 (m)) with engine propulsion type Rotax 912 ULS with a traction
propeller. An aeroplane adapted to and capable of providing flight tests of the avionics
equipment and solutions was used. A laboratory equipped with a research control
and navigation system was developed under the LOT project;

• RPAS ground station as a simulated electric-powered aircraft with a span of 2.6 (m)
and take-off weight of 2.5 (kg);

• The AS 1600 truck simulator with a 6-degree-of-freedom motion platform (based on a
SCANIA truck cab).

(a) (b)

(c) (d)

Figure 2. Observer attention recording and analysis stand (a) RPAS, (b) GA simulator (cockpit view),
(c) flying lab (cockpit view), (d) truck simulator (cockpit view).

In the course of the research carried out on individual simulators, each station was
equipped with a prototype of a mobile eye-tracking system along with dedicated compo-
nents allowing for the process of calibration, validation and recording of video sequences.
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2.2. An Eye-Tracking System for Attention Recording

The study used the open source eye-tracking system Pupil Core v2.0.182 equipped
with a camera recording the observed scene and two cameras recording eye movement
in infrared. This is a typical system that is subject to calibration at the initial stage and is
a key element in determining the accuracy of the recorded coordinates of the operator’s
observations [18–21]. In order to achieve high accuracy of the attentional measurements,
5-point calibration using a screen, calibration using a calibration tag/marker and natural
calibration made possible by the use of Apriltags were used interchangeably. Due to the
nature of the research, calibration for the flight simulator and the Czajka aircraft was carried
out using a calibration marker. The eye-tracking system employed the 2D Gaze Mapping
eye coordinate detection model, which maintains accuracy within a visual error limit of
<1◦. The use of the 2D Gaze Mapping model works mainly in systems where participants
do not have to move their heads and the experiment time is relatively short [22–25].

2.3. Tasks for HMI Station Operators

During the execution of each test, subjects in the experiments were asked to perform
the following tasks:

• GA simulator. Execution of a precision instrument approach as indicated by the
Instrument Landing System (ILS). This approach provides vertical and horizontal
guidance to the Decision Altitude (DA). The barometric height DA is related to the
local pressure prevailing at medium sea level—QNH (Q Nautical Height). Glide
performed under minimum weather conditions for CAT I ILS, i.e., visibility along
runway RVR 550 m and cloud base at 200 ft AGL (Above Ground Level). Atmospheric
conditions allow flights only under IFR (Instrument Flight Rules), which means that
pilots can navigate solely on the basis of on-board instruments. The flight takes place
in windless conditions on a configured aircraft with three-point retractable landing
gear. The aircraft configuration includes flaps in the landing position, landing gear
released, and power close to minimum. Flights are performed at the EPRZ—Rzeszow
Jasionka airport on runway 27 with an available landing length of 3192 m and width
of 45 m. The airport elevation is 693 ft, and the magnetic heading of the runway is
265 degrees. The flight starts at 7 NM from the runway threshold and at a barometric
altitude of 3000 ft ft AMSL (Above Medium Sea Level). The task ends when a Decision
Height (DH) of 200 ft is reached.

• Flying laboratory Czajka MP02A. Flight operations under Visual Flight Rules (VFR).
Flight operations were divided into three main stages: take-off from the EPRJ OKL
airport (Aviation Training Centre) (magnetic runway heading 265 degrees), building a
traffic pattern according to instructions from the air traffic control tower after reaching
1000 ft AMSL, and landing at the EPRJ airport. The aircraft on which the simulator
tasks are performed is fully configured and adapted to perform a given phase of flight.

• RPAS ground station. Performing a flight in BVLOS mode (Beyond Visual Line
of Sight—operations beyond the visual range of the UAV operator) in the EPML
airport area. The system operator uses a hand-held mini control panel, an on-board
camera image, an integrated pilot-navigation display system and an interactive map
to perform a manual take-off. The take-off and initial climb was on the 09 direction.
After reaching an altitude of 100 m AGL, a 90-degree turn to the left was followed by a
course to the north and a further climb to an altitude of 150 (m) AGL. Then, there was
another turn to the left on a course of 270 degrees in order to build a traffic pattern.
This part of the flight was already in manual-assisted mode, which was characterised
by the protection of the flight parameter envelope, in particular the angles of spatial
orientation. After the third turn, the descent begins, which is followed by a final turn
to bring the aircraft straight ahead for landing. The entire landing process, including
the landing roll, was carried out in assisted manual mode.

• Truck simulator. Driving a lorry in urban conditions where during the journey, the
driver pays attention to the correct observation of junctions and crossings with traffic
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lights, pedestrians and other road users, and observes speed limits and road signs. A
simulation was carried out under different weather and day conditions.

Once the group of people taking part in the experiment had been formed, the research
was carried out on a test group of pilots and drivers with varying degrees of training and
experience in aviation and operators of road transport vehicles. The experiment lasted no
longer than 30 min in order to preserve the correct perception of the subject and to limit the
influence of fatigue. This allowed them to focus their attention better. The research was
conducted on two groups of people: in the flying task, Group I included people with less
than 80 h of flying experience considered as a group of inexperienced pilots (NONPILOT).
Group II (PILOT), on the other hand, is made up of people with >80 h flight experience. In
the truck control task, a distinction was made between Group I (those with less than 10 h
driving experience) and Group II (those with more than 10 h driving experience).

3. Operator Attention Tracking System Using a DNN

Figure 3 presents the modular structure of a designed workstation for recording and
analysing the attention of operators of advanced systems using an HMI. Within Module
A are sets of infrared sensors to detect the position and orientation of the observer’s
pupil (1) and scene observation cameras (2). The module is responsible for acquiring the
video stream of the observed scene and recording the spatial position of the observer’s
pupils. Module B performs the tasks of attentional coordinate detection (3) and fixation
detection (5). Module C performs AOI detection tasks in the video stream with the trained
DNN [26–30]. Its main component (4) performs the task of detecting in the video stream
the presence of instruments that are part of the HMI in use. This is completed by using the
trained weight set obtained from the set of interface components (4a). The direct instrument
recognition block (4b) in the video stream uses a deep neural network (4bb).

Figure 3. Schematic diagram of a modular workstation structure for recording and analysing operator
attention in advanced HMI systems. (A–D) denotes consecutive modules for signal processing in
the system.

The authors assumed that a set of pre-trained architectures provided by the DNN
Toolbox Matlab� library environment would be used in the DNN simulation studies. A
modified KLT algorithm (see Algorithm 1) was implemented to prepare a training set
that would contain a series of video frames of the operator cockpit instruments of a given
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station. Its task is to match the template image T(x) with the input image I(x). The vector
x contains the coordinates of the image [x, y]T.

Algorithm 1 Image characteristic point detector tracker–KLT algorithm
Input: I(x), ε
Output: p
begin
do{

warp I(x) with W(x, p)→ I(W(x, p))
the error T(x)→ I(W(x, p))
warped gradients �I =

[
Ix, Iy

]
evaluated at W(x, p)

the Jacobian of the warping ∂W
∂p

steepest descent �I ∂W
∂p

inverse Hessian H−1 =

[
∑x∈T

[
�I ∂W

∂p

]T[
�I ∂W

∂p

]]−1

multiply steepest descend with error:

∑x∈T

[
�I ∂W

∂p

]T
[T(x)− I(W(x, p))]

compute Δp
update parameters p ← p + Δp

}while (Δp < ε)
end;

In matrix notation form, it can be represented accordingly:

W(x, p) =
[

x + p1
x + p2

]
(1)

Δp = H−1 ∑
x∈T

[
�I

∂W
∂p

]T
[T(x)− I(W(x, p))] (2)

H = ∑
x∈T

[
�I

∂W
∂p

]T[
�I

∂W
∂p

]
(3)

In this form, the algorithm was introduced as a tracker function into VideoLabeler,
which allowed the generation of a sequence of images into the GroundTruth variable that
constitutes the training set for each simulator. It should be noted that if tracked points are
lost from the field of view (see Figure 4), it is unable to re-determine their location when
they reappear—hence the need to use machine learning for object recognition.

An example of video recording showing the loss of ROI3 when the operator performs
hand movements—the lost Region of Interest (ROI) is marked with a dashed line (left
bottom corner of the cockpit image on Figure 4). The data obtained in the marking session
exported to the GroundTruth object (see Table 1, Figure 5) contain, among other things,
information about the time (in seconds since the beginning of the video) and the position of
rectangular object envelopes in the form of centre coordinates and dimensions (in pixels):
[x, y, W, H]

259



Appl. Sci. 2022, 12, 11431

Figure 4. Example video recording showing the loss of ROI3 when the operator performs hand
movements—the lost ROI is marked with a dashed line.

Table 1. GroundTruth with properties.

Simulator Type Data Source Label Definitions Label Data

RPAS [1 × 1 GroundTruth] [4 × 5 table] [11,417 × 4 timetable]
AS 1600 [1 × 1 GroundTruth] [3 × 5 table] [9568 × 3 timetable]

GA [1 × 1 GroundTruth] [8 × 5 table] [1545 × 8 timetable]
Czajka MP02A [1 × 1 GroundTruth] [6 × 5 table] [1843 × 6 timetable]

(a) (b)

(c) (d)

Figure 5. List of areas of interest that were used to build a training set for DNN networks, RPAS
cockpit (a), truck simulator cockpit (b), GA cockpit (c) and flying lab cockpit (d).

As we already know, only a few layers in a deep neural network are responsible for
selecting image features. In order to make easier observations of the input convolutional
layer that extracts basic image features, such as the area or edge, it has been visualised
in the form of a weight filter in Figure 6. Processing these features by deeper layers of
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the net enables the extraction of further image features with a higher degree of cocpit
instruments details. In order to emphasise the changes taking place during the training of
the pre-trained RCNN network, a visualisation of the weight matrix of the convolutional
layer has been included after completing the training process Figure 6a. Due to subtle
differences in the details of the obtained weight distribution, a visualisation of the difference
in the weight matrix before and at the end of the training process is presented in Figure 6b.
The visualisation of the obtained difference demonstrates the influence of the training
sequence used in the training process on the form of the weight matrix distribution in
the convolutional layer. In this way, we can observe the influence of the applied training
sequence in the learning process on the form of the input layer weight matrix and primitive
features extraction process.

(a) (b)

Figure 6. The visualisation of the weight filter from the input convolutional layer in the R-CNN net
after training (a) and difference with pretrained weight matrix (b).

4. Results and Discussion

Two object detection techniques using convolutional neural networks were selected:
YOLO and R-CNN. Off-the-shelf GoogLeNet and SqueezeNet structures were implemented
in each of them as modules responsible for detecting the position of instruments visible in
the field of observation of the HMI system operator (see Table 2). They were then trained
on prepared training data sets consisting of randomly selected and shuffled 500 frames
(video stream, frame: 640 × 480 × 3, 30 fps) from four different simulators, in which the
position of the ROI was manually determined. In the experimental and measurement part,
a series of tests have been carried out with the participation of 20 people who successively
performed tasks defined by experts conducting training classes on individual simulators.
For the GA and Czajka flight simulator, it was the task of landing on instruments (IFR) at
the EPRZ Jasionka airport (the international ICAO code for civil airports annotations) in
night conditions. For the RPAS simulator, it was a mission to perform an unmanned aerial
vehicle flying in a defined geographical location around the airport in EPML Mielec. For the
A1600 simulator, the operator’s task was to perform a ride in a virtual city scenery, taking
into account the road infrastructure and pedestrian traffic. For each recorded video stream,
the appropriate video sequences were selected containing full imaging of the simulator
instruments, the use of which by the operator will be further analysed. Using the modified
KLT algorithm, which was described in the previous chapter, a training sequence was
generated consisting of ROI coordinates for individual instruments tracked in the observed
scene along the time axis of individual image frames for all selected video sequences. A
total of 5000 training sets was created for each simulator, which were split on 70–20–10%
parts, respectively, i.e., into training, validation and test sets in order to avoid the possible
overfitting effect. Detection performance was tested on a video stream not included in the
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training and validation sets. It was observed that for the adopted network models, the
generation of region proposals is faster and better adapted to the data compared to other
R-CNN models. In Table 3, the fourth and final stage of the learning process is presented.

Table 2. The network architectures considered in the experimental part of the study.

R-CNN GoogLeNet R-CNN SqueezeNet YOLO GoogLeNet YOLO SqueezeNet

Input type Image Image Image Image
Output type Classification, Object detection Classification, Object detection Object detection Object detection

Number of layers 155 78 105 42
Number of classifications 183 87 122 45

Table 3. Re-training Fast R-CNN using updated RPN.

Epoch Iteration
Time

Elapsed
(hh:mm:ss)

Mini-Batch
Loss

Mini-Batch
Accuracy

(%)

Mini-Batch
RMSE

Base
Learning

Rate

1 1 00:00:00 0.1412 96,88 0.10 0.0050
1 100 00:00:18 0.1430 100.00 0.14 0.0050
1 200 00:00:37 0.1068 98.44 0.14 0.0050
1 300 00:00:56 0.1377 93.75 0.08 0.0050
1 400 00:01:15 0.1731 95.31 0.09 0.0050
1 500 00:01:34 0.1245 100.00 0.11 0.0050
2 600 00:01:52 0.1997 93,75 0.11 0.0050
2 700 00:02:11 0.0565 100.00 0.08 0.0050
2 800 00:02:30 0.1225 96.88 0.10 0.0050
2 900 00:02:49 0.0942 98.44 0.10 0.0050
2 1000 00:03:07 0.0852 96.88 0.06 0.0050

For such a trained network, tests were carried out for individual simulators. The
fixation coordinates indicated by the eyetracker were entered into the coordinate system of
the individual video frames of the recorded stream. The neural network that conducted
the detection of the presence of areas of interest in each frame of the video stream provided
the position coordinates of the recognised instruments. During the learning process, it was
found that for video frames containing a high concentration of instruments, the effect of
incorrect identification of the type of instrument appeared. Therefore, as the assessment of
the efficiency considered net architectures, we have obtained the R2 coefficient values which
have been ranging between 0.82 and 0.94. Since R2 is highly sensitive to the presence of
falsly identified instruments, we reported two more robust metrics for model performance
evaluation: RMSE and MAPE. The R-CNN model showed lowest errors with RMSE ranged
between 0.92 and 0.96 and MAPE ranged between 5.50% and 8.45%, respectively. The final
result of the system is an observation histogram constructed by detecting the coincidence
of fixation coordinates and coordinates of detected instruments, as shown in Figure 7.
To construct the spatio-temporal trajectory, the mechanism of coincidence detection and
contour blurring of the observed instruments described in [1,2] was used. Each frame from
the recorded video stream can be used as the background of the resulting graph, regarding
limitations that all instruments used by the operator involved in attention trajectory analysis
are displayed correctly. The extracted contour lines show the individual ROIs defined in
the analysed scene. The vertical axis of the chart shows the time of the observations, while
the rising points represent successive, chronologically appearing fixations in the fields of
individual instruments. The lines connecting the points are a virtual representation of the
real saccades taking place in real time in successive frames of the recorded video stream.
The space-time course of fixations is the basis for further expert analysis of the acquired
efficiency of the system monitoring and control by the operator. From the point of view
of the effectiveness of the training of operators of the systems involved in this work, it is
important to carry out measurements under real operating conditions of the operator, taking
into account the accompanying time deficit for making important operating decisions.
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(a) (b)

Figure 7. Spatio-temporal trajectory of the observer’s attention fixation for a GA class simulator for
VFR (a) and IFR conditions (b) respectively.

5. Conclusions

Using the video stream from the PupilLabs device and the DNN network architectures
considered in this work, it is possible to construct a suitable training set to detect, in a
video stream, the coordinates of instruments located in the operator’s field of observation
of selected HMI systems. A deep neural network allows for sustained instrument tracking
in situations where classical algorithms stop their work due to introduced noise. To use
R-CNN detectors in a real-time system, hybrid solutions should be sought, for example
combining DNNs with tracking algorithms such as the Point Tracker KLT used in the
paper. A neural network could initially or periodically recognise objects that appear in the
field of view, while the Point Tracker could track their position with small movements of
objects. For the YOLO SqueezeNet architecture, despite its high speed, no results were
obtained to enable its effective use, as its efficiency was unsatisfactory. The Faster R-CNN
architecture showed the highest identification efficiency. The disadvantage of this solution
was the drastic increase in processing time for a single frame of the video stream. This fact
significantly hinders its use in real-time object tracking solutions. The proposed system
makes it possible to check the verification of practical skills at different stages of training.
Using DNNs and the contour blurring mechanism, it is possible to detect in a video stream
the locations of selected objects and, on this basis, effectively construct spatio-temporal
fixation statistics. The key advantage of the developed method is the relatively fast and
precise transfer of as much information as possible to the operator using systems where
there is a need to control both machines in the broadest sense and processes. The three-
dimensional time course of the observation coordinates, which is the actual trajectory of the
operator’s attention, provides the basis for assessing the level of training of the subject. This
strategy universalises the proposed technology to different application areas and allows the
ergonomics of different HMIs to be evaluated. However, the proposed method allows for
an effective analysis of the observer’s attention trajectory, so some of its limitations can be
identified. The first one is the difficulty of implementing the proposed method in the real-
time regime with the use of more complex deep neural network architectures due to the high
computational complexity of the algorithm. Moreover, the question remains whether for the
applied methods of network architectures and simulator sets it is possible to easily include
other HMI platforms without reducing the achieved effectiveness of the currently trained
network. Taking into account the above, it is necessary to conduct further experiments
regarding other simulators using the HMI system. A natural development of the research
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presented in this paper may be the use of the proposed technology to detect anomalies
in the HMI system operator’s work, for example their fatigue, improper chronology of
activities checking the correct operation of the system and its control, etc. In particular, the
proposed measurement method using DNN can be tested with the participation of flight
controllers, during training on simulator stations. Currently, new directions of studies are
concentrated on the use of non-invasive eyetrackers, which enable remote registration of
the observer’s attention in a way that does not require additional activity related to the
need of use a specific type of glasses or micro camera sets for the operator.
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Abbreviations

The following abbreviations are used in this manuscript:

AGL Above Ground Level
AMSL Above Medium Sea Level
ANN Artificial Neural Networks (ANN)
AOI Area Of Interest
BVLOS Beyond Visual Line of Sight
CNN Convolutional Neural Betwork
DA Decision Altitude
DH Decision Height
DNN Deep Neural Network
FFNN Feedforward Neural Networks
GA General Aviation
HMI Human–Machine Interfaces
IFR Instrument Flight Rules
ILS Instrument Landing System
IoT Internet of Things
KLT Kanade–Lucas–Tomasi
ML Machine Learning
RPAS Remotely Piloted Aircraft System
QNH Q Nautical Height
VFR Visual Flight Rules
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