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Preface

A fundamental aspect of contemporary forest science is the assessment and prediction of forest
biomass. This provides a basis for understanding, monitoring, and managing carbon stocks, forest
productivity, and ecosystem resilience. As biomass varies significantly depending on species, stand
structure, ecological gradient, and site conditions, robust models are essential for accurately capturing
this natural diversity.

Biomass modelling relies on an integrated framework supported by field measurements
(including destructive sampling), forest inventory data, remote sensing technologies, vegetation
indices, and complementary environmental datasets. The rapid advancement of data science and
artificial intelligence has transformed the field of biomass modelling. Machine learning, deep
learning, and artificial neural networks are increasingly being used to develop biomass models and
improve predictive performance at different spatial and temporal scales.

This reprint brings together a collection of scientific contributions that provide a comprehensive
overview of biomass estimation methods and their practical applications. Topics covered include
tree-level and stand-level modelling, methodological advances, integration with remote sensing
data, and decision-support applications in forest and environmental management. The aim is to
provide readers with a consolidated reference and an up-to-date set of relevant contributions for those
interested in advancing their knowledge of biomass models. These advancements are essential for
evaluating forest management strategies, estimating carbon sequestration potential, and supporting

broader assessments of ecosystem services.

Ana Cristina Gongalves and Teresa Fidalgo Fonseca
Guest Editors
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Application of Machine Learning for Aboveground Biomass
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Abstract: Accurate operational methods used to measure, verify, and report changes in
biomass at large spatial scales are required to support conservation initiatives. In this
study, we demonstrate that machine learning can be used to model aboveground biomass
(AGB) in both tropical and temperate forest ecosystems when provided with a sufficiently
large training dataset. Using wavelet-transformed airborne hyperspectral imagery, we
trained a shallow neural network (SNN) to model AGB. An existing global AGB map
developed as part of the European Space Agency’s DUE GlobBiomass project served as
the training data for all study sites. At the temperate site, we also trained the model on
airborne-LiDAR-derived AGB. In comparison, for all study sites, we also trained a separate
deep convolutional neural network (3D-CNN) with the hyperspectral imagery. Our results
show that extracting both spatial and spectral features with the 3D-CNN produced the
lowest RMSE across all study sites. For example, at the tropical forest site the Tortuguero
conservation area, with the 3D-CNN, an RMSE of 21.12 Mg/ha (R? of 0.94) was reached in
comparison to the SNN model, which had an RMSE of 43.47 Mg/ha (R? 0.72), accounting
for a ~50% reduction in prediction uncertainty. The 3D-CNN models developed for the
other tropical and temperate sites produced similar results, with a range in RMSE of
13.5 Mg/ha-31.18 Mg/ha. In the future, as sufficiently large field-based datasets become
available (e.g., the national forest inventory), a 3D-CNN approach could help to reduce the
uncertainty between hyperspectral reflectance and forest biomass estimates across tropical
and temperate bioclimatic domains.

Keywords: convolutional neural network; REDD+; wavelet scattering; continuous wavelet
transform; deep learning; spectra-spatial feature extraction

1. Introduction

Forests are globally important ecosystems that play critical roles in maintaining the
carbon balance of our planet through a dynamic cycle (e.g., growth, decay, disturbance, and
succession), storing and releasing carbon, and mitigating climate change [1,2]. In recent
years, international efforts in environmental conservation, like the United Nations’ initiative
REDD+ program (Reducing Emissions from Deforestation and Forest Degradation) [3,4],

Forests 2025, 16, 477 https://doi.org/10.3390/£16030477
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have focused on initiatives in developing countries. The REDD+ program serves as a
global forest governance system to help mitigate anthropogenic disturbance of forests
at multiple spatial scales. Since its inception, the REDD+ initiative has sparked global
discussions on necessary actions to help minimize the impacts of deforestation in tropical
forests [4]. Thus, periodic mapping and monitoring of aboveground biomass (AGB) have
become increasingly important and have been viewed as key initiatives to support REDD+
and broader forest conservation goals [5]. Similarly, in Canada, the government has a
responsibility to maintain national forest inventory and to help meet international and
countrywide reporting requirements on the state of forest resources [6]. The Canadian
government has committed to forest carbon accounting and modeling at the national
level to monitor the periodic changes in forests and their impact on climate change. This
commitment is evidenced in the implementation of initiatives such as Canada’s National
Forest Carbon Monitoring, Accounting and Reporting System (NFCMARS) [7].

A major challenge in implementing the REDD+, NFCMARS, and similar conservation
initiatives is the reliable quantification of AGB at a large spatial scale (e.g., ecosystem or
country levels). The traditional methods for quantifying AGB involve direct (destructive)
and indirect (non-destructive) sampling approaches. While direct sampling involves felling
trees and weighing them to determine their mass, indirect sampling relies on in situ
measurements of the physical and structural parameters of tree stands to estimate AGB
using previously determined allometric equations [8-10]. However, relying solely on field
methods is limited and laborious, especially when capturing multitemporal changes in
biodiversity across large landscapes [11]. Operational methods that can be used to measure,
verify, and report changes at the landscape scale are still required to support conservation
initiatives (such as REDD+) and mitigate global forest loss accurately and reliably [12].

Empirical models (e.g., parametric and nonparametric regression) that combine in
situ measurements with spectral and other information from active and passive remote
sensing systems have shown promising results in estimating AGB [13-16]. Remote sensing
techniques are used to map landscape-scale variability in forest AGB across environmen-
tal gradients, thereby serving as a cost- and time-saving alternative [17-19]. Due to the
absence of a standardized remote-sensing-based method for estimating AGB, researchers
have prioritized efforts towards reducing uncertainties in AGB prediction [10]. It has been
reported that, during AGB modeling, the size of the training sample does not necessarily
correlate with the prediction accuracy. Instead, the modeling approach and sensor type
employed play significant roles in reducing uncertainties of AGB prediction [20]. Addition-
ally, the sample size effect on AGB modeling accuracy is mainly dependent on the method
adopted [21] and possible sources of spatial variability of the dependent variable [22]. In
recent years, the use of different remote sensing data from multispectral and hyperspectral
sensors, coupled with machine learning methods, has gained popularity in AGB modeling
in support of carbon budget accounting [13,23,24]. Unlike multispectral data, hyperspectral
sensors collect hundreds of narrow contiguous bands, which can be related to biophysical
parameters such as leaf area index, crown volume, AGB, and foliar chemistry [25-27]. With
this amount of information, it is possible to conduct predictive modeling of AGB across
various spatiotemporal scales and bioclimatic conditions [23,28,29].

Considering the recent advancements in remote sensing technologies, it has become
possible to integrate optical imagery with other sensor types, such as LIDAR and synthetic
aperture radar (SAR), to improve the accuracy of AGB estimation [15]. For instance, studies
conducted by [30,31] demonstrate that combining optical and SAR data improves AGB
estimation accuracy compared to using either data source alone. References [32,33] re-
inforced this idea by showing that data integration combining optical, LIDAR, and SAR
data achieved the best performance in AGB estimation. Moreover, different predictive
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modeling approaches have been applied to hyperspectral imagery (HSI) to harness the
wealth of information for AGB estimation [15,29,34]. Parametric methods, such as linear
regression relating spectral data with AGB, have been utilized extensively in the literature.
Machine-learning-based methods (non-parametric), such as random forest, support vector
machines, and artificial neural networks, as well as parametric methods, such as partial
least square regression and allometric equations, have been applied to extract features
from both LiDAR and optical imagery across tropical and temperate forests, as well as
other ecosystems [19,35-40]. The results from these studies suggest that the use of spectral
features alone results in less robust estimates of AGB than the use of approaches comple-
mented by datasets from other sensors (e.g., LIDAR) [35,38]. However, in the absence of
LiDAR, a combination of spectral and spatial features can help to improve the accuracy
of AGB prediction, especially in structurally simple systems such as pine forests [16], but
requires more study with more advanced methods if it is to be applied to a variety of
structurally complex forests such as tropical and temperate forests [41].

Advanced analytical methods, such as wavelet decompositions and deep convolu-
tional neural networks (3D-CNN), have shown promise in extracting spectral and spatial
features for AGB prediction [42]. The use of advanced analytical methods such as SNN and
3D-CNN to extract spectral and spectral-spatial features, respectively, from HSI for AGB
modeling has been less explored in the literature. While the use of CNN for hyperspectral
image classification and target detection applications have gained popularity [43-47], new
innovative modeling approaches are needed to reduce uncertainties in AGB estimates
across multiple spatial scales, supporting conservation initiatives such as REDD+ and
NFCMARS. However, very few studies have explored the utility of these approaches for
AGB modeling using HSI in tropical and temperate forest ecosystems. Our study thus
provides valuable insights into large-scale AGB modeling, demonstrating the potential of
HSI and machine learning, specifically wavelet-based shallow neural networks and deep
convolutional neural networks, for AGB estimation.

Moreover, the acquisition of very large training sets needed for deep learning appli-
cations to improve model performance and generalizability and to prevent overfitting is
generally infeasible by field inventories [48-50]. The primary objective of this study is to
investigate the utility of airborne HSI together with sufficiently large training datasets for
modeling AGB using the shallow neural network (SNN) and 3D-CNN across different
tropical and temperate forests in Costa Rica and Canada. Additionally, this study aims
to assess and compare the effectiveness of wavelet decomposition, SNN, and 3D-CNN
in predicting AGB from airborne HSI. Consequently, we demonstrate the utility of these
methods as novel approaches to reduce the uncertainty between reflectance and forest
AGB estimates across tropical and temperate bioclimatic domains. When a large training
set is available, the methodology and findings from this study are expected to offer a
robust foundation for future advancements in machine-learning-based approaches to AGB
modeling in both tropical and temperate forest ecosystems.

2. Materials and Methods
2.1. Study Areas

Our study was carried out in four conservation areas in Costa Rica and one in Canada,
with a combined spatial area of approximately 176,332 ha (Table 1). The conservation areas
in Costa Rica can be classified as tropical wet or moist forests, according to Holdridge
Life Zones [51,52]. The forest in Mont Saint Bruno (MSB) National Park is classified as a
predominantly deciduous, northern temperate forest [53].
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Table 1. Characteristics of the tropical and temperate forest ecosystems where hyperspectral imaging
data were acquired for this study in Costa Rica and Canada. The elevation presented is the mean
with one standard deviation.

Precipitation

Region of Interest Conservation Area Forest Type (mm/Year)/Elevation (m)

Total Area (ha)  Total Flight Lines

ACCVC Area de Conservacion Cordillera Tropical wet 4000-8000/206 + 182 50,251 32
Volcanica Central

ACHAN Area de Conservacion Premontane wet  4000-8000/117 4 44 11,989 5
Huetar Norte

ACOSA Area de Conservacion Osa Tropical wet 4000-8000/100 + 119 67,959 16
ACTO Area de Conservacion Tortuguero Tropical wet 4000-8000/41 + 39 45,177 15
MSB Mont Saint Bruno National Park Temperate 50-1300/12 =9 990 2

Total 176,336 74

2.2. Hyperspectral Imagery

Airborne HSI was acquired in Costa Rica for the Mission Airborne Carbon 2013
(MAC13) project in April 2013 with two pushbroom systems, the Compact Airborne
Spectrographic Imager (CASI-1500), hereafter referred to as CASI, and the Shortwave
Airborne Spectrographic Imager (SASI-644), hereafter referred to as SASI [28]. Table 2,
Tables S1 and S2 describe the sensor characteristics and acquisition parameters of each
area. While the CASI sensor records data in the visible and near-infrared portions of the
reflective electromagnetic spectrum (375 nm-1050 nm) in up to 288 bands, the SASI records
the shortwave infrared (SWIR) region of the electromagnetic spectrum from 883 nm to the
2523 nm in 160 bands. For the flight lines used here, the CASI data were summed spectrally
on-chip, resulting in 199 bands.

Table 2. Characteristics of the CASI and SASI sensors employed for the MAC13 and CABO projects’
data acquisition. The SASI-644 was used for MAC13 which the SASI-640 was used for CABO.

Sensor Characteristics CASI-1500 SASI-644 SASI-600
Field of view (°) 39.9 39.7 39.7
No. of across-track pixels 1493 640 600
No. of spectral channels 288 (max) (programmable) 160 (non-programmable) 100 (non-programmable)
Spectral range (nm) 375-1050 883-2523 957-2442
Spectral resolution (nm) 3.2nm 16 nm at 883 nm and 12 nm at 2523 15 nm

Through the Canadian Airborne Biodiversity Observatory (CABO) in July 2022, the
same CAS], along with a newer SASI-600 SWIR system (Figure 1, Tables S1 and S2), were
deployed. This newer SASI has two distinct detectors covering the right and left halves of
the flight line, recording spectral information over 100 spectral channels (9572442 nm).

Both the MAC13 and CABO datasets underwent standard preprocessing routines
(Figure S1), including spectroradiometric calibration and geocorrection, using software
from the sensor manufacturer, as described in [54-57]. Atmospheric compensation and
topographic and BRDF correction were conducted using the Atmospheric/Topographic
Correction for Airborne Imagery (ATCOR 4) program (version 7.3.0 2020) (ReSe Appli-
cations GmbH, Wil, Switzerland) following the steps described by [55,56,58]. During
geocorrection, the final reflectance product was resampled to 2.5 m pixel size for the
MAC13 data and 1 m pixel size for the CABO dataset.

Following the fusion workflow outlined in [59], full range (VINIR-SWIR) reflectance
products were generated for all of the study areas. Next, the HSI was spatially resampled
to 30 m in ENVI v.5.6.1 (NV5 Geospatial, Broomfield, CO, USA). Subsequently, as de-
scribed by [56], for the fused imagery, wavelength ranges < 400 nm in the visible spectrum,
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as well as atmospheric water absorption (i.e., wavelength ranges of 1367-1492 nm and
18002200 nm) in the SWIR, were excluded from the analysis.
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Figure 1. RGB composite showing the areas selected for the study in Costa Rica, (a) ACCVC,
(b) ACHAN, (c) ACOSA, (d)ACTO-1, (e) ACTO-2, and (f) MSB in Canada. The map produced is a
composite of red (650 nm), green (550 nm), and blue (450 nm) wavelengths. The holes in the imagery
correspond to clouds that have been masked out.

2.3. Training and Field Data

Considering the large training data requirements for machine learning models, in
this study, we used an existing AGB dataset as the predominant source of training data
for all sites (Section 2.3.1). This training data requirement, more than what is currently
available from field data, is necessary for deep learning approaches such as CNNs to avoid
overfitting and poor model generalization [49]. Separately, for MSB, we also used airborne
LiDAR data for training. Due to their relatively small sample size, field data (Section 2.3.3)
were used as a separate validation dataset for our results. Consequently, 2000 virtual plots,
each measuring 100 m x 100 m and collectively representing approximately 12% of the total
image area, were randomly selected from across the boundary of the ACTO-1 experimental
site for training, validation, and testing (Figure S2). The size of these polygons matched the
spatial resolution of the global AGB dataset.

2.3.1. Global Above Ground Biomass Map (Tropical and Temperate)

The Global Aboveground Biomass (GAGB) map [60] was used as the primary source
of AGB training data for both the tropical and temperate forest sites. This global AGB map
was produced for the year 2010 using a combination of C-band synthetic aperture radar data
from Sentinel-1 and L-band ALOS-2 in conjunction with some multispectral datasets. It has
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a spatial resolution of 100 m [60,61]. The GAGB accuracy was assessed to be 58.6 Mg/ha
and 44.4 Mg/ha overall RMSE for tropical and temperate forests, respectively [62].

2.3.2. Airborne LiDAR (Temperate Forest)

This study employed discrete multi-return airborne LiDAR previously acquired for
the Montérégie region of Quebec, Canada, for the provincial government [63]. The LIDAR
data have a point density of approximately 2 points per square meter. The LiDAR point
cloud underwent an initial segmentation process to distinguish ground and non-ground
points in MATLAB v2023b (Mathworks, Nattick, MA, USA). Subsequently, normalization
of the non-ground points was conducted, employing the ground points as a reference before
calculating LiDAR metrics such as the 7th decile. To relate the LiDAR metrics to AGB and
generate a second independent training dataset, we selected the northern hardwood-mixed
wood/deciduous forest model described by [64]. This model relates 7th decile LIDAR
height to biomass derived from ground inventory plots to estimate AGB with a reported
R? of 0.73 (RMSE of 20.6 Mg/ha).

2.3.3. Field Data

As verification of the applicability of the GAGB dataset, a comparison with indepen-
dent field data was made for the ACTO-1 conservation area (the least cloudy area from
the Costa Rican HSI—Figure 1), and the MSB site in Canada. For ACTO-1, an existing
geographic information system (GIS) geodatabase with forest inventory information from
Costa Rica’s Natural Forest Management Plans (NFMP) [65] was used. To account for
total AGB within a plot, census and tree inventory data from private land holdings were
extracted from this database. The census includes trees with a diameter at breast height
(DBH) greater than or equal to 60 cm, while the tree inventory data includes all trees in
0.3 ha plots greater than or equal to 30 cm (see [52,65] for details). The polygons of the
parcel boundaries were cleaned to avoid duplications, overlaps, and to correct the topology.
Parcels with forest loss between the date of the inventory and April 2013 (i.e., acquisition of
the HSI data) were also removed. A total of 34 parcels ranging in area from 5 ha to 312 ha
remained after data cleaning and quality assurance checks. For these, tree-level AGB was
calculated with Equation (1) for the census data using the Brown Equation for tropical wet
forests [66]. The estimated biomass for the inventory was then extrapolated to the farm
level and added to the census biomass.

Y =21.297 — 6.953 (D) + 0.740 (D?) 1)

where D is the DBH.

For MSB, field inventory data from the CABO repository [67] were used for the
estimation of AGB. Fifteen field plots (30 m x 30 m) with a minimum of 30 individual trees
were inventoried in 2019. For each plot, measurements of every tree within a 15 m radius
from a precisely georeferenced and permanently marked plot center were conducted. Every
tree with a DBH of <9 cm, whose canopy is visible from above, and all trees with a DBH
of >9 cm were measured, including the inventory of their height and canopy dimensions
using a T3 Transponder and LaserGeo (Haglof, Sweden AB, Langsele, Sweden) instruments.
Each tree was identified to the species level, and a canopy dominance value (dominant,
codominant, intermediate, or suppressed) was assigned. To estimate AGB, the trees marked
as dominant and codominant were selected, since they are the trees whose canopies are
readily mapped by remote sensing. The methods outlined in [68,69] were used to calculate
the AGB for each tree stand, and the results were aggregated to the plot level.
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2.4. Machine Learning Model Development and Evaluation

To compare the output of different machine learning approaches and wavelet transfor-
mations, the ACTO-1 conservation area was selected as a proof-of-concept test site. The
model type with the lowest RMSE was then independently developed for the remaining
tropical forest sites and MSB. As summarized in Figure 2, three types of wavelet trans-
formations (i.e., continuous wavelet transform—CWT, discrete wavelet transform—DWT,
and wavelet scattering transform—WST) were tested along with two neural networks (i.e.,
shallow neural networks—SNN and 3D deep convolutional neural networks—3D-CNN).
The objective is to compare the performance of these two distinct methods—wavelet trans-
forms combined with SNN and 3D-CNN. As described below, the first method utilizes
wavelet coefficients at different scales as features, which are then used to train the SNN.
This approach leverages the multiresolution capabilities of wavelets and the simplicity
of shallow networks, ensuring computational efficiency for smaller datasets. The second
method directly inputs spectral images into a 3D-CNN model, treating each pixel as a 3D
data cube with multiple spectral bands. The 3D-CNN extracts spatial and spectral features
by analyzing data across three dimensions, making it highly effective for complex datasets.
A brief description of these methods is presented below.
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Figure 2. A flow chart summarizing the proposed methods adopted for AGB modeling from HSI. In
this figure, HSI patches refer to the plots extracted from the HSI. The numbers 1-3 break the workflow
into three main parts with 1. SNN, 2. Deep Learning and 3. Field Validation.

2.4.1. Wavelet Decomposition

A wavelet is a waveform of limited duration used to decompose a signal (e.g.,
spectrum) into shifted and scaled representations of the original waveform (i.e., the
mother wavelet), which is equivalent to increasing levels of spectral details or radiant
frequencies [70]. Wavelet decomposition permits the simultaneous analysis of the re-
flectance spectra in the time and frequency domains [71,72]. The two main types of wavelet
transforms explored in this study are continuous (CWT) and discrete (DWT). These two
wavelet types differ in how they both discretize the scale and translational (or shifting)
parameters of the mother wavelet. While the DWT uses a finite set of scales (subset of
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scales and positions) known as discrete dyadic scales, where scales are on the order of the
power of 2 [73], the CWT can operate at every scale and includes the scale as determined
from the input signal to a scale specified by the user.

The set of wavelet basis functions is computed for the input signal by shifting and
scaling 1(A), which is known as the mother wavelet, across the signal (Equation (2)),
as follows:

Pap(A) = \};/J(AH_l?) a>0,be R (2)

where 4 is the scaling factor and b is the shifting factor.

The calculated coefficients for the shifting and scaling factors constitute the sum of the
multiplication of the reflectance spectrum across all wavelengths by the scaled and shifted
representations of the mother wavelet. For the CWT, Morse, bump, and Morlet mother
wavelets were chosen for comparison, while, for the DWT, two mother wavelets from the
Daubechies family (db6 and db5) and a symlet wavelet (sym7) were chosen based on [74].

In addition to DWT and CWT, we also tested a wavelet scattering transform (WST)
to extract spectral features for AGB modeling. The WST extracts informative spectral
features with low variance and stable representation of the reflectance data. The method
applies wavelets and scaling functions to reflectance data to extract features that can be
packaged as inputs for deep learning and other machine learning applications. The steps
in WSTs include convolution applied to the input spectrum using wavelets (i.e., Gabor and
Morlet wavelets were tested), followed by non-linearization and averaging (pooling) using
scaling functions. Three scattering networks (WST-N1, WST-N2, and WST-N3) were tested
to determine the appropriate sampling frequency that would maximize the information
content. Sampling frequencies of 20, 30, and 50 were used to produce scattering coefficients
with lengths of 60, 30, and 15, respectively.

2.4.2. Spectral Feature Selection

After transforming each spectrum using the DWT, CWT, and WST, as demonstrated
by [75], the correlation coefficient between AGB and the coefficients at various levels of
decomposition was calculated per wavelet transform to select robust spectral features.
Considering the variability of the number of coefficients at various levels of decomposition
for each wavelet type, we selected a different threshold for each wavelet type that would
produce features not exceeding 250 for the modeling. Several runs were conducted to
identify the optimal thresholds for determining robust spectral features for AGB modeling.
This involved including preliminary models with varying thresholds and evaluating their
performance based on criteria such as model accuracy and computational efficiency. For
instance, for the DWT and CWT, thresholds of 0.45 and 0.6 were selected, respectively. For
the WST, except for WST-3, where a threshold of 0.2 was applied, no threshold was applied
for WST-1 and WST-2 since the produced features were within the set feature limit.

Additionally, mutual information feature selection was used to rank the spectral
features. This method captures linear and non-linear relationships in datasets [76]. The
spectral features within the set limit, as mentioned above, were subsequently used for
AGB modeling, and their modeling performance was compared with the threshold-based
feature selection described above.

2.4.3. Shallow Neural Network (SNN)

A typical artificial neural network (ANN) architecture comprises the following three
main components: an input layer, hidden layer, and output layer (Figure S3) [77]. For
the ACTO-1 conservation area, the selected spectral features from the wavelet coefficients
were used to train a two-layer feed-forward SNN with ten sigmoid hidden neurons in the
first layer and an output linear neuron with MATLAB 2021b. The network was trained
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using the Levenberg—Marquardt back-propagation training algorithm. A total of 60% of
the training data was randomly assigned for training, with 20% used for validation and
the remaining 20% for testing. The weights and biases of the SNN were adjusted using the
selected training data to help to predict the dependent variable (AGB) from the selected
spectral features. The generalization ability of the model was then evaluated based on its
performance on the validation and test sets. For instance, during training, overfitting of
the model was avoided by stopping the learning process early using the outcome from the
validation data (i.e., if no improvement in the validation error was observed in successive
epochs). Meanwhile, the test set served as an independent validation of the generalization
abilities of the model.

2.4.4. Deep Transfer Convolutional Neural Network Framework (3D-CNN)

A three-dimensional convolutional neural network (3D-CNN) is a type of neural
network designed to analyze a three-dimensional dataset like HSI. Hyperspectral data
cubes comprise two spatial dimensions (i.e., X and Y) and a spectral dimension. The
high dimensionality of HSI results in high computational complexity when a 3D-CNN
model is employed to extract spectral-spatial features for regression or classification.
Therefore, to improve the efficiency of 3D-CNN implementation and reduce spectral corre-
lation and noise while preserving the spectral information content, a Principal Component
Analysis (PCA), Maximum Noise Fraction Transform (MNF), and t-Distributed Stochas-
tic Neighbor Embedding (t-SNE) were implemented on the HSI before employing the
3D-CNN to extract spectral-spatial features for modeling AGB [47], and their results
were compared. Figure 54 shows a subset of the HSI from ACTO-1 with dimensions of
190 columns x 163 rows x 238 bands. After implementing a PCA or MNE, the spectral
bands are reduced to the first 15 components. For the t-SNE, three components remained.
Next, each pixel vector was assigned a corresponding AGB value extracted from the GAGB
reference map or LiDAR. Blocks of pixels representing a 3D patch from the HSI and center-
ing on each pixel were created from adjacent pixels with a stride of 1 to produce a patch
with dimensions of m x m x P. Here, m x m is the window size used for splitting the
imagery into 3D patches, and P is the number of bands following PCA, MNEF, or t-SNE.
The output of the spectral-spatial feature extraction using the 3D-CNN is produced by
applying a 3D convolution three times, each followed by a Rectified linear Unit (ReLU),
an activation function that introduces non-linearity in the output of the network, with
the last one followed by max-pooling and a flattened layer. These flattened layers are
also followed by a dropout layer (i.e., a regularization technique). Figure S5 shows the
model architecture. The model is based on the architecture shown in [78]. Multiple splits
were tested through several runs and analyses, and data splits of 60% for training, 20% for
validation, and 20% for testing were found to be sufficient to ensure model generalization.
To mitigate overfitting, regularization methods such as dropout layers, weight decay, and
early stopping based on the performance of the 20% unseen validation data were employed.
In summary, the inclusion of max-pooling in the deep learning architecture, a reduced
training time for the model (i.e., 40 epochs), the utilization of 30% and 20% dropout rates, a
window size of 15 for extracting spatial and spectral features, and a split ratio of 60:20:20 for
training, validation, and testing were key measures implemented to help avoid overfitting
and improve model generalization.

2.4.5. Hyperparameter Tuning

The process of optimizing or tuning parameters such as batch size, number of epochs,
number of hidden layers, learning rate, and the dropout parameter is known as hyperpa-
rameter tuning, which was performed using MATLAB 2023b for the SNN and 3D-CNN
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models (Table 3). We employed a learning rate of 0.1, which is frequently used for the
Levenberg-Marquardt algorithm, and 0.001, which is also commonly employed for the
Adam optimizer.

Table 3. Hyperparameters employed in the SNR and 3D-CNN models. The hyperparameters were
selected by running several tests and analyzing the results.

Epochs Minibatch Size Optimizer Learning Rate  Loss Function
SNN 1000 - Levenberg M 0.1 MSE
CNN-3D 40 256 Adam 0.001 RMSE

2.4.6. Performance Metrics for Model Evaluation

The models’ performances were evaluated per network architecture (SNN and 3D-
CNN), as well as the input data/wavelet type. We selected three main metrics frequently
used in the literature to assess the performance of the models. These metrics were the mean
square error (MSE), root mean square error (RMSE), and mean absolute error (MAE). To
compare the differences between the GAGB map pixels (and LiDAR-based AGB at MSB)
and the predicted AGB map, an AGB bin of 40 Mg/ha was selected, and the predicted
values were tabulated and graphed based on this bin versus the corresponding GAGB (or
LiDAR-based) values. Two main accuracy metrics, namely the root mean square difference
(RMSD) and mean difference (MD), which can be referred to as the bias, were used to
assess the accuracy of each model. The RMSD was calculated according to Equation (3), as
follows [79]:

2

. ( AGBpy (i) — AGBRef (i)
RMSD = 2< ! il )
j=1

. ®)
where AGBpy, is the predicted aboveground biomass, AGBR,f, is the reference aboveground
biomass (i.e., GAGB- or LiDAR-based AGB), and n is total number of observations.

The mean difference was calculated according to Equation (4) as follows:

MD = (uAGBpy, — HAGBGAGBm) 4)

where yAGB represents the mean aboveground biomass.

2.5. Proof-of-Concept Model Development

As mentioned in Section 2.4, to compare the output of the SNN (with different wavelet
transformations) and the 3D-CNN, the ACTO-1 conservation area was selected as a proof-
of-concept test site. To set up the input data, firstly, 2000 virtual plots (100 m x 100 m)
were randomly distributed across ACTO-1. The area of these plots is equivalent to the
pixel size of the GAGB dataset, and the GAGB values for each plot were assigned to the
polygons. For both the SNN and the 3D-CNN, pixels were extracted from the HSI for the
2000 plots and used as training samples, which constituted approximately 22,000 pixels.
The samples were split into 60% for training (n = 13,200), 20% for validation (n = 4400), and
20% for testing (n = 4400). The range of the GAGB-based AGB values was 0-300 Mg/ha
(n=150.1 + 86.5 Mg/ha).

2.6. Aboveground Biomass Modeling in Different Forest Types

Development of AGB models based on forest type is recommended to account for
the variability of the forest types and spectral characteristics [80], therefore, a separate
3D-CNN model following the architecture described in Section 2.4.4 was developed for
each of the other Costa Rican sites (i.e., ACHAN, ACOSA, and ACCVC) and for MSB in
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Canada. At MSB, a 3D-CNN model was also developed using the LiDAR-based input data
(see Section 2.3.2). Summary statistics of the reference GAGB (and LiDAR-based AGB for

MSB) data are shown in Figure 3.
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Figure 3. Distribution of extracted AGB values used for prediction as part of the training process for

the site-specific models.
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3. Results
3.1. Comparison of Training Data with Field-Based AGB

The results comparing forest inventory estimates of AGB and the reference GAGB
data used for training are shown in Figure 4. For both tropical and temperate forests, a
moderate relationship can be seen. For ACTO-1, an RMSE and R? of 36.68 Mg /ha and 0.45,
respectively, were found, while, for the temperate forest (MSB), an RMSE of 26.1 Mg/ha
and an R? of 0.40 were found (Figure 4). The comparison between the estimated field AGB
and the LiDAR-based AGB estimates for MSB resulted in an RMSE of 19.54 Mg/ha and an

R? of 0.42 (Figure 4).
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Figure 4. (a) Reference GAGB versus field-based estimate of AGB for ACTO-1; (b) Reference GAGB
versus field-based estimate of AGB for MSB; (¢) LiDAR-derived AGB versus field-based estimate of
AGB for MSB.

3.2. Proof-of-Concept Model Comparison
3.2.1. SNN Model Comparisons

For the ACTO-1 conservation area proof-of-concept model development, the results
of 20 iterations of the SNN model for each type of wavelet transform are presented in
Table 4. Across the wavelet decomposition types, the CWT resulted in the highest RMSE,
ranging from 57.52 Mg/ha to 79.23 Mg/ha for the threshold-based feature selection and
49.66 Mg/ha to 57.63 Mg/ha for the mutual-information-based feature selection. The
best CWT model was found to be with the bump wavelet, which resulted in an RMSE of
49.66 Mg/ha. In contrast, the results for the DWT and WST are similar in the range of RMSE
across all combinations and produced lower RMSE values than the CWT, ranging from
43.478 Mg/ha to 52.02 Mg/ha. For instance, the model derived from DWT-db6 features
improved the AGB prediction by approximately 6.2 Mg/ ha compared to the best CWT
model. Similarly, all three WST models showed an improvement of model performance by
6 Mg/ha compared to the best CWT model with the best WST models, achieving an RMSE
of ~44 Mg/ha (Table 4 and Table S4).

3.2.2. Spectral-Spatial Features (3D-CNN)

Extracting spatial information along with spectral information for AGB modeling
using the PCA-based 3D-CNN resulted in a low RMSE of 21.12 Mg/ha and an R? of
0.94 compared to an R? range of 0.8-0.92 and RMSE values of 24.15-35.92 Mg/ha for the
MNF- and t-SNE-based 3D-CNN (Figure 5 and Table 5). The results for the 3D-CNN models
represent the lowest RMSE values compared to the SNN approach, which relies on spectral
features alone (Tables 4 and 5). Figure 6 presents the 3D-CNN learning curve, showing
the training and validation RMSE and loss for PCA-based 3D-CNN AGB modeling. From
Figure 6, it can be deduced that convergence was reached after approximately the 10th
epoch, where the training RMSE and loss tends to become stable (Figure 6a,b).
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Table 4. Shallow neural network model comparisons across wavelet decomposition inputs with
results ordered by RMSE (best to worse). Units for RMSE, MSE, and MAE are in Mg/ha. The average
is based on 20 iterations.

Input Variable # Extracted Features Performance MSE MAE R R? RMSE
Best Model 2032.36 34.97 0.85 0.72 45.08
DWT-db6 225
Average 2132.71 35.88 0.85 0.72 46.17
Best Model 2039.68 34.66 0.85 0.72 45.16
WST-N3 199
Average 2159.49 35.92 0.84 0.71 46.46
Best Model 2050.8 35.09 0.85 0.72 45.29
WST-N2 210
Average 2241.14 36.73 0.84 0.71 47.33
Best Model 2071.35 35.06 0.85 0.72 45.51
WST-N1 135
Average 2266.27 36.9 0.84 0.71 47.6
Best Model 2123.02 35.55 0.85 0.72 46.08
DWT-sym?7 203
Average 2266.12 36.86 0.83 0.69 47.58
Best Model 2158.07 36.01 0.84 0.71 46.46
DWT-db5 213
Average 2274.16 37.04 0.83 0.69 47.68
Best Model 3308.62 44.35 0.75 0.56 57.52
CWT-bump 35
Average 3503.86 45.7 0.73 0.53 59.19
Best Model 3530.41 45.95 0.73 0.53 59.42
CWT-amor 119
Average 3688.4 47 0.71 0.5 60.73
Best Model 3531.01 46.07 0.73 0.53 59.42
CWT-morse 79
Average 3823.43 47.04 0.70 0.49 61.7
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Figure 5. A scatter plot comparing the predicted AGB and reference GAGB data, including a 1:1
reference line (dashed) and a regression fit line (solid), demonstrating the model’s performance and
deviation from ideal predictions for the experimental site (ACTO-1). This plot shows the results of
the 3D-CNN implemented on the ACTO-1 mosaic at landscape scale. Only the testing pixels not
included in the model development are shown here.

Table 5. A comparison of 3D-CNN-based AGB modeling performances for different HSI dimension-
ality reduction approaches.

PCA MNF t-SNE
R square 0.94 0.92 0.83
RMSE (Mg/ha) 211 24.15 35.92

13



Forests 2025, 16, 477

200+ 2,5009
2,0004
1504
g
g o 1,500
[%2]
I 100+ 3
g 1,000
o« == Training RMSE == Training Loss
501 e — Validation RMS E 500 — Validation Loss
0 T T T 1 0 T T T ]
0 10 20 30 40 0 10 20 30 40
Epoch Epoch
(a) (b)

Figure 6. Model performance assessment for the experimental site (ACTO-1). This plot represents
the results of the 3D-CNN implemented on the ACTO mosaic at landscape scale, where (a) is a plot
of training and validation RMSE at each epoch and (b) is training and validation loss at each epoch.

Additionally, Figure 7 shows a predicted AGB map derived from the best SNN-WST-
N3 model developed at the ACTO-1 experimental site and the PCA-based 3D-CNN model
at the landscape scale for the same site. In comparison to the reference GAGB map, the
landscape-scale SNN-WST-N3 model resulted in an R? of 0.72, while the 3D-CNN model
based on PCA performed better, resulting in an R? of 0.94. Given the split ratio of 60:20:20
for training, validation (seen), and testing (unseen) data in the AGB modeling, a comparison
between the results of the validation and testing sets revealed no significant performance
drop. For instance, the final validation RMSE achieved was 20.83 with an R? of 0.941 for the
validation set (Figure 6a). Meanwhile, using the test set (unseen data), the final validation
RMSE resulted in 21.12 Mg/ha with an R? of 0.939 (Table 5 and Figure 5). A summary
of a comparison of the results with or without PCA methods is presented in Table 5 and
Figures S7 and S8.

3.3. Benchmark Dataset Comparison

When the 3D-CNN model developed for the ACTO-1 site (experimental site) is applied
to imagery of the same forest type in a nearby location (ACTO-2) and compared to the
reference GAGB, the results show an R? of 0.62 (Figure S6a). A drop of approximately 0.3 in
the R-squared values between the results for the ACTO-1 experimental site model (R?~0.9)
and that of the ACTO-2 benchmark site (R2~0.6) was recorded, indicating a correlation of
0.77 between the reference and the prediction (Figure S6). Similarly, a drop of 0.3 in R was
observed when the SNN model for ACTO-1 was applied to the ACTO-2 site, recording an
R? of 0.40 (Figure S6b).

3.4. Model Performance Across Forest Types (Hyperspectral Imagery)

The summary results of the development of a PCA-based 3D-CNN (best performing
model type at the test site) for each forest type are presented in Figure 8. While the
lowest RMSE can be seen for MSB (16.69 Mg/ha), all forest types have similar results with
RMSE, ranging from 24.70 Mg/ha (ACCVC) to 30.1 Mg/ha (ACAHN). Applications of
the 3D-CNN models at the landscape scale for each forest type are shown in Figure 9. The
figure shows that, apart from ACHAN, the tropical wet forests ACCVC, ACOSA, and
ACTO produced the best model performance, with an RMSE in the range between 19 and
28 Mg/ha. Compared to the tropical forests, the predicted AGB range was the lowest at
MSB (temperate forest), with a minimum and maximum of 0 and 176 Mg/ha, respectively.
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Figure 7. Application of the best AGB prediction models to the ACTO-1 imagery. (a) An RGB
composite (R: 660 nm, G: 550 nm, and B: 480 nm) of the hyperspectral imaging data for the ACTO-1
experimental site; (b) SNN-WST (N3) model applied to the HSI; (c) A 3D-CNN model applied to the
ACTO-1 image to produce an AGB map; (d) Reference GAGB map used for training the SNN and

3D-CNN models.
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Figure 8. PCA-based 3D-CNN model performance evaluation for all forest types. Each plot shows

a scatter plot of predicted AGB and reference AGB, including a 1:1 reference line (dashed) and

the regression fit line (solid), demonstrating the model’s performance and deviation from ideal
predictions for (a) ACCVC, (b) ACHAN, (c) ACOSA, (d) ACTO-2, (e) MSB GAGB, and (f) MSB
LiDAR. Only the testing data not used in the model development are shown in the scatter plot.
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Figure 9. Example application of the PCA-based 3D-CNN models based on the reference GAGB
map to HSI acquired for each forest type. (a) ACCVC, (b) ACHAN, (c) ACOSA, (d) ACTO-2, and
(e) MSB. From the left is an RGB (R: 660 nm, G: 550 nm, and B: 480 nm) composite of the individual

conservation sites, followed by the predicted map showing the spatial variability of AGB for each
site and the reference GAGB map for each site.

A plot of the biases of selected AGB bins showing which range of AGB was under-
or overpredicted is shown in Figure 10, and a tabulation of the results for the selected
accuracy metrics (RMSD and MD) are also presented in Table S3. Overall, it can be de-
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duced that the predicted AGB values were closely related to those of the reference map.
For instance, Figure 10 shows that, for all of the tropical forests, apart from ACOSA,
AGB values within the range of 0-280 were underpredicted up to 5 Mg/ha, while the
AGB greater than 280 Mg/ha were overestimated up to about 20 Mg/ha. At ACOSA,
AGB was underpredicted up to about 10 Mg/ha and overpredicted up to approximately
5 Mg/ha. However, MSB recorded the lowest underprediction of the AGB values within
the range of 0-160 Mg/ha (4 Mg/ha) but overpredicted up to 6 Mg/ha for the AGB
values above 160 Mg/ha. Moreover, Table S3 shows that the highest RMSD values
(19.0 Mg/ha—25.4 Mg/ha) for all of the tropical forests were found to be for the AGB
range of 160-200 Mg/ha, and the lowest RMSD was recorded for the 0-40 Mg/ha range.
Similarly, for MSB, the lowest RMSD (~15 Mg/ha) was recorded for the AGB range of 0—40
and the highest (1621 Mg/ha) was recorded for the AGB range of above 40 Mg/ha.
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Figure 10. Distribution of bias for each forest type’s AGB models for the tropical forests in Costa Rica
and the temperate forest in Canada (MSB).
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3.5. Model Performance—Airborne LIDAR

The results of a 3D-CNN model based on the airborne LiDAR data as an input for
the MSB site showed an RMSE of 21.57 Mg/ha (R? = 0.74). Figure 11 shows the spatial
variability in AGB values for both the reference and predicted AGB of the MSB site. In
comparison to the model using the GAGB data, there was a drop in model performance
from an R? of 0.85 to 0.74, representing an approximately 13% drop in model performance.

AGB (Mg/ha)
Value

lHigh - >160

Low : 0

Figure 11. Comparison of predicted AGB and reference LiDAR data from MSB. From the left, the
reference LIDAR map and the predicted AGB map (3D-CNN based on the LiDAR input).

4. Discussion

Large training datasets are crucial in AGB modeling, as they capture heterogeneity,
help improve accuracy, enhance generalization, and increase model robustness [48-50]. In
this study, we demonstrate that, when sufficient training datasets are available for deep
learning, 3D-CNN can be used to extract spectral and spatial features simultaneously from
HSI to model AGB for improved modeling performance in tropical and temperate forest
ecosystems. While other studies have demonstrated the use of 3D-CNN for classification
and related tasks (e.g., [47]), our study is the first to show that, with large datasets (i.e.,
those that are comprehensive and diverse enough), 3D-CNN can achieve a low RMSE in
modeling AGB in these ecosystems.

As shown in Figure 4, field-based AGB estimates and the GAGB data (and LiDAR for
MSB) have moderate relationships of R? of 0.4-0.44 and RMSE of 18.7-36.7. While they
indicate that the GAGB is reasonable in our study areas, those results should be interpreted
with caution, as the sample size is small (n = 13-34). The need for, but also the challenges
in, establishing large numbers of field plots for forest characteristics such as AGB have
been reiterated by many studies, e.g., [81-84]. There is a large training data requirement for
ML approaches to ensure that overfitting is avoided and that the model can generalize well
to unseen pixels in the imagery [48,49]. Moreover, as stated earlier, the RMSE of the GAGB
dataset is 58.6 Mg/ha and 44.4 Mg/ha for tropical and temperate forests, respectively.
While our results show lower RMSE in comparison to the GAGB dataset, it remains a
proxy for field data. Therefore, it is important that the overall uncertainty in comparison to
ground-based estimates needs to consider not only the uncertainty from our model results,
but those from within the GAGB dataset as well. Nonetheless, the 3D-CNN employed in
this study has shown promise. As larger field-based datasets become available (i.e., those
large enough for the methods employed in this study), the 3D-CNN approach is expected
to offer a robust modeling alternative, advancing machine-learning-based approaches to
AGB modeling using HSI.

Previous studies (e.g., [85-87]) have shown improved model predictive power of
vegetation characteristics and classification from wavelet decomposition of HSI over other
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approaches, including vegetation indices and PCA. Our proof-of-concept model compari-
son from the ACTO-1 study area compared SNNs with different wavelet decompositions as
inputs with a deep learning 3D-CNN. We found that the best wavelet decomposition SNN
model was the DWT (db6), with an RMSE of 43.47 Mg/ha. However, our results ultimately
showed that the best performing model was the PCA-based 3D-CNN, with an RMSE of
21.12 Mg/ha (Figure 5). This was an improvement in RMSE of 22.35 Mg/ha over the best
SNN model, which relies only on spectral features. While the R? values are not comparable
between studies, our RMSE range of 21.12 Mg /ha to 30.1 Mg/ha across the forest types
is lower than those reported by others, such as [88] (~68.11 Mg /ha), [89] (~91.2 Mg/ha),
and [19] (~64.4 Mg/ha), employing individual hyperspectral bands or vegetation indices
calculated from HSI. In terms of R-squared values, the use of spectral features from optical
imagery and other datasets has shown promising results in estimating AGB, with R? values
ranging from 0.84 to 0.92, compared to an R? of 0.5 to 0.68 when hyperspectral features are
used alone [29,35,38]. For instance, ref. [90] reported that when temporal features extracted
from multiple satellite imagery are used for AGB modeling, an R? of 0.58 can be attained.
Spectral metrics, such as vegetation indices extracted from HSI for AGB prediction, also
produced an R? of 0.55 in a study conducted by [38]. It has also been reported that the use
vegetation indices alone from HSI for AGB prediction in the Brazilian Amazon resulted
in an R? of 0.58 [88]. Similarly, [35] reported a moderate relationship (R? ranging between
0.56 and 0.65) for tree- and plot-level AGB estimates. Even in the absence of LiDAR, the
results obtained in this study were promising (R? of 0.94 and an RMSE of 21.12 Mg/ha) and
comparable to the results obtained in previous studies that employed both optical imagery
and LiDAR (e.g., [88]).

By extracting both spectral and spatial information for AGB modeling, our results
showed a reduction in AGB prediction uncertainties of the model that relies only on
spectral features by ~50% (Figure 5 and Table S4 and Table 4). Using a random forest
model to predict tropical forest carbon from LiDAR, ref. [91] also found that a model
considering the spatial context performed best. However, the inclusion of the spatial
context is not without challenges. The extraction of spatial features simultaneously with
spectral features requires a neighborhood of pixels (in this case, 15 x 15 equivalent to
~20 ha). For such a window size (or larger), where high AGB pixels are found among
low AGB pixels, less accurate prediction is expected. This also applies to edge pixels and
areas transitioning into low-AGB areas (Figure 7c,d). From a flight planning perspective,
future studies that employ a 3D-CNN model with airborne HSI should consider the issue
of edge pixels to ensure that a sufficient area is covered outside of the area of interest to
account for the planned neighborhood window size. Future studies may explore using
different kernel sizes to better align with the spatial and spectral characteristics of the
imaging data. Misaligned kernel sizes could lead to inefficient feature extraction, causing
important patterns to be overlooked. Experimenting with kernel sizes tailored to the spatial
and spectral resolutions of the data is usually recommended. In other words, future studies
can employ separate kernel sizes for spatial dimensions (height and width) and the spectral
dimension (depth) to capture relevant features more effectively. When resizing the spatial
dimensions, proportional scaling must be ensured to preserve the original aspect ratio (e.g.,
resizing to 18 x 15 instead of 15 x 15).

The spatial autocorrelation unaccounted for during the training and validation of a
model can result in an overly optimistic modeling performance [92]. In the benchmark
data comparison, where the ACTO-1 model was applied to the ACTO-2 imagery, the best
performing model had a decrease of 0.3 in the R-square values and an increase in RMSE of
35.83 Mg/ha (Section 3.3 and Figure S6). This drop can potentially be attributed to spatial
autocorrelation affecting the model’s generalization. Spatial autocorrelation is known to
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cause an overestimation of CNN model performance, owing to the potential proximity of
the test set pixels to the training data [92]. Although our study relied on unseen datasets
(test set) for accuracy assessment, the spatial proximity of some of these pixels may have
caused spatial autocorrelation. Another factor that can lead to overestimation of the model
performance in spatial-spectral hyperspectral feature extraction is information leakage
in the testing sets [93-95]. Extraction of the patches and random splitting for training,
validation, or testing can cause information leakage in the testing set [93,94]. Recent studies,
such as [94], have proposed a novel, non-overlapping approach for sampling training and
testing sets for hyperspectral classification problems. Future modeling studies should also
explore this approach to improve model generalization.

The distribution of bias for each forest type’s AGB model (Figure 10) illustrates that
the greatest uncertainty in the model results is found in areas with the highest AGB
(>280 mg/ha for the tropical forests and >160 mg/ha for the temperate forest). These
are also the AGB classes with the fewest training samples (Figure 3). This illustrates the
importance of large training datasets across the entire range of expected values [81,96].
Similar biases are also reported in the GAGB training dataset, where retrieval of high-
carbon-stock forests with AGB > 250 Mg /ha have high uncertainty [60]. In addition, while
not directly investigated here, canopy reflectance biomass saturation has been shown for
densely vegetated regions [97], including in tropical forests, e.g., [98-100], and at higher
latitudes [101-103].

As stated by [60], the GAGB data show similar trends in AGB to other datasets;
however, they note large spatial divergences between datasets and, therefore, reiterate the
ongoing uncertainty in global AGB and forest carbon. For example, within the latitude
range of our tropical forest sites, GAGB was found to be similar to that reported by [104]
but was up to 50% lower than that reported by [105]. It is for such reasons that our current
study does not claim to model actual AGB as measured in the field, rather, we show the
potential of ML algorithms, particularly the 3D-CNN, to exploit HSI in order to generate
models with low RMSE if the training dataset is large. Also, temporal discrepancies
between the AGB map (2010) and the HSI data (2013 for Costa Rica, 2022 for Canada)
could introduce potential errors, due to forest dynamics (e.g., growth, disturbances, or
deforestation). However, the low growth rates characteristic of mature forests suggest
that biomass accumulation likely has a negligible impact over short timescales, reducing
the potential for significant errors from growth [106]. For instance, as summarized in
this study, the growth rates in mature forests like ACCVC is notably slow, with a mean
difference between the reference and the predicted AGB equal to ~5 Mg/ha between 2010
and 2013 (i.e., average annual biomass accumulation rates in ACCVC range from 1 to
3 Mg ha~! year~!) (see Figure 10 and Table S3). This is because biomass accumulation
is more influenced by existing tree diameter and height increases than by recruitment
or turnover [106]. This suggests that discrepancies in timing are less likely to introduce
substantial inaccuracies from growth-related changes in mature forests. Nonetheless, using
a 2010 AGB mabp to train models with imagery from 2013 and 2022 remains a limitation.
Future research could address this by incorporating temporally aligned calibration data,
such as field measurements or more recent AGB maps, to improve model accuracy and
account for any dynamics that do occur.

As stated by [53], additional work is necessary to determine whether the spectral
expression of differences in forest carbon (of which AGB is a proxy) is driven by compo-
sition, diversity, or other characteristics, such as canopy structure. From the same HSI of
MSB, [53] (2023a) found that forest composition was related to the spectral signatures of
plots, however, the spectral diversity of the plot was not found to be significant. Impor-
tantly, the average reflectance spectrum of a plot was a stronger predictor of carbon. Our
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work follows up on this finding through an application of ML to spectra rather than metrics
such as diversity.

5. Conclusions

Our study highlights the effectiveness of two novel approaches, as follows: (1) com-
bining HSI and deep learning (3D-CNN) and (2) artificial neural networks and wavelet
analysis for predicting AGB in both tropical and temperate forests. Specifically, our findings
demonstrate that the 3D-CNN model outperforms approaches that rely on spectral features
alone for AGB modeling, yielding the lowest RMSE in AGB estimation. This improvement
is consistent across various tropical forest types and a temperate forest ecosystem, suggest-
ing the potential of the 3D-CNN approach to reduce uncertainties in AGB estimates across
different climate zones. These findings are very promising, showing the future prospect of
using HSI to map forest AGB on a large spatial scale. Thus, the availability of large enough
plot level training data will allow the development of 3D-CNN models that will generalize
well for other forest types.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/£16030477/s1, Table S1: Sensor characteristics for the tropical
forests (ACTO-1, ACTO-2, ACCVC, ACHAN, and ACOSA) and temperate forest (MSB) region of
interest. The VNIR region was acquired with the CASI-1500 and the SWIR with the SASI-644 at
the tropical sites and SASI-640 for the temperate forest. Table S2: Flight planning considerations
for the tropical forests (ACTO-1, ACTO-2, ACCVC, ACHAN, and ACOSA) and temperate forest
(MSB) region of interest. The VNIR region was acquired with the CASI-1500 and the SWIR with the
SASI-644 at the tropical sites and SASI-640 for the temperate forest. Table S3: Tabulated results of the
computed accuracy metrics for each conservation area in Costa Rica and MSB. AGB (reference) and
AGB (predicted) values represent the average for the bin. Other than MSB (LiDAR), all reference data
are from the GAGB map. Table S4: SNN model based on the mutual information feature selection
(non-linear) technique, with comparisons across wavelet decomposition inputs and results ordered
by RMSE (best to worst). Units for RMSE, MSE, and MAE are in Mg/ha. The average is based
on 20 iterations. Figure S1: Processing workflow to generate atmospherically and geometrically
corrected imagery (L2G). Intermediate processing levels include L1A (non-geocorrected radiance),
L2A (non-geocorrected reflectance), and L1G (geocorrected radiance). Modules in steps 1 and
3 project the sensor manufacturer, whereas, in step 2, ATCOR-4 is commercial software. Figure S2:
A map showing the distribution of the randomly selected polygons in red (100 m x 100 m plots)
across the experimental site (ACTO-1). Figure S3: SNN architecture used for modeling AGB from
the wavelet-transformed spectra. Figure S4: An RGB composite of the HSI showing portions of the
ACTO-1 study site. The red boxes represent sample plots, with plot sizes equivalent to an area of 1 ha
(100 m x 100 m) to be used as the input to the 3D-CNN. Figure S5. Architecture of the 3D-CNN used
for AGB modeling, including the PCA preprocessing step (MNF and t-SNE were substituted for PCA
in the model development). The red box represents a 15 x 15 patch extracted from the original image
with dimensions of 190 pixels in height and 163 pixels in width. These patches represent localized
regions of the image and are used for analysis without altering or shrinking the original image. For
the t-SNE-based 3D-CNN, this architecture was modified, e.g., only one 3D convolution (3 x 3 x 1)
was applied to the HSI, since, after dimensionality reduction with t-SNE, the output was 3 bands.
Figure S6: Independent testing of (a) 3D-CNN and (b) SNN models using ~12,000 pixels from the
ACTO-2 site with the models developed for ACTO-1. Reference values are from the GAGB map. The
plot shows a 1:1 reference line (dashed) and a regression fit line (solid), demonstrating the model’s
performance and deviation from ideal predictions. Figure S7: Implementation of a 3D-CNN model
based on MNF dimensionality reduction at the ACTO-1 site, using the corresponding AGB values
from the reference GAGB map. The plot shows a 1:1 reference line (dashed) and a regression fit line
(solid), demonstrating the model’s performance and deviation from ideal predictions. Figure S8:
Implementation of a 3D-CNN model based on t-SNE dimensionality reduction at the ACTO-1 site,
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using the corresponding AGB values from the reference GAGB map. The plot shows a 1:1 reference
line (dashed) and a regression fit line (solid), demonstrating the model’s performance and deviation
from ideal predictions.
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Abstract: The aboveground biomass (AGB) of forests reflects the productivity and carbon-
storage capacity of the forest ecosystem. Although AGB estimation techniques have become
increasingly sophisticated, the relationships between AGB, spatial distribution, and growth
stages still require further exploration. In this study, the Picea schrenkiana (Picea schrenkiana
var. tianschanica) forest area in the Kashi River Basin of the Ili River Valley in the western
Tianshan Mountains was selected as the research area. Based on forest resources inventory
data, Gaofen-1 (GF-1), Gaofen-6 (GF-6), Gaofen-3 (GF-3) Polarimetric Synthetic Aperture
Radar (PolSAR), and DEM data, we classified the Picea schrenkiana forests in the study
area into three cases: the Whole Forest without vertical zonation and stand age, Vertical
Zonality Classification without considering stand age, and Stand-Age Classification without
considering vertical zonality. Then, for each case, we used eXtreme Gradient Boosting
(XGBoost), Back Propagation Neural Network (BPNN), and Residual Networks (ResNet),
respectively, to estimate the AGB of forests in the study area. The results show that: (1) The
integration of multi-source remote-sensing data and the ResNet can effectively improve
the remote-sensing estimation accuracy of the AGB of Picea schrenkiana. (2) Furthermore,
classification by vertical zonality and stand ages can reduce the problems of low-value
overestimation and high-value underestimation to a certain extent.

Keywords: aboveground biomass; vertical zonality; stand age; Gaofen satellites; Picea
schrenkiana

1. Introduction

Forest biomass stands as a pivotal indicator of the productive capacity of forest
ecosystems, consistently serving as a crucial evaluation factor in assessments of forest
carbon budgets [1]. The biogeochemical cycling characteristics of Xinjiang exert a profound
influence on the evolution of terrestrial ecosystems in the Central Asian region, shaping
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regional climate patterns and impacting greenhouse gas source and sink totals [2]. At the
heart of the Central Asian mountain range, the Tianshan Mountains are home to vast stands
of Picea schrenkiana forests, which represent the most significant terrestrial ecosystems in
temperate arid regions. Picea schrenkiana, as the dominant tree species in the mountain
forests of the Tianshan Mountains, plays a vital role in water conservation, soil retention,
and maintaining the ecological environment of the mountains, occupying an extremely
important ecological and geographical position. By conducting research on the biomass
of the mountain ecosystems in the Tianshan Mountains, with a particular focus on Picea
schrenkiana forests, we will lay a foundation for studies on the carbon cycle of mountain
forest ecosystems in Central Asia. Furthermore, this research can provide valuable insights
into the evolution of terrestrial ecosystems, regional climate dynamics, and greenhouse
gas emissions and sequestration in the Central Asian region, thereby possessing significant
scientific importance.

Biomass is categorized into aboveground and underground components. Given
the difficulties in gathering underground biomass data, researchers mainly center their
studies on aboveground biomass (AGB) [3]. Traditional measurement methods, while
accurate, are labor-intensive and time-consuming, making them impractical for large-scale
forest biomass monitoring [4]. The advent of remote-sensing technology addresses this
limitation [5]. In the realm of remote-sensing-based forest biomass estimation, scholars
from both domestic and international backgrounds have extensively utilized optical remote-
sensing data since the last century, achieving significant advancements [6,7]. For instance,
Chen et al. pioneered the use of HJ-1 satellite data to monitor Picea schrenkiana forest AGB
in the western Tianshan Mountains, revealing spatial heterogeneity and spatiotemporal
differentiation patterns of AGB and productivity in this region [8]. However, optical remote
sensing has inherent limitations, particularly its weak spectral penetrability, which restricts
its ability to capture vertical vegetation information beneath the canopy [9]. To overcome
these limitations, radar data, with its longer wavelengths, has been increasingly adopted.
Radar can penetrate vegetation layers and provide more detailed stand structure and stand
factor information, making it a valuable complement to optical data [10]. Synthetic Aperture
Radar (SAR), as an advanced active remote-sensing technology, operates continuously
under all weather conditions, further enhancing its utility [11]. Studies have demonstrated
the effectiveness of SAR in AGB estimation. For example, Cartus et al. utilized multi-
frequency radar backscatter observations to estimate tropical forest AGB, highlighting the
structural discriminative capacity of SAR data [12]. Wei et al. explored the potential of GF-3
polarization decomposition components for estimating artificial forest canopy AGB, finding
that multiple polarization components exhibit high sensitivity to AGB variations [13].
Multi-source remote-sensing data can fully capitalize on the complementary aspects of
information derived from various data sources. By skillfully integrating remote-sensing
data from diverse sensors collected at different times and with varying resolutions, the
benefits of remote sensing can be maximized. Researchers such as Zhang et al. [14] and
Forkuor et al. [15] have developed forest AGB estimation models using optical data and
SAR data. Wang et al., in their study, utilized GF-6 and GF-3 dual-polarization data to
estimate the AGB of natural forest land in Gongliu County, Xinjiang. The study revealed
that the integration of optical and SAR data can remarkably enhance the accuracy of
AGB estimation [16]. In their assessment of Yichun City’s AGB, Liu et al. employed both
optical and SAR data, concluding that AGB estimation models specifically designed for
different forest types are more precise and stable compared to generalized approaches [17].
These findings underscore the importance of integrating multi-source data and considering
forest-specific characteristics in AGB estimation.
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As a key geographical factor, topography exerts a profound influence on forest ecosys-
tems [18]. Variations in elevation, slope, and aspect create unique geomorphological units,
driving the vertical stratification of environmental factors such as thermal conditions, pre-
cipitation patterns, and solar radiation intensity. These changes result in marked differences
in the vertical distribution of climate conditions, soil properties, light intensity, and other
environmental factors [19,20]. These differences, in turn, have profound effects on forest
AGB. Studies have shown that the trends of AGB with elevation vary significantly across
different regions and ecosystems. For example, Wang et al., using a 30-m resolution AGB
dataset of the Tibetan Plateau, found that grassland AGB values exhibit a monotonically
increasing trend below 4800 m [21]. Wu et al. found different biomass at different elevations
by studying Qilian Mountain Picea schrenkiana, in which the growth rate of AGB was highest
at low elevations [22]. Maza et al. focusing on the elevation gradient of AGB in the Andean-
Amazonian forests, found a negative correlation between AGB and elevation [23]. These
differences may stem from the interaction between elevation-induced climatic changes,
such as temperature lapse rates and orographic precipitation, and differences in vegetation
types. In addition to the influence of elevation, researchers have also focused on the impact
of topographic factors on the accuracy of AGB estimation. For instance, Chen et al. found
that the introduction of a digital elevation model (DEM) improved model accuracy by
13.5% [24], while Ye et al. demonstrated that models incorporating aspects effectively
mitigate the overestimation of low values and underestimation of high values, further
enhancing model precision [25]. In recent years, the application of high-resolution satellite
data has further strengthened the advantages of topographic factors. Han et al., using
GF-1 and Sentinel-1, found that the integration of multi-source remote-sensing data and
topographic factors significantly improves AGB estimation accuracy in complex terrain
regions [26]. Forest stand ages are also an important factor affecting forest AGB [27]. Huang
et al., focusing on Chinese fir plantations, found that the spatial structure factors affecting
biomass accumulation vary significantly with stand age and proposed corresponding man-
agement measures [28]. Lee et al. identified forest age as a key variable regulating AGB in
alpine-subalpine forests, revealing that older stands exhibit higher biomass [29]. Wu et al.
demonstrated that models integrating both aspect and stand age outperform other models,
highlighting the importance of considering multiple factors, such as topography and stand
age, in AGB estimation [30]. These findings emphasize the complexity of AGB estimation
and the importance of integrating diverse variables for improved accuracy.

This study concentrates on the forest area situated within the Kashi River Basin of
the Ili Valley, nestled in the western Tianshan Mountains, as its research area. The Picea
schrenkiana (Picea schrenkiana var. tianschanica) in this region are categorized into three types:
the Whole Forest without vertical zonation and stand age (hereinafter referred to as the
whole forest), Vertical Zonality Classification without considering stand age (hereinafter
referred to as vertical zonality), and Stand-Age Classification without considering vertical
zonality (hereinafter referred to as stand age). Due to insufficient sample size when
simultaneously considering stand age and vertical zonality, which cannot meet the basic
requirements for statistical analysis, this scenario was not included in the study. For
these three classification cases, the performance of three feature combinations, namely
single optical data, single radar data, and opto-radar multi-source remote-sensing data, is
comprehensively investigated in three models: XGBoost, BPNN, and ResNet. Moreover,
a comparative analysis of the estimation accuracy is conducted. Through this multi-
dimensional and multi-method integrated analysis, the study aims to (1) improve the
accuracy of remote-sensing estimation for AGB of Picea schrenkiana forests in the western
Tianshan Mountains of Xinjiang and (2) expand the application scope and depth of domestic
high-resolution satellites in forest resource monitoring. The novelty of this study lies in
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its integration of multi-source remote-sensing data and the incorporation of key variables
such as vertical zonality and stand age, proposing a more refined and accurate method for
forest biomass estimation. Furthermore, the findings not only enhance the understanding
of biomass distribution patterns in the forest ecosystem of the western Tianshan Mountains
but also provide valuable methodological references and practical support for other regions
globally with complex terrain and diverse forest structures.

2. Materials and Methods
2.1. Study Area

Nilka County (81°85" E to 84°58' E, 43°25' N to 44°17' N) is in the northwestern
part of Xinjiang, China. It lies within the western hinterland of the Tianshan Mountains
and within the Kashi River Basin, which is part of the Ili Valley. This area experiences
a continental climate within the northern temperate zone, characterized by an average
annual temperature of 6.8 °C and a total annual precipitation of 406.9 mm, with the majority
of rainfall occurring from April to July. The region distinctly exhibits mountain climate
characteristics. The terrain features a slope from the northeast to the southwest. The forest
area has a simple composition of tree species, mainly natural Picea schrenkiana, a small
number of Populus spp. and Betula spp., and a few species of understory vegetation. Sub-
compartments, as the smallest spatial units for forest resource surveys, are divided based
on differences in ecological attributes such as stand origin, age class, and site type. In this
study, the sub-compartments of Picea schrenkiana forests in the Tianshan Mountains were
used as the basic units. Pure Picea schrenkiana forests, i.e., sub-compartments with Picea
schrenkiana as the tree species composition, were selected as the study area. The method of
stratified sampling was adopted, and the Picea schrenkiana forests in the study area were
divided according to two schemes: different vertical zonations and different stand ages.
Finally, 540 sub-compartments were sampled from the forest resources inventory database
of the Nilke Forest Farm as research samples. The average size of the sub-compartments is
18.36 hm?. The soil in this area is rich in humus and highly fertile. The most prevalent and
expansive soil type in the forest area is mountain gray-cinnamon soil, which is ideally suited
for Picea schrenkiana growth. Figure 1 illustrates the schematic diagram of the study area.

60°E 80°E 100°E 120°E 140°E 70°E 80°E 90°E 100°E
FON (B) Xin Jianes / N

hina [, (b) Xin Jiang ; A
) \a\/xf@é;; -

0 150 300 600
— — K

40°N
45°N

20°N  30°N
3
2 a 1
~ A A
i~ T
%
40°N

N
A
Z
z bt
g <
<
Z
4 — g
?' DEM/m <
@ High : 4658
S o 8 [0 Study area
— SR @ forest sample 1 40
Low : 745 e -—— - Km
82°0'E 83°0'E 84°0'E 85°0'E

Figure 1. Geographic location map of the study area. (a) Position of the study area within China.
(b) Position of the study area within Xinjiang Province. (c) Elevation map of the study area, along
with the forest sample locations.
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2.2. Data Processing
2.2.1. GF-1 PMS and GF-6 PMS Data

All the remote-sensing data used in this paper are sourced from the National Remote-
Sensing Data and Application Service Platform (https://www.cpeos.org.cn/, accessed
on 12 April 2024). GF-1 and GF-6 are primarily used to acquire optical remote-sensing
image data of the Earth’s surface. They are equipped with two distinct sensors. The high-
resolution camera (PMS) is capable of capturing panchromatic black-and-white images at a
resolution of 2 m and multispectral color images at a resolution of 8 m. The multispectral
sensor covers four bands: blue, green, red, and near-infrared (NIR), which are utilized
to obtain basic spectral information of ground objects and play a crucial role in various
fields, including land resource surveying and ecological environment monitoring [31]. The
16 m multispectral medium-resolution wide-swath camera (WFV) boasts a large imaging
swath width, enabling the acquisition of large-area ground images in a short period. We
performed optical data preprocessing in ENVI software 5.6 (Exelis Visual Information
Solutions, Inc., Boulder, CO, USA). To maintain consistency with the resolution of SAR
data, no fusion operations were performed on the optical data, and only multispectral data
were utilized.

2.2.2. GF-3 PolSAR Data

The GF-3 satellite, China’s first independently developed C-band synthetic aperture
radar (SAR) satellite, features 12 imaging modes and provides rich polarization data. The
full-polarization image data can simultaneously capture the transmission and reception
information of horizontal polarization (H) and vertical polarization (V), encompassing
four polarization modes: horizontal transmit-horizontal receive (HH), horizontal transmit-
vertical receive (HV), vertical transmit-horizontal receive (VH), and vertical transmit-
vertical receive (VV). In this study, the 20 pieces of SAR data utilized are all Quad-pol
stripmap (QPSI) images with a resolution of 8 m. The preprocessing of radar data en-
compasses radiometric calibration, multi-look processing, filtering, and geocoding [32].
After undergoing radiometric calibration, the radar data can more accurately reflect the
echo characteristics of ground objects. Multi-look processing and filtering can enhance the
visual quality of the image, making the geometric features of the image more akin to the
actual situation on the ground while also reducing speckle noise to a certain extent [33].
Since the complex image acquired by the SAR sensor is a slant range image, geocoding is
necessary to convert the SAR data from the slant range coordinate system to the geographic
coordinate system [34]. The preprocessing of GF-3 data was conducted using PIE-SAR 6.3,
a software developed by Piesat Information Technology Co., Ltd. in Beijing, China.

2.2.3. Auxiliary Data

Seven pieces of ASTER GDEM V3 30 m data were downloaded from the geospatial
data cloud platform (https://www.gscloud.cn/, accessed on 20 April 2024). The terrain
factors, including slope, aspect, and elevation, redistribute the energy of solar radiation,
thereby influencing vegetation growth and the accumulation of forest AGB. Use ArcGIS
10.8 (Environmental Systems Research Institute, Inc., Redlands, CA, USA) to extract terrain
factors such as elevation, slope, and aspect. Based on the classification of forest vertical
zones in the Yili area by Zhang et al. [35], the forest vertical zones in the study area
are categorized according to elevation. The classification criteria are outlined in Table 1.
Figure 2 is the topographic feature map of the study area.
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Table 1. Classification criteria for vertical zonality.

Vertical Zonality of Picea schrenkiana Forest DEM
Below the middle and low mountain forest-steppe belt Below 1500 m
Middle and low mountain forest-steppe belt 1500-1700 m
Middle mountain forest-meadow belt 1700-2250 m
Upper middle mountain forest-meadow belt 2250-2550 m
Subalpine open-forest belt 2550-2700 m
Above the subalpine open-forest belt Above 2700 m
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Figure 2. Topographic feature map of the study area. (a) altitude map of the study area. (b) vertical

zonality division map of the study area. (c) slope division map of the study area. (d) aspect division
map of the study area.

2.2.4. Resource Data

The forest resources inventory data for management encompasses fields such as
sample plot number, average diameter at breast height (DBH), stand age, crown density,
soil type, soil layer thickness, and standing stock volume per hectare. Projection coordinate
transformation is applied to these resource data to ensure alignment with the projection
coordinates of remote-sensing images. The geographic coordinate system is WGS-1984,
and the projected coordinate system is Universal Transverse Mercator (UTM), with the
projection zone number being UTM Zone 44N. The sub-compartments of the forest farm,
categorized by different altitudes and forest ages, are delineated, and only the fields relevant
to this study are retained. By referring to the regression equation of Picea schrenkiana forest
biomass and stock volume established by Fang et al. [36], the Picea schrenkiana biomass is
estimated using these resource data. The formula is as follows.

B = 0.4642V + 47.499, 1)

Note: Biomass (B) is measured in t-hm ™2, stem volume (V) is measured in m3-hm 2.

According to the forestry industry standards of the People’s Republic of China, “Reg-
ulations for age-class and age-group division of main tree species”, with 20 years as the
stand-age interval, Tianshan Picea schrenkiana forests are divided into young forest, middle-
aged forest, near-mature forest, mature forest, and over-mature forest according to their
different age stages. The classification criteria are presented in Table 2, and the Stand-Age

Classification map of the Picea schrenkiana forest is shown in Figure 3. In the study area,
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natural forests account for the vast majority. The age class of a sample plot is determined
by the average age of the trees within the plot.

Table 2. Classification criteria for stand age of Picea schrenkiana forests.

Stand Age of Picea schrenkiana Forest Age (Unit: Year)
Young forest Below 60
Middle-aged forest 61-100
Near-mature forest 101-120
Mature forest 121-160
Over-mature forest Above 161
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Figure 3. Classification map of stand ages of Picea schrenkiana forests.

Picea schrenkiana forests in the western Tianshan Mountains are mainly distributed in
three key vertical zones: middle mountain forest-meadow belt, upper middle mountain
forest-meadow belt, and subalpine open-forest belt. The combined conditions of climate
and soil in these three vertical zones engender a highly suitable environment conducive
to the growth of Picea schrenkiana and cultivate an ideal ecological niche tailored to it.
However, the distribution of Picea schrenkiana forest is very scanty in the middle and
low mountain forest-steppe belt and below. This is mainly because the precipitation in
this area is insufficient to meet the water demand of Picea schrenkiana growth [37]. More
importantly, human activities have caused some interference with the growth of Picea
schrenkiana, making it difficult for Picea schrenkiana forests to form and develop in this area.
In the area above the subalpine open-forest belt, the extreme climatic conditions exceed the
ecological adaptation range of Picea schrenkiana, preventing Picea schrenkiana forest from
establishing itself here. Overall, small classes of Picea schrenkiana in these two unsuitable
areas account for only 0.05% of the total.

From the perspective of stand age, Picea schrenkiana occupies a large proportion in
the near-mature forest, mature forest, and over-mature forest stages. Specifically, the
Picea schrenkiana population in these stages is more stable in the ecosystem and has
stronger adaptability to the environment. In contrast, the number of Picea schrenkiana
sub-compartments in young and middle-aged forests only accounts for 8.61% of the total,
which provides limited reference for this study. This is not only because the number of
individuals in the whole Picea schrenkiana forest ecosystem is small but also because it is
difficult to reflect the overall ecological characteristics and biomass distribution of Picea
schrenkiana forest. More importantly, young and middle-aged forests are still in the dynamic
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stage of growth and development, with unstable ecological characteristics and large data
fluctuations, which impedes the construction of accurate models and in-depth analysis and
research.

Based on the previous analysis, this study centers on three main vertical zones, namely
the middle mountain forest-meadow belt, the upper middle mountain forest-meadow belt,
and the subalpine open-forest belt, as well as three growth stages: near-mature forest,
mature forest, and over-mature forest. Through the modeling and analysis of these key
areas and stages, the aim is to accurately reveal the internal relationship between the
distribution of Picea schrenkiana forest, vertical zonality, and stand age and provide a solid
theoretical basis for the ecological protection and scientific management of Picea schrenkiana
forest in the West Tianshan Mountains.

2.3. Feature Extraction
2.3.1. Optical Image Features

(1) The Surface Reflectance

The original bands of remote-sensing images contain abundant object information
and are the cornerstone of object recognition. In optical remote-sensing data, different
bands correspond to different reflection characteristics of objects. The spectral information
is highly correlated with vegetation parameters. The band designs of GF-1 and GF-6 are
identical, although there are slight differences in the specific band ranges: the blue band
(0.45~0.52 um for both), the green band (0.52~0.59 pm for GF-1 and 0.52~0.60 pm for GF-6),
the red band (0.63~0.69 um for both), and the near-infrared band (0.77~0.89 um for GF-1
and 0.76~0.90 um for GF-6). Although there are slight differences, these discrepancies
can be effectively mitigated through appropriate data processing. Therefore, this study
combines the data from both satellites to form continuous and consistent optical satellite
imagery, from which the spectral values of these four bands are extracted.

(2) Vegetation Index

Analyzing and comparing only individual bands or multiple single bands is insuffi-
cient to comprehensively understand the complexity of vegetation remote sensing. As a
widely distributed object type on the Earth’s surface, vegetation demonstrates complex and
diverse spectral characteristics. To more effectively utilize satellite remote-sensing data to
characterize vegetation status based on the spectral properties of vegetation, various linear
or nonlinear combinations of satellite bands are performed, such as addition, subtraction,
multiplication, and division. These operations are used to extract a total of eight vegetation
indices, including the normalized difference vegetation index (NDVI), green normalized
difference vegetation index (GNDVI), ratio vegetation index (RVI), enhanced vegetation
index (EVI), difference vegetation index (DVI), infrared percentage vegetation index (IPVI),
soil adjusted vegetation index (SAVI), and normalized difference mountain vegetation
index (NVDMVI) [38,39]. The formula for calculating the vegetation index is shown in
Table 3.

Table 3. Commonly used vegetation index.

Source Type Variable Equations
_ (NIR-R)
NDVI NDVI = (§1r7R)
. RVI RVI = MR
Opticaldata ~ VeBStON  GNDVI GNDVI = MIR-G
naex —
SAVI SAVI = (&) x (1+1L)
DVI DVI = NIR —-R
_ _NIR
IPVI IPVI = iR,
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Table 3. Cont.

Source Type Variable Equations
_ (NIR-R)
Optical data ~ Yegetation I EVI=25X [WNIRT6R—75671)
P Index NDMVI NDMVI = WNIR=R)+ (R = NIRyin)

(NIR+R)+(Ruim+NIRnim)
Note: In the formula, NIR denotes the reflectance value of the near-infrared band, R denotes the reflectance value
of the red band, B denotes the reflectance value of the blue wave segment, and G denotes the reflectance value
of the green band. Furthermore, L is the soil adjustment coefficient, which is 0.5 in this study. In NDMVI, the
minimum reflectance values of the red band and near-infrared band of the image in the study area were extracted
and assigned to R,;;,, and NIR,,;,, respectively.

(3) Texture Features

Texture features contain and reflect the spatial variation of the grayscale of the image
and can better reflect the real structure of ground objects. In areas with more complex
stand structures, they have a positive effect on AGB estimation [40]. Many scholars have
confirmed that the inclusion of spectral texture features in the model significantly improves
estimation accuracy [41]. After performing principal component analysis on the optical
data in this study, it was found that the contribution rate of the first principal component
is 97.5%. Based on the gray-level co-occurrence matrix (GLCM), eight texture features
were extracted from six windows (3 x 3,5 x 5,7 x 7,9 x 9,11 x 11, 13 x 13) of the
first principal component, including mean (MEAN), variance (VAR), homogeneity (HOM),
contrast (CON), dissimilarity (DIS), entropy (ENT), second moment (ASM), and correlation
(COR). The texture feature formula is shown in Table 4.

Table 4. Texture feature calculation formulas based on the gray-level co-occurrence matrix.

Source Type Variable Equations
N-1
Mean (MEAN) MEAN = Y. ip(i,j)
i,j=0
. N—
Variance (VAR) VAR = Zl p(i, )i — Hi)z
i,j=0
Homogeneity (HOM) HOM — Nil M
=0 1+ (i —j)*
N-1
Contrast (CON) CON = ¥ p(i,j)(i—j)?
=0
Optical data GLCM e 11\]] -1
Texture Dissimilarity (DIS) DIS= Y. p(i,j)]i—]|
i,j=0
N-1
Entropy (ENT) ENT = ¥ p(i,j)(=log[p(i,j)])
i,j=0
Second moment N-1 =
(ASM) ASM = 4,20;7(1,])
1,]=
Correlation (COR) COR = Nil (i —ui) (G —u;) p(i, f)
i,j=0 Qipj

Note: In the formula, i and j denote the number of rows and columns of the matrix, respectively. N denotes
the number of pixels. p(i,j) represents the probability of the simultaneous occurrence of two gray values
corresponding to row i and column j. y; and y; represent the mean values of rows and columns, respectively. ¢;
and ¢; denote the variance of rows and columns.

2.3.2. Radar Image Features
(1) Backscatter Coefficient

The backscatter coefficient of radar data is a complex physical quantity, representing
the result of the comprehensive influence of multiple factors within the forest stand. In the

forest environment, factors such as ground roughness, vegetation coverage, and vegetation
water content are intertwined and jointly determine the magnitude of the backscatter
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coefficient [42]. In this study, four polarized backscatter coefficients, HH, HV, VH, and VV,
are extracted as the characteristic variables of the model.

(2) Polarization Decomposition

The forest represents an incoherent target and exhibits a distributed characteristic
with a universal time-varying effect [43]. Based on PIE-SAR 6.3 software, this study
aims to extract the four incoherent polarization decomposition parameters (the Freeman
decomposition, the Pauli decomposition, the H/A/Alpha decomposition, the Yamaguchi
decomposition) as well as the one coherent polarization decomposition parameter (the
Krogager decomposition) in order to deeply explore the forest feature information in radar
data [32]. The related parameters of polarization decomposition are shown in Table 5.

Table 5. Related parameters of polarization decomposition.

Source Type Variable Description

Double-bounce scattering (Dbl),

Freeman Volume scattering (Vol), Surface

decomposition scattering (Odd)
. Double-bounce scattering (Dbl),
Pauli .
decomposition Volume scattering (Vol), Surface
scattering (Odd)
Polarization H/A/AlPha Entropy, Anisotropy, Alpha, Lambda
SAR data decomposition decomposition
P Double-bounce scattering (Dbl),
Yamaguchi Volume scattering (Vol),
decomposition Surface scattering (Odd),
Helix scattering (HIlx)
Spherical scattering (KS), Dihedral
Krogager . L
o scattering (KD), Helicoid angles
decomposition

scattering (KH)

(3) Radar Vegetation Index

The radar vegetation index is a parameter derived from eigenvector decomposition. As
vegetation density increases, the radar vegetation index will change accordingly, providing
important reference data for the investigation and management of forest resources [44]. The
radar vegetation index, utilizing the Freeman-Durden decomposition, takes into account
the proportion of the three scattering mechanism components: dihedral scattering (F;),
surface scattering (F;), and volume scattering (F,). The radar vegetation index incorporates
this information related to vegetation scattering by employing a specific algorithm, thereby
enabling it to quantitatively describe the density of vegetation. The formula is as follows.

Fy

Freeman_RV] = ———,
- F,+F;+ Fs

@)

2.4. Model Introduction

The measured data and the factors, after having undergone feature optimization,
under three combination forms of single optical data, single SAR data, and multi-source
remote-sensing data combining optical with SAR are inputted into the eXtreme Gradient
Boosting (XGBoost), Back Propagation Neural Network (BPNN), and Residual Network
(ResNet) models, respectively, to estimate the AGB of Picea schrenkiana forests across three
classification criteria: the whole forest, different vertical zonality, and different stand ages.
In the model construction phase, Python 3.7 is selected as the development language, and
the powerful PyCharm 3.8.3 editor is used for code writing. To ensure the reliability and
generalization ability of the model, 30% of the data are randomly selected as the validation
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set to evaluate the performance of the model. During the model training process, through
continuous attempts at different parameter combinations, a Picea schrenkiana forest biomass
inversion model with the highest accuracy is finally established.

2.4.1. XGBoost

XGBoost is a powerful machine-learning algorithm. It demonstrates superior perfor-
mance in both classification and regression tasks within the domain of weakly supervised
learning in machine learning. The training process is optimized by introducing an innova-
tive sparse-aware algorithm for sparse data processing and a weighted quantile sketch for
approximate tree learning [45]. The XGBoost model aims to prevent overfitting and, at the
same time, reduce computational cost by keeping predictions at optimal computational
efficiency through simplification and regularization.

Suppose a dataset D = (x;,y;)(|D| = n,x; € R™,y; € R), where n is the number of
samples, m is the feature dimension of each sample, and the additive model is defined as:

~(0) 0

© _
7 = fi(x) = 9"

7 + f1(x;)
A(2 A(1
7 = fi(x) + falx) = gV

+f2(xi)/ (3)

?Ek) = 58 fi(xi) = ??71) + fi(x;)

The algorithm model of XGBoost can be expressed as:

i = ¢(xi) = Ty filxi), fu € F, (4)

Here, 7 = f(x) = wy()(q: R" = T,w € RT) represents the sample space of regres-
sion trees (typically CART trees are used). The function 4 maps each sample to a leaf node
index, where T denotes the number of leaf nodes in each tree and w represents the weights
of the leaf nodes. Each f corresponds to an independent tree defined by g (tree structure)
and w (leaf node weights).

2.4.2. BPNN

The BPNN is one of the currently commonly used neural networks. It calculates the
error through forward propagation and realizes the training of the neural network by
backpropagating the error gradient. The structure consists of three components: the input
layer, the hidden layer, and the output layer [46]. Increasing the number of neurons in the
hidden layer can enhance the training accuracy of the BP neural network. If the number of
neurons in the hidden layer is insufficient, the network may obtain too little information
to solve problems effectively; if the number is too large, not only will the training time
increase, but more importantly, an overfitting problem may arise if there are too many
hidden layer nodes, resulting in an increase in test error and a decrease in generalization
ability. The model framework is shown in Figure 4.
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Input Layer Hidden Layer Output Layer
Figure 4. The framework of the Back Propagation Neural Network model.

2.4.3. ResNet

In traditional deep CNNs, as the number of network layers increases, gradient dis-
appearance (the gradient value gradually diminishes to zero) or explosion (the gradient
value skyrockets) occurs in the backpropagation process, making it difficult to train the
network. Residual connections enable gradients to propagate more effectively in the net-
work by directly passing the input signal [47]. During backpropagation, the gradient can
be directly passed back through the shortcut connection without passing through all the
convolutional layers, thereby reducing the risk of gradient disappearance or explosion. The
model framework is shown in Figure 5.
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Figure 5. The framework of the Residual Network model. k represents the convolution kernel, s
represents the stride, and p represents the padding.
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2.5. Accuracy Verification

A total of 30% of the data are randomly selected as the test set to evaluate the model’s
applicability. The coefficient of determination (R?) and the root mean square error (RMSE)
are employed as evaluation metrics to assess the accuracy of each model result. R? is utilized
to measure the goodness of fit of the model to the data and to explain the proportion of
variance in the target variable. The value range is from 0 to 1. R? = 1 indicates that the
model perfectly fits the data. RMSE is an index used for evaluating regression models and
is used to measure the deviation between the model’s predicted value and the true value.

i (vi — ]?i)z
RZ=1-"1 ®)
i;(% *yi)z
é(yi -y
= ©)

Types (5) and (6): y; represents the actual observed value, §J; represents the predicted
value, ; represents the mean of the actual observations, and 7 represents the number
of samples.

3. Results
3.1. Determination of Characteristic Factors

The selection of modeling factors plays a crucial role in determining the accuracy of
the model. If numerous modeling factors are introduced arbitrarily, many of them may
have little or no correlation with AGB. This excessive number of factors not only increases
the computational burden but also prolongs the model’s training duration. To ensure
the reliability of the model, prior to the modeling process, the normality of the data was
first examined using Q-Q plots in the SPSS data analysis software (IBM SPSS Statistics
v26, IBM Corp., Armonk, NY, USA), a widely used tool for statistical analysis in various
research fields. After confirming the data’s normality, the Pearson correlation coefficient
was employed to examine the correlation between characteristic factors and AGB. Based
on the results of this analysis, factors that were significantly associated with AGB were
carefully selected. This approach helps in identifying the most relevant factors, thereby
enhancing the model’s accuracy and efficiency.

The correlation coefficients between different vertical zonality and characteristic fac-
tors from various data sources are presented in Table 6. When categorized by vertical
zonality, Band3, DVI, HH polarization, HV polarization, Freema_Rvi, and SLOPE, all
exhibit notably high correlation coefficients. In the middle mountain forest-meadow belt,
MEAN_3 shows the strongest correlation with a coefficient of 0.432. Subsequently, Band3
and HV polarization have correlation coefficients of —0.372 and 0.363, respectively. The cor-
relation coefficient between Band3 and the upper middle mountain forest-meadow belt is
—0.453. In this belt, the correlations with MEAN_3 and Band?2 are 0.504 and —0.473, respec-
tively. In SAR, the highest correlation coefficients of HH polarization and HV polarization
with the upper middle mountain forest-meadow belt are —0.378 and —0.344, respectively.
The correlation coefficient between the vegetation index DVI and the subalpine open-forest
belt is —0.374. Moreover, in the subalpine open-forest belt, the correlation of SAR data is
higher than that of optical data, and the correlation coefficients of HH polarization and HV
polarization are the highest, being 0.406 and 0.383, respectively.
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Table 6. Correlation between factors and AGB in different vertical zonality.

Middle Mountain Upper Middle Mountain .
Forest-Meadow Belt PFI:)rest-Meadow Belt Subalpine Open-Forest Belt
Band3 —0.372 ** Band2 —0.473 ** Band3 0.336 **
Band2 —0.345 ** Band3 —0.453 ** Band4 —0.321 **
Optical data MEAN_3 0.432 ** MEAN_3 0.504 ** Band1 0.291 *
COR_5 0.217 ** COR_5 0.184 ** DVI —0.374 **
DVI —0.251 ** DVI —0.353 **
GNDVI —0.106 **
HV 0.363 ** HH —0.378 ** HH 0.406 **
VH 0.339 ** HV —0.344 ** HV 0.383 **
SAR data Pauli_Vol 0.353 ** Freeman_Vol —0.342 ** Pauli_Vol 0.351 **
Freeman_Rvi 0.338 ** Pauli_Vol —0.337 **
Freeman_Rvi 0.135 **
Topographic SLOPE 0.327 **
Factor

Note: * indicates significant correlation at the 0.05 level (two-tailed). ** indicates significant correlation at the 0.01
level (two-tailed). MEAN_3 represents the mean value in a 3 x 3 window. COR_5 represents the correlation in a
3 x 3 window.

The correlation coefficients of different stand ages and characteristic factors of different
data sources are shown in Table 7. In near-mature forests, MEAN_3 and Band2 have
the highest correlation, with correlation coefficients of 0.568 and —0.571, respectively.
Second, VH polarization, HV polarization, and Pauli_Odd in SAR data have correlation
coefficients of —0.424, —0.413, and —0.403, respectively. Among vegetation indices, the
correlation coefficients of RVI, DVI, and NDVI are 0.346, 0.340, and 0.312, respectively. In
mature forests, MEAN_5, Band3, and Band2 have the highest correlation, which is 0.515,
—0.500, and —0.492, respectively. In SAR data, the correlation coefficients of HH, VH,
and Freeman_Rvi are —0.431, —0.358, and 0.266, respectively. In over-mature forests, VH
polarization has the highest correlation, with a correlation coefficient of —0.423. Second,
Band3, DVI, and Freeman_Vol have correlation coefficients of —0.412, 0.399, and —0.390,
respectively. Among topographic factors, SLOPE and DEM have high correlations with all
three stand ages. The highest value of SLOPE appears in mature forests, with a correlation
coefficient of 0.427.

Table 7. Correlation between factors and AGB in different stand ages.

Near-Mature Forest Mature Forest

Over-Mature Forest

Band?2 —0.571 ** Band3 —0.500 ** Band3 —0.412 **
MEAN_3 0.568 ** Band2 —0.492 ** Band2 —0.322 **
Optical data COR_11 0.369 ** MEAN_5 0.515 ** DVI 0.399 **
RVI 0.346 ** COR_5 0.194 **
DVI 0.340 ** COR_3 —0.143 **
NDVI 0.312 ** DVI —0.233 **
VH —0.424 ** HH —0.431 ** VH —0.423 **
HV —0.413 ** VH —0.358 ** Freeman_Vol —0.390 **
SAR data Pauli_Odd —0.403 ** Freeman_Rvi 0.266 ** Freeman_Rvi —0.273 **
Freeman_Vol —0.397 **
Yamaguchi_Odd —0.369 **
Topographic SLOPE 0.325 ** SLOPE 0.427 ** DEM 0.250 **
Factor DEM —0.178 **

Note: ** indicates significant correlation at the 0.01 level (two-tailed). MEAN_3 represents the mean value in
a 3 x 3 window. COR_3 represents the contrast in a 3 x 3 window. MEAN_5 represents the mean value in a
5 x 5 window. COR_5 represents the correlation in a 5 x 5 window. COR_11 represents the correlation in an
11 x 11 window.
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3.2. Estimation Results of Different Vertical Zonality

Based on the in-depth correlation analysis in the early stage, this study divides the data
sources into single optical data (Optical data + Topographic Factor), single radar data (SAR
data + Topographic Factor), and multi-source remote-sensing data (Optical data + SAR
data + Topographic Factor). The aim is to thoroughly investigate the specific impact of
various data sources on the accuracy of the Picea schrenkiana forest biomass estimation
model under different classification methods.

The accuracy of different models under different vertical zonality and different data
sources is shown in Table 8. In the upper middle mountain forest-meadow belt, when only
optical data are used, the R? of the ResNet is 0.74, which is much higher than the R? of
the XGBoost of 0.57 and the R? of the BPNN of 0.66. Due to the lesser number of input
values in the subalpine open-forest belt, the highest inversion accuracy combination is
multi-source remote-sensing data plus ResNet, with R? = 0.69 and RMSE = 12.63 t-hm 2.
The lowest accuracy appears in the estimation using a single data source with XGBoost,
where R? = 0.51 and RMSE = 24.56 t-hm~2. It can be seen that the performance of the
ResNet in combinations involving three data sources outperforms that of the XGBoost and
BPNN. In addition, the performance of different data sources under the application of the
same model also varies. In the middle mountain forest-meadow belt, when only optical
data are input into the XGBoost, the obtained R? = 0.52 and RMSE = 23.40 t-hm~2. Based on
the SAR data source, R? = 0.46 and RMSE = 24.87 t-hm~2. The R? value of Picea schrenkiana
forest estimation utilizing multi-source data is increased to 0.62, and the RMSE value
is reduced to 20.69 t-hm~2, indicating that integrating various data sources can further
improve the accuracy of the model. In the upper middle mountain forest-meadow belt, for
the BPNN, the R? of the optical data source is 0.66 and RMSE = 19.65 t-hm 2, while the R?
of the SAR data source is 0.65 and RMSE = 22.21 t-hm 2. When both optical and SAR data
sources are used simultaneously, R? = 0.71 and RMSE = 19.21 t-hm 2, which indicates that
combining multiple data sources has a positive impact on model accuracy. The accuracy of
each model using multi-source data in the case of vertical zonality is shown in Figure 6.

Table 8. The Accuracy of Each Model under Different Vertical Zonality and Different Data Sources.

Optical Data + Topographic SAR Data + Topographic Optical Data + SAR
Factor Factor Data + Topographic Factor

R? RMSE R? RMSE R? RMSE
Middle mountain 0.52 23.40 0.46 24.87 0.62 20.69

forest-meadow belt

XGBoost Upper middle mountain

0.57 22.96 0.52 26.06 0.63 21.30

forest-meadow belt
Subalpine open-forest belt 0.51 24.56 0.54 18.66 0.57 13.40
Middle mountain 0.67 20.24 0.67 18.02 0.72 16.87

forest-meadow belt

BPNN Upper middle mountain

0.66 19.65 0.65 22.21 0.71 19.21

forest-meadow belt
Subalpine open-forest belt 0.62 16.85 0.57 16.50 0.66 15.15
Middle mountain 0.74 17.31 0.70 16.55 0.78 15.27

ResNet forest-meadow belt
Upper middle mountain 0.74 17.82 0.67 21.91 0.79 15.62

forest-meadow belt
Subalpine open-forest belt 0.63 22.19 0.67 12.31 0.69 12.63
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Figure 6. The accuracy of each model using multi-source data in the case of vertical zonality.

3.3. Estimation Results of Different Stand Ages

The accuracy of different models under different stand ages and different data sources
is shown in Table 9. Compared to near-mature forest and mature forest, over-mature
forest have a smaller area and fewer input values, resulting in lower estimation accuracy
than that of near-mature forest and mature forest. In mature forest, when only optical
data are used, for XGBoost, R? = 0.60 and RMSE = 16.47 t-hm 2. For BPNN, R* = 0.63
and RMSE = 1537 thm 2. For ResNet, R* = 0.67 and RMSE = 1491 thm™2. In near-
mature forest, when multi-source remote-sensing data are used, for XGBoost, R? = 0.60
and RMSE = 13.40 t-hm~2. For BPNN, R? = 0.69 and RMSE = 12.60 t-hm 2. For ResNet,
R? = 0.77 and RMSE = 10.06 t-hm~2. Under the same data source and different model condi-
tions, ResNet demonstrates the highest accuracy. When the model is fixed as using ResNet,
in over-mature forest, when only optical remote-sensing images are used, R? = 0.74 and
RMSE = 21.58 t-hm 2. When only SAR data are used, R? = 0.72 and RMSE = 22.44 t-hm 2.
When combining optical and SAR data, R? = 0.77 and RMSE = 22.68 t-hm 2. This once again
confirms that combining two data sources can further improve the accuracy of ResNet and
enable it to achieve optimal performance. The accuracy of each model using multi-source
data in the case of stand ages is shown in Figure 7.
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Table 9. The Accuracy of Each Model under Different Stand Ages and Different Data Sources.

Optical Data + Topographic SAR Data + Topographic Optical Data + SAR
Factor Factor Data + Topographic Factor
R? RMSE R? RMSE R? RMSE
Near-mature forest 0.52 14.21 0.48 14.86 0.60 13.40
XGBoost Mature forest 0.60 16.47 0.54 17.61 0.65 15.93
Over-mature forest 0.51 29.60 0.49 23.79 0.60 28.33
Near-mature forest 0.65 12.87 0.64 13.05 0.69 12.60
BPNN Mature forest 0.63 15.37 0.63 15.38 0.71 14.93
Over-mature forest 0.64 21.78 0.60 22.85 0.67 25.59
Near-mature forest 0.64 12.43 0.72 10.84 0.77 10.06
ResNet Mature forest 0.67 14.91 0.68 14.64 0.83 10.62
Over-mature forest 0.74 21.58 0.72 22.44 0.77 22.68
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Figure 7. The accuracy of each model using multi-source data in the case of stand ages.

3.4. Estimation Results of the Whole Forest

It is easy to deduce from Tables 8 and 9 that multi-source data have higher prediction
accuracy than a single data source. Therefore, multi-source data are individually incorpo-
rated into the three models, as shown in Table 10 and Figure 8, respectively. It is readily
apparent that the ResNet has the highest accuracy, with R? = 0.71 and RMSE = 20.95 t-hm 2.
The XGBoost model has the lowest accuracy, with R? = 0.55 and RMSE = 27.71 t-hm 2.
To sum up, there are differences in the accuracy performance of various data sources and
models under different modeling methods. Generally, in terms of data, integrating optical
and SAR data sources can significantly improve the model’s accuracy. The ResNet model
demonstrates notably higher accuracy compared to the other two models. Among different
modeling approaches, the accuracy of AGB estimation is higher for vertical zonality and
stand-age scenarios than for the entire forest. Among them, the accuracy of estimation
based on stand age is the highest.
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Table 10. The Accuracy of different models in estimating the whole forest using multi-source data.

XGBoost BPNN ResNet
Whole forest R? 0.55 0.66 0.71
ole rores
RMSE 27.71 23.04 20.95
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Figure 8. Accuracy of each model using multi-source data in the case of whole forest.

3.5. AGB Mapping

Through the above comparison, it can be inferred that the combination of ResNet and
multi-source remote-sensing data has the highest accuracy. Using this model and data
source, we draw AGB distribution maps for three scenarios: the entire forest, classification

by vertical zonality, and classification by stand ages. These maps are shown in Figure 9.
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Figure 9. AGB estimation results under three different modeling methods. (a) shows the output map
of estimated AGB for the whole forest. (b) based on the classification of vertical zonality, shows the
output map of estimated AGB. (c) based on the classification of stand ages, shows the output map of

estimated AGB.

44



Forests 2025, 16, 445

4. Discussion

In the realm of AGB estimation research, the acquisition and utilization of comprehen-
sive and precise information are of paramount significance. This study is based on the forest
AGB estimation outcomes obtained from three distinct data sources: single optical data,
single radar data, and integrated optical-radar data. In this study, the estimation accuracy
of multi-source remote-sensing data is significantly higher than that of single-source data.
This conclusion has been rigorously verified by an extensive body of research. Attarchi
et al. [48] evaluated 11 distinct multiple linear regression models using optical and SAR
data. Their research findings clearly show that integrating multispectral and SAR data
can effectively reduce uncertainties from data limitations, thus improving the accuracy of
biomass estimation. The results of our current study are highly congruent with this view.
This further validates the significant advantages of multi-source remote-sensing data in
biomass estimation.

Given the challenge of acquiring forest AGB products with temporal and spatial
resolutions fully consistent with those of this study, we selected the AGB product with the
highest resolution and the closest acquisition time (the 30 m resolution AGB product in
China in 2019) for a comparative analysis with the AGB estimated in this study. As shown
in Figure 9, the biomass distribution range obtained from the whole-forest estimation in
this study mainly fell within the range of 70-190 t-hm 2, with an average biomass per unit
area of 126.49 t-hm~2. Based on 4789 ground-measured AGB data and multi-source remote-
sensing data, Yang [49] derived a 30 m resolution biomass estimation for China in 2019.
After converting the research findings, the average biomass per unit area in this study area
is approximately 129.34 t-hm~2, which is comparable to the results of this study. However,
an in-depth analysis of Yang’s estimation results reveals that the biomass distribution
range mainly ranges from 100 to 160 t-hm 2. Taking the forest resources inventory data for
management as the true value, the biomass in the study area is mainly distributed in the
range of 70-190 t-hm~2. As shown in Table 11, the RMSE of the estimation based on the
entire forest in this study is 22.61 t-hm 2, while the RMSE in Yang’s study is 30.20 t-hm~—2.
From the comparison results, it can be seen that the estimated values in this study fit better
with the true values across regions with different biomass levels, especially in areas with
higher biomass, where Yang’s study exhibited significant underestimation. In contrast, this
study more accurately reflects the actual biomass conditions. This is because the spatial
resolution of the dataset used in this study exceeds 30 m, and a larger-scale measured
dataset has been obtained in the study area. These improvements have enhanced the
reliability of biomass estimation at the extremes. The comparison of AGB estimation results
between this study and Yang's study is presented in Figure 10, while the specific errors are
shown in Table 11.

Table 11. The errors of the whole-forest estimation results in this study and the AGB estimation
results in Yang’s study when compared with the true value.

Number True Value Whol_e Forest Error Yang's AGB Error
Estimate

1 62.3534 93.81768 —31.4643 117.565 —55.2116
2 72.1016 84.79638 —12.6948 123.5967 —51.4951
3 81.8498 102.4973 —20.6475 117.2498 —35.4
4 86.4918 96.70109 —10.2093 109.858 —23.3662
5 96.24 110.9799 —14.7399 123.005 —26.765
6 101.3462 87.37556 13.97064 106.6862 —5.33999
7 105.9882 99.72482 6.263377 118.8634 —12.8752
8 111.0944 108.8939 2.200533 126.8149 —15.7205
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Table 11. Cont.

Number True Value Whol.e Forest Error Yang's AGB Error
Estimate
9 115.7364 111.9555 3.780879 143.0097 —27.2733
10 120.8426 128.0583 —7.21566 130.8246 —9.98197
11 125.4846 114.2628 11.22175 117.4728 8.011774
12 130.5908 91.12645 39.46435 105.9736 24.61725
13 133.376 138.1766 —4.80064 135.807 —2.43097
14 136.1612 166.4629 —30.3017 146.5908 —10.4296
15 140.339 134.6607 5.67831 144.5293 —4.19033
16 144.981 131.7099 13.27107 126.5128 18.4682
17 154.7292 160.7999 —6.0707 138.5166 16.21257
18 159.8354 173.726 —13.8906 135.9558 23.87965
19 164.4774 176.8097 —12.3323 139.8075 24.66987
20 169.5836 131.8373 37.74632 145.0627 24.52095
21 183.9738 150.7507 33.22307 134.5283 49.44547
22 189.08 171.5312 17.54883 154.0613 35.01869
23 193.722 149.9356 43.78642 151.4542 42.26779
24 208.5764 162.8467 45.72974 147.4223 61.15406
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Figure 10. The comparison of AGB estimation results between this study and Yang’s study. (a) the
results of this experimental study; (b) The results of Yang’s study.

When multi-source remote-sensing data and ResNet were used to estimate whole-
forest biomass, R? was 0.71, and RMSE was 20.95 t-hm 2. In the vertical zonality modeling
method, the estimation accuracy of the subalpine open-forest belt, which has a slightly
lower sample number, is lower than that of the whole forest. Conversely, the estimation
accuracies of the other two vertical belts are higher than that of the whole forest. In
the case of stand-age modeling, the R? of the model reaches up to 0.83. According to
Figures 6¢,f,i, 7c,f,i and 8c, when the biomass is less than 100 t-hm 2, the overestimation
of the whole-forest biomass is the most significant, and the deviation value significantly
exceeds the estimation results of vertical zonality and stand-age modeling. This overestima-
tion is not accidental. When the biomass reaches 170 t-hm 2 and above, the underestimation
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issue emerges again in the whole forest. Taking the biomass estimation approach integrat-
ing multi-source remote-sensing data and the ResNet model as an example, among all the
estimation results, when the error between the estimated value and the actual biomass
exceeds 30 t-hm 2, the error proportion under different modeling methods exhibits distinct
differences. When estimating the forest as a whole, the estimated values with an error
exceeding 30 t-hm 2 account for 23.09% of the total estimated values. When the vertical
zonality modeling method is applied to estimate biomass, the error ratio is significantly
reduced to 5.45%. In the case of stand-age modeling, the proportion of estimates with an
error greater than 30 t-hm~? is the lowest, merely 4.72%. The climatic and other conditions
in distinct vertical zones vary substantially, with a profound impact on vegetation growth
and biomass distribution. The biomass characteristics of trees in different stand ages also
differ significantly because of their disparate growth states. Dividing forests based on
vertical zonation or age class allows for more precise identification of these differences. As
a result, the accuracy of estimations is notably enhanced, lending support to more accurate
biomass evaluations.

5. Conclusions

In the biomass estimation study of Picea schrenkiana forests in the West Tianshan Moun-
tains, this study integrated GF-1, GF-6, and GF-3 PolSAR data with dem data, extracted
corresponding feature factors, and applied the ResNet method to conduct the estimation
work. Eventually, high accuracy in biomass estimation was achieved. It is well-established
that along altitude gradients, over short distances, there are systematic alterations in tem-
perature and precipitation. Additionally, as forests age, biomass continues to build up.
Based on these principles, this study further classified Picea schrenkiana forests according to
two methods: Vertical Zonality Differentiation without considering stand age and Stand-
Age Classification without considering vertical zonality. The results showed that the model
accuracy was remarkably improved.

Starting from the middle and low mountain forest-steppe belt, as the altitude continues
to increase, temperature and precipitation conditions become highly conducive to AGB
accumulation in Picea schrenkiana forests. However, if the altitude exceeds a certain critical
value, the temperature will drop significantly, and this low-temperature environment will
no longer be suitable for AGB accumulation in Picea schrenkiana forests [50]. Conversely,
below the middle and low mountain forest-steppe belt, due to intensive human activities,
it is also not conducive to the large-scale growth of Picea schrenkiana forest. This further
explains why Picea schrenkiana forest is mainly distributed in the area 1700-2700 m above
sea level.

Due to limitations in data availability, in-depth studies on the long-time-series AGB of
Picea schrenkiana forests remain scarce. In follow-up research, remote-sensing data from
the Landsat series or other sources can be integrated at 10—20-year intervals, combined
with environmental factors such as precipitation and temperature, to systematically ana-
lyze the dynamic changes in Picea schrenkiana forest AGB. Furthermore, the influencing
factors considered in the current model construction are not comprehensive enough. In
future studies, additional key stand characteristic factors, such as slope position and mean
DBH, can be incorporated to continuously optimize the AGB estimation model for Picea
schrenkiana forests.
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Abstract: Consistent and accurate data on forest biomass and carbon dynamics are essential
for optimizing carbon sequestration, advancing sustainable management, and developing
natural climate solutions in various forest ecosystems. This study quantifies the forest
biomass in designated forests based on GEDI LiDAR datasets with a unique compartment-
level monitoring of unexplored hilly areas of Mansehra. The integration of multisource
explanatory variables, employing machine learning models, adds further innovation to the
study of reliable above ground biomass (AGB) estimation. Integrating Landsat-9 vegetation
indices with ancillary datasets improved forest biomass estimation, with the random
forest algorithm yielding the best performance (R? = 0.86, RMSE = 28.03 Mg/ha, and
MAE =19.54 Mg/ha). Validation with field data on a point-to-point basis estimated a
mean above-ground biomass (AGB) of 224.61 Mg/ha, closely aligning with the mean
ground measurement of 208.13 Mg/ha (R? = 0.71). The overall mean AGB model estimated
a forest biomass of 189.42 Mg /ha in the designated moist temperate forests of the study area.
A critical deficit in the carbon sequestration potential was analysed, with the estimated AGB
in 2022, at 19.94 thousand tons, with a deficit of 0.83 thousand tons to nullify CO, emissions
(20.77 thousand tons). This study proposes improved AGB estimation reliability and offers
insights into the CO, sequestration potential, suggesting a policy shift for sustainable
decision-making and climate change mitigation policies.

Keywords: temperate forest; AGB; LiDAR; random forest; CO;; sustainable management

1. Introduction

Climate model projections indicate a temperature increase ranging from 1.92 °C to
5.2 °C by the late 21st century, depending on CO, and other greenhouse gases (GHGs) [1].
These alarming trends underscore the need for prompt policy interventions to mitigate the
risks associated with climate change. Ecosystem services of forests are pivotal in curbing
the progression of climate change, particularly by sequestering CO, emissions. Global CO,

Forests 2025, 16, 330 https://doi.org/10.3390/£16020330
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emissions annually increase by 0.1%, reaching 35.8 Gt in 2023, further contributing to global
warming [2]. This highlights the need for a holistic understanding that combines biological,
ecological, and social knowledge. Such an integrated approach bridges forest ecology
and management, supporting the sustainable preservation of biomass and ecosystem
services. Moreover, biomass estimation is also vital to monitor progress and targets under
SDG-15 (Life on Land) and the REDD+ program to ensure sustainable forest management,
biodiversity preservation, and ecosystem health [3,4].

AGB is a critical parameter for assessing forest ecosystems, as it effectively encapsu-
lates indicators, such as forest area change, net forest change, and management practices.
Moreover, AGB is a vital determinant of a forest ecosystem’s capacity for carbon storage.
The accurate estimation of AGB is crucial for monitoring afforestation and deforestation
and developing sustainable strategies to address forest management challenges under
SDG-15.

Pakistan ranks 5th in climate vulnerability, according to the Global Climate Risk
Index [5]. Its forests, covering just 4.51 million hectares [6], are increasingly vulnerable
to climate change, necessitating advanced methodologies for accurate carbon assessment.
Enhancing existing frameworks and tailoring them to local contexts is vital for developing
effective mitigation strategies to control CO, emissions [7]. Assessing forest areas without
considering AGB limits our understanding of the total carbon storage capacity and the
potential effects of climate change.

Temperature and precipitation are significant climate characteristics that regulate
the environmental variables affecting above-ground forest carbon stocks. Forest struc-
ture changes are determined by species distribution, composition, and density and are
vulnerable to climatic-induced shifts, impacting forest productivity and functionality [8].
Additionally, Pakistan’s management strategies adopted for forestry resources face multiple
challenges due to climate change impacts and resource allocation among the indigenous
communities living in the forest. The loss of carbon sinks, estimated at 1.1% from 2000 to
2023 by Global Forest Watch, has intensified climate change impacts, heightened suscepti-
bility towards natural disasters, and increased habitat loss, threatening species survival
and biodiversity [9]. Addressing these challenges requires integrating data fusion tech-
niques, machine learning algorithms, and innovative approaches to improve carbon stock
assessments in managed and natural forests.

Inaccurate and unreliable methods for estimating forest AGB result in substantial
miscalculations of carbon storage capacities, ultimately undermining climate change miti-
gation and adaptation strategies [10]. Forest carbon estimates at global and regional scales
face data availability challenges, estimation methods, topographical variability, and vast
spatial coverage [11]. Significant data gaps and uncertainty in forest carbon sequestration
and storage mainly stem from inconsistent field data collection and biomass allometric
equations [12,13]. Ground-based methods for quantifying forest biomass and net primary
productivity (NPP) are resource-intensive and limited in spatial and temporal coverage [14].
Therefore, a consistent methodological framework is essential to estimate AGB at national
and sub-national levels.

Traditional methods of AGB estimation are statistical, requiring more resources. Allo-
metric equations were developed using a logarithmic transformation model for biomass
estimation in a sub-tropical ecoregion, using integrated cluster sampling, and using optical
image segmentation to estimate carbon stocks in Himalayan temperate and sub-tropical
mountain systems [15]. This ground-based methodology was supplemented with remote
sensing to cover a larger area. These studies indicated the prevalent use of optical and field-
based inventory data collection techniques for carbon stock estimation. Sentinel-2-derived
vegetation indices and linear regression were used to estimate AGB, complemented by
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land cover change analysis with Landsat-7 and 8 data [16]. Similarly, temporal extent
and deforestation rates were assessed in Mansehra [17]. Harmonized global maps with a
spatial resolution of 300 m were developed by estimating above-ground and below-ground
biomass carbon density using a rule-based decision tree method [18].

Spaceborne LiDAR is increasingly favoured for AGB estimation, because it captures
biophysical vegetation parameters like plants’ vertical profiles, sub-canopy topography,
and biomass [19]. The cost-effectiveness and suitability of spaceborne LiDAR over large
areas and inaccessible hilly terrain make it a practical choice [20]. Using different statistical
probability distribution techniques, the GEDI L4A dataset was used to map Amazon
forests for carbon sequestration rates concerning vegetation recovery, with regeneration
and disturbance [21]. A hybrid inference model demonstrated compatibility between
GEDI L4A datasets and Paraguay’s national forest inventory (NFI), effectively reducing
uncertainties in biomass estimation and enhancing the integration of remote sensing and
field data for improved forest monitoring [22]. Similarly, the accuracy testing of GEDI
L2A and ICESat-2 data using the kriging technique in tropical and sub-tropical forests in
India showed superior results for GEDI [23]. However, the underestimation of GEDI (L4A
and gridded L4B) footprints in tropical forests was found in comparison with Sentinel-2
estimates, indicating the need for additional explanatory variables from other datasets [24].
In regions with limited ground inventory resources, GEDI data is open, accessible geospatial
information that provides a viable solution for estimating above-ground biomass. Ancillary
and optical data from various sensor platforms further improved AGB estimation efficiency
with GEDI L4A footprints in these studies [25-28]. The applicability of GEDI footprints and
data products has been studied at various spatial (global and regional), temporal (seasonal),
and species levels, highlighting the dynamic nature of carbon stock accumulation in
response to slopes and aspects [29]. Despite numerous studies on reliable AGB estimation,
gaps persist in assessing its local accuracy for GEDI L4A products.

GEDI L4A classifies four plant function types globally and applies an OLS model
using waveform data, supporting reliability and accuracy in biomass estimation [30]. A
30 m resolution forest AGB map of China was generated using multisource remote sensing
data, including meteorological and soil variables and RF regression, achieving R? = 0.67 and
RMSE = 70.71 Mg/ha [25]. Similarly, in another study, optimized GEDI footprint density
for regional biomass estimation using random forest was carried out. It was determined
that a methodological reference for selecting GEDI footprints improve prediction accuracy,
yielding an average biomass of 101.98 t/hm? and a total biomass of 3035.29 x 10% t/hm? in
forest assessments [31].

Our research signifies a comprehensive approach that combines optical data with
machine learning algorithms and spaceborne LiDAR data to assess AGB dynamics and the
carbon sequestration potential in this specific ecological context as compared to previous
studies having integrated remote sensing and machine learning for AGB estimation. The
proposed study quantifies the forest biomass in a designated forest based on the integra-
tion of multisource explanatory variables, with the importance score having topographic
elevation, forest canopy height, and optical green band as the prominent and major key
features in biomass estimation and with a unique compartment-level assessment.

Machine learning algorithms (MLAs) are widely used in biomass estimation by in-
ventory data, allometric equations, and remote sensing data [32]. These methods are
particularly effective in handling forest heterogeneity and terrain complexity, providing
robust and scalable solutions for biomass estimation [33]. Among MLAs, random forest
has demonstrated superior performance in predicting AGB for plant function types, such
as broadleaf, coniferous, and mixed needle-broadleaf forests [34]. The selection of random
forest is due to its demonstrated high predictive accuracy with a minimal risk of overfitting,
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due to its ensemble-based approach and effectiveness for biomass estimation in remote
sensing applications [35]. The ability of the RF algorithm to handle non-linear relationships,
high-dimensional data, and complex interactions among variables makes it more suitable
for AGB estimation [36]. It provides an inherent mechanism for ranking the importance
of input variables, which is beneficial for understanding the contribution of predictors
(e.g., spectral indices, topographic data, and GEDI data) in biomass estimation [37]. A
comprehensive insight into the above discussion underscores the importance of integrating
multiple diverse data sources with machine learning algorithms to obtain reliable AGB
estimation and its potential for CO, sequestration. This integration facilitates accurate
assessments of forest impact and inventory requirements for mitigating CO, emissions.
Therefore, this study aims to explore exploratory variables using machine learning mod-
els for accurate AGB estimation and its potential to sequester CO, concentration. Thus,
this research provides a comprehensive and efficient integrated approach consisting of
exploratory variables derived from satellite and spaceborne LiDAR datasets and analytics
to explore the AGB potential and requirements to tend to prevalent CO, emissions.

2. Materials and Methods

The major components of this study’s methodology include the study area, datasets,
data preparation and analytical workflow, and CO, emission datasets. These components
are described below in detail.

2.1. Study Area

Mansehra District, located in the Khyber Pakhtunkhwa province of Pakistan, covers
approximately 4579 km?, situated between latitudes 34°14’ N to 35°11’ N and longitudes
72°49" E to 74°08" E (Figure 1). The temperature ranges from 2 to 36 °C, with heavy
monsoon rainfall reaching 1500 mm. The elevation varies from 600 to 4500 m, ranging from
low-lying plains to high mountain peaks in the Kaghan Valley of Himalayan foothills.
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Figure 1. This map layout shows a map of the country, with the provincial territory of Khyber
Pakhtunkhwa and the Mansehra district. The true-colour composite is displayed with 30 m resolution
Landsat-9 optical satellite imagery acquired on 17 October 2022.
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The species composition in moist temperate forests is dominated by Blue Pine (Pinus
wallichiana A.B. Jackson), followed by Deodar (Cedrus deodara (Roxb. Ex Lamb.) G. Don),
Fir (Abies pindrow Royle), and Spruce (Picea smithiana (Wall.) Boiss.), forming an association
with broad-leaved Oak (Quercus dilatata Lindl. ex Royle) of high carbon storage potential.
Forest covers transition to sub-alpine, moist, and dry temperate forests at higher elevations,
whereas the sub-tropical chir pine dominates lower elevations. The estimated total province
forest area is 1.133 million hectares, covering 70% of the temperate zone, while 30% is the
sub-tropical zone [38]. This diversity highlights the region’s ecological significance for
biodiversity, carbon sequestration, and sustainable forest management.

2.2. Datasets
2.2.1. Forest Territorial Distribution and Compartment Data

Pakistan has 66% of state-managed forests and 34% of forests managed privately
or by the community [39]. Out of the 3322.52 km? of forest area in Mansehra District,
the total designated forest area is 1118.85 km?. This forest territory is designated as a
community locally named guzara (58.09%), reserved (30.34%), and protected (11.56%)
forests. “The word “Guzara”, literally meaning “subsistence” which is community-owned,
either individually or collectively managed, where local residents have legally documented
rights to extract wood for their domestic needs”.

The Khyber Pakhtunkhwa Forest Department, under the Forest Ordinance 2002,
categorizes designated forests into compartments, as in Figure 2 for geospatial monitoring,
ensuring effective forest management practices and informed decision-making. Among the
total 1298 compartments, community (privately owned) forests have 717, protected forests
have 182, and reserved forests have 399 compartments. The distribution of designated
forest categories and compartments is shown in Figure 2.
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Figure 2. The territorial distribution of designated forests, showing reserved, protected, and commu-
nity forest compartments obtained from the Khyber Pakhtunkhwa Forest Department.
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2.2.2. Field Inventory Data

A carbon inventory survey was conducted in the Khyber Pakhtunkhwa forests using
satellite data and region-specific allometric equations to estimate the carbon stocks. These
equations were developed for the local major population species, with biomass expansion
factors and basic wood densities. A consistent forest definition (a minimum area of 0.5 ha
area, a 10% canopy cover, and 2 m in height), with a national consensus of provincial
and federal departments that was adopted in 2017 for the monitoring of forests, was used
to estimate the forest cover. The field inventory data from the designated forests of the
Mansehra district cover geographical, environmental, and forest structural parameters.
The elevation, geolocation, slope (%), aspect, crown cover (%), diameter at breast height
(DBH, cm), and basal area (m?), using allometric equations, were used to calculate the
carbon stock points across dry temperate, moist temperate, and chir pine forests. The
spatial distribution of these ground plot measurements is illustrated in Figure 3.
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Figure 3. This nested circular plot presents the ground carbon stock points of the designed forest in
the Mansehra district.

The Pakistan Forest Institute (PFI) conducted a field inventory campaign for a pi-
lot project to develop species-specific local allometric models for Khyber Pakhtunkhwa.
Among the total of 449 sample plots, 70 plots (15.59%) were designed as primary sam-
pling units (PSUs) for accuracy assessment and validation through nested circular plots
for biomass and carbon stocks. The layout and dimensions of the ground circular nested
plots are shown in Figure 4. Within a nested circular plot (17.84 m radius; 1000 m? area),
the number of trees with a diameter higher than 5 cm were enumerated. However, the
diameter at breast height (DBH) for the diameter class 1-5 cm was measured from a subplot
of a 5.64 m radius (area = 100 m?). Later on, trees with a diameter of less than 1 cm
(regeneration plot DBH) were counted from a 1 m radius plot within an area of 3.14 m?.
Shrub non-tree, litter, and soil biomass measurements were taken from a small plot with a
radius of 0.56 m (area = 1 m?).
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i"‘ -
O 17.8 m plot DBH =>5cm
Q 5.64m plot (1-5 cm DBH)
1 m regeneration plot (<1 cm DBH)
@ 0.56 m plot leaf, litter, humus & grasses

Figure 4. The circular field inventory nested plots shown in this image, with the plot size dimensions,

measure tree, shrub, and below-ground carbon stock estimates.

A destructive sampling technique was employed in the coniferous forest to calculate
the biomass expansion factor and basic wood density of conifer species and to develop
allometric equations using regression functions, given in Table 1. Tree heights were ac-
curately estimated by measuring new diameter-height functions developed for biomass
estimation. Ground-based biomass estimates were calculated using the volume, wood
density, height, and biomass expansion factor (BEF) [40]. Allometric equations given in
Table 1 have four major components consisting of diameter at breast height (D), total tree
height (H), regression constant (a) and regression coefficient (b). Regression constant and
coefficient values depend upon geographical location and type of species.

Table 1. Allometric equations developed at local conditions for major conifer tree species.

Species Forest Type Allometric Equations Model Source
Quercus ilex L. (oak) Dry temperate AGB = 0.8277(D?H)?-6655 M = a(D?H)P
Cedrus deodara (Roxb. Ex _ 2170.8103 _ 217\b
Lamb.) G. Don (deodar) Dry temperate AGB =0.1779(D“H) M = a(D“H)
Pinus wallichiana _ 21110.8798 _ 211\b
A.B.Jackson (kail) Dry temperate AGB =0.0631(D°H) M = a(D’H)
Cedrus deodara (Roxb. Ex . B 21 109167 _ 51 b
Lamb.) G. Don (deodar) Moist temperate AGB =0.0491(D-H) M = a(D“H) [38]
Abies Pindrow Royle (fir) Temperate AGB = 0.0452(D?H)?902 M = a(D?H)P
Picea smithiana (Wall.) Temperate AGB = 0.0821(D2H)"4363 M = a(D?H)P
Boiss (spruce) ’
Pinus wallichiana . _ 91 10.881 _ 21 nb
A.BJackson (kail) Moist temperate AGB = 0.0594(D°H) M = a(D?H)
Pinus roxburghii Sargent g ooical pine AGB = 0.0224(D*H)*9767 M = a(D*H)P
(chir pine)

2.2.3. Satellite Datasets

Landsat-9 optical imagery offers a broad spectral resolution, covering 11 bands ranging
from visible light to thermal infrared. Key bands include the red (0.64-0.67 pum) and green
(0.53-0.59 um) bands, which help distinguish foliage and canopy densities. The near-
infrared band (0.85-0.88 um) is instrumental in analysing forest health, types, and biomass
volume within a tree canopy. Additionally, the two short-wave infrared bands SWIR-1
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(1.57-1.65 pum) and SWIR-2 (2.11-2.29 um) are sensitive to moisture content in soil and
vegetation [41]. Open-access Landsat-9 Operational Land Imager (OLI) data of the study
area, with minimum cloud (up to 10%) cover, was downloaded from USGS Earth Explorer
website https:/ /earthexplorer.usgs.gov/, (accessed on: 18 October 2024).

Digital Elevation Model

The Shuttle Radar Topography Mission (SRTM), a collaborative product of the U.S.
National Geospatial-Intelligence Agency (NGA) and NASA, is widely used in geospatial
applications. SRTM provides data in a standardized global WGS84 geographic coordinate
system with a resolution of 1 arc second (~30 m) and 3 arc seconds (~90 m). Aspect and
DEM products with a 30 m resolution and GeoTiff file format were downloaded from the
USGS EROS Archive link https:/ /lpdaac.usgs.gov/products/srtmgl1v003/ (accessed on:
20 October 2024). Several studies have observed a correlation between topographic feature,
elevation, slope, and biomass prediction in forest ecosystems in steep and hilly terrains [42].

Forest Layer

The forest layer, derived from the Sentinel-1 and Sentinel-2 datasets (10 m resolu-
tion), was extracted from World Cover 2020 and 2021 products website https://viewer.esa-
worldcover.org/worldcover (accessed on: 20 October 2024), developed by the United Na-
tions” (UN) Food and Agriculture Organization (FAO) using the Land Cover Classification
System (LCCS). This forest layer intersected with the GEDI-derived AGB points to ensure
requisite data compatibility.

Forest Height

Tree height is a critical explanatory variable for accurately estimating biomass [43].
This study used the GEDI (RH98) L2A dataset as the primary source of forest height. Forest
height coverage across the Mansehra district was ensured through the Global Forest Canopy
Height (30 m raster) dataset, developed by the Global Land Analysis and Discovery (GLAD)
team at the University of Maryland (UMD GLAD) as supplementary input. This dataset,
available at https://glad.umd.edu/dataset/gedi/ (accessed on: 30 October 2024), allowed
for seamless integration with GEDI (RH98), enabling reliable above-ground biomass (AGB)
predictions for the entire study area.

Predictor Variables

Vegetation indices are essential in biomass estimation, forest cover assessment, and
health monitoring. A comprehensive set of predictor variables was explored to estimate
the structural parameters and biomass of forests using machine learning models. NDVI
and seasonality impacts are frequently correlated, suggesting that a time series analysis
improves AGB estimations, particularly during the fall [44]. The impact on biomass of
combining different spectral bands and the vegetation indices NDVI [44], GNDVI [45],
MSI [46], and PVI [47] were studied.

2.2.4. CO, Emission Dataset

CO, emissions were obtained from the EDGAR (Emissions Database for Global Atmo-
spheric Research) Community GHG database, a collaborative work of the Joint Research
Centre (JRC) and the International Energy Agency (IEA) [48]. These datasets were studied
to observe the AGB potential and requirements to tend to CO, emissions.
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2.3. Data Preparation and Analytical Workflow

2.3.1. Data Processing

The open-source GEDI dataset is accessible from NASA’s Land Processes Distributed
Active Archive Center (LPDAAC). The 200 GEDI sensor trajectory orbit tracks were down-
loaded from https:/ /search.earthdata.nasa.gov (accessed on: 31 October 2024). Based on
mathematical and algorithmic procedures, GEDI products are categorised into lower-level
products (L1 and L2) and higher-level ones (L3 and L4). The GEDI instrument emits laser
pulses with a diameter of 25 m and a wavelength of 1064 nm and a pulse rate of 242 Hz.
The GEDI Level 4A version 2.1 datasets were used to estimate the AGB for tropical and tem-
perate forests in the Mansehra district from 2019 to 2022. GEDI Level 4A data (Version 2.1)
preprocessing involved several key steps to enhance accuracy and reliability. Quality filter-
ing was applied to retain only high-quality footprints (quality_flag = 1, degrade_flag = 0).
This removed footprints with low sensitivity or high uncertainty based on dataset quality
flags. Strong beam footprints, which offer more reliable measurements, were prioritized

over weak/coverage beams to improve data precision. Spatial alignment ensured GEDI
footprints are co-registered with other remote sensing datasets, such as Landsat, Sentinel,
or SRTM DEM, to prevent misalignment errors in model training. Additionally, outlier

detection was performed to identify and remove erroneous, null values to ensure a rational-
ized, refined, and robust dataset for analysis. Derived metrics, such as RH95/RH50 ratios,
were included to enhance vertical-structure characterization. Moreover, GEDI points were

pre-processed to separate coverage beams and high-energy beams in complex hilly terrain
areas to have only high-energy beams for GEDI L4A biomass footprints, as shown in

(Figure 5) [42].
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Figure 5. A spatial representation of spaceborne LIDAR GEDI L4A AGB points over the study area.
In (A), the coverage beam is shown in the study area, while (B) shows the high-energy power beam

shots, with the high-value-range classes shown in the legend.
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The forest mask layer was intersected with GEDI power beams to obtain forest area-
specific datasets, effectively removing the urban and non-forest land-use features. After
preprocessing, 93,248 GEDI power beam shots were used for model training and testing
within the forest mask layer. Among the total GEDI points, 21,406 points intersected with the
designated forest area, distributed across 1298 compartments within the district boundary:.

2.3.2. Analytical Workflow

The structural information of vegetation, such as canopy height (L2A), derived from
GEDI data, was combined with spectral indices from optical datasets and other explanatory
variables. These inputs were used to train and test against GEDI L4A as the dependent vari-
able through machine learning algorithms (MLAs). An overall methodological flowchart for
the proposed study to estimate forest above-ground biomass and its potential to sequester
CO; is shown in (Figure 6).
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Figure 6. Methodological flowchart of forest biomass and carbon stock estimation using machine
learning regression algorithms in designated forests of Mansehra District.

2.3.3. Parameter Selection

Topographic variables, including elevation and slope, were incorporated to evaluate
the influence of the terrain on the forest structure and growth patterns. GEDI L4A-derived
height metrics, RH98, provide critical information related to the vertical structure of a
canopy height. The explanatory variables, including satellite datasets (bands and indices),
were analysed using machine learning algorithms, such as random forest, XGBoost, and
random tree regression, to assignh importance scores to variables contributing to reliable
AGB prediction. The regression models identified key variables with high importance
scores, including forest height (from GEDI L2A data), the green band, DEM, and the
red band, as critical factors influencing biomass estimation. Among these models, the
random forest-based relationship between predictor variables and biomass is illustrated
in Figure 7. Following the efficient split of 80:20%, as mentioned in the literature [49],
these variables were utilized for training (80%) and testing (20%) the model, enabling the
accurate prediction of above-ground biomass (AGB).
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Figure 7. A descending sequence of the importance scores assigned to predictor variables using

random forest.

Machine learning models were optimized using a grid search strategy combined with

cross-validation. A 5-fold cross-validation was found to be suitable for optimizing model

outputs. Table 2 outlines the fine-tuned hyperparameters used during the model training

and testing phases for the best performance.

Table 2. Hyperparameters for training machine learning models.

Model Name Model Parameter Characteristics Value
Number of Trees 500
Leaf Size 5
Tree-Depth Range 36-50
Mean Tree Depth 40
Random Forest % of Training Available per Tree 100
Number of Randomly Sampled Variables 5
Training and Test data % 80:20
Model Out-of-Bag Error 805.9
Number of Trees 500
Leaf Size 5
Tree-Depth Range 6-6
Mean Tree Depth 6
. . % of Training Available per Tree 100
Gradient Boosting Number of Randimly Samplr:ed Variables 5
% of Training Data Excluded for Validation 20
L2 Regularization (Lambda) 1.00
Minimum Loss Reduction for Splits (Gamma) 0.00
Learning Rate (Eta) 0.30
Training Options:
Maximum Number of Trees 500
Random Tree Regression Maximum Tree Depth 30
Maximum Number of Samples 74,400
Percent of Samples for Testing 20
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Random forest inherently identifies critical features based on their ranked contribution
to prediction accuracy. The Out-of-Bag (OOB) error was used to evaluate the model’s
predictive accuracy by providing an unbiased prediction error. Different combinations of
explanatory variables, including the forest’s optical, SRTM DEM, and spaceborne LiDAR
structural parameters, were tested to evaluate the performance of model training that
explains the variability of forest biomass and provides reliable estimates.

Model performance was evaluated based on the Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), and Coefficient of Determination (R?). The optimal model
demonstrated high R? and low RMSE and MAE values, affirming its suitability for precise
and dependable AGB estimation.

3. Results
3.1. Explanatory Variable Evaluation

The variable importance matrices were studied, and 16 predictive variables, based
on model training, were selected for prediction. Among the optical spectral bands and
vegetation indices, B3, B4, B6, the Moisture Stress Index (MSI), and the Green Normalized
Difference Vegetation Index (GNDVI) from the Landsat-9 datasets showed the highest
importance score in the random forest model. These bands were particularly relevant to
the ecological features of the moist and dry temperate forests. Band 3 (0.53-0.59 um) is
sensitive to vegetation health, reflecting the chlorophyll and moisture content in dense
moist temperate forests and monitoring variations in canopy density. Band 4 (0.64-0.67 pm)
is effective for vegetation stress detection due to its sensitivity to chlorophyll absorption,
while Band 6 (1.57-1.65 pm) is sensitive to moisture content and soil-vegetation interactions,
making it vital for analysing the canopy density. Similarly, in moist temperate forests, the
dense canopy cover with a high moisture content was analysed by Green and SWIR-1 bands,
which is effective in biomass estimation. In contrast, the red and SWIR-1 bands contribute
to species health variation and moisture stress identification in the dry temperate zone
for biomass estimation. Moreover, topographic and structural variables also contributed
significantly. The DEM underscored the role of elevation in influencing the forest structure
and biomass distribution, while GEDI RH98 provided crucial vertical-structure information
at a 100 m resolution.

In contrast to the random tree regression technique, XGBoost assigned importance
scores to the spectral bands B6, B4, and B3 that resemble the random forest algorithm. Forest
height is the most critical predictor of AGB, followed by DEM. GEDI L2A data providing
canopy cover and ground elevation estimates further enhanced our understanding of the
vertical complexity and structure of the forest. The spectral bands, vegetative indices,
topographic information, forest layers, and height estimation products from GEDI and the
global forest canopy cover were used for enhanced biomass estimation. The random forest
model achieved the highest R? of 0.86, demonstrating its effective predictability.

3.2. Model Selection and Accuracy Assessment

The scatter plots presented in Figure 8, corresponding to the three machine learning
models, effectively depict the model’s performance for the training data. Figure 8 shows
the scatter plots of the training data, with 8A for random forest (R? = 0.97), 8B for random
tree regression (R? = 0.97), and 8C for the XGBoost (R? = 0.95). The training data show a
high correlation of R? in the range of 0.97 to 0.95.
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Figure 8. Scatter plots of random forest (A), random tree regression (B) and XGBoost (C) showing an
analysis of GEDI AGB points for the training data.
Meanwhile, the test data in Figure 9 show the scatter plots with 9A for ran-
dom forest (R? = 0.86), 9B for XGBoost (R? = 0.85), and 9C for random tree regression
(R? = 0.84), underscoring the reliability and robustness of the random forest-trained model
in predicting AGB based on given explanatory variables.
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Figure 9. Scatter plots of random forest (A), XGBoost (B), and random tree regression (C) showing
test data performed for analysing the GEDI AGB points and explanatory variables.

Table 3 presents the performance metrics of three machine learning models’ random
forest, random tree regression, and XGBoost for estimating the above-ground biomass
(AGB) in designated forests of the Mansehra Forest. All models accurately capture the
relationship between input variables and above-ground biomass (AGB), ensuring high
predictive accuracy, generalizability, and robustness with the best performance by the
random forest model. The performance metrics of the three models are given in the
table below.

63

409




Forests 2025, 16, 330

Table 3. Performance metrics of machine learning models.

del Training Test

Model Name R2 RMSE MAE R2 RMSE MAE

Random Forest 0.97 11.84 8.08 0.86 28.03 19.54
XGBoost 0.95 15.72 11.20 0.85 29.35 20.57

Random Tree 0.97 14.38 10.98 0.84 31.22 21.76

Regression

72040
|

7%
1

A comparison of the machine learning algorithms in Figure 10 highlights the perfor-
mance of the random forest, XGBoost, and random tree regression models. Among these,
the random forest algorithm was selected as the best model for biomass estimation, with a
high R? of 0.86. This model effectively utilized explanatory variables to predict the AGB
variations across the designated forests in Mansehra.
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Figure 10. Biomass maps were established to compare the machine learning regression analysis of
forest biomass in designated forests of Mansehra District: (A) XGBoost model; (B) random forest
model; (C) random tree regression model.

The AGB estimates were validated using field data from various forest compartments,
where allometric equations, derived through destructive sampling, correlated the tree
diameter and height for ground biomass estimation. The actual AGB was calculated
from ground inventory points using circular nested plots and were compared with model
predictions, ensuring an accurate evaluation of the model’s performance in estimating forest
biomass. The predicted AGB value of 224.61 Mg/ha was 7.9% higher than the ground
value of 208.13 Mg/ha, indicating a minor overestimation predicted by the proposed
methodology using the GEDI L4A footprints. The validation results are encouraging,
with a coefficient of determination (R?) of 0.71 (Figure 11), indicating the reliability of the
estimates and a good relation between the actual and predicted values.

The mean AGB value for the entire designated forest was 189.42 Mg/ha, closely
matching the ground biomass estimate of 180.93 Mg/ha for moist temperate forests, with a
difference of only 5.2%. However, the point-to-point difference was higher at 7.9%, likely
due to the scale differences and the heterogeneity in the point-level data. This highlights
the trained random forest model’s superior, consistent, and accurate performance for
generating mean-based estimates across the forest area.

Previous studies demonstrated similar overestimation tendencies in GEDI L4A data,
especially for coniferous forests compared to broad-leaved forests [50]. They found that
GEDI L4A AGB estimation was 8.94 times higher than ground data, primarily due to topo-
graphic variations within the footprint area distorting GEDI signals [51]. This underscores
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Predicted AGB

the challenges in AGB estimatation accuracy, which is influenced by the forest type and
terrain complexity [52,53]. Despite these challenges, the integration of GEDI L4A and
multisource data with machine learning models provides a robust approach for large-scale
biomass estimation and carbon stock assessment [51].

Accuracy Assessment of Above Ground Biomass (Mg/ha)
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Figure 11. This scatter plot shows the actual and predicted above-ground biomass.

3.3. Above-Ground Biomass Distribution in Designated Forests

The distribution of AGB across protected, reserved, and community (guzara) forests
provides valuable insights into carbon storage potentials. Figure 12 illustrates the carbon
storage levels for protected, reserved, and guzara forests, highlighting the potential sites
for future carbon storage strategies. The reserved forest exhibits the highest mean AGB
of 242.19 Mg/ha, followed by the community forest at 175.23 Mg/ha. The protected
forest, however, has the lowest mean AGB at 153.82 Mg/ha. These findings highlight
the importance of developing biomass-specific yield strategies tailored to each forest
management category’s ecological and environmental conditions. This approach aligns
with the single-tree selection silviculture management system, which optimizes carbon
capture and storage based on site-specific characteristics [54].

The analysis focused on a compartment-wise biomass estimation managed by the
forest department, revealing a mean AGB density of 189.43 Mg/ha, ranging from 23 Mg/ha
to 400 Mg/ha. This range indicates the heterogeneous distribution of forest densities across
the designated forests. The forest biomass in the Mansehra district shows significant spatial
heterogeneity, with values ranging from a lower bound of 23 Mg/ha to an upper bound of
400.04 Mg/ha, compared to an average of 189.43 Mg/ha, as highlighted in Figure 13.
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Area and Mean Above Ground Biomass Density
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Figure 12. Category-wise area and mean AGB of the designated forests.
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Figure 13. The spatial heterogeneity of forest biomass (Mg/ha) predicted by the random forest model
in the designated forests of Mansehra District.
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Mean AGBD (Mg/ha)

The compartments with high biomass values were primarily situated in the upper
reserved forest region. The biomass map highlights the variability in forest carbon accu-
mulated across compartments, with an area of high biomass in the upper region depicted
in orange and red shades. The random forest algorithm demonstrated its efficiency in
accurately distinguishing compartments with high and low biomass densities.

Compartments are the smallest forest management units, having an area range of
200 to 250 hectares, with the highest forest biomass accumulation illustrated in Figure 14.
The highest AGB value of 270.11 Mg/ha was observed in Diwan Bela, followed by Manna
at 268.52 Mg/ha. These compartments fall under the reserved forest category, excluding
Batsangra and Julgran. The Batsangra and Julgran compartments belong to community
forests with forest biomass values of 239.36 and 238.52 Mg/ha, respectively.

Compartments with Maximum AGBD Values

280
011 sy ® Diwan Bela ¥ Manna & Makhair
270 ’
Nuri Bichla B Malkandi B Batsangra
260 W Julgran B Manshi B Kamal Ban
u Chittapar
250
240 238.52 237.99

230

220

210

ompartment Names

Figure 14. Compartments’ order based on the highest AGB values in the designated forests of
Mansehra District.

The high AGB in reserved forests is due to stringent governmental restrictions on
harvesting, grazing, and local community concessions. Similarly, the high AGB in commu-
nity compartments, such as Batsangra and Julgran, can be attributed to the inaccessible
location. The compartment-wise AGB estimates provide actionable insights for efficient
decision-making to support sustainable departmental harvesting regimes.

The methodological reliability and model performance were visually interpreted
with biomass estimation across compartments. Figure 15 captures the variations in forest
biomass, with the low-biomass compartments visually consistent with the area of sparse
forest cover.

The geospatial insights from the biomass maps will guide critical site selection for
afforestation and species regeneration campaigns, timber harvesting, fuelwood regulation,
and biodiversity conservation in vulnerable areas. Figure 16 visually interprets the upper
bound biomass values in compartments with a dense forest cover, offering a valuable
framework for developing conservation strategies and prioritizing sustainability efforts.
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Figure 15. Potential compartments (low AGB) to demarcate new afforestation sites.
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Figure 16. Qualitative analysis of the compartments, presenting the dense vegetation of mature forest
stands with high AGB values (Mg/ha).

3.3.1. Reserved Forests

The state-owned reserved forests are managed under three working plan units:
Kaghan, Lower Siran and Agror, and Upper Siran Reserved Forests. These units op-
erate under “Working Plan”, which are strategic documents outlining forest management
practices over 5 to 10 years to estimate forest yields, restore degraded ecosystems, and
ensure continuity in policies and actions. Each “Working Circle”, a subdivision of the
forests, follows a specific aim and silvicultural system, as outlined in the working plan.

The AGB distribution in reserved forests exhibits a histogram with a leftward skew,
indicating a high mean AGB value of 242 Mg/ha. Diverse management practices within
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working circles contribute to variations in biomass and ecosystem conditions. The lower
mean AGB values indicate reduced vegetation coverage in the lower Siran and Agror
reserved working plan units (Figure 17). These observations emphasize the importance
of continuous monitoring and spatial heterogeneity analysis to maintain existing carbon
storage areas, conserve biodiversity, balance harvest and regrowth, restore degraded sites,
and avoid land-use conversion practices.

Distribution of Biomass in Reserved Forest

‘Working Circle's Reserved Forest

Siran
O Commercial
Conversion
s O Ecological
Improvement
O Social

Lower Siran and Agror Reserved Upper Siran Reserved Forests

Forest Management Plan

Kaghan Reserved Forests

Figure 17. Box plots showing biomass distribution in reserved forest working plan manage-

ment units.

High-AGB compartments are primarily located at higher altitudes, requiring robust
management to mitigate erosion and landslide impacts on steep and vulnerable terrains.
The histograms in Figure 18 illustrate the frequency distribution of the average AGB values
across five working circles, with a normal distribution curve highlighting a high mean
AGB value of 242 Mg/ha in the commercial working circle for the timber harvesting
rotation patterns. In contrast, the improvement and conversion working circles have lower
mean AGB values of 164 and 176 Mg/ha, respectively, reflecting the activities relevant to
recovery and restoration. Thus, data-driven biomass estimation supports reliable yield-
harvesting practices.

Reserved Forest Mean AGBD Distribution Forest Type
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Figure 18. Mean distribution of above-ground biomass (AGB) estimates in different working circles.
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The mean AGB values in reserved forest compartments, ranging from 67 Mg/ha to
300 Mg/ha (Figure 19), underscore the impact of harvesting restrictions and local commu-
nity concessions on biomass levels. Compartments with high biomass, typically in mature
forest stands, represent valuable sites for future management and conservation strategies.
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Figure 19. The spatial distribution of reserved forest compartments that shows the mean AGB values,
classifying high-biomass-density compartments in a red tone.

3.3.2. Protected Forests

Protected forests, where local communities exercise government-permitted rights
and concessions, exhibit a mean AGB value of 154 Mg/ha, with several compartments
characterized by low biomass. These forests provide non-commercial timber, fuelwood,
and fodder for local livestock. Managed under protection and social working circles,
these compartments emphasize the recovery of under-stocked patches and optimized
silvicultural practices.

The Gidderpur working plan management unit shows a particularly low mean AGB
value of 122 Mg/ha (Figure 20). These accessible compartments face significant pressure
from local compartments. Strengthening forest surveillance; fire management practices;
and the promotion of alternative renewable energy sources, such as biogas and solar
power, are recommended to alleviate the over-extraction of forest resources. Furthermore,
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controlling illegal timber harvesting and encroachments is an essential measure towards
sustainable carbon storage management.

Distribution of Biomass in Protected Forest

Siran

Gidderpur protected Forest Upper Tanawal Protected Forest
Working Plan Management Units

Figure 20. This box plot illustrates the distribution of mean biomass values in different working
plans of protected forests.

Protected forests are managed under two working circles: protection and social.
Biomass levels in the protection working circle are lower than those in the social working
circle, as illustrated by the histogram in Figure 21, where high values of 144 Mg/ha are
concentrated in the social working circle.

Protected Forest Mean AGBD Distribution Forest Type
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Figure 21. The histogram peaks illustrate the distributions of mean biomass values in different
management units of protected forests, showing sub-mature vegetation stands.

Protected forests’ relatively low AGB density highlights their suitability for future
carbon sequestration projects managed under programs like REDD+. Identifying and
mapping critical biodiversity hotspots in these ecosystems can align to foster a balanced ap-
proach for carbon sequestration goals with conservation priorities. The spatial distribution
of AGB in the protected forest, as shown in Figure 22, ranges from 67 Mg/ha to 220 Mg/ha,
highlighting the potential sites that support national and global carbon offset initiatives.
These strategies can simultaneously benefit local communities and contribute to soil and
water conservation efforts integral to sustainable carbon management.
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Figure 22. Mean AGB estimation value ranges in protected forest compartments are highlighted in
lighter green tones, representing low biomass-value accumulation.

3.3.3. Community (Guzara) Forests

Community-owned forests account for approximately 58% of the designated forest
area and are managed by the forest department. These forests exhibit diverse patterns of
biomass accumulation due to variations in working circle activities. A privately-owned
community forest is managed under six working plan activities, having a mean AGB value
of 175 Mg/ha.

The biomass distribution in community forests (Figure 23) occupies a maximum num-
ber of compartments managed under 11 working circles, with priority given to community
use, conservation, and timber production. The biomass levels exhibit significant varia-
tion, ranging from moderate to high, except in the Haripur guzara, where the biomass
is 77 Mg/ha. The highest AGB values are found in the upper Siran community forest
(215 Mg/ha), followed by the upper Kaghan community forest (208 Mg/ha). The Haripur
guzara working plan’s lower biomass values highlight the degraded forest patches. The
high biomass levels in upper Siran guzara forests are due to activities such as conservation,
ecotourism, biodiversity, and timber production.
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Distribution of Biomass in Guzara Forest
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Figure 23. The biomass distribution in different working circles identifies the management practices
adopted in the community-owned forests.
Community rights and concessions in these forests result in frequent disturbances
like deforestation, grazing, fuelwood collection, and timber extraction, leading to AGB
variations. The maximum AGB of 215 Mg/ha in timber production working circles reflects
the communities’ reliance on these forests for timber needs. A lower biomass value, ranging
from 121 to 146 Mg/ha, was observed in community, protection, and selection working
circles. Attention is required to address these disparities in need-based intense management
practices (Figure 24).
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Figure 24. The biomass status in the community (Guzara) forests is represented by mean histogram
values in working circles.

Extending from the low-lying areas to higher altitudes, community forests encompass
a diverse range of forest cover, including moist, dry temperate, and sub-tropical chir pine
forest zones. The biomass in the compartments varied from low to moderate levels, reflect-
ing young and sub-mature forest stands. Target interventions, such as reforestation, grazing
control, illegal logging prevention, agroforestry, and ecotourism initiatives, are critical for
meeting and addressing community needs and conserving vulnerable Himalayan temper-
ate forests. Certain compartments exhibit maximum biomass ranges of 250-300 Mg/ha.
The carbon storage capacity in the different compartments signifies the need and demand
for future carbon conservation strategies, and its spatial distribution is shown in Figure 25.
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Figure 25. The extent of community forest compartments with mean AGB in all range values with
different topographical locations in the district.

3.4. Ecological Analysis of Forest Cover and Biomass Dynamics in Mansehra

Mansehra District faces alarming climate change vulnerability due to increasing CO,
emissions, escalating from 20.95 thousand tons/year in 2000 to 35.82 thousand tons/year in
2022. This trend mirrors the national increase in CO, emissions from 20 million tons/year
in 2020 to 32 million tons/year in 2022. Although the forest cover increased in 2020-2021,
AGB values declined during the same period, emphasizing the need to concentrate on
AGB as a key factor for carbon sequestration rather than relying solely on the forest cover.
The analytical results depicted in Figure 26 show the country and study area’s CO; total
emissions (Figure 26A) and a graphical presentation (Figure 26B) of the ecological analysis
of the forest cover and biomass dynamics [55].

Forest carbon absorption rates vary by age classes and species, necessitating detailed
AGB assessments for reliable CO, mitigation. The CO, mitigation potential was evaluated
by converting the above-ground biomass (AGB) to above-ground carbon (AGC) and subse-
quently calculating the equivalent CO, sequestration based on IPCC guidelines [56,57]:

AGC = AGB x 0.47 1)

COy sequestration = AGC x 3.67 2)

74

35°N

34°20'N



Forests 2025, 16, 330

Mansehra
===Pakistan
35

(A) Total Emission of CO,

35.76

34.78

35.82

100

(B) Ecological Analysis of Forest Cover and Bi Dy ics in M.

== Forest Cover
s AGB Forest
AGB Designated

98.85

(2019-0220)

102.04

20

Pakistan (million ton/year)

20

Area (000 ha)
b

2

Mansehra (000 ton/year)

8

2000

93.67

Viary TS 030 o 2019 2020 Years 2021

Figure 26. (A) Total CO, emissions’ comparison of Mansehra District with Pakistan. (B) Compari-

son of temporal forest cover with the total sum values of above-ground biomass estimated in the
designated forests and complete province.

Equation (1) indicates that 1 ton of AGB is equal to 0.47 tons of AGC, which, upon
multiplication with 3.67 as per equation 2, can sequestrate 1.7249 tons of CO, from the
atmosphere, and vice versa, 1 ton of CO; emission sink requirements needs 0.5798 tons of

AGB. In 2022, the Mansehra district emitted 35,820 tons of CO, [48], requiring 20,770 tons

of AGB for offsetting, compared to the available AGB of 19,940 tons, revealing a shortfall
of 830 tons. Despite having 8.68% of the forest-rich KP province’s area, Mansehra’s AGB
cannot offset CO, emissions. To bridge this gap, the appropriate measures required are
continuous temporal monitoring to maintain minimum AGB in each compartment, mixed

plantations of high-potential carbon storage, a multipurpose land-use concept of agro-
forestry practices, high-storage-carbon species on commercial long-term rotation periods,

and awareness and community participation for long-term sustainability. Nationally, AGB
requirements increased from 11.80 million tons in 2000 to 18.78 million tons in 2022 without
significant changes or initiatives to increase the forest area or AGB (Table 4; Pakistan Bureau
of Statistics).

2022

AGB (000 Mg/ha)

Table 4. CO; emissions and AGB requirements in Mansehra and Pakistan.

Mansehra (Values in Thousand Tons)

Pakistan (Values in Million Tons)

Year CO; Emissions AGB Requirement CO; Emissions AGB Requirement
2000 20.95 12.14 20.35 11.80
2005 25.59 14.83 24.99 14.49
2010 29.89 17.33 27.43 15.90
2015 34.78 20.16 30.38 17.61
2020 35.76 20.73 29.66 17.20
2022 35.82 20.77 32.39 18.78

A temporal analysis of the AGB requirements against CO, emissions underscored the

urgency for targeted measures. A trained model for the year 2022 was used for the prediction
of AGB in 2019. Input parameters of 2019 were used in the trained random forest model to
obtain an AGB prediction for 2019. A change analysis of the AGB for 2019 and 2022 was
carried out by taking the difference image, as shown in (Figure 27), which reveals a net
decrease in AGB across 95,000 ha compared to an increase of 22,000 ha and stability across
79,000 ha of the forest cover. Areas with significant increases and decreases in AGB are
illustrated in Box 1 and Box 2, respectively. Notably, afforestation programs contributed to the
rise in AGB, highlighting the potential of regeneration initiatives to counteract biomass loss.
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Figure 27. Carbon dynamics showing the distribution of forest biomass change patterns in the district
for 2019-2022.

4. Discussion

Integrating GEDI L4A biomass density data with optical and ancillary datasets using
machine learning addresses the challenges in biomass estimation in complex hilly terrains.
The results provide insights into the biomass distribution and magnitude in mountainous
landscapes per forest categories and demonstrate the utility of GEDI-derived data for forest
biophysical parameters complemented with explanatory variables for enhanced accuracy
and reliability.

4.1. Accuracy Analysis

The GEDI L4A outperforms other LiDAR systems like ICESat-1 and ICESat-2 due to
its smaller footprint diameter (25 m) and higher sampling density, which are particularly
advantageous for tropical and temperate forest applications [58]. Biases and underestima-
tions in the GEDI-derived products were reduced through high-energy beam selection,
improving the ground and canopy cover estimation in this South Asian region despite
limited local calibration for its diverse ecosystems [59,60].

Key features contributing to AGB estimation accuracy include the canopy height,
Landsat-9 green band (B3) and digital elevation, GNDVI, MSI, and GEDI L2A relative
height data. These findings align with prior research [61-64]. The AGB variability patterns
observed in the GEDI L4A dataset are consistent with the GEDI L4B data and other
studies [62]. The model effectively predicts biomass at a detailed compartment level,
capturing the Mansehra district’s complex and diverse forest structures, similar to the
studies by [65,66]. Recent studies show that combining the predictors related to the canopy
cover, vegetation density, Landsat-9 spectral information data, and topographical variables
enhances AGB estimation [67-70].

The random forest model achieved high performance, with an R? of 0.86, an RMSE of
28.03 Mg/ha, and an MAE of 19.54 Mg/ha on the test data. Ground validation showed
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satisfactory accuracy (R? = 0.71), demonstrating the model’s robustness and generalizability.
Biomass estimates ranged from around 60 to 426 Mg/ha, with R? ranging from 0.72 to
0.88 (Table 5). Similarly, AGB estimation using different optical and microwave datasets
showed an R? value ranging from 0.63 to 0.77 (Table 6).

Table 5. Comparison of biomass estimation using Spaceborne LiDAR data.

Pakistan

Region Data Techniques Mean AG (B/C)*/R? Ref
Himalayan moist temperate Sentinel-1 and -2 and GEDI RF! AGB [71]
forest, Uttarakhand, India forest canopy height Algorithm 190.27 Mg ha—1/0.88
NW Indian . RF AGB
Himalayan foothills ICESat-2 and Sentinel-1 FCH model 42641 Mg ha-1/0.83 2]
Xiaoshao, Yiliang Yunnan Sentinel-1 and -2, ALOS RF AGB [51]
Province China PALSAR-2, and GEDI L4A model 59.09 Mg ha=1/0.72
Biomass estimation in .
Forest layer, field data, and 5 AGB
managed forests, . MLR* models 1 [11]
Haldwani India GEDI canopy height 153 Mg ha="/0.75
MLR? = multiple linear regression; AG (B/C)* = above-ground (biomass/carbon); RF! = random forest.
Table 6. Comparison of biomass estimation using optical and microwave data.
Region Data Techniques Mean AG (B/C)*/R? Ref
Western Himalayan MODIS and L-band REL R . AGB [72]
Indian forest ALOS-PALSAR egression 180.27 Mg ha=1/0.77
Sub-tropical chir pine forest, . . . AGC
Margalla Hill, Pakistan DBH and height Linear Regression 3 3¢ 1 35 55 Mg C ha ! [73]
. Sentinel-2 vegetation . . AGB
Battagram KP, Pakistan indices Linear Regression 148.79 tha~1/0.67 [16]
Temperate and sub-tropical . Allometric AGC
forests, KP, Pakistan Spot-5 satellite (2.5 m) Equations 85.05 + 10.84 t ha~! [38]
Pinus roxburghii forest in
Siran forest divsion, Landsat-8 Linear Regression AGC [74]

(spectral indices) 26-116 t ha=1/0.63

AG (B/C)* = above-ground (biomass/carbon); RF! = random forest.

Limited biomass estimation research was conducted on forest compartments (basic
administrative units) using LIDAR datasets, highlighting the key significance of this study.
Point-based model accuracy helped the reliability and correct estimations of AGB in the
compartments. This granularity is crucial for implementing target management strategies
in Pakistan’s diverse ecosystems, as highlighted by [75].

4.2. Comparison of Biomass Estimates

The Mansehra district stores a large percentage of carbon stock in temperate forests
(83%), followed by sub-tropical pine forests (14%), sub-alpine forests (1.5%), and others
(1.5%) [76]. This study predicted a mean above-ground biomass value of 189.42 Mg/ha,
which differed by only 5.2% from the ground-sampled carbon stock of 180.93 Mg/ha,
confirming its accuracy and efficiency. Carbon stock densities in the designated Mansehra
forest range from 31 to 142 Mg/ha, aligning with values reported in the conifer-dominated
forests of the western Himalayan region of India (73.30 to 245 C Mg/ha) [77]. Differences
in carbon density ranges reflect variations in forest age and species distribution.

A comparison with other studies in the same area (Tables 4 and 5) validates the
reliability of the AGB estimation presented in this study. Furthermore, the findings align
with global AGB patterns, which rank temperate coniferous forests second to tropical
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forests, with an average AGB of approximately 102 Mg/ha. This study demonstrates
significant improvements in AGB estimation, aligning with the ranges provided by GEDI
L4B, albeit at a coarser resolution of 1 km.

4.3. AGB Potential and CO, Sequestration

Despite the substantial forest resources, the Mansehra district faces challenges in
offsetting CO, emissions due to insufficient AGB. Current AGB values range from 23 to
400 Mg/ha in designated forests. Improving the forest biomass, particularly in low-AGB
compartments, through efficient and sustainable forest management could enable the
district to meet its emission-offset requirements.

Nationally, the gap between AGB capacity and CO, emissions remains significant. Pak-
istan currently requires at least 18.78 million tons of AGB to mitigate emissions. Projections
suggest this requirement will rise to 21.58 million tons by 2030 and to 30.71 million tons by
2050, assuming a population growth of 1.7% and per capita CO, emissions of 0.080 tons
annually. This requires a multi-faceted approach involving afforestation and reforestation
by increasing the forest biomass through an increase in the forest area and AGB of existing
forests by sustainable forest management, particularly in forest areas having low AGBs.

5. Conclusions

Accurate and reliable forest biomass estimation based on explanatory variables with
consistent performance against all selected machine learning models with slight variations
(R? from 0.85 to 0.86) signifies the suitability and effectiveness of explanatory variable
selection. This study found the global forest canopy height, DEM, GEDI L2A canopy
height data, and green and red optical bands to be efficient variables, with an RMSE of
28.03 Mg/ha, using a random forest algorithm. The average estimated AGB (189.42 Mg/ha)
is 5.2% higher than the carbon inventory technique (ground) estimation of (180.93 Mg/ha),
with R? = 0.71 presenting the high performance of the proposed methodology.

This study underscores the importance of monitoring AGB distributions at both the
forest category and compartment scales, particularly in protected, reserved, and community
forests. Detailed temporal monitoring and mapping by the forest department at the stand
level or compartment scale enables informed decision-making, facilitating adjustments or
shifts based on AGB threshold levels to achieve sustainable forest management. Moreover,
the proposed methodological outcomes can serve as baseline information in developing
the National Forestry Inventory, currently required under multiple international programs,
particularly in the context of carbon credits.

Acknowledging the reliance of CO, sequestration on AGB capacity, this study calls
for a paradigm shift in forest management strategies. Therefore, it is imperative to consider
AGB as a primary metric in forest management rather than relying exclusively on forest
cover areas. This necessitates a policy shift towards accentuating AGB estimation and
addressing future demands. Pakistan requires 18.78 million tons of AGB to adjust its
greenhouse gas budget to maintain environmental sustainability. This requirement is pro-
jected to increase to 37.23 million tons by 2030 and 52.97 million tons by 2050, respectively.
Meeting these demands necessitates a multi-faceted approach, including afforestation,
reforestation, and enhancing AGB in existing forests through effective management. Sus-
tainable practices aimed at increasing AGB will be pivotal in addressing the challenges of
carbon sequestration and climate change mitigation, ensuring long-term ecological and
environmental stability.
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Abstract: This study presents a novel approach to analyzing forest regeneration dynamics
by integrating a Markov chain model with Multivariate Time Series (MTY) decomposition.
The probabilistic tracking of age-class transitions was combined with the decomposition of
regeneration rates into trend, seasonal, and irregular components, unlike traditional deter-
ministic models, capturing the variability and uncertainties inherent in forest ecosystems,
offering a more nuanced understanding of how Scots pine (Pinus sylvestris L.) and other
tree species evolve under different management and climate scenarios. Using 20 years
of empirical data from the Lithuanian National Forest Inventory, the study evaluates key
growth and mortality parameters for Scots pine, Spruce (Picea abies), Birch (Betula pendula),
and Aspen (Populus tremula). The model for Scots pine showed a 79.6% probability of
advancing from the 1-10 age class to the 11-20 age class, with subsequent transitions of
82.9% and 84.1% for older age classes. The model for Birch shown a strong early growth
rate, with an 84% chance of transitioning to the next age class, while the model for Aspen
indicated strong slowdown after 31 years. The model indicated moderate early growth
for Spruce with a high transition in later stages, highlighting its resilience in mature forest
ecosystems. Sensitivity analysis revealed that while higher growth rates can prolong for-
est stand longevity, mortality rates above 0.33 severely compromise stand viability. The
Hotelling T? control chart identified critical deviations in forest dynamics, particularly in
years 13 and 19, suggesting periods of environmental stress. The model offers actionable
insights for sustainable forest management, emphasizing the importance of species-specific
strategies, adaptive interventions, and the integration of climate change resilience into
long-term forest planning.

Keywords: forest regeneration dynamics; mathematical modeling; sustainable forest
management

1. Introduction

Forests are integral to the health of our planet, and provide a wide array of ecological,
economic, and social benefits. They act as carbon sinks, mitigating climate change by
absorbing and storing significant amounts of carbon dioxide [1]. At the same time, forests
contribute to maintaining the hydrological cycle, preventing soil erosion, and regulating
local and global temperatures [2]. Biodiversity thrives in forest ecosystems, with countless
species relying on forests for shelter, food, and breeding grounds [3]. Economically, forests
are invaluable, providing timber, fuel, and non-timber forest products such as medicinal
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plants and edible fruits, which are essential for both global industries and local liveli-
hoods [4]. Understanding the dynamics of forest regeneration is needed to ensure the
sustainability of these benefits [5,6]. Regeneration involves establishment of new seedlings,
which are the basis for the continuity of forests [7]. Growth, which includes the increase in
biomass, tree height, and diameter, determines the productivity and structural complexity
of forests [8]. Mortality, loss of trees due to aging, disease, competition, or external factors
such as climate extremes, play a vital role in the formation of forest composition and the in-
fluence of nutrient cycling [9]. These processes drive forest dynamics, dictating how forests
recover from disturbances, adapt to changing conditions, and evolve over time [10,11].

Scots pine (Pinus sylvestris L.) is a dominant species in Lithuanian forests, and provides
an exemplary case study to understand these dynamics [12,13]. Scots pine covers a vast
geographic range across Lithuania, making it one of the dominant species in the country’s
forest ecosystems [14]. Its adaptability to various types of soils and climatic conditions
allows it to thrive in both temperate and boreal zones. Scots pine is found in a variety of
age classes, from young regenerating stands to older mature forests, and is distributed
throughout the lowlands and uplands of Lithuania, supporting the timber industry as
a cornerstone of Lithuania’s economic forest management strategies [15]. In Lithuania,
Spruce (Picea abies), Birch (Betula pendula), and Aspen (Populus tremula) play complementary
roles to Scots pine in forest ecosystems [16]. Spruce is more prevalent in younger age
classes, but tends to decline in older stages, with higher mortality and vulnerability to
environmental stress. Birch and Aspen, as pioneer species, dominate early successional
stages, contributing to forest diversity, but their roles are more transient, compared to
more resilient and dominant Scots pine. Economically, Scots pine is most valued for its
timber, which is used in construction, furniture manufacturing, and paper production [17].
The species also contributes to carbon sequestration, making it a key player in climate
change mitigation strategies [12].

Pine forests in Lithuania face several challenges, with the impacts of climate change,
such as the increased frequency of droughts and warmer winters, playing a significant
role [18]. These changes weaken trees, making them more susceptible to diseases [19] and
pests [20], particularly bark beetles, which have caused widespread damage in recent years.
The decline in regeneration rates is also an issue, as natural regeneration is hampered by
changes in soil moisture and temperature [21]. In addition, high mortality rates [22] are
observed in young pine stands due to environmental stress and pest infestations. Human
activities, including intensive forest management (Lithuania is one of the largest exporters
of pine materials in the northern Europe) and changes in land use, further exacerbate these
issues, leading to a decrease in the resilience of pine forests.

Addressing these challenges requires a systematic and data-driven approach to quan-
tify regeneration, growth, and mortality processes. Accurate data collection through forest
inventories, remote sensing, and field studies is essential to establish baseline conditions
and identify trends [12]. Mathematical models provide powerful tools to analyze these
dynamics, enabling simulation of forest evolution in different scenarios [23]. These models
incorporate empirical data to predict how forests might respond to management prac-
tices, environmental changes, and disturbances. By understanding the drivers of forest
stand dynamics, policymakers and forest managers can develop strategies to improve
forest resilience, promote biodiversity, and optimize the delivery of ecosystem services [24].
The approach is especially relevant for poorly managed forests in Lithuania [25,26]. This
approach ensures that forests continue to play a vital role in the survival of life [12,13].

Previous studies such as the study by Eberhard and Hasenauer [27] utilized growth
simulators such as MOSES, focusing on light competition and the regeneration dynamics
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of Douglas fir in Central Europe. Although these studies emphasized individual factors
like light availability, they lacked the probabilistic modeling of multi-factor influences
over time. Similarly, Vergarechea et al. [28] modeled climate-mediated regeneration in
Mediterranean pine forests using survival analysis, which highlighted climate impacts,
but did not incorporate age-specific mortality dynamics as extensively.

The key research objective in this study is the development of a mathematical model to
represent the regeneration dynamics of Scots pine in Lithuania, estimating the regeneration,
growth, and mortality rates for each age class. The innovative approach is based on the
Markov chain and Multivariate Time Series (MTY) decomposition, incorporating 20 years
of empirical data from the Lithuanian National Forest Inventory, and is evaluated through
the impact of parameter variability under various scenarios.

The significance of this research lies in providing a quantitative tool to predict the
outcomes of different management interventions, helping to make informed decisions that
balance economic objectives with ecological sustainability, regarding the impacts of climate
change on forest ecosystems.

2. Related Works

The dynamics of forest regeneration help us to understand how forests evolve over
time, recover from disturbances and respond to environmental changes [29], and help us
to understand the processes that drive the natural renewal of forest ecosystems [30,31].
As such, forest dynamics modeling has evolved significantly over the years, with various
approaches developed to simulate complex interactions within forest ecosystems [32,33].
Early models often focused on specific aspects of forest dynamics, such as the growth or
succession of stands, and utilized deterministic approaches [30]. With advances in compu-
tational power and ecological understanding, more comprehensive models have emerged
that incorporate aspects such as species interactions, disturbance regimes, and climate
effects [34,35]. Notable among these is the gap model, which simulates the birth, growth,
and death of trees within small patches, allowing for the examination of succession and
competition dynamics. The Lee—Carter model, originally developed to forecast human
mortality trends, has been adapted to analyze tree mortality, providing information on how
environmental factors influence long-term survival patterns [29]. A similar approach to
tree mortality is illustrated by the approach of Babst et al. [36], where it was used to project
future mortality rates in European forests under climate change scenarios, as the model
allowed the authors to analyze how mortality is influenced by both climate variables and
forest stand characteristics. Rocha et al. [37] investigated models to predict tree mortality,
finding that the individual tree-level model integrating dendrometric and meteorological
variables was the most efficient. Manso et al. [38] applied a model similar to the Lee—Carter
model to assess how the mortality risk of tree species is influenced by stochasticity from ex-
treme climatic events and multi-species competition, revealing effects of complementarity
processes in tree mortality.

We offer an overview of related approaches in Table 1, showcasing a progression from
traditional methods to more sophisticated multivariate approaches that address species-
specific needs and environmental stressors. One key observation is the increasing reliance
on geospatial and remote sensing technologies, as seen in the work by Ryzhkova et al. [39],
which illustrates the utility of GIS in monitoring large and inaccessible forest areas. Ri-
chit et al.’s [40] study goes further by applying artificial neural networks, signaling a shift
towards models that can handle nonlinear interactions and provide long-term, adaptive
management solutions, particularly in ecosystems with complex hydrological dynamics
such as riparian buffer strips. The use of Markov chains, Bayesian inference, and process-
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based models in other works highlights a growing emphasis on probabilistic approaches,
reflecting the need to account for uncertainties in climate impacts and species interac-
tions. For example, Mantero et al.’s [41] Bayesian regression model not only identifies
high-priority areas for restoration, but also minimizes economic costs, showing how ma-
chine learning can enhance practical forest management. The work of Eberhard and
Hasenauer [42] on light competition between Douglas firs in central Europe exemplifies
how fine-scale ecological interactions are critical to regeneration success, suggesting that
generalized models may overlook key factors such as canopy light availability. Addi-
tionally, Vergarechea et al.’s [28] climate-mediated modeling brings to light the intricate
species-climate dynamics that affect regeneration probabilities in Mediterranean forests,
reinforcing the role of predictive, climate-sensitive modeling for future forest management.
The above works indicate that modern forest regeneration models must integrate multiple
ecological, climatic, and spatial factors to provide actionable insights, particularly as forests
face more frequent and severe disturbances from climate change and human intervention,
as the trend towards integrating dynamic high-resolution models represents a shift in
ensuring long-term forest resilience and sustainability in various biomes.

Table 1. Summary of related works.

Authors

Study Focus

Methodology

Key Findings/Contributions

Ryzhkova et al. [39]

Forest cover classification in
southern Yenisei Siberia

Geoinformation modeling

Combined forest cover classification
for regeneration dynamics
monitoring

Richit et al. [40]

Riparian buffer strip
regeneration

Logistic model and neural
networks

Highlighted vegetation’s role in
improving water quality and
optimizing conservation

Eberhard and
Hasenauer [42]

Douglas fir regeneration in
Central Europe

MOSES simulator for
regeneration prediction

Light availability critical for
regeneration

Vergarechea et al. [28]

Mediterranean pine
regeneration under climate
scenarios

Survival analysis

Identified grass cover and climate
as key regeneration factors

De Frutos et al. [43]

Maritime pine regeneration
after seed cutting

Field studies on summer
precipitation

Regeneration driven by retained
pine and broadleaf species

Mantero et al. [41]

Post-fire forest regeneration in
the Italian Alps

Bayesian Additive Regression
Tree model

Applied nucleation can improve
forest recovery cost-effectively

Calama et al. [44]

Resin-tapped pine mortality
in Spain

Spatio-temporal models

Water stress and weather extremes
cause mortality, highlighting
adaptive strategies

Holzer et al. [45]

Impact of ungulate browsing
on tree species composition

Process-based modeling

Browsing impacts tree height
development and species shifts

3. Methodology

3.1. Context Information

Lithuania, located in Northern Europe (Figure 1), has a diverse forest landscape

shaped by its transitional climate and varied soil types. Lithuania experiences a transitional
climate that combines maritime and continental influences, resulting in mild, moderately
wet winters and relatively cool summers. The country’s climate is characterized by average
temperatures ranging from —5 °C in January to about 17 °C in July and significant humidity
and precipitation throughout the year, with annual averages between 600 and 800 mm.
Lithuanian climate supports reasonably diverse forest growth, but also predisposes forests
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to certain diseases and pests due to high moisture levels. Forests cover approximately 33.5%
of Lithuania, with forest types shaped by both natural processes and human activities.
Coniferous forests are dominated by Scots pine and Norway spruce, these forests are
primarily found in sandy or podzolic soils, which are acidic and low in nutrients, formed
in humid conditions. Deciduous forests are made up of Birch, Aspen, oak, and ash, located
mainly on fertile soils in southern and central Lithuania. Mixed forests contain a mixture
of coniferous and deciduous species and offer rich biodiversity.

PORTUGAL

Figure 1. Locations of study within Europe.

3.2. Data Collection Methodology

The methodology for data collection in national forest inventories involves a sys-
tematic approach based on field surveys with random starting points, the integration of
repeated measurements in permanent maps with assessments in temporary maps and the
combination of ground measurements in designated inventory plots with evaluations from
satellite images and aerial photographs.

The National Forest Inventory (NFI) conducts ground measurements on forest land,
but, in exceptional cases, measurements are also carried out in forest trenches as they are
directly related to forest formation. Fieldwork is performed by teams assigned to both
permanent and temporary inventory plots. Each team responsible for permanent plots
works in a designated inventory district for five years before switching to a different district
for the next five years. To evenly distribute permanent inventory plots across the country
and regularly monitor transformations in other land uses and the growth of forests there,
a systematic layout method with a random start is chosen. Inventory plots for ground
measurement are grouped in fours, and group plots are positioned at the vertices of an
equilateral triangle. Aligning with the kilometer grid of Lithuania’s coordinates, permanent
inventory plot groups were arranged every fourth row and every fourth kilometer column
in a staggered manner every 4 km. One group of permanent inventory plots covers a
territory of 16 km? or 400 ha per permanent inventory plot. All permanent inventory plots
are measured over a 5-year period, arranged so that the tracts each year ensure the most
uniform distribution throughout the country.

Data collection covers a total of 16,349 permanent observation plots across the national
territory, with one-fifth of all permanent observation plots remeasured annually. Annual
results are calculated using the last five years’ data, ensuring continuous and overlapping
data provision. Each permanent inventory plot (Figure 2) represents 400 ha of the territory:

* 500 m? (Area A)—for the inventory of trees and stumps with a diameter at breast
height greater than 14.0 cm.
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e 100 m? (Area B)—for the inventory of trees and stumps with a diameter at breast
height greater than 6.0 cm.

e 25m? (% of a small circle, Area C)—for the inventory of trees with a diameter at breast
height greater than 2.0 cm.

* 30 m? (Area D)—for the inventory of undergrowth and ground vegetation.

Inventory trees in permanent plots are used to assess tree heights, while in temporary
plots, they are used to evaluate tree heights, stand age, and volume growth.

2nd ¥ector _ - =~ -

20.0m

10.pm

Figure 2. Schematic layout of a forest inventory plot used for systematic data collection. A, B, C, D

are inventory areas.

3.3. Forest Inventory Dataset

For the purposes of this study on the dynamics of forest regeneration of Scots pine
stands in Lithuania, we used a dataset compiled from the Lithuanian National Forest
Inventory (NFI), which encompasses a wide range of variables collected through field
surveys, spanning multiple years to capture temporal changes in forest structure and
composition, including regeneration rates (RR), growth rates (GR(a)), and mortality rates
(MR(a)). It provides the empirical basis for model validation and sensitivity analysis.
Details for downloading the data set are provided in the Data Availability Statement.

The data set (see Table 2) includes the following key characteristics and variables, used
to develop and validate the forest regeneration model.

Table 2. Summary of forest inventory data for Scots pine Stands in Lithuania.

Characteristic Description

Spatial Coverage Entire forested area of Lithuania

Temporal Range 2001 to 2021 (measured yearly)

Tree Species Composition Focus on Scots pine with details on mixed species

Age Classes and Stand Structure ~ Distribution across different age classes, stand density, DBH, and height

Regeneration Data Counts of seedlings and saplings, natural and assisted regeneration

Mortality and Growth Rates Annual mortality rates by cause, DBH and height growth measurements
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Table 2. Cont.

Characteristic Description
Biomass and Carbon Stocks Estimates of aboveground and belowground biomass
Data Collection Methods Field surveys and remote sensing (satellite imagery and aerial photography)

Table 3 presents the distribution of forest stands in different age classes for Pine,
Spruce, Birch, and Aspen in Lithuania, based on data as of 1 January 2021. The area is
expressed in hectares.

Table 3. Distribution of forest stands across different age classes for Pine, Spruce, Birch, and Aspen in
Lithuania, as of 1 January 2021.

Age Class (Years) Pine (ha) Spruce (ha) Birch (ha) Aspen (ha)
1-10 36,013 76,099 63,756 16,019
11-20 28,670 63,832 53,585 17,602
21-30 23,772 40,706 50,048 12,526
31-40 19,992 40,921 37,438 7812
41-50 35,580 42,434 38,726 6162
51-60 76,196 41,865 55,551 8211
61-70 115,070 36,966 71,427 11,902
71-80 96,810 31,972 50,221 9772
81-90 83,530 28,516 21,650 4394
91-100 75,054 19,623 6779 1061
>100 52,632 8309 1362 100

Figure 3 visualizes the distribution of forest area (in thousands of hectares) for four
species of trees (Pine, Spruce, Birch, and Aspen) in various age classes. The age classes are
categorized in 10-year intervals, starting from 1 to 10 years to greater than 100 years.

120,000
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Figure 3. Forest stands distribution across tree species and age classes.
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Figure 4 illustrates the distribution of forest stands in various age classes, measured in
decades, from 0 to 10 years to 90-100 years.
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Figure 4. Total number of forest stands in age classes.

Figure 5 highlights the spatial distribution of Scots pine and other dominant
tree species.
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Figure 5. Forest stands distribution across different regions in Lithuania as of January 2021.

The main trends and observations from this dataset are summarized in Table 4.
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Table 4. Summary of forest stand distribution trends across age classes.

Tree Species

Observation Explanation

Dominates middle to older age classes, with the highest areain  Reflects adaptability, longevity, and possibly management

Pine the 61-70 age class (115,070 ha). practices favoring pine growth.
Spr Strong presence in younger age classes (1-10 and 11-20 years),  Indicates shorter lifespan or higher mortality rates in later
pruce diminishing significantly in older classes (>100 years, 8309 ha).  stages.
Birch Prominent in younger age classes (1-10 years, 63,756 ha), but Highlights its role as a pioneer species and possible succession
sharply declines in older age classes (>100 years, 1362 ha). by longer-lived species.
Aspen Strong presence in the youngest age class, but almost no Reflects its shorter lifecycle and higher vulnerability to
P representation in the >100 age class (100 ha). environmental factors.

3.4. Outline of Methodology

In this study, several mathematical methods are employed to analyze and model the
dynamics of forest ecosystems, providing the quantitative backbone for understanding
ecological interactions and predicting future trends based on current forest data.

To model the stochastic nature of forest growth and species succession, Markov
chains [46] are employed. These provide a framework for predicting the probability of
transitioning from one state to another in a discrete-time framework, namely for modeling
random events in forest dynamics, such as fire outbreaks, disease spread, and the random
establishment of new plant species.

Sensitivity analysis [47] is used to determine how the output of a model is affected
by changes in one or more input parameters, useful for ecological modeling to assess the
robustness of model predictions under uncertainty and to identify the most influential
parameters driving model outcomes.

The Hotelling T?> Control Chart [48] is used for monitoring the stability of interrelated
variables that often characterize complex forest ecosystems. It helps in detecting outliers or
abnormal shifts in the forest data set.

The MTY decomposition [49] is a method used to dissect the components of multivari-
ate time series data, isolating trends, seasonal effects, and other cyclic variations, such as
annual forest growth rates, seasonal pest infestations, or cyclic climatic effects on forest
health. By decomposing these series, we can understand the underlying patterns and
causal relationships, which may not be apparent from raw data, to obtain insights into the
temporal dynamics of multiple factors influencing forest ecosystems.

3.5. Model Assumptions

Markov chain models provide a robust framework for predicting changes in forests.
The assumptions for accurately interpreting the model outcomes in the forestry domain
as follows:

®  The forest ecosystem is segmented into discrete states or classes, typically defined by
the age, size, or developmental stages of the tree, which represent groups with similar
ecological characteristics. Each state encompasses a specific forest condition or age
class. Time is treated in discrete intervals, with transitions assessed at these intervals,
simplifying the continuous nature of forest dynamics.

¢ A fundamental premise of the Markov chain model is its memorylessness. The future
state of the system depends solely on the current state, not on the sequence of events
that preceded it. This assumption implies that the process history does not influence
future state transitions.
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e  Transitions between states occur with constant probabilities that are assumed to remain
consistent over time. Each probability P; quantifies the likelihood of transitioning
from state i to state j in one time period, adhering to }; P;; = 1.

e The model assumes that transitions are independent. Changes in the state of one forest
plot do not affect transitions in another, simplifying modeling by excluding spatial
interactions or dependencies.

e  Thestationarity assumption posits that transition probabilities do not change over time,
which is crucial for long-term modeling but may not always hold in real scenarios.

e Itis typically assumed that all plots within a state are homogeneous. This assumption
ignores within-state variability due to factors such as soil type or microclimates.

3.6. Mathematical Modeling of Forest Regeneration

In this section, we present a formal mathematical model that describes the regeneration
dynamics of a forest, focusing on the regeneration rate, the growth rate, and the mortality
rate of the forest stands over time. The model tracks the number of stands across different
age classes in a forest, incorporating regeneration, growth, and mortality processes.

Further, we use the following notations:

e N(t,a)—number of stands of age class a at time t.

e  RR—annual regeneration rate, representing the number of new stands established
each year.

e GR(a)—growth rate for stands in age class a.

e MR(a)—mortality rate for stands in age class a.

The model is defined by the following processes:

1. Regeneration: N(t+1,1) = RR
Growth: for each age class 1 < a < A,

N(t+1,a+1) = N(t,a) - GR(a) 1)
3. Mortality: for each age class 1 < a < A,
N(t,a) = N(t,a) - (1 — MR(a)) )
4.  For the oldest age class A, the boundary condition is given by
N(t+1,A)=N(t,A—1)-GR(A—1)+ N(t,A) - (1— MR(A)) 3)

The model requires initial conditions N (0, 2) for each age class a to simulate the forest
regeneration dynamics over time.

The estimation of the model parameters was made to accurately simulate the forest
regeneration dynamics determining the values of the regeneration rate (RR), growth rates
(GR(a)), and mortality rates (MR(a)) for each age class a. The estimation process is based
on empirical data from forest inventories or observational studies.

The regeneration rate, RR, is estimated from the number of new stands established per
year. It can be directly observed or calculated from the increase in stands in the youngest
age class over time,

AN(1)
At
where AN(1) is the change in the number of stands in the first age class over the time

interval At.

RR =

(4)
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The growth rate for each age class, GR(a), represents the proportion of stands that
transition to the next age class in a given year. It is estimated by comparing the number of
stands in successive age classes,

N(t+1,a+1)

N(t,a) ©)

GR(a) =
assuming that growth is the only transition between these age classes.
The mortality rate for each age class, MR(a), indicates the proportion of stands that
die in a given year. It can be inferred from the reduction in the number of stands not
transitioning to the next age class,

MR(a) =1— GR(a) (6)
where GR(a) is the growth rate from age class a to a + 1.

3.7. Analytical Solution of the Model

For certain simplified versions of the forest regeneration model, analytical solutions
were derived to describe the state of the forest over time, given the initial conditions and
the values of the parameters.

Consider a simplified version of the model where the growth rate (GR(a)) and the
mortality rate (MR(a)) are constant across all age classes, and there is no maximum age
limit. The model is represented by a linear difference equation for the number of stands in
each age class,

N(t+1,a+1) = GR-N(t,a) - MR- N(t,a) (7)

where GR and MR are constants, and the regeneration rate (RR) introduces new stands
into the first age class each time period,

N(t+1,1) = RR ®)

Under these conditions, the number of stands in each age class over time can be
expressed as
N(t,a) = RR- (GR — MR)*~! )

assuming GR > MR and the system has been running for a sufficient number of time steps
to reach a steady state.

The solution to the difference equation provides a direct relationship between age
class, regeneration rate, and growth and mortality rates. It shows how the number of
stands decreases geometrically with age class, reflecting the cumulative effects of growth
and mortality.

The analytical solution described is based on several simplifications.

e  Constant rates of growth and mortality, which do not fully reflect real-world conditions
where these rates vary with age, environmental factors, and density of the stand.

¢ Ignoring maximum age limits and other factors such as competition, disturbances,
and management interventions that can affect stand dynamics.

e The assumption of a steady state may not be applicable to forests that experience
significant changes or disturbances.
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3.8. Model Analysis

Sensitivity analysis was conducted for model validation, aiming to measure its re-
liability and robustness of the model predictions by quantifying how changes in model
parameters affect the model’s outputs and identifying which parameters are most influ-
ential on the model’s behavior, thereby guiding data collection efforts and prioritizing
areas for research. Sensitivity of the model output Y with respect to a parameter x; can be

defined as
Y
Sx =

f_axl-

where Sy, represents the sensitivity coefficient of Y to changes in parameter x;. Higher

(10)

values of |Sy, | indicate that the model output is more sensitive to the parameter x;.
The sensitivity coefficient Sy, tells us how a small change in x; (for example, a slight
increase in temperature) would affect Y (for example, forest growth rate, tree mortality rate,

or overall forest health). The derivative § e

v, encapsulates this responsiveness numerically.
The magnitude of S, indicates how sens1t1ve Y is to x;. A large absolute value |Sy, | suggests
that Y is highly sensitive to changes in x;; small changes in x; could lead to significant
changes in Y. The sign of Sy, indicates the direction of the effect: a positive value means Y

increases with an increase in x;, while a negative value means Y decreases as x; increases.

3.8.1. Sensitivity Analysis with Respect to Regeneration Rates

The sensitivity of the forest regeneration model to changes in the regeneration rate
(RR) was carried out to understand the behavior of the model, given the direct impact of
RR on the initial conditions and the subsequent dynamics of the forest stands, evaluating
the influence of variations in RR on the predictions of the model.

Consider the forest regeneration model described by the discrete-time equation for
the number of stands in the youngest age class,

N(t+1,1) = RR (11)

The sensitivity of the model’s output, specifically the total number of stands after ¢
years, Total (t), with respect to RR can be expressed as

oTotal (t)

SRR = W (12)

Given the direct relationship between RR and N(t + 1,1), and subsequently Total(t),

we can further derive that
L oN(t,1)

Z ORR

where T represents the total simulation time.

(13)

For the simplified model in which growth and mortality rates are assumed constant
between age classes, the sensitivity Sgr essentially captures the cumulative impact of
changing RR over time. If the model assumes that all stands regenerate directly contribute
to the total stand count without loss, then

Sgr=T (14)

indicating that the model’s output is linearly sensitive to changes in the regeneration rate.
In more complex models, Sgr would need to account for the diminished contributions of
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older age classes due to mortality, as well as nonlinear effects due to density-dependent
growth or mortality factors.

3.8.2. Sensitivity Analysis of the Forest Growth Model with Respect to Mortality Rates

Understanding how changes in mortality rates (MR (a)) affect the dynamics of forest
growth was based on the sensitivity analysis of a forest growth model regarding mortality
rates, highlighting the interconnection of mortality and forest stand dynamics over time.

The sensitivity of the forest growth model’s output, such as the total biomass or the
number of mature stands at time £, to changes in mortality rates for a specific age class 4, is

expressed as
oY (t)

where Y (t) represents the model output of interest at time ¢, and MR (a) is the mortality
rate for age class a. This sensitivity indicates how a small change in the mortality rate of a
specific age class affects the model’s output, reflecting the direct and indirect impacts of
mortality on forest growth.

For a given age class 4, the direct impact of an increase in MR(a) reduces the number
of stands that survive to the next age class. The indirect effects accumulate over time as
fewer stands progress through the subsequent age classes. Assuming a simplified model
where growth and transition between age classes are otherwise constant, the sensitivity
can be approximated by aggregating the impacts across all affected age classes,

A
SMR(”) = Z BMR(a) (16)

where N(t, ) is the number of stands in age class j at time ¢, and A is the maximum age
class considered in the model.

Assuming linear relationships and no compensatory growth for loss in stands due to
increased mortality, the sensitivity Sy g(,) highlights the cumulative impact of mortality
rates on the forest’s ability to grow and sustain its biomass over time. A higher absolute
value of Sy p(,) indicates that forest growth and biomass are more susceptible to changes
in mortality rates, underscoring the importance of understanding and managing factors
contributing to tree mortality.

3.8.3. Sensitivity Analysis with Respect to Mortality Rates

The impact of mortality rates (MR(a)) on the forest regeneration model was analyzed
to interpret the resilience and long-term sustainability of forest ecosystems. Mortality rates
influence the attrition of stands in different age classes, directly affecting forest composition
and stand density over time. Higher sensitivity values indicate that small changes in
mortality rates could lead to significant alterations in forest composition.

Given the forest regeneration model’s structure, the sensitivity of the total number of
stands, Total(t), with respect to changes in mortality rates for a specific age class a, MR(a),

can be formulated as
oTotal (t)

SMR(a) = 78MR(¢1) (17)
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Considering the model’s dynamics, where the number of stands in age class a at time
tis N(t,a), and applying the chain rule for differentiation, we obtain

T A .
ON(t,a) ON(t,j) ON(t,a)
S = Soory T - (18)
MR(a) t; (aMR(a) ].:;1 ON(t,a) OMR(a)
where T is the total simulation time, and A is the maximum age class.

For a simplified model where GR(a) is constant and independent of MR(a), the sensi-
tivity can be approximated by considering the immediate impact of mortality rates on each
age class and their downstream effects on older classes,

T A
SMR(a) ~ — ) (N(f/”) + ) N(W)) (19)

=1 j=a+1

assuming a linear response of stand numbers to changes in mortality rates. This approx-
imation neglects potential compensatory mechanisms or density-dependent effects that
could modulate the impact of increased mortality.

4. Markov Chain Model of Forest Regeneration Dynamics

The dynamics of forest regeneration were modeled using a Markov chain, where
the state of a forest at any given time is determined by its state at the previous time step,
with transitions between states governed by a set of probabilities. The Markov chain model
for forest regeneration dynamics operates under several key assumptions:

1. The future state of the forest depends only on its current state, not on the sequence of
events that preceded it (Markov property).

2. The transition probabilities are constant over time, implying stationary environmental
conditions and management practices.

3. The forest is closed to external influences other than those included in the transition
probabilities, such as significant disturbances or changes in the management strategy.

Let the set of states S = {sl,sz, . ..,sn} represent the forest age classes, where s;
corresponds to the i age class. The state s; represents the youngest age class, typically
seedlings and saplings, while s, represents the oldest age class within the forest.

The transition probabilities between states are represented by a matrix P, where each
element p;; denotes the probability of transitioning from state s; to state s; in one time step.
For a forest regeneration model, the matrix P is structured to reflect growth (progression to
the next age class), mortality (failure to progress), and regeneration processes,

pu p2 0O -~ O
0 » ps - 0
p= | 20)
0 0 0 - pum

where p;; (for i < n) represents the probability of remaining in the same age class (owing to
slow growth or no growth), p; ;1 represents the probability of progressing to the next age
class, and p;,; represents the probability of remaining in the oldest age class.

The initial state distribution 7ty = [7o1, 7Tgp, - - ., 7on| represents the age class distribu-
tion of the forest at the beginning of the model period, where 7y; is the proportion of the
forest in state s; at time 0.
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To effectively apply the Markov chain model for forest regeneration dynamics, we
need to accurately estimate the transition probabilities between age classes. For parameter
estimation, the dataset defined in Section 3.3 was used to extract information relevant to
age class transitions for the primary tree species of interest, focusing on Pine, Spruce, Birch,
and Aspen.

The transition probabilities p;; of the Markov chain model are estimated based on
the observed transitions between age classes in the dataset over a specified time interval.
The formal definition for estimating these probabilities is given by

pij = N (21)
N;
where p;; is the probability of transition from age class i to age class j. Nj; is the number of
stands observed to transition from the age class i to the age class j during the time interval.
N; is the total number of stands in the age class i at the beginning of the time interval.

For age classes that directly progress to the next (for example, from age class i to i + 1),
pij captures the growth probability. The probability of remaining in the same age class (p;;)
reflects slower growth or stagnation, and the transition to the absorbent state for the oldest
age class (pun) indicates mortality or the culmination of growth.

Given potential uncertainties and variabilities in forest inventory data, a Bayesian
approach was used to estimate transition probabilities, incorporating prior knowledge and
observed data to generate probability distributions for each p;;, rather than point estimates,
as this approach improves the robustness of the model to data gaps and variations.

P(pjj|data) e P(data|p;j) x P(pij) (22)

where P(pjj|data) is the posterior distribution of the transition probability, P(data|p;;) is
the likelihood of the observed data given the transition probability, and P(p;;) is the prior
distribution of the transition probability.

Multivariate Time Series (MTY) Decomposition

Multivariate Time Series (MTY) decomposition is a method that we used to break
down a multivariate time series into its constituent parts to better understand the un-
derlying structure and dynamics of the data. In the context of forest stand dynamics, it
involves decomposing the time series of tree ages into components such as trend, seasonal,
and irregular components. MTY decomposition allows for a detailed analysis of how
these components contribute to signals detected by the Hotelling T? control chart, which
is a statistical tool used to monitor the stability of a process based on multiple variables
simultaneously. For forest stand dynamics, it was used to monitor changes in the dis-
tribution of tree ages over time. When an out-of-control signal is detected, indicating a
significant deviation from the expected multivariate process behavior, MTY decomposition
was applied to investigate the source of this deviation.

The steps for applying MTY Decomposition are as follows:

1. Use the Hotelling T2 control chart to identify periods in which the multivariate process;
in this case, the distribution of tree ages, deviates significantly from the control limits.

2. Apply MTY Decomposition to the time series data related to the identified out-of-
control signals, which involves separating the data into trend, seasonal, and irregular
components for each variable, or, in this case, tree age class.

3. Analyze the decomposed components to identify patterns or anomalies. For example,
a sudden change in the trend component could indicate a shift in forest regeneration
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rates, while unusual patterns in the seasonal component could reflect cyclical changes
in mortality rates.

5. Results
5.1. Forest Regeneration Model Rates

The Forest Regeneration Model rates were derived from Table 3 and are presented
in Table 5, indicating the proportion of stands that survive and transition to the next age
class, with a growth rate exceeding 100% from age class 31-40 to 41-50 due to an apparent
increase in the area, which can be attributed to measurement adjustments, changes in
forest management practices, or natural dynamics not captured by simple linear transitions.
The RR rate represents the total area rather than an annual regeneration rate, due to the
lack of explicit annual data. To derive an annual rate, additional information would be
needed on the period over which this regeneration occurred. The model’s mortality rates
become negative from the 31-40 to the 41-50 transition onward, which is counterintuitive,
as mortality rates should range between 0 and 1. These negative values likely suggest un-
derlying issues with the data, rather than true biological phenomena. Errors in measuring
or recording the forest data, such as the area covered by each age class, can lead to incorrect
calculation of negative rates. For example, an overestimation of the area in a younger age
class followed by an underestimation in the next age class could artificially inflate growth
rates, making mortality rates appear negative when calculated as residuals. This anomaly
is the limitation of our model, as we have treated that such areas can directly translate
into survival and growth rates without accounting for other factors such as afforestation,
reforestation, and changes in land use or measurement methodologies over time.

Table 5. Growth and mortality rates for tree species.

Scots Pine Spruce Birch Aspen
Age Class (Years)

GR MR GR MR GR MR GR MR

1-10 0796 0204 0839 0161 0.840 0.160 1.000  0.000
11-20 0.829 0171 0638 0362 0934 0066 0712  0.288
21-30 0.841  0.159 1.000  0.000 0.748 0252 0.624 0.376
31-40 1.000  0.000 1.000  0.000 1.000 0.000 0.789 = 0211
41-50 1.000 0.000 0987 0.013 1000 0.000 1.000  0.000
51-60 1.000 0.000 0.883 0.117 1.000 0.000  1.000  0.000
61-70 0.841 0159 0865 0135 0703 0297 0821 0.179
71-80 0.863 0.137 0892 0.108 0431 0569 0450  0.550
81-90 0.899  0.101 0688 0312 0313 0.687 0241 0.759
91-100 0701 0299 0423 0577 0201 0799  0.095  0.905

5.2. Markov Chain Modeling

Given the growth rates (GR) and mortality rates (MR) for Scots pine in Lithuania,
the state transition matrix P for the first three age classes can be constructed, assuming
that the transitions between age classes are solely dictated by the growth rates and that
mortality is implicitly considered in these transitions (i.e., not surviving to the next age
class is the complement of the growth rate).

0.204 0.796 0 0
. . 0
p_ 0 0.171 0.829 (23)
0 0 0.159 0.841

0 0 0 1
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where the first row represents transitions from the 1-10 age class, with 20.4% chance of
staying in the same class (mortality and non-growth) and 79.6% chance of advancing to the
11-20 age class. The second and third rows follow the same logic for transitions from the
11-20 to 21-30 age classes and from the 21-30 to 31-40 age classes, respectively. The fourth
row is a simplification that represents the transition of the forest beyond the age classes
considered in this model, with the possibility 100% to remain in the state, reflecting the end
point of our simplified model.

Similar state transition matrices can also be calculated for other tree species. Our
Markov chain model (Figure 6) showed accurate transitions between different age classes
based on the growth and mortality rates estimated from the Lithuanian forest inventory
dataset for Scots pine, Spruce, Birch, and Aspen.

The Markov chain models for Scots pine, Spruce, Birch, and Aspen reveal distinct
growth dynamics and survival probabilities in different forest age classes, providing infor-
mation on the ecological strategies and responses of each species to environmental pres-
sures. Scots pine exhibits a higher tendency to remain in the younger age class (1-10 years),
with a 20.4% probability, indicating a slower initial growth or greater challenges in early-
stage survival, which suggests that Scots pine may require longer to establish or faces
more significant early-life mortality risks than other species analyzed. In contrast, Spruce
shows a unique pattern in which it transitions with certainty (100%) from the 21-30 to
the 31+ age class, reflecting effective forest management strategies that ensure its growth
beyond the mid-life stages without interruption. Birch stands out with its high transition
rate (84.0%) from the 1-10 to the 11-20 age class, the highest among the species, suggesting
vigorous early growth. However, it also shows a notable probability (25.2%) of remaining
in the 21-30 age class, indicating possible biological or environmental limitations that affect
its older populations. Aspen, on the other hand, demonstrates exceptionally dynamic
early growth, with a very high probability of moving from the 1-10 to the 11-20 age class,
characteristic of pioneer species known for rapid growth in youth. However, its growth
slows significantly as it matures, with a transition probability of 62.4% from the 21-30 to
the 31+ class, highlighting a deceleration in growth or increased mortality risks at this stage.
The resulting patterns indicate that while Aspen and Birch are quick to establish and grow
in their early years, they face different challenges as they mature. Scots pine and Spruce,
with their higher probabilities of staying in certain age classes, adapting more effectively
to longer-term environmental stresses or benefiting from conservation efforts that protect
them as they age.
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P11 = 0.204 P22 = 0.171 P33 = 0.159 Pas = 1.000

o=
0=

P12 = 0.796 P23 = 0.829 P34 = 0.841
> > 31+
(a) Scots pine
p11 = 0.161 P22 = 0.362 p33 =10 pas = 1.000
p12 = 0.839 p2,3 = 0.638 Q p3a =1
;@ > 31+
(b) Spruce
P11 = 0.160 P22 = 0.066 p33 = 0.252 Paas = 1.000
P12 = 0.840 P23 = 0.934 Q P34 = 0.748
;@ > 31+
(c) Birch
P11 = 0 P22 = 0.288 P33 = 0.376 Pasa = 1.000

(d) Aspen
Figure 6. Markov chain models for tree species illustrating transitions between forest age classes.

The probabilities indicate regeneration, growth, and mortality transitions.

5.3. Sensitivity Analysis

Figure 7 presents sensitivity analysis of the forest regeneration model. It shows the
impact of variations in growth and mortality rates on the size of the forest stand over time.

The results from the sensitivity analysis provide data on how the analyzed rates
influence the longevity and viability of forest stands over a century. The results show a
clear trend: higher growth rates generally sustain forest stands longer, whereas higher
mortality rates accelerate the decline, evident where combinations with higher GR values
persist with higher stand counts far longer than those with lower GRs. Curves with higher
MRs, even with a high GR, decline more rapidly than those with lower MRs, illustrating the
detrimental impact of high mortality regardless of growth. Forest stands with high growth
rates (GR = 0.90 and GR = 1.00) and low mortality rates (MR = 0.10) show the greatest
longevity, maintaining a higher number of stands for an extended period compared to
other combinations. In contrast, any scenario with MR = 0.40, regardless of the growth
rate, results in a rapid decline of forest stands, where the population approaches zero in
about 40 years. There is a noticeable threshold effect around a GR of 0.70. Combinations
below this growth rate, even with moderate mortality rates (for example, MR = 0.18), show
a steep decline in stand numbers within the first few decades. Similarly, mortality rates
greater than 0.33 significantly decrease stand longevity in all growth rates, highlighting a
critical limit beyond which forest recovery is not sustainable. In general, the results show
the importance of improving forest growth rates through management practices such as
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Number of Stands

optimal spacing, selective logging, and species selection that favor faster growing trees.
Strategies to reduce mortality rates, such as pest and disease management, protection from
wildfires, and mitigation of environmental stressors, remain important and are especially
vital in settings where the mortality rate approaches or exceeds the identified critical
threshold (MR = 0.33).
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Figure 7. Sensitivity analysis of the regeneration model. Variations in growth and mortality rates
significantly impact long-term forest dynamics.

5.4. Hotelling T? Control Chart

Figure 8 presents the Hotelling T? control chart monitoring multivariate forest dynam-
ics over a series of observation years, identifying significant deviations in parameters such
as regeneration, growth, and mortality rates. The Hotelling chart plots the T? statistic for
each time point, with an upper control limit (UCL) set based on a chosen confidence level.
Points exceeding the UCL, highlighted as out-of-control events, indicate potential anoma-
lies or shifts in forest ecosystem behavior, such as unexpected mortality spikes or changes
in age-class distributions. As we can see from the results, the deviations indicate that more
investigation is needed to assess their causes, which could potentially include environmen-
tal stressors, management practices, or climate-related impacts, offering actionable insights
for sustainable forest management.
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Figure 8. Hotelling T? control chart monitoring forest dynamics across observation years. Out-of-
control points indicate significant deviations in multivariate forest characteristics.

The Hotelling T? control chart (Figure 8) was used for tracking various ecological
indicators such as growth rates, mortality rates, and biodiversity indices, providing an
overview of forest health over time. Out-of-control points, such as those observed in years
13 and 19, indicated significant deviations from expected patterns, suggesting sudden
changes in forest composition potentially due to disease, pest invasions or environmental
stressors (droughts in our case). Significant metric changes reflect changes in biodiversity,
with implications for ecosystem functionality and health.

Table 6 presents a summary of the MTY decomposition analysis for regeneration rates
between age classes. We have performed the decomposition of the regeneration rate time
series data in different forest age classes to separate the observed data into trend, seasonal,
and residual components. This analysis offers valuable insights into the underlying dy-
namics of forest regeneration within each age class: 1-10 years, 11-20 years, 21-30 years,
and 31+ years. The decomposition method allowed for the identification of long-term
patterns, periodic fluctuations, and unexplained anomalies in regeneration processes.

For the youngest age class, 1-10 years, the results reveal a significant degree of sea-
sonal variability in regeneration rates, suggesting that periodic factors, such as climatic
conditions or scheduled management interventions, played a role in influencing regenera-
tion outcomes. In addition to these cyclical variations, the trend component demonstrates
a steady increase, indicating a general improvement in regeneration conditions over time.
The residual component shows occasional spikes, reflecting disturbances or external events
that affect the youngest forest stands.

In the 11-20-year age class, the trend appears relatively stable, which indicates consis-
tent regeneration dynamics. However, the residual component highlights notable irregu-
larities during specific years, which point to external disturbances such as pest outbreaks,
extreme weather events, or changes in forest management strategies. Unlike the youngest
age class, the seasonal component is less pronounced, indicating a diminished role of
cyclical influences as forests transition to mid-age stages.

The analysis of the 21-30 year age class shows a gradual increasing trend, reflecting
ongoing growth and recovery within these stands. Seasonal effects are relatively minor,
suggesting that the regeneration dynamics in this age class is less affected by recurring
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environmental or management patterns. The residual component remains low, indicating
stable regeneration with fewer anomalies compared to younger age classes.

For the 31+ year age class, the trend component shows pronounced growth, indicative
of forest stand maturation and the impact of sustained management practices. Seasonal
variations are minimal, which is consistent with the reduced sensitivity of older forests
to cyclical factors, which highlights occasional deviations, likely caused by natural distur-
bances or external influences that disproportionately affect mature stands.

Table 6. Summary of MTY decomposition analysis for regeneration rates across age classes.

Age Class (Years) Trend (Mean) Seasonal (Amplitude) Residual (Std Dev) Key Observations

High seasonal variability; occasional

1-10 6.8 0.8 0.6 .
disturbances

11-20 538 05 0.9 Stablie. trend; irregular spikes during
specific years

21230 45 03 0.4 Gradual increase in trend; minor
seasonal effects

314 32 02 05 Pronounced trend growth; minimal

seasonal variation

6. Discussion

The results of this study reveal trends in the regeneration dynamics, growth rates,
and mortality patterns of Scots pine and other dominant tree species in Lithuanian forests.
Scots pine demonstrates a robust regeneration rate and consistent dominance across middle
to older age classes, with its highest concentration observed in the 61-70 age class, which
highlights the adaptability and long-term resilience of Scots pine, which is further sup-
ported by its ability to thrive under varying environmental and management conditions.
In contrast, spruce showed a strong presence in younger age classes, but experiences a
notable decline in older age categories. We believe that the decline in the model can reflect
a higher susceptibility to environmental stressors, pests, or diseases in the later stages of its
lifecycle. Birch and Aspen exhibited the behavior of pioneer species, with high representa-
tion in younger age classes followed by steep declines as forest succession progresses. Even
though, results highlight the relative youth of Pinus sylvestris (Scots pine) in Lithuanian
forests versus mature Picea abies (Norway spruce) in older stands, which can be largely
attributed to ecological dynamics and historical forest management practices. One key
factor is the long-standing preference for Scots pine in forest management, particularly in
Lithuania, where it has been favored for its resilience to poor soils, faster initial growth,
and economic value in timber production. Scots pine is well suited to the dry, sandy soils
prevalent in significant parts of Lithuania, where it thrives and has been actively promoted
through management interventions such as selective thinning and reforestation. In contrast,
Picea abies, although abundant in regeneration stages due to its tolerance to shade and its
ability to survive under a closed canopy, struggles to maintain dominance in older stands,
especially in environments where competition with faster-growing species like pine or birch
occurs. In unmanaged or naturally regenerating forests, Picea abies can persist for decades
in the understory due to their tolerance to shade, but their slower early growth relative to
pine places them at a competitive disadvantage. In addition, traditional forest management
has often prioritized Scots pine, leading to frequent thinning operations that selectively
remove spruce to reduce competition and promote pine growth, further reducing the
likelihood of spruce dominance in mature forests. In addition, the sensitivity of Picea abies
to environmental stressors such as windthrow, fungal diseases, and drought, particularly as

103



Forests 2025, 16, 192

it matures, contributes to its scarcity in older stands; however, climate change exacerbates
these vulnerabilities, with increasingly dry summers in Lithuania negatively affecting
spruce, which prefers cooler, wetter conditions.

The observed dominance and resilience of Scots pine suggest that it should remain
a cornerstone of forestry practices in Lithuania. The maintenance requires the implemen-
tation of adaptive management techniques that respond to both environmental changes
and forest dynamics. One key approach is selective thinning, in which competing tree
species such as birch and aspen are removed to reduce competition for resources such as
light, water, and nutrients, ensuring that Scots pine can thrive, especially in mixed stands.
In addition, assisted regeneration can be used in areas where natural regeneration rates
are low, using techniques such as planting genetically resilient Scots pine varieties that
are better suited to withstand drought or pest pressure. Soil management practices such
as mulching or soil moisture conservation techniques can also be used in regions prone
to drought, helping to maintain optimal growth conditions. Pest control strategies, such
as the monitoring and targeted control of bark beetle populations, are crucial, especially
in younger stands where Scots pine is more vulnerable to infestations. Finally, adaptive
reforestation programs that use predictive models, such as those developed in this study,
can guide planting efforts in areas where Scots pine has the highest potential for long-term
survival and growth under future climate conditions.

In Lithuania, the practical application of sensitivity analysis is correlated with recent
more directly informed, more nuanced, and more effective forest management decisions,
particularly regarding the regeneration and mortality of Scots pine. For example, the find-
ings are correlated with the critical impact of soil moisture on the growth of Scots pine,
leading to the expansion of climate-resistant species in mixed forests. In regions like
Dziikija, which are prone to drought and characterized by sandy soils, forest managers
now focus on selecting more drought-tolerant species in conjunction with Scots pine to
improve forest resilience. Although Scots pine is retained for its ecological and economic
importance, sensitivity analysis has shown that it performs better in mixed stands, leading
to an adjustment in afforestation strategies. We believe that such an approach improves
forest adaptation by addressing soil moisture sensitivity and reducing the risk of stand
collapse during prolonged drought periods.

In relation to pest management, a detailed sensitivity analysis has highlighted that
mortality in younger Scots pine stands is highly sensitive to pest outbreaks, particularly
bark beetles. In line with this finding are the actions in regions like Aukstaitija, where forest
managers have intensified both preventive and reactive pest management strategies. They
have increased the frequency of aerial surveys using drones to monitor pest populations
and detect early-stage infestations, allowing for more targeted interventions before pests
spread widely. Furthermore, forest managers in Lithuania have expanded the use of
pheromone traps specifically during peak bark beetle seasons, rather than treating large
areas indiscriminately. This more focused, data-driven approach, rooted in the results of
sensitivity analysis, has successfully reduced bark beetle damage, particularly in the more
vulnerable young stands where mortality sensitivity is highest.

Sensitivity analysis also correlates with the importance of fine-tuning regeneration
efforts. In southern Lithuania, for example, regeneration of Scots pine has been shown to
be especially sensitive to competition from faster-growing species, such as Birch. Forest
managers have started to adapt their thinning practices to ensure that young Scots pine
stands are selectively managed to reduce competition during critical early growth phases.
Such practice has been integrated into forest management plans for state-owned forests,
ensuring that thinning schedules are more precisely timed and implemented in areas where
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Scots pine regeneration is more sensitive to competition, as such targeted management not
only improves Scots pine regeneration rates, but also ensures that it remains a dominant
species in Lithuania’s forestry landscape.

Our findings align with existing models of forest dynamics [50-52], in the emphasis on
species-specific roles in forest ecosystems. For example, previous studies have highlighted
the role of Scots pine as a long-lived dominant species in temperate forests, which is
consistent with its observed trends in this study. The decline in older age classes of trees is
similarly corroborated by research pointing to its vulnerability to biotic and abiotic stresses
as forests mature. The behavior of Birch and Aspen was documented in the literature as
pioneer species that establish quickly in disturbed areas, but are gradually replaced by
more shade-tolerant species such as Pine and Spruce. However, our study extends previous
work by incorporating detailed sensitivity analyses of growth and mortality rates, offering
a more nuanced model to understand how variations in these parameters influence long-
term forest dynamics. The inclusion of Markov chain modeling provided a more structured
framework for projecting these dynamics over extended time horizons, further bridging the
gap between theoretical models and practical forest management applications. For Birch
and Aspen, this role as pioneer species can be exploited in post-disturbance regeneration
efforts, but their rapid decline in older age classes necessitates planned transitions to longer-
lived species to ensure forest sustainability. The sensitivity analysis also emphasized the
importance of optimizing growth and mortality rates through management interventions
to improve forest health and productivity. Our results also highlight the impacts of climate
change, which still alters the dynamics of growth and mortality rates.

Naturally, this leads to the limitations of the study. First, the reliance on aggregated
forest inventory data obscures finer-scale regeneration and growth patterns. Estimates for
growth and mortality rates are subject to uncertainties arising from assumptions about age-
class transitions and the effects of external factors like climate variability. The Markov chain
model, while effective for projecting age-class transitions, simplifies complex ecological
interactions and may not fully capture nonlinear or density-dependent effects. The focus on
the Lithuanian scenario limits the generalizability of the findings to other regions or forest
types with different ecological dynamics. Future research should aim to address these
limitations by incorporating more granular data, exploring nonlinear modeling approaches,
and extending the analysis to include additional forest ecosystems.

However, the findings still have implications for forest policy and sustainable manage-
ment practices. Policy recommendations for promoting mixed species forests in Lithuania,
particularly focused on the regeneration of Scots pine, should draw on scientific evidence
that highlights the benefits of species diversity for forest resilience and ecosystem services.
Studies from Scandinavian countries, such as Finland and Sweden, demonstrate that mixed
species stands, which combine Scots pine with species such as Norway spruce and birch,
show increased resistance to biotic stressors such as bark beetle infestations and fungal dis-
eases, which disproportionately affect monocultures. For example, a study in Fennoscandia
forests [53] showed that Scots pine mixed with birch improves overall forest productiv-
ity due to the use of complementary resources, as Birch has a shallower rooting system,
reducing competition for water and nutrients with deeper-rooted Scots pine. Similarly,
in Central Europe, mixed species forests have been shown to better withstand extreme
weather events, such as droughts, by increasing structural and functional diversity, which
buffers against environmental variability [54]. Other analyses of European forests [55] have
shown that adaptive thinning in mixed forests can prioritize the growth of Scots pine by
selectively removing faster-growing competitors, such as birch, in critical growth phases,
thus optimizing light and resource availability for Scots pine. We believe that these findings
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show that policies that promote mixed species forests would not only enhance biodiversity
and ecosystem functions but also make Scots pine stands more resilient to climatic and
biological threats, ensuring their role as a cornerstone species in Lithuanian forests.

Limitations and Future Works

First, reliance on aggregated data from the Lithuanian National Forest Inventory
(NFI), while valuable for long-term trend analysis, masks important fine-scale spatial
and temporal heterogeneity in Scots pine regeneration, growth, and mortality. Given
Lithuania’s diverse forest ecosystems, including the dry and sandy soils of Dziikija and the
wetter and more fertile soils of Aukstaitija, aggregation obscures localized regeneration
patterns, particularly in regions where Scots pine performance is strongly influenced by
site-specific factors such as soil moisture, nutrient availability, and microclimatic variability.
The sensitivity analysis in this study indicated that Scots pine is particularly sensitive to
soil moisture conditions, especially in regions prone to drought. However, the data do
not adequately capture this variability, limiting the model’s capacity to provide precise
guidance for region-specific management interventions.

The use of Lithuanian National Forest Inventory (NFI) data in modeling forest dynam-
ics offers a comprehensive snapshot of forest conditions, using extensive datasets that cover
various forest attributes such as species composition, age distribution, and health status.
However, this approach is restricted to the variables collected in the inventory, which may
limit the model’s ability to capture all ecological dynamics fully. For instance, the NFI data
might focus predominantly on commercially important tree species and standard forest
metrics such as timber volume and tree density, potentially overlooking underrepresented
species or non-timber forest values like biodiversity and ecological services. This selec-
tive data collection can introduce biases, as the model’s outputs may not fully reflect the
complexities of forest ecosystems, particularly those related to ecological interactions and
responses to environmental stressors. Additionally, the periodic nature of the inventory
may not adequately capture rapid changes or short-term ecological responses, impacting
the model’s sensitivity and adaptability to real-time forest dynamics. These limitations
require a cautious interpretation of model predictions and underscore the importance of
integrating additional data sources or conducting additional field studies to improve the
robustness and ecological validity of the findings.

Second, while the Markov chain model proved efficient in modeling age-class transi-
tions and projecting forest composition under various management scenarios, it must be
clear that it inherently simplifies complex ecological processes. Nonlinear interactions such
as density-dependent mortality, competition between tree species, and environmental feed-
back mechanisms are reduced to age-based transitions, which may not accurately reflect the
dynamic nature of forest ecosystems. Scots pine’s interaction with faster-growing pioneer
species like birch and aspen is a critical dynamic, particularly in mixed stands where com-
petition for light and resources plays a pivotal role in early growth phases. The sensitivity
analysis highlighted the strong influence of competition on Scots pine regeneration, partic-
ularly in younger age classes, but the aggregated approach does not fully account for this
spatially variable competition, especially in regions like southern Lithuania, where birch
competes aggressively in early successional stages. In addition, non-linear feedback, such
as the threshold effects of pest outbreaks, particularly bark beetles, is simplified. In reality,
these pest dynamics are highly stochastic and often exhibit non-linear thresholds, where
small increases in pest populations can lead to widespread forest mortality, a critical factor
that will need to be solved in future work.
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Third, the study’s focus on Scots pine, although ecologically and economically im-
portant, given that it accounts for a large part of Lithuania’s total forest cover, limits the
broader applicability, as the forest dynamics of mixed species stands, particularly those
involving spruce and birch, is not fully addressed. For example, the rapid decline of spruce
in older age classes identified in the model could be related to a variety of biotic and abiotic
stressors such as fungal diseases or increased susceptibility to windfall, factors that are
increasingly important under climate change, but are underrepresented in the structure
of this model. In some regions within Lithuania, these dynamics play a role in long-term
forest stability and will be further investigated. Furthermore, the competitive behavior
of birch and aspen presents a challenge to the regeneration of Scots pine, especially in
unmanaged or naturally regenerating stands. The sensitivity analysis suggested that Scots
pine regeneration is highly sensitive to birch competition, but the aggregated approach of
the model itself does not allow a more detailed vision of how management strategies such
as selective thinning or mixed species planting can mitigate these competitive pressures.

Fourth, the model’s assumptions regarding climate variability also introduce limita-
tions. Although our study touches on the potential effects of climate change, particularly
drought, its approach to projecting future forest dynamics does not fully integrate the in-
creasing unpredictability of climatic extremes, which are expected to intensify in Lithuania,
particularly in southern regions prone to drought, as we do not yet have enough data
on extremities to include in the model. Scots pine, while resilient, has its growth and
regeneration closely tied to soil moisture availability, and future scenarios with extended
dry periods could exacerbate mortality rates in ways not fully captured by the model’s
current sensitivity analysis.

Lastly, the focus on Lithuania’s forest ecosystems limits the generalizability of the find-
ings to other regions with different ecological and management contexts. Although Scots
pine is a dominant species in northern Europe, the dynamics in mixed-species forests in
Scandinavia or central Europe, where different environmental and ecological pressures
exist, may differ significantly. For example, studies from Finland and Sweden show that
Scots pine, when grown in mixed stands with species such as Norway spruce or birch,
demonstrates greater resilience. We are planning with the Linnaeus University team,
Sweden, to augment the model with additional data under the Forest 4.0 initiative.

Future research will aim to address these limitations by incorporating finer-scale, high-
resolution data, particularly with respect to spatial variability in site conditions, species
interactions, and climatic factors. More advanced non-linear modeling approaches, includ-
ing agent-based or process-based models, could capture complex ecological interactions
and stochastic events such as extreme factors due to climate change, thus improving the
robustness of the projections. Furthermore, expanding the study to include mixed species
forests and incorporating case studies from other regions would improve the generalizabil-
ity and applicability of the findings, providing more nuanced insights for sustainable forest
management in diverse ecological contexts.

7. Conclusions

The key novelty in this study lies in the use of the Markov chain model combined with
Multivariate Time Series (MTY) decomposition to analyze the regeneration dynamics of
Scots pine. Unlike traditional deterministic models, the Markov chain approach allowed for
the probabilistic tracking of age-class transitions, enabling a more accurate representation
of how Scots pine populations evolve under various management and climate scenarios.
The MTY decomposition added further depth by isolating trend, seasonal, and irregular
components in regeneration rates, which previous models had not integrated into their
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sensitivity analyzes. For example, while Ryzhkova et al. [5] focused on geoinformation
modeling for large-scale forest cover classification, while our approach went further by ap-
plying statistical methods to examine the sensitivity of regeneration dynamics to parameter
variability, providing actionable insights for adaptive forest management.

The results of the forest regeneration model demonstrate key findings on the growth
and mortality dynamics of various tree species. Scots pine shows a 79.6% probability
of advancing from the 1-10 age class to the 11-20 age class, with subsequent transition
probabilities of 82.9% and 84.1% between older age classes Scots pine displays slower initial
growth and a higher likelihood (20.4%) of remaining in the 1-10 age class, suggesting that
it may face competition or environmental challenges early on, implying on the need for
targeted management practices to support Scots pine seedlings and ensure their survival
in the face of competitive pressures from faster-growing species like Birch and Aspen.
In contrast, the pioneer species Birch and Aspen exhibit strong early growth, with Birch
having a 84% chance of advancing from the 1-10 to the 11-20 age class and Aspen achieving
a high transition rate, reflecting the competitive advantages of Birch and Aspen in disturbed
or newly opened habitats, where they can rapidly colonize and dominate. However, both
species show a notable slowdown in growth as they age, with Birch’s transition rates
declining in later age classes and Aspen’s falling dramatically after 31 years, likely due to
physiological limitations or increased susceptibility to environmental stressors. Spruce,
on the other hand, presents a different growth trajectory, with modest early growth but
a very high transition from the 21-30 to the 31+ age class, indicating its resilience and
capacity for sustained growth in mature forest stages. Naturally, such a growth pattern
suggests that while Spruce may not be as competitive in early succession stages, it can
become dominant in later stages, particularly in mature forests.

Sensitivity analysis provide information on the interaction between growth and mor-
tality rates, revealing that while higher growth rates can extend the lifespan of the forest
stand, high mortality rates (above 0.33) drastically reduce the viability of the stand, which
emphasizes the critical importance of reducing mortality, through disease management,
pest control, or improved silvicultural practices. Without addressing mortality, even high
growth rates cannot offset the negative impacts of stand decline, as successful forest man-
agement, must prioritize both enhancing growth and minimizing mortality, particularly
in vulnerable species or age classes. The Hotelling T? control chart further illustrated
forest dynamics, identifying significant deviations in years 13 and 19, indicating periods of
environmental stress, which have impacted the growth or survival rates of certain species,
showing that unforeseen stressors can disrupt even well-managed stands.
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Abstract: Accurate estimation of forest aboveground carbon stock (AGC) is essential for understand-
ing carbon accounting and climate change. In previous studies, the extracted factors, such as spectral
textures, vegetation indices, and textural features, were used to estimate the AGC. However, few
studies examined how different factors affect estimation accuracy in detail. Meanwhile, there are
also many uncertainties in the collection and processing of the field data. To quantify the various
uncertainties in the process of AGC estimation, we used the random forest (RF) to establish estimation
models based on field data and Sentinel-1/2 images in Shangri-La. The models included the band
information model (BIM), the vegetation index model (VIM), the texture information model (TIM),
the Sentinel-2 factor model (S-2M), and the Sentinel-1/2 factor model (S-1/2M). Then, uncertainties
resulting from the plot scale and estimation models were calculated using error equations. Our goal
is to analyze the influence of different factors on AGC estimation and to assess the uncertainty of
plot scale and estimation models quantitatively. The results showed that (1) the uncertainty of the
measurement was 3.02%, while the error of the monocarbon stock model was the main uncertainty at
the plot scale, which was 9.09%; (2) the BIM had the lowest accuracy (R% = 0.551) and the highest
total uncertainty (22.29%); by gradually introducing different factors in the process of modeling, the
accuracies improved significantly (VIM: R? =0.688, TIM: R? = 0.715, S-2M: R? = 0.826), and the total
uncertainty decreased to some extent (VIM: 14.12%, TIM: 12.56%, S-2M: 10.79%); (3) the S-1/2M
with the introduction of Sentinel-1 synthetic aperture radar (SAR) data has the highest accuracy
(R? = 0.872) and the lowest total uncertainty (8.43%). The inaccuracy of spectral features is highest,
followed by vegetation indices, while textural features have the lowest inaccuracy. Uncertainty in
the remote-sensing-based estimation model remains a significant source of uncertainty compared to
the plot scale. Even though the uncertainty at the plot scale is relatively small, this error should not
be ignored. The uncertainty in the estimation process could be further reduced by improving the
precision of the measurement and the fitting of the monocarbon stock estimation model.

Keywords: carbon stock; remote sensing factors; plot scale; SAR data; uncertainty

1. Introduction

Forest ecosystems play a vital role in understanding climate change and maintaining
carbon balance [1-3]. Forest aboveground carbon stock (AGC) is not only an important
index of forest carbon absorption capacity but also a basis for studying forest ecosystem
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structure and function and evaluating forest carbon balance [4,5]. Therefore, accurate esti-
mation of forest AGC is crucial for humans to assess and protect the forest ecosystems [6,7].
However, there are certain uncertainties in estimating AGC at both large and small re-
gions [8]. Ignoring these uncertainties will limit the accurate estimation of forest AGC.
Hence, reducing the uncertainty to improve the accuracy in the estimation process has
become a significant challenge [9].

The methods for estimating AGC mainly contain the traditional plot survey and re-
mote sensing estimation. Although the plot survey can obtain accurate data, it requires a
considerable investment of human and financial resources. Whereas, remote-sensing-based
methods have the characteristics of being fast, low-cost, large-scale, and less destructive.
They had been widely used in the estimation of forest aboveground biomass (AGB) and
AGC [10-12]. Optical remote sensing data have a great advantage in obtaining the struc-
tural parameters of the forest; the rich spectral information have been widely applied
in the study of AGC estimation [13]. However, it is susceptible to the strong influence
of canopy thickness, so it is difficult to obtain the vertical structural parameters of the
forest, and the information it obtains tends to be saturated in areas of high biomass and
carbon stock, which has a disadvantage in estimating high AGB or AGC [14,15]. Many
researchers have found that using only single optical data to estimate forest AGB or AGC
has high uncertainty [16-18]. Synthetic aperture radar (SAR) data have the advantages of
longer electromagnetic wavelength, strong penetration ability, and sensitivity to structural
attributes [19], so it can overcome the shortcomings of optical data and can obtain valuable
information concerning the vertical vegetation canopy. Therefore, combining optical with
SAR data to estimate forest AGB and AGC is considered a feasible method [20-22]. For
instance, Fang et al. [23] combined Sentinel-1 SAR and Sentinel-2 optical data to establish a
multivariate linear regression (MLR) and extreme gradient boosting (XGBoost) model for
predicting forest AGB. Liu et al. [24] combined field plots and Sentinel-1 and Sentinel-2
data to map the forest stand mean height (FSMH) and AGB at a resolution of 10 m in
Yichun, Northeast China. Their results showed that the AGB and AGC models generated
by combining the two types of data are more robust and accurate than models derived
from optical or SAR data. Given the above findings, we combined optical and SAR data to
estimate forest AGC in this study.

Uncertainty is an umbrella term for concepts that include inaccuracy, ambiguity,
and inconsistency [25]. It is very common in the process of carbon stock estimation.
There are three primary sources of uncertainty in the whole process of AGC estimation:
measurement uncertainty, sampling uncertainty, and model uncertainty [26,27]. Shettles
et al. [28] regarded model uncertainty as the main source of error, accounting for about
70% of the total uncertainty. Sources of model uncertainty mainly include the uncertainty
of input variables [29], improperly setting the model function form [30], the residual
variability of the model [31], and the parameter error of the model [32]. Uncertainty in the
input variables mainly refers to the measurement error of variables such as diameter at
breast height (DBH) and tree height (H), which is primarily affected by the measurement
techniques, equipment, and anthropogenic measurement methods [33]. The incorrect
setting of the model form is mainly due to the lack of appropriate test data or modeling
techniques [34]. For the residual uncertainty of the model, the standard deviation of the
residual was used to measure it [35]. However, it can produce different results due to
the differences in the study area and data. Compared to the residual uncertainty of the
model, the uncertainty caused by the parameter error is relatively small and relates to the
number of modeling samples. Current studies focused more on the uncertainty of the
model. For example, Eduarda et al. [36] reduced the uncertainty of the biomass model in
terms of modeling methods. Huang et al. [37] used the error transfer method to measure
the uncertainties of parametric and nonparametric models. Cao et al. [38] combined the
random forest and Monte Carlo simulation (RF-MC) to study the effects of models with
different types of variables on the accuracy of carbon stock estimation.
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In summary, optical and SAR data to measure uncertainties arising from estimation
models have been widely used [39]. However, these studies neglected how different factors
impact the accuracy and uncertainty of the model. Furthermore, few studies have combined
optical and SAR data to quantitatively assess the uncertainties generated by two different
scales of plot and remote sensing model. To address these research issues, the Pinus densata
in Shangri-La was used as the research tree species, and Sentinel-1/2 data and field data
were used to establish different estimation models. Then, error equations were used to
calculate uncertainties of plot scale and remote sensing models. The main objectives of
this study were to (1) investigate the effects of different factors and plot scale on AGC
estimation; (2) analyze the primary source of uncertainty at the plot scale; and (3) explore
the potential of SAR data in reducing uncertainty during the AGC estimation.

2. Materials and Methods
2.1. Study Area

Shangri-La is located in northwestern Yunnan Province in southwest China, with a
total area of 11,613 km? (Figure 1b). It has a large undulating topography, with an elevation
difference of 4042 m (the lowest elevation is 1503 m) and an average elevation of 3459 m
(Figure 1d). Most rain falls from June to September, mean annual precipitation is 607 mm,
and the average annual evaporation is 1643.6 mm [40]. It has four towns and seven villages
with a high forest cover of 75% and is one of the world’s top ten species gene pools [41]. Its
main vegetation types are cold-temperate coniferous forest and rubber forest. Pinus densata
is one of its dominant tree species (Figure 1c), which covers an area of 1848.18 km? and
accounts for 16.18% of the area of Shangri-La [42].
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Figure 1. (a) Location of Yunnan Province in China; (b) location of Shangri-La in Yunnan Province;
(c) distribution of Pinus densata and field plots; and (d) elevation.

The methods of this paper are divided into three stages (Figure 2). In the first stage,
remote sensing images were processed, and remote sensing features were extracted; the
AGC at each field plot was calculated from the field survey. AGC remote-sensing-based
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estimation models were established in the second stage using the RF method; measurement
uncertainty and uncertainty of the monocarbon stock model at the plot scale were calculated.
In the third stage, we used error equations to calculate the remote-sensing-based estimation
model uncertainty and the total uncertainty at the plot scale. Then, we combined two
uncertainties to obtain the total uncertainty of the AGC estimation.

Step 1: Data preparation and processing

Field data Sentinel-1 images Sentinel-2 images

s E

P —— Image preprocessing

L Extraction of variables
C=Wxf.

l

AGC

Band factor ~ Vegetation index  Texture feature Backscatter coefficient
3

Step 2: Modeling and calculation of uncertainty of
measurement and monocarbon stock model

Error formula fitting Binary carbon stock model fitting Models fitting
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i Each remote-sensing-
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Figure 2. Overview of the methodological approach.

2.2. Data Acquisition and Processing
2.2.1. Field Survey

A total of 60 plots were surveyed in 2019 and 2021. Twenty plots were surveyed in
December 2019, and the other forty were surveyed in May 2021. Plot sizes of 10 m x 10 m
were considered in this study to ensure correspondence between the field measurement
and pixel size in the imagery [43]. Sample points were randomly distributed in pure
Pinus densata forest areas; each plot was spaced more than 3 km apart. The field survey
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mainly recorded DBH and H of pure stand of Pinus densata with DBH of 5 cm or more.
The binary lumber volume table was used to calculate the capacity of individual trees
in each plot [44]. The AGB of Pinus densata was calculated using the allometric growth
equation [45]:

W = 0.073 x D739 x {0880 1)

where W is AGB, D is the diameter at breast height, and H is the tree height. Then, the
carbon stock was calculated as:
C = W X fc (2)

where C is the AGC of Pinus densata, and f. is the carbon content coefficient, which is
0.5131 [46,47]. The field survey data are shown in Table 1.

Table 1. Field survey data in Shangri-La.

Variables Max Min Mean SD
Mean DBH (cm) 29.75 8.52 15.33 5.57
Mean H (m) 19.05 4.33 9.90 3.93
AGC (t/ha) 128.34 10.49 51.05 30.54
2.2.2. DEM

The digital elevation model (DEM) used in this study was downloaded from the
official website of the United States Geological Survey (USGS) (https://earthexplorer.
usgs.gov (accessed on 10 July 2023)). It is the Shuttle Radar Topography Mission (SRTM)
Version 3 product, with a resolution of 30 m. We resampled it to 10 m using the nearest
neighbor method.

2.2.3. Remote Sensing Images and Processing

In this study, we selected two scenes of Sentinel-1 Interferometric Wide mode (IW)
Ground Range Detected (GRD) images acquired in November 2021 with a resolution of
10 m (Table 2). Pre-processing operations, such as orbit correction, thermal noise removal,
radiometric calibration, speckle filtering, and terrain correction, were performed in the
SNAP software 10.0 provided by the European Space Agency (ESA) [48]. Owing to the
significant altitude disparities in the study area, we utilized the altitude, slope, and aspect
extracted from DEM to correct the image for alleviating the effect of elevation differences on
the images [49]. Concerning the influence of the wave propagation path on the images, the
alteration in the wave propagation path can be analyzed by extracting terrain information
(altitude, slope, and aspect) from DEM; we then used SARscape software 5.6.2 to correct this
impact through the alteration [50]. Finally, the processed Sentinel-1 images were exported
to ENVI format, and stitching and cropping operations were performed.

Table 2. Collected images of the study area.

Acquisition Cloud
Sensor D Date Cover/%
, S1IA_IW_GRDH_1SDV_20211104T112504_20211104T112529_040421_04CABS_ACE9  2021/11/04
Sentinel-1 g1 A 1w GRDH_1SDV_20211104T112439_20211104T112504_040421_04CABS_EC62  2021/11/04
S2A_MSIL2A_20211108T035951_N0301_R004 T47RNK_20211108T071124 2021/11/08 1.28
S2A_MSIL2A_20211108T035951_N0301_R004_T47RNL,_20211108T071124 2021/11/08 0.16
. S2A_MSIL2A_20211108T035951_N0301_R004_T47RNM._20211108T071124 2021/11/08 0.06
Sentinel-2 S2A_MSIL2A_20211108T035951_N0301_R004_T47RPK_20211108T071124 2021/11/08 1.79
S2A_MSIL2A_20211108T035951_N0301_R004_T47RPL_20211108T071124 2021/11/08 0.97
S2A_MSIL2A_20211108T035951_N0301_R004_T47RPM_20211108T071124 2021/11/08 0.29

Sentinel-2 is a multispectral imaging satellite that carries a multispectral imager (MSI)
with 13 spectral bands. The image is unique in that it has three special red-edge bands,
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making it particularly effective in monitoring vegetation information. We selected six scenes
of Sentinel-2 Level-2A (L2A) images in November 2021 (Table 2). It was atmospherically
and orthographically corrected [51]. Then, all 20 m spectral bands were resampled to 10 m
using the nearest neighbor method [52]. Finally, the band synthesis, splicing, and cropping
were completed in the ENVI software 5.6.

2.2.4. Extraction and Selection of Remote Sensing Factors

Remote sensing factors were extracted from the Sentinel-1/2 images after pre-processing
through SNAP, SARscape, and ENVI software. Studies have revealed that backscatter
coefficients and texture features of SAR were crucial for AGB (AGC) estimation [53,54].
Hence, we extracted SAR backscatter coefficients (VV, VH) and SAR texture features from
Sentinel-1 images. Key parameters, such as spectral textures (excluding atmospheric bands
B1, B9, and B10), vegetation indices, and texture features, were extracted from Sentinel-2
images according to the relevant research [55]. The parameters extracted in this study
contained 2 SAR backscatter coefficients, 10 spectral textures, 9 vegetation indices, 16 SAR
texture features, and 152 optical texture features, with a total of 189 factors (Table 3). Then,
we used the SPSS software 26.0 to analyze the correlation of remote sensing factors. Finally,
high correlation factors were used to establish AGC estimation models. These factors
mainly included 3 spectral textures, 4 vegetation indices, 5 optical texture features, and 2
SAR texture features.

Table 3. Variable information obtained from Sentinel-1 and Sentinel-2.

Sensor Variable Type Variable Name Definition
. \AY Vertical transmit—vertical channel
Polarization VH Vertical transmit—horizontal channel
. Contrast (CON), Dissimilarity (DIS),
Sentinel-1 Angular second moment (ASM),
Textural features Entropy (ENT), Variance (VAR), Grey level co-occurrence matrix
Correlation (COR), Homogeneity
(HOM), Mean (ME)
Blue (490 nm), Green (560 nm), Red (665 nm), Red
Spectral textures B2, B3, B4, B5, B6, B7, B8, BSA, Edgel (705 nm), Red Edge2 (740 nm), Red Edge3
B11, B12 (783 nm), NIR (842 nm), Red Edge4 (865 nm), SWIR1
(1610 nm), SWIR2 (2190 nm)
DVI NIR-Red
RVI NIR/Red
Sentinel-2 NDVI (NIR — Red)/(NIR + Red)
NDI45 (RE1 — Red)/(RE1 + Red)
Vegetation indices GNDVI (RE3 — Green)/(RE3 + Green)
SAVI 1.5 x (NIR — Red)/8 x (NIR + Red + 0.5)
EVI 2.5 x (NIR — Red)/(NIR + 6 x Red — 7.5 x Blue + 1))
S2REP 705 + 35 x [((RE1 + NIR)/2-RE2)/(RE3-RE2)]
MSAVI 2 x NIR + 1 — sqrt[(2 x NIR)?> — 8x (NIR-Red]/2
Textural features Same as Sentinel-1

Note: RE is the red edge; BX is a certain single band of the image.

2.3. Modeling Method

Random forest (RF) [56] is an integrated learning model that is widely used in a
variety of fields, such as classification and nonparametric regression prediction [57]. The
implementation of the RF model in this study is based on the “Random Forest Regressor”
algorithm provided by the “Scikit-learn” package for the Python language. In this study,
different remote-sensing-based estimation models were constructed by the RF. The com-
ponents of each model are BIM: spectral features, VIM: vegetation indices, TIM: optical

117



Forests 2024, 15,2134

texture features, S-2M: selected optical remote sensing factors, and 5-1/2M: SAR texture
features and selected optical factors (Table 4).

Table 4. Factors of different remote-sensing-based estimation models.

Model Remote Sensing Factors
BIM: Band Information Model B2, B3, B5
VIM: Vegetation Index Model DVI, EVI, MSAVI2, S2REP
R5B5VAR, R5B6CON, R5B6VAR,

TIM: Texture Information Model R5B7CON, RSDVICON

B5, S2REP, R5B5VAR, R5B6CON, R5B6VAR,
R5B7CON, R5DVICON
B5, S2REP, R5B5VAR, R5B6CON, R5B6VAR,
R5B7CON, RSDVICON, R5VVME, RSVHCOR

S-2M: Sentinel-2 Factor Model

S-1/2M: Sentinel-1/2 Factor Model

2.4. Accuracy Evaluation

Seventy percent (42 groups) of the plots were randomly selected for model fitting, and
the remaining thirty percent (18 groups) were used for validation [58]. Cross-validation
was performed during the modeling. The evaluation indices of the estimation model are
the coefficient of determination (R?), root-mean-square error (RMSE), relative root-mean-
square error (rRMSE), and prediction accuracy (P). To ensure that the model results were
as objective as possible, each model was fitted ten times in this study to allow the mean
values of evaluation indicators to be used for comparison [59]. The formulas are as follows:

2

i (7 =)
R? = ==L oo ®)
i (yi —Y)
Y (i — 9)°
RMSE = 121% 4)
rRMSE = ngs E s 100% (5)
n ..
P:lz (1— MD % 100% )
= Yi

where y; is the observed value, #; is the predicted value,  is the mean of the observed
values, and 7 represents the plot number.

2.5. The Analysis of Uncertainty at the Plot Scale
2.5.1. Calculation of the Measurement Uncertainty

The observed values of diameter at breast height and tree height were denoted as D
and H, their errors from the normal distribution were denoted as ¢, €, and their standard
deviations of error were op, 0. The observed carbon stock model is C = f(E,a), E is the
independent variable (DBH, H), and « denotes the parameters of the model. According to
Taylor’s first-order expansion principle, the error of the monocarbon stock model is:

Chia = f(e) = f(E) ~ f'(E)(e — E) @)

where f'(E) = o a(gl’“) is the partial derivative of the function f(x) concerning the variable
E;. The variance matrix of the prediction error for the model can be expressed as:

2

02,, ~ G(f'(E)-(e — E)) = f'(E)Var._gf'(E)" (8)
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where Var,,_g, is the covariance matrix of e, — E;. If the error between the independent
variables is uncorrelated, there is:

Var(e1 — Eq) 0 .. 0
0 Var(ep — Ep) ... 0
Var, = ) } . . )
0 o 0 Var(e, — Ey)

For the f(E, a), there are two types of models: unary and binary models. In order to
maintain the consistency of the carbon stock model, the form of f(E, a) used in this article
was a binary model (f(E,a) = aD*HP x f.), and according to the above equation:

0’2 ODH ng
R, = Vars(e) = (5 36) (5, W) (%2 (10
2 2 2
—c2(,2%D | g2%H bH
=C (zx D2+/3 H2+2a/3DH> (11)

where (7%) is the variance of error in DBH, (7%{ is the variance of error in H, and (7123 p is the
covariance of op and oy. « and B are the parameters of the monocarbon stock model.
The grouping method [34] was used to calculate 0,23: (1) the mean values of the observed
DBH were ranked in ascending order; (2) the observed DBH were grouped on the basis
of 10 trees by groups; (3) the mean values of DBH in each group as well as the standard
deviations between measurements; (4) the measurement error in DBH was calculated by
fitting a linear model between standard deviations of the measurement error and DBH. The

formulas are as follows: .
. 0
Dy = -1 D; (12)

Dif, = Dy — D, (13)

D = 111\/2;1:1 (DifD,] - WD,]')Z (14)

where D is the mean value of DBH in each group, D; is the mean value of the jth sample
tree in each group, Dif , is the difference between Dy and D, op is the standard deviation
of the difference in each group of data, and the square is 03 in Equation (11). Dif p,j is the
mean value of Dif, ; in each group. The linear model can be fitted by the relationship

between the D; and the corresponding o in each group. The expression is given below:
op =a+bDy (15)

Since tree height can only be measured by the altimeter, the difference between the
measured values and the true values is large in several cases. The average value of multiple
measurements is still far from the true value [60]. Therefore, the absolute error between
the measured value and the true value is used as o0y, and the curve is fitted to estimate the
error of the single tree height. The expression is as follows:

oy = aH?> + bH + ¢ (16)

where oy is the error of tree height, H is measured value of tree height, and a, b, c are the
parameters of the model. 03, can be calculated by o and ¢y. The 02, can be expressed
by the following equation:

D, - D)(H;— H
R N}ﬁ ) (17)
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where U,% p is the covariance of op and oy, D; is the ith measured value of DBH, Dis

mean value of DBH, H; is the ith measured value of H, H is mean value of H, and N
is dimensionality.

2.5.2. Calculation of the Monocarbon Stock Model Uncertainty
(1) Residual Uncertainty of the Monocarbon Stock Model

To calculate the residual uncertainty of the monocarbon stock model, we used the
observed data of Pinus densata carbon stock to fit the monocarbon stock model. Then,
the uncertainty caused by residual variation was calculated by the difference between
the predicted and observed values. Let the observed value of carbon stock be C and the
prediction model of carbon stock be C' = f(E, &), the residual ¢ can be expressed by the
following equation:

e=f(E&)—-C (18)

where ¢ denotes the difference between the observed and predicted values, & is the predicted
value of the parameter in the carbon stock model, and E is the variable of the model
(DBH, H).

The standard deviation of the residual can be used to measure the uncertainty caused
by the variation of the model residual. It was found that the standard deviation of the
residual was linearly related to the AGC [35]. Therefore, the standard deviation can be
calculated by fitting a linear relationship between the standard deviation and carbon stock.
The equation is as follows:

oe = Bf(E, a) (19)

where o is the standard deviation of residual, and g is the fitting parameter. The six-step
approach [61] was used to calculate the ;. The steps are as follows: (1) Rank the observed
carbon stock values (y) of the plots in ascending order. (2) Calculate the residuals of model
(C¢), which are the difference between the observed and predicted values. (3) Divide the
modeling data into groups of N, with a total of 10 groups; if the last group is less than N,
the remaining data are counted in the previous group. (4) Calculate the mean values of the
predicted carbon stock () and the standard deviations of residual () in each group. The
mean value, residual, and standard deviation of the residual were calculated as follows:

_ 12
7= ;Z{ )i (20)
]:
Ce = Y= y (21)
P ii(c -C )2 (22)
€ n— 1 ]:1 €] S]

where §; denotes the predicted value of carbon stock in the jth plot, C¢; and ng denote the
residual and the residual mean value of the jth plot, and n denotes the number of samples.

(5) Fit the predicted mean value § and standard deviation of residual ¢, the relation-
ship can be expressed as:

e = 0(7) (23)

(6) Substitute the predicted values of carbon stock into the fitted formula. Calculate
the standard deviations of the residual for each plot. Then, divide them by the sum of the
observed carbon stock values to obtain the model residual’s uncertainty.

(2) Parameter Uncertainty of the Monocarbon Stock Model
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The Taylor series first-order expansion was used to measure the uncertainty of model
parameters. The AGC model was first-order-expanded by a Taylor series as follows:

¢’ = f(E) ~ f(E @) + LR 6 —a) 24)

where f(E, ) are the observed values of carbon stock, E are the independent variables,

& is the simulated value of parameter, « denotes the true value of parameter, % is
the partial derivative of model parameter «;, of Egliﬂ‘) (& — ) is the error (0y) of the model

parameters. ¢, can be approximated as:
U,% ~ ijvar(a)Zﬁ (25)

where Zj denotes the matrix with Z as j x k, Z].Tk is the transpose matrix of Zj, and var(a)
is the covariance matrix of estimated parameter « in the carbon stock equation.

2.5.3. Uncertainty Synthesis

If the indirectly measured quantity is a function of the individual measurements ob-
tained from the direct measurements. Then, the uncertainty of the indirect measurement can
be expressed as a synthetic uncertainty of the uncertainty of each direct measurement [62].
Therefore, the total error (M) can be described as:

_ 2 2 2 2
My = \/Mjl + M2 + M2 + ..+ M (26)

where My denotes the total error, and M; denotes the error of the ith variable. Based on
this equation, the total uncertainty (o) was calculated as [35]:

o = \/02 + 02 +0? (27)

where o, denotes the residual uncertainty of the monocarbon stock model, ¢, denotes the
uncertainty of model parameters, and ¢, indicates the measurement uncertainty. The error
transfer from the monocarbon stock model to the plot scale uncertainty (c},) was calculated
as follows:

N
% =V L1 %/ S 28)
where N is the number of sample wood, 0y; is the total uncertainty of the monocarbon stock
model for the ith plot wood plant in the plot, and S is the area of the plot.

2.6. Uncertainty Analysis of Remote-Sensing-Based Estimation Models
2.6.1. The Uncertainty of Model Residual

We also used the six-step approach [61] to calculate the residual uncertainty in remote-
sensing-based estimation models; the detailed steps and formulas are shown in the six-step
approach Section 2.5.2, Point 1. Finally, the uncertainty of the remote sensing model (oR)
can be expressed as:

OR=Y 0 O/ (29)

where }I' | 0 is the sum of the standard deviation of the residuals in all plots, and y; is
the sum of the measured AGC.

2.6.2. Calculation of the Total Uncertainty in Carbon Stock Estimation
The total uncertainty (¢) of the AGC estimation in Pinus densata was calculated

as follows:
o= /0% + 0% (30)
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Predicted AGC (t/ha)

Predicted AGC (t/ha)

where 0), is the uncertainty at the plot scale; and oy is the uncertainty of the remote
sensing model.

3. Results and Analysis
3.1. Comparison of Accuracy for Estimation Models

Figures 3 and 4 show the scatter plots of the prediction accuracy, the distribution of R?,

and the RMSE values for different models. It showed that the BIM has the lowest accuracy
with a R? of 0.551, RMSE of 23.049 t/ha, and rRMSE of 45.158% (Figure 3a). The prediction
accuracies of the models were all improved after we gradually introduced different remote
sensing factors during the modeling. Since the optical imagery is prone to saturation in
areas with high aboveground biomass (and, therefore, AGC), it is at a disadvantage for
estimating stands with high values. Therefore, after introducing Sentinel-1 SAR data based
on the S-2M, the model has the highest prediction accuracy with R? of 0.872, RMSE of
10.821 t/ha, and rRMSE of 21.201%. Sentinel-1 SAR data can overcome the shortcomings of
the optical data to a certain extent according to the results, which have an important role in
improving the estimation accuracy [29]. The above results can be more intuitively shown
in Figure 4. R? of the models gradually increases, and the RMSE gradually decreases with
the introduction of different remote sensing factors; the model with joint Sentinel-1 SAR
and Sentinel-2 optical data has the largest R? and the smallest RMSE. This provides some
references for improving the accuracy of carbon stock estimation and the rational selection

of variables.
140 140 140
(a) Band Information Model (BIM) (b) Vegetation Index Model (VIM) (c) Texture Information Model (TIM)
1204 1204 1204
-
.
100+ + 1 2 100+ = 2100+
< S
+ 5 =2 q =
sy = A S 804 . + 1 S 804 .
3 Y T 4 = < + < ye
60 k. R 2 601 ek + r g 60 s ki
Ty 2 *le R 2 A +
¥ a3 3 3 Fa + 2 %
5 4 S m AT 2 R o %
40 4?" + A& 40 ++x FTE? - A 40 i
¥
. % R*=0.551 R’=0.688 i4 IR>=0.715
204 \[RMSE=23.049 t/ha 20 RMSE=19.845 t/ha 204 IRMSE=16.162 t/ha
rRMSE=45.158% rRMSE=39.804% rRMSE=28.937%
P=0.575 P=0.629 1P=0.720
0 T T T T ' " 0 T T T T Y Y 0 T T T T ' "
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Observed AGC (t/ha) Observed AGC (t/ha) Observed AGC (t/ha)
140 140
(d) Sentinel-2 factor Model (S-2M) (e) Sentinel-1/2 factor Model (S-1/2M)
1204 * 1204
+
+ 3
100 . = 100+
= +
2
. S o
80+ > o g 801 g
+ 7 g 7
60 o 7 2 60 - e
2 +
+ S+ -] =
+ & £ W+ A
40+ ++++ p * A 404 o
P 2 R*=0.826 + R*=0.872
204 iy \IRMSE=12.622 t/ha 204~ g IRMSE=10.821 t/ha
rRMSE=24.729% rRMSE=21.201%
i P=0.752 5 1P=0.824
0 2‘0 4‘0 6‘0 8‘0 I(I)O liO 140 0 2’0 4‘0 6‘0 8‘0 160 150 140
Observed AGC (t/ha) Observed AGC (t/ha)

Figure 3. (a) Scatterplot based on the band information for modeling; (b) scatterplot based on
the vegetation index for modeling; (c) scatterplot based on the texture information for modeling;
(d) scatterplot based on the Sentinel-2 factor for modeling; and (e) scatterplot based on the Sentinel-
1/2 factor for modeling.
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Figure 4. (a) The distribution of R? values for different models and (b) the distribution of RMSE
values for different models.

3.2. Uncertainty at the Plot Scale
3.2.1. The Uncertainty of Measurement

Scatter plots of the measurement error of DBH can be obtained by Equations (12) and (14)
(Figure 5a). It showed that the measurement error of DBH increases with the increase in DBH,
which is basically a linear relationship. The error model of DBH was op = 0.1913D — 0.4964,
R? = 0.665. Then, the true values of DBH were substituted into the fitted model to obtain
the error of DBH. For the measurement error of H, we can calculate by fitting a model
through the relationship between the H and the measurement error of H. As shown in
Figure 5b, similar to the measurement error of DBH, the error of H is also positively
correlated with the H. Based on the research finding of previous scholars [60], its error
form can be expressed as ¢ = 0.0095H? — 0.075H + 1.3359, R?> = 0.265. After obtaining
the error of H, 03;; was calculated according to Equation (17), which is 0.70. Finally, the
measurement uncertainty was calculated by Equation (11). The calculation showed that
for the binary carbon stock model, the uncertainty in carbon stock estimation due to the
measurement error was 3.02%.

12 6
D) 3=0.1913x—0.4964 ) 1=0.0095x"—0.075x-+1.3359)
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‘2 T T T T T T T 0
0 4 8 12 16 20 24 28 32 0
Mean of DBH (cm) Tree height (m)

Figure 5. (a) Relationship between DBH and standard deviation of measurement error and (b) rela-
tionship between H and measurement error.
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3.2.2. Uncertainty in the Monocarbon Stock Model
(1) Residual Uncertainty

Figure 6a shows the three-dimensional scatter plot of the binary carbon stock model for
Pinus densata; since the model parameters were closely related to the number of modeling
samples, different modeling samples fitted different model parameters [63]. For example,
Zhao [64] established the biomass model based on 31,068 sample trees, and the model
equation was W = 0.052D1988 40591 (3in et al. [35] established the biomass model based
on 52 sample trees: the model was W = 0.086D1979 H0419 However, the model developed
in this paper based on the measured data was C = 0.101D'9H%635 x £, and the R?
of the model was 0.984. According to the relevant study [47], the error margin of the
carbon content factor for Pinus densata was +1.19%. With the six-step method, we simply
calculated the mean values of the predicted carbon stock and the standard deviations of
the residual in each group, and then, we fitted a linear equation with the mean values as
the independent variable and the standard deviations of the residual as the dependent
variable. Figure 6b shows the scatter plot of the error equation for the monocarbon stock
model [65], from which it can be seen that the standard deviations of residual increased
with the increase in the predicted values of carbon stock. The error equation of the binary
carbon stock model was y = 0.0613x — 0.369 and R? = 0.944, which has an excellent fitting
effect. The predicted values of carbon stock were then substituted into the error equation to
calculate the total error value. Finally, the residual uncertainty for the model was obtained
by dividing the total error value by the total observed value of carbon stock, giving 5.96%.
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Figure 6. (a) Three-dimensional scatterplot of the binary carbon stock model for Pinus densata and
(b) line plot of errors and accuracy for the model.

(2) Parameter Uncertainty

For the parameter uncertainty of the binary carbon stock model, we first processed
the carbon stock model using Taylor’s first-order expansion based on the research methods
of existing scholars [35,37,65]. Then, we need to obtain the variance—covariance matrix of
the model parameters (2 = 0.101, b = 1.859, ¢ = 0.635), and the uncertainty of the model
parameters was calculated by bring it into the Equation (25). By calculating, we can
know that the parameters variance-covariance matrix of the binary carbon stock model

0.00000075  —0.00003400  0.00009900
is [ —0.00003400  0.01100000  —0.01100000 |, which substituted into Equation (25) to

0.00009900  —0.01100000  0.04100000
conclude that the value of parameter uncertainty is 6.86%. Synthesizing the two uncertain-
ties, the total uncertainty of the binary carbon stock model was 9.09%.
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3.2.3. Total Uncertainty at the Plot Scale

The total uncertainty was 9.58% by synthesizing the measurement uncertainty and
the uncertainty of the monocarbon stock model through the Equation (27). When the
uncertainty of the monocarbon stock model was superimposed on the plot scale, we used
the Equation (28) to calculate the uncertainty of the plot scale, which was 3.71%. Table 5
shows the various sources of uncertainty in carbon stock estimation at the plot scale.

Table 5. Results of each uncertainty source at the plot scale.

Error of Monocarbon Stock Model/%

Measurement . . Total Plot Scale
Model Form Parameter Residual Variation i o . o
Error/% Error/% Error/% Uncertainty/% Uncertainty/%
6.86 5.96
C = 0.101D'8 {0635 x £, 3.02 9.09 9.58 3.71

3.3. The Uncertainty of Remote-Sensing-Based Estimation Models

Figures 7-9 illustrate each model’s error equations, error value of plots, and uncertain-
ties. The uncertainties of BIM, VIM, TIM, S-2M, and S-1/2M are 21.98%, 13.63%, 12.01%,
10.14%, and 7.57% by substituting the average values of carbon stock into error equations
of each model (Figure 9). Through the Figure 7, the width of the confidence ellipse for each
model can reflect the magnitude of the model’s R? to a certain extent, R? gradually increases
as the ellipse becomes narrower. To more intuitively reflect the difference between the
predicted values and the measured values for each model, we compared the observed value
and the corresponding predicted value of 60 field plots (Figure 8). BIM, VIM, and TIM
exhibit the phenomenon of the overestimation of low values and the underestimation of
high values, and the maximum absolute errors of three models are 61.14 t/ha, 41.847 t/ha,
and 36.047 t/ha, which suggests that single-factor models have large relatively errors in
estimating AGC. Then, we filtered the three types of remote sensing factors to establish
S-2M. As we can see, the error curve of this model is significantly lower compared to the
previous three models, and its error value is also reduced (Figure 8b), as well as the absolute
value of its maximum error being 28.477 t/ha. This indicates that the joint use of different
types of remote sensing factors is necessary and makes up for the disadvantage of single-
factor modeling, which plays an important role in reducing uncertainty [66]. However,
optical data suffer from light saturation, which impacts the accurate estimation of AGC [67].
Therefore, we added SAR data to S-2M in the following experiments to further explore the
potential of SAR data in reducing uncertainty. The trend of the error curve of the model
after adding SAR data is further slowed down, and its error is also reduced compared to
S-2M (Figure 8b); the maximum absolute value of the error is 19.808 t/ha, and most of the
absolute values of the error are below 10 t/ha, which indicates that the predicted values are
close to the measured values. The comparative analysis of the errors for different models
shows that the single-factor model has the largest error. In order to effectively reduce
errors in the estimation process, it is necessary to combine different factors for estimating
AGC. We also found that SAR data play an important role in reducing errors compared to
optical data.

3.4. Total Uncertainty in Carbon Stock Estimation

The total uncertainty of AGC estimation for Pinus densata is shown in Table 6. After
synthesizing the uncertainties of the plot scale and estimation models by Equation (30), the
total uncertainty of BIM, VIM, TIM, S-2M, and S-1/2M was 22.29%, 14.12%, 12.56%, 10.79%,
and 8.43%. The BIM has the highest uncertainty, while S-1/2M with the introduction of
Sentinel-1 SAR data has the lowest uncertainty compared to the S-2M. Thus, SAR data
have some advantages in reducing the uncertainty of the AGC estimation.

125



Forests 2024, 15,2134

20

20

(a) (b))
16 1 ~ 161
< <
S s
= 124 = 121
o B Z s
=} =]
= s
] 2
g 4 E 4
=] =
5 0+ z 04
g z
E BIM:y=0.3562x-9.678  R?=0.699| £
@ ®n |
1 VIM:p=0.0982x+1.7958 R?*=0.737 - S-2M:y=0.143x—2.1118 R’=0.863
3 TIM:y=0.1212x—0.1067 R?=0.741 3 S-1/2M:y=0.0794x—0.1835 R?=0.924
20 0 20 40 60 80 100 120 140 20 0 20 40 60 80 100 120 140
Average value of carbon storage prediction group (t/ha) Average value of carbon storage prediction group (t/ha)
Figure 7. (a) Error equations for the BIM, VIM, and TIM and (b) error equations for the S-2M and
S-1/2M.
60
(a)\ ——BIM— —BIM fit
1 ———VIM = = VIM fit
- TIM fit
)
s -———YY¥F—7—7—
g 60
g (b) ——S82M — =S$-2M fit
’g ] ———§-1/2M— ~S-1/2M fit
£
60 —
B e e L S A B B
0 5 10 15 20 25 30 35 40 45 50 55 60 65
Field number (n)
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Table 6. Total uncertainty of AGC estimation of Pinus densata based on Sentinel-1/2 data.
Uncertainty at the Plot Scale/%
Model Error of the MonoCarbon Uncertainty of Remote Total Uncertainty/%
ode Measurement Error/% o Sensing Estimation Models/% yive
Stock Model/%
3.02 9.09
BIM 21.98 22.29
VIM 13.63 14.12
TIM 3.71 12.01 12.56
S-2M 10.14 10.79
S-1/2M 7.57 8.43
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4. Discussion
4.1. Analysis of the Uncertainty at the Plot Scale

Although many studies have been conducted on forest carbon stock estimation, there
is still a great deal of uncertainty in the current estimation process. In this study, the uncer-
tainties of measurement and residual variation and parameters error of the monocarbon
stock model were calculated by error equations. The uncertainties in the measurement and
the monocarbon stock model were then combined to obtain the uncertainty of the plot scale.
It was found that the error of the monocarbon stock model is the most significant source
of uncertainty among the uncertainties at the plot scale. Even though the measurement
uncertainty is so small that its contribution to the total uncertainty is practically negligible,
we identified a small systematic effect that should be considered. This error may have a
greater impact if we use different personnel or equipment to collect the field data [68-70].
The error of the monocarbon stock model mainly originated from parameter variation,
and the residual uncertainty was relatively low, which is consistent with the results of
Huang et al. [37]. However, the parameter error of the model was higher than those of
Chen et al. [71] and Wang et al. [65]. The reason is that Chen et al. [71] used 4004 plot trees
for modeling, which is much higher than the number of plot trees in this study. When the
number of plot trees is large enough, the uncertainty due to the model parameters can
converge to zero. Wang et al. [65] used grouping combined with the Monte Carlo method
to measure the errors of unitary and binary biomass models. This method can effectively
reduce the variability of parameter covariance matrices. In this paper, we only calculated
the parameter uncertainty and residual uncertainty of the binary model; the uncertainty of
the unitary carbon stock model needs to be further investigated in the future.

4.2. Influence of Plot Size and Forest Stand Factors on AGC Estimation and Uncertainty

The plot size used in this study is 10 m x 10 m to keep up with the spatial resolu-
tion of remote sensing images. Although several studies have shown that uncertainty
decreases when the plot size increases [72,73], we need to consider the available space and
representative sampling, etc., during the selection of plots. Enough plots were needed to
arrange in the limited space to meet the need of the modeling because of the limitation of
the study area, which can ensure the representativeness and accuracy of the Pinus densata
samples. Even though estimation accuracy and uncertainty can be affected by small-scale
plots, we can effectively improve this condition by increasing the number of plots and
modeling samples [74]. Secondly, representative sampling is one of the important reasons
why we chose small-scale plots. The difference in vegetation density and age structure also
affects the estimation of AGC due to the heterogeneity of the distribution of Pinus densata
in the study area. Therefore, setting more small-scale plots on this basis gives a better
analysis of the factors affecting the accuracy of AGC estimation, thus improving accuracy
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and reducing uncertainty. Canopy density and the average age of the forest stand factors
are also important factors that affect the accuracy and uncertainty of AGC estimation [75].
A previous study has shown that with the gradual increase in stand age, the forest carbon
stock also presents a trend of increase [76]. Still, the growth rate decreases slowly with the
maturity of the forest stand and tends to balance in the later stage of development [77].
Canopy density is also an important factor affecting the change in AGC and can determine
forest structure and vegetation growth to a large extent [78]. An increased canopy opening
increased the potential of height growth, thereby increasing the AGC. Therefore, we should
consider these two factors to analyze their specific effects on the change and uncertainty of
AGC in the subsequent research.

4.3. Uncertainty of Different Remote Sensing Models

In this paper, we established different remote sensing models based on Sentinel-1/2
images. Data saturation in the optical data is a key issue limiting AGC estimation accuracy,
especially in dense forests with high AGB (AGC) [79]. The reason is that optical data
provide only spectral and horizontal spatial characteristics [80], limiting the effectiveness
of spectral reflectance and vegetation indices for estimating high biomass or carbon stock.
This is also confirmed by the high uncertainty of BIM and VIM in this study. To alleviate
the effect of optical data saturation on the uncertainty of carbon stock estimation, we
introduced Sentinel-1 SAR data on the basis of optical data. SAR can better obtain the
vertical structure parameters of forest vegetation because of its strong penetration ability to
the forest canopy and sensitivity to water content [81]. Furthermore, the combination of
optical and SAR data has been proven to reduce the saturation in AGC estimation [21,82].
For example, David et al. [43] combined Sentinel-1 SAR and Sentinel-2 optical data to
estimate dryland AGB, and this combination produced the best fitting effect. In addition,
it was also found that the bands had different influences on the estimation effect, and the
addition of SAR and optical red-edge bands (B5) significantly reduced the saturation effect.
Therefore, we should try different bands and their combinations to explore their potential
in reducing the saturation effects and uncertainty in the following experiments.

4.4. Limitations and Future Research

Firstly, since the study area of this paper covers only one county, and Pinus densata
is a single layer of pure forest [83], this conclusion will be altered if compared to the
different types of forest structure, tree species, etc., in other regions. Consequently, the
applicability of this study’s method in multilayered stands or forests of different ages
with complex structures needs to be further explored. Secondly, the uncertainty in this
paper is only related to the plot scale and remote-sensing-based estimation model. Still,
during the total process of data collection, processing, model building, and carbon stock
estimation, it inevitably generates various sources of error due to the differences in the
measurement, data processing and calculation, model building methods, and methods of
carbon estimation. Therefore, we need to consider the effects of climate, light saturation,
topography, error transmission, and the forest carbon cycle on the estimation of carbon
stock. Finally, allometric growth equation may lead to uncertainty in the estimation of
carbon stock. We attempted to improve the estimation accuracy by using an allometric
growth equation for each tree species in the study area. However, some uncertain factors,
such as tree density, soil texture, and climatic conditions, can affect the growth of H and
DBH, thereby affecting the calculation of carbon stock. In the future, researchers should
consider how precipitation, soil, and climate affect the growth of DBH and H and the
calculation of carbon stock. Taking these factors into account will improve the accuracy
and reduce the uncertainty in the process of carbon stock estimation.

5. Conclusions

In this study, random forest was used to establish different remote-sensing-based
estimation models based on Sentinel-1/2 images and field data. The uncertainties resulted
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from the plot scale, and different estimation models were calculated using error equations.
We then analyzed the impact of uncertainty at different scales on carbon stock estimation.
(1) Different remote sensing factors have certain effects on the carbon stock estimation
and the uncertainty of the model. In particular, the BIM has the lowest accuracy; the
introduction of vegetation and texture factors improves the accuracy of the model, while
S-1/2M combining optical and SAR data has the lowest uncertainty. (2) The error of the
monocarbon stock model is the main uncertainty at the plot scale, which is 9.09%. The
uncertainty at the plot scale is 3.71%, which is lower than the uncertainty of all remote-
sensing-based estimation models. Therefore, the uncertainty of the estimation model is
the primary source of uncertainty in the process of carbon stock estimation compared to
the uncertainty at the plot scale. (3) The R? of S-1/2M combining optical and SAR data
was improved by 0.046, and the uncertainty was reduced by 2.36% compared to the S-2M.
Adding SAR data to the optical data can effectively reduce the uncertainty in the estimation
process. This study analyses the effect of different factors on AGC estimation and evaluates
the uncertainty of plot scale quantitatively, which provides references for reducing the
uncertainty in the process of carbon stock estimation.
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Abstract: The ecotone zone, located between the Cerrado and Amazon biomes, has been under
intensive anthropogenic pressures due to the expansion of commodity agriculture and extensive
cattle ranching. This has led to habitat loss, reducing biodiversity, depleting biomass, and increasing
CO; emissions. In this study, we employed an artificial neural network, field data, and remote sensing
techniques to develop a model for estimating biomass in the remaining native vegetation within an
18,864 km? ecotone region between the Amazon and Cerrado biomes in the state of Mato Grosso,
Brazil. We utilized field data from a plant ecology laboratory and vegetation indices from Sentinel-2
satellite imagery and trained artificial neural networks to estimate aboveground biomass (AGB) in
the study area. The optimal network was chosen based on graphical analysis, mean estimation errors,
and correlation coefficients. We validated our chosen network using both a Student’s t-test and the
aggregated difference. Our results using an artificial neural network, in combination with vegetation
indices such as AFRI (Aerosol Free Vegetation Index), EVI (Enhanced Vegetation Index), and GNDVI
(Green Normalized Difference Vegetation Index), which show an accurate estimation of aboveground
forest biomass (Root Mean Square Error (RMSE) of 15.92%), can bolster efforts to assess biomass
and carbon stocks. Our study results can support the definition of environmental conservation
priorities and help set parameters for payment for ecosystem services in environmentally sensitive
tropical regions.

Keywords: biomass estimation; Amazon/Cerrado ecotone; remote sensing; artificial neural network;
Google Earth Engine

1. Introduction

Brazilian biomes are recognized for their high biodiversity, with over 33,000 plant
species, constituting a staggering 26.5% of all known species on Earth [1]. More specifically,
the Amazonia/Cerrado ecotone is a unique transitional ecoregion covering more than
4000 km across the ecotone between the two greatest biomes of South America [2]. The
region is dominated by a highly seasonal climate and a wide diversity of vegetation
types. These vegetation types range from open savannas, which receive abundant solar
radiation, to dense forest formations with denser canopy and higher air humidity and soil
moisture levels.

Beyond its rich vegetation, this region of high ecological and biological significance
harbors a large array of species. However, this biodiversity faces threats as pastures and
crops expand into this ecotone, leading to massive deforestation [3,4]. The consequence
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is a notable decrease in the native vegetation and biomass stock [5] due to the increasing
deforestation rates in the Amazon and Cerrado biomes [6], a situation often worsened by
forest fires [6,7].

Forest biomass is a critical factor in assessing the carbon sequestration and carbon
balance capabilities of these ecosystems [8,9]. Accurately estimating aboveground biomass
(AGB) is crucial to understanding the carbon cycle and its effects on climate changes and on
terrestrial ecosystems and biodiversity [8-11], especially in tropical regions where reliable
data are lacking [8,9].

Biomass estimation using remote sensing data has been widely applied at global,
regional, and local scales. It has substantially improved in recent years [12], replacing
conventional AGB estimation approaches. It enables temporal analysis of the environment
and land cover [12] and, in the case of land use changes, contributes significantly to
detecting, quantifying, and understanding vegetation behavior over time [13].

Several approaches have been developed and applied to accurately estimate carbon
biomass. The authors of [14] accurately estimated aboveground biomass and stand volume
in Hinton, the USA, by applying a methodological approach based on the relationship of
forest structure attributes acquired in the field and Landsat ETM+ imagery. The authors
of [15] successfully quantified live aboveground forest biomass in the states of Arizona
and Minnesota using Landsat imagery and forest inventory data. The authors of [16]
assessed Landsat 8 imagery to estimate aboveground biomass in the Umgeni catchment,
South Africa. The authors of [17] applied boosted regression tree models, field data, and
Sentinel-2 and Synthetic Aperture Radar (SAR) combined imagery acquired on different
dates and were able to estimate aboveground biomass and forest cover.

Studies carried out by [18] combined vegetation indices retrieved from a Vegetation
Sensor onboard the SPOT-4 satellite and Moderate Resolution Imaging Spectroradiometer
(MODIS) and climate data to estimate primary production in Harvard Forest, Petersham,
MA, the USA. The study by [19] observed a strong positive correlation between vegetation
indices and biomass. Another study by [20] successfully estimated forest aboveground
biomass (AGB) by combining Landsat and MODIS imagery.

New technologies based on machine learning and artificial intelligence have improved
even more modeling approaches to predict biomass worldwide. Empirical modeling using
deep learning algorithms has achieved highly accurate results in estimating AGB based on
field sampling distributions with no assumptions. For example, [21] developed Sentinel-2
imagery and a machine learning model to estimate biomass in northern Anhui, China.
Similarly, ref. [22] applied radar and optical imagery and a deep learning-based approach
to estimate forest biomass in Tibet, China. The authors of Ref. [23] successfully combined an
Artificial Neural Network (ANN) with vegetation indices retrieved from Landsat imagery
to predict aboveground biomass for a study site in the Amazon region. However, they are
more difficult to interpret and require accurate field data as the model input [24].

In this study, we developed and applied a model to estimate aboveground biomass
in an Amazonia/Cerrado transition zone in the state of Mato Grosso, Brazil, using field
data, remote sensing, and Artificial Neural Networks (ANNs). Our goal was to accurately
estimate AGB using medium spatial resolution and freely available remotely sensed data
(Sentinel-2 imagery) with an ANN, a method not previously applied to this large ecotone
region. These study results are significant as they can facilitate further analyses of deforesta-
tion and forest fire impacts in this tropical region, which have profoundly affected forest
structure by reducing tree cover and increasing herbaceous species. These herbaceous
plants are more susceptible to water stress, making the region prone to recurrent and
intense fire events [25].

Our model showed promising results for estimating and monitoring aboveground
biomass and can play a pivotal role in supporting the implementation of payments for
ecosystem services. This represents a technological advance in environmental preservation
and conservation research, particularly in transitional zones that lack information on
biomass stocks. From a critical perspective, conserving biomass in this study area, which is
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near Brazil’s largest indigenous territory (Xingu Indigenous Land), may have significant
and positive impacts on the well-being and sustainable existence of traditional populations
in their territories [26].

2. Materials and Methods
2.1. Regional Setting

Our study area encompassed a total of 18,863.6 Km? located in the Ecotone region
between the Amazon and Cerrado biomes in Brazil. We selected permanent long-term mea-
surement plots established and monitored by the Plant Ecology Laboratory of Mato Grosso
State University (LABEV-UNEMAT) in the study region (Campus of Nova Xavantina, State
of Mato Grosso, Brazil). The sample plots are in the municipalities of Gaticha do Norte,
Queréncia, and Ribeirao Cascalheira, state of Mato Grosso.

Field measurements were conducted in 12 sample plots, each measuring 100 m x 100 m
and subdivided into 60 subplots of 100 m x 20 m (Figure 1). These measurements were
carried out during the dry season (July to October) in 2014, 2018, 2020, and 2021. We
selected this study area due to its environmental sensitivity and socioeconomic character-
istics, as it is situated in the transition zone between the Cerrado and Amazonia biomes.
The area is particularly notable for its proximity to indigenous lands and the significant
deforestation activities reported in recent decades, especially in the region known as the
“Arc of Deforestation” of the Brazilian Amazon [2].
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Figure 1. The study area is located within the ecotone zone of the Amazonia and Cerrado biomes
in the state of Mato Grosso, Brazil. Field measurements were conducted in 12 sample plots, each
measuring 10,000 m? and subdivided into 60 subplots of 2000 m? each, in the years 2014, 2018, 2020,
and 2021. The year of sampling is indicated in black above each sample plot in the study area.

The study region features diverse soil types with distinct characteristics. These soils
are characterized by low nutrient availability and elevated levels of aluminum toxicity. In

135



Forests 2024, 15, 1599

the interfluvial areas, medium-textured red-yellow latosols predominate, creating favorable
conditions for forest establishment. Additionally, these latosols feature patches of anthro-
pogenic soils created by ancient indigenous populations, known locally as ‘terra preta de
indio” or Amazonian Dark Earth (ADE). ADE is rich in pyrogenic carbon, leading to a
higher concentration of organic matter on the surface and increased pH in deeper layers.
In floodplains, clay-textured fluvic neosols are prevalent, containing higher potassium
content but facing phosphorus restriction, poor drainage, and elevated aluminum and iron
levels [7,27].

The permanent plots of this study are predominantly surrounded by Seasonal Forest
(Fse) and Typical Cerrado (Sd), which are characteristic of the Central-West region of
Brazil [28]. According to the Koppen climate classification, the study region is characterized
by an Aw climate type, which is tropical seasonal [29], with two distinct seasons: a dry
season from May to October and a rainy season from November to April [30]. As described
by [7], the region’s topography varies from flat to gently undulating. It includes plateaus
and plains in the central area, mountains to the east, and residual depressions to the
south [31].

2.2. Dendrometric Variables of the Inventory

The inventories were conducted in 2014 (one plot), 2018 (three plots), 2020 (five plots),
and 2021 (three plots) by collaborators from the Forest Ecology Laboratory at the State
University of Mato Grosso. The objective was to monitor vegetation within permanent
plots across different strata, soil types, climatic zones, and regional groups. Sampling
was randomized, with 12 sampling units, each measuring 100 x 100 m. Each unit was
divided into five transects, resulting in a total of 60 subsamples measuring 100 x 20 m
(Figure 1). There was only one sample unit showing different dimensions, covering an
area of 180 x 60 m with transects measuring 36 x 60 m. We adopted the sampling protocol
proposed by [7] to ensure data reliability.

We collected detailed information on species, families, tree diameters, and heights in
each plot. To estimate basic wood density, we used the ForestPlots.net database, which in-
cludes data on over 2000 neotropical species [32,33]. Aboveground biomass was calculated
using Microsoft Excel 2016, incorporating data on diameter at breast height, total height,
and basic wood density. All data were analyzed following RAINFOR guidelines and the
methodologies outlined by these authors.

Complementarily, we conducted a statistical analysis using field-collected data to
examine variations in dendrometric characteristics within our study area. Descriptive table
analysis allowed us to summarize and describe inventory variables, enabling comparisons
with similar areas and contributing to the scientific understanding of this field.

2.3. Forest Biomass

To effectively develop methods for assessing Aboveground Biomass (AGB), it is crucial
to acquire on-site estimates of this biomass, commonly referred to as “in situ” measure-
ments. The in-situ estimates serve as essential data for the calibration and validation
of algorithms designed to calculate biomass. Additionally, field-collected data provide
valuable information to estimate various tree characteristics, including basal area and the
total aboveground and/or belowground biomass. In our analysis, the forest inventory data
were utilized to predict the aboveground biomass within the transitional area using re-
motely sensed data and an artificial neural network. This prediction considers the equation
proposed by [34] for our field samples located within the Amazon biome:

AGB = 0.0673 x (Wd x HE x DBH2)0.976 )
where:

AGB = Aboveground Biomass (kg);
Wd = Basic wood density for each tree species (g.cm?);
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Ht = Total height (m);

DBH = Tree diameter at 1.3 m from the ground (cm).

In addition, we calculated AGB for our field samples located within the Cerrado
biome using a specific allometric equation developed for the Cerrado environment [35], as
follows:

AGB = 04913 +0.0291 x DGH? x Ht 2)

where:

AGB = Aboveground Biomass (kg);

DGH = The diameter of trees at their base (ground), specifically for trees with a
diameter equal to or greater than 5 cm;

Ht = tree height.

The biomass was estimated by applying allometric equations and utilizing tree-specific
variables for each subplot within the sample plots. Subsequently, these values were
normalized per unit area to calculate the results in Tons per hectare (ton-ha™!).

2.4. Sentinel-2 Imagery

We utilized images acquired by the MultiSpectral Instrument (MSI) sensor aboard
the Sentinel-2 satellite, which provided spectral information about vegetation. This sensor
captures the red band, crucial for characterizing vegetation due to the presence of chloro-
phyll in plants [36]. The satellite’s spatial resolution varies according to the spectral bands:
10 m for visible and near-infrared bands, 20 m for red edges and other infrared bands, and
60 m for water vapor and cirrus bands. Sentinel-2 features 13 spectral bands ranging from
0.442 um to 2.202 pm, with a revisit frequency of every five days [37].

In this analysis, we used a total of five Sentinel-2 scenes acquired from 2016 to 2021, all
during August of each year, to minimize seasonal effects on the remotely sensed products.
All scenes, covering the entire study area, were level 1c orthorectified TOA (Top of Atmo-
sphere) reflectance and were acquired in the same year as the forest inventory data for 2018,
2020, and 2021. The only exception was the image acquired in 2016, which was used to
relate to field data collected in 2014 because there were no Sentinel images available for
that year. Subsequently, we retrieved vegetation indices from the Sentinel-2 images using
the Google Earth Engine (GEE) platform. The Sentinel-2 scenes’ IDs and acquisition dates
are listed in Table 1.

Table 1. Sentinel 2A sensor MSI (Multispectral Instrument) scenes acquired through Google Earth
Engine (GEE) and used for retrieving the vegetation indices applied in this analysis.

ID Sentinel-2A, Sensor MSI Data
20160807T135257_T22LBL 7 August 2016
20180802T135108_T22LCL 2 August 2018
20200801T135115_T22LBL 1 August 2020
20200803T134216_T22LCL 3 August 2020
20210813T134211_T22LDL 13 August 2021

2.5. Vegetation Indices

In this analysis, we included various vegetation indices based on different spectral
band combinations to leverage their potential sensitivity in capturing diverse vegetation
characteristics and enhancing the relationship between vegetation indices and forest AGB.
The indices utilized were NDVI (Normalized Difference Vegetation Index), EVI (Enhanced
Vegetation Index), GNDVI (Green Normalized Difference Vegetation Index), AFRI (Aerosol
Free Vegetation Index), MSAVI (Modified Soil-Adjusted Vegetation Index), NDRE (Nor-
malized Difference Red Edge Index), SAVI (Soil-Adjusted Vegetation Index), and MSAVIaf
(Modified Soil-Adjusted Vegetation Index aerosol free), all described as follows.

Normalized Difference Vegetation Index (NDVI)
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The NDVI, developed by [38], is one of the most widely used vegetation indices. It
relies on the relationship between the difference in reflectance in the near-infrared and red
spectral bands and the sum of the reflectance of these two bands. This index enables the
assessment of the photosynthetic activity of vegetation, with values ranging from —1 to 1.
In contrast, water surfaces or clouds typically exhibit values below 0 [39]. Its definition is

as follows:
pNIR — pRed

pNIR + pRed

where pNIR is the reflectance in the near-infrared spectral band and pRed is the reflectance
in the red spectral band.

Enhanced Vegetation Index (EVI)
The Enhanced Vegetation Index (EVI), developed by [40], aims to minimize atmo-

spheric effects and improve NDVI sensitivity. It is notable for its sensitivity in analyses of
canopy structural variations and densely forested areas [41]. Its definition is as follows:

NDVI = 3)

(pNIR — pRed)

EVI =
C * ONTR + (C1 x pRed) — (C2 x pBlue) + L

4)

where pNIR is the reflectance in the near-infrared spectral band, pRed is the reflectance in
the red spectral band, pBlue is the reflectance in the blue spectral band, G is the gain factor
(default value: 2.5), L is the canopy background adjustment factor (default value: 1.0), and
C1 and C2 are coefficients to correct aerosol effects.

Enhanced Vegetation Index 2 (EVI 2)
The Enhanced Vegetation Index 2 (EVI2), developed by [42], aims to achieve results
similar to its original version (EVI) but using only two spectral bands (excluding the blue

band). It proves particularly useful when utilizing high-quality remote sensing data with
minimal atmospheric effects. Its definition is as follows:

(pNIR — pRed)

EVI2 —
VIZ =G+ IR + 24  pRed +1

Q)

where pNIR is the reflectance in the near-infrared spectral band, pRed is the reflectance in
the red spectral band and, G is the gain factor (default value: 2.5).

GNDYV (Green Normalized Difference Vegetation Index)

The Green Normalized Difference Vegetation Index (GNDVI), a modification of the
NDVI developed by [43], is used to estimate chlorophyll content in vegetation. This makes
it valuable for distinguishing between senescent vegetation and vegetation experienc-
ing various degrees of water stress. GNDVI replaces the red band with the green band
from NDVI, aiming to mitigate vegetation saturation effects in denser conditions [43]. Its

definition is as follows:
pNIR — pGreen

GNDVI = ———————
pNIR + pGreen

©
where pNIR is the reflectance in the near-infrared spectral band and pGreen is the re-
flectance in the green spectral band.

AFRI (Aerosol Free Vegetation Index)

The Aerosol Free Vegetation Index (AFRI) was developed by [44] with the aim of
mitigating the effects of aerosols and atmospheric disturbances on vegetation index calcula-
tions. This index has the capability to penetrate the atmosphere more effectively, providing
accurate information about vegetation and other soil characteristics, even under adverse
conditions such as forest fire situations with the presence of smoke [44]. One of the main
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advantages of AFRI s its resilience to smoke interference in data acquisition, distinguishing
it from other conventional indices [44]. Its definition is as follows:

pNIR — 0.5pSWIR

AFRI =
pNIR + 0.5pSWIR

@)

where: pNIR is the reflectance in the near-infrared spectral band and pSWIR is the re-
flectance in the shortwave infrared 1 band.

SAVI (Soil-Adjusted Vegetation Index)

The Soil-Adjusted Vegetation Index (SAVI) was developed by [45] with the aim of
minimizing soil interference in canopy spectral measurements. This index allows for
calibration so that variations in soil substrate are normalized in vegetation estimates [45].
Its definition is as follows:

pNIR — pRed

AVI =
5 PpNIR + pRed + L

x (1+1L) ®)

where pNIR is the reflectance in the near-infrared spectral band, pRed is the reflectance in
the red spectral band, and L is the soil adjustment factor (default value = 0.5).
MSAVI (Modified Soil-Adjusted Vegetation Index)

The Modified Soil-Adjusted Vegetation Index (MSAVI), developed by [46], was de-
signed to enhance its original version, SAVI. Both MSAVI and SAVI utilize soil adjustment
factors [46]. MSAVI proves to be a more effective option in terms of time and resources,
particularly in areas where vegetation density is uncertain or varies significantly [46]. Its
definition is as follows:

NIR — pRed
NIR + pRed + L

MSAVI = x (14 L) ©)

where pNIR is the reflectance in the near-infrared spectral band, pRed is the reflectance in
the red spectral band, and L is the soil adjustment calculated using Equation (10):

L = [(pNIR — pRed) x s 4 1+ pNIR + pRed]* — 8.0 x s X (pNIR — pRed)  (10)

where s = 1.2 (slope of the soil line calculated from surface reflectance at non-forested areas).
MSAVIaf (Modified Soil-Adjusted Vegetation Index aerosol free

The MSAVIaf was developed by [12] with the aim of reducing atmospheric effects on
vegetation index estimations. It has been demonstrated to be more sensitive to vegetation

variations than the Aerosol Free Vegetation Index under anomalous atmospheric conditions
in the Amazon region [12]. Its definition is as follows:

pNIR — 0.5pSWIR

AVIaf =
M AVt = R+ 050SWIR 1 L

x (1+1L) (11)

where pNIR is the reflectance in the near-infrared spectral band, pPSWIR is the reflectance
in the shortwave infrared spectral band (central wavelength: 1.6137 pm), and L is the soil
adjustment factor, calculated as previously presented (Equation (10)).

NDRE (Normalized Difference Red Edge Index)

The Normalized Difference Red Edge Index (NDRE), developed by [47], was designed
to measure plant physiological parameters, particularly those associated with chlorophyll
content, nitrogen concentration, and canopy structure. It can be applied in identifying and
classifying crops and land covers [48]. Its definition is as follows:
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pNIR — pRededge

NDRE =
PNIR + pRededge

(12)

where pNIR is the reflectance in the near-infrared spectral band and pRededge is the
reflectance in the red edge spectral band (central wavelength: 0.704 um).

2.6. Correlation Analysis

The evaluation of vegetation indices for predicting biomass in our study area was
performed by analyzing the correlation matrix between the nine indices retrieved from
remotely sensed data and the field-measured biomass. To assess the normality of biomass
and vegetation index datasets, we applied the Shapiro-Wilk test.

2.7. Modeling of the Artificial Neural Network (ANN)

In this study, we employed a Multilayer Perceptron (MLP) type of Artificial Neural
Network (ANN), adjusted and trained using Statistica software (STATSOFT), version 12, to
estimate forest biomass using the field-sampling data of LABEV-UNEMAT. The software
utilizes the Intelligent Problem Solver (IPS) tool to optimize the network architecture,
including the number of layers, neurons, and cycles to achieve more efficient results [49].
Training is conducted using the Broyden—Fletcher—Goldfarb—Shanno quasi-Newton algo-
rithm by IPS for neural network processing, which has been shown to be highly capable
of solving optimization and prediction problems, in addition to being the most popular
quasi-Newton method [50-52].

In this analysis, the input layer of the neural network consisted of both categorical
and numerical variables. The categorical variable pertained to the two types of strata in
the study area: Perennial Seasonal Forest and typical Cerrado. The numerical variables
included the vegetation indices NDVI, EVI, EVI2, GNDV, AFRI, MSAVI, NDRE, SAV], and
MSAVIaf. The hidden layer comprised ‘n” neurons, while the output layer consisted of a
single neuron responsible for estimating AGB.

To train the Artificial Neural Networks (ANNs), we selected 40 subsamples, represent-
ing 70% of the total 60 field-demarked subsamples during the inventories. The remaining
20 subsamples were used for result validation and testing. Multilayer Perceptron (MLP)
ANN:Ss calculate the weighted arithmetic mean of these inputs [53], and in this case, were
activated by an exponential function. To assess the performance of the models developed
using ANNs, we considered the parameters of the correlation coefficient (R) and root mean
square error (RMSE). These coefficients have been utilized in other research involving
ANN:Ss to predict solar energy using weather data, as demonstrated by [54].

For the validation of the performance of the best ANNs, we conducted statistical
analyses using Student’s t-tests. To determine whether there was AGB underestimation
or overestimation, we calculated the aggregate difference in percentage terms (AD%).
The Aggregate Difference (AD%) corresponds to the difference between the sum of the
observed values and the sum of the estimated values, in percentage, obtained by the
following expression:

AD% =

n n 5
Lizi Yi — Yie1 9 100 (13)
i=1Yi
where AD% = Aggregate Difference; y; = observed values; §J; = estimated values; and

n = number of observations.
The statistical analyses were performed using Microsoft Excel software, Microsoft

Office 365, Version 2408.

3. Results
3.1. Vegetation Inventory

The results in Table 2 show significant differences in the assessed variables, high-
lighting substantial variation in dendrometric characteristics between the Cerrado and the
Amazon plots. Notably, trees in forest plots showed an average aboveground biomass
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approximately eight times higher than those in Cerrado plots. This difference can be
attributed to wider trunks (37% larger in the forest compared to Cerrado) and trees that
were approximately three times taller in the forest. Interestingly, the average wood density
was quite similar in both formations (Amazon and Cerrado) within the study area (Table 2).

Table 2. Dendrometric variables calculated from forest inventory for the areas of the Plant Laboratory
(LABEV) Mato Grosso State University (UNEMAT) plots.

Cerrado Plots Forest Plots

Statistics DBH Ht WD AGB Statistics DBH Ht WD AGB
Minimum 10.0 4.0 0.41 14.35 Minimum 10.0 10.0 0.20 66.56
Maximum 39.0 13.0 0.84 23.49 Maximum 93.2 30.0 1.09 331.38
Mean 13.81 6.64 0.66 18.38 Mean 19.12 13.99 0.67 146.86
Variance 15.38 1.65 0.01 10.97 Variance 105.19 17.5 0.019 2572.76
Deviation 3.92 1.28 0.10 3.31 Deviation 10.25 418 0.14 50.72
CV (%) 28.4 19.33 15.43 18.02 CV (%) 53.64 29.9 20.4 34.54

Where DBH = diameter at breast height (cm), Ht = total height (m), WD = average wood density (g-cm?),
AGB = aboveground biomass (Ton-ha=1), and CV (%) = Coefficient of Variation (%).

The biomass measurements in the Forest samples showed themselves to be statistically
consistent, showing an average value of 146.84 t-ha—l. When examining a forest fragment
located on the southern edge of the study area, we observed biomass variability ranging
from 155 to 195 t-ha™ .

3.2. Correlation Analysis of Biomass and Vegetation Indices

In this study, we created a mosaic of the Sentinel-2 images acquired in August 2019 to
retrieve the vegetation indices for the study area (Table 3).

Table 3. Average of the independent variables in the study area. AFRI = Aerosol Free Vegetation Index;
EVI = Enhanced Vegetation Index; GNDVI = Green Normalized Difference Index; EVI2 = Enhanced
Vegetation Index-2; MSAVIaf = Modified Soil-Adjusted Vegetation Index aerosol free;
MSAVI = Modified Soil-Adjusted Vegetation Index; NDVI = Normalized Difference Vegetation
Index; NDRE = Normalized Difference Red Edge Index; SAVI = Soil-Adjusted Vegetation Index.

Vegetation Indices Average
AFRI 0.564
EVI 0.571
GNDVI 0.569
EVI2 0.392
MSAVIaf 0.324
MSAVI 0.545
NDRE 0.515
NDVI 0.697
SAVI 0.408

The Shapiro-Wilk test indicated non-normality of the analyzed variables (vegetation
indices and biomass). We then applied the Spearman correlation matrix, recommended
for non-parametric data analysis. The Spearman correlation results indicated positive and
significant correlations (x < 0.05) among aboveground biomass and all vegetation indices,
as well as among the vegetation indices themselves (Table 4).
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Table 4. Spearman’s correlation matrix was used to analyze the relationship between aboveground
biomass and vegetation indices of the study area.

AFRI EVI EVI2 GNDVI MSAVIaf MSAVI NDRE NDVI SAVI Biomass
AFRI 1
EVI 0.887 ** 1
EVI2 0.875 ** 0.963 ** 1
GNDVI 0.897 ** 0.902 ** 0.951 ** 1
MSAVIaf  0.948 ** 0.963 ** 0.969 ** 0.950 ** 1
MSAVI 0.868 ** 0.975 ** 0.933 ** 0.866 ** 0.942 ** 1
NDRE 0.954 ** 0.853 ** 0.882 ** 0.921 ** 0.922 ** 0.825 ** 1
NDVI 0.972 ** 0.909 ** 0.902 ** 0.907 ** 0.943 ** 0.887 ** 0.971 ** 1
SAVI 0.831 ** 0.853 ** 0.889 ** 0.863 ** 0.907 ** 0.850 ** 0.786 ** 0.820 ** 1
Biomass 0.469 * 0.443 * 0.532 ** 0.621 ** 0.555 ** 0.404 * 0.509 ** 0.466 * 0.594 ** 1

** Significant at o« < 0.01; * Significant at « < 0.05. Where: AFRI = Aerosol Free Vegetation Index; EVI = Enhanced
Vegetation Index; GNDVI = Green Normalized Difference Index; MSAVIaf = Modified Soil-Adjusted Vegetation
Index aerosol resistant; MSAVI = Modified Soil-Adjusted Vegetation Index; NDVI = Normalized Difference
Vegetation Index; NDRE = Normalized Difference Red Edge Index; SAVI = Soil-Adjusted Vegetation Index.

Based on the results of the correlation matrix, we subsequently proceeded with a
stepwise regression analysis to select our predictive variables (vegetation indices). The
stepwise technique involves adding or removing independent variables from the model
one at a time, based on specific criteria such as the p-value. This procedure is implemented
automatically to identify a subset of variables that are most relevant for predicting the
dependent variable (in this case, aboveground biomass).

In contrast to the correlation matrix results, this complementary stepwise regression
analysis found that the AFRI, EVI, and GNDVI indices (Figure 2) were the most suitable
(highest statistical significance at « < 0.05) vegetation indices to be used as input neu-
rons for the ANN modeling. It is likely that retrieving vegetation indices from different
spectral band combinations (near-infrared, middle infrared, red, and blue bands) greatly
contributed to increasing their sensitivity and capturing aboveground biomass variation in
the study area.

3.3. Biomass Modeling

After training the artificial neural networks (ANNSs) with the most suitable indepen-
dent variables (AFRI, EVI, and GNDVI) indicated by the stepwise regression analysis,
we selected the top five performing ANNs based on correlation coefficients (r) exceeding
0.90 and validation errors less than 16%. The selected ANN showed low variation between
training, selection, and evaluation indices, demonstrating stability during the training pro-
cess [55]. An in-depth analysis of fit and accuracy statistics revealed that Neural Network
1 showed the strongest predictive capability for aboveground biomass, as indicated by the
RMSE% values in Table 5.

Additionally, the results provided by Neural Network 1 indicated a satisfactory
distribution of residuals (Figure 3—B1 training, B2 testing, and B3 validation) and ac-
curate, consistent predictions of aboveground biomass (Figure 3—A1 training, A2 test-
ing, and A3 validation) in the study area. The model showed a good fit, which indi-
cates that it minimized the differences between observed and predicted values without
significant bias.
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Figure 2. Vegetation indices ((A) = Green Normalized Vegetation Index—GNDV; (B) = Enhanced
Vegetation Index—EVI; and (C) = Aerosol Free Vegetation Index—AFRI) retrieved from Sentinel-2
imagery acquired in August 2016, 2018, 2020, and 2021 covering the entire study region.
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Table 5. Accuracy statistics of the selected artificial neural networks (ANNs) for prediction of
aboveground biomass for the LABEV-UNEMAT plots located in the Cerrado/Amazon ecotone.

Adjustment Validation Test
N° of Activation Activation
ANN Architecture Cvcl
ycles RMSE% R RMSE% R RMSE% R
Hidden Output
1 MLP 3-12-1 860 Tang Tang 18.09 093 1576 094 1592 0.94
2 MLP 3-11-1 1630 Logistic Exponential 19.44 092 16.09 093 16.18 0.93
3 MLP 3-8-1 910 Logistic Identity 19.77 092 1641 093 16.92 0.93
4 MLP 3-13-1 950 Tang Exponential 19.53 092 16.62 093 1691 0.93
5 MLP 3-11-1 670 Logistic Identity 20.19 091 1791 091 1712 0.91
ANN Predictor Neurons per layer Adjust
variables Input Hidden Output TI SI Al Algorithm
1 AFRI, EVI, GNDVI 3 12 1 0.08 0.08 0.09 BFGS
2 AFRI, EVI, GNDVI 3 9 1 0.10 0.11 0.12 BFGS
3 AFRI, EVI, GNDVI 3 5 1 0.10 0.12 0.13 BFGS
4 AFRI, EVI, GNDVI 3 13 1 0.11 0.13 0.10 BFGS
5 AFRI, EVI, GNDVI 3 7 1 0.13 0.15 0.17 BFGS

ANN = artificial neural network; MLP = Multilayer perceptron; RMSE% = Root Mean Square Error Percentage; R
= correlation between observed and estimated values; TI= Training indices (network definition), SI = Selection
Indices of training stop, Al = Assessment Indices (quality assessment of trained network); BFGS = Broyden-—
Fletcher-Goldfarb—Shannon.

The accuracy of aboveground biomass estimates is a crucial indicator of the model’s
effectiveness. The architecture of ANN-1 (Figure 4) comprises three layers: the input layer
with three neurons representing predictor variables (EVI, AFRI, and GNDVI), a hidden
layer of 12 neurons for data processing activated using a tangential function, and an output
layer representing the variable of interest (AGB) activated with a logistic function.

3.4. Statistical Analysis

The Student’s t-test is a statistical tool used to determine whether there is a significant
difference between the means of two independent samples. In this test, we formulate a null
hypothesis (HO) asserting that there is no difference between the means of the two samples,
and an alternative hypothesis (H1) suggesting that there is a significant difference between
them. Following the t-test, we compute a p-value. If the p-value falls below the chosen
significance level (typically 0.05), it indicates statistical evidence to reject the null hypothesis
in favor of the alternative hypothesis. In simpler terms, this means there is a significant
difference between the means of the observed values compared to the estimated values.
Conversely, if the p-value exceeds the significance level, there is not enough evidence to
reject the null hypothesis, indicating no statistically significant difference between the
observed mean values and the estimated values.

The p-value is a statistical measure that aids in interpreting the results of a hypothesis
test in statistics. It indicates the probability of obtaining a result as extreme or more
extreme than the one observed, assuming the null hypothesis is true. The null hypothesis
typically states that there is no effect or difference between the compared groups, while
the alternative hypothesis suggests the opposite. In short, the p-value provides a way to
quantify how much the results support or refute the null hypothesis.

In this analysis, the application of the Student’s t-test revealed that the calculated
p-value for the selected neural network was greater than the established significance level
(0« =0.05), specifically p = 0.952. This indicates that there is insufficient statistical evidence to
reject the null hypothesis, which shows no differences between the observed and predicted
values by the neural network for the validation plots.
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Figure 3. Observed and estimated aboveground biomass in the study area ((Al) = Training;
(A2) = Testing; (A3) = Validation) and distribution of residuals ((B1) = Training; (B2) = Testing;
(B3) = Validation) for Artificial Neural Network 1 (ANN-1).
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Figure 4. Architecture of ANN-1 selected for the prediction of aboveground biomass for the
study area.

Additionally, the Aggregate Difference (AD) analysis indicated a slight tendency to
overestimate the values predicted by the neural network, with a deviation of —0.1637%.
Nevertheless, these results align with the accuracy of the information obtained during the
ANN training process, confirming its proficiency in providing precise estimates for Above-
ground Biomass (AGB). Consequently, these findings suggest that the ANN-generated
estimates are both accurate and dependable for predicting AGB in areas of biome transition.

3.5. Analyzing the Spatial Distribution of Biomass

Based on the results obtained from the training of the neural networks, we were able
to extend our estimates of AGB across the entire area covered by native vegetation in this
study region. Consequently, the total biomass of the study area, considering the land use
and land cover of native vegetation, was estimated at 109,118,121 tons. The most common
AGB values in the study area were in the range of 0 to 50 t-ha~!, followed by the range of
100 to 150 t-ha™! (Figure 5).
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Figure 5. Spatial distribution of forest biomass is estimated for the Amazon—-Cerrado ecotone zone.
Darker areas indicate higher aboveground biomass, while lighter areas indicate lower biomass.

4. Discussion
4.1. Forest Biomass and Land Use and Land Cover

The amount of aboveground biomass (AGB) varies significantly within native forest
formations in the study area, predominantly ranging between 100 and 150 t-ha~", followed
by classes of 0-50 and 50~100 t-ha~! occupied by savanna and transitional forest formations.
This variation can be attributed to various factors, including climatic, geological, and soil
conditions, as well as distinct previous vegetation disturbances and land use patterns in
the study region [56].

The use of ANNs (Artificial Neural Networks) proved effective in estimating biomass
per unit area while eliminating the basic assumptions of conventional mathematical model-
ing, such as normality and linearity of forest attributes [57]. These attributes often require
various mathematical transformations for traditional modeling, which can result in a loss
of quality and selection of models, leading to biased estimates of the variable of interest.

One hypothesis explaining this relatively low range of total AGB in the study region
is the impact of anthropogenic activities, particularly agriculture, selective logging, fire,
and livestock farming. These disturbances can increase edge effects and forest degradation,
especially when caused by selective logging activities and forest fires [12,58]. Addressing
this requires the definition and implementation of public policies to enforce sustainable
land use management, conservation of natural ecosystems, environmental law enforcement,
climate awareness, and fire prevention measures [59].

The increase in soybean cultivation over the last few decades has had severe impacts
on natural ecosystems and the natural landscape in the study region. These impacts
may directly lead to decreased rainfall, increased land surface temperatures, and soil and
water contamination due to pesticides and chemical fertilizers. Additionally, pastures
cover nearly 16 percent of the study area and can cause significant environmental impacts,
including greenhouse gas emissions and soil and water degradation [60].
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In summary, land use and land cover in the study area comprise a complex landscape
mix of agricultural, livestock, and forestry activities. The potential environmental and social
impacts associated with these activities add complexity to achieving a balance between
economic development and the conservation of natural resources [59,61].

4.2. Selection of Independent Variables (Vegetation Indices)

The AFRI, EVI, and GNDVI indices showed the most significant correlation with
aboveground biomass in our study area. The high observed correlations among vegetation
indices and biomass are likely due to a combination of a broader range of spectral bands
within the electromagnetic spectrum (middle- and near-infrared, red, green, and blue)
required to retrieve these three vegetation indices from Sentinel-2 imagery, compared to
other assessed indices in this analysis. The broader range of spectral bands increases their
sensitivity to capture subtle vegetation variations and changes. Such sensitivity is crucial
when using remotely sensed data, especially in ecotone regions that exhibit high vegetation
variability and complexity.

The significant correlations observed between Green Reflectance (GREEN), as repre-
sented by the GNDVI (Green Normalized Difference Vegetation Index), and biomass in the
study area can be attributed to variations in chlorophyll and anthocyanin content in the
leaves [62]. These factors are closely related to vegetation development and maturity [62].
The Green Vegetation Index (GVI) and the Green Normalized Difference Vegetation Index
(GNDVI), derived from reflectance equations, exhibit stronger correlations with nitrogen
content in forest biomass leaves compared to the Ratio Vegetation Index (RVI) and the
Red Normalized Difference Vegetation Index (RNDVI), indicating a greater sensitivity
to variations in vegetation [63]. The combination of green and infrared bands plays an
important role in aboveground biomass analysis, serving as critical descriptors in this
index and providing dependable and precise information on biomass quantities at specific
locations [64].

The use of the Near-Infrared (NIR) and Shortwave Spectrum (SWIR) bands in calculat-
ing the AFRI index has demonstrated efficiency in monitoring vegetation water content and
dry biomass, particularly in regions with sparse vegetation [65]. Moreover, the AFRI index
showed a stronger correlation with biomass in the study area located within an ecotone
region between forest and savanna.

Commonly used vegetation indices such as NDVI and EVI have been applied world-
wide to assess vegetation health. However, these indices are influenced by various factors,
including terrain topography [66]. Our study showed that the soil adjustment factor
“L” may heavily impact EVI results compared to NDVI, making EVI more sensitive to
topographical conditions. This sensitivity is particularly critical in hilly terrain, where
topographic effects can significantly affect vegetation indices with a simple band-ratio
format, such as NDVI.

The choice of satellites for spectral data collection can influence the accuracy of biomass
estimation. Nevertheless, our analysis found that Sentinel-2 satellite images were suitable
for our study. The authors of [67] reported that the quality of MSI/Sentinel-2 sensor images,
particularly in bands with a 10 m resolution, highlights the utility of this satellite for
vegetation assessment research, especially when compared to aerial sensors with a spatial
resolution of 0.13 m.

4.3. Training the Neural Networks

Our results indicate that the trained Artificial Neural Networks (ANNs) showed a
satisfactory fit and high-accuracy statistics. The correlation coefficient (R) consistently
equaled or exceeded 0.9, and the root mean square estimation (RMSE) errors remained
below 14%. Among the five trained networks, Network 1 outperformed the others with an
R? of 0.94 and an RMSE% of 10.76, making it a promising choice for the intended application.
These findings underscore the feasibility of biomass estimation through remote sensing in
natural forests.
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The use of ANNSs is effective in estimating biomass per unit area and does not require
the basic assumptions of conventional mathematical modeling, such as normality and
linearity of forest attributes [68]. These attributes often require various mathematical
transformations for traditional modeling, which can result in lower model quality and
selection capability, leading to biased and less accurate estimates of the variable of interest.

The authors of [68] also yielded positive results in estimating the components of
total biomass, with an R? of 0.97 and an RMSE% of 25.04. Furthermore, the simulation of
terrain elevation data along ICESat-2 and Landsat satellite profiles demonstrated significant
potential for generating a forest biomass estimation product, achieving an R? of 0.66 [69].

These results align with the findings of our research, highlighting the robust per-
formance of the models developed for tree biomass estimation. To assess the predictive
capacity of the selected Artificial Neural Network, we examined the relationship between
observed and predicted values. When analyzing the distribution of ANN errors, we ob-
served that most errors fell within the —1.5% to —12% and 0% to 10% ranges. Additionally,
errors exceeding the +16% threshold were infrequent. Moreover, it was determined that a
training dataset size of approximately 60 subplots or fewer was sufficient to achieve a good
fit with the linear functional model.

5. Conclusions

Our research findings indicate that the combination of various vegetation indices
integrating different spectral bands, such as EVI, AFRI, and GNDVI, with a Multilayer
Perceptron Artificial Neural Network has led to more efficient and precise estimation
of aboveground biomass in our study area. This approach facilitated the generation of
high-resolution biomass distribution maps and provided a cost-effective and time-saving
alternative to traditional forest inventories. Accurate estimates of forest biomass are crucial
for understanding vegetation dynamics and ecological processes, as well as for formulating
effective forest resource management policies. Additionally, our study results are valuable
for forest biomass monitoring, including the assessment of environmental services and the
formulation of conservation strategies for protected areas and indigenous territories. The
advanced knowledge of forest biomass can also support sustainable forest management
practices and enable the prediction of impacts of land use and land cover changes on forest
biomass. Alternative approaches, such as deep learning and machine learning methods,
could prove effective for estimating aboveground biomass in tropical regions and should
be explored in future research endeavors.
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Abstract: Masson pine (Pinus massoniana Lamb.) is a tree species that is widely distributed throughout
southern China and holds significant economic and ecological value. The main objective of our study
was to assess the effects of thinning on aboveground biomass increments and tree diversity in both the
overstory and understory. Additionally, the underlying factors and mechanisms responsible for driv-
ing changes in biomass increment were analyzed. Four different thinning treatments (control, light
thinning, moderate thinning, and heavy thinning) were implemented in 214 plots (~1800 tree ha~!) in
three Masson pine forests in Hunan Province, China. A robustly designed experiment was used with
over six years of repeated measurements. The differences in biomass increment and tree diversity
among the different treatments were compared using repeated measures ANOVAs. The Mantel
test was used to determine environmental metrics correlated with biomass increments across tree
strata. Structural equation modeling was utilized to explore the multivariate relationships among
site environment, tree diversity, and post-treatment biomass increment. The results indicated that
thinning overall increased biomass increment, the Shannon index, and the Gini index, while decreas-
ing the Dominance index over time. Moderate thinning (25%-35% of trees removed) was found to
promote overstory biomass increment to 9.72 Mg-ha=!-a~! and understory biomass increment to
1.43 Mg-ha=!-a~! six years post-thinning, which is significantly higher than that of other treatments.
Environmental metrics such as light intensity, soil organic matter, and other soil physiochemical
properties were positively correlated with biomass increments, and their effects on the overstory and
understory differed. Structural equation modeling revealed that thinning treatments, environmental
metrics, tree diversity, and their interactions could be the main drivers for biomass increments across
tree strata. Specifically, thinning treatments, light intensity, and tree size diversity (Gini index) had
significant effects on overstory biomass increment, while understory species richness (Shannon index)
and soil organic matter affected understory biomass increment. In conclusion, moderate thinning
is an effective silvicultural treatment for stimulating biomass increments of both the overstory and
understory in Masson pine forests in southern China if a middle period (e.g., six years) is considered.
Some factors, such as species richness, tree size diversity, and environmental metrics (e.g., light and
soil), are suggested for consideration to improve the efficiency of thinning.

Keywords: thinning; biomass increment; tree strata; environmental metrics; tree diversity; Masson
pine forests

1. Introduction

Masson pine (Pinus massoniana Lamb.) covers a total of 1.13 million hectares in China’s
subtropical zone, and it plays key roles in the development of the ecology and society due
to its wide distribution and ability to grow and regenerate naturally [1,2]. Masson pine can
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form mixed conifer forests with companion species, which contributes to vegetation cover,
soil and water conservation, and carbon balance [3]. Several national policies have been
established to maintain the quality and stability of Masson pine forests [4]. However, most
Masson pine forests at our study sites are middle-aged or nearly mature, and the protection
(banning logging) strategy alone may not be sufficient for sustaining ecological service
functions, biodiversity, and productivity, as well as enhancing resistance to disease and
natural disturbances [5]; in such cases, thinning treatment might be warranted. Thinning is
an important silvicultural activity that was initially used for commercial timber production
but is now increasingly used for sustainable forest management [6]. Thinning improves tree
growth and biomass productivity by regulating the growth space and microsite environ-
ment [7,8]. However, its effects in Masson pine forests are far from conclusive, particularly
concerning thinning intensity, community response, and assessment methods [9].

Thinning intensity is an important factor in determining the effectiveness of thinning
treatment. Some studies have reported that thinning tree cover to approximately 40%—60%
can improve overstory biomass in Masson pine forests and other pine forests [2]. However,
others have suggested that thinning intensities should be within 30%—-40%, considering
understory regeneration [10]. If thinning intensity is light, the benefits may be temporary
and primarily affect the overstory rather than the understory. Conversely, excessive thin-
ning can substantially alter environmental conditions, reduce seed sources, and suppress
understory regeneration [11]. In some cases, although moderate thinning is potentially
optimal, the observed effect may be weaker than expected, which can be due to various
factors such as site-specific environmental conditions and follow-up treatments [12,13]. In
light of these findings and the emerging situations regarding the increasing development
potential of Masson pine forests, there is a need for ongoing observations and assessments
of the effectiveness of various thinning intensities [14,15].

Some studies have reported that thinning reduces overstory trees, thus increasing
sunlight availability and providing more water and mineral nutrients for the forest ecosys-
tem [16,17]. These processes can promote the growth of tree height and DBH, alleviate
interspecies competition, and stimulate the biomass increments of both the overstory and
understory [18,19], although on occasions some authors have found that there was no such
response [9,20]. For example, Liu et al. [21] reported that increased sunlight availability
enhances aboveground biomass or productivity for the overstory in pine forests in southern
China while simultaneously increasing underground biomass for the understory. Reports
have indicated that snow disturbances significantly influence tree growth in managed
forests with varying thinning intensities [22]. This influence is primarily reflected across
different forest strata. While the overstory and understory are the most common strata in
Masson pine forests, there is limited research on how their biomass increments relate to
different site-specific environmental metrics.

Furthermore, tree species composition and forest structure are also important for
post-treatment productivity or biomass increment [23,24]. Some studies have suggested
that environmental metrics not only directly affect biomass increment but also indirectly
influence it by shaping the diversity of tree composition and size [25]. This is a complex
process, and we are still unclear about how environmental metrics, tree diversity, and
their interactions affect biomass increment after thinning. The multivariate productivity—
diversity hypothesis [26,27] provides us with insights, as biomass increment is a crucial
component of productivity. This hypothesis has been validated at both the plot and
landscape levels [28,29], but the majority of evidence comes from natural stands [30], with
only a few empirical analyses of managed forests having been conducted to date. Thus, it
is worthwhile to consider the effects of thinning on biomass increment within the context
of this hypothesis when formulating forest management strategies.

Previous studies have utilized meta-analysis methods to assess the impact of thinning
on forest biomass [6,9,16], but their findings varied due to several limitations. First, most
of these meta-analyses have been conducted using data from a single research site, with
little consideration given to situations across multiple sites, limiting their ability to provide
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a comprehensive assessment of the response patterns of post-treatment biomass change.
Second, most studies directly analyze the relationship between site environment and
biomass using sampled data, despite potential issues such as small sample sizes, non-
normal distributions, and autocorrelation. Some studies have shown that utilizing the
Mantel test with similarity matrices could improve the accuracy and interpretability of
correlation analysis, avoiding result biases [28]. Third, most studies have considered the
effects of factors such as thinning intensity, site environment, and species diversity on
post-treatment recovery while ignoring how their interactions affect biomass increment.
A simple emphasis on the effectiveness of a single observed variable may be biased, as it
overlooks the causal relationships among variables, including direct and indirect effects.
This approach fails to comprehensively reveal the underlying mechanisms. Therefore, it is
necessary to conduct further studies on the effects of thinning on biomass increment using
suitable assessment methods.

In this study, we asked the following questions: how does thinning treatment in-
fluence biomass increments of both the overstory and understory over time? What are
the underlying mechanisms of these effects? Our hypotheses are detailed below. (1) The
moderate thinning should have the greatest potential to promote biomass increments and
tree diversity in both the overstory and understory over time. (2) The environmental
metrics such as light availability and soil physiochemical properties would be correlated
with biomass increments, and their effects on the overstory and understory would differ.
(3) Thinning treatments, environmental metrics, tree diversity, and their interactions would
be the main drivers of biomass increments, with the driving mechanisms potentially differ-
ing between the overstory and understory.

2. Materials and Methods
2.1. Site Description

This study utilized three Masson pine sites that were established in Pingjiang, Anhua,
and Huitong in Hunan Province, China (Figure 1; Table 1). These sites experience a humid
subtropical climate with a hot summer, and the average daily temperatures range from
4.2 °Cin January to 30.5 °C in July. The mean annual precipitation is between 1300 and
1800 mm, and 60%—70% of the precipitation falls during the growing season (April to
September). Average daily solar radiation in the growing season is between 14.5 and
16.5 MJ/m?. The soils of the three sites are classified as a mountain yellow-red soil derived
from granite parent material, with an average pH ranging from 4.7 to 5.9. The soil has a
shallow A horizon (approximately 20 cm), but the soil profile extends from 100 cm to more
than 150 cm in depth before reaching fractured granite bedrock.
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Figure 1. Locations of the three study sites in Hunan Province, China.

155



Forests 2024, 15, 1080

Table 1. Site description of the three Masson pine forests in Hunan Province, China.

Site Pingjiang Anhua Huitong
Location 28°25' N, 27°44' N, 26°88' N,
113°10' E 111°58' E 109°73' E
Average annual temperature (°C) 16.8 16.2 17.1
Average annual precipitation (mm) 1450.8 1706.1 1361.2
Average daily solar radiation (M]/ m?) 154 16.3 14.8
Soil organic matter content (g-kgfl) 21.61 24.09 23.74
Elevation (m, a.s.1.) 750 600 650
Aspect SW W SW
Stand age 24 22 22
Overstory density (stems ha™1) 1750 1820 1860
Understory density (stems ha™1) 2280 2150 1975

All sites are artificially seeded Masson pine forests on timber-harvesting patches
that were established in the 1990s. The forests were initially planted at a density of
approximately 2300 stems ha~!. Forest tending was conducted first in 2010 to improve the
natural regeneration and growth of the remaining trees. The stand age ranged from 21 to
24 years (middle-aged). P. massoniana dominated the overstory (>4 m tall and >5 cm
diameter at breast height [DBH]) in the stand, and other tree species such as Sassafras
tzumu (Hemsl.) Hemsl. and S. superba (Schima superba Gardn. et Champ.) were identified.
Understory (<4 m tall) tree species mainly comprised Chinese fir (Cunninghamia lanceolata
(Lamb.) Hook), Cinnamomum camphora, Quercus glauca, and Castanopsis sclerophylla. The
overstory density ranged from 1750 to 1860 stems ha~!, while the understory density
ranged from 1975 to 2280 stems ha~!. At the beginning of the experiment (2016), an
initial field survey was conducted in these sites to determine homogeneity in composition,

structure, and physiography.

2.2. Experimental Design

The experiment was conducted in a completely randomized block design with subsam-
pling. Six blocks (replicates) were established adjacent to each other in reasonably uniform
stand conditions in Pingjiang. Four blocks were established in Anhua and Huitong, respec-
tively. Each block was repeatedly subdivided into four rows of rectangular subsampling
units. Each subsampling unit was randomly assigned four treatment plots (20 m x 20 m):
heavy thinning (HT, 35%—45% of the trees by number were removed), moderate thinning
(MT, 25%-35% of the trees by number were removed), light thinning (LT, 10%—-25% of the
trees by number were removed), and control (CK). A total of 214 plots were established,
including 93 in Pingjiang, 60 in Anhua, and 61 in Huitong. For instance, the schematic
diagram of the experimental treatments in the Pingjiang field trial is shown in Figure 2.

The selective thinning strategy followed the nature-approximating management guide-
lines in the NFA [31], a national management publication aimed at converting even-aged
pine forests into all-sized stands and enhancing forest vigor and quality. To determine
which trees to cut, we first used Voronoi diagrams to partition the nearest-neighbor region
of individual trees [32]; we then established the spatial relationship among trees within
each plot. Trading off these structure indexes at the stand scale by marking individual
trees with potential cutting requirements was an iterative process [33], in which the upper
and lower limits of the residual basal area (according to the treatment assigned to that
plot) were constraints [34]. In practice, priority for cutting was given to dominant trees
that would be expected to damage their neighbors, suppressed trees with exceptionally
poor form, trees with clumpy distributions, dead trees, or trees with minimal ecological
potential. According to previous studies suggesting that the minimum residual basal
area be approximately 15 to 22 m? ha~! for pine forests [35], we determined the residual
basal area for HT (15.17 m2-ha—1), MT (20.48 m?-ha—!), and LT (22.05 m?-ha™'). To reduce
damage to understory individuals, trees were carefully felled using felling machinery so

156



Forests 2024, 15, 1080

that they fell outside of the plots; the portions of the boles inside the perimeter of plots
were removed manually.

Block 1 Block 2 Block 3
HT MT CK LT CK LT HT MT MT HT LT CK
CK HT LT MT MT CK LT HT LT MT CK HT
LT MT CK HT CK HT MT LT CK LT MT HT
MT CK HT LT LT MT HT HT LT CK MT
10'm
«—> — e
20 m Sm 10 m
LT HT MT CK HT CK LT MT CK LT MT
MT LT HT CK CK MT HT LT LT CK HT MT
MT CK LT LT CK MT HT HT LT CK MT
MT CK LT HT MT HT CK LT MT CK HT LT
Block 4 Block 5 Block 6
Operation timeline | i } i 1 i D
2016 2017 2018 2019 2020 2021 2022
iy aln aiy i aln
Construction Survey Survey Survey Survey

Figure 2. A schematic diagram of the experimental treatments in Pingjiang. The experiment has four
types of treatments as follows: 22 heavy thinning (HT), 24 moderate thinning (MT), 24 light thinning
(LT), and 23 control (CK). Unmarked plots are unsuitable for thinning. The site was established in
October 2016. Subsequent surveys were made in August 2017, July 2018, July 2020, and August 2022.

2.3. Field Investigation

In 214 plots, trees were identified, and the density, diameter at breast height, and basal
area were tallied. A total of 189 sampled trees were allocated as evenly as possible among
diameter classes in the four treatments (HT, MT, LT, and CK). After a sample tree was
felled, diameter at breast height and height were measured, and the stem, branches, and
foliage were collected. Materials were dried at 70 °C for at least 72 h or until a constant
dry weight was obtained; they were then added together to obtain the total aboveground
biomass of each tree. Tree metrics were collected one month before and after thinning
(September 2016 and November 2016, respectively) to account for the stand characteristics
of pre- and post-thinning treatments (Table 2). The subsequent surveys were conducted in
August 2017, July 2018, July 2020, and August 2022, corresponding to the years following
the thinning process (years 1, 2, 4, and 6, respectively). F-tests were also used to confirm
the homogeneity of stand characteristics before thinning. We calculated the aboveground
biomass and annual biomass increments using the following method:

OBI = AGB,(1) — AGB,(r_1 1)
UBI = AGB,(1) — AGB,(1_1) @)
AGB, = f(dbh,h) x D 3)
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AGB, = f(d,h) x D )

where OBI and UBI are the annual biomass increments (Mg-ha=!-a~!) in the overstory and
understory, respectively. T is the current survey year and T — 1 is the previous survey
year. AGB, and AGB, are the tree aboveground biomass in the overstory and understory,
respectively. f is the tree allometric growth model (Table S1) used to calculate individual
tree biomass (kg), dbh is tree diameter at breast height (cm), /1 is tree height (m), 4 is ground
diameter (cm), and D is stand density (N-ha™1).

Stand environment metrics were collected in July and August 2022 (post-thinning
year 6). In each plot, the light intensity was measured using black thermopile-based
pyranometers (LP02; Hukseflux, Delft, The Netherlands), and soil moisture was measured
using thermistors (105T; Campbell, Logan, UT, USA). The light intensity was measured at
15 min intervals, and soil moisture was measured every 30 min, with hourly averages
recorded, from 8:00 to 18:00 h under sunny conditions. After removing the upper litter
and organic layer, soil samples (0-20 cm depth) were randomly collected with an auger
at nine points within each plot. Soil samples were then processed through 2 mm mesh
sieves, pooled as mixed samples, and stored in a refrigerator at 4 °C for each plot. Soil
pH was determined in a 1:2.5 soil/ water suspension. Soil organic matter was determined
using the potassium dichromate volumetric method. Soil total nitrogen (TN) was measured
using the Kjeldahl method, and total phosphorous (TP) and total potassium (TK) were
measured using the nitrification method. Available nitrogen (AN) was extracted from
10 g of fresh soil sample using 50 mL of 2 M KCL solution by shaking at 200 rpm for
1 h; it was then quantified using colorimetric methods. Available phosphorous (AP)
was extracted by 0.5 M NaHCOj at pH 8.5 (Olsen method) and then was determined by
spectrophotometry. Available potassium (AK) was determined using a flame photometer
(FP6430; Inesa, Shanghai, China). More detailed information on the extraction procedures for
measurements of soil physicochemical characteristics is provided in previous studies [36,37].
According to our field investigation and flora records, tree strata were analyzed in two
height categories: overstory (>4 m tall and >5 cm diameter at breast height [DBH]) and
understory (<4 m). Tree metrics and environmental metrics in both the overstory and
understory were measured six years post-thinning (Table 3).

2.4. Data Analyses
2.4.1. Biomass Increment and Tree Diversity

Replicate (e.g., a thinned plot or reference area within a block) means were consid-
ered random subsamples within each block. Repeated measures ANOVA was used to
test the effects of treatment intensity, survey year, and their interactions on the variables,
including biomass increment, Shannon index, Dominance index, and Gini index across
tree strata. The biomass increments of plots were the absolute difference of replicated
biomass means between the post-thinning initial value and the value in subsequent survey
years (years 1, 2, 4, and 6). Shannon-Wiener’s index (hereafter referred to as the Shannon
index) was used to measure species richness. The Baker-Parker dominance index (hereafter
referred to as the Dominance index) was used to measure the ratio of the basal area of
the most abundant species to the total basal area per hectare [38]. Tree size diversity was
characterized using the Gini index, which was used to estimate the diameter distribution;
it is usually conceptualized as the area between the Lorenz curve and the diagonal line
of absolute equality [39]. These variables were log-transformed to meet requirements for
the normalization of residuals and homogeneity of variances. Post hoc pairwise compar-
isons (Bonferroni-corrected) were made when group differences were detected. Simple
main-effects analysis was used when a significant interaction between thinning intensity
and survey year was detected. p-values < 0.05 were regarded as statistically significant.
Statistical analyses were performed using R version 4.2.0 [40]. The R “nlme” package was
used for ANOVAs, and the “emmeans” package [41] was used for post hoc and simple
main-effects tests.
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Table 3. Biomass, tree metrics of overstory and understory, and environment metrics (means (standard
error [se])) in post-thinning year 6 in Masson pine forests in Hunan, China.

HT MT LT CK
Mean SE Mean SE Mean SE Mean SE

Overstory
Aboveground biomass

(Mg ha ) 74.79 1.57 91.18 1.48 93.59 151 107.48 1.49

(N]?;}f;a_sf') increased 37.1 0.78 47.61 0.77 44.61 0.72 44.02 0.62

(N]?;?}rf;afﬁ :}C]r)emem 7.79 0.16 9.73 0.16 7.71 0.12 7.32 0.11
Shannon index 0.89 0.02 1.05 0.02 0.82 0.01 0.69 0.01
Dominance index 0.58 0.01 0.51 0.01 0.49 0.01 0.62 0.01
Gini index 0.55 0.01 0.57 0.01 0.43 0.01 0.36 0.01

Understory

(MA;‘;I‘;?%;"“M biomass 6.87 013 7.31 0.12 5.12 0.09 451 0.07

a\f;’}rgisf) increased 421 0.09 4.63 0.07 245 0.04 1.85 0.03

(N'f‘;}?;a_sﬁ :lclr)eme“t 122 0.02 141 0.02 0.43 0.01 0.32 0.00
Shannon index 1.69 0.03 1.78 0.03 1.51 0.02 0.94 0.01
Dominance index 0.28 0.01 0.21 0.00 0.26 0.00 0.45 0.01
Gini index 0.44 0.01 0.45 0.01 0.43 0.01 0.42 0.01
Environment

(N%]‘i‘?;‘;eﬂs)“y 8.03 0.16 6.45 0.11 428 0.06 3.5 0.05
Soil moisture (%) 30.5 0.62 35.43 0.56 35.25 0.57 37.56 0.54
pH 5.03 0.11 5.18 0.09 5.15 0.09 5.06 0.07
Organic matter (g-kg ) 40.43 0.82 37.83 0.62 28.87 0.47 2258 0.32
Total N (g-kg?) 2.32 0.06 248 0.03 1.97 0.03 1.57 0.02
Total P (g-kg ) 0.37 0.01 0.33 0.01 0.36 0.01 0.36 0.01
Total K (g-kg ) 7.31 0.15 7.01 0.11 9.87 0.15 8.0 0.12
Available N (mg-kg ) 82.56 1.74 84.77 135 7123 1.16 61.09 0.87
Available P (mg-kg 1) 3.19 0.07 3.24 0.05 3.96 0.07 2.06 0.03
Available K (mg-kg 1) 4053 0.84 4342 0.71 4161 0.68 57.95 0.83

2.4.2. Relationships between Biomass Increment and Environmental Metrics

To assess relationships between post-thinning biomass increment and environmental met-
rics, two dissimilarity matrices (i.e., plot-biomass matrix and plot-environment matrix) were
prepared and examined using Mantel tests [28]. In the plot-biomass matrix, overstory biomass
increment (OBI) and understory biomass increment (UBI) were used as response variables
to construct row vectors for each plot: [OBIy;, OBIy;, OBI4;, OBl UBI4;, UBIy;, UBI4;, UBl4;],
where subscripts 1, 2, 4, and 6 indicate the first, second, fourth, and sixth years after thinning,
and i indicates the ith plot. Similarly, the ten environmental metrics described in Table 3
were used as explanatory variables to form a plot-environment matrix with i rows and 10
columns. All variables were standardized using z-score normalization. The significance of the
normalized Mantel coefficient was calculated using a two-tailed Monte Carlo permutation test
with 10,000 permutations in the R “vegan” package [42]. A significant Mantel test (p < 0.05)
indicates a linear correlation between the biomass dissimilarity matrix and the environment
dissimilarity matrix, suggesting that the differences in the environment may be an important
factor influencing the differences in biomass among different plots. Correlations between
environmental metrics were calculated using Pearson’s correlation coefficients.

2.4.3. Multivariate Statistical Analysis

Structural equation modeling (SEM) [43] was used to estimate the multivariate rela-
tionship in post-thinning forests and reveal the relative contributions of the explanatory
variables to biomass increments across tree strata. The explanatory variables included
thinning treatments, Shannon index, Dominance index, and Gini index for the overstory
and understory, as well as significant environmental variables according to Mantel tests.
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The initial multivariate model was established based on the productivity—diversity hypoth-
esis [25,44]. An SEM path diagram was used to characterize the complex relationships
among various explanatory variables and biomass increment. The path diagram was
iteratively optimized, and pathways were added according to the residual correlations,
or nonsignificant pathways were eliminated unless the pathways were biologically infor-
mative. Model fitting and evaluation were carried out based on the chi-square value (x?,
p > 0.05), goodness-of-fit index (GFI > 0.9), and root square mean error of approximation
(RMSEA < 0.05) [45]. The maximum likelihood method was used to estimate the coefficients
of each edge in the path graph. The standardized path coefficients of the SEM reflect the
direct, indirect, or total effects of explanatory variables on biomass increment. The SEM
tests were performed in the R “lavaan” package [46].

3. Results
3.1. Effect of Thinning on Tree Biomass and Diversity

Thinning resulted in a lower aboveground biomass (AGB) of the overstory compared
to the control plots (CK), but this difference gradually diminished with years after thinning
(Figure 3a). Conversely, the understory AGB exhibited the opposite trend (Figure 3b). For
example, in year 6, the mean overstory AGB in thinned plots was about 71%-87% of that in
the CK, while the mean understory AGB was approximately 113%-162% higher in the CK.

Furthermore, tree growth changed significantly in biomass increment, Shannon index,
Dominance index, and Gini index over time (Figure 4 and Table 4). The overstory biomass
increment followed a temporal dynamic reflective of regeneration development, with
the maximum mean value occurring in the CK during the early years and in thinned
plots during the later years (Figure 4a and Table 4). For example, the maximum mean
overstory biomass increment was observed in the CK at 7.03 Mg-ha~!-a~! in year 1,
while it was observed under MT at 9.72 Mg-ha~!-a~! in year 6. The understory biomass
increment consistently remained higher than those in the CK, with this advantage becoming
increasingly apparent over time (Figure 4b). The Shannon index in the two strata showed
similar biomass increment patterns over time, with thinned plots gradually exceeding the
CK (Figure 4c,d). Furthermore, thinning generally reduces the Dominance index for both
overstory and understory (Figure 4e,f) while also having a positive effect on the Gini index
for the overstory (Figure 4g).
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Figure 3. The relative ratios of aboveground biomass for both the (a) overstory and (b) understory
during the post-thinning years compared to the CK (represented by the dashed line).
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Table 4. p-values from full model analysis for biomass increment, Shannon index, Dominance index,
and Gini index by strata class in Masson pine forests in Hunan, China. Significant values (<0.05) are
in bold.

Biomass

Strata Class Effect Shannon Dominance

Increment

Gini

Overstory

Thinning <0.001 <0.001 0.002
Year <0.001 <0.001 0.007
Thinning x Year <0.001 <0.001 <0.001
Thinning <0.001 <0.001 <0.001

Understory Year <0.001 <0.001 <0.001

Thinning x Year <0.001 <0.001 0.003

<0.001
0.005
0.010
0.320

<0.001
0.275

Because thinning and thinning x survey year were significant in most models of biomass
increments and tree diversity for both the overstory and understory (Table 4), subsequent
models were run by year to isolate the effects of thinning (Table 5). Thinning significantly
increased biomass increments and the Shannon index for overstory and understory classes
in later years (Figure 4 and Table 5). Specially, thinning initially reduced overstory biomass
increment, but in later years, it exceeded that of the CK (p < 0.001 pairwise comparison). Simi-
larly, understory biomass increment averaged 1.21 Mg-ha=!-a~! in HT and 1.43 Mg-ha—!-a~!
in MT in year 6, both significantly higher than the 0.32 Mg-ha—!-a~! observed in the CK
(p < 0.001 pairwise comparison). Thinning significantly increased the overstory Shannon in-
dex compared to the CK since year 4 (p < 0.001 pairwise comparison), peaking at a maximum
mean value of 1.05 under MT in year 6, while their indices were similar in earlier years. The
understory Shannon index was significantly different between various thinning treatments
and the CK during post-thinning years (p < 0.001 pairwise comparison).

Thinning reduced the Dominance index for both the overstory and understory over
time. For instance, the overstory Dominance index continued to decrease since the treat-
ment, becoming significantly lower than the CK since year 4 (p < 0.001 pairwise compari-
son), reaching its minimum under LT (0.47) in year 6. Additionally, thinning significantly
increased the Gini index for the overstory, with values notably higher than those of the CK
during the post-thinning years (p < 0.001 pairwise comparison). No significant differences
were observed in the understory Gini index.

Table 5. p-values from thinning intensity submodel analysis and overall means (standard error [se]) for
biomass increment (Mg-ha~'), Shannon index, Dominance index, and Gini index by survey year and
stratum class in Masson pine forests in Hunan, China. Significant values (<0.05) are in bold.

Stratum
Class

Biomass Increment Shannon Dominance

Gini

Year
Mean Mean Mean
(se) p-Value (se) p-Value (se)

p-Value p-Value

Mean
(se)

Overstory

5.46 0.63 0.68
1 0.001 (0.09) 0.255 (0.02) 0.424 (0.02) 0.001

6.35 0.69 0.63
2 0.001 (0.13) 0.301 (0.01) 0.203 (0.01) 0.001

7.92 0.75 0.57
4 0.001 (0.14) 0.011 (0.02) 0.001 (0.02) 0.001

8.09 0.86 0.54
6 0.001 (0.16) 0.001 (0.02) 0.001 (0.02) 0.001

0.52
(0.02)
0.49
(0.01)
0.48
(0.01)
0.46
(0.01)
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Table 5. Cont.

Biomass Increment Shannon Dominance Gini
Stratum Year
Class p-Value 1\:[::)“ p-Value I\:I::)n p-Value N([:ea)n p-Value N([:ea)n
0.32 1.05 0.46 0.33
1 0.697 (0.01) 0.001 0.02) 0.085 (0.01) 0.834 (0.01)
0.43 1.21 0.36 0.35
Understory 2 0.089 (0.01) 0.001 (0.02) 0.001 0.01) 0.06 0.02)
0.52 1.36 0.32 0.39
4 0.001 (0.01) 0.001 (0.03) 0.001 (0.01) 0.068 (0.01)
0.84 1.51 0.29 0.43
6 0.001 (0.02) 0.001 (0.03) 0.001 (0.01) 0.726 (0.02)
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