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Preface

Coal fires, as a major disaster in the mining industry, pose a persistent threat to global energy

and production security. Underground coal fires, typically initiated by spontaneous combustion, are

a worldwide challenge to control effectively due to their concealed sources, dynamic propagation,

and high susceptibility to reignition. The core obstacle lies in the fact that a coal fire is fundamentally

a complex dynamic process involving coupled multi-physics, including chemical reactions, heat

and mass transfer, and geomechanics. Therefore, employing a combined approach of experiments,

numerical simulations, and theoretical modeling to investigate the ignition mechanisms of coal and

the propagation patterns of underground fire zones is of critical scientific importance for achieving

their precise prevention and control.

This Special Issue, entitled “Simulation, Experiment and Modeling of Coal Fires”, aims to bring

together the latest research findings in this field. Our goal is to reveal the disaster-causing mechanisms

of coal fires from the multi-dimensional perspectives of simulation, experimentation, and modeling,

to elucidate the spatio-temporal evolution of their occurrence and development, and to provide a

solid theoretical basis for their precise prevention and control. The 12 articles in this Special Issue

collectively offer a multi-faceted, in-depth examination of the frontiers of coal fire research: from the

micro-molecular mechanisms of coal spontaneous combustion to macroscopic mine prevention and

control engineering; from intelligent monitoring and early warning systems based on optical fibers

and machine learning to the precise prediction of secondary disasters such as gas outbursts; and, more

forward-looking, the exploration of new pathways for resource utilization, turning the waste heat

from coal fires from a hazard into a benefit.

We extend our heartfelt gratitude to all the authors for their outstanding contributions, as their

rigorous academic work forms the core of this Special Issue. We would also like to express our sincere

thanks to the expert reviewers, whose insightful comments have significantly enhanced the quality

of the papers. Finally, we thank the editorial team of the journal Fire for their professional support

and hard work throughout the preparation and publication process. We believe that this Special Issue

will provide valuable references and inspiration for researchers, engineers, and decision-makers in the

fields of mining safety, fire engineering, and environmental science.

Wei Liu, Zeyang Song, Caiping Wang, and Bobo Shi

Guest Editors
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Advances in Detection and Monitoring of Coal Spontaneous
Combustion: Techniques, Challenges, and Future Directions

Lucica Anghelescu and Bogdan Marian Diaconu *

Faculty of Engineering, “Constantin Brancusi” University of Targu Jiu, Calea Eroilor 30, 210135 Targu Jiu,
Romania; lucica.anghelescu@e-ucb.ro
* Correspondence: bogdan.diaconu@e-ucb.ro

Abstract: Coal spontaneous combustion (CSC) is a multifaceted research domain that has been
widely explored in the literature, ranging from analytical and numerical modeling to the devel-
opment of fire suppression materials and methods. A comprehensive review of the literature has
revealed several distinct research trajectories, or “roadmaps”, identified through criteria such as
the volume of studies addressing each theme, the presence of review papers dedicated to a specific
roadmap, and the explicit mention of coal spontaneous combustion in the title or keywords. This
classification framework has outlined six primary roadmaps: (1) spread, quantification, and impact;
(2) mechanisms, models, factors, and parameters; (3) experimental studies and models; (4) detection,
monitoring, and prediction; (5) prevention and control; and (6) applications. While interconnections
exist between these roadmaps, and all ultimately converge towards roadmap 5 (prevention and
control), each roadmap constitutes a distinct research cluster. The focus of this review is on roadmap
4, specifically addressing the methods and technologies for detection, monitoring, and prediction
of CSC events. This review encompasses studies published from 2010 to the present, providing
a thorough examination of the various detection techniques employed, with particular emphasis
on their limitations and the strategies proposed to overcome these challenges. A critical analysis
highlights the key advantages and disadvantages of each category of techniques, offering insights
into their practical applications and the potential for future advancements in this field. The present
review aims to contribute to the refinement of detection and monitoring methods for CSC, with the
goal of enhancing early detection capabilities and improving fire management strategies.

Keywords: coal spontaneous combustion; detection techniques; gas monitoring; ground temperature
measurement; thermal infrared imaging; remote sensing

1. Introduction

Spontaneous combustion is a class of combustion processes triggered by a temperature
increase caused by exothermic chemical and physical phenomena. In general, it is agreed
that spontaneous combustion has two phases: (i) The slow phase, during which the
reaction rate is low and the whole mass of material heats up almost uniformly. The heat
is dissipated at the interface with the environment by various heat transfer mechanisms,
mainly convection. Depending on the thermal equilibria conditions, the process can be
slowed down or it can evolve and reach the second phase. (ii) The thermal runaway phase,
in which the exothermic internal reaction speeds up due to the temperature increase and
create an avalanche effect. The temperature increase rate becomes extremely high and
eventually autoignition occurs.

Both inorganic and organic materials can undergo spontaneous combustion, but with
different triggering mechanisms. Coal is an organic material with a significant spontaneous
combustion potential, which is a key hazard in coal mines. Spontaneous combustion of
coal is a complex process influenced by many factors, either directly or through a chain of
triggering processes. Coal spontaneous combustion occurs in coal stockpiles, coalfields,
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underground mines, and, in general, whenever coal is stockpiled for long periods. The
spontaneous combustion of coal causes economic losses, generates greenhouse gases and
poses risks to property through the spread of fire. Coal fires caused by spontaneous
combustion have two distinctive features compared to conventional fires:

1. Coal fires can develop in underground seams as smoldering combustion, representing
some of the most persistent fires on Earth, with occurrences dating back several million
years, as noted by Heffern and Coates [1]. These fires are notoriously difficult or even
impossible to extinguish, leading to both immediate, observable consequences such
as wildfires, and longer-term, less predictable impacts like the alteration of adjacent
geological formations. The terrain-shaping effects of coal fires have been documented
in a study by Heffern and Coates [1].

2. Coal fires do not always require an ignition source. Once the thermal runaway
threshold temperature is reached, the coal mass ignites spontaneously. The thermal
runaway threshold can be anywhere between 80 and 120 ◦C (Song et al. [2]) depending
on many factors.

A bibliometric analysis on the topic of coal spontaneous combustion was carried out
by Liu et al. [3]. The analysis included metrics such as the number of publications over
time, the countries/regions and organizations from where the publications originated, the
journals, and various domain maps discussing the keywords spontaneous combustion,
spontaneous ignition, self-ignition, self-heating and pyrophoric. A key conclusion derived
from this study is that spontaneous combustion research is a multidisciplinary domain,
integrating knowledge from areas such as fuel science, chemistry, thermodynamics, heat
and mass transfer.

Another bibliometric analysis was conducted by Yang and Qiu [4]. The following
list of terms contained in either title, abstracts, and keywords list, was used to extract
from Science Citation Index Expanded publications from 1984 to 2018: coal spontaneous
combustion, coal self-heating, coal spontaneous heating, coal low-temperature oxidation.
A number of 829 publications were selected, out of which 91.31% were journal articles. The
bibliometric analysis reported in this paper focused mainly on the following issues:

� Originating geographic area of the publications. The top four positions were occupied
by China with 348, followed by Australia with 96, USA with 92 and India with
45 publications. China is far ahead of the pack, which is explained by the high
prevalence of coal fires.
Note: A significant number of coal seams, particularly in the regions Xinjiang and
Inner Mongolia, meet the geological conditions and mining practices to render them
highly susceptible to fire, Huang et al. [5]. Coal fire cause annual losses exceeding
100 million ¥, spontaneous combustion fires accounting for 90–94% of the total fire
events in mines [5]. Huang et al. [5] present a statistic (without mentioning the
source of the figures) stating that 32 underground coal spontaneous combustion or
gas explosion accidents occurred in China between 2001 and 2014, causing 614 deaths.

� Journals having published papers on the topic of CSC.
� Keyword occurrence. The top four keywords and their respective occurrence fre-

quency values were low temperature oxidation (353), coal spontaneous combustion
(302), coal (169) and mine fire (137). The keyword with the highest occurrence fre-
quency can be explained by the fact that low temperature coal oxidation is the trigger-
ing factor that ultimately results in coal spontaneous combustion. Other keywords
related to chemical interaction between coal and molecular oxygen were encountered,
such as kinetics, mechanism, model and particle size. Keywords related to prevention
and control such as prevention (37), prediction (26) and inhibitor suggest the existence
of a consolidated research direction.

Onifade and Genc [6] conducted a review on the topic of “spontaneous combustion of
coal”. The content of this review is limited to three sections, mathematical modelling, exper-
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imental methods and statistical methods. The article has a narrative structure summarizing
several works, selected on unspecified criteria.

Zhang et al. [7] conducted a review on numerical studies on the topic of self-heating
of a coal stockpile. A bottom-up approach has been employed in structuring the article
discussing first the mechanisms of coal stockpile self-heating, the transfer equations and
the constants used by various authors, a section dedicated to the variables (coal and
stockpile characteristics, moisture and wind) and concluding with a section describing
the main findings: the simple Arrhenius dependence on defining the coal oxidation rate
is an acceptable approach after the occurrence of the thermal runaway but not at low
temperatures; the Arrhenius parameters change with the particle; the reviewed studies
are not consistent in assessing the effect of the coal particle size on the dynamics of the
coal stockpile self-heating; three distinct stages were identified in the temperature profile:
an initial slow rise due to the self-heating, a plateau phase which was explained by the
energy expenditure to support the phase transition of water, and a third, steep-gradient
stage, explained by the fast oxidation of dry coal. Song and Kuenzer [8] reviewed the
literature on the coal fires occurring in China a decade back (from the date the article was
published). It was reported that written evidence of coal fires dates as early as 386–534 AD.
Coal fire distribution and development were discussed and some theories were put forward
to explain the occurrence of coal fires in the north of China. A significant section of the
article discusses issues related to detection and monitoring of coal fires. The detection and
monitoring methods were grouped into four categories, as follows: underground, ground,
airborne and space remote sensing methods. Three other sections were included discussing
modelling of underground fires, environmental impact and fire control techniques.

In general, reviews covering the larger topic of CSC cannot thoroughly discuss all
the components of the problem. For this reason, recent reviews focus on more narrow
issues connected to the ultimate goal of the CSC research, that is prevention and control.
Two sub-topics were identified where significant research has been published and several
reviews were conducted:

1. Theoretical background, analytical models and numerical studies of the self-heating
coal stockpiles and self-ignition are a set of issues of importance in designing preven-
tion and control techniques. A comprehensive review on the topic of CSC hazard
assessment based on thermal-kinetic and heat and mass transfer was carried out by
Lu et al. [9]. The large volume of literature on this topic was divided into several
sections: propensity rating for coal spontaneous combustion with small loading, fire
potential for coal spontaneous combustion based on large-scale approach, and field in-
vestigation. This division is significant in understanding the main research directions
pertaining to the CSC. Several key conclusions defining the need for more in-depth
research were formulated: extrapolating small-scale indices, such as self-heating rate,
heat release intensity, oxygen consumption, as well as dimensionless parameters, to
large and/or full-scale models has not been fully validated; the macroscopic approach
used in current mathematical modelling of CSC are not always consistent with the
measured data, the development of a multiscale modelling methodology is highly
desirable; although the existence of a threshold between self-sustaining and extinction
conditions for coalfield fire has been established, more research is required to define
quantitatively the threshold conditions. Studies employing numerical solutions for
the self-heating of the coal stockpiles and spontaneous combustion were reviewed by
Zhang et al. [7]; a short discussion on the topic of mathematical models and factors
that determine the dynamics of the self-heating process was included in the general
review conducted by Onifade and Genc [6].

2. Mechanisms and methods for prevention and control of CSC is actually the ultimate
goal of research in this direction. Li et al. [10] conducted a review discussing the
most prevalent materials used in prevention of CSC. The mechanisms by which
the inhibitors slow down or suppress the chemical and physical processes leading
ultimately to CSC were discussed and a classification of materials was carried out
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based on the inhibition mechanism. The availability, cost and environmental impact
of inhibitors were assessed. The techniques, methods, and materials applied in the
prevention of coal spontaneous combustion were reviewed in Onifade [11] (measures),
Kong et al. [12] (methods to prevent CSC), Han et al. [13], and Lu et al. [14] (fire
prevention materials), and Dai et al. [15] (heat pipe systems to prevent CSC in coal
storage piles).

2. Research Methodology

A Scopus search from 2010 to date including document type article, conference paper,
review, conference review resulted in 1176 documents using the keyword “coal spontaneous
combustion”. The Scopus search was limited to the “Keyword” field. A bibliometric
analysis by means of VOS Viewer reported an author keywords number of 2119. We set
the following filters as follows: Document type to Article, Conference paper and Review,
Language to English, and Source type to Journal and Conference proceeding, the total
number of entries was reduced to 928. In the VOS Viewer tool, the number of keyword
occurrence was set to the default value 5, resulting a number of 91 keywords. The list
of keywords contained entries with high semantic similarity (e.g., “coal spontaneous
combustion” and “spontaneous combustion of coal”) which were not removed since the
main purpose of this analysis was to identify/define the main research directions in CSC.
The top five keywords semantically distinct were “coal spontaneous combustion” with 576
occurrences, “activation energy”—38, “characteristic temperature”—34, “coal”—44, and
“apparent activation energy”—29. An initial manual screening was performed, first based
on titles and then on abstracts, to define research roadmaps. The criteria for defining a
roadmap topic were as follows:

1.1 A minimum number of 20 studies broadly discussing a topic define a research
roadmap.
OR

1.2 At least one review article was identified.
AND

2. The coal spontaneous combustion is mentioned in the title, keywords, or abstract.

In defining the roadmaps, some degree of topic disjunction was sought, in the sense
that the roadmap classification would become less meaningful if two or more topics would
merge.

Six roadmaps were identified as follows:

1. Spread, quantification and impact
These are mainly experimental studies and field reports discussing:

1.1 General characteristics, specific features, morphology and large-scale effects
of coal fires occurring throughout the world: Song and Kuenzer [8], Kuenzer
et al. [16], Saini et al. [17], Kuenzer and Stracher [18], Kus [19], Xu et al. [20],
etc.

1.2 Coal fires as a source of pollution and environmental impact: Li et al. [21],
Carroll et al. [22], Oliveira et al. [23], Deng et al. [24], etc.

2. Mechanisms, models, factor and parameters
This category includes

2.1 Studies advancing analytical models for self-heating of coal and spontaneous
combustion: Lu et al. [9], Xia et al. [25], Rua et al. [26], Xi et al. [27], Xiao
et al. [28], etc.

2.2 CFD studies presenting numerical simulation of the coal self-heating and CSC
as well as the influence of physical factors: Yuan et al. [29], Taraba et al. [30],
Chen et al. [31], Zhuo et al. [32], Xiaomeng et al. [33], etc.

2.3 Parametric studies investigating the influence of physical factors (wind, mois-
ture content, particle size) and chemical (coal grade, presence of foreign com-
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pounds, etc.): Zhang et al. [34], Yu et al. [35], Plakunov et al. [36], Qiao et al. [37],
Deng et al. [38], Zhang et al. [39], Zhang et al. [40], Li et al. [41], etc.

2.4 Studies relying on artificial intelligence models and nature-inspired algorithms,
primarily aimed at assessing the propensity of coal spontaneous combustion:
Said et al. [42], Lei et al. [43], Sahu et al. [44], Xie et al. [45], Li et al. [46], Sahu
et al. [47], Wang et al. [48], etc.

3. Experimental studies and models
A class of studies attempting to investigate experimentally the CSC and validate
numerical models:

3.1 The dynamics and susceptibility of CSC: Li et al. [49], Onifade et al. [50], Wen
et al. [51], Zhang et al. [52], Yan et al. [53], Zhao et al. [54], etc.

3.2 Fire control methods and materials: Fan et al. [55], Zhang et al. [56], Zhang
et al. [57], Cheng et al. [58], etc.

3.3 In situ measurements and tests: Liu et al. [59] and Tang et al. [60].

4. Detection, monitoring and prediction
This category includes studies from the following sub-categories:

4.1 Methods for predicting or assessing the risk of coal self-combustion (CSC) in
various systems, including coal stockpiles, coal seams, coal goafs, and coal
gobs, both in underground and surface mining: Hu et al. [61], Song et al. [2],
Du et al. [62], Wei et al. [63], Ma et al. [64], etc.

4.2 Detection of coal fires after the ignition phase using various methods, both
direct and indirect, including secondary effects such as gas emissions: Guo
et al. [65], Guo et al. [66], Gao et al. [67], Zhou et al. [68], etc.

4.3 Monitoring of existing and developing fires: Biswal and Gorai [69], Wang
et al. [70], Hu et al. [71], Kong et al. [72], etc.

5. Prevention and control.

5.1 Techniques for CSC prevention: Liu et al. [73], Liu et al. [59], Shi et al. [74],
Zhai et al. [75], etc.

5.2 Materials and methods for extinguishing the coal fires: Cheng et al. [76], Cheng
et al. [77], Fan et al. [78], Li et al. [79], etc.

6. Applications

This research direction is relatively new, arising from the observation that certain coal
fires are inextinguishable. Consequently, technologies have been developed to harness the
thermal energy released by these fires: Shi et al. [80], Su et al. [81], Xiao et al. [82], Xiao
et al. [83], etc.

It is important to observe that numerous studies span multiple research roadmaps.
This overlap is expected, as the criteria for categorizing a study under a single roadmap
can be inherently subjective. Review studies that specifically address or include at least
one roadmap topic in a dedicated section were identified accordingly are presented in
Table 1 (comprehensive overviews of coal spontaneous combustion and brief reviews are
not included).

The detection, monitoring, and prediction of coal spontaneous combustion (CSC) are
essential for managing and mitigating the risks posed by coal fires, which can cause exten-
sive environmental damage, release hazardous emissions, and disrupt mining operations.
Detection methods primarily aim to identify early-stage combustion events, where low-
temperature oxidation occurs below the surface, often without visible signs. Techniques
such as thermal infrared (TIR) imaging, gas emissions monitoring, and multispectral and
hyperspectral sensors are widely employed to detect heat anomalies, volatile gases, and
changes in the physical properties of coal and surrounding materials. Monitoring methods,
on the other hand, focus on tracking the progression and spread of established fires, often
using aerial and satellite-based remote sensing platforms to map fire boundaries, assess
subsurface smoldering, and evaluate the effectiveness of fire suppression efforts.
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Table 1. Review papers addressing fully or partially the roadmap themes.

Roadmap Theme Author and Ref. Year
Estimated
Percentage Covering
the Roadmap Theme

Spread quantification and
impact Song et al. [8] 2014 25

Mechanisms, models, factor
and parameters

Song et al. [8]
Lu et al. [9]
Zhang et al. [7]

2014
2022
2016

12
100
100

Experimental studies and
models None identified Not applicable

Detection, monitoring and
prediction

Song et al. [8]
Liang et al. [84]

2014
2019

12
100

Prevention and control Li et al. [10] 2020 100

Applications Xiao et al. [82] 2023 100

Predictive modeling is also a critical component of CSC management, as it helps
anticipate fire behavior by simulating parameters such as combustion depth, tempera-
ture gradients, and fire propagation rates. These models rely on field data obtained from
detection and monitoring efforts, enabling the identification of high-risk areas and in-
forming targeted intervention strategies. Despite advancements in these technologies,
challenges remain, particularly in adapting detection techniques to varying geological
and environmental conditions, ensuring continuous monitoring, and improving the ac-
curacy of early-stage CSC detection. This review focuses on recent developments in CSC
detection, monitoring, and prediction methods, evaluating their practical applications and
highlighting key limitations and areas for further research.

3. Coal Spontaneous Combustion Detection

Coal fires, whether fully developed or in the developing phase, can be detected using
a wide variety of methods and sensory systems. Accurate and timely detection is essential
for any coal spontaneous combustion (CSC) detection technique. The selection of an
appropriate technique depends primarily on the general layout and specific site conditions.
More precise detection can be achieved by combining multiple techniques, leveraging the
strengths of each while compensating for their limitations.

Three comprehensive CSC detection categories will be introduced in this review, as
follows:

• Gas emission assessment
• Ground measurements
• Remote sensing

3.1. Gas Emission Assessment
3.1.1. Index Gases

Self-ignition of coal, either in coal stockpiles, seams or gobs, is the result of the
oxidation exothermic process. Three stages were identified in the kinetics of the CSC by
Dong et al. [85]: slow oxidation, accelerated oxidation and intense oxidation. Different
kinds of gas products with different concentrations are released during each phase. The
slow oxidation stage is the most complicated process, according to Xueqiu et al. [86], with
low to moderate CO and CO2 emissions at a constant rate until 150 ◦C, as presented in an
experimental study performed by Dong et al. [85]. Between 150 and 180 ◦C, the emission
rate starts to increase. At 180 ◦C, the concentrations of CO and CO2 rise rapidly, indicating
that the coal oxidation reaction has entered an accelerated stage. Guo et al. [66] reported
slightly different values: the CO emission rate started to increase rapidly above 60 ◦C. This
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value creates the conditions for the formation of coal–oxygen complexes. After 130 ◦C, the
CO formation rate is even higher. The temperature threshold above which the rate of CO
formation increases rapidly can be used as a marker of the rapid oxidation process and so
to predict the inception of the spontaneous combustion. The emission of hydrocarbons
is another important marker of ongoing oxidation processes. In an experimental study,
Guo et al. [66] reported that the CH4 emission is minimal below 100 ◦C (for long flame
coal) and 80 ◦C (for anthracite). In fact, the CH4 emission rate decreases slowly as the
temperature increases. This is explained by the fact that the CH4 emission consists of
desorption of the CH4 adsorbed in the coal pores. At temperature values varying between
100 and 140 ◦C, the CH4 emission rate starts to increase, this being caused by the break of
the side chains in the coal molecules. The temperature at which the methane production
rate reverses indicates the onset of an oxidative process according to Zhao et al. [87]. In
the same experimental study on CSC gas emissions conducted by Zhao et al. [87], it was
reported that C2H4 was not present in coal samples below 100 ◦C. This is an indication of
the fact that C2H4 does not exist in the raw coal and it is actually a result of the oxidative
processes, according to Zhao et al. [87]. Another hydrocarbon commonly associated with
coal oxidative processes is C2H6. Guo et al. [66] reported that C2H6 can be detected at
temperatures as low as 20–30 ◦C, suggesting that trace amounts are adsorbed by the raw
coal. Unlike C2H4, which is an unsaturated compound (Guo et al. [66]), C2H6 can be
deposited in geological formations like coal seams, where it is more stable than C2H4,
according to Liang et al. [84]. For this reason, the C2H6 presence cannot be used to predict
the slow oxidation phase.

For any coal rank, the oxidative processes result in the production of CO, CO2, CH4,
C2H4 and C2H6. The generation paths for hydrocarbons are complex (Liang et al. [84])
consisting of oxidation of functional groups and decomposition of stable complexes under
the effect of the heat. It must be noted though that details of these reactions are not fully
understood (Liang et al. [84]). Given the complex nature of gas emission dynamics during
oxidative processes leading to coal spontaneous combustion (CSC), selecting an index gas to
indicate key milestones in the process chain must consider sensitivity, detection feasibility,
and consistency, according to Zhao et al. [87]. A summary of gas kinds used as indicators of
CSC has been compiled by Liang et al. [84]. Detection of CSC based on index gases can be
categorized into single gas and composite index detection techniques. Single gas techniques
detect CO, which is the most important product of coal low-temperature oxidation. Other
techniques are based on detection of hydrogen, Cliff et al. [88], or ethylene, Xie et al. [89].
Composite index gas techniques for detecting CSC involve analyzing a combination of gas
species emitted during the low-temperature oxidation and combustion processes. These
techniques are based on the principle that monitoring the ratios or composite indices of
multiple gases enhances detection accuracy by integrating the concentration patterns of
several species, rather than relying on a single indicator. This approach allows for more
sensitive and reliable detection, as it accounts for variables such as coal rank, temperature,
and environmental factors that may influence gas emissions. A summary of the single gas
and composite gas index methods is presented in Table 2.

In practical applications, several factors inherent to the mining environment can
compromise the performance of CSC detection systems, leading to either false positives
(erroneous alarms) or undetected CSC events. Table 3 provides an overview of the common
conditions that impact gas emission-based CSC detection systems and the methodologies
employed to address these limitations.
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Table 2. CSC detection based on gas concentration measurement. Single gas and composite index
methods.

Single Gas Advantages/Specific Features Problems and Limitations Used in

CO
C2H4
C2H2
H2

CO is a very effective indicator of
early stages of low temperature
oxidation.
Monitoring techniques are
available that can detect trace
amounts of CO.
CO has a density lower than the
dry air, which stimulates the
diffusion into the surrounding
gases.
C2H4 can serve as a useful
signature gas for detecting CSC,
as its presence is not associated
with other known processes.

The absolute concentration of detected
CO provides limited information about
the fire status, whereas an increasing
trend in CO production typically
indicates a worsening fire condition.
However, trend analysis alone cannot
distinguish whether the CO is generated
from widespread low-temperature coal
oxidation or intense heating in a localized
area.
Air or other gases can dilute the index
gas below the detection limit. In a less
severe scenario, dilution can result in an
underestimation of the heating state.
Other gas sources (thermal engines
emissions, seam gases) can contaminate
the index gas.
The intensity of heating cannot be
determined solely based on the
concentration of a single gas.
H2 may also be the product of the
reaction of galvanized steel and acidic
water during the sampling process.
C2H4 is not an early indicator as it does
not occur before 1500 ◦C.

Wen et al. [51]
Qing et al. [90]
Hu et al. [61]
Ma et al. [91]
Yang et al. [92]

Composite index:

CO Make [93]. Defined as the CO volume
flowing past a fixed point per unit time:

COMake = K × CO × Q
[

liters
min

]
K = 0.06 if CO is measured in ppm
K = 600 if CO is measured in %
Q
[

m3

s

]
airflow rate

CO monoxide carbon concentration
Typical values:
>10 liters/min: investigation required
>20 liters/min: significant fire danger
>30 liters/min: extreme fire danger

Removes the effect of air dilution.

It cannot be used behind seals or in
closed boreholes since it requires a
continuous airflow. This limits
significantly its applicability.

Liu et al. [94]

Graham’s Ratio [93]. The percent change
in CO concentration to change in O2
concentration:
GR = 100×CO

0.256×N2−O2
Typical values:
<0.4: Normal
0.4–1.0: Uncertain (investigation
required)
1.0–2.0: Heating
>2: Intense heating or fire

Graham’s Ratio is primarily
utilized for detecting heating
events or fires that might be
obscured by variations in
ventilation and for monitoring
their progression over time. The
trend in the ratio readings is of
greater significance than the
absolute values. An upward trend
indicates a rise in temperature.

May underestimate the state of
progression. Xu et al. [95]

Young’s ratio [93]:
YR = CO2

0.256×N2−O2

No universal trigger levels can be
established due to the significant
variation in CO2 generation with
temperature across different coal
ranks. The trend in the CO2 ratio
is more informative than the
absolute values.

Other CO2 sources—seam gas or thermal
engines or CO2 loss (dissolved in water)
may influence the value.

Danish and Onder
[96]
Singh et al. [97]

CO/CO2 ratio [93]:
<0.02: Normal
<0.05: coal temperature <60 ◦C
<0.10: coal temperature <80 ◦C
<0.15: coal temperature <100 ◦C
<0.35: coal temperature <150 ◦C

Independent of oxygen deficiency.
Increases rapidly during the early
stages of heating. At high
temperatures, the rate of increase
reduces significantly.

Only intended as an early
warning for heating.
Other CO2 sources from seam gas or
vehicle exhaust may influence the value
The potential loss of CO2 as it readily
dissolves in water.
Can only be employed where no CO2
emissions from other sources exist.

Yan et al. [98]
Lu et al. [99]
Wang et al. [100]
Li et al. [101]
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Table 2. Cont.

Single Gas Advantages/Specific Features Problems and Limitations Used in

Morris Ratio [93]:
MR = N2−3.774×O2

CO+CO2

Valid in early stages of heating
when increasing trend indicates
increasing heating activity.

MR increases to a maximum at
approximately 120 ◦C then decreases.
The size of the peak varies with the coal
rank.

Singh et al. [97]

Jones-Trickett Ratio [93]:
JTR = CO2+0.75×CO−0.25×H2

0.265×N2−O2
Milestone values:
<0.4 Normal conditions
<0.5 Methane fire indication
<1.0 Coal fire possible
>1.6 Impossible

Increasing ratio indicates
intensifying heating/temperature
increase.
Milestone values allow objective
conclusions.
Dilution with fresh air of the
combustion products has no effect
on the ratio.

Invalid if the intake air is oxygen
deficient through the injection of nitrogen
or carbon dioxide.

Singh et al. [97]

Litton Ratio [93]:
LR = 1

3 × CO × (%Rg)−1.5 × (%O2)
−0.5

CO Carbon monoxide concentration in
ppm
%O2—Oxygen concentration in percent
%Rg—residual gas in percent, defined as:
%Rg = 100 − 4.774 × O2 − seamgas
>1 Combustion process
<1 and stable: Safe conditions
<1 and decreasing: Equilibrium
conditions not reached

Milestone values allow objective
conclusions.

Can only detect the combustion but it is
not sensitive enough to identify the initial
phase of low-temperature oxidation.

Singh et al. [97]

Willet Ratio [93]:
WR =

CO2 produced
Blackdamp+Combustibles

No specific/milestone values defined

A falling trend suggests
decreasing activity. Stable values
may indicate no activity.
More effective than Graham’s
Ratio in determining the state of
spontaneous combustion activity
behind sealed areas.

Singh et al. [97]

H2/CO Ratio [93]

An increasing ratio indicates
intensifying heating.
Independent of dilution with
fresh air, seam gas or oxygen
deficiency.

CO can be depleted by bacterial activity.
Thermal engine emissions can modify the
trend.
Rate of change slowed in sealed areas
resulting in averaged values instead of
instantaneous.
Inaccurate for low H2 values due to
detection limitations.

Ratio between hydrocarbons [93]:
C2H6/C2H4
C2H6/CH4
C3H8/CH4
C4H10/CH4
C3H8/C2H6
C4H10/C2H6

Hydrocarbons are produced at higher
temperature and cannot be used to
indicate the early stages of
low-temperature oxidation.

Table 3. Common issues in CSC detection via gas concentration measurement and proposed solutions.

Issue Reference Proposed Approach and Solution

Influence of the goaf atmosphere
composition on the formation of index
gases/composite index.

Liu et al. [102]
2021

The low-temperature oxidative process in a lean-oxygen
atmosphere caused by the presence of CH4 delays the formation of
CO, CO2, H2 and C2H6.
The temperature milestones for the occurrence of the gaseous
components indicating CSC were modified in the presence of
methane.
For temperature values below 170 ◦C the composite index CO/CO2
was not significantly influenced by the O2 concentration and it can
be determined with:
CO

CO2
= −0.675 + 0.333 × e0.0257T

For temperature values above the 170 ◦C threshold, the presence of
CH4 and N2 in the goaf atmosphere rendered the CO/CO2
irrelevant for the indication of CSC
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Table 3. Cont.

Issue Reference Proposed Approach and Solution

Ventilation air dilution lowers the
index gas concentration (C2H4, CO)
below the detection limits of the
instruments.

Xie et al. [89]
2011

A C2H4 enriching system was proposed consisting of a gas flow
system, a C2H4 enriching and adsorption system, a temperature
control system and a gas detection system. It was reported that
C2H4 detection sensitivity increased by approximately 10 times.
Field application of the EES at two coal mines demonstrated that
the detection of ethylene was accelerated by 2 to 3 weeks.

Threshold concentration values may
be relative and misleading in some
environments and conditions.

Liu et al. [94]
2024

Temperature and CO concentration was measured in the air return
roadway in two points: close to the working surface and at a
distance of 16 m. A relationship between the temperature and CO
concentration at the two points was established to determine the
statistical patterns between the two variables. Eventually, a
relationship was established between the measured CO
concentration in the air return roadway and the critical
concentration in the goaf.

CSC stages cannot be precisely and
timely identified using the standard
index gas or composite index.

Ma et al. [64]
2020

A controlled CSC experiment was designed using coal samples
from Huainan mining area, China. A new index—the oxidation
index—was proposed for predicting coal spontaneous combustion,
defined as the ratio of oxygen consumption per unit time to the
total oxygen consumption. Threshold values for the oxidation index
were identified to indicate the transition between stages.

Zhang et al. [103]
2021

Six characteristic temperatures and their corresponding threshold
values were determined, allowing the coal spontaneous combustion
process to be divided into seven stages: the latent stage,
recombination stage, self-heating stage, activation stage, thermal
decomposition stage, fission stage, and combustion stage.

Cheng et al. [104]
2022

A critical CO concentration value was defined based on
temperature, gob geometry and gob ventilation conditions.

Yan et al. [98]
2023

Optimized indexes for temperature ranges consisting of ratios of
different alkanes were defined.

Mining environment factors alter the
gas sensor signal or sensor failures
occur.

Chang and Chang [105]
2023

Gas concentration data were converted into recurrence plots [106].
By means of deep learning-based image feature engineering
(VGG16, VGG19, and ResNet18), the temporal features of gas
concentration time series were converted into image format. This
approach enables the representation and comparative analysis of
sensor monitoring data from different locations, facilitating the
identification of operational status and anomalies.

3.1.2. Radon Gas Emission

Radon exhalation of coal is a complex process, which is has been observed and docu-
mented but no analytical model has been proposed to date. The energy recoil generated by
radium (the parent nuclide of radon) represents the acting force that causes the migration
of radon. The recoil energy causes the radon atoms to come loose from the shackles of the
mineral lattice and move freely. Some of the newly freed radon atoms penetrate the pore
space of the coal, through which a migration process begins. The migration is favored by
the cracks in the coal structure, connected to the surface. The diffusion process is driven by
the concentration and pressure gradients.

The radon release has two distinct stages, Lu et al. [107], Zhou et al. [108], Wen
et al. [109]:

1. Some radon atoms are absorbed and captured in the internal pores of the coal and
others are held captive in the water-filled pores because the transport range of radon
in the water is considerably smaller than in air. The exothermic oxidation reaction
causes the vaporization of porous water and the radon atoms are released into the
external environment.

2. As the temperature increases, the pyrolysis process causes the closed pore of the coal
to collapse and connect and in the same time new crack paths to the environment
are created. The thermal diffusion and convection cause the radon atoms to migrate
through these paths.

10



Fire 2024, 7, 354

Observations show that the radon concertation increases linearly until 50–70 ◦C. After
these values, a sharp increase in the exhalation rate occurs. Between 100 and 120 ◦C, the
radon exhalation rate remains steady. A numerical study modelling the radon exhalation
process occurring was carried out by Lu et al. [107] considering the permeability of the goaf
(and its dependence on the crushing coefficient), the momentum and energy conservation
equation, and species conservation equation, considering the radon decay term. It was
reported that CSC in the goaf induces a porous chimney effect, characterized by thermal
buoyancy and vortex formation in the high-temperature region. The thermal buoyancy
effect arises from the increase in coal temperature, which reduces gas density in the affected
area. This density reduction generates a vertical upward buoyant flow. Concurrently,
the decreased gas density creates an apparent local negative pressure in the combustion
zone, leading to vortex formation around the area due to the suction effect of the negative
pressure. The porous chimney effect offers a theoretical framework for understanding
radon source formation in the goaf. The distribution of radon in the goaf results from
the two concurrent processes, air leakage and the porous chimney effect. During the
low-temperature stage of coal, air leakage predominates, causing radon to accumulate
near the air return side. As coal temperature rises, the porous chimney effect becomes
dominant. The updraft generated by thermal buoyancy rapidly transporting radon to
the top of the goaf. The vortex-induced fresh airflow supplies both oxygen and radon
to the high-temperature zone of coal spontaneous combustion. Once heated, this airflow
re-establishes an upward buoyant flow, further intensifying radon accumulation at the top
of the goaf.

Chan et al. [110] conducted a controlled experiment in which long-flame coal samples
with particle size ~30 mm and porosity 0.3 were placed in a heating tank under a constant
rate airflow of 1 Liter/min. The samples were subject to heating at eight temperature
values, from 30 to 350 ◦C and the radon concentration exhaled from coal was measured
after the thermal oxidation of coal. The dependence of radon concentration on temperature
followed a pattern consistent with that described by other authors, showing a peak around
150 ◦C. However, unlike previous experimental studies, a second peak corresponding to
coal pyrolysis was not observed. Instead, the radon concentration decreased continuously
up to 350 ◦C. In order to gain further insight, a numerical simulation was conducted
on a model presented in Figure 1 (left, the physical system and right, the mesh and the
dimensions).

  

Figure 1. The physical model considered in [110] (left) and the mesh with dimensions (right):
(a) overall view and (b) detail view of the coal pile. Reproduced from [110] with permission from
Elsevier.

This study is interesting as it investigates an important characteristic of the geological
strata, that is the air circulation inside the stock pile, as shown in Figure 2. A high value of
the velocity gradient can be observed in the entrance region of the coal stockpile.

The air flow is one of the key factors that controls the CSC in the coal stockpile. In the
entrance region, on the path denoted a in Figure 2-left, the air velocity has the highest values,
which intensifies the convective heat transfer. As a result, high temperature regions cannot
develop in this region since heat is rapidly removed. The moderate air velocity on the paths
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denoted b and c and the longer trajectory compared to the path a create the conditions
for the coal oxidation and heat accumulation. The radon concentration profile in the coal
stockpile is presented in Figure 3. In Figure 3a the radon concentration on the sides of the
stockpile is plotted after 15, 35 and 48 days. A steady increase in the radon concentration
on the upper side is consistent with the field and controlled experiments reported by other
authors. In the early stages of the CSC, radon accumulations occur at the base of the coal
stockpile. As the CSC progresses in time, the radon concentration distribution increases
in a non-uniform manner due to the effects of airflow and temperature gradients. On the
windward side, the temperature is lower, leading to reduced radon emission. Additionally,
the higher airflow velocity in this area facilitates the transport of radon to other locations,
resulting in a lower radon concentration on the windward side of the coal pile. At the early
stage of coal spontaneous combustion, the radon concentration is higher on the leeward
side at the base of the coal pile due to reduced gas flow and initial oxidation reactions.
However, in the later stages, the radon concentration decreases as the self-heating process
in the coal is inhibited. A key conclusion from this study is that the porosity discontinuity
at the interface between the caving zone and fissure zone (Figure 1) acts as an obstacle
for the radon flow, resulting in a radon accumulation and a continuous increase in the
concentration at this interface. This provides mass and pressure gradient to support the
long-distance migration of radon, which can pass through geological structures and reach
the surface. Thus, the position of the radon anomaly peak is longitudinally consistent with
the position of the fire. Moreover, the peak value of the radon concentration is positively
correlated to the fire source temperature.

 

Figure 2. (left) Air velocity profile (and streamlines) inside the coal stockpile. (right) The pressure
distribution and the potential lines inside the stockpile: a—high-velocity, short-length air path; b,
c—moderate-velocity, long air paths; d—moderate-velocity, medium-length air path Reproduced
from [110] with permission from Elsevier.

Figure 3. Cont.
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Figure 3. (a) The radon concentration on the faces of the coal stockpile. (b) The radon concentration
in horizontal and vertical planes. The streamlines are depicted as red three-dimensional curves, with
arrows illustrating the direction of velocity. Reproduced from [110] with permission from Elsevier.

A selection of experimental studies relating the CSC to the radon gas emission is
presented in Table 4.

Table 4. Laboratory and field studies investigating the radon emission mechanisms during CSC.

Ref. Experiment Results

Wen et al. [111]
2020

Controlled experiment:
Coal samples from the underground working face CJG
(China). Coal particles with maximum size 5–7 mm.
Experiments performed in a spontaneous combustion
experimental furnace.

The experimental data were modeled by fitting an
exponential function to the observed values. A robust
correlation was identified between radon concentration
and temperature within the thermal range of 50–350 ◦C,
as evidenced by a coefficient of determination (R2) of
0.94, indicating a strong goodness of fit. This suggests
that radon emission is highly sensitive to temperature
variations within this interval. However, at temperatures
exceeding 350 ◦C, a pronounced increase in data
variability was observed, likely due to complex
underlying physical processes not accounted for by the
exponential model. This scatter indicates a potential
departure from the initial correlation, suggesting that the
mechanisms governing radon release may change
significantly at higher temperatures.

Du et al. [62]
2021

Field measurements:
A sampling system consisting of a negative pressure air
sampling pump and a sampling pipe inserted in the soil
at approximately 1 m. Surface temperature measurement
conducted by IR imaging on a 1600 × 450 m area known
for underground coal fires. Boreholes were drilled in
high surface temperature areas to measure temperature
and gas concentration.

No match was observed between IR imaging high
temperature regions and radon local concentration. This
was attributed to factors such as

• The hot gas flow generated during the CSC causes
the heating of the geological structures along the air
leakage path. Different physical characteristics of
the geological strata cause different temperature
levels.

• The detection depth of radon is higher than the IR
imaging.

• The radon migration speed in soil is different
depending on the soil permeability, being much
higher in fissures and cracks than solid rock.
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Table 4. Cont.

Ref. Experiment Results

Zhou et al. [108]
2021

Controlled experiment:
Four coal ranks (with the corresponding Radium nuclide
content in Bq/kg) were investigated: lignite (54.2),
long-flame coal (44.4), coking coal (31.2) and lean coal
(37.7).

1. The sealed tank was heated to 30, 50, 100, 150, 200,
250 and 300 ◦C. An air pump was simultaneously
connected to the inlet gas pipe to oxidize the
samples in the sealed tank for 48 h.

2. When the coal samples oxidation was completed at
a constant temperature, the inlet and outlet gas
pipes, dryer, and Rad7 radon detector were
connected in a closed loop to measure the radon
concentration in the tank. A total of two-hour
24 cycles was set for radon measurement at each
temperature.

A low-temperature nitrogen adsorption method was
used to measure the specific surface area of the coal
samples at different temperatures.

Radon exhalation of the coal increases rapidly with
increasing oxidation temperature. The temperature
corresponding to the peak radon concentration depends
on the coal rank. The two-stage coal exhalation
mechanism was confirmed by the radon
concentration–temperature curve. Two characteristic
vertices were identified on this curve:

(a) The absolute maximum value, corresponding to
the water evaporation temperature at
approximately 100 ◦C.

(b) The coal pyrolysis temperature, corresponding to
the second stage of the exhalation process,
occurring at approximately 250 ◦C.

The specific surface area (m2/g) first decreases with the
temperature reaching a minimum value at roughly
200 ◦C and then it increases abruptly after 250 ◦C as the
coal undergoes the pyrolysis process. The downward
trend in specific surface area up to 200 ◦C suggests that it
is not the primary factor contributing to the increase in
radon concentration.

Zhou et al. [68]
2018

Field measurements conducted on the gob of a small
abandoned coal mine in the region Bao Shan Yao Zhai
(China).
Radon concentration in the soil was determined by
means of an alpha-cup emanometer (Ding et al. [112]).
The procedure consisted of burying the frustum-shaped
alpha cup for 4 h at 30–40 cm. Two measurement fields
were defined: field I with an area of 396,000 m2 and field
II with an area of 89,600 m2. The basic point distance was
20 × 20 m with a total of 1530 measurement points: 1050
in field I and 480 in field II.

A 2D color map of the radon concentration was created,
showing the coordinates of the high concentration areas.
Drilling verification was performed in the radon high
value zone of area A confirming an abnormal
temperature area.

Hu et al. [113]
2023

Controlled experiment with long-flame coal disk-shaped
(Φ50 × 20 mm) samples collected from Yunlin region
(China) heated at 5 ◦C/min up to the set point and then
maintained for 1h. Two sets of experiments were
conducted, aerobic and anaerobic (with samples
wrapped and sealed to prevent oxygen exposure). The
radon emission concentration after cooling down to the
ambient temperature was measured.

Temperatures values of 300 ◦C and 500 ◦C are pivotal in
altering the properties the investigated coal. At these
values, there is a significant increase in the mass loss
ratio, specific surface area, pore volume, and fracture
ratio. The expansion and propagation of pores and
fractures, along with the release of substantial amounts
of pyrolysis gases, result in a massive desorption and
dispersion of radon. The radon release rate from
pyrolysis products is inversely correlated with specific
surface area, pore volume, and fracture ratio. The
development of fissures and the reduction in radon
emission rates are more pronounced in the aerobic
environments.
Elevated temperatures promote the transformation of
dissolved, adsorbed, and trapped radon into free radon
within the coal, thereby accelerating its migration rate.
This results in a decrease in the residual radon content in
pyrolysis products and a marked reduction in the radon
exhalation rate. There is a negative correlation between
the heating temperature and the radon emission rate.

3.1.3. Gas Emission Assessment—Insights and Unexplored Areas

The gas analysis with the purpose of detecting the CSC in various phases is a feasible
approach considering the relative simplicity and cost effectiveness of the technique. The
gas sensor systems commercially available are precise enough and the measurement chains
are in general fast and accurate. Rugged, fault-tolerant gas measurement systems were
designed for the harsh mining environment. These systems are in general more expen-
sive and they still require periodic calibration and verification, as they are critical sensor
applications. For such applications, parameters such as precision (the number of true
positives divided by the total number of positive predictions) and recall (the number of true
positives flagged by the system divided by the total number of fire incidents) are of extreme
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importance. No relevant studies on these important issues were identified, although there
are many incident reports where gas emission-based CSC detection techniques failed to
detect the fire [93].

The usual gas monitoring systems are discussed comparatively from the advan-
tages/disadvantages point of view in Table 5.

Table 5. Gas monitoring techniques currently integrated in CSC detection systems.

Gas Monitoring Technique Advantages Disadvantages

Gas analyzers located at the surface with
a tube bundle system. Consist of PET
tubes extended from the surface to
selected locations underground. The
tubes are general high-grade quality non
permeable materials with a variable
diameter ranging from 6 mm to 20 mm
(depending on the length) and lengths of
up to several km. Negative pressure
pumps located on the surface ensure the
gas circulation.

With integration of flame traps, no
explosion-proof devices are required.
Most of the primary components are
positioned on the surface, which
simplifies maintenance.
Calibration of the analyzers can be
conducted on the surface.
No power required for underground
components.
Analyzers available for a wide range of
gases.

Leakage and infiltrations in the tube
system cannot be easily identified.
Results are not in real time.
Moisture removal systems failure results
in formation of liquid droplets, which
hinder the gas circulation or cause
erroneous readings.
Tubes may be easily damaged by fire,
explosion or earth works.

Real-time telemetry systems.
Consist of fixed sensors are generally
installed where real-time data are
required. Sensors suitable for this type of
systems: catalytic combustion (CH4),
electrochemical (CO and O2), and IR
detectors (CO and CH4).

Real-time indication
Since gas sensors generate an electrical
signal, they can be positioned at
significant distances from the analyzer.
A sensor failure cannot go unnoticed.

High maintenance.
Limited sensor life.
Not suitable for oxygen deficient
atmosphere.
Some sensors exhibit cross sensitivity.
Catalytic sensors may undergo
poisoning.

Periodic inspection using portable
devices.

Diversity and flexibility in selection the
sampling location.
Detection accuracy depends on the
accuracy of the analyzer device.

Not possible to use behind sealed
boreholes or closed seams.
Continuous monitoring not possible.
Personnel cost.

Sampling using gas bags subsequently
analyzed by a gas analysis service
provider.

High precision.
A wide range of gases can be detected.

Results are not in real time.
Expensive.
Not possible to use behind sealed
boreholes or closed seams.
Continuous monitoring not possible.
Personnel cost.

Gas chromatographic systems.
Ultra-fast micro gas chromatographs.

A wide range of gases can be detected.
Fast analysis (in minutes).
Simple to operate.
The ability to detect and analyze key
components of spontaneous combustion,
such as H2, CO, ethylene, ethane, and
propylene, at concentrations ranging
from parts per million (ppm) to percent
levels. This requires a single type of
detector, specifically a thermal
conductivity detector for analyzing the
mine atmosphere.

Expensive.
High maintenance.

Accurate and timely detection of CSC in its early stages using index gas methods
presents a complex challenge that extends beyond sensor accuracy. A significant influence is
exerted by the specific conditions and characteristics of the mining facility (such as coal gob
or coal seam) and the properties of the coal itself. Modifications in the local atmosphere (e.g.,
CO and CO2 emissions from thermal engines, CO2 absorption in water, CO consumption
due to bacterial activity) and transient environmental conditions can cause interferences,
leading to deviations in sensor measurements from actual conditions. While CO can serve
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as a reliable indicator of CSC initiation under controlled laboratory conditions, in real-
world industrial settings, numerous and unpredictable interferences render CO-based CSC
detection systems unreliable. To address this issue, the concept of composite index gases
was introduced, as outlined in Table 2. However, composite indices may also be subject to
similar limitations as single gas indices due to their dependence on gas sensors. Although
composite indices may offer greater robustness in detecting CSC under certain conditions
compared to single gas indices, their effectiveness remains influenced by the coal rank and
the specific conditions of the mining environment, Gbadamosi et al. [114].

Radon gas detection methods rely on the exhalation of radon driven by temperature
increases. Due to the strong correlation between radon exhalation rates and temperature,
these methods exhibit robustness and are relatively less affected by specific mining factors.
However, the coal rank significantly influences both the exhalation rate profile and the
observed local maxima. A critical challenge for radon-based methods lies in the radon
migration from subsurface to surface levels. The local geological morphology, charac-
teristics of geological formations, and the presence of fractures and fissures can lead to
substantial deviations between the surface detection points of peak radon concentration
and the actual underground locations of CSC development. Another notable limitation
of radon-based methods, in comparison to index gas methods, is their inability to be inte-
grated into real-time measurement systems. Consequently, these methods do not provide
instantaneous detection.

Most of the experimental studies identified and included in this review are conducted
in controlled laboratory conditions, which might limit the generality of the conclusions.

3.2. Electromagnetic, Acoustic and Optic Techniques
3.2.1. Electromagnetic Effects

Coal heating resulting from low-temperature oxidation and combustion induces
modifications in the surrounding magnetic and electric fields (de Boer et al. [115]). The
generation of electromagnetic radiation (EMR) signals in response to coal heating is a well-
established phenomenon (Kong et al. [116], 2018), though the underlying mechanisms are
complex and not yet fully elucidated. The sources of EMR charges during coal deformation
and fracturing include (Wang et al. [117]): (1) transients of electric dipoles (electric dipole
layers) induced by applied stress, (2) variable motion of separated charges due to crack
propagation and frictional interactions, (3) energy dissipation associated with oscillations in
RC circuits within fractured coal walls, and (4) relaxation of separated charges coupled with
electromagnetic radiation resulting from high-velocity particle collisions with wall cracks.

The volumetric thermal expansion induced by heating leads to deformation and de-
tachment of the morphological structures within the coal matrix. As temperature rises, the
thermal swelling stress within the coal increases proportionally, thereby enhancing the like-
lihood of coal deformation and fracturing. Upon reaching a critical temperature, the tensile
strain experienced by the particles within the coal exceeds their ultimate tensile strength,
resulting in the disruption of mineral particle interfaces. This process generates microcracks
and facilitates the propagation of slip within the coal structure. (Kong et al. [118], 2016).
The non-uniform thermal expansion and deformation of particles within the coal matrix
induces the migration of free charges from regions of high concentration to regions of
lower concentration. This differential expansion creates various stress and density zones
within the coal. Consequently, charge clusters with varying densities accumulate in these
distinct stress and density regions, leading to the formation of numerous dipoles, which
subsequently emit electromagnetic waves (Kong et al. [119], 2017). During the processes of
coal deformation and failure, non-uniform strain induced by charge transfer, piezoelectric
effects, frictional interactions, chemical bond rupture, and dislocation slip under thermal
stress can result in charge separation. When the internal stress in the coal exceeds the
critical stress threshold for crack initiation, cracks develop and propagate. This process
generates free electrons that were previously bound at the crack tips, converting them into
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free electrons. The movement of these free electrons generates EMR signals due to their
displacement and interaction with the surrounding field (Kong et al. [120], 2018).

Electric properties of coal play a pivotal role in the characteristics of the EMR signal
generated during the coal heating. Zhu et al. [121] investigated in a laboratory-controlled
study the dielectric spectrum of coal during oxidation, reporting that the dielectric constant
initially decreased up to 150 ◦C due to reduced dipole polarizability from moisture release,
then it increased between 150 ◦C and 275 ◦C. Up to 225 ◦C, the increase was attributed
to the formation of oxygen-containing bonds outpacing their breakage, enhancing dipole
polarization. Beyond 225 ◦C, changes in oxygen bond quantity and molecular chain
deformation were the main causes of the increase. The dielectric constant then dropped
sharply until 400 ◦C which was attributed to the rupture of polar bonds and volatile release,
before increasing again beyond 400 ◦C, likely from enhanced electron migration.

The variation in the coal electrical resistivity with the temperature was investigated in
a laboratory-controlled experiment by Zhu et al. [122]. Coal samples from five different
mining regions were considered. Coal from two of these regions was known for having a
high spontaneous combustion tendency while coal from one region was known to be stable
to low-temperature oxidation. An impedance analyzer was employed to determine the real
and imaginary parts of the impedance. Under an alternating current ranging from 20 Hz
to several MHz, the volume resistivity of coal samples exhibited a consistent pattern with
frequency: it decreased rapidly at mid to low frequencies and more gradually at mid to high
frequencies. At a test frequency of 100 kHz, the resistivity initially increased with tempera-
ture and then decreased. At the same frequency, both the real and imaginary components
of the coal’s complex relative permittivity decreased with increasing temperature, with a
progressively lower slope. Due to the segmented variation in the resistivity-temperature re-
lationship, the same resistivity value can correspond to multiple temperatures. As a result,
resistivity alone cannot accurately determine the coal’s temperature, and the imaginary part
of the complex permittivity shows a similar limitation. Therefore, when using resistivity
to infer the temperature in a fire zone, the geological conditions and other characteristic
parameters must be considered for accurate interpretation.

In a laboratory-controlled experiment, Kong et al. [116] (2018) measured the varia-
tions in the EMR field produced during the low-temperature oxidation and combustion
of coal. During the spontaneous combustion of coal, distinct electromagnetic radiation
(EMR) signals are observed, with their intensity increasing in direct correlation with ris-
ing temperatures. The EMR signals measured at frequencies of 100 kHz and 1 MHz
demonstrate nearly identical variation patterns, indicating a consistent response across
different frequency ranges. Quantitatively, the EMR signals exhibit a positive correlation
with temperature, characterized by a correlation coefficient greater than 0.73, suggesting
a strong linear relationship. Moreover, the EMR signal intensity showed a substantial
correlation with the evolution of CO volume, reflecting a parallel change trend that under-
scores the potential of EMR monitoring in tracking combustion progression and gas release
dynamics. An experimental field study conducted by Kong et al. [72] (2019) attempted to
correlate the EMR spectrum with the CSC in a section of a mining area where IR imaging
revealed several hot-spots (~55 ◦C). The underground temperature measurements showed
an ongoing spontaneous combustion process, with temperatures exceeding 300 ◦C. The
correlation between the heatmap and the EMR spectrum is presented in Figure 4 using the
data obtained by applying the Kriging interpolation method to compute the variogram of
the EMR data collected from 20 measuring points across 5 measurement lines within the
high-temperature region.
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Figure 4. EMR spectrum and surface heat map. Reproduced from [72] with permission from Elsevier.

3.2.2. Electric Properties

Karaoulis et al. [123] proposed a combined method consisting of simultaneous inver-
sion of self-potential and resistivity data, employing joint attribute analysis to delineate
and localize the burning front of a coal seam fire. The experimental study was applied
to a subbituminous coal formation fire at depth value ranging from 10 to 15 m. The self-
potential survey systems comprised 160 measurement stations distributed across 5 profiles,
with 32 stations per profile, positioned at the ground surface. The observed self-potential
anomalies ranged from +70 m to −50 mV relative to a reference point located distal to the
burning front. The resistivity survey included 5 profiles, each with 118 measurements,
totaling 590 resistivity readings. The burning front was characterized by extremely low
electrical resistivity values (<15Ω • m) and a source current density likely attributable to
thermoelectric effects. The integrated inversion and interpretation of self-potential and
resistivity data distinctly delineated the position of the coal seam fire. This finding was
further validated by the detection of a thermal anomaly at a depth of 30 cm and observation
of sporadic hot steam, suggesting a minimum depth for the thermal source of approxi-
mately 9 m. The high-resolution earth resistivity method, initially developed to detect
underground cavities (bunkers, tunnels, etc.) was applied to detect underground burning
areas by Shi and Wu [124]. The method consists of placing the potential electrode at one
end of the survey line. A current is injected into the ground through a series of current
electrodes, and the corresponding potential differences are measured at the initial position
of the potential electrode. The potential electrode is then moved to the next measurement
point along the survey line, and the process is repeated: current is supplied sequentially
through each current electrode, and the resulting potential differences are recorded. This
procedure continues until the potential electrode reaches the opposite end of the survey
line. By following this sequence, a complete two-dimensional profile of electrical potential
differences along the survey line is obtained. Uneven electrical properties of the Earth’s
surface may cause serious errors for this method. The second method described in Shi
and Wu [124], which overcomes the main drawback of the high-resolution earth resistiv-
ity method, is the transient electromagnetic method. An ungrounded loop or grounded
line source is used to send a primary electromagnetic pulse of a specific waveform into
the ground. Between these pulses, a coil or grounded electrode is used to measure the
secondary magnetic field (caused by eddy currents) or the space-time distribution of the
induced electric field. This method provides information about the electrical properties of
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underground geological structures. Compared to the frequency-domain method, the tran-
sient electromagnetic method offers higher detection accuracy, as measurements are taken
from the same location, reducing issues related to recording points. Additionally, the use
of a loop device minimizes the effects of static shifts caused by surface electrical property
variations and is less affected by terrain changes. Therefore, this method is particularly
suitable for detecting burned areas and high-temperature centers in combustion zones,
making it a critical component of the comprehensive electromagnetic approach discussed
in this study. The results of the two methods are presented in Figure 5 (left, high-resolution
earth resistivity and right, transient electromagnetic method).

Figure 5. Apparent resistivity profile determined through the high– resolution earth resistivity
method (left) and transient electromagnetic method (right). Reproduced from [124] with permission
from Elsevier.

The modification of the acoustic properties of solids with temperature is another
method that allow for identification of areas where CSC exists. Two methods that rely
on temperature-induced modification of the acoustic properties exist: (i) methods that
are based on the change in speed of sound and (ii) methods that determine the change in
frequency of the acoustic wave. Acoustic velocity thermometry is a commonly employed
technique for measuring temperature. This method involves determining the propagation
velocity of an acoustic wave by measuring its travel time over a known distance within the
medium of interest. The temperature of the medium is then inferred from the established
relationship between acoustic wave velocity and temperature. The sound source signals
used in acoustic thermometry typically encompass both low- and medium-frequency
acoustic waves, as well as ultrasound. Ren et al. [125] conducted acoustic attenuation tests
in an experimental study in a laboratory-controlled environment with four types of coal
(lean coal, coking coal, non-stick coal and long flame coal) prepared into seven particle size
distribution ranges (>10 mm, 7–10 mm, 5–7 mm, 3–5 mm, 0.9–3 mm and <0.9 mm). An
experimental apparatus consisting of an impedance tube, acoustic driver (loudspeaker),
microphone array, and data acquisition system was employed to quantify the attenuation
coefficient over a specified range of frequencies and temperatures. For all coal samples and
temperature conditions, the attenuation coefficient demonstrated a non-linear, oscillatory
behavior with local maxima superimposed upon a generally increasing trend. A modest
increase in the attenuation coefficient was observed with rising temperatures. Attenuation
peaks were detected at frequencies of 400, 700, 1100, and 1600 Hz, which can be attributed
to mechanisms of acoustic absorption and scattering resulting from the granular and
porous nature of the coal. Deng et al. [126] used a similar experimental setup to investigate
the acoustic attenuation characteristics of anthracite, using coal samples collected from
Si he coal mine (China). Pseudo-random, pulse, and swept-frequency acoustic signals
were utilized in this study to evaluate the attenuation characteristics of anthracite coal.
The findings indicated that the pseudo-random signal exhibited the highest attenuation,
whereas the pulse signal demonstrated the greatest sensitivity to temperature variations.
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When estimating the temperature of anthracite coal using an optimized acoustic signal
composed of a linear frequency sweep between 600 and 1000 Hz with a 0.1 s duration,
the maximum absolute temperature error was determined to be 4.22%. In a laboratory-
controlled study, Kong et al. [127] (2024) built a test system for exploring the sound wave
kinematics parameters in the process of CSC. The elastic wave computed tomography
(CT) inversion algorithm was employed to reconstruct the acoustic wave velocity field,
which was subsequently used to infer the temperature distribution within the coal sample.
Results indicated that regions of elevated sound wave velocity corresponded to areas
exhibiting temperature anomalies, particularly in zones with higher coal temperatures.
The accuracy of the reconstructed sound velocity field was validated through correlation
with the results obtained from single-path acoustic velocity measurements. This study also
proposes a hypothesis to account for the variability of sound velocity in regions affected by
CSC. Scanning electron microscopy (SEM) analysis revealed that as the temperature rises,
the extent of damage and fracturing of coal particles increases, resulting in the expansion
of inter-particle gaps. As sound waves propagate through these gaps, the elevated air
temperature within them contributes to an increase in sound velocity. Consequently, the
velocity of sound waves rises in tandem with the heating of loose coal.

Liu et al. [128] developed a laboratory-scale experimental setup to investigate in-
frasound signals generated during the CSC process. Their study aimed to establish the
frequency domain characteristics and the correlation between infrasound signals and CSC
temperature. The analysis focused on the frequency domain and energy characteristics
of infrasound waves across different stages of the CSC process. Two key conclusions
were derived from this study: (i) The time-domain analysis revealed that the infrasound
waves generated during CSC can be classified into three distinct stages: a stable stage, a
development stage, and a rapid increase stage. The infrasound signals exhibit intermittent
characteristics, with the primary frequency amplitude of these waves showing a strong
correlation with temperature, evidenced by a correlation coefficient exceeding a certain
threshold. (ii) The energy of infrasound waves is predominantly concentrated in the low-
frequency range of 0–0.12 Hz during the process of CSC. The distribution of infrasound
energy across different frequency bands varies significantly at different stages of CSC. As
temperature increases, the proportion of energy within the 0.04–0.08 Hz frequency range
progressively rises, while the energy proportion in the 0–0.04 Hz range diminishes. The
observed increase in infrasound energy within the 0.04–0.08 Hz band serves as a critical
precursor to the onset of CSC.

A comprehensive review on the application of complex acoustic wave techniques
was conducted by Guo et al. [66]. All studies included and discussed in this review were
conducted in laboratory-controlled environments. The majority of the studies converge
in several key findings: (i) Combustion-generated sounds and externally applied acoustic
signals can interact to create a dual-source composite acoustic wave. However, the effects
of superposition and mutual interference between these source waves on the waveform
and characteristics of the composite wave remain poorly understood. The application of
dual-source acoustic thermometry is constrained by challenges in separating the composite
wave spectrum and comprehending the influences of coal properties and gas composition
on these interactions. (ii) The acoustic emissions generated by the spontaneous combustion
of loose coal in mining areas are significantly influenced by several factors, including the
degree of coal metamorphism, coal temperature, void characteristics, and surrounding gas
conditions. Developing a relationship model that correlates these factors with acoustic
signals will likely be a key advancement in the field of acoustic temperature measurement
of coal.

3.2.3. CSC Detection Based on Magnetic Effects

Magnetometry surveys are effective in detecting underground anomalies induced by
coal spontaneous combustion (CSC) due to changes in magnetic susceptibility resulting
from thermal alteration of the medium. In a magnetometry survey conducted by Ide
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et al. [129] in the San Juan Basin, USA, the magnetic susceptibility of thermally altered
overburden samples at the NCF was measured using a kappa bridge system. The study
revealed that these altered samples exhibited magnetic susceptibilities significantly higher
than the natural, unaltered values, by one to two orders of magnitude. Diurnal variations
in the Earth’s magnetic field and anomalies caused by metal objects were mitigated through
filtering techniques. The results demonstrated high repeatability and enabled monitor-
ing of the advancement of the combustion front. However, a notable limitation of this
method is that geological structures affected by subsurface fires often contain substantial
concentrations of magnetite, which can influence the accuracy of the measurements. Shao
et al. [130] conducted a comprehensive field study on the Heshituoluogai coal fire in China,
which encompasses 12 sub-fire areas across 57 km2, totaling 1,444,220 m2. Magnetic and
self-potential anomaly data were collected using a magnetometer and an intensification-
polarization instrument. Laboratory experiments revealed that rocks overlying a subsurface
fire, when heated beyond the Curie temperature, exhibit significant changes in magnetic
properties, such as magnetic susceptibility and thermoremanent magnetization. Data
processing techniques, including diurnal fluctuation rectification, reduction to pole, and
upward continuation, facilitated clearer interpretation of the results. The fire locations iden-
tified through magnetic and self-potential methods aligned with ground survey findings,
demonstrating the effectiveness of these techniques for detecting coal fires. Additionally,
the study found that the redox and Thomson potentials, resulting from coal combustion at
high temperatures, induce self-potential anomalies: positive anomalies indicate shallow
fires, while negative anomalies suggest deeper fires (beyond approximately 30 m).

3.2.4. Summary and Future Perspectives

Electromagnetic/electric, magnetic, and acoustic measurement techniques offer sev-
eral advantages over gas-based detection methods. These techniques provide extensive
spatial coverage beyond the immediate vicinity of the sensor, involve relatively low installa-
tion and maintenance costs, and are adaptable for detecting fires in underground coal seams,
stockpiles, and coal silos. Despite a significant body of research on electromagnetic/electric-
based detection of spontaneous coal combustion (CSC), several limitations affect their
applicability. Challenges include the complexity of electrical phenomena, the variability in
the electromagnetic properties of coal and geological structures, and the inconsistency of
site conditions. While some studies (e.g., Kong et al. [127]) have successfully characterized
subsurface fires using electromagnetic effects, further research is needed to generalize these
findings across different sites, coal ranks, and geological morphologies. The mechanical–
electrical and thermoelectrical coupling models depend on various mechanical, electrical,
and thermophysical parameters that differ to a significant extent among coal ranks and
geological formations.

Magnetometry has two principal limitations: (i) magnetic anomalies detectable by this
method occur only at high temperatures, indicating that CSC is already fully developed,
and (ii) the geological structures above the coal seams must contain a sufficient amount
of magnetite. Furthermore, magnetic anomalies are highly sensitive to the magnetic
concentration, which varies from site to site.

Acoustic techniques also present potential for CSC detection, with advanced systems
capable of accurately locating the combustion front. However, these technologies are
still under development and face significant challenges. Issues include the complex and
heterogeneous nature of the propagation medium—comprising coal matrices with varying
morphologies and gas- or air-filled voids—which affects acoustic wave propagation in ways
that are not yet fully understood or consistently reproducible. Additionally, the technology
has not yet achieved the maturity required for standardization and widespread use.

4. Surface and Combined Techniques

Surface techniques are mainly based on the temperature measurements, in general,
by IR thermography. Surface techniques have several major advantages in comparison to
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underground techniques: (i) no physical contact is required; (ii) real-time heatmaps can
be produced; (iii) with little effort, large surface areas can be monitored. However, it has
to be noted that the surface heatmap does not always offer an accurate image of the CSC
progression developing underground, and a set of hard-to-control factors can interfere
with the quantitative measurements of surface techniques: subsurface geological structures
morphology and dimensions; environmental factors (ambient temperature and humidity,
wind speed and direction, solar radiation intensity), and radiative properties of the surface
(emissivity and albedo).

Field studies attempting to characterize the CSC by means of IR thermography were
reported by Pandey et al. [131], Misz-Kennan and Tabor [132], and Roy et al. [133]. Hu
et al. [71] conducted an empirical investigation at a decommissioned coal waste dump in
Changping, China. The experimental site was configured as a conical heap with a base
diameter of 2.5 m and a height of 1.8 m, totaling approximately 2767 kg in mass. The coal
waste comprised subbituminous coal, sandstone, clay, quartzite, sulfide mineralization, and
various solid residues. Field surveys identified potential high-temperature zones on the
surface of the dump and noted a significant absence of vegetation. The methodology devel-
oped in this study encompassed four key phases: field investigation, data pre-processing,
data integration, and 3D visualization. The resulting 3D temperature distribution model
enabled the classification of observed zones into three distinct categories based on vary-
ing temperature levels. Gao et al. [67] employed a ground penetrating radar operating
at 900 MHz in a laboratory-controlled experiment to create underground images, which
were further processed by means of deep learning to identify the position and size of an
underground burning area. Based on the similarity theory, a scale model was built for a
coal fire developing in a coal seam with the thickness of 4.3 m at the depth of 26.9 m.

The evolution ofCSC and the corresponding ground-penetrating radar (GPR) images
are depicted in Figure 6. Due to the significant difference in dielectric constants between
air and rock strata, where air exhibits a considerably lower dielectric constant, the inci-
dent electromagnetic waves generate a strong reflection at the air–rock boundary. This
phenomenon is characterized by a distinct hyperbolic reflection pattern in the radar images.
In contrast, coal has a dielectric constant slightly lower than that of the surrounding rock,
and the medium demonstrates a relatively uniform composition. This results in a clear,
linear reflection interface between the coal and the adjacent rock strata. During the early
stages of combustion, the amount of ash produced is minimal, resulting in a continuous
signal between the combustion cavity and the coal seam in the radar image, as illustrated
in Figure 6a. By comparing the radar images obtained during testing with those produced
by GPR, it becomes possible to identify and interpret waveform signals indicative of coal
fires. Key spatial features associated with areas of coal combustion include the combustion
cavity, the active combustion front, and the subsurface collapse zones—all of which serve
as primary detection targets for GPR surveys. The combustion cavity is identified by a
hyperbolic reflection response accompanied by fractures that form between the hyper-
bolic waveforms and linear interfaces. Meanwhile, the subsurface collapse surface due to
combustion is represented by a continuous, curved waveform, characterized by irregular
reflection signals emanating from below the collapsed zone.

Wang et al. (2020) [134] introduced an integrated approach for delineating coal fire
zones, utilizing a multi-index data fusion method that combines temperature, gas, and
radon concentration measurements. The methodology incorporates non-dimensional
normalization to standardize different data types and applies weight analysis using the
Analytic Hierarchy Process (AHP) to assess the relative importance of each parameter. The
approach employs radon gas measurements, borehole temperature data, and gas concen-
tration measurements to create a comprehensive index of fire zone delineation (IFZD). This
IFZD, derived from the fusion of multi-dimensional data, provides a robust framework for
accurately identifying and characterizing the extent of underground coal fire zones. Using
fractal theory, the threshold for anomalies in the Index of Fire Zone Delineation (IFZD) was
established through a piecewise linear regression in double-logarithmic coordinates. This
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process resulted in the development of a comprehensive multi-dimensional data fusion
method for detecting underground fires, which was subsequently applied to a shallow
coal seam fire in a typical integrated mining site. The analysis revealed that the weight
coefficients assigned to various detection indices, namely carbon monoxide (CO), carbon
dioxide (CO2), sulfur dioxide (SO2), temperature, and radon, were 0.12, 0.03, 0.05, 0.12,
and 0.68, respectively. The lower boundary for IFZD anomalies was identified as 0.29.
Utilizing the IFZD values and the corresponding anomaly thresholds, a detailed composite
contour map was created, along with a plan view and a three-dimensional model of the
anomalous zones. This mapping identified eight distinct areas, covering a total surface
area of 27,061 square meters, with the anomalous regions extending from the vicinity of a
decommissioned shaft and the main well toward the southwest and northeast. Notably, the
densest contours and the highest values were found around the locations of the abandoned
air shaft and main shaft, indicating severe coal oxidation in these areas. These findings
underscore the need for intensified monitoring, particularly focusing on the inspection and
sealing of ground fractures.

 

Figure 6. The advance of the simulated CSC and the corresponding radar images: (a) the initial stages
revealed the combustion cavity in the form of a hyperbola in the radar image; (b–d) misalignment
and fractures between the hyperbolic reflection and the linear interface occur due to ash formation;
(e,f) thermal stress and gravity caused the roof collapse; (g) fissures in the adjacent strata; (h,i)
collapse of the adjacent strata. Reproduced from [67] with permission from Elsevier.
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A novel data-driven approach was proposed by Wang et al. (2024) [135] and applied
to a coalfield in Xianjiang (China) in four characteristic regions, as depicted in Figure 7. By
utilizing the atypical properties of shallow soil and surface strata as diagnostic indicators,
a comprehensive evaluation framework is introduced to detect the incipient stages of com-
bustion in coal fire areas through a data-centric methodology. A hierarchical assessment
model is established for the early detection of combustion, integrating both terrestrial and
atmospheric parameters. The combustion intensity at each survey point is determined by
leveraging survey datasets to assign weighting factors to the assessment indicators. Geo-
graphic Information System (GIS) technology is applied to delineate the spatial distribution
and boundary extents of varying combustion intensities within the surveyed region. The
proposed assessment framework is validated using radon concentration measurements
and infrared thermographic imaging techniques.

 

Figure 7. The coalfield where the data−driven approach presented in [135] was applied. (a) Map of
the region Xinjiang; (b) Location of the survey area; (c) Survey boundaries and distribution points.
Reproduced from [135] with permission from Elsevier.

To verify the precision of the assessment outcomes, field validation was carried out
using radon gas detection and geological surveying techniques, as illustrated in Figure 8.
Infrared thermal imaging was employed to examine the geological characteristics associated
with risk assessment level IV, as shown in Figure 8a–d. In regions A, B, and C, where
the risk level was classified as IV, surface temperatures were found to exceed 100 ◦C,
revealing significant thermal anomalies. In contrast, no such high-temperature anomalies
were detected in region D. This suggests that areas categorized under risk assessment level
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IV exhibit more pronounced coal fire activity, consistent with the thermal irregularities
typical of active combustion phases. The four regions (A, B, C, and D) display distinct
spatial distributions of assessed risk levels. In regions A, B, and C, (locations evaluated
at risk level IV) geological features such as fractures, subsidence pits, vents, and radon
gas anomalies were reported. Notably, the maximum radon gas concentrations in these
areas were 2672 Bq·m−3, 2890 Bq·m−3, and 3000 Bq·m−3, respectively. This indicates that
sites identified with assessment risk level IV correspond to periods of intensified coal
fire combustion.

Rúa et al. [136] conducted field measurements on 23 parameters (coal seam specific as
well as environmental) in two open-pit mines in Columbia with a history of spontaneous
combustion events compiling a dataset with 21,000 entries. The logistic regression model
revealed that the primary variables influencing the initiation of spontaneous combustion
include seam temperature, atmospheric pressure, wind velocity, oxygen concentration,
methane levels, altitude, ash content, volatile matter percentage, calorific value, vitrinite,
liptinite, and the Hardgrove grindability index. Controlling certain variables can prevent
the formation of conditions conducive to ignition. The key controllable factors are seam
temperature, wind velocity, and oxygen concentration. Potential mitigation strategies
involve sealing coal seams with materials that possess high thermal insulation and im-
permeability, as well as employing controlled blasting techniques such as precutting and
buffer blasting to minimize heat transfer and restrict oxygen ingress, thereby inhibiting the
oxidation reactions that promote combustion.

 

Figure 8. The results of the risk level assessment in four areas of the test region. (a) Field characteristics
of area C; (b) field characteristics of area B; (c) field characteristics of area A; (d) field characteristics
of area D; (e) risk level in the four areas considered. Reproduced from [135] with permission from
Elsevier.

Abramovicz et al. [137] introduced and validated an innovative method for detecting
subsurface smoldering fires by examining vegetation and soil condition changes in coal-
waste dump areas affected by self-heating and spontaneous combustion. The study focused
on the composition of plant species, life forms, and ecological groupings in relation to the
heterogeneous particle size distribution of the deposited materials and fluctuating soil
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temperatures. These factors significantly influenced the dynamics of vegetation, leading to
the development of a distinct plant community. Notably, hemicryptophytes and apophytes
were predominant in regions experiencing active thermal processes. The distribution of
vegetation was monitored over three distinct periods along a transect that encompassed
three surface categories with varying thermal characteristics and subsurface smoldering
directions. Subsurface temperatures at a depth of 20 cm ranged from 9.9 ◦C to 139 ◦C,
while surface temperatures varied from 3.1 ◦C to 69.0 ◦C. The total organic carbon (TOC)
content across all samples was between 1.7% and 7.6%, with concentrations from 3.1%
to 4.5% in areas of active fire. Total nitrogen levels were measured between 0.023% and
0.29%, and soil pH ranged from 5.8 to 8.0 when analyzed in water. Temporal and spatial
variations in vegetation patterns were indicative of the progression of fire spots. The
findings underscore the critical influence of subsurface temperatures on the spatial organi-
zation and species diversity of plant communities in coal-waste disposal sites affected by
spontaneous combustion.

A similar approach was applied in an experimental study conducted by Ren et al. [138].
A spatial analysis method was proposed to achieve early warning spontaneous combustion
of coal waste dump after reclamation by integrating unmanned aerial vehicle (UAV) and
vegetation (Medicago sativa/alfalfa) growth status. The experiment was carried out in
two slope areas of a coal waste dump after reclamation in Shanxi province, China, which
were known for spontaneous combustion propensity. Three alfalfa growth parameters,
aboveground biomass (AGB), plant water content (PWC), and plant height (PH) of the
study area, were estimated from UAV imagery features and used to assess the spontaneous
combustion risk. Then, soil deep temperature points (25 cm depth) distributed evenly in the
study area were collected to determine the underground temperature situation. It was re-
ported that the UAV-derived rededge Chlorophyll index (CIrededge), canopy temperature
depression (CTD), and canopy height model (CHM) achieved a better estimation of alfalfa
AGB (R2 = 0.81, RMSE = 99.2 g/m2, and MAE = 74.9 g/m2), PWC (R2 = 0.68, RMSE = 3.9%,
and MAE = 3.2%), and PH (R2 = 0.77, RMSE = 9.79 cm, and MAE = 7.68 cm) of the study
area, respectively. Another key observation was that three alfalfa parameters were highly
correlated with the soil deep temperature, but differed in degree (R2 = 0.46–0.81). They
were consistent with the soil deep temperature in spatial distribution and could reveal the
change direction of underground temperature, which could be helpful to detect potential
spontaneous combustion areas. These results indicated that vegetation is a prior indicator
to the changes in underground temperature of coal waste dump.

Wang et al. [139] introduced a novel technique for evaluating the three-dimensional
spatial distribution and oxidation status of coal gangue dump fire zones by correlating
surface temperature data with gas and radon concentration measurements and analyzing
their interdependencies. This technique enables the precise determination of the location,
depth, spread, degree of oxidation, and potential evolution of combustion areas within coal
gangue dumps. A specific methodology for assessing the depth and oxidation levels of the
fires was formulated, involving the calculation of a depth index derived from the analysis
of thermal fluctuations and radon dispersion patterns. The oxidation degree was quantified
by identifying anomalies in radon emissions and surface temperature deviations and
establishing diagnostic threshold values. The results obtained from the depth index and
oxidation degree assessments were in agreement with the three-dimensional distribution
analysis, providing a comprehensive approach for assessing the spontaneous combustion
risk in coal gangue dump fire areas. This integrated framework enhances the understanding
of the underlying processes that drive such fires, enabling more effective surveillance and
mitigation strategies.

Surface and Integrated Techniques—Essential Conclusions and Research Needs

Surface and integrated techniques rely on the manifestations of subsurface combustion
at the ground level. The primary advantage of these methods is that they do not require
the deployment of equipment underground, allowing for the monitoring of extensive
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areas with minimal instrumentation. Generally, these techniques are based on temperature
measurements, typically obtained through infrared (IR) thermography and, less frequently,
through direct contact sensors. For fires occurring below the surface, a notable change in
surface temperature becomes detectable only after the fire has reached an advanced stage.
However, surface measurement techniques offer other kind of qualitative information,
which is not available in the case of other techniques. Propagation direction and speed can
be easily assessed by means of surface temperature measurement techniques as well as a
rough estimation of the fire size and trend, Song et al. [8]. During the early stages of coal
seam combustion—specifically, low-temperature oxidation—the exothermic reactions do
not produce sufficient thermal energy to cause a significant increase in surface temperature.
Therefore, a combined approach, such as incorporating data from gas sensors, can provide
early indications of the CSC state. Combined methodologies that integrate two or more
independent detection techniques effectively mitigate the limitations of each individual
method, resulting in a more robust and precise detection system. Data-driven methodolo-
gies, which utilize extensive datasets, offer a high level of generalizability. However, the
effectiveness of the statistical algorithms used in these approaches is highly dependent on
the quality of the data. While several studies have reported on data-driven methods, few
have addressed issues related to data quality. Data quality encompasses aspects such as the
data collection process, detection and removal of outliers, handling of missing values, bias
control, stratification, and representativeness. Non-traditional techniques, such as soil and
vegetation analysis, present some potential for the detection of CSC events. However, their
effectiveness for timely and accurate identification remains limited, as they primarily assess
the indirect effects of heat transfer from subsurface fires. Consequently, these techniques do
not respond properly to the imperative of fast and accurate CSC detection in early stages.

5. Airborne and Spaceborne Techniques

5.1. Remote Sensing in Detection of CSC

Remote sensing is a pivotal technology in the field of Earth observation, employing
advanced sensors mounted on satellite or aerial platforms to collect real-time data about the
Earth’s surface and atmosphere. Its applications span a wide range of disciplines, including
environmental monitoring, land use mapping, and natural hazard assessment. In the con-
text of detecting coal spontaneous combustion, remote sensing offers a unique advantage
due to its ability to cover extensive areas, obtain data in real time, and penetrate through
smoke or other obstructions using various spectral bands. Advanced techniques such as
multispectral and hyperspectral imaging enable the identification of thermal anomalies and
subtle changes in surface temperature, which are indicative of spontaneous combustion
events in coal seams or stockpiles. Thermal infrared sensors, for example, can detect heat
signatures that may not be apparent to the naked eye or standard optical instruments,
allowing for early detection and mitigation of these hazardous events. Additionally, remote
sensing can employ synthetic aperture radar to identify ground deformation associated
with underground fires. By integrating remote sensing data with Geographic Information
Systems and machine learning algorithms, it is possible to enhance the precision of com-
bustion detection, forecast risk areas, and formulate effective intervention strategies. This
multidisciplinary approach not only aids in preventing coal fire-related disasters but also
contributes to minimizing associated environmental and economic impacts.

A comprehensive review by Syed et al. [140] focused on the remote sensing of coal
fires in India, incorporating numerous studies related to fires in various regions across the
country. The large volume of studies is attributed to the substantial losses caused by CSC
events. Approximately 1.48 billion tons of coal remain unextracted due to around 70 surface
and subsurface fires in the Jharia coalfield, a region that has been burning for over a century
and spans an area of roughly 9 km2. It is estimated that more than 37.6 million tons of coal
have been consumed by fires in the Jharia coalfield alone. Based on the coal volume lost up
to 2003 (37.6 million tons), the economic loss due to these fires, calculated using the 2018

27



Fire 2024, 7, 354

import prices of coking and non-coking coal, is estimated to be around Rs. 280.74 billion.
Several major research trends were identified as follows:

A. Thermal anomaly detection:
A.1. Thermal IR sensors (TIR)
A.2. Short-wave IR sensor (SWIR)
A.3. Combined TIR and SWIR

B. Land subsidence monitoring
C. Geo-environmental indicators

This review critically analyzed the studies included and focused on limitations and
shortcomings. Directions to improve the quality of observations and detection were identi-
fied and discussed, such as weighing factors—as spatial resolution, precision, detection
potential, temporal constraints, and financial implications to determine the most suitable
monitoring strategy. Integrating multiple techniques may provide a more effective solution
by mitigating the drawbacks of each individual method. A discussion was included on
how remote sensing could be employed to evaluate the CSC risk, develop fire mitigation
strategies, and assessments of environmental impacts to comprehensively address the
challenges posed by coal fire hazards.

Aerial monitoring of land for identification CSC is mainly based on IR thermal imag-
ing. Thermal infrared (TIR) imaging is a remote sensing technique that identifies variations
in the radiant energy emitted from the Earth’s surface. Planck’s law states that any object
with a temperature above absolute zero (0 K) radiates energy in the thermal infrared range
of the electromagnetic spectrum, making the primary challenge the accurate measurement
of these variations. Fluctuations in radiant flux from the ground are primarily attributed to
differences in the thermal properties of surface materials, such as rocks and soils, which
affect their capacity to absorb solar radiation, retain it as heat (thermal capacity), and subse-
quently release it back into the atmosphere within the TIR spectrum. Several environmental
and surface factors can influence radiant flux, thereby altering the tonal quality of TIR im-
agery. These include soil moisture content, the presence of bodies of water such as streams
or wetlands, vertical stratification of vegetation (such as variations in tree canopy height),
and active transpiration from dense vegetation areas, such as forests. Topographical fea-
tures also play a significant role; for example, deep valleys may appear as warmer regions
in TIR imagery due to reduced wind exposure or enhanced transpiration from vegetation.
Additionally, large fauna, such as cattle or buffalo, may manifest as thermal anomalies
or “hot spots” in TIR images, potentially leading to false positives in the interpretation of
thermal data. Several recent studies on the CSC detection based on TIR imaging, discussing
the hardware used and the processing algorithms, are presented in Table 6.

Color infrared (CIR) imaging employs modified color photographic film with altered
spectral sensitivity, allowing it to capture reflected energy in the 0.7–0.9 μm range of the
electromagnetic spectrum. A key advantage of CIR imaging is its capability to reveal the
physiological condition of vegetation, often identifying signs of stress before they become
apparent to an observer on the ground. Healthy vegetation, particularly in broadleaf forests,
typically appears in various shades of red to magenta on CIR imagery, whereas stressed
vegetation is represented by hues ranging from pink to blue, even when the stress is not yet
visible to the naked eye. Vegetation in broadleaf forests can undergo stress due to a range
of environmental factors, such as drought, disease, insect infestations, or other conditions
that disrupt water uptake in the leaves. The capacity of CIR imaging to detect these early
signs of stress has prompted its application in identifying the location and extent of coal
fires. It has been hypothesized that the heat generated by a coal fire reduces the amount
of water retained in the soil pores by surface tension. As a result, plants in the vicinity
of a coal fire may progress more rapidly toward the wilting stage compared to those in
unaffected areas. This differential stress response is detectable with CIR imaging, making it
a valuable tool for early detection of coal fire impact zones.
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Table 6. Hardware and processing approaches for CSC detection by means of TIR imaging.

Reference,
Year

Platform Sensor Processing

Yuan et al.
[141]
2021

UAV DJI M210 V2 drone with
a Zenmuse XT 2 dual-light
thermal infrared lens

TIR Resolution 640 × 512
TIR FOV: 32◦ × 26◦
RGB resolution: 4000 × 3000
RGB FOV: 57.12◦ × 42.44◦
TIR gain mode set to High, with the
upper limit of the temperature range
150 ◦C

Two visual orthophotos (resolution of
2.54 cm) and two infrared images
(resolution of 8.65 cm).
The local variance and Shannon
entropy are employed to explore the
optimal observation scale and
optimal coal fire area extraction scale
for LST anomalies in coal fire areas.

Shao et al. [142]
2023

UAV DJI Matrice 210 RTK
(Real-Time Kinematic) V2
quadrotor drone with a DJI
Zenmuse XT2 dual-lens
camera

12-megapixel RGB lens (FL: 8 mm,
resolution: 4000 × 3000, pixel size
1.85 μm, FOV: 57.12◦ × 42.44◦).
FLIR Tau 2 IR lens (FL: 25 mm, TIR
resolution 640 × 512, pixel size 17 μm,
FOV: 25◦ × 20◦).
Temperature range: −25–135 ◦C
(High gain); −40–550 ◦C (Low gain),
thermal accuracy ±5 ◦C

The Rainbow High Contrast palette
and temperature linear distribution
mode were used to ensure that each
image has a high contrast, color, and
temperature consistency. Delineation
and accurate identification of 3D
temperature field were achieved by
feature point matching and texture
mapping.

Hu and Xia
[71]
2017

TH9100MV/WV
thermographic camera.
RGB camera: Canon EOS 5D
Mark digital camera for close
range photogrammetry

TIR camera: 320 × 240 pixels and
operates in the 8–14 μm range. The
device has adjustable temperature
measuring ranges from 0 ◦C to
+500 ◦C with an accuracy of ±0.06 ◦C.
RGB camera FL> 28 mm

Setting control points for the
close-range photogrammetry. Setting
the temperature-marked points
(TMPs) for infrared thermograph.
Bilinear interpolation algorithm
provided the spatial coordinates and
temperature values for each point in
the grid.

He et al. [143]
2020

UAV DJI M210 Zenmuse XT2
cameras equipped with
gimbal system

TIR camera: 640 × 512, 30 fps
uncooled vanadium oxide (VOx)
microbolometer for longwave
radiation (7.5~13.5 μm); temperature
range of −20 to 135 ◦C (high gain); FL
25 mm lens; File format raw 8-bit
digital numbers; Acquisition rate: less
than 9 Hz.
RGB camera: 4K video, 12 megapixel
photos

Maximum and minimum grey values
of the TIR image were determined;
based on the temperature range
temperature anomaly regions were
determined; coal fires and the
locations of fire area were determined,
with a ground resolution of 40 cm,
corresponding to the pixel size.

Coal fires can induce alterations in the coloration of rock strata, degrade surrounding
vegetation, release gases and smoke, and result in the accumulation of novel materials
on the surface, Syed et al. [140]. Teodoro et al. [144] proposed a set of methodologies to
monitor a decommissioned coal mine waste pile (São Pedro da Cova, Portugal) and its
adjacent regions. Analysis of thermal and topographic data indicated a direct correlation
between the temperature of the pile and ambient air temperature. However, in a localized
area of approximately 200 m2 near the base of the waste pile, spontaneous combustion was
detected, with surface temperatures consistently exceeding 50 ◦C, irrespective of seasonal
variations or fluctuations in air temperature. Land use and land cover (LULC) assessments,
combined with the Normalized Difference Vegetation Index (NDVI) analysis, revealed that
vegetation growth is confined to zones with comparatively lower surface temperatures.
The presence of vegetation is critically important, as it plays a key role in mitigating
soil erosion on the waste pile, thereby contributing to the stabilization of the structure.
Additionally, a downward trend in altimetric measurements was observed, supporting
the hypothesis that ongoing self-combustion processes are leading to a reduction in the
volume of material within the waste pile. These findings underscore the complex interplay
between thermal dynamics, vegetation cover, and topographical changes in areas affected
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by coal waste combustion. The persistent thermal anomalies and the lack of vegetation
in high-temperature zones highlight the challenges in achieving ecological restoration
and physical stabilization of coal mine waste piles. The ongoing material depletion, as
evidenced by the decreasing altimetric values, suggests that self-combustion continues to
actively alter the waste pile’s composition and structure, potentially posing risks to both
the environment and surrounding communities.

Spaceborne remote sensing represents a powerful tool for the detection and moni-
toring of coal spontaneous combustion (CSC), offering several distinct advantages over
traditional ground-based methods. Utilizing satellite-based platforms, this approach en-
ables continuous, large-scale observation of the Earth’s surface, providing consistent and
comprehensive data coverage across vast and often inaccessible areas. The high temporal
frequency and extensive spatial resolution afforded by spaceborne sensors facilitate the
early identification of thermal anomalies associated with CSC, even in remote or hazardous
environments. Specific advantages include the ability to capture multispectral and thermal
infrared imagery, which is critical for detecting subtle changes in surface temperature and
heat flux that indicate ongoing combustion processes. Furthermore, the integration of
various spectral bands—from visible to thermal infrared—allows for the assessment of
associated changes in surface characteristics, such as vegetation stress and ground defor-
mation, which are indicative of subsurface fires. The ability to gather data across different
wavelengths, combined with advanced data processing techniques, enhances the accuracy
and reliability of CSC detection, making spaceborne remote sensing an indispensable
component of modern environmental monitoring and risk management strategies.

Landsat 8 is a highly advanced Earth observation satellite launched in 2013 as part of
the Landsat program, a long-standing initiative for remote sensing led by NASA and the
United States Geological Survey (USGS). It carries two primary sensors: (i) the Operational
Land Imager (push-broom sensor with a four-mirror telescope and 12-bit quantization,
collecting data for visible, near infrared, and short wave infrared spectral bands as well as
a panchromatic band). Such data are crucial for a range of applications including land use
mapping, vegetation monitoring, and water resource management. (ii) Thermal Infrared
Sensor (collecting data for two more narrow spectral bands in the thermal region formerly
covered by one wide spectral band on Landsats 4–7). The TIRS provides data in two
thermal infrared bands, enabling accurate surface temperature measurements essential for
detecting heat anomalies like those caused by coal spontaneous combustion (CSC). Landsat
8’s enhanced radiometric resolution (12-bit), moderate spatial resolution (30 m across most
spectral bands), and regular revisit interval (every 16 days) establish it as a critical tool for
remote sensing applications, providing consistent and high-quality data for monitoring
environmental changes over extended periods. The open accessibility of Landsat 8 data fur-
ther facilitates its extensive utilization in scientific research, environmental monitoring, and
disaster response, including the identification of thermal anomalies linked to subsurface
coal fires and other combustion events.

Song et al. [145] conducted a comprehensive in situ investigations of coal fires in
order to assess the fire suppression efforts carried out in the Wuda syncline in May 2014,
following an initial site visit to the Wuda coalfield in 2012. These field observations were
combined with thermal anomaly data derived from Landsat-8 and Landsat-7 satellite
imagery, using an automated moving-window thermal anomaly detection tool, known as
the regional anomaly extractor. This integrated approach enabled a detailed analysis of
coal fire behavior, considering the effects of fire-fighting interventions and the current state
of combustion activity within the Wuda syncline.

When using data from IR satellite-based remote sensing systems, one of the problems
faced is the correct classification of pixels in “fire” and “no-fire” classes. Roy et al. [133]
conducted a study based on ASTER Level 1B thermal data (summer time) and Landsat-8
TIRS (winter time) with the aim of generating a coal fire map by selecting an optimal cut-off
temperature using a statistically driven, data-centric approach. The cut-off temperature
was identified through the examination of radiant temperature values from uniformly
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distributed pixel clusters covering the entirety of the coal-bearing area. By employing this
methodology, it was guaranteed that the selected cut-off temperature adequately addressed
inherent variability and associated local complexities. Determining an appropriate cut-
off temperature within thermal datasets to classify pixels into “fire” and “no fire” zones
presents several challenges: the temperature of underlying terrain and background ele-
ments can exhibit significant seasonal fluctuations, and variations in the relative abundance
of these elements across different sections of the coalfield may lead to inconsistencies in the
cut-off temperature between sites. Additionally, the thermal contrast between active fire
zones and surrounding areas, as captured in the remote sensing data, is highly dependent
on factors such as the relative distribution of various rock types (e.g., sandstone, shale, and
coal seams), land texture characteristics, the configuration of surface exposure (whether the
fire is occurring at or beneath the surface), as well as the fire intensity and its spatial spread.

The algorithms used to process data from various satellite platforms are diverse
but most of them employ the generalized single channel method, Jiménez-Muñoz and
Sobrino [146] to determine the land surface temperature. The influence of atmosphere
water content poses significant problems in processing the data. A selection of studies using
data from Landsat, Sentinel, Envisat and ALOS PALSAR platforms and the data processing
sequence is presented in Table 7. Techniques detecting landslides were also included
in Table 7. These are even more complex than algorithms for land surface temperature
determination.

Table 7. Typical algorithms for mapping the fire zones. LST and landslide detection studies.

Reference,
Year

Remote Sensing
Platform

Methodology
Objective
Conclusions

Jiang et al. [147],
2017

Data before 2013:
Landsat 5
Data after 2013:
Landsat 7

Generalized single channel method (Jiménez-Muñoz
and Sobrino [146] Planck’s blackbody radiance law is
divided by Taylor’s Formula to obtain the approximate
solution of land surface temperature). Natural breaks
(Jenks [148]) clustering method was used to define four
temperature classes.
Eight scenes were selected including Landsat 5 and
Landsat 7 images in the spring and fall from 2000 to
2015.

(1) Radiance was calibrated using NASA calibration
coefficients.

(2) Geometric registration.
(3) The FLAASH model was used to correct the

atmosphere and obtained surface reflectance and
moisture content.

(4) Images were clipped for further processing.

Map the fire zone and assess the
effectiveness of the CFSP (Coal Fire
Suppression Project) over a period ranging
from 2000 to 2015.
CFSP successfully extinguished a
significant percentage of surface area
affected by coal fire while damaging the
local landscape.

Wang et al. [149],
2022 Landsat 8

(1) Radiance correction and atmospheric correction
were performed for multispectral data; the
radiant brightness and brightness temperature of
TIRS data are corrected to obtain the thermal
radiation intensity value and the brightness
temperature;

(2) Terrain correction;
(3) Calculation of surface emissivity;
(4) Calculation of Atmospheric Water Vapor (AWV)

based on NASA data on atmospheric
transmissivity;

(5) Generalized single channel method
(Jiménez-Muñoz and Sobrino [146]) was used to
determine the LST. Landsat-8 band 10 data were
used for temperature inversion.

The average detection accuracy rate of the
proposed method reaches 83.3%.
The proposed coal fire detection approach
can achieve good coal fire detection results
regardless of using summer, winter, or
annual data, with the annual data
producing the best detection result.
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Table 7. Cont.

Reference,
Year

Remote Sensing
Platform

Methodology
Objective
Conclusions

Yu et al. [150],
2022

45 Landsat 8 images
and 61 Sentinel-1
SAR images covering
the same time span

(1) Utilizing the Radiative Transfer Equation (RTE)
to retrieve land surface temperatures (LSTs) from
multitemporal thermal infrared remote sensing
data.

(2) Normalizing the LSTs and applying an
equidistant classification method to delineate
thermal anomaly areas from remote sensing
images obtained at various time intervals.

(3) Quantifying the thermal anomaly frequencies
(TAFs) across different regions.

(4) Employing the Small Baseline Subset (SBAS)
InSAR technique to derive temporal and spatial
subsidence data.

(5) Combining the mean subsidence values with the
standard deviation to identify regions exhibiting
significant subsidence within the study area.

(6) Defining the threshold for thermal anomaly
frequency (TAFT) by using land subsidence data
as a constraint and designating an area as a coal
fire zone if the observed frequency surpasses the
TAFT.

(7) Conducting a visual inspection of the results to
eliminate any potential artificial heat sources.
sources (such as industrial production areas) to
further improve the identification accuracy.

To detect coal fire zones and evaluate their
intensity and temporal evolution by
integrating land surface temperature (LST)
data, thermal anomaly metrics, and
deformation information across a time
series.

Jiang et al. [151],
2010

ENVISAT satellite
(currently
decommissioned),
InSAR technique

A two-dimensional linear regression analysis of the
differential interferometric phase was conducted on a
set of 49 multi-master interferograms.
The preliminary identification of Permanent Scatterers
(PS) points was based on two selection criteria: (i)
minimal temporal variability in the backscatter values,
derived from co-registered Single Look Complex (SLC)
intensity stacks, and (ii) the spectral characteristics of
each individual SLC dataset.

The results obtained from InSAR analysis
were cross-validated against GPS
measurements acquired during two field
campaigns in 2006 and 2008. A strong
correlation was observed between the
line-of-sight (LOS) displacement velocities
derived from both methodologies, with an
average absolute discrepancy of 5.4
mm/year and a standard deviation of
4.1 mm/year.

Mishra et al.
[152],
2011

Landsat-7 ETM+ data
of 29th March 2006
Ground data from
TIR camera Jahria
(India) of March, 2009

(1) Converting the image from digital number (DN)
values to spectral radiance.

(2) Transforming spectral radiance into radiant
temperature.

(3) Converting radiant temperature into surface
temperature.

The coal mine fire map derived from satellite imagery
was categorized into three classifications:

(i) Temperatures exceeding 52 ◦C were classified as
high intensity, representing surface fires.

(ii) Temperatures between 32 ◦C and 52 ◦C were
identified as medium intensity, indicating
subsurface fires.

(iii) Temperatures at or below 32 ◦C were considered
low intensity, corresponding to background or
water bodies temperatures.

The discrepancy between surface
temperature measurements and
satellite-derived temperatures can be
attributed to various factors, including
wind direction and velocity, the angle and
altitude of the thermal infrared (TIR)
camera, atmospheric humidity, and the
elevation of the terrain.
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Table 7. Cont.

Reference,
Year

Remote Sensing
Platform

Methodology
Objective
Conclusions

Biswal and Gorai
[69],
2021

Landsat-5 (band 6)
TM and Landsat-8
(band 10) Operational
Land
Imager/Thermal
Infrared Sensor)
satellite data of from
1989 to 2019.

(i) Landsat-8 sensor data were used for estimating
the LST (Jiménez-Muñoz, J.C., Sobrino [146])

• Determination of atmospheric functions
• Estimation of radiance
• Estimation of LSE

(ii) Determination of threshold LST for identifying
the fire affected pixels

(iii) Validation with ground temperature data

The fire-affected area measured 2.026,
3.009, 3.159, 3.991, 4.664, 8.656, and
9.957 km2 for the years 1989, 1994, 1999,
2004, 2009, 2014, and 2019, respectively.
The expansion of mining operations in the
coalfield exposed additional coal seams to
the atmosphere, leading to spontaneous
heating and the formation of new coal fire
pockets. Some fires were extinguished,
either due to complete coal combustion or
a cessation of the combustion process. The
time-series analysis from 1989 to 2019
indicates both the formation of new fire
pockets and the extinguishing of existing
ones.

Zhou et al. [153],
2013

ALOS Phased Array
type L-band
Synthetic Aperture
Radar

(i) Select pixels with coherence threshold
(ii) Phase unwrapping for interferograms with short

normal baselines
(iii) Minimum Cost Flow method phase unwrapping
(iv) Accumulated subsidence estimation
(v) Average subsidence velocity calculation

Mean deformation rates of −8.52 cm/yr,
−3.92 cm/yr, −4.6 cm/yr, −8.93 cm/yr
and −6.07 cm/yr, were determined. Other
areas outside the coal fire zones with
similar subsidence signals were identified.
Further investigation demonstrated that
intense mining activities caused land
subsidence in these areas.

5.2. Remote Sensing—Concluding Discussion

Remote sensing employs various sensors to acquire detailed information about objects
and environments. It serves as an alternative to human-operated detection in inaccessible
or hazardous areas, offering the advantage of rapidly collecting data with high spatial,
spectral, and temporal resolution. Thermal infrared (TIR) data are particularly useful for
detecting coal gangue pile fires, as it directly reflects surface temperature distribution.
Remote sensing can be categorized into aerial and satellite-based methods, depending on
the platform used.

Aerial remote sensing primarily involves color infrared or multispectral imaging, or
the use of unmanned aerial vehicles (UAVs) equipped with TIR or hyperspectral sensors.
Despite being influenced by factors such as surface albedo, terrain, and additional heat
sources, these techniques provide high accuracy. Aerial methods detect surface features
like thermal anomalies, heat-induced alterations in rock surfaces, and chemical byproducts
of thermal processes. They are effective for large-area monitoring, such as coalfields, and
hyperspectral imaging offers an additional advantage by correcting high-temperature
saturation and sub-pixel issues. However, aerial surveillance is costly and impractical for
continuous monitoring. In contrast, spaceborne remote sensing is more cost-effective and
suitable for continuous, large-scale monitoring, particularly for tracking extensive coal fires
and identifying fire propagation, Raju et al. [154], He et al. [155], Wang et al. [70], Singh
et al. [156].

Spaceborne techniques employ three types of sensors: (i) multispectral sensors, such
as those on the Landsat, MODIS, SPOT, and ASTER platforms, (ii) high spatial resolution
sensors on platforms like Ikonos, Quickbird, and Worldview, and (iii) radar sensors. These
sensors detect different features: multispectral sensors identify thermal anomalies, high
spatial resolution sensors detect surface cracks and fissures, and radar sensors detect land
subsidence and collapse. Radar methods, however, tend to have lower accuracy than
multispectral and high-resolution techniques.

Very few studies exist though, attempting to integrate two or more remote sensing
techniques, such as Elick [157] (thermal infrared imaging combined with CO/CO2 mea-
sured along fire fronts to assess the progress and the fire depth). Karanam et al. [158]
employed the methodology depicted in Figure 9 integrating thermal data from Landsat 8
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and persistent Scatterer Interferometry analysis (60 Sentinel-1 C-band images) to monitor
and map the coal fires in Jharia (India).

 

Figure 9. The methodology proposed by Karanam et al. [158] to combine TIR data with land
subsidence information. Reproduced from [158] under CC BY 4.0.

6. Conclusions

The detection and monitoring of coal fires are critical for mapping their occurrence,
modeling fire behavior, assessing environmental and public health impacts, and guiding
fire-fighting engineering efforts. For instance, key model parameters such as fire depth,
surface and subsurface temperatures, and fire propagation rates are fundamental inputs
for computational simulations or serve as validation benchmarks for predictive models.
These parameters also provide essential data for designing and implementing fire-fighting
strategies. Additionally, monitoring emissions of greenhouse gases, toxic gases, and trace
elements generated by coal fires is necessary for evaluating the environmental consequences
and health risks posed by these fires.

The techniques discussed in this review can be broadly categorized into two main
approaches: (i) the detection of coal spontaneous combustion (CSC) events during their
initial stages, and (ii) the monitoring of fully developed fires—whether surface fires with
visible flames or smoldering subsurface fires—to map their spatial extent, assess their
progression, and evaluate the effectiveness of fire suppression interventions. From this
review, several key observations and research directions can be identified to refine and
narrow down CSC studies:

A. Site-Specificity of Detection Methods:
Many detection and monitoring methods are specifically designed or calibrated for

particular coalfield sites, taking into account factors such as coal rank, composition, geo-
logical morphology, and climate. The literature lacks replication studies and discussions
regarding the generalizability of these methods. This issue is particularly significant for
early-stage CSC detection techniques, such as those targeting low-temperature oxidation.
Experimental studies, whether conducted in the field or under controlled laboratory condi-
tions, typically focus on specific types of coal and external conditions. Consequently, the
accuracy and applicability of detection techniques designed for one site may not translate
effectively to different locations with varying coal types and environmental factors.

B. Limitations of Laboratory-Controlled Experiments:
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While laboratory-controlled experiments provide valuable insights, they cannot fully
replicate the complex and dynamic conditions encountered at industrial coal sites. Real-
world environments present numerous challenges, including variable gas emissions and
absorption rates, fluctuating moisture levels, chemical spills, dust, noise, and other inter-
fering factors. For instance, techniques such as thermal infrared imaging, though highly
sensitive, may be overwhelmed by these environmental variables, limiting their practicality
in industrial settings. There is a clear need for further research to bridge the gap between
controlled laboratory findings and the realities of field conditions, ensuring that detection
and monitoring techniques can be reliably applied in practical scenarios.

C. Development of Combined Techniques:
Although some progress has been made in developing ensemble or hybrid techniques

that integrate multiple detection and monitoring approaches, these methods are still in their
early stages. Combined techniques hold the potential to enhance robustness and accuracy
by leveraging the strengths of individual methods while mitigating their weaknesses. For
example, integrating thermal infrared imaging with gas detection sensors could improve
the reliability of monitoring systems in variable environmental conditions. However,
substantial research and development efforts are still required to advance these combined
systems and validate their performance under real-world conditions.

In conclusion, while significant advancements have been made in the detection and
monitoring of coal fires, several challenges remain. The site-specific nature of many tech-
niques, the limitations of laboratory studies, and the early development of combined ap-
proaches all point to the need for further research to improve the accuracy, generalizability,
and applicability of CSC detection and monitoring methods across diverse environments.
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Abstract: In this paper, the thermoelectric conversion characteristics of a device combining
a TPCT and TGs are studied. The experimental devices consist of four parts: TPCT heat
transfer module, cooling and heat dissipation module, thermoelectric power generation
module, and data collection module. The effects of different heating powers (100 W, 200 W,
400 W, and 600 W) and different liquid filling rates of the TPCT (10%, 25%, 35%, and 45%)
on the heat transfer performance and the power generation performance of the device are
studied. The research indicates that the impact of the liquid filling rate on heat transfer and
power generation performance is less significant than that of heating power. As the heating
power increases, both the heat transfer and power generation performance of the device
will improve and is finally in a relatively stable state. The thermal resistance at the liquid
filling rate of 10% is the smallest, roughly around 0.11 ◦C/W. At a heating power of 200 W,
the TPCT at the liquid filling rate of 10% has the largest heat transfer efficiency, which is
83.36%. The maximum values of power generation efficiency and net power generation
efficiency are 2.27% and 3.10%, respectively.

Keywords: coalfield fires; two-phase closed thermosiphon; thermoelectric generators;
thermoelectric conversion; liquid filling rate

1. Introduction

Coalfield fires, which are the burning or overcast combustion of underground coal
seams, are a widespread geological challenge worldwide. Coalfield fires cause great waste
of coal resources and serious damage to the ecological environment. It is also a serious threat
to human health and safety and hinders social and economic development [1]. Traditional
means of coal fire management mainly include stripping, drilling, water injection, grouting,
and covering loess, which are prone to ecological damage and have limited cooling effect,
and the coalfield fire is not easily extinguished completely [2]. A large amount of water
resources is wasted in the process of fire extinguishing, which easily causes groundwater
pollution. About 1000 GW of waste heat energy from coalfield fires worldwide every year
is wasted and not effectively utilized, which is equivalent to 2.5 times of the total power
generation of 500 nuclear power plants worldwide and more than the sum of global water
power generation [3]. If the waste heat resources can be recovered and effectively used,
then the coalfield fire treatment process can be accelerated and water resources can be
saved to avoid ecological damage and resource waste, which will produce huge ecological
and environmental value and social and economic benefits.

In order to recover waste heat resources and convert them into renewable resources, a
good solution is to apply two-phase closed thermosiphons (TPCTs). The TPCT has a simple
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structure, low cost, and high heat transfer efficiency. The heat can only be transferred from
the bottom to the top of the TCPT in one direction, due to the effect of gravity [4]. TPCTs
are used in many fields and have the advantages of excellent heat transfer performance,
environmental adaptability, low economic cost, energy saving, and environmental protec-
tion [5]. In the field of permafrost ground temperature control and road snow melting,
the excellent thermal conductivity of the TPCT, the absence of external power source and
maintenance, and the good applicability to different engineering environments make it
become an important method [6]. Studies have shown that TPCTs can reasonably solve the
air–TPCT–soil coupled heat transfer problem of TPCT embankments [7]. It effectively atten-
uates the thermal effect of sunward slope, cools the subsurface permafrost, and ensures the
stability of the permafrost foundation [8,9]. TPCTs are used to transfer the heat stored in the
subsurface soil or groundwater to the road surface to melt snow and ice. It can overcome
the drawbacks of traditional snow melting techniques, substantially increase the tempera-
ture of concrete pavements, and prove that the system can operate for a long time [10–12].
In industrial production, TPCTs are also widely used. In the nuclear industry, passive heat
dissipation from TPCTs is used to remove decay heat from spent fuel pools in the event of
a nuclear power plant blackout [13–15]. Adsorption chillers with a separated two-phase
closed thermosiphon heating process allow the system to have fewer moving parts and
reduced building size, while improving the performance factor and cooling power ratio of
the cooling system [16]. The use of TPCTs can improve the fluid temperature distribution in
the oilfield wellbore and can effectively transfer the heat contained in the high-temperature
fluid at the bottom of the wellbore to the lower-temperature fluid in the upper part of the
wellbore, increasing the oil production rate [17,18]. Energy-efficient technology for phos-
phate production was developed using two-phase closed thermosiphon [19]. A cryogenic
TPCT was made using copper tubes, flexible bellows hoses with nitrogen fluid, and its heat
transfer properties were used to design a thermally stable system for RED100 detectors that
can provide heat transfer rates of up to 100 W in the temperature range of 100–80 K [20].
The application of TPCTs to the field of geothermal extraction has improved the efficiency
of heat extraction [21]. The heat transfer performance of solar collectors was enhanced
using TPCTs [5,22]. In the field of coalfield fires, researchers have also used TPCTs to
remove heat sources and extract heat energy. Li et al. [23] established a coal pile–TPCT heat
transfer model and used a TPCT to control the coal pile temperature below 80 ◦C, which
had a significant effect on coal pile heat removal. Zhong et al. [24] used a TPCT to suppress
heat production during coal spontaneous combustion, and the use of CuO nanofluidic
material could improve the heat transfer performance of the TPCT by 27.9%. However, the
study only considered the transfer of heat energy from coalfield fires, and further research
is needed on heat utilization and heat conversion.

Therefore, after waste heat from coalfield fires is extracted and recovered, the next
issue to be considered is to solve the problem of how waste heat from coalfield fires is
utilized and converted, and thermoelectric power generation is a very suitable solution.
Thermoelectric power generation uses the Seebeck effect of thermoelectric materials to
directly convert thermal energy into electrical energy, which is a new green, environmen-
tally friendly, and pollution-free power generation technology [25]. Currently, commercial
thermoelectric power generation modules are generally composed of multiple PN galvanic
arms connected in series, and the hot and cold ends are covered using ceramic sheets
to form a temperature differential generator with multiple PN junctions [26]. Tempera-
ture differential generators (from AltaRock Energy, Inc., Sausalito, CA, USA) can convert
low-taste heat into clean electrical energy and have the advantages of flexible installation,
noiseless operation, environmental friendliness, high applicability, low maintenance cost,
and long service life [27]. Therefore, thermoelectric power generation is also used in many
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fields. The combination of TGs with biomass burners can power small-scale electrical
devices [28–30]. It is combined with solar energy for the co-production of solar thermal and
electrical energy [31,32]. In the field of low-temperature geothermal utilization, it converts
heat flow from the upper soil layer into electrical energy [33,34]. It is combined with small
nuclear reactors to supply electrical energy to space probes [35,36]. In the automotive field,
it recycles the heat energy from the exhaust of the car [37–39]. Using the function of TGs
energized and cooled to dissipate heat for processor chips and electronic devices [40–42].
In the field of coalfield fire utilization, researchers have also applied thermoelectric power
generation. Su et al. [1] concluded that thermoelectric power generation has the advantages
of good heat source adaptation, easy assembly, and no location dependence by comparing a
series of heat recovery modes of KC (Carina cycle) and ORC (Rankine cycle). It was proved
to be practical in the field of coalfield fire utilization. Shi et al. [3] used the temperature
difference between the heat transfer medium and the cooling medium to provide energy
for thermoelectric power generation, and achieved a single-hole power generation power
of 174.6 W in the Daquan Lake fire area in Xinjiang. Su et al. [2] carried out thermoelectric
power generation model experiments, analyzed the main performance indexes of thermo-
electric power generation, and designed a distributed thermoelectric power generation
device, which can achieve a maximum output power of 700 W at a temperature difference of
80 ◦C. However, the study only considers the thermoelectric power generation technology
for heat energy, and there is less research on heat transfer.

The above studies on the recovery and utilization of waste heat resources in coalfield
fires have considered only TPCT heat transfer or thermoelectric power generation alone.
Recently, the system combining TPCT and thermoelectric power generation technology has
been studied and applied. Su et al. [43] studied the temperature gradient of the TPCT and
the characteristics of temperature difference power generation. Deng et al. [44] established
a thermal energy recovery system combining TPCT and thermoelectric power generation
in the Sandaoba fire area in Xinjiang and evaluated the recovered heat. However, these
studies do not consider the influence of TPCT heat transfer and temperature difference
power generation together. Studies that consider how the heat transfer from the heat source
and the TPCT parameters together affect the thermoelectric conversion performance of the
system are lacking.

Coalfield fires are a global challenge, causing huge waste of resources and environmen-
tal problems. The vast heat resources from coalfield fires have great economic and ecological
value [1]. The efficient heat transfer performance of two-phase closed thermosiphons (from
Chenyi Heat pipe Company, Harbin, China) (TPCTs) and the direct power generation
performance of thermoelectric generators (from Seebeck Company, Changsha, China) (TGs)
are well suited for the recovery and utilization of waste heat resources in coalfield fire
areas. It is necessary to study the recovery and utilization of waste heat resources from
coalfield fires by studying TPCT heat transfer and thermoelectric power generation. Ana-
lyzing how different heat source heat transfers and TPCT parameters affect the system heat
transfer performance and power generation performance, which is helpful to select the
appropriate TPCT parameters for temperature level of heat sources for coalfield fires, will
ensure that the thermoelectric conversion performance is optimal. This paper preliminarily
investigates the thermoelectric conversion characteristics based on a two-phase closed
thermosiphon and a temperature difference generator. By building an experimental setup,
the effects of heating power (100 W, 200 W, 400 W, and 600 W) and liquid filling rate of the
TPCT (10%, 25%, 35%, and 45%) on the heat transfer performance and power generation
performance of the device are experimentally investigated. Combining a two-phase closed
thermosiphon with thermoelectric power generation can bring out the advantages of each.
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It will have broad application prospects in the field of coalfield fire waste heat resource
recovery and utilization.

2. Materials and Methods

2.1. Experimental Devices

Figure 1 shows the experimental devices of thermoelectric conversion based on a
TPCT and TGs. The effect of the liquid filling rate of the TPCT and heating power on the
heat recovery and utilization of the experimental device is studied and analyzed in terms
of both heat transfer and power generation. The experimental devices consist of four parts:
TPCT heat transfer module, cooling and heat dissipation module, thermoelectric power
generation module, and data collection module.

Figure 1. Experimental devices for thermoelectric conversion based on a TCPT and TGs. (a) Temper-
ature differential Generator. (b) Two-phase closed thermosiphon.

2.1.1. TPCT Heat Transfer Module

The TPCT heat transfer module consists of a heating ring, a heating power controller
and a TPCT. The heating power of the heater ring (from Safety Valley, Xuzhou, China)
is in the range of 0–600 W and can be adjusted. The TPCT evaporation section is heated
by heat conduction. The heating power controller can change the heating power of the
heating ring by adjusting the voltage and current, and the adjustment range is 0–600 W.
The parameters of TCPT are as follows: the length is 1000 mm; evaporation section is 500
mm; condensation section is 500 mm; outer diameter is 38 mm; thickness of TPCT wall is 3
mm; liquid filling ratio is 10%, 25%, 35%, and 45%; liquid filling medium is distilled water.
The evaporation section of the TPCT is entirely located in the heating ring. The liquid in the
evaporation section of the TPCT is heated to evaporate and liquefies in the condensation
section when it is cold, releasing heat. Then, the condensing section transfers the heat to
the thermoelectric power generation module by heat conduction.
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2.1.2. Cooling and Heat Dissipation Module

The cooling and heat dissipation module consists of a water storage tank, a water
pump and a heat sink. The water pump can increase the flow of cold water in the radiator,
thus reducing the temperature of the cold end of the thermoelectric power generation
module. There are channels inside the radiator that can circulate cold water, it has cooling
fins arranged on the outer surface, and there are two cooling methods: water cooling and
air cooling, which can enhance the cooling effect.

2.1.3. Thermoelectric Power Generation Module

The thermoelectric power generation module uses four TGs (from Seebeck Company,
Changsha, China). The model number is TEG1–241-1.4–1.2. The two TGs on each side of
the TPCT are connected in series and then in parallel. The thermoelectric power generation
module is connected to the sliding resistor and then connected to the power meter. When
the water in the cooling heat sink module flows through the heat sink, a temperature differ-
ence is created on both sides of the thermoelectric power generation module. Adjusting
the radiator water flow can change the temperature of the condensing section of the TPCT,
which can change the temperature difference of the temperature differential power module.
The average of the temperatures measured by the two K-type thermocouples at the hot end
of the differential temperature generation module is defined as the hot end temperature.
The average of the temperatures measured by the two K-type thermocouples at the cold
end is defined as the cold end temperature.

2.1.4. Data Acquisition Module

The data acquisition module consists of a PC processor, a temperature data acquisition
device, nine K-type thermocouples, a power meter, and a flow meter. K-type thermocouple
model is HH-K-24-SLE (from Zetian Company, Xuzhou, China), measuring temperature
range is −73−704 ◦C, and accuracy is 0.5 ◦C. There are 13 thermocouples laid out, dis-
tributed on the surface of the TPCT wall and the hot and cold ends of the thermoelectric
power generation assembly. The power meter is used to measure the open-circuit voltage,
load voltage, and load power of the temperature difference generation module. The flow
meter is used to measure the flow of cold water in the cooling heat sink module, its model is
vortex flow meter MJ-A68-1 (from Zetian Company, Xuzhou, China), and its applicable flow
range 0.2–6 L/min. Temperature, voltage, power, flow rate, and other data are uniformly
processed by the PC processor.

2.1.5. Experimental Methods

To study and analyze the effect of the liquid filling rate of the TCPT and heating
power on the heat recovery and utilization of the experimental devices, the heat transfer
performance and power generation performance of TPCTs with four liquid filling rates
(10%, 25%, 35%, and 45%) at different heating powers (100 W, 200 W, 400 W, and 600 W)
are studied. The TPCT is heated for 50 min at four specific heating powers until the tem-
peratures were steady. Then, the cooling module is turned on to observe the parameters of
TCPTs and TGs under different temperature conditions. During the monitoring experiment,
the temperature at different distances along the TCPT (10 cm, 30 cm, 50 cm, 70 cm, and
90 cm), cold and hot end temperature of TGs, ambient temperature, cooling water flow,
open-circuit voltage of TGs, load current of TGs, and load power of TGs are monitored.

2.2. Principle and Calculation

During the two-phase closed thermosiphon heat transfer and thermoelectric conver-
sion experiment, the main destination of the heat released from the heating source is two
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parts. One part of the heat is transferred to the condensing section of the TPCT through the
evaporation section of the TPCT by heat absorption. The other part of the heat is released
to the ambient atmosphere in the form of radiation and convection heat transfer at the wall
of the evaporation section of the TPCT. Then, the heat that is transferred to the condensing
section of the TPCT goes to three main parts. One part is converted into electricity by the
temperature difference generator. One part is carried away by the radiator in the form of
hot water. One part is released by the exposed condensing section of the TPCT in the form
of radiation and convection heat transfer.

Therefore, in order to accurately calculate parameters such as TPCT heat transfer
efficiency and thermoelectric efficiency, a series of calculations are required for the heat
transfer process of the device. The heat transfer losses in the experimental heating process
of the TPCT are radiation heat transfer losses and convective heat transfer losses. Because
the convective heat transfer coefficient between the TPCT material and the air is very low,
it is known that the main heat transfer loss is the radiation heat transfer loss.

2.2.1. Heat Transfer Loss
Radiation Heat Transfer Loss

TPCT radiation heat transfer losses include radiation heat transfer losses in the evapo-
ration section and radiation heat transfer losses in the condensation section. The radiative
heat transfer from the closed cavity consisting of two blackbody surfaces is:

Φ1,2 = A1Eb1X1,2 − A2Eb2X2,1 = A1X1,2(Eb1 − Eb2) = A2X2,1(Eb1 − Eb2) (1)

Φ1,2 is the radiation heat transfer. A1 is the area of object 1. A2 is the area of object
2. X1,2 and X1,2 are the angular coefficients of radiative heat transfer. Eb1 is the radiation
force of object 1, Eb1 = σT1

4. Eb2 is the radiation force of object 2, Eb2 = σT2
4.

X1,2 = 2
πxy{ln

[
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1+x2+y2

] 1
2 − xarctanx + x

√
1 + y2arctan x√

1+y2

−yarctany + y
√

1 + x2arctan y√
1+x2 }

(2)

σ is the Stephan–Boltzmann constant, which is the blackbody radiation constant.
5.67 × 10−8 W/(m2·K4).

TPCT radiation heat transfer is consistent with radiation heat transfer from a closed
cavity consisting of two diffuse ash surfaces. The radiative heat transfer in the closed cavity
consisting of two diffuse ash surfaces is:

Φ1,2 =
Eb1 − Eb2

1−ε1
ε1 A1

+ 1
A1X1,2

+ 1−ε2
ε2 A2

(3)

Using A1 as the calculated area, the above equation can be rewritten as:

Φ1,2 =
A1(Eb1 − Eb2)(

1
ε1
− 1

)
+ 1

X1,2
+ A1

A2

(
1
ε2
− 1

)= εs A1X1,2(Eb1 − Eb2) (4)

In Equation (5):

εs =
1

1 + X1,2

(
1
ε1
− 1

)
+ X2,1

(
1
ε2
− 1

) (5)
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ε1 is the emissivity of object 1. ε2 is the emissivity of object 2. εs is the emissivity of the
system. When the radiating surface of object 1 is a flat or convex surface, X1,2 = 1, then:

Φ1,2= εs A1(Eb1 − Eb2) (6)

The system emissivity is:

εs =
1

1
ε1
+ A1

A2

(
1
ε2
− 1

) (7)

When the surface area A2 is much larger than A1, A1/A2 → 0 . Surface 1 is a radiant
heat transfer system with a non-concave surface. Then, Equation (4) is:

Φ1,2= ε1 A1(Eb1 − Eb2) (8)

In this experiment, the TPCT radiation heat transfer is in accordance with the descrip-
tion in Equation (8). Therefore, the TPCT radiation heat transfer loss is:

Q2 = ε1 A1 × 5.67 W/m2·K4
[
(T1/100)4 − (T2/100)4

]
(9)

ε1 is the TPCT wall emissivity, taken as 0.8.
The above can be obtained from the TPCT convection heat transfer loss being much

smaller than the TPCT radiation heat transfer loss. Therefore, the TPCT heat transfer loss is
taken as the TPCT radiation heat transfer loss value. TPCT heat transfer losses are:

Qs = Q2 (10)

TPCT heat transfer power Qc is the difference between heating power Qj and TPCT
heat transfer loss Qs:

Qc = Qj − Qs (11)

Convective Heat Transfer Loss

TPCT convective heat transfer losses include convective heat transfer losses in the
evaporation section and convective heat transfer losses in the condensation section. The
convection between the TPCT and the air exists as natural convection and forced convection.
From the equation (Gr/Re2 ≥ 10) of judgment, we know that the effect of forced convection
is negligible for natural convection. So, the TPCT convection heat transfer for the large
space is natural convection heat transfer. The convective heat transfer between the air and
the evaporative section of the TPCT conforms to the large space natural convective heat
transfer with uniform wall temperature boundary conditions.

The experimental correlation equation for natural convection in large spaces is:

Num = C(GrPr)n
m (12)

Num is the number of Nu consisting of the average surface heat transfer coefficient.
The subscript m indicates that the arithmetic average temperature of the boundary layer
(tm = (t∞ + tw)/2) is used for the qualitative temperature. Pr is the Prandtl number. Gr

is the dimensionless Grashov number with H as the characteristic length: Gr =
gαVΔtH3

v2 .
g is the acceleration of gravity. αV is the coefficient of volume change. Ideal gas: αV is
the inverse of T. Δt is the temperature difference. Δt = tw − t∞. tw is the wall surface
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temperature. t∞ is the ambient temperature. The TPCT conforms to the following inequality
for the vertical cylinder.

d
H

≥ 35

Gr1/4
H

(13)

d is the diameter of the TPCT. H is the length of the evaporating section of the TPCT.
The constant C is 0.11 and the coefficient n is 1/3 [45]. The Nu number is composed of the
average surface heat transfer coefficient.

Num = C(GrPr)n
m (14)

Num is also called the dimensionless number Nussle number with H as the character-
istic length.

Num =
hHH

λ
(15)

hH is the surface heat transfer coefficient for convective heat transfer in the evaporation
section of the TPCT. λ is the thermal conductivity of the air fluid. hH can be obtained from
above. Newton’s formula for convective heat transfer in heat transfer:

Q1 = AZhHΔT1 (16)

Q1 is the convective heat exchange between air and TPCT evaporation section. AZ is
the exterior area of evaporation section. hH is the heat transfer coefficient of the surface of
the TPCT evaporation section.

AZ = πdoL1 (17)

Δt is the temperature difference of convective heat exchange.

Δt = tw − t∞ (18)

do is the diameter of the outer surface of the TPCT evaporation section. L1 is the
length of the evaporation section of the TPCT. The above can be obtained from the TPCT
convection heat transfer loss Q1 is much smaller than the TPCT radiation heat transfer loss
Q2. So, the TPCT heat transfer loss is taken as the TPCT radiation heat transfer loss value.

2.2.2. Thermal Resistance of TPCT

A typical TPCT is divided into three sections: the evaporation section, the adiabatic
section, and the condensation section. The latent heat of phase change of the working
medium is utilized by the TPCT. This allows for rapid heat transfer from the evaporative
section to the condensing section. A schematic diagram of the structure of a TPCT is shown
in Figure 1b. The heat transfer process consists of six interrelated phase processes.

Heat is transferred from the heating source to the evaporation section liquid through
the wall of the TPCT.

1. The liquid in the evaporation section is heated to evaporate and absorb heat.
2. The evaporated vapor is transferred along the TPCT to the condensing section of

the TPCT.
3. Vapor in the condensing section of the wall of the tube is exothermic condensation.
4. Heat is transferred from the vapor–liquid through the wall of the TPCT to the

cold source.
5. The liquid condensed in the condensing section wall flows back to the evaporating

section due to gravity.
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The thermal resistance per section of the TPCT in the heat transfer process is as follows
Table 1.

Table 1. The thermal resistance per section of the TPCT in the heat transfer process.

Definition Expressions

The heat transfer thermal resistance R0 from the heating source to the
outer wall of the evaporation section of the TPCT R0 = 1

πdeleho,e
(19)

The thermal conductivity thermal resistance R1 from the outer wall to the
inner wall of the evaporation section of the TPCT R1 = 1

2πλle
ln de

die
(20)

The liquid-vapor evaporative heat transfer thermal resistance R2 of the
medium inside the evaporation section R2 = 1

πdielehi,e
(21)

The thermal resistance R3 caused by the pressure drop in the vapor flow
from the evaporation section to the condensation section of the TPCT R3 ≈ 0 (22)

The heat transfer resistance R4 of the condensing section medium
vapor–liquid condensation R4 = 1

πdiclchi,c
(23)

The thermal conductivity thermal resistance R5 from the inner wall to the
outer wall of the condensing section of the TPCT R5 = 1

2πλlc
ln dc

dic
(24)

The heat transfer thermal resistance R6 between the outer wall of the
condensing section of the TPCT and the heat sink R6 = 1

πdclcho,c
(25)

ho,e is the total surface heat transfer coefficient between the wall of the evaporation section of the TPCT and
the heating source. ho,c is the total surface heat transfer coefficient between the wall of the condensing section
of the TPCT and the heat sink. de is the outside diameter of the evaporating section of the TPCT. dc is the
outside diameter of the condensing section of the TPCT. die is the inner diameter of the TPCT evaporation section.
dic is the inner diameter of the condensing section of the TPCT. λ is the thermal conductivity of the TPCT material.
hi,e is the surface heat transfer coefficient of the TPCT evaporation heat transfer. hi,c is the surface heat transfer
coefficient of the TPCT condensation heat transfer.

R1, R2, R3, R4, and R5 are the thermal resistances inside the TPCT, and the total
internal resistance is:

R = R1 + R2 + R3 + R4 + R5

= 1
2πλle

ln de
die

+ 1
πdielehi,e

+ 0 + 1
πdiclchi,c

+ 1
2πλlc

ln dc
dic

(26)

The heat transferred from the evaporation section to the surface of the condensation
section per unit time is the TPCT heat transfer power Qc. It is the difference between the
heating power Qj and the TPCT heat transfer loss Qs.

Qc = Qj − Qs (27)
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Qc =
Δtec

R
(28)

R =
Δtec

Qj − Qs
(29)

ηc =
Qc

Qj
× 100% (30)

Δtec is the temperature difference between the surface of the evaporation section and
the surface of the condensation section of the TPCT. η is the heat transfer efficiency.

2.2.3. Thermoelectric Power Generation

As shown in Figure 1b, thermoelectric power generation uses the Seebeck effect of
thermoelectric materials. It converts thermal energy directly into electrical energy, which is
a new green, environmentally friendly, and pollution-free power generation technology.
Copper, a good conductive metal, is connected to one end of the P-type thermoelectric
material and the N-type thermoelectric material. The other end is connected with copper
separately to form a PN junction, also known as a PN coupler arm. At this time, there is a
high-temperature heat source at one end of the PN coupling arm to provide heat, forming
the hot end. At the other end of the PN coupler arm, a low-temperature cold source
dissipates energy, forming the cold end. This results in a temperature difference between
the two ends of the PN junction. The holes (P-type thermoelectric material) and electrons
(N-type thermoelectric material) at the high-temperature end of the PN coupler arm are
driven by the temperature gradient and begin to diffuse toward the low-temperature end.
This creates an electrical potential difference between the two ends of the PN coupler arm.
Multiple PN coupler arms are connected to a load resistor, at which point a current is
generated in the circuit. Due to the small electric potential that can be generated by a single
PN coupler arm, multiple PN coupler arms are generally connected in series in commercial
thermoelectric power generation modules today in order to obtain a larger output power.
The hot and cold ends are covered with ceramic sheets to form a temperature differential
generator with multiple PN junctions.

Thermoelectric materials are characterized by low resistance, low thermal conductivity,
and high electrical conductivity. TGs composed of thermoelectric materials can generate
DC voltage.

E = α(Th − Tc) = ΔThc (31)

E = α(Th − Tc) = ΔThc (32)

E is the open-circuit electric potential of TGs. α is the Seebeck coefficient. Th is the
temperature of the hot end of TGs. Tc is the temperature of the cold end of TGs. ΔThc is the
temperature difference between the hot end of TGs and the end of TGs.

The thermoelectric conversion efficiency of a thermoelectric material depends mainly
on the euphoria factor ZT.

ZT =
α2σ

λ
T (33)

σ is the electrical conductivity of the thermoelectric material. λ is the thermal con-
ductivity of the thermoelectric material. T is the absolute temperature. A larger value
of the thermoelectric optimum ZT indicates a better thermoelectric performance of the
thermoelectric material.

When the load resistance RL is the same as the internal resistance Rm of TGs, there is
the maximum output power Pmax.
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Pmax =
E2

4Rm
(34)

ηe1 =
P
Qj

× 100% (35)

ηe2 =
P

Qc
× 100% (36)

P is the load power. Qj is the heating power of heating source. Qc is the heat transfer
power of the evaporation section of the TPCT. ηe1 is the power generation efficiency. ηe2 is
the net power generation efficiency.

Therefore, the open-circuit voltage E and load power P of TGs are important parame-
ters to measure the thermoelectric conversion performance of the experimental device.

From Equation (29), it is known that the factors affecting the open-circuit voltage
and load power of TGs are the Seebeck coefficient α and the temperature difference of
TGs Th − Tc. The Seebeck coefficient mainly depends on the nature of the thermoelectric
material of TGs, while the main external factor is the temperature difference between the
hot end and the cold end of TGs. Then, the temperature difference of TGs is mainly affected
by the temperature of the evaporating section of the TPCT and the temperature of the
condensing section of the TPCT. Therefore, it is necessary to study and analyze this.

3. Results and Discussion

3.1. Heat Transfer Performance
3.1.1. TPCT Heating and Isothermal Characteristics

Figure 2a–d shows the variation in temperature at different distances along the TCPT
with time (increasing the heating power from 100 W to 600 W) at the liquid filling rates of
10%, 25%, 35%, and 45%, respectively. It is observed that the temperature at 10 cm, 30 cm,
50 cm, 70 cm, and 90 cm along the TCPT increases as the heating power increases. When
the heating power is 100 W, the variation in temperature at 90 cm with time is relatively
small, the heat transfer power of the TCPT is low and the heat cannot reach the top of TCPT.
According to the heating power, the temperature rise process of TCPT can be divided into
four stages. During each stage, the temperature of TCPT increases with time, and the rate of
temperature increase gradually decreases. When the cooling and heat dissipation module
is started, the temperature decreases quickly. When the heating power is changed, the
temperature increases rapidly. The variations in temperature with different liquid filling
rates are basically the same. With the increase in the heating power, the temperature of the
TPCT increase. It shows that the heating power is the main factor affecting the temperature
of the TPCT, and the liquid filling rate has a smaller effect on the temperature increase of
the TPCT.

Figure 3a–d shows the variation in temperature with distance along the TCPT at
different heating powers at the liquid filling rates of 10%, 25%, 35%, and 45%, respectively.
There is a large temperature gradient in the evaporation section (from 0 cm to 50 cm), and
there is a small temperature gradient in the condensation section (from 50 cm to 100 cm).
As the wall of evaporation section absorbs heat and boils, there are a large number of
bubbles, and the temperature distribution is more uneven. While the condensation section
of the TPCT condenses and exerts heat, the temperature distribution is more uniform. It
is observed that the temperature with distance along the TCPT increase as the heating
power increase at all liquid filling rates. The temperature of the TCPT does not change
obviously with the increase in the liquid filling rate. It can be concluded that the heating
power is the main factor that affecting the temperature of TCPT and the liquid filling rate is
a secondary factor. Finally, the temperature at each position of the condensation section

52



Fire 2025, 8, 103

tends to be consistent and stable at about 160 ◦C. It indicates that with the increase in
heating power, the temperature consistency of evaporation section becomes weakening,
and the temperature of the condensation section tends to be consistent and more average.

Figure 2. Variation in temperature with time at different distances along the TCPT at the liquid filling
rates of (a) 10%, (b) 25%, (c) 35%, and (d) 45%.
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Figure 3. Variation in temperature with distance along the TCPT at different heating powers at liquid
filling rates of (a) 10%, (b) 25%, (c) 35%, and (d) 45%.
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3.1.2. TPCT Heat Transfer Characteristics Analysis

The variation in the thermal resistance of the TPCT with heating power at different
liquid filling rates is shown in Figure 4. It is observed that the thermal resistance of the
TPCT decreases continuously with the increase in heating power. When the heating power
is 100 W and 200 W, the rate of the variation in the thermal resistance is larger. When
the heating power is 400 W and 600 W, the rate of the variation in the thermal resistance
becomes smaller, consistent. The thermal resistance at the liquid filling rates of 10%,
25%, 35%, and 45% less variable, with some approximate value of 0.10 ◦C/W, 0.14 ◦C/W,
0.19 ◦C/W, and 0.18 ◦C/W, respectively. At the heating powers of 100 W, 200 W, 400 W,
and 600 W, the thermal resistance of the TPCT at the liquid filling rate of 10% is the smallest,
and with the increase in heating power, the thermal resistance does not change much,
roughly around 0.11 ◦C/W. At the heating powers of 200 W–600 W, the thermal resistance
of the TPCT with the 35% liquid filling rate is the largest; at the heating power of 100 W,
the thermal resistance of the TPCT with the 25% liquid filling rate is the largest.
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Figure 4. Variation in thermal resistance with heating power at the liquid filling rates of 10%, 25%,
35%, and 45%.

The variation in heat transfer loss of the TPCT with heating power at different liquid
filling rates is shown in Figure 5. It is observed that the heat transfer loss has been increasing
as the heating power increases. When the heating power is 100 W and 200 W, the difference
in heat transfer loss between TPCTs with different liquid filling rates is small. It indicates
that the liquid filling rate has less effect on the heat transfer loss at low heating power. But
there is also a minimum point of heat transfer loss, the heat transfer loss of the TPCT with
the 10% liquid filling rate is the smallest. When the heating power is 100 W and 200 W, the
smallest heat transfer loss is 18.43 W and 33.28 W, respectively. When the heating power is
400 W and 600 W, the difference in heat transfer loss between TPCTs with different liquid
filling rates is large. It indicates that the liquid filling rate has a more obvious effect on the
heat transfer loss at high heating power. When the heating power is 400 W and 600 W, the
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smallest heat transfer loss is for the TPCT with the 25% liquid filling rate, and is 71.43 W
and 119.48 W, respectively.
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Figure 5. Variation in heat transfer loss with heating power at the liquid filling rates of 10%, 25%,
35%, and 45%.

The variation in the heat transfer power of the TPCT with heating power at different
liquid filling rates is shown in Figure 6. It is observed that that as the heating power
increases, the heat transfer power keeps increasing. And the heating power and heat
transfer power are roughly linear. When the heating power is 100 W and 200 W, the heat
transfer power varies smoothly with the liquid filling rate, and the heat transfer power
is basically the same at different liquid filling rates. At the heating power of 100 W, the
heat transfer power of the TPCT at different liquid filling rates is about 82 W or less; at
the heating power of 200 W, the heat transfer power is about 162 W or less. It means
that the liquid filling rate has less influence on the heat transfer power at low heating
power. Moreover, the heat transfer power of the TPCT at the liquid filling rate of 35% is
the smallest, and the heat transfer power of the TPCT at the liquid filling rate of 10% is the
largest at low heating power. When the heating power is 400 W and 600 W, the variation
in heat transfer power with liquid filling rate is larger. It indicates that the liquid filling
rate has a more obvious effect on the heat transfer power at high heating power. At high
heating power, the TPCT at the liquid filling rate of 25% has the largest heat transfer power.
At the high heating power of 400 W and 600 W, the largest heat transfer powers of the
TPCT are 480 W and 328 W, respectively.

The variation in the heat transfer efficiency of the TPCT with heating power at different
liquid filling rates is shown in Figure 7. It is observed that the heat transfer efficiency of
TPCTs with different liquid filling rates shows a trend of first increasing and then decreasing
as the heating power increases. TPCTs with liquid filling rates of 10%, 35%, and 45% exhibit
the highest heat transfer efficiency at a heating power of 200 W, with efficiencies of 83.36%,
78.84%, and 77.71%, respectively. The TPCT with a liquid filling rate of 25% achieves the
greatest heat transfer efficiency of 82.14% at a heating power of 400 W. It is observed that
that the TPCT with the liquid filling rate of 10% has the largest heat transfer efficiency at
the low heating powers of 100 W and 200 W, which are 81.57% and 83.36%, respectively. At
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the high heating powers of 400 W and 600 W, the TPCT with the liquid filling rate of 25%
has the largest heat transfer efficiency, which is 82.14% and 80.09%, respectively. Therefore,
the heat transfer efficiency of the TPCT is larger at low liquid filling rates. At the heating
powers of 100 W, 200 W and 400 W, the TPCT with a liquid filling rate of 35% has the
smallest heat transfer efficiency. At a heating power of 600 W, the heat transfer efficiency of
the TPCT is essentially the same for a liquid filling rate of 35% and a liquid filling rate of
45%. Therefore, it can be considered that the smallest heat transfer efficiency of the TPCT at
heating power (from 100 W to 600 W) is found in the TPCT at the liquid filling rate of 35%.
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3.2. Power Generation Performance Analysis
3.2.1. Temperature Parameters Analysis

The variation in ΔThc with liquid filling rate at the heating powers of 100 W, 200 W,
400 W, and 600 W is shown in Figure 8. It is observed that that ΔThc increases as the heating
power increases. When the liquid filling rate of the TPCT is 10%, 25%, and 35%, the ΔThc

change curve is closer. When the liquid filling rate is 45%, ΔThc increases significantly. At
the heating powers of 200 W, 400 W, and 600 W, the maximum ΔThc are 40.62 ◦C, 68.30 ◦C,
and 90.03 ◦C, respectively, for the TPCT at the liquid filling rate of 45%. It shows that
the heating power has a greater effect on ΔThc at higher liquid fill rates of the TPCT. It
is observed that ΔThc shows a trend of decreasing and then increasing with the increase
in the liquid filling rate of the TPCT. When the heating power is 100 W and 200 W, the
variation in the temperature difference of TGs is smaller. When the high heating power
is 400 W and 600 W, the variation is larger. It shows that at low heating power, the liquid
filling rate has a smaller effect on the temperature difference of the power generator. At
high heating power, the effect of the liquid filling rate on ΔThc is larger.
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Figure 8. Variation in ΔThc with liquid filling rate at the heating powers of 100 W, 200 W, 400 W,
and 600 W.

The variation in Δtec with liquid filling rate at the heating powers of 100 W, 200 W,
400 W, and 600 W is shown in Figure 9. It is observed that Δtec gradually increases as the
heating power increases. As the liquid filling rate increases, Δtec first increases and then
decreases. At the heating powers of 200 W, 400 W, and 600 W, Δtec at the liquid filling rate
of 35% is the largest, which is 40.09 ◦C, 61.24 ◦C and 83.35 ◦C, respectively. At the heating
power of 100 W, Δtec at the liquid filling rate of 25% is the largest, which is 34.93 ◦C.

The variation in the evaporation section temperature with liquid filling rate at four
heating powers is shown in Figure 10. It is observed that the evaporation section tempera-
ture of the TPCT increases gradually with the increase in heating power. When the heating
power is greater than or equal to 400 W and the liquid filling rate is greater than or equal to
25%, the variation in the evaporation section temperature is roughly the same. It means
that the evaporation section temperature of the TPCT is only proportional to the heating
power at this time. When the heating power is 100 W and 200 W, the evaporation section
temperature of the TPCT with the liquid filling rate of 25% is larger; when the heating
power is 400 W and 600 W, the evaporation section temperature of the TPCT with liquid
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filling rates of 25%, 35%, and 45% tends to be the same. So, it means that in all heating
power (from 100 W to 600 W), the evaporation section of the TPCT at the liquid filling rate
of 25% has a higher temperature and better heating performance.
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Figure 9. Variation in Δtec with liquid filling rate at the heating powers of 100 W, 200 W, 400 W,
and 600 W.

3.2.2. Power Generation Performance Indicators Analysis

Figure 11a–c shows the variation in open-circuit voltage, load current, and load power
with heating power at the liquid filling rates of 10%, 25%, 35%, and 45%. It is observed
that as the increase in heating power, the open-circuit voltage, load current, and measured
load power increase. When the heating power is 200 W, 400 W, and 600 W, the values of
power generation parameters, such as open-circuit voltage, load current, and load power,
do not differ much for different liquid filling rates. It means that the open-circuit voltage,
load current, and load power are less affected by the liquid filling rate and more affected
by the heating power. However, when the heating power is 100 W, the value of the power
generation parameter is larger for a 10% liquid-filled TPCT. This is because at low heating
power, the TPCT with the lower liquid filling rate is easier to start and has better heat
transfer characteristics. It is observed that with the increase in the liquid filling rate, when
the heating power is 100 W and 200 W, the open-circuit voltage, load current, and load
power show a trend of first decreasing and then increasing, and the TPCT with a liquid
filling rate of 10% have the maximum values. When the high heating power is 400 W
and 600 W, the open-circuit voltage, load current, and load power show a trend of first
increasing and then decreasing, and the TPCTs with liquid filling rates of 25% and 35%
have the maximum values. Table 2 shows the maximum values of open-circuit voltage,
load current, and load power at different heating powers and liquid filling rates.
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Figure 10. Variation in evaporation section temperature with liquid filling rate at the heating powers
of 100 W, 200 W, 400 W, and 600 W.

Figure 12a,b shows the variation in power generation efficiency and net power genera-
tion efficiency with heating power at the liquid filling rates of 10%, 25%, 35%, and 45%. It is
observed that the power generation efficiency and net power generation efficiency increase
as the heating power increases. When the heating power reaches 400 W, the increases in
both power generation efficiency and net power generation efficiency become slower and
gradually level off. It indicates that the heating power has more influence on the power
generation efficiency and net power generation efficiency at the heating powers of 100 W
and 200 W; the heating power has a smaller effect on the power generation efficiency and
net power generation efficiency at the high heating powers of 400 W and 600 W. Finally,
the power generation efficiency and net power generation efficiency converge to 2.08%
and 2.68%. It is observed that with the increase in liquid filling rate, at the heating powers
of 100 W and 200 W, the power generation efficiency and net power generation efficiency
both show a trend of first decreasing and then increasing, and they have maximum values
when the liquid filling rate is 10%. At the high heating powers of 400 W and 600 W, the
power generation efficiency and net power generation efficiency both show a trend of
first increasing and then decreasing, and they have maximum values when the liquid
filling rates are 25% and 35%, respectively. Table 3 shows the maximum values of power
generation efficiency and net power generation efficiency at different heating powers and
liquid filling rates.

59



Fire 2025, 8, 103

 

 

 

0 200 400 600
0

5

10

15

20

(a)
 10%
 25%
 35%
 45%

O
pe

n 
ci

rc
ui

t v
ol

ta
ge

 /V

Heating power /W
100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
(b)

 10%
 25%
 35%
 45%

Lo
ad

 c
ur

re
nt

 /A

Heating power /W

100 200 300 400 500 600
0

2

4

6

8

10

12

14
(c)

 10%
 25%
 35%
 45%

Lo
ad

 p
ow

er
 /W

Heating power /W

Figure 11. (a) Variation in (b) open-circuit voltage, (c) load current, and load power with heating
power at the liquid filling rates of 10%, 25%, 35%, and 45%.

Table 2. Power generation parameters at different heating powers.

Heating Power
Maximum

Open-Circuit Voltage/V
Maximum

Load Current/A
Maximum

Load Power/W

100 W 3.51 (10%) 0.25 (10%) 0.47 (10%)

200 W 8.89 (10%) 0.61 (10%) 2.68 (10%)

400 W 16.43 (35%) 1.06 (25%) 8.13 (25%)

600 W 21.93 (35%) 1.37 (35%) 13.64 (35%)
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Table 3. Maximum power generation efficiency and maximum net power generation efficiency at
different heating powers.

Heating Power
Maximum Power

Generation Efficiency/%
Maximum Net Power

Generation Parameters Under/%

100 W 0.4657 (10%) 0.5709 (10%)

200 W 1.3375 (10%) 1.6046 (10%)

400 W 2.0313 (25%) 2.6217 (35%)

600 W 2.2736 (35%) 3.1086 (35%)

4. Conclusions

The effects of heating power and liquid filling rate on heat transfer performance and
power generation performance are studied. The following conclusions are drawn:

(1) The thermal resistance decreases as heating power increases, and the heat transfer
power increases as heating power increases. The important indexes of power generation
performance, for example, open-circuit voltage, load current, load power, power generation
efficiency, and net power generation efficiency, increase as heating power increases. This
shows that as the heating power increases, heat transfer performance and power generation
performance of the device will also increase. As the heating power increases, the heat
transfer loss increases and the heat transfer efficiency increases and then decreases. The
power generation efficiency and net power generation efficiency increase as the heating
power increases, and converge to 2.18% and 2.68%. This indicates that as the heating power
increases, the heat transfer performance and power generation performance become slow
to improve and finally stabilize at a relatively steady state.

(2) Overall, the effect of the liquid filling rate is smaller than that of the heating power
for both heat transfer and power generation performance. At the low heating powers of
100 W and 200 W, the device with the TPCT at the lower liquid filling rate of 10% has better
heat transfer performance and power generation performance. At the high heating powers
of 400 W and 600 W, the device with the TPCT at the higher liquid filling rates of 25%, and
35% has better heat transfer performance and power generation performance.

(3) The thermal resistance of the TPCT at the liquid filling rate of 10% is the smallest,
and with the increase in heating power, the thermal resistance does not change much,
roughly around 0.11 ◦C/W. At a heating power of 200 W, TPCTs at liquid filling rates of
10%, 35%, and 45% have the maximum heat transfer efficiency, which is 83.36%, 78.84%,
and 77.71%, respectively. At a heating power of 400 W, the TPCT at the liquid filling rate of
25% has the largest heat transfer efficiency, which is 82.14%.

The maximum values of power generation efficiency and net power generation effi-
ciency are 2.27% and 3.10%, respectively.
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Abstract: Coal and gas outbursts pose significant threats to underground personnel, mak-
ing the development of accurate prediction models crucial for reducing casualties. By
addressing the challenges of highly nonlinear relationships among predictive parameters,
poor interpretability of models, and limited sample data in existing studies, this paper
proposes an interpretable Ali Baba and the Forty Thieves–Transformer–Support Vector
Machine (AFT-Transformer-SVM) model with high predictive accuracy. The Ali Baba and
the Forty Thieves (AFT) algorithm is employed to optimise a Transformer-based feature
extraction, thereby reducing the degree of nonlinearity among sample data. A Transformer-
SVM model is constructed, wherein the Support Vector Machine (SVM) model provides
negative feedback to refine the Transformer feature extraction, enhancing the prediction
accuracy of coal and gas outbursts. Various classification assessment methods, such as
TP, TN, FP, FN tables, and SHAP analysis, are utilised to improve the interpretability of
the model. Additionally, the permutation feature importance (PFI) method is applied to
conduct a sensitivity analysis, elucidating the relationship between the sample data and
outburst risks. Through a comparative analysis with algorithms such as eXtreme gradient
boosting (XGBoost), k-nearest neighbour (KNN), radial basis function networks (RBFNs),
and Bayesian classifiers, the proposed method demonstrates superior accuracy and effec-
tively predicts coal and gas outburst risks, achieving 100% accuracy in the sample dataset.
The influence of parameters on the model is analysed, highlighting that the coal seam gas
content is the primary factor driving the outburst risks. The proposed approach provides
technical support for coal and gas outburst predictions across different mines, enhancing
emergency response and prevention capabilities for underground mining operations.

Keywords: transformer-based feature extraction; classification assessment methods;
interpretable model; SHAP analysis; permutation feature importance

1. Introduction

Coal remains a vital component of global energy systems, playing a significant role
in ensuring energy security and driving industrial progress. However, with the depletion
of shallow coal resources and increasing mining depths, coal and gas outburst accidents
have become critical challenges that threaten the normal operation of mines [1,2]. As of
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2019, over 878 coal and gas outburst incidents were reported across 22 underground coal
mines in Australia [3]. On 12 January 2024, a coal and gas outburst accident in the Tianan
Coal Mine, Henan Province, China, resulted in 16 fatalities and 5 injuries. Similarly, on
7 June 2024, a gas outburst occurred in the Pingdingshan Coal Mine, Yunnan Province,
China, causing three fatalities and five injuries. Despite the rapid advancements in artificial
intelligence and machine learning technologies in recent years, which have introduced
numerous new methods and theories to address the challenges of coal and gas outbursts,
such accidents continue to occur frequently. The prevention and control of coal and gas
outbursts remain a significant challenge, and urgent measures are required to address these
issues [4,5].

To tackle the problem of coal and gas outbursts, significant scientific research and
engineering practices have been conducted, leading to notable achievements. Early inter-
national research widely recognised the comprehensive action theory, which posits that
coal and gas outbursts are determined by three factors: ground stress, coal properties, and
gas content [6,7]. J. Hanes et al. [8] conducted studies in Australia on geological conditions,
coal properties, and gas parameters, concluding that coal and gas outbursts are jointly
triggered by stress and gas content, with gas content being the dominant factor. Similarly, K.
Sato et al. [9] utilised digital seismographs across entire coal mines in Japan to analyse the
impact of geological variations on gas outbursts. J. Shepherd et al. [10] studied parameters
such as ground stress and gas content in Germany, identifying them as the most critical
factors influencing coal and gas outbursts.

With the rapid development of artificial intelligence and machine learning models,
numerous new theories have been applied to the study of coal and gas outbursts in
mines. Peng Ji et al. [11] developed a coal mine data model based on the HPO-BiLSTM
algorithm, achieving a method for coal and gas outburst early warning. Junqi Zhu et al. [12]
constructed a coal and gas outburst risk identification model using the RS-GA-BP hybrid
model, which significantly improved the risk identification speed. Other researchers have
employed mathematical theories and data mining techniques to establish coal and gas
outburst risk evaluation and identification systems. For instance, Xie Xuecai et al. [13]
utilised data mining and the Apriori algorithm to analyse the causes of coal and gas
outbursts, developing a Bayesian network model to conduct a sensitivity analysis of
accident occurrences. Wei Wang et al. [14] applied extension theory to construct a risk
prediction and risk grading indicator system for coal and gas outbursts, successfully
predicting risks in 12 high-gas mines. David R. Hanson et al. [15] analysed MSHA accident
data and applied various algorithms to coal samples in Pennsylvania, examining the
probability of outburst accidents based on stratigraphic chemistry and lithofacies data.
Furthermore, some researchers have explored traditional algorithms such as decision tree
models. Zheng Xiaoliang et al. [16] combined meta-heuristic algorithms with the XGBoost
theory to achieve quantitative analyses of gas outburst predictions. Zhonghui Li et al. [17]
investigated a risk assessment for coal and gas outbursts based on logistic regression
models, constructing a non-contact EMR index and achieving a regression prediction
accuracy of 94%. Finally, geophysical methods have also been employed to develop various
evaluation approaches and equipment. For example, V. Frid et al. [18] monitored high-
frequency electromagnetic waves emitted from rock fractures to detect outburst risks and
compared these with laboratory results, bridging the gap between laboratory and field
predictions. Similarly, Janathan P. Mathews et al. [19] utilised X-ray computed tomography
to study the expansion and contraction of gas absorption and desorption in coal under
confining pressure, providing novel methodologies for coal and gas outburst research.
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In practical coal mining operations, predictive models for coal and gas outbursts
must effectively address challenges such as limited sample data, significant nonlinear
relationships between parameters, and poor model interpretability, thereby achieving
high generalisation capability and prediction accuracy. To address these challenges, this
study constructs an interpretable Ali Baba and the Forty Thieves–Transformer–Support
Vector Machine (AFT-Transformer-SVM) model based on multidimensional data from
actual mining faces and designs a series of computational experiments. By employing a
SHAP analysis to interpret feature contributions and combining TP, TN, FP, and FN metrics
for comprehensive performance evaluation, the model’s interpretability is significantly
enhanced. Additionally, the permutation feature importance (PFI) method is adopted to
quantify the sensitivity of raw data features, enabling the development of a coal and gas
outburst early warning model under real-world conditions. Through comparative valida-
tion with various classical algorithms and field data, the proposed model demonstrates
superior prediction accuracy and efficiency, offering robust support for the development of
high-performance, interpretable coal and gas outburst prediction models.

2. Materials and Methods

Figure 1 represents the primary model proposed in this study, which integrates the
coal and gas outburst prediction model with the feature sensitivity analysis model. Ini-
tially, nine features were selected, encompassing three dominant factors: the physical
and mechanical properties of coal, gas-related factors, and ground stress. These features
were input into the AFT-Transformer-SVM model for analysis. The Ali Baba and the Forty
Thieves (AFT) algorithm was employed to optimise the feature extraction capability of
the Transformer module. During this process, the prediction accuracy of the coal and gas
outburst model, derived from the SVM, was utilised as a convergence function to pro-
vide negative feedback, thereby adjusting the Transformer module’s layer structure. This
iterative optimisation ultimately facilitated accurate feature extraction by the Transformer.

 

Figure 1. Schematic diagram of the overall model workflow.
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Subsequently, a grid search algorithm was utilised to optimise the SVM layer structure,
enabling coal and gas outburst testing on the test dataset. A SHAP analysis [20] was applied
to examine the distribution of features extracted by the Transformer, offering interpretabil-
ity for the current model. To quantify the contribution of the original sample data, the
permutation feature importance (PFI) method [21] was employed to randomly shuffle the
columns of the original feature data. The model was then retrained and predictions were
performed. The prediction accuracy was used as a criterion to evaluate the contribution of
the original data to the model.

2.1. Collection of Raw Data

To adapt to the conditions of on-site working environments, the primary factors influ-
encing coal and gas outbursts were selected. These factors include gas-related parameters,
the physical and mechanical properties of coal, and ground stress. The selected sample
features consist of nine key parameters: coal failure type, initial velocity of gas desorption
from coal, coal firmness coefficient, gas content in coal seams, K1 gas desorption volume,
drilling debris volume, distance to geological structures, burial depth of the coal, and coal
seam thickness. A total of 569 data samples were collected from an intelligent mine analysis
platform for testing and validation purposes [22].

(1) Gas-Related Factors
Gas content: The gas content within coal seams is recognised as one of the critical

factors contributing to gas-related disasters. Coal seams with high gas content, particularly
those with loose structures and significant porosity, are prone to gas accumulation, thereby
increasing the risk of outbursts. The gas storage capacity of coal seams is closely associated
with the permeability of the surrounding rock. When the surrounding rock is dense
and exhibits low permeability, gas release becomes restricted, further heightening the
probability of outbursts.

K1 gas release rate: The K1 value represents the capacity of coal samples to desorb gas
from the coal body, reflecting the gas storage conditions within the coal seam. A higher K1
value indicates a stronger gas release capability, which typically corresponds to a looser
coal structure that facilitates gas release, thus elevating the risk of gas outburst accidents.

Gas desorption: The initial velocity of gas desorption reflects the rate at which gas is
released from the coal body. This value is measured by applying a specific pressure to a
coal sample and observing the pressure change within one minute. A higher gas desorption
velocity indicates a faster release of gas, increasing the likelihood of gas outbursts.

(2) Physical and Mechanical Properties of Coal
Coal type: Under the influence of geological activities, including structural stress and

ground stress, the original structure of coal may be damaged, resulting in the formation
of numerous pore spaces. Coal failure types are classified into intact coal, fractured coal,
highly fractured coal, pulverised coal, and completely pulverised coal, depending on
the degree of damage. The extent of structural damage directly affects the mechanical
properties and gas storage conditions of coal, thereby influencing the risk of gas outbursts.

Strength coefficient: The strength coefficient of coal is utilised to measure its com-
pressive strength, hardness, and brittleness. A higher value indicates greater resistance
to compressive forces and less susceptibility to damage. Conversely, a lower strength
coefficient implies that the coal is more vulnerable to external forces, facilitating gas release
under pressure and, thereby, increasing the probability of outbursts.

Drilling chip volume: Drilling chip volume refers to the amount of coal powder
generated during the drilling process in coal seams. This parameter is closely related to
the strength and brittleness of the coal. Weaker or more brittle coal seams produce larger
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volumes of drilling chips, indicating a higher propensity for structural damage, thereby
elevating the risk of gas outbursts.

Coal thickness: The thickness of coal seams directly determines the volume of gas
stored within the coal body. Thicker coal seams generally contain more gas. When the coal
body exhibits low strength, the accumulated gas is more likely to breach the constraints of
the coal structure and escape, resulting in gas outbursts.

(3) Ground Stress
Distance to geological structures: Coal seams located near geological structures, such

as faults and folds, are subjected to significant structural stress, increasing the risk of gas
outbursts. As mining operations progress, the redistribution of structural stress may lead
to gas accumulation. This is particularly evident in stress-concentrated regions, where the
likelihood of outbursts is significantly heightened.

Burial depth: With increasing mining depth, ground stress intensifies progressively.
Deeply buried coal seams are subjected to higher ground stress, resulting in tighter coal
structures that hinder the release of gas. When gas accumulation reaches a critical threshold,
an outburst disaster may occur. Therefore, the burial depth of coal seams and the associated
ground stress are critical factors influencing the risk of gas outbursts.

2.2. AFT-Transformer-SVM Model for Coal and Gas Outburst Prediction

Figure 2 illustrates the Transformer-SVM coal and gas outburst prediction model,
designed for multidimensional, nonlinear, and small-sample prediction tasks. The diagram
demonstrates the connection between the raw data, the Transformer model framework,
and the SVM classification model. Initially, raw sample data are fed into the Transformer
model for training. The Transformer model is primarily composed of multi-head attention
and positional embedding. Positional embedding explicitly incorporates sequence position
information, while multi-head attention models the correlation within the sequence by feed-
ing the input data into multiple attention heads to learn different feature representations.
These features are then concatenated to allow the model to extract more comprehensive
and multidimensional feature information. Subsequently, the extracted features are passed
to a Flatten Layer, which converts the sequence into a one-dimensional vector, flattening
the multidimensional features into a single vector. The vector is then processed through
a Dense Layer, where nonlinear mapping is applied to extract higher-level and abstract
features. Following this, the SVM model adopts a degenerative feedback Transformer
structure to enhance feature extraction and improve the prediction performance. In the
diagram, the left section represents the raw data, consistent with Figure 1, and depicts the
original sample. The middle section represents the Transformer feature extraction module,
showcasing various layers of the Transformer structure. The right section illustrates the
SVM classification module, where the extracted features are learnt and compared against
the outburst risk parameter to evaluate the prediction accuracy.

2.2.1. Ali Baba and the Forty Thieves Optimisation Algorithm

The AFT algorithm is an intelligent optimisation method suitable for solving multidi-
mensional objective functions to obtain optimal solutions [23]. The fundamental principles
of the algorithm are described as follows:

(1) Acquiring Information and Pursuing “Alibaba”:
The algorithm first gathers information and pursues the optimal solution, as described

in Equation (1):

xi
t+1 = gbestt +

[
Tdt

(
besti

t − yi
t

)
r1 + Tdt

(
yi

t − ma(i)
t

)
r2

]
sgn(rand − 0.5) (1)
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Here, xi
t+1 denotes the position of the ith individual in the t + 1 iteration; gbest

represents the global best position, indicating the global optimal solution identified during
the current search process; Tdt is the tracking distance, which controls the magnitude
of position updates; yi

t is the current position of individual i in the tth iteration; besti
t is

the historical best position of the individual i; and ma(i)
t is the reference position of the

individual i.

 

Figure 2. Schematic diagram of the Transformer-SVM model structure.

(2) Random Exploration and Deception:
Individuals are deceived and randomly explore the solution space, as described in

Equation (2):
xi

t+1 = Tdt
[(

uj − lj
)
rand + lj

]
(2)

Here, uj and lj represent the upper and lower bounds, respectively, of the jth dimen-
sion in the search space.

(3) Balancing Global and Local Search:
The algorithm ensures a balance between global exploration and local exploitation to

prevent premature convergence to local optima. This balance is achieved as described in
Equation (3):

xi
t+1 = gbestt −

[
Tdt

(
besti

t − yi
t

)
r1 + Tdt

(
yi

t − ma(i)
t

)
r2

]
sgn(rand − 0.5) (3)

This optimisation approach enables efficient exploration of the solution space, ensuring
a balance between exploitation and exploration for achieving the global optimal solution.

2.2.2. Transformer Feature Extraction

In the Transformer model, a positional encoding layer and self-attention mechanism
are introduced to effectively process the sequential information of the input data. Initially,
a positional embedding layer is incorporated, which utilises an embedding mechanism to
assign a unique vector to each input, enabling the model to perceive positional information.
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Through an additive mechanism, positional embeddings are combined with the original
features, allowing the Transformer model to fully comprehend the spatial relationships
within the sequential data.

Given the input sequence X = [x1, x2, . . . , xn], where xi ∈ R
d represents the feature

vector at the ith position of the input, the positional encoding P = [p1, p2, . . . , pn] generates
the positional embedding vector pi ∈ R

d for each position i. The positional encoding is
then additively combined with the input features, as described in Equation (4):

X′ = X + P (4)

where X′ represents the input data after the addition of positional encoding.
Next, a multi-head self-attention layer is introduced. By parallel computing multiple

attention weight matrices, the model is enabled to capture critical information from the
input data across different subspaces simultaneously. Through the stacking of two self-
attention layers, the model effectively learns the dependencies among features at various
levels, enhancing its capability to recognise complex patterns. The computation for each
attention head is as follows:

(1) Calculation of Query (Q), Key (K), and Value (V):
For each attention head h, the Query Qh, Key Kh , and Value Vh are computed as

follows:
Qh = X′W(h)

Q (5)

Kh = X′W(h)
K (6)

Vh = X′W(h)
V (7)

where W(h)
Q , W(h)

K , and W(h)
V are the learnt weight matrices.

(2) Attention Score:
The attention score is calculated using the Query and Key as follows:

Attention(Qh, Kh) =
QhKT

h√
dk

(8)

In the equation, dk represents the dimensionality of the Key vector, and the normalisa-
tion factor

√
dk is used to prevent the values from becoming excessively large.

(3) Weighted Sum Calculation:
The attention scores are used to compute the weighted sum of the values, as shown in

Equation (9).

Outputh = so f tmax

(
QhKT

h√
dk

)
Vh (9)

(4) Multi-Head Attention Combination:
The outputs from all attention heads are concatenated and passed through a linear

transformation to obtain the final attention output, as shown in Equation (10):

MultiHeadOutput = Concat(Output1, . . . , Outputh)WO (10)

Here, WO is a learnt linear transformation matrix.
Finally, a fully connected layer and classification output are applied. Based on the

self-attention mechanism, the extracted features are flattened through a flattening layer
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and further subjected to a series of fully connected (Dense) layers for nonlinear mapping.
The output layer utilises the softmax activation function for multi-class classification,
providing the final prediction for the coal and gas outburst discrimination task, as shown
in Equations (11) and (12):

(5) Flattening and Fully Connected Layer:
The flattened output Z is mapped through the first fully connected layer:

F1 = Relu(ZW1 + b1) (11)

Here, W1 and b1 represent the weight matrix and bias term of the first fully connected
layer, respectively, and Relu is the nonlinear activation function.

(6) Output Layer:
Multi-class classification is performed through the second fully connected layer and

the softmax activation function:

ŷ = so f tmax(F1W2 + b2) (12)

Here, W2 and b2 are the weight matrix and bias term of the second fully connected
layer, respectively, and ŷ represents the predicted probability distribution output by
the model.

2.2.3. Grid-Optimised Support Vector Machine Algorithm

Grid search is an exhaustive search method used to optimise the hyperparameters
of a Support Vector Machine (SVM). The performance of an SVM model relies heavily
on the proper selection of hyperparameters, such as the kernel function parameters and
the regularisation parameter. The primary objective of grid optimisation is to identify the
optimal combination of these hyperparameters to maximise the model’s performance on
the validation set.

(1) Fundamental Formula of SVM
Since coal and gas outburst data are nonlinear, even after feature extraction using the

Transformer model, a Gaussian radial basis function (RBF) kernel is required to map the
data to a higher-dimensional space. The formula for the Gaussian RBF kernel is given in
Equation (13):

K
(
xi, xj

)
= exp

(
−‖ xi − xj ‖2

2σ2

)
(13)

(2) Grid-Optimised SVM
Grid optimisation identifies the optimal hyperparameter combination that achieves

the best model performance. It involves optimising the regularisation parameter C and the
kernel parameter σ. The steps for grid optimisation are as follows:

Define the hyperparameter search space:

H = {(C, γ) | C ∈ C, γ ∈ Γ} (14)

Here, C represents the set of candidate values for C, and Γ represents the set of
candidate values for the RBF kernel parameter γ = 1/

(
2σ2).

Cross-validation evaluation: For each hyperparameter combination (C, γ) ∈ H, k-fold
cross-validation is performed to evaluate the model’s performance:

CVscore(C, γ) =
1
k

k

∑
i=1

Scorei(C, γ) (15)
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Here, Scorei(C, γ) represents the model’s accuracy on the ith fold of the data, and k
denotes the number of folds in the cross-validation process.

Hyperparameter selection: All hyperparameter combinations are iterated, and the
combination that maximises the cross-validation score is selected as follows:

(C∗, γ∗) = arg max
(C,γ)∈H

CVscore(C, γ) (16)

Model training with optimal hyperparameters: Finally, the SVM model is retrained on
the training set using the optimal hyperparameters (C∗, γ∗):

f̂ (x) = SVM(x; C∗, γ∗) (17)

2.3. Data Sensitivity Analysis

In the process of data analysis, a combination of SHAP analysis and permutation
feature importance (PFI) methods is utilised to evaluate the importance of data features.

2.3.1. Permutation Feature Importance

The PFI method is applied within the Transformer-SVM model by randomly permut-
ing the values of the specific feature j. The permuted data are then used for coal and gas
outburst prediction with the Transformer-SVM model to assess the model’s performance.
The prediction accuracy is analysed to measure the impact of different features on the
overall prediction performance. The fundamental formulas are as follows:

First, let M(model, X) denote the prediction accuracy of the model on data X, and
let X(j)

perm represent the new matrix obtained by randomly permuting the jth column of
the feature matrix X. The model performance on the permuted data is expressed using
Equation (18):

M(perm)
j = M

(
AFT − Trans f ormer − SVM, X(j)

perm

)
(18)

Based on the performance degradation, the reduction in model performance is defined
by Equation (19):

PFIj = Mbase − M(perm)
j (19)

2.3.2. SHAP Analysis for Interpreting the Coal and Gas Outburst Model

The SHAP analysis is used to explain the influence of parameters extracted by the
Transformer-SVM model on the model’s predictions. The Shapley value from game theory
is employed to determine the contribution of each participant (feature) to the final predic-
tion of the coal and gas outburst model. The model is expressed as shown in Equation (20):

f (x) = SVM(T(x)) (20)

Here, T(x) represents the process in which the Transformer maps the original sample
x to the new feature p = T(x).

For a single sample x ∈ R
d and the model f (·), let the feature set F = {1, 2, . . . , d}.

The SHAP value φj(x) for the jth feature is calculated as defined in Equation (21):

φj(x) = ∑
S⊆F{j}

|S|!(d − |S| − 1)!
d!

[ f (S ∪ {j} − f (S)] (21)

where |S| represents the size of the feature subset S; and f (S) denotes the model’s prediction
for sample x using only the feature subset S.
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In practical applications, to reduce the computational complexity of enumerating all
subsets S, the kernel SHAP method is employed to approximate the SHAP values and
minimise the computational burden.

3. Results and Discussion

This study utilised a dataset of 569 samples to construct the AFT-Transformer-SVM
model using the TensorFlow library within Python 3.9. A series of computational com-
parison experiments were designed to assess and validate the coal and gas outburst risk
based on real-world data, providing technical support for safe production in actual mining
operations.

Table 1 presents a subset of the sample data used for the analysis, which is consistent
with Figure 1 and the descriptions provided earlier. Nine variables were selected as sample
features, with the outburst risk levels represented by drilling operations at the mining
site. No specific measures taken were considered as no outburst risk, represented by 0.1.
Conducting 12–15 sets of pressure relief boreholes indicated a moderate outburst risk,
represented by 0.6. Drilling 20 sets of pressure relief boreholes was considered to represent
a severe outburst risk, represented by 1.

Table 1. Collected sample data table.

Coal Type Gas Desorption Δp Strength Coefficient f Gas Content
/m3·t−1

K1 Gas Release Rate
mL·(g·min0.5)−1

2 16.86 0.31 7.13 0.4 0.27 0.29
2 17.83 0.30 10.62 0.42 0.21 0.24
2 17.78 0.35 7.52 0.22 0.16 0.18
3 17.09 0.32 11.44 0.11 0.25 0.21

. . . . . . . . . . . . . . . . . . . . .

Distance to Geological
Structure/m

Burial Depth
/m

Coal
Thickness/m

Drilling Chip/kg·m−1 Outburst Risk

32 366 0.8 3.7 3.4 3.9 1
0 358 2.2 3.1 3.6 3 0.6

42 352 2.2 3.5 3.4 3.8 0.1
62 370 2.5 3.2 3.2 3.2 0.6
. . . . . . . . . . . . . . . . . . . . .

3.1. Optimisation of the Transformer-SVM Model Using Different Algorithms

Firstly, the original data were split in a 7:3 ratio, with the first 70% used for the
model optimisation. Various optimisation algorithms were employed to optimise the
parameters of the Transformer-SVM model, including units_fc1, num_heads, key_dim, and
learning_rate.

The optimisation process was conducted using a fitness function defined as (1−accuracy).
A population of 30 individuals was selected, and the optimisation process was iterated
350 times, as illustrated in Figure 3.
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Figure 3. Comparative results of various optimisation algorithms.

Figure 3a presents the optimisation results using the AFT algorithm, where the point
with the highest accuracy reached 0.999. The size of the points in the figure represents
units_fc1, the x-axis represents num_heads, the y-axis represents key_dim, the z-axis
represents learning_rate, and the colour bar indicates the prediction accuracy. The final
optimised parameters were determined as follows: [num_heads: 4, key_dim: 98, learn-
ing_rate: 0.009449, units_fc1: 64].

Figure 3b shows the relationship between the fitness function and the number of
iterations for various optimisation algorithms. The blue curve represents the AFT algorithm,
where the fitness value reached 0.00012 after 289 iterations, making it the algorithm with
the smallest fitness value. This was followed by the PSO algorithm, with a fitness value of
0.0032, and then the CO, SSA, and ACS optimisation algorithms.

Through experimental comparisons, each algorithm was run ten times, and the optimal
fitness values of the various optimisation algorithms were selected for a statistical analysis.
The results are presented in Table 2, where the AFT algorithm demonstrated superior
performance in terms of range, minimum, maximum, and standard deviation compared to
the other algorithms. However, it exhibited a relatively higher variance. Following the AFT
algorithm were the PSO and SSA algorithms, with the CO and ACS algorithms performing
the least effectively.

Table 2. Comparative results of various optimisation algorithms.

Optimization
Algorithms

Variance Range Minimum Maximum
Standard
Deviation

AFT 0.00004 0.0004 0.000110 0.00015 0.000011
CO 0.00001 0.003 0.013 0.016 0.000884
SSA 0.00003 0.003 0.006 0.009 0.000936
PSO 0.00002 0.0018 0.0032 0.005 0.000503
ACS 0.00013 0.012 0.016 0.028 0.003606
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These results validate the efficiency and accuracy of the AFT algorithm in optimising
the parameters of the Transformer-SVM model for coal and gas outburst predictions.
Therefore, the AFT algorithm was chosen as the final intelligent optimisation algorithm.

3.2. AFT-Transformer-SVM Model for Coal and Gas Outburst Risk Prediction

To evaluate the performance of the model, 70% of the sample data were used as
training data, while the remaining 30% were used as testing data to predict coal and gas
outburst risks. Figure 4 illustrates the prediction results of the AFT-Transformer-SVM
model. In the figure, the true values are represented by grey circles, while the prediction
results are represented by red triangles. The “Predict Class” line indicates the predicted
results, and the “True Class” line represents the actual results. In the sample data, the
two lines overlap completely, indicating that the prediction results are 100% accurate.
Figure 4a shows the results for the training set, and Figure 4b displays the results for the
test set.

 
(a) train set predict results (b) test set predict results 

Figure 4. Prediction results of the AFT-Transformer-SVM model.

Figure 5 presents the corresponding confusion matrices, where all predictions lie
along the diagonal, signifying perfect prediction accuracy. The three colours in the figure
represent three categories: 1, 2, and 3. The numerical values in the table indicate the number
of instances in each category. Figure 5a corresponds to the results for the training set, while
Figure 5b corresponds to the results for the test set.

  
(a) train set predict results (b) test set predict results 

Figure 5. Confusion matrix of the prediction results for the AFT-Transformer-SVM model.

Table 3 presents the sensitivity analysis of the prediction results, including eight pa-
rameters: recall, precision, F1-score, accuracy, sensitivity, specificity, AUC, and Kappa.
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These metrics involve four key parameters: True Positive (TP), False Negative (FN), False
Positive (FP), and True Negative (TN). TP represents instances where the actual label is
positive, and the model predicts positive; FN represents instances where the actual label is
positive, but the model predicts negative; FP represents instances where the actual label is
negative, but the model predicts positive; and TN represents instances where the actual
label is negative, and the model predicts negative [24–26].

Table 3. Sensitivity analysis of prediction results.

Recall/% Precision/% F1-Score/% Accuracy/% Sensitivity/% Specificity/% AUC/% κ/%

100 100 100 100 100 100 100 100

Recall = TP
TP+FN , representing the proportion of positive samples correctly predicted

as positive. Percision = TP
TP+FP , representing the proportion of correctly predicted positive

samples among all predicted positive samples. F1 = 2 × Percision×Recall
Percision+Recall , combining preci-

sion and recall to indicate the proportion of perfect classification. Accuracy = TP+TN
All Samples ,

indicating the proportion of correctly classified samples, whether positive or negative. Sen-
sitivity is similar to recall. Speci f icity = TN

TN+FP , representing the proportion of negative
samples correctly classified as negative. AUC refers to the area under the ROC curve,
representing the model’s discriminative ability across different thresholds. κ = p0−pe

1−pe
,

where p0 denotes the observed accuracy, and pe represents the expected accuracy under
random guessing, indicating the model’s accuracy after accounting for random agreement.

The prediction results shown in Table 3 indicate that the model has perfectly learnt
the features of the sample data and performed accurate predictions.

Figure 6 illustrates the Polygon Area Metric (PAM) results of the AFT-Transformer-
SVM model, with subplots a, b, and c representing the polygon area predictions for the
three categories. In the figure, FM represents F_measure, or the F1-Score. K represents
κ. SP denotes specificity. SE denotes sensitivity. CA represents accuracy. The prediction
results for all three categories are entirely correct, confirming the feasibility of the model.

  
(a) (b) (c) 

Figure 6. PAM results of AFT-Transformer-SVM predictions.

Figure 7 shows the ROC curve of the model’s predictions. The actual curve starts
from the point (0, 0), progresses to (0, 1), and ends at (1, 1), indicating that the model’s
predictions perfectly align with the actual results. The curves for Class 1, Class 2, and
Class 3 overlap and converge at the top-right corner, further demonstrating the model’s
outstanding performance.
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Figure 7. ROC curve of prediction results.

To interpret the model, a SHAP value analysis was conducted, and the results are
shown in Figure 8. The figure illustrates three features extracted by the Transformer model.
The SHAP analysis demonstrates clear feature distribution trends. For Feature 2, the
relationship between the SHAP values and feature values is relatively monotonic: higher
feature values (red) positively contribute to SHAP values, while lower feature values (blue)
suppress SHAP values. This indicates that the model’s treatment of Feature 2 is close to
linear, where higher feature values have the greatest positive impact on the prediction
results. For Feature 0, a reverse monotonic relationship is observed between the SHAP
values and feature values: lower feature values (blue) positively contribute to the SHAP
values, while higher feature values (red) suppress the SHAP values. The distribution trend
is clear, indicating that the model processes Feature 0 in a nearly linear manner. For Feature
1, the SHAP value exhibits a certain level of complexity, where higher feature values (red)
suppress the SHAP values, while middle SHAP values are not fully monotonic, showing
both positive and negative SHAP values. This suggests that the model processes Feature 1
with some degree of nonlinearity.

Figure 8. SHAP analysis of feature extraction in the AFT-Transformer-SVM model.

Figure 9 presents the SHAP analysis results for the original data. The figure shows
the relationships between the feature values of various raw data variables and their SHAP
values. Most variables exhibit highly nonlinear relationships, with the SHAP values dis-
tributed between −0.5 and 0.3, indicating a relatively small influence. Among these, gas
content is the feature with the widest distribution and the highest degree of nonlinearity,
followed by gas release rate, with other variables showing smaller contributions. A compar-
ison between Figures 8 and 9 demonstrates that feature extraction reduces the nonlinearity
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of the original multidimensional data and increases the association between feature values
and SHAP values.

Figure 9. SHAP analysis of original sample features.

Figure 10 shows the waterfall plots for the training and testing samples. Figure 10a
represents the training set features. In samples 0–100, Feature 3 and Feature 1 contribute
strongly negatively to the model output (blue), while Feature 2 contributes positively
(red). For samples 100–200, the positive contributions of Feature 3 and Feature 2 gradually
increase, with the overall colour shifting towards blue, and Feature 1 shows a more substan-
tial positive contribution. In samples 200–300, the contributions of Feature 1 and Feature 2
increase significantly (evidenced by the expansion of the red area), driving a marked rise
in prediction values. In samples 300–400, the contributions of all three features increase
(indicated by the red area), resulting in an upward trend in the model output. Figure 10b
illustrates the feature contributions in the test set, which exhibit a similar overall trend to
the training set. However, a noticeably varying region is observed within samples 0–50,
where the model output shows an increase in this range.

 
(a) (b) 

Figure 10. Waterfall plot of extracted sample features in training and testing sets.

3.3. Comparative Analysis of Different Algorithms

The XGBoost, KNN, RBFN, and Bayesian classifier algorithms were selected for
comparison to analyse the prediction accuracy of different algorithms applied to coal and
gas outburst sample data. The results are shown in Figure 11. The XGBoost algorithm
achieved a training set accuracy of 93.47%, corresponding to Figure 11a, and a testing
set accuracy of 82.46%, corresponding to Figure 11b. The KNN algorithm achieved a
training set accuracy of 100%, corresponding to Figure 11c, and a testing set accuracy
of 84.21%, corresponding to Figure 11d. The RBFN algorithm achieved a training set
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accuracy of 100%, corresponding to Figure 11e, and a testing set accuracy of 85.96%,
corresponding to Figure 11f. The Bayesian classifier algorithm achieved a training set
accuracy of 100%, corresponding to Figure 11g, and a testing set accuracy of 83.04%,
corresponding to Figure 11h.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 11. Prediction results of different comparison algorithms.

Figure 12 illustrates the ROC curves of different comparison algorithms. The overall
AUC of the XGBoost algorithm was 0.94, with the AUCs of the three classes being 0.99,
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0.89, and 0.94, represented in cyan, orange, and blue, respectively, as shown in Figure 12a.
The KNN algorithm achieved an overall AUC of 0.93, with class-specific AUCs of 0.98,
0.88, and 0.95, as shown in Figure 12b. The RBFN algorithm achieved an overall AUC of
0.93, with class-specific AUCs of 0.97, 0.88, and 0.93, as shown in Figure 12c. The Bayesian
classifier achieved an overall AUC of 0.93, with class-specific AUCs of 0.98, 0.89, and 0.91,
as shown in Figure 12d.

  
(a) (b) 

  
(c) (d) 

Figure 12. ROC curves of different comparison algorithms.

The comparative analysis of the four algorithms demonstrates that the RBFN algorithm
achieved the highest prediction accuracy, followed by the KNN, Bayesian classifier, and,
finally, the XGBoost algorithm. Although all four algorithms achieved 100% accuracy on
the training set, none reached 100% accuracy on the testing set, further validating the
superiority of the AFT-Transformer-SVM model.

Figure 13 presents the PAM (Polygon Area Metric) results of the four algorithms,
corresponding to Figures 11 and 12, to analyse the sensitivity of the prediction accuracy of
the different models. The corresponding data are summarised in Table 4. In Table 4, the
comparative analysis of various data features reveals that all four algorithms performed
poorly on the second and third classes of features while achieving better results on the first
class of features. This finding indicates that the nonlinear characteristics of the data have
not been fully extracted, and uncertainties remain in the data features.
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

   
(j) (k) (l) 

Figure 13. PAM results of different comparison algorithms.
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Table 4. PAM values of different algorithms.

Algorithm FM/% κ/% AUC/% SP/% SE/% CA/%

XGBoost
89.23 86.70 93.87 97.12 90.62 95.91
78.57 63.85 81.46 89.58 73.33 82.46
83.21 72.07 87.05 85.05 89.06 86.55

KNN
90.62 88.47 94.23 97.84 90.62 96.49
81.12 67.61 83.46 89.58 77.33 84.21
84.44 74.34 87.99 86.92 89.06 87.72

RBFN
92.06 90.27 94.59 98.56 90.62 97.08
83.56 71.33 85.46 89.58 81.33 85.96
85.71 76.64 88.92 88.79 89.06 88.89

Bayesian classifiers
95.24 94.16 96.52 99.28 93.75 98.25
81.05 65.71 83.00 83.33 82.67 83.04
79.37 67.33 83.46 88.79 78.12 84.80

In Table 4, the PAM values for the first, second, and third classes of features are listed
from top to bottom. Referring to Figure 12, the blue outer ring represents the ideal PAM
value. None of the four algorithms achieved the optimal PAM value across all three classes.
Specifically, the XGBoost algorithm achieved a PAM of 85.07% for the first class, 61.02% for
the second class, and 70.27% for the third class. The KNN algorithm achieved a PAM of
86.05% for the first class, 64.79% for the second class, and 72.38% for the third class. The
RBFN algorithm achieved a PAM of 88.07% for the first class, 68.62% for the second class,
and 74.54% for the third class. The Bayesian classifier achieved a PAM of 92.52% for the
first class, 63.63% for the second class, and 64.44% for the third class.

Through a comparative analysis with multiple algorithms, the AFT-Transformer-SVM
algorithm demonstrated superior capabilities in extracting multidimensional nonlinear
data features and achieving high prediction accuracy for coal and gas outbursts. The model
achieved a testing set accuracy of 100%.

3.4. Data Validation for Other Mining Areas

To enhance the credibility of the model, based on the existing model, 66 sets of gas out-
burst test data from different time periods in a coal mine in Shaanxi, China, were selected
as validation data. A validation experiment was designed. The prediction results of the
model are shown in Figures 14–17. Among them, Figure 14 shows the prediction results
of the AFT-Transformer-SVM model, where two test cases show slightly overestimated
predictions, while the remaining values are predicted accurately, achieving an overall pre-
diction accuracy of 96.97%, which is relatively high. Figure 15 shows the confusion matrix
of the AFT-Transformer-SVM model’s prediction results. From the figure, it can be seen
that the model’s prediction errors occur in two instances: one outburst risk point predicted
as Class 2 and another outburst risk point predicted as Class 3, while the remaining values
are all correctly predicted.

Figures 16 and 17 show the PAM results and ROC curve of the prediction results,
respectively. In Figure 16a, the polygonal area is 96.42%; in Figure 16b, the polygonal
area is 91.96%; and in Figure 16c, the polygonal area is 95.65%. The specific data can be
referenced in Table 5. Classification 1 in Table 5 corresponds to Figure 16a, classification 2
corresponds to Figure 16b, and classification 3 corresponds to Figure 16c. Figure 17 presents
the ROC curve of the prediction results, where all three classification results are close to the
upper-left corner, indicating that the prediction results are relatively accurate.
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Through the analysis, it has been found that the AFT-Transformer-SVM model
achieved a prediction accuracy of 96.97% in a mining area in Shaanxi, China, which
demonstrates a high level of accuracy and verifies the reliability of the model.

 
Figure 14. Prediction results of the AFT-Transformer-SVM model.

 

Figure 15. Confusion matrix of the prediction results for the AFT-Transformer-SVM model.

   
(a) (b) (c) 

Figure 16. PAM results of AFT-Transformer-SVM predictions.
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Figure 17. ROC curve of prediction results.

Table 5. PAM values of different algorithms.

Class FM/% κ/% AUC/% SP/% SE/% CA/%

1 98.41 96.96 98.44 100.00 96.88 98.48
2 95.45 93.18 96.59 97.73 95.45 96.97
3 96.00 95.07 99.07 98.15 100.00 98.48

3.5. Analysis of the Importance of Original Sample Data

PFI was employed to shuffle the original sample data and analyse the importance of
the original features. Figure 18 illustrates the impact of different variables on the prediction
results after shuffling. The variable with the greatest impact was gas content, followed by
gas desorption, K1 gas release rate, drilling chip, distance to geological structure, burial
depth, coal thickness, coal type, and strength coefficient. The box plots of the various
parameters are marked in the figure. Table 6 provides the results of ten shuffles for each
sample feature, listing the top five features with the highest importance. Among them, gas
content had the highest feature importance, exhibiting the most significant impact on the
prediction results, with the most apparent variations.

 

Figure 18. Box plots of feature importance based on PFI.
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Table 6. Feature importance analysis after 10 shuffles.

Gas Content 0.20 0.39 0.40 0.28 0.30 0.29 0.30 0.30 0.31 0.29

Gas Desorption 0.26 0.26 0.24 0.24 0.26 0.25 0.26 0.24 0.27 0.25
Gas Release Rate1 0.23 0.21 0.22 0.22 0.23 0.23 0.23 0.20 0.21 0.22

Drilling Chip1 0.21 0.21 0.20 0.19 0.21 0.19 0.20 0.22 0.19 0.19
Distance to Geological Structure 0.20 0.19 0.19 0.20 0.20 0.20 0.20 0.20 0.20 0.20

Through this analysis, it was observed that in on-site sample testing data, the vari-
able with the greatest impact on outburst risk was gas content, followed by gas desorp-
tion, K1 gas release rate, drilling chip, distance to geological structure, burial depth, coal
thickness, coal type, and strength coefficient, which aligns with the characteristics of the
real-world environment.

4. Conclusions

This study addresses the issue of gas outbursts in coal mine excavation faces by
proposing a gas prediction and early warning method based on the interpretable AFT-
Transformer-SVM model. A comprehensive framework for model construction, data
analysis, and algorithm validation was developed. The findings of the study are as follows:

(1) This study innovatively integrates the AFT algorithm-optimised Transformer with the
SVM model. By leveraging positional embedding, multi-head self-attention mecha-
nisms, and fully connected layers, the model’s ability to extract nonlinear and multidi-
mensional data features of gas outbursts was significantly improved. The application
of intelligent optimisation algorithms enabled the efficient parameter adjustment,
ensuring the model’s stability and accuracy in real-world operational environments.

(2) Based on SHAP and PFI analysis methods, the study conducted an in-depth examina-
tion of the impact of various features on model prediction, identifying the critical role
of factors such as gas content, gas desorption rate, and drilling chip volume in assess-
ing gas outburst risks. By incorporating multiple classification methods, including TP,
TN, FP, and FN, the interpretability of the model was enhanced, providing a technical
foundation for explaining gas prediction models in coal mines.

(3) A comparative analysis with traditional algorithms, such as XGBoost, KNN, RBFN,
and Bayesian classifiers, demonstrated the significant advantages of the AFT-
Transformer-SVM model in handling multidimensional nonlinear data and achieving
high prediction accuracy. Experimental results indicated that the model achieved
100% prediction accuracy and excellent sensitivity on the test set, outperforming the
comparison algorithms.

In conclusion, an effective method for predicting gas outburst risks in coal mines is
provided by this study, which improves both the model accuracy and interpretability while
offering valuable technical support for safe production in actual mining operations. On
this basis, the model is embedded into the intelligent mine analysis platform, where it is
periodically trained and used for the real-time prediction of coal and gas outburst hazards,
integrated with on-site data. Future research will further combine theoretical analysis with
field data to enrich real-time monitoring indicators, optimise monitoring methods, and
advance the development of intelligent coal mine safety management.
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Abstract: Outdoor fire detection faces significant challenges due to complex and variable
environmental conditions. Fiber Optic Distributed Temperature Sensing (FO-DTS), recog-
nized for its high sensitivity and broad monitoring range, provides significant advantages
in detecting outdoor fires. However, prediction models trained in laboratory settings
often yield false and missed alarms when deployed in complex outdoor settings, due to
environmental interferences. To address this issue, this study developed a fixed-power fire
source simulation device to establish a reliable small-scale experimental platform incor-
porating various environmental influences for generating anomalous temperature data.
We employed deep learning autoencoders (AEs) to integrate spatiotemporal data, aiming
to minimize the impact of outdoor conditions on detection performance. This research
focused on analyzing how environmental temperature changes and rapid fluctuations
affected detection capabilities, evaluating metrics such as detection accuracy and delay.
Results showed that, compared to AE and VAE models handling spatial or temporal data,
the CNN-AE demonstrated superior anomaly detection performance and strong robustness
when applied to spatiotemporal data. Furthermore, the findings emphasize that environ-
mental factors such as extreme temperatures and rapid temperature fluctuations can affect
detection outcomes, increasing the likelihood of false alarms. This research underscores the
potential of utilizing FO-DTS spatiotemporal data with CNN-AE for outdoor fire detection
in complex scenarios and provides suggestions for mitigating environmental interference
in practical applications.

Keywords: outdoor fire detection; anomaly temperature detection; fiber optic distributed
temperature sensing; spatiotemporal data; environmental interferences

1. Introduction

Outdoor fires are a common and destructive type of disaster worldwide, causing
significant damage to ecosystems, human lives, and economic activities. Typical scenarios
of outdoor fires include exterior buildings [1], electrical equipment [2], forests [3], grass-
land [4], and industrial facilities [5,6]. Large areas of forest and grassland are affected by
wildfires annually, severely disrupting ecological balance and posing significant threats
to human safety and property. Therefore, timely and effective outdoor fire warnings are
crucial for minimizing property loss and protecting the environment [7–14].

Abnormal temperature detection, as an effective early fire-warning mechanism,
achieves precise temperature monitoring and provides alerts through the use of various
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sensors and anomaly detection algorithms. Commonly used sensors include thermocou-
ples, thermistors, infrared sensors, and infrared thermal cameras, all of which provide
high-precision temperature measurements in diverse environments [15]. Researchers have
developed a variety of anomaly detection methods to analyze sensor data and identify
abnormal patterns that deviate from normal temperature fluctuations. A survey report
conducted a comprehensive and systematic review of anomaly detection methods across
almost two decades, covering approaches based on density, statistics, distance, clustering,
ensemble algorithms, and machine learning [16]. These algorithms analyze temperature
data collected by sensors to identify abnormal patterns deviating from normal states and
trigger warning signals. Among these methods, machine learning techniques, known for
their powerful feature extraction and pattern recognition capabilities, have proven particu-
larly effective in handling complex and nonlinear temperature data, gradually becoming
the dominant approach [17,18], significantly enhancing the accuracy and responsiveness of
anomaly detection [19].

However, compared with indoor fires, outdoor fires present significant complexity
and challenges. Outdoor fires tend to be more dispersed and spread more rapidly, heavily
influenced by various environmental factors such as temperature, humidity, wind speed,
and weather conditions [20,21]. The accuracy and sensitivity of abnormal temperature
detection systems in practical applications are often affected by these environmental factors.
For instance, natural conditions such as ambient temperature, humidity, wind speed,
and weather can substantially impact the actual measurement of abnormal temperature
rises [22–24]. These factors may cause temperature readings from sensors to inaccurately
reflect abnormal heating events, as they are influenced by environmental interference.
Such interference affects changes in data patterns and the extraction of abnormal features,
causing detection models designed under laboratory conditions to deviate when used in
practical applications. Because the temperature data fed into the model are impacted by
environmental factors, this can lead to false negatives or false positives in fire warning
systems [25].

Specifically, in fire detection for outdoor scenarios, such as forests, grassland, and
outdoor equipment, high-temperature and high-humidity environments reduce thermal
diffusion capacity, leading to more intense temperature rises and an increased fire risk.
Conversely, under low-temperature and low-humidity conditions, rapid heat dissipation
may obscure abnormal temperature increases during the early stages of a fire, resulting in
delayed warnings. When wind speeds are high, temperature variations at the fire source
become more dispersed and less concentrated, increasing the difficulty of detecting abnor-
mal temperatures. Rainfall and snowfall can quickly lower the surface temperatures of the
ground and equipment, concealing early signs of abnormal heating. Additionally, shifts in
the monitored area between direct sunlight and shadow cause significant temperature fluc-
tuations, masking the true temperature distribution and hindering the timely identification
of early signs of abnormal heating indicative of fire events [26,27].

To mitigate the impact of environmental factors on abnormal temperature detection
systems, researchers have proposed various improvement methods. Researchers have
employed empirical correction methods, adjusting temperature monitoring thresholds
based on prior experience and historical data analysis [28]. However, these methods are
highly subjective with limited applicability and reliability in different environments. With
advancements in machine learning, researchers have attempted to address these issues
by improving data-driven models through improving their robustness to environmental
factors and introducing composite data approaches [29,30]. In this study, the composite data
were the spatiotemporal temperature datasets collected during outdoor fire simulations,
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capturing temperature variations across different times and spatial locations. This dataset
reflected dynamic changes in monitored temperatures over time and space, offering a
more comprehensive perspective for the model and enabling more accurate identification
of abnormal temperature variations for fire warnings. By integrating both temporal and
spatial data into the model’s input, the spatiotemporal characteristics of the data are
fully utilized, enhancing the model’s performance and reducing false alarms and missed
detection caused by environmental temperature fluctuations.

In this context, FO-DTS offers a promising solution to improve the reliability and
accuracy of outdoor fire detection. Unlike traditional point sensors such as thermocouples
and early single-point fiber optic sensors (e.g., fiber Bragg gratings), FO-DTSs provide
continuous temperature distribution along the fiber, with measurement distances ranging
from tens of meters to tens of kilometers. This makes FO-DTSs highly suitable for fire mon-
itoring in large areas such as storage tanks, construction sites, forests, and grasslands [31].
The measurement process of an FO-DTS is based on optical scattering, making it immune
to electromagnetic interference, which is ideal for use in harsh field environments, ensuring
stability and reliability in complex surroundings [32]. Moreover, FO-DTS offers more flexi-
ble deployment, which enhances their suitability for various fire monitoring applications.

Integrating emerging sensor technologies and data-driven algorithms is crucial for de-
veloping reliable systems for abnormal temperature detection. The application of emerging
sensor technologies provides more comprehensive temperature data at anomaly detection
sites, leading to more accurate and reliable results. Simultaneously, data-driven methods,
particularly deep learning techniques such as autoencoders (AEs), have achieved notable
success in anomaly detection [33]. An AE is a neural network model used for unsupervised
feature extraction. It learns compressed representations of the data to reconstruct the input
data. An AE consists of two parts: an encoder that maps the input data to a compressed
latent space, and a decoder that reconstructs the original input from the latent represen-
tation. During training, the AE aims to minimize the reconstruction errors between the
input and the output, effectively capturing the underlying structure of the data [34,35].
When used for anomaly detection, the AE model is first trained on normal data to learn
the normal patterns. Subsequently, for new data, if the reconstruction errors exceed a
predefined threshold, the data point is considered anomalous. This approach is particularly
effective for anomaly detection in complex, high-dimensional data, as traditional methods
may perform poorly in such cases due to issues like data imbalance, high dimensionality,
or the lack of labeled data [36–38]. This study proposes an AE-based method for detection
of anomalous temperatures in spatiotemporal fiber optic distributed temperature sensor
data, aiming to achieve early warning for incidents such as fires. This method improves the
accuracy of the anomaly temperature detection system in the presence of environmental
factors by integrating spatial and temporal dimensions, thereby reducing the risks of false
alarms and missed detection.

This paper explores the effectiveness of an AE model that integrates two-dimensional
spatiotemporal data for anomaly temperature detection, considering the specific character-
istics of FO-DTS and the challenges posed by environmental factors. The objective is to
achieve accurate detection of temperature anomalies in outdoor fire warning systems and
mitigate the risks of false alarms and missed detections and investigate the environmental
influences in the detection process. The structure of this paper is as follows. Section 2
introduces the methodology for detection of temperature anomalies and the experimental
equipment setup. Section 3 presents the results and discussions from the perspectives of
temporal, spatial, and spatiotemporal analysis. Section 4 concludes this study and outlines
future research directions.
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2. Methodology

The proposed system architecture is shown in Figure 1. The public meteorological
information server provides weather information to the embedded system gateway via
Ethernet. Temperature and humidity sensors send on-site temperature and humidity data
to the embedded system gateway through the Modbus protocol. Then, the AT800 FO-
DTS (Suzhou Agioe Technologies Co., Ltd., Suzhou, China) collects temperature data and
forwards these to the embedded system gateway via the MQTT protocol. Subsequently,
the embedded system gateway processes these data and stores them in the local MySQL
database (Community Edition 8.0). Finally, the system employs AE models for anomaly
detection, ensuring any abnormal conditions can be promptly identified. The AE models
were implemented using PyTorch 1.12.1 with CUDA 11.6 for GPU acceleration on Ubuntu
22.04, and the python version is 3.9.

Figure 1. Architecture for anomalous temperature detection for outdoor fire warning systems.

2.1. Experiment

In the context of the time-consuming nature of outdoor fire experiments and safety
hazards associated with using real fire sources, a constant power heating device can
provide safe, controllable, and repeatable experimental conditions and accurately simulate
the temperature change characteristics in the early stages of a fire [39]. Therefore, a
constant-power electric heating module was used to heat a steel plate, simulating the rapid
temperature rise process in the early stages of a fire. As shown in Figure 1, an experimental
setup was designed to simulate the scenario of using an FO-DTS for abnormal temperature
detection in an outdoor fire warning system, and to obtain temperature measurements
under both normal and abnormal conditions. Outdoors, a constant-power fire-source
simulation device plate was used to simulate the outdoor fire, with dimensions of 1200
mm × 345 mm × 15 mm. A customized heating module (100 mm × 100 mm) was installed
on the back of the test plate. Five electrical heating rods (120 W) were embedded in the
heating module, and a solid-state relay drive controlled the heating power with pulse width
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modulation generated from an embedded system. Five thermocouples were arranged on
the front of the steel plate at 100 mm intervals, and the optical fiber was placed 5 mm
away from the surface of the plate. Near this apparatus, temperature and humidity sensors
were installed to record local environmental information. A thermocouple is a traditional
point temperature sensor with very high accuracy and speed of response. It can accurately
measure the temperature at a specific point without being limited by spatial resolution.
Compared with thermocouples, the measurement results of an FO-DTS are far from the
actual situation due to the spatial resolution, and it is difficult to distinguish the anomalies
intuitively. Therefore, in this experiment, the main role of the thermocouple was to provide
intuitive anomaly detection results.

The FO-DTS used in this experiment was based on Raman scattering and optical
time-domain reflection. The spatial resolution of the FO-DTS was 500 mm and the precision
of temperature measurement was 0.1 ◦C. The FO-DTS returned a temperature value every
100 mm along the fiber at intervals of 3 s. The thermocouples returned data every 3 s; since
both had the same time sampling interval (both 3 s), it was easy to compare temperature
data for the same moment. The other sensors were set to 30 s. All the above information
was collected and saved in a local database.

The experiments were conducted outdoors in the summer in Nanjing, China. The
experimental platform was fixed in an east-facing position so that it would be exposed
to sunlight in the morning and hidden in the shade in the afternoon. Normal data were
collected when the heating device was not working, and five different anomalous scenarios
were created by heating the plate under different environmental conditions (all with a
heating power of 120 W). The five scenarios covered morning, noon, afternoon, and evening,
with temperatures ranging from 30.3 ◦C to 45.4 ◦C and humidity ranging from 32% to
81.6%, including both sunny and cloudy weather conditions. The patterns of temperature
anomalies for the different scenarios are also shown in Figure 2. The environmental
information for the different scenarios is presented in Table 1, where the time in the table
indicates the time of the start of the experiment, i.e., the exact moment when the heating
unit started working.

Figure 2. Abnormal temperature changes in different environmental scenarios.
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Table 1. The details of the ambient information in anomaly scenes.

Scenes Time Temperature (◦C) Humidity (%) Weather

1 12:16 37.9 54 Cloudy
2 9:27 45.4 32 Sunny
3 10:24 44.6 34.2 Sunny
4 15:04 36.2 57 Sunny
5 21:48 30.3 81.6 Cloudy

2.2. Detection of Temperature Anomalies via FO-DTS

Different from other temperature sensors, an FO-DTS offers both spatial and temporal
information. Consequently, when an anomaly occurs, the collected field data can be
analyzed from two perspectives, as illustrated in Figure 3, where the orange dots represent
continuous measurement points along the FO-DTS sensing optical fiber.

 
Figure 3. Two perspectives for detecting anomalous temperatures via FO-DTS.

From the spatial perspective, due to the existence of spatial resolution, the system may
not precisely match the actual temperatures at certain scales. When detecting a relatively
small hotspot, several continuous points along the FO-DTS record the temperature, with
points closer to the hotspot typically registering higher temperatures. However, if a hotspot
extends beyond the spatial resolution of the system, the FO-DTS can accurately report the
temperature according to the thermocouple. Thus, for anomaly detection from the spatial
perspective, the continuous temperature at a particular time can be used to either estimate
the hotspot temperature or evaluate the system state. The environmental conditions at
different positions within a small range of fiber are uniform; therefore, the temperature
from continuous measurement points changes synchronously under environmental in-
fluence. Anomalies in temperature at a specific location cause spatial variations in the
measured values, which is fundamental to detecting anomalous temperatures from the
spatial perspective.

From the temporal perspective, temperature variations at a specific location are influ-
enced by environmental effects. Distinguishing the characteristics of temperature changes
under normal conditions from those under anomalous conditions enables effective detec-
tion of anomalies. However, environmental fluctuations often complicate this distinction,
leading to potential false alarms. For instance, minimal measurement fluctuations pose sig-
nificant challenges in detecting temperature anomalies, necessitating the use of algorithms
to enhance detection accuracy.
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2.3. Detection of Anomalous Temperatures with AE

The imbalance between normal data (i.e., data collected when no fire occurs) and ab-
normal data (i.e., data collected during a fire) presents challenges for traditional supervised
learning methods. Traditional models may overfit the normal data, thereby weakening their
ability to detect abnormal data [40,41]. In contrast, as an unsupervised learning method,
AEs are particularly well suited for scenarios with data imbalance because they do not
require a large amount of abnormal data for training. An AE can be trained with only
normal data, learning to reconstruct normal patterns. For new data, if the reconstruction
errors exceed a set threshold, the data point is considered anomalous [36]. Moreover, the
temperature data obtained using the FO-DTS contains both spatial and temporal dimen-
sions, with many measurement points and timestamps for each dimension. Traditional
methods may perform poorly in this context due to the curse of dimensionality or the
lack of labeled data. In contrast, an AE can effectively capture the underlying structure
of high-dimensional data by learning compressed representations, thereby improving the
accuracy of anomaly detection. Therefore, these characteristics make AEs an ideal choice
for handling imbalanced, high-dimensional temperature data.

Specifically, an AE is a data reconstruction model consisting of an encoder and a
decoder. The original data X are first passed through the encoder, which extracts their
features ( f : X → F ). The extracted information is then delivered into the decoder to
attempt to restore the original data ( g : F → X̂ ). The loss between output X̂ and input X is
used to optimize the algorithm, enabling it to capture the input features and generate an
output that closely resembles the original data (Equation (1)).

f , g = arg min
f ,g

‖X − g[ f (X)]‖2 (1)

The convolutional autoencoder (CNN-AE) replaces the fully connected layers of a
traditional autoencoder with convolutional layers, enabling it to more effectively handle
input data with spatial structures. For the input a, linear layers process the data via linear
calculation, as z = WTa + b, where w and b are weight vector and bias. For convolution
layers, the input is processed by cross-correlation, as z = K

⊗
a + b, where K is the kernel.

The cross-correlation can be described via Equation (2):

yi,j = ∑U
u=1 ∑V

v=1 Ku,vXi+u−1,j+v−1, K ∈ RU∗V (2)

The VAE operates as an encoding–decoding framework that utilizes variational in-
ference to model the probability distribution of the input data by approximating it with a
simpler distribution family. The VAE’s encoder outputs the approximate posterior distri-
bution of the latent variable z, which can be described as q(z|x;∅ ), and the decoder is the
likelihood of input x, which is p(x|z; θ ). For simplicity, q(z|x;∅ ) is commonly postulated
as Gaussian distribution, so the latent variable z or the outputs of encoder are mean μ

and variance σ2. To ensure z had independent randomness, a reparameterization trick
expressed via Equation (3) was applied:

z = μ + σ 
 ε, ε ∼ N (0, I) (3)

In the detection of temperature anomalies, normal data are sent for training the AE, and
the algorithm can learn the features of the normal conditions. When an anomaly occurs, the
AE, unfamiliar with the anomaly’s features, generates a larger loss between the output and
the input. If this loss exceeds a predefined threshold, an anomaly is detected. Normal data
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are split into training and test sets. The threshold is commonly set as a certain percentile
of this loss array or according to kernel density estimation corresponding to a certain
confidence level. Consequently, the threshold setting is somewhat subjective and adjustable,
affecting the sensitivity of anomaly detection. To compare different conditions equally, a
test set is used to balance the performance. After a default threshold is determined, it is
used for detection within the test set, which includes the datasets of temperature anomalies
simulated by electrical heating. The results can be used to evaluate the performance of
the algorithms. Due to the ambiguous boundary between normal and anomalous states,
the loss from anomalies may fall below the set threshold, while loss from the normal state
may exceed it. Algorithms that more accurately extract normal features are often better
at identifying anomalies and can more quickly return anomaly results. In this study, the
delay in temperature anomaly detection—defined as the time taken for the algorithm to
return anomaly results after heating began—served as a key metric for evaluating the
detection performance.

In this study, we conducted anomaly detection from temporal, spatial, and spatiotem-
poral perspectives using various AE models. The workflow for this process is shown in
Figure 4. To ensure that the data accurately reflected temperature variations during the
occurrence and development of the fire, we employed a rigorous data selection strategy.

Figure 4. The workflow of temperature anomaly detection in this study.

2.3.1. Temporal Perspective Anomaly Detection

Time series data are one of the most commonly used types of data used in current
research, widely applied in fields such as anomaly detection, forecasting, and pattern recog-
nition [42]. In this study, within the time series dimension, we selected the temperature data
of all timestamps from the measurement point at the middle position of the experimental
board’s FO-DTS. This point was located at the heating source and represented the most
significant temperature change. By focusing on a fixed spatial point, the influence of spatial
variables on time series features can be minimized. Then, a sliding window technique was
used to capture the dynamic features of the time series data, where each sliding window
contained temperature values from multiple consecutive time points. The data from these
sliding windows were proportionally divided into training and test sets.
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For anomaly detection in time series data, this study used an AE and a VAE. First,
the temperature data from all timestamps at the middle measurement point were used
as input to form sliding window sequences. Then, the AE and VAE models were trained
using time series data from normal conditions. The AE model learned the normal patterns
by minimizing the reconstruction errors between the input and output, while the VAE
model introduced a probabilistic generative model and was trained by maximizing the
log likelihood of the data. During training, the AE and VAE models both learned to
extract features from the normal data and reconstruct the input data. For new data, the
reconstruction errors (AE) or reconstruction loss (VAE) was calculated. If the reconstruction
errors or loss exceeded a predefined threshold, the data point was considered anomalous.
The 95th percentile of the reconstruction errors from the training set was selected as the
threshold to ensure a low false-positive rate.

2.3.2. Spatial Perspective Anomaly Detection

In the spatial dimension, we selected all measurement points along the entire moni-
toring path of the FO-DTS. Each ID represented the temperature measurement points at
different spatial locations at the same time, with each ID corresponding to 10 temperature
feature points. In the early stages of a fire, temperature increases are often confined to
a specific area. The collection of multi-point spatial data can significantly enhance the
sensitivity and reliability of fire detection systems. Temperature differences across different
locations can be substantial, with higher temperatures closer to the heating source and
lower temperatures further away. This difference can affect the model’s learning process,
causing temperature data from certain locations to be either overemphasized or overlooked.
Therefore, we normalized the temperature data collected along the FO-DTS path to elimi-
nate dimensional differences and ensure that all data were compared and processed on the
same scale. For each ID corresponding to 10 temperature points, we extracted spatial fea-
tures by calculating statistics such as the difference, mean, and standard deviation between
adjacent temperature points to enhance the AE model’s ability to capture local anomalies.

For the spatial dimension data, this study used an AE and a VAE for anomaly detection.
First, the temperature data from all measurement points along the FO-DTS monitoring path
were used as input, forming multiple spatial vectors, each containing 10 features. The data
from all IDs together formed a complete spatial feature matrix. The AE and VAE models
were trained using the spatial data under normal conditions. The AE model learned the
normal spatial temperature distribution by minimizing the reconstruction errors between
the input and output, while the VAE introduced a probabilistic generative model and was
trained by maximizing the log likelihood of the data. During training, the AE and VAE
models both learned to extract features from the normal data and reconstruct the input
data. For new data, the reconstruction errors (AE) or reconstruction loss (VAE) for the
spatial vector corresponding to each ID was calculated. If the reconstruction errors or loss
for a particular ID exceeded the predefined threshold, it was considered that an anomaly
existed at that location. The 95th percentile of the reconstruction errors from the training
set was selected as the threshold to ensure a low false-positive rate.

2.3.3. Spatiotemporal Perspective Anomaly Detection

To comprehensively consider both the temporal and spatial dimensions and fully
capture the temperature changes during the occurrence and development of a fire, this
study combined the spatial data from all measurement points along the entire monitoring
path with the time series data captured using the sliding window technique, forming
a spatiotemporal dataset containing both temporal and spatial information. For each
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timestamp, the temperature data from all measurement points were combined into a spatial
vector containing 10 features. Each spatial vector represented the temperature values at
10 different locations for that timestamp. For each sliding window, spatial vectors from
multiple timestamps were stacked together, forming a 2D sample with the shape [window
length, spatial feature number]. These samples were proportionally divided into training
and test sets.

For the spatiotemporal data, we used a convolutional autoencoder (CNN-AE) for
anomaly detection. The collected samples used as model input contains both temporal and
spatial information. The CNN-AE model was trained using spatiotemporal data under
normal conditions. The encoder part extracted local features through multiple convolu-
tional layers, while the decoder part reconstructed the input data using deconvolution
layers, with the goal of minimizing the reconstruction errors between the input and output.
Fully connected layers were added between the encoder and decoder to further compress
and expand the features, ensuring that the model was able to learn higher-level abstract
representations. During training, the mean squared error (MSE) was used as the loss
function, and model parameters were optimized through the backpropagation algorithm.
The 95th percentile of the reconstruction errors from the training set was selected as the
threshold. For new data, the reconstruction errors were calculated. If the reconstruction
error exceeded the predefined threshold, the data point was considered anomalous.

3. Results and Discussion

3.1. Detection of Anomalous Temperatures from the Temporal Perspective
3.1.1. Temporal Model Design and Setting

To capture the spatiotemporal properties in the time series data, we employed a sliding
window technique, where each window contained temperature values from multiple time
points. Temperature values returned from measurement point 5 in the middle of the
FO-DTS were chronologically programmed into a sliding window to ensure that the
model captured the characteristics of temperature changes over short periods of time.
The input lengths of temperature sequences were 10, representing a 30-s interval, totaling
303,911 samples after division of normal data. All normal data were also separated into
the training set and part of the test set, in a proportion of 98:2, comprising 297,832 and
6079 samples, respectively. The detailed size of each dataset is described in the attachment.

Before inputting data into algorithms, it is common to use normalization to stan-
dardize data that are in different orders of magnitude. In this experiment, the data were
preprocessed with standard normalization (standardscaler). Normalization can improve
the convergence speed and model accuracy of neural networks. Because the normalization
process is based on the training set, if the distribution state of the new data in the test
set is different, the normalization will fail. In this process, temperatures from different
positions in the FO-DTS were in a similar distribution state, i.e., the values did not vary
widely. An AE and VAE were used; the number of epochs was 20 and the batch size was
64. Adam was used as the optimizer and the learning rate was set to 0.001. ReLU was
used as the activation function. The details of the AE networks are shown in Table 2. For
the loss function, the AE used MSE, and the VAE combined the reconstruction loss and
the Kullback–Leibler divergence. The 95th percentile of the reconstruction errors from the
training set was selected as the threshold for detections of anomalous temperatures. The
test set consisted of 2% of the normal data and the entire data from the five anomalous
scenarios, a total of 9634 samples.
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3.1.2. Anomaly Detection Performance Using Temporal Data

In the process of detection, if the algorithms fail to identify an anomaly, the missed
detection is marked as false negative (FN), while classifying a normal event as an anomaly is
marked as a false positive (FP). Specifically, to compare the anomaly detection performance
across models, the delays in detecting temperature anomalies delays were collected.

Table 2. The brief structure of the (a) AE and (b) VAE model.

(a)

Type Layer Description

Encoder

(0) Linear in-features = 10, out-features = 128
(1) ReLU activation function

(2) BatchNorm1d in-features = 128, out-features = 128
(3) Dropout activation function
(4) Linear in-features = 128, out-features = 256
(5) ReLU activation function

(6) BatchNorm1d in-features = 256, out-features = 256
(7) Dropout p = 0.2
(8) Linear in-features = 256, out-features = 64

Decoder

(0) Linear in-features = 64, out-features = 256
(1) ReLU activation function

(2) BatchNorm1d in-features = 256, out-features = 256
(3) Dropout p = 0.2
(4) Linear in-features = 256, out-features = 128
(5) ReLU activation function

(6) BatchNorm1d in-features = 128, out-features = 128
(7) Dropout p = 0.2
(8) Linear in-features = 128, out-features = 10

(b)

Type Layer Description

Encoder

(dense1) Linear in-features = 10, out-features = 128
(dense2) Linear in-features = 128, out-features = 256

(dense3_mu) Linear in-features = 256, out-features = 64
(dense3_logvar) Linear in-features = 256, out-features = 64

Decoder

(dense4) Linear in-features = 64, out-features = 256
(batch_norm)
BatchNorm1d in-features = 256, out-features = 256

(dropout) Dropout p = 0.2
(dense5) Linear in-features = 256, out-features = 128
(recon) Linear in-features = 128, out-features = 10

The overall performance of the algorithm ignoring the scenarios and the delay time
of the algorithm’s detection rate under different scenarios are shown in Table 3. The VAE
significantly outperformed the AE in terms of recognition rate, with a recognition rate
of 91.87%. In terms of detection latency, VAE also showed better performance in most
scenarios, especially in Scenario 2 and Scenario 3, where the detection latency was 39
and 30 s, respectively, while the AE returned FNs in several scenarios. Unlike a standard
AE, a VAE is inherently robust to noise and less prone to overfitting due to its use of
variational inference and the reparameterization trick. This makes it better suited to
handling variability in data compared with a basic autoencoder. Although these advantages
mean that the VAE model can play an important role in data generation and the detection of
temperature anomalies, if the normal and the anomalous data are similar enough or some
other factors make the anomaly appear like a normal condition, the VAE cannot provide
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the expected results, e.g., relatively long detection delays were observed in Scenarios 1, 4,
and 5.

Table 3. Results of temperature anomaly detection by the AE and VAE from a temporal perspective.

Model Accuracy
Detection Delay (s)

Scene 1 Scene 2 Scene 3 Scene 4 Scene 5

AE 73.04% FN 69 FN FN FN
VAE 91.87% 102 39 30 93 150

In order to compare different experimental scenarios, the ambient temperatures one
hour before and after the experiment are shown in Figure 5a. At the beginning of heating,
Scenario 2 and Scenario 3 both represented the hottest environment, but the ambient
temperature of Scene 2 increased slowly, which did not have much effect on the anomalous
temperature detection. Scenarios 1 and 3 included a decreasing trend in temperature,
but the decreasing trend in Scenario 1 was relatively intense, so the delay in Scenario 1
was significantly higher than that in Scenario 3. At the beginning of heating, Scenario 3
and Scenario 2 both represented the hottest environment, but the ambient temperature in
Scenario 3 was decreasing all the time. As shown in Figure 5b, although the temperature
returned by the FO-DTS increased after heating, before the experiment, the temperature
dropped dramatically with the environment.

 

Figure 5. (a) Ambient temperature of different scenarios, (b) Ambient temperature for Scenario 3 and
temperature from FO-DTS. Dashed line marks the start time of heating.

3.2. Detection of Temperature Anomalies Detection from a Spatial Perspective
3.2.1. Spatial Model Design and Setting

In the spatial aspect, measurements from points along the whole monitoring path
of the FO-DTS were taken to obtain the temperature data. Each ID represented different
spatial locations of temperature measurement points at the same moment, and each ID
corresponds to 10 temperature point featured in this study.

Before training the algorithms, spatial data were processed via standard normalization
as described in Section 3.1.1. The algorithms were AE and VAE; ReLU was used as the
activation function. The number of epochs was 20 and the batch size was 64. Adam was
used as the optimizer and the learning rate was set to 0.001. Network details were the same
as stated in Section 3.1.1. The loss function for AE was MSE, and VAE used a combination
of reconstruction loss and the Kullback–Leibler divergence. A total of 303,983 data samples
were obtained after division of the normal data. All the normal data were also separated
into the training set and part of the test set, in a proportion of 98:2, comprising 297,903 and
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6080 samples, respectively. The test set consisted of 2% of the normal data and the entire
data from the five anomalous scenarios, a total of 9680 samples.

3.2.2. Anomaly Detection Performance Using Spatial Data

In the experiment, the anomaly detection threshold was determined using the 95th
percentile of the reconstruction errors from the training set to assess the accuracy of the
test set. This ensured that all algorithms were evaluated at the same level for anomalous
temperature detection performance. As shown in Table 4, The overall recognition rate of
VAE was 91.14%, which was slightly lower than the 92.58% achieved by the AE, but the
difference was not significant. Although the overall recognition rate of the VAE was slightly
lower than that of the AE, its detection speed was significantly faster than that of the AE
model. The AE model had FNs in several scenarios, while the VAE model did not have
FNs in any of the five scenarios, showing its higher stability.

Table 4. Results of temperature anomaly detection by the AE and VAE from a spatial perspective.

Model Accuracy
Detection Delay (s)

Scene 1 Scene 2 Scene 3 Scene 4 Scene 5

AE 92.58% FN 234 FN FN FN
VAE 91.14% 12 186 3 9 81

Generally, all of the rest had false negatives except Scenario 2, while Scenario 2 had
the comparatively longest delay in detecting temperature anomalies. Various scenarios
appeared to affect the likelihood of false negatives in detection of anomalous temperatures.
As discussed in Section 2.2, from the spatial perspective, the AE was trained to recognize
the characteristics of normal data that the temperature would keep consistent over a
small range, and if the temperature had fluctuations in different positions, an anomaly
event might happen. Since the VAE performed better in the spatial dimension, in order
to understand the characteristics of the false positive samples in this test, we conducted
an analysis to study the error distribution of the ten measurement points in the spatial
dimension. Figure 6 shows that the variance of the measurement points in the central
positions was relatively large.

Figure 6. Box plots of VAE-based false positive samples from a spatial perspective.
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3.3. Temperature Anomaly Detection from a Spatiotemporal Perspective
3.3.1. Spatiotemporal Model Design and Setting

It is difficult to find an algorithm that performs well across all five scenes from a
single perspective. Considering that the FO-DTS is a spatiotemporal measurement sensor,
combining both spatial and temporal information may be a better approach. In this
spatiotemporal dimension experiment, a 10 by 10 2D window was constructed, which
represented a sliding window of 10 consecutive timestamps. At each timestamp, there were
temperature values from 10 different measurement points, and each column represented
the temperature variation at a specific measurement point across multiple timestamps.

Unlike the algorithms mentioned above, which process only one-dimensional data,
handling two-dimensional inputs requires additional techniques. CNNs are inherently
designed to work with multi-dimensional data, particularly images. Therefore, CNN-
AE, which incorporates convolutional layers, can directly process spatiotemporal inputs.
In contrast, traditional autoencoders, which use linear layers for computation, can only
process data in one-dimension at a time. This study employed CNN-AE to handle two-
dimensional inputs. CNN-AE is widely used; the kernel sizes in its convolutional layers
are represented as two-dimensional arrays.

Datasets were reconstructed and for each input, the spatial dimensions were 10 and
the temporal dimensions were 10. A total of 303,911 samples were obtained after division
of the normal data. All the normal data were also separated into the training set and part
of the test set, in a proportion of 98:2, including 297,832 and 6079 samples, respectively. As
described in Sections 3.1.1 and 3.2.1, data were processed by standard normalization. The
number of epochs was 20 and the batch size was 32. Adam was used as the optimizer and
the learning rate was set to 0.001. MSE was set as the loss function and ReLU was used as
the activation function. The details of the networks are shown in Table 5. The threshold
for detection of temperature anomalies was set as the 97th percentile of the training set’s
loss value. The test set consisted of 2% of the normal data and the entire data from the five
anomalous scenarios, a total of 9634 samples.

Table 5. Brief structure of the proposed CNN-AE model.

Type Layer Description

Encoder

(0) Conv2d 1, 64, kernel size = (3, 3), stride = (1, 1),
padding = (1, 1)

(1) ReLU activation function

(2) Conv2d 64, 128, kernel size = (3, 3), stride = (1, 1),
padding = (1, 1)

(3) ReLU activation function

(4) MaxPool2d kernel size = 2, stride = 2, padding = 0,
dilation = 1

Decoder

(0) ConvTranspose2d 128, 64, kernel size = (2, 2), stride = (2, 2)
(1) ReLU activation function

(2) ConvTranspose2d 64, 1, kernel size = (3, 3), stride = (1, 1),
padding = (1, 1)

3.3.2. Anomaly Detection Performance Using Spatiotemporal Data

The convolutional layers of the CNN-AE effectively extract spatial features, and its
recurrent structure can capture dynamic changes in time series. This combination of spatial
and temporal features makes the CNN-AE more robust to environmental disturbances;
the model achieved high detection rates across all five scenarios. As shown in Table 6, the
average accuracy of the CNN-AE was 85.08%, with relatively stable performance across
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different scenes. Particularly in Scenarios 1 to 4, the CNN-AE demonstrated high detection
rates, showing good adaptability to different environmental conditions. Moreover, the
CNN-AE exhibited consistent detection latency across these four scenarios, reflecting good
temporal stability. Although the detection latency in Scenario 5 was slightly longer, the
CNN-AE still maintained relatively low latency compared with the other models, especially
under complex environmental conditions.

Table 6. Results of temperature anomaly detection by the CNN-AE from a spatiotemporal perspective.

Model Accuracy
Detection Delay (s)

Scene 1 Scene 2 Scene 3 Scene 4 Scene 5

CNN-AE 85.08% 60 60 48 75 108

The determination of anomalies depends on the comparison between the reconstructed
loss and the threshold, and the results of the reconstruction error over time for the five
different scenes are shown in Figure 7 for further analysis. Overall, CNN-AE demon-
strated robust performance across all scenes, effectively identifying anomalies and quickly
returning to normal levels after an anomaly occurred.

 

Figure 7. CNN-AE for spatiotemporal data anomaly detection: (a) Scenario 1 reconstruction error;
(b) Scenario 2 reconstruction error; (c) Scenario 3 reconstruction error; (d) Scenario 4 reconstruction
error; (e) Scenario 5 reconstruction error.

3.4. Discussion

Currently, research on AE-based fire detection revolves around how to exploit the
properties of AE to improve the performance of fire warning systems. These studies
involve feature extraction and dimensionality reduction, anomaly detection, multimodal
data fusion, and real-time and computational resource optimization. Researchers have
fused data from different types of sensors and employed AE for comprehensive analysis
to further enhance the accuracy and reliability of fire detection [36,37,43]. However, these
approaches also face some challenges; for complex data distributions, more complex
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network structures may be required to learn features effectively; training data may lead to
false predictions if they do not adequately cover all normal operating conditions; handling
multimodal data increases the complexity of the system and requires solving the problems
of data synchronization and calibration and, while pursuing a fast response, a certain
degree of accuracy to improve the adaptability, accuracy, and response speed of the system
in different environments.

Compared with the existing studies, this paper puts more emphasis on the influence of
environmental factors on fire detection and explores the detection performance of different
AE models. Meanwhile, this paper not only considers the changes in time series and spatial
dimensions, but also integrates the spatiotemporal data of FO-DTS to construct a more
comprehensive dataset, which helps to more accurately capture the characteristics of the
fire occurrence and improve the adaptability and detection accuracy of the system.

Despite demonstrating the potential for detection of temperature anomalies using
an FO-DTS and an AE, this study emphasizes that these methods should extend beyond
theoretical exploration to support practical engineering applications. For deep learning
methods, datasets are always the foundation of the algorithms. As presented in this study,
after the installation of the FO-DTS, the temperature data returned from the sensor can
serve as the training set for the algorithms. Theoretically, to mitigate algorithmic bias, it is
advisable to collect data under varied conditions to ensure a balanced representation across
different scenarios. Specifically, when constructing the dataset for the monitored equipment,
temperature data should be collected in different weather conditions and at various times
of the day, as abnormal increases in temperature can occur under any conditions, and
the algorithms should learn patterns from all possible scenarios. Temperature trends can
differ across seasons, and our study only considered summer conditions. We recommend
preparing different datasets for each season so that the algorithms can focus more on the
temperature characteristics relevant to the current time. Additionally, the datasets can
be incrementally updated, allowing the algorithms to be retrained regularly to capture
new patterns.

Determining the size of the input remains a challenge as the optimal parameters vary
across different devices and scenarios, necessitating further research. In the context of the
scenes discussed in this study, the spatial size of the input should at least be larger than the
spatial resolution, and a temporal size greater than 60 would be preferable. If the spatial
size of the input is smaller than the spatial resolution of the FO-DTS, it cannot provide
accurate information about the spatial distribution of temperature, as spatial resolution
represents the minimum length necessary for the FO-DTS to differentiate temperature
measurements. Additionally, we suggest that the spatial size of the input should not
be excessively large, as this can complicate spatial positioning. Regarding the temporal
size, short time series are susceptible to random error interference and are unable to reflect
accurately changes over time. Therefore, we recommend a larger temporal size to effectively
reveal trends in temperature.

When the algorithm starts running, it serves as part of an outdoor fire alarm system to
ensure the safety of life and property. Once the system reports an anomaly, it can coordinate
and initiate appropriate emergency measures. Through these efforts, personnel can fully
utilize the information provided by the FO-DTS to connect this spatiotemporal sensor with
the fire alarm system. With the help of deep learning methods, reducing the rate of false
alarms will enhance personnel’s trust in the system, helping to avoid fatigue caused by
excessive alerts.
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4. Conclusions

This study presents an enhanced method based on FO-DTS and autoencoders to
address the challenges of poor performance of traditional data-driven models in outdoor
fire warning, which are susceptible to environmental factors leading to false and missing
alarms in fire warning systems. An experimental setup with an electrical heating platform
was constructed to simulate abnormal temperature rises, and the performance of various
types of autoencoders, including AE, VAE, and CNN-AE, was tested. The results indicate
that CNN-AE, which uses spatiotemporal data, offers superior detection rates and robust-
ness, maintaining stable performance in complex environments. Although AE and VAE
demonstrate slightly higher overall accuracy in some cases when using temporal or spatial
dimensions, they exhibit lower performance in detection delay and anomaly detection
rate, both of which are critical indices in anomaly detection for outdoor early fire warning.
Environmental conditions such as temperature, humidity, and weather significantly impact
detection results, with false alarms more likely to occur under high ambient temperatures
and rapid temperature fluctuations.

Future research will focus on expanding datasets that incorporate diverse environ-
mental factors to enhance the model’s generalization capability and effectively evaluate
the algorithm’s performance across various scenarios. Additionally, the study will aim
to further optimize the CNN-AE architecture to improve its accuracy and robustness in
practical applications. Furthermore, integrating measurement data with environmental
information and developing a model for the comprehensive detection of anomalies in
complex scenarios could be considered.
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Abstract: The coal–oxygen composite reaction is a complex physicochemical reaction process, and
different heating rates have a great influence on this reaction. In order to reveal the influence of dif-
ferent heating rates on the coal–oxygen composite reaction of coking coal, the TG-DSC experimental
method was adopted to analyze the hysteresis effect of the characteristic temperature, inflection point
temperature, and peak temperature under different heating rates. Furthermore, the KAS method was
employed to calculate the apparent activation energy, and the Málek method was utilized to infer the
most probable mechanism functions and determine the compensation effects at different stages of
the coal oxidation process. The results show that with an increase in heating rate, the temperature
values corresponding to each characteristic temperature point increase, the characteristic temperature
exhibits a hysteresis phenomenon, and the heat flow rate and heat flux rate also show an increasing
trend. The apparent activation energy gradually increases in Stages II and III, with a maximum value
of 198.7 kJ/mol near the ignition point T3, which first increases and then gradually decreases in
Stage IV, where the maximum value is around the temperature point T4 of the maximum mass loss
rate, which is 170.02 kJ/mol. The variation trend in the pre-exponential factor is consistent with the
apparent activation energy, and the dynamic compensation effect is greater in Stage IV. The three
different oxidation stages have different mechanism functions: a three-dimensional diffusion mode is
present in Stages II and III, which is ultimately transformed into an accelerated form α-t curve with
E1 and n = 1 in Stage IV.

Keywords: coal oxidation; thermodynamic parameters; apparent activation energy; mechanism
function; compensation effect

1. Introduction

Coal spontaneous combustion is one of the most common disasters in the process
of coal mining, transportation, storage, and use [1–3]. Coal spontaneous combustion
not only causes a lot of waste of coal resources and economic losses, but also causes
death and injury in the production process, and the discharged gas further aggravates
environmental pollution [4–6]. Therefore, it is very important to carry out relevant research
and technological developments regarding the process of coal oxidation and spontaneous
combustion to prevent coal spontaneous combustion disasters. Currently, with the progress
of science and technology, the scope and amount of coal mining are increasing year by
year, which makes the prevention and control of the spontaneous combustion of coal a top
priority in ensuring safe coal production [7].

To find more efficient methods of inhibiting spontaneous coal combustion, domestic
and foreign scholars have conducted a large number of experimental studies on the factors
influencing spontaneous coal combustion. The influence degree of different factors on
coal spontaneous combustion was analyzed through looking at complex coal–oxygen
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reactions. Wang et al. [8] proposed that there are a large number of pores in coal; the
pores provide good conditions for interactions between active groups and oxygen in coal,
which are the cause of the spontaneous combustion of coal. They therefore put forward the
theory of group interaction. Yang et al. [9] determined the characteristic temperature of
coal spontaneous combustion using a series of parameters, such as heating rate, oxygen
consumption rate, gas production rate, the single gas index, and the complex gas index, and
analyzed the corresponding relationship between the characteristic temperature and each
parameter. Yang et al. [10] researched the heat release characteristics of the spontaneous
combustion of coal and established a prediction model of the shortest spontaneous ignition
period of coal based on the heat release characteristics. Qi et al. [11] divided the fast and
slow oxidation stages of coal–oxygen recombination at low temperatures and found that the
kinetic parameters of the two stages showed little difference at low oxygen concentrations.

Thermogravimetry (TG or TGA) is the main method used to study the coal–oxygen
recombination reaction [12,13]. Wang et al. [14] employed a thermal analysis of the experi-
mental data obtained using the random nucleation growth model (RNGM) and volume
model (VM), obtained the kinetic parameters and mechanism of combustion reactions,
and found the kinetic characteristics that lead to sample combustion. Ren et al. [15] found
the combustion and kinetic mechanisms of waste plastic blends with 0%, 10%, 20%, 40%,
and 100% plastic and coal proportions through thermogravimetric analysis. Qi et al. [16]
and Xu et al. [17] researched the oxidation and heat release characteristics of coal using
the cross-point temperature method, determined each characteristic temperature in the
spontaneous combustion process of coal, and calculated the activation energy.

The spontaneous combustion of coal involves very complex physical and chemical
reactions, in which the functional groups in coal play a decisive role. Zhao et al. [18] used
X-ray diffraction and Fourier transform infrared spectroscopy to determine the microscopic
characteristics of coal in the process of high-temperature oxidation. The mineral structure
and functional groups of coal were determined to ensure that the original structural
characteristics of coal were obtained. Sonibare et al. [19] and Okolo et al. [20] compared and
analyzed the differences in aromatic structure, aliphatic hydrocarbon, and microcrystalline
structure in different coal molecular structures using various techniques. MoraKanska
et al. [21] researched the evolution characteristics of hydrogen bonds and oxygen structures
during coal pyrolysis. Deng et al. [22] and Cao et al. [23] investigated the changes in
functional groups before and after coal combustion and analyzed the key functional groups
of coal spontaneous combustion. Chen et al. [24] studied the spontaneous combustion
of bituminous coal using thermogravimetric experiments and in situ Fourier transform
infrared spectroscopy. Through the semi-quantitative calculation of alkyl side bond length,
the aromatic condensation degree and oxygen enrichment degree were obtained. Zhou
et al. [25] researched the evolution law of microscopic functional groups during coal–
oxygen recombination at low temperatures and analyzed the correlation between weight
changes and functional group evolution.

Many scholars have analyzed the kinetics of the coal–oxygen recombination reaction
using the apparent activation energy and pre-exponential factors. Ozbas et al. [26] assumed
that the low-temperature oxidation of coal was a first-order reaction model to analyze
the thermogravimetric data, and calculated the activation energy and pre-exponential
factors in the reaction process of coal with different particle sizes using the Arrhenius
kinetic model. Iliyas et al. [27] predicted the reaction rate of sulfur-containing minerals at
different temperatures through thermal analysis and dynamic simulation and verified the
autocatalysis that occurs in coal during the oxidation stage. Kaljuvee et al. [28] showed
that the apparent activation energy is related to the reactive functional groups in coal, and
the higher the content of the reactive functional groups, the higher the apparent activation
energy. Rotaru et al. [29] studied the differences in the apparent activation energies of
different coal samples.

The oxidation and spontaneous combustion process of coal is a complex oxidation
kinetic process. Understanding and mastering the kinetics of coal oxidation is the key to

108



Fire 2024, 7, 448

understanding the mechanism of coal spontaneous combustion. Therefore, we take the
coking coal of the working face 4502 of Shaqu Coal Mine No. 1 as the research object,
investigate the thermal reaction process and thermodynamic characteristics of oxidation
combustion of coking coal under different heating rates, and explore the influence of
heating rate on the characteristic temperature and heat release effect of coking coal. Further,
the KAS method was adopted to calculate the apparent activation energy of coal samples,
and the Málek method was employed to determine the most probable mechanism functions
and kinetic compensation effects of different reaction stages.

2. Experiment and Method

2.1. Coal Sample

The experimental coal sample is from the working face 4502 of Shaqu Coal Mine No. 1
in Shanxi Province, China, and consists of coking coal. The coal sample was removed from
the mine and transported to the laboratory under anaerobic conditions, and then it was
ground into coal powder of 100–120 mesh by a coal crusher after removing the oxidized
and deteriorated part of the surface.

Proximate analyzer 5E-MAG6700 and element analyzer Elementar Vario EL III were
employed to conduct proximate and element analysis tests on coal, and the results are
shown in Table 1.

Table 1. Proximate and elemental analysis of coal.

Coal Sample Proximate Analysis Elemental Analysis

Working face 4502 Mad Aad Vad FCad Cad Had Oad Nad Std
3.00 18.54 10.31 68.15 78.63 9.21 9.21 1.42 0.41

Note: Mad, Aad, Vad, and FCad represent the content of moisture, ash, volatile, and fixed carbon in coal, respectively.
Cad, Had, Oad, Nad, and Std represent the carbon, hydrogen, oxygen, nitrogen, and sulfur content of coal,
respectively.

2.2. Experiment

The instrument used in the experiment is the synchronous thermal analyzer SDTQ600.
The weight of the experimental coal sample is 3 ± 1 mg. The coal is heated from room
temperature to 800 ◦C with heating rates of 10 ◦C/min, 15 ◦C/min, and 20 ◦C/min under
air atmosphere, and the inlet flow rate is set to 100 mL/min.

3. Results and Discussion

3.1. Mass and Heat Variation
3.1.1. Characteristic Temperature

To analyze the reaction law of the coal oxidation process under different heating rates
and divide the characteristic temperature points, the TG-DSC curve was adopted to analyze
the entire coal–oxygen composite reaction. The heating rates selected in the experiment
were 10 ◦C/min, 15 ◦C/min, and 20 ◦C/min, respectively. The division of characteristic
temperature stages under different heating rates is shown in Figure 1.

From Figure 1, we can observe that the TG-DTG curves of experimental coal samples
at different heating rates show almost the same change trend, but due to different heating
rates, there are some differences in the characteristic temperature points and mass change
rates in the whole reaction process. According to the classification method mentioned in
the literature review, the characteristic temperature is selected based on the TG-DTG curve,
and T1 is the temperature corresponding to the minimum value of the TG curve in the
early stage of the coal–oxygen composite reaction, which corresponds to the temperature
at which the mass change rate is 0. At this temperature, the chemisorption of oxygen
by coal is enhanced, offsetting the mass reduction caused by water evaporation and gas
desorption, and the coal mass reaches a minimum value. After exceeding the temperature,
the chemisorption of oxygen by coal continues to increase, manifested macroscopically as an
increase in coal mass. T2 is the temperature with the highest mass. At this temperature, due
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to the high temperature, the coal–oxygen recombination effect is enhanced, the oxidation
gases and the alkane gases generated by molecular fracture increase, and the mass increase
caused by the chemical adsorption of oxygen by coal reaches a balance with the release of
gas products. After exceeding the temperature, the reaction consumption of coal continues
to increase and enters the rapid reaction weight loss stage. Therefore, the macroscopic
performance at this temperature is that the mass reaches the maximum value; T3 is the
ignition point temperature of the coal sample and is the tangent of the intersection point
of the maximum peak vertical line on the DTG curve and the TG curve. The tangent line
corresponds to the intersection point of the pyrolysis temperature T3 on the TG curve. T4 is
the temperature corresponding to the maximum point of the mass change rate of the coal
sample in the combustion stage. T5 is the burnout temperature at the end of the reaction.
At this point, the DTG curve value is close to 0, the whole reaction process is over, and the
quality of the coal sample also does not change significantly. The characteristic temperature
points under different heating rates are presented in Figure 1 and Table 2.

 
(a) 10 °C/min 

 
(b) 15 °C/min 

 
(c) 20 °C/min 

Figure 1. Characteristic temperature points and stage division.
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Table 2. Characteristic temperature points at different heating rates.

Heating Rate (◦C/min) T1 (◦C) T2 (◦C) T3 (◦C) T4 (◦C) T5 (◦C)

10 189.48 343.19 471.91 512.19 605.45
15 190.83 351.49 479.85 514.20 625.38
20 207.14 358.65 487.47 522.22 644.81

3.1.2. Stage Characteristics

The reaction process of the coal sample from low-temperature oxidation to the end of
the burnout reaction can be divided into five stages (I–V) according to the characteristic
temperature point.

(1) Water evaporation and minimal mass loss stage (Stage I: T0–T1)

The temperature range of this stage is from the initial temperature to T1, which is
mainly due to the mass loss of coal samples during low-temperature oxidation. In this stage,
the TG curve presents a trend of slightly increasing at first and then decreasing, which is
because the physical adsorption of gas by coal samples occurred at the beginning of the
stage, resulting in a slight increase in coal weight within a very short time range. Then, as
the water contained in the coal sample began to evaporate with increasing temperature, and
as the temperature rose, the thermal movement of molecules accelerated, which weakened
the binding effect of intermolecular interaction on gas molecules, and the adsorbed gas
began to desorb. As a result, the TG curve showed a downward trend, and the quality of
coal samples decreased. According to the DTG curve, the mass reduction rate at this stage
gradually decreased, which is due to the limited adsorption capacity and water content
of the gas. With the continuous desorption of the gas and the continuous evaporation of
water, the mass loss rate gradually decreased. When the mass change rate was 0, the coal
sample weight was the minimum value before the composite reaction.

(2) Oxygen absorption and mass gain stage (Stage II: T1–T2)

At this stage, the temperature range is from T1 to T2, and the chemical adsorption
of oxygen by coal mainly occurred. Different from the physical adsorption process, the
adsorption of gas by coal at this stage is selective, mainly due to the adsorption of oxygen in
the environment by the active groups in coal. In the coal–oxygen composite process, unsta-
ble carbon and oxygen compounds are formed and gas products are released. However, the
adsorption amount of oxygen is greater than the release amount of gas products, resulting
in increasing weight. According to the DTG curve, the weight increase rate first increases
and then decreases, which is because the temperature in the early stage is low, the strength
of coal–oxygen recombination is weak, and the amount of gas products released is small.
As the temperature rises, the functional groups in coal are continuously activated, the
strength of coal–oxygen recombination is increased, the amount of gas products released is
increased, and the unstable carbon and oxygen compounds formed in the early stage may
undergo thermal decomposition, weakening the increasing trend of coal mass [30].

(3) Slow chemical reaction stage (Stage III: T2–T3)

The temperature range of this stage is from T2 to T3, mainly involving the thermal
decomposition of the active groups in the coal sample and slow mass loss. The main
active groups in coal are the aromatic ring, naphthene aliphatic hydrocarbon, and oxygen-
containing functional groups. Because the structure of aromatic rings and naphthene
is stable and difficult to break during the heating process of coal, it is not considered.
Aliphatic hydrocarbon and oxygen-containing functional groups begin to participate in
the coal–oxygen reaction at low temperatures, and they are the main active functional
groups in the coal–oxygen complex reaction [31]. As the temperature gradually rises,
the aliphatic hydrocarbon begins to undergo pyrolysis reaction with the active groups of
oxygen-containing functional groups, and the carboxyl and hydroxyl groups contained in
aliphatic hydrocarbon continue to react, and the C=O, -COOH transition groups are in a
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complex process of constant consumption and generation in the coal–oxygen composite
reaction. In addition, the overall content of C=O and -COOH decreased with rising
temperature, and some macromolecules in coal began to undergo a pyrolysis reaction,
resulting in a slow decline in coal mass at this stage [32,33].

(4) Combustion stage (Stage IV: T3–T5)

The temperature range of this stage is from T3 to T5, which mainly causes the thermal
decomposition of macromolecular structure in coal and the violent coal–oxygen compound
effect. Due to the rapid increase in the release of volatile substances in the thermal decom-
position of macromolecular structure and the gas products in the coal-oxygen composite
process, the quality of the gas decreases rapidly [34]. According to the DTG curve, the
weight loss velocity increases rapidly at first and then decreases sharply. This is because in
the initial stage, thermal decomposition plays a dominant role, the release of volatile sub-
stances and the combustion of fixed carbon rapidly reduce the weight, and the coal–oxygen
composite reaction aggravates the weight reduction. Then, when the temperature exceeds
a certain level, the residual combustible substances in the coal are relatively difficult to
react, and the weight loss rate decreases rapidly, and the weight loss rate tends to zero at
the end of the reaction.

(5) Burnout stage (Stage V: >T5)

The temperature range of this stage is T5 to the end of the experiment, at which time
the whole coal–oxygen composite reaction is close to the end, and the main active groups
and macromolecular structure in the coal after full combustion of the experimental coal
sample are gone [24]. In this stage, the quality of coal hardly changes, and the residual
quality after the reaction is almost similar to the ash quality in the proximate analysis of
coal samples. At the same time, the DTG curve values almost tend to 0, and the coal mass
shown by the TG curve hardly changes.

At each stage of the coal–oxygen recombination reaction, mass changes will be pre-
sented on a macro level along with the internal reaction. The mass loss and gain ratio of
coal at each stage in the thermogravimetric experiment is shown in Table 3.

Table 3. Mass variation of coal samples at different stages.

Heating Rate (◦C/min)
Mass Variation at Each Stage (%)

I II III IV Residual Mass

10 −0.79 1.96 −11.31 −78.66 21.34
15 −0.76 1.73 −11.12 −75.86 24.14
20 −0.70 1.68 −9.30 −74.85 25.15

According to the comparison of the mass loss ratio of each stage at different heating
rates, the mass ratio remaining at the end of the coal–oxygen composite reaction is almost
the same on the whole. The mass loss ratio of coal sample decreases with the increase in
heating rate in Stage I. The mass gain ratio in Stage II shows a trend of first increasing and
then decreasing, and the maximum temperature rise rate of mass gain ratio is 10 ◦C/min.
The mass loss ratio of coal sample decreases with the increasing heating rate in Stage III,
indicating that the slower the heating rate, the more fully the reactive groups contained
in coal can react, and the greater the mass loss ratio of the coal sample. The coal sample
shows a trend of gradually increasing mass loss ratio after Stage IV; the heating rate with
the largest mass loss ratio is 10 ◦C/min, while the heating rate with the smallest residual
mass ratio is also 10 ◦C/min, indicating that the coal sample is most fully burned at this
heating rate.

3.1.3. Hysteresis Effect of Thermogravimetry

The whole coal–oxygen compound reaction is a complicated process, and the mass
changes of the reaction at different heating rates are not the same. Therefore, the TG-DTG
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curve can more clearly analyze the influence degree of each heating rate on the coal–oxygen
complex reaction, as shown in Figure 2.

 

Figure 2. TG-DTG curves at different heating rates.

It can be found from Figure 2 that the change trend of the TG-DTG curve of the
coal–oxygen complex reaction under different heating rates is almost the same, but with
the increase in heating rate, the reaction gradually lags. The mass change is not obvious in
Stages I and II, which is due to the coal–oxygen recombination reaction being relatively
gentle in a low-temperature environment, and the mass change rate of coal in these two
stages is almost the same from the DTG curve. With the increase in temperature, the mass
change is more obvious when reaching Stages III and IV. On account of the increase in
heating rate, the temperature change increases at the same time, the active groups and
volatile molecules contained in coal react more vigorously at high temperatures, and the
degree of coal–oxygen recombination reaction is more intense. The weight loss rate of the
DTG curve is also gradually increasing. The maximum mass loss rate presented by T4
also increases with the increase in heating rate. When the heating rate is 20 ◦C/min, the
maximum mass loss rate (T4) presents a maximum value of −17.8%/min. It can also be
seen from the TG curve that when the heating rate is 10 ◦C/min, the mass ratio of the coal
sample remaining after the whole reaction is the lowest in Stage V. These show that the
higher the heating rate, the less sufficient the active groups and volatile reactions contained
in the interior of the coal, the less mass loss ratio presented, and the greater the remaining
mass ratio [35]. Furthermore, in terms of its rate of mass change, at the same temperature,
the higher the heating rate, the greater the rate of mass change. This is because an increase
in heating rate will lead to a rapid increase in temperature difference between the ambient
temperature and the coal sample temperature, as well as an increase in ambient air pressure,
which is more conducive to the diffusion of oxygen to the coal surface, the progress of the
coal oxygen reaction, and the formation of carbon oxides, resulting in an increase in the
rate of mass change with an increase in heating rate.

Meanwhile, it can be observed from Figure 2 that the corresponding temperature
values of each characteristic temperature point also increase with the increasing heating
rate, and the characteristic temperature has a backward phenomenon; in particular, the
temperature point has a more obvious backward trend in Stages III and IV. This is because
as the heating rate increases, the reaction time at each stage gradually shortens, resulting
in insufficient coal–oxygen recombination reaction in the previous stage, leading to some
activated groups inside the coal sample not participating in the reaction [36]. At this time,
heterogeneous reactions occur inside the coal sample with a higher heating rate, resulting
in a lag phenomenon in the entire oxidation recombination reaction process. Finally, as
the heating rate increases, each characteristic temperature point also increases, and this
change is more obvious around T4 (characteristic temperature of maximum mass loss rate).
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With the increasing heating rate, the temperature point at which the whole coal–oxygen
recombination reaction ends also shifts backwards.

3.1.4. Heat Effect

To analyze the influence of different heating rates on the temperature corresponding
to the extreme point of heat flow rate, DSC curves at different heating rates were made, as
shown in Figure 3.

 
Figure 3. DSC curves at different heating rates.

The characteristic temperature points of DSC curves at different heating rates are
shown in Figure 3, and the DSC curves of coal samples under different heating rates
are almost the same. In the initial stage (0–200 ◦C), the whole reaction occurs relatively
slowly, and the energy released is small, and the moisture and gas volatilization in the
coal sample also need to consume a certain amount of heat, so the overall heat release
is small. In the second stage (200–400 ◦C), when the temperature continues to rise, the
water is gradually consumed in the process of continuous evaporation, and the energy
released by the whole system also increases with the increasing temperature, because the
active groups (aliphatic hydrocarbons and oxygen-containing functional groups) that are
difficult to react at low temperatures are more active at this stage. As a result, the types and
quantities of active groups involved in the reaction in the coal molecules increase, resulting
in an increase in the intensity of the coal–oxygen composite reaction, and the heat released
begins to increase [37]. When the temperature reaches a certain value, the first inflection
point temperature appears at this time, and then the growth rate of coal heat release rate
shows a relatively lower phenomenon because the unstable carbon and oxygen compounds
and macromolecular structures in coal crack at high temperatures, which requires more
energy and absorbs part of the reaction heat release, resulting in a lower growth rate of
heat release. In the third stage (400–700 ◦C), when the main thermal decomposition is
completed, oxygen quickly occupies the surface and reacts with the volatile molecules
and fixed carbon contained in the coal, releasing a lot of heat, and the heat release rate
increases rapidly; at this time, the heat flow extreme value of the entire curve will appear.
However, with the volatilization of coal combustible substances at high temperatures,
the remaining combustible substances in coal become more stable as they reach the later
stage of the reaction. Some of the combustible substances will absorb heat release in the
reaction process, and the heat release rate of coal decreases rapidly. When the combustible
substances in coal are completely burned, the heat release rate of coal approaches 0. These
are consistent with the thermogravimetric results. In Stage I, the coal oxidation reaction rate
is slower and the heat release is less. As the reaction progresses, the reaction rate further
accelerates, the heat release increases, and the mass rapidly decreases. In Stage V, the coal
sample burns completely, the heat release decreases, and the mass change approaches 0.
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In addition, from the analysis of inflection point temperature and peak temperature
under different heating rates in Figure 3, it can be observed that different heating rates
have a certain influence on the heat released by the same coal sample in the coal–oxygen
composite reaction. The variation of DSC characteristic temperature points under different
heating rates is shown in Figure 4.

Figure 4. Characteristic temperature variation of DSC curve at different heating rates.

According to Figure 4, it can be seen that the inflection point temperatures at the
heating rates of 10 ◦C/min, 15 ◦C/min, and 20 ◦C/min are 346.95 ◦C, 361.61 ◦C, and
384.34 ◦C, respectively, indicating that the temperature at the corresponding inflection point
also lags as the heating rate increases. In addition, through the analysis of Figures 3 and 4,
the heat flow rates corresponding to the inflection point temperatures at the heating rates of
10 ◦C/min, 15 ◦C/min, and 20 ◦C/min are 2.18 mW/mg, 4.63 mW/mg, and 7.94 mW/mg,
respectively, and the heat flow rate increases with the increasing heating rate. By comparing
the peak width and maximum heat release rate temperature of volatile and fixed carbon
combustion at different heating rates, it can be seen from Figures 3 and 4 that the heat
release peak at this stage becomes wider with the heating rate increasing, the peak shape
changes from sharp to blunt, and the heat release of the coal–oxygen composite reaction also
gradually increases. When the heating rate is 10 ◦C/min, 15 ◦C/min, and 20 ◦C/min, the
corresponding peak temperatures are 517.42 ◦C, 523.48 ◦C, and 535.35 ◦C, respectively, and
the corresponding heat flow rates are 15.06 mW/mg, 22.34 mW/mg, and 29.63 mW/mg,
respectively. Meanwhile, it can be found that as the heating rate increases, the inflection
point temperature and peak temperature relatively lag behind, but the heat flow rate and
heat flow increase accordingly, indicating that the higher the heating rate, the stronger the
coal–oxygen recombination reaction, and the greater the heat release.

3.2. Kinetic Characteristics
3.2.1. Kinetic Methods

Due to the complexity of the coal molecular structure, the competitive reaction and
parallel reaction of various functional groups in coal exist at the same time, and the apparent
activation energy required for the same conversion at different heating rates is the same.
Therefore, the influence of different conversion rates on the coal–oxygen recombination
reaction is analyzed from the calculation of the apparent activation energy and its changing
law. The apparent activation energy generally refers to the energy required for a molecule
to change from its normal state to an active state that is prone to chemical reactions.

When solving the kinetic parameters, the kinetic parameters calculated by the same
curve using different solving methods are not the same, so a more appropriate method
should be selected to solve the kinetic parameters. At present, the commonly used kinetic
methods are divided into the isothermal method and the non-isothermal method. The
multi-scanning rate method in the non-isothermal method is based on the analysis and
calculation of the experimental data measured under different scanning rates to obtain the
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kinetic parameters and can calculate the apparent activation energy according to the coal
sample data with the same conversion rate under different heating rates, so it is also called
the equal conversion method. It is mainly represented by the Flynn–Wall–Ozawa (FWO)
method, Kissen–Akahira–Sunose (KAS) method, and Friedman method.

The advantage of the non-isothermal method is that it does not need to determine
the mechanism function first compared with the isothermal method, and can directly
calculate the apparent activation energy of the same conversion under different heating
rates. Compared with the FWO method and Friedman method, the KAS method has more
accurate calculation results and a simple calculation process. Therefore, the KAS method
is selected to calculate and analyze the kinetic parameters of coal samples under three
different heating rates after comprehensive consideration [38,39].

ln(
β

T2 ) = ln(
A · R

Ea · G(α)
)− Ea

R · T
(1)

where A refers to the pre-exponential factor, min−1; Ea is the apparent activation energy,
J/mol; R is the gas universal constant, 8.314 J/(mol·K); G(α) is the integral of the mechanism
function; α is the conversion rate, which is defined as follows:

α =
w0 − w
w0 − w1

(2)

where w0, w1, and w are the start, end, and mass corresponding to t at a certain time of this
stage, respectively, mg.

3.2.2. Apparent Activation Energy

Because of the small mass loss generated by the coal sample in Stages I and V, the
kinetic analysis of coal samples mainly focuses on Stage II, Stage III and Stage IV. According
to the KAS method, the apparent activation energy required for the reaction with the same
conversion rate α under different heating rates is the same, so the linear correlation curve
is drawn between ln( β

T2 ) and 1/T, with ln( β

T2 ) as the Y axis and 1/T as the X axis for
linear fitting. The apparent activation energy Ea is calculated by the fitted slope, and the
pre-exponential factor ln A is calculated by the intercept.

The conversion rates of the three stages under the heating rates of 10 ◦C/min, 15 ◦C/min,
and 20 ◦C/min were calculated by Equation (2), and the apparent activation energy was
calculated according to Equation (1), while the curves of conversion rate and temperature
and the linear correlation between ln( β

T2 ) and 1/T are shown in Figures 5–7. The calculation
results of apparent activation energy are shown in Tables 4–6.

  

Figure 5. Relationship curves in Stage II: (a) conversion rate and temperature; (b) linear correlation
between ln( β

T2 ) and 1/T.
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Figure 6. Relationship curves in Stage III: (a) conversion rate and temperature; (b) linear correlation
curve ln( β

T2 ) with 1/T.

  

Figure 7. Relationship curves in Stage IV: (a) conversion rate and temperature; (b) linear correlation
curve ln( β

T2 ) with 1/T.

Table 4. Calculation results of apparent activation energy for Stage II.

Conversion Rate Linear Fitting Results Ea (kJ/mol) R2

0.1 y = −10,979x + 10.87167 91.29 0.99999
0.2 y = −11,510x + 11.11828 95.70 0.99783
0.3 y = −11,581x + 10.74511 96.29 0.99769
0.4 y = −11,916x + 10.94634 99.07 0.99630
0.5 y = −12,115x + 10.95963 100.73 0.99699
0.6 y = −12,470x + 11.26598 103.68 0.99624
0.7 y = −12,831x + 11.5945 106.68 0.99637
0.8 y = −12,907x + 11.4306 107.31 0.99249
0.9 y = −13,434x + 11.98012 111.70 0.99143
1.0 y = −16,245x + 15.82241 135.07 0.99723

Table 5. Calculation results of apparent activation energy for Stage III.

Conversion Rate Linear Fitting Equation Ea (kJ/mol) R2

0.1 y = −16,922x + 15.16613 140.69 0.99325
0.2 y = −17,964x + 15.9234 149.36 0.99457
0.3 y = −19,535x + 17.53494 162.42 0.995
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Table 5. Cont.

Conversion Rate Linear Fitting Equation Ea (kJ/mol) R2

0.4 y = −20,781x + 18.75295 172.78 0.99458
0.5 y = −21,695x + 19.57657 180.38 0.99415
0.6 y = −22,147x + 19.82337 184.14 0.99372
0.7 y = −22,872x + 20.49755 190.17 0.99399
0.8 y = −23,279x + 20.77722 193.55 0.99465
0.9 y = −23,542x + 20.89851 195.74 0.99316
1.0 y = −23,899x + 21.17233 198.70 0.99274

Table 6. Calculation results of apparent activation energy for Stage IV.

Conversion Rate Linear Fitting Equation Ea (kJ/mol) R2

0.1 y = −19,755x + 15.0253 164.25 0.98869
0.2 y = −19,850x + 14.77119 165.04 0.98530
0.3 y = −20,402x + 15.19492 169.63 0.98067
0.4 y = −18,789x + 12.90239 156.21 0.96409
0.5 y = −17,230x + 10.71005 143.26 0.96623
0.6 y = −15,850x + 8.76239 131.78 0.97053
0.7 y = −14,818x + 7.24984 123.20 0.97570
0.8 y = −13,915x + 5.87322 115.69 0.97910
0.9 y = −12,916x + 4.31641 107.39 0.98391
1.0 y = −12,430x + 2.90876 103.34 0.99199

From the calculation results of the apparent activation energy values in the above
tables, we can find the correlation between apparent activation energy and conversion rate
in the three stages. Furthermore, the relationship between apparent activation energy and
temperature can be obtained based on the corresponding relationship between conversion
rate and temperature in each stage, as shown in Figures 8 and 9.

Figure 8. Relationship between apparent activation energy and conversion rate at Stages II, III and IV.

As can be seen from Figure 8, the apparent activation energy of Stage II gradually
increases with the increase in conversion rate. In the stage of oxygen absorption and
weight gain, coal mainly undergoes chemical adsorption of oxygen, and it is mainly that
the active groups in coal adsorb the oxygen in the environment and form unstable carbon
and oxygen compounds in the coal–oxygen composite process. However, due to the
low temperature in early Stage II, the reaction degree is weak, and the mass changes are
small; as the temperature increases, the DTG curve shows a trend of first increasing and
then decreasing, the functional groups in coal undergo continuous oxidation reaction, the
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strength of coal–oxygen recombination increases and the release of gas products increases.
Moreover, the unstable carbon and oxygen compounds formed in the early stage may
cause thermal decomposition, which weakens the increasing trend of coal mass. Due
to various chemical reactions such as the thermal decomposition of carbon and oxygen
compounds and oxygen adsorption, the apparent activation energy required at this stage
shows a significant increasing trend after the conversion rate of 0.8. In addition, due to
the low temperature range at this stage, the number of active functional groups involved
in the reaction is relatively small, requiring less energy and resulting in a lower apparent
activation energy [40]. As heat accumulates and the temperature rises, the energy of the
reaction system increases. Functional groups that were previously difficult to react with
oxygen at low temperatures are gradually activated and participate in the reaction. As
these functional groups are relatively stable, the energy required for the reaction is high. At
the same time, an increase in the types and quantities of functional groups participating
in the reaction also leads to an increase in the required energy, ultimately resulting in an
increase in apparent activation energy with increasing conversion rate.

Figure 9. Relationship between apparent activation energy and temperature at Stages II, III and IV.

The calculated values of the apparent activation energy of Stage III shown in Figure 8
present an overall increasing trend with the increase in conversion rate, and compared to
the apparent activation energy curve of Stage II, it can be clearly observed that the apparent
activation energy required at this stage is larger. This because the oxygen-containing
functional groups contained in the coal sample at this stage begin to react, and the oxygen-
containing functional groups undergo a chemical reaction. Moreover, with the increase in
temperature, the large molecules contained in the coal sample begin to break down into
smaller molecular structures in the later stage [41,42].

As the conversion rate increases, the required apparent activation energy of Stage IV
in Figure 8 shows a trend of first increasing and then decreasing, reaching the maximum
value of 170.02 kJ/mol at 506.13 ◦C. This is because the initial pyrolysis reaction is still in
progress at this stage, the volatile macromolecules contained in the coal are pyrolyzed into
small molecules, a large amount of gas is released, and the number of active functional
groups participating in the reaction gradually increases. However, as the temperature rises,
the reaction of active functional groups contained in the coal sample gradually weakens,
and in the later stage, the oxygen concentration will gradually decrease with the progress
of the reaction, and the number of active functional groups involved in the reaction will
decrease [43]. Therefore, the apparent activation energy curve at this stage shows a trend
of first increasing and then decreasing.

As can be seen from Figure 9, the trend of apparent activation energy with the increase
in temperature is almost the same as that of apparent activation energy with the increase
in conversion rate, as shown in Figure 8. This is because the change of conversion rate
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from 0 to 1 at each stage shows an increasing trend with the increase in temperature.
Therefore, the changing trend of apparent activation energy presented by them is also
basically the same.

3.2.3. Kinetic Compensation Effect

To more clearly analyze the linear relationship between the pre-exponential factor ln
A and the apparent activation energy Ea, the kinetic compensation effect is employed for
analysis. The mathematical expression of the kinetic compensation effect is as follows:

ln A = a · Ea + b (3)

where a and b are compensation parameters.
The kinetic compensation effect is commonly presented in various stages of the whole

reaction system, and the values obtained by different mechanism functions in the same stage
of the same reaction system are not the same. Therefore, the Málek method was adopted
to validate and optimize the kinetic modes of each stage, in order to determine the most
probable mechanism function of the oxidation reaction in each stage. The Málek method
is an approach of deducing the kinetic mode G(α) or f (α) by defining the function y(α),
which is combined with the reaction rate Equation (4) and the Coats–Redfern Equation (5)
to obtain Equation (6).

dα

dt
= A exp

(
− Ea

RT

)
f (α) (4)

∫ α

0

dα

f (α)
= G(α) =

ART2

Eaβ
exp(− Ea

RT
) (5)

G(α) =
RT2

Eaβ

dα

dt
· 1

f (α)
(6)

When α = 0.5:

G(0.5) =
RT0.5

2

Eaβ
(

dα

dt
)

0.5
· 1

f (0.5)
(7)

where T0.5 and ( dα
dt )0.5 represent the temperature and reaction rate when α is equal to

0.5, respectively.
Combine Equations (6) and (7) to obtain Equation (8):

y(α) =
(

T
T0.5

)2
·

(
dα
dt

)
(

dα
dt

)
0.5

=
f (α) · G(α)

f (0.5) · G(0.5)
(8)

Substitute experimental data into the left-hand equation and compare it with the
standard curve on the right-hand side of the equation. If the experimental data curve
overlaps with the standard curve, or if all the experimental data points fall on a standard
curve, then G(α) or y(α) corresponding to the standard curve is the most probable kinetic
mechanism function. Common kinetic mechanism functions are shown in Table 7.

When inferring the most probable mechanism function of different stages in the coal
oxidation process according to the Málek method, it is necessary to calculate the theoretical
value of the mechanism function first, then calculate the experimental value of different
stages, and finally conduct a comparative analysis of the two to judge the apparent kinetic
reaction model of different stages in the coal oxidation process. Málek theoretical values of
different mechanism functions are shown in Figure 10.
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Table 7. Common kinetic mechanism functions.

Function
Number

Function Name Mechanism Integral Form G(α) Differential Form f (α)

1 Parabola principle One-dimensional
diffusion α2 1

2 α−1

2 Valensi equation Two-dimensional
diffusion α + (1 − α) ln(1 − α) [− ln(1 − α)]−1

3
Jander equation

Two-dimensional
diffusion, n = 1/2

[
1 − (1 − α)

1
2

] 1
2 4(1 − α)

1
2

[
1 − (1 − α)

1
2

] 1
2

4 Two-dimensional
diffusion, n = 2

[
1 − (1 − α)

1
2

]2
(1 − α)

1
2

[
1 − (1 − α)

1
2

]−1

5 Three-dimensional
diffusion, n = 1/2

[
1 − (1 − α)

1
3

] 1
2 6(1 − α)

2
3

[
1 − (1 − α)

1
3

] 1
2

6 Ginstling–Brounshtein
equation

Three-dimensional
diffusion, cylindrical

symmetry
1 − 2

3 α − (1 − α)
2
3 3

2

[
(1 − α)−

1
3 − 1

]−1

7 Anti-Jander equation Three-dimensional
diffusion, n = 2

[
(1 + α)

1
3 − 1

]2
3
2 (1 + α)

2
3

[
(1 + α)

1
3 − 1

]−1

8 Avrami–Erofeev
equation

n = 1/4, m = 4 [− ln(1 − α)]
1
4 4(1 − α)[− ln(1 − α)]

3
4

9 n = 1/3, m = 3 [− ln(1 − α)]
1
3 3(1 − α)[− ln(1 − α)]

2
3

10 n = 1/2, m = 2 [− ln(1 − α)]
1
2 2(1 − α)[− ln(1 − α)]

1
2

11 Mample single line
principle, level 1

Random nucleation
and subsequent growth,

A1, F1, S-shaped α-t
curves, n = 1, m = 1

− ln(1 − α) 1 − α

12 Power function
principle

n = 1/2 α
1
2 2α

1
2

13 n = 1 α 1
14 n = 2 α2 1

2 α−1

15 Exponential principle E1, n = 1, accelerated
form α-t curve ln α α

16 Shrinkage cylinder n = 1/2 1 − (1 − α)
1
2 2(1 − α)

1
2

17 n = 2 2
[
1 − (1 − α)

1
2

]
(1 − α)

1
2

18
Reaction order

n = 2 1 − (1 − α)2 1
2 (1 − α)−1

19 n = 3 1 − (1 − α)3 1
3 (1 − α)−2

20 n = 4 1 − (1 − α)4 1
4 (1 − α)−3

21 Level 2 Decelerated α-t curve (1 − α)−1 (1 − α)2

22 Reaction order Chemical reaction (1 − α)−1 − 1 (1 − α)2

23 Level 2/3 Chemical reaction (1 − α)−
1
2 2(1 − α)

3
2

24 Level 3 Three-level (1 − α)−2 1
2 (1 − α)3

The experimental data of the three stages are substituted into the left side of Equation (8)
to calculate the experimental numerical curve, and the comparison between the experimen-
tal values and the theoretical values of the function is shown in Figure 11. Therefore, it can
be concluded that the data points of Stage II are most likely to overlap with the theoretical
value of Function 5 (Jander equation). Similarly, the most probable mechanism function
of Stage III is most likely to be Function 7 (Anti-Jander equation), and the most probable
mechanism function of Stage IV is most likely to be Function 15 (Exponential principle).
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Figure 10. Málek theoretical values of different mechanism functions.

As can be seen from Figure 11, the experimental values presented in the three stages
coincide with the inferred theoretical values of the functions. Moreover, the most probable
mechanism functions at each stage are summarized in Table 8. The kinetic reaction mecha-
nism of different stages of the coal oxidation process is different. The reaction mechanism
in Stage II is a three-dimensional diffusion mode with n = 1/2, which transformed into a
three-dimensional diffusion mode with n = 2 in Stage III, and further transformed into an
accelerated form α-t curve with E1 and n = 1 in Stage IV. It is mainly due to the different
reaction modes and reaction rates between coal and oxygen at each stage. In the oxygen
absorption and mass gain stage (Stage II), the chemical adsorption of coal on oxygen mainly
occurs, which is greater than the gas release of the coal oxidation reaction from the per-
spective of its quality change, and the chemical adsorption of coal on oxygen is dominant,
and the chemical reaction intensity is weak. The diffusion pattern at this stage indicates
that the reaction rate is proportional to the square root of the concentration gradient, and
the reaction rate is limited by the diffusion rate of oxygen into the coal interior. As the
reaction progresses and enters Stage III, the three-dimensional diffusion mode changes,
with the exponent n increasing to 2. This means that the reaction rate is proportional to the
square of the concentration gradient, and this change reflects the changes in physical or
chemical properties during coal oxidation, such as the transformation of coal structure or
the accumulation of oxidation products, thereby affecting the diffusion mode of oxygen in
coal. Furthermore, in Stage IV, the reaction mechanism shifts to an accelerated form of the
α-t curve, characterized by activation energy E1 and exponent n = 1. The α-t curve of this
stage indicates that the reaction rate is proportional to time, indicating that the coal oxygen
reaction has entered an acceleration period. This acceleration is due to the macromolecular
structure in coal being thermally decomposed to produce a large number of active groups,
and the coal oxidation reaction is strengthened and more intense, and the chemical reaction
occupies a dominant position. The oxidation reaction generates more heat, leading to an
increase in temperature and thus increasing the reaction rate. The existence of activation
energy E1 indicates that the reaction requires overcoming a certain energy barrier in order
to proceed, and in Stage IV, this energy barrier is more easily overcome, resulting in an
accelerated reaction rate.
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(a) Stage II 

 
(b) Stage III 

 
(c) Stage IV 

Figure 11. Málek method for determining mechanism functions at different stages.
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Table 8. Most probable mechanism functions of Stages II, III, and IV.

Stage
Function
Number

Function Name Mechanism G(α) f (α)

Stage II 5 Jander equation Three-dimensional
diffusion, n = 1/2

[
1 − (1 − α)

1
3

] 1
2 6(1 − α)

2
3

[
1 − (1 − α)

1
3

] 1
2

Stage III 7 Anti-Jander
equation

Three-dimensional
diffusion, n = 2

[
(1 + α)

1
3 − 1

]2
3
2 (1 + α)

2
3

[
(1 + α)

1
3 − 1

]−1

Stage IV 15 Exponential
principle

E1, n = 1,
accelerated form

α-t curve
ln α α

The most probable mechanism function in Table 8 can be substituted into Equation
(3) to calculate the pre-exponential factor ln A. To facilitate the calculation, 10 points with
a conversion rate from 0.1 to 1 and an interval of 0.1 are selected for calculation, and the
calculation results are shown in Table 9.

Table 9. Calculation of pre-exponential factor ln A.

Conversion Rate Stage II Stage III Stage IV

0.1 11.585 11.128 18.843
0.2 12.244 13.272 18.235
0.3 12.100 15.722 18.396
0.4 12.497 17.525 15.748
0.5 12.665 18.787 13.190
0.6 13.122 19.373 10.854
0.7 13.593 20.342 8.915
0.8 13.548 20.864 7.006
0.9 14.266 21.191 4.625
1 18.610 21.651 0.829

The linear correlation of the compensation effect of ln A − Ea is shown in Figure 12,
and the arrows represent the calculation sequence of ln A.

Figure 12. Linear relationship of ln A − Ea compensation effect.

After linear fitting in Figure 12, the expressions of the ln A − Ea compensation effect in
the three stages were ln A = 0.161Ea − 3.42 (Stage II), ln A = 0.177Ea − 13.31 (Stage III), and
ln A = 0.247Ea − 22.43 (Stage IV), respectively, and the correlation degree of fitting in the
three stages was greater than 0.97. In addition, the pre-exponential factor ln A gradually
increases with the increase in the apparent activation energy Ea. This is because the pre-
exponential factor represents the effective collision frequency of molecules. The higher the
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pre-exponential factor, the higher the effective collision frequency of molecules, and the
greater the possibility of a reaction, which leads to the increase in the energy required for
the reaction and the increase in the apparent activation energy.

4. Conclusions

(1) Each characteristic temperature point increases with the increasing heating rate, and
the mass loss rate also shows an increasing trend with the increase in heating rate; it
reaches the maximum value when the heating rate is 20 ◦C/min, at −17.8%/min. In
addition, in the whole coal–oxygen composite reaction, the heat flow rate also shows
an increasing trend with the increase in heating rate; it reaches the maximum value
of 29.63 mW/mg when the heating rate is 20 ◦C/min. Moreover, the inflection point
temperature and peak temperature lag behind with the increase in heating rate.

(2) The KAS method was employed to calculate the apparent activation energy of three
reaction stages, and there are certain differences in their changes at each stage. As
the coal–oxygen reaction gradually accelerates, chemical reaction gradually becomes
dominant in the coal oxidation process, and the apparent activation energy in Stages
II and III gradually increases with the increase in conversion rate, while in stage IV, it
shows a trend of first increasing and then decreasing, which is closely related to the
fact that the decomposition of active substances in the coal–oxygen reaction begins to
increase and eventually deplete, requiring less energy.

(3) The kinetic compensation effect of the three stages were determined by deriving the
corresponding most probable mechanism function of each stage and identifying the
correlation between the pre-exponential factors and the apparent activation energy.
The three different oxidation stages have different mechanism functions, reflecting dif-
ferent oxidation characteristics, which further reflects the complexity and dynamism
of the coal oxidation process. The pre-exponential factor ln A is positively correlated
with the apparent activation energy, and the linear relationship is very obvious, which
is consistent with the law of mass reduction and heat release increase in the process of
the coal oxidation reaction.
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Abstract: The molecular structure of coal is complex, and the existing research methods are limited,
so it is difficult to clarify its influence mechanism on the spontaneous-combustion characteristics of
coal. In this paper, the previous extraction, FTIR, TPR, TG-DSC and other experimental results are
combined to analyze the extraction weakening effect and the correlation analysis of the spontaneous-
combustion characteristic parameters of raffinate coal. The results show that extraction can destroy
the connection bond of coal molecules, change the content of dominant active groups in the coal
spontaneous-combustion reaction, increase the lower limit of the key temperature nodes of coal
spontaneous-combustion or extend the temperature range, resulting in an increase in the ignition-
point temperature of coal and a decrease in coal quality. This paper will provide a theoretical basis for
the study of the microscopic mechanism of coal spontaneous-combustion and then provide new ideas
for the development of an active prevention and control technology for coal spontaneous-combustion.

Keywords: coal spontaneous-combustion; solvent extraction; key active structures; correlation
analysis; weakening mechanism

1. Introduction

As the most abundant fossil fuel in the world [1,2], coal resources are accompanied by
many safety problems in the process of mining. The harm of coal spontaneous-combustion
exists in the whole process of coal mining, storage and transportation [3,4]. The acci-
dents caused by coal spontaneous-combustion account for more than 90% of mine fire
accidents [5,6], which cause a lot of waste of coal resources and hinders the safe, green and
sustainable development of China’s coal industry [7,8].

Coal is a complex mixture of organic matter and inorganic matter, and its physical
and chemical properties are affected by its molecular structure and active groups [9–12].
Qiu et al. [13] found that the content of oxygen-containing functional groups in the ma-
terial is positively correlated with the specific surface area. When the content of oxygen-
containing functional groups is too high, the specific surface area will shrink due to the
blockage of micropores and the collapse of pore walls. Dhakate et al. [14] found that the
proportion of surface reactive functional group content will affect the strength of carbon
fiber in the process of studying carbon fiber materials. In the process of evaluating Russian
needle coke carbon materials, Rudko et al. [15] found that materials with different hydrocar-
bon compositions and sulfur content would lead to changes in the structure and properties
of the products. Coal spontaneous combustion is the result of heat storage and combustion
after the coal–oxygen composite reaction between the coal molecular active structure and
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oxygen [16–18]. Previous studies have confirmed that the microstructures of the aliphatic
hydrocarbon structure, aromatic hydrocarbon structure and oxygen-containing functional
groups in coal molecules have different influence mechanisms and influence degrees in coal
spontaneous combustion [19]. Therefore, controlling or eliminating the key active structure
of coal molecules is an effective means to prevent and control coal spontaneous combus-
tion. Solvent extraction technology can effectively strip the specific active structure of coal
molecules and achieve the purpose of inhibiting coal spontaneous combustion [20]. Some
scholars have successfully stripped the microscopic active structure of coal molecules by
solvent extraction technology. Zhao et al. [21] found that the content of oxygen-containing
functional groups such as phenols in coal samples dissolved by non-volatile ionic liquids
was significantly reduced. Jin et al. [22] used diphenylamine to treat coal samples and
found that the N-H in coal molecules was destroyed. Yao et al. [23] successfully stripped
the aliphatic hydrocarbon structure in coal molecules using tetrahydrofuran combined
with ultrasonic-assisted extraction technology. Barman et al. [24] reviewed the application
of ultrasonic-assisted extraction technology in coal extraction and found that the con-
tent of functional groups on the surface of coal changed after a solvent combined with
ultrasonic-assisted extraction.

On this basis, some scholars have studied the weakening mechanism of coal sponta-
neous combustion with changes in microstructure. Taraba et al. [25] used urea and other
reagents to treat coal samples, and combined with a pulse flow calorimetry test, it was
found that urea reduced the oxidation heat of coal at the chemical level, thus weaken-
ing the spontaneous-combustion activity of coal. Wang et al. [26] significantly delayed
the ignition temperature of a test coal sample by adding dimethyl methylphosphonate
(DMMP) material and determined by kinetic analysis that DMMP can also physically
weaken the coal–oxygen composite reaction activity intensity in the low-temperature stage
by blocking oxygen at the physical level. Onifade et al. [27] used gypsum powder to make
antioxidant materials to treat the sponge coal of a South African mine. Through testing,
gypsum materials can effectively reduce the oxygen consumption of coal and greatly
reduce the spontaneous-combustion of coal. Deng et al. [28] found that when testing
[BMIM][BF4] materials the temperature threshold of the spontaneous-combustion reaction
process interval of coal samples pretreated with ionic liquids was expanded, that is, the
spontaneous-combustion of coal was weakened by delaying the characteristic temperature
node of coal spontaneous combustion reaction acceleration. Zhang et al. [29] found that by
reducing the content of the -OH structure, the quality and heat release of coal entering the
combustion stage can be significantly reduced, and then the spontaneous-combustion of
coal can be weakened. Slovák et al. [30] tested bituminous coal by using CaCl2 and urea as
a composite inhibitor and found that CaCl2 and urea in the range of 100~250 ◦C will lead
to a decrease in the heat released by coal oxidation. At the same time, CaCl2 can inhibit the
spontaneous-combustion of coal by increasing the activation energy in the process of coal
spontaneous combustion.

The quantitative state (content and state) of the active structure of coal molecules is
a key factor affecting the spontaneous-combustion characteristics of coal [31]. The above
scholars have carried out research on the weakening mechanism of solvent extraction
residue on the reactivity of coal spontaneous combustion and have achieved relevant results,
but the influence of the key active structures on the characteristics of coal spontaneous
combustion needs further study. Therefore, based on extraction technology, combined with
an infrared test, temperature-programmed experiment and other means, this paper will test
and analyze extracted coal and use the gray correlation method to analyze the correlation
between the active group structure and the characteristic parameters of coal spontaneous
combustion, to determine the weakening mechanism of the key active structure of coal
molecules on the spontaneous-combustion characteristics. The research results provide
research methods and methods for clarifying the microscopic reaction mechanism of coal
spontaneous combustion and provide a theoretical basis for promoting the development of
the active prevention and control of coal spontaneous combustion disasters in mines.
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2. Experiment and Theoretical Analysis

2.1. Experiments of Extraction

In the experiment, 10 groups of extractants with 20% solute density were selected,
and each group was configured with 5 L of solvent [32]. The extractants were as follows:
cyclohexane + sodium dioctyl succinate sulfonate + anhydrous ethanol (CYC + AOT + AE),
sodium dioctyl succinate sulfonate (AOT), cyclohexane (CYC), anhydrous ethanol (AE),
cellulase (EG), tea polyphenols (TP), cellulase + tea polyphenols (EG + TP), tetrahydrofuran
(THF), methanol (MT), n-hexane (CYH) and the raw coal control group (YM). During the
extraction process, 200 g of samples with five particle sizes of 0~0.9, 0.9~3, 3~5, 5~7 and
7~10 mm was mixed into 1 kg of experimental coal samples, and the extraction solvent was
added and fully mixed, followed by static extraction. After the extraction, the extracted
coal samples were collected for drying treatment, and the coal samples were sealed and
stored for later use.

2.2. Extraction of Residual Coal Group Content Test

A Vertex 70 V Fourier transform infrared spectrometer was used to test and determine
the extraction effect of the group structure of the residual coal sample in each reagent
group [32]. The experimental sample and dried potassium bromide powder (KBr) were
mixed at a mass ratio of 1:150. After full grinding, 200 mg of the ground coal sample and
KBr powder mixture was filled in a tableting metal mold. The mixed sample was placed
on a tableting machine. Under a pressure of 15 Mpa, the mixed sample was made into an
observation sheet and placed in a Fourier transform infrared spectrometer for experimental
testing. The setting parameters were resolution 4 cm−1, band 400−4~4000 cm−1, scan
32 times and export test analysis data preservation.

2.3. Determination of the Macroscopic Characteristic Parameters of Coal Oxidation
2.3.1. Temperature-Programmed Experiment Test

The experimental system included five parts, an adiabatic oxidation device, gas supply
system, temperature-tracking detection and control system, oxidation gas product analysis
system and mass change detection system, and was connected with a ZDC 7 mine fire
multi-parameter intelligent monitoring device [33]. During the test, 800 g of dry raffinate
coal sample was placed in the coal sample tank for sealing, and the air pump was adjusted
for preventilation. The initial temperature of the box was set at 40 ◦C, and the heating rate
was 0.8 ◦C/min to start the test. During the heating process, the ZDC 7 monitoring device
was used to monitor the central temperature of the coal sample and the outlet oxygen
volume fraction at the key node temperature in real time, and the temperature of the box
was collected at the same time. The intersection point of the temperature– time curve of the
coal center and the temperature–time curve of the box is the temperature of the intersection
point. The data index can indirectly characterize the spontaneous-combustion strength of
the test coal sample.

2.3.2. Isothermal Temperature Difference Leading Test

The main structure of the experiment included five parts: an adiabatic oxidation
device, gas flow detection device, flow control system, temperature detection system and
parameter control system [33]. In the experiment, 80 g of dry extracted coal sample was
placed in the coal sample tank for heating up. The leading temperature was set to 10 ◦C,
and the heating rate was 0.8 ◦C/min. The gas generated in the coal sample tank was
introduced into the gas chromatography analyzer every 10 ◦C to detect the gas composition.
The gas type and volume fraction data at different temperatures were recorded until
the test was completed at 180 ◦C. Through experiments, the formation law of gaseous
products in the oxidation process of raffinate coal samples can be obtained, and then the
spontaneous-combustion reactivity intensity of each group of raffinate coal samples can be
reflected.
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2.3.3. Thermal Analysis Combined Test (TG-DSC)

An STA 8000-Spectrum thermal analyzer was used in the experiment [34]. During
the experiment, 10 mg of dry extracted coal samples was placed in the sample room. The
preloading temperature was 30 ◦C, the termination temperature was 800 ◦C, the heating
rate was 10 ◦C/min, the preloaded gas flow rate was 100 mL/min, nitrogen was used
as the protective gas and 21% oxygen was used as the purging gas during the test. At
the same time, the temperature of each instrument interface and transmission network
pipeline was maintained at 200 ◦C during the heating process of the control program. The
changes in the mass and airflow heat data of the test samples during the heating process
were recorded. Through a data fitting processing analysis, the differences in the thermal
stability and thermal effect characterization parameters in the process of the oxidation and
spontaneous-combustion of each group of raffinate coal were determined.

2.4. The Principle of Gray Correlation Analysis

Gray correlation analysis is an analysis method based on the existing data to calculate
the correlation degree between the reference sequence and the comparison sequence [29].
The correlation degree between the research object and the characteristic parameters can be
determined by gray correlation analysis. The larger the correlation degree is, the greater
the correlation between the research object and the characteristic parameters. The specific
calculation steps are as follows:

1. Determine the reference sequence (1) and the comparison sequence (2):

Y = Y(k)|k = 1, 2 . . . n, (1)

Xi = Xi(k)|k = 1, 2 . . . n, i = 1, 2 . . . m, (2)

2. The initial value method is used to make the data dimensionless.
3. Calculate the correlation coefficient; the calculation formula is as follows (3):

ξi(k) =
min

i
min

k
|y(k)− xi(k)|+ ρmax

i
max

k
|y(k)− xi(k)|

|y(k)− xi(k)|+ ρmax
i

max
k

|y(k)− xi(k)| , (3)

4. Calculate the correlation degree, that is, calculate the average value of the obtained
correlation coefficient to obtain the correlation degree, as shown in Equation (4):

ri =
1
n

n

∑
k=1

ξi(k), k = 1, 2, . . . n, (4)

In the formula, Y is the reference sequence, Xi is the comparison sequence, ξi is the
correlation coefficient, ρ is the resolution coefficient, usually taken as ρ = 0.5, and ri is the
correlation degree.

2.5. Analysis Process of the Influence Mechanism of the Active Structure on Coal Spontaneous-
Combustion Based on Macro–Micro Correlation

In this paper, the extraction experiment of coal samples was carried out based on
extraction technology. In order to determine the influence mechanism of the active group
structure on the reactivity of coal spontaneous combustion, a Fourier transform infrared
spectroscopy test, thermal analysis combined test, temperature-programming experiment
and isothermal temperature difference leading experiment test were carried out. By an-
alyzing the differences in the characteristic data of the test and analysis results of each
group of raffinate coal samples, the influence of different group structures on the actual
coal spontaneous-combustion process is determined, and then the influence mechanism of
the key active structure of coal molecules on the spontaneous-combustion characteristics is
theoretically deduced. The specific technical roadmap is shown in Figure 1.
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Figure 1. Technical roadmap.

3. Results and Analysis

In the previous study, the team carried out extraction experiments on Caojiatan coal
samples and combined them with Fourier transform infrared spectroscopy to optimize
the extraction solvent. Then, a temperature-programmed experiment was carried out on
the extracted coal. By calculating the quantitative index of the spontaneous-combustion
of extracted coal, the spontaneous-combustion weakening effect of coal samples treated
with different extractants was obtained [32]. In addition, combined with the formation law
of gas products and the change law of thermal physical parameters during the heating
process of extracted coal, it was found that the temperature node of the spontaneous-
combustion reaction interval of the coal sample treated by the extractant shifted, and
the ignition-point temperature of the coal was delayed, resulting in a weakening of the
spontaneous-combustion reaction activity of the coal [33,34].

However, the influence mechanism of the active structure on coal spontaneous com-
bustion characteristics is not clear, and the quantitative characteristics between the active
structure and coal spontaneous combustion characteristic parameters, gas products and
thermophysical parameters are difficult to clarify. Therefore, this paper combines the
experimental results and data of the previous team research to deeply analyze the problem.

3.1. Change in Active Group Content of Extracted Residual Coal

Based on the test and analysis process and calculation results of the previous raffinate
coal experiment [32,33], the micro-group structure types of each group of raffinate coal
samples were fitted according to the aromatic hydrocarbon structure, aliphatic hydrocarbon
structure and oxygen-containing functional group structure. The absorption peaks were
summarized, and the extraction effect of each extractant was analyzed. The infrared fitting
peak area of the active structure of each raffinate coal group is shown in Table 1 and
Figure 2 below.

Oxygen-containing functional groups are the most abundant in coal molecular groups
and play an important role in the process of coal spontaneous combustion. The oxygen-
containing functional groups represented by-OH play a leading role in the low-temperature
oxidation stage of coal spontaneous combustion, and their content is positively correlated
with the strength of coal spontaneous combustion. It can be seen from Figure 2 that
regarding the correlation fitting peak area of each group of raffinate coal samples, the larger
the fitting peak area, the worse the extraction effect. Therefore, the extraction effect of the
oxygen-containing group structure from strong to weak is as follows: MT > EG > THF >
AE > TP > CYC > EG + TP > CYC + AOT + AE > AOT > CYH > YM. Among them, the
reagents with the best extraction effect of the oxygen-containing group structure were the
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THF group, EG group and MT group, and the extraction rates were 13.9%, 14.7% and
19.1%, respectively.

Table 1. Infrared peak fitting results (dimensionless).

Group
Active

Structure
Category

YM THF MT CYC CYH C + A + A AE AOT EG TP EG + TP

Aromatic
hydrocarbon

C-H 108 77 91 56 42 46 54 51 73 45 40
C=C 185 199 157 190 204 201 166 211 173 179 172

Aliphatic
hydrocarbon

-CH3 52 43 15 49 29 40 54 130 58 65 45
-CH2 117 73 101 44 28 63 96 145 103 78 111

Oxygen-
containing
functional

groups

-COOH 187 161 154 176 176 181 184 174 185 183 168
-OH 435 388 310 389 463 428 357 480 357 367 425
C-O 177 137 147 144 134 150 145 153 146 154 160
C=O 66 59 89 75 93 75 63 56 50 50 50

Figure 2. Comparison of the difference in group content under different extractants.

As the skeleton of coal molecules, the aromatic hydrocarbon structure is composed
of a benzene ring, aromatic ring and so on. This kind of structure is very stable in coal
molecules, and it is usually difficult to react with oxygen. It can be seen from Figure 2
that the order of the aromatic structure extraction effect from strong to weak is as follows:
EG + TP > AE > TP > EG > CYH > CYC + AOT + AE > CYC > MT > AOT > THF > YM.
Among them, the extraction residual coal group with the best extraction effect was the TP
group, AE group and EG + TP compound group, and the extraction rate reached 23.5%,
24.9% and 27.6%, respectively.

The aliphatic hydrocarbon structure generally exists in coal molecules as aromatic ring
side chains, and it is easy to react with oxygen during the coal spontaneous-combustion
reaction. It can be seen from Figure 2 that the extraction effect of the aliphatic hydrocarbon
structure from strong to weak is as follows: CYH > CYC > CYC + AOT + AE > MT > THF >
TP > AE > EG + TP > EG > YM > AOT. Among them, the extraction residual coal group
with the best extraction effect was the CYC + AOT + AE compound group, CYC group
and CYH group, and the extraction rate reached 39.1%, 45.0% and 66.3%, respectively. The
absorption peak area of aliphatic hydrocarbons in the AOT group increased. It is speculated
that the AOT material contains a large amount of methyl structure, and the material is
retained inside the coal pores during the extraction process, resulting in an increase in
the area of infrared absorption peaks here. In addition, due to the physical and chemical
properties of the AOT material itself, it is easy to form a reverse micelle layer wrapped on
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the surface of the coal body during the extraction process, which blocks the dissolution of
aliphatic hydrocarbon structures such as methyl and methylene, resulting in the partial
stripping of aliphatic hydrocarbon structures. It is also retained in the coal pores, resulting
in an increase in the absorption peak area of the aliphatic hydrocarbon structure of the
AOT group.

3.2. Effect of Active Group Content on Coal Spontaneous Combustion

The results of previous studies have found that [33] the spontaneous-combustion char-
acteristics of extracted coal samples have changed to varying degrees. The determination
method of coal oxidation kinetics [35] was used to calculate the spontaneous-combustion
characteristics of each group of extracted coal samples based on the measured center tem-
perature of each group of extracted coal samples and the volume fraction of O2 at key points.
It was found that except for the enhancement of the spontaneous-combustion of coal in the
AE group, the spontaneous-combustion reactivity of coal in other groups was weakened to
varying degrees. Another characterization of the change in coal spontaneous-combustion
is the change in the coal spontaneous-combustion process interval. Figure 3 shows the
change in the spontaneous-combustion process interval of each extraction residual coal
group. It can be seen from the figure that the characteristic temperature interval of the
coal spontaneous-combustion process of each extraction residual coal group has been
extended. At the same time, there is no phenomenon of a compound self-heating stage in
the extraction residual coal of the AE group.
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Figure 3. Coal spontaneous-combustion process interval stage change situation [33].

3.3. Effect of Active Group Content on Gas Products

According to the isothermal temperature difference leading test, the volume fraction
of gas products in each group was drawn in a scatter plot, and the gas product data of
different extraction residual coal groups were fitted by Logistic using Origin software to
obtain the gas product fitting curve (as shown in Figure 4). The absolute production of
each gas product was obtained by integrating the fitting curve, and then the correlation
between the content of active groups and the concentration of gas products was analyzed
to determine the effect of each active group on the concentration of gas products.
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(a) (b)

(c) (d)

(e)

Figure 4. Fitting curves of the gas products of different raffinate coal groups [33]. (a) Fitting curve of
CH4 gas product; (b) Fitting curve of CO gas product; (c) Fitting curve of CO2 gas product; (d) Fitting
curve of C2H6 gas product; (e) Fitting curve of C2H4 gas product.

As shown in Figure 4, the fitting curves of five gas products of CH4, CO, CO2, C2H6
and C2H4 were obtained, respectively. Origin software was used to integrate the fitting
curves, and the absolute production results of each gas product are shown in Table 2.
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Table 2. The amount of gas products produced by different extraction residual coal groups.

Group CH4 CO CO2 C2H6 C2H4

YM 0.48549 38.33111 177.61669 0.62251 0.34461
THF 0.43321 35.06035 178.00860 0.2425 0.17216
MT 0.37073 40.99266 178.00860 0.28744 0.18847

CYC 0.27937 37.15417 158.69036 0.16944 0.14322
CYH 0.37136 36.34579 174.96191 0.1641 0.25814

CYC + AOT + AE 0.24421 28.80616 127.02185 0.23388 0.12843
AE 0.48858 36.17914 145.47469 0.9406 0.36273

AOT 0.43511 43.82697 201.89459 0.23651 0.15241
EG 0.26614 32.19166 173.87919 0.10831 0.11619
TP 0.26061 39.30838 200.26572 0.12891 0.13512

EG + TP 0.18521 32.19166 169.43187 0.09223 0.10690

Gray Correlation Analysis of Active Groups and Gas Products

The gas product can be used as a sign to divide the process of coal spontaneous com-
bustion, and the change in its content can reflect the activity intensity of coal spontaneous
combustion to a certain extent. To explore the relationship between the structure of active
groups and the characteristics of coal spontaneous combustion, the content of each active
group and the absolute production of different gas products were obtained by infrared
peak fitting. The relationship between gas products and the structure of active groups
was analyzed by gray correlation analysis, and then the influence of active groups on
the characteristics of coal spontaneous combustion was determined [36]. The greater the
correlation degree calculated, the greater the influence of the active group structure on the
formation of gas products in the process of coal spontaneous combustion. In the process
of this analysis, the amount of gas product generation is the reference sequence, and the
content of different active groups is the comparison sequence. The results are shown in
Figure 5.

Figure 5. Gray correlation degree between active group structure and gas product.

(1) The correlation between CO, CO2 and different active group structures

It can be seen from Figure 5 that the correlation between -COOH, C=C, -OH and
the production of CO and CO2 is high, indicating that these three types of active group
structures have a great influence on the production of CO and CO2. The correlation degree
with CO is 0.8863, 0.8710 and 0.8641, and the correlation degree with CO2 is 0.8661, 0.8783
and 0.8737, respectively. In the early stage of the coal spontaneous-combustion reaction,

136



Fire 2024, 7, 283

-OH as the dominant group captures H and oxidizes to form an aldehyde radical, which
further reacts with oxygen to form CO and CO2, resulting in an increase in the production of
CO and CO2 gas. In the middle stage of the coal spontaneous-combustion reaction, -COOH
combines with O2 to generate CO and CO2 gas, resulting in a continuous increase in CO
and CO2 generation. In this stage, -COOH has a great influence on gas production. In the
later stage of the coal spontaneous-combustion reaction, the macromolecular benzene ring
skeleton (C=C) as the dominant reaction group begins to break and reacts with free oxygen
atoms and oxygen, resulting in a continuous increase in CO and CO2 gas production. It can
be inferred that a decrease in -COOH, C = C and-OH content will lead to a decrease in CO
and CO2 gas production, which will lead to a weakening of coal spontaneous combustion.

(2) The correlation between CH4, C2H4, C2H6 and different active group structures

The results of the Origin fitting show that the production of CH4, C2H4 and C2H6 gases
is after the middle stage of the coal spontaneous-combustion reaction (60 ◦C). Therefore,
the analysis of the correlation between the active structure and these three gases can reflect
the influence of the active group structure on the spontaneous-combustion characteristics
of coal after the middle stage of the oxidation reaction. It can be seen from Figure 5 that the
groups with a high correlation with CH4, C2H4 and C2H6 gases are C-H, -CH2, -COOH and
C-O structures. Therefore, it is believed that after the middle stage of coal spontaneous com-
bustion, the oxygen-containing functional groups participate in the reaction, the aliphatic
hydrocarbon structure reacts with the oxygen-containing functional groups to generate
carbon–oxygen free radicals and further carbonylation will produce hydrocarbon gases
such as CH4 and C2H4. Among them, the active groups with the highest correlation with
CH4, C2H4 and C2H6 are all C-H structures, and their correlation degrees are 0.8400, 0.8638
and 0.8122, respectively. The C-H structure has the greatest influence on the production of
the three gases. At the same time, -CH2, -COOH and C-O all have a greater impact on the
production of the three gases, indicating that after the coal spontaneous-combustion reac-
tion enters the medium-term stage, the aromatic structure represented by the C-H structure
and the aliphatic hydrocarbon structure represented by -CH2 and some oxygen-containing
functional groups have a greater impact on the coal spontaneous-combustion reaction
activity. Therefore, it is considered that a decrease in aliphatic hydrocarbon structures such
as C-H, -CH2 and -COOH will lead to a decrease in hydrocarbon gas generation such as
CH4 and C2H4, thus weakening the spontaneous-combustion of coal.

3.4. Gray Correlation Analysis of Active Groups and Thermal Properties of Coal

The most intuitive characterization of the oxidation activity intensity of coal sponta-
neous combustion is the weight loss rate and exothermic intensity. Therefore, by determin-
ing the ignition-point temperature, heat-release peak temperature and burnout temperature
characteristic points in the TG, DTG and DSC data curves, the difference in the coal combus-
tion characteristics under the different spontaneous-combustion intensities of each group
of raffinate coal samples is intuitively characterized. The characteristic temperature and
corresponding TG data values at each feature point can be determined by processing the
thermophysical characterization data of the extracted coal sample. All the determined data
are summarized in Table 3.

In the process of this analysis, according to the data obtained in Table 3, the thermal
physical parameters of different coals are taken as the reference sequence, and the structure
of active groups is taken as the comparison sequence. The gray correlation analysis method
is used to calculate the correlation between the structure of different active groups and the
thermal properties of coal. The influence of different active group structures on the thermal
properties of coal is determined, and then the influence of different active group structures
on the spontaneous-combustion characteristics of coal is obtained. The calculation results
are shown in Figure 6.
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Table 3. The characteristic point temperature and corresponding mass value of each group of raffinate
coal samples [34].

Group
Ignition

Temperature/◦C
Ignition-Point

Quality/%

Peak
Temperature of
Heat Release/◦C

Peak
Temperature

Quality/%

Burning
Temperature/◦C

Burnout
Temperature

Quality/%

Spontaneous-
Combustion
Index Value

YM 402.68 93.76 459.33 68.44 543.16 23.63 628.01
THF 415.09 82.86 464.42 61.76 542.79 24.13 773.34
MT 411.51 84.76 458.10 64.63 546.38 22.88 704.32

CYC 404.66 87.17 443.06 70.81 550.84 21.43 687.42
CYH 406.93 87.31 452.94 69.26 552.29 21.95 698.24

C + A + A 417.94 75.94 453.72 62.02 543.11 21.99 790.78
AE 402.88 92.18 457.74 68.13 540.10 22.58 625.89

AOT 410.32 85.30 452.58 68.91 540.76 23.40 692.23
EG 403.72 90.14 448.07 73.16 555.70 23.90 698.63
TP 400.65 89.73 454.21 72.42 545.80 23.48 712.48

EG + TP 416.52 81.35 449.09 72.51 557.23 23.27 843.20

Figure 6. Correlation between active group structure and thermophysical parameters.

The ignition-point temperature of coal is the minimum temperature required for the
continuous combustion of coal in air, and its size can reflect the strength of coal spontaneous
combustion. The calculation results shown in Figure 6 by gray correlation analysis show
that C=C, -COOH and -OH have a great correlation with the ignition-point temperature,
and the correlation degrees are 0.9132, 0.9116 and 0.8678, respectively. In the process of
coal spontaneous combustion, the active group structure reacts with oxygen to release heat.
As the dominant groups participating in the reaction, i.e., -COOH, -OH and C=C, the heat
released by their oxidation also has a great influence on the ignition temperature. The lower
the mass remaining in the combustion stage of coal means the lower the energy intensity
released by complete combustion. The analysis results show that the group structures with
a great correlation with the quality of the ignition-point are -COOH, C-O and C=C, and their
correlation degrees are 0.9604, 0.9026 and 0.8869, respectively. After extraction, the content
of -COOH, C-O and C = C groups in coal decreases, resulting in a decrease in the intensity
of the coal–oxygen composite reaction and a decrease in the amount of heat released, which
is manifested in a decrease in coal quality. In addition, the peak temperature of heat release,
the mass of peak temperature, and the mass of burnout temperature reflect the heat-release
power of coal after entering the severe combustion stage. It can be seen from Figure 6
that the peak temperature of heat release, the mass of peak temperature, and the mass of
burnout temperature have a great correlation with the structure of -COOH, C=C and -OH,
indicating that the maximum heat-release power of coal is greatly affected by the structure
of -COOH, C=C and -OH.
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4. Discussion

The influence mechanism of the key active structure of coal molecules based on extrac-
tion technology on spontaneous-combustion is summarized by comparing and analyzing
the test data by the gray correlation method, as shown in Figure 7.

W
ea

ke
ni

ng
 o

f t
he

 o
ve

ra
ll 

sp
on

ta
ne

ou
s-

co
m

bu
st

io
n 

ch
ar

ac
te

ris
tic

s o
f c

oa
l

Oxygen-containing 
functional group

Aliphatic 
hydrocarbon

aromatic 
hydrocarbon

Targeted extraction of active group 
structure

Weakening of coal spontaneous-
combustion activity

Characterization of coal spontaneous-
combustion heat substances

methylene

hydroxyl

carboxyl

In the mid-term growth stage 
(90~130 ), the rate of increase in 

reaction activity slows down

In the later stage of intense 
reaction (130~170 ), the reaction 

activity tends to stabilize

The peak heat release decreases,  
the ignition point quality 

decreases

Reduced combustion quality, 
decrease in peak heat release

The reaction activity intensity 
decreases during the low-

temperature slow oxidation stage 
(30~70 )

Oxygen inhalation reduces weight 
gain, move the ignition-point 

backwards

C-H

C=C

Figure 7. The influence mechanism of the key active structure of coal molecules on spontaneous
combustion.

It can be seen from Figure 7 that the influence mechanism of the key active structure
of coal molecules on spontaneous combustion characteristics is mainly divided into three
major links.

(1) Extraction of the coal molecular active group structure

The most important role in this link is to strip the active group structure of coal
molecules through extraction reagents. The essence is to destroy the connection structure
between molecules through the chemical action of reagents or the dominant group structure
itself in the process of the coal spontaneous-combustion reaction. For example, through
various chemical energy modes of action or the characteristic components carried by the
reagent, the related connection structure inside the coal molecule is destroyed, thereby
stripping some functional group structures from the aromatic main chain of the coal
molecules or destroying the macromolecular chain structure. THF reagent materials capture
hydrogen bonds through a strong hydrogen bond acceptance ability, while other reagent
materials such as pyridine [37], NMP [38] and ionic liquid [39] also have a similar group
structure destruction ability.

(2) Weakening the reactivity intensity of coal spontaneous-combustion

By controlling the structure of the dominant group of the coal spontaneous-combustion
reaction from the coal body, the lower limit of the key temperature node of the coal
spontaneous-combustion is increased or the temperature range is prolonged, thereby
weakening the reactivity of the coal spontaneous combustion in each process stage. For
example, the oxygen-containing groups dominated by the -OH structure mainly affect the
reactivity of coal spontaneous combustion at low temperature (30~70 ◦C). The aliphatic
hydrocarbon structures represented by -COOH and -CH2 structures mainly affect the
reactivity of coal spontaneous combustion in the middle stage (90~130 ◦C). The aromatic
hydrocarbon structures represented by C=C and C-H structures mainly act on the reactivity
of coal spontaneous combustion in the later stage (130~170 ◦C). The effect of the above
active group structures on the reactivity of coal spontaneous combustion is manifested in
prolonging the temperature range of coal spontaneous combustion or increasing the lower
limit of coal spontaneous combustion temperature. After extraction, the content of active
structures such as oxygen-containing functional groups, aliphatic hydrocarbons and C=C
participating in the oxidation reaction to generate gas is reduced, which leads to a decrease
in the production of symbolic gases, and ultimately weakens the spontaneous-combustion
of coal.
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(3) Weakening the characterization strength of coal thermophysical properties

The microscopic mechanism of coal spontaneous combustion confirms that the essence
of coal spontaneous combustion is the process of an oxygen capture reaction and the
interaction of active groups in coal molecules, and the ultimate goal of coal spontaneous
combustion weakening is to improve the thermophysical characterization strength of the
coal oxidation spontaneous-combustion reaction. As the characterization parameters of
coal spontaneous combustion activity, ignition-point temperature and ignition-point mass
can reflect the size of coal spontaneous combustion reaction activity. By stripping the
dominant group of the coal spontaneous-combustion reaction, the ignition temperature of
coal will be delayed, and the quality of coal entering the combustion stage will be reduced.
It is speculated that the stripping of the active structure will lead to a decrease in heat
release and heat-release efficiency in the process of coal oxidation, thus weakening the
effect of coal spontaneous combustion.

5. Conclusions

According to the previous research results and data of the team, combined with the
quantitative indicators of the spontaneous-combustion of each group of raffinate coal,
the migration law of spontaneous combustion process nodes and the characterization
of thermal properties, the influence of various active group structures on the reaction
of the coal spontaneous-combustion process was determined. The main conclusions are
as follows:

(1) The influence of the active structure on the process of coal spontaneous combustion
is different. The oxygen-containing structure represented by -OH mainly affects
the reactivity in the low-temperature oxidation process (30~90 ◦C). The aliphatic
structure represented by -COOH mainly affects the reactivity in the middle stage of
coal spontaneous combustion (90~130 ◦C). The aromatic ring structure determines
the reactivity intensity of coal spontaneous combustion in the high-temperature stage
(130~170 ◦C).

(2) The gray correlation method was used to calculate the correlation degree between the
active structure of coal molecules and gas products. It was found that the gas products
produced in the process of coal spontaneous combustion had a large correlation degree
with -OH, -COOH, -CH2, C = C and other structures. With the development of the coal
spontaneous-combustion process, various active structures have participated in the
reaction, thus generating oxygen-containing gases and alkanes and other iconic gases.
The stripping extraction of the active structure leads to a decrease in the content of
the groups involved in the reaction, resulting in a decrease in gas production, thereby
weakening the spontaneous-combustion of coal.

(3) Through gray correlation analysis, it is found that the main active groups affecting
the thermal properties of coal are C=C in the molecular skeleton of coal, -COOH
of aliphatic hydrocarbons and oxygen-containing functional groups represented by
-OH. In the process of coal spontaneous combustion, the active structure reacts with
oxygen to generate heat. The stripping of the active structure leads to a decrease in
the intensity of the coal–oxygen composite reaction and a decrease in the amount of
heat released, resulting in a delay in the ignition-point temperature and a decrease
in the quality of the coal involved in the combustion. Finally, the coal spontaneous-
combustion is weakened.

(4) The influence mechanism of the key active structure of coal molecules based on
extraction technology on spontaneous combustion characteristics is divided into three
parts. (1) Extraction destroys the connection bond between coal molecules or the
dominant group structure of the coal spontaneous-combustion reaction. (2) Stripping
the dominant group structure of the coal spontaneous-combustion reaction weakens
the reaction activity intensity in each process stage of coal spontaneous combustion,
prolongs the temperature range of the heat storage reaction or increases the lower
limit of the rapid reaction temperature threshold. (3) As a result, the thermal physical
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property characterization strength of coal spontaneous combustion is weakened,
which is manifested as delaying the ignition-point temperature of coal or reducing
the quality of coal involved in combustion.
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Abstract: Mine fire accidents frequently constitute a major threat to mining safety, and their potential
consequences are extremely severe, which highlights the urgency of fire prevention and control
research. In this study, the CiteSpace software was used to conduct a metrological analysis of
717 relevant studies in the field of mine fire prevention and control (MFPC), aiming to reveal the
research trends and trends in this field. This analysis found that the annual number of MFPC articles
showed a significant upward trend, indicating that it is in rapid development during the active period.
China, the United States, and Australia are the main contributors in this field, and the institutional
contribution of China University of Mining and Technology is particularly outstanding, reflecting
the regional concentration of research activities. The analysis of cooperation networks reveals the
close cross-regional collaboration among European countries. The inhibition effect and evaluation
criteria and the inhibition technology under different coal characteristics have become the focus of
research. Activation energy, release, and quantum chemistry have become recent hot spots, reflecting
the research on the mechanism of forward physicochemical synergistic inhibition and the in-depth
exploration of the molecular level. It indicates that future research will focus on the development
of temperature-responsive retardant materials, the application of quantum chemistry theory, and
the exploration of the microscopic mechanism of coal spontaneous combustion through molecular
simulation technology to further optimize the fire prevention strategy. In summary, the findings of
this study not only provide a comprehensive picture of current research activities in the MFPC field
but also indicate potential directions for future research and have important guiding significance for
promoting the development of this field.

Keywords: knowledge graph; visualization; mine fire prevention and control; CiteSpace

1. Introduction

China’s energy system is notably characterized by an abundance of coal resources and
a relative scarcity of petroleum resources. Coal occupies a vital position as the cornerstone
of national energy [1–4]. Due to the complex and changeable geological conditions of coal
seams in our country, the safety production of coal mines is faced with severe challenges,
so various disasters occur frequently. Among them, the spontaneous combustion of coal
(SCC) is particularly concerning because of the seriousness of its potential hazards, the
difficulty of prevention and control, and the far-reaching impact on resources and the
environment [5,6]. Figure 1 shows the trend of the incidence and death toll of coal mine fire
accidents in China from 2008 to 2023. Although, in recent years, China’s supervision and
management of coal mine safety production has been continuously strengthened, which
has led to a significant decrease in the incidence rate and death rate of coal mine accidents.
However, due to the huge coal production, wide distribution of mines, complex mining
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conditions, and differences in various levels, mine fire prevention and control (MFPC) work
is still facing a severe situation [7].

Figure 1. Number of coal mine accidents and death toll in the past 15 years.

Scholars from various countries have developed and researched a wide range of
fire suppression materials for use in dealing with spontaneous coal combustion. These
include slurries, foams, inert gases, colloids, and retardants [8–16]. Inhibition technology
can be divided into the following three basic categories according to their principle of
action: physical inhibition, chemical inhibition, and physicochemical synergistic inhibition
with both characteristics [17–28]. The physical inhibition method is mainly to slow down
the occurrence of coal oxygen reaction by endothermic cooling, isolating oxygen, and
covering the surface active center of coal. The chemical inhibition method is to add
appropriate inhibitors according to the reaction mechanism of coal and oxygen and slow
down the oxidation rate of coal samples by reducing the reactivity of groups on the surface
of coal, reducing the content of free radicals in the system, and changing the reaction
path. These fire-fighting materials with different characteristics and concerns, in their
respective research and evolution processes, have not only greatly enriched and improved
the knowledge system in the MFPC field but also accumulated rich scientific research
results and effectively promoted technological innovation and development in the field.

To date, many scholars and experts have invested extensive and in-depth research
work in the direction of MFPC, but there is less organization of existing results [29–32]. The
current literature review has significant limitations in revealing the network relationships
among knowledge communities and their evolution and fails to clearly present the dynamic
development of scholars’ understanding of knowledge, the intrinsic connections among
research themes, key documents and journals that have made a difference in the course of
research, and clues that indicate the future research trends of scholars. In order to clearly
and accurately explore these issues, it is necessary to use bibliometric tools and textual
analysis techniques, with a view to extracting scholars from the voluminous literature and
realizing in-depth insights and a scientific analysis of relevant research fields. Currently, the
main tools commonly used in academia for visualization and analysis are CiteSpace, SPSS,
Ucinet, and Vosviewer [33–37]. In order to explore the research status and development
trend of coal porosity, Shao et al. [38] analyzed two visual analysis software (Vosviewer and
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CiteSpace) and found and summarized the main knowledge framework of coal porosity
research. The results show that there has been a significant paradigm shift in the study
of coal pores, that is, from the traditional macroscopic description and analysis to the
more detailed microscopic level. In addition, several current hot trends in coal pore
research are pointed out in the analysis as follows: molecular simulation technology, pore
structure, methane storage, and methane adsorption behavior. Hu et al. [39] conducted a
detailed analysis of the literature on coal fire detection technology in the past decade using
CiteSpace and Vosviewer software, revealing that although a solid basic theoretical system
and research framework has been established in this field, prospective research is still
insufficient. The focus of coal fire detection research is to continuously improve the level of
refinement of data processing and the accuracy of detection devices, which is exactly the
focus of current research frontiers in this field. Duan et al. [40] drew a knowledge domain
map using Vosviewer and CiteSpace to study the development and trend of coal-related
free radicals. The research results show that the main research in this direction includes
the spontaneous combustion of coal, pyrolysis, control, coal and biomass, environmental
hazards, and coal geochemistry. The depth and breadth of research in this field have
been significantly expanded. The overall background and influencing factors of the coal
free radical phenomenon have been discussed not only at the macro level but also at the
micro level. The research by Wang et al. [41] reveals that in recent years, the research
on functional groups in coal has been significantly deepened to the microscopic level,
marking the maturity and perfection of the basic theoretical system and research means in
this field. The core framework of the current research revolves around the following key
pillars: gas adsorption in coal, functional group evolution analysis during heat treatment,
and functional group classification and spatial distribution analysis. In the future, the
research of functional groups in coal will focus on the application of quantum chemistry
theory and molecular simulation experiments. In order to study the research status of
underground coal mine fire scene, Wang et al. [42] found that the research on “underground
coal mine fire detection technology” is a research hotspot through visual analysis. The
advantages of detection methods currently used in this field are analyzed. Zhao et al. [43]
systematically combed and analyzed the academic literature on the application of acoustic
emission technology in coal published worldwide from 2010 to 2020 in-depth using the
visual analysis software CiteSpace. The results show that the time domain parameters of
AE, such as cycle count, energy, waveform, and signal intensity, have reached a mature
level. However, further improvement of acoustic emission positioning technology will
be an important focus of future research. At present, the fractal dimension of signal
strength, acoustic emission count, and B-value are generally regarded as the mainstream
means to identify the fracture phenomenon. It is worth paying attention to the obvious
inadequacies in dealing with the complex challenges encountered in practical engineering
projects regarding the activity laws of steep-dip coal seam and its surrounding rocks
during deformation. Yang et al. [44] used CiteSpace to analyze the correlation among
countries, authors, and keywords in the research field of SCC. The research shows that
the low-temperature oxidation process, kinetic principle, internal mechanism construction
and model development constitute the core issues of SCC research. Recently, the research
focus is mainly on the research and development of three-phase foam technology, fire
extinguishing strategy, and foam preparations.

Based on the above, in order to accurately grasp the research achievements and
research directions in MFPC field, the Web of Science (WOS) core database is used as the
data source, the CiteSpace analysis method is used to analyze the literature distribution
and hot research achievements, and the hot issues in the MFPC field are summarized. It
provides a reference for the research frontier, the determination of scientific problems, and
the choice of research direction and provides a scientific basis for reducing the risk of coal
mine fires.
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2. Data and Methods

2.1. Data Sources

WOS is an influential professional and comprehensive scientific information service
platform in the research community, which has been accepted by many scholars and
personnel [45], contains more than 12,000 world-authoritative and high-impact scholarly
journals in a variety of research fields, such as natural sciences, engineering, and technology,
and is considered to be the most suitable database for bibliometric analysis. Therefore, this
paper uses the core data set of WOS as the source data. The subject of the search is “mine
fire prevention and control” or “prevention of spontaneous combustion of coal”, which
means that the title, abstract, and keywords of the journal are not required to be included
in the search. This means that as long as there are terms related to mine fire prevention
and control or prevention of spontaneous combustion of coal in the title, abstract, or
keywords, we can find these documents. The search node time is December 2023. A total
of 717 documents were obtained by manually removing irrelevant documents one by one.
A total of 717 references were obtained by lifting and filtering in CiteSpace.

2.2. Methodology

This paper mainly uses the bibliometric analysis method to study the knowledge
structure and evolution process in this field. Bibliometrics is a statistical method used
to evaluate and quantify the emergence and development trend of a specific research
topic [46]. CiteSpace is a multi-view information visualization software. Professor CM
Chen developed the CiteSpace knowledge graph analysis software and introduced it to
China. Its main function is to display evolution trends and knowledge associations of
the scientific frontier through visual analysis, including keyword co-occurrence analysis,
keyword clustering, institution distribution disclosure, author cooperation exploration,
literature integration, and other visual means. Its unique feature is that the method
can accurately translate the massive data contained in the WOS database into various
knowledge graphs and reveal the deep architectural features and associated connotations
of the scientific research field through visual methods. The data processing and analysis
work adopted in this paper is accomplished with the help of CiteSpace version 6.3.R1, an
advanced visual bibliometric tool.

3. Results and Discussion

3.1. Year-to-Year Trends in the Number of Articles Issued

As a quantitative index, the number of studies can reveal the degree of academic
activity and its development in a certain subject field to some extent. It directly reflects the
accumulation of research results of related disciplines and the active situation of knowledge
innovation. Figure 2 shows the number of publications in the direction of MFPC from
2000 to 2023. According to the change trend of MFPC’s annual publication volume, it
can be divided into the following three stages: the initial period and the exploration
period (2000–2008), and the average number of MFPC papers in this stage is only four per
year. This may be due to the fact that the field was still in its infancy during this period,
and researchers were exploring new methods and technologies to prevent and control
mine fires [47–50]. In addition, technologies such as the Internet and social media were
not yet widespread during this period, so the dissemination of articles was limited. The
period of steady growth (2009–2019) was an important phase in the global MFPC research
journey, which lasted for a decade, and the annual publication volume in the field showed
a continuous and steady increase, with an average of about 25 academic articles published
each year [51–55]. During the explosive growth period (2020 to 2023), the average number
of papers published in the direction of MFPC in this stage is 107 per year, and the number
of papers has surged [56–63]. The main reason is that the research in MFPC field continues
to deepen, resulting in an increasing number of fruitful results accumulated by researchers,
which not only build a solid foundation for subsequent research but also indicate the
direction of research. The increasing number of publications each year clearly indicates
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that MFPC is receiving unprecedented attention, indicating that the field is about to enter a
new stage of development.

Figure 2. Annual production of articles in the field of mine fire control.

3.2. Analysis of National Publications and Cooperation

We used CiteSpace to create a knowledge map for country/region cooperation analysis
to identify the major countries in the MFPC space and their partnerships, as shown in
Figure 3. It was observed that as many as 36 countries participated in the MFPC study.
The top three countries were China, with a total of 642 publications (89.54%), the United
States, with 27 publications (3.77%), and Australia, with 21 publications (2.93%). Each node
in Figure 3 represents a different country, and the number of articles for each country is
represented by the size of the node. The colors of the nodes and the thicknesses of the lines
carry specific meanings. The darker the center color of the node, the earlier the research in
this field was carried out. The lighter the external color of the node, the more active the
MFPC research has been in the country/region in recent years. These nodes are connected
to each other by wires, which graphically show the cooperative links between different
geographical areas. The thickness of the connection can directly reflect the closeness of
cooperation and interaction between countries and regions. The thicker the line between
the two nodes, the closer the connection between the two countries. On the other hand,
the smaller the connection, the weaker the cooperation between the two countries. When
a node is surrounded by a pink circle, it means that the node has a large centrality and
plays an important role in the network. It is clear that European countries cooperate more
closely with each other than in any other part of the world. China has close cooperation
with Australia, Canada, and the United States. Among these, China, the United States,
England, and other countries have an important role in the research of MFPC field in
the whole national network. In order to further promote this field to a higher stage of
development, China, Canada, and the United States, which are rich in global scientific
research output, need to strengthen the deep cooperation and collaborative innovation
among the three countries. The United States, China, and some European countries started
MFPC research earlier, and in recent years, China, the United States, and Canada mainly
have been committed to MFPC research.
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Figure 3. Knowledge map of cooperating countries.

3.3. Analysis of Research Institutions and Cooperation

In order to identify the most productive institutions in the MFPC field and the collabo-
rations between them, an analysis of research institutions and inter-institutional collabora-
tions is provided [38]. CiteSpace-related parameters are determined to generate a research
institution collaboration graph with 247 nodes and 318 connectivity lines, as shown in
Figure 4. The level of research output of the institutions is visually displayed by the node
size, and the connections between the nodes depict the closeness of cooperation between
the research institutions. As can be seen in Figure 4, in the MFPC field, six universities,
including the China University of Mining and Technology (CUMT), Xi’an University of
Science and Technology (XUST), Shandong University of Science and Technology (SDUST),
Henan Polytechnic University (HPU), Anhui University of Science and Technology (AUST),
and University of Science and Technology of Beijing (USTB), by virtue of their remarkable
achievements in related scientific research output, are firmly in the forefront of all research
institutions, which is specifically reflected in the number of papers ranked in the top six.
CUMT, XUST, and SDUST play an important role in the whole network of research institu-
tions. Among these, CUMT has established close cooperation with more than 20 research
institutions. Examples include SDUST, USTB, HPU, the Chinese Academy of Sciences,
Hunan University of Science and Technology, Pennsylvania State University-University
Park, Curtin University, West Virginia University, the Commonwealth Scientific and Indus-
trial Research Organisation (CSIRO), the Pennsylvania Commonwealth System of Higher
Education (PCSHE), and the Czech Academy of Sciences. This research reveals that the
cooperation between academic institutions presents obvious regional characteristics, that
is, the cooperation behavior mostly occurs between institutions in similar geographical
locations or in the same region, forming a relatively dense regional collaboration network.
In contrast, cross-border or even intercontinental cooperation is rare. This phenomenon
shows that despite the increasing attention paid to international scientific research coopera-
tion under the trend of globalization, in practice, academic institutions still tend to give
priority to geographical proximity and convenience of resource sharing within a region
when choosing partners, resulting in transnational and trans-continental cooperation being
less frequent than intra-regional cooperation. Of course, this does not mean that research
cooperation between countries or continents cannot be achieved, but in the existing re-
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search cooperation models, it has not yet become the mainstream and needs to be further
promoted and developed.

Figure 4. Analysis of research institution collaboration.

3.4. Author Analysis
3.4.1. Analysis of the Volume of Publications and Cooperation

Price’s Law, which was developed by British physicist and historian of science Derek
J. de Solla Price, is an important theory to describe the growth of scientific literature [64].
The specific formula is as follows:

M = 0.794 ×√
Nmax (1)

M represents the minimum number of highly active, influential, and significant con-
tributors in a certain research direction. Nmax represents the maximum number of papers
published by a single author in their field of expertise within a particular research direction.
Through systematic statistics and in-depth mining of the literature information data, we can
comprehensively obtain a series of key information about relevant authors, including, but
not limited to, scientific research output, the average citation of a single paper, the influence
distribution of journal-published papers, the coverage and depth of research topics, the
composition and stability of cooperation networks, and other multidimensional indicators.
These detailed data not only help us objectively evaluate the efficiency and influence of the
author’s academic output but are also crucial to identifying the author’s status and role in
the academic world. In the in-depth analysis of author groups, the high-yield authors and
the core authors have undoubtedly become the focus of in-depth analysis of researchers
because of their unique status and significant contributions. Table 1 lists the top 10 authors
and their related information. In Table 1, the Nmax is 39, that is, the M is 4.96, so core authors
in the MFPC field need to publish at least five articles.

Table 1 details the list of the top ten authors in the number of published papers,
as well as their respective countries, academic institutions, specific paper output, and
corresponding output ratio. Among them, Deng Jun of XUST published 34 papers and is
ranked first, accounting for 4.7 percent. Shu Chimin of the National Yunlin University of
Science and Technology published 27 articles (3.8%), ranking second. Hu Xiangming from
SDUST (22 articles) and Xiao Yang from XUST (22 articles) tied for third place, accounting
for 3.1% each.
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Table 1. Institutions to which the main authors belong, the number of publications, and their
percentage share of the total number of publications.

Rank Author Organization
Volume of

Publication
Proportions Rank Author Organization

Volume of
Publication

Proportions

1 Deng Jun
Xi’an University of

Science and
Technology

34 4.7% 6 Wen Hu
Xi’an University of

Science and
Technology

19 2.6%

2 Shu Chimin
National Yunlin

University of Science
and Technology

27 3.8% 7 Wang Wei Tsinghua University 18 2.5%

3 Hu
Xiangming

Shandong University
of Science and

Technology
22 3.1% 8 Lu Wei

Shandong University
of Science and

Technology
16 2.2%

4 Xiao Yang
Xi’an University of

Science and
Technology

22 3.1% 9 Liang
Yuntao

Shandong University
of Science and

Technology
15 2.1%

5 Yang
Shengqiang

China University of
Mining and
Technology

20 2.8% 10 Qin Botao
China University of

Mining and
Technology

15 2.1%

The WOS data set was imported into the CiteSpace platform for analysis. The research
period was set to 2000 to 2023, and the interval was set to be every two years. When
performing the “node type” analysis, the focus was placed on the “author” category. The
“Pathfinder” path algorithm is used, supplemented by “Pruning networks” and “pruning
the merge network” pruning network technologies to conduct an in-depth analysis of
the occurrence frequency of keywords and thus generate a graph showing the author
cooperation mode.

As can be seen in Figure 5, in the lower left is a cooperative network composed of Deng
Jun, Shu Chimin, and Bai Zujin [65–69]. One of them, Deng Jun, is also closely associated
with Yang Shengqiang of CUMT. In the middle section is a collaborative network consisting
of Hu Xiangming, Lu Wei, Huang Zhian, Xue Di, and Liang Yuntao [70–77]. In the bottom
right is a collaborative network consisting of Wang Deming, Qin Botao, Shi Quanlin, and
Wang Wei [78–82]. Among them, Wang Deming first proposed a new type of prevention
and control technology, three-phase foam, in 2004. In the top left, is a collaborative network
consisting of Yang Shengqiang and Zhou Buzhuang, among others [83–87]. In the upper
right center, is a collaborative network consisting of Tan Bo, Wang Haiyan, Niu Huiyong,
and Shao Zhuangzhuang [88–96]. On the right is a collaborative network consisting of Li
Zenghua and Kong Biao et al. [97–99]. According to the author cooperation map, most of
the MFPC researchers are from CUMT, XUST, HPU, SDUST, and the China University of
Mining and Technology (Beijing). In addition, the author’s institutions show significant
geographical proximity and particularly close cooperation with each other, which indirectly
confirms the large number of scholars in the MFPC field, but the research activities show
obvious fragmentation characteristics, lacking large-scale and organized collaborative
research and knowledge exchange. In the development of the MFPC field, in-depth
academic exchanges and cooperation among leading scholars have played a decisive role in
promoting the progress of the entire discipline. In view of this, it is urgent to take measures
to strengthen the cooperation and communication among researchers in the MFPC field to
promote resource integration and knowledge sharing.

3.4.2. Author Co-Citation Analysis

In-depth author co-citation analysis of the academic literature is a key research method
to reveal and understand the law of scientific knowledge dissemination and disciplinary
interaction. Its core lies in the detailed tracking and analysis of a specific phenomenon, that
is, when two or more authors’ independent works become the common objects of other
researchers’ papers at the same time, which is called the “co-citation phenomenon”. Co-
citation is not only an intuitive manifestation of academic influence but also an important
indicator to measure the potential connection and cooperation tendency between authors
and even among their subject fields.
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Figure 5. Author collaboration analysis.

The highly cited authors, such as Deng Jun, Qin Botao, Cheng Weimin, Song Zeyang,
and Wang Deming, revealed in Figure 6, represent active and influential academic forces in
this research field. Among them, Professor Deng Jun not only performs well in academic
output but also has had these achievements widely recognized and highly cited in aca-
demic circles. Professor Qin Botao and Professor Wang Deming have made remarkable
achievements in applying three-phase foam to SCC. Carras JN from CSIRO has done a
remarkable job studying SCC phenomena and the use of carbon dioxide injection to prevent
coal seam fires. On the other hand, Song Zeyang from XUST focuses on in-depth research
in areas such as energy conversion and coal field fires.

 

Figure 6. Mapping of co-cited authors.
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3.5. Journal Analysis
3.5.1. Analysis of Major Journals

Academic journals play a central and irreplaceable role in the exchange and diffusion
of scientific research [35]. Based on the detailed data provided by the WOS database, we
conducted an in-depth review of MFPC papers published in the field and selected the
top journals from them; the specific information is shown in Table 2. Among them, Fuel
magazine, with its 90 published papers, topped the list, accounting for 12.55%; Combus-
tion Science and Technology, with 72 papers (10.04%), and Energy, with 33 papers (4.60%),
followed. Process Safety and Environmental Protection ranked first, with an average citation
of 35.8, and Fuel ranked second, with an average citation of 30.9888. Fuel and Process Safety
and Environmental Protection are at the top of the list in terms of the number of publications
(first and fourth), impact factor (7.4 and 7.8), and average citations (second and first). The
top ten journals focus on energy science, chemical engineering, and geochemistry, which
together constitute a key platform for knowledge production and interaction in related
research fields.

Table 2. Top ten journals in terms of number of publications.

Rank Journal
Volume of

Publications
Proportions

Impact
Factor

Total
Citations

Average
Citation

Citation
Index

1 Fuel 90 12.55% 7.4 2789 30.9888 SCI

2 Combustion Science and
Technology 72 10.04% 1.9 522 7.2500 SCI

3 Energy 33 4.60% 9.0 658 19.9394 SCI

4 Process Safety and
Environmental Protection 30 4.18% 7.8 1074 35.8000 SCI

5 ACS Omega 29 4.05% 4.1 202 6.9655 SCI

6 Journal of Thermal Analysis
and Calorimetry 19 2.65% 4.4 229 12.0526 SCI

7 Environmental Science and
Pollution Research 18 2.51% 5.8 379 21.0556 SCI

8 Energies 17 2.37% 3.2 113 6.6471 SCI

9
Energy Sources Part

A-Recovery Utilization and
Environmental Effects

17 2.37% 2.9 116 6.8235 SCI

10 Journal of Loss Prevention in
the Process Industries 15 2.09% 3.5 155 10.3333 SCI

3.5.2. Journal Co-Citation Analysis

Select the node type as “Cited Journal” and the path algorithm as “Pathfinder” to
obtain the co-citation graph of journals, as shown in Figure 7. Table 3 provides details of
the top 10 journals with high citations.

Table 3. Top ten highly cited journals.

Rank Journal Co-Citation Rank Journal Co-Citation

1 Fuel 519 6 Energy and Fuels 248

2 International Journal of
Coal Geology 358 7

International Journal of
Mining Science and

Technology
240

3 Process Safety and
Environmental Protection 349 8 Journal of China Coal

Society 234

4 Journal of Loss Prevention
in the Process Industries 279 9 Combustion Science and

Technology 230

5 Fuel Processing
Technology 271 10 Energy 228
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Figure 7. Journal co-citation knowledge map.

Among journal co-citations, Fuel, the International Journal of Coal Geology, Process Safety
and Environmental Protection, the Journal of Loss Prevention in the Process Industries, and Fuel
Processing Technology are frequently cited. In terms of co-citation, Fuel ranked first, with
519, the International Journal of Coal Geology ranked second, with 358, and Process Safety and
Environmental Protection ranked third, with 349. Among these, Fuel and Process Safety and
Environmental Protection play a key role in both average citation and co-citation. In general,
the ten journals listed in the table are all prestigious academic publishing platforms around
the world, and they have high profiles and influence in the MFPC research field. These
include Fuel, Energy, Process Safety and Environmental Protection, and Combustion Science and
Technology. These journals play a key role in mine fire control research.

3.6. Core Literature Citation Analysis

For an in-depth analysis of the most influential literature in the MFPC field, we se-
lected the ten most frequently cited studies as research objects, including one review article
and nine monographs. As shown in Table 4, the publication time distribution of these
highly cited studies is as follows: one of them was published before 2008, which constituted
the early representative achievement; six papers were published between 2009 and 2019,
showing the active research trend in this field during the decade; and the remaining three
papers, published after 2020, reflect the latest research in the field in recent years. Of these
ten papers, four are related to colloid control technology (#1, #2, #6, #8), two are related to
foam control technology (#3, #7), two are related to injection inerting control technology (#9,
#10), one is related to mine fire suppressant retardant (#5), and one paper summarizes the
existing technology in the MFPC field (#4). Cheng et al. [100] published an article entitled
“An intelligent gel designed to control the spontaneous combustion of coal: Fire prevention
and extinguishing properties“ in Fuel in 2017, which was cited 354 times; Ren et al. [101]
published an article entitled “Novel sodium silicate/polymer composite gels for the preven-
tion of spontaneous combustion of coal“ in the Journal of Hazardous Materials in 2019, which
was cited 154 times. The two most cited articles are research articles. The reason is that the
MFPC field entered a period of stable development around 2009, during which the number
of published studies is relatively limited, and it is not enough to support a comprehensive
and systematic review or summational research. Since 2019, the MFPC field has entered a
stage of rapid development, especially in foam fire prevention technology and colloidal fire
prevention technology, showing significant innovative vitality and technological progress.
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In terms of colloidal fire prevention technology, researchers have actively absorbed the
mature experience and advanced technology of medical, food, and other related industries
and achieved a substantial jump in technology and innovation. After two years of rapid
development, the MFPC field finally gave birth to the first comprehensive and systematic
review and analysis of various current fire prevention technologies, marking the integration
of theoretical research and practical experience in this field to a new height.

Table 4. Top ten highly cited studies.

Rank Title Types Journal Author Year Citation

#1
An intelligent gel designed to control the

spontaneous combustion of coal: Fire
prevention and extinguishing properties

Article Fuel Cheng et al. [100] 2017 354

#2
Novel sodium silicate/polymer

composite gels for the prevention of
spontaneous combustion of coal

Article
Journal of

Hazardous
Materials

Ren et al. [101] 2019 154

#3
Prevention, control and/or

extinguishment of coal seam fires using
cellular grout

Article
International

Journal of Coal
Geology

Colaizzi, GJ [102] 2004 131

#4
Overview of commonly used materials

for coal spontaneous combustion
prevention

Review Fuel Li et al. [103] 2020 112

#5
Inhibiting effects of three commercial

inhibitors in spontaneous coal
combustion

Article Energy Deng et al. [104] 2018 104

#6
Synthesis and characteristics of fire
extinguishing gel with high water

absorption for coal mines
Article

Process Safety and
Environmental

Protection
Li et al. [105] 2019 102

#7
Aqueous three-phase foam supported by
fly ash for coal spontaneous combustion

prevention and control
Article Advanced Powder

Technology Qin et al. [106] 2014 98

#8

Fire prevention and control using
gel-stabilization foam to inhibit
spontaneous combustion of coal:
Characteristics and engineering

applications

Article Fuel Xue et al. [107] 2020 96

#9
Coal spontaneous combustion and N2

suppression in triple goafs: A numerical
simulation and experimental study

Article Fuel Liu et al. [108] 2020 91

#10
A New Approach to Control a Serious

Mine Fire with Using Liquid Nitrogen as
Extinguishing Media

Article Fire Technology Zhou et al. [109] 2015 84

3.7. Hot Spots and Frontiers of Mine Fire Prevention and Control Research
3.7.1. Keyword Co-Occurrence Analysis

Keywords play an irreplaceable role in the structure of academic papers. In essence,
they are highly condensed and precise refinements of the thesis theme, aiming to convey
the core issues and ideological essence of the article in the most concise form. They are like
“labels” for the content of the article, conveying the core issues and research directions in a
concise and clear manner. Therefore, keyword analysis is actually a process of systematic
testing and in-depth interpretation of the key points of the paper [34]. The WOS data
were formatted and converted using CiteSpace, the time was 2000–2023, the time slice was
2 years, and the “keyword” was set to “Node type” to analyze the content. The keyword
co-occurrence network that was generated according to the above settings has been visually
displayed in Figure 8. The meaning of each element in the figure is provided by keywords
that appear in the form of nodes. The line reveals the association law of keywords as
follows: if a pair of keywords appear in the same study, there must be a line between them.
In the network diagram, there is a direct proportional relationship between the size design

154



Fire 2024, 7, 187

of nodes and the actual occurrence times of the keywords they represent in the literature
data set. Specifically, the size of the node area becomes an intuitive scale to measure the
actual use of the keyword in the research literature, following the principle of “the larger
the area, the more mentions”. This means that when a node presents a larger area in the
graph, it actually reveals that the corresponding keyword has been frequently used and
emphasized in the literature collection.

Figure 8. Keyword co-occurrence mapping.

As can be seen in the figure, spontaneous combustion and low-temperature oxidation
are the core keywords; their significant network center status and extensive connectivity
highlight their critical role in the field of mine fire research. This not only reflects the deep
concern of the scientific research community for SCC processes, especially oxidation reac-
tions occurring at low temperatures, but also reveals the seriousness of these processes as
potential causes of mine fire accidents, so it has become the focus of research by researchers.
At the same time, the high frequency of the keywords prevention and behavior and their
close correlation with many other keywords further reveal the focus of the research. The
strong correlation of prevention with words such as fire agent, inhibition mechanism,
and design indicates how to effectively prevent the development of fire sources through
scientific design and the selection of appropriate fire extinguishing agents and inhibition
mechanisms in MFPC research. It became the key technology strategy of MFPC. This
highlights the central role of preventive measures in reducing mine fire risk. On the other
hand, the close connection between the keywords behavior and oxidation, temperature,
and model predictions reveals researchers’ great concern for the characteristics of mine
fire behavior and how to use models to predict their dynamic changes. This indicates that
researchers are committed to studying the interaction between the physical and chemical
behavior of fire and environmental variables in order to more accurately predict the devel-
opment trend of fire, and then formulate more targeted prevention and control strategies.
In addition, the keywords 3 phase foam, gas, ionic liquid, and gel in the map are closely
related to the above important concepts, reflecting the cutting-edge trend of MFPC field
in technical applications. These advanced technologies not only play an important role in
physical, chemical, or physicochemical inhibition strategies but they are directly related to
the solution of core problems such as spontaneous combustion, low-temperature oxidation,
prevention, oxidation, and behavior. This shows the deep integration of theory and practice.
In summary, this analysis not only reveals the focus of mine fire prevention and control
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research, such as spontaneous combustion and low-temperature oxidation mechanism,
but also emphasizes the necessity of prevention measures and fire behavior research and
shows the development of key technologies in the MFPC field, providing clear directional
guidance and potential innovation points for subsequent research.

3.7.2. Keyword Clustering

Thirty-three clusters were obtained from the 290 keyword extractions, and the clusters
with less than ten clusters were filtered by CiteSpace’s built-in filtering function. Figure 9
shows the main clusters in this paper, according to # 0, # 1. . .. . .# 7 sort. In the MFPC
field, the CiteSpace analysis map reveals the research on the inhibition effect of different
control technologies on various types of coal under different storage methods, states, and
external environments. According to the unique properties of different coal, especially
the characteristic temperature and the formation of signature gas during spontaneous
combustion, the effects of various inhibition techniques are evaluated. In recent years,
blocking mechanism and gel foam have become hot topics and have widely drawn the
attention of academia and industry, and many scholars have focused their research on
the blocking mechanism of anti-fire gels [110–114]. The rapid development of computer
technology and software technology is promoting the progress of scientific research with
unprecedented efforts, especially in the field of MFPC; the numerical simulation of various
inhibition technologies has gradually emerged and become the focus of academic and
industrial attention [115–122]. This kind of research mainly discusses how various materials
affect the active site of SCC at the molecular level. In short, the research in the MFPC field
is deepening, and new prevention and control technologies and evaluation systems are
gradually taking shape, which will further promote scientific and technological progress
and development in this field.

 

Figure 9. Knowledge map for keyword clustering.

3.7.3. Keyword Bursting

CiteSpace, a scientific knowledge graph analysis tool, is used to dig deeply into the
literature data in MFPC field in order to reveal its frontier fields and future development
trends, and the mutation word analysis function built into the software is adopted. The
purpose of this function is to identify keywords with significant changes in frequency over
a period of time, that is, abrupt changes through a specific algorithm. These keywords
are often closely related to emerging trends and hot issues in the research field and are
important clues to reveal the development context and future direction of the discipline. A
specific value (γ = 0.6) was assigned to the key parameter γ in the mutation word analysis,
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and 33 keywords meeting the mutation word criteria were successfully identified from
the literature data in the MFPC field. In order to focus more on the most representative
and influential mutation words, the top 25 keywords were further selected from the
33 keywords. These keywords were more prominent in the degree of mutation, and their
Burst value ranked first among all mutation words. These keywords are sorted by Burst
value size, and the sorting results are visually shown in Figure 10. Year indicates the year
in which the keyword first appears; begin and end indicate the start and end year in which
the keyword is used as the frontier; and strength indicates the emergence strength. The
red line represents the specific period in which the keyword has become a hot topic of
academic research, light blue represents that the node has not yet appeared, and dark blue
indicates that the node has begun to appear.

 
Figure 10. Sorting the top 25 emergent keywords.

As can be seen in the figure, spontaneous combustion ranks first, with a significant
outburst intensity value of 14.59, which indicates the deep concern about the sponta-
neous combustion mechanism of coal and its prevention and control strategies in this field.
Prevention followed, with a strength of 8.85, underscoring the centrality of prevention
measures in mine fire prevention and the emphasis placed on highly effective inhibitors
and suppression mechanisms. The intensity values of mine fire and coal stockpile are 5.11
and 5.08, respectively, which suggests that researchers should consider fire risk control
in specific application scenarios, especially the safety management of open coal stockpile,
a fire-prone area. The high breakout strength of three-phase foam and release (4.44 and
4.12, respectively) reflects the rise of innovative retarding technologies, particularly those
that can release retarding ingredients in a timely manner to enhance flame retardancy. It
is worth noting that the discovery of activation energy and quantum chemistry marks
a change in research perspective, that is, from the traditional macroscopic analysis to
the in-depth exploration of the microscopic mechanism of coal spontaneous combustion.
This is closely related to the popularity of molecular simulation software, which enables
researchers to explore in more detail how different inhibitors affect the oxidation reaction
path and activation site of coal at the molecular level, thus promoting the development
of physicochemical synergistic inhibition methods. The decline of moisture and ignition
temperature means that the research on the basic physical properties of coal has become
mature, and the rise of new keywords, such as release and quantum chemistry, indicates
that MFPC research is entering a new stage of development. It focuses on deeper theoretical
understanding and technological innovation. In summary, the emergence and change in
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these keywords not only reveal the shift of research hotspots in the MFPC field but also
provide clues for future research directions, namely, strengthening the exploration of the
inhibition mechanism at the microscopic level, developing intelligent responsive inhibi-
tion materials, and optimizing the design and application of inhibitors using advanced
computational techniques. This map provides valuable visual evidence for understanding
the evolution of knowledge structures in the MFPC field, facilitating cross-disciplinary
exchanges and collaboration, and providing new ideas for addressing complex scientific
challenges.

4. Conclusions

In this study, the CiteSpace software is used to conduct an in-depth metrological
analysis of the MFPC literature, which provides a strong basis for the research trend and
future development direction of this field. The analysis results show the following:

(1) The annual volume of articles in the MFPC research field has grown significantly,
especially between 2020 and 2023, indicating that the field is experiencing an unprece-
dented period of active development. China’s research contributions in the MFPC
field are the most prominent, followed by the United States and Australia, showing
the dominance of these countries in international research. CUMT ranks among the
best research institutions. Fuel and Process Safety and Environmental Protection play
a key role in both average citation and co-citation. The top 10 cited articles are one
review and nine papers. One of these is entitled “An intelligent gel designed to
control the spontaneous combustion of coal”. The research paper “Fire prevention
and extinguishing properties” topped the list for citations;

(2) The high occurrence rate of prevention and behavior keywords emphasizes the im-
portance of prevention measures and coal spontaneous combustion behavior research.
In terms of technology, the reference to retarding technologies, such as three-phase
foams, gels, and ionic liquids, highlights the key role of materials and technolog-
ical advances in the MFPC field. A keyword cluster analysis reveals the in-depth
discussion of MFPC research in the evaluation of inhibition effect, adaptability of
different coal characteristics, influence of external environmental factors, etc., and
further confirms the status of inhibition mechanism as a current research hotspot;

(3) The emergence of activation energy, release, quantum chemistry, and other recent hot
words indicates that the research focus is shifting to the mechanism of physicochem-
ical synergistic inhibition, energy release control, and the application of quantum
chemistry theory in the study of coal spontaneous combustion. It indicates that the
field is developing in the direction of more micro and theoretical depth;

(4) The CiteSpace analysis reveals the dynamic changes in MFPC research, including
the diversification of research topics, the iterative updating of technologies and the
frontier transformation of research hotspots. Future research should continue to
focus on the in-depth exploration of the coal spontaneous combustion mechanism,
strengthen the development of physicochemical synergistic inhibition materials, and
apply advanced computational methods, such as quantum chemical simulation, to
improve the theoretical guidance and practical application level of MFPC. Exploring
new chemical inhibitors, simplifying the preparation and application process of
materials, improving the thermal stability of materials, extending the action time, and
improving the environmental safety of materials are the main problems facing the
development of fireproof materials. These findings not only provide a comprehensive
overview of the current MFPC research but also point the way for future research
direction and have important scientific value for reducing mine fire risk and ensuring
mining safety.
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Abstract: Relative to conventional coal pillar retention mining technology (the 121 mining method),
gob-side entry retaining by cutting roof (the 110 mining method), a non-pillar mining technique,
efficiently addresses issues like poor coal resource recovery and significant rock burst damage.
Nonetheless, the open-type goaf created by 110 mining techniques suffers from complex and sig-
nificant air leaks, increasing the likelihood of coal spontaneous combustion (CSC) within the gob
area. To address the CSC problem caused by complex air leakage within the goaf of gob-side entry
retaining by roof cutting, this study takes the 17202 working face of Dongrong Second Coal Mine
as the object of study. Field tests and simulation calculations are conducted to research the features
of air leakage and the distribution of the oxidation zone within the goaf. Subsequently, plugging
technology with varying plugging lengths is proposed and implemented. The tests and simulations
reveal that the airflow migration within the goaf follows an L-shaped pattern, while air leakage
primarily originates from gaps found in the gob-side entry retaining wall. The amount of air leaking
into the gob-side entry retaining section is 171.59 m3/min, which represents 7.3% of the overall
airflow. The maximum oxidation zone within the goaf ranges from 58.7 m to 151.8 m. After the
air leakage is blocked, the airflow migration route within the goaf is transformed into a U-shaped
distribution, and the maximum oxidation zone range changes from 42.8 m to 80.7 m. Engineering
practice demonstrates that after air leakage plugging, the total air leakage volume within the gob-side
entry retaining section significantly reduces to 20.59 m3/min, representing only 0.78% of the total
airflow volume. This research provides reference on how to prevent the occurrence of CSC in similar
mine goafs.

Keywords: gob-side entry retaining by roof cutting; goaf; airflow leakage; plugging technology; coal
spontaneous combustion

1. Introduction

Mine fire is one of the five main disasters in the process of coal mining, most of which
are caused by CSC in the goaf [1–6]. The mining technology, ventilation type, and air
leakage degree of the working face are the primary factors affecting CSC in the goaf [7–9].
Over the past 50 years, China’s mines have usually used a longwall to a stay-coal pillar
method from a coal mining method called the “121 mining method” (employing a U-shaped
ventilation pattern, as depicted in Figure 1a). Mining a working face requires pre-excavation
of two roadways; at the same time, to balance the roof pressure brought by the previous
working face, a specific width of coal pillars must be maintained between them [10–12].
However, several coal pillars with a width of tens of meters are discarded when the mine
working face is mined using the “121 mining method”, leading to a serious coal resource
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loss of up to 40% of the mine’s recoverable reserves. In recent years, to enhance the coal
extraction rate and minimize discarded resources, many mines in China have realized coal
pillar-free mining by gob-side roof cutting, known as the “110 mining method” (consider
the Y-type ventilation as a case in point, as shown in Figure 1b). The technology uses
advanced blasting to pre-split the coal seam roof and uses the stope periodic pressure to cut
the roof along the goaf. The caving rock mass forms a support structure for the overlying
basic roof rock beam, which controls the rotary sinking deformation of the main roof. At
the same time, the roof cutting forms the roadway side to cut off the goaf, automatically
forms the roadway to be used for the next working face mining, and finally realizes that a
working face only needs to excavate one roadway, which means that a mining working
face only needs to excavate one roadway, leaving zero coal pillar mining modes [13–18].
Implementing the 110 mining method minimizes roadway excavation, mitigates the risk
of rock bursts, and significantly enhances the coal resource recovery rate. Concurrently, it
alters the permeability of the goaf, increases the complexity of internal airflow migration,
and expands the peril of CSC in the goaf.

Figure 1. Process of the “121 mining method” and the “110 mining method”. (a) The 121 mining
method. (b) The 110 mining method.

Compared with the traditional “121 mining method”, the “110 mining method” creates
an open gob area with serious air leakage potential [19,20]. The gob-side entry retaining
wall automatically formed by roof cutting is directly connected to the caving zone in the
goaf, leading to a significant reduction in the one-way local resistance of the air leakage
pathway within the goaf, thus expanding the air leakage area and promoting air leakage
within the goaf [21,22]. Under the “121 mining method”, most of the working faces adopt
the “U”-shaped ventilation patterns. Air enters the operational area through the intake
airflow roadway and exits through the return airflow roadway. In this time frame, some
of the airflow moves into the goaf from the working plane adjacent to the intake airflow
roadway and then flows into the working face near the return airflow roadway after a
while. Therefore, the gas that builds up in the goaf is released from the upper corner due
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to the airflow, leading to the challenge of easily surpassing the safety limit for disaster
gas concentration in that area [23–26]. By implementing the “110 mining method”, the
ventilation pattern of the mine is altered from a “U-shaped” to a “Y-type”, modifying the
airflow in the working area and gas transportation in the gob region. This adjustment
effectively addresses the issue of hazardous gas buildup within the upper corner of the
working plane [27–29]. However, the open type of the gob area formed under this model
has serious wind leakage and complex patterns, which have important impacts on CSC
in the goaf. Consequently, studying the airflow migration pattern in the goaf is crucial,
especially when implementing gob-side entry retaining by roof cutting. Developing specific
blocking measures is essential for the prevention of CSC in the goaf region.

CSC in the goaf is intimately linked to the ventilation method of the working face and
the degree of air leakage within the goaf. Many researchers have extensively studied to
determine the air leakage features within the goaf with various ventilation methods [30–35].
Tian et al. [36] employed the SF6 tracer gas to test air leakage in the U-shaped ventilation
working face at Wenzhuang Coal Mine. The findings revealed numerous air leakage
channels within the gob area of the working plane, with a significant increase in air leakage
speed at the interface between the hydraulic support and the gob area. Zhai et al. [37]
utilized field observation and computer simulation to research the distribution of oxygen
within the gob area of the working face under the U+L ventilation pattern, assessing
the level of air leakage in the gob at different locations. Li et al. [38] utilized Comsol
Multiphysics software to examine the air leakage patterns and gas distribution properties
within the gob area of the working plane site with the Y-shaped ventilation method and
identified the key air leakage zone and its extent. Guo et al. [39] conducted comprehensive
research on the air leakage level and gas concentration of a working face under W-shaped
and U-type ventilation systems through field testing and theoretical analysis. The research
revealed the impact of various ventilation patterns on gas migration and the concentration
of harmful gases in the mined-out area. The above-mentioned research mainly analyzed
the air leakage situation in the goaf under different ventilation modes through field testing
and numerical simulation methods, providing reliable directives for the prevention of CSC
in the gob area. However, the air leakage law of the open-type goaf formed under the
technical condition of gob-side entry retaining by roof cutting has not been grasped at this
stage, and implementing specific prevention and control measures to prevent CSC in the
goaf is challenging.

Therefore, this study focuses on the 17202 comprehensive mining working plane of
Dongrong Second Coal Mine to investigate air leakage patterns within the open-type goaf.
By employing a combination of field testing and computer simulation methods, plugging
technology is introduced for field application. This approach successfully minimizes the
risk of CSC caused by air leakage in the gob area, offering valuable insights for enhancing
safety measures in similar mining operations.

2. Engineering Background

The Dongrong Second Coal Mine is located in Heilongjiang Province, China. The
17202 working face is located in the No.17 coal seam of Dongrong Second Coal Mine.
The working face applies the process of gob-side entry retaining by roof cutting and
comprehensive mechanization longwall retreating coal mining method. The 17202 working
plane measures 978 m in strike length and 180 m in tendency length and features an
average coal seam thickness of 4.5 m. It also has a design mining height of 3.5 m and a
coal seam inclination angle ranging from 19 to 21 degrees. This working face utilizes the
“two-inlet-one return” Y-shaped ventilation system, where the belt lane serves as the main
inlet with an airflow of 1680 m3/min. The track lane functions as the auxiliary inlet with an
airflow of 530 m3/min, and the gob-side entry retaining by roof cutting serves as the return
lane with an airflow of 2348 m3/min. The mine’s geographical location and the layout of
the 17202 working plane are illustrated in Figure 2.

166



Fire 2024, 7, 98

Figure 2. Schematic diagram of the geographic location of the mine and the layout of the working face.

3. Methods and Simulation

3.1. SF6 Tracer Gas Test Air Leakage
3.1.1. Air Leakage Tests in Goaf

The SF6 pulse release approach is utilized to measure the airflow migration pathway
within the goaf of gob-side entry retaining through roof cutting and calculate the air
leakage velocity.

The minimum air leakage speed within the goaf is calculated by the following for-
mula [40]:

vmin = L/t (1)

where vmin is the minimum leakage wind speed, m/s; L is the linear distance from the
tracer gas release point to the sampling point, m; t is the peak time from the tracer gas
release to the detection of the tracer gas, s.

The formula for calculating the air leakage rate in the gob area is as follows:

k =
mSF6−inflow − mSF6−outflow

mSF6−inflow
× 100% (2)

mSF6 = VSF6 ρSF6 (3)

VSF6 =
∫ t

0
ϕQdt = vA

∫ t

0
ϕdt (4)

Q = vA (5)

where k is the air leakage rate; mSF6 is the mass of the tracer gas, kg; VSF6 is the volume of
the tracer gas, m3; ρSF6 is the density of the tracer gas, kg/m3; ϕ is the volume fraction of
the tracer gas detected, 10−6; Q is the air volume, m3/s; v is the wind speed, m/s; A is the
cross-sectional area of the tunnel, m2.

Following the current ventilation conditions in the mining working face, the release
point of tracer gas is set 30 m from the inlet corner of the belt lane of the 17202 working
face, sampling point 1# is set at the inlet corner of the belt lane of the 17202 working
face, sampling point 2# is set at the junction of the railroad track lane and gob-side entry,
sampling points 3#, 4#, 5#, 6#, 7#, and 8# are arranged at a depth of 0.5 m and a spacing
of 55 m inside the gob-side entry retaining wall, as shown in the diagram in Figure 2.
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The SF6 tracer gas cylinder is connected to the pressure-reducing valve and flow meter,
the release flow rate of the SF6 tracer gas is set to 109.49 L/min and is kept releasing for
30 min. From 0~5 min, each point is sampled every 1 min; from 5~30 min, each point is
sampled every 5 min; from 30~180 min, each point is sampled every 10 min. A total of
200 gas samples are collected.

3.1.2. Air Leakage Tests in Gob-Side Entry Retaining Section

The continuous quantitative release method is employed to measure the extent of air
leakage within the gob-side entry retaining section. The calculation method for continuous
air leakage within the roadway is based on the estimated airflow migration route within
the goaf of the 17202 working plane. The principle is to set sampling points 1# and 2# along
the airflow direction in the roadway, and the tracer gas is continuously and quantitatively
released at the release point. After the tracer gas reaches a stable state in the airflow in the
roadway, the air volume of sampling point 1# is recorded as Q1, and the detected SF6 tracer
gas concentration is recorded as C1. The air volume of the sampling point 2# is recorded as
Q2, and the concentration of SF6 tracer gas is recorded as C2 [30], as shown in Figure 3.

Figure 3. Leakage into the detection space detection schematic.

Let the amount of SF6 gas released be q. Based on the law of conservation of mass,
q = Q1·C1 = Q2·C2. If there is air leakage between two points, the amount of air leakage
between the two points is ΔQ = Q2 − Q1. Therefore, we can obtain:

ΔQ = Q2 − Q1 =
q

C1
− q

C2
(6)

The calculation formula for the air leakage rate of the laneway:

αi =
Ci+1 − Ci

Ci
× 100% (7)

Based on the continuous constant release SF6 flow formula:

q = KCQ × 10−6 (8)

where q is the SF6 tracer gas release, ml/min; K is the error coefficient, taken as 0.05; Q is
the air volume of the lane; C is the minimum concentration of SF6 in the expected airflow,
taken as 10−8.

To determine the amount of air leakage within the gob-side entry retaining section,
the release point of SF6 tracer gas is established at measurement point 2# in Figure 2, while
measurement points 3# to 8# are designated as the sampling points. The SF6 release volume
is set to 1200 mL/min according to the preset SF6 tracer gas release flow rate. After 20 min
of release, it is uniformly mixed with the airflow of the roadway to reach a stable state, and
gas sampling is performed at each sampling detection point.
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3.2. Air Leakage Law Simulation in the Gob
3.2.1. Geometric Model and Simulation Conditions

A three-dimensional physical model of the goaf under the Y-shaped ventilation pattern
of “two intakes and one return” is established based on the real working conditions of the
17202 working plane, as illustrated in Figure 4. The goaf has a depth of 285 m, a working
face tendency length of 180, a height of 30 m, and a floating coal thickness of 0.5 m, and the
overlying strata in the goaf have a thickness of 29.5 m. To enhance calculation accuracy and
decrease computation time, the model is segmented using free triangle and quadrilateral
meshes. The area around the working plane and the gob-side entry retaining section is
further refined, resulting in a total of 75,617 unit grids.

Figure 4. Geometric model and grid generation.

To facilitate modeling and calculation, the following assumptions are made:
(1) no other chemical reactions are occurring in the stable internal flow field of the
goaf; (2) the fragmented coal and rock material within the goaf forms an isotropic porous
medium; (3) the gas in the whole flow field model is ideal incompressible gas; (4) there
is no heat source in the goaf, and the model does not consider the energy equation. The
temperature of the goaf, intake roadway, and return roadway is implanted to 298 K, the
oxygen concentration of the working face in standard state is implanted to 21%, and the
oxygen concentration of goaf is set to 0. The specific geometric dimensions, boundary
conditions, and simulation parameters for the three-dimensional goaf physical model
are displayed in Table 1.

Table 1. Geometric size and simulation conditions of the simulation model.

Category Parameter Value or Condition

Geometric size

Working face: x(m) × y(m) × z(m) 180 × 5 × 3
Gob area: x(m) × y(m) × z(m) 180 × 285 × 30

Intake airflow roadway 1: x(m) × y(m) × z(m) 5 × 25 × 3
Intake airflow roadway 2: x(m) × y(m) × z(m) 5 × 25 × 3
Return airflow roadway: x(m) × y(m) × z(m) 5 × 300 × 3
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Table 1. Cont.

Category Parameter Value or Condition

Boundary conditions and
simulation parameters

Inlet velocity 1: wind speed of belt roadway (m/s) 1.6
Inlet velocity 2: wind speed in track lanes (m/s) 0.5

Outlet Outflow, p = 0
Gob’s internal state Porous zone

Other walls Zero slip
Porosity of porous media in goaf User-defined function

Thermal conductivity of coal (W·m−1·K−1) 0.2
Porosity of floating coal 0.3

Air diffusion coefficient (m2·s−1) 1.5 × 10−5

Activation energy (J·mol−1) 5 × 104

Pre-exponential factor (s−1) 180
Gas constant (J·mol−1·K−1) 8.314
Oxygen consumption rate ACne(−Ea/RT)·[(1−q)·q]

Note: A is the pre-exponential factor; C is the oxygen concentration; Ea is the activation energy; R is a gas constant;
T is the temperature of the coal sample; q is the porosity of floating coal.

3.2.2. Control Equations [27,40]

(1) Conservation of mass equation:

∂ρ

∂t
+∇ · (ρv) = Sm (9)

where ρ is the density, kg/m3; t is the time, s; v is the velocity, m/s; Sm is the mass, kg/(m3·s).
(2) Conservation of momentum equation:

∂ρ

∂t
(ρv) +∇ · (ρv) = −∇p +∇ · (τ) + ρg + F (10)

where t is the time, s; p is the hydrostatic pressure, Pa; τ is the stress tensor, N/m2; ρg is the
gravitational body force, N; F is the external body force, N.

(3) Ideal gas equation of state:

ρ =
pM
RT

(11)

where p is the pressure, Pa; M is the molar mass of the gas, g/mol; R is the ideal gas
constant, 8.314 J/(mol·K); T is the temperature, K.

(4) Gas component transport equation:

∂

∂t
(Ci) = ∇(Di∇Ci)−∇(uCi) + Ri (12)

where Ci is the gas component inside the goaf, mol/m3; Di is the diffusion coefficient of the
gas component, m2/s; Ri is the source (sink) terms of gas components, mol/(m3·s); u is the
velocity field.

4. Results Analysis

4.1. Analysis of Air Leakage Using SF6 Tracer Gas Testing
4.1.1. Air Leakage Characteristics in Goaf

The information presented in Figure 5 indicates that the SF6 tracer gas is released
at the end of the sampling, and the whole detection process is 180 min. Among them,
SF6 tracer gas is detected at point 1# closest to the release point for the first time, and SF6
concentration reaches a detection peak of 71.47 ppm at 15 min. The SF6 concentration of
sampling point 2# reaches a detection peak of 49.38 ppm at 25 min. The SF6 concentration
of sampling point 3# reaches a detection peak of 39.63 ppm at 30 min. The SF6 concentration
of sampling point 4# reaches a detection peak of 27.36 ppm at 40 min. The SF6 concentration
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of sampling point 5# reaches a detection peak of 16.36 ppm at 50 min. The SF6 concentration
of sampling point 6# reaches a detection peak of 12.27 ppm at 70 min. The SF6 concentration
of sampling point 7# reaches a detection peak of 6.23 ppm at 90 min. The SF6 concentration
of sampling point 8# reaches a detection peak of 3.87 ppm at 110 min. This shows that the
farther the distance from the SF6 tracer gas release point, the longer the peak time of the
detected SF6 concentration and the smaller the peak concentration.

Figure 5. Prediction time history of SF6 at each sampling point. (a) Three-dimensional perspective.
(b) Two-dimensional perspective.

According to the formula for calculating the minimum air leakage within the goaf
and the formula for calculating the air leakage rate within the goaf, it is calculated that
the minimum air leakage speeds of sampling points 3#~8# within the gob area of the
17202 working face are 0.1013 m/s, 0.0838 m/s, 0.0781 m/s, 0.0658 m/s, 0.0601 m/s, and
0.0569 m/s in order, and the leakage rate in the gob area is 20.07%. Data fitting is used
to analyze the air leakage velocity and peak concentration at each sampling point, with
the specific fitting results displayed in Figures 6 and 7.

xe

R

Figure 6. Prediction curve between leakage wind speed and working face distance.
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Figure 7. Prediction curve between peak concentration and working face distance.

As can be seen from Figures 6 and 7, with the depth in the buried depth of the
goaf, the overlying rock activity inside the goaf tends to stabilize and the falling rock
gradually compacts, which leads to a significant decrease in the leakage wind speed and
peak concentration in goaf.

After conducting calculations, the approximate migration route of airflow in the goaf
of 17202 working face is found. At first, the airflow from the primary main intake airflow
roadway into the goaf seeps into the goaf region. Over time, the airflow escapes through
the gob-side entry retaining wall.

4.1.2. Air Leakage Degree of Gob-Side Entry Retaining Section

After the SF6 tracer gas is released for 20 min and the roadway air flow is uniformly
mixed to a stable state, a 5 L sampling airbag is used to sample three times at sampling
points 3#~8# set up within the gob-side entry retaining, and the sampling time and position
are marked on the surface of the airbag and sent to the laboratory for chromatographic
analysis. Finally, the SF6 concentration at each sampling point is obtained by averaging.
The findings are displayed in Table 2.

Table 2. Measurement results of air leakage volume within gob-side entry retaining section.

Release Point Sampling Points Release Amount (mL/min) Detection Concentration (ppm)

The intersection of the 17202
working face and the gob-side

entry retaining wall

3#

1200

62.21
4# 59.03
5# 58.11
6# 57.54
7# 57.23
8# 57.12

Data from the detection show that the distance between the SF6 sampling point and
release point increases, and the concentration of the SF6 tracer gas decreases.

According to Equations (6) and (7), the air leakage volume and air leakage rate of the
section of gob-side entry retaining and the findings are displayed in Table 3.

As can be seen from Table 3, the degree of air leakage in sections 3#~4# is extremely
serious, with the air leakage amount reaching 103.91 m3/min. The air leakage rate is 5.38%,
followed by the rest of the sections. As the waste material in the mined-out section becomes
more compressed, the amount of air escaping from the mined-out area into the gob-side
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entry retaining gradually diminishes. In the 17202 working plane, the volume of air leakage
total for the gob-side entry retaining section is 171.59 m3/min, representing 7.3% of its
overall air volume.

Table 3. Measurement results of air leakage volume and air leakage rate of unsealed gob-side entry
retaining wall.

Measurement Section
Air Leakage Volume

(m3/min)
Air Leakage Rate

(%)
Total Air Leakage Volume

(m3/min)

3#~4# 103.91 5.38

171.59
4#~5# 32.19 1.58
5#~5# 20.15 0.99
6#~7# 11.30 0.54
7#~8# 4.04 0.19

4.2. Analysis of Simulation Results Regarding Air Leakage in the Goaf
4.2.1. The Law of Airflow Migration in the Goaf

Simulation calculations are used to determine the airflow migration path and distri-
bution of air leakage velocity within the goaf of the 17202 working plane, as depicted in
Figures 8 and 9. Additionally, Figure 10 compares the actual measurements of air leakage
within the goaf, with the results obtained from numerical simulations.

Figure 8. Prediction of airflow migration route in goaf.

As depicted in Figure 8, the airflow leaks into the goaf from the working plane and
then seeps into the mined-out area. As it reaches a specific height, the airflow shifts
horizontally towards the gob-side entry retaining side. Upon reaching the gob-side entry
retaining area, the airflow descends to the lower part of the gob region and escapes from
the gob-side entry retaining side. The airflow migration streamlines within the gob area
of the 17202 working plane are shaped like an L when viewed on the z = 1 m plane. As
airflow leaks from the working plane into the mined-out area and reaches a particular level,
it is redirected approximately 90◦ towards the gob-side entry retaining wall and finally
escapes from the gob-side entry retaining wall.
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Figure 9. Diagram of the distribution of air leakage velocity within the goaf area.

Figure 10. Comparison involving the measurable air leakage velocity within the goaf with the results
obtained from numerical simulations.

The larger air leakage wind speed within the goaf of the 17202 working plane can
be observed in Figure 9, located at the corners on both sides of the working face. The
significant air leakage area at the corner of the main air intake roadway is attributed to the
high wind speed within the main intake airflow roadway, the low degree of roof collapse
and compaction in the goaf, and the low-pressure zone on the side of the gob-side entry
retaining wall. The large air leakage wind speed in the corner of the gob-side entry retaining
is caused by the delay in the collapse of the wall and the loose roof connection, resulting in
a direct connection between the gob-side entry retaining and the goaf.

The results from the numerical simulation in Figure 10 indicate that the air leakage
within the goaf is slightly higher than what is observed in the field measurements. The
reason is that the real measurement value is slightly lower than the numerical simulation
value because of the impact of field conditions and sampling techniques, detection equip-
ment, and other factors in the actual test process, which is in line with the actual situation
within the allowable range of error. Therefore, the numerical simulation value is accurate
and effective.
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4.2.2. Oxygen Concentration Distribution Characteristics in Goaf

The result in Figure 11 shows a U-shaped distribution of three-dimensional oxygen
concentration within the gob region of the 17202 working face. This pattern indicates that
oxygen levels are high on the edges of the gob area and low in the center. The distribution
of oxygen concentration within the mined-out area forms an L-shape at the z = 1 m plane.
A spontaneous combustion zone emerges within a certain distance from the working plane,
with a delineated banded spontaneous combustion zone visible alongside the gob area
retaining roadway. The oxygen concentration index serves as the primary criterion for
categorizing the “three zones” of CSC. These zones include the heat dissipation zone
(oxygen concentration > 18%), the oxidation zone (18% ≤ oxygen concentration ≤ 8%),
and the suffocation zone (oxygen concentration < 8%) in goaf areas. Based on this, the
distribution scope of the heat dissipation zone, oxidation heating zone, and suffocation
zone within the mined-out area for the 17202 working face is defined, as detailed in Table 4.

Figure 11. Forecasting the distribution of oxygen concentration in the goaf.

Table 4. 17202 working face gob area spontaneous combustion “three zones” distribution range.

Location within the Goaf Heat Dissipation Zone Oxidation Zone Suffocation Zone

Main air inlet tunnel side 0~58.7 m 58.7 m~151.8 m >151.8 m
Middle 0~36.8 m 63.8 m~139 m >139 m

Gob-side entry retaining side 0~62.6 m 62.6 m~125.3 m >125.3 m

4.3. Analysis of Air Leakage Prevention in Goaf

The research findings above indicate a significant issue of air leakage within the gob-
side entry retaining wall in the goaf. In this case, the peril of CSC within the goaf is high.
Therefore, specific preventive measures must be implemented to avoid CSC within the
mined-out area. In this regard, for the serious air leakage problem within the gob-side
entry retaining wall in the goaf, an air leakage blocking technology is proposed (spraying
and plugging the gob-side entry retaining wall in the goaf since the open-off cut of the
working plane), and the flow field change rule of the goaf under the blocking distances of
40 m, 80 m, 120 m, 160 m, 200 m, 240 m, and 285 m is investigated; the placement of the
spraying and plugging is presented in Figure 12.
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Figure 12. Schematic diagram of phased plugging of air leakage.

4.3.1. Characteristics of Flow Field Distribution in the Goaf

The graph in Figure 13 illustrates that, as the spraying distance on the side of gob-side
entry retention increases, there is a noticeable shift in the airflow pattern from the working
plane into the goaf, transitioning from an L-shaped distribution to a more distinct U-shaped
distribution. Once the gob-side entry retaining wall is fully sealed off, the airflow flows
into the mined-out area from the working plane on the side of the belt roadway. After a
while, most of the airflow returns to the working plane on the side of the gob-side entry
retaining. Only a small part of the airflow leaks into the goaf, which greatly reduces the air
leakage within the mined-out area, thus reducing the risk of CSC within the goaf.

Figure 13. Prediction of airflow migration route in the goaf during staged plugging process.
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4.3.2. Characteristics of Oxygen Concentration Distribution in the Goaf

The results in Figures 14–16 illustrate that addressing spraying and plugging leak-
age on the gob-side entry retaining wall can alter the extent of the oxidation zone
distribution within the mined-out area. As the distance of spraying sealant increases,
the spread of the oxidation zone within the goaf reduces. Once the spraying sealing
distance extends to 285 m, the zone of oxidation within the gob area on the main air inlet
side reduces from 58.7 m to 151.8 m to 42.8 m to 80.7 m, while the zone of oxidation
in the middle of the gob area decreases from 63.8 m to 139 m to 6.8 m to 10.4 m. The
oxidation zone in the mined-out area at the gob-side entry retaining walls decreases
from 62.8 m~125.3 m to 13.3 m~20.1 m. It can be shown that spraying and sealing on the
gob area side can effectively reduce the migration and diffusion range of oxygen within
the gob area, decrease the extent of the oxidation zone distribution in the gob region,
and decrease the likelihood of CSC in the gob area.

Figure 14. Prediction of oxygen concentration distribution in the goaf during staged plugging process.
(a) plugging 0 m. (b) plugging 40 m. (c) plugging 80 m. (d) plugging 120 m. (e) plugging 160 m.
(f) plugging 200 m. (g) plugging 240 m. (h) plugging 285 m. (i) The distribution of oxidation zone in
goaf under different plugging distance.
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Figure 15. Changes of oxygen concentration within the goaf of the main air inlet side under different
plugging distances. (a) Three-dimensional perspective. (b) Two-dimensional perspective.

Figure 16. Changes of oxygen concentration in the goaf of gob-side entry retaining side under
different plugging distances. (a) Three-dimensional perspective. (b) Two-dimensional perspective.

5. Applications

5.1. Plugging Construction

On the surface of a coal mine roadway, sprayed concrete or mortar is usually used to
plug the air leakage, but, due to the lack of toughness of cement mortar after curing, the
roadway is easily prone to cracks and falls away when it is deformed under pressure, thus
losing the role of plugging the air leakage. To solve the problems existing in the process of
plugging the roadway by traditional concrete spraying, after much market research, a two-
component composite modified polyurethane roadway spraying and plugging material
is found to be able to quickly and effectively seal the air leakage channels existing on the
roadway surface of underground coal and rock bodies [41–45].

The material is tested according to the test method required by AQ 1116-2020 “General
Safety Technical Specification for Polymer Materials for Reinforcement, Water Plugging,
Filling and Spraying in Coal Mines” [46], and the measurement results are shown in Table 5.
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Table 5. Performance test results of two-component composite modified polyurethane spray
plugging materials.

Serial Number Inspection Items
Technical

Specifications
Test Results

1 Maximum reaction temperature,◦C ≤140 94.7
2 Expansion multiplier ≥25 31
3 Stability (70 ◦C ± 2 ◦C, 48 h), % ≤0.1 0.03

4 Compressive strength
Pressure strain 10%, kPa ≥10 65
Pressure strain 30%, kPa ≥10 26
Pressure strain 70%, kPa ≥40 43

5 Oxygen index, % ≥28 28.3
6 Air permeability, m2 ≤0.05 ≤0.005

7
Flame retardant

performance

Alcohol torch burning test
Flame burning time, s ≤3 0.3

Flameless burning time, s ≤10 1.8
Flame extension length, mm ≤280 110

Alcohol lamp burning test
Flame burning time, s ≤6 0.3

Flameless burning time, s ≤20 2.2
Flame extension length, mm ≤250 83

8 Surface resistance, Ω ≤3 × 108 5.6 × 107

According to the air leakage plugging effect of numerical simulation, stage spraying
plugging measures are carried out on the gob-side entry retaining walls of the 17202 working
face. Figure 17 depicts the on-site spraying construction process. The specific steps of the
construction process are outlined below:

(1) Substrate treatment. Use the pressurized air duct to flush the coal dust and dust on
the surface of the roadway walls to ensure that the spray foam material is well-bonded
to the roadway surface.

(2) Worker protection. Use equipment such as gas masks and protective clothing to
protect construction workers from injury.

(3) Equipment connection. After connecting the air source, connect the two suction pipes
to the A and B barrels, respectively. Pay special attention to the A cylinder for A
material and the B cylinder for B material. Do not mix them.

(4) Spraying construction. Spray with spray gun at a constant speed along the bottom of
the roadway bottom plate from the bottom up to spray, the first spraying distance of
about 5 mm or so, to be fully reactive material for the second surface spraying, for the
unsprayed area or the need to strengthen the spraying position to make up the spray.

(5) Cleaning. Immediately after stopping construction, wash with water to thoroughly
clean the residual slurry.

5.2. Effect Analysis

To evaluate the impact of air leakage on the gob-side entry retaining section, a smoke
pipe is employed to examine the air leakage pathway before and after sealing. This process
is illustrated in Figure 18.

As can be seen from Figure 16, if the gob-side entry retaining is not sprayed, smoke
can be affected by air leaks from the gob area and will continue to spread outward vertically,
eventually flowing out with the return airflow. After spraying, the smoke is barely affected
by the air escaping from the gob area, and there is no obvious change in the vertical
direction of the gob-side entry retaining wall. Therefore, it can be observed that, following
the application of spraying and plugging techniques on the gob-side entry retaining wall,
there is a clear reduction in the degree of air leakage from the gob area.

To conduct additional testing on the efficacy of spraying and plugging, SF6 tracer gas
is employed to measure the extent of air leakage within the gob-side entry retaining section,
with the outcomes presented in Table 6.
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Figure 17. Spraying construction process of gob-side entry retaining wall.

Figure 18. Changes in smoke migration before and after plugging air leakage. (a) Unplugged test.
(b) Test after plugging.

The test results show that the SF6 tracer gas concentration does not change much
during the sampling period as the distance between the SF6 sampling point and the SF6
release point increases.
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Table 6. Measurement of air leakage and analysis of SF6 concentration after plugging the remaining
lane section.

Release Point Sampling Points Release Amount (mL/min) Detection Concentration (ppm)

The intersection between the
17202 working face and the

gob-side entry retaining wall

3#

1200

67.38
4# 66.92
5# 66.77
6# 66.68
7# 66.63
8# 66.61

The volume of air leakage and the air leakage rate of the 17202 working plane following
the application of gob-side entry retaining wall spraying and plugging are determined
using Formulas (6) and (7). The specific calculations and results can be found in Table 7.

Table 7. Determination yields the air leakage results and the air leakage rate for the gob-side entry
retaining after plugging.

Measurement Section
Air Leakage Volume

(m3/min)
Air Leakage Rate

(%)
Total Air Leakage Volume

(m3/min)

3#~4# 12.24 0.68

20.59
4#~5# 4.03 0.22
5#~6# 2.43 0.13
6#~7# 1.35 0.07
7#~8# 0.54 0.03

After testing, the degree of air leakage is relatively high in sections 3#~4#, with the
air leakage amount reaching 12.24 m3/min and the air leakage rate being 0.68%, while
there is no obvious air leakage in the rest of the sections. Evidently, with the gradual
spraying and plugging of the gob-side entry retaining wall, the airflow leakage from the
gob-side entry retaining section is dramatically reduced. The gob-side entry retention
section of the 17202 working plane has an air leakage of 20.59 m3/min, which represents
0.87% of the total air volume in the gob-side entry retaining section.

6. Conclusions

1. SF6 tracer gas is used to measure the approximate migration route of the airflow
within the goaf of the 17202 working face, which flows into the working plane from
the main air inlet lane and then leaks into the goaf, and, after a while, the airflow leaks
out of the gap in the gob-side entry retaining wall. The total air leakage of the gob-side
entry retaining section of the 17202 working face is 171.59 m3/min, representing 7.3%
of the overall airflow within the gob-side entry retaining section.

2. The simulation finds that the airflow from the working plane near the main intake
airflow roadway leaks into the goaf and flows to its upper part, reaches a certain
height, and then shifts horizontally to the gob-side entry retaining, and when the
airflow is close to the gob-side entry retaining, it flows to the lower part of the zone
and leaks out from the gob-side entry retaining wall. z = 1 plane, the air leakage route
in the goaf shows an L-shape distribution, and the maximum width of the oxidation
zone is 58.7 m~151.8 m. After the blocking measures are taken, the airflow migration
route in the gob area becomes a U-shape distribution, and the maximum width of the
oxidation zone reaches 42.8 m~80.7 m.

3. Following the application of sprayed material to seal the air leakage, the volume of
air leakage within the gob-side entry retaining section decreases from 171.59 m3/min
to 20.59 m3/min. This results in the overall air volume in the gob-side entry retaining
section decreasing from 7.3% to 0.78%. It significantly minimizes air leakage in the
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gob area, decreases the risk of CSC within the gob area, and guarantees the safe
operation of the mine.
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Abstract: Coal spontaneous combustion (CSC) in gob not only leads to wasted resources and casual-
ties, but also produces a lot of waste gas that pollutes the underground environment. Mastering the
degree of CSC helps ensure that timely and effective control measures are taken. The real-time and
accurate monitoring of temperature, as the primary indicator of the extent of CSC, is difficult due to
the harsh and hidden environment of gob, resulting in a reduced ability to anticipate and prevent
CSC. In this work, a complete distributed optical fiber temperature sensing system (DTSS) set with
strong anti-damage ability was developed. The optical cable is protected by internal parallel steel
cables and external protective pipes, which greatly improve the system’s reliability and integrity
when used in gob. During its application in the Wangyun Coal Mine, an abnormal temperature rise
in gob was discovered in time, and the effect of inhibitor spraying was monitored and evaluated. The
degree of CSC in the gob was accurately identified, which shows that the work of coal mining can be
targeted. This work is expected to improve early warning capability to prevent the risk of CSC in
gob, and has promising applications.

Keywords: coal spontaneous combustion (CSC); distributed temperature sensing system; protective
pipe; online monitoring; gob

1. Introduction

As a major fossil energy source, a small portion of coal is inevitably left in gob due
to the limitations of mining technology [1,2]. The residual coal undergoes oxidation and
gradually releases heat under the coupling effect of multiple physical fields [3,4]. The
continuous accumulation of heat can easily lead to the occurrence of coal spontaneous com-
bustion (CSC), which is difficult to extinguish in a short period of time [5,6]. CSC gravely
threatens the safety of coal production and the safety of workers [7,8]. It not only leads to a
large amount of wasted coal resources [9], but also destroys the underground geological and
ecological environment [10]. When certain conditions are met, it may even cause secondary
disasters such as gas explosions, thus causing large-scale casualties [11–13]. Therefore,
corresponding measures must be taken to prevent the occurrence of CSC disasters in
gob [14].

In order to implement targeted governance measures, it is particularly vital to grasp
the degree of CSC in gob [15,16]. The main characteristics of CSC include rising temperature
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and the generation of gases such as alkane [17]. And CO is usually used as the main iconic
gas for the early warning and prediction of CSC in gob [18,19]. The mapping relationship
between iconic gases and the degree of CSC is generally determined through mathematical
models established in the laboratory [20,21]. However, applying this mapping relationship
in large-sized gob may raise doubts about the accuracy of the model due to numerous
uncertain factors [22], and iconic gases are the products of a coal oxidation reaction, so
it exhibits hysteresis when predicting CSC in gob [23]. Given that the direct effect of the
oxidized exotherm of the coal body is to cause an increase in temperature, it is feasible and
reasonable to use temperature indicators to anticipate CSC.

Due to the concealment and complexity of gob [24], the selection of temperature
monitoring technology should be comprehensively considered from various aspects, such
as the accuracy, continuity, stability, and intuitiveness of data results. The current com-
monly used probe-based temperature measurement method is point-of-contact, which
has the disadvantages of long measurement time, a large workload, and the inability to
continuously monitor. Most notably, the probe and cable are easily damaged, and it is not
suitable to use it on a large scale [25]. A characteristic of methods such as isotope radon
measurement [26] and magnetic and infrared induction [27,28] is that they cannot achieve
directly contact in high-temperature locations, which leads the positioning and value of
temperature anomaly points to be inaccurate. The radio wave detection method has high
accuracy and low cost, but the transmission technology used in gob still needs further
improvement [29]. In recent years, fiber optic sensing technology has been widely applied
in temperature monitoring and warning in various industrial fields [30,31]. However, the
complex underground environment of coal mines places higher demands on the safety
performance of equipment. And in the application of coal mine gob with coal/rock caving
and mining stress, determining how to prevent the negative effect of perception and the
transmission of temperature caused by damage to optical cables is a challenge that hinders
the application of optical fiber temperature measurement technology [32].

To address the above issues, herein, a new set of products and technologies are
developed that can improve the safety of the temperature measurement method through
the design of safety barriers. And a method is designed to improve its damage resistance
from the internal and external structures of optical cables, which can ensure the accuracy
and continuity of online temperature monitoring in complex environments with gob. This
product and technology were successfully applied in the Wangyun Coal Mine in China and
greatly improved the monitoring and warning capabilities for CSC hazards in gob.

2. Detection System

2.1. Technical Principle

The technology of distributed optical fiber temperature detection is achieved through
Raman scattering [33,34]. Figure 1 shows the technical principle of the distributed optical
fiber temperature sensing system (DTSS), which mainly includes a device host, a terminal
computer, optical cables for temperature measurement, and a meta-plane of tempera-
ture perception.

The device host sends a laser pulse into the optical cable, and the interaction between
the laser pulse and the fiber molecules generates Raman-scattered light [35,36]. A small
fraction of it is called back-scattered light, which is oriented in the opposite direction to
the incident light. The intensity of this back-scattered light has a certain correlation with
the temperature of the scattering point in the optical cable. The higher the temperature,
the higher the intensity of the back-scattered light. When the back-scattered light signal
returns to the device host, it can be converted into a digital signal through demodulation
technology and output on the terminal computer to display its temperature and position
information. This technique can detect temperature anomalies in a timely manner, which
facilitates the implementation of risk prevention measures.
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Figure 1. Technical principle of DTSS. (a) System schematic (b). Presentation.

2.2. Demodulation Process

Figure 2 shows the demodulation process of DTSS. The laser pulse is emitted by
a laser with a high-power semiconductor. The laser pulse entering the external optical
cable generates back-scattered optical signals and transmits them back to the signal receiver.
Next, a wavelength division multiplexer (WDM) separates the temperature-insensitive
Stokes light and temperature−sensitive anti−Stokes light from the back−scattered light,
and amplifies their gain through a signal amplifier. A photoelectric converter demodulates
the temperature information carried by the light into electrical signals, and finally, outputs
them to an external computer [37,38].

 
Figure 2. Demodulation process.
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The specific principle of signal demodulation involves the following mathematical
formula. The scattering photon frequencies of Stokes and anti−Stokes light are [39–41]:

νs = ν0 − Δν (1)

νas = ν0 + Δν (2)

where v0 is the vibrational frequency of the optical fiber molecule, and Δv is the frequency
shift value of Raman scattering, 1.32 × 1013 Hz.

The intensity of Stokes and anti−Stokes at L (measuring point) shall be expressed as
Equations (3) and (4), respectively [42,43]:

Is = E0ksBν4
s · exp[−(a0 − as) · L]× Rs (3)

Ias = E0kasBν4
as · exp[−(a0 − aas) · L]× Ras (4)

Rs = (1 − exp(−hΔν/kT))−1 (5)

Ras = (exp(hΔν/kT)− 1)−1 (6)

where Rs and Ras are the coefficients related to the population of optical fiber molecules at
low and high energy levels; E0 is the intensity of the initial incident light in the optical fiber;
ks and kas are the scattering coefficients related to the aperture (scattering cross−section)
of the optical fiber; B is the back−scatter coefficient; νs and νas are the frequency of Stokes
and anti−Stokes scattering light; α0, αs, and αas are the average transmission loss of
incident light, Stokes light, and anti−Stokes light in the optical fiber; L is the location of
the measuring point; H is the Planck constant, 6.62607015 × 10−34 J·s; k is the Boltzmann
constant, 1.380649 × 10−23 J/K; and T is the temperature of the measuring point.

Comparing Equation (3) with Equation (4), the temperature information of L can
be obtained:

F(T) =
Ias

Is
=

kas

ks

(
νas

νs

)4
· exp(−hΔν/kT) · exp[−(αas − αs)L] (7)

The temperature information when the reference temperature is T0 is:

F(T0) =
Ias

Is
=

kas

ks

(
νas

νs

)4
· exp(−hΔν/kT0) · exp[−(αas − αs)L] (8)

Combining Equations (7) and (8), the temperature T of the measuring point can be
obtained based on the reference temperature T0:

1
T

=
1
T0

− k
hΔν

ln
F(T)
F(T0)

(9)

In the optical time domain, the position of the measuring point is [42]:

L =
1
2

vt =
1
2

c
n

t (10)

where v is the propagation speed of light in the optical fiber; c is the speed of light in
a vacuum; n is the refractive index of the optical fiber; and t is the measuring time.

The temperature value and the position of a certain point in the optical cable can be
obtained using the above demodulation method.

2.3. Description of DTSS

In this work, a new DTSS technology that can be used in coal mine gob is proposed [44,45].
Figure 3 shows the complete DTSS set. Figure 3a illustrates the fiber optic device host. The
left side of the device host is the power supply, the right side is the signal transmission
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interface, and the screen in the middle of DTSS is a visualization window that can directly
display the detected temperature data. Figure 3b illustrates the optical cable used for
temperature measurement. The design of a flat appearance increases the temperature detec-
tion area; the design of parallel steel cable reinforcement enables the optical cable to have
very strong compressive and impact resistance. Figure 3c illustrates the software interface
displayed in the visualization window, which can display the position and temperature
values of a certain point on the optical cable. The horizontal axis of the coordinate map
represents the length of the optical cable, and the vertical axis represents the temperature
value detected by the optical cable. Figure 3d illustrates the internal structure of the de-
tection host, where the device has added safety barriers and backup batteries to improve
safety performance and prevent the impact of power outages. In addition, the bias plate
component used can conduct small signals and improve the signal−to−noise ratio.

Figure 3. Complete DTSS. set (a) Device host. (b) Optical cable. (c) Visual interface. (d) Internal
structure.

2.4. Performance Characteristics

This product has obtained a safety label certificate (No. MFE230006) for mining
products and is classified as explosion−proof and intrinsically safe equipment.

Table 1 shows the performance parameters of the device host, with a high positioning
accuracy of 0.4 m, a temperature measurement accuracy of 1.54 ◦C, and a reaction time
of 2 s, which can be applied to multi−mode optical fiber with a diameter of 62.5/125 μm.
It has four channels and can be connected to four optical cables. The working current is
800 mA.
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Table 1. Performance parameters.

Performance Index Parameters

Supply voltage AC127V
Working current 800 mA

Number of channels Four
Distance for temperature measurement 4 km for one channel

Scope of temperature (0~100) ◦C
Spatial resolution 2 m

Accuracy of positioning ≤±0.4 m
Accuracy of temperature 1.54 ◦C

Response time 2 s
Wavelength of the detection light 1550 nm

Emission power of the detection light ≤0 dbm
Communication interface RJ45, RS485

Type of fiber that can be connected Multi−mode optical fiber: 62.5/125 μm
Inside connectors of optical fiber E2000

3. Comparative Experiment of Casing on Optical Cable

3.1. Testing Method

The environment of underground gob is relatively harsh, and optical cables may break
and be damaged under the high stress of falling rocks. We propose a protection method
that uses high−pressure rubber hoses as casing pipes on the optical cables. To determine
the effect of the protective pipe on the detection results, a comparison experiment was
designed and performed without and with the protective pipe, and the changes in the
temperature value and temperature sensing speed were analyzed.

The test design is shown in Figure 4. A silicone flexible electric heating film connected
to a PID temperature controller is used as the heating strap for better contact and transfer
of heat to the optical cable. The heating strap that wraps around the optical cable is fixed
with several sealing strips. A DN19 high−pressure rubber hose with four layers of steel
wire winding reinforcement was selected as the protective pipe. The protective pipe can
fully meet the requirements for use on gob, with a maximum working pressure of 42.0 MPa
and a minimum blasting pressure of 168.0 MPa.

 

Figure 4. Test without and with protective pipe. (a) Without protective pipe. (b) With protective pipe,
(c) Temperature controller.
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The length of the optical cable for heating is 2 m, the length of the high−pressure
rubber hose is 2 m, and the length of the heating strip wrapped externally is 3 m. The
detection temperatures are set at 40 ◦C, 60 ◦C, and 80 ◦C, respectively.

During the experiment, PID was used to control the temperature to the present value,
and then, the temperature detected by the optical cable within 70 min was observed. A set of
data was exported every 1 min by the device host. And the heating strap temperature could
increase to 60 ◦C and 80 ◦C sequentially after the first temperature detection was finished.

3.2. Analysis of Temperature Value Accuracy

Figure 5 indicates the changes in temperature values detected without and with the
protective pipe. The horizontal axis is the length of the optical cable, and the vertical axis
is the average temperature value of five tests. From Figure 5, the maximum detection
temperature values for the three preset temperatures (40 ◦C, 60 ◦C, and 80 ◦C) without the
protective pipe are 38.48 ◦C, 59.42 ◦C, and 79.27 ◦C, respectively. After using the protective
pipe, the maximum detection temperature values for the three preset temperatures are
37.21 ◦C, 58.75 ◦C, and 79.41 ◦C, respectively. The differences between the two experiments
are 0.87 ◦C, 0.67 ◦C, and 0.24 ◦C, and neither of them exceed 1 ◦C, as shown in Figure 5d.
And the trend of their temperature changes is consistent, which indicates that the influence
of the protective pipe on the temperature value is very small and can be ignored.

Figure 5. Comparison of temperature values without and with protective pipe. (a) 40 ◦C. (b) 60 ◦C.
(c) 80 ◦C. (d) Max value.
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In addition, it is worth noting that the lengths with temperature variations at the
three different set temperatures were all 12–20 m, which is more than the heating length of
3 m. This length with increased temperature distribution is the response distance, which
conforms to the temperature measurement principle of the temperature measurement
system [46]. The test temperature only affects the value of the response temperature and
does not change the response distance (length with increased temperature distribution).

3.3. Analysis of the Speed of Temperature Sensing

In order to understand the influence of the protective pipe on the temperature sensing
speed, the temperature detected at the highest temperature measuring point within 70 min
was analyzed over time without and with the protective pipe, as shown as Figure 6. The
maximum temperature values without the protective pipe appear at 24 min, 38 min, and
56 min, respectively. After using the protective pipe, they are delayed to 47 min, 54 min,
and 65 min, respectively, and delayed for 23 min, 16 min, and 9 min, respectively. In
addition, the temperature rises rapidly in the first 10 min without the protective pipe. And
after using the protective pipe, the overall temperature rise rate is very slow and there is
no sharp increase.

 

Figure 6. Comparison of temperature sensing speed without and with protective pipe. (a) 40 ◦C.
(b) 60 ◦C. (c) 80 ◦C. (d) Time difference.

Overall, although the time required for the temperature detection value to stabilize
after using the protective pipe increases, the final temperature value is basically unchanged,
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and this lag time can be ignored for large−scale gob. Therefore, using protective pipe to
protect optical cables in gob will not affect the accuracy of the temperature values.

4. Application

4.1. Field Temperature Measuring Design

The Wangyun Coal Mine, located in Shanxi Province, China, has an annual output
of 1.8 million tons. Currently, the 15th coal seam is being mined, with a thickness of
4.7 m and an oxygen absorption capacity of 0.84 cm3/g, classified as type II spontaneous
combustion coal seam. The cut length of the 15106 working face currently being mined
is 180 m. In order to grasp the real-time spontaneous combustion status of residual coal
in gob, the DTSS proposed in this work was used to monitor the temperature changes
in the gob. Figure 7 illustrates the application design of the DTSS, with the 1# and 2#
optical cables distributed on both sides of the roadway with the protective pipes. The
DN19 high-pressure rubber hose with four layers of steel wire winding reinforcement was
selected as the protective pipe, and its safety sign number is MEE150868. The protective
pipes are each 10 m long, with a screw joint machined at each end. An optical cable is
laid in the roadway, and then, the first protective pipe is placed on the optical cable at the
working face and pulled to the entrance of the roadway. Then, this is repeated with the
remaining protective pipes inserted. After all the protective pipes have been installed, the
joint between the two protective pipes is tightened to complete the installation.

 

Figure 7. Application design of DTSS in gob.
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One end of the optical cable with an E2000 fiber optic connector enters the device host.
And as the working face advances, the other end, beginning a 0 m, is buried in the gob.
The connection box of power supplies power to the device host. The temperature signal
demodulated by the device host is transmitted to the ground computer through a network
switch and the 3# transmission optical cable, which achieves the ground monitoring of
temperature data in the underground gob.

4.2. Application Effect

Figure 8 shows the construction of each part of the DTSS on-site, and Figure 8a,b
show the laying of optical cables with identification labels on them. Subsequently, the
wiring work is completed using a fusion splicer. The connection of optical cables, electric
cables, and network cables to the device host is completed in the wiring chamber shown in
Figure 8d. The on-site layout of the DTSS is shown in Figure 8g.

Figure 8. Construction effect of DTSS. (a) Laying. (b) Fixing. (c) Fusion splicing. (d) Top side.
(e) Right side. (f) Left side. (g) Layout.

After the completion of the DTSS, the system software of the ground computer obtains
temperature data from four channels, as shown in Figure 9. The optical cables used in
this work are dual-mode with two cores (double insurance), so channel 1 and channel
2 display the temperature data of the 1# optical cable, while channel 3 and channel 4
display the temperature data of the 2# optical cable. The temperature data detected by
the four channels has a certain degree of fluctuation, but the difference is not significant,
and the temperature on the entire optical cable remains stable. Real-time data show that
the temperature of the gob is between 15.45~16.97 ◦C, with an average value of 16.09 ◦C.
It should be noted that there is an irregular fluctuation in temperature at the end of each
channel, which is a normal disturbance phenomenon at the end of the optical cable and
can be ignored.

4.3. Evaluation of the Effectiveness of Inhibitors

The above research indicate that the DTSS established in this work can accurately
monitor temperature changes in gob areas. In addition, the DTSS can effectively support the
prevention and control of natural fires. During the use of the DTSS, a geological formation
appeared while the 15,106 working face advanced to the position of 347 m. This resulted in
a decrease in forward speed and a decrease in daily forward length from 2.4 m to 0.5 m.
A certain range of gob behind the working face has been in the oxidation zone for a long
time. The temperature monitored by the optical cable of the DTSS on 26 June 2023 showed
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that the temperature in the gob at 18 m behind the working face (with an optical cable
length of 399.6 m) was about 20 ◦C, which was 4 ◦C higher than normal.

 

Figure 9. Results of temperature detection. (a) Channel 1. (b) Channel 2. (c) Channel 3. (d) Channel 4.

To control the increase in temperature after receiving the warning information issued
by the DTSS, the method of using spray inhibitors in the gap between the hydraulic
supports was employed to suppress the oxidation reaction of residual coal. Figure 10 shows
the spraying process of the inhibitor solution. The inhibitor is industrial calcium chloride
(CaCl2·5H2O), with a concentration of 15%. The mixed inhibitor solution was delivered
to the working surface through a pressure pump of model BZ-40/2.5 (manufactured by
Shandong Changye Machinery Equipment Co., Ltd., China), and then, sprayed though
a spraying gun from the gap between two hydraulic supports towards the gob, for at least
6 min each time, with a flow rate of no less than 35 L/min. Due to the temperature anomaly
point detected by the 1# optical cable being close to the air intake side, inhibitor spraying
was designed to be carried out at 60 m (34th hydraulic support) on the air intake side.

The working face advanced by 30 m within 65 days from 26 June 2023 to 31 August
2023. The effectiveness of the inhibitor solution was evaluated through temperature changes
monitored by the 1# optical cable of the DTSS. Figure 11 shows the temperature values
of the gob on the air intake side. In order to improve the reliability of data comparison,
temperature data from 10:00 am, 14:00 pm, and 20:00 pm one day before and after spraying
were selected. The data before spraying were selected from 26 June 2023, and the data after
spraying were selected from 31 August 2023.
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Figure 10. Spraying process of inhibitor.

 

 
Figure 11. Cont.
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Figure 11. Comparison of temperature before and after praying the inhibitors after 65 days. (a) Data
at 10:00. (b) Data at 14:00. (c) Data at 20:00.

What can be seen from Figure 11 is the following: 1© Before spraying the inhibitor
solution, the temperature of the gob at the position 18 m behind the working face (optical
cable length 399.6 m) increased to 20.86 ◦C, 20.83 ◦C, and 20.72 ◦C, respectively. After using
the inhibitor solution, the temperature of the gob with a relative delay of 18 m (cable length
369.6 m) was 16.57 ◦C, 17.13 ◦C, and 16.61 ◦C, respectively, decreasing by 4.29 ◦C, 3.7 ◦C,
and 4.11 ◦C, respectively. The average temperature decreased from 20.8 ◦C to 16.77 ◦C,
with a decrease of 19.38%. This means that the temperature of the gob behind the working
face returned to a normal temperature. 2© After 65 days of advancing the working face,
the point at 399.6 m of the optical cable changed from 18 m to 48 m behind the working
face, and the temperature at this position also decreased to 16.05 ◦C, 15.66 ◦C, and 17.11 ◦C,
respectively. The average temperature at this point decreased from 20.8 ◦C to 16.27 ◦C,
with a decrease of 21.78%. This indicates that the risk of coal spontaneous combustion in
this area was eliminated. 3© These temperature changes indicate that the adopted inhibitor
spray measures effectively suppressed the oxidation and exothermic effect of residual coal,
and the DTSS used strongly supports the safety of production work in the coal mine.

This product and technology have greatly improved the monitoring and warning
capabilities of CSC hazards in gob.

5. Conclusions

In this work, a monitoring and early warning system suitable for harsh environments
in gob, called the distributed optical fiber temperature sensing system, was developed and
successfully applied to monitoring and evaluating the degree of CSC in a coal mine in
China. The main conclusions are summarized below:

1. The internal parallel steel cables and the external protective pipe improved the anti-
damage ability of the optical cables. The technology of the protective pipe only
increases the time required for detecting the actual temperature and does not affect
the accuracy of temperature measurement. The temperature difference before and
after use of the protective pipe is only 0.87 ◦C, 0.67 ◦C, and 0.24 ◦C, respectively. So,
the protective pipe can be used with confidence.

2. The technology of the DTSS could improve early warning ability for preventing the
risk of CSC in gob. This technology can detect abnormal temperature conditions
in gob in a timely manner. Through the monitoring and evaluation of the DTSS,
the average temperature at the same location in the gob after spraying the inhibitor
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returned from 20.8 ◦C to 16.27 ◦C, with a decrease of 21.78%, which means the risk of
CSC in the gob was eliminated.

3. This study only analyzes the application effect of DTSS technology in coal mine
gob, which is not comprehensive enough. So, in the future, to enrich these research
findings, comparative research on other measurement methods, such as temperature
measurement methods of thermal resistance, will be carried out. In addition, we also
hope to use the DTSS for in-depth research in different scenarios.
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Abstract: Due to high stress, high ground temperature, high moisture, and other factors in deep
mines, the risk of coal spontaneous combustion (CSC) is enhanced, seriously affecting the safety of
coal mining. To achieve early prediction of spontaneous combustion in the No. 3 coal seam at the
Juye coalfield in the deep mine, this paper employs a temperature-programmed device to analyze
the changing pattern of single-index gases and composite gas indices with temperature derived from
the gas produced during csc. It also optimizes the index gas of coal sample spontaneous combustion.
Simultaneously, the characteristics of coal temperature and a four-level warning indicator system for
CSC are determined based on the analysis of indicator gas growth rate method, carbon-to-oxygen
ratio, and the characteristics of the indicator gas. The composite index gases of the No. 3 coal seam
in Juye coalfield are selected in the initial oxidation stage (Rco), accelerated oxidation stage (R1,
G1), intense oxidation stage (R2, G1, G3), and oxidative decomposition stage (G3). This leads to the
construction of a six-level warning system consisting of initial warning value, blue, yellow, orange,
red, and black levels. Meanwhile, warning thresholds are also established.

Keywords: deep mining; coal spontaneous combustion; early warning indicator system; indicator gas

1. Introduction

The spontaneous combustion of coal has consistently been the most significant factor
influencing coal mining, with over 85% of fire accidents in China being attributed to
the spontaneous combustion of coal seams [1]. Simultaneously, coal resources are being
progressively extracted from shallow to deep layers [2]. Mining depths have reached
1000–1500 m and are increasing at an annual rate of 10–30 m [3]. When coal enters deep
mining, the combined influence of factors such as the increased stress on coal and rock,
rising ground temperatures, and elevated water content in the goaf results in a complex
occurrence environment for deep coal seams. This heightened complexity raises the
challenges of coal mining and amplifies the risk of coal spontaneous ignition [4,5].

Currently, a considerable number of scholars have conducted simulations of deep CSC
mining conditions, considering aspects such as surrounding rock stress, elevated ground
temperatures, and moisture levels [6]. With the increase in ground stress, the frequency
of coal rock fractures rises, ground temperatures elevate, and the risk of CSC becomes
more pronounced. Pan et al. [7,8] found that ground stress increases with mining depth,
leading to an elevated risk of coal oxidation. Additionally, coal was observed to oxidize
more readily under conditions of air leakage. Chao et al. [9] found that the increase in
axial stress initially promotes and later inhibits the spontaneous combustion of crushed
coal. Meanwhile, as active mining depth increases, deep mines encounter the significant
challenge of elevated ground temperatures. Niu et al. [10] found that high temperatures
facilitate the accumulation of heat within coal, while the active structures on the coal surface
become more reactive. This intensifies the propensity for CSC in deep mines. Jia et al. [11]
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conducted research on the spontaneous combustion characteristics of high-geothermal
coal. Throughout the oxidation process, the production amounts and rates of CO, C2H4,
and C2H2 increase with rising pretreatment temperatures. Elevated ground temperatures
systematically amplify the risk of CSC by enhancing the reactivity of functional groups.
Simultaneously, as mining depth increases, groundwater infiltration pressure rises corre-
spondingly, leading to an escalation in the occurrence of water burst accidents [12]. When
coal is soaked in water, the surface-active functional groups of coal molecules increase,
and the oxidative exothermicity is enhanced in the low-temperature stage, so the danger
of spontaneous combustion increases. Wang et al. [13] used in situ infrared spectroscopy
(FTIR) and differential scanning calorimetry (DSC) followed by secondary oxidation ex-
periments, which showed that the aromatic structure of the pre-oxidized coal was more
susceptible to oxygen attack during secondary oxidation. Consequently, in deep mining
environments characterized by high ground stress, elevated ground temperatures, and
increased water pressure, instances of CSC are becoming more frequent. This trend poses a
significant threat to the safe and efficient exploitation of deep resources.

Under the influence of high stress, elevated ground temperature, increased moisture,
and other factors within deep mines, the risk of spontaneous coal combustion in goaf areas
is heightened. This complication renders the prevention and management of CSC within
mining zones more challenging. Accurately determining the level of risk associated with
CSC in deep mines serves as a crucial foundation for coal fire prevention and control. Due
to factors such as the significant void space and other considerations, direct monitoring of
temperature changes in the goaf area is unfeasible. Consequently, one important approach
to predict CSC involves monitoring and analyzing the type and concentration changes
in environmental gases within the fire-prone region [14–16]. Onifade et al. [17] obtained
the experimental spontaneous ignition period of coal by conducting numerous natural
experiment tests and calculations on coal. Subsequently, they obtained the characteristics
and applicability of the experimental methods of CSC characterization parameters. Singh
et al. [18] studied CO, CO2 and considered them as index gases for predicting CSC. Some
alkane gases (CH4, C2H6, C3H8) and alkene gases (C2H4) are available as predictor gases
reflecting coal spontaneous combustion at higher temperatures. Furthermore, Kong et al.
precisely categorized the CSC process into seven levels of warnings: safety, gray, blue,
yellow, orange, red, and black [19,20].

In summary, the active surface structure of coal seams in deep mining, influenced by
high ground temperatures and stress, intensifies the tendency for CSC. Simultaneously,
the slow advancement of the working face in deep mines prolongs the coal oxidation
duration, exacerbating the risk of spontaneous combustion in deep mining coal seams and
posing a serious threat to mine safety. Therefore, an efficient and accurate determination
of the extent of CSC development in deep mines becomes particularly important for the
prevention and control of CSC hazards.

However, research on early warning systems for CSC in deep mines is still lacking.
Additionally, existing research suffers from a broad range of indicator gases and a limited
ability to predict and forecast CSC. Thus, this paper conducts a study on the spontaneous
combustion characteristics and an early warning index system for coal samples from the
No. 3 coal seam in the Juye coalfield. In this paper, a gas growth rate analysis method is
innovatively adopted to analyze the gas products, individual gases and comprehensive
indicators. The study also establishes an early prediction and forecasting system for the
natural ignition of the No. 3 coal seam in the Juye coalfield. This work holds significant
theoretical and practical importance for the early prediction and forecasting of spontaneous
combustion in the No. 3 coal seam in the Juye coalfield. Additionally, it offers valuable
reference and potential for advancing research on early warning methods for spontaneous
coal combustion disasters in deep coal mines.
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2. Experimental Equipment and Processes

2.1. Experimental Coal Samples

This experiment was conducted using coal from the No. 3 coalfield in Juye, Shandong
Province, including Tang Kou coal, New Julong coal, and Zhao Lou coal, referred to as
1# TC, 2# XC, and 3# ZC respectively. Coal samples were collected from the workings
of three different mines, without undergoing water injection or spraying. These samples
were then transported in sealed nylon bags to the laboratory of Xi’an University of Science
and Technology.

The raw coal was packed into sealed bags, crushed in ambient air, and sieved to obtain
five coal samples with particle sizes ranging from 0 to 0.9 mm, 0.9 to 3 mm, 3 to 5 mm,
5 to 7 mm, and 7 to 10 mm. For each size category, 200 g of coal was selected, resulting
in a mixed particle size coal sample of 1000 g for experimentation. Industrial parameters
were analyzed for the experimental coal samples, and the results are presented in Table 1.
Notably, New Julong coal exhibited the lowest solid carbon content at 40.01%, the highest
ash content at 24.23%, and the highest moisture content among Tang Kou coal samples.
All three coal types displayed volatile contents exceeding 34%, indicative of high volatile
content coals.

Table 1. Industrial analysis of coal samples.

Coal Samples Mad (%) Aad (%) Vad (%) FCad (%)

1# TC 2.16 17.02 34.20 46.62
2# XC 1.22 24.23 34.54 40.01
3# ZC 1.09 8.40 34.88 55.63

2.2. Experimental Setup and Methods

The self-developed programmed temperature rise test device from Xi’an University
of Science and Technology was employed [21]. The test system primarily comprises three
components: a gas path, a temperature control box, and gas collection and analysis modules.
The experiments were conducted within a programmed warming chamber. Preheated
air was introduced from the bottom using an air pump, while the collection of test gases
corresponding to various coal temperature conditions occurred at the top. Subsequently,
the collected gases were subjected to gas chromatography analysis to determine the types
and concentrations of the products. This experiment was repeated three times, and the
resulting data were averaged.

2.3. Experimental Conditions

Three coal samples with different particle size distributions were introduced into the
test tank and positioned within the programmed heating chamber for the coal oxidation
heating test. Due to the constraints of the experimental setup, the temperature range
for the experiments extended from room temperature to 170 ◦C. The air flow rate was
set at 120 mL/min, and the temperature increase occurred at a rate of 0.3 ◦C/min. Gas
collection from the tank outlet commenced when the coal temperature reached 30 ◦C, and
samples were collected at 10 ◦C intervals. The collected gas was then passed through a gas
chromatograph for quantitative analysis of gas composition and concentration. The main
gas components tested included CO, CO2, C2H6, C2H4, and others. The detection accuracy
was ±1 ppm.

2.4. Gas Growth Rate Analysis Methods

The characteristic temperature is one of the most crucial parameters used to char-
acterize the onset and progression of natural coal ignition. Its classification significantly
influences the prediction of spontaneous coal combustion [22]. Through the comparison of
index gas changes across adjacent temperature points, some scholars proposed a method
to calculate the growth rate of index gases. This method was employed to identify char-
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acteristic temperature points, and its reliability was confirmed by verifying the CO/CO2
ratio and the catenane ratio [23]. Therefore, in this paper, gas-related indicators such as
CO, CO2, and C2H4, which are produced during natural coal ignition, are employed to
infer the coal temperature, ascertain the extent of CSC, and utilize growth rate analysis
to comprehensively examine the characteristics within the key temperature range of coal
samples from the No. 3 coal seam in the Juye coal field. Simultaneously, the selection of gas
indicators for this coal sample is optimized through a comparative analysis of Grignard
fire coefficients and composite indicators, among others. This optimization aims to avoid
relying solely on a single CO gas index, thereby enhancing the reliability of CSC forecasting
and providing a foundation for predicting coal temperatures and determining the degree
of CSC.

According to the relationship of the index gas with temperature, the growth rate
analysis formula is as follows:

B =
ci+1 − ci
ti+1 − ti

, (1)

Z =
B
ci

, (2)

Z =
ci+1 − ci

ci(ti+1 − ti)
. (3)

In the formula, c is the gas concentration, ppm; t is the temperature, ◦C; B is the rate of
change in gas concentration per 10 ◦C increase in temperature; Z is the gas concentration
growth rate, ◦C−1.

3. Results and Discussion

3.1. Analysis of Changes in Single Gas Indicators

From programmed warming experiments on Tang Kou, New Julong and Zhao Lou
coals from deep mines, it can be found from the type of gas products that, in the low-
temperature oxidation stage, the gas products mainly include CO, CO2, C2H6 and C2H4
and shows some regular variation as the coal temperature rises.

3.1.1. CO2 Concentration

As can be seen in Figure 1, at the start of the experiment, all three coal samples dis-
played the presence of CO2, albeit at low concentrations. Beyond 90 ◦C, the concentration
of CO2 in Tang Kou coal exhibited a significant increase. After reaching 120 ◦C, both New
Julong coal and Zhao Lou coal demonstrated a rapid surge in CO2 concentration. However,
Tang Kou coal’s CO2 concentration initially experienced a slight decrease, followed by
gradual growth. This behavior could be attributed to CO2 adsorption by the coal. The gases
adsorbed in the coal are primarily in a physical state and can easily undergo desorption
due to external factors such as temperature and pressure [24]. Hence, the swift elevation
in CO2 concentration as the temperature rises might be attributed to the rapid desorption
of adsorbed CO2 due to heating. This process leads to coal oxidation and the subsequent
generation of CO2. Consequently, due to the existence of adsorbed CO2 within coal and its
sensitivity to atmospheric CO2 influence, even though CO2 demonstrates clear patterns of
variation and substantial production levels, it is not suitable as a predictive indicator gas
for CSC.

In the context of mine gas analysis, CO2 is emitted in various ways within the mine.
Part of the CO2 is generated during coal oxidation. Additionally, CO2 can be released due
to microbial oxidation of coal or the interaction of acidic mine water with calcium carbonate.
This release occurs when calcium carbonate is present in the surrounding strata or rock
dust [25]. Hence, utilizing CO2 concentration to predict the early−stage spontaneous
combustion of coal is prone to substantial influence from various interfering factors. As a
result, CO2 is generally not regarded as a dependable indicator for the early warning of
coal fires.
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Figure 1. CO2 concentration and growth rate.

3.1.2. CO Concentration

CO is one of the most common indicator gases [26]. The relationship between CO
production and coal temperature for the three coal samples is shown in Figure 2. The
concentration of CO gas increases with temperature, and the higher the temperature,
the faster the increase in concentration, exhibiting an exponential growth trend. Among
the three samples, Tang Kou coal has the highest CO concentration, followed by New
Julong coal, and Zhao Lou coal has the lowest concentration. In the early stages of the
experiment, the CO concentrations for the three coal samples were 25.23 ppm, 13.23 ppm,
and 11.6 ppm, respectively. This is because all three samples were derived from deep
mine coal, with a lower degree of metamorphism, higher volatile matter content, and more
oxygen functional groups, making them more prone to oxidation [27]. This suggests that
coal oxidation initiates during the process of crushing and loading the coal into the furnace,
gradually generating CO gas. As the experiment advanced and the temperature increased,
the CO concentration rose progressively, though not uniformly. The growth rate of CO for
all three coal samples reached the first inflection point at 80 ◦C, as depicted in Figure 2b,
where the CO concentration reaches its initial peak. This indicates an intensification of
the interaction between coal and oxygen. With a further increase in coal temperature,
the CO concentration rose steeply. Tang Kou coal reaches its second peak at 100 ◦C,
while New Julong coal and Zhao Lou coal reach their second peak at 110 ◦C, indicating
more pronounced coal oxidation. Subsequently, Tang Kou coal reaches its third peak at
140 ◦C, while New Julong coal and Zhao Lou coal reach their third peak at 150 ◦C. These
peaks denote the initiation of coal fissure temperatures and an elevated activity of active
functional groups within coal molecules participating in oxidation reactions [28]. Thus,
owing to the strong correlation between the CO growth rate and temperature, the point at
which the rate of CO generation increases rapidly can serve as an indicator to identify the
onset of coal oxidation. This phenomenon also offers a qualitative prediction of the extent
of CSC [15].

3.1.3. CxHy Gases

C2H4 and C2H6 are important indicators of CSC [29]. As depicted in Figures 3 and 4,
the gas production of C2H4 and C2H6 from the three coal samples steadily increases with
temperature. Initially, the raw coal does not contain C2H4 and C2H6. These gases are
formed through pyrolysis reactions only when the coal temperature reaches 80−130 ◦C
during the initial stage of the experiment [25]. Hence, the production of C2H4 and C2H6
can serve as a quantitative characterization of the extent of spontaneous combustion.
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Figure 2. CO concentration and growth rate.
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Figure 3. C2H4 concentration and growth rate.
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It is evident from these data that C2H4 is not initially formed during the experiment
and only appears in small quantities around 80−110 ◦C. The concentration of C2H4 is
highest in Zhao Lou coal, followed by New Julong coal, and lowest in Tang Kou coal.
Therefore, C2H4 does not exist initially in the coal samples, and the generation of C2H4 gas
at high temperatures can be attributed to the oxidative pyrolysis of coal. Similarly, a small
amount of C2H6 appears around 110−130 ◦C, with the highest concentration observed in
Tang Kou coal. Comparing the relationship curves between the growth rates of CO, C2H4,
and C2H6 with temperature, when Tang Kou coal reaches 140 ◦C and New Julong coal and
Zhao Lou coal reach 150 ◦C, the CO growth rate curve exhibits a third minor peak, and the
growth rates of C2H4 and C2H6 also show the first peak. The characteristic temperatures of
the three curves correspond well to each other.

3.2. Analysis of Changes in Composite Indicators

Because of the multitude of gas products generated during the coal oxidation process
depending on a single gas as a predictive indicator for CSC, it is susceptible to the impact
of airflow and environmental factors. Consequently, this approach leads to limited accu-
racy [30]. This inconvenience hampers the prediction of CSC. Therefore, this study selects
composite indicators such as ϕ(CO)/ϕ(CO2), hydrocarbon ratio, Graham coefficient (R1,
R2, R3), G1, G2, G3, etc., to optimize the characteristic gases generated during the oxidation
of the No. 3 coal seam in Juye coalfield. Gas indicators for different oxidation stages
are determined, leading to the establishment of an early prediction index system suitable
for the early-stage prediction of spontaneous combustion in the No. 3 coal seam in Juye
coalfield.

3.2.1. ϕ(CO)/ϕ(CO2) and Alkane Ratio

Due to the ability of ϕ(CO)/ϕ(CO2) and alkane ratio to reduce the influence of
underground airflow on gas concentration [31], in order to further validate the reliability of
characteristic temperature points obtained through growth rate analysis, three coal samples
with mixed particle sizes were selected for analysis. The growth rate of ϕ(CO)/ϕ(CO2)
was calculated using Equation (3) and is shown in Figure 5, while the growth rate of alkane
ratio is shown in Figure 6.
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Figure 6. CxHy concentration and growth rate.

From Figure 5, it can be observed that the ratio of ϕ(CO)/ϕ(CO2) increases with the
rise in temperature. As the temperature increases from ambient temperature to 60 ◦C, the
ratio gradually increases but remains below 0.1, indicating a weak coal–oxygen composite
reaction during this stage. After reaching 80 ◦C, the curve shows an upward trend, and the
ratio reaches 0.1 at 100 ◦C. Beyond 100 ◦C, the ratio increases rapidly and fluctuates between
0.1 and 0.25, indicating intensifying oxidation. However, the growth rate decreases slightly
due to the different rates of increase in CO and CO2 volume fractions. Upon reaching
140−150 ◦C, the ratio increases rapidly again, rising from 0.25 to 0.4. Hence, during this
stage, the formation of coal–oxygen complexes increases, with a significantly higher relative
yield of CO compared to CO2. This implies the occurrence of CSC [15]. The three peaks
in the growth rate curve of ϕ(CO)/ϕ(CO2) correspond to points where the oxidation
intensity intensifies, namely the critical temperature, desiccation temperature, and cleavage
temperature points [32]. These points align well with the characteristic temperature points
obtained in Table 2.

Table 2. Characteristic temperature and oxidation stage division for different coal samples.

Coal
Samples

Oxidation
Stage (◦C)

T1 (◦C)
Accelerated
Oxidation
Stage (◦C)

T2 (◦C)
Intense

Oxidation
Stage (◦C)

T3 (◦C)
Oxidation

Decomposition
Stage (◦C)

1# TC 40−80 80 80−100 100 100−140 140 140−170
2# XC 40−80 80 80−110 110 110−150 150 150−170
3# ZC 40−80 80 80−110 110 110−150 150 150−170

From Figure 6, it can be observed that the initial appearance temperatures of ethane
and ethylene are 100 ◦C and 110 ◦C, respectively. This indicates that at this stage, chemical
adsorption and reactions of coal start to dominate. With increasing temperature, the
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production of ethylene and ethane increases. The ratio of alkene to alkane fluctuates,
indicating an alternating change in the production of ethylene and ethane. This further
signifies the intensification of coal oxidation reactions and a more apparent possibility of
CSC [29,32].

After a comprehensive comparison of the growth rates and the relationship between
the indicator gases and the temperature, it was determined that the critical temperature
(T1) for the three coal samples was near 80 ◦C, the desiccation temperature (T2) range was
near 100−110 ◦C, and the cleavage temperature (T3) range was 140−150 ◦C. Based on
the characteristic temperatures and the three-step coal–oxygen composite reaction, Wang
et al. [33,34] classified the low-temperature oxidation process of coal into the stages of slow
oxidation, accelerated oxidation, and intense oxidation. According to the aforementioned
criteria, the low-temperature oxidation process of Tang Kou coal can be divided into
the initial oxidation stage (30−80 ◦C), accelerated oxidation stage (80−110 ◦C), intense
oxidation stage (110−140 ◦C), and oxidation decomposition stage (140−170 ◦C). For the
classification of the other two coal samples, please refer to Table 2.

3.2.2. Analysis of Fire Hazard Index Variation

The Graham fire hazard index, proposed by British scholar Graham, consists of three
components: the first fire hazard index (R1), the second fire hazard index (R2), and the
third fire hazard index (R3). These indices are calculated based on the changes in CO2
concentration (+ΔCO2), CO concentration (+ΔCO), and O2 concentration (−−ΔO2) during
the coal oxidation process. The fire hazard index fire coefficient cannot be affected by
certain objective factors, and it is easy to select the best indicators, excluding the influence
of external factors on the determination of the risk of spontaneous combustion of coal
due to the dilution of air leakage from the working face and the mining area. The specific
calculation formulas are as follows:

R1 = +ΔCO2/(−ΔO2)× 100% (4)

R2 = +ΔCO/(−ΔO2)× 100% (5)

R3 = +ΔCO/(+ΔCO2)× 100% (6)

Based on the characteristic temperatures, coal oxidation is divided into four stages:
the initial oxidation stage (Stage I), the accelerated oxidation stage (Stage II), the intense
oxidation stage (Stage III), and the oxidation decomposition stage (Stage IV). By applying
the aforementioned formulas, the experimental data were processed and analyzed to
calculate the three fire hazard indices for each coal sample. The relationships between the
indices and temperature were then plotted, as shown in Figure 7a−c.

During the initial oxidation stage, the fire hazard index exhibits significant fluctuations
(as shown in Figure 7). These fluctuations could be attributed to the desorption of native
gases from the coal and the release of CO2 that was adsorbed in the fractures and pores of
the fragmented coal. This observation aligns with the results in Figure 1a, which depict a
phenomenon of decreasing and then increasing CO2 concentration as the coal temperature
rises before reaching the critical temperature. This further validates the credibility of this
hypothesis. As a result, the fire hazard index is not a suitable parameter during the initial
oxidation stage. Moving beyond this stage, the R1 value of Tang Kou coal shows a clear
upward trend, marked by two peak values and notable fluctuations. In contrast, the R1
values of the other two coal samples exhibit fluctuations within the range of 9.97% to
26.08% with relatively minor variations. Following this stage, the R3 values of all three
coal samples stabilize and fluctuate within the range of 14.19% to 58.52%. However, their
correlation with temperature is not evident. Therefore, both R1 and R3 are not suitable
indicators for predicting CSC.
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Figure 7. Fire hazard index.

However, after the initial oxidation stage, the R2 value of Tang Kou coal shows an
increasing trend with temperature. It remains stable at around 2% between 60 and 80 ◦C.
Starting from 110 ◦C, the R2 value increases rapidly and exceeds 5% at around 140 ◦C.
Subsequently, it exhibits exponential growth with temperature, indicating a significant
increase. Therefore, based on the corresponding temperature from the experimental data,
when the R2 value exceeds 2%, the temperature of Tang Kou coal has reached or exceeded
the spontaneous combustion critical temperature, entering the stage of CSC. When the
R2 value exceeds 5%, the coal–oxygen composite reaction becomes intense, entering the
stage of intense oxidation. When the R2 value surpasses 8%, the coal sample undergoes
vigorous oxidation, entering the stage of oxidation decomposition. Under the experimental
conditions, the corresponding coal temperature exceeds 150 ◦C, indicating the need for
timely measures. Similarly, the R2 values of New Julong coal and Zhao Lou coal also
remain stable between 60 and 80 ◦C and exhibit monotonic growth from 80 ◦C to 170 ◦C.
Therefore, R2 can serve as an indicator for CSC during the latter three stages for the three
coal samples [35].

3.2.3. Analysis of Changes in Composite Gas Indicators

This study utilizes composite processing of different individual gas indicators to
characterize the oxidation intensity of coal and its relationship with temperature, further
enhancing the indicators for CSC early warning. The specific calculation formula for the
composite indicators is as follows:
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G1 = ϕ(CO) + ΔCO2, (7)

G2 =
G1

−ΔO2
, (8)

G3 =
G1

ϕ(O2)
. (9)

Whether it can serve as an indicator for determining the degree of CSC, the calculation
formula for the growth rate of composite gas indicators is introduced to analyze their
variations:

k =
Gi+1 − Gi

ti+1 − ti
. (10)

In the equation, ti and ti+1 represent the temperature at adjacent experimental time
points in degrees Celsius; Gi and Gi+1 represent the composite indicator parameters cor-
responding to ti and ti+1. k denotes the growth rate of composite gas indicators. The
growth rate is analyzed based on the gas concentration at adjacent temperature points.
By determining the trend and monotonicity of the growth rate of composite indicator
parameters, the indicators that correspond to the degree of CSC development are identified.
Figures 8 and 9 depict the relationship curves and growth rates with temperature.
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Figure 8. Compound indicator gas concentration.
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Figure 9. Compound Indicator gas growth rate.

From Figure 8, it can be observed that the values of G1 and G3 for all three coal
samples show an increasing trend with the rise in temperature. Once the coal temperature
reaches the devolatilization temperature, its values exhibit significant growth, indicating
an intensification of coal oxidation reactions. However, the value of G2 shows significant
fluctuations during the initial oxidation stage, and after this stage, G2 for all three coal
samples exhibits fluctuating increases. Additionally, Figure 9 illustrates the variation trend
of the growth rates of the composite indicators for the three coal samples. In the initial
oxidation stage (Stage I), the growth rates of G2 for all three coal samples exhibit large
fluctuations, and in the subsequent three stages after the critical temperature, they are
non-monotonic. Therefore, G2 is not suitable as an indicator for CSC.

The growth rate of G1 for the three coal samples exhibits significant fluctuations and is
non-monotonic during the initial oxidation stage. However, after the critical temperature,
the growth rates of G1 for the New Julong coal and Zhao Lou coal are consistently positive
and show a monotonically increasing trend with temperature. Therefore, G1 can serve as
an auxiliary indicator coefficient during the acceleration oxidation stage to the oxidative
decomposition stage, in addition to the fire index coefficient R2. The growth rate of G3
for Tang Kou coal initially decreases slightly and then exhibits a monotonically increasing
trend after the critical temperature, remaining consistently positive within the temperature
range of 80 ◦C to 170 ◦C. Therefore, in this temperature range, in addition to the fire index
coefficient R2, G3 can also be used as an auxiliary indicator to assess the degree of CSC.
Moreover, for the New Julong coal and Zhao Lou coal samples, the growth rates of G3
during the oxidative decomposition stage are all positive and show a clear correlation with
temperature, with higher temperatures corresponding to larger G3 values. Therefore, G3
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can also be considered as a CSC indicator coefficient during the oxidative decomposition
stage. In summary, different indicators can be selected for CSC prediction during different
oxidation stages for the three coal samples. Refer to Table 3 for specific details.

Table 3. CSC indicator gas preference.

Coal Samples
Characteristic

Temperature (◦C)
Coal Seam Temperature

Range (◦C)
Preferred Metrics

1# TC 40 (40−80] Rco
2# XC 40 (40−80] Rco
3# ZC 40 (40−80] Rco

1# TC 80 (80−100] R2, G1, G3
2# XC 80 (80−110] R2, G1
3# ZC 80 (80−110] R2, G1

1# TC 100 (100−140] R2, G1, G3
2# XC 110 (110−150] R2, G1
3# ZC 110 (110−150] R2, G2

1# TC 140 (140−170] R2, G1, G3
2# XC 150 (150−170] R2, G1, G3
3# ZC 150 (150−170] R2, G1, G3

3.3. Classification and Warning Indicator System for CSC Hazard

The classification and warning system for the CSC hazard is formulated by analyzing
the fluctuation trends and characteristic temperatures of CSC indicators. This system
meticulously delineates the stages of coal spontaneous ignition, identifies the warning
indicators along with their corresponding thresholds for each stage, and establishes a
comprehensive classification and warning framework for spontaneous combustion within
the No. 3 coal seam of Juye coalfield. This framework offers theoretical guidance for
accurately identifying spontaneous combustion hazards within the No. 3 coal seam of
Juye coalfield.

The carbon oxide ratio values (ϕ(CO)/ϕ(CO2)) at the characteristic temperature
moments were used as the warning thresholds, denoted as RI, RII, RIII, RIV and the
warning levels were classified as blue, yellow, orange, and red [36]. Based on the data from
the programmed temperature rise test, the characteristic temperatures of each coal sample
were identified using the growth rate analysis method mentioned earlier. By combining
them with the carbon oxide ratio value, the classification criteria for warning levels were
reconstructed. Please refer to Table 4 for details.

Table 4. Juye No. 3 coalfield spontaneous combustion graded warning indicators and grade classifi-
cation criteria.

Early Warning
Level

Coal Samples
Early Warning

Temperature Range (◦C)
RCO

((ϕ(CO)/ϕ(CO2))

Blue alert
1# TC (40−80] RI ≤ 0.066
2# XC (40−80] RI ≤ 0.053
3# ZC (40−80] RI ≤ 0.044

Yellow alert
1# TC (80−100] 0.066 < RII ≤ 0.101
2# XC (80−110] 0.053 < RII ≤ 0.147
3# ZC (80−110] 0.044 < RII ≤ 0.130

Orange alert
1# TC (110−140] 0.101 < RIII ≤ 0.221
2# XC (110−150] 0.147 < RIII ≤ 0.322
3# ZC (110−150] 0.130 < RIII ≤ 0.329

Red alert
1# TC (140−170] RIV > 0.221
2# XC (150−170] RIV > 0.322
3# ZC (150−170] RIV > 0.329
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Using single−indicator gases and the selected composite−indicator gases, the thresh-
old curve for classifying and issuing early warnings regarding spontaneous combustion
hazards in the No. 3 coal seam of Juye coalfield was constructed, as illustrated in Figure 10.
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Figure 10. Coal seam spontaneous combustion risk classification warning threshold curve.

From Figure 10a–c, it can be observed that the low−temperature oxidation process
of coal is divided into four warning levels, namely blue, yellow, orange, and red, based
on characteristic temperatures and the carbon oxide ratio. These levels correspond to the
initial oxidation stage, accelerated oxidation stage, intense oxidation stage, and oxidation
decomposition stage of coal, respectively. The selected composite indicator gases G1 and
G3, as well as the second fire coefficient R2, are marked in each warning level region.
Combined with the temperature and concentration curves of CO, C2H4, and C2H6, they
collectively form the threshold curve for the classification and early warning of spontaneous
combustion hazard in coal. Overall, the gas generation of coal shows a nonlinear increase,
indicating that the oxidation of coal is a heterogeneous reaction process, and the reaction
models differ in each stage. In the blue warning level, which represents the gas distribution
characteristics of coal before reaching the critical temperature, the CO concentration changes
are not significant, indicating a relatively weak tendency for spontaneous combustion in the
three coal samples. In the yellow warning level, with coal temperatures between the critical
temperature and the drying−cracking temperature, the CO concentration starts to increase,
and C2H4 and C2H6 begin to appear, indicating an increased tendency for spontaneous
combustion. In the orange warning level, with coal temperatures between the drying-
cracking temperature and the decomposition temperature, there is a significant increase
in CO and C2H6 concentrations, indicating an irreversible tendency for spontaneous
combustion. The red warning level represents the region where the coal temperature
reaches the decomposition temperature. The generation of CO, C2H6, and other gases
increases exponentially. When the No. 3 coal seam of Juye coalfield is in this warning level,
the occurrence and development of spontaneous combustion in coal intensify.

Based on the refined theory of CSC stages and regulations regarding CSC monitoring,
indicative gases, critical values, ignition precursors, and fire management [37], combined
with the optimized CSC indicator gases in Table 3, the classification criteria for CSC warning
levels in Table 4, and the reconstructed threshold curve for the classification and early
warning of spontaneous combustion hazard in the No. 3 coal seam of Juye coalfield in
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Figure 10, a hierarchical warning system and indicator thresholds for CSC hazard were
established. Please refer to Table 5 for details.

Table 5. Spontaneous combustion risk classification warning system and index thresholds for No. 3
coal seam in Juye coalfield.

Coal Samples
Characteristic

Temperature (◦C)

Coal Seam
Temperature
Range (◦C)

Preferred Metrics Judgment Threshold

1# TC

40 (40−80] Rco I1 = {RI ≤ 0.066}
80 (80−100] R2, G1, G3 I2 = I1 ∩ {0.024 < R2 < 0.036}

100 (100−140] R2, G1, G3, C2H4
I3 = I2 ∩ {0.036 < R2 < 0.084} ∩ {0.217 < G1 <
1.058} ∩ {0.011 < G3 < 0.081} ∩ {ϕ(C2H4) > 0}

140 (140−170] R2, G1, G3, C2H4
I4 = I3 ∩ {0.084 < R2 < 0.194} ∩ {0.085 < G3 <

0.369} ∩{ 11.675 < ϕ(C2H4) < 51.34}

>170 ϕ(C2H4)/ϕ(C2H6)
rapid growth I5 = I4 ∩ {ϕ(C2H2) > 0}

2# XC

40 (40−80] Rco I1 = {RI ≤ 0.053}
80 (80−110] R2, G1 I2 = I1 ∩ {0.014 < R2 < 0.062}

110 (110−150] R2, G1, C2H6
I3 = I2 ∩ {0.0062 < R2 < 0.082} ∩ {0.080 < G1

< 0.783} ∩ {ϕ(C2H6) > 0}

150 (150−170] R2, G1, G3,
C2H4

I4 = I3 ∩ {0.082 < R2 < 0.122} ∩ {0.783 < G1 <
1.716} ∩ {0.036 < G3 < 0.100} ∩ {ϕ(C2H6) > 0}

∩ {1.777 < ϕ(C2H4) < 24.84}

>170 ϕ(C2H4)/ϕ(C2H6)
rapid growth I5 = I4 ∩ {ϕ(C2H2) > 0}

3# ZC

40 (40−80] Rco I1 = {RI ≤ 0.044}

80 (80−110] R2, G1
I2 = I1 ∩ {0.017 < R2 < 0.045} ∩ {0.031 < G1 <

0.081}

110 (110−150] R2, G1, G3, C2H6
I3 = I2 ∩ {0.045 < R2 < 0.078} ∩ {0.081 < G2 <

0.502} ∩ {ϕ(C2H4) > 0}

150 (150−170] R2, G1, C2H4

I4 = I3 ∩ {0.078 < R2 < 0.097} ∩ {0.502 < G1 <
0.912} ∩ {ϕ(C2H4) > 0} ∩ {0.184 <

ϕ(C2H4)/ϕ(C2H6) < 0.231}

>170 ϕ(C2H4)/ϕ(C2H6)
rapid growth I5 = I4 ∩ {ϕ(C2H2) > 0}

4. Conclusions

(1) The growth rate of CO and C2H4 gas concentration was calculated according to the
growth rate analysis method and verified by analyzing the growth rate of ϕ(CO)/
ϕ(CO2); it was determined that the critical temperature of the No. 3 coal seam in
the Juye coalfield was near 80 ◦C, the dry cracking temperature was in the range of
100−110 ◦C, and the fissure temperature was about 130−150 ◦C.

(2) The variation of single and composite indicator gases during the coal oxidation
process was analyzed, and predictive indicators were selected for different oxidation
stages. RCO, R2, G1, and G3 were identified as predictive indicators for Tang Kou coal,
New Julong coal, and Zhao Lou coal in the initial oxidation and accelerated oxidation
stages. R2, G1, and G3 were selected as predictive indicators in the intense oxidation
and oxidative decomposition stages.

(3) Based on the characteristic temperatures of coal and in combination with the carbon
oxide ratio, a four-level warning system consisting of blue, yellow, orange, and red
levels was established for the No. 3 coal seam in the Juye coalfield. The composite
indicator gases G1 and G2, as well as the second fire hazard coefficient R2, were
annotated in their respective warning level regions. Along with the concentration
curves of CO and C2H6, these indicators were used to construct the threshold curves
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for the classification and warning of the self-ignition hazard in the No. 3 coal seam of
the Juye coalfield.

(4) Based on the refined theory of self-ignition stages in coal, as well as regulations
regarding coal self-ignition monitoring, indicative gases, critical values, fire initiation
precursors, and fire management, the self-ignition hazard classification and warning
system, along with the threshold values, were reconstructed for the No. 3 coal
seam in the Juye coalfield. The system was based on the classification criteria and
threshold curves for self-ignition risk levels. It established a six-level warning system,
including the initial warning level, blue, yellow, orange, red, and black levels, and
their respective indicator thresholds, to predict the occurrence of CSC.
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Abstract: Coal spontaneous combustion (CSC) is a serious threat to the safe mining of coal resources,
and the selection of suitable gas indicators to predict the CSC state is crucial for the prevention
and control of coal mine fires. In this paper, the temperature-programmed experiment of CSC was
first carried out to analyze the gas components and compositions in the oxidative pyrolysis process
of three coal samples (lignite, long-flame coal, and lean coal) with different coalification degrees.
Subsequently, the spontaneous combustion tendency of these three coal samples was evaluated.
Finally, through the variation of gas concentration, gas concentration ratio, and fire coefficient
with coal temperature, the indicators suitable for predicting the spontaneous combustion of coal
were preferred, and a multi-parameter indicator system was established to make a comprehensive
judgment on the spontaneous combustion status of coal. The results show that coal rank is negatively
correlated with oxygen consumption rate. The higher the coalification degree of coal, the slower the
oxidation reaction and the later the characteristic temperature point appears. The lignite selected in
this experiment is a type of coal that is more prone to spontaneous combustion than long-flame coal
and poor coal, and the CO concentration, C2H6/CH4, and second fire coefficient R2 can be used as
the main indicators for predicting CSC, while the other gases, olefin-alkane ratio and fire coefficient
can be used as auxiliary indicators. To some extent, the research content can effectively and accurately
determine the stage and degree of coal spontaneous combustion, which has a certain guiding role in
predicting CSC.

Keywords: coal spontaneous combustion; temperature programmed system; indicator gases; forecast
indicators; fire coefficient

1. Introduction

During coal mining, coal spontaneous combustion (CSC) disasters is often accom-
panied, which not only causes waste of coal resources, but also seriously threatens the
safety of workers and coal production [1–5]. Coal spontaneous combustion (CSC) is a
multivariate self-accelerating exothermic process, which is mainly the result of the com-
pounding of coal and oxygen molecules [6,7]. Different gases are produced at different
stages of the coal auto-ignition process, and there are certain laws between the gas types
and concentrations and the coal temperature. These laws can be utilized to predict the state
of different stages of coal auto-ignition [8–10]. Therefore, an in-depth understanding of the
relationship between gas products and temperature in the process of coal self-heating is of
great significance for fire prevention as well as for ensuring the safe development of the
coal industry.
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Scientists have carried out a special study on the gas produced during theCSC process
to estimate the degree of coal oxygen reaction and the stage of coal spontaneous combus-
tion in goaf. At the low-temperature stage, the generation of CO and CO2 is generally
considered to be caused by the direct decomposition of stable oxygen-containing complexes
containing intrinsic oxygen-containing functional groups and a small number of combus-
tion reactions. At the high-temperature stage, coal has a violent oxidation reaction, and
more olefin and alkane gases are generally produced by pyrolysis [11]. In addition, accurate
measurement of the reduction of oxygen concentration can also be applied to determine
the spontaneous combustion state of coal [12]. Some scholars believe that some single
gases, such as CO, CO2, C2H4, and C2H6, can be used as indicator gases for predicting
spontaneous combustion [4,13–15]. Subsequently, the CO/CO2 ratio, C2H4/C2H6 ratio,
ΔCO/ΔCO2 ratio, and C2H6/C2H2 ratio are also considered to be able to predict spon-
taneous combustion of coal [16–18]. Based on these indicator gases, other scholars have
proposed the Graham fire coefficient [Wangcaiping2021], Willet’s ratio [19], C/H ratio [20],
and Graham’s ratio [21] to predict the self-heating state of coal. Zhao et al. pointed out
that the concentration of CO and CO2 fluctuated with the change of ventilation, and the
reliability of the gas as an indicator of spontaneous combustion of coal was poor [22]. To
sum up, there are many indicators to distinguish coal’s spontaneous combustion status at
present, but the prediction indicators are different in different environments. It is easy to
use wrong indicators to predict coal spontaneous combustion, resulting in misjudgment.
Coal spontaneous combustion is a complex physical and chemical reaction process, and
gases will affect each other. A single index gas cannot effectively predict coal spontaneous
combustion [23,24]. Therefore, it is necessary to establish a multi-parameter index system
to fully and accurately understand the state and development of CSC.

This paper analyzes the types and concentrations of gases produced during the oxida-
tion of lignite, long-flame coal, and lean coal based on temperature-programmed exper-
iments and shows the variation of gas concentration ratios with temperature. Then, the
spontaneous combustion tendency of these three coal samples was characterized. Com-
bined with the variation law of three parameters, namely, index gas concentration, ratio
of gas concentration and fire coefficient, with coal temperature, the indexes suitable for
predicting spontaneous combustion of coal are optimized. A multi-parameter index system
was established to evaluate the spontaneous combustion status of coal more accurately
and reasonably.

2. Experiment

2.1. Materials

Three coal samples of different coalification degrees were selected from coal mines
in China, with coal ranks ranging from low to high being, lignite, long-flame coal, and
lean coal.

Fresh coal samples were collected from the coal mining face and sealed and packed
for transportation back to the laboratory. After that, the oxidized layer on the surface of the
coal samples was peeled off, and then each type of coal was crushed by a jaw crusher and
sieved to find enough coal samples to be used in the experiments. The coal particles were
then dried in a drying oven. Proximate analysis and ultimate analysis experiments of each
coal sample were carried out to understand the coal quality characteristics of the three coal
samples. The results are shown in Table 1.

Table 1. Proximate analysis and ultimate analysis of coal.

No. Coal Rank
Proximate Analysis Ultimate Analysis

Mad (%) Ad (%) Vdaf (%) FCad C O N H S

1# Lignite 26.35 10.86 40.21 67.19 65.12 23.28 1.67 4.06 1.34
2# Long-flame coal 10.23 9.14 31.73 75.93 72.48 17.43 1.52 5.12 0.72
3# Lean coal 8.19 7.05 18.62 78.69 75.95 10.06 1.89 5.61 1.03

Note: Mad is the moisture (air drying basis); Ad is the ash (dry basis); and Vdaf is the volatile (dry ash-free); FCad
is fixed carbon.
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Among them, the moisture, volatile, and ash content of lignite are higher than the
other two coal samples. Lignite has the highest oxygen content and the lowest carbon
and hydrogen content. The types and contents of minerals in coal samples with different
coalification degrees show obvious differences, and the differences in minerals in coal
also have a certain effect on the low-temperature oxidation of coal. The particle size of
coal sample required for the temperature-programmed test is 0.18~0.38 mm. Before the
experiment, coal particles were weighed with a balance and placed in a drying environment
of 40 ◦C for 48 h. After that, they were taken out and put into sealed bags for later use. The
mass of coal samples in each group of experiments was 50 g. Prepare nitrogen cylinders of
99.99% purity and standard oxygen cylinders of 20.96% standard oxygen concentration for
the experiment.

2.2. Methods

In this work, the oxidation characteristics of coal auto-ignition were tested using a
temperature-programmed test. The temperature-programmed experiment system consists
of three parts: an air supply system, a programmed heating system, and a gas analysis
system. The air supply system contains compressed air bottles, pressure-reducing valves,
flowmeters, pressure gauges, etc., which are connected to each other in turn by latex
tubes. The temperature-programmed system consists of a thermostat and a temperature-
programmed control device, which is equipped with a preheating tube and a coal sample
tank. The temperature accuracy is controlled at about 0.1 ◦C. The gas analysis system
consists of a gas chromatograph and a data analysis device. The specific temperature-
programmed experimental system is shown in Figure 1.

 
Figure 1. Temperature-programmed experimental system.

In a temperature-programmed oxidation experiment environment, the oxidation
processing of coal itself will release heat, and the heat accumulation will lead to an increase
in coal temperature [25,26]. Then, the experimental data are recorded by instrument, and
the variation laws of coal temperature, the output of marker gas, and oxygen consumption
with temperature are studied. Finally, the stage of spontaneous combustion to which
the coal belongs is inferred, and early prediction of coal natural ignition is carried out.
The main operation process of temperature programmed experiment can be summarized
as follows:
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• After checking and ensuring good gas tightness and proper functioning of all instru-
ments, coal samples are placed into the coal sample tank, and a layer of asbestos with
a thickness of 2~3 mm above the coal samples is evenly applied to prevent blocking of
the gas path.

• The gas flow required for the experiment was adjusted; that is, dry air (oxygen
concentration: 20.96%) was injected into the coal sample tank at a steady flow rate of
100 mL/min.

• The temperature is set through the temperature control system. The initial temperature
is set to 30 ◦C, and the heating rate is 1 ◦C/min until it is heated to 200 ◦C. Here, ensure
that the heating rate of each experiment is the same so as to improve the comparability
of experimental results. The temperature sensor is used to monitor tank temperature
and coal temperature, respectively, and the two are compared to obtain the crossing
point temperature.

• The gas composition and concentration at different temperatures are monitored by gas
chromatograph. We monitor the outlet gas concentration and the gas concentration
produced by pyrolysis every 10 ◦C increment in temperature. Finally, the experimental
results are recorded and saved in the computer terminal of the data collection system.

3. Results and Analysis

3.1. Outlet Oxygen Concentration and Oxygen Consumption Rate

Three coal samples with different degrees of deterioration were tested for oxidation at
elevated temperatures, and their outlet oxygen volume fractions are shown in Figure 2a.
Then, the oxygen consumption rate of each coal sample was calculated according to the
calculation formula of oxygen consumption rate, as shown in Figure 2b.
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Figure 2. Variation of outlet oxygen concentration and oxygen consumption rate with temperature
(a) outlet oxygen concentration (b) oxygen consumption rate.

It can be seen from Figure 2a that the oxygen concentration at the outlet of coal
samples with different coalification degrees decreases with the increase in temperature.
This indicates that the higher the temperature is, the more oxygen is involved in the
reaction and the more violent the reaction is. When the temperature is fixed, the oxygen
concentration at the outlet of the coal sample tank decreases with the increase in the coal
rank. This indicates that the lower the rank of coal, the more intense the oxidation reaction
of coal. In addition, Figure 2b more clearly shows that the oxygen consumption rate is
positively correlated with temperature and negatively correlated with coal rank [22,27,28].
From the analysis of moisture, the moisture of each coal sample decreases with the increase
in coalification degree. The water adsorbed in the pores inside the coal particles can
evaporate only after the temperature reaches more than 100 ◦C and after a period of
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time. When the water evaporates, more pore structures in the coal are exposed to the air,
accelerating the consumption of oxygen. Therefore, the higher the moisture content of the
coal sample, the faster the oxygen consumption rate to some extent.

3.2. Gas Product Concentration
3.2.1. CO and CO2

In the coal mining face, CO gas is released in large amounts and has good sensitivity,
so CO is often selected as the index gas to divide different stages of the low-temperature ox-
idation process of coal [3,29]. Here, the variation of CO and CO2 concentrations generated
during the oxidation process is statistically shown in Figure 3. With the increase in temper-
ature, CO and CO2 concentrations of coal samples with different coalification degrees show
an increasing trend with the increase in temperature. At the initial temperature of 30 ◦C,
CO was detected in all kinds of coal, indicating that the coal had been slowly oxidized with
O2 at this time, and the CO gas was present throughout the whole process of temperature
increase and oxidation. There is a sudden change in the process of CO production with the
increase in temperature. This abrupt temperature point is the critical temperature of each
coal sample, which is 60 ◦C, 70 ◦C, and 80 ◦C from lignite, long-flame coal, and lean coal.
It can be observed that the higher the degree of coal deterioration, the greater the critical
temperature point. The coal samples with high rank will make the critical temperature
point that appears in the process of heating and oxidizing lag behind.
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Figure 3. Variation of CO and CO2 concentration with temperature (a) CO (b) CO2.

3.2.2. CH4 and C2H6

The variation trend of CH4 and C2H6 gas concentration generated by temperature-
programmed oxidation of each coal sample with temperature is shown in Figure 4. Overall,
the CH4 and C2H6 concentrations of each coal sample increase with the increase in tem-
perature. Only the temperature points at which the two gases are generated are different.
CH4 is always present at all stages of temperature rise, which is due to the fact that the
coal itself contains a small amount of CH4 gas. The temperature points at which C2H6
gas is generated from lignite, long-flame coal, and lean coal are 90 ◦C, 100 ◦C, and 120 ◦C,
respectively. The appearance of these characteristic temperature points can be considered
that the spontaneous combustion and oxidation process of coal has entered an accelerated
stage. At the same time, it also confirms the law that the higher the deterioration degree
of coal, the more lagging the characteristic temperature. In addition, it can be seen from
Figure 4a that the CH4 concentration of Sample 2# of long-flame coal is higher than that of
the other two coal samples because the CH4 content adsorbed in the coal sample is higher.
This presents that the CH4 concentration under different coalification degrees and different
environments is also quite different, and it is not appropriate to use a single CH4 gas to
predict the CSC process [9].
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Figure 4. Variation of CH4 and C2H6 concentrations with temperature (a) CH4 (b) C2H6.

3.2.3. C2H4

Figure 5 illustrates the variation of the olefin gas C2H4 produced during spontaneous
combustion of coal with temperature. It can be observed that C2H4 cannot be monitored
at normal temperature, and the presence of C2H4 can be monitored only when a certain
temperature value is reached. The temperature of C2H4 in coal samples with different
coalification degrees is different. The temperature points of C2H4 gas generated by lignite,
long-flame coal, and lean coal are 110 ◦C, 120 ◦C, and 150 ◦C, respectively. These tempera-
tures can be referred to as dry cracking temperatures and symbolize the entry of the coal
samples into the accelerated oxidation stage. After these temperature points, the C2H4 gas
of each coal sample shows an exponential growth trend with the increase in temperature.
For lignite and long-flame coals, a turning point in C2H4 concentration with increasing
temperature occurs when the temperature is at 160 ◦C when the rate of C2H4 production
becomes greater, and the oxidation reaction is more intense. For lean coal, the temperature
at this transition point is about 180 ◦C. If this phenomenon is found, timely measures need
to be taken to prevent the further expansion of spontaneous combustion.
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Figure 5. Variation of C2H4 concentration with temperature.
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3.3. Change of Product Gas Concentration Ratio

The above only analyzes the change law of single index gas, and it is unreliable to
predict the degree of coal spontaneous combustion only according to this [12,30]. Therefore,
it is necessary to investigate the variation law of some composite index gases. The com-
posite index gas here mainly refers to the ratio between the concentrations of main gases
released during the natural oxidation and heating process of coal, including CO2/CO (α),
C2H6/CH4 (β), C2H4/C2H6 (γ), and C2H4/CH4 (δ).

3.3.1. CO2/CO

Figure 6 shows the variation law of CO2/CO (α) with temperature. The CO2/CO of
coal samples with different coalification degrees are different. For long-flame coal, the
CO2/CO of the whole temperature range is less than 5. Before about 50 ◦C, α decreases
with the increase in temperature, indicating that the rate of CO production in the low-
temperature oxidation stage is greater than that of CO2. At this stage, the coal sample is in
the slow oxidation stage, and the generated CO and CO2 gases are less. Between 50 ◦C and
110 ◦C, α increases with the increase in temperature, indicating that the production rate of
CO2 is greater than that of CO. At this stage, the oxidation reaction rate of coal is increasing.
After 110 ◦C, α decreases with the increase in temperature, and the production rate of CO
is greater than that of CO2. Coal spontaneous combustion enters an accelerated stage, and
the oxidation reaction is intense. Lignite also shows a similar law with long-flame coal, but
the characteristic temperature points of lignite should be compared with long-flame coal in
advance. Additionally, for lean coal, α increases first and then decreases with the increase
in temperature. However, this increasing trend is only in the short temperature stage of
30–40 ◦C. This is due to the higher rank of lean coal and better pore development, in which
some CO2 gas is adsorbed. At the beginning of heating up, CO2 is desorbed out in a short
time, resulting in the production rate of CO2 being greater than that of CO. After 40 ◦C, the
production rate of CO2 is lower than that of CO.
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Figure 6. Variation of CO2/CO with temperature.

3.3.2. C2H6/CH4

Figure 7 demonstrates the variation of C2H6/CH4 (β) with temperature. The β of
lignite shows a tendency to increase and then decrease with increasing temperature, while
the β of long-flame coal and poor coal generally increases with increasing temperature.
Before 180 ◦C, the magnitude of β value is basically in the order of lignite > long-flame
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coal > lean coal. For lignite, after 80 ◦C, the production rate of C2H6 is greater than that of
CH4, and the β value increases rapidly, exceeding 0.3 at 100 ◦C. At this time, the coal sample
entered the accelerated oxidation stage. Between 100 ◦C and 140 ◦C, the increase rate of β
slows down, which is due to the release of large amounts of CH4 gas at high temperatures.
At 140 ◦C, the value of β is about 0.6. After 140 ◦C, the production rate of C2H6 was lower
than that of CH4, and β showed a decreasing trend. In general, the β of lignite fluctuates
greatly with temperature, and the regularity is not obvious. This could be attributed to
lignite’s unique coal structure and mineral composition. For long-flame coal and lean
coal, the temperature point at which β begins to increase is different, 90 ◦C and 110 ◦C,
respectively. They have abrupt temperature points at 130 ◦C and 140 ◦C, respectively. This
means that a strong coal-oxygen complex reaction has taken place in the coal sample, and
C2H6 gas is rapidly generated.
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Figure 7. Variation of C2H6/CH4 with temperature.

3.3.3. C2H4/C2H6 and C2H4/CH4

Figure 8 demonstrates the variation of C2H4/C2H6 (γ) and C2H4/CH4 (δ) with tem-
perature. As can be seen from Figure 8a, γ shows an overall upward trend with the
deepening of oxidation reaction. This indicates that the production rate of C2H4 is stably
higher than that of C2H6. However, the change of γ of lignite with temperature is not
obvious and fluctuates greatly. The γ of the other two coal samples basically increases
with the increase in temperature. As for the long-flame coal, the temperature mutation
points appeared at 120 ◦C, 170 ◦C, and 190 ◦C. However, the temperature mutation point
of lean coal was found at 160 ◦C and 180 ◦C, respectively. In addition, it can be found
from Figure 8b that δ of lignite basically shows a rapid increase and tends to be stable with
temperature but still fluctuates in a small range after 130 ◦C. For lignite, however, a rapidly
increasing mutation point occurs around 110 ◦C, which indicates that the coal enters a
rapid oxidation stage at this stage. For both long-flame coal and lean coal, δ increases with
temperature. This indicates that the production rate of C2H4 is stably higher than that of
CH4. Some temperature mutation points were also observed for long-flame coal and poor
coal, which were 130 ◦C and 160 ◦C for long-flame coal and 160 ◦C and 180 ◦C for lean
coal. In conclusion, the olefin and alkanes ratios show obvious segmentation characteristics
with temperature, and they can be used as indicators to judge the spontaneous combustion
process of coal to some extent.
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Figure 8. Changes in C2H4/C2H6 and C2H4/CH4 with temperature (a) C2H4/C2H6 (b) C2H4/CH4.

4. Establishment of Prediction Index System of Coal Spontaneous Combustion

4.1. Determination of Coal Spontaneous Combustion Tendency

CSC tendency is an inherent characteristic of coal spontaneous combustion, and it is
the primary index for evaluating the risk of natural ignition of coal. It characterizes the
possible degree of spontaneous combustion before coal mining and reflects the correlation
between the physical and chemical properties of coal and its spontaneous combustion
characteristics. According to the standard [31], the determination indexes of spontaneous
combustion tendency of three coal samples with different coalification degrees in this paper
are calculated, and their spontaneous combustion hazard grades are further evaluated. The
calculation equation of the CSC tendency determination index is [31]:

I = φ
(

ϕCO2
× ICO2

+ ϕTcpt × ITcpt

)
− Z1 (1)

where, I is the determination index of coal spontaneous combustion tendency; φ is the
amplification factor, φ = 40; CO2 is the oxygen concentration at the outlet of the coal sample
tank when the temperature of the coal sample reaches 70 ◦C, %; ϕCO2

is the weight of low-
temperature oxidation stage, ϕCO2

= 0.6; ϕTcpt is the weight of the accelerated oxidation
stage, ϕTcpt = 0.4; ICO2

is the oxygen concentration index at the outlet of the coal sample
tank when the coal sample reaches 70 ◦C; ITcpt is the temperature index at the intersection of
coal samples under temperature-programmed condition; Z is the correction factor, Z = 300.

The calculation equation of ICO2
is:

ICO2
=

CO2 − ZO2

ZO2

× 100 (2)

where, ZO2 is the calculation factor of oxygen concentration at the outlet of the coal sample
tank, ZO2 = 15.5%.

The calculation equation of ITcpt is:

ITcpt =
Tcpt − Zcpt

Zcpt
× 100 (3)

where, Zcpt is the calculation factor of the temperature at the crossing point, Zcpt = 140 ◦C.
The measured temperature at the crossing point of each coal sample and oxygen vol-

ume fraction at 70 ◦C were substituted into Equations (1)–(3) to calculate the determination
index of each coal sample, as shown in Figure 9. After that, we obtained the spontaneous
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combustion propensity class of each coal sample according to the classification index of
coal spontaneous combustion propensity, as shown in Table 2.
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Figure 9. Spontaneous combustion tendency of each coal sample (a) Crossing point temperature
(b) Determination index.

Table 2. Statistics of spontaneous combustion tendency grade and index of coal samples.

Coal Samples
Oxygen Volume

Fraction at 70 ◦C (%)
Crossing Point

Temperature (◦C)

Determination Index of
Spontaneous Combustion

Tendency

Spontaneous Combustion
Tendency Grade

Lignite 20.06 153.61 561.14 I
Long-flame coal 20.18 168.32 747.65 II

Lean coal 20.55 187.54 1025.12 II

Note: I stands for highly prone to spontaneous combustion; II indicates prone to spontaneous combustion.

From Figure 9 and Table 2, it can be concluded that the higher the coal rank is, the
higher the cross point temperature and the higher the Determination index of spontaneous
combustion tendency. The spontaneous combustion tendency grades of lignite, long-flame
coal, and lean coal are I, II, and II, respectively, which demonstrates that these three kinds
of coal samples have the danger of spontaneous combustion, and the lower the coal rank,
the greater the danger of spontaneous combustion. Therefore, it is necessary to predict the
process of these three kinds of coal samples to better prevent and control mine fires.

4.2. Prediction Index Optimization of Coal Spontaneous Combustion
4.2.1. Index Gases Concentration and Their Ratios

Through the analysis of the variation law of the generated gases in Section 3, it is clear
that some indicator gases can be applied to predict the spontaneous combustion of coal,
whereas some cannot. When selecting indicators to predict the spontaneous combustion of
coal, attention should be paid to the selection of easy-to-monitor gases, and there is a good
regularity between the concentration of gas indicators and coal temperature.

During the coal heating process, there is a good regularity between CO concentration
and coal temperature. Generally, there will be abrupt changes at critical temperature and
drying temperature. Therefore, CO concentration can be used as the main observation index
to measure the stage and degree of coal spontaneous combustion. Since the emanation of
C2H4 and C2H6 is unstable in the low-temperature oxidation stage, the concentration of
these two gases shows an increasing trend when the temperature exceeds 120 ◦C, which
demonstrates that the macromolecules in the coal body at this stage are not stable, the
concentration of C2H4 and C2H6 is not stable in the low-temperature oxidation stage. This
indicates that a large amount of gas is released from the cracking of macromolecular branch
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chains in coal at this stage, so it can be concluded that the coal temperature has exceeded
the drying temperature. Therefore, C2H4 and C2H6 concentrations can be used as auxiliary
gas indicators. Considering that some CH4 and CO2 occur in coal, the content of CH4 and
CO2 varies greatly in coal under different environments and coalification degrees; it is
sometimes impossible to determine whether the changing trend of CH4 and CO2 is caused
by oxidation reaction or desorption effect [9,24,32]. Therefore, both gases are somehow not
good enough to predict the spontaneous combustion of coal.

The overall CO2/CO, C2H6/CH4, C2H4/C2H6, and C2H4/CH4 show obvious phasing
characteristics with temperature, and some characteristic temperature points appear. It is
possible to determine whether the coal has entered the stage of dry cracking and accelerated
oxidation based on their trends. However, the oxidative decomposition of coal produces
alkanes and olefin gases, and their generation mechanism is not clear at present. In the
low temperature oxidation stage, alkanes and olefin gases are not stable and cannot react
correctly with the coal temperature. In general, the ratio of alkane to olefin gas concentra-
tion can only predict the process of coal spontaneous combustion at high temperatures.
Therefore, CO2/CO, C2H6/CH4, C2H4/C2H6, and C2H4/CH4 can be used as indicators to
assist in judging the state and degree of coal spontaneous combustion oxidation [17].

4.2.2. Fire Coefficient Index

Single gas prediction index is affected by airflow, gas extraction location, and so
on, which results in misjudgment of the spontaneous combustion state of coal. For this
reason, Graham put forward the concept of the fire coefficient in 1914. The percentage
of fire coefficient can be calculated by the increment of CO2 concentration (+ΔCO2), CO
concentration increment (+ΔCO), and reduction of O2 concentration (−ΔO2), including the
first fire coefficient (R1), the second fire coefficient (R2), and the third fire coefficient (R3).
The calculation formula of the specific fire coefficient is [14,33,34]:

R1 = +ΔCO2/(−ΔO2)× 100% (4)

R2 = +ΔCO/(−ΔO2)× 100% (5)

R3 = +ΔCO/(+ΔCO2)× 100% (6)

Combining with Equations (4)–(6) to analyze the data measured in the test, the three
fire coefficients of the coal samples with three different degrees of coalification were
calculated separately, as shown in Figure 10.

From Figure 10a, it can be clearly seen that at the initial stage of heating up, the
R1 value increases with the increase in temperature and then reaches a peak value. The
peak values of different coal samples correspond to different temperature points. The
corresponding temperature points of lignite, long-flame coal, and lean coal are about
60 ◦C, 70 ◦C, and 70 ◦C, respectively. After these temperature points, the rate of oxygen
consumption is greater than the rate of CO2 production under the faster coal-oxygen
complexation, resulting in a decrease in the R1 value. However, at around 120~130 ◦C, the
value of R1 begins to increase sharply. This is because the coal enters a rapid oxidation
phase where the rate of increase in CO2 concentration is greater than the decrease rate of
O2 concentration.

As can be observed from Figure 10b, the value of R2 between 30 ◦C and 140 ◦C
is relatively small, basically at about 10%. Taking lignite as an example, the R2 value
exceeds 10% at about 60 ◦C, which means that the coal temperature has exceeded the
critical temperature and entered the stage of spontaneous combustion. Between 140 ◦C
and 150 ◦C, the R2 value exceeds 25%, and the coal-oxygen recombination is strong and
enters the dry cracking stage. When the R2 value exceeds 50% between 170 and 180 ◦C, it
means that the coal sample has undergone a violent oxidation reaction, and corresponding
countermeasures should be taken. However, long-flame coal and lean coal show a similar
pattern with lignite, only the corresponding temperature turning point is different.
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Figure 10. Variation curves of fire coefficient of different coal samples with temperature (a) R1 (b) R2

(c) R3.

Furthermore, from Figure 10c, it can be found that the R3 value of lignite gradually
increases with the increase in coal temperature from 30 ◦C to about 110 ◦C. After 110 ◦C,
the value of R3 increases rapidly and reaches the first peak value. It indicates that the
combination of coal and oxygen increases, and the coal enters the stage of dry cracking.
After that, a peak value of R3 appeared at 160 ◦C and exceeded 100%. The fluctuation of R3
with temperature is large, and there is no obvious pattern, so it is appropriate to use the R3
value as an auxiliary indicator. Overall, fire coefficient R2 can comprehensively predict the
entire oxidation stage of coal from low temperature to high temperature, and it is suitable
to be used as the main indicator to predict coal spontaneous combustion, while R1 and R3
are used as auxiliary indicators.

4.3. Establishment of Prediction Index System of Coal Spontaneous Combustion

Based on the above analysis, a multi-index system can be developed to predict the
spontaneous combustion state of coal, which is shown in Table 3. CO concentration,
C2H6/CH4, and the second fire coefficient R2 are the main gas indexes for predicting
the spontaneous combustion of coal. C2H4 concentration, C2H6 concentration, CO2/CO,
C2H6/CH4, C2H4/C2H6, C2H4/CH4, the first fire coefficient R1, and the third fire co-
efficient R3 were used as auxiliary gas indexes. When applying this index system, the
spontaneous combustion of coal should be evaluated according to the parameters mea-
sured in the test and combined with the actual measurement in the field. During this
period, relevant gas index parameters should be constantly modified to match the actual
coal seam ignition situation and finally effectively guide the coal mine fire prevention and
control work.
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Table 3. Optimization of multi-parameter indexes for coal spontaneous combustion prediction.

Prediction
Indicators

Gas Concentration Gas Concentration Ratio Fire Coefficient

CO C2H4 C2H6 C2H6/CH4 CO2/CO C2H6/CH4 C2H4/C2H6 C2H4/CH4 R2 R1 R3

Main
indicators Yes No No Yes No No No No Yes No No

Auxiliary
indicators No Yes Yes No Yes Yes Yes Yes No Yes Yes

5. Conclusions

(i) During the heating process of the coal sample, with the increase in temperature, the
oxygen concentration at the outlet decreases gradually, while the oxygen consump-
tion rate and the concentration of each generated gas gradually increase. Oxygen
consumption rate is negatively correlated with coal rank. The higher the coalifica-
tion degree of coal, the more lagging some characteristic temperature points in the
spontaneous combustion process.

(ii) Determination indexes of the spontaneous combustion tendency of three coal samples
with different coalification degrees were determined, and their spontaneous com-
bustion hazard levels were evaluated. Lignite is classified as Class I susceptible to
spontaneous combustion, while long-flame coal and lean coal are classified as Class II
capable of spontaneous combustion. Three kinds of fire coefficients were calculated
to determine spontaneous combustion of coal. Taking lignite as an example, the range
of critical temperature points in the spontaneous combustion process evaluated by
the second fire coefficient R2 is 60~70 ◦C, and the range of dry cracking temperature
points is 140~150 ◦C.

(iii) A multi-parameter index system was established to predict the spontaneous combus-
tion state of coal, in which the main indexes include CO concentration, C2H6/CH4,
and the second fire coefficient R2. Auxiliary indicators include: C2H4 concentration,
C2H6 concentration, CO2/CO, C2H6/CH4, C2H4/C2H6, C2H4/CH4, the first fire
coefficient R1 and the third fire coefficient R3. In the actual situation, continuous
correction of the relevant gas index parameters is required to comprehensively de-
termine the spontaneous combustion of coal and provide support for fire prevention
and suppression work in coal mines.
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Abstract: The functional group structures of coal molecules are one of the most important factors affecting
spontaneous combustion. However, it is difficult to determine the exact effects of such structures. Extraction
technology is able to modify the functional groups in coal as a means of inhibiting spontaneous combustion
reactions. The present work extracted coal from the Caojiatan mine in northern Shaanxi, China, with various
solvents. The extraction effectiveness of these solvents was found to decrease in the order of dioctyl sulfosucci-
nate (AOT) > water > n-hexane > cyclohexane + AOT + ethanol > cyclohexane > ethanol > methanol. With
the exception of the AOT, the concentration of functional groups in the extracted coal was decreased
compared with that in a control specimen extracted using only water. Ethanol, n-hexane, and
methanol provided the optimal extraction efficiencies in terms of capturing coal molecules with
aromatic structures, aliphatic structures, and oxygen-containing groups, respectively. The results of
this work are expected to assist in future research concerning the extraction of coal molecules with
specific functional groups. This work also suggests new approaches to the active prevention and
control of spontaneous combustion during the mining, storage, and transportation of coal.

Keywords: coal spontaneous combustion; targeted extraction; functional groups

1. Introduction

Coal mining efficiency has been greatly improved by the adoption of retreating subsi-
dence, high-rise grouting, and longwall mining together with other technologies. However,
these techniques have also led to increasingly complex and harsh underground mining
environments that are associated with spontaneous combustion and frequent underground
fires [1–4]. Unfortunately, at present, the prediction and analysis of such incidents is chal-
lenging and new technologies together with in-depth theoretical research are required to
identify risk factors [5,6]. Assessments of these factors would allow the effective prevention
and control of coal spontaneous combustion. In particular, there is a need to study the
characteristics of spontaneous combustion in coal seams.

In recent years, the rapid development of microscopic-scale analytic technologies has
allowed the reaction characteristics of coal molecules to be evaluated. Such analyses are
commonly based on the use of solid-liquid extraction to separate various mixtures. This
separation technology is widely used in many fields, including medicine and biology, as
well as in the food and chemical industries. As an example, Li et al. [7] extracted corn
whiskers with both ethyl acetate and methanol to obtain DL-epiloliolide, N-p-hydroxy-
cis-coumaroyltyramine, β-Sitosterul, and other compounds. Wang et al. [8] extracted
extracellular proteins and alkaline phosphatase from thallus with n-butanol and used
this extract to inhibit the activity of Staphylococcus aureus. Hu et al. [9] used various
polar solvents (ethyl acetate and n-butanol) to extract nuclear biomass components from
hawthorn and studied the antioxidant properties of these substances. Wang [10] obtained

Fire 2023, 6, 307. https://doi.org/10.3390/fire6080307 https://www.mdpi.com/journal/fire233



Fire 2023, 6, 307

anti-aging compounds from dandelion, chicory root, and Perilla leaves using a supercritical
extraction method.

The successful application of extraction in various industries suggests that this tech-
nique could also be applied to the prevention and control of coal fires. Because the molecu-
lar structure of coal is based on the condensation polymerization of benzene rings with
alkyl side chains and coal also contains bridging bonds and other structures, it should
be possible to use various solvents to separate coal molecules according to their physical
and chemical properties [11–15]. Subsequent analyses of the microscopic coal structures
could provide information concerning the spontaneous combustion mechanism. In prior
work, Zhang et al. [16] used a variety of solvents, including cyclohexane and carbon
disulfide, to carry out extraction trials and determined the capacities of these solvents.
Zhang also employed Fourier transform infrared (FTIR) spectroscopy to determine the
roles of various functional groups in the spontaneous combustion of coal. Ma et al. [17,18]
extracted Hefeng (a location name) coal with petroleum ether, methanol, carbon disul-
fide, and acetone using a continuous five stage process involving ultrasonication together
with either single or mixed solvents. The molecular structures of the extracted materials
were ascertained using gas chromatography-mass spectrometry. The combination of ace-
tone and carbon disulfide was found to promote the dissolution of coal molecules with
hydroxy groups. Deng et al. [19,20] used an imidazole-based ionic liquid to extract coal
specimens while degrading various functional groups. Thermogravimetric data indicated
that [BMIM][BF4] had the strongest effect, based on the reaction mechanism shown in
Figure 1. Marek et al. [21] proposed that alcohols could be the most effective extraction
solvents and performed trials using n-heptane, toluene, n-butanol, and three other isomeric
alcohols with five Polish lignite specimens. The results showed that n-butanol provided
the highest degree of extraction. The results of this work also indicated that the extraction
efficiency was maximized only when the solvent was able to extract specific functional
groups so as to weaken the spontaneous combustion of the extracted coal sample.

 
Figure 1. Diagram of the reaction between an ionic liquid and functional groups in coal molecules.
(Figure source: Author’s own work).

Based on this prior work, it is evident that the active functional groups such as oxygen-
containing functional groups and alkyl side chain groups in coal are the main causes
of spontaneous combustion of coal. The bridge bonds of coal molecules can be broken
through extraction technology, resulting in functional groups being stripped. Finally, the
spontaneous combustion of coal will be weakened. However, the effects of this extraction
process under specific conditions require further study [22,23]. In the present work, the
effects of different extraction solvents on the functional group structure of coal are compared
based on trials involving pure solvents and solvent mixtures. This research is expected to
provide theoretical guidance for subsequent research concerning the molecular structure of
coal and the effects of extraction.
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2. Experimental Section

2.1. Selection of Extractants

The spontaneous combustion of coal is an extremely complex process involving
the reactions of various functional group structures, with certain structures being more
reactive [24]. For this reason, suitable extraction agents must be identified based on
the specific groups being targeted. The main categories of coal structures comprise the
following. Firstly, macromolecular aromatic structures that form the main carbon chain
skeletons in coal molecules will actively participate in combustion. Secondly, aliphatic
side-chains will play a key role in terms of heat generation by participating in cracking
reactions with oxygen. Lastly, oxygen-containing structures, such as hydroxy or phenolic
groups, may also undergo reactions. During combustion, oxygen adsorption reactions
generate energy and so intensify the initial combustion reaction. Coal is made of condensed
ring polymers primarily comprising aromatic and nonaromatic moieties connected through
bridging bonds [25]. The solvent extraction of coal is intended to remove active groups
such as these by degrading the connecting structures, such that spontaneous combustion
reactions are unlikely to occur. Table 1 summarizes a number of functional groups found in
coal molecules along with suitable extractants for such groups.

Table 1. Extractants for coal and their operational principles [26–31].

The Name of the Reagent For the Group Structure Action Principle

carbon disulfide associated structures (e.g., macromolecular
aromatic hydrocarbons)

It affects charge transfer and breaks
hydrogen bonds

cyclohexane –C–O–C–, –OH and aliphatic hydrocarbon Sabotaging the association between molecules

N, N-dimethyl acetamide aliphatic hydrocarbon radical High polarization; it has both electron donors
and acceptors

acetone aliphatic hydrocarbon–CH3, –C–O–C–, –CH3,
–CH2 and heteroatomic compounds Like dissolves like

ethanol structure of aliphatic hydrocarbons Dissolve part of aliphatic structure or high
polarity side chain group unit

ethylenediamine –NH2, –CH2, –OH and other hydrogen
bonds contain structures

It has a strong ability to supply electrons and
break hydrogen bonds

methanol aliphatic side chains and highly polar groups It has strong solubility for polar compounds

petroleum ether aliphatic hydrocarbons, aromatic
hydrocarbons and heteroatomic compounds Alkyl substitution reaction

n-hexane hydrogen bonds with polar molecules Absorption of organic matter

ionic liquid
different functional groups can be extracted
by simple preparation and modification of

ionic structures

Destruction of hydrogen bonds, branched
carbonyl groups and other structures; Reduce or
disperse oxygen-containing functional groups

reverse micelles polar structures such as proteins
Reverse micellar nanoaggregates are formed by

directional arrangement of hydrophilic or
hydrophobic structures to control group flow
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In theory, methanol will undergo alcoholysis reactions with coal molecules under
relatively mild conditions [32]. The associated rupture of ester, hydrogen, or oxygen-
containing bridging bonds by hydrogen supplied from the methanol will disrupt the
linkages between aromatic rings in the coal macromolecules. The hydroxyl group and
non-polar alkyl moiety in the molecular structure of ethanol also enable this solvent to
dissolve both ionic compounds and non-polar substances, while n-hexane is commonly
used in the food industry for the extraction of oils from various foods or spices [33].
Cyclohexane is able to dissolve a wide range of organic compounds. Reverse micelles
extraction [34] is able to selectively solubilize polar compounds via the internal water cores
of nano-scale aggregates and subsequently transfer the extracted material to the aqueous
phase. The exchange of materials across the interface between the two phases is blocked
by a layer of these aggregates to produce a separation effect, as shown in Figure 2. As an
example, the surfactant dioctyl sulfosuccinate (AOT) has a solubilization effect (Increased
solubility) based on the cleavage of hydrogen bonds formed by amide groups and is
capable of extracting various analytes or improving extraction efficiency over a wide range
of polarity [35].

Figure 2. The reverse micelle extraction process. (Figure source: Author’s own work).

The present work examined the extraction of coal by n-hexane, cyclohexane (CYH),
ethanol (AE), methanol (MT), and a surfactant (AOT), either alone or combined.

2.2. Extraction Procedures

Different types of coal will exhibit variations in pore structure, chemical composition,
and functional groups, and long flame coal is more readily extracted compared with lignite,
which has a high degree of metamorphism. Long flame coal accounts for the majority
of China’s raw coal production. Therefore, in this study, raw long flame coal from the
Caojiatan mine in northern Shaanxi, China, was employed as a model material (the location
of Caojiatan Mine is shown in Figure 3). Fresh coal samples were collected from the working
face of the mining area and then sealed and transferred to the laboratory. After unpacking,
the outer oxide layer of the raw coal was removed and the coal was pulverized [36]. Both
an industrial analysis and elemental analysis of three batches of coal were performed
according to the GB/T 212-2008 standard, with the results presented in Table 2.
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Figure 3. The location of Caojiatan Mine.

Table 2. The results of industrial analysis and elemental analysis of coal samples.

Caojiatan
(CJT) Raw

Coal Sample

Proximate Analysis/% Elemental Analysis/%

Moisture
Content

Mad

Ash Content
Ad

Volatile Matter
Content

Vd

Fixed Carbon
Content

FCad

C H N O

CJT1 4.72 3.65 35.63 57.85 75.93 4.987 1.135 17.948
CJT2 4.66 3.62 36.17 57.41 75.62 4.966 1.122 18.292
CJT3 4.70 3.57 36.40 57.21 75.91 4.900 1.268 17.922

average value 4.69 3.61 36.06 57.49 75.82 4.951 1.175 18.054

The pulverized coal samples were subsequently screened to obtain specimens with
0–0.12, 0.12–0.15, 0.15–0.18, 0.18–0.25, and 0.25–0.6 mm particle sizes, each with a mass of
200 g. The coal samples in each group were then sealed. A total of 10 groups of extraction
solvents (each with a volume of 5 L) were prepared, each containing 20% solute (meaning
that 1 kg of coal was added to the 5 L solvent). Each 1 kg coal sample was transferred to
a wide-mouth flask along with the solvent, followed by thorough stirring. The flask was
subsequently stoppered and allowed to sit under dark conditions for 4 h. Following this
static extraction, the coal was collected and dried at 60 ◦C under a pressure of 0.9 MPa.
After drying, the extracted coal was characterized. A small amount of the dry extracted
coal sample was removed, weighed, and ground to a particle size of 100–180 mesh then
transferred to a sealed tank to be tested. The specific process is shown in Figure 4.
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Figure 4. Flow chart summarizing the experimental procedure.

2.3. Extraction Validation

To ensure that the coal samples had been extracted effectively, the extent of extraction
was calculated for each specimen based on the mass before and after extraction. The
relevant equation is

Wi =
(1 − Mad)× M1 − M2

(1 − Mad − Ad)× M1
× 100% (1)

where Wi is the extent of extraction (%), Mad is the moisture content, Ad is the ash content,
M1 is the mass of the raw coal (g), and M2 is the mass of the extracted coal sample (g). Single
solvent extractions and extractions with synergistic mixtures of solvents (compared to a
single solvent) were performed along with a water extraction as a control (decrease error).

2.4. Quantitative Analysis of Functional Groups

FTIR spectra were acquired to quantitatively determine the extent to which various
functional groups were extracted, using a Vertex 70V spectrometer with each coal specimen
first processed into a KBr pellet. The peak fitting function of the Origin software package
was used to process the spectra acquired from each extracted coal sample.

3. Extraction Effectiveness

3.1. Extraction Results

Table 3 summarizes the extraction efficiencies associated with the various solvents.

Table 3. Extraction efficiencies of each solvent.

Test Group
Quality of

Raw Coal/g
Quality of the Extracted

Coal Sample/g
Extraction Rate/%

MT 1045 953 4.457
CYH 1038 966 2.359

N-Hexane 1022 951 2.449
CYH + AOT + AE 1036 1077 −9.430

AE 1035 960 2.749
AOT 1018 1115 −15.505

It is evident that the AOT provided a negative extraction rate while the extraction
efficiencies of the other solvents decreased in the order of MT > AE > n-hexane > CYH.
The majority of these common solvents had a limited extraction effect considering the
large quantity of coal that was extracted in each trial. Therefore, it is possible that not
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all functional group structures in the coal samples were completely extracted and lower
efficiencies were obtained compared with those obtainable from smaller samples.

The dried specimen following extraction with the AOT contained a white crystalline
material mixed among the extracted coal. It is thought that the AOT filled the internal
pores of the coal and so was not completely removed, resulting in an apparent increase in
mass and the negative extraction value. The present data also indicate that the extraction
effects of solvent mixtures were superior to those of single solvents.

3.2. Analysis of Infrared Spectra

As noted, coal molecules are primarily made of macromolecular structures comprising
crosslinked chains of aromatic rings. These aromatic backbones also contain side chains
and functional groups and are connected via hydrogen bonds and van der Waals forces [37].
In the present work, FTIR spectroscopy was employed to ascertain which functional groups
were present in the various specimens. Spectra were acquired from the raw coal samples
and six groups of extracted coal using the KBr pellet method. After applying baseline
correction and smoothing the spectra the data were compared, as shown in Figure 5.

From Figure 5a, it is apparent that the spectra of the extracted coal samples from
the various groups were quite similar to that of the coal immersed in water as a control,
with some differences in intensity at certain wavelengths. These spectra exhibit peaks
related to C-H bonds at 819 and 876 cm−1, C-O bonds at 1045 and 1084 cm−1, -CH3
groups at 1370 cm−1, C=C bonds between 1447 and 1617 cm−1, -COOH groups at 2338
and 2361 cm−1, -CH2 groups at 2925 cm−1, -CH3 groups at 2968 cm−1, -CH groups at
3060 cm−1, and -OH groups at 3385 cm−1. These spectra indicate that coal molecules
containing these groups were readily extracted [38,39]. The spectrum obtained from the
raw coal is presented in Figure 5b and the functional groups identified in these materials
are summarized in Table 4.

(a) 

Figure 5. Cont.
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(b) 

Figure 5. FTIR spectra acquired from (a) various extracted coal specimens and (b) raw coal.

Table 4. Infrared absorption peaks generated by the raw coal and associated functional groups.

Spectral Peak
Number

Peak
Position/cm−1

Absorption Peak
Band/cm−1

Spectrum Peaks
Belonging

The Group Type

1 819 798–840 C-H external bending vibration of ectopic
substituted benzene substituted benzene

2 876 840–931 Substituted benzene C-H out-of-plane
bending vibration substituted benzene

3 1045 931–1064 Saturated fat ether C-O-C
symmetric stretching C-O

4 1084 1064–1108 C-O stretching vibration C-O
5 1370 1311–1388 -CH3 symmetric variable Angle vibration -CH3
6 1447 1388–1533 C=C frame stretching vibration in

aromatic ring/thick ring
C=C

7 1617 1533–1847 C=C
8 2338 2300–2344 -OH stretching vibration in -COOH -COOH
9 2361 2344–2389 -COOH

10 2925 2883–2946 Methylene C-H stretching vibration -CH2

11 2968 2946–3012 Antisymmetric stretching vibration of
methyl group -CH3

12 3060 3012–3100 Aromatics C-H stretching vibration -CH
13 3385 3100–3737 -OH in phenols, alcohols, carboxylic acids -OH

These spectra provide evidence for several peaks related to aromatic structures. Specif-
ically, these peaks comprised the C-H bending vibration of substituted benzene at 819 cm−1,
C-H out-of-plane bending vibration of substituted benzene at 876 cm−1, C=C stretching
vibrations at 1447 and 1617 cm−1, and C-H stretching vibration at 3060 cm−1. The peaks
related to alkyl groups were the -CH3 symmetric stretching vibration at 1370 cm−1, -
CH2- stretching vibration at 2925 cm−1, and -CH3 antisymmetric stretching vibration at
2968 cm−1. The main absorption peaks related to oxygen-containing functional groups
were attributed to the symmetric expansion of C-O-C in saturated ethers at 1045 cm−1, the
C-O stretching vibration at 1084 cm−1, the -OH stretching vibrations of -COOH groups
at 2338, and 2361 cm−1, together with an -OH peak at 3385 cm−1. The peak observed at
approximately 2400 cm−1 was determined to result from CO2 gas and so can be ignored.
It should be noted that only qualitative assessments were possible based on these spectra
because of the possibility of overlapping peaks and other issues, and so additional analysis
was required.
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3.3. Infrared Data Processing

To accurately assess the functional groups in each specimen and evaluate the extraction
effects of the solvents, seven groups of spectra were processed by peak fitting to allow
quantitative analysis. This peak fitting was performed using the Origin software Peak
Fit module with Gaussian fitting and manual selection of peaks. The first derivative of
each spectrum was calculated and Savitzky–Golay smoothing was applied, after which
suitable functions were obtained for the relevant fitting parameters and sub-peak fitting
was performed. Figure 6 presents an example of this process using the spectra obtained
from the raw coal. The resulting peak fitting data are summarized in Table 5. The fitting
results for the other six groups of FTIR data are shown in Figure 7.

Figure 6. Peak fitting results for the raw coal FTIR spectrum.

Table 5. Peak fitting results for the raw coal FTIR spectrum.

Type The Average Center Absorption Peak Attribution Peak Area

aromatic hydrocarbon

819.8679 substituted benzene 7.73811

874.0013 substituted benzene 11.41824

1456.101 C=C 106.9726

1606.582 C=C 78.49535

1906.579 C-H 2.10692

3045.912 aromatic hydrocarbon 86.86852

aliphatic hydrocarbon

1362.781 -CH3 7.33262

2878.893 -CH2 72.19418

2953.148 -CH3 35.99535

2970.776 -CH3 54.26141
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Table 5. Cont.

Type The Average Center Absorption Peak Attribution Peak Area

oxygen-containing
functional group

1043.967 C-O 8.10314

1080.765 C-O 2.86622

1083.765 C-O 29.71096

1186.923 C-O 32.11245

1299.023 C-O 104.4787

1702.144 C=O 66.69472

2104.148 -COOH 4.98769

2210.091 -COOH 9.21649

2341.694 -COOH 26.25363

2361.334 -COOH 2.15573

2518.659 -COOH 59.63693

2634.681 -COOH 23.09355

2749.189 -COOH 62.38078

3192.25 -OH 50.10662

3374.61 -OH 349.8566

3557.065 -OH 35.27509

(a) (b)

(c) (d)

Figure 7. Cont.
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(e) (f)

Figure 7. Peak fitting results for FTIR spectra acquired from coal samples extracted using (a) MT,
(b) CYH, (c) n-hexane, (d) CYH + AOT + AE, (e) AE and (f) AOT.

This peak fitting indicated that several of the original peaks represented two or more
overlapping peaks. Therefore, this analytical process was used to assess the functional
groups in the coal specimens.

The area of each fitted peak was calculated and the peaks were assigned to oxygen-
containing, aromatic, or alkyl structures.

3.4. Quantitative Analysis of Functional Groups

The data in Figures 5–7 allow an assessment of the functional groups in the various
extracted coal samples. The results of this assessment are provided in Figure 8.

Figure 8. Total areas of FTIR peaks related to group structures in extracted coal samples.

The extent of extraction was determined from the cumulative FTIR peak areas
obtained from each extracted coal sample. These cumulative areas were found to de-
crease in the order of AOT (cumulative area of the peak: 1403) > YM (1330) > n-hexane
(1191) > CYH + AOT + AE (1184) > CYH (1145) > AE (1121) > MT (1069) (the later the or-
der, the better the extraction effect). Thus, it was confirmed that all the solvents exhibited
relatively effective extraction of the coal. Figure 8 demonstrates that each solvent effectively
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extracted aromatic structures, although the extraction efficiency decreased in the order
of YM > AOT > CYH > MT > n-hexane > CYH + AOT + AE > AE. The best-performing
solvents for aromatic groups were therefore n-hexane, CYH + AOT + AE and AE. All sol-
vents showed a good extraction effect for C-H bonds based on the peak at 1920 ± 10 cm−1.
The relative proportion of aromatic C=C-H bonds in each of the extracted coal samples
was lower than that in the raw coal sample. The material extracted using MT showed the
lowest C=C bond content (close to 84% of that in the raw coal). Compared with the other
types of functional groups, C=C bonds were found to be more stable and more difficult to
degrade during the extraction process.

Figure 8 shows that the various solvents effectively extracted aliphatic structures and this
effect decreased in the order of AOT > AE > YM > MT > CYH > CYH + AOT + AE > n-hexane.
Thus, the best solvents for this purpose were n-hexane, CYH and CYH + AOT + AE.
With the exception of the sample extracted using AOT, the total areas of the peaks at
2875 ± 10 cm−1 (the methylene C-H stretching vibration) and 2950 ± 15 cm−1 (the methyl
group antisymmetric stretching vibration) of all the extracted coal samples were lower than
those of the raw coal. The -CH3 content of the material extracted with AOT was higher
than that in the raw coal. Figure 8 demonstrates that the various solvents were able to
effectively extract coal molecules with oxygen-containing structures. This effectiveness
decreased in the order of YM > n-hexane > AOT > CYH + AOT + AE > CYH > AE > MT,
and CYH, and AE and MT were the optimal solvents in this regard.

The cumulative areas of the peaks related to C-O bonds between 1100 ± 10 and
1300 ± 20 cm−1 in the spectra of the extracted coal samples were lower than those obtained
from the raw coal. A comparison of the areas of peaks related to hydroxyl structures
between 3250 ± 20 and 3850 ± 5 cm−1 indicated that, although the peak area of the
CYH + AOT + AE sample was lower than that of the raw coal, the extraction effect of this
combination was far lower than those obtained using solely CYH or AE. The peak area of
the AOT specimen was closer to that of the raw coal. The area of the peak related to methyl
structures obtained from the coal extracted with AOT was approximately 160.49% that of
the raw coal sample. Based on the single-phase fluidity of the reverse micelle layer formed
by the AOT, it is evident that this surfactant effectively extracted methyl group structures
while excluding structures containing -CO and -COOH groups.

4. Conclusions

Methanol, cyclohexane, n-hexane, ethanol, and AOT were used to extract long-flame
coal from the Caojiatan Coal Mine. The extraction rate was found to decrease in the order
of MT (4.457%) > AE (2.749%) > n-hexane (2.449%) > CYH (2.359%). The cumulative FTIR
peak areas obtained from the various trials decreased in the order of AOT (with a value
of 1403) > YM (1330) > n-hexane (1191) > CYH + AOT + AE (1184) > CYH (1145) > AE
(1121) > MT (1069). The optimal solvents for the extraction of aromatic structures were
determined to be n-hexane, CYH + AOT + AE and AE, while those for aliphatic structures
were n-hexane, CYH and CYH + AOT + AE. Finally, CYH, AE, and MT showed the most
efficient extraction of oxygen-containing structures.
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