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Abstract: Thermal convection induced by internal heating appears in different natural situations and
technological applications with different internal sources of heat (e.g. radiation, electric or magnetic
fields, chemical reactions). Thermal convection due to Joule heating in weak electrical conducting
liquids such as molten salts with symmetric thermal boundary conditions is investigated using linear
stability analysis. We show that, in the quasi-static approximation where the induced magnetic
field is negligible, the effect of the external magnetic field consists of the delay in the threshold of
thermal convection and the increase in the size of thermoconvective rolls for an intense magnetic field.
Analysis of the budget of the perturbations’ kinetic energy reveals that the Lorentz force contributes
to the dissipation of the kinetic energy.

Keywords: thermal convection; Joule heating; Chebyshev polynomials; collocation method; Lorentz
force

MSC: 80; 76

1. Introduction

Recent technological developments in metallurgy include the design of concentrated
solar panels associated with thermal energy storage and in nuclear engineering where
molten salt reactors appear to be a promising issue [1-6], have increased the demand for
efficient heat exchangers that can operate at very high temperatures. For high-temperature
operations, most of the fluids tend to evaporate or might need a huge amount of pressure
to increase their boiling points. One method to overcome these challenges is the utilization
of molten salts. Solid at room temperature, salts cannot transfer heat by convection and
hence they need to be preheated above their melting point but kept under the boiling point
in order to produce convective motion inside them. Due to their large thermal capacity
and higher boiling points, molten salts are widely employed for thermal transfer at high
temperatures and in recent applications, they are used as electrolytes for energy storage
systems such as liquid metal battery [7-10].

Salts are typically inorganic ionic mixtures of fluorides, chlorides, carbonates, etc.
Depending on the application, molten salts can be made of binary such as LiCl, or ternary
molecules such as NaCl-Nal. Due to the strong ionic bonds between the atoms, a huge
amount of heat is required to bring them to a liquid state. Hence, molten salts need to
be maintained at high temperatures to keep them in a stable liquid state. Due to their
low electrical and thermal conductivities, the application of an electrical current generates
the Joule heating in the molten salts. This internal heating can trigger thermal convective
motions in the molten salts and modify the heat transfer coefficient with their container.

Mathematics 2024, 12, 3395. https:/ /doi.org/10.3390/math12213395 1 https:/ /www.mdpi.com/journal /mathematics
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Thermal convection induced by internal heating has been investigated by many
authors [11-22] because this phenomenon is encountered in many engineering situations
where internal heating can be induced by viscous heating or by dielectric heating or any
other localized internal heat sources. It occurs also in Earth’s mantle where convective
motions are sustained by radiogenic heating throughout the mantle itself and by the
conduction from the underlying hot outer core due to internal radiation. In the upper
atmosphere, thermal convection is driven by radiative cooling and by heating from the
lower atmosphere and the Earth’s surface [14]. In an astrophysical context, nuclear burning
processes occur in thin shells at some distance from the center of the star leading to
compressible thermoconvective motions in the star [17]. Molten salts are also used as
electrolytes between electrodes in thermal batteries used in military applications for guided
missiles but also as primary power sources for radar and electronic packages for nuclear
weapons [21] However, convection induced by internal heating has received much less
attention than Rayleigh-Bénard convection induced by a constant temperature gradient
imposed at the plates bounding the fluids [23,24].

The conduction state induced by internal heating has a parabolic temperature pro-
file compared to the linear profile of the conduction state induced by fixed temperature
difference. Linear stability analysis has been performed by different authors using dif-
ferent kinematic and thermal boundary conditions [11-13,17] to predict the threshold of
thermal convection induced by internal heating. Numerical simulations have been per-
formed to estimate the hydrodynamic field and the heat transfer coefficient associated
with internal heating [14-16]. Sparrow et al. [11] were the first to tackle the problem of
thermal convection induced by internal heating in a fluid between two parallel plates with
different thermal boundary conditions, using a semi-analytical method. They found that
the threshold of thermal convection decreases with the magnitude of the internal heat
source. The same problem was revisited by Kulaki et al. [12,13] who performed a more
exhaustive linear stability analysis and energetic analysis and obtained more accurate
results on the critical parameters of thermal convection induced by internal heating. The
implication of internal heating in the astrophysical environment and in geophysics was
developed by Strauss [17] and by Goluskin et al. [14]. Another type of internal heating
induced by a high-frequency electric field in dielectric liquids under microgravity condi-
tions was investigated by Yoshikawa et al. [18] who showed also that the temperature
of the conducting state has a parabolic profile and determined the critical parameters
for thermo-electro-convection induced by the dielectrophoretic buoyancy force. Thermal
convection induced by Joule-heating from magnetic fields has also been investigated in
more complex flow systems such as generalized Couette flow of Jeffrey fluid [19] or in a
cylindrical annulus with different magnetic configurations [20]. The estimate of convective
flows and heat transfer induced by internal heating was performed in direct numerical
simulations by Goluskin et al. [14,16]. A recent work by Wang et al. [25] developed the
unifying theory of scaling laws of turbulence in thermal convection induced by internal
heating. All these studies have confirmed that, due to the parabolic temperature profile of
the conduction state, thermal convection induced by internal heating appears for lower
value of the Rayleigh number compared to the threshold of Rayleigh-Bénard convection
induced by an imposed constant temperature gradient.

In most geophysical and astrophysical situations but also in technological applications,
the magnetic field has a strong impact on the thermal convection in fluids. The effect
of the magnetic field on Rayleigh-Bénard convection has been theoretically predicted by
Chandrasekhar [23] who showed the delay of the threshold of thermal convection in a
liquid layer under a magnetic field. This effect has been confirmed by further studies on
higher regimes of thermoconvection [26]. However, to our best knowledge, for internal
heating-induced convection in a horizontal liquid layer, the effect of the magnetic field has
received less attention if any.

We have performed linear stability analysis to investigate the effect of magnetic field
on the thermal convection induced by Joule heating in an electrolyte-type liquid crossed by
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a stationary homogeneous current for different kinematic and thermal boundary conditions.
We have performed the energetic budget to identify the contribution of each force in the
temporal evolution of the kinetic energy of perturbations close to the onset and we found
that the Lorentz force acts as a dissipative force and delays the threshold to thermal
convection induced by internal heating.

The paper is organized as follows. In Section 2, we formulate the problem of thermal
convection induced by Joule heating. The results of the linear stability are presented in
Section 3 and discussed in Section 4. The last Section consists of the Conclusion.

2. Problem Formulation

We consider a liquid layer of poor electrical and thermal conductivities, confined
between two infinite horizontal plates located at z = +d/2 in a Cartesian coordinates
system (Figure 1). The liquid is considered as incompressible and Newtonian with the
density p, the thermal expansion coefficient «, the kinematic viscosity v, the specific heat
capacity cp, the thermal conductivity A = pc,x (where « is the thermal diffusivity) and the
electrical conductivity o.

Figure 1. Liquid layer between two electrically conducting plates (¥, = 0) located at z = +d/2
where @, is the electric potential.

A uniform current I of density | = (I/S)é, applied across the fluid layer (of cross-
section area S) generates a Joule heat in the liquid because of its weak electrical conductivity.
The density g of the Joule heat flux across the liquid layer is

)

2
1=

2.1. Conduction State Induced by Internal Joule Heating

The stationary conduction state induced by Joule heating in a liquid layer con-
fined between two horizontal infinite plates is characterized by the temperature profile
T(z) which satisfies the following heat equation

T

2z a0 @)

To allow the heat exchange with the environment, we impose the Robin boundary condi-
tions which are hybrid thermal boundary conditions combining both the Neumann and
the Dirichlet conditions at the plates:

dT d
o= ~W(T—-Tw) atz= > (3a)
dT d

- =h(T-Ts) atz= -5 (3b)

where h is the heat exchange coefficient which incorporates both the convective and
radiative heat transfer and T, is the temperature in the bulk of the environment away
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from the plates. Choosing d and AT as characteristic length and temperature, respectively,
(e, z = dz/, T — To = AT @), the Joule heating yields the temperature scale AT =
J?d?/ Ao. The stationary heat equation and the Robin boundary conditions in dimensionless

form become
d2e
de . 1
E__BZG) atz—i (4b)
de 1
e Bi® at z 5 (4¢)

where Bi = hd/k is called Biot number. From now, z is the dimensionless vertical coordinate.
The conducting state induced by Joule heating in the liquid layer is thus described by a
symmetric quadratic temperature profile

O(z) = —% <zz - i - I;z) ©)

The maximum temperature @, = 1/(2Bi) is reached at the mid-plane z = 0 of the
liquid layer and it is very sensitive to the heat exchange coefficient, i.e., to Bi [13]. For
isothermal boundary conditions (Neumann conditions), i.e., for Bi — oo, we recover the
temperature profile already obtained in previous studies [13,14]. The temperature profiles
of the conducting state induced by the Joule heating are plotted in Figure 2. They differ
from each other by the quantity ®,,,, and they can be represented by a single curve ®*(z)
(Figure 2b) defined as

O (z) = O(z) — Opax 6)

The symmetry of the temperature profiles with respect to the mid-plane of the liquid layer
is due to the boundary conditions where the heat exchange coefficients between the plates
bounding the liquid with the bulk environment are assumed to be identical. If they are
different, the symmetry of the conduction state is broken, and the temperature profiles are
asymmetric with coefficients containing the Biot numbers Bi; of each plate / (I = 1: lower
plate, [ = 2: upper plate).

0.5

|—Bi=o00
0.4 |—Bi=10) 1 0.4
|—Bi=1
0.3} & g o3k

0.2 1 0.2

Thermally unstable
0.1f g 0.1}

N o N o
01} Thermally stable . -0.1F

Thermally unstable

Thermally stable
-0.21 ] -0.2}F
J0.3F ] 0.3}

-0.41 J -0.41

-0.5 s " n " s
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

2] e
@) (b)

Figure 2. Temperature profiles of the conduction state in Joule heated liquid with Robin boundary
condition: (a) for different values of Bi. (b) for the scaled conduction state ©* where all the considered
boundary conditions merge into a single curve.

2.2. Driving Forces and Control Parameters

The internal Joule heating induces a temperature gradient and thus the Archimedean
buoyancy Apg(= —aATppg) within the liquid layer where py is the liquid density at the
reference temperature Ty. The lower layer of the liquid is thermally stable while the upper
one is thermally unstable. We need to estimate the magnitude of the internal heating,
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i.e., the magnitude of the applied current required to trigger thermal convection in the
liquid layer. The Archimedean buoyancy will overcome the thermal diffusion and viscous
dissipation if the Archimedean time scale T4 is much smaller than the combined visco-
diffusive timescale /7, Ty in the liquid. The Archimedean timescale for a buoyant liquid
particle to rise the distance d/2 is T4 = \/d/[2g0(AT)uax]. The timescales for viscous
dissipation and thermal diffusion of the buoyant particle which rises the same distance d/2
are T, = d?/4v and 7, = d?/4x, respectively. The temperature profile @* in Figure 2b yields
(AT),,. = AT/8. Thus, the magnitude of the Archimedean buoyancy can be estimated by
the Rayleigh number defined as follows

Ra= T _ L 28fo = GrPr (7)
T3 64 pcpuK’o

where Pr = v/« is the Prandtl number and Gr = Uy, d/v is the Grashof number sometimes
called the thermal Reynolds number if the characteristic thermal velocity of the buoyant
particle under the action of Joule heating is introduced:

1 agjidt
T 64 pepkvo

®)

The second driving force in a liquid layer crossed by an electric current density J and an
applied horizontal magnetic field B is the Lorentz force density F = J x B. For weakly
electrically conducting liquids o ~ O (102) S/m and for thermal convective velocities at
laboratory scales V ~ O (1072) m/s, the magnetic fields induced by the current density
J and the drift Maxwell current [; = uedD /ot due to time variations of the electric field
are so weak that they can be neglected in the so-called “quasi-static approximation” [27].
Here, u and € represent the magnetic permeability and the electrical permittivity of the
liquid. The electric field E is thus stationary and it can be written as E= —ﬁfbg where @,
is the electric potential chosen to vanish at the bounding plates at z = +d /2 (Figure 1). The
density current in the liquid is given by Ohm law

-

]:a(§+ﬁx§) )
where i is the velocity induced in the liquid. The stationarity of the applied current density
(@f = 0) leads to the Poisson equation relating the electric potential to the magnetic field:

AD, = V.(ﬁ x 1‘3’) (10)

In the quasi-stationary approximation [27], the electric field in the conducting state is
homogeneous and the electric potential satisfies the Laplace equation: V2®, = 0. This
means that the electric field between the plates is homogeneous. The Ohm law becomes

f:a(—@cpﬁﬁxﬁ) 11)
To estimate the magnitude of the Lorentz force acting in the liquid, we introduce the

Hartmann number Ha which is the ratio of the magnitude By of the applied magnetic field
to the intrinsic magnetic field of the liquid B;

_Bo 1 Jpv
Ha—Bi , B,—d - (12)
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The Hartmann number is often defined as the ratio between the characteristic length of the
flow d and the Hartmann length I, i.e.,

d 1 [o
HQ_E , lHa_Bio Pfl/ (13)

The quantity Q = Ha? is called the Chandrasekhar number.

To make the governing equations dimensionless, we use the liquid layer thickness
d as the characteristic scale for space coordinates, i.e., 7 = d 7 and the viscous diffusion
velocity d /T, = v/d as a characteristic velocity, i.e., il = (v/d) il because we have chosen
the viscous time as the characteristic timescale, i.e., t = 7, f. The dynamics of the liquid
subject to Joule heating can be uniquely determined by four independent dimensionless
control parameters given in Table 1. The Biot number Bi characterizes the heat exchange
between the liquid and its environment, the Prandtl number Pr determines the thermo-
viscous diffusive nature of the liquid, the Rayleigh number Ra measures the magnitude of
the Archimedean buoyancy compared to the viscous dissipation and thermal diffusion, the
Hartmann number Ha is the ratio between the Lorentz force and the viscous dissipation.
The Grashoff number Gr is not an independent control parameter, it is sometimes used
instead of Ra.

Table 1. List of independent control parameters.

Control Parameters Symbol
Biot umber Bi
Prandtl number Pr
Rayleigh number Ra = GrPr
Hartmann number Ha

2.3. Linearized Equations for Internal Heating-Driven Convection

As of now, all variables are dimensionless, for simplicity, we have dropped the tildes
above variables t,if,7. We superimpose to the conduction state small perturbations of
the temperature field 6', of the electric potential &', of the generalized pressure H' and
the velocity i = (u,v,w). We assume the validity of the Boussinesq approximation.
Linearization of the momentum, energy and electric potential equations near the base state
yield the following equations in non-dimensional form [7,27]:

V.ii=0 (14a)
al = [Pr _
g = VH + EAM + 9 (22
Pr ~ ~
2 /27 o ! —

+Ha?\[ - [( VO +ii x B) X B} (14b)
20 dO 1 ,
AD = V.(ﬁ x E) (14d)

The second term in Equation (14b) is due to the viscous dissipation, the third term is the
Archimedean buoyancy and the last term represents the Lorentz force. The temperature
field is coupled to the velocity field via Equation (14b) and Equation (14c). In the quasi-
stationary approximation, the perturbation b of the magnetic field is neglected [27].

Two different kinematic boundary conditions are imposed on the fluid, i.e., the no-slip
boundary condition where the velocity perturbations vanish at the walls and the free-slip
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boundary condition where the normal stress vanishes at the walls. The free-slip boundary
conditions read

ou Jv p 1 1
a—z_g_w—cb—o atz—E—E (15)
The no-slip boundary conditions are
1 1
u=v=uw 0 at z 55 (16)
The thermal boundary conditions stem from boundary conditions (3):
a0’ o 1
> = —Bio at z = 5 (17a)
a0’ L 1
5_319 atz——i (17b)

2.4. Normal Mode Expansion and Numerical Method

In the present study, we choose the horizontal axes in such a way that the

magnetic field is applied along the horizontal axis €, and its non-dimensional form is

= (1,0,0). The infinitesimal perturbations Pt x, y,z) = (u,v, v, H,¢, qD’)t are ex-
panded as normal modes

F(t,x,y,2) = F(z)estHilkexthy) (18)
where ¥(z) = (i(z),9(z), ®(z), H(z),0(2), @(z))t is the structure-function of the pertur-
bations, the quantity s = s, + is; is a complex temporal growth rate with s, and s; being
the real growth rate and the frequency of the perturbations, respectively. As the system is
assumed infinite in the horizontal plane, the wave numbers ky and ky, are real. Substitution
into the linearized Equation (14) yields the following system of equations of the complex

amplitudes ¥:

0 = ikyil + iky® + Db (19a)
s = —ik H—H/PTA (19b)
6= —ik Hﬂ/P Ao — az,/g[chJrzﬂ (19¢)
st = —DH +\| 2L Aw + 0 + Ha?y| 2" [ik,® — o] (19d)

o Ra Ra'™¥

~ 1 ~ A

s§ = —wDO + A 19e
v/ Ra.Pr (19€)
0= Ad + Do — ik, (19f)

with the operators D = %, A=K+ k; + D?. The boundary conditions develops into,

No-slip boundary conditions : (20a)
N=b==d=0 a’cz—l—1
- N 202
Free-slip boundary conditions : (20b)
A 1 1
D ] = D 0 = 0 = @ = 0 t = - ——
i b=1wm atz=,—5
Thermal boundary conditions : (20¢)
Db = —Bif atz:%and Db = Bif atz:—%
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Besides the four control parameters given in Table 1, the system of linearized Equation (19)
together with the boundary conditions (20) contains 10 dimensionless variables. The system
of Equation (14) can be written in a matrix form as follows :

>l

||
oL
6

=3 (21)
where the expressions of the matrices A and B can easily be derived from the system
of Equation (19). The system of Equation (21) is an eigenvalue problem with the eigen-

value s and the structure-function of the perturbations ¥ is the eigenvector. The eigen-
value s is searched as a function of the control parameters and of the wave numbers of
the perturbations

s = f(Ra, Pr, Ha, ky, ky) (22)

We are interested in the determination of the threshold of thermal convection, so we look
for marginal perturbations for which s, = 0. The marginal state is thus represented by the
hypersurface f(Ra, Pr, Ha, ky, ky,s;) = 0. We fix Pr and Ha and the hypersurface is reduced

to a marginal stability curve f(Ra, k) = 0 for stationary perturbations where k = , /k2 + k3.

In order to determine the marginal stability curve, we use the following numerical
scheme. The system of equations of complex amplitudes (19) and the boundary conditions
(20) are discretized using the Chebyshev spectral method. The Chebyshev variable ¢ is
related to the vertical coordinate z as follows,

F=2z (23)

where § € [—1,1]. Discretization is conducted along a vertical direction z = z;(i = 3,4,5, ..., N)
corresponding to collocation points §; = cos(ir/N). The highest order of Chebyshev
polynomials is needed to ensure the convergence is set to N = 60.

Marginal stability curves for which s, = 0 are plotted in the plane (k, Ra) and their
lowest minimum determines the critical parameters (k, Ra.) of thermal convection.

3. Results

In the absence of the magnetic field, the critical modes are invariant with respect to
rotation of the wavenumber vector k in the plane (ky, ky): the critical patterns can either be
rolls of the y axis with wavevector k= (k,0) or of the x axis with wavevector k= (0,k); they
can be square patterns with wavevector k=2 (k, k) /2 or hexagonal patterns with a more
complex combination of wavenumbers ky and k; such that the velocity and temperature
fields must be invariant for rotation by 7t/3 about the origin and they must be periodic in
the x- and y-directions [23]. Nonlinear stability analysis shows that for Rayleigh-Bénard
convection, square patterns are not stable while rolls and hexagons are stable [28,29]. The
Lorentz force due to the magnetic field breaks this invariance. Here, we have assumed that
the perturbations are two-dimensional, i.e., k;, = 0, so that we have I = —dtﬁ /dz, = iklﬁ.
We first present results the threshold Ra. and critical wavenumber k. of thermal convection
for different values of Bi and the eigenfunctions 8(z), §j(z) in the absence of the magnetic
field, and then we analyze the effect of the magnetic field (i.e., of Ha) on the critical
parameters (Ra, k.) of the convection induced by Joule heating.

3.1. Threshold of Internal Heating-Induced Convection

We have computed the marginal stability curves for free-slip and no-slip boundary
conditions and for different values of the Biot number Bi (Figure 3). The critical modes
are stationary, i.e., s, = 0,5; = 0 and they are independent of Pr. The threshold of Joule
heating-induced convection between two horizontal plates is lower than the one of the
classic Rayleigh—-Bénard convection with a constant temperature gradient between the



Mathematics 2024, 12, 3395

plates. This is due to the quadratic profile of the temperature field of the conduction state.
We recover the results of previous studies [11-13,17].

450

400

350
300

T T
RS 250 R 450

200 4 400

150
350

—Bi=1
100 1 |—Bi=0.1]

300

-
)
w
~
3
o
N
w
-~
[

(@) (b)
Figure 3. Stability curves for s, = 0 in the plane (k, Ra) (a) free-slip and (b) no-slip boundary condition.

Table 2 presents the critical parameters (k., Ra.) for chosen values of Bi. For Bi — oo
corresponding to isothermal boundary conditions, the threshold is the highest for both
types of kinematic boundary conditions. This suggests that the heat exchange between the
liquid layer and the environment favors the occurrence of Joule heating-induced convection.
The effect of the Biot number on the size of thermoconvective cells induced by internal
heating is significant: thermoconvective cells have a smaller size for isothermal boundary
conditions than in the presence of heat exchange with the environment. For a fixed value
of Bi, we recover the result that the free-slip conditions favor the convection as in the case
of the classic Rayleigh-Bénard convection. In Figure 4, we have plotted the vertical profiles
of the temperature perturbation f(z) and of the vertical velocity component @(z).

Table 2. Critical values for thermal convection induced due to internal heating for (a) free-slip and
(b) no-slip boundary conditions.

Bi Ra, k¢
(a)
o0 265.5 3.027
10 208 2.857
1 131.15 2.344
0.1 106.75 2.008
(b)
o0 583.20 3.998
10 503.85 3.784
1 387.2 3.246
0.1 348.0 2.902

The vertical profile of the temperature f(z) and of the vertical velocity component (z)
in Figure 4 show that the temperature and velocity perturbations perturbations penetrate
into the lower stable part of the liquid. However, the upper part of the liquid layer is more
active than the lower part as the last one is thermally stable. The eigenfunctions of the
temperature field to which we have superimposed the velocity vectors and the stream
functions (x,z) = const of the critical states are plotted in Figure 5. The cores of the
stream functions are also located in the thermally unstable zone of the liquid layer.
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Figure 4. Profiles of the temperature perturbation 8(z) and the axial velocity @(z) for isothermal
no-slip condition Bi = o in the absence of the magnetic field (Ha = 0).
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Figure 5. Isotherms and stream functions for isothermal boundaries (Bi — o0): (a,b) for free-slip
boundary conditions and (c,d) for no-slip boundary conditions. Yellow and black zones in (a,c) corre-
spond to hot and cold zones, respectively. Red color and blue color in (b,d) correspond to anticlock-
wise and clockwise vortices, respectively. Black arrows indicate the vortices” orientation.

3.2. Effect of the Magnetic Field on Internal Heating Induced Convection

Different studies on thermal convection have shown that the vertical magnetic field
delays the occurrence of the Rayleigh—-Bénard convection with a decrease in cell size [23].
In the present study, we analyze the effect of the horizontal dimensionless magnetic field
B = (1,0,0) on the threshold of internal heating-driven convection. We have solved the
eigenvalue problem for different values of the Hartmann number Ha and plotted in Figure 6
the critical parameters (Rac, k.) as functions of Ha. The critical modes are stationary for
all values of Ha and the threshold is independent of Pr. The effect of the magnetic field
on the threshold of thermal convection induced by Joule heating becomes significant for
Ha > 1 where the threshold Ra. and the critical wavelength (~1/k.) start to increase for
all values of the Biot number Bi. For both types of kinematic boundary conditions with
imposed isothermal boundaries, the variations Ra.(Ha) can be approximated by quadratic
polynomials. For free-slip boundary conditions,

Rac = 1.649Ha® 4+ 22.12Ha +222.6 (24)
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For no-slip boundary conditions,

Ra, = 1.771Ha® + 39.9Ha + 493.7 (25)
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Figure 6. (a) Variation of Ra. as a function of Ha for different boundary conditions and (b) variation
of the critical wave number.

The stabilization effect of the magnetic field on thermal convection becomes significant
when the applied field By becomes larger than the characteristic intrinsic magnetic field B;
which depends on the properties and of the thickness of the liquid according to the rela-
tion (12). The isotherms and stream functions of the critical modes for Bi = 1, Ha = 50 are
plotted in Figure 7. They illustrate the increase in the wavelength of the thermoconvective
cells compared to the case without the magnetic field shown in Figure 5.

(c) (d)

Figure 7. Isotherms and stream functions for Bi = 1 and Ha = 50: (a,b) for free-slip boundary

conditions and (c,d) for no-slip boundary conditions. Yellow and black zones in (a,c) correspond to
hot and cold zones, respectively. Red color and blue color in (b,d) correspond to anticlockwise and
clockwise vortices, respectively. Black arrows indicate the vortices” orientation.

4. Discussion

We have revisited the linear stability of thermal convection induced by Joule heating
in a liquid layer crossed by a homogeneous current of intensity I and bounded by two
infinite horizontal plates that exchange heat with the environment. We have confirmed the
results from previous studies [11-13,17] which have shown that the heat exchange between
the liquid and the environment favors the appearance of thermal convection by the energy
input into the liquid.
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We have neglected the induced currents and magnetic fields in the liquid. The applied
horizontal magnetic field delays the occurrence of thermal convection as in the case of
Rayleigh-Bénard convection. In order to explain this result, we have derived from the
system of Equation (14), the equation of the energy budget of the perturbations

Z—I::B+D+L (26)

where K = [ #2d°7 is the kinetic energy, B = [ w8 d°7 is the power of the Archimedean
buoyancy, D = / % [ (@.V?i)d®F < 0 [30] is the dissipation due to viscosity and

L= —Ha? \/% [ (v* + w?)d®F < 0is the power performed by the Lorentz force in which
we have neglected the power produced by the perturbation of the electric field. The Lorentz
force contributes to the dissipation of the kinetic energy of the perturbations and thus, it
delays the thermal convection.

Molten salts are used in some microfluidic systems used in aeronautics and in elec-
tronic circuitries [31]. They also have found a new application in the design of liquid
metal batteries which consist of three superimposed liquid layers where an electrolyte is
sandwiched between two liquid metals serving as electrodes [10,32]. These liquid layers
are crossed by an electric current which induces a Joule heating in the electrolyte because
of its low electrical conductivity compared to the liquid metals. To control the thermocon-
vective motion in liquid metal batteries where this motion can induce short-circuit and
then damage the battery, the application of the magnetic field in the appropriate direction
seems to be a solution to suppress or delay the thermoconvective motion in the battery.

From the critical values Ra., one can estimate the critical current Jo. required to trigger
thermal convection induced by Joule heating in a liquid layer of thickness d using the
relation (7) between the control parameter Ra and the applied current J:

ocAvkRa
] =84/ W (27)

Table 3 yields the values of the critical current ], for a thickness d = 1072 m of the
LiCl — KCI molten salt with properties [7] : & = 2.93 X 107% (1/K), A = 0.42 (W/mK),
o =170 (S/m),v =0.71 x 107 (m?/s), k = 2012 x 10~7 (m?/s).

Table 3. Critical value of current density to trigger convection for d = 102 m.

Rac Je (Al m’ )
No-slip 583.207 1184.10
Free-slip 265.505 799.06

Figure 8 shows the variation of critical current density Jo. that has to be applied to
avoid convective motions as a function of the applied magnetic field By. These calculations
have been made for different thicknesses of the molten salt layer.

12
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Figure 8. Variation of the critical current density Jo. as a function of applied horizontal magnetic
field By for different layer thickness, isothermal boundaries: (a) free-slip boundary and (b) no-
slip boundary.

5. Conclusions

Thermal convection induced in a liquid layer confined between two infinite horizontal
plates and subject to Joule heating by a homogeneous current has been revisited for different
kinematic and thermal boundary conditions. The application of the horizontal magnetic
field leads to the delay of thermal convection and to the increase in the wavelength of
the thermoconvective cells. The energy budget shows that the Lorentz force produces
a negative power and so it contributes, together with viscous forces, to the dissipation
of the kinetic energy of thermoconvective perturbations induced by Joule heating in the
liquid layer.
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Abstract: This study presents a detailed investigation of the temporal evolution of the Nusselt number
(Nu) in uniformly accelerated and decelerated turbulent pipe flows under a constant heat flux using
direct numerical simulations. The influence of different acceleration and deceleration rates on heat
transfer is systematically studied, addressing a gap in the previous research. The simulations confirm
several key experimental findings, including the presence of three distinct phases in the Nusselt
number temporal response—delay, recovery, and quasi-steady phases—as well as the characteristics
of thermal structures in unsteady pipe flow. In accelerated flows, the delay in the turbulence response
to changes in velocity results in reduced heat transfer, with average Nu values up to 48% lower
than those for steady-flow conditions at the same mean Reynolds number. Conversely, decelerated
flows exhibit enhanced heat transfer, with average Nu exceeding steady values by up to 42% due to
the onset of secondary instabilities that amplify turbulence. To characterize the Nu response across
the full range of acceleration and deceleration rates, a new model based on a hyperbolic tangent
function is proposed, which provides a more accurate description of the heat transfer response than
previous models. The results suggest the potential to design unsteady periodic cycles, combining
slow acceleration and rapid deceleration, to enhance heat transfer compared to steady flows.

Keywords: unsteady flow; Nusselt number; turbulent pipe flow; heat transfer; direct numerical
simulation; flow acceleration; flow deceleration

MSC: 76-10

1. Introduction

Understanding the heat transfer characteristics of unsteady turbulent pipe flows is crucial
for optimizing a wide range of industrial and technological processes. These include exhaust
systems in internal combustion engines; heating, ventilation, and air conditioning (HVAC)
systems; aerospace propulsion; chemical reactors; and biomedical technology applications. In
recent decades, there has been growing interest in the potential of unsteady periodic pipe flows
to enhance convective heat transfer compared to steady flows at the same Reynolds numbers.
In particular, pipe flow driven by pulsations has attracted significant attention. Numerous
experimental studies (Dec et al. [1], Habib et al. [2], Barker and Ffowcs Williams [3], Elshafei
etal. [4], Patel and Attal [5], Simonetti et al. [6], Brahma and Singh [7]) and computational fluid
dynamics (CFD) analyses (Wang and Zhang [8], Elshafei et al. [9], Nishandar et al. [10]) have
investigated how pulsation parameters, such as amplitude, frequency, and mean Reynolds
number, affect heat transfer. Despite extensive research, the effects of these parameters
remain unclear, and contradictory findings continue to challenge the development of reliable
predictive models.

Investigations have shown that pulsation can increase, decrease, or have no effect on
heat transfer relative to steady conditions, depending on the pulsation control parameters. It
is generally accepted that enhancing heat transfer requires the pulsation amplitude to exceed
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the mean velocity, leading to flow reversal (Dec et al. [1], Patel and Attal [5], Simonetti
et al. [6], Brahma and Singh [7], Wang and Zhang [8]). However, it is still uncertain whether
this condition alone is sufficient or if additional factors play a role in determining the heat
transfer enhancement. When the pulsation amplitude is below the mean velocity, researchers
have observed slight reductions (Habib et al. [2], Elshafei et al. [4,9]) in heat transfer, as well
as cases where heat transfer remains similar to steady-flow conditions (Barker and Ffowcs
Williams [3], Elshafei et al. [4,9], Nishandar et al. [10]).

Unlike amplitude, there is no consensus on how pulsation frequency affects heat
transfer. Some studies indicate that heat transfer increases with higher pulsation frequen-
cies (Dec et al. [1], Patel and Attal [5]), while others report that significant changes only
occur at optimal or resonant frequencies (Habib et al. [2], Simonetti et al. [6], Wang and
Zhang [8]). In contrast, numerous studies have found that varying the pulsation frequency
has little to no significant effect (Barker and Ffowcs Williams [3], Elshafei et al. [4], Brahma
and Singh [7], Elshafei et al. [9], Nishandar et al. [10]). There is currently no theory that
explains the differing results reported in these experiments and simulations

Similarly, the influence of the mean Reynolds number on heat transfer remains
contentious. While most studies have not detected significant effects from variations in
the Reynolds number (Barker and Ffowcs Williams [3], Elshafei et al. [4], Brahma and
Singh [7], Elshafei et al. [9], Nishandar et al. [10]), some have observed that heat transfer
enhancement due to pulsation increases with the mean Reynolds number up to a threshold,
beyond which further increases yield no significant changes (Patel and Attal [5], Wang
and Zhang [8]).

While the effects of pulsatile flows on heat transfer have been extensively studied, much
less attention has been given to non-periodic unsteady flows, such as uniformly accelerated
and decelerated flows. Understanding the heat transfer characteristics of these flows is
important not only due to their broad industrial and civil engineering applications but also
because unsteady periodic flows are composed of alternating acceleration and deceleration
phases. Thus, investigating the heat transfer behavior during these individual phases could
provide valuable insights into unresolved questions regarding heat transfer in pulsatile flows.

To date, only the laboratory experiments conducted by Shiibara et al. [11] and Naka-
mura et al. [12] have explored the effects of acceleration or deceleration on heat transfer
in turbulent pipe flow. Using high-speed infrared thermography, these studies reported
on the temporal response of the Nusselt number and thermal structures when flow speed
changed abruptly (Shiibara et al. [11]). Based on these observations, a model was proposed
to characterize this temporal response (Nakamura et al. [12]). Their results indicated a time
delay in the heat transfer response to changes in velocity, resulting in lower heat transfer
during acceleration and higher heat transfer during deceleration compared to steady con-
ditions. However, the experimental setup did not allow control over the acceleration and
deceleration rates (denoted by the parameter &), so they were unable to explore the effects
of varying «.

To address this gap, the present work uses direct numerical simulations (DNS) to
systematically investigate the impact of & on the temporal evolution of the Nusselt number
in turbulent pipe flow under constant heat flux. DNS captures all relevant scales of motion
and avoids the approximations of turbulence models, allowing for a detailed examination
of flow structures and heat transfer mechanisms. However, due to its high computational
cost, DNS has not been previously used to study heat transfer in unsteady flows.

This study contributes to the field in two significant ways. First, the simulations offer
the first numerical verification of the experimental findings, confirming the existence of
three phases in the Nusselt number evolution—delay, recovery, and quasi-steady phases—
as well as the characteristics of the thermal structures during these phases. The results
further show that, for the parameters investigated, accelerated flows may reduce heat
transfer by up to 48% compared to the steady conditions, while decelerated flows may
increase it by up to 42%. These findings suggest that unsteady periodic flow cycles,
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composed of alternating slow acceleration and rapid deceleration phases, could be designed
to achieve greater heat transfer efficiency compared to steady flows.

Second, it is found that the experimental model for the temporal response of the
Nusselt number is accurate only for high values of |«|. For moderate or small ||, the model
fails to capture the response accurately. To address this limitation, a new model based on a
hyperbolic tangent function is proposed, which accurately describes the temporal response
of the Nusselt number across a broad range of « values.

2. Materials and Methods
2.1. Governing Equations and Dimensionless Parameters

The hydrodynamically and thermally developed flow of an incompressible fluid
through a straight, horizontal pipe of a constant cross-sectional area is analyzed (Figure 1).
The fluid properties, including density p, kinematic viscosity v, thermal conductivity «,
specific heat at constant pressure Cp, and thermal diffusivity A;, are assumed to be constant.
The fluid motion is described by the continuity and momentum equations in cylindrical
coordinates (7,6, z). The mean bulk velocity vy, ,, of the acceleration or deceleration period
(definition is given below), the pipe diameter D, the dynamic pressure pv%,m, and the
advective time scale D /vy, ,, are used as characteristic scales for velocity, length, pressure,
and time, respectively. These considerations lead to the following non-dimensional forms
of the momentum and continuity equations:

1
al+(v~V)v: —Vp+ ——V?, 1)
ot €m

V-v=0, ()

where v = (v, vy, V) represents the velocity field in cylindrical coordinates,  denotes time,
p is the non-dimensional pressure, and

D
Rey; = Lb,;n ’ (©)]

is the mean Reynolds number.

Flow direction

L=3nD

Figure 1. Schematic of the pipe flow configuration and the coordinate system used in the simulations.
A constant and uniform heat flux per unit area, g, is applied along the pipe surface, as indicated by
the red arrows.

Periodic boundary conditions are applied in the axial and azimuthal directions,
whereas no-slip conditions at the pipe wall and regularity conditions at the axis are imposed
in the radial direction.

This study examines flows that are uniformly accelerated or decelerated. To model this
behavior, the non-dimensional bulk velocity vy (t) is updated at each time step according to
the equation
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up(t + 0t) = v, (t) + adt, 4)

where 4t is the time step size, and « represents the non-dimensional rate of acceleration or
deceleration, defined as

dZJb
The updated bulk velocity is enforced using the equation
1
op(t+0) = 5 [ v:da, ©)

where A denotes the cross-sectional area of the pipe. The variation in the bulk velocity
implies that the Reynolds number continuously changes during flow acceleration or decel-
eration. The characteristic Reynolds number in these cases is calculated using the mean
bulk velocity, defined as v}, ,, = W, where vy, ;,;y and vy, ., indicate the bulk velocity
at the beginning and end of the acceleration or deceleration phase.

The external surface of the pipe is subjected to a constant and uniform heat flux per
unit area, denoted by 7. In this analysis, the effects of gravitational buoyancy are neglected,
which allows us to treat the temperature T as a passive scalar. Viscous dissipation and
internal heat generation are also neglected. Consequently, the temporal evolution of T is

governed by the advection—diffusion equation, given in its dimensional form by

oT

S5t VT = «V?T. (7)
Fluid properties are evaluated at the mean bulk temperature, denoted as T, which is

defined as the volumetric flow rate weighted average temperature across the cross-sectional

area of the pipe [13]:
T, S4(v2)(T)!dA
Jalv)tdA 7

where (.)! denotes time averaging. An energy balance conducted over a thin section of the
pipe reveals a linear axial variation in T, characterized by the following rate of change:

®)

dTb - 4qw
dz — pCpop, D’ ©)

This scenario prevents the use of periodic boundary conditions in the axial direction.

In line with previous studies [14-16], this limitation is addressed by replacing temperature
Ty (z)—T(r,0,2,t)

T , where the
ref

variable T with the dimensionless temperature difference ¢ =

reference temperature is defined as T,y = PCZZb . This modification eliminates the axial
‘ ,m
temperature gradient dfj? = 0, thus permitting the use of periodic boundary conditions.

The reformulated equation, expressed in non-dimensional terms using the previously
defined scales, is

o _ 1 2
g + A\ V(P - 4:'Uz — RemPrv ¢/ (10)
where Pr is the Prandtl number, defined as
v
Pr = Aft, (11)

Periodic boundary conditions are used in the axial and azimuthal directions, with
regularity conditions at the pipe axis and a prescribed heat flux, often termed the isoflux
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condition [14], applied at the pipe wall. The isoflux condition is expressed in non-dimensional
form as

9%

3 = —Re,, Pr. (12)

r=1/2

An additional condition is required to ensure the uniqueness of the solution for
Equation (10) [14]. It is imposed that the volumetric flow rate weighted average of ¢ over
the entire pipe volume must be zero:

/V $v-dV = 0. (13)

To quantify convective heat transfer in accelerated or decelerated flows, the instan-
taneous Nusselt number is employed, which measures the relative importance between
convective and conductive heat transport in the fluid:

h(t)D guwD
Kk k{(Tw(t,0,2z) — Ty(z))8#’

(14)

where T, is the wall temperature, and (.)%* denotes averaging over the axial and azimuthal
directions. With the non-dimensionalization carried out in this study, the instantaneous
Nusselt number is expressed as

Re;, Pr
(pu(t,6,2))0
Table 1 provides a summary of the dimensionless numbers that arise in the mathe-
matical formulation of the problem, distinguishing between the control parameters (input

parameters) and those derived from the simulation results (output parameters). For the
control parameters, the values used in this study are also presented.

Nu(t) = — (15)

Table 1. Summary of the dimensionless numbers arising in the formulation of the problem.

Dimensionless Number Symbol  Equation Character Value/s
Mean Reynolds number Rey, 3) Input parameter 6400
ACceleratioila/t]é)eCeleration o (5) Input parameter 0.0015 < |o| <2
Prandtl number Pr (11) Input parameter 0.7
Nusselt number Nu (14) Output parameter -

2.2. Methodology and Numerical Code

The results presented in this paper were obtained from direct numerical simulations
of the equations and boundary conditions outlined in Section 2.1. These simulations
were performed using the open-source code NSPipeFlow [17], which has been recently
extended to support non-isothermal flow simulations. The updated version of the code
has been validated against previously published data in [14,16]. This enhanced version of
the code is made publicly available in conjunction with this paper and is accessible in the
repository [18].

The spatial discretization of the flow variables is performed using eighth-order central
finite differences on a Gauss—Lobatto—Chebyshev grid in the radial direction, combined with
Fourier-Galerkin expansions in the two homogeneous directions, 6 and z. The Fourier-Galerkin
expansions for the dimensionless velocity, pressure, and temperature fields are given by
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L N ,
v(r,6,z)= Y Y ¥(r,n1)e"0k), (16)
|=—Ln=—N
L N ,
p(r6,z)=Y Y fﬂ(r,n,l)el(”9+lkzz), (17)
|=—Ln=—N
L N .
o(r,0,z)= Y ) g?b(r,n,l)el(”9+lkzz). (18)

N

I=—Ln=

Here, n and | represent the Fourier mode numbers in the azimuthal and axial directions,
respectively, and k; is the axial wavenumber, which defines the axial length of the computa-
tional domain as L, = 27t/k,. The coefficients ¥(r,1,n), p(r,I,n), and ¢(r,I,n) are complex
spectral coefficients. The values of N and L specify the spectral resolution in the 6 and z
directions, respectively.

Substituting these expansions into Equations (1) and (10) yields a set of (2N +1) x (2L+1)
independent equations, each associated with a specific (11,1) pair. Solving this system enables
the determination of the spectral coefficients. The time integration of these equations is carried
out using a second-order accurate predictor—corrector scheme based on the Crank-Nicolson
method [19]. To facilitate understanding of this algorithm, it is useful to define Ny = — (¥ - V)¥
y N = —(¥ - V)¢ + 49, and to rewrite Equations (1) and (10) as

V29 = —Vp+ Ng, (19)

0 1

24 — N

Additionally, a pressure Poisson equation must be included, which is obtained by taking
the divergence of Equation (19), along with the incompressibility condition

V2p =V -Ns. (21)

In all these equations, the hat symbol indicates that the variables are spectral coefficients.
The predictor step provides the initial estimates of the velocity and temperature fields at time
step g + 1 using data from time step g, and is formulated as

VIt = v N, 22)
1€ gyttt gyttt LN 1 (-9 g2
(5 RemV) =~V TN+ (5 — VR, 23)
1 g1 _ g (L (1=0) oy
(5t PrRem VI = N (5t PrRe,, Vo, @4)

where J; is the time step size, and c is a constant that sets the implicitness of the scheme (set
to 0.5 in our simulations). These initial estimates, ¥ Aq“ and (f)?“, are then iteratively refined
through a correction process. During each iteration, the non-linear terms are updated, and the
velocity and temperature fields are refined by solving

VAT = VN (25)
(l — S V)T = —Up T NI (1 )N+ (l _(= )VZ) (26)
o+ Rey ]*1 p/+1 ¥V k4 o Re, 1,
1_ g1 _ N7 1 (1 _ (-0
((5t PrRem )(P CN@;‘ +1- )N (5t PrRey, VO, @7)

wherej=1,2,...
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]+1 “7“ | <1076 and ||4>"+1 ‘7“ | < 1076, with
convergence typically achieved after one corrector iteration. The add1t10na1 cost of evaluatmg
advective terms twice per time step is offset by the larger ot permitted by this scheme compared
to other conventional methods.

To solve the pressure Poisson Equation (21), a homogeneous Neumann boundary con-

The iteration terminates once ||¥/

dition, 22 3. = 0, is used at the pipe wall. Consequently, the velocity field obtained from (19)
does not satlsfy the divergence-free condition. This condition is subsequently enforced through
influence matrices, a technique that ensures machine-level accuracy (typically of the order
10716) and avoids the need for artificial pressure boundary conditions.

The code employs a hybrid MPI-OpenMP approach for parallelization, enabling efficient
scaling across thousands of processors. For further details about the parallelization strategy
and code functionalities, the reader is referred to [17] and the references therein.

All results presented in this article correspond to uniformly accelerated or decelerated
flows, where the initial and final Reynolds numbers are Re;,;; = 3200 and Re,,; = 9600,
respectively, for accelerations, and vice versa for decelerations. The mean Reynolds number
in all cases is therefore Re;;, = 6400. Within this range of Reynolds numbers, the flow is
always turbulent under constant flow rate conditions. Figure 2 displays two examples
of the temporal evolution of the instantaneous Reynolds number, Re(t) = M. For
accelerated flows (Figure 2a), the instantaneous Reynolds number increases linearly from
Re = 3200 to Re = 9600. A steady phase is then simulated, where the flow rate remains
unchanged to monitor the stabilization of flow characteristics at Re = 9600. Similarly, for
decelerated flows (Figure 2b), the instantaneous Reynolds number decreases linearly from
Re = 9600 to Re = 3200, followed by a steady phase to examine stabilization at the lower
Reynolds number. In all cases, Pr is set to 0.7. The initial conditions for these simulations
are calculated from constant-flow rate simulations at Re = 3200 and Re = 9600.

10,000 T T 10,000

Deceleration phase | " Steady phase

9000 - 9000 -

8000 - 8000 |

7000 - 7000 -

Re Acceleration phase Steady phase Re

6000 - 6000 |

5000 - 5000 |

1000 - 1000 -

3000 L 1 3000 L
0 50 100 150 0 5 10 15

@) (b)

Figure 2. Variation of the instantaneous Reynolds number with time in simulations, where (a) the
flow is uniformly accelerated with @ = 0.01 from Re;,,;; = 3200 to Re,,,; = 9600, followed by a steady
phase, and (b) the flow is uniformly decelerated with « = —0.1 from Re;,,;; = 9600 to Re,,,; = 3200,
followed by a steady phase.

To examine how acceleration or deceleration rates affect convective heat transfer,
simulations were conducted with || values ranging from 0.0015 to 2.

The simulations were carried out in a pipe of an axial length 377D, using 128 radial
nodes, 121 azimuthal Fourier modes, and 400 axial Fourier modes. To confirm the resolution
adequacy, additional simulations were performed using twice the number of radial nodes
and 1.5 times the Fourier modes in both the azimuthal and axial directions. These tests
revealed no significant quantitative differences, validating the initial grid size. The time
step size was set to & = 5 x 1073 for |«| < 0.01 and & = 1073 for |a| > 0.01. All
simulations were conducted on the Picasso supercomputer at the University of Malaga
using 128 processors per simulation, resulting in durations ranging from 3 to 6 days
depending on the value of «.
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3. Results
3.1. Temporal Variation in the Nusselt Number in Uniformly Accelerated Flows

This section examines the behavior of convective heat transfer in a uniformly acceler-
ated flow. Figure 3a illustrates the temporal evolution of instantaneous Nusselt number
Nu (solid black line) at a moderate acceleration rate of « = 0.02. It also presents the
corresponding quasi-steady Nusselt number values obtained from the empirical Gnielin-
ski correlation (red dashed line). Three distinct phases can be identified in the temporal
variation in Nu. In the initial phase (Phase 1), which lasts up to t ~ 27, Nu remains nearly
unchanged. This is followed by a growth phase (Phase 2), which is characterized by three
sub-stages with different growth rates: a slow increase from ¢ ~ 27 to t ~ 35, a more rapid
increase from t ~ 35 to t ~ 50, and finally, a gradual approach to the quasi-steady value,
which is reached around t ~ 61. In the last phase (Phase 3), Nu fluctuates around the
quasi-steady value.

.
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20 10 60 80 100
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Figure 3. Temporal variation in Nusselt number Nu (a) and friction coefficient c 1 (b) in a uniformly
accelerated flow with a moderate acceleration rate, « = 0.02. The red dashed lines represent the
corresponding quasi-steady values, calculated using the Gnielinski correlation for Nu and the Blasius
formula for ¢ f- The brown vertical dashed lines delineate the distinct phases, each characterized
by different behaviors. The points in the left panel correspond to the time instants for which flow
patterns are shown in Figure 4.

The qualitative behavior of the Nu response shown in Figure 3a is in agreement with
experimental observations [11,12], even though those studies were conducted at higher
acceleration rates. It is also consistent with the established descriptions of turbulence behav-
ior in unsteady flows [20,21]. These descriptions propose that the response of turbulence to
changes in the mean velocity occurs in three stages.

The initial stage, often referred to as the delay phase, corresponds to Phase 1 in
Figure 3a. This phase is characterized by the phenomenon of frozen turbulence, where
turbulent stresses respond with a delay to changes in mean velocity. Due to this delay,
the intensity of the turbulent stresses remains largely unchanged despite the variation
in the instantaneous Re. Consequently, the convective heat transfer carried by these
stresses remains nearly constant, resulting in the almost invariant Nu observed during this
initial stage.

Once the turbulent fluctuations respond to the velocity change, the turbulence intensity
increases (second stage), leading to the growth in Nu observed in Phase 2. Eventually, the
turbulence intensity stabilizes at the quasi-steady condition (third stage), similar to how
Nu stabilizes in Phase 3. These latter two stages are typically referred to as the recovery
stage and quasi-steady stage, respectively.
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Figure 4. Instantaneous snapshots of the temperature difference with respect to bulk temperature ¢
(left panels), and radial velocity v, (right panels), illustrating the evolution of these structures in
the near-wall region under uniform flow acceleration with & = 0.02. The structures are depicted in a
cylindrical section (z, 0) at a radial location of ¥/D = 0.49. The flow direction is from left to right.
From top to bottom, each row corresponds to the structures at points A to F as denoted in Figure 3a.
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A key result of the delayed response of convective heat transport to changes in the
mean velocity is that, during acceleration, the instantaneous Nu is always less than or
equal to the quasi-steady Nu. This delay causes the average Nu for a uniformly accelerated
flow to be lower than that of a steady flow at the mean Reynolds number (in this study,
Re;; = 6400). For the specific case shown in Figure 3a, the average Nu is 13.7, while the Nu
for a steady flow at Re = 6400 is 20.32, indicating a 32.6% reduction from the steady value.
A detailed quantitative study on the reduction or increase in Nu relative to the steady case,
as a function of the a values, is provided in Section 3.4.

Comparing the temporal response of Nu with that of the friction coefficient ¢ for the
same case, shown in Figure 3, provides useful insights. The friction coefficient is calculated

using the Fanning equation c¢(t) = 2:)1:((32 ,
stress, and vy (t) is the instantaneous bulk velocity. The figure also includes quasi-steady
values (red dashed line), which, for this range of Re values, are well approximated by the
empirical Blasius formula c¢(t) = 0.079Re(t) ~025 The temporal variation in ¢ ' observed in
the simulation qualitatively matches the previous findings [22], showing the three stages of
the turbulence response in unsteady flows: delay, recovery, and quasi-steady phases. However,
two important differences are noted between the temporal responses of Nu and cy.

The first difference occurs during the initial delay phase. Here, ¢y initially shows a slight
increase above the quasi-steady value caused by the high inertia needed to start accelerating
the flow. This is followed by a significant decrease, reaching values approximately 40% lower
than the quasi-steady case. This behavior contrasts with Nu, which remains constant during
this phase. This observation deviates from the widely accepted Colburn analogy [23], which
posits a proportional relationship between ¢y and Nu. While this analogy has been extensively
validated in steady flows, the comparison in Figure 3 suggests that the relationship between
these two quantities is more complex in unsteady flows.

The second difference is observed during the recovery phase. In this stage, ¢, rapidly
increases due to the rise in turbulent stresses, surpassing the quasi-steady value and
reaching a relative maximum at t ~ 43. Subsequently, c¢; decreases and stabilizes around
the steady value at t ~ 48. In contrast, the growth rate of Nu is much more gradual,
resulting in a considerably longer recovery phase compared to cy.

An important aspect investigated in the experiments of [11,12] is the spatiotemporal
characteristics of heat transfer in unsteady flows. Specifically, they examined the evolution
of the spatial distribution of the instantaneous convective heat transfer coefficient near the
pipe wall, as the flow was accelerated or decelerated. To compare their observations with the
simulation results, Figure 4 illustrates the spatial distribution of the temperature difference
relative to the bulk temperature, ¢ (left panels), near the pipe wall at various time instants
during acceleration. Notably, this quantity is proportional to the convective heat transfer
coefficient, and therefore, its spatiotemporal characteristics are analogous.

In the color scale used to depict ¢ structures, dark blue represents regions of higher
temperature, while yellow indicates areas of lower temperature within the section shown.
Note that negative values of ¢ indicate a temperature higher than the bulk temperature,
which is typically observed near the wall. To aid in the interpretation of the physical
processes driving the evolution of these thermal structures, the evolution of the radial
velocity, v, (right panels), is also shown in Figure 4. The color maps for v, employ a
blue-to-red scale, where negative values (blue) correspond to radial flow toward the pipe
center, and positive values (red) correspond to radial flow toward the wall.

During the early delay phase, ¢ structures appear as elongated streaks aligned with the
flow direction (Figure 4a). These streaks show alternating regions of high and low temperature
in the azimuthal direction and have slight modulations that appear to be associated with
localized areas of significant radial velocity (Figure 4b). These areas are remnants of the initial
steady turbulent state. As the flow accelerates, these regions do not regenerate and gradually
dissipate. This characteristic is evident in Figure 4d, where significant radial velocity gradients
are only observed in a small area near the outlet section of the pipe.

where T, (f) denotes the instantaneous wall shear
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Without vortices to redistribute momentum and heat, the streaky structures of ¢ lose
the weak modulation observed in the early stages of the acceleration, becoming almost
parallel and more elongated, often spanning the entire computational domain (Figure 4c).
It is important to note that although some structures span the entire pipe length, suggesting
that the axial domain used in the simulations may be insufficient to capture the full physics
of the problem, additional simulations with extended pipe lengths were conducted and
revealed no significant differences from the results obtained with the present configuration.

At the beginning of the recovery phase (point C in Figure 3a), regions of significant radial
velocity begin to emerge across a large portion of the section (Figure 4f). The heat transport
associated with these fluctuations causes the streaky structures to start oscillating and breaking
down into smaller structures (Figure 4e). In areas where the radial velocity remains near zero,
the ¢ structures continue to form elongated streaks aligned with the flow direction.

As the recovery phase progresses, and the Nusselt number growth rate increases (point D
in Figure 3a), radial velocity structures have spread almost entirely along the pipe’s axial length
(Figure 4h). Consequently, the elongated streaks from earlier moments transform into shorter
streaks that eventually break down into structures with varied spatial scales (see Figure 4gi).
Toward the end of the recovery phase, the ¢ (Figure 4i) and v, (Figure 4j) structures become
nearly identical to those observed in the steady case (Figure 4k and Figure 41, respectively).

The magnitude of ¢ substantially decreases during the recovery phase, indicating
that as the flow becomes more turbulent, mixing is enhanced near the wall, leading to
temperatures closer to the bulk temperature. A smaller value of ¢ corresponds to a higher
Nu, consistent with the evolution of this parameter shown in Figure 3a. Conversely, the
magnitude of v, increases during the recovery phase, rising from very low values in the
delay phase (often referred to as the relaminarization phase due to the low fluctuation
intensity) to the typical levels seen in fully developed turbulent flow.

The evolution of the ¢ structures depicted in this figure closely resembles the instan-
taneous convective heat transfer coefficient patterns reported by Nakamura et al. (see
Figure 4 in [12]) for experiments in a similar Reynolds number range, further confirming
the high fidelity of the simulations in reproducing the experimental results.

3.2. Temporal Variation in the Nusselt Number in Uniformly Decelerated Flows

This section examines the evolution of the Nusselt number in uniformly decelerated
flows. Figure 5a illustrates the temporal response of Nu for a simulation with a deceleration
rate of # = —0.02, matching the magnitude used for the uniformly accelerated case in
Section 3.1. The three phases identified for uniformly accelerated flows are also present in
decelerated flows.
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Figure 5. Temporal variation in Nusselt number Nu (a) and friction coefficient ¢ ¢ (b)ina uniformly deceler-
ated flow with a moderate acceleration rate, « = —0.02. The red dashed lines represent the corresponding
quasi-steady values, calculated using the Gnielinski correlation for Nu and the Blasius formula for c¢. The
brown vertical dashed lines delineate the distinct phases, each characterized by different behaviors. The
points in the left panel correspond to the time instants for which flow patterns are shown in Figure 6.
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Figure 6. Instantaneous snapshots of the temperature difference with respect to the bulk temperature,
¢ (left panels), and the radial velocity, v, (right panels), illustrating the evolution of these structures
in the near-wall region under uniform flow deceleration with « = —0.02. The structures are depicted
in a cylindrical section (z, 0) at a radial location of /D = 0.49. The flow direction is from left to right.
From top to bottom, each row corresponds to the structures at points A to F as denoted in Figure 5a.
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Initially, there is a delay phase (Phase 1), during which Nu remains approximately
constant despite a decrease in instantaneous Re (see inset in the figure). This phase is
significantly shorter than in the uniformly accelerated case. Here, the delay phase extends
tot & 6, accounting for 12% of the deceleration period, whereas it covered nearly 50% of
the acceleration period in the accelerated flow.

Following the delay phase, the recovery phase (Phase 2) begins, during which Nu
decreases from its initial value to levels consistent with the final condition. Unlike the
recovery phase in accelerated flows, where the intensity of turbulent fluctuations increases
towards the quasi-steady level, in decelerated flows, the intensity of these fluctuations
decreases to match the lower mean flow velocity. However, this decrease occurs more
slowly than in the quasi-steady case (dashed red line), leading to greater convective
heat transport and consequently higher Nu compared to the quasi-steady case. This
implies an increase in the intensity of turbulent fluctuations during the initial part of the
recovery phase.

The exact cause of this increase is not entirely clear, but it may be associated with
the presence of inflection points in the velocity profile, a characteristic feature of decel-
erated flows. These inflection points can induce instantaneous linear instabilities [24,25],
potentially providing the energy needed for the transient increase in turbulence intensity.

The decrease in Nu continues until t ~ 110, extending well beyond the duration
of the deceleration period. This is followed by a slight increase, leading to the quasi-
steady phase (Phase 3), during which Nu oscillates slightly around a steady value. Notably,
there is an offset between this steady value and the quasi-steady value predicted by the
Gnielinski correlation. This offset is expected, as the correlation is known to deviate from
the experimental values when Re approaches the transitional regime. As in the uniformly
accelerated case, the three phases observed in the Nu response to deceleration are consistent
with the experimental observations in [11,12].

In contrast to the acceleration case, Nu values during deceleration are always above or
equal to those of the quasi-steady case, resulting in a net increase in heat transfer compared
to the steady case when the flow is driven at the mean Re. For this specific case, the average
Nu during deceleration is 24.68, while, as noted earlier, Nu corresponding to the steady
case for Re = 6400 is 20.32. This leads to a net increase in Nu of 21.45%.

A comparison of the temporal evolution of Nu and ¢y throughout the deceleration
phase (Figure 5b) reveals significant differences in their respective responses. The temporal
response of ¢y can be divided into four distinct stages.

In the initial phase, c; undergoes a slight decrease due to the adverse pressure gradient
applied to decelerate the flow. This phase is brief, lasting only until t ~ 1, which is six
times shorter than the delay phase observed in the temporal response of Nu. Following
this initial decrease, a second phase begins, characterized by a rapid recovery to values
exceeding the quasi-steady level. During this phase, ¢s follows the same trend as the
quasi-steady value but its magnitude remains slightly higher. This behavior supports the
hypothesis of a local instability that transiently increases turbulence levels during flow
deceleration. The onset of this second phase could therefore be linked to the initiation of
this instability.

The third phase starts at the end of the deceleration period (t = 50) and extends to
t ~ 140. During this phase, ¢ exhibits a pronounced overshoot above the quasi-steady
value due to the significant inertia of the fluid. After reaching this maximum, ¢y gradually
decreases to values below the steady case before stabilizing.

In the fourth and final phase, cf oscillates around the steady value. Notably, as in the
case of uniformly accelerated flow, ¢y reaches this final phase before Nu stabilizes.

As discussed in the previous section, the qualitative differences in some phases of the
Nu and ¢y temporal responses suggest that the physical mechanisms governing the instan-
taneous values of these parameters in unsteady flows may differ. This observation raises
questions about the applicability of the Colburn analogy for unsteady-flow conditions.
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The evolution of the ¢ structures near the wall during uniform deceleration (left panels
of Figure 6) shows significant differences compared to the case of uniform acceleration
depicted in Figure 4. As in Figure 4, the evolution of v, is shown alongside the ¢ structures,
using the same color palettes.

During the delay phase (illustrated in Figure 6a,b for t ~ 5.5), both the ¢ and v,
structures remain similar to the initial steady turbulent state. The thermal structures
are primarily organized into streaks, alternating regions of high (blue) and low (yellow)
temperatures in the azimuthal direction, which coexist with smaller structures.

Comparing the ¢ structures with the v, distribution reveals that regions with smaller
structures align with areas where the radial velocity is more pronounced. These regions are
identified in Figure 6b as spatially localized regions with closely spaced high positive (dark
red) and negative (dark blue) radial velocities in the azimuthal direction.

A significant change observed during the transition to the recovery phase is the elonga-
tion of the v, structures (Figure 6d). Regarding the ¢ structures, fewer small structures are
observed (Figure 6¢), and the streaky structures exhibit several clear differences compared
to the previous phase: a marked increase in both the axial length and azimuthal width of
the structures, and the onset of a certain undulation. This undulation is consistent with the
emergence of a secondary instability as previously speculated, which enhances turbulence
levels and causes Nu to rise above the quasi-steady value.

As time progresses and the deceleration period nears its end, the width of the ¢
structures continues to grow, and their undulation becomes more pronounced due to
fluctuations extracting energy from the secondary instability (Figure 6e). An increase in
the magnitude of ¢ is also evident, consistent with the decrease in Nu that results from
the diminishing intensity of turbulent fluctuations as the instantaneous Re decreases. This
substantial reduction in turbulent fluctuation intensity is clearly visible in Figure 6f. Addi-
tionally, this figure shows that the distribution of v, remains similar to that at the start of the
recovery phase, though the azimuthal length of the structures has significantly increased.

The transition between the deceleration phase and the subsequent steady phase is
marked by a clear change in the topology of the structures (Figure 6g,h). The elongated
streaks observed in earlier stages are replaced by irregular structures with a large az-
imuthal length, similar to the “mottled structure” observed experimentally in [11,12]. This
change likely results from streak collapse due to the local secondary instability during the
recovery phase.

Notably, up to this point, the ¢ structures consistently displays negative values near
the wall, indicating higher temperatures than the bulk temperature. However, Figure 6g
shows that some thermal structures now have positive values, indicating temperatures
lower than the average. This change indicates significant heat and momentum transport
from the central part of the pipe, where the temperature is lower, to the wall, which is
also consistent with the substantial increase in ¢y relative to the steady value observed in
Figure 5b during the third phase of the temporal response of this parameter. This increase
in ¢y is also consistent with the substantial rise in the magnitude of v, observed in Figure 6h.

As Nu approaches the end of the recovery phase, the turbulent fluctuations arising
from the secondary instability gradually dissipate, and the ¢ structures revert to streaks
aligned with the flow direction but with a significantly larger azimuthal length than
during the initial deceleration stages (Figure 6i). This feature is again consistent with the
experimental observations in [11,12]. The evolution of the structures during this stage
is similar to what occurs during the frozen turbulence phase when the flow accelerates.
Initially, the intensity of turbulent fluctuations remains at very low levels for some time
(Figure 6j), giving rise to ¢ streaks that extend axially across the entire computational
domain, along with smaller streaks that emerge from the breakup of larger streaks in regions
where v, is significant. Eventually, the intensity of turbulent fluctuations increases to adapt
to the final steady state (Figure 61), and the thermal structures take on the characteristic
distribution of a steady turbulent flow, exhibiting a pattern of streaks of various sizes
alternating high and low temperatures in the azimuthal direction (Figure 6k).
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3.3. Characterization of the Temporal Variation in the Nusselt Number as a Function of
Acceleration or Deceleration Rate

This section examines the temporal characteristics of the Nu variation as a function of
the acceleration or deceleration rate « and introduces a simple model that satisfactorily
reproduces the Nu response across a wide range of « values.

Figure 7 presents the temporal evolution of Nu for uniformly accelerated flows,
covering « values spanning three orders of magnitude. Two distinct behaviors emerge
depending on the magnitude of .

Nu

Nu
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———a=0002
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Figure 7. Temporal response of the Nusselt number in uniformly accelerated flows as a function
of the acceleration rate . (a) Cases where a < 0.002, showing the Nusselt number increasing in a
quasi-steady manner. The red dashed lines represent the quasi-steady values of the Nusselt number
calculated using the semi-empirical Gnielinski correlation. (b) Cases where & > 0.002, with the
evolution of the Nusselt number following the qualitative description provided in Section 3.1. The
brown dashed line indicates the transition between the delay and recovery phases.

For very small values (¢« < 0.002, Figure 7a), Nu increases quasi-steadily over time.
The change in the mean flow velocity is slow enough for the turbulent fluctuations to
adjust almost instantaneously to the evolving flow conditions. As a result, the Nu value
corresponding to each instantaneous Re value closely matches that of a steady flow at the
same Re. In these cases, the Gnielinski correlation (indicated by the red dashed lines in
the figure) provides a good estimate of the Nu evolution. Initially, the correlation slightly
underestimates Nu because the instantaneous Re is close to transitional values, where this
semi-empirical correlation is known to be less accurate. However, as time progresses and
the instantaneous Re moves further from the transitional regime, Nu converges with high
precision to the value predicted by the Gnielinski correlation.

For & > 0.002 (Figure 7b), the evolution of Nu follows the three phases described in
Section 3.1. The delay phase (demarcated by the brown dashed line) lasts until ¢ ~ 27 in all
cases, demonstrating that its duration is independent of . However, the range of Re values
encompassed during this phase expands as « increases due to the more rapid change in
mean velocity, which results in a higher Re by the end of the delay phase. When « exceeds
0.02, the transition time between the initial and final Re values becomes shorter than the
delay phase, causing this phase to extend beyond the acceleration period. Despite this, the
qualitative behavior of the Nu evolution is consistent with that observed at lower « values,
with the notable exception that the increase in Nu and its approach to quasi-steady values
occur while the flow is already being driven at a constant Re.

The most significant effect of increasing « is the faster growth in Nu during the
recovery phase. As a increases, this increase becomes increasingly sharper until « ~ 0.1.
Beyond this point, further increases in « have minimal impact on the recovery phase, and
the temporal evolution of Nu is practically identical in all cases as observed for « = 0.1 and
a=02.

The dependence of the Nu temporal response with « in uniformly decelerated flows,
illustrated in Figure 8, reveals two significant differences compared to the uniformly
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accelerated case. The first is that, for low deceleration rates, no quasi-steady variation in
Nu is observed. Even at the lowest deceleration rate considered (x = —0.0015), shown in
Figure 8a, the three phases described in Section 3.2 are still present. After the delay phase,
which extends until ¢ ~ 10 (see the inset in the figure), Nu decreases to values close to those
predicted by the Gnielinski correlation but progressively deviates as time advances. This
deviation can be attributed to two factors. First is the presence of a secondary instability
that increases turbulence levels and convective heat transfer beyond what would exist
in a quasi-steady state. Second, as the instantaneous Re approaches transitional values,
the Gnielinski correlation becomes less accurate. The first factor explains the early-stage
deviations, while the second factor accounts for deviations later in the deceleration and
during the quasi-steady phase that follows.

Nu

\\>~a®<§\ «5@@%
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Figure 8. Temporal response of the Nusselt number in uniformly decelerated flows as a function of
the deceleration rate, a. (a) The behavior for the lowest deceleration rate considered, « = —0.0015,
along with the quasi-steady Nusselt number values calculated using the semi-empirical Gnielinski
correlation (red dashed line). (b) presents a comparison of several cases where 0.0015 < || < 0.02.
(c) The response for very rapid decelerations, || > 0.04. In all panels, an inset highlights the details
of the initial delay phase.

The second notable difference is the dependence between the delay phase duration
and a. As the magnitude of & increases, the delay phase shortens (see inset of Figure 8b).
However, this trend does not hold across the entire range of « values studied. For rapid
decelerations as shown in Figure 8c, the delay phase stabilizes at t ~ 5. The variation in the
delay phase duration observed for 0.0015 < |a| < 0.02 may be linked to the onset of the
secondary instability. As the magnitude of « increases, the instability sets in earlier, causing
variations in the turbulent fluctuations level and the associated convective transport. As
a result, Nu deviates from its initial value earlier. However, for rapid decelerations, the
transition between the initial and final states occurs so quickly that the onset of instability
is similar regardless of the value of a. This could explain why the duration of the delay
phase becomes independent of « at higher deceleration rates.

Similar to accelerated flows, the Nu values during the recovery phase vary more
sharply as the deceleration rate increases (Figure 8b), until reaching a limit at &« = —0.04.
Beyond this threshold, further increases in a do not significantly affect the temporal
response of Nu (Figure 8c).

The evolution of thermal structures during both acceleration and deceleration is
qualitatively similar to the structures described in Sections 3.1 and 3.2. The exception is the
quasi-steady cases for uniformly accelerated flows, where the thermal structures exhibit
the characteristic pattern of turbulent flow: streaks of varying sizes coexisting with smaller
structures that become finer as the instantaneous Re increases.

Nakamura et al. [12] propose a model to characterize the temporal variation in Nu in
unsteady flows upon sudden acceleration (deceleration), assuming an exponential growth
(decay) of Nu during the recovery phase. This model is based on two parameters: the delay
phase duration At; and a parameter 7, which controls the steepness of the exponential
growth (decay). According to this model, the instantaneous Nu is given by the following
piecewise function:
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Nujyip if t < Aty

Nu(t) = 28
() {Numd — (Nutppg — Nuim't)exp(—$> if t > Aty, @8

where Nu;,;; and Nu,,; represent the Nu values corresponding to the initial and final
Re values in steady-flow conditions. When applied to the simulation data for uniformly
accelerated flows, this model accurately reproduces the Nu response for high acceleration
rates (Figure 9a). However, for moderate « values (Figure 9b) and quasi-steady cases
(Figure 9c), the model fails to adequately predict the Nu growth.
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Figure 9. Characterization of the temporal response of the Nusselt number in uniformly accelerated
flows. The upper panels illustrate the performance of the model proposed by Nakamura et al. [12]
when fitted to our data. (a) Results for & = 1, representing rapid accelerations; (b) data for « = 0.02,
corresponding to moderate acceleration rates; and (c) data for « = 0.002, where the Nusselt number
evolves in a quasi-steady manner. The lower panels demonstrate the performance of the model
proposed in this study. For comparison, the same « values as in the upper panels are used: (d) « =1,
(e) « = 0.02, and (f) « = 0.002.

To address this limitation, a new model is proposed, where the Nu growth is mod-
eled using a hyperbolic tangent function. In this model, the temporal variation in Nu is
expressed as

t—t;
Nu(t) = O.S(Nuim't + Numd) + 0.5(Nuend — Nuinit) tanh (Smf> (29)

This model also introduces two parameters: t;, 7, which marks the inflection point of
the Nu growth curve, and s, which controls the steepness of the curve, similar to 7 in the
previous model. As shown in the lower panels of Figure 9, the proposed model accurately
estimates the Nu response across the entire range of « values. For high a values, the
new model matches the accuracy of the exponential model (Figure 9d). However, unlike
the exponential model, it also accurately predicts the Nu variation for moderate « values
(Figure 9e).

Even for low « values, where Nu varies quasi-steadily, the proposed model provides
a reasonable estimate, with only a slight overestimation during the initial phase. In quasi-
steady cases, the Gnielinski correlation (shown as a green dashed line in Figure 9¢) remains
the most accurate predictor of Nu values.
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The variation in the model parameters ¢,y and s with « is presented in Figure 10. The
parameter t;, ¢, shown in Figure 10a, decreases with increasing « and eventually stabilizes
at an approximately constant value for « > 1. This behavior is well described by an
exponential function with three parameters (blue line in the figure):

tinp = 02011 429 (30)

The variation in s, displayed in Figure 10b, exhibits two distinct phases. For low
to moderate values of o (up to & ~ 0.02), s decreases sharply as « increases. However,
beyond this threshold (« > 0.02), the decrease becomes much more gradual. The variation
in s across the entire range of « is well approximated by the following function (again
represented by the blue line in the figure):

o —t;
s = 0.5(0.33a¢ 1% 4+ 0.175a %% — 9.76) + 0.5(0.1750%>* — 0.330 1% + 13.96) tanh (S”’f) (31)
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Figure 10. Variation in the parameters f;, f (a) and s (b) as a function of the acceleration rate &« in
uniformly accelerated flows.

Similar conclusions can be drawn when these models are applied to characterize
uniformly decelerated flow. The exponential model reasonably estimates the temporal
response of Nu for high deceleration rates, but its accuracy decreases as the deceleration
rate lowers. This is evident in the upper panels of Figure 11. In Figure 11a, which shows a
high deceleration rate simulation, the model satisfactorily reproduces the instantaneous
Nu values, except at the end of the recovery phase, where it overestimates the simulation
results, and during the initial delay phase, where it predicts an average value and therefore
fails to capture the oscillations observed during this phase.

For moderate decelerations (Figure 11b), the model not only overestimates Nu before
the quasi-steady phase but also shows slight deviations during the early recovery phase.
These deviations increase as the absolute value of & decreases as shown in Figure 11c.

Similar to the uniformly accelerated case, the hyperbolic tangent-based model pro-
posed here satisfactorily estimates the temporal evolution of Nu across the entire range
of « values. For high deceleration rates (Figure 11d), it is slightly less accurate than the
exponential model, overestimating Nu during the final part of the recovery phase and
slightly underestimating the average value during the delay phase. This underestimation
persists for all « values. However, as the absolute value of « decreases, the proposed
model captures the recovery phase much more accurately than the exponential model,
significantly reducing the overestimation of the Nu values during the approach to the
quasi-steady phase (Figure 11e,f).

The variation in the parameters f;,; and s with |a| follows a trend similar to that
observed in uniformly accelerated flows. For t;, ¢ (Figure 12a), a decrease is observed as ||
increases, which can be accurately fitted with a three-parameter exponential function:

tinp = 0.51]a| 1 +14.91. (32)

32



Mathematics 2024, 12, 3560

For parameter s (Figure 12b), two distinct phases are observed: a sharp decrease up
to |a| ~ 0.15, followed by a phase where s remains approximately constant, around 11.16.
This behavior is well captured by the following expression:

_ -1 -1 || — ting
s = 05(0.41]a| " +19.67) +0.5(2.65 — 0.41]a| ") tanh | —— ). (33)
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Figure 11. Characterization of the temporal response of the Nusselt number in uniformly decelerated
flows. The top panels illustrate the performance of the model proposed by Nakamura et al. [12] when
fitted to our data. (a) Results for « = —0.1, representing rapid decelerations; (b) data for « = —0.02,
corresponding to moderate deceleration rates; and (c) data for « = —0.002, corresponding to low
deceleration rates. The bottom panels illustrate the performance of the model developed in this study,
using the same « values as in the top panels: (d) « = —0.1, (e) « = —0.02, and (f) « = —0.002. In all
panels, the inset highlights the details of the initial delay phase.
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Figure 12. Variation in the parameters t;,r (a) and s (b) as a function of the absolute value of the
deceleration rate |«| in uniformly decelerated flows.

3.4. Heat Transfer Gain or Loss Relative to Steady Flow

This section examines the heat transfer gain or loss in unsteady flows compared to
steady flows with the same mean Re. As discussed in the introduction, unsteady flows
can potentially enhance heat transfer in industrial processes compared to maintaining a
constant flow rate. To investigate this possibility, it is essential to quantify how variations
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in the parameters governing unsteady flows affect Nu. This study specifically examines
the impact of the acceleration (or deceleration) rate on Nu.

To quantify the heat transfer gain or loss compared to the steady case, the following
parameter is defined:

o Num(‘x) - Nusteady %

ANu(a) = 100, 34

N Usteady

where N, (x) represents the average Nusselt number during the period of acceleration
or deceleration (excluding the steady period that follows these phases in the simulations),
Nitgseqqy is the Nusselt number corresponding to the mean Reynolds number (Re;, = 6400)
obtained from the Gnielinski correlation, which provides an accurate estimate of Nu in
steady conditions for this Re. The values of ANu as a function of « for uniformly accelerated
and decelerated flows are shown in Figure 13a,b, respectively.

ANu

@) (b)

Figure 13. Variation in the parameter ANu, representing the relative decrease or increase in Nu for
uniformly accelerated (a) and decelerated (b) flows, as a function of the acceleration or deceleration
rate, «. Each blue dot represents the result obtained for a specific value of « in our simulations. The
brown dashed lines indicate the limits in each case. For accelerated flows, the upper limit corresponds
to the maximum heat transfer loss, and the lower limit represents the quasi-steady condition. In
decelerated flows, the upper limit corresponds to the maximum heat transfer gain, while the lower
limit again represents the quasi-steady condition.

As explained in Section 3.1, the significant delay in the turbulence response to changes
in the mean velocity results in a reduced heat transfer rate for uniformly accelerated flows
compared to steady flows. It is worth noting that the average Nu in cases with quasi-steady
behavior is slightly higher (by approximately 3%) than the steady Nu value. This deviation
is, however, consistent with the expected errors in estimating this parameter using the
Gnielinski correlation at Re = 6400, suggesting that heat transfer remains effectively
unchanged from the steady case for these a values. For moderate a values, however,
small changes in & can cause significant variations in the average Nu. The largest losses,
approximately ANu = —48% relative to the steady flow, occur for « values, where the
delay phase extends beyond the acceleration period.

In contrast, as discussed in Section 3.2, Nu values during deceleration remain consis-
tently above the quasi-steady values. This is partly due to the presence of an instability that
increases the intensity of turbulent fluctuations, resulting in a higher average Nu compared
to the steady case. Even at the smallest values of |«|, the average Nu shows an approximate
7.5% gain over steady conditions. However, the increase in Nu during deceleration is more
gradual than the sharp decrease observed for accelerated flows, reaching maximum values
of ANu ~ 42% in simulations with large |«|, where the delay phase extends beyond the
deceleration period.

These results suggest the potential for designing a periodic unsteady-flow cycle that
includes a slow acceleration phase to minimize heat transfer losses, followed by a rapid
deceleration phase to significantly enhance heat transfer compared to the steady case. The
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average Nusselt number for such a cycle would be higher than that of a steady flow, while
maintaining the same mean Reynolds number in both cases.

4. Discussion

This paper presents the first study to use direct numerical simulations to systematically
analyze the temporal evolution of the Nusselt number (Nu) in uniformly accelerated and
decelerated turbulent pipe flows under constant heat flux. The findings confirm previous
experimental results and provide new insights into how acceleration and deceleration rates
affect heat transfer, a parameter not systematically explored in earlier research.

The results confirm the existence of three distinct phases, the delay, recovery, and
quasi-steady phases, consistent with the previous experimental observations [11,12]. These
phases are present at all acceleration rates («x), except when « is very low for accelerated
flows, in which case Nu evolves quasi-steadily over time.

In accelerated flows, the delayed turbulence response reduces heat transfer by up to
48% compared with the steady case, while decelerated flows exhibit a maximum 42% in-
crease due to a secondary instability that intensifies turbulence. Evidence of this instability
is provided by the observed increase in turbulence intensity and convective transport, as
well as changes in the topology of the flow structures. The typical elongated streaks seen
in turbulent flows are replaced by more irregular structures with significant azimuthal
extent, akin to the ‘mottle structure’ reported in [12]. While the exact mechanism driving
the instability is unclear, it may be linked to inflection points in the velocity profile as
suggested by recent studies [24,25]. Further research is needed to explore this phenomenon
in detail.

Another important observation is the distinct temporal behavior of the friction coeffi-
cient (c) compared to Nu. It is observed that ¢ responds more quickly to velocity changes,
challenging the applicability of the Colburn analogy, which is commonly used in steady
flows. This suggests that separate models are needed to accurately describe the dynamics
of friction and heat transfer in unsteady turbulent flows.

This analysis also introduces a new model based on a hyperbolic tangent function
that accurately characterizes the Nu response across various acceleration and deceleration
rates. This model is more versatile than previous ones and may serve as a valuable tool
in advancing both research and industrial practices related to optimizing heat transfer in
unsteady-flow systems. However, it is valid only for the specific conditions investigated, as
other parameters such as the initial and final Reynolds numbers, or non-linear acceleration
profiles have not been considered. Future work will focus on extending the model to
broader conditions.

One potential application of these findings is the design of flow cycles that enhance
heat transfer in industrial processes. The results suggest that a periodic unsteady-flow
cycle, comprising a slow acceleration phase to minimize heat transfer losses followed by
a rapid deceleration phase to boost heat transfer, could outperform steady-state scenar-
ios. Similar cycles have been recently proposed in the literature to reduce friction losses
in turbulent pipes while producing net energy savings [26]. However, further research
is required to investigate the behavior of Nu during direct transitions between accelera-
tion and deceleration phases, as these may introduce new dynamics not captured in the
present study.
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Abstract: Heated pipe flow is widely used in thermal engineering applications, but the
presence of buoyancy force can cause intermittency, or multiple flow states at the same
parameter values. Such changes in the flow lead to substantial changes in its heat transfer
properties and thereby significant changes in the axial temperature gradient. We therefore
introduce a model that features a time-dependent background axial temperature gradient,
and consider two temperature boundary conditions—fixed temperature difference and
fixed boundary heat flux. Direct numerical simulations (DNSs) are based on the pseudo-
spectral framework, and good agreement is achieved between present numerical results
and experimental results. The code extends Openpipeflow and is available at the website.
The effect of the axially periodic domain on flow dynamics and heat transfer is examined,
using pipes of length L = 5D and L = 25D. Provided that the flow is fully turbulent,
results show close agreement for the mean flow and temperature profiles, and only slight
differences in root-mean-square fluctuations. When the flow shows spatial intermittency,
heat transfer tends to be overestimated using a short pipe, as shear turbulence fills the
domain. This is particularly important when shear turbulence starts to be suppressed
at intermediate buoyancy numbers. Finally, at such intermediate buoyancy numbers,
we confirm that the decay of localised shear turbulence in the heated pipe flow follows
a memoryless process, similar to that in isothermal flow. While isothermal flow then
laminarises, convective turbulence in the heated flow can intermittently trigger bursts of
shear-like turbulence.

Keywords: mixed convection; pipe flow; direct numerical simulation

MSC: 76F06; 76F10

1. Introduction

In the heated flow context, flow driven by an external pressure gradient is referred
to as ‘forced’ flow, while buoyancy resulting from the expansivity of the fluid close to a
heated wall can provide a force that partially or fully drives the flow, referred to as ‘mixed’
or ‘natural convection’, respectively. In a model, buoyancy may only need to counter drag
forces in the vertical pipe. In practice, we are likely to encounter what could be called
‘super-natural” convection, where the buoyancy must be larger than the local drag in order
to drive flow in a wider circuit. In this case, flow in the vertical section of the circuit is
subject to a reversed pressure gradient that limits the flow rate.
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Turbulent mixed convection in a vertical pipe is a representative model for heat
transfer that can be found in thermal engineering applications, e.g., heat exchangers, nuclear
reactors, chemical plants and cooling systems for electronic components [1]. Despite the
relatively simple geometry, the flow state and heat transfer can be difficult to predict in
the presence of buoyancy. Buoyancy can enhance the heat transfer in a heated downward
pipe flow but suppress heat transfer in upward heated pipe flow [1-5]. In an upward pipe
flow, with the enhancement of heating, heat transfer first deteriorates slowly, then suddenly
drops when shear-driven turbulence collapses, then recovers, and finally can approach as
large values as for downward flow at large buoyancy parameters [1].

Heat transfer presents some complicated features in upward heated pipe flow, as well
as the flow dynamics. Previous research has confirmed three flow states in different heating
conditions and Reynolds numbers, i.e., shear turbulence, the laminar state, and convective
turbulence [6,7]. The laminar state can persist up to Reynolds numbers of around 3000,
versus approximately 2000 in isothermal flow. The addition of buoyancy suppresses and
can laminarise shear turbulence. Research on the phenomenon of laminarisation in mixed
convection can be traced at least as far back as that of Hall et al. [8], which provided a
theoretical explanation of this phenomenon, suggesting that reduced shear stress in the
buffer layer leads to a reduction in or even elimination of turbulence production. More
recently, He et al. [9] modelled the buoyancy with a radially dependent axial body force
added to isothermal flow, successfully reproducing the laminarisation phenomenon. They
found that the body force makes little change to the key characteristics of turbulence,
and proposed that laminarisation is caused by the reduction in the ‘apparent Reynolds
number’, which is calculated based only on the pressure force of the flow (i.e., excluding
the contribution of the body force). Similar laminarisation phenomena have also been
observed for the isothermal case in the presence of a modified base flow [10,11]. It is
conjectured that a flattened velocity profile reduces transient growth [12], thus suppressing
shear turbulence. Chu et al. [13] examined the self-sustaining process [14] in this context
and found that the flattened velocity profile can suppress the instability of streaks thereby
disrupting the self-sustaining process of shear turbulence.

There is a developed history of numerical simulations of mixed convection in vertical
pipe flow using various methods. In an early study, a modification of the Redichardt
eddy diffusivity model was used to simulate mixed convection [15], but it proved that this
approach did not adequately account for certain local features of the flow. Cotton et al. [16]
used the low-Reynolds number k — € turbulence model of Lauder et al. [17] to simulate the
vertical heated pipe flow with some success. Behzademhr et al. [18] conducted a study of
upward mixed convection in a longer pipe at two rather low Reynolds numbers (Re = 1000
and 1500) over a range of Grashof numbers, which measures the heat flux at the wall, using
the Lauder—Sharma model. They identified two critical Grashof numbers for each Reynolds
number, which correspond to laminar—turbulent transition and relaminarisation of the
flow. More recently, direct numerical simulation (DNS) has been used in studies of mixed
convection. Kasagi et al. [19] conducted a DNS study at Re = 4300 and several values
of the Grashof number. The simulations show that buoyancy changes the distribution
of Reynolds shear stress and shear production rate of turbulent kinetic energy, leading
to heat transfer enhancement or suppression. You et al. [20] also performed the DNS
for the mixed convection in vertical pipe flow, and compared the results of upward and
downward flow. Kim et al. [21] presented an assessment of the performance of a variety of
turbulence models in simulating buoyancy-aided, turbulent mixed convection in vertical
pipes. They found the use of different methodologies for modelling the direct production
of turbulence through the direct action of buoyancy has been shown to have little effect on
predictions of mixed convection in vertical flows. Chu et al. [22] applied a well-resolved
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DNS to investigate strongly heated airflow in a vertical pipe at Re = 4240 and 6020. The
results showed excellent agreement in heat transfer and flow statistics. Recent calculations
at larger flow rates include [23-25].

We wish to examine the detailed transient nature of transition, for which accurate
DNS is necessary, and since the flow type ultimately affects the heat transfer and hence
the heating of the fluid itself, we wish to explicitly include a time-dependent temperature
gradient. The model developed by Marensi et al. [6] extends the pseudo-spectral code
openpipeflow [26] to include a time-dependent spatially uniform heat sink. This form for
the sink has the advantage of a simple analytic expression for the laminar state. Numerical
results showed good agreement with the experimental results but were improved slightly by
Chu et al. [7] by associating the heat sink with a time-dependent background temperature
gradient along the axis of the pipe. In both Marensi et al.’s [6] and Chu et al.’s [7] works,
fixed temperature conditions were used at the wall. In this work, we provide further
details of the model of Chu et al. [7] and add a second case for the temperature boundary
condition, that of fixed heat flux at the wall.

It should be noted that our model assumes axial periodicity, which implies that it
should be applied to a straight section of pipe, downstream of the effects from an inlet
or bend. This approximation is widely adopted for research in shear turbulence [27,28]
and mixed convection [25] in pipe flows. Another potential limitation is the Boussinesq
approximation [29,30] adopted in our model, which ignores the effect of heating on viscosity
and assumes that changes of density only need be considered in the buoyancy force term
in Navier-Stokes equations. Nevertheless, such modelling simplifies the simulation greatly
and provides good results in many circumstances [29], and has been widely adopted in
the simulations of mixed convection [20,25,31]. As we focus on flow and heating rates
that are transitional with respect to flow regimes, we do not consider extreme parameter
values here. When the Boussinesq approximation holds, there is mathematical equivalence
between upward heated and downward cooled flow, i.e., the case modelled here could
be experimentally examined by considering a hot fluid flowing down a pipe through a
cold room. Although the temperature along the pipe will approach the room temperature
exponentially under such circumstances, it can be modelled to be locally linear over a
reasonable distance, and the temperature gradient along the pipe will depend on whether
the flow is laminar or turbulent. Finally, it should also be noted that turbulence increases
friction drag and hence pumping costs. The relative importance of this cost is very context
specific, and therefore is not considered here. Our focus is on the enhanced heat transfer
due to turbulence.

The plan of the paper is as follows. In Section 2, we present the model for the DNS of
vertical heated pipe flow, including two types of temperature boundary conditions, i.e.,
fixed temperature difference and fixed boundary heat flux. In Section 3, we first show the
results of DNS, then present the results of different lengths of pipe. Next, we show how
the lifetime of shear turbulence changes with buoyancy force. Finally, the paper concludes
with a summary in Section 4.

2. Model for Heated Pipe Flow

Let x = (r,¢,z) denote cylindrical coordinates within a pipe of radius R. The total
temperature satisfies

oT,
a;m + (usor - V) Trot = €V Thot, )
where « is the thermal diffusivity. We decompose the total temperature as
Tiot(x,t) = Tu(z,t) +T(x,t)—Tp, ()
Tw(z,t) = a(t)z+b, ®3)
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where a(t) is the time-dependent axial temperature gradient, b is a constant reference
temperature, T(x, ) carries the temperature fluctuations, and Ty is a constant that will
be used as a temperature scale. The factor —Tj is inserted in (2) so that the temperature
fluctuations T are positive and largest at the hot wall. The bulk temperature, we write as

T, =(T), @)

where the angle brackets denote the volume average. The important quantity that measures
the heat flux is the Nusselt number

2R qw
N =
=3

Thor—T)° ©)

where A is the thermal conductivity, and g, = A (0T/9r)|,—r is the heat flux at the wall,
where the overline denotes the time average. Note that Nu is an observed quantity, rather
than a prescribed parameter, as it depends on the state of the flow.

For the fixed temperature boundary condition, Ty, is the value of the temperature
at the wall. Evaluating (2) at the wall gives T|,—gr = Tp. The wall temperature is locally
isothermal (does not deviate from Ty,), while the heat flux may exhibit variations. However,
Jw can be measured and is expected to be statistically steady, except when interrupted by a
change in state of the flow, such as from shear turbulence to convective turbulence.

For the fixed heat-flux boundary condition, g, takes the same value everywhere.
Local variations in the boundary temperature are possible, so that here, T;, represents an
averaged wall temperature. Note that Nu will still vary through changes in Tj,.

Throughout the rest of this work, dimensionless variables and equations are presented,
except in the definition of the scales and dimensionless parameters. We use R as the length
scale and twice the bulk flow speed 2U,, for the velocity scale, which for isothermal laminar
flow coincides with the centreline speed. For the temperature scale, we use Ty, which will
be linked to the boundary conditions in the following sections. Using these scales, we
arrive at the dimensionless governing equation

oT 1
ot + (uwt . V>T - Re Pr

V2T — Utot * 211(1’), (6)

where it is assumed that variations in the temperature gradient are much slower than
variations in the local fluctuations, i.e., 9;a(t) < 9;T(x, t). The dimensionless parameters
are the Reynolds and Prandtl numbers Re = 2U,R/v and Pr = v/x, where v and « are
the kinematic viscosity and thermal diffusivity. A Prandtl number of 0.7 is used in all
calculations. The last term on the right-hand side is a sink term that withdraws the energy
that enters through the boundary. The value for a(t) at each instant is determined via the
spatial average of (6) and depends on the boundary condition on the temperature as shown
in the following sections. Axial periodicity over a dimensionless distance L = 277/« is
assumed for the temperature fluctuation field T'(x, t).

Axial periodicity is also assumed for the velocity field us¢(x, t). Under the Boussinesq
approximation [30], the dimensionless Navier-Stokes (NS) equations are

Oultot
Jat

RT, 4
Zzgub)gTer LAz, O

1
+ (utot . V)utot = —VP + R—evzutot +

with continuity equation
V- Utot — 0 ’ (8)

and no-slip condition u¢o; = 0 at the wall, where 7 is the thermal expansivity and g is
acceleration due to gravity. Here, (d,p) = 0, and the non-zero component of the axial

41



Mathematics 2025, 13, 293

pressure gradient appears in the final term of (7); B(t) is the excess pressure fraction,
relative to isothermal laminar flow, required to maintain the fixed dimensionless mass flux
(utot - 2) = 1/2. Further decomposing the variables as

ut(x,t) = up(r)z2+u(x,t), up=1-1%, )
T(x,t) = Oy(r)+0O(xt), ©y=1r2, (10)

leads to governing equations for the deviation fields ® and u = (u, Ugp, uz)

0 90 doy 1, 4
g +MOE +1/lr? + (u . V)@ = WV ®+ @ — (1/[0 +uz)ﬂ(t), (11)
ou ou dug , _ 1 o> 4 N

g—f—uog—i—urﬁz—f—(u-V)uf—Vp—l—EVu—i—E(C(@—f—@o)-f-ﬁ(t))z, (12)

with continuity condition V - u = 0 and boundary condition # = 0. The parameter C
measures the buoyancy force relative to the pressure gradient for laminar flow. Equating
buoyancy terms in (7) and (12), we have

4 _ vgRTy

ReC = )2’ (13)

where T will be specified according to the boundary condition on ®. To determine (), we
take the spatial average of the z-component of (12). By Gauss’s theorem and the divergence-
free condition, many terms drop. Noting also that (1y) = (©g) = 1/2, the B(t) that fixes
(uz) = 0is given by

, (14)

By = —c(3+(@) -3 25|

where (-)go denotes averaging over ¢ and z.

2.1. Fixed Temperature Difference Between Bulk and Boundary

We accompany the fixed temperature boundary condition with a fixed bulk tempera-
ture Ty in (4). Making the choice
To=2T, (15)

for the temperature scale, inserting in (13) and rearranging, we find

T|,—r — Tp)(2R)3
GYAT:'YSH RU2 b)(2R) (16)

o GTAT
CaT = T6Re’

wherein we use the dimensional T of (2) and subscript the parameters to clarify that they
are based on a temperature difference. Grar is the Grashof number.

Using the scale Ty = 2T} to non-dimensionalise (2) and (4), the dimensionless fluc-
tuations satisfy T|,—1 = 1 and (T) = 1/2. As a simple O is chosen that satisfies these
conditions, we have that (11) is accompanied by the boundary condition ®|,—; = 0 and
the condition (©) = 0. The latter condition is equivalent to saying that the energy within
the domain is constant, and hence the energy entering the domain through the boundary
must match the energy extracted by the sink term at each instant. This sets a value for a(t).
Taking the spatial average of (11) gives

4 (O
alt) = RePr <2+ (8r)00

r_l) . (17)

This model was applied in the simulations of Chu et al. [7].
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2.2. Fixed Heat Flux at the Boundary

As we already have that (9,0))|,—1 = 2 in the decomposition (10), we suppose that
this is the value of the temperature gradient everywhere, and accompany (11) with the
boundary condition (9,0)|,—1 = 0. Using Tj as the temperature scale, the dimensional flux
at the wall is everywhere

I . _ qwR
Juw =2\ R ie, Ty = o (18)
Inserting this Tj in (13) and rearranging, we find
Gr 2R)*
_ YN _ 18 (2R)"w
Cq = 128 Re’ Grg = Av2 (19)

where the subscripts are added to the parameters to indicate that they are based on the
heat flux.

The fluctuations may be split into a spatial mean and varying component, ©(x, t) =
(®)go(r,t) + O (x,t), where (-)g denotes averaging over ¢ and z. To the varying compo-
nents, we apply the boundary condition (9,@")|,—; = 0. The mean component evolves
according to the spatial average of (11), which may be written

@) 1

ot @V2(®)00 = (N)go — (ug + (uz)g0) a(t). (20)

We wish the mean component to be consistent with there being a constant background
reference temperature in (3), and therefore apply the boundary condition (®)g|,~1 = 0.
Note that the temperature can still vary at the boundary, as this condition only fixes the
mean value. However, it still remains to apply the boundary condition (9,(®)go)|,=1 = 0,
which is achieved through the variation in a(t). Evaluating the radial derivative at the

()

It is worth mentioning that accompanying (11) with the condition (9,®)|,—1 = 0 alone,

wall gives

(21)

2
- (e 1550

r=1

the problem is ill-posed; see [32,33]. The condition (®)go|,—1 = 0 removes non-uniqueness,
but note that it cannot be trivially satisfied by evaluating (20) at the wall—a(t) remains
undetermined, as its coefficient is zero at the wall.

2.3. Time-Integration Code

The calculations are carried out by the open-source code openpipeflow.org (accessed
on 15 March 2024) [26]. Variables are discretised on the domain {r,¢,z} = [0,1] x [0,27] X
[0,27t/«], where « = 27t/ L, using Fourier decomposition in the azimuthal and streamwise
directions and finite difference in the radial direction, with points clustered towards the
wall. An arbitrary variable f(x) is expanded in the form

frag,2)= Y. Y (Fimlrs) e@tmd) - s=12..5, (22)

k<|K| m<|M|

and the mode (f)go corresponds to the ¢- and z-average. Temporal discretisation is via a
second-order predictor-corrector scheme, with an Euler predictor and a Crank—Nicolson
corrector applied to the nonlinear terms. The laminar solution is quickly calculated by
eliminating azimuthal and axial variations using a resolution S = 64, M = 1,K = 1. For
a periodic pipe of length L = 5D, the resolution is S = 64, M = 76, K = 80 at Re = 5300,
and the resolution is S = 64, M = 40, K = 44 at Re = 3000. For a periodic pipe of length

43



Mathematics 2025, 13, 293

L = 25D, the resolution is S = 64, M = 76,K = 400 at Re = 5300, and the resolution
is S = 64, M = 40,K = 220 at Re = 3000. A time step of Af = 0.01 is adopted. These
resolutions ensure a drop-off of three to four orders of magnitude in the amplitude of the
spectral coefficients, which experience has shown to be sufficient for accurately simulating
shear-turbulence, matching the statistics from, for example, [27]. Within the parameter
range considered here, the convective state is less computationally demanding to simulate.

3. Results

In this section, we compare the two different boundary conditions keeping L = 5D,
then we consider the fixed temperature difference boundary condition and compare the
flow in L = 5D and L = 25D. Finally, we calculate the heat transfer and lifetimes for
localised turbulence in the presence of the buoyancy force.

3.1. Laminar Flow, Shear Turbulence and Convective Turbulence

We first verify that the model produces the well-known properties of the laminar
solution for both models and for increasing buoyancy parameter C [31,34], shown in
Figure 1. The results in Figure 1 are calculated at Re = 5300, but laminar profiles are
dependent on C and independent of Re [31]. The laminar velocity profile becomes flattened
and even ‘M’ shaped with the enhancement of heating. Negative velocity near the centre
of the pipe at Cy7,C; = 20,25 indicates the occurrence of reversed flow. The laminar
temperature profile becomes flattened as C increases. For the fixed temperature difference,
an increased temperature gradient near the wall implies increased heat flux and increased
Nusselt number Nu, defined in (5). For the fixed heat flux case, a reduced temperature
difference between the wall and bulk results in increased Nu.
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Figure 1. Laminar solution for (a,b) fixed temperature difference; (c,d) fixed boundary heat flux.

Turbulent mean profiles at Re = 5300 are shown in Figure 2. Two regimes are observed
in both the velocity and temperature profiles, corresponding to shear-driven turbulence and
convective turbulence. For the velocity profile, the former state has a flattened shape, while
the latter has an ‘M’ shape due to the stronger influence of the buoyancy force. For these
values of C, shear turbulence has much greater heat transfer than convective turbulence.
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As C increases, it is observed that heat transfer first becomes weaker, then collapses, and
finally, it gradually recovers. This trend is consistent with the results reported in the
literature [1,20,35-37]. Both models capture a similar change in heat transfer but with
different critical values of the C parameters.
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Figure 2. Turbulent mean velocity profiles i, and temperature profiles T at Re = 5300, L = 5D:
(a,b) fixed temperature difference; (c¢,d) fixed boundary heat flux.

Numerical results for the present model are compared with the previous numerical
results [6,20] and experimental results [35-37], shown in Figure 3 (Fixed temperature differ-
ence and uniform heat sink were adopted by Marensi et al. [6], while fixed heat flux was
applied by You et al. [20]). Averages over at least 4000 time units are used in the calculation
of Nu. Two regimes are clearly identified, i.e., the heat-transfer deterioration regime and the
recovery regime, corresponding to shear turbulence and convective turbulence, respectively.
Both temperature boundary conditions achieve good agreement with the experimental
results and previous numerical results.
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Figure 3. Change in heat flux, normalised by that for the isothermal state (C — 0), as a
function of Bo = 8 x 10*(8 Nu Grat)/(Re3#2°Pr98) (fixed temperature difference) or Bo = 8 x
10%(8Gry) / (Re>42°Pr98) (fixed boundary heat flux). Present data from simulations at Re = 5300,

Pr = 0.7. The upper and lower branches correspond to shear and convective turbulence, respectively.
Data from [6,20,35-37].
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At lower Reynolds numbers, there is a laminarisation regime, seen in Figure 4, which
shows the approximate regions of the flow states for the two temperature boundary
conditions. Although there is a difference between the values of Cxor and C; at which
transition between different flow regimes occurs, they are consistent in Figure 3.
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Figure 4. Approximate regions of laminar flow (L), shear turbulence (S), and convective turbulence
(C); SC indicates that the flow may be in either of the two states. (a) Fixed temperature difference;
(b) fixed boundary heat flux.

The time evolution of E3; (energy of streamwise-dependent component of the flow)
and instantaneous Nu(t) at different Cor and C; are presented in Figure 5. Generally,
as C is increased, E3; first decreases gradually, then reduces to a much lower energy
level at a critical value of C, indicating a flow state transition from shear turbulence to
convective turbulence [7]. In the convective turbulence state, E3; fluctuates with a much
lower frequency. A clear gap between the shear turbulence regime and the convective
turbulence regime (smaller E;; and Nu) is observed. The critical C is not precise, since close
to the border, both states can be observed. At Re = 5300, the critical values are Co1 ~ 7 and
C; ~ 15. Interestingly, bistability is observed at C; = 15, which switches between shear
and convective turbulence. In particular, the convective state is capable of intermittently
triggering bursts of shear-like turbulence, whereas at lower Re and in isothermal flow, it
cannot switch back from the linearly stable laminar state.
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Figure 5. (a,c) Time series of E3; (energy of the streamwise-dependent component of the flow) and
(b,d) Nu(t) at different Cor and C, for Re = 5300.
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The time evolutions of the background temperature gradient a(t) and of Nu(t) are
presented in Figure 6 during the transition from shear turbulence to the laminar state, and
during the transition from shear turbulence to convective turbulence for the two types
of boundary conditions. The transition from shear turbulence to either the laminar state
or convective turbulence leads to a reduced Nusselt number. This is accompanied by a
reduction in the gradient a(t) for the fixed temperature difference model. As the heat
transfer associated with the new flow is lower, the fluid is heated less, and the gradient
reduces. For the fixed heat flux model, however, once the total temperature has adjusted
(giving the change in Nu), the time average of a(t) is forced to remain the same so that
the heat flux out matches the fixed input flux. As the energy of the bulk is fixed for the
fixed temperature difference, the input and output energies respond immediately to each
other, so that a(t) and Nu(t) vary together. For the fixed flux condition, Nu(t) varies due
to differences in the bulk temperature, which responds in a time-integrated fashion relative
to the heat flux out. Hence, fluctuations in Nu(t) are less rapid than those in a(t) for the
fixed flux boundary condition.
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Figure 6. Time evolution of (a) a(t) and (b) instantaneous Nusselt number when shear turbulence
collapses to the laminar or convective state for the two boundary conditions.

Root-mean-square (RMS) deviations from (uztr)oo and (T)gp are shown in
Figures 7 and 8 for the fixed temperature and fixed flux boundary conditions, respec-
tively, using data from t = 1000 to t = 4000 for each simulation. Interestingly, there are
two peaks of streamwise velocity fluctuation observed in convective turbulence when the
fixed temperature difference is adopted; see Figure 7d. At Cxr = 10, the peak near the wall
dominates, while the peak far away from the wall is larger at Cot = 25. The two peaks
are in good agreement with You et al. [20] in Figure 4 and Cruz et al. [25] in Figure 3. The
main difference between the two models is in the temperature fluctuations Ty;s. As only
the mean temperature at the wall is fixed for the fixed flux model, fluctuations are possible
even at the wall. Ty;s for C; = 15 is especially large, due to the bistability mentioned
earlier (see Figure 5¢,d). Otherwise, the results are similar, and differences between the
shear and convective regimes are observed in the RMS fluctuations for both models. In
the shear turbulence regime, the peak of temperature fluctuation is close to the wall and
moves away from the wall with increased heating. In the convective turbulence regime,
the peak of the temperature fluctuations is much further away from the wall, and moves
closer to the wall again as the heating is increased. The peak fluctuations for all velocity
components are close to the wall in the shear turbulence regime, and weaken as C increases.
For the convective regime, fluctuations are spread more evenly across the domain and
strengthen as C increases further. Results are consistent with other calculations of RMS
quantities [20,25,38].
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Figure 8. The profile of root mean square of temperature and velocity at Re = 5300, L = 5D: (a) Tys;
(b) tr,rms; (€) Ugp,rms; (d) tzrms. Fixed boundary heat flux.

3.2. Short vs. Long Periodic Pipes

As the two models give consistent results, only the fixed temperature difference
model is considered here. The axially periodic boundary condition could impose some
difference in the results compared to true flow. Thus, here we use a longer pipe, L = 25D,
for comparison. Figure 9 shows the mean velocity and temperature profiles of a short
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pipe (L = 5D) and a longer pipe (L = 25D) in shear turbulence regime (Cpr = 5) and
strong convective turbulence (Cor = 25). The results for the two pipe lengths are in
good agreement, suggesting that L = 5D is enough for capturing the mean profiles. The
distributions of the RMS of temperature and velocity for the short pipe and long pipes
are shown in Figure 10. There are some small differences, but the agreement is still good.
The differences are smaller for convective turbulence. For shear turbulence, there is a little
deviation in the centre of the pipe for the cross-stream velocity components. The results
in the near-wall region are well matched, suggesting that simulations in a short pipe are
expected to capture the heat transfer processes accurately.
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( ) {RRSe500000006060. . ( ) o CAT = 5(25D) CAT = 25(25D)
0.6 . —Car =5(5D) Car = 25(5D)
o5t 0.8}

S
04 1 =
b \ 0.6}
203} L - I~ 2
S A& ~— v
S’ 1 2
| “d\ " “MMM
0.1} o Car=5(25D) o Car =25(25D) § e
—Car = 5(5D) Car =25(5D) 4§ 02l ]
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
T r

Figure 9. Comparison of mean (a) streamwise velocity and (b) temperature profile between short
periodic pipe (L = 5D) and long periodic pipe (L = 25D). Two typical flow states are simulated,
i.e., shear turbulence (Cor = 5) and convective turbulence (Cor = 25) at Re = 5300. The fixed
temperature difference boundary condition is used.
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Figure 10. Comparison of (a) Tys, (b) iy, rms,(c) Ugp,rms and (d) u; s between short periodic pipe (L = 5D)
and long periodic pipe (L = 25D). Two typical flow states are simulated, i.e., shear turbulence (Car = 5)
and convective turbulence (Cpt = 25) at Re = 5300. Fixed temperature difference.

Contours of streamwise velocity and temperature in the rz cross section for the
two pipe lengths are shown in Figure 11 and Figure 12, respectively. The difference in ve-
locity between the shear turbulence (Figure 11a,c) and convective turbulence (Figure 11b,d)

49



Mathematics 2025, 13, 293

is clear: shear turbulence has strong low-speed regions near the wall (associated with
streaks). These are essentially absent in convective turbulence, and are replaced with
localised regions of fast flow near the wall, while the core flow moves more slowly. No
obvious difference in the contour plots is observed between short and long pipes, for both
velocity and temperature fields.
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» o | os 0.6
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Figure 11. Contours of streamwise velocity in 7z cross section for shear turbulence (Car = 5) in
(@) L = 5D, (¢) L = 25D, and convective turbulence (Cpo7 = 25) in (b) L = 5D, (d) L = 25D at
Re = 5300. For the long pipe, the z-axis is scaled to show the whole pipe.

(D) . i

(d)

Figure 12. Contours of temperature in rz cross-section for shear turbulence (Cpor = 5) in (a) L = 5D,
(c) L = 25D, and convective turbulence (Cor = 25) in (b) L = 5D, (d) L = 25D at Re = 5300. For the
long pipe, the z-axis is scaled to show the whole pipe.

The time evolution of a(t) for the two pipe lengths is shown in Figure 13a. The curves
at matching Cur are quite close, but smaller fluctuations in a(t) are observed for the longer
pipe. This is expected, as the larger domain gives more steady volume-averaged quantities
used in the calculation of a(t). Nusselt numbers for the short and long pipes at several Cat
are compared in Figure 13b. There is almost no difference in the Nusselt number over a
wide range Cat covering both shear turbulence and convective turbulence. Therefore, it is
concluded that the simulation of a short periodic pipe (L = 5D) is enough to predict the
heat transfer and flow dynamics for fully turbulent flow. For C close to critical, however,
data from either one state or the other are used in the calculation of Nu so that intermittency
is not fully accounted for. We consider this next.

In isothermal flow, localised turbulent patches are called puffs and slugs [39]. Puffs
appear for Re ~ 1800 and are statistically steady in axial extent. From Re 2 2250, they
start to expand and are called slugs. However, within the expanding turbulent region
(that will eventually fill a periodic domain), laminar patches remain present for Re up to
approximately 2800 [40]. Thus, there is a large range over which the intermittent nature of
turbulence cannot be captured in a short periodic domain of length L = 5D. Puffs and slugs
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have frictional drag between the values extrapolated from the fully turbulent or laminar
regimes, and are marked as a hatched area in the Moody diagram [41]. For a heated pipe,
this will affect the estimations of Nu.
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Figure 13. (a) Time evolution of a(t) for short (L = 5D) and longer pipe (L = 25D). (b) Normalised
Nusselt number for the short and longer pipe at Re = 5300. Bo defined as in Figure 3. Fixed
temperature difference model. Data from [6,20,35-37].

In vertical heated pipe flow, intermittent turbulence exists around the boundary
between laminar and shear turbulence at higher Reynolds numbers, at the meeting of the
green and blue regions in Figure 4. Examples of puff and slug at Re = 3000, Co = 1.9 are
shown in Figure 14. Nusselt numbers for the short and long pipes at Re = 3000 are shown
in Figure 15. At small Car, there is almost no difference, as the turbulence fills the pipe. As
Car increases, the difference in Nu between the short and long pipe becomes substantial,
due to the appearance of localised turbulence. Eventually, laminarisation occurs, marked
by the final two points.
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Figure 14. Contour of streamwise velocity in long pipe (L = 25D at Re = 3000, Cat = 1.9): (a) puff
and (b) slug.
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Figure 15. Comparison of Nusselt number for transitional Cx for a short and long periodic domain
(L = 5D, 25D) at Re = 3000. Values for (intermittent) turbulence are shown, except for the final
two laminar points.
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3.3. The Lifetime of Localised Shear Turbulence

The mean lifetimes of turbulent puffs in isothermal flow, and its scaling with Reynolds
number, have been closely investigated [28,42—44]. At each Re, the mean lifetime must be
estimated from a series of simulations or experiments, and data are often truncated, due to
the limited simulation time or the finite length of the pipe [28]. To examine whether the
lifetime of puffs in heated pipes behave similarly, we calculate the survivor functions at
Re = 3000 for several Cat. To generate the initial conditions for the simulations, a localised
disturbance is applied to the laminar Poiseuille flow at Re = 3000, Car = 1.9 and the
resulting puff is evolved for t ~5000. Snapshots of the full velocity field are recorded every
20 time units, generating a large collection of initial conditions. Subsequently, simulations
at larger Car are performed starting from these initial conditions and are monitored until
the flow laminarises. The criterion for laminarisation is Es; < 1072, below which turbulent
motions are decayed beyond recovery.

The time evolution of E3; of n = 50 arbitrary initial turbulent fields at Cyr = 2 are
shown in Figure 16a. Some cases decay to the laminar state, while others remain turbulent
for the period of the simulation. The decay of turbulence leads to a large drop in the Nusselt
number and an exponential decay of E3; so that laminarisations are clearly identifiable. For
a finite set of samples, the survivor function is approximated by

S(t) = —, (23)

v
.
where r is the number of puffs that survive up to time f. For example, all initial conditions
survive before t = 10, then S(f) = 1 when t < 10. In this way, we can calculate the lifetime
of survivor probability from 1 to %. However, due to the finite time it takes for Es; to
drop to 1073, the data in Figure 16b are shifted to the left by the time of the earliest decay
(~250). As Cp7 increases, the mean lifetime of puffs decreases. The distributions remain
exponential in form for each Cpt. This indicates that the puff decay induced by heating is
also a memoryless process, corresponding to the escape from a strange saddle [28,42]. The
enhancement of heating has a similar effect to that of the decrease in Reynolds number in
isothermal flow.

(a) 0.4 (b) 10°
0.3
~= _—
(.2 = 10!
K w1
0.1F
0 . N 1072 - -
0 800 1000 0 200 400 600 800
t t

Figure 16. The time evolution of (a) Ez; of 50 arbitrary initial turbulent fields at Car = 2. (b)
Survivor function for several values of the buoyancy parameter. n = 50 samples for each case.
L =25D.

4. Conclusions

In this work, we have presented a derivation of a model for vertically heated pipe
flow that includes a time-dependent axial temperature gradient. This gradient adjusts in
response to the flow pattern. A transition from shear turbulence to convective turbulence
is well known to lead to a drop in heat transfer. For the fixed temperature model, reduced
heat transferred into the fluid leads to a reduction in the temperature gradient. With the

52



Mathematics 2025, 13, 293

fixed heat flux boundary condition, however, as the energy withdrawn from the domain is
proportional to the gradient, the gradient is forced to remain the same on average to match
the energy entering the domain.

Laminar solutions are calculated numerically for several values of the buoyancy
parameter, and are consistent with previous reports [6,20,31]. For turbulent flow, the time-
averaged velocity and temperature profiles, and their RMS fluctuations, are calculated
for both boundary conditions. The two turbulent regimes, i.e., shear turbulence and
convective turbulence, are easily distinguished in the mean profiles and RMS flucutations.
The dependence of flow state over the space of Re and Nu is calculated for both boundary
conditions along with various statistics. Statistics show minor differences between the
boundary conditions, but both show good consistency with the previous calculations and
experiments. Of particular interest are the RMS temperature fluctuations, as they can be
non-zero at the wall for the fixed-flux case. Also of interest is that convective turbulence can
trigger bursts of shear-like turbulence when close to the critical C between the two states
(For isothermal flow, shear-turbulence cannot return from the linearly stable laminar state).

Further simulations are carried out to examine the effect of the periodic length of the
pipe on the turbulent statistics and heat transfer. The short pipe L = 5D and long pipe
L = 25D show almost no difference in the mean velocity and mean temperature profiles.
However, there are some minor mismatches in the RMS of velocity and temperature. The
length of the pipe is found to have more effect on shear turbulent state, possibly due to
spatial intermittency. The mismatch mainly appears in the centre of the pipe, while there
is always a good agreement in the near-wall regime. Hence, the short pipe still captures
accurate Nusselt numbers, provided that the flow is not too intermittent. In that case,
simulations with a short pipe are likely to overestimate heat transfer, as shear turbulence
fills the domain.

Finally, we have recorded the lifetime of the localised turbulence with heating, con-
firming it also follows a memoryless process corresponding to the escape from a strange
saddle. Using the previous model of [6] close to criticality at larger Re, strong fronts and
puffs have been found to disappear [45].

The code used for these calculations is available at openpipeflow.org (accessed on
15 March 2024).
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Abstract: Geometrical optics stability analysis has proven effective in deriving analyti-
cal instability criteria for 3D flows in ideal hydrodynamics and magnetohydrodynamics,
encompassing both compressible and incompressible fluids. The method models per-
turbations as high-frequency wavelets, evolving along fluid trajectories. Detecting local
instabilities reduces to solving ODEs for the wave vector and amplitude of the wavelet
envelope along streamlines, with coefficients derived from the background flow. While
viscosity and diffusivity were traditionally regarded as stabilizing factors, recent exten-
sions of the geometrical optics framework have revealed their destabilizing potential in
visco-diffusive and multi-diffusive flows. This review highlights these advancements, with
a focus on their application to the azimuthal magnetorotational instability in magnetohy-
drodynamics and the McIntyre instability in lenticular vortices and swirling differentially
heated flows. It introduces new analytical instability criteria, applicable across a wide
range of Prandtl, Schmidt, and magnetic Prandtl numbers, which still remains beyond the
reach of numerical methods in many important physical and industrial applications.

Keywords: rotating flows; swirling flows; magnetized flows; double diffusion; dissipation-
induced instabilities; local stability analysis; magnetorotational instability; McIntyre instability
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1. Introduction

Consider a system of coupled nonlinear partial differential equations (PDEs) modeling
a physical phenomenon in hydrodynamics or magnetohydrodynamics, incorporating
additional factors such as fluid compressibility, rotation, density stratification, thermal
gradients, and electromagnetic fields. Let the vector L(x,t) = (u(x,1), p(x,1),...) represent
the unknown functions governed by the system. This vector includes the fluid velocity
field u(x, 1), pressure p(x,t), and other quantities that may vary depending on the model,
such as electromagnetic fields, temperature, or density, all of which depend on spatial
coordinates x and time .

Assume the base state of the system, described by the vector Lp(x,1) =
(ug(x,1), pr(x,1),...)7, is known. To analyze its stability, we consider small perturbations
such that L(x,7) = Lg(x,t) + L’ (x,1), where L' (x,t) = (u'(x,1), p’(x,1),...)T. Linearizing
the governing nonlinear equations about the base state produces a system of linear par-
tial differential equations, enabling linear stability analysis and the application of the
indirect Lyapunov method to establish instability criteria [1,2]. The validity of this ap-
proach is supported, e.g, by the studies [3,4], which demonstrate a connection between
linear and nonlinear instability under specific conditions on the associated linear and
nonlinear operators.
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Introducing a small parameter 0 < € < 1, we seek solutions to the linearized equations
as asymptotic expansions in e:

iD(x,1)

L'(x,te)=¢" (L(O)(x,t)+eL(1)(x,t,e))+eL(’)(x,t,e), )

where i = V-1, @ is the wave phase (eikonal), and L) = (u), p(),.. )T (j = 0,1,r) are
complex-valued amplitudes. The remainder L") is assumed to remain uniformly bounded
in € over any fixed time interval [5-12].

Substituting (1) into the linearized system and collecting terms at orders ¢! and €’
yields a system of PDEs comprising the eikonal equation for ®(x, t) and transport equations
for the amplitude L (x, 1), with initial conditions ®(x,0) = ®y(x) and L (x,0) = L((]O) (x).

Consider a fluid element following the trajectory

% =up, x(0)=x. )
Since the eikonal and transport equations involve only the advective derivative d/dt = 0; + up -V
along the base flow velocity uz [9,10,13], the eikonal equation becomes an ODE describing
the evolution of the wave vector k(t) = V®(x(z),t) along the streamline (2), with initial
condition k(0) = ko = V®q(xp). Similarly, the transport equations become a system of
ODEs along the streamlines for the amplitudes LO(x(1),1), forming the complete system
of characteristic equations. These describe the motion of the perturbation envelope (viewed
as a high-frequency wavelet [9]) initially localized at xg, along with the fluid elements
passing through xp at# = 0[9,10,13].

For a sufficiently small ¢, the leading-order terms dominate the solution (1) over an
extended time [9,11]. This reduces the stability analysis to studying the growth rates of
solutions of the transport ODEs, which are generally non-autonomous due to the time
dependence of the wave vector. Stability conditions are determined by the boundedness
of solutions: the existence of unbounded solutions implies instability [9,10]. This local-
ized analysis provides sufficient instability and necessary stability conditions along the
trajectories of the flow [9,10].

The geometrical optics stability analysis has proven highly effective in addressing
stability problems in ideal hydrodynamics and magnetohydrodynamics for 3D flows, both
compressible and incompressible, characterized by complex streamlines. Applications
span a broad range of systems, including circular Couette-Taylor flow [14], flows with
elliptical [15-18] and hyperbolic [16,19] streamlines; chaotic streamline systems like the
ABC flow [14], helical (swirling) compressible [5,20] and incompressible [7,20] flows; vortex
rings with swirl [21,22]; Kelvin—-Helmholtz vortices [23]; Riemann ellipsoids in celestial
mechanics [24-26]; geophysical flows [10]; and hydromagnetic systems [27-32]. For ideal
flows with elliptical streamlines subject to elliptical parametric instability, the periodic am-
plitude transport equations are effectively addressed either numerically [26,33] or through
perturbation methods [29,30], in combination with Floquet theory [15].

Maslov [34] noted that high-frequency oscillations of the form exp(ie '®(x, 1)) rapidly
decay due to viscosity, unless a quadratic dependence of viscosity on the small parameter e
is assumed: v = €2v. This assumption allowed the extension of geometrical optics stability
analysis to the Navier-=Stokes equations [11], where an integral transformation of the
amplitude reduced the viscous transport equations to their inviscid form, revealing the sta-
bilizing influence of viscosity [9,11,14,19]. Consequently, early applications of geometrical
optics stability analysis were restricted to cases where viscosity or diffusivity had a purely
stabilizing effect, even in visco-diffusive or multiple-diffusive settings [19,35].
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For instance, to reduce mathematical complexity, early studies often assumed a Prandtl
number Pr =1 or a Schmidt number Sc¢ = 1, corresponding to an equal ratio of viscosity
to either heat conductivity or molecular diffusivity of the stratifying agent, respectively.
Leblanc [36] highlighted the unique role of Pr = 1 (Sc¢c = 1), stating: “The standard
transformation used in non-stratified flows [19] is not valid here, except in the exceptional
case where Pr =1 (Sc = 1), which may be treated in closed form. In that case, introducing
a change of variables reduces the amplitude equation to an inviscid homogeneous Hill’s
equation. With the wave vector being periodic and bounded in time, inviscid resonances
are either damped or eventually suppressed by diffusion”. For large Prandtl (Schmidt)
numbers but small viscosity and diffusivity, particularly with vanishing thermal diffusivity,
Leblanc further reduced the problem to a damped Mathieu equation, demonstrating that
under certain conditions “viscosity suppresses parametric instability”.

Similar observations have been made in magnetohydrodynamics, where both viscous
dissipation and magnetic diffusion (their ratio is the magnetic Prandtl number, Pm) were
considered [31]: “This shows first that if the diffusivities are equal, the only effect of dissi-
pation is a reduction in growth rate. Second, assuming magnetic diffusivity is vanishingly
small, the impact of dissipation primarily manifests as a decrease in the growth rate”.

Building on the studies [37-39], which analyzed helical and azimuthal magnetoro-
tational instabilities under the geometrical optics framework, it became clear that this
method is effective even for systems with unequal diffusivities. In particular, it enabled
the derivation of new analytical criteria for dissipation-induced instabilities, including the
Goldreich-Schubert-Fricke instability [13], McIntyre instability [40-42], and salt-fingering
double-diffusive instability [42].

Recently, Singh and Mathur [43] applied the geometrical optics approach to investigate
the effect of the Schmidt number on elliptical instability under stable stratification. Their
findings revealed that Sc # 1 significantly alters inviscid instability behavior and introduces
a new branch of oscillatory instability, absent when Sc¢ = 1. This observation aligns
with earlier studies that demonstrated that damping broadens the region of combination
parametric resonance in the context of solid mechanics and nonlinear dynamics [44,45].

These advancements have expanded the applicability of geometrical optics stability
analysis to visco-diffusive and multi-diffusive rotating flows with circular and elliptical
streamlines over a broad range of Prandtl, Schmidt, and magnetic Prandtl numbers; see,
e.g., the recent studies [33,46-48].

In this review paper, we address three characteristic problems using the extended geo-
metrical optics analysis. The first of these is the inductionless azimuthal magnetorotational
instability (AMRI) in magnetohydrodynamics, important both in the astrophysical context
of onset of turbulence in accretion disks and in the engineering context of liquid metal
technology and related experiments [49]. The geometrical optics approach enabled us to
identify conditions for the instability of quasi-Keplerian, differentially rotating, magnetized
fluids subjected to azimuthal non-homogeneous magnetic fields, thereby overcoming the
well-known “Liu limit” for the Rossby number, which quantifies the shear strength of
the flow [37,38]. Building on the framework introduced in [1,39], we reinterpret AMRI
within the broader theory of dissipation-induced instabilities [1,2,45]. Specifically, we
analyze it as a Hamilton-Hopf bifurcation in the absence of diffusion and investigate the
visco-diffusive AMRI as its dissipative unfolding. This analysis reveals a singular “Whitney
umbrella” structure [45,50] on the neutral stability surface, elucidating the critical role of
the magnetic Prandtl number Pm = 1. Furthermore, it establishes a connection between
viscous or diffusive destabilization and the energy (or Krein) sign of the modes involved in
the diffusionless Hamilton—Hopf bifurcation.
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7

Next, following [40], we focus on the visco-diffusive instabilities of a “Gaussian lens”
model representing a baroclinic lenticular vortex with the shape of an oblate ellipsoid,
differentially rotating in a vertically stratified ambient fluid. This model facilitates the
study of coherent lenticular vortices, which are ubiquitous in Earth’s oceans (commonly
known as “Meddies” in oceanographic contexts) [51] and were recently observed in Earth’s
stratosphere following wildfires in Canada and Australia [52]. Additionally, lenticular
vortices represent long-lived coherent structures in the atmospheres of giant planets, such
as Jupiter’s Great Red Spot [53]. High temperature and concentration gradients often
occur at the periphery of lenticular vortices due to their interaction with colder and more
dilute ambient fluid. Both isolated and interacting lenticular vortices can emit internal
gravity waves and exhibit fine-scale layering, driven by visco-diffusive and multi-diffusive
mechanisms that may eventually lead to their disintegration. In this context, we present
the analytical criteria of the McIntyre-like [41] visco-diffusive instability of Gaussian lenses
and discuss the role of the Schmidt number in the onset of oscillatory and monotonic
instabilities in these coherent structures.

Finally, using the ideas presented in [13,47], we examine the visco-thermodiffusive
Mclntyre instability of spiral Poiseuille flow (SPF) with a radial temperature gradient
(SPFRT) using the generalized geometrical optics approach. The SPFRT combines a circular
Couette flow and an annular Poiseuille flow driven by an axial pressure gradient, while the
radial temperature gradient induces centrifugal buoyancy. Vertical Archimedean buoyancy
is neglected [54] compared to the relevant recent study [47], a simplification that enables
the derivation of analytical approximations for the thresholds of both oscillatory and
monotonic McIntyre instability in these swirling flows. An important advancement in this
study is based on the relationship between parametric optimization and the construction
of envelopes of curve families [55]. This approach allows for the derivation of universal
stability criteria by computing the envelopes of neutral stability curves, parameterized by
the axial (or equivalently, azimuthal) wavenumber. By treating the equations for neutral
stability curves as polynomials in the wavenumber, we identify their discriminant set,
which includes the equation for the envelope and provides explicit instability criteria.

2. Singular Diffusionless Limit of Visco-Diffusive Instabilities in
Magnetohydrodynamics

2.1. Governing Equations and Background Fields
Following [39], we consider azimuthal magnetorotational instability (AMRI) as a
visco-diffusive oscillatory instability. The dynamics of a viscous, electrically conducting,

incompressible Newtonian fluid interacting with a magnetic field are governed by the
coupled Navier-Stokes and induction equations [1,37-39]:

%+u-Vu—,,é_pB-VB+%VP—vV2u=O,} )

% +u-VB-B-Vu-37V?B=0,

where P = p + % is the total pressure, p is the hydrodynamic pressure, p is the density, v is
the kinematic viscosity, = (ugo) ! is the magnetic diffusivity, o is the fluid’s conductivity,
and o is the magnetic permeability of free space. The flow velocity field # and magnetic
field B are subject to the incompressibility and solenoidal field constraints:

V.-u=0, V-B=0. 4)
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For a differentially rotating flow in the gap between radii r; and r, > r; and purely
azimuthal magnetic field, the steady solution to (3) and (4) has the following form:

up(r)=rQ(r)ey, p=pg(r), Bg(r)=By(rey, ©)

in cylindrical coordinates (r, ¢, z).

In the magnetized circular Couette-Taylor flow (5), the angular velocity profile Q(r)
and the azimuthal magnetic field B%(r) are arbitrary functions of r subject to boundary
conditions for an inviscid, non-resistive fluid. For viscous and resistive fluids, these
profiles become Q(r) = a +br~2 and B% (r) = er +dr!, with coefficients determined by
boundary conditions. In the context of local linear stability analysis, boundary conditions
are neglected, and the steady state of the visco-diffusive system coincides with that of the
diffusionless system.

2.2. Transport Equations for Amplitudes and Their Dispersion Relation

Linearizing Equations (3) and (4) near the stationary solution (5), and seeking a
solution in asymptotic form (1) under the assumptions v = €2v and 7 = €%77 [34], we derive
transport equations for the amplitudes #'*) and B(") [28,37-39]:

du® 2kkT 1 2kkT
= - I | U —]k]*u® —{[I—— B+B -V}B(O),
el CUARL R R
dB©®
= UBY - 7k]*B — (B-Bg - V)u'?, (6)

where 7 is the 3 X 3 identity matrix, and the gradients of the background fields are

0 -1 0 g 0 10
U:=Vug=0[1+2R0 0 0], B::VBFT“’ 1+2Rb 0 0], @)
0 0 0 0 0 0

with the time evolution of the wave vector k = (k,, kg, k)T =Vo given by

where d/dt = 0, + up - V. Equations (6) and (8) hold if B - k = 0.

Defining o = k.|k|™! and |k|*> = k2 + k2, we introduce the Alfvén angular veloc-
ity, viscous and resistive frequencies, and the hydrodynamic and magnetic Reynolds
numbers [37,38]:

B, ~ aQ aQ
WA = popms Wv =TI, @y =TKE, Re= =, Rm= ©)
v n
and the fluid and magnetic Rossby numbers [37]:
rDQ rDwa,
Ro=——, Rb=—— 10
0= 55 2o, (10)

where D = %. Note that Rm = RePm with Pm = 717 as the magnetic Prandtl number.
Seeking solutions to Equations (6) in modal form [27,39], u(?) = #e®?¥+imé and
B = \pgBe®™@*+m#  the amplitude equations yield

Az = Az, (11)
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where z = (g, Uy, Br, §¢)T eC*and A = Ay + A1 € C¥* with
-in  2a  inS  -2aS 20 0 o0
_2(1+Ro) . 2(1+Rb) ! 0 =L 0
Ag = L@ " e 5 s , A= Re 7 (12)
inS 0 —in 0 0 0 %, O
-2Bbg jps 2o —in o 0 o0 =L
Here, n = m/a is the modified azimuthal wavenumber, and § = wa,/Q is the Alfvén
angular velocity in units of Q.
Defining a Hermitian matrix
0 —i 0 iS
i 0 —iS 0
G= , 13
0 iS 4ReRb 13)
-iS 0 i 0

the indefinite inner product in C* becomes [x,y] = y" Gx [1,39], with the standard inner

product (x,y) =y x. The matrix Hy = —iG Ay is Hermitian:

_2(52Rb;Ra—1) in(S2+1) _25(1+I§1b—R0) _2inS
—in(S?+1) 2a 2inS -2aS
Hy = _25(1+1119—Ro) —2ins 2(52Rb+32;2Rb—3Ro) in(s2+1) . (14)
2inS -2a8 —in(S2+1) 2082
The eigenvalue problem Az = Az transforms to Hamiltonian form with Hy [1,39]:
Hoz =i"'Gaz. (15)
The symmetry Ag = —G‘lA_oTG ensures the spectrum of Ag is symmetric about the
imaginary axis.
The full eigenvalue problem (11) is a dissipative perturbation of the Hamiltonian
problem (15):
(Hy+Hy)z =i"'Gaz, (16)
where Hy = —iGA; is complex and non-Hermitian:
1 s
0 ke 0 “Ea
-= 0 = 0
B0 i g "
s 1
A
The dispersion relation for the visco-diffusive system (16) follows as
(18)

p(A) :=det(Hy+ H; —i"'GA) = 0.

2.3. Krein Sign and Splitting of Double Eigenvalues with Jordan Block
A simple imaginary eigenvalue A = iw of the eigenvalue problem (15), with eigenvector

z, has a positive Krein sign if [z, z] > 0 and a negative Krein sign if [z, z] < 0[1,39].
Let p represent the parameters of the matrix Hy, i.e., p = (S, Ro, Rb,n)T € R*. Suppose
that, at p = po, the matrix Hy = H(po) has a double imaginary eigenvalue A = iwg (wg > 0),

with a Jordan chain consisting of eigenvector zy and associated vector z3, satisfying
(19)

Hyzp = woGzg, Hyz1 = woGz1 + i_lGZ().
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Applying transposition and complex conjugation, we obtain
ZoHy = wozo G, Zi Hy = woz, G —i~ 'z} G. (20)

From these, it follows that [zg, zo] = 0 and [z, z1] = —[z1, z0]-
Varying the parameters along a curve p = p(e) (p(0) = po), where ¢ is a real
parameter, yields:

Ay =iwg + iw1£1/2 + 0(81/2), Z, =2Z0% iw12181/2 + 0(81/2), (21)

=T 4
zTAHz OH dp, 7
w1 =i 2", AH=) - (AH) . (22)
E{GZQ s=1 aps ds =0

Given that zj AHz is real and z] Gz is imaginary, we assume w; > 0. For & > 0, the

with

eigenvalue iwy splits into A, = iwp + iw1Ve (stability). For £ < 0, the split produces a pair of

complex eigenvalues with real parts of opposite signs (instability). Thus, the system exhibits a

linear Hamilton—Hopf bifurcation at pg, which is a regular point on the stability boundary.
For & > 0, the indefinite inner product of perturbed eigenvectors gives [1,39]

[24,24] = R2iw1Zg Gz 2 +0(eY?), [z_,2z_] = “2iw1Zh Gz1e¥* +0(s¥%).  (23)

Hence, A, and A_ have opposite Krein signs. As & decreases towards zero, these eigenvalues
merge at iwo and then split into complex eigenvalues for ¢ < 0. The presence of opposite
Krein signs is both a necessary and sufficient condition for the imaginary eigenvalues to
leave the imaginary axis.

Below, we demonstrate the Krein collision at the onset of the diffusionless azimuthal
magnetorotational instability (AMRI) by calculating the roots of the dispersion relation
both analytically and numerically.

2.4. Threshold of Oscillatory Instability in the Diffusionless Case

In the Hamiltonian case (é =0, ﬁ

i71GA) = 0 has a compact form [1,27,39]:

= 0), the dispersion relation po(1) = det(Hp —

2 2
Po(d) = 462 +4(m e nSZ) - (25 —A=-n)+ n252) -0, (24)

where § = Ro — RbS?. For S = 1, this factorizes into
po(Dlsog = [2°> +4ina® +4(1 = n® + Ro — Rb)A +8in(Ro — Rb)]A = 0. (25)

The negative discriminant of the cubic polynomial factor provides the criterion for oscilla-
tory instability [1,39]:

4n* + ((Ro — Rb)* +20(Ro — Rb) — 8)n* +4(Ro — Rb +1)* < 0. (26)

Equality in (26) marks the transition from marginal stability to oscillatory instability
via a linear Hamilton—-Hopf bifurcation (see Figure 1). Marginal stability corresponds to
one eigenvalue 1 being zero and simple, another simple and imaginary, and the last two
forming a double imaginary eigenvalue with a Jordan block. At Rb = -1, the critical fluid
Rossby number is derived from (26)

19 2 2
Roc(n) = '8312” - ;—;(18 - %) ~2, B(n) = —n? (n4 +540n2 — 5832 — 24+/3(n2 +27)3). 27)
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43 Ro=-107855; : -

Ro>Ro,

Ro <Ro,

-2 -15 -1 -0.5 0 15 -1 -05 0 0.5 1
Ro R(1)

Figure 1. (Left) Evolution of the root frequencies of the dispersion relation (25) as Ro varies for S =1,
Rb=-1,and n = V2, highlighting the Hamilton-Hopf bifurcation at Ro = Ro. ~ —1.07855 as deter-
mined by (27). (Right) The corresponding linear Hamilton-Hopf bifurcation in the complex plane.

As Ro decreases, two simple imaginary eigenvalues collide to form a double imaginary eigenvalue

with a Jordan block (an exceptional point [1,39]). This eigenvalue then splits into two complex ones,

signaling the onset of oscillatory instability.

Although Krein signs of the imaginary eigenvalues in Figure 1 can be evaluated

numerically, it is instructive to analyze the case Ro = Rb = -1 and S = 1. Here, Equation (25)

yields a double semi-simple zero eigenvalue 19 = 0 with eigenvectors z; = (0,1,0, 1T

and z, = (1,0,1,0)7, and two imaginary eigenvalues 1. = —-2i(n + 1) with eigenvectors
z = (—ia, 72, 52, 1)T and z_ = (ia, 52, 2, 1)T. See Figure 1 (left). These eigenvalues

have opposite Krein signs [1,39]:

[2+,24] _ 20 2(n+1)? -0 [z_,z.] 20 2(n-1)>
(z4,2z0) 1+221+(+1)? 7 (z_,z_) 1+a21+(n-1)2

1+a? [z-2-] _ 1- V2

7 2a (z_,z-)

For instance, at n = V2

(28)

5 ~0.2929, implying that A has a positive

Krein sign. The solid circle representing 1 belongs to the branch labeled A, in Figure 1

(left), where all A, eigenvalues for Ro. < Ro < —1 have positive Krein signs. Conversely,

according to (23), the 1; branch eigenvalues in Figure 1 (left) have negative Krein signs in

the same range.

Thus, the onset of nonaxisymmetric oscillatory instability (diffusionless AMRI) in-

volves a Krein collision between modes of positive and negative Krein signs. Krein signs

directly relate to the energy sign of a mode, and the linear Hamilton—-Hopf bifurcation

represents a collision of imaginary eigenvalues with opposite Krein (energy) signs [1,2,39].

2.5. Dissipative Perturbation of Simple Imaginary Eigenvalues

The complex non-Hermitian matrix of the dissipative perturbation, Hj, can be decom-

posed into Hermitian and anti-Hermitian components: Hy = H + H;}, where [1,39]

00 0 1 0 Pm 0
n_ S(Pm-1f0 0 -1 0 a_ 1| -Pm 0 S(Fmil)
H'=——— , Hj=— S(Pm+1)  1:Ro-Rb

2Rm |0 -1 0 O Rm 0 == 4i ==

1 0 0 0 §Parl) 0 -1
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At a large Rm, the increment 61 to a simple imaginary eigenvalue A with eigenvector
z is determined using standard perturbation theory [1,39]:

—T
spo 2z _ .(H1z,2).

=1 =
z' Gz [z, z]

(29)

. - (Hl'z,
The increment due to the Hermitian component, 61 = z%

Notably, H{! = 0 when Pm = 1, implying that frequencies are unaffected by the Hermi-

, is purely imaginary.

tian component of the dissipative perturbation when the contributions of viscosity and

resistivity are equal.
In contrast, the increment due to the anti-Hermitian component, A4 = z%, is real.

For example, the eigenvalues 1, and A_ in Figure 1 (left) acquire the following increments:

A4 = =—-=
* 2Rm hoo2

_Pm+1_ 1 1(1 1
Re Rm

+ —) sAt =0, (30)

where £ is the harmonic mean of the two Reynolds numbers.

In the vicinity of the critical Rossby number for the Hamilton—-Hopf bifurcation,
Ro. ~ —1.07855, the real increment 614 to the imaginary eigenvalues 1; (with a negative
Krein sign) and A, (with a positive Krein sign) is shown in Figure 2 (left) for fixed Rm = 103
and varying Pm (where the fluid Reynolds number is calculated as Re = Rm/Pm).

Eigenvalues with a negative Krein sign become dissipatively destabilized when Pm > 1,
i.e., when fluid viscosity dominates over ohmic losses. Interestingly, eigenvalues with a
positive Krein sign can also develop positive growth rates. This occurs for Pm < 1, where
electrical resistivity outweighs kinematic viscosity.

The interval of negative real increments in Figure 2 (left) shrinks as the deviation
from the critical Rossby number, ARo = Ro — Ro., approaches zero. At ARo = 0, the
stable interval reduces to a single point: Pm = 1. Thus, weak ohmic diffusion (Pm < 1)
destabilizes positive-energy waves, while weak kinematic viscosity (Pm > 1) destabilizes
negative-energy waves, provided |Ro — Ro.| is sufficiently small.

0.001 0.003

0.002

i(Hiz z)
[z z]

-0.001

Unstable, Pm < 1

0 0.001 0.002 0.003
1
Rm

-0.002
0

Figure 2. (Left) Real increments 524 for eigenvalues A1 (negative Krein sign) and 1, (positive Krein
sign) as computed from Equation (29), with Rm = 1000. The stability interval (negative increments)
around Pm = 1 narrows as ARo := Ro — Ro. approaches zero. (Right) Neutral stability curves in
the (Rm~1, Re~1) plane, corresponding to inverse magnetic and fluid Reynolds numbers, for § = 1,
Rb = -1, and n = V2, at various values of ARo. For ARo > 0, the stability domain forms an angular
sector, while at ARo = 0, it exhibits a cusp with a single tangent line at Pm =1 [1,39].
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2.6. Diffusionless and Visco-Diffusive Criteria Meet at Pm =1

We extend the sensitivity analysis of eigenvalues for the diffusionless Hamiltonian
eigenvalue problem under visco-diffusive perturbation by directly computing the stability
boundaries using the algebraic Bilharz stability criterion. This criterion ensures that all
roots of a complex polynomial of degree n lie to the left of the imaginary axis in the complex
plane if all even-order principal minors of the 2n x 2n Bilharz matrix, constructed from the
real and imaginary parts of the polynomial coefficients, are positive [1].

Applying the Bilharz criterion to (18), we plot the neutral stability curves in the plane
of inverse Reynolds numbers, Rm~1 and Re™!, for various values of ARo = Ro — Ro., where
Ro. is defined in (27). These plots, shown in Figure 2 (right), correspond to S =1, Rb = -1,
and 1 = V2. Notably, the diagonal line corresponding to Pm = 1 remains within the stability
domain for ARo > 0 and is the only tangent to the stability boundary at the cuspidal origin
when Ro = Ro,.

Furthermore, at Ro = Ro. and Re = Rm, the spectrum of the double-diffusive system
with § =1 and Rb = -1 includes double complex eigenvalues, also known as exceptional
points [1]:

Ag = Ac(n) = Rm™L. (31)

Here, the imaginary eigenvalue 1. (n) is determined by (25) for Ro = Ro.(n), as specified
in (27).

2.7. Visco-Diffusive Instability at Pm # 1

As Re = Rm > 0, varying Ro at fixed Rb = -1, S = 1, and n leads to a bifurcation
at Ro = Ro, of the double complex eigenvalue (31) with a negative real part of —Rm !,
as shown in Figure 3 (left). At Pm = 1, dissipation shifts the Hamilton—-Hopf bifurcation
to the left in the complex plane, so the oscillatory instability in the visco-diffusive sys-
tem with equal viscosity and resistivity occurs through the classical Hopf bifurcation at
Ro(Rm) < Ro., with Ro(Rm) approaching Ro. as Rm — co.

-0.2 i\ Rm=1000 : -1.0767 /§
Re=500
-1.077] Qﬁm\\
N
-1.0787 \
—0
Unstable 0.002
-1.0791 1
. 0.004 —
0.002 Rm
-0.004 -0.003 -0.002 -0.001 0 0.001 1 0.004
R(L) Re

Figure 3. (Left) AtRb = -1, S =1, and n = V2, the dot-dashed lines illustrate the interaction
of complex eigenvalues with negative real parts in the complex A-plane as Ro decreases, with

Re = Rm = h = — 2 —, i.e, Pm = 1. At Ro = Ro,, the eigenvalues merge into the double

500 * 1000
complex eigenvalue (31). The quasi-hyperbolic curves show the imperfect merging of modes (avoided

crossing), where the mode with positive Krein (energy) sign becomes unstable for Pm < 1 and the
mode with negative Krein (energy) sign becomes unstable for Pm > 1. (Right) The neutral stability
surface, represented by contours of Ro = const. in the (Re_l,Rm_l,Ro)-space, has a “Whitney
umbrella” singular point at (0,0, Ro.), yielding a cusp in the cross-section Ro = Ro. with a single
tangent line at Pm =1 [1,39].
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When the magnetic Prandtl number deviates slightly from Pm = 1, the shifted
Hamilton-Hopf bifurcation unfolds into two quasi-hyperbolic eigenvalue branches, pass-
ing close in an avoided crossing [56] centered at the exceptional point 1,4 of (31) with a real

part, —h~!, where h = — f —— is the harmonic mean of the fluid and magnetic Reynolds
numbers (Re # Rm), as seen in Figure 3 (left).

The unfolding of the eigenvalue crossing into an avoided crossing depends on the
sign of Pm —1. For Pm < 1 (Pm > 1), the complex eigenvalues, originating from the
imaginary eigenvalues of the diffusionless system with positive (negative) Krein sign, form
a branch that bends rightward and crosses the imaginary axis at some Ro(Re, Rm) # Ro,,
as shown in Figure 3 (left), cf. [56]. The critical values Ro(Re, Rm) of the visco-diffusive
system lie on a surface in the (Re™!, Rm~1, Ro)-space, with a self-intersection along the
Ro-axis, as depicted in Figure 3 (right). The angle of the self-intersection tends to zero as
Ro — Ro., and at the point (0,0, Ro.), the surface has a singularity, known as the Whitney
umbrella [1,45,50].

Near the Ro-axis, the instability threshold forms a ruled surface [50], with each ruler’s
slope determined by Pm. As the Reynolds numbers approach infinity while Pm remains
fixed, the Ro-axis is approached along a ruler corresponding to that value of Pm. For
all values of Pm except Pm = 1, a ruler leads to a limiting value of Ro greater than
Ro., extending the instability interval compared to the diffusionless system, as seen in
Figure 3 (right). The plane Pm = 1 divides the neutral stability surface near Ro = Ro. into
two regions, one for positive-energy modes destabilized by dominant ohmic diffusion at
Pm < 1 and one for negative-energy modes destabilized by dominant fluid viscosity at
Pm > 1, as shown in Figure 3 (right). The ray defined by Re = Rm > 0, Ro = Ro,. lies
within the stability domain and contains exceptional points (31) that govern the eigenvalue
behavior shown in Figure 3 (left). The Whitney umbrella singularity of the neutral stability
surface is the reason for persistence of diffusive destabilization even in the limit of vanishing
dissipation [1,41,45,50].

3. Diffusive Instabilities of Baroclinic Lenticular Vortices
3.1. Nonlinear Equations of Motion and the Base State

Following [40], we consider a model of a circular lenticular vortex immersed in a deep,
vertically stratified viscous incompressible Newtonian fluid under gravity and rotation.
The coordinate system (7, 8, 7) rotates with angular velocity (0,0, f/2), where f (the Coriolis
parameter) can be positive or negative. Gravity (0,0, —g) is antiparallel to the Z-axis, and
the centrifugal force is negligible [40,41]. The ambient fluid is linearly stratified along the
direction of gravity, incorporating viscosity (v) and diffusion («) of the stratifying agent,
unlike McIntyre’s study [41], which considered viscosity and thermal diffusion.

The baroclinic vortex, modeled as an ellipsoid with angular velocity (0,0, Q(7,7)), is
embedded in a motionless (in the rotating frame), stratified fluid far from the vortex core,
with boundaries assumed non-influential. Adopting the Boussinesq—Oberbeck approxima-

2

poN g dp ;

tion, we describe the stable background density gradient as —=—, where N = /-~ 3= is
the Brunt-Vaisala frequency. The total density is then presented as [40]
NZ
ﬁ(f,Z) ZPO_PO?Z+ﬁA(f/Z)/ (32)

where the density anomaly g4 captures the vortex’s internal stratification.
Introducing characteristic scales R,Z,U, W, with W = oU and ¢ = Z/R, and the
time scale R/U yields the scales pg fRU for pressure and p fU/(ga) for density [40]. The
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horizontal Froude number F;,, vortex Rossby number Ro, and Burger number Bu are

defined as

U U 2Ro?
Fp=—, Ro=-—=, Bu=22°

= TR (33)

Anticyclonic (cyclonic) eddies correspond to Ro < 0 (Ro > 0) for U > 0. The Schmidt and
Ekman numbers are given by:
% Ro

R Re' o9

SCZZ, Ek =
K

where Re = UR/v > 0 is the Reynolds number. Both Ek and Ro can be positive or negative
but share the same sign.
The background flow is assumed to be purely azimuthal:

up = (O/ FQ(}’, Z)/ 0)/ (35)

where Q(r,z) = (R/U)Q = e~""~7* > 0 is the dimensionless angular velocity. Then, from (32),
the dimensionless density is [40]

a  Bu
plr,2) = 255 = o+ pa(r2), (36)
with the density anomaly
pa(r,z) = —z2Q(1+ RoQ), (37)

andr=7/R,0=0,z=%/Z.
With the scaling adopted, the dimensionless equations of motion are

V-u=0, (38a)
d
RO, e, Xu=-VyoP— ﬁez +EkDu, (38b)
dt a?
dp Ek
RoEt ===
0 = Se Dp, (38¢)

where t = fU/R, u = (u,,uq,u;)" is the velocity field, P is the pressure, d/dt = d, +u -V,
D = V2 +a7292, V2 is the horizontal Laplacian, and V = (8,7 '8, @720,)" is the modified
gradient operator [40].

3.2. Linearization and Geometrical Optics Equations

Linearizing (38) about the base state (35), assuming Ek = €2Ek [34,40], and seeking
solutions in the asymptotic form (1), we derive transport equations for the leading-order
amplitudes ¥ and p? of a localized wave packet moving along the base flow stream-

lines [40]:
I )
Ro I:it = —Eku® —RO(I —2§)Wu(0) - (I - %)ez xu® - (I - B_(Jg)ezp_2'
[0
dp® Ek () _(pr T )y O
RoE— = —=p0- (B Ro—ezBu)u , (39)

where Ek = ]757{|k£k|, d/dt = 0y +up -V, I is the 3 x 3 identity matrix, U = Vug, and
B =Vpy, given by

0 -Q 0 ~z%2(1+2R0Q)
U=|Q+r0,Q 0 ro,Q| B= 0 . (40)
0 0 0 -222(1+2R0Q) - Q(1+ RoQ)
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The matrix K = k,k” in (39) is defined by the wavevector k = V® = (k,, kg, k)T and
its scaled counterpart ko, = V@ = (k;, kg, k /)T, where k satisfies the eikonal equation
dk

T ~UTk. (41)

From (41), we find k, and k; to be constants, while k4 = 0. Introducing scaled
wavenumbers g, = k,/B and g, = k,/B, where % = kTk, = k* + k% + k%/az, we have

gr = 4/1 — g%/a?. The matrix K can then be expressed as
z P

K=4q.9", 9=(4,0,9)", qo=1(q:04./a*".

3.3. Dispersion Relation

As shown in [13,40], eliminating uio) from (39) reduces the system to three equations

for ul”, u)’, and p(©. Introducing the complex growth rate A and azimuthal wavenumber

m via the ansatz,
(4, p @) = (2,5, 5 ) exp (A1 +imb),

A~ T ~
yields the eigenvalue problem H¢ = A¢, where ¢ = (ﬁﬁo), ﬁgo),ﬁ(o)) , A =Ro(1+imQ) + Ek,
and H is a 3 X 3 matrix:

0 q_§2_] 4rdz
22 2 o2
H = _rz(QZK% _.C]rK%) 0 0 i
2q.j
_RO(‘IzarPA _LIrasz)"'erBM 0 EkSC—l
qz Sc

where j(r, ) is the angular momentum per unit mass, «, is the epicyclic frequency, and «,
is the vertical oscillation frequency, given by

2 2 -2
L_T 2 _ . 30] 2 _ 30J
123(1+2R0Q), Ky =r W, K, =71 6_Z

The dispersion relation p(1) = det(H — AI) is a cubic polynomial [40]:

o o 1-Sc . o 1-8
p() =2 +EkS—S‘A2 + (1 +y2) A+ Ek——n, (42)
c c
where 5 5
q q PA PA
Y1 = Q—Z(QZKE—C]H%), Y2 = a,_; RO(QZW_Qra_Z)'FCIrBu] (43)

and d,p4 and d,pa are given by (40). The parameters y; and y; represent shear ef-
fects from differential rotation and buoyancy effects from ambient density stratification,
respectively. Both can take positive or negative values depending on the vortex and
stratification properties.

3.4. Stability Analysis
3.4.1. Diffusionless and Sc = 1 Cases

When Ek = 0 or Sc = 1, the dispersion relation (42) simplifies, factorizing into a
product of quadratic and linear polynomials in 1, allowing explicit solutions.

In these cases, the eigenvalues associated with centrifugal instability are given by [40]

N imQ 1
A=~ £ —v=(y1+72), (44)

Ro Ro
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leading to the instability criterion:
Y1+7y2 < 0. (45)

3.4.2. Criteria for Visco-Diffusive Monotonic and Oscillatory Instabilities

Applying the Bilharz criterion to (42) with Ek/Ro = 1/Re > 0, the base flow is stable for
Sc > 0and m = 0 if and only if the following three inequalities are satisfied simultaneously [40]:

2(Sc+1)2Ek? + Sc(2Scy1 +y2(Sc+1)) > 0, (46a)
(Sc+2)Ek*>+Sc(y1+7y2) > 0, (46b)
Ek>+Scys +y1 > 0. (46¢)

Conditions (46) are linear in y; and vy, allowing the stability domain to be represented
in the (y1, y2) plane [40,43]. The stability region is the intersection of the half-planes defined
by (46a)—(46c), as shown in Figure 4.

(@ O

IRIN

-20

-30

10

-10

Figure 4. Stability maps showing codimension-2 points (47) on the neutral stability curve for Ek =1

and (a) Sc = 0.25, (b) Sc = 0.5, (c) Sc = 0.75, (d) Sc¢ = 1, (e) Sc = 2, (f) Sc — +o0. The red solid

line marks the boundary of the monotonic axisymmetric (MA) instability domain (46¢) (pink, light-

shaded), while the blue solid line represents the boundary of the oscillatory axisymmetric (OA)

instability domain (46a) (blue, dark-shaded). The stability domain is indicated in white. The dashed
2

line corresponds to the envelope y; = 16?5# of the OA instability boundaries parametrized by Sc,
and the dot-dashed line indicates the neutral stability boundary for the diffusionless system (45). The
oblique dotted line represents the condition (46b) [40].

The intersection of the neutral stability lines corresponding to the criteria (46) defines
a codimension-2 point with the following coordinates [40,43]:

1+Sc 2EK?
= Ek? = 47
s 1-s¢’ 2 Sc(Sc—1) (47)
At this point, the slopes of the lines defining the inequalities (46a)-(46c) are
2S¢ 1
0'1——SC+1, 0'2——1, 0'3——5. (48)
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The relationships between the slopes depend on Sc [40]:

-1>01>-2

oy =-1 if 1< 8¢ <+,
-1<03<0
0>01>-1
oy =-1 if 0<Sc<1. (49)

-0 <03 < -1

Actually, reversed inequality (46c) determines monotonic axisymmetric (MA) instability,
corresponding to a monotonically growing perturbation, while the reversed inequality (46a)
stands for oscillatory axisymmetric (OA) instability, i.e., growing oscillation.

For 0 < Sc < 1, the slope of the neutral stability line defining (46c) is steeper than that
defining (46a) (Figure 4a—). This causes the stability domain to be convex, with a wedge
extending into the region of centrifugal instability. The codimension-2 point, a well-known
phenomenon in hydrodynamics [13], existing for y> < 0, separates OA and MA instability
regions. Diffusion destabilizes centrifugally stable vortices due to difference in the slopes
o and o3 from o, = -1, if the absolute values of y; and y; are large enough, as shown in
Figure 4a—c.

At Sc =1, the slopes (48) converge (01 = 02 = 03 = —1), and the stability boundaries of
the diffusionless and visco-diffusive systems coincide for Ex — 0. However, for Ek # 0,
viscosity and diffusion can stabilize centrifugally unstable diffusionless vortices (Figure 4d).

For Sc > 1, the codimension-2 point reappears at infinity for y, > 0 and moves along
an asymptotic direction until it reaches the final location at y1 = ~Ek? and y, = 0 as S¢ — oo
(Figure 4f). This qualitative change in location of the codimension-2 point is accompanied
by the exchange of the stability criteria: the condition (46¢c) becomes dominating over (46a)
and vice versa (Figure 4ef).

Figure 4 provides evidence that stability boundary consisting of two straight lines
that intersect at a codimension-2 point in the (y1,¥2) plane exhibit a qualitative change at
Sc =1 such that, for S¢ < 1 (Sc¢ > 1), the upper (lower) line corresponds to the onset of MA
instability and the lower (upper) line to the onset of OA instability.

Even as Ek — 0, these qualitative phenomena persist, aligning with the properties of
Mclntyre instability [41] and other dissipation-induced instabilities [1,45,50]. The existence
of the codimension-2 point qualitatively distinguishes the diffusive case from the diffu-
sionless one, where the onset of instability corresponds to the monotonic axisymmetric
centrifugal instability only, Figure 4d. Hence, the oscillatory axisymmetric instability is a
genuine dissipation-induced instability [1] which is as important as the monotonic axisym-
metric one despite its relatively low growth rate, because in a large set of parameters, the
oscillatory axissymmetric modes are the first to be destabilized by the differential diffusion
of mass and momentum.

4. Spiral Poiseuille Flow with Radial Temperature Gradient
4.1. Nonlinear Equations of Motion

Following [13,47,54], we consider an incompressible Newtonian fluid with constant
reference density p and constant thermal expansion coefficient @, kinematic viscosity v, and
thermal diffusivity x within an infinitely long cylindrical annulus with a gap widthd = R, — Ry,
where R; is the radius of the inner cylinder at temperature 73, rotating with angular velocity
€1, and R, is the radius of the outer cylinder at temperature 7, = T; — AT, rotating with angular
velocity €. The Z-axis of the cylindrical coordinates (R, ¢, Z) aligns with the common rotation
axis of the cylinders. We assume the inner cylinder velocity, Vy = Q1 Ry, to be the velocity scale,
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d the length scale, d/Vj the time scale, and pVg the pressure scale to write the dimensionless
governing equations in the Boussinesq—Oberbeck approximation:

V-u=0, (50a)

du g L2y g =0, (50b)

4o — V20 =0. (50c)

Here, p is pressure, u = (u, v, w) represents the velocity field, 6 = TA_TTZ is the temperature

deviation, AT = T; — T», % = % +u-V,r = %, and z = %. The dimensionless control
Yod

v
of the inner cylinder, Pr = 7 is the Prandtl number, and y = @AT, with y < 0 for inward
heating (77 < 1) [13,47].

parameter Re = in Equation (50) is the Reynolds number associated with the rotation

4.2. Base State

We assume the base flow to be the spiral Poiseuille flow (SPF), which combines the
annular Poiseuille flow, characterized by an axial velocity driven by an external pressure
gradient, and the circular Couette flow, defined by the azimuthal velocity profile induced
by the differential rotation of the cylinders. The two-component dimensionless velocity
field of SPF and the base temperature distribution are expressed as

ug(r) = (O, V(r),S_1W(r)), 0p(r) = 0O(r), (51)

where S = WLfn is the swirl parameter, W, is the mean velocity of the annular Poiseuille flow,

and W(r), V(r), and ©(r) are the dimensionless axial, azimuthal, and temperature profiles,

respectively. Defining the axial Reynolds number as Re, = W%d, we can write § = K¢
The axial velocity profile W(r) of SPF is given by [54] )

W(}"): 2(1_77)211'177 [2 2 1 ﬂln(}’) .

— +_ —
P-E+hing-1|  2TIngi-n \r

(52)

The azimuthal velocity profile V() in (51) corresponds to the circular Couette flow [13,54]:

o (1-p 1 pP-u
= 1+n(<1—n)2r 7 ) 9
The temperature profile ©(r) in (51) is expressed as [13,54]
o) = M (54)
Inn

Here, the geometric and rotational parameters are defined as follows:

® 1= R1/Ry, the ratio of the inner (R1) to outer (R2) cylinder radii;
11 =Qy/Q, the ratio of the angular velocities of the outer (Q,) to inner () cylinders;
e = %, the inner radius in dimensionless form;

e = 1%}, the outer radius in dimensionless form;

AT . . . .
° e =A\F1ra = —7, the geometric mean radius, at which we will evaluate all parameters
8 1-n
in subsequent analyses.

4.3. Geometrical Optics Equations

After linearization of the governing equations (50) about the base SPF flow (51),
assuming Re ~ €2 in the linearized equations [34] and seeking a solution in the asymptotic
form (1), we find the transport equations for the leading-order amplitudes u® and §(*
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of the localized wave packet moving along the streamlines of the base flow written in the
stationary frame [13,47]:

du©® |k kkT\ V2
i R S ‘( ‘W)VT”@“”
kK" kk”
(7 2= |Uu'® —2y0Q(T - = |e,eLu?,
( |k|2) v ( |k|2)‘e cet
do® 2
+ |k| 00 = —(ve) 4, (55)

dt RePr

where T is the 3 x 3 identity matrix, and the eikonal equation determining the evolution of
the wavevector k = (k,, k, k)T =€ 'V, k-u® =0; in the stationary frame,

dk

—=-U"k. 56
- U (56)
The gradients of the base state are given by
0 -Q 0 DO
U=Vup=| (1+2R0)Q 0 0| VO=| 0 (57)
+DW 0 0 0

with D = a%, Q= ‘r—/, and the Rossby number is defined in (10).

4.4. Dispersion Relation
From Equation (56), it follows that, under the condition [5,7,47],

DW

k, = -DWk., with DW= —0
¢ e Wi 2QR0S

(58)
the components of the wave vector k remain time-independent in the rotating frame:
k, = const., k, = const., k; = const.. This condition describes the most unstable and
exponentially growing 3D perturbations in swirling flows that exhibit helical symmetry,
i.e., remain invariant along circular helices with a pitch of 2nrDW [5,7 47]. Additionally,
under the constraint (58), the amplitude equations (55) are autonomous in the rotating
frame [5,7 47].

Writing explicitly the material derivative in the left side of the amplitude equations,
explicitly computing its right hand side, exploiting the relation

—

k|2 =k3+k§[1+DW ] (59)

and assuming u(?,9©) ~ est+imetik:z \where s = o +iw, o, w € R is the complex growth

rate, and m = k,r and k, are the integer azimuthal and real axial wavenumbers, we find
the dispersion relation as the characteristic polynomial

(1) = —det(H — AT) = a3A® + apA®> + ay A + ag (60)

of the matrix H, where 1 = o +i(w + mQ + k,W/S) and

_kr 4 k 2 kz kr2"
—20DpWhts - I 2001 —7@)(1 - |k|2) —rsz(l - |k|2)
2 2 JER— R
H = —ZQ(R0+ %) 20(1-y0)DWhts - KL _ry@2DWhes | (61)
k1> pr=1 _ |k
-D® 0 Re Pr ~ Re
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4.5. Stability Analysis

The dispersion relation (60) has real coefficients. Consequently, the stability conditions
of the base flow (o < 0) are determined by the Liénard—Chipart stability criterion: ag > 0,
ar > 0, and a1ar —ag > 0 [1]. Note that a, = IT;J‘CZ %y@ + %% is positive in both
the isothermal case (y = 0) and the pure azimuthal circular Couette flow with a radial

temperature gradient (DW = 0). In these cases, the inequality ap < 0 extends the Rayleigh
centrifugal instability criterion, while the inequality a1a; — ap < 0 characterizes oscillatory
instability [13,40,41].

4.5.1. Pure Azimuthal Circular Couette Flow with Radial Temperature Gradient

The condition ag = 0 defines the neutral stability boundary in the (Pr, Re) plane for
the non-oscillatory (stationary) Goldreich-Schubert-Fricke (GSF) instability [13,46]. The
neutral stability curves are parameterized by the axial wavenumber k., with a¢ = 0 leading
to a polynomial equation in k. The envelope of this family of curves can be determined
through three equivalent approaches: (1) computing the discriminant of the polynomial;
(2) solving the equations ag(k;) = 0 and dado—,i’f) = 0 simultaneously; or (3) expressing Re
as a function of k; from ag = 0 and minimizing Re with respect to k, [55]. All approaches
yield the same expression for the envelope:

k2
Ry = 20K ! , (62
\/4(Ro§ — Ro)(1-70)
where Ro?, is the modified Rayleigh line for non-isothermal flows [47]:
s _ rDO®yPr
Roy = 1+—4(1—7@)' (63)

The same procedure applied to the equation ajay = ag yields the envelope of the
neutral stability curves for the oscillatory instability:

3V3k? Pr+1
ReQ = Z;z r Tt ) (64)
Pr\/4(Rog —Ro)(1-vy0®)
where Prel
o _ S r
ROR ——1+(R0R+1)W. (65)

Note that Ro§ = Ro%, and Re{ = 2Rej; at Pr = 1. Moreover, rewriting Equation (62) and
2ReQ
3V3k?

The criterion for the stationary GSF instability given by the inequality Re > Rej) can

Equation (64) in terms of the Taylor number T'a = exactly reproduces the result of [13].

be written in terms of the Rayleigh discriminant N2 = 4(1 + Ro)Q? and the square of the
centrifugal Brunt-Viissala frequency N? = —yQ2r D@ as follows:

N2(1-vy0)+PrN?+ 27k <0 (66)
_ PN2+ 22 )
Q 4 4Re?

while the criterion for oscillatory instability Re > Re takes the form of

Pral o (Pr+1)?27k}

2
Ng(l —Y0)+ 2Pr 4Pr?  Re?

<0. (67)
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Setting y = 0 and N = 0 in (66) exactly reproduces the centrifugal instability criterion
for isothermal viscous Couette-Taylor flow found in [14] through a local geometrical
optics approach.

In Figure 5, the envelopes (62) and (64) are depicted in the (Pr, Re) plane by red
and blue curves, respectively, with the instability domain located above these curves. In
the Rayleigh-unstable case (u < n?) shown in Figure 5a, for outward heating (y > 0),
the envelopes intersect, forming a codimension-2 point at a specific value of Pr, which
is detailed in [13]. In this scenario, the GSF instability dominates for Pr < 1, while the
oscillatory instability becomes critical for Pr > 1.

4
(@) 1.x 103 Re? ) 10
5.x107
5 0}
10 Re,
1. x 10 e
5. x 102‘
Re Re 4,
10™
1.x104] ReS
S
5.x10'] 10%] Re,
Stability Stability
1.x10" e It
102107" 10° 100 10° 10° 1002102107 10° 100 10 10
Pr Pr

Figure 5. The envelope (red) Reg (Pr) of the neutral stability curves ag = 0 (62) and (blue) ReOO(Pr) of
the neutral stability curves ajay = ag (64) in the (Pr, Re) plane for pure azimuthal circular Couette
flow with a radial temperature gradient. The parameters are k, = 3V2, with (a) n = 0.5, u = 0,
¥ = 0.01 (Rayleigh-unstable, outward heating), and (b) = 0.99, u = 72,y = -0.01 (Rayleigh-stable,
quasi-Keplerian, inward heating). All computations were performed at the mean geometric radius
r = fr1r7. Instability is above the curves [13,57].

Conversely, for Rayleigh-stable flow (u > n%), inward heating destabilizes the system
through an oscillatory instability mechanism when Pr < 1 and through GSF when Pr > 1,
as illustrated in Figure 5b. This behavior was first identified using the local geometrical
optics approach in [13] and later confirmed by numerical global stability analysis in [57].
The parameters characterized by low Prandtl numbers and high Reynolds numbers, corre-
sponding to oscillatory instability as shown in Figure 5b, are particularly relevant to the
dynamics of accretion disks in astrophysics [49,58,59].

4.5.2. Isothermal Spiral Poiseuille Flow (SPF)

Setting ® = 0 and y = 0 in the matrix (61) corresponds to the isothermal spiral
Poiseuille flow. Under these conditions, the dispersion relation simplifies, separating
into a linear equation with no physical significance and a quadratic polynomial. The
quadratic polynomial determines centrifugal instability via the sole relevant condition of
the Liénard—Chipart criterion: ag < 0. Computing the discriminant of ag = 0, considered
a polynomial in k., yields the envelope of the neutral stability curves in the (Re;, Re)
plane [47]:

E(ReZ,Re)z—z——_+——=0. (68)
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The centrifugal instability of the isothermal viscous swirling flow is then determined by the
condition E(Re,, Re) < 0 [47] that for isothermal inviscid swirling flows (Re — o) reduces

to the result )
N3  4DW

&, pW

previously obtained in [5,7] using the local geometrical optics approach, and in [60,61] via

<0, (69)

the global stability analysis. The equality in (69) determines asymptotes to the envelope (68)
shown in Figure 6b by oblique straight lines for the Rayleigh-stable flow. The envelope (68)
also has a horizontal asymptote [47]

3V3k?2
4Qv\-Ro

as shown in Figure 6a,b by the dot-dashed line.

Coo =

as |Re;| — (70)

(@) p (b) S0073
Reo
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: : ; : : 0 : f : :
-400 -200 O 200 400 -400 -200 O 200 400
Re7 Rez

Figure 6. For isothermal SPF with k, = 342, the thick red line represents the envelope (68) of
the neutral stability curves (ag = 0) that bounds the union (shaded area) of individual instability
domains. These domains are shown for (a) k; = 0.5,1,2, 3 for the Rayleigh-unstable flow (7 = 0.5,
1 =0)and (b) k, = 0.4,0.7, 3 for the Rayleigh-stable flow ( = 0.5, u = 0.5). The dot-dashed horizontal
asymptotes of the envelope correspond to Re« = 49.60, from Equation (70). The envelope’s maximum
value for the Rayleigh-unstable flow at Re, = 0 is Reg ~ 70.15, derived from Equation (62) for y = 0.
The solid oblique lines in (b) represent the inviscid criterion (69).

4.5.3. Spiral Poiseuille Flow with Radial Temperature Gradient (SPFRT)

The radial temperature gradient induces a splitting of the envelope bounding the
domain of centrifugal instability in swirling flows [47].

For Rayleigh-unstable, non-isothermal swirling flows, the envelope comprises two
branches that intersect at Re; = 0 and Re = Reg , Where Reg is defined in (62). A linear
approximation for the branches of the envelope near the intersection is given by the
following formula [47]:

Re(Re:) _ . . @w/iﬂ

Reg +y % o Re, +o(Re;). (71)

The horizontal asymptote (70) also splits, with the new values of Re., determined as
the roots of the following bicubic equation:

b3(QRe)® + bo(QRe)* + b1(QRe)? + by = 0, (72)

75



Mathematics 2025, 13, 382

where the coefficients are defined as

b3 16[(y®)? + A]A®,

by = k*27(y©)° —265A(y0)* — 4924%(y0)? - 216A%| A2,

b1 = 3k%[-144(y0)% - 96A(y0)°® — 8A%(y©)* +216A%(y0)? + 243A%],

by = 1024k2(y©)°,

A = 4(1-y@)(1+Ro5 - Ro), (73)

and where Ro% is the modified Rayleigh line (63).
Using perturbation theory for |y| < 1, an approximate expression for the splitting of
the horizontal asymptote can be derived from (72)

Reo(y) 1 PrRt 1
= 1 Tl S
Reo 70 2 - 4 Ro * V=6Ro
where Re,, is defined in (70), and Rt = % [13].
In Figure 7a, the envelope of the centrifugal instability domains of the Rayleigh-

+o(y), (74)

unstable SPF with a radial temperature gradient (SPFRT) is split, exhibiting two horizontal
asymptotes at Reo ~ 49.66 and Reo, ~ 49.80. These values, derived from (74), are indis-
tinguishable from the exact results given by (72). Furthermore, as predicted by (74), these
values demonstrate that the temperature gradient not only splits the isothermal horizontal
asymptote Reo, ~ 49.60 shown in Figure 6a for the same parameter values as in Figure 7a,
but also shifts it vertically. Note that the splitting of the envelope introduces asymmetry
in the instability domains with respect to the sign of k,: for Re, > 0, the critical Re corre-
sponding to the lower branch of the envelope has k, > 0, whereas for Re, < 0, the critical
Re corresponding to the lower branch has k, < 0 (Figure 7a).

Figure 7b illustrates that the splitting of the envelope of the centrifugal instability
domains for the Rayleigh-stable SPFRT results in not only the two horizontal asymptotes
from (74) as |Re;| — oo, but also two oblique asymptotic lines as Re — co. The outer branch
of the envelope follows the asymptotic line given by the following expression:

N2 N2 DW
Q—S;(l—'y@)+Pr§ = —
1+DW

(2-70)? (75)

If the left-hand side of (75) exceeds its right-hand side, this inequality defines the centrifugal
stability of the SPFRT. The inner branch of the envelope lies within the centrifugal instability
domain and has the asymptote
N? 2 4w
Q—?(l—y®)+Pr% = —12(1-@). (76)
1+DW
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Figure 7. (a) The outward radial temperature gradient with y = 0.01 and Pr = 0.01 causes a splitting
of the envelope (red lines) of the neutral stability curves bounding the GSF instability domains ag = 0
(shown light-shaded for k; = 0.15 and dark-shaded for k; = —0.35) for non-isothermal Rayleigh-
unstable SPFRT with = 0.5, 4 = 0, and k, = 3V2. The maximum value of the envelope (Reg ~ 70.33,
not shown) is given by (62), while (dot-dashed) the two horizontal asymptotes at Re« = 49.66 and
Res = 49.80 are provided by (74), in excellent agreement with (72). (b) For the Rayleigh-stable SPFRT
withn = 0.5, u =05, Pr =0.01, y = 0.5, and k;, = 342, the (red) envelope of the neutral stability
curves splits into two branches. The outer branch touches the GSF instability domains with k, > 0
(light-shaded, k, = 0.5), while the inner branch touches the GSF instability domains with k, < 0
(dark-shaded, k; = —0.5). The oblique straight line represents the asymptote (75). The dot-dashed
lines correspond to Rec = 48.56 and Rew ~ 67.72, as provided by (72).

Since the splitting of the envelope of the centrifugal instability domains is small for
ly] < 1, we can derive a simple approximation by substituting D® = —)g—;r into the
equation ag = 0, taking the limit as y — 0 while keeping the centrifugal Brunt-Vaissala
frequency N fixed, and then calculating the discriminant of the resulting equation (treated
as a polynomial in k). This procedure yields the following approximate expression for

the envelope:

N} 2 L
Mo p. N __4DW N ro_ 77)
Q? Q(1-y0) 1,pw> 4Q°Re?
As |Re | — oo, the approximation (79) to the envelope has a horizontal asymptote:
3V3k?
ReS = V3k; (78)

4Q./1 +R015Q —Ro

The approximation (77) represents a non-isothermal extension of the envelope (68) for
the centrifugal instability domains of viscous swirling flows and is valid when |y| < Pr. It
forms a single smooth curve (see Figure 8) that aligns closely with the minimal splitting
of individual neutral stability curves for specific k.. This splitting is so subtle that it is
imperceptible to the naked eye in Figure 8.

Applying the above procedure to the equation aja; = ag, we derive a similar approxi-
mation for the envelope of the oscillatory instability domains of SPERT in the (Re, Re)-
plane, shown as thick blue lines in Figure 8:

NG, NP Pral DWW L (Prel? 27k 79)
Q2 Q2(1-y©) 2Pr  ,.pw*  Pr? 4Q2Re
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The approximation (79) is valid when |y| < Pr. Requiring the left-hand side of (79) to be
negative extends the criterion (67) to swirling flows with a radial temperature gradient. As
|Re,| — oo, the approximation (79) to the envelope has a horizontal asymptote:

200 3V3k? Pr+1
es = .
10 1+RoQ—Ro 7
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Figure 8. (a,b) Rayleigh -unstable SPFRT with = 0.5, u =0, y = 0.01, k, = 32, and (a) Pr = 5 and
(b) Pr =200, cf. Figure 5a. Pink (light-shaded) and blue (dark-shaded) areas represent the domains
of centrifugal and oscillatory instability, respectively, for k; = 0.5,1,2,3. The thick red and blue
lines denote approximations to the envelopes (77) and (79), respectively. The maximal Reynolds
numbers are (a) Reg ~ 70.97 and (b) Reg ~ 134.10 from (62), and Re((]) ~ 84.48 in (a) and Reg ~ 70.74
in (b) from (64). The dot-dashed line corresponds to ReS ~ 49.88 in (a) and ReS, ~ 62.17 in (b), as
given by (78). The dashed line corresponds to Re€Q ~ 5955 in (a) and Re ~ 49.87 in (b), as given
by (80). (c,d) Rayleigh-stable SPFRT with k, = 0.5,1,2,3, k, = 3v2: (c)np =05, u=05 Pr=70,
y = 0.01, ReS, ~ 70.56, and ReQ ~ 50.40; (d) n = 0.99, i = n°/2, Pr = 0.1, y = —0.01, ReS, ~ 2637.17,
ReQ ~17,657.29 , and Re§ ~ 24,277.26.

A comparison of Figure 8a,b and Figure 5a reveals that the Rayleigh-unstable SPFRT
with an outward temperature gradient (y > 0) can exhibit either centrifugal instability (at
small Pr) or oscillatory instability (at large Pr). The transition between these regimes occurs
at a critical Pr, corresponding to a codimension-2 point in the (Pr, Re)-plane at Re, =0, as
shown in Figure 5a.

The Rayleigh-stable SPFRT depicted in Figure 8c,d can exhibit oscillatory instability in
the presence of an outward temperature gradient (y > 0) at large Pr, as shown in Figure 8¢,
when |Re,| exceeds a critical value. For an inward temperature gradient (y < 0), Figure 8d
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indicates that stability is lost via oscillatory instability at small |Re,| and via centrifugal
instability at large axial Reynolds numbers when Pr < 1, consistent with the numerical
results of [54]. For Pr > 1, this behavior is reversed.

5. Conclusions

The geometrical optics local stability analysis, initially developed for the hydrody-
namics of ideal fluids, was revisited and extended to visco-diffusive rotating flows. This
approach was applied to three cases: the azimuthal magnetorotational instability (AMRI)
in magnetized differentially rotating flows, the McIntyre instability in baroclinic lenticular
vortices and the spiral Poiseuille flow with a radial temperature gradient (SPFRT).

The influence of the hydrodynamic (Pr) and magnetic (Pm) Prandtl numbers, and
Schmidt (S¢) number on the onset of stationary and oscillatory instabilities was explored,
with a focus on the exchange of instabilities near the critical value where the ratio of
viscosity to diffusivity equals a finite value, which, in many applications, is simply one.

It was demonstrated that AMRI can be interpreted as a dissipative unfolding of
the linear Hamilton-Hopf bifurcation, represented by the Whitney umbrella singularity
on the neutral stability surface. This singularity explains the persistence of diffusive
destabilization even in the limit of vanishing dissipation, provided Pm # 1. The thresholds
for diffusive and diffusionless AMRI coincide only at Pm = 1.

A special role of Sc = 1 was observed in the visco-diffusive McIntyre-like instability
of lenticular vortices, where it acts as the trigger between oscillatory and stationary in-
stabilities, determining the transition between these regimes. This method also proved
effective in deriving instability criteria for swirling flows with radial temperature gradients,
highlighting the role of Pr in the exchange between centrifugal and oscillatory instabilities.

This analysis offers a robust framework for deriving instability criteria analytically,
even for parameter values inaccessible in numerical or physical experiments, providing
valuable insights and guidance for future studies.
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Abstract: Control of buoyancy-assisted convective flow and the associated thermal behavior
of nanofluids in finite-sized conduits has become a great challenge for the design of many
types of thermal equipment, particularly for heat exchangers. This investigation discusses
the numerical simulation of the buoyancy-driven convection (BDC) of a nanofluid (NF)
in a differently heated cylindrical annular domain with an interior cylinder attached with
a thin baffle. The annular region is filled with non-Darcy porous material saturated-
nanofluid and both NF and the porous structure are in local thermal equilibrium (LTE).
Higher thermal conditions are imposed along the interior cylinder as well as the baffle,
while the exterior cylinder is maintained with lower or cold thermal conditions. The
Darcy-Brinkman-Forchheimer model, which accounts for inertial, viscous, and non-linear
drag forces was adopted to model the momentum equations. An implicit finite difference
methodology by considering time-splitting methods for transient equations and relaxation-
based techniques is chosen for the steady-state model equations. The impacts of various
pertinent parameters, such as the Rayleigh and Darcy numbers, baffle dimensions, like
length and position, on flow, thermal distributions, as well as thermal dissipation rates are
systematically estimated through accurate numerical predictions. It was found that the
baffle dimensions are very crucial parameters to effectively control the flow and associated
thermal dissipation rates in the domain. In addition, machine learning techniques were
adopted for the chosen analysis and an appropriate model developed to predict the outcome
accurately among the different models considered.

Keywords: annulus; baffle; porosity; machine learning; numerical technique

MSC: 37MO05; 37M10; 37M20

1. Introduction

Buoyancy-induced convection in finite, closed conduits of different shapes has been
investigated experimentally as well as theoretically for the last several decades. This interest
among researchers mainly reflects the advantage of the use of cooling processes without
any aiding external mechanisms in these processes. Further, due to the lower thermal
conductivity of traditional or conventional fluids, a significant challenge is posed for cooling
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the model electronic equipment. The invention of NFs or nanoliquids, which involve a
base-fluid and nano-sized particles of oxides or metals, provides a very effective means
of replaceing these conventional fluids [1] to achieve comparatively higher cooling rates.
The superior thermal conductivity of NFs has led to many important investigations and
produced qualitative as well as quantitative information about the choice of nanoparticle
(NP) and the optimal concentration to yield higher thermal transport rates [2,3]. Among
the various finite-sized conduits, an annular space formed between two co-axial cylindrical-
shaped tubes is applied in many important thermal applications, from nuclear reactors
to crystal growth design equipment [4-6]. Augmentation of the thermal dissipation rate
(TDR) by the inclusion of NFs is the major driver behind these investigations.

The thermal management of electronic equipment is one of the fundamental require-
ments of the electronics industry, the application of which has increased in recent times.
To cater to the needs of modern electronic industries, among the several strategies tried
by numerous researchers and scientists, attaching a baffle in one or more of the thermally
active walls of the enclosure has been found to provide a better way to enhance the thermal
transport rates. In this direction, one of the pioneering studies to analyze the impacts of a
baffle in a tall tiled rectangular conduit is that of Scozia and Frederick [7]. The numerical
prediction was carried out by considering up to 20 conducting baffles and it was concluded
that decreasing the spacing between the baffles or increasing the baffles tends to produce a
multi-cellular flow structure and reduction in the overall TDR. For a similar geometrical
structure, Facas [8] reported the impacts of three baffles attached alongside hot and cold
boundaries considering three different lengths, and concluded that a longer baffle induces
a multi-cellular structure and produces higher TDRs compared to other baffle dimensions.
Later, a full-blown analysis of the size and positional influences of a thin baffle on BDC and
TDR in a square conduit was performed and it was concluded that an optimum dimension
of baffle could be found at which the thermal transport rate could be significantly enhanced
compared to non-baffle situations [9,10].

Further to the enhancement of TDR shown by fixing baffles to the active boundaries
of the conduits, replacing the traditional working fluids by novel NFs was suggested to fur-
ther improve the heat transfer, with an enhancement in TDR by as much as 10-20 percent
demonstrated with use of NFs in [11]. The impacts of the fin height and NP concentra-
tion on the enhancement of TDR were examined by considering two different NPs in
a rectangular conduit with longer fins predicted to induce heat transport in [12]. A 3D
mixed convective flow in a perforated heat sink with several cylindrical-shaped fins was
quantiatively analyzed by Bakhti and Si-Ameur [13] considering three NFs. A detailed
combined conduction-convection analysis identified that use of Cu NPs induced higher
TDR compared to other NPs, and predicted an enhanced frictional effect as well as NF
movement with an increase in the Reynolds number. In a 3D triangular conduit, having a
stationary as well as a rotating fin, Kolsi et al. [14] numerically predicted the fin conditions
as well as the NP concentration to enhance the TDR. The combined influences of a moving
boundary, adiabatic projection at the lower boundary, and an adiabatic baffle on the NF
buoyant-flow and associated TDR in a square conduit showed that the energy transport in
the chamber could be effectively determined by the dimensions of the adiabatic block as
well as the position of the baffle [15]. Hussein et al. [16] presented a numerical examination
of BDC in a slanted rectangular conduit with a baffle which was filled with two different
nanofluids to predict the thermal behavior relative to the baffle dimensions. In many situa-
tions, the combined influences of magnetic fields and baffle(s) provide an effective method
for controlling convective heat transfer in NF-filled finite geometries, as demonstrated by
numerous research studies [17,18]. The optimal control of buoyant-assisted convection
by utilizing single or multiple baffle(s) in various geometrical shapes, such as cylinders
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[19], wavy conduits [20], and vented domains [21] has been examined. The choice of
the different geometrical configurations in the above studies stems from the necessity to
achieve enhanced heat transfer rates, maintain economic viability in production, ensure
ease of manufacture, and optimize operational performance.

The utilization of one or multiple baffles in confined NF-filled porous geometries has
emerged as a prominent research arena, motivated by the extensive potential engineering
applications to improve the thermal efficiency. The porous materials, characterized by their
unique structural properties and enhanced thermal transport capabilities, are present in many
critical systems, including shell-and-tube heat exchangers, flat-plate solar collectors, and nu-
clear reactor cooling channels. Recognizing these advantages, researchers have systematically
investigated various aspects of porous media and their integration with conductive or non-
conductive baffle(s) to achieve optimum heat transfer intensification [22-24]. Mahalakshmi
et al. [25] examined the characteristics of MHD mixed convection in a lid-driven porous
conduit with a center heater to demonstrate the collective effects of the magnetic force
strength, heater orientation, and nanofluid properties on thermal transport performance.
The investigation predicted that a horizontal heater arrangement would achieve maximum
heat transfer enhancement, and that the magnetic force effectively controls the convective
movements within the porous medium. Aly et al. [26] numerically investigated BDC in
a nanofluid-filled porous cavity with different heated fin shapes using a modified ISPH
technique. Their analysis revealed that an H-fin shape maximizes the flow circulation rate
while a Z-fin shape achieved the highest heat transfer rate. Subsequently, a CFD analysis
conducted on magneto-convection in a slanted porous conduit with two conducting fins
showed enhanced heat transfer with optimal fin configurations, such as fin space and
dimensions, and cavity inclination of 30°, demonstrating superior performance compared
to no-fin configurations [27].

Recently, porous fins have often been utilized in place of metal fins in thermal applica-
tions due to several key advantages, including the enhanced surface area provided by the
internal pores, improved fluid mixing through tortuous flow paths, and reduced weight
and material costs, among many other advantages [28,29]. Further, the incorporation of
porous substance within irregular geometric configurations for analyzing buoyancy-driven
NF convection represents a significant research domain with multidisciplinary implica-
tions, including enhanced geothermal systems, advanced heat exchangers, and microfluidic
devices [30-32]. The detailed utilization of baffle(s) in controlling BDC flow and associated
thermal transport in a variety of geometries filled with diverse NFs, and by considering
different constraints, has been reported in comprehensive reviews [33,34]. An exhaustive,
systematic review of the literature on the implications of various shaped baffle(s) across
diverse porous and non-porous NF-filled geometrical configurations reveals a significant
research gap. Specifically, the analysis of BDC within baffled porous annular geometries,
particularly when integrated with a generalized porous media model and machine learning
approaches, remains largely unexplored. Despite the significant industrial and engineering
relevance of this configuration, the critical intersection of porous media dynamics, baffle
design, and computational methodologies has received insufficient scholarly attention. The
current examination addresses this substantial knowledge gap by presenting a compre-
hensive analysis that bridges traditional fluid dynamics with modern machine learning
techniques in the context of baffled NF-saturated porous annular systems.

Despite high-quality outputs from CFD simulations for an individual set of parameters,
their inherently high computational cost (which can typically process each simulation case
in hours) is often a major obstacle. Running CFD simulations for each new operating
condition or design iteration is usually prohibitively expensive in computational time, so
a full exploration or fast decision-making becomes out of reach. This is where ML can
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provide significant potential improvements, taking the shape of powerful surrogate models.
Once they have been trained on a representative dataset created by high-fidelity CFD
simulations, the ML models can predict the overall performance metrics (e.g., Average
Nusselt Number) in a fraction of the time (in many cases, orders of magnitude faster,
<0.1 s/prediction). This fast prediction time, even though for an individual point it is less
accurate than a full CFD approach, allows for tasks which seemed impossible, such as
performing a full exploration of design space to identify new relationships or optimal space,
the rapid screening of many design candidates to identify promising designs for more
in-depth CFD analysis, or even for use in real-time processes where an instant response is
needed. Thus, the ML approach is not meant to replace the ability of CFD for accurate, final
validation of some chosen designs; it is instead intended to complement the capabilities
of CFD by allowing efficient, large-scale investigation or dynamic applications that are
beyond the practical application possibility of direct, iterative CFD simulations.

2. Mathematical Formulation of the Problem
2.1. Governing Model Equations

The present study examines BDC flow and thermal transfer in an annular configuration
consisting of two upright cylinders arranged concentrically, with inner and outer radii
represented as r; and 7, as illustrated in Figure 1. The configuration also includes a
thin circular baffle attached to the inner cylinder, whose dimension and location can
be adjusted to study their impacts on the fluid flow and heat transport characteristics.
The thermal boundary conditions are established such that the inner cylinder and baffle
are maintained at an elevated temperature, while the outer cylinder is kept at a lower
temperature. However, the top and bottom cylindrical surfaces are considered to be both
thermally insulated and rigid.
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(a) 3D Annular baffled-geometry (b) Axi-symmetric view

Figure 1. Schematic representation of the baffled annular geometry: (a) three-dimensional view
depicting the physical domain, and (b) axisymmetric cross-sectional view with thermal boundary
conditions and characteristic dimensions.

The annular portion is filled with an NF-saturated porous material, where silver (Ag)
NPs are dispersed in H,O as the base-fluid. The analysis assumes local thermal equilibrium
between the NPs and the base-fluid. The flow is considered to be two-dimensional and
laminar, with constant thermophysical properties except for density variabilities, which are
accounted for using the Boussinesq approximation. The relevant thermophysical properties
of both the NPs and H,O are provided in Table 1. The thermophysical properties of NFs
depend on the volume fraction of NPs (¢) and the properties of both the base-fluid (f) and
the NPs (p). Table 2 summarizes these properties with the corresponding mathematical
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models adopted in the current analysis, with the subscripts n1f, f, and p denoting nanofluid,
base-fluid, and nanoparticle, respectively.

Table 1. Physical properties of H,O and Ag.

Physical Properties H>,O Ag

Cp (J/Kg K) 4179 235

p (Kg/m?) 997.1 10,500

k (W/mK) 0.613 429

B (1/K) 21 x 107° 1.89 x 107°

Table 2. Thermophysical properties of NFs and the adopted models.

Properties of NFs Volume Averaged Models

Density puf = (1=@)os + ppp

Thermal expansion coefficient (0B)ur = (1 =) (0B) + ¢(0B)p
Heat capacitance (0Cp)ng = (L= 9)(pCp)f + P(0Cp)p

kng kp+2k =2 (ks —kp)
kf - kp+2kf+¢(kf—kp)
. . U
Viscosity Hnf = W

kg
(PCP)nf

Thermal conductivity

Thermal diffusivity Ayf =

To describe the flow through the porous medium, we employ the Darcy-Brinkman-—
Forchheimer model, which comprehensively accounts for viscous, inertial, and non-linear
drag forces. Based on these assumptions and physical considerations, we develop the
governing equations following similar approaches to those found in the contemporary
literature on porous media flow and heat transfer [2,35]. The dimensional form of the
model equations for the present analysis are as follows:

Vg =0 )
P07 Lg0)7] - —vpr iz oty
==
- ‘Wﬂpﬁ)nf?(e—ec) @
a%ﬂ?-vw = w,/V30 6)

(PC;?)Eff

where € and K are, respectively, the porosity and permeability, o = (et is assumed to
p/n

be unity by considering the thermal properties of NF and solid matrix to be identical, and F

1 ? 19 &
——. Al 2 S+t
V1506372 Visga e taz
The following dimensionless transformations are utilized to transform the

is the Forchheimer coefficient and is given by F =

Equations (1)-(3) to recast to dimensionless form.

r,z) (U, V) = (u,v)D, . troy T— (6—06) P pD? @

(
R,7Z) = , 5 , =
( ) D OCf D2 (Qh - 90) pnflxj%
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Using the transformations (4), the dimensionless model equations assume the follow-

ing form:
ou v U
ﬁ—i_ﬁ—’_i =0 (5)
1fau 1/,9U _ du\] 9P _ ur [ep U\ Hus
e{aﬁe(”azﬁvaz) = azﬁpnfafe(V“ R2> onrit;Da
B 1.75vVU? + V2 U ©)
v Dav/'150€3
R A AR LA/ | BV SV
e[8t+e( 8R+V8Z)] N 8Z+pnf¢xfevv PufifDa
212
 (1VuE+v V+(Pﬁ)nfRa.Pra£ )
v Dav/150€3 PufBr dR
oT  oT _aT  au_,

For BDC modeling, generally, the pressure terms are eliminated through cross-
differentiation, and a new physical quantity known as vorticity is introduced. Vorticity
is physically introduced at the walls and diffused into NF stream. Also, introducing a
two-dimensional stream function in the cylindrical polar co-ordinates, the non-dimensional
vorticity-stream function equations are as follows:

1196 (10496 o8 UCNl _ Huf [gop E|
€ {at te <U8R Yz TR  Pagase ViR pnftfoag
_ (LYW VRN (0B 3T g
v/Dav/150€3 OnfBr oR
170% 13y %y
¢ = R[aRz‘RaR*azz} (19
_ 1oy _ 1oy
U= RoZ’ ~ ROR (1)
? 19 §BrAOD? K v
i 2 = — _— e = fi = — = —f
In the above equations, V= = 2 T R3R + 5727 a Y ,Da D2 and Pr ’Xf.
2.2. The Dimensionless Auxiliary Conditions
(i) Initial and hydrodynamic boundary conditions
1
Att=0U=V=T=0¢9p=C=0; /\—1*R*)\—1’ 0<Z<A

1
Att>0,1p:g—ll€:0, atR = 11 and %,OSZSAandatbafﬂeboundaries
P
P 37 0, at 0 and

(ii) Thermal boundary conditions at t > 0

1 A
R—m R—m On the baffle Z=0and A
oT
T=1 T=0 T=1 ﬁ_O
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2.3. Thermal Transport Rates

In any thermal system, the quantitative measure to evaluate the thermal efficiency as
well as the heat transport rate is predicted by estimating the local (Nu) and overall Nu
numbers. These quantities are defined as follows:

ki g

m—l/ANudZ where Nu = —— or (12)
Ao ’ N kg \OR

3. Description of Numerical Methodology
3.1. Finite Difference Methodology

The mathematical modeling of BDC phenomena within the complex nanofluid-
saturated porous baffled annular domain poses significant computational difficulties. To
address these challenges, our investigation adopts a robust hybrid numerical method-
ology that combines different finite difference (FD) techniques for a stable and accurate
solution. The governing partial differential equations (PDEs) consist of non-linear and
coupled vorticity transport, energy balance, and stream function equations. In particular,
the vorticity-transport equation incorporates Darcy—-Forchheimer—Brinkman terms to ac-
count for porous media effects, and additional terms to model the modified thermophysical
properties of NF. Further, the baffled annular configuration also introduces additional
complexities through the boundary conditions at the baffle interfaces.

Our solution methodology employs a domain discretization using a uniform grid
across the entire annular region and special care has been taken while assigning grids
along the baffle. For the temporal and spatial discretization, we adopt the following FD
approximations:

1.  Temporal Derivative: Forward difference quotients are implemented for all time-
dependent terms, resulting in first-order accuracy in time (At).

2. Spatial Derivatives: Central difference schemes are utilized for spatial derivatives,
providing second-order accuracy (AR? and AZ?) in the computational domain.

The solution methodology strategically integrates two different numerical techniques:

1. Alternating-Direction Implicit (ADI) Procedure: The parabolic nature of the vorticity
and energy transport equations has been integrated by a two-step ADI scheme. In the
first half-time step, the FD equations are solved implicitly in the R-direction while
treating the Z-direction terms explicitly. In the second half-time step, the process is
reversed, ensuring unconditional stability while maintaining computational efficiency.

2. Successive Line Over-Relaxation (SLOR): The elliptic stream function equation is
solved using SLOR, where each grid line is solved implicitly while sweeping through
the domain. An optimal over-relaxation parameter (w) between 1.0 and 2.0 was
dynamically adjusted to accelerate convergence based on the control parameters of
the chosen problem.

The FD discretization process transforms the PDEs into systems of linear algebraic
equations with tri-diagonal coefficient matrices. These systems are efficiently solved using
the popular Thomas algorithm (tri-diagonal matrix algorithm or TDMA), which provides
direct solutions.

The iterative solution process employs dual convergence criteria for transient as well
as stationary cases:

1. For transient PDEs, iterations are carried out until: max |<I>f’j+1 — CD;’ ]-| < I'1, where @
represents either vorticity or temperature, and I'y is a predefined temporal tolerance,

typically set at 107°.
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2. For the stream-function equation, spatial convergence is achieved when: max |1pf.‘;.“1 -
1/){»‘ ]-| < I'y, where k denotes the special iteration level and I'; is the spatial tolerance,

typically set at 1078,

An in-house code in ForTran was developed to systematically invert the system of
equations arising from the different model equations. The algorithm implementation
follows a sequential approach where the energy and vorticity equations are advanced
in time, followed by stream function updates and velocity-stream function relations at
each time step, ensuring proper coupling between the momentum and energy transport
mechanisms in the complex NF-saturated porous annular domain. Before the simulations,
a systematic and proper grid independence trial was conducted by choosing coarse to
fine grids from 51 x 51 to 201 x 201 and an optimum grid structure was chosen based on
the solution accuracy and computational time. For choosing the optimal grid size, we
identified the average Nu and |psimax| as the sensitive measure to decide the appropriate
grid size. Based on these careful experiments, we found a grid size of 161 x 161 satisfactorily
provided the accurate predictions as compared to the other grid sizes. However, the details
pertaining to the grid independence tests are not provided here for brevity, but can be
found in our recent studies [5,35,36].

3.2. Validation

To validate the current simulation outcomes, in this section, we report several impor-
tant trial simulations to compare, qualitatively as well as quantitatively, with standard
benchmark predictions existing in the literature, which are illustrated through Table 3 and
contour illustrations (Figure 2), to support the credibility of the in-house developed code.
In this regard, first, we modified our code with uniform heating and cooling, without the
presence of a baffle (6§ = 0), for a uniformly heated-cooled non-baffled annulus and square
geometry. We performed simulations for a thermal-buoyancy-assisted convection and
obtained the thermal transport rates for an annular geometry without baffle (6 = 0) to
compare with the quantitative predictions of Abouali and Falahatpishesh [4]. Our predic-
tions in the annular conduit for different magnitudes of Ra and ¢ are found to be in fair
agreement with the numerical outcomes of Abouali and Falahatpishesh [4], as displayed in
Table 3, with minimum allowable deviations.

Furthermore, in another comparison with a square geometry, we performed additional
simulations, by putting A = 0, to mimic the contour simulations of Nguyen et al. [2] for a
square geometry containing Cu-H,O NEF, and present the same in Figure 2. The comparative
predictions of the streamlines and isotherms vividly reveal the excellent similarity between
our simulations and the predictions of Nguyen et al. [2] for two different NP concentrations.
These qualitative and quantitative validations with systematic grid independence tests
ensure the authenticity of our in-house code and provide confidence to perform further
simulations in this investigation.

Table 3. Validation of average Nu with Abouali and Falahatpishesh [4] for different magnitudes of

Ra and ¢.
Ra Average Nusselt Number (Nu) Relative
(Gr X Pr) Abouali and Falahatpishesh [4] Present Study Difference (%)
6 x 10 2.867 2.884 0.59 ¢ = 0.00
2.729 2.740 0.40 ¢ = 0.02
6 x 10* 5.439 5.480 0.75 ¢ = 0.00
5.176 5.184 0.14 ¢ =0.02
6 x 10° 10.315 10.402 0.83 ¢ = 0.00
9.818 9.913 0.96 ¢ =0.02
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Figure 2. Streamlines (top) and isotherms (bottom) at Ra = 10°, Da = 107° and € = 0.4 of present
study (left) with Nguyen et al. [2] (right) for base-fluid (solid curve) and Cu-H,O NF with ¢ = 0.025
(dashed curve) and ¢ = 0.05 (dash-dotted curve).

3.3. Proposed Machine Learning Methodology

The proposed methodology outlined in this study investigates whether machine
learning techniques can be used to predict the mean Nusselt number, a critical indicator of
heat transfer performance, within a cylindrical annular domain. This approach employs
a thorough data-driven pipeline consisting of data analysis and preprocessing, model
training, hyperparameter tuning, and model validation. We use a conventional machine-
learning algorithms in addition to a deep learner that relates the dependent variables (e.g.,
Rayleigh number, baffle length, etc.) to the predictee. The primary motivation for this is to
develop reliable and accurate predictive models to support thermal equipment designers.

The preprocessing step is essential for maintaining the quality of data and readiness
for model training. Our first step is exploratory data analysis to develop an understanding
of individual feature distributions, potential outliers, and correlations across features. The
dataset also contains missing values, and therefore, we impute for missing values. Next, we
standardize the data to have a mean of zero and a variance of one. This step is important
because it helps ensure that features with larger magnitudes do not dominate the learning
process, especially with distance-based algorithms and neural networks. Lastly, a train—test
split is completed to separate the dataset into independent train and test datasets which is
crucial to create an unbiased evaluation of model generalization performance.

We utilized a range of machine learning models to predict the mean Nusselt number.
This list of models includes ensemble models such as Random Forest and Gradient Boosting,
known for their robustness to complexities and ability to capture non-linearities. A Support
Vector Regressor (SVR) is also considered as it allows flexibility in modeling different kinds
of relationships through kernel functions. Additionally, we implement a Ridge Regression
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model as a baseline linear model to compare against the more complex models. Finally, we
developed an Artificial Neural Network (ANN) to test the capabilities of deep learning.

Hyperparameter optimization is conducted for each model to maximize performance.
Instead of an exhaustive grid search, we opted for a randomized search. This method
still allows for exploration of the hyperparameter space by choosing a fixed number of
hyperparameter combinations to sample. This method represents a good trade-off of
computational cost and probability of finding near-optimal hyperparameters. A repeated
k-fold cross-validation is also used for model hyper-parameter tuning to provide a robust
estimate of model performance and counteract overfitting to the training data.

Model performance is evaluated using a comprehensive suite of metrics, including
R-squared (R?), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and
Mean Absolute Percentage Error (MAPE). These metrics are defined as follows, where y;
represents the true value, J; represents the predicted value, and 7 is the number of samples:

*  R-squared (R?): Measures the proportion of variance in the dependent variable that is
predictable from the independent variables. A value of 1 indicates a perfect fit.
n )2
1y =)
where 7/ is the mean of the true values.
*  Root Mean Squared Error (RMSE): Represents the square root of the average squared
difference between the predicted and actual values. Lower values indicate better fit.

RMSE =

S|

(vi —0:i)? (14)
=1

1

*  Mean Absolute Error (MAE): Represents the average absolute difference between the
predicted and actual values. Lower values indicate better fit.

18
MAE =) lyi — §il (15)
i=1

®  Mean Absolute Percentage Error (MAPE): Represents the average absolute percentage
difference between the predicted and actual values. Lower values are better, with 0%
indicating a perfect fit.

Yi=¥il « 100% (16)

Yi

1 n
MAPE = —
=

These evaluation metrics each provide different insights about different aspects of
model accuracy. In addition to these metrics, we also look at the residuals in order to
evaluate the stated assumptions of the model and examine any systematic biases. The best
overall model is determined by sufficient overall performance against these metrics, with
emphasis on generalization ability on the hold-out test set.

The proposed methodology is summarized in Algorithm 1, PREDICT NUSSELT NUM-
BER, which outlines the complete workflow for predicting the average Nusselt number.
It begins with data analysis and preprocessing, including splitting the data into training
and testing sets and applying a preprocessing pipeline for imputation and scaling. The
core of the algorithm involves iterating through a set of predefined models, including both
traditional machine learning algorithms and an Artificial Neural Network (ANN). For
each model, hyperparameter optimization is performed using randomized search with
cross-validation, except for the ANN, which is trained with techniques like early stopping.
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Algorithm 1 Predicting average Nusselt number

1. Input: Dataset D = {(x;,y;)}Y,, where x; is a feature vector and y; is the Nusselt
number.

2: Output: Best predictive model M*, evaluation metrics.

3: procedure PREDICTNUSSELTNUMBER(D)

4: Danatysis < D > Copy for analysis

Perform data analysis on Dyg1ysis (histograms, correlation matrix, etc.)

X, Y < Separate features (X) and target (Y) from D

Xitrains Xtests Ytrains Yiest < Split X, Y into training and testing sets (e.g., 80/20 split)

Preprocessor <— Create preprocessing pipeline (imputation, scaling)

Xffg};d < Preprocessor.fit_trans form(Xpaim)

10:  X;ealed « Preprocessor.trans form(Xiest)

11: Models <+ {RandomForest, GradientBoosting, SVR, Ridge, ANN}
12: BestModels < {}

13: Results < {}

14: for M € Models do

R AL

15: if M is ANN then

16: Define ANN architecture (layers, activation functions, etc.)

17: Compile ANN model (optimizer, loss function)

18: Train ANN with cross-validation, early stopping, and learning rate scheduling
19: BestModels[M] < Trained ANN

20: else

21: Define hyperparameter search space for M

22: Perform randomized search with cross-validation to find best hyperparameters
23: BestModels[M] < Model M with best hyperparameters

24: end if

25: Evaluate BestModels[M] on Xffgligd, Y}y ain and nggtl‘fd, Yiest

26: Store evaluation metrics (RZ, RMSE, MAE, MAPE) in Resul ts[M]

27: end for

28: M* <« Select best model based on evaluation metrics (e.g., lowest MAE on test set)
29: return M*, Results

30: end procedure

Algorithm 1 then evaluates each trained model on both the training and testing
sets, storing the results. Finally, it selects the best-performing model based on a chosen
evaluation metric (e.g., MAE on the test set) and returns this model along with the compre-
hensive evaluation results for all models. This structured approach ensures a rigorous and
reproducible methodology for model development and selection.

3.4. Implementation Details

The developed ML models are proposed to predict the Average Nusselt Number (Nu).
The used dataset was split into a training set, 80% of the samples, and a test set, 20% of the
samples. The splitting of the data was completed using the scikit-learn train_test_split
function. Then, a preprocessing stage was executed, where all input features were standard-
ized using scikit-learn’s StandardScaler. For those models that were developed rather
than the neural network-based model, namely, Random Forest, Gradient Boosting, SVR,
and Ridge Regression, a hyperparameter search was conducted using RandomizedSearchCV
provided by scikit-learn. RandomizedSearchCV evaluates a prespecified set of hyperparam-
eter values for each model, on the training dataset (employing a 5-fold cross-validation).
The goal was to determine a set of hyperparameter values that maximized the R? score. The
key hyperparameters that were tuned included n_estimators, max_depth for the various
ensemble-based models, learning_rate for GradientBoosting, C, 7 and kernel type for
SVR, and « for the regularization strength in the Ridge Regression.
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The proposed ANN architecture was constructed as a sequential multi-layer percep-
tron model with the TensorFlow Keras API. The architecture consisted of an input layer
with three hidden dense layers (e.g., consisting of 128, 64, and 32 neurons, respectively)
with 1 dense output layer with a linear activation function for the regression problem.
The activation function in the hidden layers was the ReLU (Rectified Linear Unit). To
reduce overfitting, the model had L, regularization applied to the weights of the hidden
layers, batch normalization following the hidden dense model, and dropouts (e.g., with 0.2
probability rate) between the hidden dense layers. The ANN model was compiled with an
initial learning rate of the Adam optimizer, with the goal of minimizing the mean squared
error. Training had a predetermined upper limit for the epoch (i.e., 500 maximum epochs)
and employed a count to the batch size of the training samples.

4. Results and Discussion

The current analysis involves nine dimensionless parameters, namely, the Rayleigh
(Ra), Darcy (Da), and Prandtl (Pr) numbers, the baffle length (&) and location (L), porosity
(€), NP concentration (¢), aspect (A) and radii (A) ratios, and a full-blown parametric
study along with ANN modeling, which would be a formidable task. Hence, in our analysis,
the parameters, A, Pr and A are fixed at 1, 6.2, and 2, respectively. However, the ranges of
the other parameters are as follows: 103 < Ra <10° 10> < Da<1071,0< ¢ < 0.05,
02 <L <08, 01 <e <09. These parametric ranges would highlight the weaker,
meager, and stronger impacts of all pertinent parameters on the qualitative as well as
quantitative predictions.

4.1. CFD Simulation Results
4.1.1. Impact of Control Parameters on Flow and Thermal Contours

In the streamline contour graphs, the positive and negative values have important
physical meanings. The positive streamlines indicate counterclockwise rotation of fluid,
representing the fluid motion in the counterclockwise direction. However, the negative
streamlines refer to clockwise circulation of fluid, indicating fluid movement along the
clockwise direction.

The flow and thermal contours depicted in Figure 3 illustrate the significant influence
of Ra on the flow and thermal characteristics within the annular domain (the arrows in
the streamline plots highlight the direction of the vortex rotation in the annulus). At
Ra = 103, the flow exhibits a single primary circulation vortex with relatively symmetric
and organized patterns, suggesting a conduction-dominated thermal transport regime.
The isotherms at this lower Ra appear nearly vertical with minimal distortion, further
confirming the dominance of conductive heat transfer. The presence of a baffle introduces
only minor perturbations in both flow and thermal distributions, while maintaining the
overall stability of the system. In contrast, at Ra = 10°, the flow structure undergoes a
substantial transformation. The streamlines reveal the formation of multiple circulation
cells with significantly higher flow intensities, evidenced by the densely packed streamline
contours. The flow field exhibits pronounced distortion near the baffle, indicating strong
convective currents. The corresponding isotherms at this higher Ra display substantial
distortion and clustering, particularly near the walls and baffle, resulting in the formation of
distinct thermal boundary layers and enhanced temperature stratification in the core region.
This behavior clearly signifies the transition to a convection-dominated heat transfer regime.
The comparison between base-fluid (¢ = 0, continuous curves) and NF (¢ = 0.05, dotted
curves) reveals subtle yet important differences in both flow and thermal characteristics.
Although the overall flow structure basically remains similar, the presence of NPs modifies
the flow patterns and enhances the heat transfer characteristics. This enhancement is
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particularly evident in the high Ra case, where the NF demonstrates improved thermal
mixing and heat transfer capabilities.

(@) Ra =103 (b) Ra = 10°
Figure 3. Effect of Rayleigh number on streamlines and isotherms at L = 6 = 0.5, ¢ = 0.4, Da = 102

Continuous and dotted curves, respectively, represent ¢ = 0 and ¢ = 0.05 (the arrows in the upper
figures highlight the direction of the vortex rotation in the annulus).

The analysis of the Da influence on the flow features and thermal patterns reveals
compelling insights into porous material behavior, as illustrated in Figure 4. At a higher
Darcy number (Da = 10~!), manifesting enhanced permeability, the NF flow exhibits
complex patterns characterized by dual circulation cells and pronounced flow distortions,
particularly near the boundary regions. The corresponding isotherm contours exhibit
strong clustering, indicating the presence of steep thermal gradients across the domain.
The impact of different porosities (¢ = 0.4 and € = 0.9) becomes significant at this higher
Darcy number, with higher porosity resulting in more intense circulation patterns. In
contrast, at a lower Darcy number (Da = 10~°), indicating reduced permeability, the flow
structure shows simpler patterns, characterized by a single primary circulation vortex,
and the thermal distribution shows a higher uniform spacing and smoother transitions.
The influence of porosity variation becomes less pronounced at this lower Darcy number,
indicating that permeability effects play a dominant role over porosity impacts. The
influence of the baffle dimensions (¢) and locations (L) on the flow and thermal patterns
within the porous annular region is reported in Figure 5. Four distinct baffle configurations
are analyzed, characterized by varying different combinations of L and J dimensions. For
the case of L = 0.2,6 = 0.2, denoting a shorter baffle positioned closer to the bottom, the
flow field exhibits a primary circulation pattern with densely positioned streamlines, while
the isotherms show moderate thermal stratification. However, for § = 0.2 but increasing
L = 0.2 to 0.8 (shifting the baffle to a higher location), a notable alteration in the flow
structure occurs with a more pronounced distortion in the streamlines adjacent to the baffle
region, accompanied by enhanced thermal mixing, as evidenced by the isothermal patterns.
For configurations with longer baffles (6 = 0.8), the flow and thermal characteristics exhibit
larger significant variations. At L = 0.2, the extended baffle creates a more restricted flow
passage, causing strong flow circulation rates in the restricted region and more pronounced
thermal gradients. The case of L = 0.8, = 0.8 shows intense flow modification, with
different flow separation and recirculation zones, along with sharp thermal gradients,
particularly near the baffle edge.
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(@) Da =101 (b) Da=10"°
Figure 4. Darcy number influence on streamlines and isotherms for L = 6 = 0.5, = 0.4, ¢ = 0.04,
Ra = 10°. Continuous and dotted curves, respectively, represent € = 0.4 and € = 0.9 (the arrows in
the upper figures highlight the direction of the vortex rotation in the annulus).

(@@L=020=02 (b)) L=02,6=0.8 ()L=0.8,0=02 (d)L=08,6=08
Figure 5. Impact of baffle dimension and location on flow and thermal distributions for ¢ = 0.04,

Ra = 10% € = 0.4, Da = 1073 (the arrows in the upper figures highlight the direction of the vortex
rotation in the annulus).

4.1.2. Impact of Control Parameters on Thermal Transport Rates

Figure 6 illustrates the thermal efficiency relationship between the average Nu and
the Darcy number for various fin positions (L). The thermal performance predicts a clear
physical trend, indicating at low Darcy numbers (10~°) that the flow drag is severe, and the
heat transfer is primarily conduction-dominated, resulting in low Nu across all fin positions.
As the Da increases, particularly between 10~# and 1072, a drastic enhancement in heat
transfer due to stronger convective effects occurs. The fin position closer to the bottom
(L = 0.2) consistently records superior thermal performance, achieving a maximum
Nusselt number. This superiority can be attributed to better utilization of the buoyancy-
driven flow, as the lower fin position allows for more effective development of thermal
boundary layers and convective currents. Conversely, higher fin positions (L = 0.8) show
reduced thermal efficiency, suggesting that placing the fin at higher locations impedes
the BDC flow pattern. The variation in the average Nu curves indicates that further
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increase in permeability beyond Da = 10~2 produces minor variations in heat transfer
enhancement. The interplay between the baffle dimension (§) and Darcy number (Da) on
heat transfer effectiveness is reported in Figure 7. An overview of the predictions suggests
that shorter fins (6 = 0.2) consistently outperform longer ones, achieving the highest
thermal transfer (Nu). This superior performance of shorter fins could be attributed to
reduced flow blockage, as seen in a longer baffle, permitting better fluid circulation and
hence enhanced convective thermal transport. As the baffle dimension increases to § = 0.8,
the thermal performance deteriorates due to higher flow resistance, which leads to reduced
convective mixing. The influence of permeability (Da) follows a characteristic pattern. At
low Da (10~°), conduction dominates and heat transfer is minimal across all fin lengths. A
sharp enhancement in thermal transport occurs between Da = 10~* and 102, marking
the transition from conduction- to convection-dominated regimes. Beyond Da = 1072, the
variation in the curves stabilizes, suggesting that further increases in permeability provide
minimal thermal benefits.
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Figure 6. Examination of Nu sensitivity to variations of Da and L for Ra = 10%,¢ = 0.4, ¢ = 0.04,
6 =0.5.
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Figure 7. Thermal efficiency variations with Darcy number and fin dimension at Ra = 100, e = 0.4,
¢ =0.04,L =0.5.

Figure 8 demonstrates the collective impacts of the fin length (¢) and position (L) on the
thermal efficiency for the fixed parameters (Ra = 10°, € = 0.4, ¢ = 0.04, Da = 10~2). For
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the combinations of shorter fins (6 = 0.2) and lowered positions (L = 0.2), the heat transfer
performance is predicted to be superior, with Nu around 6.5. However, as the baffle position
increases to L = 0.8, an increase of 38% in the average Nu could be achieved. In addition,
it could be observed that the performance differences between various fin dimensions
become less pronounced, with all curves converging to Nusselt numbers around 8.5-9 for
the elevated baffle location (L = 0.8). The lower fin lengths consistently outperform larger
dimensional baffles across all fin locations, attributed to better utilization of the developing
thermal boundary layer and convective currents near the bottom portion of annular domain.
The effects of the NP volume fraction (¢) and fin length () on thermal transport performance
are reported in the bar graph (Figure 9) at Ra = 10°, ¢ = 0.4, L = 0.5, and Da = 1073,
The parametric analysis elucidates that shorter fins (0 = 0.2) consistently demonstrate
superior thermal transport, with Nusselt numbers ranging from 6.29 to 6.82 across all NP
concentrations. A moderate increase in heat transfer is observed with an increasing NP
volume fraction, particularly for § = 0.2, where Nu increases from 6.29 (¢ = 0) to 6.82
(¢ = 0.05). However, this enhancement becomes less pronounced for longer fins (6 = 0.8),
where Nu values remain relatively lower (around 4.2-4.5). To consolidate the outcomes
from these predictions, it may be suggested that the combination of shorter baffles with
high-density NPs could enhance the thermal transport among other combinations.
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Figure 8. Thermal efficiency variations with fin dimensions and positions at Ra = 100, = 04,
¢ = 0.04, Da = 1072
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Figure 9. Examination of Nu sensitivity to variations in ¢ and ¢ for Ra = 10%,¢ = 0.4, L = 0.5,
Da =1073.
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Figure 10 reports the combined influences of the NP volume fraction (¢) and fin
location (L) on the thermal transfer characteristics at Ra = 10°, ¢ = 0.4, § = 0.5, and
Da = 10~3. Fins positioned at L = 0.2 exhibit significantly enhanced heat transfer, with
Nusselt numbers ranging from 7.29 to 7.93 across all NP concentrations. The addition of NPs
shows a modest positive impact on heat transport, with the most pronounced enhancement
observed for L = 0.2, where Nu increases from 7.29 (¢ = 0) to 7.93 (¢ = 0.05). However,
fins positioned closer to the upper portion of the annular domain (L = 0.8) demonstrate
consistently lower heat transfer rates (Nu = 2.5-2.64), suggesting that positioning fins too
close to the upper boundary restricts fluid circulation and thermal mixing. The intermediate
fin position (L = 0.5) shows moderate performance, indicating optimal baffle placement
is crucial for maximizing the combined benefits of fin-enhanced heat transfer and NF
properties. The numerical predictions in Figure 11 demonstrate the interplay between
Da and ¢ on thermal efficiency at Ra = 10° and € = 0.4. As expected, higher magnitude
of Da (Da = 107') yields substantially enhanced thermal transport rates, with average
Nu ranging from 6.32 to 6.85, indicating augmented fluid permeability and consequently,
higher convective transport. A moderate increment in the heat transport is observed with an
increase in NP concentration across all Darcy numbers. However, for the low permeability
case, (Da = 107°), the thermal transfer remains notably suppressed (Nu ~ 0.68-0.77)
despite increasing NP concentration, suggesting that the flow constriction dominates over
the enhanced thermal conductivity impacts of NPs. The intermediate permeability case
(Da = 10~3) shows moderate heat transfer enhancement, highlighting the critical role of
porous media permeability in determining the effectiveness of NP addition.
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4.2. Machine Learning Model
Predictive Models” Results

Table 4 presents a comparison of the training and testing performance for each model,
considering R-squared (R?), Mean Absolute Error (MAE), and Mean Absolute Percent-
age Error (MAPE). This detailed comparison allows for a thorough assessment of model
generalization and potential overfitting.

Table 4. ML models’ performance.

Model Train R? Test R? Diff Train MAE Test MAE Diff Train MAPE Test MAPE Diff
Random Forest 0.9824 0.9152 0.0672 0.1555 0.3587 0.2032 0.0720 0.1956 0.1235
Gradient Boosting 0.9938 0.9849 0.0089 0.1083 0.1913 0.0830 0.0375 0.0454 0.0080
SVR 0.5553 0.6426 —0.0873 0.9670 0.8525 —0.1144 0.8359 0.5213 —0.3146
Ridge 0.3674 0.5048 —0.1374 1.6788 1.3265 —0.3523 0.9652 0.4099 —0.5553
ANN 0.5852 0.3044 0.2808 1.3718 1.6264 0.2546 0.6726 0.6621 —0.0106

Bold numbers indicate the best results.

The Gradient Boosting model shows the best performance, scoring a very high Test R?
of 0.9849, with low Test MAE of 0.1913, and low Test MAPE of 0.0454. The small discrepancy
between the training and testing metrics (R?: 0.0089, MAE: 0.0830, MAPE: 0.0080) indicates
very good generalization capability with no overfitting. The next best performance is the
Random Forest model, which scored a Test R? of 0.9152, Test MAE of 0.3587, and Test
MAPE of 0.1956. The Random Forest model does show slightly increased overfitting,
in comparison to Gradient Boosting, with an R? of 0.0672, MAE of 0.2032, and MAPE
of 0.1235. Overall, Random Forest still demonstrates good generalization. The results
emphasize the strength of ensemble learning methods, specifically, Gradient Boosting, in
generalizing complex non-linear relationships while providing good performance. Both
of these ensemble methods improved performance when compared to SVR, Ridge, and
ANN. It can be inferred that tree-based models are likely to be better suited for this area
of application.

The ANN and Ridge Regression models exhibited evidence of overfitting as well.
Although the ANN exhibited a large positive R? difference (0.2808), and an MAE difference
(0.2546), the Ridge exhibited a negative R? difference (—0.1374), and a negative MAE
difference (—0.3523). Furthermore, it is observed that there are negative differences in
R?, MAE, and MAPE for SVR and Ridge, indicating that both models performed better
on the test set than on the training set. Overall, their performance is significantly lower
than the ensemble methods described above. The poor performance of the ANN model
demonstrates the complexity of the model and the inferences can be drawn that the structure
of the ANN model network or the training process for the model were not optimal.

5. Conclusions

A comprehensive parametric analysis was conducted to examine BDC in an NF-
saturated porous annular geometry having a circular hot baffle attached to the inner
cylindrical surface. The computational results are supported by machine learning predic-
tions to ensure the credibility of the numerical predictions. Through exhaustive numerical
and machine learning analysis, the following significant findings are reported:

1.  Both the baffle dimension and position significantly influence the fluid flow charac-
teristics within the porous cavity, with longer baffles positioned at higher locations
generally leading to more complex flow structures and thermal patterns.

2. The observations from the combined influences of the porosity and permeability of
the porous material reveal a strong interplay between the Darcy number and porosity,
which significantly influences both the flow characteristics and the thermal distribution
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patterns, offering valuable insights for heat transfer applications and system design
considerations.

Optimal heat transfer in the porous annular domain could be achieved through a
combination of high permeability and shorter fins that do not cause severe restriction
on the fluid movement.

The predictions suggest that shorter fins maintain better fluid circulation and mixing,
while longer fins may create excessive flow resistance that counteracts the potential
benefits of NP addition, even at higher NP concentrations.

The simulation predictions suggest that optimal fin placement is crucial for maximiz-
ing the combined benefits of fin-enhanced heat transfer and NF properties.

Despite using various models to obtain predictive accuracy, the comparative analysis
showed that the Gradient Boosting model has an outstanding level of predictive
accuracy (Test R? = 0.9849, Test MAE = 0.1913) and exhibited extensive generalization
ability in comparison with Random Forest, Support Vector Regressor, Ridge, and
Artificial Neural Network models.

The minor difference in metrics between the training and testing sets for Gradient
Boosting (R? Diff = 0.0089) indicates that the model is robust to overfitting.

The results from this research strongly support the notion that ensemble tree-based
models, specifically, Gradient Boosting models, are an effective means of accurately
estimating the complex non-linear relationships being evaluated in this research,
especially in comparison to linear, kernel-based approaches and neural networks.
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length of baffle (m)

average Nusselt number

liquid pressure (Pa)
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Rayleigh number

dimensional time (s)
dimensionless time

dimensionless temperature
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L dimensionless location

(ri, 7o) radius of inner and outer cylinders (m)

(R,Z) non-dimensional radial and axial co-ordinates

(U, V) non-dimensional velocity components in (R, Z) directions
Greek Letters

o thermal diffusivity (m?/s)
B thermal expansion coefficient (1/K)
€ porosity
7 dimensionless length of baffle
w non-dimensional vorticity
0 dimensional temperature (K)
A radius ratio
Abbrivations
NF nanofluid
NP nanoparticle
TDR thermal dissipation rate
BDC buoyancy-driven convection
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Abstract: Geophysical flows are characterized by rapid rotation. Simulating these flows
requires small timesteps to achieve stability and accuracy. Numerical stability can be
greatly improved by the implicit integration of the terms that are most responsible for
destabilizing the numerical scheme. We have implemented an implicit treatment of the
Coriolis force in a rotating spherical shell driven by a radial thermal gradient. We modified
the resulting timestepping code to carry out steady-state solving via Newton’s method,
which has no timestepping error. The implicit terms have the effect of preconditioning
the linear systems, which can then be rapidly solved by a matrix-free Krylov method. We
computed the branches of rotating waves with azimuthal wavenumbers ranging from 4 to
12. As the Ekman number (the non-dimensionalized inverse rotation rate) decreases, the
flows are increasingly axially independent and localized near the inner cylinder, in keeping
with well-known theoretical predictions and previous experimental and numerical results.
The advantage of the implicit over the explicit treatment also increases dramatically with
decreasing Ek, reducing the cost of computation by as much as a factor of 20 for Ekman
numbers of order of 10~°. We carried out continuation for both the Rayleigh and Ekman
numbers and obtained interesting branches in which the drift velocity remained unchanged
between pairs of saddle-node bifurcations.

Keywords: rotating fluids; Krylov methods; preconditioning; bifurcation; rotating waves
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1. Introduction

Convection in a rapidly rotating spherical shell subjected to differential heating or
imposed heat flux and a radial gravity field is a standard model for planetary interiors.
The onset of convection in this configuration has been extensively studied [1-8]. Due to
the symmetry of the configuration, a primary Hopf bifurcation leads to traveling (rotating)
waves [9-11], which take the form of fluid columns perpendicular to the axis of rotation,
sometimes referred to as thermal Rossby waves [12-15]. Scaling laws have been derived
for the critical Rayleigh number and for the azimuthal wavenumber for these patterns and
their drifting frequencies [6] as a function of the Ekman number, which is the ratio of the
viscous to the Coriolis force. A secondary Hopf bifurcation leads to modulated rotating
waves, i.e., quasi-periodic patterns with an additional modulation frequency [16-20].

Although convection in astrophysics follows the same basic fluid-dynamical principles
as convection in geophysics, our work is primarily relevant to geophysical applications,
in which the density variations are sufficiently small that the fluid can be treated as

Mathematics 2025, 13,2113

103

https://doi.org/10.3390/math13132113



Mathematics 2025, 13,2113

Boussinesq, the convection is due to temperature (rather than concentration) gradients,
the domain is a spherical shell, and the Coriolis force is dominant. Concerning the physics
of the problem, the balance of forces can be used to define various regimes, each with a
different convective length and velocity scales. In particular, the Coriolis-inertial-buoyancy
balance can be contrasted to a regime called viscous balance in which the viscous force
replaces the inertial force [21-24]. Experimental and numerical studies have analyzed the
effect of rotation on convection and on the generation of a magnetic field; these are reviewed
in e.g., [12,15,23,25]. Some notable numerical papers incorporating these effects are [26],
which describes a pioneering 3D code for solving the anelastic magnetohydrodynamic
equations, and [27,28], which compare the performance of various codes on Boussinesq
and anelastic convection-driven dynamo benchmark problems, respectively (the anelastic
approximation lies between the Boussinesq approximation and the fully compressible
equations, capturing some compressibility effects while filtering out fast sound waves).
Laboratory experiments on radial gravity in a sphere are difficult to perform because they
are affected by Earth’s vertical gravity. For this reason, microgravity experiments called
Geoflow and Atmoflow, respectively, have been placed on a space station to mimic radial
convection in rotating spherical annuli within the Earth [29,30] and in the atmosphere [31].

Three-dimensional numerical simulations in a spherical geometry usually represent
the velocity and magnetic fields in terms of poloidal and toroidal potentials, which re-
duce a 3D solenoidal field to two scalar fields. These potentials and the temperature are
decomposed into spherical harmonics in the angular directions, with either Chebyshev
polynomials or finite differences used in the radial direction. Chebyshev collocation meth-
ods lead to dense matrices, but sparse matrices can be obtained when using a Galerkin
approach [32,33], resulting in lower time and memory requirements.

Rapid rotation leads to a large Coriolis force. The Coriolis force introduces coupling
(of the velocity components and/or the spherical harmonics) and so it is usually treated
explicitly in numerical codes. This leads to a significant limitation on the timestep. A nat-
ural approach is then to treat this term implicitly, leading to a more stable scheme; its
implementation for finite difference or Chebyshev collocation discretizations in the radial
direction is discussed in [34,35], respectively. The implicit treatment of the Coriolis term
has been successfully implemented by [36-39] in a planar geometry and by [20,33,40,41] in
a spherical geometry.

Another form of numerical computation is continuation, i.e., the computation of steady
states, traveling waves, or other periodic states independently of their stability via Newton’s
or a related method. Although unstable solutions cannot be observed experimentally, they
are interesting because they form a framework for understanding the stable solutions,
which in turn are accessible to experiment with.

In this work, we describe the implementation and capabilities of a pair of numerical
codes—two drivers relying on a common set of subroutines—that incorporate an implicit
treatment of the Coriolis force to carry out both timestepping and also continuation. We will
illustrate, test, and compare the codes on the thermally driven rotating waves. We carried
out numerical continuation in both Rayleigh and Ekman numbers. We found interesting
examples of branches which contain saddle-node bifurcations separating plateaus in drift
frequency. Our numerical algorithm uses the basic framework described in [18,19,35,42,43]
and the spherical harmonic library of [44]. The research which is closest to ours is that
of [20,45-47], who, like us, have carried out implicit timestepping and continuation for
convection in a rotating spherical shell and explored various interesting parameter regimes.
There are a number of differences between our continuation method and theirs, some of
which have been analyzed in [48] and which we will discuss after we have described our
numerical methods.
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In Section 2, we describe the problem, governing equations and non-dimensional
parameters in addition to introducing rotating wave solutions of different azimuthal
symmetries. The numerical methods, including spatial discretization, Newton, and path-
following methods are detailed in Section 3. Continuation results are described in Section 4,
while timing comparisons and timestepping results are presented in Section 5. We discuss
and provide a conclusion to our results in Sections 6 and 7.

2. Physical Description
2.1. Governing Equations

We study classical Rayleigh-Bénard convection in a spherical fluid shell rotating
with constant angular velocity () about the z axis, as illustrated in Figure 1. The shell is
heated from within by imposing a temperature difference AT between the inner and outer
spherical boundaries. Lengths are non-dimensionalized with the gap size d, so that the
dimensionless outer and inner radii are 7oyt and rin = 7out — 1, respectively. The aspect
ratio can be specified via rout Or Via § = 7in/Tout = (Fout — 1)/ Tout. Time is scaled by the
viscous diffusion time d? /v, where v is the kinematic viscosity and the velocity is scaled by
the viscous diffusion velocity v/d. Measuring temperature from a reference temperature Tj
at which the mass density is pg, we non-dimensionalize pressure by pov, and temperature
by AT.

ZA

Figure 1. Geometry. The domain is the spherical annulus between an inner and outer sphere of
radius rj, and rout whose temperatures are fixed at T = 1 and T = 0. Both spheres rotate around the
z axis with angular velocity Q). Figure taken and adapted from [49].

The gravitational acceleration g is assumed to be proportional to the distance r from
the center of the sphere (as is the case for self-gravity in the interior of a spherical body with
constant mass density) and is thus of the form ¢ = —(go/7out)?, Where g, is the acceleration
at radius rout. The resulting non-dimensional Boussinesq equations read

Ek a£+(u-V)U—V2U :_vp+RaTL—2ez><U (1a)
ot Tout
oT 1
= HU VT = VT (1b)

VUu=0 (1c)
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When the density is constant, the gravitational and centrifugal forces can be written as
gradients and included in the pressure gradient. Variable density leads to a non-gradient
portion of these forces. The non-gradient part arising from gravity drives the convec-
tion. We make the common assumption in the geophysics of neglecting the non-gradient
part arising from the centrifugal force [15,47]; see [15,50,51] for examples of the effect of
centrifugal buoyancy.

The non-dimensional parameters used in Equation (1a) above are the Ekman, Prandtl,
and Rayleigh numbers:

1%

_ v dag,AT
- Qad¥’

Ek
Qu

Pr

Y Ra=Ra = 2)
K

where « is the thermal diffusivity and « is the thermal expansion coefficient. The Rayleigh
number used here is adapted to the rotating case and is related to the conventional thermal
Rayleigh number Raerm by

BagoAT  dag,AT Qd?* v Pr
Ratherm = fv - f)ov v ok Raror Ek ®)

In what follows, we will denote Rarot merely by Ra. No-slip and fixed-temperature bound-
ary conditions are applied at the inner and outer radii:

U(rin) =0 U(rout) =0 (4a)
T(rin) =1 T(rout) =0 (4b)
and the conductive solution is
Tout T;
ucond =0, Tcond(r> = % — tin (5)

Following the benchmark study [27], we set the Prandtl number to Pr = 1 and the radii to
Tout = 20/13 and 1y = 7/13 (so that y = 7/20 = 0.35) throughout the investigation and
we will vary Ek and Ra.

2.2. Querview

The first states to appear at the onset of convection are rotating waves. We denote
these by RW);, where M is the azimuthal wavenumber of the rotating wave. Figure 2a,b,
modeled on those in [18], display properties of some of these rotating wave solutions for
Ek = 1073. Four traveling waves are shown, with azimuthal wavenumbers from M = 2
to M = 5. At Ek = 1073, RW, is the first in Rayleigh number to bifurcate, and therefore,
it is the only one which is stable at onset. The drift frequency;, i.e., the frequency relative
to the imposed frequency (), decreases as Ra increases, from prograde (faster than ) to
retrograde (slower than (2). These results were obtained via timestepping simulations
starting from the initial conditions of the form cos(M¢).

Figure 3 shows the qualitative evolution of the rotating waves as Ek is decreased from
1072 to 10~°: the flow is increasingly stronger near the inner sphere and the azimuthal
wavenumber increases. These two properties are related: the radial interval over which the
convection is most active decreases, and the azimuthal wavelength decreases as well [6,41].
RWy3 appeared naturally when performing timestepping simulations from an initial condi-
tion of the form cos(4¢) at Ek = 107%, as did RW, at Ek = 3 x 10~°. This result was then
used as input for a path-following computation to obtain RW1, at Ek = 1075. The same
techniques were applied to obtain RW, at Ek = 1072 starting from RW, at Ek = 1073.
Figure 4 gives a more detailed visualization of an RWj state.
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Figure 2. (a) Bifurcation diagram of convection in a rotating spherical annulus for Ek = 1073,
Branches RW; (blue), RW3 (black), RW, (red), and RW5 (green) are shown. (a) Kinetic energy density.
(b) Drift frequency. The drift frequencies for each rotating wave decreases from prograde (faster
than imposed velocity ) to retrograde (slower than ()) with increasing Ra with the same slope.
The resolution used for these simulations was (N;, Ny, Ny x M) = (46,72,128 x 1).

Ek = 1072 Ek = 1072 Ek=10"*% Ek=107°
20.0
5 L S L) SV, 10.0
. . - ’ - ‘l,
> ’ z 2 0.0
» p ’ - % -
» . » . s s -10.0
-20.0

15.0
' 5.0
' | |
‘ 5.0
-15.0

Figure 3. Velocity fields of rotating waves as the Ekman number is reduced. The above shows
RW, for Ek = 1072 and Ra = 140; RW, for Ek = 1073 and Ra = 77; RWg for Ek = 10~* and
Ra = 88; and RWy, for Ek = 107° and Ra = 126. A state with azimuthal wavenumber M has
M convection cells, forming M Taylor columns. All of these states have an approximate kinetic
energy density of 25. For each field, the radial velocity U, on the equatorial plane (top) and the
azimuthal velocity U, on a meridional plane (bottom) are shown. As Ek decreases, the convective
region becomes more confined near the inner sphere and the flow becomes almost axially indepen-
dent, according to the Taylor-Proudman theorem. The resolutions used for these simulations were
(Nr, Np, Ny x M) = (46,72,32 x 4) for RW, at both Ek = 1072 and Ek = 10~3; (60, 100,28 x 8) for
RWs; and (90,184, 32 x 12) for RWys.
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Figure 4. Visualizations of the components of RW, at Ek = 1073 and Ra = 140. Top: equatorial plane.
Bottom: meridional plane. The resolution used here was (Ny, Ny, Ny x M) = (46,72,32 x 4).

3. Numerical Methods
3.1. Spatial Representation

The velocity is decomposed into toroidal and poloidal potentials e and f such that
U(r,6,¢,t) = Vxee, + VxVxfe, (6)

These potentials and the temperature are expanded in spherical harmonics Y} (6, ¢) and
Chebyshev polynomials Tj of the shifted radius x = (2r — (out + tin)) / (fout — in)-

fr,0,0,t) = Y firm(t)Tk(x)Y]" (6, 9) @)

k1m

To carry out transformations to and from the spherical harmonic space, we use the
SHTns library [44]. This is a highly efficient code that uses the FFTW library to perform fast
transformations to and from Fourier space, and the recursion relations presented in [52]
for an optimized computation of the associated Legendre polynomials. Although the
library allows for multithreaded computations as well as GPU offloading, these capabilities
were not used in the present work. This library has promising scalability prospects for
computations in massively parallel clusters, as demonstrated in the XSHELLS and MagIC
codes [53,54]. Furthermore, our code agrees with the non-magnetic benchmark proposed
in [27] and the results presented in [18], validating our numerical method as well as our
choice of using the SHTns library.

De-aliasing in the r direction is carried out according to the 3/2 rule, whereas in the 0
and ¢ directions, it is performed by SHTns. To achieve this, the library determines a suitable
number of physical points based on the nonlinear order of the equations to be solved (two
in this case) with the aim of maximizing the efficiency of the FFT algorithm. Moreover,
for solutions which have azimuthal periodicity 27t/ M, we restrict our calculations to a
segment of the sphere 0 < ¢ < 271/ M, or, equivalently, to those whose Fourier expansions
contain only multiples of the wavenumber M; this is easily implemented using options in
SHTns. Lastly, we will denote the number of gridpoints in r, 6 and ¢ as Ny, Ng and N x M,
respectively. The resolutions chosen for the simulations are similar to those that have been
shown to be adequate in the benchmark paper [27] and in more recent studies [7,20,55].
The spatial resolutions are given in the captions of each of the figures.
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The radial component of the curl and of the double curl of Equation (1a) are taken,

leading to
Y. ’(’;%k(; - L,) e (1, )Y]" (0, ) = e, - VXF (8a)
Lm
D ek (2 - L) LW 0 = e VTR
Lm
where
LZES—;—l(lil) and FEEk(U‘V)U—VP—i—%Tr—ZerU 9)

Equations (8a) and (8b) are decoupled in ¢, m and in potential (¢ vs. f), and so their discrete
versions involve block-diagonal matrices, with an N, x N; block for each (I, m) pair, as in
Figure 5a. Boundary conditions (4a) on U become

eim = fim = dfim/dr =0 atrin, rout (10)

The number of boundary conditions on e and f matches the fact that Equation (8a) for
e is of second order in r while Equation (8b) for f is of fourth order in r. The bound-
ary conditions are imposed by replacing the last two rows of Equation (8a) or the last
four rows of Equation (8b), corresponding to the highest Chebyshev polynomials. See,
for example, [35,56].

(a) (b)
Figure 5. (a) Block-diagonal matrix. (b) Block-pentadiagonal matrix.
The temperature field is also expanded in Chebyshev polynomials and spherical har-
monics like Equation (7). Its evolution is governed by the discretized form of Equation (1b)

and the boundary conditions in Equation (4b) on the temperature are imposed straightfor-
wardly on the rows corresponding to the last two Chebyshev polynomials.
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3.2. Implicit Coriolis Integration

To carry out the implicit integration of the Coriolis term [35], we include the Coriolis
force in the left-hand-side and remove it from F, leading to

N N R L )

m,l

2 /1(I+1) o d
+r2< . —)flm(r t)sm@de "6, 9)
—l—ZZ(l:; ) (f - a)flm(r t)cos0Y]"(6,¢9) = e - V x Fimplicit (11a)

L

Do 5 - 1) - 2 Lm0,

_|_22( (I+1) 8) (r,t) s1n9—Y‘ ‘(9 ®)
0
l |+ 2 0
(1’ a )elm r,t)cos0Y]" (6, 9) = ey V XV x Fmphict (11b)
where
Fimplicit — gl (1. VU — VP + rR—a Tr (12)
out

The recursion relations of the Legendre polynomials

pll _ W= [ml+1) pmp (4 [m)(+1)

smed@ 211 1 2A+1 -1 (13a)
L= |m|+1 i (L4 [m]) pjm]
op" =
cos 6P 1 PIJrl 1 P (13b)
together with
m mpm im m (l B m)!
Y7" (0, ¢) = Nj"P;" (cos 0)e™? N =4/ (2—=0mo) (21 +1) [ m)! (14)

can be used to transform Equations (11a) and (11b) into

mZJYzm(G, ‘P){ [l(l:_ 1)Ek<§t - Ll) — 2:;11] 1 )7, 1)

2 (1-1)I+1)(I—|m)[I  2TN",
2 2 -1 [r E)r] m(r:t)
I(1 I I o] N I
% ( +2)2(l:::;+ |m‘) |:_( —:1) a},:| l+1fl+1m(r t)} —e - WV x Fimplicit (15a)

%Y1"1(9/ 4’){ [

Ek(; ) Zlm]Llflm(r t)
|

2 (1= 1)1 +1)(I = |m|) 1
e e J n ()
21(1+2)(I+1 (I+ N implici
- ( + )z(li3+m|)|: ” )_aar] Z\l];;lel—s—lm(” t)}:er_VXVXlephmt (15b)
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Appendix A presents further details of these computations. In contrast with
Equations (8a) and (8b), Equations (15a) and (15b) are coupled in several ways:

e The spectral coefficients ey, and fi,,, both appear in both equations.
*  While each m can be treated independently, components /, £ 41, and £ — 1 are coupled.
*  Thereal and imaginary parts of e}, and fj;,, are coupled via the imaginary coefficient

2im /2.

However, two decoupled classes of coefficients appear, with one class containing
coefficients with odd ! for ¢; and even [ for f; and a second class with the opposite property.
For example, in Equation (15a), the real component of ¢j,, is coupled to its imaginary
component and to the real parts of f}, 1 ,, (with opposite parity to I) and in Equation (15b),
the real component of f;,,, is coupled to its imaginary component and to the real parts of
ej+1,m- For each class, the sums in Equations (15a) and (15b) are represented by a block
pentadiagonal matrix, as illustrated in Figure 5b.

3.3. Newton Method

We represent our system of governing equations schematically by

U v+ cu (16)
For our problem, U corresponds to the poloidal and toroidal fields e and f and the tem-
perature T. For explicit or implicit Coriolis integration, A/ (U) corresponds to the right-
hand-sides of Equations (8a) and (8b) or of Equations (11a) and (11b), respectively. LU
corresponds to minus the left-hand-sides of the same equations with the time derivative
omitted (the correspondence is imperfect, since d/9t does not act directly on U.)

We represent our timestepping code schematically by the following implicit-explicit
Euler method:

U(t+ At) = U(t) + AHN(U(t)) + LU(t + At))
= U(t+ At) = B(U(t)) = (I — AtL) (I + AN )U(t) (17)

where L is linear (though A does not need to be nonlinear). Steady states are solutions to

0=AU)=NU)+ LU (18)
or, alternatively
0=U(t+At)—U(t) (19)

where U is a solution to the continuous-time differential Equation (16). Surprisingly, Equa-
tion (19) is also a criterion for stationarity when U (t + At) is calculated via the timestepping
scheme Equation (17) for any value of At, as can be seen from

(B—1D)(U(t)) = U(t+ At) — U(t) = (I — AtL) (I + AN U(t) — U (t)
(I — AtL) YT+ AN — (I — AtL))U(t))

= (I—AtL) AL (N + L) U(t) (20)
N —— ——
P(At) A

Thus, B — I = P(At).A and so roots of A of Equation (18) can be found by computing
roots of B — I, which is simply the difference between two large consecutive timesteps.
Note that Equation (20) does not use Taylor series; At can be of any size. Indeed, for At
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large, P(At) — — L~ ! acts as a preconditioner (approximate inverse) for .4, whose poor
conditioning is due to that of L.

Finding the roots of Equation (20) via Newton’s method requires the solution of the
linear system

(Bu—Du=(B-—DU (1)

where U is the current estimate and By is the Jacobian of B evaluated at U. The linear
Jacobian operator By acting on u is derived from B by modifying the nonlinear operator
N. We recall that U represents (U, T) and u represents (u, T) where 7 is a temperature
perturbation. To form Ay, we replace the nonlinear terms in Equations (1a) and (1b)
as follows:

(U-VU= (U-V)u+ (u-V)U (22a)
UuvVvTr=u-Vt+u-VT (22b)

These substitutions produce Ny, which is then used in Equation (17) to form By. In
addition, homogeneous boundary conditions must be applied to the perturbations # and
T instead of the inhomogeneous boundary conditions Equation (4). We emphasize that
the operations on both sides of Equation (21) are just the ordinary and the linearized
timestepping operators B and By;.

We solve Equation (21) using a Krylov method such as GMRES [57]. In such matrix-
free methods, one only needs to provide the right-hand-side (B — I)U for the current
estimate, and a routine which carries out the action of (By — I) on any vector u. The compu-
tational cost of a Newton step can be measured by the number of such actions (i.e., GMRES
iterations) taken by the Krylov method, since the right-hand-side remains constant through-
out the step. The number of GMRES iterations required is low if (By — I) = P(At)A
is well conditioned; it is for this reason that we take At large. Once the decrement u is
determined by solving Equation (21), it is subtracted from U to form an improved estimate.
We accept u as the decrement if the linear system Equation (21) is solved by GMRES to
relative accuracy 10~1°. For Newton’s method, we accept U as a steady state, i.e., a solution
to Equation (19), if ||(B — I)U|| < 10~7. Similar values of this tolerance have been used
in [20]. In addition, solutions found via Newton’s method are far more accurate than those
found by timestepping, which is usually halted when a solution remains constant to three
to five significant digits.

The method described above is called Stokes preconditioning. It was first applied to
calculate bifurcation diagrams in spherical Couette flow [58,59] and subsequently to a
wide variety of hydrodynamic problems, e.g., [60-67] and even to Bose-Einstein condensa-
tion [68,69]. In Stokes preconditioning, At no longer plays the role of a timestep but serves
to better condition the system of linear equations in each Newton step. We investigated
the effect of the choice of At on Newton solving with Stokes preconditioning in [48,58] and
on the computation of eigenvalues by a similar method in [70]. In these articles, time has
been non-dimensionalized by the advective time, and the usual value used in timestepping
is At ~ 0.01. An increase in the value of At from 0.01 to 0.1 and then to 10 leads to a
decrease in the required CPU-time for convergence GMRES by 1-2 orders of magnitude
per At decade until an asymptotic limit of At ~ 100 or 1000 is reached. We emphasize that
the final result is independent of the choice of At: only the time taken for convergence is
affected. In the current study, we use the value At = 200 for Newton solving.

The name of the method comes from the fact that the linear operator £ which is
integrated implicitly in Equation (17) is usually the viscous term that occurs in Stokes
equation. This preconditioning becomes less powerful as the Reynolds number increases
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and other terms begin to dominate the viscous term; this effect was demonstrated and
measured quantitatively in [48]. Hence, it is beneficial to include as many possible other
terms in £, as long as they are linear and can be inverted directly. It is for this reason that
we have included the Coriolis force in £, using the equations derived in Section 3.2. In
Section 5, we will compare the cost of computations using Newton’s method with implicit
vs. explicit Coriolis integration for various values of the Ekman number by comparing the
number of GMRES iterations necessary for each.

3.4. Traveling Waves

Newton’s method can also be used to compute traveling waves in the same way.
Azimuthal rotating waves satisfy U(¢,t) = U(¢ — Ct) = U(§), where C is an unknown
wavespeed. Thus, ;U = —C9gU. Substituting into Equation (16) and dropping the tildes
leads to

0=N(U)+Co,U+ LU (23)
The explicit portion of the timestep is augmented to include Cd,, as well as V:
U(t+ At) = (I — ML) (I + AN + Cdy) ) U(t) (24)

If U is expressed in terms of spherical harmonics in which the ¢ dependence is trigonomet-
ric, the action of Cd,, on a Fourier component U, is merely Co, Uy, = CimUy,.

To use Newton’s method to determine the unknown field U and wavespeed C, we
substitute I — U — u and C — C — c into Equation (23):

0=N(U—-u)+ (C—c)oy(U—u)+ L(U—u) (25)

Expanding around (U, C) and truncating at first order leads to the linear system that must
be solved for the decrements (u, c):

(Nu + Coy + L)u+ co U = (N 4 Coy + L) (U) (26)

The preconditioner remains P (At) = (I — AtL) ' At with large At, since £ continues to be
responsible for the large condition number of Equation (26).

P(At)[(Nu 4+ Cog + L)u+ c U] = P(At)(N + Coy + L)(U). (27)

An additional equation must be added to the system to compensate for the additional
unknown. We choose a phase condition, more specifically we require the imaginary part
of a single component (temperature, toroidal or poloidal field; radial and angular and
azimuthal mode) of u be zero, i.e., that the corresponding phase component (whose index
we shall call ]) of U remains unchanged.

This simple choice suggests a trick for retaining the size of the unknown u rather than
using augmented fields, since #; is no longer an unknown. The routine which acts on (u, c)
is defined such that c is stored in u J- At the beginning of an action, c is extracted, u J is set
to zero, and the explicit part of the action on u is carried out. Then, we multiply the stored
value of d,U by c and add the result to the explicit part of the action. When the Krylov
method converges and returns u, we must again extract ¢ from u;, after which u; is set
to zero. Effectively, although C and c have been added to the unknowns for the Newton
method and for the linear equation, U and u; are no longer unknowns.
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3.5. Continuation

We compute solutions along a branch via Newton’s method as described above. We
do not impose additional equations, such as requiring a new solution along the branch to
be a certain distance from a prior solution or that the increment along the branch must be
perpendicular to some direction. Therefore, the only additional ingredients that must be
introduced to discuss continuation are the choice of initial estimate for each solution along
the branch and the parameters that are prescribed for the Newton iteration.

If the continuation is in the Rayleigh number, we increment or decrement this parame-
ter according to the number of Newton iterations required for convergence in the previous
step as follows [64]:

Ra™V) = Ra") 4 ARa = Ra") + a(Ra') — Ral=1) (28)

where Ra’), Ral"1) denote the Rayleigh numbers used in the two previous continuation
steps, ARa is the increment or decrement, and « is defined by

NOPt 41
= — 29
NG +1 29)
N©Pt is the target number of Newton iterations. If N() = NP, then ARa remains un-

changed, whereas ARa is reduced (increased) if N(J) > (<)N°Pt, The choice of N°P! is
guided by two considerations. The first is the level of sampling desired along the branch.
The second is economy: a smaller value of & will engender more values of Ra, but each
calculation will be faster. For our computations, we fixed N 9Pt to be between 4 and 6.

To choose an initial estimate U for the next solution along a branch at Ral1), first-
order and even zero-th order extrapolation (i.e., using just the previously computed field)
can be used to follow a smooth and monotonically varying branch. However, quadratic
extrapolation is essential for going around turning points. Lagrange interpolation uses
the three previous Rayleigh numbers Ra"), Ra~1), Ra("?) and the new Rayleigh number

Ra™*Y from Equation (28) to determine coefficients 4, b, ¢ such that

Ra(l+1) — lZRa(l) + bRﬂ(lil) + cRa(ifz)' (30a)
We then use 4, b, ¢ to form a new estimate of the solution by setting
ul+) — qu® 4+ py-v 4 g2 (30b)

Newton iterations are then used to refine U until the norm of Equation (23) is 10~7. This
procedure requires saving the three previous solution vectors and Rayleigh numbers.

3.6. Turning Points

We now turn to the more complicated matter of extrapolating near saddle-node
bifurcations, at which U ceases to be a single-valued function of Ra. The code detects that
the current step is in the vicinity of a turning point by comparing the relative changes
between the solution vector U, and the Rayleigh number, i.e., we compare

Ral) — Ral=1)
Rg(i)

ARa
Ra

(31)

‘Au, ‘ u —ufY ;

] .
0 I }i) with ’y‘
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where ] is the index denoting the element of the solution vector U¥) of the highest absolute
value and 7 is a constant factor that makes the two magnitudes comparable. For our
computations, we fixed this constant to be between 10 and 100.

Since the normal form of a saddle-node bifurcation at (y,x) = (0,0) is ¥ = u — x2,
dependent variables (x, U) vary like the square root of the control parameter (i, Ra — Ra,)
near a turning point. Consequently, as the current solution approaches a turning point,
the relative difference |AU;/Uj| increases until it is greater than |ARa/Ra|. It is at this
stage that the code switches to extrapolating quadratically, using the component U] as the
independent variable instead of the Rayleigh number. This allows ARa to change sign and
the continuation to go around the turning point. We replace Equations (28) and (30a) by

analogous equations in U to determine U§i+1) and a, b, ¢, and then replace Equation (30) by

u}”” - au](") T bu],(i*” i cuj("*z) forj # J,and (32a)

Ra™) = aRa") 4 bRa=) + cRa-2) (32b)

to set the estimate of the new solution. Note that we have only changed the method of
determining the initial guess. Ra remains fixed to Ra*1) during the Newton step, while
all the elements of U are allowed to vary.

Continuation follows in this manner until eventually |AU;/U/| exceeds v|ARa/Ral|,
at which point the code switches back to using the Rayleigh number as the independent
variable. The parameter 7y can be obtained by analyzing the behavior of the continuation
near a turning point. Indeed, if y is too large, then the code will continue to use Ra
as the independent variable past the point at which there is no solution for the next
continuation step, and Newton’s method will not converge. Should this situation arise,
the continuation can be restarted at the last converged solution using a suitably reduced
value of 7. Although the parameter <y is necessary for comparing |AU;/Uj| and |ARa/Ral|
and thus for determining when to switch continuation variables, its value has no influence
on the location of the turning point or of the solution branch. The choice of 7y only affects
the speed of continuation, as we determined by varying its value near a turning point. See
also [64].

4. Branch Following
4.1. Continuation in Rayleigh Number

Our first computations with the implicit Coriolis method validated the new code by
comparing the branches it produced for Ek = 10~3 with those in [18], which were obtained
using an entirely different continuation code. These branches were presented in Figure 2
above. As explained in Section 3, to search for solutions having an M azimuthal periodicity,
we perform our computations in a fraction of the annulus of azimuthal width 27t/ M.
The solutions are computed independently of their stability; most of the solutions we
compute are unstable, either within the restricted domain 0 < ¢ < 27t/ M, or to instabilities
which break this restriction such as rotating waves with a different M.

We then used the continuation code to compute branches of rotating waves at lower
values of the Ekman number. Fixing the Ekman number, we carried out continuation
in Rayleigh number Ra. Most of the branches that we computed showed no unusual
features, varying smoothly and monotonically down to their threshold at a supercritical
Hopf bifurcation. However, a few branches presented some interesting non-monotonic
behavior, which we show in order to display the capacities of our code. Figure 6 tracks
the Rayleigh-number dependence of the RW, branch for Ek = 3.53 x 10~°. This branch
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consists of three smooth regions that are separated from one another by short intervals
which each contain two saddle-node bifurcations and rapid changes in drift frequency.

We also computed an RWg branch for Ek = 1.26 x 107>, as shown in Figure 7. Indeed,
for this value of Ek, rotating waves with an azimuthal wavenumber of 8 are more appro-
priate, i.e., more likely to be stable. This branch also contains a plateau in drift frequency
adjacent to a short interval at Ra ~ 159 of rapid change delimited by two saddle-node
bifurcations. These rapid rises and plateaus in drift frequency should have a physical or at
least a phenomenological explanation, but we have not yet been able to find one.
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Figure 6. Bifurcation diagram of rotating wave RW, for Ek = 3.53 x 107> as a function of Ra.
(a) Kinetic energy. (b) Drift frequency. The branch contains three long smooth regions of almost
constant drift frequency separated by two short intervals (at Ra ~ 140 and Ra ~ 158) of rapid change
containing saddle-node bifurcations. The resolution used for this computation was (Ny, Ny, Ny x
M) = (60,80,40 x 4).
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Figure 7. Bifurcation diagram of rotating wave RWg for Ek = 1.26 x 107> as a function of Ra.
(a) Kinetic energy. (b) Drift frequency. The branch contains a single interval of rapid change at
Ra ~ 159. The resolution used for this computation was (N;, Ny, Ny x M) = (68,100,28 x 8).

4.2. Continuation in Ekman Number and in Resolution

We adapted our method to follow branches in Ekman number, varying Ek on a
logarithmic scale. We replace Ra with log,,(Ek) in Equation (28) as follows:
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10810(Ek(i+1)) = 10%10(Ek(i)) + Allog, (Ek)]
= 1ogy (Bk"”) + a(log; (k) — log,(EK! V) (33)

where the computation of « remains as in Equation (29). In this case, we used N°P' = 3 for
all of the simulations. Furthermore, in order to go around turning points, we now compare
|AU;/U;| and y|Allog,,(Ek)]/ log,,(Ek)|, where we chose 7 between 400 and 500.

Apart from these minor changes, there are several major differences between per-
forming continuation in Ekman and Rayleigh numbers. The first is that the matrices that
represent the left-hand-sides of Equations (8a) and (8b) or Equations (15a) and (15b) must
be recomputed every time a new value of Ek is chosen. Indeed, while the Rayleigh number
only appears in the right-hand side of these equations, Ek, is also present in the diffusion
terms, which are treated implicitly regardless of how the Coriolis term is handled. This
means that extra work must be performed at the beginning of every continuation step.

Secondly, as the Ekman number is decreased, the critical Rayleigh number for the onset
of convection increases. That is, rotation stabilizes the configuration against convection.
A classic result [3] is that the critical value of the usual thermal Rayleigh number Ray,erm

varies like Ek%/3

, so that the critical value of our rotational Rayleigh number Ra,; =
Rape;mEk/Pr varies like Ek~'/3/Pr. Therefore, instead of keeping Ra fixed, we have
increased Ra every time we decrease Ek, so as to remain at approximately the same distance
from the convective threshold.

Third, as the simulation ventures towards lower Ekman numbers, the fields require a
higher resolution. This is clearly seen from the visualizations in Figure 3, which show that
the radial extent and azimuthal wavelength decrease with decreasing Ek. To achieve this,
grid refinement is introduced in the code such that the spectral resolution is increased by
20% whenever under-resolution is detected in the Chebyshev or the spherical harmonic
modes. This is performed by introducing a threshold for the amplitude ratio between the
mode of highest absolute value and of highest wavenumber. When this ratio exceeds the
threshold, the code calls a grid refinement subroutine which first deallocates the previous
grid, then creates a new one using the new resolution and finally represents the fields from
the last continuation step on this new grid by filling in the new modes with zero.

This procedure, called Fourier interpolation [71,72], involves no loss of accuracy or
stability. The most recent Newton step is then recomputed, using the representation with
the finer resolution as an initial condition, and the path following continues as intended.
Most of our runs were carried out with an under-resolution threshold (ratio of the highest-
amplitude mode to that of the highest wavenumber) of 10~°. Decreasing this threshold to
107 led to minimal gains in accuracy at a high cost in CPU time.

Figure 8 shows the result of continuation in Ek. (Recall that Ra is kept proportional to
Ek~1/3.) This branch showed three coexisting solutions over the range 4 x 107> < Ek <
6 x 1075. Our grid refinement algorithm increased the resolution by about 20% in r and by
50% in 0 and ¢. We emphasize that most continuations showed monotonic behavior and
we have deliberately chosen to present those that did not.
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Figure 8. Bifurcation diagram of the rotating wave RW, as a function of Ek, while fixing
Ra = 6.5 x Ek"!/3. (a) Kinetic energy. (b) Drift frequency. Three solution branches exist over
the range 4 x 107> < Ek < 6 x 107°. The resolutions used for this computation ranged from
(Nr, Ny, Ny x M) = (68,92,48 x 4) to (80,136,70 x 4).

5. Timing Comparisons

Newton’s method is very fast, typically requiring 3-10 iterations. The bottleneck
in applying Newton’s method to systems of partial differential equations is always the
solution of the linear systems. In our case, this is quantified by the total number of GMRES
iterations necessary to compute a new state along the branch. We find that the number of
iterations depends on the Ekman number, but is fairly independent of the Rayleigh number.
We therefore average the number of GMRES iterations over all the points computed in a
branch for a fixed Ekman number. We do this for the Newton method with both implicit
and explicit Coriolis to produce the curves in Figures 9-11 for RW,4, RWg, and RWy,.
The ratio of the number of GMRES iterations between the explicit and implicit methods
ranges from 2, for RWy at Ek = 3 x 1072, to 20 for RW1; at Ek = 3 x 10~°. This ratio would
surely continue to increase as Ek decreases, but the explicit Coriolis calculation became
prohibitively expensive below Ek = 3 x 10~°. Figure 9 also demonstrates that carrying out
the calculation in the restricted domain 0 < ¢ < 271/ M requires fewer GMRES iterations
(in addition to each iteration being at least M times faster).

Measuring the economy realized in timestepping is more problematic. Because explicit
integration effectively approximates a decaying exponential by a polynomial, it displays
artificial temporal divergence, i.e., numerical instability, if the timestep is too large. Be-
cause implicit integration instead approximates the exponential by a decaying rational func-
tion, the timestep is not constrained by stability. The timestep is, however, still constrained
by accuracy. A particularly demanding criterion for judging accuracy is the wavespeed [73].
We compute the relative errors in wavespeeds Cerror = (Cat — Cexact) / Cexact, Where Cexact
is obtained from Newton’s method and hence has no timestepping error. Figure 12 presents
the relative errors as a function of Ek and At, with the other parameters set to the values
below the figure. Cerror Obtained from the explicit and implicit methods are the same
or very close for the same value of At. Cerror increases like (At)z, indicating that both
time-integration methods are second-order in time. Indeed, for timestepping, we have not
used the first-order scheme given in Equation (17) and used for our Newton algorithm,
but a second-order method combining Runge-Kutta and a predictor—corrector scheme,
as described in [35].
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Figure 9. Total number of matrix—vector actions required by nested Newton-GMRES algorithm to
compute RWj, as a function of Ek with explicit (dashed) and implicit (solid) implementation of Coriolis
force. An average is taken over a branch of Ra values. The number of actions required by the explicit
algorithm is always greater than that required by the implicit algorithm, with the ratio between them
increasing from approximately 2 at Ek = 1072 to approximately 9 at Ek = 10~%. Using the full domain
0 < ¢ < 27 (green) instead of the reduced domain 0 < ¢ < /2 (red) increases the number of
GMRES iterations, as well as the cost of each iteration. On average, the full domain requires 1.5 times
more actions than the reduced domain counterpart. The explicit algorithm is prohibitively time-
consuming for Ek < 10~%. The resolutions used in this case were (Ny, Ny, Ny x M ) = (46,72,128 x 1)
for the computations in the full circle and from (46,72,32 x 4) to (76,80,40 x 4) for those in the
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Figure 10. Total number of matrix—vector actions required by the nested Newton-GMRES algorithm
to compute RWy (red) and RWg (blue) as a function of Ek with an explicit (dashed) and implicit
(solid) implementation of Coriolis force. For clarity, the insets show the full domain, although the
computations are carried out in reduced domains 0 < ¢ < 271/ M. An average is taken over many
values of Ra. The number of actions required by the explicit algorithm is always greater than that
required by the implicit algorithm, with the ratio between them increasing from approximately
4 at Ek = 3 x 1073 to 15 at Ek = 3 x 1075, below which the explicit algorithm is prohibitively
time-consuming. The resolutions used for the RWg computations ranged from (N, Ny, Ny x M ) =
(64,100,28 x 8) to (76,124,32 x 8).
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Figure 11. Total number of matrix—vector actions required by the nested Newton-GMRES algorithm
to compute RW1, (black) and RWyg (blue) as a function of Ek with explicit (dashed) and implicit
(solid) implementation of Coriolis force. For clarity, the insets show the full domain, although the
computations are carried out in reduced domains 0 < ¢ < 271/ M. An average is taken over a branch
of Ra values. The number of actions required by the explicit algorithm is always greater than that
required by the implicit algorithm, with the ratio between them increasing from approximately 2.5 for
Ek = 3 x 1073 to 20 for Ek = 3 x 1072, below which the explicit algorithm fails. The resolutions used
for the RWg computations ranged from (N, Np, Ny x M) = (60,112,20 x 12) to (90,184, 32 x 12).

For each Ek, there is a minimum At above which the explicit Coriolis simulation
diverges in time. This value of At is indicated in Figure 12 for each Ekman number as the
left endpoint of an arrow and also in Table 1. Above this value of At, implicit Coriolis
timestepping must be used. But eventually, At is so large that the results of the implicit
method are too inaccurate to be useful. As an upper limit for the implicit method, we make
the arbitrary choice that the relative error on Cerror must be less than 2%. These limiting
values of large At are indicated as the right endpoints of the arrows in Figure 12 and in
Table 1. Hence, for each Ek, there is a large range of At-values that can be used only for
implicit timestepping and whose error does not exceed 2%. For example, for Ek = 1075,
the allowable timestep (<2% error) for the implicit Coriolis method is almost 20 times that
at which the explicit method diverges. These ranges are given in Table 1. Fitting to the
two smaller values of Ek, both endpoints of the range are approximately proportional to
Ek: the explicit method diverges for At 2 0.5 Ek!"! while the error for the implicit method
remains less than 2% for At < 0.8 Ek*®. If a 2% error in the wavespeed is considered to
be too large, the data in Figure 12 can be used to determine the largest At that achieves
the desired error, by drawing a horizontal line at the desired level. Although these results
are specific to the parameter values and flows that we have simulated, they imply that
implicit Coriolis integration can be orders of magnitude faster as Ek decreases, enabling
the simulation of convection in a spherical annulus at low Ekman numbers.

Table 1. Parameters used for testing and useful range of At for implicit timestepping.

At
Ek Ra M (N;,No,Ny X M)  Cexact | Explicit Diverges 2% Error Ratio
1073 120 4  (46,72,32x4)  —2.7647 40x107* 1.1x10% 3
107* 130 8  (60,80,40 x 4) 3.9998 2.0x107° 19x107* 9
1075 140 12 (76,136,24 x 4)  51.2817 1.6 x 107° 28 %1075 17
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Figure 12. Accuracy of the time-dependent calculation of rotating waves RW, as a function of
timestep At using implicit (circles) and explicit (crosses) timestepping of the Coriolis term. Shown
here is the relative error Cerror = |(Cat — Cexact)/ Cexact| Of the drift velocity as a function of the
timestep for various sets of parameter values (see table) where Cexact is calculated via Newton’s
method. Both the explicit and implicit methods are second order in time, with Cerror ~ At2. Vertical
lines indicate the limiting At above which explicit timestepping diverges and cannot be used. The
horizontal dashed line indicates Cerror = 2%. The arrows designate the range of At for which implicit
timestepping is advantageous: it does not diverge and Cerror remains less than 2%. An approximate
fit yields the range 0.5 x Ek!"! < At < 0.8 x Ek?9. See Table 1.

We studied the transition to chaos for Ek = 5 x 10~°. Explicit Coriolis timestepping
requires At < 5 x 1077, Using the implicit method with 5 At and then 10 At allowed us to
simulate five or 10 times longer and to tentatively confirm the temporally chaotic behavior
we observed with the explicit method. If we wish to study this phenomenon further, we
will decrease At in order to obtain more accurate results.

As discussed in Section 3.2, treating the Coriolis term implicitly requires the use of
block pentadiagonal matrices rather than block diagonal matrices. However, the additional
cost is negligible. Part of the reason for this is that, in pseudospectral methods, the cost
of carrying out the nonlinear terms (or the linearized nonlinear terms), more specifically
the transforms to and from spectral space, is by far the most time-consuming portion of
the calculation. Thus, the cost of a timestep is barely increased by the implicit treatment
of the Coriolis term. In timestepping, if At can be increased by a factor of 100 (assuming
the accuracy is still acceptable), then the simulation to the same final time costs (almost
exactly) 100 times less. In Newton’s method, if 10 times fewer actions of the Jacobian (i.e.,
linearized timesteps) are required for a Newton step, then the computation will be (almost
exactly) 10 times faster.

6. Discussion
6.1. Differences with Other Methods

We now describe the differences between Stokes preconditioning and the method
used in [20,45-47] for convection in rotating spheres, as well as in [74-78] for other hy-
drodynamic problems. These authors seek steady states or traveling waves as roots of
U(t+T)— U(t), where U(t + T) is computed from U(t) by carrying out many timesteps,
each with a small At; we therefore call this the integration method. In contrast, although
Equations (19) and (20) would seem to imply that we too seek roots of U(t + T) — U(t),
this is not at all the case. In the Stokes preconditioning method, we compute U(t + T)
from U(t) by carrying out a single very large implicit-explicit Euler timestep Equation (17),
with a timestep At = T that is so large that the difference U(t + At) — U(t) no longer
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approximates the time derivative. Via Equation (20), it turns out that this difference is a
preconditioned version of the operator whose roots are sought by our method, namely
L + N, preconditioned by £. Both methods solve the linear systems that are the core of
Newton’s method via GMRES, which relies on the repeated actions of the Jacobian. For the
integration method, the action of the Jacobian consists of integrating the linearized equa-
tions via many small timesteps, while for us, it consists of taking a single large linearized
timestep. Here, there is a trade-off. Despite the preconditioning displayed by Equation (20),
the Jacobian resulting from Stokes preconditioning is less well conditioned than that which
results from taking many small linearized timesteps, and so more Jacobian actions are
required for GMRES to converge to a solution of our linear system Equation (21). However,
each action costs less, since it consists of only a single timestep. This trade-off—number
of actions vs. timesteps per action—can be quantified via the total number of timesteps
required to compute a steady state or a traveling wave. For wall-bounded shear flows in
the transitional regime, we have found that the Stokes preconditioning method is faster
than the integration method by a factor of 11 for plane Couette flow and by a factor of
35 for pipe flow; see [48] for details. We have not carried out a timing comparison of the
integration and the Stokes preconditioning method for convection in rotating spheres.

Although the Stokes preconditioning method is much faster (at least in the cases and
the parameter regimes that we have studied), the integration method has the considerable
advantage of being far more general. The Stokes preconditioning method is only capable
of computing steady states or traveling waves, while the integration method can compute
periodic orbits of all kinds, including, for example, modulated rotating waves, standing
waves, or pulsing states.

A specific difference between our implementation of implicit Coriolis integration and
that of [20,40,41,45-47] is that we solve the linear systems arising from the implicit treatment
of the diffusive and Coriolis terms directly via block pentadiagonal LU decomposition
and backsolving, whereas [20,40,41,45-47] use Krylov methods to solve these systems.
Time-integration using the explicit, implicit, and semi-implicit treatment of the Coriolis
term is compared by [40]. Our strategy is to solve linear systems directly as much as
possible and to resort to Krylov methods only to invert the full Jacobian.

6.2. Relevance for Geophysics

One might wonder about the applicability of this achievement to geophysical research.
We begin by discussing the relevance of calculating traveling waves via Newton’s method.
Small Ekman numbers, like large Reynolds numbers, are associated with chaos and tur-
bulence, not with the regularity and periodicity of traveling waves, which, moreover, are
almost invariably unstable. The Boussinesq and Navier-Stokes equations generally contain
a very large number of solution branches, most of which are partly or completely unstable,
e.g., [64,75-81]. This profusion of states, sometimes called exact coherent structures, has
become the focus of extensive research, motivated by the idea [82,83] that turbulence could
be viewed from a dynamical systems perspective as a collection of trajectories ricocheting
between periodic orbits along their unstable directions, a kind of deterministic analogue of
ergodic theory. Our Newton solver would enable the application of this line of research
to geophysical flows. More generally, unstable states can cast light on the origin and
organization of turbulent states; in one of the best known examples, ghostly Taylor vortices
exist in even highly turbulent Taylor-Couette flow [84-87] and the unstable underlying
vortices may even reproduce the mean properties of the turbulent flow [88].

We now turn to the relevance for geophysics of implicit Coriolis timestepping with large
timesteps. Constraints on timesteps (whether for stability or accuracy) arise from the different
physical forces in the equations. In rapidly rotating fluids, the Coriolis force generates inertial
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waves, which have a large range of frequencies and are continually generated and damped.
Using a timestep that greatly exceeds the constraint for resolving inertial waves can be
considered analogous to using the incompressible Navier-Stokes equations (or the anelastic
approximation), which act to filter out the high-frequency sound waves [38,39].

Using values of At at which implicit Coriolis timestepping is possible but inaccurate can
also help to explore the large parameter space. The most economical procedure is to carry out a
preliminary large-scale survey with a coarse spatial resolution and a large timestep. Interesting
regions can then be accurately simulated using finer resolutions and smaller timesteps.

Previous research by two of the authors [18,19,42,43] originated in the context of the
Geoflow consortium, centered on microgravity experiments meant to mimic convective
flows within the Earth [29,30]. These experiments were run in the Fluid Science Laboratory
facility located in the European Space Agency’s Columbus laboratory on the International
Space Station. The computations in [18,19,42,43] used an explicit treatment of the Coriolis
force and could not be continued to Ekman numbers smaller than 10~*. Geoflow has
been succeeded by Atmoflow [31], whose purpose is to mimic convective flows in the
atmosphere. We hope to use the new code to carry out computations relevant to AtmoFlow
and to be able to achieve lower Ekman numbers.

7. Conclusions

We have developed a pair of codes for simulating thermal convection in a rotating
spherical fluid shell that relies on an implicit treatment of the Coriolis force. The numerical
cost of this improvement is quite manageable: the block diagonal matrix systems which
arise from the implicit treatment of the diffusive terms must be replaced by block penta-
diagonal matrix systems, which can still be solved by block banded LU decomposition
and backsolving. Once implemented in a timestepping code, implicit integration with a
very large pseudo-timestep (At = 200) can be leveraged to precondition the large linear
systems that are the core of Newton’s method. When only the diffusive terms are treated
implicitly, this is known as Stokes preconditioning; the method developed here could be
called Stokes-and-Coriolis preconditioning.

We demonstrated this method’s capabilities by carrying out continuation in Rayleigh
number at various values of the Ekman number on the order of 10~° for rotating waves with
azimuthal wavenumbers 4, 8, and 12. We found several intriguing examples of branches
containing plateaus in drift frequency, separated by intervals of rapid change delimited by
pairs of saddle-node bifurcations. The physical, or at least phenomenological, reasons for
these properties remain to be discovered. We have also implemented continuation in the
Ekman number, spaced logarithmically, in which we automatically measure and increase
the resolution as needed. We are unaware of any previous examples of continuation in the
Ekman number or with automatic resolution adjustment in the literature.

We have measured the economy that is realized by the implicit treatment of the Coriolis
force. For Newton’s method, the advantage of the implicit over the explicit treatment is
dramatic. For example, the explicit algorithm takes 20 times as many GMRES iterations
(and hence 20 times as much CPU time) as the implicit method to compute states on the
RW, branch at Ek = 3 x 107°. For lower Ekman numbers, the explicit method takes an
unmanageable number of GMRES iterations, making it impossible to use in practice.

For timestepping, the advantage of the implicit over the explicit treatment is equally
spectacular. For computing rotating waves at Ek = 1075, the implicit algorithm can
reasonably use timesteps that are almost 20 times past the temporal stability limit, meaning
that simulations in this regime can be 20 times faster than if an explicit method were used.
In conclusion, the implicit treatment of the Coriolis force greatly improves the efficiency of
computations in the low Ekman number regime.
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Appendix A

Here, we present the intermediate calculations leading from Equations (11a) and (11b)
to Equations (15a) and (15b). Using Equation (14), the recursion relations Equation (13) for
the associated Legendre polynomials can be rewritten in terms of the spherical harmonics as
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Applying Equation (A1) to Equation (11a) leads to
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Finally, changing the names of the indices so that all terms correspond to the same spherical

harmonic Y}", we obtain Equation (15a):
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The same calculations can be applied to Equation (11b) to obtain Equation (15b):
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Abstract: We numerically study wall-bounded convectively driven magneto-hydrodynamic
(MHD) flows subject to rotation in a Cartesian periodic channel. For the accurate treatment
of the rotating MHD equations, we develop a pseudo-spectral simulation code with accurate
treatment of boundary conditions for both velocity and magnetic fields. The solenoidal
condition on the magnetic field is enforced by the addition of a fictitious magnetic pressure.
This allows us to employ an influence matrix method with tau correction for the treatment
of velocity and magnetic fields subject to Robin boundary conditions at the confining
walls. We validate the developed method for the specific case of no slip velocity and
perfectly conducting magnetic boundary conditions. The validation includes the accurate
reproduction of linear stability thresholds and of turbulent statistics. The code shows
favorable parallel scaling properties.

Keywords: MHD; influence matrix; DNS; dynamo; ChannelFlow

MSC: 76W05; 76M22

1. Introduction

Many phenomena in geophysical and astrophysical contexts involve the interaction of
turbulent, conducting fluid flows with magnetic fields. A prime example is the magnetic
fields of stars and planetary objects, where convectively driven flows of conducting fluids,
subject to the rotation of their astrophysical bodies, are believed to generate self-sustained
dynamos. This is the case for stars [1], rocky planets [2], gas giants and moons [3].

Such phenomena including self-sustained dynamos often occur in the highly nonlinear
turbulent regime; therefore, characterizing and describing the physical mechanism in this
regime is aided by augmenting linear and weakly nonlinear approaches with a fully
nonlinear description. A fully nonlinear description, in this context, may refer either to
an accurate direct numerical simulation or the identification and tracking of non-chaotic
so-called invariant solutions, including equilibria and periodic orbits. The latter approach,
in the context of a dynamical systems description of the flow, carries the promise that
tracking invariant solutions in parameter space can provide insights into the parameter
dependence of various phenomena [4]. This has been notably accomplished in turbulent,
non-magnetic shear flows [5,6], and some invariant solutions have also been found in
spherical shell dynamo solutions [7,8].

While studying convection in an astrophysical context suggests the consideration of
spherical shell domains, many important phenomena only involve scales that are small
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compared with the radius of curvature of such a shell, so that they can also be studied in
rotating plane layer models within the f-plane approximation. In particular, the increase
in heat transport due to dynamo effect, which is often discussed in relation to a possible
explanation for the existence of self-sustained dynamos in rapidly rotating systems, is also
observed within Cartesian domains [9,10].

We, consequently, also consider the well-established model of a doubly periodic box
of a conducting convective fluid layer at a prescribed latitude, as illustrated in Figure 1,
representing a slab of a convective region where curvature effects are neglected. The flow
is convectively driven, subject to rotation and potentially imposed external magnetic
fields. The imposed fields may represent the large-scale fields surrounding the portion
of the astrophysical object considered—such as a stellar convection zone or convective
planetary interiors.

North pole
®=90°

Figure 1. Interpretation of the channel geometry as the portion of an astrophysical body’s convective
rotating flow chosen at a specific latitude angle ¢. At the north pole, the rotation vector € is vertical,
and it is horizontal at the equator.

The discussed flow problem has been extensively studied using linear stability analy-
sis [11], investigating the destabilizing and stabilizing effects of rotation and imposed fields
on thermally driven convection, and using nonlinear simulations [12,13]. The widely ac-
cepted hypothesis is that magnetic fields enhance turbulent convection, leading to stronger
field generation until saturation and increased heat transport. This is analogous to the fact
that, in the linear regime, the interaction between imposed magnetic fields and rotation
can induce instabilities that enable convection, which would not occur in the non-rotating
non-magnetic case [14].

To study such flow problems using fully nonlinear approaches, and in order to specif-
ically lay the foundation for a dynamical systems description based on exact invariant
solutions, we present a highly accurate numerical solver for the MHD equations. To benefit
from the superior approximation properties of a spectral discretization, we consider the
geometry of a doubly periodic box, which allows us to study the coupling mechanisms
between convectively driving, magnetic fields and rotation that control MHD flows in
astrophysical contexts.

Here, we specifically present a high-accuracy pseudo-spectral MHD scheme that
precisely handles boundary conditions at confining walls using the influence matrix
method [15]. We introduce a fictitious magnetic pressure in the induction equation and
apply an extended influence matrix method with Tau correction and Robin boundary
conditions to handle both the velocity and magnetic fields, ensuring incompressibility and
magnetic solenoidality at machine-precision accuracy. These methods are implemented
in a parallel fashion on top of the existing C++ ChannelFlow 2.0 code [16,17]. Our code
demonstrates good parallel scaling and is validated against results from the literature.
With its accuracy, parallel scaling and straightforward interfacing with Newton-based
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shooting methods, we expect the code to allow us to efficiently compute and track unstable
equilibrium and periodic orbit solutions of the nonlinear MHD equations.

2. Materials and Methods
2.1. Equations and Control Parameters

We consider a channel, periodic in the streamwise (x) and spanwise (z) directions and
wall-bounded in the vertical (y) direction.

Specifically, we consider a spatial domain D = [0, Ly) x [a,b] x [0, L) C R3 depicted
in Figure 2. The velocity, magnetic, temperature and pressure fields

U(x,t):DxRT = RS, B(x,t) : D xRT = R3,
T(x,t): DxR" - R, P(x,t): DxR" =R,

are governed by the standard magnetohydrodynamics (MHD) equations for a conducting,
convectively driven incompressible Newtonian fluid subject to rotation

V-u=0, (1)
V-B=0, 2)

ou . 2 5
S T U VU +0éq x U =—VP+A(V x B) x B+vV Ut (B+ Ty~ T)ég )
%f:vX (U x B) + VB, 4)
aai;+U-VT:KV2T. (5)

)

Figure 2. Domain-considered, doubly periodic in the two horizontal directions and wall-bounded in
the vertical one. The streamwise direction (x) has an extent of Ly, the spanwise direction (z) has an
extent of L, and the vertical direction (y) has an extent of L, = b —a.

Here, we provide the nondimensional formulation, with (1) and (2) indicating con-
straints enforcing the incompressibility of the fluid, and the absence of magnetic monopoles,
also called the solenoidal condition. Equation (3) describes momentum balance incorporat-
ing coupling to temperature under the Boussinesq approximation, the Coriolis force and the
Lorentz force yielding the coupling to the magnetic field. The induction in Equation (4)
captures the diffusion and generation of magnetic fields through charges advected by the
fluid flow. It is derived from the Maxwell equations neglecting relativistic terms and as-
suming Ohm’s law j = ¢ (E + U x B), where ¢ is the electrical conductivity [18]. The MHD
equations are completed by the temperature advection and diffusion in (5). The parameters
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O, A, v, B,1 and « indicate rotation strength, magnetic coupling, momentum diffusivity;,
hydrostatic pressure, magnetic diffusivity and thermal diffusivity. The unit vectors are

8g(vx) = —sin(yx)éx — cos(vx)éy, éa(¢p) = cos(¢)éx + sin(p)éy, (6)

with 7, and ¢ indicating the angles in the (&, é,) plane between é, and gravity, and between
éx and the rotation vector, as shown in Figure 2. In an astrophysical context, the former
accounts for gravity inclination due, for instance, to the ellipsoidity of the body, and the
latter represents the latitude at which the system is defined on (see Figure 1).

The governing MHD equations have been rendered nondimensional using the follow-
ing length, time, temperature, mass and magnetic field scales:

L*=H;,  t'=Hj/U;, T'=AT;, M =piH;°>, B*=B; (7)

where the star * denotes dimensional quantities. The length scale Hj is the vertical extent of
the domain. For the time scale, we choose common free-fall units with the free-fall velocity
Uy (see below). We allow the scale for the magnetic field strength to be chosen dependent
on the specific MHD problem considered. If an external magnetic field is imposed, this
imposed field provides the natural magnetic scale [19,20]. Without an imposed external
field, a velocity-based scale such as one based on the Alfvén velocity Ué‘ = BS / \/m is
more appropriate [9,21]. This is the difference between dynamo calculations and magneto-
convection calculations.

Uy = /8 a*ATjHg, By = Uy /pGmg or By ®)

The choice of scales (7)—(8) yields the classical dimensionless numbers

* *AT*H*S’ * * " B*ZH*Z
:3"‘*%, Ekzviz, pr:%, prm:L*, o= PoH
KV Q*Hg K n PO,HOV 1

Ra )
with Ra the Rayleigh number, Ek the Ekman number, Pr the Prandtl number, Pr;, the
magnetic Prandtl number and Q the Chandrasekhar number. The control parameters of
the Equations (3)-(5) are expressed in terms of classical dimensionless numbers as

2 |Pr QPr Pr
Q - = —_— = = _— 1
Ek V Ra’ A= RaPry’ V= VRa (10)
1 1 [Pr 1
_ — /== - . 11
P W ATy 7= Pr, V Ra’ T UPrRa ()

For the periodic domain, there are in total 10 control parameters, including the
2 angles (6) the 6 nondimensional parameters (10) and the domain sizes Ly, L,. As a note,
when performing dynamo calculations, the magnetic scale (8) is velocity-based, which
consequently removes one control parameter as

x _qpr [ox % __ RaPry B
By = Uy \/poHo = Q=—5; = A=1. (12
Regarding boundary conditions (BCs), the velocity field is subject to no-slip no-

penetrating BCs, the magnetic field is subject to perfectly conducting BCs and the tempera-
ture field is isothermal on the boundary

132



Mathematics 2025, 13, 2549

UCx )| = (Uyn 0, Wy), T(xt)| =Ty,
y=ab y=a,b

Bx,t-é‘ —B,, 3,B(x,t) -2
( ) yy:a,b v y ( ) X,z

=0, (13)
y=ab
where U, ;, W, , are the top and bottom horizontal wall velocities, B, is the vertical com-
ponent of the imposed magnetic field and T, are the top and bottom wall temperatures.
The two horizontal directions are periodic, so

F(x + nLyéy + mL;é,,t) = F(x,t), Vn,m € Z, (14)

with F being associated to each component of the various fields. The pressure is constrained
as have a zero mean.

2.2. Perturbative Formulation

The velocity, magnetic, temperature and pressure gradient fields are decomposed into
a stationary vertical-dependent base state and a deviation from this base state. The base
states do not need to be solutions of the governing equations. They must, however, satisfy
the generally inhomogeneous boundary conditions, and the vector-valued base states of
the velocity and magnetic fields need to be divergence-free. In the following, deviation
fields are denoted in lowercase and total fields in uppercase. Base states are indicated in
uppercase with a zero index. The decompositions are formally written as

U(x,t) = Up(y)éx + Voby + Wo(y)e: + u(x,t), (15)
B(x,t) = Box(y)éx + Bo,yéy + B, (y)é: +b(x,t), (16)
T(x,t) = To(y) +0(x,1), (17)
VP(x,t) = I (y)éx + Iy (y)éy + I (y)é; + Vp(x, t). (18)

It is relevant in magnetoconvection to consider a constant magnetic field imposed on the
system. In this case, we choose the magnetic scale to be the norm of the imposed field.
Consequently, the dimensionless form of the imposed vector field is a unit vector that can
be parametrized as

By = sindsin ¢ éx + cos¥é, + sind cos ¢ ¢, (19)

with ¢ € [0, 7] and ¢ € [0,27). The boundary conditions of the perturbative formulation
of the equations are then

Uy (y) = (Ua,b, 0, Wu,b)/ u(x, t) =0, (20)

y=ab y=a,b
B -6 = By, b -6 =0, 21
o(y) €y y=ab v (v) €y y=ab (21)
ayBO(x,t) 'éx,z y—ab =0, ayb(x,t) : éx,z y—a,b =0, (22)
To(y) =Top, 0(x,1t) =0. (23)

y=a,b y=a,b

The governing equations for the perturbations are obtained by inserting the base states into
Equations (1)—(5), yielding

V-u=0, (24)
V-b=0, (25)
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al+u.vu+0é0xu—/\(V><B)xB:—Vp+uv2u—eég

ot
o*U : , R
+ |:Hx(y) +v a;Z(y) — Bsinyy + sinyy (To(y) — Tref)} &y

+ {—Hy(y) — B cos vy + cos %(To(y) — Tmf)}éy + [—Hz(y) + vazg\;oz(y)] é;, (26)

b > Box(y)], Bo:z(v) ],
g—VX(UXB)ZUV b+|:778y2]3x+|:ﬂa;2]ezl (27)
20 . ?*To(y)

at—l—U-VT—KVG—i-{K a2 | (28)

2.3. Enforcing Magnetic Solenoidality Through a Fictitious Pressure

The divergence-free constraints for both the velocity and magnetic fields must be
satisfied at all times. The momentum equation introduces divergence, which is readily
observed when taking the divergence of (3):

%(V-U):vVZ(V-U)—VZP—V(U-V)-H+QéQ~V><U

- A(B V2B + (V x 3)2) —VT-&. (29)

Pressure acts as a Lagrange multiplier in the momentum equation, enforcing the incom-
pressibility constraint. While numerically handling pressure as a Lagrange multiplier
for incompressibility is a challenging problem, precise methods have been developed to
address it, as we will discuss below. In contrast, the induction equation does not generate
divergence of the magnetic field, as
0 2

ﬁ(V~B) =nV=(V-B). (30)

The vanishing divergence of the initial field is, therefore, propagated in time and,
thus, ensuring a divergence-free initial magnetic field should be sufficient to satisfy the
solenoidality of the magnetic field. However, in a numerical discretization with the finite
resolution of double precision arithmetic, a straightforward implementation of the induc-
tion equation would generate a small divergence in the magnetic field. Over time, this
divergence would accumulate, ultimately leading to nonphysical fields. To address this
issue, we introduce a fictitious pressure py(x,t) : D x RT — R into the induction equation,
which acts as a Lagrange multiplier enforcing the solenoidal constraint [22]. Analytically,
this pressure is obviously constant and can be chosen as zero due to gauge invariance.
With this addition, the perturbative induction Equation (27) is modified as follows:

2

9%By ()
— — - 2 9 Pox\Y) 15
o V x (U xB) = VprrrbeJr[ﬂ 3y :|€x+|:

2.4. Spatial and Temporal Discretization

Because of the double periodicity and wall-bounded nature of our problem, we choose
a spectral discretization using Fourier x Chebyshev x Fourier in the &y, &, and &, directions.
The use of Chebyshev polynomials in the vertical direction makes the collocation points
denser near the boundaries, which allows a fine resolution of boundary layer phenomena.
Also, spectral transforms in Chebyshev polynomials can make use of fast Fourier transform
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(FFT) algorithms, which are computationally efficient. The domain is now considered in a
discretized version D? defined as

Dl — {xd — (xnx,yny,znz) f Xy = %Lxx, Yn = COS (N::)’ P TZI\?ZZ }, (32)
with Ny, . the number of collocation points in the corresponding direction and
My,y,z € [0, Ny,y,z — 1] C N. The temperature field as well as velocity and magnetic field
components taken at discrete time-steps n; are expressed as " (x?) : D? — R. The for-
ward and backward Fourier-Chebyshev spectral transformations f(k) = F (f(x%)) (k) and
f(x?) = F1(f(k)) (x4) are defined as

= pn, NS Ny~ N1 i A kexn,  kizy
fk) = NeN,N: YooY ) flx )Tky(yny)exp<—2m<lw + Lz>>’ (33)

ny=0 ny:O n,=0

Ny/2 Ny—1 N:/2 - kyxy kzzy
)= Y Y Y JT ) e (2mi( B2 52 ),

ky=1-Nx/2 ky=0 k;=1-N,/2

Nx,z Nx,z
27 2

k= (kv ky kz) s ki € {1 — } CZ,ky€[0,N,—1] CN, (35)
where p,;, = 2 — by, is a Chebyshev normalization term and Ty, () is the mth Chebyshev
polynomial of the first kind rescaled on [a,b] C R.

For time-stepping the equations, we must decide which terms to treat explicitly or
implicitly. Nonlinear terms must be handled explicitly, while linear terms are preferably
treated implicitly for stability reasons, though they can also be handled explicitly. We refer
by a slight misuse of language to the implicitly-treated terms as linear operators £ and to
the explicitly-treated ones as nonlinear operators Ns. In this notation, f is associated to the
governing equation of the deviation fields #, b and 6. The Equations (26), (28) and (31) are
transformed into spectral space, with the explicitly and implicitly-treated terms grouped
together as

W~ Ll p)~ N (U,B,6), (36)
% = £y(b,7) - (T, B), (37)
0 £(8) - Mo (7). (39)

The linear operators are defined as
P S S (7= 2T O 7 (3 _ 25
Lo, p) =vV2i—Vp, Ly (b, pb) = V% — Vi, L (9) — V2,  (39)
and the nonlinear ones as

ﬁu(ﬁ,ﬁ,'é) - ]—'(]—"1 (ﬁ) -]—"1(?&)) + 0o x U

- Af(f*l (6 X E) x F1 (E)) + 02, + Cy, (40)
Ny (U,B) =V x F(F7(a) x 77 (B)) + C, (41)
N (fl, T) - }'(}"1 (EI) Fl (6?)) + Gy, (42)
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where V, V-, Vx and V2 = V - V are the spectral gradient, divergence, curl and Laplacian
operators, and C,, C, and Cy are constants representing the Fourier-Chebyshev transform
of the bracket terms in Equations (26), (28) and (31). The rotation and temperature coupling
terms are treated explicitly, so that the structure of the time-stepping schemes used follows
an unified notation [23]. The time-stepping momentum equation is

aZﬁ n+1

v 7ay2

A A Ao\ =1 5 k2
D ﬁn+1_Vf;n+1:R i,b,0 , D —X+47T2v(x+z>, (43)
v ”( ) AL L3 L2

where R, (ﬁ, b,0 S refers to explicitly-treated terms of the momentum equation
together with their time-step dependence, and x is a time-stepping scheme-dependent
constant. The time-stepping schemes considered are the ones presented in [23]. As a
note, the fields 1, 5,8, p and p;, are functions of y only. Similar unified notation is also
applicable to the induction Equation (37) and to the temperature Equation (38) yielding the

time-stepping induction and time-stepping temperature equations

~An+1

9%b Antl A PP 7l R X K2 k2
Db 0 = R (08) 7 D= Avay (B4 ),
02fn+1 Andl B (A=l X , (K2 K2
K ayz —DKGn :RQ(M,G) ’ DK: B+4T[ K(é‘i‘é) (45)

The addition of fictitious pressure in (31) has the technical advantage of making
the time-stepping induction Equation (44) identical to the time-stepping momentum
Equation (43) substituting 7 for v, b for u, p, for p and swapping “forcing” terms R. The
following section is dedicated to the presentation of an influence matrix method with
tau correction used to solve both Equations (43) and (44) enforcing the divergence-free
conditions, subject to the BCs (20)—(23).

2.5. Influence Matrix with Robin Boundary Conditions

With the addition of fictitious magnetic pressure, the numerical problems of time-
stepping momentum (43) and time-stepping induction Equation (44) are identical. The ac-
curate treatment of the former is achieved using a tau correction and influence matrix
method [15]. If the magnetic field had the same BCs as the velocity field, the same method
could be used. However, magnetic fields are subject to BCs involving a mix of Dirichlet
and Neumann BCs on their different components. Consequently, we present a generalized
tau correction and influence matrix method for more general BCs.

2.5.1. Tau Correction Method

The fields present in the time-stepping momentum (43) and induction (44) equations
are expressed as expansions on a finite Chebyshev basis. The function space spanned by
the finite Chebyshev basis is not guaranteed to contain a solution satisfying the equations
together with the associated BCs. The tau method enables the elimination of solution
components that do not lie within the span of the expansion basis [24]. The time-stepping
momentum and induction equations are augmented by adding monomials from the Cheby-
shev expansion basis, each weighted by a prefactor known as a tau constant or tau correc-
tion. The number of added monomials must match the number of boundary conditions
and consists of the highest-degree elements of the Chebyshev expansion basis. The time-
stepping momentum and induction equations each have two BCs, so we need to add two
tau corrections into each equation. The tau corrections quantify the portion of the solution
that is not captured due to discretization on a finite Chebyshev basis, and they are expected
to decrease exponentially as the Chebyshev expansion basis size is increased.
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2.5.2. Extended Influence Matrix Method

Solving the time-stepping momentum Equation (43) requires finding velocity and
pressure fields that satisfy the equation, along with velocity BCs, under the divergence-free
constraint. Similarly, solving the time-stepping induction Equation (44) requires finding
magnetic and fictitious pressure fields that satisfy the equation, along with magnetic BCs,
under the divergence-free constraint. In both cases, the difficulty arises from the absence
of BCs for the pressure and fictitious pressure fields. For Dirichlet BCs, the influence
matrix introduced by [15] is a precise and efficient method to solve (43). It uses the linear
superposition of specific velocity and pressure field decompositions to derive BCs for
pressure that are equivalent to enforcing the incompressibility condition.

Since magnetic fields have mixed BCs for their different components, the original
influence matrix methodology does not transfer directly. Furthermore, other types of BCs,
such as free-slip, open channel, or finite-slip BCs, are also relevant for velocity fields [25,26],
in addition to Dirichlet conditions. We, thus, present an extension of the influence matrix
method, with the tau correction inherently applied, that is applicable to Robin BCs. These
BCs may be directly relevant for certain flow situations, and they include both Dirichlet and
Neumann conditions as special cases. Since the numerical problems for the time-stepping
momentum and induction equations are identical, we will describe the method for the
time-stepping momentum equation here. However, exactly the same treatment applies to
the time-stepping of the induction equation.

Robin BCs for a field f : D — R are generically expressed as follows:

R (F)=of Fof
Bs () = haf| o, Byl Tes = (46)

where the coefficients &, ,, !, and y}/, depend on the boundary y = a, b as well as on the
field component. As shown in [27], for a velocity field subject to the Robin BCs

u
R
Bgp(u) = “Z,b“‘y:u’b + Bap ay ‘y:a,b ~Yap =0, (47)
Jv
BR ] ”—‘ _4¥ =0, 48
1; a,b(v) avu y—a,b ay y=ab Y ( )

Blap(w) = “gfbw‘y:ﬂb + b3y o Yap =0, (49)

if the Robin BC coefficients of the horizontal components of velocity satisfy
ag =0 =, ap=ay =0, Pr=p7 =P Bp=F =F  (50)

then the incompressibility condition at the boundaries required by the influence matrix

method [23,28] becomes equivalent to B ,(v) = wo0| _, + Bap?”| = 0, where

the primes denote vertical derivatives. Equation (43) has to be solvedyfouirb each pair of
horizontal Fourier modes (ky, k). In order to do so, it is useful to express all fields in
terms of Chebyshev expansions and construct for each pair (ky, k;) a new system. This new
system is obtained by taking the divergence of the time-stepping momentum or induction

equation, as well as its y-component, as

P2 —Kpm = du(R) =Yy,  m=0,...,N,—2 (1)
A o) — Dyoy — p\) = =Ry + b, m=0,...,N,—2 (52)
Bf; ap(0) =0, B§; ap(0) =0, (53)
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where the m index refers to the mth coefficient of the Chebyshev expansion, k* = k2 + k2,
R refers to the right-hand side of (43), d,, represents the mth Chebyshev coefficient of the
divergence of a given field, b is a tau correction such that b,, = 0 Vm € [0, Ny — 2], Ry
is the y component or R, the (i) exponent refers to the Chebyshev coefficients of the ith
derivative of a given field, Bf; ,,p(©) is the system BC of v at y = a,b and Bg o,p(0) is the BC
of v at y = a,b due to incompressibility evaluated at the boundaries. Note that the hats are
dropped for the sake of notation clarity.

Following [23], the system (51)~(53) can be decomposed into an A and an .4 problem,
with the fields also decomposed in the same way as

Pm = ﬁm + Pm, Uy = Um + Om, by = Em + Bm/ (54)
52— K = m=0,...,N,—2 (55)

At §u2) — Dy — Y = Ry + b, m=0,...,N,—2 (56)
BY () =0, pla,b) =0, (57)

52 — 2 = -V, m=0,...Ny,—2 (58)

A Sv5P) — Dyoy — ) = b, m=0,...,Ny—2 (59)
B ,5(0) =0, Bf,. ap(0) = —B§; ap(0), (60)

where 1, = d(R). Furthermore, Em and b,, have the same property as by, to be only
non-zero for m = Ny, — 1 and m = Ny, and by, is evaluated as
b = V3 — Dyt — P + Rym, m € {Ny —1,N,}. 61)

The A problem is solved by linear superposition for each field

4
=Y CiPim (62)
i=1

with ¢, and ¢, ,,, being associated to f, T, b, by, and to their “1m” variants. The four
associated A; systems that need to be solved are

P — K pym = b, m=0,...,Ny—2 63)
A= 002 — Dy = pi) + By, m=0,... ,Ny—2 (64)
BR ,»(01) =0, py(a,b) = 4, (6)

with gf = &y, q? = b1, bin, = 031, bi,N,—1 = 04, and the tau correction by, evaluated as

by = V0, — DyOy — fr 1 €{1,2,3,4}, m € {N, —1,Ny}. (66)

The coefficients §; are determined enforcing the Bg;a ,(v) BC of system A as well as
the compatibility of the tau corrections between the systems A and A, resulting in the
following relations:
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Y &[40, (0) + Bt () | = —aal(a) = o (a), (67)

“bvlm bﬁ;/m(b): = _“b?ﬂm(b) - :Bb?ﬂng(b)/ (68)

4 7 ~
Y& [bl,Nyfl —bin,—1] = bn,-1, (69)
=1 :
4 - 7 ~
Y & [bl,Ny —bin, | = b, (70)

=1

In terms of implementation, the four A, problems are solved during the preprocessing
stage since they are independent of the time-dependent forcing term, R. As a result,
all terms in brackets on the left-hand side of Equations (67)—(70) are consolidated into
a matrix, which is inverted during preprocessing. This inverted matrix is referred to
as the generalized influence matrix. During time-stepping of the momentum equation,
the A problem is solved at each time-step, allowing evaluation of the right-hand side of
Equations (67)—(70), after which the ¢; coefficients are obtained through a matrix-vector
multiplication. Finally, the solutions to the A problem are recovered from the A; systems
using (62). The solutions of the A problem are then obtained by combining the solutions of
the A and A problems using (54).

The horizontal components of the velocity field can be easily solved once the pres-
sure is known. By considering the first and third components of the time-stepping mo-
mentum Equation (43) along with the Robin boundary conditions (47) and (49), we are
left with two Helmholtz equations to solve for two fields, both of which have explicit
boundary conditions.

As a note, if the divergence of the R term in (51) is assumed to be exactly zero (which
does not occur numerically), the pressure becomes a linear function of y. Due to the
Dirichlet boundary conditions in the A problem, 7 is zero, and p = j, which is, then, solely
determined by the tau corrections. If the simulation program lacks a mechanism to remove
or compensate for divergence generation in the momentum equation, the error’s order of
magnitude is increased from 10715 t0 1077 [29].

2.6. Implementation of the Methods

The method described above is implemented within ChannelFlow 2.0 [16,17], an open-
source parallelized pseudo-spectral code originally designed accurate simulations of transi-
tionary turbulence in a channel geometry. It is written in C++ and uses the Message-Passing
Interface (MPI) library [30] for computation parallelization. It is designed in an efficient and
modular way, utilizing virtual classes to define all components of the solver [31]. Thereby,
the code can be extended beyond its original capabilities, specifically, including extensions
involving additional fields. It has already been extended to solve visco-elastic flows [32]
and inclined Rayleigh—Bénard convection (ILC) [6,33,34].

In addition to time-steppers, ChannelFlow also includes a Newton solver library
and a dynamical system interface (DSI) class that is designed to map any physical system
implemented into ChannelFlow to a generic autonomous dynamical system x(t) = f(x(t)).
This enables the use of invariant solution tracking, which eventually aims to be utilized in
the MHD context.

The rotating MHD Equations (24)—(28), together with the methods presented above,
are implemented in a new MHD module for ChannelFlow.
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The presented method involves solving Helmholtz equations, which are numerically
formulated as a quasi-tridiagonal system of equations for Dirichlet or Neumann BCs or,
instead, as a quasi-pentadiagonal system of equations for Robin BCs [28].

3. Validation and Benchmark Results

To assess the reliability and performance of the code, we first reproduce linear stability
theory results for the onset of convection when rotation and imposed magnetic fields are
present. Then, we test the fully nonlinear case by comparing turbulent DNS statistics
(including boundary layer phenomenology) with the results from the literature. Thirdly,
the accuracy of the time-stepper is checked against the magnetic energy equation. Finally,
we assess the parallel scaling of the code and compare the performance with a pure
convection problem without magnetic fields.

3.1. Linear Stability Analysis

The first test consists in reproducing linear stability results using the nonlinear solver.
In the specific case of rotating MHD, the system can be subject to rotation and/or imposed
magnetic fields. The separate stabilizing effect of rotation and imposed magnetic field are
studied. In order to do so, the results from linear stability analysis presented in [11] are used.
The rotation, imposed magnetic field and gravity all act in the &, direction, so yx =0, ¢ =0
and ¢ = 0 in Equations (6) and (19). The base states used for these calculations are
the laminar solution for velocity with static walls, hydrostatic pressure and an adverse
temperature gradient [33]. When the conductive state is unstable, the field deviations
experience an exponential growth with an exponent corresponding to the eigenvalue of
the fastest growing eigenmode. When the conductive state is stable, the field deviations
experience an exponential decay with exponent corresponding to the slowest decaying
eigenmode. In the case of a marginally stable conductive state, the field deviations should
remain constant, although practically, we always observe a non-zero growth/decay rate.

Simulations are run at equal, slightly higher and slightly lower Ra values compared to
the expected Ra, for given Q or Ek values from [11], starting from a random field whose
L2-norm is set to 10~*. The resulting growth rates are measured and used to quadratically
interpolate the critical Rayleigh number Ra, at which the conductive state is marginally
stable. It should be noted that in the case where all obtained growth rates are strictly
positive or negative, additional simulations are performed at lower/higher Ra such that the
three interpolant growth rates do not all have the same sign. In addition, the grid is refined
and/or the integration time-step is reduced, until the predicted Ra,. stabilizes. The results
are displayed in Table 1.

Table 1. Linear stability tests against linear stability theory [11], using the same rounding. Grid size values
represent Ny X Ny X Nz, and the Taylor number is related to the Ekman number as Ta = 4/ EK2.

Theoretical Obtained

Parameter d. Ra, Ra, Rel. Error Grid Size
— 3.117 1707.762 1707.762 6x107%  32x31x32
— 8.00 7084.51 7084.51 1x1078  32x31x32
Ta = 5000 4.25 3468.6 3468.6 8x107°  32x31x32
Ta = 500 3.30 1940.3 1940.3 1x1078  32x31x32
Ta = 10° 7.20 16,721 16,720 7%x1075  32x31x32
Ta = 1010 55.5 34574 x 107 3.4498 x 107 6 x 1073 48 x 47 x 48
Q =100 4.00 3757.3 3757.3 5x 107 64 x33x 64
Q = 1000 5.80 17,103 17,103 3x107° 64 x63x64
Q=10* 8.66 124,508 124,509 1x1075 64 x 63 x 64
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In every test performed, the results closely match the theoretical predictions. It
is important to note that the theoretical critical Rayleigh numbers are only exact for
Rayleigh—-Bénard Convection without external magnetic fields or rotation. Otherwise,
the values given in [11] are approximations, albeit accurate ones, derived using test func-
tions. Consequently, the criterion for relative error is stringent, and achieving a zero error
is understandably unrealistic.

3.2. Direct Numerical Simulation Statistics

We want to compare DNS statistics of our code in the turbulent regime, includ-
ing boundary layer phenomenology resolution, with a study which uses the same no-
slip, perfectly conducting and isothermal BCs that are used in our problem (20)—(23).
In [35], several direct numerical simulations (DNS) for various sets of BCs are pre-
sented. This study is based on a modified version of the code presented in [36], which
uses poloidal-toroidal decomposition for the magnetic field. The simulation n°9 uti-
lizes the same BCs as implemented and tested here. With their choice of parameters
Ra =5 x 108, Ek = 1075,Pr = 1,Pr;, = 2.5,¢ = /2,72 =0, Ly = L, = 1,a = —0.5 and
b = 0.5, the statistically averaged root mean-square (rms) profiles of vertical and horizontal
magnetic fields are computed as

By = /(Bj), B, =/ (Bf + B). (71)

The horizontal and vertical velocity rms values are computed in the same manner. Since
the nondimensionalization used in [35] is based on the thermal diffusion length-scale
of the system HSZ /x*, we need to convert non-dimensional magnetic field values from
free-fall time unit to thermal time unit measurements. Velocities expressed in units of
free-fall time need to be multiplied by vRaPr ~ 22,361, and magnetic fields—based
on the free-fall velocity—need to be multiplied by y/RaPr,, / Pr ~ 35,355. Figure 3 is
a reproduction of Figure 6c¢,f of [35]. It depicts the above-mentioned rms velocity and
magnetic field values, scaled to be expressed in the thermal diffusion time units. While
the simulation presented in [35] employed a grid with (Ny, N, N,) = (288,256,288),
we choose a coarser grid which resolution reduced by a factor of two in each direction,
resulting in (Ny, Ny, N;) = (144,127,144). This grid reduction is chosen to speed up
the simulation, and since the results are already matching within their statistical errors,
additional simulations using a finer grid seem unnecessary. The integration time-step
is set to At = 2.5 x 1073, We compute averages over 2000 snapshots, separeted by a
quarter free-fall time unit. As evidenced by the comparison in Figure 3, the rms values of
both magnetic fields are almost indistinguishable between our DNS and the the reference
simulation from [35]. This good agreement is observed both in the Ekman layer, where the
horizontal rms velocity profile experiences strong gradients, and in the bulk. Despite the
fundamentally different approach for enforcing the magnetic field to remain divergence free,
the validation data clearly lie within one standard deviation of the rms values we computed.
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Figure 3. (a) U}, and Uy are the horizontal and vertical rms values of velocity. (b) B;, and B, are
the horizontal and vertical rms values of the magnetic field, respectively. Horizontal velocity and
magnetic field rms values are depicted in black, and vertical rms values in red. All fields in this figure
are scaled to thermal time-scale. Circles represent our simulation data and pluses the data of [35].
The lightly-colored bands are the statistical standard deviations. For visibility reasons, only every
second points is marked with a circle whereas the reference figure, with a grid twice refined in each
direction, shows one every four points.

3.3. Energy Equation

To further test the accuracy of our time-stepping scheme, we check the consistency
with global conservation law, relating the rate of change of mean magnetic energy to
fields themselves. The magnetic energy equation is obtained by multiplying Equation (31)
by B, and taking its spatial average yielding an expression for the rate of change of the
nondimensionalized magnetic energy as

10
53:(B%) = —(U-(VxB)xB) —n((V xB)) (72)
where (-) = m [l - dxdydz is a spatial average over the whole domain. We assume

that there are no imposed magnetic fields in (21); hence, the p;, surface term vanishes.
To check the accuracy at which our numerical scheme satisfies this global conservation law,
we compute the rate of change of the magnetic energy on the left-hand side and the terms
on the right-hand side independently. Here, derivatives and spatial averages are computed
spectrally, while the time derivative of the mean magnetic energy is approximated by
centered differences. As shown in Figure 4, the time derivative approximation of the
magnetic energy closely matches the sum of the kinetic energy transfer term and ohmic
heating term. The relative error is of 1073. This error can be rationalized by the lack of
precision in the approximation of the time derivative of (B?). Note that the actual time-
stepping code is based on a much more accurate third-order Adams—Bashforth scheme
with backwards differentiation [23,37].
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Figure 4. Absolute value of the time derivative of magnetic energy, approximated by centered
differences as well as by the sum of components on the right-hand side of (72). The geometrical
parameters used for this simulation are Ly = L, = 5,a = —0.5 and b = 0.5, the physical ones
are Ra = 5x 10°,Ek = 2 x 1072,Pr = 1,Pry; = 1,7« = 0and ¢ = 71/2. The grid size is set to
(Nx, Ny, N;) = (48,47,48) and the integration time-step to At = 2.5 x 10-3.

3.4. Code Benchmarks

Two different types of benchmark are run to assess the scalability of the code. Both
of them use the same physical and numerical parameters for all tests, only varying either
the number of processes allocated to it or the grid size of the simulated fields. All the
simulations are run on a compute node of the JED cluster (SCITAS, EPFL), which consists
in 72 cores of Intel Xeon Platinum 8360Y CPU @ 2.40 GHz, 512 GB of memory and 3.2 TB
of NVMe storage [38]. The geometrical parameters used are Ly =1, L, = 1and a = —0.5,
b = 0.5, and the physical ones are Ra = 10°, Pr = 1, Pr,, = 1, Ek = 1072, Yx = 0 and
¢ = 7t/2. The wall velocities are kept to zero, and an adverse temperature gradient is
maintained as the temperature base state. The numerical integration time-step At is set to
1073, and the code is compiled using the mpicxx compiler issued by Intel.

We first test the strong scaling of our code. The grid size is kept fixed at
(Nx, Ny, N;) = (128,127,144), which represents approximately 2.34 x 106 collocation
points. The number of MPI processes allocated to the simulation together with the spatial
distribution 111,y 1p;] are 1[1,1],2[1,2], 8[4,2],12[4,3],16[4, 4], 24[4, 6], 32[8, 4], 48[8, 6], 64[8, 8]
and 72[8,9]. Ideally, the distribution of processes should be as close as possible to the same
number in each periodic direction such that the load on each process is equal, but these
distributions are solely chosen for benchmarking. The left panel of Figure 5 shows the
variation in the mean elapsed time integrating all the fields u, b, 8, p and p; as the number
of MPI processes increases from 1 to 72. For comparison, the same benchmark is performed
using identical relevant parameters with another ChannelFlow-based code (ILC) that han-
dles the same domain without rotation and magnetic fields and that has been thoroughly
tested [6,33].

The dependence of the elapsed time on the number of processes is similar for both
cases, the MHD code scaling as Atgfg?ed x n;0.91 and the ILC code as Atgfg)se 4« n;O'SS .
An ensemble average carried over the mean elapsed times of both cases shows that the
MHD code runs 1.9 times slower than the ILC one. With a rough estimate, the MHD
and ILC codes, respectively, handle nine and five similar scalar-like fields. Therefore,
in principle, the MHD code cannot run faster than 9/5 = 1.8 times the runtime of the ILC
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code. The fact that our code runs only 1.9 times slower is notable, as it indicates that the
additional couplings in the equations are not computationally expensive.

The second benchmark assesses weak scaling, keeping the number of MPI pro-
cesses as well as their distribution fixed to np[n,y, 1p;] = 72[8,9]. The grid size is var-
ied as (Nx, Ny, Nz) = (16,15,18), (32,31,36), (64,63,72), (128,127,144), (192,191, 216),
(256,255,288), (384,383,432) and (512,511,588). In the right panel of Figure 5, the mean
time per time-step is plotted with respect to the grid size. The scaling of performance

with respect to the number of points 1, is found to be Atgfg]s?e 4 o g% in the configuration
described above.
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Figure 5. (a) Mean time spent per time-step as a function of the number of MPI processes used.
For comparison purposes, mean times are shown both for the MHD code and for the ILC code.
The relative standard deviations range from 15 to 1%. (b) Mean time spent per time-step as a function
of the grid size. The standard deviation is of the order of 100% for the lower grid sizes, as fluctuations
on such of a short duration have a strong influence, and reaches values of around 0.5% for larger
grid sizes. On both panels, the red circle corresponds to the same simulation case of 7, = 72 and
ng =128 x 127 x 144 ~ 2.34 x 10°.

4. Conclusions and Discussion

We have developed an accurate pseudo-spectral numerical code for the simulation
of rotating and convection-driven flow of a conducting Newtonian fluid in a double-
periodic wall-bounded domain. The code is based on a primitive variable formulation
of the MHD equations and uses a fictitious magnetic pressure to enforce the solenoidal
condition of the magnetic field. An extension of the classical influence matrix method
with tau correction is derived for general Robin boundary conditions and applied to both
velocity and magnetic fields. The accurate scheme is implemented in C++, extending
the functionality of the existing parallelized open-source ChannelFlow 2.0 software. Our
implementation has been tested against linear stability theory in different scenarios with
either imposed magnetic fields or rotation. We successfully reproduced previous results
on the statistics of turbulent flows and observed very good agreement when compared
to a simulation using an alternative approach for enforcing the magnetic field to remain
divergence free. Lastly, the accuracy of the time-marching scheme has been demonstrated
by validating it against the analytically derived magnetic energy equation. Additionally,
we ran benchmarks demonstrating solid weak and strong scaling of our code. Since the
numerical code is (a) accurate, (b) shows favorable parallel scaling, (c) can handle general
Robin boundary conditions for both the velocity and magnetic field and (d) can easily
interface with Newton-based shooting methods, we expect it to enable the identification
and tracking of invariant solutions of rotating MHD in a plane layer.

We believe that the construction of this code opens up the possibility for increased
understanding of the interaction of convection with magnetic field in situations relevant
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to geophysical and astrophysical fluid dynamics, where rotation plays an important role.
The local geometry, considered here, is often utilized for modeling turbulent interactions;
the accurate and efficient methods described here, coupled with the possibility of the
detection of exact nonlinear solutions, will enable us to determine better the nature of
transport and dynamo action in such rotating magnetized systems as the interior of planets
and stars.
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Abstract: The strategic positioning of heating and cooling segments within complex
non-rectangular geometries has emerged as a critical engineering challenge across multi-
ple industries in thermal management systems for electronic components. This analysis
presents a numerical inspection of buoyancy-driven convective flow and thermal trans-
port mechnisms of nanofluids in a parallelogrammic porous geometry. A single discrete
heating—cooling segment has been placed along the slanting surfaces of the geometry. The
mathematical model is formulated utilizing Darcy’s law, incorporating the Tiwari and Das
approach to characterize the thermophysical properties of the nanofluid. The governing
model equations corresponding to the physical process are solved numerically using finite-
difference-based alternating direction implicit (ADI) and successive line over-relaxation
(SLOR) techniques. Computational simulations are performed for various parametric
conditions, including different nanoparticle volume fractions (¢ = 0-0.05) , Rayleigh
numbers (Ra = 10'-10%), and parallelogram geometry («) and sidewall (7) tilting angles
(—45° < a < +45° and —45° < ¢ < 445°), while examining the effect of discrete thermal
locations. The results reveal a significant decrement in thermal transfer rates with an
increasing nanoparticle concentration, particularly at higher Rayleigh numbers. The skew-
ness of the parallelogrammic boundaries is found to substantially influence flow patterns
and thermal transport characteristics compared to conventional rectangular enclosures.
Further, the discrete placement of heating and cooling sources creates unique thermal
plumes that modify circulation patterns within the domain. The predictions suggest pro-
found insights for optimizing thermal management systems by employing nanofluids in
non-rectangular porous configurations, with potential applications in geothermal energy
extraction, electronic cooling systems, and thermal energy storage devices.
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1. Introduction

Buoyancy-assisted flow motion and thermal transport processes in finite-shaped
porous domains represent a critical area of thermal science with profound practical ap-
plications. Unlike open-domain flows, convection within bounded porous geometries
manifest distinct flow structures, thermal stratification, and recirculation zones, which, in
turn, fundamentally alter heat transport mechanisms. In addition, finite-spaced porous
geometries represent a critical engineering configuration that maximizes thermal perfor-
mance in space-constrained applications, such as electronic cooling, building technology,
and industrial processes, to mention a few [1,2]. Finite-shaped domains fall into two
broad categories: regular-shaped and non-regular-shaped geometries. Non-regular geome-
tries serve unique specialized applications across various engineering disciplines. These
irregular domains present significant analytical challenges, particularly due to the fact
that their boundaries typically do not align with the coordinate axes. Additionally, they
create complex gravitational force interactions from their unconventional shapes. Applica-
tions such as biomedical engineering, aerospace components, electronics cooling systems,
and energy systems frequently feature intricate geometrical configurations. These char-
acteristics make thermal fluid analysis in non-regular domains particularly demanding
in computational studies. Among various non-rectangular conduits, a parallelogrammic
domain has potential implementations, such as thermal diodes, compact heat exchangers,
the cooling of electronic equipment, and solar thermal systems. The early experimental and
theoretical studies on thermal transport in this geometry are from Seki et al. [3] and Hyun
and Choi [4]. Later, Bairi and co-researchers [5,6] performed a combined numerical and
experimental investigation on transient buoyant-assisted flow and thermal mechanisms in
a uniformly and discretely heated—cooled parallelogram-shaped section to comprehend
critical thermal behavior patterns, with a particular emphasis on avionics. Thermosolutal
transport phenomena in parallelogram-shaped configurations have garnered substantial
interest for understanding the complex interplay between thermal and solutal mecha-
nisms under various conditions, particularly numerical examination of mixed convection
in ventilated parallelogrammic domains [7] with an air-CO, mixture, while more recent
investigations [8] have extended this work to thermo—-solutal-magnetoconvection in tilted
porous parallelogrammic domains with discrete heated—cooled segments. It should be
noted that the above discussed studies primarily focused on conventional fluids.

The electronics cooling of industrial components faced growing thermal management
challenges that could not be adequately addressed by conventional fluids. This led to the
development of novel fluids, coined as “nanofluids,” a breakthrough innovation by Choi
and colleagues [9]. These specialized fluids consist of nano-sized particles (NPs) dispersed
within a base fluid. Their superior heat transfer properties make them particularly valuable
for meeting the highly demanding cooling requirements of modern electronic components.
Ghalambaz et al. [10] studied convective motion of Cu-water nanofluids (NFs) within
the parallelogrammic-shaped porous domain using the Darcy assumption by adopting
the Tiwari and Das approach [11]. They predicted that the presence of NPs in the porous
structure deteriorated thermal transfer rates due to increased viscosity, despite enhanced
thermal conductivity, this effect being more pronounced in low-porosity media and at
negative tilt angles. Later, Alsabery et al. [12] analyzed transient buoyant convection in
an NF-saturated oblique porous geometry and observed an enhanced thermal dissipa-
tion for a thermal non-equilibrium model compared to thermal equilibrium conditions,
with water-Ag NF showing superior performance among the four NPs considered. Hus-
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sein and Mustafa [13] numerically investigated buoyant-assisted convection in an open
parallelogram-shaped cavity with localized bottom heating and observed that the opti-
mal thermal dissipation transfer occurs with the heat source near the left wall at a 60°
inclination. A non-homogeneous model for combined free-forced convection in a skewed
enclosure revealed elevated thermal transport compared to the homogeneous model, while
demonstrating that smaller NPs provide superior thermal transfer performance compared
to larger ones [14]. Magneto-mixed convection inside a vented parallelogrammic config-
uration with injection or suction mechanisms has been examined by Bhuiyan et al. [15].
Their analysis demonstrated enhanced thermal dissipation rates with higher Richardson
numbers, while the Hartmann number serves as an effective control parameter for regulat-
ing thermal transport phenomena. Yasin et al. [16] investigated magneto-mixed convection
in a corrugated parallelogram configuration with a partially heated lower boundary. Their
finite element simulation revealed the dominance of forced convective motion at low
Richardson numbers, while enhancing the wall undulation amplitude elevates thermal
dissipation rates. Recently, Humayoun et al. [17] examined buoyancy-assisted convection
inside a porous parallelogram-structured domain under non-uniform temperature condi-
tions. Their predictions revealed enhanced thermal transfer rates with higher Rayleigh and
Prandtl numbers and larger inclination angles that decreased with higher Darcy numbers.
The above investigations primarily focus on the buoyancy-assisted convection of different
NFs in parallelogram-shaped configurations with various constraints, such as magnetic
fields, porosity, and curved and vented boundaries.

Among the diverse finite-sized configurations, a differently heated square or rectangu-
lar porous domain filled with different NFs demonstrates significant practical relevance
across numerous industrial applications. In this direction, Oztop and Abu-Nada [18]
numerically examined convective thermal transport in a partially heated rectangular en-
closure filled with three different (Cu, Al,O3, and TiO,) NFs. Their results revealed that
thermal dissipation elevates with NP concentration, and that the enhancement is more
pronounced at low aspect ratios, with Cu NPs providing the maximum heat dissipation
improvement. Buoyant-driven convection in square porous domains filled with diverse
nanofluids has been investigated by employing Darcy’s law, but different approaches
have been used, such as Buongiorno’s model [19] and Tiwari and Das” model [20]. Their
predictions demonstrated that the relative difference in thermal conductivity between
nanoparticles and porous media is the key factor determining heat transfer improvement.
Alsabery and collaborators [21,22] performed numerical experiments on buoyant thermal
transport in porous-NF systems with sinusoidal thermal constraints using finite difference
methodology. In their studies of both an inclined square enclosure with a porous NF
layer and conjugate thermal transfer with finite wall thickness, they demonstrated that
heat transport enhancement varied significantly with geometry inclination angle, porous
layer thickness, wall properties, and nanoparticle type, while non-uniform heating sub-
stantially increased the overall thermal transfer performance. In our earlier work [23] we
numerically analyzed the thermal effects caused by non-uniform heating with a focus on
buoyant transport versus entropy generation. The results strongly support the notion that
ensemble-tree-based models, specifically gradient boosting models, are an effective means
of accurately estimating complex non-linear relationships, especially in comparison to
linear, kernel-based approaches and neural networks. Chamkha and Selimefendigil [24]
numerically investigated magneto-convection and entropy generation in a square NF-filled
porous domain with corrugated walls. They observed that increasing corrugation frequency
reduced thermal transfer rates, while the magnetic force suppressed the heat transfer for
both flat and corrugated boundaries.
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Using Buongiorno’s two-phase model, Alhashash [25] investigated the buoyant mo-
tion of nanoliquid in a square porous chamber with a partially heated cylinder. The results
showed that thermal transfer rates decreased with increasing heated surface area, but in-
creased with higher NP concentrations. Abed and Al-Damook [26] examined convective
transport mechanisms in a square NF-filled porous domain containing three heated tubes.
The multi-objective optimization approach suggested an enhanced heat dissipation through
the proper selection of geometric and thermophysical parameters. Azad et al. [27] examined
the rotational influence of a hot tube on magneto-hydrothermal mechanisms in a square
conduit with a localized source containing CNT-water NF and reported an enhanced
flow circulation and overall thermal performance with the cylinder’s rotational speed.
Investigations inside a shallow chamber packed with metal foam and nano-enhanced
PC material reveal that metal foam significantly outperforms nanoparticles for thermal
dissipation, with a complete melting time significantly reduced as the foam filling ratio
increases [28]. Lakshmi et al. [29] numerically examined the buoyant transport of Cu-water
NF within a porous square conduit with different orientations of a centrally located heated
rod. Their findings demonstrated that the inclined rod configuration exhibited superior
thermal performance compared to horizontal and vertical orientations. Mixed convec-
tion in a lid-driven porous configuration with TiO,—water NF revealed that increasing
NP volume fraction elevated thermal transfer at lower concentrations, while magnetic
field intensity significantly influenced both heat transfer and entropy generation [30].
Vigneshwari et al. [31] investigated the unsteady magneto-convection of TiO,-H,O NF in
a partially heated—cooled square porous domain and observed enhanced thermal transport
rates with an increase in the heat source/sink parameter.

Researchers have also thoroughly documented how porous structures influence flow
dynamics and heat transport performance within diverse irregular geometries, primarily
due to the widespread implementation of such configurations across numerous engineering
and industrial applications [32-34]. An exhaustive review was conducted on buoyant-
assisted convection phenomena and the associated thermal transfer characteristics of
NFs in various geometries, providing an extensive analysis of the impacts of parameters
like Rayleigh, Darcy, and Hartman numbers and NF volume fraction [35,36]. Recent
investigations have expanded the understanding of NF convection behavior in locally
heated porous domains under various constraints, as evidenced in works examining
convection in tilted wavy porous geometries with localized heating [37], square conduits
with Casson hybrid nanofluids with classical [38] and sinusoidal heat flux [39], MHD
convection in partially cross-heated NF-loaded geometries [40], and vibrational effects
on thermosolutal free convection phenomena [41]. Based on a comprehensive review
of the established literature concerning diverse porous configurations containing NFs,
significant research gaps remain unexplored in understanding the effects of complex
geometry, coupled modeling, and discrete thermal boundary conditions. Specifically, no
previous studies have investigated the combined influences of the following:

(a) Investigation of parallelogrammic geometry with simultaneous cavity inclination («)
and sidewall tilting (7), creating a unique double-inclination configuration that has
not been previously studied.

(b) Implementation of discrete heating/cooling source—sink pairs on inclined walls of the
parallelogram, departing from conventional uniform heating or discrete heating on
vertical walls.

(c) Integration of a Darcy porous medium framework with a Tiwari and Das nanofluid
model for this specific geometric and thermal configuration.

Despite the relevance of such geometry in numerous engineering applications, the ef-
fects of orientation angles on buoyant transport characteristics within this domain remain

150



Mathematics 2025, 13, 3516

unexplored. This study addresses this knowledge gap by conducting a systematic nu-
merical investigation to elucidate the influence of combined inclination angles and the
enclosure, as well as the sidewall, on buoyancy-driven convection and the associated ther-
mal transport mechanisms in a parallelogrammic porous geometry. The primary objective
is to establish quantitative relationships between geometric parameters, thermal boundary
conditions, and resultant heat dissipation phenomena in this complex configuration.

2. Mathematical Framework
2.1. Description of Geometry

Our analysis examines a porous domain shaped as a parallelogram, illustrated in
Figure 1, with its key dimensions and orientation in the Cartesian reference frame. The ge-
ometry, characterized by dimensions L (width) and H (height), is oriented at an angle
« with the x—axis. The thermal boundary conditions feature a thermal source and sink
located on the opposing inclined surfaces. Specifically, there is a higher-temperature source
(Th) on the left slanted surface and a lower-thermal sink (Tc) on the opposite slated
surface. The remaining boundary segments maintain thermal insulation (adiabatic) condi-
tions. The current analysis intends to investigate the positional impact of these thermal
boundaries on the flow structure, temperature distributions, and heat transport efficiency.
The working medium within the enclosure consists of Cu-H,O NF saturating the porous
structure. We employ the following simplifying assumptions in our analysis:

e The fluid follows the Boussinesq approximation. This approximation is valid when
density variations remain small (typically <5-10%) compared to the reference density,
which is satisfied for moderate temperature differences in water-based fluids [1,20]

e The fluid maintains incompressibility. Water-based nanofluids have very low compress-
ibility and, in particular, copper nanoparticles further reduce compressibility [1,10]

e The fluid experiences negligible effects from viscous heating and inertial forces within
the porous matrix.

e The porous medium is assumed to be homogeneous and isotropic with constant
porosity (¢ = 0.9) and permeability throughout the enclosure. The medium is fully
saturated with NF under local thermal equilibrium (LTE) conditions between the solid
matrix and fluid phases.

e Fluid motion is modeled with Darcy’s law. Darcy’s law is applicable to our study
based on (i) the moderate Rayleigh number range maintaining low-velocity flows
within Darcy’s validity domain, and (ii) Darcy’s law being successfully validated for
nanofluid flows in porous media in similar studies [10,20].

e NF properties are characterized using the Tiwari and Das [11] formulation, which
treats the nanofluid as a homogeneous mixture with effective thermophysical proper-
ties. This is a widely used model in the literature [10,29].

The present study focuses specifically on the low Rayleigh number regime (10! <
Ra < 10%), where the Darcy model accurately represents the momentum transport in
porous geometry. This parameter range encompasses numerous practical applications and
serves as a fundamental baseline for understanding buoyancy-assisted convective motions
before extending to more complex, higher Ra regimes that require extended porous media
models. The current study systematically analyzes the parameter space where the Darcy
model is physically appropriate and well-established in the literature [1,10,20].
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Figure 1. Geometrical configuration with coordinate system and thermal boundary conditions.

2.2. Governing Model Equations

For an incompressible Boussinesq NF-saturated porous parallelogram-shaped do-
main, applying Darcy’s law and the Tiwari and Das NF model, and employing all the
above assumptions, the governing model equations within a tilted NF-infused porous
parallelogrammic domain in Cartesian coordinates can be represented as the following:

Ju oJv
Pug [P -
x4 [ax+8(Pﬁ)nfsln“], )
Pnf . |9p
e [ay+g(Pﬁ)nfCOS“]r 3)
aa—T+ua—T+va—T— 82_T+<92_T (4)
ot ox oy "\ 9x2 T 92

In the above model equations, the symbols represent physical quantities: K represents
the permeability constant, g corresponds to gravitational force, p stands for pressure, and p
stands for density. The coefficient B characterizes the volumetric expansion constant, u
quantifies dynamic viscosity, k measures thermal conductivity, and C, defines the heat
capacity under isobaric conditions. The NF properties utilized in this investigation are
provided in Table 1 [10,20]. In these relations, the parameter ¢ represents the homogeneous
NP concentration and the indices “nf”, “p”, and “f” denote the properties associated with
the NF mixture, NPs, and base-fluid, respectively. Also, these expressions are restricted only
to spherical NPs and not applicable to any other shapes of NPs. Table 2 summarizes the
thermophysical characteristics of three components: the H,O, NF, and material comprising
the porous medium [10,20].
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Table 1. Properties and the corresponding correlations of NFs.

Property Correlation
o . __ Hf
Viscosity (Brinkman model) Unf = W
Heat capacity (mixture model) (0Cp)nt = (1 =) (0Cp)¢ + ¢(0Cp)p

k kp + 2k — 2 (ks — k
Thermal conductivity (Maxwell model) —nf _ TP £~ 2p(ks — kp)
k¢ kp +2kf+¢(kf—kp)

Thermal expansion constant (linear mixing rule)  (0f)nt = (1 — @) (0B)¢ + ¢(0B)p

Table 2. Physical properties of HO, Cu, and porous materials.

Properties H,O Cu Glass Balls
Cp(J-K1-kg™!) 4179 385 840
p (m~3 - kg) 997.1 8933 2700
k(W-K1.m™1) 0.613 400 1.05
a x 1077 (m?/s) 1.47 1163.1 4.63
B x 1072 (K1 21 1.67 0.9

For the energy equation in the porous medium, we have the following relations from
Nield and Bejan [1]:

(ocp)m (1—€)(pcp)s +elpcp)s ®)
km = (1 — e)ks + €kf,

Here, € refers to porosity and the indices m, f, and s denote the HyO-saturated porous
structure, fluid, and solid regions of the porous material, respectively. The physical proper-
ties of the NF-saturated porous material are determined by integrating the relationships
documented in Table 1 with Equation (5). Through this integration, the characteristic
parameters of the NF-saturated porous structure can be established as follows [10,20]:

(Pcp)mnf = G(Pcp)nf +(1—¢) (pCp)S = (pCp)m [1 _ E(PW] )

ek (ke — kp) }
km[kp + 2k¢ + 47(kf — kp)] !

m

(6)

kmnf = €kns + (1 — G)ks = km{l —

Kt = kmnf
e (pcp)nf

where the index “mnf” refers to the NF-saturated porous structure. The relations presented
in (6) establish the novel empirical formulations characterizing the thermal properties of NF-
infused porous media. Unlike conventional approaches documented in previous studies
that primarily focus on interplay between the base fluid and NPs, the current expressions
emphasize the crucial influence of the porous material’s solid matrix. By accounting for
the interrelationships among all three components of the system, such as the base fluid,
NPs, and porous matrix structure, the current formulations enable significantly enhanced
precision in modeling flow analysis and thermal transport phenomena of NFs within
porous systems [10,19,20].

By eliminating the pressure gradient terms through cross-differentiation of momentum

Equations (2) and (3) and introducing the stream function *(x, y) in the form u = 881/; ,
v=— aat’i , satisfying the continuity Equation (1), the modified momentum equation is
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Wunf [P P¢*] aT . aT
K [axz + 2 = 8(pB)ns 3y sina — = cos (7)

Due to the tilted sidewalls of the parallelogrammic domain, we have adapted the
following geometric coordinate transformation, utilized by many researchers [42,43], to re-
shape the physical domain into a square geometry:

X=x—ytanyandY =y. 8)
Finally, the following dimensionless transformations are utilized:

X Y Fmn g v (T-T)

= —, = , = ’ = ,9: 9
¢ L’7 HCOS’)/T aLHcos'yl'b Xy f T, —T¢ ©)

Employing the above coordinate transformation (8) and dimensionless transformations (9),
the modified governing model (momentum and energy) equations assume the following form:
Py _ Z—SiWY Py 1P RaH(¢) cos? L 90 tan %
o¢2 A 9y = AZon? ¢ 7 Acosry o1 Vag

00 0P dyPpad A [829 siny 9%0 1 829]

) 0
sinw — cosa— |,

I8

92 °TA atay  AZag?

9T 9ndf Iy cosy

The dimensionless form of the differential equations shown above provides a math-

ematical framework describing the physical phenomena being examined in this study,
incorporating the following relevant dimensionless parameters:

K AOL .
Ra = %, the Rayleigh number, and H(¢) = M(l —9)%°, A= %,
Hflm Hj
: ¢(0B)p ¢(Cp)p
the aspect ratio, where Hy, = |1—¢+ , Hy = |1—¢+ and
P [ U PTIP PTG,
3€(Pkf(kf — kp)
Hy = |1— .
kmlkp +2ks + ¢ (ks —kp)]
2.3. Temporal and Spatial Boundary Specifications
The dimensionless supporting constraints by utilizing (8) and (9) are
=1 atsource
=0, tg=0
v % =0 atadiabatic sec’ciona ¢
o
0 =0 atsink (12)
= OI t - 1
v % _ 0 atadiabatic section at ¢
o
20  d0
=0,Asiny———— =0, atpyp=0and A

2.4. Thermal Transport Parameter

The rate of thermal dissipation from the source is estimated through the following relation:

Nu = (13)

A dy  9¢

k L+} '
~ Kmnf 1 .2 Nt dy, where Nut — 1 (sm'y a0 86)
ki 61— Cos y

g
2
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Here Nu and Nu are the overall and local Nusselt numbers, respectively.

3. Computational Procedure

The computational approach utilizes finite difference discretization with a combination
of a time-splitting methodology and line-based over-relaxation algorithms to achieve
numerical convergence. The solution procedure employs the following:

(a) Time-splitting technique: The energy equation is solved using the ADI scheme, where
the time increment is split into two halves, with each part treating derivatives in one
direction implicitly. This method is explained below by considering the energy equation.

(b) Line over-relaxation: For the stream function equation, the SLOR method is utilized,
which enhances convergence compared to point-by-point methods. This method is
illustrated in the following momentum equation.

(c) Discretization: Forward and central differencing are utilized for temporal and diffu-
sion terms.

(d) Grid independence: A uniform grid of 126 x 126 is chosen after several trails with
various grids from 51 x 51 to 201 x 201.

() Numerical integration: Simpson’s rule is adopted to evaluate the overall Nu

3.1. Implementation of ADI Technique
The energy equation in terms of the stream function 1 is given by

90 a0yl _ A

9T ' 9y o 9FIy  cosq

9%0 2siny 0% 1 9%0

92~ A oacon T AZa? (14)

For the time derivative, the forward difference is used and the diffusion terms are
approximated by central differences.

n+1 n+l n+l
0 f - 9’7; n Yijr1 — Pij1 9i+1?j - 91'71?]‘ (Vv — iy 01— 071 _
AT/2 2 2AE 2AE 24
grtE gl | gt : or e g i)
A i1, %% " T | 2sing [ P~ P — Py T
cos 7y (Ag)? A 4ANEAY

_|_L 91"]1 29”—|—91]+1
A? (A7)

Upon rearranging the terms in the above equation, we get

A191 1, + B19 + Clg?(—&-l,j =FE 911 1+ F19 + G1911+1 + Hy (15)
where
A 2 2A
Ay = —é(¢i,j+1 $ij-1) — o5’ ; Br= 1 cosy
2

cosy’ A cosy

2

A
G = g(llﬂz]ﬂ $ij1) — ; E1= _§(¢i+1,j — i)+
2

, B
; G = Z(lpi—&—l,j — i) — Acosy

Btany n+l " n+3%
Hi = —=—— {001 = 0101 — 01 +0 1
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Equation (15) is a tri-diagonal system for the variable 91.*’]» that can be inverted by
utilizing the Thomas algorithm.

For the II half-time increment, the variables QZ].H are computed from the follow-
ing equation:

6" apae|™:  ayae|tt!
R + -t -
8Ti]. aqagij 8&8;71.].
’ ' : (16)
B A 8279 n+% _25in’y 920 n+% iaif) n+1
cosy | 9¢2 i A dgan |, A2 9n? i

Replacing the time derivative by the forward difference and the convective and
diffusion terms by central difference approximations in (16), as explained in the first-half
time step, the following finite difference equation can be obtained:

Azegjﬂl 4 BzGZ]ﬂ + czel?/’#l — E297_1,j + eri’i]- + G29;‘+1,j + Hp (17)
where
‘B 2 2 2‘32
Ay =Py i~ )-—-L B =2
27 g ($iv1j = i-a) Acosy’ 2T A + Acosy
B > B A
Co= =3 (i) = ¥i1j) = Foon B2 = g (i —ijm) +
2 24 B A
E==_ . = _—Z(w; 1 — ;i
2= 3 " sy O g (Pijn = i) + s 7

ptany [ n+} n+1 n+y n+1
H=-— (9i+1,j+1 =010 T8

Equation (17), which is implicit in the 7-direction, is a tri-diagonal system in the
unknown 9;1].“ that can be solved in a similar manner.

3.2. Implementation of SLOR Technique

We consider the momentum equation in terms of the stream function in the follow-
ing form:

1 9%y 2siny ?*p %y 2 1 90 a0\ . 00
297 A mjta—ngRaH((p)-cos 7{(Ac057817_tan72)§) smoc—cosocag}

Applying central difference quotients, the discretized equation becomes

(Yir1j = 29i + Pio1y) — % siny ($ir1,j41 — Pivr o1 — Yiorj01 +Pio1j1)

Ag ,B n+1 n+1
<2A cos 7y (Gi'fH Gi/f*1>

A tanvy /.14 11 . cos & 1 1
+ 2 (6r5; — ortL) | sina - - ag (el —ortl)

2
+ % (¥ij+1 —2¢i; + ¥ij—1) = RaH(¢) cos?

A

where = % 7 This can be written as

Aq 1,0,',1,]‘ + B 1/«’1‘,]‘ +G ¢i+1,j =E

156



Mathematics 2025, 13, 3516

where

Ey = % siny (Yig1,11 — Yivrj1 — i1+ Pio1j-1)

A
+ RaH(¢) cos® y ( {‘Zﬁ (o — e

2Acosy
Altany /,,.1q 11 . cos« 11 1
+= (5, — 01 ) | sima . ag(or —orl)

,52
2 (¥ij+1 + ¥ij-1)

The computational procedure utilized for estimating the stream function and thermal
distribution repeats cyclically until achieving the specified convergence threshold:

‘anrl — X’.”.
— o <T (18)
|X1',]‘ |

Within this convergence requirement, the variable x represents either 1 or 8, with in-
dices i and j corresponding to spatial coordinates in the (¢,#) computational domain.
The superscript n indicates the temporal iteration step, while I' defines the tolerance limit
for convergence. A mesh refinement analysis was conducted by systematically varying
the mesh densities from 51 x 51 to 161 x 161 points (see Table 3). The numerical values of
Nu were monitored across these mesh configurations to ensure computational accuracy
and solution stability. Following comprehensive assessment of these mesh sensitivity trials,
the final computations were executed using a 161 x 161 grid distributions.

Table 3. Grid independence analysis at Ra = 103, & = 45°, ¢ =0.05,¢ =0.2,7v=30°and L =0.5.

Grid Size Nu Relative Difference
51 x 51 25.508976744
0.03236
101 x 101 24.680709289
0.01467
161 x 161 24.317631546
0.00213
201 x 201 24.265793436
0.00001
251 x 251 24.265551151

3.3. Validation

To establish computational reliability, we rigorously validated our in-house numer-
ical code against the benchmark results published by Sheremet et al. [20] for buoyant
convection in a uniformly heated porous square domain. The validation cases were con-
figured with specific parameters (inclination angle, « = 0°, sidewall angle, = 0°) for
two distinct porous matrices—aluminum foam and glass ball packing—and the geometry
was filled with Cu-HyO nanofluid. Figure 2 illustrates a comparative analysis of both
NEF-convective flow and thermal contours among our estimations and the simulations of
Sheremet et al. [20], and the results demonstrate excellent agreement. Beyond the qualita-
tive comparison, we also conducted additional simulations to validate our quantitative
predictions by comparing the average Nusselt number values with those reported by Saeid
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and Pop [44] and Baytas [42] for buoyancy-assisted convection in a porous square conduit.
For this validation, we set ¥ = 0, « = 0, and ¢ = 0 to match the reference conditions.
As displayed in Table 4, our current predictions demonstrate excellent agreement with
the established results for a square porous enclosure using the Darcy model. This compre-
hensive validation confirms the accuracy of our numerical approach for the NF-saturated
porous domain, providing a solid foundation for the subsequent parametric analysis.

o 02 04 0.6 o8 X 1 0 02 04 06 e X 1
(a) Sheremet et al. predictions

1.0
Y

0.8 1

0.0 02 04 06 08 x 10
(b) Present predictions

Figure 2. Benchmarking present predictions (b) against the established results of Sheremet et al. [20]
(a) for Ra = 103, ¢ =0.05,€ =0.5 & =0° and v = 0°. Solid lines (aluminum foam) and glass balls
(dashed lines) as porous structures.

Table 4. Comparison of average Nusselt number values with literature findings for v = 0, « = 0, and

¢ =0.
Ra Saeid and Pop [44] Baytas [42] Present Study
100 3.002 3.160 3.102
1000 13.726 14.060 13.914
10,000 43.953 48.330 42.316

4. Results and Discussion

Here, we present the comprehensive illustrations of buoyancy-assisted convection in
an NF-saturated porous structure within an inclined parallelogrammic geometry subjected
to discrete thermal boundary conditions. The thermal-hydraulic characteristics of the setup
are systematically investigated through computational simulations by resolving the coupled
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momentum and energy transport equations. Flow patterns and thermal distributions are
visualized via streamline and isotherm contours, while heat transfer performance is quantified
through estimating the average Nusselt number at the discrete thermal source. The compu-
tational domain consists of an oriented parallelogrammic space with localized heating and
cooling elements positioned on opposing tilted sidewalls. The simulations were performed
with fixed structural parameters (aspect ratio A = 1 and porosity € = 0.9) while systematically
varying the following thermophysical and geometric parameters:

Rayleigh number (Ra): 10! < Ra < 10°

Source length (4): 0.2 and 0.5

Source position (L): 0.3, 0.5 and 0.7

Enclosure inclination angle («): —45° < a < 45°
Sidewall inclination angle (y): —30° < o < 30°
Nanoparticle volume fraction (¢): 0 < ¢ < 0.05

4.1. Enclosure Orientation Impact on Hydrodynamic Flow and Thermal Transport

Figure 3 depicts the influence of the geometry inclination angle («) on the flow struc-
ture and thermal pattern inside the parallelogrammic geometry with a discrete thermal
source-sink. The predictions were obtained with fixed parameters of Ra = 103, v = 30°,
6 =02,L =05,and ¢ = 0.04. The streamline structure reveals a progressive enhance-
ment in flow circulation intensity with a change in geometry tilting angle. At o« = —45°
(Figure 3a), a relatively weak clockwise convective motion is observed with an extreme
flow circulation rate of approximately —2.2. The hydrodynamic flow exhibits a primary cir-
culation cell with secondary vortices near the geometric corners due to collective influences
of discrete thermal conditions and geometrical inclination. When the enclosure is horizontal
(« = 0°, Figure 3b), the circulation intensity increases moderately, with the stream function
value reaching —6.7 and a more organized flow structure concentrated toward the central
region. The most profound flow enhancement occurs at & = 45° (Figure 3c), where the
maximum stream function value elevated to approximately —16.1, indicating an approx-
imate 7—fold increase in circulation strength compared to the « = —45° configuration.
The isotherm distributions exhibit the corresponding changes in thermal characteristics
across three different inclination angles. For & = —45°, the isotherms are marginally dis-
torted and spread throughout the geometry, indicating thermal boundary layer formation
and predominantly a conduction-dominated transport. At &« = 0°, the isotherms exhibit
a moderate shift toward the central region, indicating the enhanced convective transport.
For the &« = 45° configuration, the thermal contours cluster near the thermal source with
reduced thermal boundary layer thickness near both the source and sink. Further, a more
pronounced horizontal stratification can be observed in the core region, indicating superior
convective mixing and thermal transport efficiency.

A comprehensive analysis of the global transport rate (Nu) sensitivity to variations in
Ra and the geometry inclination angle («) is presented in Figure 4 with fixed parameters
v =30° 6 = 0.2, and L = 0.5. The graph demonstrates a vivid correlation between the
improvement in thermal dissipation and the increasing magnitudes of both Ra and «. For all
magnitudes of Ra, the global Nu exhibits a monotonic increase as the tilt angle transitions
from negative (—45°) to positive (+45°) inclinations, with a pronounced enhancement
observed in the range of —20° < a < 20°. At Ra = 10%, Nu increases approximately
six-fold from a = —45° to a = 45°, whereas at Ra = 107, the enhancement is very modest.
An examination of thermal energy dissipation characteristics comparing pure water (H,O)
as the reference medium (depicted by solid curves) against NFs with volume concentration
¢ = 0.05 (represented by dotted curves) demonstrates that NFs continuously exhibit a
reduced performance relative to HyO for all parameter settings. Specifically, at « = 45°,
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the NF demonstrates an 8.6% reduction in mean Nusselt number for Ra = 10%. Similarly,
at Ra = 5 x 102 and Ra = 102, the NF manifests a 13.0% and 12.5% decline in heat
dissipation rate, respectively. This paradoxical deterioration suggests that, despite the
enhanced thermal conductivity of NFs, the accompanying viscosity enhancement hinders
the formation of stronger convection cells, particularly in the buoyancy-driven flow regime
at higher Ra values, an anomalous behavior predicted in the earlier literature [10,20] for a
similar model.

Figure 3. Effect of geometry inclination on streamlines (top row) and isotherms (bottom row) for
¢ =0.04,Ra =103, 7 =230°0=02,L =05 (a) & = —45°. (b) & = 0°. (c) w = 45°.

30
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1 1
—60 —-40 =20 0 20 40 60
Figure 4. Inspection of Nu dependency on variations in Ra and « for ¢y = 30°,0 = 0.2, L = 0.5.
Continuous curves correspond to HyO and dashed curves represent NF (¢ = 0.05).

Figure 5 presents a critical evaluation of the Nu variation in the combined impacts of
sidewall tilting (7) as well as cavity inclination («) with fixed parameters Ra = 103, = 0.2,
L = 0.5, and ¢ = 0.05. The observation reveals the complex interactions between these
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two geometric parameters that profoundly influence thermal dissipation performance.
For all three orientations of 7, the magnitude of Nu remains comparatively low (x~3-4)
at « = —45°, indicating minimal dependence on sidewall tilting at negative geometry
inclinations where buoyancy effects are substantially suppressed. As « increases toward
positive values, thermal transport enhancement becomes pronounced and geometrically
dependent, with all configurations exhibiting an increase in Nu. The square domain
(Y = 0°) demonstrates superior performance, achieving the highest Nu value (24.5)
at « = 15° and reaching a constant value. Notably, the negatively tilted parallelogram
(v = —30°) exhibits non-monotonic behavior, while the positively tilted configuration
(v = 30°) demonstrates continuous enhancement, achieving the maximum heat transfer
rate at o = 45°.

25 —

20

: T : T . . x x
—60 —40 -20 0 20 40 60
a

Figure 5. Inspection of Nu dependency on combined influences of y and « for Ra = 10%,6 = 0.2,
L=0.5,¢ = 0.05.

4.2. Thermal Source-Sink Position and Dimension Impact on Hydrodynamic Flow and
Thermal Transport

Figure 6 illustrates the positional (L) influence of the thermal source—sink on velocity
and temperature distributions for a smaller dimension (6 = 0.2). The top row displays
streamline contours while the bottom row represents the corresponding isotherms by
considering three source positions: L = 0.3, L = 0.5, and L = 0.7. The streamline pattern
reveals a complex bi-cellular flow structure at L = 0.3, with counter-rotating vortices of
unequal strength, where the primary vortex (¢,,;, = —3.1) dominates the upper region and
a secondary vortex (¢,,;, = —2.5) appears near the bottom sink. As the source-sink shifts to
a central position (L = 0.5), the flow reorganizes into a more symmetric bi-cellular pattern
with two distinct counter-rotating cells of comparable intensity (¢,,;, = —3.2 for both),
positioned diagonally across the enclosure and located near the source and sink. Further
shifting the source to L = 0.7, the flow transforms into a distinctly asymmetric pattern
characterized by a smaller eddy (¢,,;, = —2.1) in the upper region and a larger, more
intense, dominating eddy (¢,;;, = —2.7) at the lower portion. The corresponding isotherms
demonstrate a progressive transformation from steep, concentrated gradients near the
source and sink regions at L = 0.3 to more uniformly distributed thermal fields at L = 0.7.
In particular, at the lower positioning of source (L = 0.3), the isotherms exhibit significant
clustering near the bottom left and top right regions, indicating intense local heat transport.
As L increases to 0.5 and subsequently to 0.7, the thermal stratification becomes more
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balanced throughout the geometry, with progressively more uniform gradients between
the source and the sink-placed boundaries. Figure 7 elucidates the significant influence of
thermal source-sink location on velocity and temperature distributions for an extended
thermal source-sink length of 6 = 0.5. Unlike the previous case with a shorter source—
sink length (§ = 0.2), this configuration with an extended source—sink length generates
the strong single-eddy flow patterns across all source positions, albeit with significant
variations in intensity and structure. At L = 0.35, the streamline distribution exhibits
a strong uni-cellular structure with a maximum intensity of ¢,,;,, = —18.0 concentrated
in the lower portion. As the source position moves further (L = 0.5 and L = 0.65),
the circulation core shifts toward the middle and upper regions with a slightly increased
intensity (i, = —18.2 and —18.1) while maintaining similar structural characteristics.
The corresponding isotherms demonstrate parallel evolutionary behavior, transitioning
from a moderately stratified thermal field at L = 0.35 to increasingly distorted patterns
at higher source positions. This progression vividly demonstrates that, with an extended
thermal source length (6 = 0.5), the source—sink position exerts a profound influence on
flow morphology and thermal transport characteristics.

Figure 6. Influence of source-sink arrangement on streamlines (top row) and isotherms (bottom row)
for ¢ = 0.04,Ra = 103, 6 = 02,7v=15°a=-30° (@) L=0.3. (b) L=0.5. (¢c) L=0.7.

Figure 8 depicts the evolution of Nu for different magnitudes of Ra and thermal
source-sink locations (L) with ¢ = 15°, § = 0.2, and « = 30°. The estimation presents
a comparative analysis of Nu between HyO (dashed lines) and NF with ¢ = 0.05 (solid
lines). For all magnitudes of Rayleigh numbers (Ra = 102, 5 x 10%, and 10?), the global Nu
reveals a declining trend as the source-sink position shifts upward from L = 0.3to L = 0.7,
indicating that lower source-sink placements promote a more efficient heat dissipation rate.
This trend is most pronounced at lower Rayleigh numbers, where the thermal efficiency
decreases by approximately 54% for Ra = 102 to 28% for Ra = 103 as L increases from 0.3 to
0.7. With regard to the inclusion of NPs, the base fluid (H,O) consistently outperforms NF
across all conditions. This enhancement is particularly significant for the middle position
(L = 0.5), where the improvement reaches approximately 9.8%, 11.8%, and 9.1% for
Ra = 10°, 5 x 102, and 10? respectively, compared to the lower enhancement percentages
observed at L = 0.3. The superior performance at lower source-sink positions can be
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attributed to the favorable alignment of the buoyancy-driven convection patterns with the
thermal gradient when the heat source is positioned near the bottom of the inclined wall.
The outcomes in Figure 9 illustrate the sensitivity of the thermal transfer rate performance
to variations in the thermal source-sink dimension () across different Rayleigh numbers.
Analysis of the prediction reveals that the Nu consistently decreases as the thermal source
length (0) increases from 0.2 to 1.0 in all Rayleigh numbers, indicating that a shorter
thermal source—sink efficiently promotes higher heat dissipation. Quantitatively, the heat
dissipation efficiency decreases by approximately 33% for Ra = 1000, 35% for Ra = 500,
and 20% for Ra = 100 as ¢ increases from 0.2 to 1.0. The comparative performance between
NFs and water reveals that H,O (base fluid) consistently outperforms NFs at all source
lengths, with enhancement ranging from 10 to 17%.

Figure 7. Influence of source-sink arrangement on streamlines (top row) and isotherms (bottom row)
for ¢ = 0.04, Ra = 103, v = 30°, & = 30°,6 = 0.5. (a) L = 0.35. (b) L = 0.5. (¢) L = 0.65.
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Figure 8. Heat dissipation rate variations with thermal source locations and Ra = 10% at ¢ = 15°,
6 = 0.2, « = 30°. Continuous curves correspond to H,O and dashed curves represent NF (¢ = 0.05).
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Figure 9. Inspection of Nu dependency on variations in § and Ra for L = 0.5, 7 = 30°, a = 30°.
Continuous curves correspond to HyO and dashed curves represent NF (¢ = 0.05).

4.3. Influence of Ra and «y on Hydrodynamic Motion and Heat Transport

Figure 10 portrays the influence of sidewall orientation () on flow and thermal
patterns at Ra = 10%, with parameters L = 0.5, § = 0.2, « = 30°, and ¢ = 0.04 fixed.
The upper row displays streamlines while the bottom row represents isotherms for three
distinct configurations: v = —30°, v = 0°, and v = 30°. The streamline structure reveals a
strong clockwise rotating cell that dominates the flow field in all three geometries, driven by
the thermal buoyancy forces between the source (red segment on left wall) and sink (blue
segment on right wall). The circulation intensity is considerably influenced by the sidewall
orientation, with maximum stream function values of approximately —11.5 for 7 = —30°,
—11.7 for v = 0°, and —14.0 for v = 30°. This progressive augmentation elucidates that
the positive sidewall tilt (y = 30°) elevates convective circulation by approximately 20%
compared to the negative tilt configuration. The corresponding isotherms demonstrate
substantial deformation from the conduction-dominated pattern, confirming the prevalence
of convective heat transfer. As -y increases from —30° to 30°, the isotherms exhibit increased
clustering near the source and sink regions, particularly evident in the v = 30° case, where
temperature gradients are most pronounced. These observations collectively demonstrate
that the parallelogrammic configuration with a positive sidewall orientation (y = 30°)
provides the optimal thermal performance among the three orientations investigated due
to its favorable alignment with the buoyancy-driven flow dynamics.

Figure 11 demonstrates the impact of sidewall orientation (y) on thermal efficiency for
diverse magnitudes of Ra in the tilted parallelogrammic geometry with fixed parameters
L =05,6 = 0.2,and « = 30°. The overall thermal dissipation rate (Nu) exhibits a non-
monotonic variation with 7y across all examined Rayleigh numbers. As 7y varies across £30°,
heat dissipation efficiency declines, with the reduction more pronounced at positive tilt
angles. For Ra = 10°, the thermal dissipation rate reaches its maximum at y = 0°, with the
base-fluid (¢ = 0) achieving Nu =~ 28 compared to the NF (¢ = 0.05) Nu = 26, indicating
an approximately 7.7% enhancement. For Ra = 5 x 102, similar behavior is predicted with
peak values occurring near v = 0°, where H,O demonstrates an approximately 11.4%
improvement over NFs (Nu ~ 19.5 versus Nu ~ 17.5). For the lower Ra = 10? considered
in this analysis, the predictions exhibit less sensitivity to 7 variations, with maximum
values slightly shifted toward v = —10° and the base fluid maintaining an approximately
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13.3% enhancement across the examined tilt range. Notably, the thermal performance
declines at extreme tilt angles (y = £30°), and it appears to be more significant as the

magnitude of Ra increases, suggesting that an optimal configuration becomes more critical
at higher convection intensities.

v = —30° v =0° v =30°

Figure 10. Sidewall tilt angle impact on streamlines (top row) and isotherms (bottom row) for
L=050=02a=30°¢=0.04Ra = 10°.
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Figure 11. Heat dissipation rate variations with Rayleigh number and y at L = 0.5,6 = 0.2, « = 30°.
Continuous curves correspond to HyO and dashed curves represent NF (¢ = 0.05).
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4.4. Impact of Ra and ¢ on Hydrodynamic Flow and Thermal Transport

Figure 12 displays the profound physical transformations in terms of NF buoyant
flow and thermal distributions with Rayleigh number variation for H,O as well as NF.
At Ra = 10%, a weak single-eddy circulation exists with ¥,y ~ —2.2, indicating that
buoyancy forces marginally exceeding viscous resistance and thermal distribution contours
exhibit a near-conduction regime characterized by almost upright equally spaced isotherms.
The fundamental transition in heat transport processes occurs at Ra = 5 x 102, where the
convective motion begins to dominate, accompanied by the intensive streamline, which in-
creases more than five-fold (qx = —8.2). This is further evidenced by significant isotherm
distortion as the buoyant fluid motion proactively transports thermal energy across the
geometry. The convection-dominant phenomenon is further amplified at Ra = 10%, where
the circulation rate intensifies substantially (if;,,x ~ —12.0) with a pronounced change in
the vortex direction, while isotherms develop distinctive thermal boundary layers near
active walls. The physical emphasis of these transformations could be interpreted as the
progressive shift from molecular-level heat transport to bulk fluid transport as the driving
mechanism. In addition, the substantial thinning of the thermal boundary layer has been
predicted at Ra = 103, where sharp thermal gradients form adjacent to the thermal source
and sink, which dramatically elevates the local thermal transport rates.

Ra = 102 Ra =5 x 102 Ra = 103

Figure 12. Streamlines (top row) and isotherms (bottom row) for diverse magnitudes of Ra at
L =050 =02 a =30° v = 45°. Continuous curves correspond to HyO and dashed curves
represent NF (¢ = 0.04).

Figure 13 elucidates the thermophysical mechanisms governing heat dissipation in
a discretely heated—cooled tilted parallelogrammic geometry as functions of NP concen-
tration (¢) and Rayleigh number (Ra) at fixed geometric parameters (y = 30°, L = 0.5,
a = 30°). A counterintuitive thermal phenomenon has been noticed where enhancing
NP concentration consistently reduces heat transport efficiency at all examined Ra values,
contradicting the conventional comprehension that elevated thermal conductivity from
NPs improves the thermal transport. This contradictory prediction reveals the dominance
of viscosity effects over conductivity enhancement in deaccelerating the buoyant-assisted
motion, and a similar prediction was made in previous investigations [10,20]. The elevated
viscosity from the addition of NP suppresses flow mobility and consequently reduces the
convective transport mechanisms. Further, the thermal source-sink dimension () induces a
substantial impact on heat dissipation dynamics, with the smaller heat source-sink (6 = 0.2)
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consistently evidencing superior thermal efficiency compared to the larger source-sink
(6 = 0.5) across all parametric combinations. This enhancement in Nu can be attributed to
concentrated thermal gradients generated by the smaller source, which in turn amplify the
local buoyancy-driven flows and develop stronger convection currents. In accordance with
established predictions, the Ra exhibits the most pronounced impact on the thermal dissipa-
tion mechanism, with Nu increasing approximately five-fold from Ra = 10? to Ra = 10° for
pure fluid (¢ = 0), characterizing the significant progression from a conduction-dominated
thermal regime to a convection-prevalent thermal state. In particular, the negative slope
of Nu versus ¢ steepens with an increase in Ra, demonstrating that the suppression effect
of NPs becomes more detrimental at higher magnitudes of Ra where buoyant convection
would otherwise be more vigorous.

Ra=1000
25
A
20 - e T
~——a-__.
Nu Ra=500
15 4
B e
® - — - . _ _ o-—_ o
10
Ra=100
d — o
5 e —
1 ' 1 v 1 v 1 N I v 1
0.00 0.01 0.02 0.03 0.04 0.05

Figure 13. Heat dissipation rate variations with collective influences of Ra and ¢ at y = 30°, L = 0.5,
« = 30°. Dashed curves correspond to § = 0.5 and continuous curves represent smaller source
dimension 6 = 0.2.

5. Conclusions

A comprehensive numerical investigation has been conducted to elucidate the char-
acteristics of buoyancy-driven convective phenomena and associated thermal transport
mechanisms within an NF-saturated porous parallelogrammic geometry. The geometry
also incorporates strategically positioned discrete thermal source and sink elements, pre-
senting a configuration with significant practical relevance. The systematic parametric
analysis encompassing diverse physical and geometrical parameters has yielded quantifi-
able insights into the governing flow and transport phenomena. The salient observations
and important conclusions derived from this investigation are enumerated as follows:

1.  Thermal source—sink positioning predominantly influences the convective flow pat-
terns and thermal performance, with intermediate positions (L = 0.5) generating
the most energetic flow structures, while extreme locations (L = 0.7) promote more
uniform thermal distributions.

2. The complex interaction between sidewall orientation () and enclosure tilting («)
reveals a significant influence on thermal transport behavior. The optimal geometric
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configuration transitions from y = 0° at moderate cavity inclinations to ¢y = 30°
at high positive inclinations («), suggesting that alignment between the buoyancy-
driven flow direction and the enclosure geometry becomes increasingly critical as «
approaches 45°. These findings demonstrate that strategic manipulation of v and «
can produce substantial thermal performance improvements.

3. Source-sink configuration optimization shows that positioning thermal elements
closer to the bottom wall (L = 0.3) and using smaller dimensions (§ = 0.2) substan-
tially enhance thermal efficiency, with improvements of approximately 38% and 45%,
respectively, at higher Rayleigh numbers.

4. Nanofluid thermal transport consistently exhibits a reduction compared to the base
fluid across all examined parameters, with the most pronounced degradation occur-
ring at higher magnitudes of Ra and moderate inclination angles, mainly attributed
to competing impacts among the thermal conductivity enhancement and viscosity-
induced circulation dampening.

5. Sidewall orientation () sensitivity demonstrates optimal performance at near-
rectangular configurations (y ~ 0° to 10°), with a 7-12% heat transfer decline to-
ward extreme inclinations, intensifying at higher Rayleigh numbers, with Ra = 103
showing the most pronounced variation.

6.  Optimal thermal performance is achieved through strategic combinations of higher
Rayleigh numbers, appropriate source-s-ink arrangements, positive enclosure tilting,
and favorable geometric inclinations that enhance the buoyancy-driven convection.

7. The current predictions provide fundamental insights for optimizing thermal man-
agement systems in porous media applications and highlight the complex interplay
among geometric parameters, fluid properties, and thermal transport mechanisms in
an inclined parallelogrammic geometry.

8. It is worth mentioning that the present study is conducted within the framework
of the Darcy model, which limits the investigation to Rayleigh numbers below 10%.
The range of Rayleigh numbers (Ra = 10'-10°) represents the complete validity
domain of the Darcy approximation, where viscous forces dominate and inertial
effects remain negligible. While higher magnitudes of Ra are indeed encountered
in many practical applications, their investigation would necessitate the adoption
of non-Darcy models. Future studies should extend this analysis to the non-Darcy
regime using appropriate porous media formulations to capture the behavior at higher
Ra values.
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Nomenclature

The following abbreviations are used in this manuscript:

A aspect ratio
g gravitational acceleration (m/ s?)
H height of the enclosure (m)
L width of the enclosure (m)
k thermal conductivity (W/(mK))
K permeability constant (m?)
Nu local Nusselt number
Nu average Nusselt number
p pressure
Ra Rayleigh number
t dimensional time (s)
T temperature (K)
T sink temperature
Ty source temperature
(u,0) velocity components in the x and y direction
(x,y) Cartesian coordinates (m)
(X,Y) transformed coordinates
L source position
Cp heat capacity
Greek Letters
« Cavity inclination
6 source length
% sidewall inclination angle
H dynamic viscosity (Kg/ms)
¢ nanoparticle volume fraction
0 fluid density (kg/m?)
o heat capacity ratio
(&n) dimensionless transformed coordinates
T dimensionless time
0 dimensional temperature
P stream function
P dimensionless stream function
B thermal expansion coefficient (1/K)
A6 temperature difference K
€ porosity
Subscripts
f base fluid
nf nanofluid
p nanoparticle
m porous structure
mnf nanofluid porous structure
Abbreviations
ADI alternating direction implicit
SLOR successive line over-relaxation
NF nanofluid
NP nanoparticle
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