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Robertas Damaševičius and Rytis Maskeliūnas
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Preface

A fundamental aspect of contemporary forest science is the assessment and prediction of forest

biomass. This provides a basis for understanding, monitoring, and managing carbon stocks, forest

productivity, and ecosystem resilience. As biomass varies significantly depending on species, stand

structure, ecological gradient, and site conditions, robust models are essential for accurately capturing

this natural diversity.

Biomass modelling relies on an integrated framework supported by field measurements

(including destructive sampling), forest inventory data, remote sensing technologies, vegetation

indices, and complementary environmental datasets. The rapid advancement of data science and

artificial intelligence has transformed the field of biomass modelling. Machine learning, deep

learning, and artificial neural networks are increasingly being used to develop biomass models and

improve predictive performance at different spatial and temporal scales.

This reprint brings together a collection of scientific contributions that provide a comprehensive

overview of biomass estimation methods and their practical applications. Topics covered include

tree-level and stand-level modelling, methodological advances, integration with remote sensing

data, and decision-support applications in forest and environmental management. The aim is to

provide readers with a consolidated reference and an up-to-date set of relevant contributions for those

interested in advancing their knowledge of biomass models. These advancements are essential for

evaluating forest management strategies, estimating carbon sequestration potential, and supporting

broader assessments of ecosystem services.

Ana Cristina Gonçalves and Teresa Fidalgo Fonseca

Guest Editors
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Article

Application of Machine Learning for Aboveground Biomass
Modeling in Tropical and Temperate Forests from Airborne
Hyperspectral Imagery

Patrick Osei Darko 1, Samy Metari 2, J. Pablo Arroyo-Mora 3, Matthew E. Fagan 4 and Margaret Kalacska 1,*

1 Applied Remote Sensing Laboratory, Department of Geography, McGill University,
Montréal, QC H3A 0B9, Canada; patrick.oseidarko@mail.mcgill.ca

2 Automotive and Surface Transportation, National Research Council of Canada,
Ottawa, ON K1A 0R6, Canada; samy.metari@nrc-cnrc.gc.ca

3 Flight Research Laboratory, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada;
juanpablo.arroyo-mora@nrc-cnrc.gc.ca

4 Department of Geography and Environmental Systems, University of Maryland Baltimore County,
Baltimore, MD 21250, USA; mfagan@umbc.edu

* Correspondence: margaret.kalacska@mcgill.ca

Abstract: Accurate operational methods used to measure, verify, and report changes in
biomass at large spatial scales are required to support conservation initiatives. In this
study, we demonstrate that machine learning can be used to model aboveground biomass
(AGB) in both tropical and temperate forest ecosystems when provided with a sufficiently
large training dataset. Using wavelet-transformed airborne hyperspectral imagery, we
trained a shallow neural network (SNN) to model AGB. An existing global AGB map
developed as part of the European Space Agency’s DUE GlobBiomass project served as
the training data for all study sites. At the temperate site, we also trained the model on
airborne-LiDAR-derived AGB. In comparison, for all study sites, we also trained a separate
deep convolutional neural network (3D-CNN) with the hyperspectral imagery. Our results
show that extracting both spatial and spectral features with the 3D-CNN produced the
lowest RMSE across all study sites. For example, at the tropical forest site the Tortuguero
conservation area, with the 3D-CNN, an RMSE of 21.12 Mg/ha (R2 of 0.94) was reached in
comparison to the SNN model, which had an RMSE of 43.47 Mg/ha (R2 0.72), accounting
for a ~50% reduction in prediction uncertainty. The 3D-CNN models developed for the
other tropical and temperate sites produced similar results, with a range in RMSE of
13.5 Mg/ha–31.18 Mg/ha. In the future, as sufficiently large field-based datasets become
available (e.g., the national forest inventory), a 3D-CNN approach could help to reduce the
uncertainty between hyperspectral reflectance and forest biomass estimates across tropical
and temperate bioclimatic domains.

Keywords: convolutional neural network; REDD+; wavelet scattering; continuous wavelet
transform; deep learning; spectra-spatial feature extraction

1. Introduction

Forests are globally important ecosystems that play critical roles in maintaining the
carbon balance of our planet through a dynamic cycle (e.g., growth, decay, disturbance, and
succession), storing and releasing carbon, and mitigating climate change [1,2]. In recent
years, international efforts in environmental conservation, like the United Nations’ initiative
REDD+ program (Reducing Emissions from Deforestation and Forest Degradation) [3,4],

Forests 2025, 16, 477 https://doi.org/10.3390/f16030477
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have focused on initiatives in developing countries. The REDD+ program serves as a
global forest governance system to help mitigate anthropogenic disturbance of forests
at multiple spatial scales. Since its inception, the REDD+ initiative has sparked global
discussions on necessary actions to help minimize the impacts of deforestation in tropical
forests [4]. Thus, periodic mapping and monitoring of aboveground biomass (AGB) have
become increasingly important and have been viewed as key initiatives to support REDD+
and broader forest conservation goals [5]. Similarly, in Canada, the government has a
responsibility to maintain national forest inventory and to help meet international and
countrywide reporting requirements on the state of forest resources [6]. The Canadian
government has committed to forest carbon accounting and modeling at the national
level to monitor the periodic changes in forests and their impact on climate change. This
commitment is evidenced in the implementation of initiatives such as Canada’s National
Forest Carbon Monitoring, Accounting and Reporting System (NFCMARS) [7].

A major challenge in implementing the REDD+, NFCMARS, and similar conservation
initiatives is the reliable quantification of AGB at a large spatial scale (e.g., ecosystem or
country levels). The traditional methods for quantifying AGB involve direct (destructive)
and indirect (non-destructive) sampling approaches. While direct sampling involves felling
trees and weighing them to determine their mass, indirect sampling relies on in situ
measurements of the physical and structural parameters of tree stands to estimate AGB
using previously determined allometric equations [8–10]. However, relying solely on field
methods is limited and laborious, especially when capturing multitemporal changes in
biodiversity across large landscapes [11]. Operational methods that can be used to measure,
verify, and report changes at the landscape scale are still required to support conservation
initiatives (such as REDD+) and mitigate global forest loss accurately and reliably [12].

Empirical models (e.g., parametric and nonparametric regression) that combine in
situ measurements with spectral and other information from active and passive remote
sensing systems have shown promising results in estimating AGB [13–16]. Remote sensing
techniques are used to map landscape-scale variability in forest AGB across environmen-
tal gradients, thereby serving as a cost- and time-saving alternative [17–19]. Due to the
absence of a standardized remote-sensing-based method for estimating AGB, researchers
have prioritized efforts towards reducing uncertainties in AGB prediction [10]. It has been
reported that, during AGB modeling, the size of the training sample does not necessarily
correlate with the prediction accuracy. Instead, the modeling approach and sensor type
employed play significant roles in reducing uncertainties of AGB prediction [20]. Addition-
ally, the sample size effect on AGB modeling accuracy is mainly dependent on the method
adopted [21] and possible sources of spatial variability of the dependent variable [22]. In
recent years, the use of different remote sensing data from multispectral and hyperspectral
sensors, coupled with machine learning methods, has gained popularity in AGB modeling
in support of carbon budget accounting [13,23,24]. Unlike multispectral data, hyperspectral
sensors collect hundreds of narrow contiguous bands, which can be related to biophysical
parameters such as leaf area index, crown volume, AGB, and foliar chemistry [25–27]. With
this amount of information, it is possible to conduct predictive modeling of AGB across
various spatiotemporal scales and bioclimatic conditions [23,28,29].

Considering the recent advancements in remote sensing technologies, it has become
possible to integrate optical imagery with other sensor types, such as LiDAR and synthetic
aperture radar (SAR), to improve the accuracy of AGB estimation [15]. For instance, studies
conducted by [30,31] demonstrate that combining optical and SAR data improves AGB
estimation accuracy compared to using either data source alone. References [32,33] re-
inforced this idea by showing that data integration combining optical, LiDAR, and SAR
data achieved the best performance in AGB estimation. Moreover, different predictive
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modeling approaches have been applied to hyperspectral imagery (HSI) to harness the
wealth of information for AGB estimation [15,29,34]. Parametric methods, such as linear
regression relating spectral data with AGB, have been utilized extensively in the literature.
Machine-learning-based methods (non-parametric), such as random forest, support vector
machines, and artificial neural networks, as well as parametric methods, such as partial
least square regression and allometric equations, have been applied to extract features
from both LiDAR and optical imagery across tropical and temperate forests, as well as
other ecosystems [19,35–40]. The results from these studies suggest that the use of spectral
features alone results in less robust estimates of AGB than the use of approaches comple-
mented by datasets from other sensors (e.g., LiDAR) [35,38]. However, in the absence of
LiDAR, a combination of spectral and spatial features can help to improve the accuracy
of AGB prediction, especially in structurally simple systems such as pine forests [16], but
requires more study with more advanced methods if it is to be applied to a variety of
structurally complex forests such as tropical and temperate forests [41].

Advanced analytical methods, such as wavelet decompositions and deep convolu-
tional neural networks (3D-CNN), have shown promise in extracting spectral and spatial
features for AGB prediction [42]. The use of advanced analytical methods such as SNN and
3D-CNN to extract spectral and spectral–spatial features, respectively, from HSI for AGB
modeling has been less explored in the literature. While the use of CNN for hyperspectral
image classification and target detection applications have gained popularity [43–47], new
innovative modeling approaches are needed to reduce uncertainties in AGB estimates
across multiple spatial scales, supporting conservation initiatives such as REDD+ and
NFCMARS. However, very few studies have explored the utility of these approaches for
AGB modeling using HSI in tropical and temperate forest ecosystems. Our study thus
provides valuable insights into large-scale AGB modeling, demonstrating the potential of
HSI and machine learning, specifically wavelet-based shallow neural networks and deep
convolutional neural networks, for AGB estimation.

Moreover, the acquisition of very large training sets needed for deep learning appli-
cations to improve model performance and generalizability and to prevent overfitting is
generally infeasible by field inventories [48–50]. The primary objective of this study is to
investigate the utility of airborne HSI together with sufficiently large training datasets for
modeling AGB using the shallow neural network (SNN) and 3D-CNN across different
tropical and temperate forests in Costa Rica and Canada. Additionally, this study aims
to assess and compare the effectiveness of wavelet decomposition, SNN, and 3D-CNN
in predicting AGB from airborne HSI. Consequently, we demonstrate the utility of these
methods as novel approaches to reduce the uncertainty between reflectance and forest
AGB estimates across tropical and temperate bioclimatic domains. When a large training
set is available, the methodology and findings from this study are expected to offer a
robust foundation for future advancements in machine-learning-based approaches to AGB
modeling in both tropical and temperate forest ecosystems.

2. Materials and Methods

2.1. Study Areas

Our study was carried out in four conservation areas in Costa Rica and one in Canada,
with a combined spatial area of approximately 176,332 ha (Table 1). The conservation areas
in Costa Rica can be classified as tropical wet or moist forests, according to Holdridge
Life Zones [51,52]. The forest in Mont Saint Bruno (MSB) National Park is classified as a
predominantly deciduous, northern temperate forest [53].

3
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Table 1. Characteristics of the tropical and temperate forest ecosystems where hyperspectral imaging
data were acquired for this study in Costa Rica and Canada. The elevation presented is the mean
with one standard deviation.

Region of Interest Conservation Area Forest Type
Precipitation

(mm/Year)/Elevation (m)
Total Area (ha) Total Flight Lines

ACCVC Area de Conservacion Cordillera
Volcanica Central Tropical wet 4000–8000/206 ± 182 50,251 32

ACHAN Area de Conservacion
Huetar Norte Premontane wet 4000–8000/117 ± 44 11,989 5

ACOSA Area de Conservacion Osa Tropical wet 4000–8000/100 ± 119 67,959 16

ACTO Area de Conservacion Tortuguero Tropical wet 4000–8000/41 ± 39 45,177 15

MSB Mont Saint Bruno National Park Temperate 50–1300/12 ± 9 990 2

Total 176,336 74

2.2. Hyperspectral Imagery

Airborne HSI was acquired in Costa Rica for the Mission Airborne Carbon 2013
(MAC13) project in April 2013 with two pushbroom systems, the Compact Airborne
Spectrographic Imager (CASI-1500), hereafter referred to as CASI, and the Shortwave
Airborne Spectrographic Imager (SASI-644), hereafter referred to as SASI [28]. Table 2,
Tables S1 and S2 describe the sensor characteristics and acquisition parameters of each
area. While the CASI sensor records data in the visible and near-infrared portions of the
reflective electromagnetic spectrum (375 nm–1050 nm) in up to 288 bands, the SASI records
the shortwave infrared (SWIR) region of the electromagnetic spectrum from 883 nm to the
2523 nm in 160 bands. For the flight lines used here, the CASI data were summed spectrally
on-chip, resulting in 199 bands.

Table 2. Characteristics of the CASI and SASI sensors employed for the MAC13 and CABO projects’
data acquisition. The SASI-644 was used for MAC13 which the SASI-640 was used for CABO.

Sensor Characteristics CASI-1500 SASI-644 SASI-600

Field of view (◦) 39.9 39.7 39.7
No. of across-track pixels 1493 640 600
No. of spectral channels 288 (max) (programmable) 160 (non-programmable) 100 (non-programmable)

Spectral range (nm) 375–1050 883–2523 957–2442
Spectral resolution (nm) 3.2 nm 16 nm at 883 nm and 12 nm at 2523 15 nm

Through the Canadian Airborne Biodiversity Observatory (CABO) in July 2022, the
same CASI, along with a newer SASI-600 SWIR system (Figure 1, Tables S1 and S2), were
deployed. This newer SASI has two distinct detectors covering the right and left halves of
the flight line, recording spectral information over 100 spectral channels (957–2442 nm).

Both the MAC13 and CABO datasets underwent standard preprocessing routines
(Figure S1), including spectroradiometric calibration and geocorrection, using software
from the sensor manufacturer, as described in [54–57]. Atmospheric compensation and
topographic and BRDF correction were conducted using the Atmospheric/Topographic
Correction for Airborne Imagery (ATCOR 4) program (version 7.3.0 2020) (ReSe Appli-
cations GmbH, Wil, Switzerland) following the steps described by [55,56,58]. During
geocorrection, the final reflectance product was resampled to 2.5 m pixel size for the
MAC13 data and 1 m pixel size for the CABO dataset.

Following the fusion workflow outlined in [59], full range (VINIR–SWIR) reflectance
products were generated for all of the study areas. Next, the HSI was spatially resampled
to 30 m in ENVI v.5.6.1 (NV5 Geospatial, Broomfield, CO, USA). Subsequently, as de-
scribed by [56], for the fused imagery, wavelength ranges < 400 nm in the visible spectrum,
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as well as atmospheric water absorption (i.e., wavelength ranges of 1367–1492 nm and
1800–2200 nm) in the SWIR, were excluded from the analysis.

Figure 1. RGB composite showing the areas selected for the study in Costa Rica, (a) ACCVC,
(b) ACHAN, (c) ACOSA, (d)ACTO-1, (e) ACTO-2, and (f) MSB in Canada. The map produced is a
composite of red (650 nm), green (550 nm), and blue (450 nm) wavelengths. The holes in the imagery
correspond to clouds that have been masked out.

2.3. Training and Field Data

Considering the large training data requirements for machine learning models, in
this study, we used an existing AGB dataset as the predominant source of training data
for all sites (Section 2.3.1). This training data requirement, more than what is currently
available from field data, is necessary for deep learning approaches such as CNNs to avoid
overfitting and poor model generalization [49]. Separately, for MSB, we also used airborne
LiDAR data for training. Due to their relatively small sample size, field data (Section 2.3.3)
were used as a separate validation dataset for our results. Consequently, 2000 virtual plots,
each measuring 100 m × 100 m and collectively representing approximately 12% of the total
image area, were randomly selected from across the boundary of the ACTO-1 experimental
site for training, validation, and testing (Figure S2). The size of these polygons matched the
spatial resolution of the global AGB dataset.

2.3.1. Global Above Ground Biomass Map (Tropical and Temperate)

The Global Aboveground Biomass (GAGB) map [60] was used as the primary source
of AGB training data for both the tropical and temperate forest sites. This global AGB map
was produced for the year 2010 using a combination of C-band synthetic aperture radar data
from Sentinel-1 and L-band ALOS-2 in conjunction with some multispectral datasets. It has

5
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a spatial resolution of 100 m [60,61]. The GAGB accuracy was assessed to be 58.6 Mg/ha
and 44.4 Mg/ha overall RMSE for tropical and temperate forests, respectively [62].

2.3.2. Airborne LiDAR (Temperate Forest)

This study employed discrete multi-return airborne LiDAR previously acquired for
the Montérégie region of Quebec, Canada, for the provincial government [63]. The LiDAR
data have a point density of approximately 2 points per square meter. The LiDAR point
cloud underwent an initial segmentation process to distinguish ground and non-ground
points in MATLAB v2023b (Mathworks, Nattick, MA, USA). Subsequently, normalization
of the non-ground points was conducted, employing the ground points as a reference before
calculating LiDAR metrics such as the 7th decile. To relate the LiDAR metrics to AGB and
generate a second independent training dataset, we selected the northern hardwood-mixed
wood/deciduous forest model described by [64]. This model relates 7th decile LiDAR
height to biomass derived from ground inventory plots to estimate AGB with a reported
R2 of 0.73 (RMSE of 20.6 Mg/ha).

2.3.3. Field Data

As verification of the applicability of the GAGB dataset, a comparison with indepen-
dent field data was made for the ACTO-1 conservation area (the least cloudy area from
the Costa Rican HSI—Figure 1), and the MSB site in Canada. For ACTO-1, an existing
geographic information system (GIS) geodatabase with forest inventory information from
Costa Rica’s Natural Forest Management Plans (NFMP) [65] was used. To account for
total AGB within a plot, census and tree inventory data from private land holdings were
extracted from this database. The census includes trees with a diameter at breast height
(DBH) greater than or equal to 60 cm, while the tree inventory data includes all trees in
0.3 ha plots greater than or equal to 30 cm (see [52,65] for details). The polygons of the
parcel boundaries were cleaned to avoid duplications, overlaps, and to correct the topology.
Parcels with forest loss between the date of the inventory and April 2013 (i.e., acquisition of
the HSI data) were also removed. A total of 34 parcels ranging in area from 5 ha to 312 ha
remained after data cleaning and quality assurance checks. For these, tree-level AGB was
calculated with Equation (1) for the census data using the Brown Equation for tropical wet
forests [66]. The estimated biomass for the inventory was then extrapolated to the farm
level and added to the census biomass.

Y = 21.297 − 6.953 (D) + 0.740 (D2) (1)

where D is the DBH.
For MSB, field inventory data from the CABO repository [67] were used for the

estimation of AGB. Fifteen field plots (30 m × 30 m) with a minimum of 30 individual trees
were inventoried in 2019. For each plot, measurements of every tree within a 15 m radius
from a precisely georeferenced and permanently marked plot center were conducted. Every
tree with a DBH of <9 cm, whose canopy is visible from above, and all trees with a DBH
of ≥9 cm were measured, including the inventory of their height and canopy dimensions
using a T3 Transponder and LaserGeo (Haglöf, Sweden AB, Långsele, Sweden) instruments.
Each tree was identified to the species level, and a canopy dominance value (dominant,
codominant, intermediate, or suppressed) was assigned. To estimate AGB, the trees marked
as dominant and codominant were selected, since they are the trees whose canopies are
readily mapped by remote sensing. The methods outlined in [68,69] were used to calculate
the AGB for each tree stand, and the results were aggregated to the plot level.
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2.4. Machine Learning Model Development and Evaluation

To compare the output of different machine learning approaches and wavelet transfor-
mations, the ACTO-1 conservation area was selected as a proof-of-concept test site. The
model type with the lowest RMSE was then independently developed for the remaining
tropical forest sites and MSB. As summarized in Figure 2, three types of wavelet trans-
formations (i.e., continuous wavelet transform—CWT, discrete wavelet transform—DWT,
and wavelet scattering transform—WST) were tested along with two neural networks (i.e.,
shallow neural networks—SNN and 3D deep convolutional neural networks—3D-CNN).
The objective is to compare the performance of these two distinct methods—wavelet trans-
forms combined with SNN and 3D-CNN. As described below, the first method utilizes
wavelet coefficients at different scales as features, which are then used to train the SNN.
This approach leverages the multiresolution capabilities of wavelets and the simplicity
of shallow networks, ensuring computational efficiency for smaller datasets. The second
method directly inputs spectral images into a 3D-CNN model, treating each pixel as a 3D
data cube with multiple spectral bands. The 3D-CNN extracts spatial and spectral features
by analyzing data across three dimensions, making it highly effective for complex datasets.
A brief description of these methods is presented below.
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Figure 2. A flow chart summarizing the proposed methods adopted for AGB modeling from HSI. In
this figure, HSI patches refer to the plots extracted from the HSI. The numbers 1–3 break the workflow
into three main parts with 1. SNN, 2. Deep Learning and 3. Field Validation.

2.4.1. Wavelet Decomposition

A wavelet is a waveform of limited duration used to decompose a signal (e.g.,
spectrum) into shifted and scaled representations of the original waveform (i.e., the
mother wavelet), which is equivalent to increasing levels of spectral details or radiant
frequencies [70]. Wavelet decomposition permits the simultaneous analysis of the re-
flectance spectra in the time and frequency domains [71,72]. The two main types of wavelet
transforms explored in this study are continuous (CWT) and discrete (DWT). These two
wavelet types differ in how they both discretize the scale and translational (or shifting)
parameters of the mother wavelet. While the DWT uses a finite set of scales (subset of
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scales and positions) known as discrete dyadic scales, where scales are on the order of the
power of 2 [73], the CWT can operate at every scale and includes the scale as determined
from the input signal to a scale specified by the user.

The set of wavelet basis functions is computed for the input signal by shifting and
scaling ψ(λ), which is known as the mother wavelet, across the signal (Equation (2)),
as follows:

ψa,b(λ) =
1√
a

ψ

(
λ − b

a

)
a > 0, b ∈ R (2)

where a is the scaling factor and b is the shifting factor.
The calculated coefficients for the shifting and scaling factors constitute the sum of the

multiplication of the reflectance spectrum across all wavelengths by the scaled and shifted
representations of the mother wavelet. For the CWT, Morse, bump, and Morlet mother
wavelets were chosen for comparison, while, for the DWT, two mother wavelets from the
Daubechies family (db6 and db5) and a symlet wavelet (sym7) were chosen based on [74].

In addition to DWT and CWT, we also tested a wavelet scattering transform (WST)
to extract spectral features for AGB modeling. The WST extracts informative spectral
features with low variance and stable representation of the reflectance data. The method
applies wavelets and scaling functions to reflectance data to extract features that can be
packaged as inputs for deep learning and other machine learning applications. The steps
in WSTs include convolution applied to the input spectrum using wavelets (i.e., Gabor and
Morlet wavelets were tested), followed by non-linearization and averaging (pooling) using
scaling functions. Three scattering networks (WST-N1, WST-N2, and WST-N3) were tested
to determine the appropriate sampling frequency that would maximize the information
content. Sampling frequencies of 20, 30, and 50 were used to produce scattering coefficients
with lengths of 60, 30, and 15, respectively.

2.4.2. Spectral Feature Selection

After transforming each spectrum using the DWT, CWT, and WST, as demonstrated
by [75], the correlation coefficient between AGB and the coefficients at various levels of
decomposition was calculated per wavelet transform to select robust spectral features.
Considering the variability of the number of coefficients at various levels of decomposition
for each wavelet type, we selected a different threshold for each wavelet type that would
produce features not exceeding 250 for the modeling. Several runs were conducted to
identify the optimal thresholds for determining robust spectral features for AGB modeling.
This involved including preliminary models with varying thresholds and evaluating their
performance based on criteria such as model accuracy and computational efficiency. For
instance, for the DWT and CWT, thresholds of 0.45 and 0.6 were selected, respectively. For
the WST, except for WST-3, where a threshold of 0.2 was applied, no threshold was applied
for WST-1 and WST-2 since the produced features were within the set feature limit.

Additionally, mutual information feature selection was used to rank the spectral
features. This method captures linear and non-linear relationships in datasets [76]. The
spectral features within the set limit, as mentioned above, were subsequently used for
AGB modeling, and their modeling performance was compared with the threshold-based
feature selection described above.

2.4.3. Shallow Neural Network (SNN)

A typical artificial neural network (ANN) architecture comprises the following three
main components: an input layer, hidden layer, and output layer (Figure S3) [77]. For
the ACTO-1 conservation area, the selected spectral features from the wavelet coefficients
were used to train a two-layer feed-forward SNN with ten sigmoid hidden neurons in the
first layer and an output linear neuron with MATLAB 2021b. The network was trained
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using the Levenberg–Marquardt back-propagation training algorithm. A total of 60% of
the training data was randomly assigned for training, with 20% used for validation and
the remaining 20% for testing. The weights and biases of the SNN were adjusted using the
selected training data to help to predict the dependent variable (AGB) from the selected
spectral features. The generalization ability of the model was then evaluated based on its
performance on the validation and test sets. For instance, during training, overfitting of
the model was avoided by stopping the learning process early using the outcome from the
validation data (i.e., if no improvement in the validation error was observed in successive
epochs). Meanwhile, the test set served as an independent validation of the generalization
abilities of the model.

2.4.4. Deep Transfer Convolutional Neural Network Framework (3D-CNN)

A three-dimensional convolutional neural network (3D-CNN) is a type of neural
network designed to analyze a three-dimensional dataset like HSI. Hyperspectral data
cubes comprise two spatial dimensions (i.e., X and Y) and a spectral dimension. The
high dimensionality of HSI results in high computational complexity when a 3D-CNN
model is employed to extract spectral–spatial features for regression or classification.
Therefore, to improve the efficiency of 3D-CNN implementation and reduce spectral corre-
lation and noise while preserving the spectral information content, a Principal Component
Analysis (PCA), Maximum Noise Fraction Transform (MNF), and t-Distributed Stochas-
tic Neighbor Embedding (t-SNE) were implemented on the HSI before employing the
3D-CNN to extract spectral–spatial features for modeling AGB [47], and their results
were compared. Figure S4 shows a subset of the HSI from ACTO-1 with dimensions of
190 columns × 163 rows × 238 bands. After implementing a PCA or MNF, the spectral
bands are reduced to the first 15 components. For the t-SNE, three components remained.
Next, each pixel vector was assigned a corresponding AGB value extracted from the GAGB
reference map or LiDAR. Blocks of pixels representing a 3D patch from the HSI and center-
ing on each pixel were created from adjacent pixels with a stride of 1 to produce a patch
with dimensions of m × m × P. Here, m × m is the window size used for splitting the
imagery into 3D patches, and P is the number of bands following PCA, MNF, or t-SNE.
The output of the spectral–spatial feature extraction using the 3D-CNN is produced by
applying a 3D convolution three times, each followed by a Rectified linear Unit (ReLU),
an activation function that introduces non-linearity in the output of the network, with
the last one followed by max-pooling and a flattened layer. These flattened layers are
also followed by a dropout layer (i.e., a regularization technique). Figure S5 shows the
model architecture. The model is based on the architecture shown in [78]. Multiple splits
were tested through several runs and analyses, and data splits of 60% for training, 20% for
validation, and 20% for testing were found to be sufficient to ensure model generalization.
To mitigate overfitting, regularization methods such as dropout layers, weight decay, and
early stopping based on the performance of the 20% unseen validation data were employed.
In summary, the inclusion of max-pooling in the deep learning architecture, a reduced
training time for the model (i.e., 40 epochs), the utilization of 30% and 20% dropout rates, a
window size of 15 for extracting spatial and spectral features, and a split ratio of 60:20:20 for
training, validation, and testing were key measures implemented to help avoid overfitting
and improve model generalization.

2.4.5. Hyperparameter Tuning

The process of optimizing or tuning parameters such as batch size, number of epochs,
number of hidden layers, learning rate, and the dropout parameter is known as hyperpa-
rameter tuning, which was performed using MATLAB 2023b for the SNN and 3D-CNN

9



Forests 2025, 16, 477

models (Table 3). We employed a learning rate of 0.1, which is frequently used for the
Levenberg–Marquardt algorithm, and 0.001, which is also commonly employed for the
Adam optimizer.

Table 3. Hyperparameters employed in the SNR and 3D-CNN models. The hyperparameters were
selected by running several tests and analyzing the results.

Epochs Minibatch Size Optimizer Learning Rate Loss Function

SNN 1000 - Levenberg M 0.1 MSE
CNN-3D 40 256 Adam 0.001 RMSE

2.4.6. Performance Metrics for Model Evaluation

The models’ performances were evaluated per network architecture (SNN and 3D-
CNN), as well as the input data/wavelet type. We selected three main metrics frequently
used in the literature to assess the performance of the models. These metrics were the mean
square error (MSE), root mean square error (RMSE), and mean absolute error (MAE). To
compare the differences between the GAGB map pixels (and LiDAR-based AGB at MSB)
and the predicted AGB map, an AGB bin of 40 Mg/ha was selected, and the predicted
values were tabulated and graphed based on this bin versus the corresponding GAGB (or
LiDAR-based) values. Two main accuracy metrics, namely the root mean square difference
(RMSD) and mean difference (MD), which can be referred to as the bias, were used to
assess the accuracy of each model. The RMSD was calculated according to Equation (3), as
follows [79]:

RMSD =

√√√√√ n

∑
j=1

(
AGBPm(i)− AGBRe f m(i)

)2

n
(3)

where AGBPm is the predicted aboveground biomass, AGBRefm is the reference aboveground
biomass (i.e., GAGB- or LiDAR-based AGB), and n is total number of observations.

The mean difference was calculated according to Equation (4) as follows:

MD = (μAGBPm − μAGBGAGBm) (4)

where μAGB represents the mean aboveground biomass.

2.5. Proof-of-Concept Model Development

As mentioned in Section 2.4, to compare the output of the SNN (with different wavelet
transformations) and the 3D-CNN, the ACTO-1 conservation area was selected as a proof-
of-concept test site. To set up the input data, firstly, 2000 virtual plots (100 m × 100 m)
were randomly distributed across ACTO-1. The area of these plots is equivalent to the
pixel size of the GAGB dataset, and the GAGB values for each plot were assigned to the
polygons. For both the SNN and the 3D-CNN, pixels were extracted from the HSI for the
2000 plots and used as training samples, which constituted approximately 22,000 pixels.
The samples were split into 60% for training (n = 13,200), 20% for validation (n = 4400), and
20% for testing (n = 4400). The range of the GAGB-based AGB values was 0–300 Mg/ha
(μ = 150.1 ± 86.5 Mg/ha).

2.6. Aboveground Biomass Modeling in Different Forest Types

Development of AGB models based on forest type is recommended to account for
the variability of the forest types and spectral characteristics [80], therefore, a separate
3D-CNN model following the architecture described in Section 2.4.4 was developed for
each of the other Costa Rican sites (i.e., ACHAN, ACOSA, and ACCVC) and for MSB in
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Canada. At MSB, a 3D-CNN model was also developed using the LiDAR-based input data
(see Section 2.3.2). Summary statistics of the reference GAGB (and LiDAR-based AGB for
MSB) data are shown in Figure 3.

 
Figure 3. Distribution of extracted AGB values used for prediction as part of the training process for
the site-specific models.
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3. Results

3.1. Comparison of Training Data with Field-Based AGB

The results comparing forest inventory estimates of AGB and the reference GAGB
data used for training are shown in Figure 4. For both tropical and temperate forests, a
moderate relationship can be seen. For ACTO-1, an RMSE and R2 of 36.68 Mg/ha and 0.45,
respectively, were found, while, for the temperate forest (MSB), an RMSE of 26.1 Mg/ha
and an R2 of 0.40 were found (Figure 4). The comparison between the estimated field AGB
and the LiDAR-based AGB estimates for MSB resulted in an RMSE of 19.54 Mg/ha and an
R2 of 0.42 (Figure 4).
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Figure 4. (a) Reference GAGB versus field-based estimate of AGB for ACTO-1; (b) Reference GAGB
versus field-based estimate of AGB for MSB; (c) LiDAR-derived AGB versus field-based estimate of
AGB for MSB.

3.2. Proof-of-Concept Model Comparison
3.2.1. SNN Model Comparisons

For the ACTO-1 conservation area proof-of-concept model development, the results
of 20 iterations of the SNN model for each type of wavelet transform are presented in
Table 4. Across the wavelet decomposition types, the CWT resulted in the highest RMSE,
ranging from 57.52 Mg/ha to 79.23 Mg/ha for the threshold-based feature selection and
49.66 Mg/ha to 57.63 Mg/ha for the mutual-information-based feature selection. The
best CWT model was found to be with the bump wavelet, which resulted in an RMSE of
49.66 Mg/ha. In contrast, the results for the DWT and WST are similar in the range of RMSE
across all combinations and produced lower RMSE values than the CWT, ranging from
43.478 Mg/ha to 52.02 Mg/ha. For instance, the model derived from DWT-db6 features
improved the AGB prediction by approximately 6.2 Mg/ ha compared to the best CWT
model. Similarly, all three WST models showed an improvement of model performance by
6 Mg/ha compared to the best CWT model with the best WST models, achieving an RMSE
of ~44 Mg/ha (Table 4 and Table S4).

3.2.2. Spectral–Spatial Features (3D-CNN)

Extracting spatial information along with spectral information for AGB modeling
using the PCA-based 3D-CNN resulted in a low RMSE of 21.12 Mg/ha and an R2 of
0.94 compared to an R2 range of 0.8–0.92 and RMSE values of 24.15–35.92 Mg/ha for the
MNF- and t-SNE-based 3D-CNN (Figure 5 and Table 5). The results for the 3D-CNN models
represent the lowest RMSE values compared to the SNN approach, which relies on spectral
features alone (Tables 4 and 5). Figure 6 presents the 3D-CNN learning curve, showing
the training and validation RMSE and loss for PCA-based 3D-CNN AGB modeling. From
Figure 6, it can be deduced that convergence was reached after approximately the 10th
epoch, where the training RMSE and loss tends to become stable (Figure 6a,b).
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Table 4. Shallow neural network model comparisons across wavelet decomposition inputs with
results ordered by RMSE (best to worse). Units for RMSE, MSE, and MAE are in Mg/ha. The average
is based on 20 iterations.

Input Variable # Extracted Features Performance MSE MAE R R2 RMSE

DWT-db6 225
Best Model 2032.36 34.97 0.85 0.72 45.08

Average 2132.71 35.88 0.85 0.72 46.17

WST-N3 199
Best Model 2039.68 34.66 0.85 0.72 45.16

Average 2159.49 35.92 0.84 0.71 46.46

WST-N2 210
Best Model 2050.8 35.09 0.85 0.72 45.29

Average 2241.14 36.73 0.84 0.71 47.33

WST-N1 135
Best Model 2071.35 35.06 0.85 0.72 45.51

Average 2266.27 36.9 0.84 0.71 47.6

DWT–sym7 203
Best Model 2123.02 35.55 0.85 0.72 46.08

Average 2266.12 36.86 0.83 0.69 47.58

DWT–db5 213
Best Model 2158.07 36.01 0.84 0.71 46.46

Average 2274.16 37.04 0.83 0.69 47.68

CWT–bump 35
Best Model 3308.62 44.35 0.75 0.56 57.52

Average 3503.86 45.7 0.73 0.53 59.19

CWT–amor 119
Best Model 3530.41 45.95 0.73 0.53 59.42

Average 3688.4 47 0.71 0.5 60.73

CWT–morse 79
Best Model 3531.01 46.07 0.73 0.53 59.42

Average 3823.43 47.04 0.70 0.49 61.7

0 100 200 300
0

100

200

300

Reference AGB (Mg/Ha)

R2 = 0.94 | RMSE= 21.12
Y = 0.93*X + 5.99

Figure 5. A scatter plot comparing the predicted AGB and reference GAGB data, including a 1:1
reference line (dashed) and a regression fit line (solid), demonstrating the model’s performance and
deviation from ideal predictions for the experimental site (ACTO-1). This plot shows the results of
the 3D-CNN implemented on the ACTO-1 mosaic at landscape scale. Only the testing pixels not
included in the model development are shown here.

Table 5. A comparison of 3D-CNN-based AGB modeling performances for different HSI dimension-
ality reduction approaches.

PCA MNF t-SNE

R square 0.94 0.92 0.83

RMSE (Mg/ha) 21.1 24.15 35.92
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Figure 6. Model performance assessment for the experimental site (ACTO-1). This plot represents
the results of the 3D-CNN implemented on the ACTO mosaic at landscape scale, where (a) is a plot
of training and validation RMSE at each epoch and (b) is training and validation loss at each epoch.

Additionally, Figure 7 shows a predicted AGB map derived from the best SNN-WST-
N3 model developed at the ACTO-1 experimental site and the PCA-based 3D-CNN model
at the landscape scale for the same site. In comparison to the reference GAGB map, the
landscape-scale SNN-WST-N3 model resulted in an R2 of 0.72, while the 3D-CNN model
based on PCA performed better, resulting in an R2 of 0.94. Given the split ratio of 60:20:20
for training, validation (seen), and testing (unseen) data in the AGB modeling, a comparison
between the results of the validation and testing sets revealed no significant performance
drop. For instance, the final validation RMSE achieved was 20.83 with an R2 of 0.941 for the
validation set (Figure 6a). Meanwhile, using the test set (unseen data), the final validation
RMSE resulted in 21.12 Mg/ha with an R2 of 0.939 (Table 5 and Figure 5). A summary
of a comparison of the results with or without PCA methods is presented in Table 5 and
Figures S7 and S8.

3.3. Benchmark Dataset Comparison

When the 3D-CNN model developed for the ACTO-1 site (experimental site) is applied
to imagery of the same forest type in a nearby location (ACTO-2) and compared to the
reference GAGB, the results show an R2 of 0.62 (Figure S6a). A drop of approximately 0.3 in
the R-squared values between the results for the ACTO-1 experimental site model (R2~0.9)
and that of the ACTO-2 benchmark site (R2~0.6) was recorded, indicating a correlation of
0.77 between the reference and the prediction (Figure S6). Similarly, a drop of 0.3 in R2 was
observed when the SNN model for ACTO-1 was applied to the ACTO-2 site, recording an
R2 of 0.40 (Figure S6b).

3.4. Model Performance Across Forest Types (Hyperspectral Imagery)

The summary results of the development of a PCA-based 3D-CNN (best performing
model type at the test site) for each forest type are presented in Figure 8. While the
lowest RMSE can be seen for MSB (16.69 Mg/ha), all forest types have similar results with
RMSE, ranging from 24.70 Mg/ha (ACCVC) to 30.1 Mg/ha (ACAHN). Applications of
the 3D-CNN models at the landscape scale for each forest type are shown in Figure 9. The
figure shows that, apart from ACHAN, the tropical wet forests ACCVC, ACOSA, and
ACTO produced the best model performance, with an RMSE in the range between 19 and
28 Mg/ha. Compared to the tropical forests, the predicted AGB range was the lowest at
MSB (temperate forest), with a minimum and maximum of 0 and 176 Mg/ha, respectively.
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Figure 7. Application of the best AGB prediction models to the ACTO-1 imagery. (a) An RGB
composite (R: 660 nm, G: 550 nm, and B: 480 nm) of the hyperspectral imaging data for the ACTO-1
experimental site; (b) SNN-WST (N3) model applied to the HSI; (c) A 3D-CNN model applied to the
ACTO-1 image to produce an AGB map; (d) Reference GAGB map used for training the SNN and
3D-CNN models.

Figure 8. PCA-based 3D-CNN model performance evaluation for all forest types. Each plot shows
a scatter plot of predicted AGB and reference AGB, including a 1:1 reference line (dashed) and
the regression fit line (solid), demonstrating the model’s performance and deviation from ideal
predictions for (a) ACCVC, (b) ACHAN, (c) ACOSA, (d) ACTO-2, (e) MSB GAGB, and (f) MSB
LiDAR. Only the testing data not used in the model development are shown in the scatter plot.
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Figure 9. Example application of the PCA-based 3D-CNN models based on the reference GAGB
map to HSI acquired for each forest type. (a) ACCVC, (b) ACHAN, (c) ACOSA, (d) ACTO-2, and
(e) MSB. From the left is an RGB (R: 660 nm, G: 550 nm, and B: 480 nm) composite of the individual
conservation sites, followed by the predicted map showing the spatial variability of AGB for each
site and the reference GAGB map for each site.

A plot of the biases of selected AGB bins showing which range of AGB was under-
or overpredicted is shown in Figure 10, and a tabulation of the results for the selected
accuracy metrics (RMSD and MD) are also presented in Table S3. Overall, it can be de-
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duced that the predicted AGB values were closely related to those of the reference map.
For instance, Figure 10 shows that, for all of the tropical forests, apart from ACOSA,
AGB values within the range of 0–280 were underpredicted up to 5 Mg/ha, while the
AGB greater than 280 Mg/ha were overestimated up to about 20 Mg/ha. At ACOSA,
AGB was underpredicted up to about 10 Mg/ha and overpredicted up to approximately
5 Mg/ha. However, MSB recorded the lowest underprediction of the AGB values within
the range of 0–160 Mg/ha (4 Mg/ha) but overpredicted up to 6 Mg/ha for the AGB
values above 160 Mg/ha. Moreover, Table S3 shows that the highest RMSD values
(19.0 Mg/ha–25.4 Mg/ha) for all of the tropical forests were found to be for the AGB
range of 160–200 Mg/ha, and the lowest RMSD was recorded for the 0–40 Mg/ha range.
Similarly, for MSB, the lowest RMSD (~15 Mg/ha) was recorded for the AGB range of 0–40
and the highest (16–21 Mg/ha) was recorded for the AGB range of above 40 Mg/ha.

 

Figure 10. Distribution of bias for each forest type’s AGB models for the tropical forests in Costa Rica
and the temperate forest in Canada (MSB).
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3.5. Model Performance—Airborne LiDAR

The results of a 3D-CNN model based on the airborne LiDAR data as an input for
the MSB site showed an RMSE of 21.57 Mg/ha (R2 = 0.74). Figure 11 shows the spatial
variability in AGB values for both the reference and predicted AGB of the MSB site. In
comparison to the model using the GAGB data, there was a drop in model performance
from an R2 of 0.85 to 0.74, representing an approximately 13% drop in model performance.

Figure 11. Comparison of predicted AGB and reference LiDAR data from MSB. From the left, the
reference LiDAR map and the predicted AGB map (3D-CNN based on the LiDAR input).

4. Discussion

Large training datasets are crucial in AGB modeling, as they capture heterogeneity,
help improve accuracy, enhance generalization, and increase model robustness [48–50]. In
this study, we demonstrate that, when sufficient training datasets are available for deep
learning, 3D-CNN can be used to extract spectral and spatial features simultaneously from
HSI to model AGB for improved modeling performance in tropical and temperate forest
ecosystems. While other studies have demonstrated the use of 3D-CNN for classification
and related tasks (e.g., [47]), our study is the first to show that, with large datasets (i.e.,
those that are comprehensive and diverse enough), 3D-CNN can achieve a low RMSE in
modeling AGB in these ecosystems.

As shown in Figure 4, field-based AGB estimates and the GAGB data (and LiDAR for
MSB) have moderate relationships of R2 of 0.4–0.44 and RMSE of 18.7–36.7. While they
indicate that the GAGB is reasonable in our study areas, those results should be interpreted
with caution, as the sample size is small (n = 13–34). The need for, but also the challenges
in, establishing large numbers of field plots for forest characteristics such as AGB have
been reiterated by many studies, e.g., [81–84]. There is a large training data requirement for
ML approaches to ensure that overfitting is avoided and that the model can generalize well
to unseen pixels in the imagery [48,49]. Moreover, as stated earlier, the RMSE of the GAGB
dataset is 58.6 Mg/ha and 44.4 Mg/ha for tropical and temperate forests, respectively.
While our results show lower RMSE in comparison to the GAGB dataset, it remains a
proxy for field data. Therefore, it is important that the overall uncertainty in comparison to
ground-based estimates needs to consider not only the uncertainty from our model results,
but those from within the GAGB dataset as well. Nonetheless, the 3D-CNN employed in
this study has shown promise. As larger field-based datasets become available (i.e., those
large enough for the methods employed in this study), the 3D-CNN approach is expected
to offer a robust modeling alternative, advancing machine-learning-based approaches to
AGB modeling using HSI.

Previous studies (e.g., [85–87]) have shown improved model predictive power of
vegetation characteristics and classification from wavelet decomposition of HSI over other
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approaches, including vegetation indices and PCA. Our proof-of-concept model compari-
son from the ACTO-1 study area compared SNNs with different wavelet decompositions as
inputs with a deep learning 3D-CNN. We found that the best wavelet decomposition SNN
model was the DWT (db6), with an RMSE of 43.47 Mg/ha. However, our results ultimately
showed that the best performing model was the PCA-based 3D-CNN, with an RMSE of
21.12 Mg/ha (Figure 5). This was an improvement in RMSE of 22.35 Mg/ha over the best
SNN model, which relies only on spectral features. While the R2 values are not comparable
between studies, our RMSE range of 21.12 Mg/ha to 30.1 Mg/ha across the forest types
is lower than those reported by others, such as [88] (~68.11 Mg/ha), [89] (~91.2 Mg/ha),
and [19] (~64.4 Mg/ha), employing individual hyperspectral bands or vegetation indices
calculated from HSI. In terms of R-squared values, the use of spectral features from optical
imagery and other datasets has shown promising results in estimating AGB, with R2 values
ranging from 0.84 to 0.92, compared to an R2 of 0.5 to 0.68 when hyperspectral features are
used alone [29,35,38]. For instance, ref. [90] reported that when temporal features extracted
from multiple satellite imagery are used for AGB modeling, an R2 of 0.58 can be attained.
Spectral metrics, such as vegetation indices extracted from HSI for AGB prediction, also
produced an R2 of 0.55 in a study conducted by [38]. It has also been reported that the use
vegetation indices alone from HSI for AGB prediction in the Brazilian Amazon resulted
in an R2 of 0.58 [88]. Similarly, [35] reported a moderate relationship (R2 ranging between
0.56 and 0.65) for tree- and plot-level AGB estimates. Even in the absence of LiDAR, the
results obtained in this study were promising (R2 of 0.94 and an RMSE of 21.12 Mg/ha) and
comparable to the results obtained in previous studies that employed both optical imagery
and LiDAR (e.g., [88]).

By extracting both spectral and spatial information for AGB modeling, our results
showed a reduction in AGB prediction uncertainties of the model that relies only on
spectral features by ~50% (Figure 5 and Table S4 and Table 4). Using a random forest
model to predict tropical forest carbon from LiDAR, ref. [91] also found that a model
considering the spatial context performed best. However, the inclusion of the spatial
context is not without challenges. The extraction of spatial features simultaneously with
spectral features requires a neighborhood of pixels (in this case, 15 × 15 equivalent to
~20 ha). For such a window size (or larger), where high AGB pixels are found among
low AGB pixels, less accurate prediction is expected. This also applies to edge pixels and
areas transitioning into low-AGB areas (Figure 7c,d). From a flight planning perspective,
future studies that employ a 3D-CNN model with airborne HSI should consider the issue
of edge pixels to ensure that a sufficient area is covered outside of the area of interest to
account for the planned neighborhood window size. Future studies may explore using
different kernel sizes to better align with the spatial and spectral characteristics of the
imaging data. Misaligned kernel sizes could lead to inefficient feature extraction, causing
important patterns to be overlooked. Experimenting with kernel sizes tailored to the spatial
and spectral resolutions of the data is usually recommended. In other words, future studies
can employ separate kernel sizes for spatial dimensions (height and width) and the spectral
dimension (depth) to capture relevant features more effectively. When resizing the spatial
dimensions, proportional scaling must be ensured to preserve the original aspect ratio (e.g.,
resizing to 18 × 15 instead of 15 × 15).

The spatial autocorrelation unaccounted for during the training and validation of a
model can result in an overly optimistic modeling performance [92]. In the benchmark
data comparison, where the ACTO-1 model was applied to the ACTO-2 imagery, the best
performing model had a decrease of 0.3 in the R-square values and an increase in RMSE of
35.83 Mg/ha (Section 3.3 and Figure S6). This drop can potentially be attributed to spatial
autocorrelation affecting the model’s generalization. Spatial autocorrelation is known to
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cause an overestimation of CNN model performance, owing to the potential proximity of
the test set pixels to the training data [92]. Although our study relied on unseen datasets
(test set) for accuracy assessment, the spatial proximity of some of these pixels may have
caused spatial autocorrelation. Another factor that can lead to overestimation of the model
performance in spatial–spectral hyperspectral feature extraction is information leakage
in the testing sets [93–95]. Extraction of the patches and random splitting for training,
validation, or testing can cause information leakage in the testing set [93,94]. Recent studies,
such as [94], have proposed a novel, non-overlapping approach for sampling training and
testing sets for hyperspectral classification problems. Future modeling studies should also
explore this approach to improve model generalization.

The distribution of bias for each forest type’s AGB model (Figure 10) illustrates that
the greatest uncertainty in the model results is found in areas with the highest AGB
(>280 mg/ha for the tropical forests and >160 mg/ha for the temperate forest). These
are also the AGB classes with the fewest training samples (Figure 3). This illustrates the
importance of large training datasets across the entire range of expected values [81,96].
Similar biases are also reported in the GAGB training dataset, where retrieval of high-
carbon-stock forests with AGB > 250 Mg /ha have high uncertainty [60]. In addition, while
not directly investigated here, canopy reflectance biomass saturation has been shown for
densely vegetated regions [97], including in tropical forests, e.g., [98–100], and at higher
latitudes [101–103].

As stated by [60], the GAGB data show similar trends in AGB to other datasets;
however, they note large spatial divergences between datasets and, therefore, reiterate the
ongoing uncertainty in global AGB and forest carbon. For example, within the latitude
range of our tropical forest sites, GAGB was found to be similar to that reported by [104]
but was up to 50% lower than that reported by [105]. It is for such reasons that our current
study does not claim to model actual AGB as measured in the field, rather, we show the
potential of ML algorithms, particularly the 3D-CNN, to exploit HSI in order to generate
models with low RMSE if the training dataset is large. Also, temporal discrepancies
between the AGB map (2010) and the HSI data (2013 for Costa Rica, 2022 for Canada)
could introduce potential errors, due to forest dynamics (e.g., growth, disturbances, or
deforestation). However, the low growth rates characteristic of mature forests suggest
that biomass accumulation likely has a negligible impact over short timescales, reducing
the potential for significant errors from growth [106]. For instance, as summarized in
this study, the growth rates in mature forests like ACCVC is notably slow, with a mean
difference between the reference and the predicted AGB equal to ~5 Mg/ha between 2010
and 2013 (i.e., average annual biomass accumulation rates in ACCVC range from 1 to
3 Mg ha−1 year−1) (see Figure 10 and Table S3). This is because biomass accumulation
is more influenced by existing tree diameter and height increases than by recruitment
or turnover [106]. This suggests that discrepancies in timing are less likely to introduce
substantial inaccuracies from growth-related changes in mature forests. Nonetheless, using
a 2010 AGB map to train models with imagery from 2013 and 2022 remains a limitation.
Future research could address this by incorporating temporally aligned calibration data,
such as field measurements or more recent AGB maps, to improve model accuracy and
account for any dynamics that do occur.

As stated by [53], additional work is necessary to determine whether the spectral
expression of differences in forest carbon (of which AGB is a proxy) is driven by compo-
sition, diversity, or other characteristics, such as canopy structure. From the same HSI of
MSB, [53] (2023a) found that forest composition was related to the spectral signatures of
plots, however, the spectral diversity of the plot was not found to be significant. Impor-
tantly, the average reflectance spectrum of a plot was a stronger predictor of carbon. Our
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work follows up on this finding through an application of ML to spectra rather than metrics
such as diversity.

5. Conclusions

Our study highlights the effectiveness of two novel approaches, as follows: (1) com-
bining HSI and deep learning (3D-CNN) and (2) artificial neural networks and wavelet
analysis for predicting AGB in both tropical and temperate forests. Specifically, our findings
demonstrate that the 3D-CNN model outperforms approaches that rely on spectral features
alone for AGB modeling, yielding the lowest RMSE in AGB estimation. This improvement
is consistent across various tropical forest types and a temperate forest ecosystem, suggest-
ing the potential of the 3D-CNN approach to reduce uncertainties in AGB estimates across
different climate zones. These findings are very promising, showing the future prospect of
using HSI to map forest AGB on a large spatial scale. Thus, the availability of large enough
plot level training data will allow the development of 3D-CNN models that will generalize
well for other forest types.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f16030477/s1, Table S1: Sensor characteristics for the tropical
forests (ACTO-1, ACTO-2, ACCVC, ACHAN, and ACOSA) and temperate forest (MSB) region of
interest. The VNIR region was acquired with the CASI-1500 and the SWIR with the SASI-644 at
the tropical sites and SASI-640 for the temperate forest. Table S2: Flight planning considerations
for the tropical forests (ACTO-1, ACTO-2, ACCVC, ACHAN, and ACOSA) and temperate forest
(MSB) region of interest. The VNIR region was acquired with the CASI-1500 and the SWIR with the
SASI-644 at the tropical sites and SASI-640 for the temperate forest. Table S3: Tabulated results of the
computed accuracy metrics for each conservation area in Costa Rica and MSB. AGB (reference) and
AGB (predicted) values represent the average for the bin. Other than MSB (LiDAR), all reference data
are from the GAGB map. Table S4: SNN model based on the mutual information feature selection
(non-linear) technique, with comparisons across wavelet decomposition inputs and results ordered
by RMSE (best to worst). Units for RMSE, MSE, and MAE are in Mg/ha. The average is based
on 20 iterations. Figure S1: Processing workflow to generate atmospherically and geometrically
corrected imagery (L2G). Intermediate processing levels include L1A (non-geocorrected radiance),
L2A (non-geocorrected reflectance), and L1G (geocorrected radiance). Modules in steps 1 and
3 project the sensor manufacturer, whereas, in step 2, ATCOR-4 is commercial software. Figure S2:
A map showing the distribution of the randomly selected polygons in red (100 m × 100 m plots)
across the experimental site (ACTO-1). Figure S3: SNN architecture used for modeling AGB from
the wavelet-transformed spectra. Figure S4: An RGB composite of the HSI showing portions of the
ACTO-1 study site. The red boxes represent sample plots, with plot sizes equivalent to an area of 1 ha
(100 m × 100 m) to be used as the input to the 3D-CNN. Figure S5. Architecture of the 3D-CNN used
for AGB modeling, including the PCA preprocessing step (MNF and t-SNE were substituted for PCA
in the model development). The red box represents a 15 × 15 patch extracted from the original image
with dimensions of 190 pixels in height and 163 pixels in width. These patches represent localized
regions of the image and are used for analysis without altering or shrinking the original image. For
the t-SNE-based 3D-CNN, this architecture was modified, e.g., only one 3D convolution (3 × 3 × 1)
was applied to the HSI, since, after dimensionality reduction with t-SNE, the output was 3 bands.
Figure S6: Independent testing of (a) 3D-CNN and (b) SNN models using ~12,000 pixels from the
ACTO-2 site with the models developed for ACTO-1. Reference values are from the GAGB map. The
plot shows a 1:1 reference line (dashed) and a regression fit line (solid), demonstrating the model’s
performance and deviation from ideal predictions. Figure S7: Implementation of a 3D-CNN model
based on MNF dimensionality reduction at the ACTO-1 site, using the corresponding AGB values
from the reference GAGB map. The plot shows a 1:1 reference line (dashed) and a regression fit line
(solid), demonstrating the model’s performance and deviation from ideal predictions. Figure S8:
Implementation of a 3D-CNN model based on t-SNE dimensionality reduction at the ACTO-1 site,
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using the corresponding AGB values from the reference GAGB map. The plot shows a 1:1 reference
line (dashed) and a regression fit line (solid), demonstrating the model’s performance and deviation
from ideal predictions.
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Abstract: The aboveground biomass (AGB) of forests reflects the productivity and carbon-
storage capacity of the forest ecosystem. Although AGB estimation techniques have become
increasingly sophisticated, the relationships between AGB, spatial distribution, and growth
stages still require further exploration. In this study, the Picea schrenkiana (Picea schrenkiana
var. tianschanica) forest area in the Kashi River Basin of the Ili River Valley in the western
Tianshan Mountains was selected as the research area. Based on forest resources inventory
data, Gaofen-1 (GF-1), Gaofen-6 (GF-6), Gaofen-3 (GF-3) Polarimetric Synthetic Aperture
Radar (PolSAR), and DEM data, we classified the Picea schrenkiana forests in the study
area into three cases: the Whole Forest without vertical zonation and stand age, Vertical
Zonality Classification without considering stand age, and Stand-Age Classification without
considering vertical zonality. Then, for each case, we used eXtreme Gradient Boosting
(XGBoost), Back Propagation Neural Network (BPNN), and Residual Networks (ResNet),
respectively, to estimate the AGB of forests in the study area. The results show that: (1) The
integration of multi-source remote-sensing data and the ResNet can effectively improve
the remote-sensing estimation accuracy of the AGB of Picea schrenkiana. (2) Furthermore,
classification by vertical zonality and stand ages can reduce the problems of low-value
overestimation and high-value underestimation to a certain extent.

Keywords: aboveground biomass; vertical zonality; stand age; Gaofen satellites; Picea
schrenkiana

1. Introduction

Forest biomass stands as a pivotal indicator of the productive capacity of forest
ecosystems, consistently serving as a crucial evaluation factor in assessments of forest
carbon budgets [1]. The biogeochemical cycling characteristics of Xinjiang exert a profound
influence on the evolution of terrestrial ecosystems in the Central Asian region, shaping
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regional climate patterns and impacting greenhouse gas source and sink totals [2]. At the
heart of the Central Asian mountain range, the Tianshan Mountains are home to vast stands
of Picea schrenkiana forests, which represent the most significant terrestrial ecosystems in
temperate arid regions. Picea schrenkiana, as the dominant tree species in the mountain
forests of the Tianshan Mountains, plays a vital role in water conservation, soil retention,
and maintaining the ecological environment of the mountains, occupying an extremely
important ecological and geographical position. By conducting research on the biomass
of the mountain ecosystems in the Tianshan Mountains, with a particular focus on Picea
schrenkiana forests, we will lay a foundation for studies on the carbon cycle of mountain
forest ecosystems in Central Asia. Furthermore, this research can provide valuable insights
into the evolution of terrestrial ecosystems, regional climate dynamics, and greenhouse
gas emissions and sequestration in the Central Asian region, thereby possessing significant
scientific importance.

Biomass is categorized into aboveground and underground components. Given
the difficulties in gathering underground biomass data, researchers mainly center their
studies on aboveground biomass (AGB) [3]. Traditional measurement methods, while
accurate, are labor-intensive and time-consuming, making them impractical for large-scale
forest biomass monitoring [4]. The advent of remote-sensing technology addresses this
limitation [5]. In the realm of remote-sensing-based forest biomass estimation, scholars
from both domestic and international backgrounds have extensively utilized optical remote-
sensing data since the last century, achieving significant advancements [6,7]. For instance,
Chen et al. pioneered the use of HJ-1 satellite data to monitor Picea schrenkiana forest AGB
in the western Tianshan Mountains, revealing spatial heterogeneity and spatiotemporal
differentiation patterns of AGB and productivity in this region [8]. However, optical remote
sensing has inherent limitations, particularly its weak spectral penetrability, which restricts
its ability to capture vertical vegetation information beneath the canopy [9]. To overcome
these limitations, radar data, with its longer wavelengths, has been increasingly adopted.
Radar can penetrate vegetation layers and provide more detailed stand structure and stand
factor information, making it a valuable complement to optical data [10]. Synthetic Aperture
Radar (SAR), as an advanced active remote-sensing technology, operates continuously
under all weather conditions, further enhancing its utility [11]. Studies have demonstrated
the effectiveness of SAR in AGB estimation. For example, Cartus et al. utilized multi-
frequency radar backscatter observations to estimate tropical forest AGB, highlighting the
structural discriminative capacity of SAR data [12]. Wei et al. explored the potential of GF-3
polarization decomposition components for estimating artificial forest canopy AGB, finding
that multiple polarization components exhibit high sensitivity to AGB variations [13].
Multi-source remote-sensing data can fully capitalize on the complementary aspects of
information derived from various data sources. By skillfully integrating remote-sensing
data from diverse sensors collected at different times and with varying resolutions, the
benefits of remote sensing can be maximized. Researchers such as Zhang et al. [14] and
Forkuor et al. [15] have developed forest AGB estimation models using optical data and
SAR data. Wang et al., in their study, utilized GF-6 and GF-3 dual-polarization data to
estimate the AGB of natural forest land in Gongliu County, Xinjiang. The study revealed
that the integration of optical and SAR data can remarkably enhance the accuracy of
AGB estimation [16]. In their assessment of Yichun City’s AGB, Liu et al. employed both
optical and SAR data, concluding that AGB estimation models specifically designed for
different forest types are more precise and stable compared to generalized approaches [17].
These findings underscore the importance of integrating multi-source data and considering
forest-specific characteristics in AGB estimation.
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As a key geographical factor, topography exerts a profound influence on forest ecosys-
tems [18]. Variations in elevation, slope, and aspect create unique geomorphological units,
driving the vertical stratification of environmental factors such as thermal conditions, pre-
cipitation patterns, and solar radiation intensity. These changes result in marked differences
in the vertical distribution of climate conditions, soil properties, light intensity, and other
environmental factors [19,20]. These differences, in turn, have profound effects on forest
AGB. Studies have shown that the trends of AGB with elevation vary significantly across
different regions and ecosystems. For example, Wang et al., using a 30-m resolution AGB
dataset of the Tibetan Plateau, found that grassland AGB values exhibit a monotonically
increasing trend below 4800 m [21]. Wu et al. found different biomass at different elevations
by studying Qilian Mountain Picea schrenkiana, in which the growth rate of AGB was highest
at low elevations [22]. Maza et al. focusing on the elevation gradient of AGB in the Andean-
Amazonian forests, found a negative correlation between AGB and elevation [23]. These
differences may stem from the interaction between elevation-induced climatic changes,
such as temperature lapse rates and orographic precipitation, and differences in vegetation
types. In addition to the influence of elevation, researchers have also focused on the impact
of topographic factors on the accuracy of AGB estimation. For instance, Chen et al. found
that the introduction of a digital elevation model (DEM) improved model accuracy by
13.5% [24], while Ye et al. demonstrated that models incorporating aspects effectively
mitigate the overestimation of low values and underestimation of high values, further
enhancing model precision [25]. In recent years, the application of high-resolution satellite
data has further strengthened the advantages of topographic factors. Han et al., using
GF-1 and Sentinel-1, found that the integration of multi-source remote-sensing data and
topographic factors significantly improves AGB estimation accuracy in complex terrain
regions [26]. Forest stand ages are also an important factor affecting forest AGB [27]. Huang
et al., focusing on Chinese fir plantations, found that the spatial structure factors affecting
biomass accumulation vary significantly with stand age and proposed corresponding man-
agement measures [28]. Lee et al. identified forest age as a key variable regulating AGB in
alpine-subalpine forests, revealing that older stands exhibit higher biomass [29]. Wu et al.
demonstrated that models integrating both aspect and stand age outperform other models,
highlighting the importance of considering multiple factors, such as topography and stand
age, in AGB estimation [30]. These findings emphasize the complexity of AGB estimation
and the importance of integrating diverse variables for improved accuracy.

This study concentrates on the forest area situated within the Kashi River Basin of
the Ili Valley, nestled in the western Tianshan Mountains, as its research area. The Picea
schrenkiana (Picea schrenkiana var. tianschanica) in this region are categorized into three types:
the Whole Forest without vertical zonation and stand age (hereinafter referred to as the
whole forest), Vertical Zonality Classification without considering stand age (hereinafter
referred to as vertical zonality), and Stand-Age Classification without considering vertical
zonality (hereinafter referred to as stand age). Due to insufficient sample size when
simultaneously considering stand age and vertical zonality, which cannot meet the basic
requirements for statistical analysis, this scenario was not included in the study. For
these three classification cases, the performance of three feature combinations, namely
single optical data, single radar data, and opto-radar multi-source remote-sensing data, is
comprehensively investigated in three models: XGBoost, BPNN, and ResNet. Moreover,
a comparative analysis of the estimation accuracy is conducted. Through this multi-
dimensional and multi-method integrated analysis, the study aims to (1) improve the
accuracy of remote-sensing estimation for AGB of Picea schrenkiana forests in the western
Tianshan Mountains of Xinjiang and (2) expand the application scope and depth of domestic
high-resolution satellites in forest resource monitoring. The novelty of this study lies in
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its integration of multi-source remote-sensing data and the incorporation of key variables
such as vertical zonality and stand age, proposing a more refined and accurate method for
forest biomass estimation. Furthermore, the findings not only enhance the understanding
of biomass distribution patterns in the forest ecosystem of the western Tianshan Mountains
but also provide valuable methodological references and practical support for other regions
globally with complex terrain and diverse forest structures.

2. Materials and Methods

2.1. Study Area

Nilka County (81◦85′ E to 84◦58′ E, 43◦25′ N to 44◦17′ N) is in the northwestern
part of Xinjiang, China. It lies within the western hinterland of the Tianshan Mountains
and within the Kashi River Basin, which is part of the Ili Valley. This area experiences
a continental climate within the northern temperate zone, characterized by an average
annual temperature of 6.8 ◦C and a total annual precipitation of 406.9 mm, with the majority
of rainfall occurring from April to July. The region distinctly exhibits mountain climate
characteristics. The terrain features a slope from the northeast to the southwest. The forest
area has a simple composition of tree species, mainly natural Picea schrenkiana, a small
number of Populus spp. and Betula spp., and a few species of understory vegetation. Sub-
compartments, as the smallest spatial units for forest resource surveys, are divided based
on differences in ecological attributes such as stand origin, age class, and site type. In this
study, the sub-compartments of Picea schrenkiana forests in the Tianshan Mountains were
used as the basic units. Pure Picea schrenkiana forests, i.e., sub-compartments with Picea
schrenkiana as the tree species composition, were selected as the study area. The method of
stratified sampling was adopted, and the Picea schrenkiana forests in the study area were
divided according to two schemes: different vertical zonations and different stand ages.
Finally, 540 sub-compartments were sampled from the forest resources inventory database
of the Nilke Forest Farm as research samples. The average size of the sub-compartments is
18.36 hm2. The soil in this area is rich in humus and highly fertile. The most prevalent and
expansive soil type in the forest area is mountain gray-cinnamon soil, which is ideally suited
for Picea schrenkiana growth. Figure 1 illustrates the schematic diagram of the study area.

Figure 1. Geographic location map of the study area. (a) Position of the study area within China.
(b) Position of the study area within Xinjiang Province. (c) Elevation map of the study area, along
with the forest sample locations.
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2.2. Data Processing
2.2.1. GF-1 PMS and GF-6 PMS Data

All the remote-sensing data used in this paper are sourced from the National Remote-
Sensing Data and Application Service Platform (https://www.cpeos.org.cn/, accessed
on 12 April 2024). GF-1 and GF-6 are primarily used to acquire optical remote-sensing
image data of the Earth’s surface. They are equipped with two distinct sensors. The high-
resolution camera (PMS) is capable of capturing panchromatic black-and-white images at a
resolution of 2 m and multispectral color images at a resolution of 8 m. The multispectral
sensor covers four bands: blue, green, red, and near-infrared (NIR), which are utilized
to obtain basic spectral information of ground objects and play a crucial role in various
fields, including land resource surveying and ecological environment monitoring [31]. The
16 m multispectral medium-resolution wide-swath camera (WFV) boasts a large imaging
swath width, enabling the acquisition of large-area ground images in a short period. We
performed optical data preprocessing in ENVI software 5.6 (Exelis Visual Information
Solutions, Inc., Boulder, CO, USA). To maintain consistency with the resolution of SAR
data, no fusion operations were performed on the optical data, and only multispectral data
were utilized.

2.2.2. GF-3 PolSAR Data

The GF-3 satellite, China’s first independently developed C-band synthetic aperture
radar (SAR) satellite, features 12 imaging modes and provides rich polarization data. The
full-polarization image data can simultaneously capture the transmission and reception
information of horizontal polarization (H) and vertical polarization (V), encompassing
four polarization modes: horizontal transmit-horizontal receive (HH), horizontal transmit-
vertical receive (HV), vertical transmit-horizontal receive (VH), and vertical transmit-
vertical receive (VV). In this study, the 20 pieces of SAR data utilized are all Quad-pol
stripmap (QPSI) images with a resolution of 8 m. The preprocessing of radar data en-
compasses radiometric calibration, multi-look processing, filtering, and geocoding [32].
After undergoing radiometric calibration, the radar data can more accurately reflect the
echo characteristics of ground objects. Multi-look processing and filtering can enhance the
visual quality of the image, making the geometric features of the image more akin to the
actual situation on the ground while also reducing speckle noise to a certain extent [33].
Since the complex image acquired by the SAR sensor is a slant range image, geocoding is
necessary to convert the SAR data from the slant range coordinate system to the geographic
coordinate system [34]. The preprocessing of GF-3 data was conducted using PIE-SAR 6.3,
a software developed by Piesat Information Technology Co., Ltd. in Beijing, China.

2.2.3. Auxiliary Data

Seven pieces of ASTER GDEM V3 30 m data were downloaded from the geospatial
data cloud platform (https://www.gscloud.cn/, accessed on 20 April 2024). The terrain
factors, including slope, aspect, and elevation, redistribute the energy of solar radiation,
thereby influencing vegetation growth and the accumulation of forest AGB. Use ArcGIS
10.8 (Environmental Systems Research Institute, Inc., Redlands, CA, USA) to extract terrain
factors such as elevation, slope, and aspect. Based on the classification of forest vertical
zones in the Yili area by Zhang et al. [35], the forest vertical zones in the study area
are categorized according to elevation. The classification criteria are outlined in Table 1.
Figure 2 is the topographic feature map of the study area.

31



Forests 2025, 16, 445

Table 1. Classification criteria for vertical zonality.

Vertical Zonality of Picea schrenkiana Forest DEM

Below the middle and low mountain forest-steppe belt Below 1500 m
Middle and low mountain forest-steppe belt 1500–1700 m

Middle mountain forest-meadow belt 1700–2250 m
Upper middle mountain forest-meadow belt 2250–2550 m

Subalpine open-forest belt 2550–2700 m
Above the subalpine open-forest belt Above 2700 m

Figure 2. Topographic feature map of the study area. (a) altitude map of the study area. (b) vertical
zonality division map of the study area. (c) slope division map of the study area. (d) aspect division
map of the study area.

2.2.4. Resource Data

The forest resources inventory data for management encompasses fields such as
sample plot number, average diameter at breast height (DBH), stand age, crown density,
soil type, soil layer thickness, and standing stock volume per hectare. Projection coordinate
transformation is applied to these resource data to ensure alignment with the projection
coordinates of remote-sensing images. The geographic coordinate system is WGS-1984,
and the projected coordinate system is Universal Transverse Mercator (UTM), with the
projection zone number being UTM Zone 44N. The sub-compartments of the forest farm,
categorized by different altitudes and forest ages, are delineated, and only the fields relevant
to this study are retained. By referring to the regression equation of Picea schrenkiana forest
biomass and stock volume established by Fang et al. [36], the Picea schrenkiana biomass is
estimated using these resource data. The formula is as follows.

B = 0.4642V + 47.499, (1)

Note: Biomass (B) is measured in t·hm−2, stem volume (V) is measured in m3·hm−2.
According to the forestry industry standards of the People’s Republic of China, “Reg-

ulations for age-class and age-group division of main tree species”, with 20 years as the
stand-age interval, Tianshan Picea schrenkiana forests are divided into young forest, middle-
aged forest, near-mature forest, mature forest, and over-mature forest according to their
different age stages. The classification criteria are presented in Table 2, and the Stand-Age
Classification map of the Picea schrenkiana forest is shown in Figure 3. In the study area,
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natural forests account for the vast majority. The age class of a sample plot is determined
by the average age of the trees within the plot.

Table 2. Classification criteria for stand age of Picea schrenkiana forests.

Stand Age of Picea schrenkiana Forest Age (Unit: Year)

Young forest Below 60
Middle-aged forest 61–100
Near-mature forest 101–120

Mature forest 121–160
Over-mature forest Above 161

Figure 3. Classification map of stand ages of Picea schrenkiana forests.

Picea schrenkiana forests in the western Tianshan Mountains are mainly distributed in
three key vertical zones: middle mountain forest-meadow belt, upper middle mountain
forest-meadow belt, and subalpine open-forest belt. The combined conditions of climate
and soil in these three vertical zones engender a highly suitable environment conducive
to the growth of Picea schrenkiana and cultivate an ideal ecological niche tailored to it.
However, the distribution of Picea schrenkiana forest is very scanty in the middle and
low mountain forest-steppe belt and below. This is mainly because the precipitation in
this area is insufficient to meet the water demand of Picea schrenkiana growth [37]. More
importantly, human activities have caused some interference with the growth of Picea
schrenkiana, making it difficult for Picea schrenkiana forests to form and develop in this area.
In the area above the subalpine open-forest belt, the extreme climatic conditions exceed the
ecological adaptation range of Picea schrenkiana, preventing Picea schrenkiana forest from
establishing itself here. Overall, small classes of Picea schrenkiana in these two unsuitable
areas account for only 0.05% of the total.

From the perspective of stand age, Picea schrenkiana occupies a large proportion in
the near-mature forest, mature forest, and over-mature forest stages. Specifically, the
Picea schrenkiana population in these stages is more stable in the ecosystem and has
stronger adaptability to the environment. In contrast, the number of Picea schrenkiana
sub-compartments in young and middle-aged forests only accounts for 8.61% of the total,
which provides limited reference for this study. This is not only because the number of
individuals in the whole Picea schrenkiana forest ecosystem is small but also because it is
difficult to reflect the overall ecological characteristics and biomass distribution of Picea
schrenkiana forest. More importantly, young and middle-aged forests are still in the dynamic
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stage of growth and development, with unstable ecological characteristics and large data
fluctuations, which impedes the construction of accurate models and in-depth analysis and
research.

Based on the previous analysis, this study centers on three main vertical zones, namely
the middle mountain forest-meadow belt, the upper middle mountain forest-meadow belt,
and the subalpine open-forest belt, as well as three growth stages: near-mature forest,
mature forest, and over-mature forest. Through the modeling and analysis of these key
areas and stages, the aim is to accurately reveal the internal relationship between the
distribution of Picea schrenkiana forest, vertical zonality, and stand age and provide a solid
theoretical basis for the ecological protection and scientific management of Picea schrenkiana
forest in the West Tianshan Mountains.

2.3. Feature Extraction
2.3.1. Optical Image Features

(1) The Surface Reflectance

The original bands of remote-sensing images contain abundant object information
and are the cornerstone of object recognition. In optical remote-sensing data, different
bands correspond to different reflection characteristics of objects. The spectral information
is highly correlated with vegetation parameters. The band designs of GF-1 and GF-6 are
identical, although there are slight differences in the specific band ranges: the blue band
(0.45~0.52 μm for both), the green band (0.52~0.59 μm for GF-1 and 0.52~0.60 μm for GF-6),
the red band (0.63~0.69 μm for both), and the near-infrared band (0.77~0.89 μm for GF-1
and 0.76~0.90 μm for GF-6). Although there are slight differences, these discrepancies
can be effectively mitigated through appropriate data processing. Therefore, this study
combines the data from both satellites to form continuous and consistent optical satellite
imagery, from which the spectral values of these four bands are extracted.

(2) Vegetation Index

Analyzing and comparing only individual bands or multiple single bands is insuffi-
cient to comprehensively understand the complexity of vegetation remote sensing. As a
widely distributed object type on the Earth’s surface, vegetation demonstrates complex and
diverse spectral characteristics. To more effectively utilize satellite remote-sensing data to
characterize vegetation status based on the spectral properties of vegetation, various linear
or nonlinear combinations of satellite bands are performed, such as addition, subtraction,
multiplication, and division. These operations are used to extract a total of eight vegetation
indices, including the normalized difference vegetation index (NDVI), green normalized
difference vegetation index (GNDVI), ratio vegetation index (RVI), enhanced vegetation
index (EVI), difference vegetation index (DVI), infrared percentage vegetation index (IPVI),
soil adjusted vegetation index (SAVI), and normalized difference mountain vegetation
index (NVDMVI) [38,39]. The formula for calculating the vegetation index is shown in
Table 3.

Table 3. Commonly used vegetation index.

Source Type Variable Equations

Optical data Vegetation
Index

NDVI NDVI = (NIR−R)
(NIR+R)

RVI RVI = NIR
R

GNDVI GNDVI = NIR−G
NIR+G

SAVI SAVI = ( NIR−R
NIR+R+L )× (1 + L)

DVI DVI = NIR − R
IPVI IPVI = NIR

NIR+R
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Table 3. Cont.

Source Type Variable Equations

Optical data Vegetation
Index

EVI EVI = 2.5 × (NIR−R)
(NIR+6R−7.5B+1)

NDMVI NDMVI = (NIR−R)+(Rmim−NIRmim)
(NIR+R)+(Rmim+NIRmim)

Note: In the formula, NIR denotes the reflectance value of the near-infrared band, R denotes the reflectance value
of the red band, B denotes the reflectance value of the blue wave segment, and G denotes the reflectance value
of the green band. Furthermore, L is the soil adjustment coefficient, which is 0.5 in this study. In NDMVI, the
minimum reflectance values of the red band and near-infrared band of the image in the study area were extracted
and assigned to Rmim and NIRmim, respectively.

(3) Texture Features

Texture features contain and reflect the spatial variation of the grayscale of the image
and can better reflect the real structure of ground objects. In areas with more complex
stand structures, they have a positive effect on AGB estimation [40]. Many scholars have
confirmed that the inclusion of spectral texture features in the model significantly improves
estimation accuracy [41]. After performing principal component analysis on the optical
data in this study, it was found that the contribution rate of the first principal component
is 97.5%. Based on the gray-level co-occurrence matrix (GLCM), eight texture features
were extracted from six windows (3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13) of the
first principal component, including mean (MEAN), variance (VAR), homogeneity (HOM),
contrast (CON), dissimilarity (DIS), entropy (ENT), second moment (ASM), and correlation
(COR). The texture feature formula is shown in Table 4.

Table 4. Texture feature calculation formulas based on the gray-level co-occurrence matrix.

Source Type Variable Equations

Optical data GLCM
Texture

Mean (MEAN) MEAN =
N−1
∑

i,j=0
ip(i, j)

Variance (VAR) VAR =
N−1
∑

i,j=0
p(i, j)(i − μi)

2

Homogeneity (HOM) HOM =
N−1
∑

i,j=0

p(i, j)

1 + (i − j)2

Contrast (CON) CON =
N−1
∑

i,j=0
p(i, j)(i − j)2

Dissimilarity (DIS) DIS =
N−1
∑

i,j=0
p(i, j)|i − j|

Entropy (ENT) ENT =
N−1
∑

i,j=0
p(i, j)(− log[p(i, j)])

Second moment
(ASM) ASM =

N−1
∑

i,j=0
p(i, j)2

Correlation (COR) COR =
N−1
∑

i,j=0

(i − ui)(j − uj)

ϕi ϕj
p(i, j)

Note: In the formula, i and j denote the number of rows and columns of the matrix, respectively. N denotes
the number of pixels. p(i, j) represents the probability of the simultaneous occurrence of two gray values
corresponding to row i and column j. μi and μj represent the mean values of rows and columns, respectively. ϕi
and ϕj denote the variance of rows and columns.

2.3.2. Radar Image Features

(1) Backscatter Coefficient

The backscatter coefficient of radar data is a complex physical quantity, representing
the result of the comprehensive influence of multiple factors within the forest stand. In the
forest environment, factors such as ground roughness, vegetation coverage, and vegetation
water content are intertwined and jointly determine the magnitude of the backscatter
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coefficient [42]. In this study, four polarized backscatter coefficients, HH, HV, VH, and VV,
are extracted as the characteristic variables of the model.

(2) Polarization Decomposition

The forest represents an incoherent target and exhibits a distributed characteristic
with a universal time-varying effect [43]. Based on PIE-SAR 6.3 software, this study
aims to extract the four incoherent polarization decomposition parameters (the Freeman
decomposition, the Pauli decomposition, the H/A/Alpha decomposition, the Yamaguchi
decomposition) as well as the one coherent polarization decomposition parameter (the
Krogager decomposition) in order to deeply explore the forest feature information in radar
data [32]. The related parameters of polarization decomposition are shown in Table 5.

Table 5. Related parameters of polarization decomposition.

Source Type Variable Description

SAR data
Polarization

decomposition

Freeman
decomposition

Double-bounce scattering (Dbl),
Volume scattering (Vol), Surface

scattering (Odd)

Pauli
decomposition

Double-bounce scattering (Dbl),
Volume scattering (Vol), Surface

scattering (Odd)
H/A/Alpha

decomposition Entropy, Anisotropy, Alpha, Lambda

Yamaguchi
decomposition

Double-bounce scattering (Dbl),
Volume scattering (Vol),
Surface scattering (Odd),

Helix scattering (Hlx)

Krogager
decomposition

Spherical scattering (KS), Dihedral
scattering (KD), Helicoid angles

scattering (KH)

(3) Radar Vegetation Index

The radar vegetation index is a parameter derived from eigenvector decomposition. As
vegetation density increases, the radar vegetation index will change accordingly, providing
important reference data for the investigation and management of forest resources [44]. The
radar vegetation index, utilizing the Freeman-Durden decomposition, takes into account
the proportion of the three scattering mechanism components: dihedral scattering (Fd),
surface scattering (Fs), and volume scattering (Fv). The radar vegetation index incorporates
this information related to vegetation scattering by employing a specific algorithm, thereby
enabling it to quantitatively describe the density of vegetation. The formula is as follows.

Freeman_RVI =
Fv

Fv + Fd + Fs
, (2)

2.4. Model Introduction

The measured data and the factors, after having undergone feature optimization,
under three combination forms of single optical data, single SAR data, and multi-source
remote-sensing data combining optical with SAR are inputted into the eXtreme Gradient
Boosting (XGBoost), Back Propagation Neural Network (BPNN), and Residual Network
(ResNet) models, respectively, to estimate the AGB of Picea schrenkiana forests across three
classification criteria: the whole forest, different vertical zonality, and different stand ages.
In the model construction phase, Python 3.7 is selected as the development language, and
the powerful PyCharm 3.8.3 editor is used for code writing. To ensure the reliability and
generalization ability of the model, 30% of the data are randomly selected as the validation
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set to evaluate the performance of the model. During the model training process, through
continuous attempts at different parameter combinations, a Picea schrenkiana forest biomass
inversion model with the highest accuracy is finally established.

2.4.1. XGBoost

XGBoost is a powerful machine-learning algorithm. It demonstrates superior perfor-
mance in both classification and regression tasks within the domain of weakly supervised
learning in machine learning. The training process is optimized by introducing an innova-
tive sparse-aware algorithm for sparse data processing and a weighted quantile sketch for
approximate tree learning [45]. The XGBoost model aims to prevent overfitting and, at the
same time, reduce computational cost by keeping predictions at optimal computational
efficiency through simplification and regularization.

Suppose a dataset D = (xi, yi)(|D| = n, xi ∈ Rm, yi ∈ R), where n is the number of
samples, m is the feature dimension of each sample, and the additive model is defined as:

ŷ(0)i = 0

ŷ(1)i = f1(xi) = ŷ(0)i + f1(xi)

ŷ(2)i = f1(xi) + f2(xi) = ŷ(1)i + f2(xi)

· · ·
ŷ(k)i = ΣK

k=1 fk(xi) = ŷ(t−1)
i + ft(xi)

, (3)

The algorithm model of XGBoost can be expressed as:

ŷi = φ(xi) = ΣK
k=1 fk(xi), fk ∈ F , (4)

Here, F = f (x) = wq(x)(q : Rm → T, w ∈ RT) represents the sample space of regres-
sion trees (typically CART trees are used). The function q maps each sample to a leaf node
index, where T denotes the number of leaf nodes in each tree and w represents the weights
of the leaf nodes. Each fk corresponds to an independent tree defined by q (tree structure)
and w (leaf node weights).

2.4.2. BPNN

The BPNN is one of the currently commonly used neural networks. It calculates the
error through forward propagation and realizes the training of the neural network by
backpropagating the error gradient. The structure consists of three components: the input
layer, the hidden layer, and the output layer [46]. Increasing the number of neurons in the
hidden layer can enhance the training accuracy of the BP neural network. If the number of
neurons in the hidden layer is insufficient, the network may obtain too little information
to solve problems effectively; if the number is too large, not only will the training time
increase, but more importantly, an overfitting problem may arise if there are too many
hidden layer nodes, resulting in an increase in test error and a decrease in generalization
ability. The model framework is shown in Figure 4.
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Figure 4. The framework of the Back Propagation Neural Network model.

2.4.3. ResNet

In traditional deep CNNs, as the number of network layers increases, gradient dis-
appearance (the gradient value gradually diminishes to zero) or explosion (the gradient
value skyrockets) occurs in the backpropagation process, making it difficult to train the
network. Residual connections enable gradients to propagate more effectively in the net-
work by directly passing the input signal [47]. During backpropagation, the gradient can
be directly passed back through the shortcut connection without passing through all the
convolutional layers, thereby reducing the risk of gradient disappearance or explosion. The
model framework is shown in Figure 5.

Figure 5. The framework of the Residual Network model. k represents the convolution kernel, s
represents the stride, and p represents the padding.
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2.5. Accuracy Verification

A total of 30% of the data are randomly selected as the test set to evaluate the model’s
applicability. The coefficient of determination (R2) and the root mean square error (RMSE)
are employed as evaluation metrics to assess the accuracy of each model result. R2 is utilized
to measure the goodness of fit of the model to the data and to explain the proportion of
variance in the target variable. The value range is from 0 to 1. R2 = 1 indicates that the
model perfectly fits the data. RMSE is an index used for evaluating regression models and
is used to measure the deviation between the model’s predicted value and the true value.

R2 = 1 −

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − yi)

2
(5)

Rmse =

√√√√√ n
∑

i=1
(yi − yi)

2

n
, (6)

Types (5) and (6): yi represents the actual observed value, ŷi represents the predicted
value, yi represents the mean of the actual observations, and n represents the number
of samples.

3. Results

3.1. Determination of Characteristic Factors

The selection of modeling factors plays a crucial role in determining the accuracy of
the model. If numerous modeling factors are introduced arbitrarily, many of them may
have little or no correlation with AGB. This excessive number of factors not only increases
the computational burden but also prolongs the model’s training duration. To ensure
the reliability of the model, prior to the modeling process, the normality of the data was
first examined using Q-Q plots in the SPSS data analysis software (IBM SPSS Statistics
v26, IBM Corp., Armonk, NY, USA), a widely used tool for statistical analysis in various
research fields. After confirming the data’s normality, the Pearson correlation coefficient
was employed to examine the correlation between characteristic factors and AGB. Based
on the results of this analysis, factors that were significantly associated with AGB were
carefully selected. This approach helps in identifying the most relevant factors, thereby
enhancing the model’s accuracy and efficiency.

The correlation coefficients between different vertical zonality and characteristic fac-
tors from various data sources are presented in Table 6. When categorized by vertical
zonality, Band3, DVI, HH polarization, HV polarization, Freema_Rvi, and SLOPE, all
exhibit notably high correlation coefficients. In the middle mountain forest-meadow belt,
MEAN_3 shows the strongest correlation with a coefficient of 0.432. Subsequently, Band3
and HV polarization have correlation coefficients of −0.372 and 0.363, respectively. The cor-
relation coefficient between Band3 and the upper middle mountain forest-meadow belt is
−0.453. In this belt, the correlations with MEAN_3 and Band2 are 0.504 and −0.473, respec-
tively. In SAR, the highest correlation coefficients of HH polarization and HV polarization
with the upper middle mountain forest-meadow belt are −0.378 and −0.344, respectively.
The correlation coefficient between the vegetation index DVI and the subalpine open-forest
belt is −0.374. Moreover, in the subalpine open-forest belt, the correlation of SAR data is
higher than that of optical data, and the correlation coefficients of HH polarization and HV
polarization are the highest, being 0.406 and 0.383, respectively.
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Table 6. Correlation between factors and AGB in different vertical zonality.

Middle Mountain
Forest-Meadow Belt

Upper Middle Mountain
Forest-Meadow Belt

Subalpine Open-Forest Belt

Optical data

Band3 −0.372 ** Band2 −0.473 ** Band3 0.336 **
Band2 −0.345 ** Band3 −0.453 ** Band4 −0.321 **

MEAN_3 0.432 ** MEAN_3 0.504 ** Band1 0.291 *
COR_5 0.217 ** COR_5 0.184 ** DVI −0.374 **

DVI −0.251 ** DVI −0.353 **
GNDVI −0.106 **

SAR data

HV 0.363 ** HH −0.378 ** HH 0.406 **
VH 0.339 ** HV −0.344 ** HV 0.383 **

Pauli_Vol 0.353 ** Freeman_Vol −0.342 ** Pauli_Vol 0.351 **
Freeman_Rvi 0.338 ** Pauli_Vol −0.337 **

Freeman_Rvi 0.135 **

Topographic
Factor SLOPE 0.327 **

Note: * indicates significant correlation at the 0.05 level (two-tailed). ** indicates significant correlation at the 0.01
level (two-tailed). MEAN_3 represents the mean value in a 3 × 3 window. COR_5 represents the correlation in a
3 × 3 window.

The correlation coefficients of different stand ages and characteristic factors of different
data sources are shown in Table 7. In near-mature forests, MEAN_3 and Band2 have
the highest correlation, with correlation coefficients of 0.568 and −0.571, respectively.
Second, VH polarization, HV polarization, and Pauli_Odd in SAR data have correlation
coefficients of −0.424, −0.413, and −0.403, respectively. Among vegetation indices, the
correlation coefficients of RVI, DVI, and NDVI are 0.346, 0.340, and 0.312, respectively. In
mature forests, MEAN_5, Band3, and Band2 have the highest correlation, which is 0.515,
−0.500, and −0.492, respectively. In SAR data, the correlation coefficients of HH, VH,
and Freeman_Rvi are −0.431, −0.358, and 0.266, respectively. In over-mature forests, VH
polarization has the highest correlation, with a correlation coefficient of −0.423. Second,
Band3, DVI, and Freeman_Vol have correlation coefficients of −0.412, 0.399, and −0.390,
respectively. Among topographic factors, SLOPE and DEM have high correlations with all
three stand ages. The highest value of SLOPE appears in mature forests, with a correlation
coefficient of 0.427.

Table 7. Correlation between factors and AGB in different stand ages.

Near-Mature Forest Mature Forest Over-Mature Forest

Optical data

Band2 −0.571 ** Band3 −0.500 ** Band3 −0.412 **
MEAN_3 0.568 ** Band2 −0.492 ** Band2 −0.322 **
COR_11 0.369 ** MEAN_5 0.515 ** DVI 0.399 **

RVI 0.346 ** COR_5 0.194 **
DVI 0.340 ** COR_3 −0.143 **

NDVI 0.312 ** DVI −0.233 **

SAR data

VH −0.424 ** HH −0.431 ** VH −0.423 **
HV −0.413 ** VH −0.358 ** Freeman_Vol −0.390 **

Pauli_Odd −0.403 ** Freeman_Rvi 0.266 ** Freeman_Rvi −0.273 **
Freeman_Vol −0.397 **

Yamaguchi_Odd −0.369 **

Topographic
Factor

SLOPE 0.325 ** SLOPE 0.427 ** DEM 0.250 **
DEM −0.178 **

Note: ** indicates significant correlation at the 0.01 level (two-tailed). MEAN_3 represents the mean value in
a 3 × 3 window. COR_3 represents the contrast in a 3 × 3 window. MEAN_5 represents the mean value in a
5 × 5 window. COR_5 represents the correlation in a 5 × 5 window. COR_11 represents the correlation in an
11 × 11 window.
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3.2. Estimation Results of Different Vertical Zonality

Based on the in-depth correlation analysis in the early stage, this study divides the data
sources into single optical data (Optical data + Topographic Factor), single radar data (SAR
data + Topographic Factor), and multi-source remote-sensing data (Optical data + SAR
data + Topographic Factor). The aim is to thoroughly investigate the specific impact of
various data sources on the accuracy of the Picea schrenkiana forest biomass estimation
model under different classification methods.

The accuracy of different models under different vertical zonality and different data
sources is shown in Table 8. In the upper middle mountain forest-meadow belt, when only
optical data are used, the R2 of the ResNet is 0.74, which is much higher than the R2 of
the XGBoost of 0.57 and the R2 of the BPNN of 0.66. Due to the lesser number of input
values in the subalpine open-forest belt, the highest inversion accuracy combination is
multi-source remote-sensing data plus ResNet, with R2 = 0.69 and RMSE = 12.63 t·hm−2.
The lowest accuracy appears in the estimation using a single data source with XGBoost,
where R2 = 0.51 and RMSE = 24.56 t·hm−2. It can be seen that the performance of the
ResNet in combinations involving three data sources outperforms that of the XGBoost and
BPNN. In addition, the performance of different data sources under the application of the
same model also varies. In the middle mountain forest-meadow belt, when only optical
data are input into the XGBoost, the obtained R2 = 0.52 and RMSE = 23.40 t·hm−2. Based on
the SAR data source, R2 = 0.46 and RMSE = 24.87 t·hm−2. The R2 value of Picea schrenkiana
forest estimation utilizing multi-source data is increased to 0.62, and the RMSE value
is reduced to 20.69 t·hm−2, indicating that integrating various data sources can further
improve the accuracy of the model. In the upper middle mountain forest-meadow belt, for
the BPNN, the R2 of the optical data source is 0.66 and RMSE = 19.65 t·hm−2, while the R2

of the SAR data source is 0.65 and RMSE = 22.21 t·hm−2. When both optical and SAR data
sources are used simultaneously, R2 = 0.71 and RMSE = 19.21 t·hm−2, which indicates that
combining multiple data sources has a positive impact on model accuracy. The accuracy of
each model using multi-source data in the case of vertical zonality is shown in Figure 6.

Table 8. The Accuracy of Each Model under Different Vertical Zonality and Different Data Sources.

Optical Data + Topographic
Factor

SAR Data + Topographic
Factor

Optical Data + SAR
Data + Topographic Factor

R2 RMSE R2 RMSE R2 RMSE

XGBoost

Middle mountain
forest-meadow belt 0.52 23.40 0.46 24.87 0.62 20.69

Upper middle mountain
forest-meadow belt 0.57 22.96 0.52 26.06 0.63 21.30

Subalpine open-forest belt 0.51 24.56 0.54 18.66 0.57 13.40

BPNN

Middle mountain
forest-meadow belt 0.67 20.24 0.67 18.02 0.72 16.87

Upper middle mountain
forest-meadow belt 0.66 19.65 0.65 22.21 0.71 19.21

Subalpine open-forest belt 0.62 16.85 0.57 16.50 0.66 15.15

ResNet

Middle mountain
forest-meadow belt 0.74 17.31 0.70 16.55 0.78 15.27

Upper middle mountain
forest-meadow belt 0.74 17.82 0.67 21.91 0.79 15.62

Subalpine open-forest belt 0.63 22.19 0.67 12.31 0.69 12.63
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Figure 6. The accuracy of each model using multi-source data in the case of vertical zonality.

3.3. Estimation Results of Different Stand Ages

The accuracy of different models under different stand ages and different data sources
is shown in Table 9. Compared to near-mature forest and mature forest, over-mature
forest have a smaller area and fewer input values, resulting in lower estimation accuracy
than that of near-mature forest and mature forest. In mature forest, when only optical
data are used, for XGBoost, R2 = 0.60 and RMSE = 16.47 t·hm−2. For BPNN, R2 = 0.63
and RMSE = 15.37 t·hm−2. For ResNet, R2 = 0.67 and RMSE = 14.91 t·hm−2. In near-
mature forest, when multi-source remote-sensing data are used, for XGBoost, R2 = 0.60
and RMSE = 13.40 t·hm−2. For BPNN, R2 = 0.69 and RMSE = 12.60 t·hm−2. For ResNet,
R2 = 0.77 and RMSE = 10.06 t·hm−2. Under the same data source and different model condi-
tions, ResNet demonstrates the highest accuracy. When the model is fixed as using ResNet,
in over-mature forest, when only optical remote-sensing images are used, R2 = 0.74 and
RMSE = 21.58 t·hm−2. When only SAR data are used, R2 = 0.72 and RMSE = 22.44 t·hm−2.
When combining optical and SAR data, R2 = 0.77 and RMSE = 22.68 t·hm−2. This once again
confirms that combining two data sources can further improve the accuracy of ResNet and
enable it to achieve optimal performance. The accuracy of each model using multi-source
data in the case of stand ages is shown in Figure 7.
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Table 9. The Accuracy of Each Model under Different Stand Ages and Different Data Sources.

Optical Data + Topographic
Factor

SAR Data + Topographic
Factor

Optical Data + SAR
Data + Topographic Factor

R2 RMSE R2 RMSE R2 RMSE

XGBoost
Near-mature forest 0.52 14.21 0.48 14.86 0.60 13.40

Mature forest 0.60 16.47 0.54 17.61 0.65 15.93
Over-mature forest 0.51 29.60 0.49 23.79 0.60 28.33

BPNN
Near-mature forest 0.65 12.87 0.64 13.05 0.69 12.60

Mature forest 0.63 15.37 0.63 15.38 0.71 14.93
Over-mature forest 0.64 21.78 0.60 22.85 0.67 25.59

ResNet
Near-mature forest 0.64 12.43 0.72 10.84 0.77 10.06

Mature forest 0.67 14.91 0.68 14.64 0.83 10.62
Over-mature forest 0.74 21.58 0.72 22.44 0.77 22.68

Figure 7. The accuracy of each model using multi-source data in the case of stand ages.

3.4. Estimation Results of the Whole Forest

It is easy to deduce from Tables 8 and 9 that multi-source data have higher prediction
accuracy than a single data source. Therefore, multi-source data are individually incorpo-
rated into the three models, as shown in Table 10 and Figure 8, respectively. It is readily
apparent that the ResNet has the highest accuracy, with R2 = 0.71 and RMSE = 20.95 t·hm−2.
The XGBoost model has the lowest accuracy, with R2 = 0.55 and RMSE = 27.71 t·hm−2.
To sum up, there are differences in the accuracy performance of various data sources and
models under different modeling methods. Generally, in terms of data, integrating optical
and SAR data sources can significantly improve the model’s accuracy. The ResNet model
demonstrates notably higher accuracy compared to the other two models. Among different
modeling approaches, the accuracy of AGB estimation is higher for vertical zonality and
stand-age scenarios than for the entire forest. Among them, the accuracy of estimation
based on stand age is the highest.
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Table 10. The Accuracy of different models in estimating the whole forest using multi-source data.

XGBoost BPNN ResNet

Whole forest
R2 0.55 0.66 0.71

RMSE 27.71 23.04 20.95

Figure 8. Accuracy of each model using multi-source data in the case of whole forest.

3.5. AGB Mapping

Through the above comparison, it can be inferred that the combination of ResNet and
multi-source remote-sensing data has the highest accuracy. Using this model and data
source, we draw AGB distribution maps for three scenarios: the entire forest, classification
by vertical zonality, and classification by stand ages. These maps are shown in Figure 9.

Figure 9. AGB estimation results under three different modeling methods. (a) shows the output map
of estimated AGB for the whole forest. (b) based on the classification of vertical zonality, shows the
output map of estimated AGB. (c) based on the classification of stand ages, shows the output map of
estimated AGB.
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4. Discussion

In the realm of AGB estimation research, the acquisition and utilization of comprehen-
sive and precise information are of paramount significance. This study is based on the forest
AGB estimation outcomes obtained from three distinct data sources: single optical data,
single radar data, and integrated optical-radar data. In this study, the estimation accuracy
of multi-source remote-sensing data is significantly higher than that of single-source data.
This conclusion has been rigorously verified by an extensive body of research. Attarchi
et al. [48] evaluated 11 distinct multiple linear regression models using optical and SAR
data. Their research findings clearly show that integrating multispectral and SAR data
can effectively reduce uncertainties from data limitations, thus improving the accuracy of
biomass estimation. The results of our current study are highly congruent with this view.
This further validates the significant advantages of multi-source remote-sensing data in
biomass estimation.

Given the challenge of acquiring forest AGB products with temporal and spatial
resolutions fully consistent with those of this study, we selected the AGB product with the
highest resolution and the closest acquisition time (the 30 m resolution AGB product in
China in 2019) for a comparative analysis with the AGB estimated in this study. As shown
in Figure 9, the biomass distribution range obtained from the whole-forest estimation in
this study mainly fell within the range of 70–190 t·hm−2, with an average biomass per unit
area of 126.49 t·hm−2. Based on 4789 ground-measured AGB data and multi-source remote-
sensing data, Yang [49] derived a 30 m resolution biomass estimation for China in 2019.
After converting the research findings, the average biomass per unit area in this study area
is approximately 129.34 t·hm−2, which is comparable to the results of this study. However,
an in-depth analysis of Yang’s estimation results reveals that the biomass distribution
range mainly ranges from 100 to 160 t·hm−2. Taking the forest resources inventory data for
management as the true value, the biomass in the study area is mainly distributed in the
range of 70–190 t·hm−2. As shown in Table 11, the RMSE of the estimation based on the
entire forest in this study is 22.61 t·hm−2, while the RMSE in Yang’s study is 30.20 t·hm−2.
From the comparison results, it can be seen that the estimated values in this study fit better
with the true values across regions with different biomass levels, especially in areas with
higher biomass, where Yang’s study exhibited significant underestimation. In contrast, this
study more accurately reflects the actual biomass conditions. This is because the spatial
resolution of the dataset used in this study exceeds 30 m, and a larger-scale measured
dataset has been obtained in the study area. These improvements have enhanced the
reliability of biomass estimation at the extremes. The comparison of AGB estimation results
between this study and Yang’s study is presented in Figure 10, while the specific errors are
shown in Table 11.

Table 11. The errors of the whole-forest estimation results in this study and the AGB estimation
results in Yang’s study when compared with the true value.

Number True Value
Whole Forest

Estimate
Error Yang’s AGB Error

1 62.3534 93.81768 −31.4643 117.565 −55.2116
2 72.1016 84.79638 −12.6948 123.5967 −51.4951
3 81.8498 102.4973 −20.6475 117.2498 −35.4
4 86.4918 96.70109 −10.2093 109.858 −23.3662
5 96.24 110.9799 −14.7399 123.005 −26.765
6 101.3462 87.37556 13.97064 106.6862 −5.33999
7 105.9882 99.72482 6.263377 118.8634 −12.8752
8 111.0944 108.8939 2.200533 126.8149 −15.7205
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Table 11. Cont.

Number True Value
Whole Forest

Estimate
Error Yang’s AGB Error

9 115.7364 111.9555 3.780879 143.0097 −27.2733
10 120.8426 128.0583 −7.21566 130.8246 −9.98197
11 125.4846 114.2628 11.22175 117.4728 8.011774
12 130.5908 91.12645 39.46435 105.9736 24.61725
13 133.376 138.1766 −4.80064 135.807 −2.43097
14 136.1612 166.4629 −30.3017 146.5908 −10.4296
15 140.339 134.6607 5.67831 144.5293 −4.19033
16 144.981 131.7099 13.27107 126.5128 18.4682
17 154.7292 160.7999 −6.0707 138.5166 16.21257
18 159.8354 173.726 −13.8906 135.9558 23.87965
19 164.4774 176.8097 −12.3323 139.8075 24.66987
20 169.5836 131.8373 37.74632 145.0627 24.52095
21 183.9738 150.7507 33.22307 134.5283 49.44547
22 189.08 171.5312 17.54883 154.0613 35.01869
23 193.722 149.9356 43.78642 151.4542 42.26779
24 208.5764 162.8467 45.72974 147.4223 61.15406

Figure 10. The comparison of AGB estimation results between this study and Yang’s study. (a) the
results of this experimental study; (b) The results of Yang’s study.

When multi-source remote-sensing data and ResNet were used to estimate whole-
forest biomass, R2 was 0.71, and RMSE was 20.95 t·hm−2. In the vertical zonality modeling
method, the estimation accuracy of the subalpine open-forest belt, which has a slightly
lower sample number, is lower than that of the whole forest. Conversely, the estimation
accuracies of the other two vertical belts are higher than that of the whole forest. In
the case of stand-age modeling, the R2 of the model reaches up to 0.83. According to
Figures 6c,f,i, 7c,f,i and 8c, when the biomass is less than 100 t·hm−2, the overestimation
of the whole-forest biomass is the most significant, and the deviation value significantly
exceeds the estimation results of vertical zonality and stand-age modeling. This overestima-
tion is not accidental. When the biomass reaches 170 t·hm−2 and above, the underestimation
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issue emerges again in the whole forest. Taking the biomass estimation approach integrat-
ing multi-source remote-sensing data and the ResNet model as an example, among all the
estimation results, when the error between the estimated value and the actual biomass
exceeds 30 t·hm−2, the error proportion under different modeling methods exhibits distinct
differences. When estimating the forest as a whole, the estimated values with an error
exceeding 30 t·hm−2 account for 23.09% of the total estimated values. When the vertical
zonality modeling method is applied to estimate biomass, the error ratio is significantly
reduced to 5.45%. In the case of stand-age modeling, the proportion of estimates with an
error greater than 30 t·hm−2 is the lowest, merely 4.72%. The climatic and other conditions
in distinct vertical zones vary substantially, with a profound impact on vegetation growth
and biomass distribution. The biomass characteristics of trees in different stand ages also
differ significantly because of their disparate growth states. Dividing forests based on
vertical zonation or age class allows for more precise identification of these differences. As
a result, the accuracy of estimations is notably enhanced, lending support to more accurate
biomass evaluations.

5. Conclusions

In the biomass estimation study of Picea schrenkiana forests in the West Tianshan Moun-
tains, this study integrated GF-1, GF-6, and GF-3 PolSAR data with dem data, extracted
corresponding feature factors, and applied the ResNet method to conduct the estimation
work. Eventually, high accuracy in biomass estimation was achieved. It is well-established
that along altitude gradients, over short distances, there are systematic alterations in tem-
perature and precipitation. Additionally, as forests age, biomass continues to build up.
Based on these principles, this study further classified Picea schrenkiana forests according to
two methods: Vertical Zonality Differentiation without considering stand age and Stand-
Age Classification without considering vertical zonality. The results showed that the model
accuracy was remarkably improved.

Starting from the middle and low mountain forest-steppe belt, as the altitude continues
to increase, temperature and precipitation conditions become highly conducive to AGB
accumulation in Picea schrenkiana forests. However, if the altitude exceeds a certain critical
value, the temperature will drop significantly, and this low-temperature environment will
no longer be suitable for AGB accumulation in Picea schrenkiana forests [50]. Conversely,
below the middle and low mountain forest-steppe belt, due to intensive human activities,
it is also not conducive to the large-scale growth of Picea schrenkiana forest. This further
explains why Picea schrenkiana forest is mainly distributed in the area 1700–2700 m above
sea level.

Due to limitations in data availability, in-depth studies on the long-time-series AGB of
Picea schrenkiana forests remain scarce. In follow-up research, remote-sensing data from
the Landsat series or other sources can be integrated at 10−20-year intervals, combined
with environmental factors such as precipitation and temperature, to systematically ana-
lyze the dynamic changes in Picea schrenkiana forest AGB. Furthermore, the influencing
factors considered in the current model construction are not comprehensive enough. In
future studies, additional key stand characteristic factors, such as slope position and mean
DBH, can be incorporated to continuously optimize the AGB estimation model for Picea
schrenkiana forests.
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Abstract: Consistent and accurate data on forest biomass and carbon dynamics are essential
for optimizing carbon sequestration, advancing sustainable management, and developing
natural climate solutions in various forest ecosystems. This study quantifies the forest
biomass in designated forests based on GEDI LiDAR datasets with a unique compartment-
level monitoring of unexplored hilly areas of Mansehra. The integration of multisource
explanatory variables, employing machine learning models, adds further innovation to the
study of reliable above ground biomass (AGB) estimation. Integrating Landsat-9 vegetation
indices with ancillary datasets improved forest biomass estimation, with the random
forest algorithm yielding the best performance (R2 = 0.86, RMSE = 28.03 Mg/ha, and
MAE = 19.54 Mg/ha). Validation with field data on a point-to-point basis estimated a
mean above-ground biomass (AGB) of 224.61 Mg/ha, closely aligning with the mean
ground measurement of 208.13 Mg/ha (R2 = 0.71). The overall mean AGB model estimated
a forest biomass of 189.42 Mg/ha in the designated moist temperate forests of the study area.
A critical deficit in the carbon sequestration potential was analysed, with the estimated AGB
in 2022, at 19.94 thousand tons, with a deficit of 0.83 thousand tons to nullify CO2 emissions
(20.77 thousand tons). This study proposes improved AGB estimation reliability and offers
insights into the CO2 sequestration potential, suggesting a policy shift for sustainable
decision-making and climate change mitigation policies.

Keywords: temperate forest; AGB; LiDAR; random forest; CO2; sustainable management

1. Introduction

Climate model projections indicate a temperature increase ranging from 1.92 ◦C to
5.2 ◦C by the late 21st century, depending on CO2 and other greenhouse gases (GHGs) [1].
These alarming trends underscore the need for prompt policy interventions to mitigate the
risks associated with climate change. Ecosystem services of forests are pivotal in curbing
the progression of climate change, particularly by sequestering CO2 emissions. Global CO2
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emissions annually increase by 0.1%, reaching 35.8 Gt in 2023, further contributing to global
warming [2]. This highlights the need for a holistic understanding that combines biological,
ecological, and social knowledge. Such an integrated approach bridges forest ecology
and management, supporting the sustainable preservation of biomass and ecosystem
services. Moreover, biomass estimation is also vital to monitor progress and targets under
SDG-15 (Life on Land) and the REDD+ program to ensure sustainable forest management,
biodiversity preservation, and ecosystem health [3,4].

AGB is a critical parameter for assessing forest ecosystems, as it effectively encapsu-
lates indicators, such as forest area change, net forest change, and management practices.
Moreover, AGB is a vital determinant of a forest ecosystem’s capacity for carbon storage.
The accurate estimation of AGB is crucial for monitoring afforestation and deforestation
and developing sustainable strategies to address forest management challenges under
SDG-15.

Pakistan ranks 5th in climate vulnerability, according to the Global Climate Risk
Index [5]. Its forests, covering just 4.51 million hectares [6], are increasingly vulnerable
to climate change, necessitating advanced methodologies for accurate carbon assessment.
Enhancing existing frameworks and tailoring them to local contexts is vital for developing
effective mitigation strategies to control CO2 emissions [7]. Assessing forest areas without
considering AGB limits our understanding of the total carbon storage capacity and the
potential effects of climate change.

Temperature and precipitation are significant climate characteristics that regulate
the environmental variables affecting above-ground forest carbon stocks. Forest struc-
ture changes are determined by species distribution, composition, and density and are
vulnerable to climatic-induced shifts, impacting forest productivity and functionality [8].
Additionally, Pakistan’s management strategies adopted for forestry resources face multiple
challenges due to climate change impacts and resource allocation among the indigenous
communities living in the forest. The loss of carbon sinks, estimated at 1.1% from 2000 to
2023 by Global Forest Watch, has intensified climate change impacts, heightened suscepti-
bility towards natural disasters, and increased habitat loss, threatening species survival
and biodiversity [9]. Addressing these challenges requires integrating data fusion tech-
niques, machine learning algorithms, and innovative approaches to improve carbon stock
assessments in managed and natural forests.

Inaccurate and unreliable methods for estimating forest AGB result in substantial
miscalculations of carbon storage capacities, ultimately undermining climate change miti-
gation and adaptation strategies [10]. Forest carbon estimates at global and regional scales
face data availability challenges, estimation methods, topographical variability, and vast
spatial coverage [11]. Significant data gaps and uncertainty in forest carbon sequestration
and storage mainly stem from inconsistent field data collection and biomass allometric
equations [12,13]. Ground-based methods for quantifying forest biomass and net primary
productivity (NPP) are resource-intensive and limited in spatial and temporal coverage [14].
Therefore, a consistent methodological framework is essential to estimate AGB at national
and sub-national levels.

Traditional methods of AGB estimation are statistical, requiring more resources. Allo-
metric equations were developed using a logarithmic transformation model for biomass
estimation in a sub-tropical ecoregion, using integrated cluster sampling, and using optical
image segmentation to estimate carbon stocks in Himalayan temperate and sub-tropical
mountain systems [15]. This ground-based methodology was supplemented with remote
sensing to cover a larger area. These studies indicated the prevalent use of optical and field-
based inventory data collection techniques for carbon stock estimation. Sentinel-2-derived
vegetation indices and linear regression were used to estimate AGB, complemented by
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land cover change analysis with Landsat-7 and 8 data [16]. Similarly, temporal extent
and deforestation rates were assessed in Mansehra [17]. Harmonized global maps with a
spatial resolution of 300 m were developed by estimating above-ground and below-ground
biomass carbon density using a rule-based decision tree method [18].

Spaceborne LiDAR is increasingly favoured for AGB estimation, because it captures
biophysical vegetation parameters like plants’ vertical profiles, sub-canopy topography,
and biomass [19]. The cost-effectiveness and suitability of spaceborne LiDAR over large
areas and inaccessible hilly terrain make it a practical choice [20]. Using different statistical
probability distribution techniques, the GEDI L4A dataset was used to map Amazon
forests for carbon sequestration rates concerning vegetation recovery, with regeneration
and disturbance [21]. A hybrid inference model demonstrated compatibility between
GEDI L4A datasets and Paraguay’s national forest inventory (NFI), effectively reducing
uncertainties in biomass estimation and enhancing the integration of remote sensing and
field data for improved forest monitoring [22]. Similarly, the accuracy testing of GEDI
L2A and ICESat-2 data using the kriging technique in tropical and sub-tropical forests in
India showed superior results for GEDI [23]. However, the underestimation of GEDI (L4A
and gridded L4B) footprints in tropical forests was found in comparison with Sentinel-2
estimates, indicating the need for additional explanatory variables from other datasets [24].
In regions with limited ground inventory resources, GEDI data is open, accessible geospatial
information that provides a viable solution for estimating above-ground biomass. Ancillary
and optical data from various sensor platforms further improved AGB estimation efficiency
with GEDI L4A footprints in these studies [25–28]. The applicability of GEDI footprints and
data products has been studied at various spatial (global and regional), temporal (seasonal),
and species levels, highlighting the dynamic nature of carbon stock accumulation in
response to slopes and aspects [29]. Despite numerous studies on reliable AGB estimation,
gaps persist in assessing its local accuracy for GEDI L4A products.

GEDI L4A classifies four plant function types globally and applies an OLS model
using waveform data, supporting reliability and accuracy in biomass estimation [30]. A
30 m resolution forest AGB map of China was generated using multisource remote sensing
data, including meteorological and soil variables and RF regression, achieving R² = 0.67 and
RMSE = 70.71 Mg/ha [25]. Similarly, in another study, optimized GEDI footprint density
for regional biomass estimation using random forest was carried out. It was determined
that a methodological reference for selecting GEDI footprints improve prediction accuracy,
yielding an average biomass of 101.98 t/hm² and a total biomass of 3035.29 × 104 t/hm² in
forest assessments [31].

Our research signifies a comprehensive approach that combines optical data with
machine learning algorithms and spaceborne LiDAR data to assess AGB dynamics and the
carbon sequestration potential in this specific ecological context as compared to previous
studies having integrated remote sensing and machine learning for AGB estimation. The
proposed study quantifies the forest biomass in a designated forest based on the integra-
tion of multisource explanatory variables, with the importance score having topographic
elevation, forest canopy height, and optical green band as the prominent and major key
features in biomass estimation and with a unique compartment-level assessment.

Machine learning algorithms (MLAs) are widely used in biomass estimation by in-
ventory data, allometric equations, and remote sensing data [32]. These methods are
particularly effective in handling forest heterogeneity and terrain complexity, providing
robust and scalable solutions for biomass estimation [33]. Among MLAs, random forest
has demonstrated superior performance in predicting AGB for plant function types, such
as broadleaf, coniferous, and mixed needle-broadleaf forests [34]. The selection of random
forest is due to its demonstrated high predictive accuracy with a minimal risk of overfitting,
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due to its ensemble-based approach and effectiveness for biomass estimation in remote
sensing applications [35]. The ability of the RF algorithm to handle non-linear relationships,
high-dimensional data, and complex interactions among variables makes it more suitable
for AGB estimation [36]. It provides an inherent mechanism for ranking the importance
of input variables, which is beneficial for understanding the contribution of predictors
(e.g., spectral indices, topographic data, and GEDI data) in biomass estimation [37]. A
comprehensive insight into the above discussion underscores the importance of integrating
multiple diverse data sources with machine learning algorithms to obtain reliable AGB
estimation and its potential for CO2 sequestration. This integration facilitates accurate
assessments of forest impact and inventory requirements for mitigating CO2 emissions.
Therefore, this study aims to explore exploratory variables using machine learning mod-
els for accurate AGB estimation and its potential to sequester CO2 concentration. Thus,
this research provides a comprehensive and efficient integrated approach consisting of
exploratory variables derived from satellite and spaceborne LiDAR datasets and analytics
to explore the AGB potential and requirements to tend to prevalent CO2 emissions.

2. Materials and Methods

The major components of this study’s methodology include the study area, datasets,
data preparation and analytical workflow, and CO2 emission datasets. These components
are described below in detail.

2.1. Study Area

Mansehra District, located in the Khyber Pakhtunkhwa province of Pakistan, covers
approximately 4579 km2, situated between latitudes 34◦14′ N to 35◦11′ N and longitudes
72◦49′ E to 74◦08′ E (Figure 1). The temperature ranges from 2 to 36 ◦C, with heavy
monsoon rainfall reaching 1500 mm. The elevation varies from 600 to 4500 m, ranging from
low-lying plains to high mountain peaks in the Kaghan Valley of Himalayan foothills.

Figure 1. This map layout shows a map of the country, with the provincial territory of Khyber
Pakhtunkhwa and the Mansehra district. The true-colour composite is displayed with 30 m resolution
Landsat-9 optical satellite imagery acquired on 17 October 2022.
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The species composition in moist temperate forests is dominated by Blue Pine (Pinus
wallichiana A.B. Jackson), followed by Deodar (Cedrus deodara (Roxb. Ex Lamb.) G. Don),
Fir (Abies pindrow Royle), and Spruce (Picea smithiana (Wall.) Boiss.), forming an association
with broad-leaved Oak (Quercus dilatata Lindl. ex Royle) of high carbon storage potential.
Forest covers transition to sub-alpine, moist, and dry temperate forests at higher elevations,
whereas the sub-tropical chir pine dominates lower elevations. The estimated total province
forest area is 1.133 million hectares, covering 70% of the temperate zone, while 30% is the
sub-tropical zone [38]. This diversity highlights the region’s ecological significance for
biodiversity, carbon sequestration, and sustainable forest management.

2.2. Datasets
2.2.1. Forest Territorial Distribution and Compartment Data

Pakistan has 66% of state-managed forests and 34% of forests managed privately
or by the community [39]. Out of the 3322.52 km2 of forest area in Mansehra District,
the total designated forest area is 1118.85 km2. This forest territory is designated as a
community locally named guzara (58.09%), reserved (30.34%), and protected (11.56%)
forests. “The word “Guzara”, literally meaning “subsistence” which is community-owned,
either individually or collectively managed, where local residents have legally documented
rights to extract wood for their domestic needs”.

The Khyber Pakhtunkhwa Forest Department, under the Forest Ordinance 2002,
categorizes designated forests into compartments, as in Figure 2 for geospatial monitoring,
ensuring effective forest management practices and informed decision-making. Among the
total 1298 compartments, community (privately owned) forests have 717, protected forests
have 182, and reserved forests have 399 compartments. The distribution of designated
forest categories and compartments is shown in Figure 2.

Figure 2. The territorial distribution of designated forests, showing reserved, protected, and commu-
nity forest compartments obtained from the Khyber Pakhtunkhwa Forest Department.
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2.2.2. Field Inventory Data

A carbon inventory survey was conducted in the Khyber Pakhtunkhwa forests using
satellite data and region-specific allometric equations to estimate the carbon stocks. These
equations were developed for the local major population species, with biomass expansion
factors and basic wood densities. A consistent forest definition (a minimum area of 0.5 ha
area, a 10% canopy cover, and 2 m in height), with a national consensus of provincial
and federal departments that was adopted in 2017 for the monitoring of forests, was used
to estimate the forest cover. The field inventory data from the designated forests of the
Mansehra district cover geographical, environmental, and forest structural parameters.
The elevation, geolocation, slope (%), aspect, crown cover (%), diameter at breast height
(DBH, cm), and basal area (m2), using allometric equations, were used to calculate the
carbon stock points across dry temperate, moist temperate, and chir pine forests. The
spatial distribution of these ground plot measurements is illustrated in Figure 3.

Figure 3. This nested circular plot presents the ground carbon stock points of the designed forest in
the Mansehra district.

The Pakistan Forest Institute (PFI) conducted a field inventory campaign for a pi-
lot project to develop species-specific local allometric models for Khyber Pakhtunkhwa.
Among the total of 449 sample plots, 70 plots (15.59%) were designed as primary sam-
pling units (PSUs) for accuracy assessment and validation through nested circular plots
for biomass and carbon stocks. The layout and dimensions of the ground circular nested
plots are shown in Figure 4. Within a nested circular plot (17.84 m radius; 1000 m2 area),
the number of trees with a diameter higher than 5 cm were enumerated. However, the
diameter at breast height (DBH) for the diameter class 1–5 cm was measured from a subplot
of a 5.64 m radius (area = 100 m2). Later on, trees with a diameter of less than 1 cm
(regeneration plot DBH) were counted from a 1 m radius plot within an area of 3.14 m2.
Shrub non-tree, litter, and soil biomass measurements were taken from a small plot with a
radius of 0.56 m (area = 1 m2).
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Figure 4. The circular field inventory nested plots shown in this image, with the plot size dimensions,
measure tree, shrub, and below-ground carbon stock estimates.

A destructive sampling technique was employed in the coniferous forest to calculate
the biomass expansion factor and basic wood density of conifer species and to develop
allometric equations using regression functions, given in Table 1. Tree heights were ac-
curately estimated by measuring new diameter-height functions developed for biomass
estimation. Ground-based biomass estimates were calculated using the volume, wood
density, height, and biomass expansion factor (BEF) [40]. Allometric equations given in
Table 1 have four major components consisting of diameter at breast height (D), total tree
height (H), regression constant (a) and regression coefficient (b). Regression constant and
coefficient values depend upon geographical location and type of species.

Table 1. Allometric equations developed at local conditions for major conifer tree species.

Species Forest Type Allometric Equations Model Source

Quercus ilex L. (oak) Dry temperate AGB = 0.8277(D2H)0.6655 M = a(D2H)b

[38]

Cedrus deodara (Roxb. Ex
Lamb.) G. Don (deodar) Dry temperate AGB = 0.1779(D2H)0.8103 M = a(D2H)b

Pinus wallichiana
A.B.Jackson (kail) Dry temperate AGB = 0.0631(D2H)0.8798 M = a(D2H)b

Cedrus deodara (Roxb. Ex
Lamb.) G. Don (deodar) Moist temperate AGB = 0.0491(D2H)0.9167 M = a(D2H)b

Abies Pindrow Royle (fir) Temperate AGB = 0.0452(D2H)0.9029 M = a(D2H)b

Picea smithiana (Wall.)
Boiss (spruce) Temperate AGB = 0.0821(D2H)0.8363 M = a(D2H)b

Pinus wallichiana
A.B.Jackson (kail) Moist temperate AGB = 0.0594(D2H)0.881 M = a(D2H)b

Pinus roxburghii Sargent
(chir pine) Sub-tropical pine AGB = 0.0224(D2H)0.9767 M = a(D2H)b

2.2.3. Satellite Datasets

Landsat-9 optical imagery offers a broad spectral resolution, covering 11 bands ranging
from visible light to thermal infrared. Key bands include the red (0.64–0.67 μm) and green
(0.53–0.59 μm) bands, which help distinguish foliage and canopy densities. The near-
infrared band (0.85–0.88 μm) is instrumental in analysing forest health, types, and biomass
volume within a tree canopy. Additionally, the two short-wave infrared bands SWIR-1
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(1.57–1.65 μm) and SWIR-2 (2.11–2.29 μm) are sensitive to moisture content in soil and
vegetation [41]. Open-access Landsat-9 Operational Land Imager (OLI) data of the study
area, with minimum cloud (up to 10%) cover, was downloaded from USGS Earth Explorer
website https://earthexplorer.usgs.gov/, (accessed on: 18 October 2024).

Digital Elevation Model

The Shuttle Radar Topography Mission (SRTM), a collaborative product of the U.S.
National Geospatial-Intelligence Agency (NGA) and NASA, is widely used in geospatial
applications. SRTM provides data in a standardized global WGS84 geographic coordinate
system with a resolution of 1 arc second (~30 m) and 3 arc seconds (~90 m). Aspect and
DEM products with a 30 m resolution and GeoTiff file format were downloaded from the
USGS EROS Archive link https://lpdaac.usgs.gov/products/srtmgl1v003/ (accessed on:
20 October 2024). Several studies have observed a correlation between topographic feature,
elevation, slope, and biomass prediction in forest ecosystems in steep and hilly terrains [42].

Forest Layer

The forest layer, derived from the Sentinel-1 and Sentinel-2 datasets (10 m resolu-
tion), was extracted from World Cover 2020 and 2021 products website https://viewer.esa-
worldcover.org/worldcover (accessed on: 20 October 2024), developed by the United Na-
tions’ (UN) Food and Agriculture Organization (FAO) using the Land Cover Classification
System (LCCS). This forest layer intersected with the GEDI-derived AGB points to ensure
requisite data compatibility.

Forest Height

Tree height is a critical explanatory variable for accurately estimating biomass [43].
This study used the GEDI (RH98) L2A dataset as the primary source of forest height. Forest
height coverage across the Mansehra district was ensured through the Global Forest Canopy
Height (30 m raster) dataset, developed by the Global Land Analysis and Discovery (GLAD)
team at the University of Maryland (UMD GLAD) as supplementary input. This dataset,
available at https://glad.umd.edu/dataset/gedi/ (accessed on: 30 October 2024), allowed
for seamless integration with GEDI (RH98), enabling reliable above-ground biomass (AGB)
predictions for the entire study area.

Predictor Variables

Vegetation indices are essential in biomass estimation, forest cover assessment, and
health monitoring. A comprehensive set of predictor variables was explored to estimate
the structural parameters and biomass of forests using machine learning models. NDVI
and seasonality impacts are frequently correlated, suggesting that a time series analysis
improves AGB estimations, particularly during the fall [44]. The impact on biomass of
combining different spectral bands and the vegetation indices NDVI [44], GNDVI [45],
MSI [46], and PVI [47] were studied.

2.2.4. CO2 Emission Dataset

CO2 emissions were obtained from the EDGAR (Emissions Database for Global Atmo-
spheric Research) Community GHG database, a collaborative work of the Joint Research
Centre (JRC) and the International Energy Agency (IEA) [48]. These datasets were studied
to observe the AGB potential and requirements to tend to CO2 emissions.
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2.3. Data Preparation and Analytical Workflow
2.3.1. Data Processing

The open-source GEDI dataset is accessible from NASA’s Land Processes Distributed
Active Archive Center (LPDAAC). The 200 GEDI sensor trajectory orbit tracks were down-
loaded from https://search.earthdata.nasa.gov (accessed on: 31 October 2024). Based on
mathematical and algorithmic procedures, GEDI products are categorised into lower-level
products (L1 and L2) and higher-level ones (L3 and L4). The GEDI instrument emits laser
pulses with a diameter of 25 m and a wavelength of 1064 nm and a pulse rate of 242 Hz.
The GEDI Level 4A version 2.1 datasets were used to estimate the AGB for tropical and tem-
perate forests in the Mansehra district from 2019 to 2022. GEDI Level 4A data (Version 2.1)
preprocessing involved several key steps to enhance accuracy and reliability. Quality filter-
ing was applied to retain only high-quality footprints (quality_flag = 1, degrade_flag = 0).
This removed footprints with low sensitivity or high uncertainty based on dataset quality
flags. Strong beam footprints, which offer more reliable measurements, were prioritized
over weak/coverage beams to improve data precision. Spatial alignment ensured GEDI
footprints are co-registered with other remote sensing datasets, such as Landsat, Sentinel,
or SRTM DEM, to prevent misalignment errors in model training. Additionally, outlier
detection was performed to identify and remove erroneous, null values to ensure a rational-
ized, refined, and robust dataset for analysis. Derived metrics, such as RH95/RH50 ratios,
were included to enhance vertical-structure characterization. Moreover, GEDI points were
pre-processed to separate coverage beams and high-energy beams in complex hilly terrain
areas to have only high-energy beams for GEDI L4A biomass footprints, as shown in
(Figure 5) [42].

Figure 5. A spatial representation of spaceborne LiDAR GEDI L4A AGB points over the study area.
In (A), the coverage beam is shown in the study area, while (B) shows the high-energy power beam
shots, with the high-value-range classes shown in the legend.

59



Forests 2025, 16, 330

The forest mask layer was intersected with GEDI power beams to obtain forest area-
specific datasets, effectively removing the urban and non-forest land-use features. After
preprocessing, 93,248 GEDI power beam shots were used for model training and testing
within the forest mask layer. Among the total GEDI points, 21,406 points intersected with the
designated forest area, distributed across 1298 compartments within the district boundary.

2.3.2. Analytical Workflow

The structural information of vegetation, such as canopy height (L2A), derived from
GEDI data, was combined with spectral indices from optical datasets and other explanatory
variables. These inputs were used to train and test against GEDI L4A as the dependent vari-
able through machine learning algorithms (MLAs). An overall methodological flowchart for
the proposed study to estimate forest above-ground biomass and its potential to sequester
CO2 is shown in (Figure 6).

Figure 6. Methodological flowchart of forest biomass and carbon stock estimation using machine
learning regression algorithms in designated forests of Mansehra District.

2.3.3. Parameter Selection

Topographic variables, including elevation and slope, were incorporated to evaluate
the influence of the terrain on the forest structure and growth patterns. GEDI L4A-derived
height metrics, RH98, provide critical information related to the vertical structure of a
canopy height. The explanatory variables, including satellite datasets (bands and indices),
were analysed using machine learning algorithms, such as random forest, XGBoost, and
random tree regression, to assign importance scores to variables contributing to reliable
AGB prediction. The regression models identified key variables with high importance
scores, including forest height (from GEDI L2A data), the green band, DEM, and the
red band, as critical factors influencing biomass estimation. Among these models, the
random forest-based relationship between predictor variables and biomass is illustrated
in Figure 7. Following the efficient split of 80:20%, as mentioned in the literature [49],
these variables were utilized for training (80%) and testing (20%) the model, enabling the
accurate prediction of above-ground biomass (AGB).
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Figure 7. A descending sequence of the importance scores assigned to predictor variables using
random forest.

Machine learning models were optimized using a grid search strategy combined with
cross-validation. A 5-fold cross-validation was found to be suitable for optimizing model
outputs. Table 2 outlines the fine-tuned hyperparameters used during the model training
and testing phases for the best performance.

Table 2. Hyperparameters for training machine learning models.

Model Name Model Parameter Characteristics Value

Random Forest

Number of Trees 500
Leaf Size 5

Tree-Depth Range 36–50
Mean Tree Depth 40

% of Training Available per Tree 100
Number of Randomly Sampled Variables 5

Training and Test data % 80:20
Model Out-of-Bag Error 805.9

Gradient Boosting

Number of Trees 500
Leaf Size 5

Tree-Depth Range 6–6
Mean Tree Depth 6

% of Training Available per Tree 100
Number of Randomly Sampled Variables 5

% of Training Data Excluded for Validation 20
L2 Regularization (Lambda) 1.00

Minimum Loss Reduction for Splits (Gamma) 0.00
Learning Rate (Eta) 0.30

Random Tree Regression

Training Options:
Maximum Number of Trees 500

Maximum Tree Depth 30
Maximum Number of Samples 74,400
Percent of Samples for Testing 20
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Random forest inherently identifies critical features based on their ranked contribution
to prediction accuracy. The Out-of-Bag (OOB) error was used to evaluate the model’s
predictive accuracy by providing an unbiased prediction error. Different combinations of
explanatory variables, including the forest’s optical, SRTM DEM, and spaceborne LiDAR
structural parameters, were tested to evaluate the performance of model training that
explains the variability of forest biomass and provides reliable estimates.

Model performance was evaluated based on the Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), and Coefficient of Determination (R2). The optimal model
demonstrated high R2 and low RMSE and MAE values, affirming its suitability for precise
and dependable AGB estimation.

3. Results

3.1. Explanatory Variable Evaluation

The variable importance matrices were studied, and 16 predictive variables, based
on model training, were selected for prediction. Among the optical spectral bands and
vegetation indices, B3, B4, B6, the Moisture Stress Index (MSI), and the Green Normalized
Difference Vegetation Index (GNDVI) from the Landsat-9 datasets showed the highest
importance score in the random forest model. These bands were particularly relevant to
the ecological features of the moist and dry temperate forests. Band 3 (0.53–0.59 μm) is
sensitive to vegetation health, reflecting the chlorophyll and moisture content in dense
moist temperate forests and monitoring variations in canopy density. Band 4 (0.64–0.67 μm)
is effective for vegetation stress detection due to its sensitivity to chlorophyll absorption,
while Band 6 (1.57–1.65 μm) is sensitive to moisture content and soil–vegetation interactions,
making it vital for analysing the canopy density. Similarly, in moist temperate forests, the
dense canopy cover with a high moisture content was analysed by Green and SWIR-1 bands,
which is effective in biomass estimation. In contrast, the red and SWIR-1 bands contribute
to species health variation and moisture stress identification in the dry temperate zone
for biomass estimation. Moreover, topographic and structural variables also contributed
significantly. The DEM underscored the role of elevation in influencing the forest structure
and biomass distribution, while GEDI RH98 provided crucial vertical-structure information
at a 100 m resolution.

In contrast to the random tree regression technique, XGBoost assigned importance
scores to the spectral bands B6, B4, and B3 that resemble the random forest algorithm. Forest
height is the most critical predictor of AGB, followed by DEM. GEDI L2A data providing
canopy cover and ground elevation estimates further enhanced our understanding of the
vertical complexity and structure of the forest. The spectral bands, vegetative indices,
topographic information, forest layers, and height estimation products from GEDI and the
global forest canopy cover were used for enhanced biomass estimation. The random forest
model achieved the highest R2 of 0.86, demonstrating its effective predictability.

3.2. Model Selection and Accuracy Assessment

The scatter plots presented in Figure 8, corresponding to the three machine learning
models, effectively depict the model’s performance for the training data. Figure 8 shows
the scatter plots of the training data, with 8A for random forest (R2 = 0.97), 8B for random
tree regression (R2 = 0.97), and 8C for the XGBoost (R2 = 0.95). The training data show a
high correlation of R2 in the range of 0.97 to 0.95.
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Figure 8. Scatter plots of random forest (A), random tree regression (B) and XGBoost (C) showing an
analysis of GEDI AGB points for the training data.

Meanwhile, the test data in Figure 9 show the scatter plots with 9A for ran-
dom forest (R2 = 0.86), 9B for XGBoost (R2 = 0.85), and 9C for random tree regression
(R2 = 0.84), underscoring the reliability and robustness of the random forest-trained model
in predicting AGB based on given explanatory variables.

Figure 9. Scatter plots of random forest (A), XGBoost (B), and random tree regression (C) showing
test data performed for analysing the GEDI AGB points and explanatory variables.

Table 3 presents the performance metrics of three machine learning models’ random
forest, random tree regression, and XGBoost for estimating the above-ground biomass
(AGB) in designated forests of the Mansehra Forest. All models accurately capture the
relationship between input variables and above-ground biomass (AGB), ensuring high
predictive accuracy, generalizability, and robustness with the best performance by the
random forest model. The performance metrics of the three models are given in the
table below.
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Table 3. Performance metrics of machine learning models.

Model Name
Training Test

R2 RMSE MAE R2 RMSE MAE

Random Forest 0.97 11.84 8.08 0.86 28.03 19.54
XGBoost 0.95 15.72 11.20 0.85 29.35 20.57

Random Tree
Regression 0.97 14.38 10.98 0.84 31.22 21.76

A comparison of the machine learning algorithms in Figure 10 highlights the perfor-
mance of the random forest, XGBoost, and random tree regression models. Among these,
the random forest algorithm was selected as the best model for biomass estimation, with a
high R2 of 0.86. This model effectively utilized explanatory variables to predict the AGB
variations across the designated forests in Mansehra.

Figure 10. Biomass maps were established to compare the machine learning regression analysis of
forest biomass in designated forests of Mansehra District: (A) XGBoost model; (B) random forest
model; (C) random tree regression model.

The AGB estimates were validated using field data from various forest compartments,
where allometric equations, derived through destructive sampling, correlated the tree
diameter and height for ground biomass estimation. The actual AGB was calculated
from ground inventory points using circular nested plots and were compared with model
predictions, ensuring an accurate evaluation of the model’s performance in estimating forest
biomass. The predicted AGB value of 224.61 Mg/ha was 7.9% higher than the ground
value of 208.13 Mg/ha, indicating a minor overestimation predicted by the proposed
methodology using the GEDI L4A footprints. The validation results are encouraging,
with a coefficient of determination (R2) of 0.71 (Figure 11), indicating the reliability of the
estimates and a good relation between the actual and predicted values.

The mean AGB value for the entire designated forest was 189.42 Mg/ha, closely
matching the ground biomass estimate of 180.93 Mg/ha for moist temperate forests, with a
difference of only 5.2%. However, the point-to-point difference was higher at 7.9%, likely
due to the scale differences and the heterogeneity in the point-level data. This highlights
the trained random forest model’s superior, consistent, and accurate performance for
generating mean-based estimates across the forest area.

Previous studies demonstrated similar overestimation tendencies in GEDI L4A data,
especially for coniferous forests compared to broad-leaved forests [50]. They found that
GEDI L4A AGB estimation was 8.94 times higher than ground data, primarily due to topo-
graphic variations within the footprint area distorting GEDI signals [51]. This underscores
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the challenges in AGB estimatation accuracy, which is influenced by the forest type and
terrain complexity [52,53]. Despite these challenges, the integration of GEDI L4A and
multisource data with machine learning models provides a robust approach for large-scale
biomass estimation and carbon stock assessment [51].

Figure 11. This scatter plot shows the actual and predicted above-ground biomass.

3.3. Above-Ground Biomass Distribution in Designated Forests

The distribution of AGB across protected, reserved, and community (guzara) forests
provides valuable insights into carbon storage potentials. Figure 12 illustrates the carbon
storage levels for protected, reserved, and guzara forests, highlighting the potential sites
for future carbon storage strategies. The reserved forest exhibits the highest mean AGB
of 242.19 Mg/ha, followed by the community forest at 175.23 Mg/ha. The protected
forest, however, has the lowest mean AGB at 153.82 Mg/ha. These findings highlight
the importance of developing biomass-specific yield strategies tailored to each forest
management category’s ecological and environmental conditions. This approach aligns
with the single-tree selection silviculture management system, which optimizes carbon
capture and storage based on site-specific characteristics [54].

The analysis focused on a compartment-wise biomass estimation managed by the
forest department, revealing a mean AGB density of 189.43 Mg/ha, ranging from 23 Mg/ha
to 400 Mg/ha. This range indicates the heterogeneous distribution of forest densities across
the designated forests. The forest biomass in the Mansehra district shows significant spatial
heterogeneity, with values ranging from a lower bound of 23 Mg/ha to an upper bound of
400.04 Mg/ha, compared to an average of 189.43 Mg/ha, as highlighted in Figure 13.
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Figure 12. Category-wise area and mean AGB of the designated forests.

Figure 13. The spatial heterogeneity of forest biomass (Mg/ha) predicted by the random forest model
in the designated forests of Mansehra District.
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The compartments with high biomass values were primarily situated in the upper
reserved forest region. The biomass map highlights the variability in forest carbon accu-
mulated across compartments, with an area of high biomass in the upper region depicted
in orange and red shades. The random forest algorithm demonstrated its efficiency in
accurately distinguishing compartments with high and low biomass densities.

Compartments are the smallest forest management units, having an area range of
200 to 250 hectares, with the highest forest biomass accumulation illustrated in Figure 14.
The highest AGB value of 270.11 Mg/ha was observed in Diwan Bela, followed by Manna
at 268.52 Mg/ha. These compartments fall under the reserved forest category, excluding
Batsangra and Julgran. The Batsangra and Julgran compartments belong to community
forests with forest biomass values of 239.36 and 238.52 Mg/ha, respectively.

Figure 14. Compartments’ order based on the highest AGB values in the designated forests of
Mansehra District.

The high AGB in reserved forests is due to stringent governmental restrictions on
harvesting, grazing, and local community concessions. Similarly, the high AGB in commu-
nity compartments, such as Batsangra and Julgran, can be attributed to the inaccessible
location. The compartment-wise AGB estimates provide actionable insights for efficient
decision-making to support sustainable departmental harvesting regimes.

The methodological reliability and model performance were visually interpreted
with biomass estimation across compartments. Figure 15 captures the variations in forest
biomass, with the low-biomass compartments visually consistent with the area of sparse
forest cover.

The geospatial insights from the biomass maps will guide critical site selection for
afforestation and species regeneration campaigns, timber harvesting, fuelwood regulation,
and biodiversity conservation in vulnerable areas. Figure 16 visually interprets the upper
bound biomass values in compartments with a dense forest cover, offering a valuable
framework for developing conservation strategies and prioritizing sustainability efforts.
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Figure 15. Potential compartments (low AGB) to demarcate new afforestation sites.

Figure 16. Qualitative analysis of the compartments, presenting the dense vegetation of mature forest
stands with high AGB values (Mg/ha).

3.3.1. Reserved Forests

The state-owned reserved forests are managed under three working plan units:
Kaghan, Lower Siran and Agror, and Upper Siran Reserved Forests. These units op-
erate under “Working Plan”, which are strategic documents outlining forest management
practices over 5 to 10 years to estimate forest yields, restore degraded ecosystems, and
ensure continuity in policies and actions. Each “Working Circle”, a subdivision of the
forests, follows a specific aim and silvicultural system, as outlined in the working plan.

The AGB distribution in reserved forests exhibits a histogram with a leftward skew,
indicating a high mean AGB value of 242 Mg/ha. Diverse management practices within
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working circles contribute to variations in biomass and ecosystem conditions. The lower
mean AGB values indicate reduced vegetation coverage in the lower Siran and Agror
reserved working plan units (Figure 17). These observations emphasize the importance
of continuous monitoring and spatial heterogeneity analysis to maintain existing carbon
storage areas, conserve biodiversity, balance harvest and regrowth, restore degraded sites,
and avoid land-use conversion practices.

 

Figure 17. Box plots showing biomass distribution in reserved forest working plan manage-
ment units.

High-AGB compartments are primarily located at higher altitudes, requiring robust
management to mitigate erosion and landslide impacts on steep and vulnerable terrains.
The histograms in Figure 18 illustrate the frequency distribution of the average AGB values
across five working circles, with a normal distribution curve highlighting a high mean
AGB value of 242 Mg/ha in the commercial working circle for the timber harvesting
rotation patterns. In contrast, the improvement and conversion working circles have lower
mean AGB values of 164 and 176 Mg/ha, respectively, reflecting the activities relevant to
recovery and restoration. Thus, data-driven biomass estimation supports reliable yield-
harvesting practices.

Figure 18. Mean distribution of above-ground biomass (AGB) estimates in different working circles.
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The mean AGB values in reserved forest compartments, ranging from 67 Mg/ha to
300 Mg/ha (Figure 19), underscore the impact of harvesting restrictions and local commu-
nity concessions on biomass levels. Compartments with high biomass, typically in mature
forest stands, represent valuable sites for future management and conservation strategies.

 
Figure 19. The spatial distribution of reserved forest compartments that shows the mean AGB values,
classifying high-biomass-density compartments in a red tone.

3.3.2. Protected Forests

Protected forests, where local communities exercise government-permitted rights
and concessions, exhibit a mean AGB value of 154 Mg/ha, with several compartments
characterized by low biomass. These forests provide non-commercial timber, fuelwood,
and fodder for local livestock. Managed under protection and social working circles,
these compartments emphasize the recovery of under-stocked patches and optimized
silvicultural practices.

The Gidderpur working plan management unit shows a particularly low mean AGB
value of 122 Mg/ha (Figure 20). These accessible compartments face significant pressure
from local compartments. Strengthening forest surveillance; fire management practices;
and the promotion of alternative renewable energy sources, such as biogas and solar
power, are recommended to alleviate the over-extraction of forest resources. Furthermore,
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controlling illegal timber harvesting and encroachments is an essential measure towards
sustainable carbon storage management.

 

Figure 20. This box plot illustrates the distribution of mean biomass values in different working
plans of protected forests.

Protected forests are managed under two working circles: protection and social.
Biomass levels in the protection working circle are lower than those in the social working
circle, as illustrated by the histogram in Figure 21, where high values of 144 Mg/ha are
concentrated in the social working circle.

 

Figure 21. The histogram peaks illustrate the distributions of mean biomass values in different
management units of protected forests, showing sub-mature vegetation stands.

Protected forests’ relatively low AGB density highlights their suitability for future
carbon sequestration projects managed under programs like REDD+. Identifying and
mapping critical biodiversity hotspots in these ecosystems can align to foster a balanced ap-
proach for carbon sequestration goals with conservation priorities. The spatial distribution
of AGB in the protected forest, as shown in Figure 22, ranges from 67 Mg/ha to 220 Mg/ha,
highlighting the potential sites that support national and global carbon offset initiatives.
These strategies can simultaneously benefit local communities and contribute to soil and
water conservation efforts integral to sustainable carbon management.
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Figure 22. Mean AGB estimation value ranges in protected forest compartments are highlighted in
lighter green tones, representing low biomass-value accumulation.

3.3.3. Community (Guzara) Forests

Community-owned forests account for approximately 58% of the designated forest
area and are managed by the forest department. These forests exhibit diverse patterns of
biomass accumulation due to variations in working circle activities. A privately-owned
community forest is managed under six working plan activities, having a mean AGB value
of 175 Mg/ha.

The biomass distribution in community forests (Figure 23) occupies a maximum num-
ber of compartments managed under 11 working circles, with priority given to community
use, conservation, and timber production. The biomass levels exhibit significant varia-
tion, ranging from moderate to high, except in the Haripur guzara, where the biomass
is 77 Mg/ha. The highest AGB values are found in the upper Siran community forest
(215 Mg/ha), followed by the upper Kaghan community forest (208 Mg/ha). The Haripur
guzara working plan’s lower biomass values highlight the degraded forest patches. The
high biomass levels in upper Siran guzara forests are due to activities such as conservation,
ecotourism, biodiversity, and timber production.
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Figure 23. The biomass distribution in different working circles identifies the management practices
adopted in the community-owned forests.

Community rights and concessions in these forests result in frequent disturbances
like deforestation, grazing, fuelwood collection, and timber extraction, leading to AGB
variations. The maximum AGB of 215 Mg/ha in timber production working circles reflects
the communities’ reliance on these forests for timber needs. A lower biomass value, ranging
from 121 to 146 Mg/ha, was observed in community, protection, and selection working
circles. Attention is required to address these disparities in need-based intense management
practices (Figure 24).

 

Figure 24. The biomass status in the community (Guzara) forests is represented by mean histogram
values in working circles.

Extending from the low-lying areas to higher altitudes, community forests encompass
a diverse range of forest cover, including moist, dry temperate, and sub-tropical chir pine
forest zones. The biomass in the compartments varied from low to moderate levels, reflect-
ing young and sub-mature forest stands. Target interventions, such as reforestation, grazing
control, illegal logging prevention, agroforestry, and ecotourism initiatives, are critical for
meeting and addressing community needs and conserving vulnerable Himalayan temper-
ate forests. Certain compartments exhibit maximum biomass ranges of 250–300 Mg/ha.
The carbon storage capacity in the different compartments signifies the need and demand
for future carbon conservation strategies, and its spatial distribution is shown in Figure 25.
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Figure 25. The extent of community forest compartments with mean AGB in all range values with
different topographical locations in the district.

3.4. Ecological Analysis of Forest Cover and Biomass Dynamics in Mansehra

Mansehra District faces alarming climate change vulnerability due to increasing CO2

emissions, escalating from 20.95 thousand tons/year in 2000 to 35.82 thousand tons/year in
2022. This trend mirrors the national increase in CO2 emissions from 20 million tons/year
in 2020 to 32 million tons/year in 2022. Although the forest cover increased in 2020–2021,
AGB values declined during the same period, emphasizing the need to concentrate on
AGB as a key factor for carbon sequestration rather than relying solely on the forest cover.
The analytical results depicted in Figure 26 show the country and study area’s CO2 total
emissions (Figure 26A) and a graphical presentation (Figure 26B) of the ecological analysis
of the forest cover and biomass dynamics [55].

Forest carbon absorption rates vary by age classes and species, necessitating detailed
AGB assessments for reliable CO2 mitigation. The CO2 mitigation potential was evaluated
by converting the above-ground biomass (AGB) to above-ground carbon (AGC) and subse-
quently calculating the equivalent CO2 sequestration based on IPCC guidelines [56,57]:

AGC = AGB × 0.47 (1)

CO2 sequestration = AGC × 3.67 (2)
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Figure 26. (A) Total CO2 emissions’ comparison of Mansehra District with Pakistan. (B) Compari-
son of temporal forest cover with the total sum values of above-ground biomass estimated in the
designated forests and complete province.

Equation (1) indicates that 1 ton of AGB is equal to 0.47 tons of AGC, which, upon
multiplication with 3.67 as per equation 2, can sequestrate 1.7249 tons of CO2 from the
atmosphere, and vice versa, 1 ton of CO2 emission sink requirements needs 0.5798 tons of
AGB. In 2022, the Mansehra district emitted 35,820 tons of CO2 [48], requiring 20,770 tons
of AGB for offsetting, compared to the available AGB of 19,940 tons, revealing a shortfall
of 830 tons. Despite having 8.68% of the forest-rich KP province’s area, Mansehra’s AGB
cannot offset CO2 emissions. To bridge this gap, the appropriate measures required are
continuous temporal monitoring to maintain minimum AGB in each compartment, mixed
plantations of high-potential carbon storage, a multipurpose land-use concept of agro-
forestry practices, high-storage-carbon species on commercial long-term rotation periods,
and awareness and community participation for long-term sustainability. Nationally, AGB
requirements increased from 11.80 million tons in 2000 to 18.78 million tons in 2022 without
significant changes or initiatives to increase the forest area or AGB (Table 4; Pakistan Bureau
of Statistics).

Table 4. CO2 emissions and AGB requirements in Mansehra and Pakistan.

Year
Mansehra (Values in Thousand Tons) Pakistan (Values in Million Tons)
CO2 Emissions AGB Requirement CO2 Emissions AGB Requirement

2000 20.95 12.14 20.35 11.80
2005 25.59 14.83 24.99 14.49
2010 29.89 17.33 27.43 15.90
2015 34.78 20.16 30.38 17.61
2020 35.76 20.73 29.66 17.20
2022 35.82 20.77 32.39 18.78

A temporal analysis of the AGB requirements against CO2 emissions underscored the
urgency for targeted measures. A trained model for the year 2022 was used for the prediction
of AGB in 2019. Input parameters of 2019 were used in the trained random forest model to
obtain an AGB prediction for 2019. A change analysis of the AGB for 2019 and 2022 was
carried out by taking the difference image, as shown in (Figure 27), which reveals a net
decrease in AGB across 95,000 ha compared to an increase of 22,000 ha and stability across
79,000 ha of the forest cover. Areas with significant increases and decreases in AGB are
illustrated in Box 1 and Box 2, respectively. Notably, afforestation programs contributed to the
rise in AGB, highlighting the potential of regeneration initiatives to counteract biomass loss.
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Figure 27. Carbon dynamics showing the distribution of forest biomass change patterns in the district
for 2019–2022.

4. Discussion

Integrating GEDI L4A biomass density data with optical and ancillary datasets using
machine learning addresses the challenges in biomass estimation in complex hilly terrains.
The results provide insights into the biomass distribution and magnitude in mountainous
landscapes per forest categories and demonstrate the utility of GEDI-derived data for forest
biophysical parameters complemented with explanatory variables for enhanced accuracy
and reliability.

4.1. Accuracy Analysis

The GEDI L4A outperforms other LiDAR systems like ICESat-1 and ICESat-2 due to
its smaller footprint diameter (25 m) and higher sampling density, which are particularly
advantageous for tropical and temperate forest applications [58]. Biases and underestima-
tions in the GEDI-derived products were reduced through high-energy beam selection,
improving the ground and canopy cover estimation in this South Asian region despite
limited local calibration for its diverse ecosystems [59,60].

Key features contributing to AGB estimation accuracy include the canopy height,
Landsat-9 green band (B3) and digital elevation, GNDVI, MSI, and GEDI L2A relative
height data. These findings align with prior research [61–64]. The AGB variability patterns
observed in the GEDI L4A dataset are consistent with the GEDI L4B data and other
studies [62]. The model effectively predicts biomass at a detailed compartment level,
capturing the Mansehra district’s complex and diverse forest structures, similar to the
studies by [65,66]. Recent studies show that combining the predictors related to the canopy
cover, vegetation density, Landsat-9 spectral information data, and topographical variables
enhances AGB estimation [67–70].

The random forest model achieved high performance, with an R2 of 0.86, an RMSE of
28.03 Mg/ha, and an MAE of 19.54 Mg/ha on the test data. Ground validation showed
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satisfactory accuracy (R2 = 0.71), demonstrating the model’s robustness and generalizability.
Biomass estimates ranged from around 60 to 426 Mg/ha, with R2 ranging from 0.72 to
0.88 (Table 5). Similarly, AGB estimation using different optical and microwave datasets
showed an R2 value ranging from 0.63 to 0.77 (Table 6).

Table 5. Comparison of biomass estimation using Spaceborne LiDAR data.

Region Data Techniques Mean AG (B/C)*/R2 Ref

Himalayan moist temperate
forest, Uttarakhand, India

Sentinel-1 and -2 and GEDI
forest canopy height

RF1

Algorithm
AGB

190.27 Mg ha−1/0.88 [71]

NW Indian
Himalayan foothills ICESat-2 and Sentinel-1 FCH RF

model
AGB

426.41 Mg ha−1/0.83 [26]

Xiaoshao, Yiliang Yunnan
Province China

Sentinel-1 and -2, ALOS
PALSAR-2, and GEDI L4A

RF
model

AGB
59.09 Mg ha−1/0.72 [51]

Biomass estimation in
managed forests,
Haldwani India

Forest layer, field data, and
GEDI canopy height MLR2 models

AGB
153 Mg ha−1/0.75 [11]

MLR2 = multiple linear regression; AG (B/C)* = above-ground (biomass/carbon); RF1 = random forest.

Table 6. Comparison of biomass estimation using optical and microwave data.

Region Data Techniques Mean AG (B/C)*/R2 Ref

Western Himalayan
Indian forest

MODIS and L-band
ALOS-PALSAR RF1 Regression

AGB
180.27 Mg ha−1/0.77 [72]

Sub-tropical chir pine forest,
Margalla Hill, Pakistan DBH and height Linear Regression AGC

73.36 ± 32.55 Mg C ha−1 [73]

Battagram KP, Pakistan Sentinel-2 vegetation
indices Linear Regression AGB

148.79 t ha−1/0.67 [16]

Temperate and sub-tropical
forests, KP, Pakistan Spot-5 satellite (2.5 m) Allometric

Equations
AGC

85.05 ± 10.84 t ha−1 [38]

Pinus roxburghii forest in
Siran forest divsion,

Pakistan

Landsat-8
(spectral indices) Linear Regression AGC

26–116 t ha−1/0.63 [74]

AG (B/C)* = above-ground (biomass/carbon); RF1 = random forest.

Limited biomass estimation research was conducted on forest compartments (basic
administrative units) using LiDAR datasets, highlighting the key significance of this study.
Point-based model accuracy helped the reliability and correct estimations of AGB in the
compartments. This granularity is crucial for implementing target management strategies
in Pakistan’s diverse ecosystems, as highlighted by [75].

4.2. Comparison of Biomass Estimates

The Mansehra district stores a large percentage of carbon stock in temperate forests
(83%), followed by sub-tropical pine forests (14%), sub-alpine forests (1.5%), and others
(1.5%) [76]. This study predicted a mean above-ground biomass value of 189.42 Mg/ha,
which differed by only 5.2% from the ground-sampled carbon stock of 180.93 Mg/ha,
confirming its accuracy and efficiency. Carbon stock densities in the designated Mansehra
forest range from 31 to 142 Mg/ha, aligning with values reported in the conifer-dominated
forests of the western Himalayan region of India (73.30 to 245 C Mg/ha) [77]. Differences
in carbon density ranges reflect variations in forest age and species distribution.

A comparison with other studies in the same area (Tables 4 and 5) validates the
reliability of the AGB estimation presented in this study. Furthermore, the findings align
with global AGB patterns, which rank temperate coniferous forests second to tropical
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forests, with an average AGB of approximately 102 Mg/ha. This study demonstrates
significant improvements in AGB estimation, aligning with the ranges provided by GEDI
L4B, albeit at a coarser resolution of 1 km.

4.3. AGB Potential and CO2 Sequestration

Despite the substantial forest resources, the Mansehra district faces challenges in
offsetting CO2 emissions due to insufficient AGB. Current AGB values range from 23 to
400 Mg/ha in designated forests. Improving the forest biomass, particularly in low-AGB
compartments, through efficient and sustainable forest management could enable the
district to meet its emission-offset requirements.

Nationally, the gap between AGB capacity and CO2 emissions remains significant. Pak-
istan currently requires at least 18.78 million tons of AGB to mitigate emissions. Projections
suggest this requirement will rise to 21.58 million tons by 2030 and to 30.71 million tons by
2050, assuming a population growth of 1.7% and per capita CO2 emissions of 0.080 tons
annually. This requires a multi-faceted approach involving afforestation and reforestation
by increasing the forest biomass through an increase in the forest area and AGB of existing
forests by sustainable forest management, particularly in forest areas having low AGBs.

5. Conclusions

Accurate and reliable forest biomass estimation based on explanatory variables with
consistent performance against all selected machine learning models with slight variations
(R2 from 0.85 to 0.86) signifies the suitability and effectiveness of explanatory variable
selection. This study found the global forest canopy height, DEM, GEDI L2A canopy
height data, and green and red optical bands to be efficient variables, with an RMSE of
28.03 Mg/ha, using a random forest algorithm. The average estimated AGB (189.42 Mg/ha)
is 5.2% higher than the carbon inventory technique (ground) estimation of (180.93 Mg/ha),
with R2 = 0.71 presenting the high performance of the proposed methodology.

This study underscores the importance of monitoring AGB distributions at both the
forest category and compartment scales, particularly in protected, reserved, and community
forests. Detailed temporal monitoring and mapping by the forest department at the stand
level or compartment scale enables informed decision-making, facilitating adjustments or
shifts based on AGB threshold levels to achieve sustainable forest management. Moreover,
the proposed methodological outcomes can serve as baseline information in developing
the National Forestry Inventory, currently required under multiple international programs,
particularly in the context of carbon credits.

Acknowledging the reliance of CO2 sequestration on AGB capacity, this study calls
for a paradigm shift in forest management strategies. Therefore, it is imperative to consider
AGB as a primary metric in forest management rather than relying exclusively on forest
cover areas. This necessitates a policy shift towards accentuating AGB estimation and
addressing future demands. Pakistan requires 18.78 million tons of AGB to adjust its
greenhouse gas budget to maintain environmental sustainability. This requirement is pro-
jected to increase to 37.23 million tons by 2030 and 52.97 million tons by 2050, respectively.
Meeting these demands necessitates a multi-faceted approach, including afforestation,
reforestation, and enhancing AGB in existing forests through effective management. Sus-
tainable practices aimed at increasing AGB will be pivotal in addressing the challenges of
carbon sequestration and climate change mitigation, ensuring long-term ecological and
environmental stability.
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Center of Excellence Forest 4.0, Real Time Computing Center, Kaunas University of Technology,
51423 Kaunas, Lithuania; rytis.maskeliunas@ktu.lt
* Correspondence: robertas.damasevicius@ktu.lt

Abstract: This study presents a novel approach to analyzing forest regeneration dynamics
by integrating a Markov chain model with Multivariate Time Series (MTY) decomposition.
The probabilistic tracking of age-class transitions was combined with the decomposition of
regeneration rates into trend, seasonal, and irregular components, unlike traditional deter-
ministic models, capturing the variability and uncertainties inherent in forest ecosystems,
offering a more nuanced understanding of how Scots pine (Pinus sylvestris L.) and other
tree species evolve under different management and climate scenarios. Using 20 years
of empirical data from the Lithuanian National Forest Inventory, the study evaluates key
growth and mortality parameters for Scots pine, Spruce (Picea abies), Birch (Betula pendula),
and Aspen (Populus tremula). The model for Scots pine showed a 79.6% probability of
advancing from the 1–10 age class to the 11–20 age class, with subsequent transitions of
82.9% and 84.1% for older age classes. The model for Birch shown a strong early growth
rate, with an 84% chance of transitioning to the next age class, while the model for Aspen
indicated strong slowdown after 31 years. The model indicated moderate early growth
for Spruce with a high transition in later stages, highlighting its resilience in mature forest
ecosystems. Sensitivity analysis revealed that while higher growth rates can prolong for-
est stand longevity, mortality rates above 0.33 severely compromise stand viability. The
Hotelling T2 control chart identified critical deviations in forest dynamics, particularly in
years 13 and 19, suggesting periods of environmental stress. The model offers actionable
insights for sustainable forest management, emphasizing the importance of species-specific
strategies, adaptive interventions, and the integration of climate change resilience into
long-term forest planning.

Keywords: forest regeneration dynamics; mathematical modeling; sustainable forest
management

1. Introduction

Forests are integral to the health of our planet, and provide a wide array of ecological,
economic, and social benefits. They act as carbon sinks, mitigating climate change by
absorbing and storing significant amounts of carbon dioxide [1]. At the same time, forests
contribute to maintaining the hydrological cycle, preventing soil erosion, and regulating
local and global temperatures [2]. Biodiversity thrives in forest ecosystems, with countless
species relying on forests for shelter, food, and breeding grounds [3]. Economically, forests
are invaluable, providing timber, fuel, and non-timber forest products such as medicinal
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plants and edible fruits, which are essential for both global industries and local liveli-
hoods [4]. Understanding the dynamics of forest regeneration is needed to ensure the
sustainability of these benefits [5,6]. Regeneration involves establishment of new seedlings,
which are the basis for the continuity of forests [7]. Growth, which includes the increase in
biomass, tree height, and diameter, determines the productivity and structural complexity
of forests [8]. Mortality, loss of trees due to aging, disease, competition, or external factors
such as climate extremes, play a vital role in the formation of forest composition and the in-
fluence of nutrient cycling [9]. These processes drive forest dynamics, dictating how forests
recover from disturbances, adapt to changing conditions, and evolve over time [10,11].

Scots pine (Pinus sylvestris L.) is a dominant species in Lithuanian forests, and provides
an exemplary case study to understand these dynamics [12,13]. Scots pine covers a vast
geographic range across Lithuania, making it one of the dominant species in the country’s
forest ecosystems [14]. Its adaptability to various types of soils and climatic conditions
allows it to thrive in both temperate and boreal zones. Scots pine is found in a variety of
age classes, from young regenerating stands to older mature forests, and is distributed
throughout the lowlands and uplands of Lithuania, supporting the timber industry as
a cornerstone of Lithuania’s economic forest management strategies [15]. In Lithuania,
Spruce (Picea abies), Birch (Betula pendula), and Aspen (Populus tremula) play complementary
roles to Scots pine in forest ecosystems [16]. Spruce is more prevalent in younger age
classes, but tends to decline in older stages, with higher mortality and vulnerability to
environmental stress. Birch and Aspen, as pioneer species, dominate early successional
stages, contributing to forest diversity, but their roles are more transient, compared to
more resilient and dominant Scots pine. Economically, Scots pine is most valued for its
timber, which is used in construction, furniture manufacturing, and paper production [17].
The species also contributes to carbon sequestration, making it a key player in climate
change mitigation strategies [12].

Pine forests in Lithuania face several challenges, with the impacts of climate change,
such as the increased frequency of droughts and warmer winters, playing a significant
role [18]. These changes weaken trees, making them more susceptible to diseases [19] and
pests [20], particularly bark beetles, which have caused widespread damage in recent years.
The decline in regeneration rates is also an issue, as natural regeneration is hampered by
changes in soil moisture and temperature [21]. In addition, high mortality rates [22] are
observed in young pine stands due to environmental stress and pest infestations. Human
activities, including intensive forest management (Lithuania is one of the largest exporters
of pine materials in the northern Europe) and changes in land use, further exacerbate these
issues, leading to a decrease in the resilience of pine forests.

Addressing these challenges requires a systematic and data-driven approach to quan-
tify regeneration, growth, and mortality processes. Accurate data collection through forest
inventories, remote sensing, and field studies is essential to establish baseline conditions
and identify trends [12]. Mathematical models provide powerful tools to analyze these
dynamics, enabling simulation of forest evolution in different scenarios [23]. These models
incorporate empirical data to predict how forests might respond to management prac-
tices, environmental changes, and disturbances. By understanding the drivers of forest
stand dynamics, policymakers and forest managers can develop strategies to improve
forest resilience, promote biodiversity, and optimize the delivery of ecosystem services [24].
The approach is especially relevant for poorly managed forests in Lithuania [25,26]. This
approach ensures that forests continue to play a vital role in the survival of life [12,13].

Previous studies such as the study by Eberhard and Hasenauer [27] utilized growth
simulators such as MOSES, focusing on light competition and the regeneration dynamics
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of Douglas fir in Central Europe. Although these studies emphasized individual factors
like light availability, they lacked the probabilistic modeling of multi-factor influences
over time. Similarly, Vergarechea et al. [28] modeled climate-mediated regeneration in
Mediterranean pine forests using survival analysis, which highlighted climate impacts,
but did not incorporate age-specific mortality dynamics as extensively.

The key research objective in this study is the development of a mathematical model to
represent the regeneration dynamics of Scots pine in Lithuania, estimating the regeneration,
growth, and mortality rates for each age class. The innovative approach is based on the
Markov chain and Multivariate Time Series (MTY) decomposition, incorporating 20 years
of empirical data from the Lithuanian National Forest Inventory, and is evaluated through
the impact of parameter variability under various scenarios.

The significance of this research lies in providing a quantitative tool to predict the
outcomes of different management interventions, helping to make informed decisions that
balance economic objectives with ecological sustainability, regarding the impacts of climate
change on forest ecosystems.

2. Related Works

The dynamics of forest regeneration help us to understand how forests evolve over
time, recover from disturbances and respond to environmental changes [29], and help us
to understand the processes that drive the natural renewal of forest ecosystems [30,31].
As such, forest dynamics modeling has evolved significantly over the years, with various
approaches developed to simulate complex interactions within forest ecosystems [32,33].
Early models often focused on specific aspects of forest dynamics, such as the growth or
succession of stands, and utilized deterministic approaches [30]. With advances in compu-
tational power and ecological understanding, more comprehensive models have emerged
that incorporate aspects such as species interactions, disturbance regimes, and climate
effects [34,35]. Notable among these is the gap model, which simulates the birth, growth,
and death of trees within small patches, allowing for the examination of succession and
competition dynamics. The Lee–Carter model, originally developed to forecast human
mortality trends, has been adapted to analyze tree mortality, providing information on how
environmental factors influence long-term survival patterns [29]. A similar approach to
tree mortality is illustrated by the approach of Babst et al. [36], where it was used to project
future mortality rates in European forests under climate change scenarios, as the model
allowed the authors to analyze how mortality is influenced by both climate variables and
forest stand characteristics. Rocha et al. [37] investigated models to predict tree mortality,
finding that the individual tree-level model integrating dendrometric and meteorological
variables was the most efficient. Manso et al. [38] applied a model similar to the Lee–Carter
model to assess how the mortality risk of tree species is influenced by stochasticity from ex-
treme climatic events and multi-species competition, revealing effects of complementarity
processes in tree mortality.

We offer an overview of related approaches in Table 1, showcasing a progression from
traditional methods to more sophisticated multivariate approaches that address species-
specific needs and environmental stressors. One key observation is the increasing reliance
on geospatial and remote sensing technologies, as seen in the work by Ryzhkova et al. [39],
which illustrates the utility of GIS in monitoring large and inaccessible forest areas. Ri-
chit et al.’s [40] study goes further by applying artificial neural networks, signaling a shift
towards models that can handle nonlinear interactions and provide long-term, adaptive
management solutions, particularly in ecosystems with complex hydrological dynamics
such as riparian buffer strips. The use of Markov chains, Bayesian inference, and process-
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based models in other works highlights a growing emphasis on probabilistic approaches,
reflecting the need to account for uncertainties in climate impacts and species interac-
tions. For example, Mantero et al.’s [41] Bayesian regression model not only identifies
high-priority areas for restoration, but also minimizes economic costs, showing how ma-
chine learning can enhance practical forest management. The work of Eberhard and
Hasenauer [42] on light competition between Douglas firs in central Europe exemplifies
how fine-scale ecological interactions are critical to regeneration success, suggesting that
generalized models may overlook key factors such as canopy light availability. Addi-
tionally, Vergarechea et al.’s [28] climate-mediated modeling brings to light the intricate
species-climate dynamics that affect regeneration probabilities in Mediterranean forests,
reinforcing the role of predictive, climate-sensitive modeling for future forest management.
The above works indicate that modern forest regeneration models must integrate multiple
ecological, climatic, and spatial factors to provide actionable insights, particularly as forests
face more frequent and severe disturbances from climate change and human intervention,
as the trend towards integrating dynamic high-resolution models represents a shift in
ensuring long-term forest resilience and sustainability in various biomes.

Table 1. Summary of related works.

Authors Study Focus Methodology Key Findings/Contributions

Ryzhkova et al. [39] Forest cover classification in
southern Yenisei Siberia Geoinformation modeling

Combined forest cover classification
for regeneration dynamics
monitoring

Richit et al. [40] Riparian buffer strip
regeneration

Logistic model and neural
networks

Highlighted vegetation’s role in
improving water quality and
optimizing conservation

Eberhard and
Hasenauer [42]

Douglas fir regeneration in
Central Europe

MOSES simulator for
regeneration prediction

Light availability critical for
regeneration

Vergarechea et al. [28]
Mediterranean pine
regeneration under climate
scenarios

Survival analysis Identified grass cover and climate
as key regeneration factors

De Frutos et al. [43] Maritime pine regeneration
after seed cutting

Field studies on summer
precipitation

Regeneration driven by retained
pine and broadleaf species

Mantero et al. [41] Post-fire forest regeneration in
the Italian Alps

Bayesian Additive Regression
Tree model

Applied nucleation can improve
forest recovery cost-effectively

Calama et al. [44] Resin-tapped pine mortality
in Spain Spatio-temporal models

Water stress and weather extremes
cause mortality, highlighting
adaptive strategies

Holzer et al. [45] Impact of ungulate browsing
on tree species composition Process-based modeling Browsing impacts tree height

development and species shifts

3. Methodology

3.1. Context Information

Lithuania, located in Northern Europe (Figure 1), has a diverse forest landscape
shaped by its transitional climate and varied soil types. Lithuania experiences a transitional
climate that combines maritime and continental influences, resulting in mild, moderately
wet winters and relatively cool summers. The country’s climate is characterized by average
temperatures ranging from −5 ◦C in January to about 17 ◦C in July and significant humidity
and precipitation throughout the year, with annual averages between 600 and 800 mm.
Lithuanian climate supports reasonably diverse forest growth, but also predisposes forests
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to certain diseases and pests due to high moisture levels. Forests cover approximately 33.5%
of Lithuania, with forest types shaped by both natural processes and human activities.
Coniferous forests are dominated by Scots pine and Norway spruce, these forests are
primarily found in sandy or podzolic soils, which are acidic and low in nutrients, formed
in humid conditions. Deciduous forests are made up of Birch, Aspen, oak, and ash, located
mainly on fertile soils in southern and central Lithuania. Mixed forests contain a mixture
of coniferous and deciduous species and offer rich biodiversity.

Figure 1. Locations of study within Europe.

3.2. Data Collection Methodology

The methodology for data collection in national forest inventories involves a sys-
tematic approach based on field surveys with random starting points, the integration of
repeated measurements in permanent maps with assessments in temporary maps and the
combination of ground measurements in designated inventory plots with evaluations from
satellite images and aerial photographs.

The National Forest Inventory (NFI) conducts ground measurements on forest land,
but, in exceptional cases, measurements are also carried out in forest trenches as they are
directly related to forest formation. Fieldwork is performed by teams assigned to both
permanent and temporary inventory plots. Each team responsible for permanent plots
works in a designated inventory district for five years before switching to a different district
for the next five years. To evenly distribute permanent inventory plots across the country
and regularly monitor transformations in other land uses and the growth of forests there,
a systematic layout method with a random start is chosen. Inventory plots for ground
measurement are grouped in fours, and group plots are positioned at the vertices of an
equilateral triangle. Aligning with the kilometer grid of Lithuania’s coordinates, permanent
inventory plot groups were arranged every fourth row and every fourth kilometer column
in a staggered manner every 4 km. One group of permanent inventory plots covers a
territory of 16 km2 or 400 ha per permanent inventory plot. All permanent inventory plots
are measured over a 5-year period, arranged so that the tracts each year ensure the most
uniform distribution throughout the country.

Data collection covers a total of 16,349 permanent observation plots across the national
territory, with one-fifth of all permanent observation plots remeasured annually. Annual
results are calculated using the last five years’ data, ensuring continuous and overlapping
data provision. Each permanent inventory plot (Figure 2) represents 400 ha of the territory:

• 500 m2 (Area A)—for the inventory of trees and stumps with a diameter at breast
height greater than 14.0 cm.
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• 100 m2 (Area B)—for the inventory of trees and stumps with a diameter at breast
height greater than 6.0 cm.

• 25 m2 (¼ of a small circle, Area C)—for the inventory of trees with a diameter at breast
height greater than 2.0 cm.

• 30 m2 (Area D)—for the inventory of undergrowth and ground vegetation.

Inventory trees in permanent plots are used to assess tree heights, while in temporary
plots, they are used to evaluate tree heights, stand age, and volume growth.

Figure 2. Schematic layout of a forest inventory plot used for systematic data collection. A, B, C, D
are inventory areas.

3.3. Forest Inventory Dataset

For the purposes of this study on the dynamics of forest regeneration of Scots pine
stands in Lithuania, we used a dataset compiled from the Lithuanian National Forest
Inventory (NFI), which encompasses a wide range of variables collected through field
surveys, spanning multiple years to capture temporal changes in forest structure and
composition, including regeneration rates (RR), growth rates (GR(a)), and mortality rates
(MR(a)). It provides the empirical basis for model validation and sensitivity analysis.
Details for downloading the data set are provided in the Data Availability Statement.

The data set (see Table 2) includes the following key characteristics and variables, used
to develop and validate the forest regeneration model.

Table 2. Summary of forest inventory data for Scots pine Stands in Lithuania.

Characteristic Description

Spatial Coverage Entire forested area of Lithuania

Temporal Range 2001 to 2021 (measured yearly)

Tree Species Composition Focus on Scots pine with details on mixed species

Age Classes and Stand Structure Distribution across different age classes, stand density, DBH, and height

Regeneration Data Counts of seedlings and saplings, natural and assisted regeneration

Mortality and Growth Rates Annual mortality rates by cause, DBH and height growth measurements
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Table 2. Cont.

Characteristic Description

Biomass and Carbon Stocks Estimates of aboveground and belowground biomass

Data Collection Methods Field surveys and remote sensing (satellite imagery and aerial photography)

Table 3 presents the distribution of forest stands in different age classes for Pine,
Spruce, Birch, and Aspen in Lithuania, based on data as of 1 January 2021. The area is
expressed in hectares.

Table 3. Distribution of forest stands across different age classes for Pine, Spruce, Birch, and Aspen in
Lithuania, as of 1 January 2021.

Age Class (Years) Pine (ha) Spruce (ha) Birch (ha) Aspen (ha)

1–10 36,013 76,099 63,756 16,019

11–20 28,670 63,832 53,585 17,602

21–30 23,772 40,706 50,048 12,526

31–40 19,992 40,921 37,438 7812

41–50 35,580 42,434 38,726 6162

51–60 76,196 41,865 55,551 8211

61–70 115,070 36,966 71,427 11,902

71–80 96,810 31,972 50,221 9772

81–90 83,530 28,516 21,650 4394

91–100 75,054 19,623 6779 1061

>100 52,632 8309 1362 100

Figure 3 visualizes the distribution of forest area (in thousands of hectares) for four
species of trees (Pine, Spruce, Birch, and Aspen) in various age classes. The age classes are
categorized in 10-year intervals, starting from 1 to 10 years to greater than 100 years.

Figure 3. Forest stands distribution across tree species and age classes.

89



Forests 2025, 16, 192

Figure 4 illustrates the distribution of forest stands in various age classes, measured in
decades, from 0 to 10 years to 90–100 years.

Figure 4. Total number of forest stands in age classes.

Figure 5 highlights the spatial distribution of Scots pine and other dominant
tree species.

Figure 5. Forest stands distribution across different regions in Lithuania as of January 2021.

The main trends and observations from this dataset are summarized in Table 4.
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Table 4. Summary of forest stand distribution trends across age classes.

Tree Species Observation Explanation

Pine Dominates middle to older age classes, with the highest area in
the 61–70 age class (115,070 ha).

Reflects adaptability, longevity, and possibly management
practices favoring pine growth.

Spruce Strong presence in younger age classes (1–10 and 11–20 years),
diminishing significantly in older classes (>100 years, 8309 ha).

Indicates shorter lifespan or higher mortality rates in later
stages.

Birch Prominent in younger age classes (1–10 years, 63,756 ha), but
sharply declines in older age classes (>100 years, 1362 ha).

Highlights its role as a pioneer species and possible succession
by longer-lived species.

Aspen Strong presence in the youngest age class, but almost no
representation in the >100 age class (100 ha).

Reflects its shorter lifecycle and higher vulnerability to
environmental factors.

3.4. Outline of Methodology

In this study, several mathematical methods are employed to analyze and model the
dynamics of forest ecosystems, providing the quantitative backbone for understanding
ecological interactions and predicting future trends based on current forest data.

To model the stochastic nature of forest growth and species succession, Markov
chains [46] are employed. These provide a framework for predicting the probability of
transitioning from one state to another in a discrete-time framework, namely for modeling
random events in forest dynamics, such as fire outbreaks, disease spread, and the random
establishment of new plant species.

Sensitivity analysis [47] is used to determine how the output of a model is affected
by changes in one or more input parameters, useful for ecological modeling to assess the
robustness of model predictions under uncertainty and to identify the most influential
parameters driving model outcomes.

The Hotelling T2 Control Chart [48] is used for monitoring the stability of interrelated
variables that often characterize complex forest ecosystems. It helps in detecting outliers or
abnormal shifts in the forest data set.

The MTY decomposition [49] is a method used to dissect the components of multivari-
ate time series data, isolating trends, seasonal effects, and other cyclic variations, such as
annual forest growth rates, seasonal pest infestations, or cyclic climatic effects on forest
health. By decomposing these series, we can understand the underlying patterns and
causal relationships, which may not be apparent from raw data, to obtain insights into the
temporal dynamics of multiple factors influencing forest ecosystems.

3.5. Model Assumptions

Markov chain models provide a robust framework for predicting changes in forests.
The assumptions for accurately interpreting the model outcomes in the forestry domain
as follows:

• The forest ecosystem is segmented into discrete states or classes, typically defined by
the age, size, or developmental stages of the tree, which represent groups with similar
ecological characteristics. Each state encompasses a specific forest condition or age
class. Time is treated in discrete intervals, with transitions assessed at these intervals,
simplifying the continuous nature of forest dynamics.

• A fundamental premise of the Markov chain model is its memorylessness. The future
state of the system depends solely on the current state, not on the sequence of events
that preceded it. This assumption implies that the process history does not influence
future state transitions.

91



Forests 2025, 16, 192

• Transitions between states occur with constant probabilities that are assumed to remain
consistent over time. Each probability Pij quantifies the likelihood of transitioning
from state i to state j in one time period, adhering to ∑j Pij = 1.

• The model assumes that transitions are independent. Changes in the state of one forest
plot do not affect transitions in another, simplifying modeling by excluding spatial
interactions or dependencies.

• The stationarity assumption posits that transition probabilities do not change over time,
which is crucial for long-term modeling but may not always hold in real scenarios.

• It is typically assumed that all plots within a state are homogeneous. This assumption
ignores within-state variability due to factors such as soil type or microclimates.

3.6. Mathematical Modeling of Forest Regeneration

In this section, we present a formal mathematical model that describes the regeneration
dynamics of a forest, focusing on the regeneration rate, the growth rate, and the mortality
rate of the forest stands over time. The model tracks the number of stands across different
age classes in a forest, incorporating regeneration, growth, and mortality processes.

Further, we use the following notations:

• N(t, a)—number of stands of age class a at time t.
• RR—annual regeneration rate, representing the number of new stands established

each year.
• GR(a)—growth rate for stands in age class a.
• MR(a)—mortality rate for stands in age class a.

The model is defined by the following processes:

1. Regeneration: N(t + 1, 1) = RR
2. Growth: for each age class 1 ≤ a < A,

N(t + 1, a + 1) = N(t, a) · GR(a) (1)

3. Mortality: for each age class 1 ≤ a ≤ A,

N(t, a) = N(t, a) · (1 − MR(a)) (2)

4. For the oldest age class A, the boundary condition is given by

N(t + 1, A) = N(t, A − 1) · GR(A − 1) + N(t, A) · (1 − MR(A)) (3)

The model requires initial conditions N(0, a) for each age class a to simulate the forest
regeneration dynamics over time.

The estimation of the model parameters was made to accurately simulate the forest
regeneration dynamics determining the values of the regeneration rate (RR), growth rates
(GR(a)), and mortality rates (MR(a)) for each age class a. The estimation process is based
on empirical data from forest inventories or observational studies.

The regeneration rate, RR, is estimated from the number of new stands established per
year. It can be directly observed or calculated from the increase in stands in the youngest
age class over time,

RR =
ΔN(1)

Δt
(4)

where ΔN(1) is the change in the number of stands in the first age class over the time
interval Δt.
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The growth rate for each age class, GR(a), represents the proportion of stands that
transition to the next age class in a given year. It is estimated by comparing the number of
stands in successive age classes,

GR(a) =
N(t + 1, a + 1)

N(t, a)
(5)

assuming that growth is the only transition between these age classes.
The mortality rate for each age class, MR(a), indicates the proportion of stands that

die in a given year. It can be inferred from the reduction in the number of stands not
transitioning to the next age class,

MR(a) = 1 − GR(a) (6)

where GR(a) is the growth rate from age class a to a + 1.

3.7. Analytical Solution of the Model

For certain simplified versions of the forest regeneration model, analytical solutions
were derived to describe the state of the forest over time, given the initial conditions and
the values of the parameters.

Consider a simplified version of the model where the growth rate (GR(a)) and the
mortality rate (MR(a)) are constant across all age classes, and there is no maximum age
limit. The model is represented by a linear difference equation for the number of stands in
each age class,

N(t + 1, a + 1) = GR · N(t, a)− MR · N(t, a) (7)

where GR and MR are constants, and the regeneration rate (RR) introduces new stands
into the first age class each time period,

N(t + 1, 1) = RR (8)

Under these conditions, the number of stands in each age class over time can be
expressed as

N(t, a) = RR · (GR − MR)a−1 (9)

assuming GR > MR and the system has been running for a sufficient number of time steps
to reach a steady state.

The solution to the difference equation provides a direct relationship between age
class, regeneration rate, and growth and mortality rates. It shows how the number of
stands decreases geometrically with age class, reflecting the cumulative effects of growth
and mortality.

The analytical solution described is based on several simplifications.

• Constant rates of growth and mortality, which do not fully reflect real-world conditions
where these rates vary with age, environmental factors, and density of the stand.

• Ignoring maximum age limits and other factors such as competition, disturbances,
and management interventions that can affect stand dynamics.

• The assumption of a steady state may not be applicable to forests that experience
significant changes or disturbances.
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3.8. Model Analysis

Sensitivity analysis was conducted for model validation, aiming to measure its re-
liability and robustness of the model predictions by quantifying how changes in model
parameters affect the model’s outputs and identifying which parameters are most influ-
ential on the model’s behavior, thereby guiding data collection efforts and prioritizing
areas for research. Sensitivity of the model output Y with respect to a parameter xi can be
defined as

Sxi =
∂Y
∂xi

(10)

where Sxi represents the sensitivity coefficient of Y to changes in parameter xi. Higher
values of |Sxi | indicate that the model output is more sensitive to the parameter xi.

The sensitivity coefficient Sxi tells us how a small change in xi (for example, a slight
increase in temperature) would affect Y (for example, forest growth rate, tree mortality rate,
or overall forest health). The derivative ∂Y

∂xi
encapsulates this responsiveness numerically.

The magnitude of Sxi indicates how sensitive Y is to xi. A large absolute value |Sxi | suggests
that Y is highly sensitive to changes in xi; small changes in xi could lead to significant
changes in Y. The sign of Sxi indicates the direction of the effect: a positive value means Y
increases with an increase in xi, while a negative value means Y decreases as xi increases.

3.8.1. Sensitivity Analysis with Respect to Regeneration Rates

The sensitivity of the forest regeneration model to changes in the regeneration rate
(RR) was carried out to understand the behavior of the model, given the direct impact of
RR on the initial conditions and the subsequent dynamics of the forest stands, evaluating
the influence of variations in RR on the predictions of the model.

Consider the forest regeneration model described by the discrete-time equation for
the number of stands in the youngest age class,

N(t + 1, 1) = RR (11)

The sensitivity of the model’s output, specifically the total number of stands after t
years, Total(t), with respect to RR can be expressed as

SRR =
∂Total(t)

∂RR
(12)

Given the direct relationship between RR and N(t + 1, 1), and subsequently Total(t),
we can further derive that

SRR =
T

∑
t=1

∂N(t, 1)
∂RR

(13)

where T represents the total simulation time.
For the simplified model in which growth and mortality rates are assumed constant

between age classes, the sensitivity SRR essentially captures the cumulative impact of
changing RR over time. If the model assumes that all stands regenerate directly contribute
to the total stand count without loss, then

SRR = T (14)

indicating that the model’s output is linearly sensitive to changes in the regeneration rate.
In more complex models, SRR would need to account for the diminished contributions of
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older age classes due to mortality, as well as nonlinear effects due to density-dependent
growth or mortality factors.

3.8.2. Sensitivity Analysis of the Forest Growth Model with Respect to Mortality Rates

Understanding how changes in mortality rates (MR(a)) affect the dynamics of forest
growth was based on the sensitivity analysis of a forest growth model regarding mortality
rates, highlighting the interconnection of mortality and forest stand dynamics over time.

The sensitivity of the forest growth model’s output, such as the total biomass or the
number of mature stands at time t, to changes in mortality rates for a specific age class a, is
expressed as

SMR(a) =
∂Y(t)

∂MR(a)
(15)

where Y(t) represents the model output of interest at time t, and MR(a) is the mortality
rate for age class a. This sensitivity indicates how a small change in the mortality rate of a
specific age class affects the model’s output, reflecting the direct and indirect impacts of
mortality on forest growth.

For a given age class a, the direct impact of an increase in MR(a) reduces the number
of stands that survive to the next age class. The indirect effects accumulate over time as
fewer stands progress through the subsequent age classes. Assuming a simplified model
where growth and transition between age classes are otherwise constant, the sensitivity
can be approximated by aggregating the impacts across all affected age classes,

SMR(a) = −
A

∑
j=a

∂N(t, j)
∂MR(a)

(16)

where N(t, j) is the number of stands in age class j at time t, and A is the maximum age
class considered in the model.

Assuming linear relationships and no compensatory growth for loss in stands due to
increased mortality, the sensitivity SMR(a) highlights the cumulative impact of mortality
rates on the forest’s ability to grow and sustain its biomass over time. A higher absolute
value of SMR(a) indicates that forest growth and biomass are more susceptible to changes
in mortality rates, underscoring the importance of understanding and managing factors
contributing to tree mortality.

3.8.3. Sensitivity Analysis with Respect to Mortality Rates

The impact of mortality rates (MR(a)) on the forest regeneration model was analyzed
to interpret the resilience and long-term sustainability of forest ecosystems. Mortality rates
influence the attrition of stands in different age classes, directly affecting forest composition
and stand density over time. Higher sensitivity values indicate that small changes in
mortality rates could lead to significant alterations in forest composition.

Given the forest regeneration model’s structure, the sensitivity of the total number of
stands, Total(t), with respect to changes in mortality rates for a specific age class a, MR(a),
can be formulated as

SMR(a) =
∂Total(t)
∂MR(a)

(17)

95



Forests 2025, 16, 192

Considering the model’s dynamics, where the number of stands in age class a at time
t is N(t, a), and applying the chain rule for differentiation, we obtain

SMR(a) =
T

∑
t=1

(
∂N(t, a)
∂MR(a)

+
A

∑
j=a+1

∂N(t, j)
∂N(t, a)

· ∂N(t, a)
∂MR(a)

)
(18)

where T is the total simulation time, and A is the maximum age class.
For a simplified model where GR(a) is constant and independent of MR(a), the sensi-

tivity can be approximated by considering the immediate impact of mortality rates on each
age class and their downstream effects on older classes,

SMR(a) ≈ −
T

∑
t=1

(
N(t, a) +

A

∑
j=a+1

N(t, j)

)
(19)

assuming a linear response of stand numbers to changes in mortality rates. This approx-
imation neglects potential compensatory mechanisms or density-dependent effects that
could modulate the impact of increased mortality.

4. Markov Chain Model of Forest Regeneration Dynamics

The dynamics of forest regeneration were modeled using a Markov chain, where
the state of a forest at any given time is determined by its state at the previous time step,
with transitions between states governed by a set of probabilities. The Markov chain model
for forest regeneration dynamics operates under several key assumptions:

1. The future state of the forest depends only on its current state, not on the sequence of
events that preceded it (Markov property).

2. The transition probabilities are constant over time, implying stationary environmental
conditions and management practices.

3. The forest is closed to external influences other than those included in the transition
probabilities, such as significant disturbances or changes in the management strategy.

Let the set of states S = {s1, s2, . . . , sn} represent the forest age classes, where si

corresponds to the ith age class. The state s1 represents the youngest age class, typically
seedlings and saplings, while sn represents the oldest age class within the forest.

The transition probabilities between states are represented by a matrix P, where each
element pij denotes the probability of transitioning from state si to state sj in one time step.
For a forest regeneration model, the matrix P is structured to reflect growth (progression to
the next age class), mortality (failure to progress), and regeneration processes,

P =

⎡
⎢⎢⎢⎢⎣

p11 p12 0 · · · 0
0 p22 p23 · · · 0
...

...
...

. . .
...

0 0 0 · · · pnn

⎤
⎥⎥⎥⎥⎦ (20)

where pii (for i < n) represents the probability of remaining in the same age class (owing to
slow growth or no growth), pi,i+1 represents the probability of progressing to the next age
class, and pnn represents the probability of remaining in the oldest age class.

The initial state distribution π0 = [π01, π02, . . . , π0n] represents the age class distribu-
tion of the forest at the beginning of the model period, where π0i is the proportion of the
forest in state si at time 0.
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To effectively apply the Markov chain model for forest regeneration dynamics, we
need to accurately estimate the transition probabilities between age classes. For parameter
estimation, the dataset defined in Section 3.3 was used to extract information relevant to
age class transitions for the primary tree species of interest, focusing on Pine, Spruce, Birch,
and Aspen.

The transition probabilities pij of the Markov chain model are estimated based on
the observed transitions between age classes in the dataset over a specified time interval.
The formal definition for estimating these probabilities is given by

pij =
Nij

Ni
(21)

where pij is the probability of transition from age class i to age class j. Nij is the number of
stands observed to transition from the age class i to the age class j during the time interval.
Ni is the total number of stands in the age class i at the beginning of the time interval.

For age classes that directly progress to the next (for example, from age class i to i + 1),
pij captures the growth probability. The probability of remaining in the same age class (pii)
reflects slower growth or stagnation, and the transition to the absorbent state for the oldest
age class (pnn) indicates mortality or the culmination of growth.

Given potential uncertainties and variabilities in forest inventory data, a Bayesian
approach was used to estimate transition probabilities, incorporating prior knowledge and
observed data to generate probability distributions for each pij, rather than point estimates,
as this approach improves the robustness of the model to data gaps and variations.

P(pij|data) ∝ P(data|pij)× P(pij) (22)

where P(pij|data) is the posterior distribution of the transition probability, P(data|pij) is
the likelihood of the observed data given the transition probability, and P(pij) is the prior
distribution of the transition probability.

Multivariate Time Series (MTY) Decomposition

Multivariate Time Series (MTY) decomposition is a method that we used to break
down a multivariate time series into its constituent parts to better understand the un-
derlying structure and dynamics of the data. In the context of forest stand dynamics, it
involves decomposing the time series of tree ages into components such as trend, seasonal,
and irregular components. MTY decomposition allows for a detailed analysis of how
these components contribute to signals detected by the Hotelling T2 control chart, which
is a statistical tool used to monitor the stability of a process based on multiple variables
simultaneously. For forest stand dynamics, it was used to monitor changes in the dis-
tribution of tree ages over time. When an out-of-control signal is detected, indicating a
significant deviation from the expected multivariate process behavior, MTY decomposition
was applied to investigate the source of this deviation.

The steps for applying MTY Decomposition are as follows:

1. Use the Hotelling T2 control chart to identify periods in which the multivariate process;
in this case, the distribution of tree ages, deviates significantly from the control limits.

2. Apply MTY Decomposition to the time series data related to the identified out-of-
control signals, which involves separating the data into trend, seasonal, and irregular
components for each variable, or, in this case, tree age class.

3. Analyze the decomposed components to identify patterns or anomalies. For example,
a sudden change in the trend component could indicate a shift in forest regeneration
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rates, while unusual patterns in the seasonal component could reflect cyclical changes
in mortality rates.

5. Results

5.1. Forest Regeneration Model Rates

The Forest Regeneration Model rates were derived from Table 3 and are presented
in Table 5, indicating the proportion of stands that survive and transition to the next age
class, with a growth rate exceeding 100% from age class 31–40 to 41–50 due to an apparent
increase in the area, which can be attributed to measurement adjustments, changes in
forest management practices, or natural dynamics not captured by simple linear transitions.
The RR rate represents the total area rather than an annual regeneration rate, due to the
lack of explicit annual data. To derive an annual rate, additional information would be
needed on the period over which this regeneration occurred. The model’s mortality rates
become negative from the 31–40 to the 41–50 transition onward, which is counterintuitive,
as mortality rates should range between 0 and 1. These negative values likely suggest un-
derlying issues with the data, rather than true biological phenomena. Errors in measuring
or recording the forest data, such as the area covered by each age class, can lead to incorrect
calculation of negative rates. For example, an overestimation of the area in a younger age
class followed by an underestimation in the next age class could artificially inflate growth
rates, making mortality rates appear negative when calculated as residuals. This anomaly
is the limitation of our model, as we have treated that such areas can directly translate
into survival and growth rates without accounting for other factors such as afforestation,
reforestation, and changes in land use or measurement methodologies over time.

Table 5. Growth and mortality rates for tree species.

Age Class (Years)
Scots Pine Spruce Birch Aspen

GR MR GR MR GR MR GR MR

1–10 0.796 0.204 0.839 0.161 0.840 0.160 1.000 0.000
11–20 0.829 0.171 0.638 0.362 0.934 0.066 0.712 0.288
21–30 0.841 0.159 1.000 0.000 0.748 0.252 0.624 0.376
31–40 1.000 0.000 1.000 0.000 1.000 0.000 0.789 0.211
41–50 1.000 0.000 0.987 0.013 1.000 0.000 1.000 0.000
51–60 1.000 0.000 0.883 0.117 1.000 0.000 1.000 0.000
61–70 0.841 0.159 0.865 0.135 0.703 0.297 0.821 0.179
71–80 0.863 0.137 0.892 0.108 0.431 0.569 0.450 0.550
81–90 0.899 0.101 0.688 0.312 0.313 0.687 0.241 0.759

91–100 0.701 0.299 0.423 0.577 0.201 0.799 0.095 0.905

5.2. Markov Chain Modeling

Given the growth rates (GR) and mortality rates (MR) for Scots pine in Lithuania,
the state transition matrix P for the first three age classes can be constructed, assuming
that the transitions between age classes are solely dictated by the growth rates and that
mortality is implicitly considered in these transitions (i.e., not surviving to the next age
class is the complement of the growth rate).

P =

⎛
⎜⎜⎜⎝

0.204 0.796 0 0
0 0.171 0.829 0
0 0 0.159 0.841
0 0 0 1

⎞
⎟⎟⎟⎠ (23)
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where the first row represents transitions from the 1–10 age class, with 20.4% chance of
staying in the same class (mortality and non-growth) and 79.6% chance of advancing to the
11–20 age class. The second and third rows follow the same logic for transitions from the
11–20 to 21–30 age classes and from the 21–30 to 31–40 age classes, respectively. The fourth
row is a simplification that represents the transition of the forest beyond the age classes
considered in this model, with the possibility 100% to remain in the state, reflecting the end
point of our simplified model.

Similar state transition matrices can also be calculated for other tree species. Our
Markov chain model (Figure 6) showed accurate transitions between different age classes
based on the growth and mortality rates estimated from the Lithuanian forest inventory
dataset for Scots pine, Spruce, Birch, and Aspen.

The Markov chain models for Scots pine, Spruce, Birch, and Aspen reveal distinct
growth dynamics and survival probabilities in different forest age classes, providing infor-
mation on the ecological strategies and responses of each species to environmental pres-
sures. Scots pine exhibits a higher tendency to remain in the younger age class (1–10 years),
with a 20.4% probability, indicating a slower initial growth or greater challenges in early-
stage survival, which suggests that Scots pine may require longer to establish or faces
more significant early-life mortality risks than other species analyzed. In contrast, Spruce
shows a unique pattern in which it transitions with certainty (100%) from the 21–30 to
the 31+ age class, reflecting effective forest management strategies that ensure its growth
beyond the mid-life stages without interruption. Birch stands out with its high transition
rate (84.0%) from the 1–10 to the 11–20 age class, the highest among the species, suggesting
vigorous early growth. However, it also shows a notable probability (25.2%) of remaining
in the 21–30 age class, indicating possible biological or environmental limitations that affect
its older populations. Aspen, on the other hand, demonstrates exceptionally dynamic
early growth, with a very high probability of moving from the 1–10 to the 11–20 age class,
characteristic of pioneer species known for rapid growth in youth. However, its growth
slows significantly as it matures, with a transition probability of 62.4% from the 21–30 to
the 31+ class, highlighting a deceleration in growth or increased mortality risks at this stage.
The resulting patterns indicate that while Aspen and Birch are quick to establish and grow
in their early years, they face different challenges as they mature. Scots pine and Spruce,
with their higher probabilities of staying in certain age classes, adapting more effectively
to longer-term environmental stresses or benefiting from conservation efforts that protect
them as they age.

99



Forests 2025, 16, 192

1-10 11-20 21-30 31+
p1,2 = 0.796 p2,3 = 0.829 p3,4 = 0.841

p1,1 = 0.204 p2,2 = 0.171 p3,3 = 0.159 p4,4 = 1.000

(a) Scots pine

1-10 11-20 21-30 31+
p1,2 = 0.839 p2,3 = 0.638 p3,4 = 1

p1,1 = 0.161 p2,2 = 0.362 p3,3 = 0 p4,4 = 1.000

(b) Spruce

1-10 11-20 21-30 31+
p1,2 = 0.840 p2,3 = 0.934 p3,4 = 0.748

p1,1 = 0.160 p2,2 = 0.066 p3,3 = 0.252 p4,4 = 1.000

(c) Birch

1-10 11-20 21-30 31+
p1,2 = 1 p2,3 = 0.712 p3,4 = 0.624

p1,1 = 0 p2,2 = 0.288 p3,3 = 0.376 p4,4 = 1.000

(d) Aspen
Figure 6. Markov chain models for tree species illustrating transitions between forest age classes.
The probabilities indicate regeneration, growth, and mortality transitions.

5.3. Sensitivity Analysis

Figure 7 presents sensitivity analysis of the forest regeneration model. It shows the
impact of variations in growth and mortality rates on the size of the forest stand over time.

The results from the sensitivity analysis provide data on how the analyzed rates
influence the longevity and viability of forest stands over a century. The results show a
clear trend: higher growth rates generally sustain forest stands longer, whereas higher
mortality rates accelerate the decline, evident where combinations with higher GR values
persist with higher stand counts far longer than those with lower GRs. Curves with higher
MRs, even with a high GR, decline more rapidly than those with lower MRs, illustrating the
detrimental impact of high mortality regardless of growth. Forest stands with high growth
rates (GR = 0.90 and GR = 1.00) and low mortality rates (MR = 0.10) show the greatest
longevity, maintaining a higher number of stands for an extended period compared to
other combinations. In contrast, any scenario with MR = 0.40, regardless of the growth
rate, results in a rapid decline of forest stands, where the population approaches zero in
about 40 years. There is a noticeable threshold effect around a GR of 0.70. Combinations
below this growth rate, even with moderate mortality rates (for example, MR = 0.18), show
a steep decline in stand numbers within the first few decades. Similarly, mortality rates
greater than 0.33 significantly decrease stand longevity in all growth rates, highlighting a
critical limit beyond which forest recovery is not sustainable. In general, the results show
the importance of improving forest growth rates through management practices such as
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optimal spacing, selective logging, and species selection that favor faster growing trees.
Strategies to reduce mortality rates, such as pest and disease management, protection from
wildfires, and mitigation of environmental stressors, remain important and are especially
vital in settings where the mortality rate approaches or exceeds the identified critical
threshold (MR = 0.33).

Figure 7. Sensitivity analysis of the regeneration model. Variations in growth and mortality rates
significantly impact long-term forest dynamics.

5.4. Hotelling T2 Control Chart

Figure 8 presents the Hotelling T2 control chart monitoring multivariate forest dynam-
ics over a series of observation years, identifying significant deviations in parameters such
as regeneration, growth, and mortality rates. The Hotelling chart plots the T2 statistic for
each time point, with an upper control limit (UCL) set based on a chosen confidence level.
Points exceeding the UCL, highlighted as out-of-control events, indicate potential anoma-
lies or shifts in forest ecosystem behavior, such as unexpected mortality spikes or changes
in age-class distributions. As we can see from the results, the deviations indicate that more
investigation is needed to assess their causes, which could potentially include environmen-
tal stressors, management practices, or climate-related impacts, offering actionable insights
for sustainable forest management.
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Figure 8. Hotelling T2 control chart monitoring forest dynamics across observation years. Out-of-
control points indicate significant deviations in multivariate forest characteristics.

The Hotelling T2 control chart (Figure 8) was used for tracking various ecological
indicators such as growth rates, mortality rates, and biodiversity indices, providing an
overview of forest health over time. Out-of-control points, such as those observed in years
13 and 19, indicated significant deviations from expected patterns, suggesting sudden
changes in forest composition potentially due to disease, pest invasions or environmental
stressors (droughts in our case). Significant metric changes reflect changes in biodiversity,
with implications for ecosystem functionality and health.

Table 6 presents a summary of the MTY decomposition analysis for regeneration rates
between age classes. We have performed the decomposition of the regeneration rate time
series data in different forest age classes to separate the observed data into trend, seasonal,
and residual components. This analysis offers valuable insights into the underlying dy-
namics of forest regeneration within each age class: 1–10 years, 11–20 years, 21–30 years,
and 31+ years. The decomposition method allowed for the identification of long-term
patterns, periodic fluctuations, and unexplained anomalies in regeneration processes.

For the youngest age class, 1–10 years, the results reveal a significant degree of sea-
sonal variability in regeneration rates, suggesting that periodic factors, such as climatic
conditions or scheduled management interventions, played a role in influencing regenera-
tion outcomes. In addition to these cyclical variations, the trend component demonstrates
a steady increase, indicating a general improvement in regeneration conditions over time.
The residual component shows occasional spikes, reflecting disturbances or external events
that affect the youngest forest stands.

In the 11–20-year age class, the trend appears relatively stable, which indicates consis-
tent regeneration dynamics. However, the residual component highlights notable irregu-
larities during specific years, which point to external disturbances such as pest outbreaks,
extreme weather events, or changes in forest management strategies. Unlike the youngest
age class, the seasonal component is less pronounced, indicating a diminished role of
cyclical influences as forests transition to mid-age stages.

The analysis of the 21–30 year age class shows a gradual increasing trend, reflecting
ongoing growth and recovery within these stands. Seasonal effects are relatively minor,
suggesting that the regeneration dynamics in this age class is less affected by recurring
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environmental or management patterns. The residual component remains low, indicating
stable regeneration with fewer anomalies compared to younger age classes.

For the 31+ year age class, the trend component shows pronounced growth, indicative
of forest stand maturation and the impact of sustained management practices. Seasonal
variations are minimal, which is consistent with the reduced sensitivity of older forests
to cyclical factors, which highlights occasional deviations, likely caused by natural distur-
bances or external influences that disproportionately affect mature stands.

Table 6. Summary of MTY decomposition analysis for regeneration rates across age classes.

Age Class (Years) Trend (Mean) Seasonal (Amplitude) Residual (Std Dev) Key Observations

1–10 6.8 0.8 0.6 High seasonal variability; occasional
disturbances

11–20 5.8 0.5 0.9 Stable trend; irregular spikes during
specific years

21–30 4.5 0.3 0.4 Gradual increase in trend; minor
seasonal effects

31+ 3.2 0.2 0.5 Pronounced trend growth; minimal
seasonal variation

6. Discussion

The results of this study reveal trends in the regeneration dynamics, growth rates,
and mortality patterns of Scots pine and other dominant tree species in Lithuanian forests.
Scots pine demonstrates a robust regeneration rate and consistent dominance across middle
to older age classes, with its highest concentration observed in the 61–70 age class, which
highlights the adaptability and long-term resilience of Scots pine, which is further sup-
ported by its ability to thrive under varying environmental and management conditions.
In contrast, spruce showed a strong presence in younger age classes, but experiences a
notable decline in older age categories. We believe that the decline in the model can reflect
a higher susceptibility to environmental stressors, pests, or diseases in the later stages of its
lifecycle. Birch and Aspen exhibited the behavior of pioneer species, with high representa-
tion in younger age classes followed by steep declines as forest succession progresses. Even
though, results highlight the relative youth of Pinus sylvestris (Scots pine) in Lithuanian
forests versus mature Picea abies (Norway spruce) in older stands, which can be largely
attributed to ecological dynamics and historical forest management practices. One key
factor is the long-standing preference for Scots pine in forest management, particularly in
Lithuania, where it has been favored for its resilience to poor soils, faster initial growth,
and economic value in timber production. Scots pine is well suited to the dry, sandy soils
prevalent in significant parts of Lithuania, where it thrives and has been actively promoted
through management interventions such as selective thinning and reforestation. In contrast,
Picea abies, although abundant in regeneration stages due to its tolerance to shade and its
ability to survive under a closed canopy, struggles to maintain dominance in older stands,
especially in environments where competition with faster-growing species like pine or birch
occurs. In unmanaged or naturally regenerating forests, Picea abies can persist for decades
in the understory due to their tolerance to shade, but their slower early growth relative to
pine places them at a competitive disadvantage. In addition, traditional forest management
has often prioritized Scots pine, leading to frequent thinning operations that selectively
remove spruce to reduce competition and promote pine growth, further reducing the
likelihood of spruce dominance in mature forests. In addition, the sensitivity of Picea abies
to environmental stressors such as windthrow, fungal diseases, and drought, particularly as
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it matures, contributes to its scarcity in older stands; however, climate change exacerbates
these vulnerabilities, with increasingly dry summers in Lithuania negatively affecting
spruce, which prefers cooler, wetter conditions.

The observed dominance and resilience of Scots pine suggest that it should remain
a cornerstone of forestry practices in Lithuania. The maintenance requires the implemen-
tation of adaptive management techniques that respond to both environmental changes
and forest dynamics. One key approach is selective thinning, in which competing tree
species such as birch and aspen are removed to reduce competition for resources such as
light, water, and nutrients, ensuring that Scots pine can thrive, especially in mixed stands.
In addition, assisted regeneration can be used in areas where natural regeneration rates
are low, using techniques such as planting genetically resilient Scots pine varieties that
are better suited to withstand drought or pest pressure. Soil management practices such
as mulching or soil moisture conservation techniques can also be used in regions prone
to drought, helping to maintain optimal growth conditions. Pest control strategies, such
as the monitoring and targeted control of bark beetle populations, are crucial, especially
in younger stands where Scots pine is more vulnerable to infestations. Finally, adaptive
reforestation programs that use predictive models, such as those developed in this study,
can guide planting efforts in areas where Scots pine has the highest potential for long-term
survival and growth under future climate conditions.

In Lithuania, the practical application of sensitivity analysis is correlated with recent
more directly informed, more nuanced, and more effective forest management decisions,
particularly regarding the regeneration and mortality of Scots pine. For example, the find-
ings are correlated with the critical impact of soil moisture on the growth of Scots pine,
leading to the expansion of climate-resistant species in mixed forests. In regions like
Dzūkija, which are prone to drought and characterized by sandy soils, forest managers
now focus on selecting more drought-tolerant species in conjunction with Scots pine to
improve forest resilience. Although Scots pine is retained for its ecological and economic
importance, sensitivity analysis has shown that it performs better in mixed stands, leading
to an adjustment in afforestation strategies. We believe that such an approach improves
forest adaptation by addressing soil moisture sensitivity and reducing the risk of stand
collapse during prolonged drought periods.

In relation to pest management, a detailed sensitivity analysis has highlighted that
mortality in younger Scots pine stands is highly sensitive to pest outbreaks, particularly
bark beetles. In line with this finding are the actions in regions like Aukštaitija, where forest
managers have intensified both preventive and reactive pest management strategies. They
have increased the frequency of aerial surveys using drones to monitor pest populations
and detect early-stage infestations, allowing for more targeted interventions before pests
spread widely. Furthermore, forest managers in Lithuania have expanded the use of
pheromone traps specifically during peak bark beetle seasons, rather than treating large
areas indiscriminately. This more focused, data-driven approach, rooted in the results of
sensitivity analysis, has successfully reduced bark beetle damage, particularly in the more
vulnerable young stands where mortality sensitivity is highest.

Sensitivity analysis also correlates with the importance of fine-tuning regeneration
efforts. In southern Lithuania, for example, regeneration of Scots pine has been shown to
be especially sensitive to competition from faster-growing species, such as Birch. Forest
managers have started to adapt their thinning practices to ensure that young Scots pine
stands are selectively managed to reduce competition during critical early growth phases.
Such practice has been integrated into forest management plans for state-owned forests,
ensuring that thinning schedules are more precisely timed and implemented in areas where
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Scots pine regeneration is more sensitive to competition, as such targeted management not
only improves Scots pine regeneration rates, but also ensures that it remains a dominant
species in Lithuania’s forestry landscape.

Our findings align with existing models of forest dynamics [50–52], in the emphasis on
species-specific roles in forest ecosystems. For example, previous studies have highlighted
the role of Scots pine as a long-lived dominant species in temperate forests, which is
consistent with its observed trends in this study. The decline in older age classes of trees is
similarly corroborated by research pointing to its vulnerability to biotic and abiotic stresses
as forests mature. The behavior of Birch and Aspen was documented in the literature as
pioneer species that establish quickly in disturbed areas, but are gradually replaced by
more shade-tolerant species such as Pine and Spruce. However, our study extends previous
work by incorporating detailed sensitivity analyses of growth and mortality rates, offering
a more nuanced model to understand how variations in these parameters influence long-
term forest dynamics. The inclusion of Markov chain modeling provided a more structured
framework for projecting these dynamics over extended time horizons, further bridging the
gap between theoretical models and practical forest management applications. For Birch
and Aspen, this role as pioneer species can be exploited in post-disturbance regeneration
efforts, but their rapid decline in older age classes necessitates planned transitions to longer-
lived species to ensure forest sustainability. The sensitivity analysis also emphasized the
importance of optimizing growth and mortality rates through management interventions
to improve forest health and productivity. Our results also highlight the impacts of climate
change, which still alters the dynamics of growth and mortality rates.

Naturally, this leads to the limitations of the study. First, the reliance on aggregated
forest inventory data obscures finer-scale regeneration and growth patterns. Estimates for
growth and mortality rates are subject to uncertainties arising from assumptions about age-
class transitions and the effects of external factors like climate variability. The Markov chain
model, while effective for projecting age-class transitions, simplifies complex ecological
interactions and may not fully capture nonlinear or density-dependent effects. The focus on
the Lithuanian scenario limits the generalizability of the findings to other regions or forest
types with different ecological dynamics. Future research should aim to address these
limitations by incorporating more granular data, exploring nonlinear modeling approaches,
and extending the analysis to include additional forest ecosystems.

However, the findings still have implications for forest policy and sustainable manage-
ment practices. Policy recommendations for promoting mixed species forests in Lithuania,
particularly focused on the regeneration of Scots pine, should draw on scientific evidence
that highlights the benefits of species diversity for forest resilience and ecosystem services.
Studies from Scandinavian countries, such as Finland and Sweden, demonstrate that mixed
species stands, which combine Scots pine with species such as Norway spruce and birch,
show increased resistance to biotic stressors such as bark beetle infestations and fungal dis-
eases, which disproportionately affect monocultures. For example, a study in Fennoscandia
forests [53] showed that Scots pine mixed with birch improves overall forest productiv-
ity due to the use of complementary resources, as Birch has a shallower rooting system,
reducing competition for water and nutrients with deeper-rooted Scots pine. Similarly,
in Central Europe, mixed species forests have been shown to better withstand extreme
weather events, such as droughts, by increasing structural and functional diversity, which
buffers against environmental variability [54]. Other analyses of European forests [55] have
shown that adaptive thinning in mixed forests can prioritize the growth of Scots pine by
selectively removing faster-growing competitors, such as birch, in critical growth phases,
thus optimizing light and resource availability for Scots pine. We believe that these findings
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show that policies that promote mixed species forests would not only enhance biodiversity
and ecosystem functions but also make Scots pine stands more resilient to climatic and
biological threats, ensuring their role as a cornerstone species in Lithuanian forests.

Limitations and Future Works

First, reliance on aggregated data from the Lithuanian National Forest Inventory
(NFI), while valuable for long-term trend analysis, masks important fine-scale spatial
and temporal heterogeneity in Scots pine regeneration, growth, and mortality. Given
Lithuania’s diverse forest ecosystems, including the dry and sandy soils of Dzūkija and the
wetter and more fertile soils of Aukštaitija, aggregation obscures localized regeneration
patterns, particularly in regions where Scots pine performance is strongly influenced by
site-specific factors such as soil moisture, nutrient availability, and microclimatic variability.
The sensitivity analysis in this study indicated that Scots pine is particularly sensitive to
soil moisture conditions, especially in regions prone to drought. However, the data do
not adequately capture this variability, limiting the model’s capacity to provide precise
guidance for region-specific management interventions.

The use of Lithuanian National Forest Inventory (NFI) data in modeling forest dynam-
ics offers a comprehensive snapshot of forest conditions, using extensive datasets that cover
various forest attributes such as species composition, age distribution, and health status.
However, this approach is restricted to the variables collected in the inventory, which may
limit the model’s ability to capture all ecological dynamics fully. For instance, the NFI data
might focus predominantly on commercially important tree species and standard forest
metrics such as timber volume and tree density, potentially overlooking underrepresented
species or non-timber forest values like biodiversity and ecological services. This selec-
tive data collection can introduce biases, as the model’s outputs may not fully reflect the
complexities of forest ecosystems, particularly those related to ecological interactions and
responses to environmental stressors. Additionally, the periodic nature of the inventory
may not adequately capture rapid changes or short-term ecological responses, impacting
the model’s sensitivity and adaptability to real-time forest dynamics. These limitations
require a cautious interpretation of model predictions and underscore the importance of
integrating additional data sources or conducting additional field studies to improve the
robustness and ecological validity of the findings.

Second, while the Markov chain model proved efficient in modeling age-class transi-
tions and projecting forest composition under various management scenarios, it must be
clear that it inherently simplifies complex ecological processes. Nonlinear interactions such
as density-dependent mortality, competition between tree species, and environmental feed-
back mechanisms are reduced to age-based transitions, which may not accurately reflect the
dynamic nature of forest ecosystems. Scots pine’s interaction with faster-growing pioneer
species like birch and aspen is a critical dynamic, particularly in mixed stands where com-
petition for light and resources plays a pivotal role in early growth phases. The sensitivity
analysis highlighted the strong influence of competition on Scots pine regeneration, partic-
ularly in younger age classes, but the aggregated approach does not fully account for this
spatially variable competition, especially in regions like southern Lithuania, where birch
competes aggressively in early successional stages. In addition, non-linear feedback, such
as the threshold effects of pest outbreaks, particularly bark beetles, is simplified. In reality,
these pest dynamics are highly stochastic and often exhibit non-linear thresholds, where
small increases in pest populations can lead to widespread forest mortality, a critical factor
that will need to be solved in future work.
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Third, the study’s focus on Scots pine, although ecologically and economically im-
portant, given that it accounts for a large part of Lithuania’s total forest cover, limits the
broader applicability, as the forest dynamics of mixed species stands, particularly those
involving spruce and birch, is not fully addressed. For example, the rapid decline of spruce
in older age classes identified in the model could be related to a variety of biotic and abiotic
stressors such as fungal diseases or increased susceptibility to windfall, factors that are
increasingly important under climate change, but are underrepresented in the structure
of this model. In some regions within Lithuania, these dynamics play a role in long-term
forest stability and will be further investigated. Furthermore, the competitive behavior
of birch and aspen presents a challenge to the regeneration of Scots pine, especially in
unmanaged or naturally regenerating stands. The sensitivity analysis suggested that Scots
pine regeneration is highly sensitive to birch competition, but the aggregated approach of
the model itself does not allow a more detailed vision of how management strategies such
as selective thinning or mixed species planting can mitigate these competitive pressures.

Fourth, the model’s assumptions regarding climate variability also introduce limita-
tions. Although our study touches on the potential effects of climate change, particularly
drought, its approach to projecting future forest dynamics does not fully integrate the in-
creasing unpredictability of climatic extremes, which are expected to intensify in Lithuania,
particularly in southern regions prone to drought, as we do not yet have enough data
on extremities to include in the model. Scots pine, while resilient, has its growth and
regeneration closely tied to soil moisture availability, and future scenarios with extended
dry periods could exacerbate mortality rates in ways not fully captured by the model’s
current sensitivity analysis.

Lastly, the focus on Lithuania’s forest ecosystems limits the generalizability of the find-
ings to other regions with different ecological and management contexts. Although Scots
pine is a dominant species in northern Europe, the dynamics in mixed-species forests in
Scandinavia or central Europe, where different environmental and ecological pressures
exist, may differ significantly. For example, studies from Finland and Sweden show that
Scots pine, when grown in mixed stands with species such as Norway spruce or birch,
demonstrates greater resilience. We are planning with the Linnaeus University team,
Sweden, to augment the model with additional data under the Forest 4.0 initiative.

Future research will aim to address these limitations by incorporating finer-scale, high-
resolution data, particularly with respect to spatial variability in site conditions, species
interactions, and climatic factors. More advanced non-linear modeling approaches, includ-
ing agent-based or process-based models, could capture complex ecological interactions
and stochastic events such as extreme factors due to climate change, thus improving the
robustness of the projections. Furthermore, expanding the study to include mixed species
forests and incorporating case studies from other regions would improve the generalizabil-
ity and applicability of the findings, providing more nuanced insights for sustainable forest
management in diverse ecological contexts.

7. Conclusions

The key novelty in this study lies in the use of the Markov chain model combined with
Multivariate Time Series (MTY) decomposition to analyze the regeneration dynamics of
Scots pine. Unlike traditional deterministic models, the Markov chain approach allowed for
the probabilistic tracking of age-class transitions, enabling a more accurate representation
of how Scots pine populations evolve under various management and climate scenarios.
The MTY decomposition added further depth by isolating trend, seasonal, and irregular
components in regeneration rates, which previous models had not integrated into their
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sensitivity analyzes. For example, while Ryzhkova et al. [5] focused on geoinformation
modeling for large-scale forest cover classification, while our approach went further by ap-
plying statistical methods to examine the sensitivity of regeneration dynamics to parameter
variability, providing actionable insights for adaptive forest management.

The results of the forest regeneration model demonstrate key findings on the growth
and mortality dynamics of various tree species. Scots pine shows a 79.6% probability
of advancing from the 1–10 age class to the 11–20 age class, with subsequent transition
probabilities of 82.9% and 84.1% between older age classes Scots pine displays slower initial
growth and a higher likelihood (20.4%) of remaining in the 1–10 age class, suggesting that
it may face competition or environmental challenges early on, implying on the need for
targeted management practices to support Scots pine seedlings and ensure their survival
in the face of competitive pressures from faster-growing species like Birch and Aspen.
In contrast, the pioneer species Birch and Aspen exhibit strong early growth, with Birch
having a 84% chance of advancing from the 1–10 to the 11–20 age class and Aspen achieving
a high transition rate, reflecting the competitive advantages of Birch and Aspen in disturbed
or newly opened habitats, where they can rapidly colonize and dominate. However, both
species show a notable slowdown in growth as they age, with Birch’s transition rates
declining in later age classes and Aspen’s falling dramatically after 31 years, likely due to
physiological limitations or increased susceptibility to environmental stressors. Spruce,
on the other hand, presents a different growth trajectory, with modest early growth but
a very high transition from the 21–30 to the 31+ age class, indicating its resilience and
capacity for sustained growth in mature forest stages. Naturally, such a growth pattern
suggests that while Spruce may not be as competitive in early succession stages, it can
become dominant in later stages, particularly in mature forests.

Sensitivity analysis provide information on the interaction between growth and mor-
tality rates, revealing that while higher growth rates can extend the lifespan of the forest
stand, high mortality rates (above 0.33) drastically reduce the viability of the stand, which
emphasizes the critical importance of reducing mortality, through disease management,
pest control, or improved silvicultural practices. Without addressing mortality, even high
growth rates cannot offset the negative impacts of stand decline, as successful forest man-
agement, must prioritize both enhancing growth and minimizing mortality, particularly
in vulnerable species or age classes. The Hotelling T2 control chart further illustrated
forest dynamics, identifying significant deviations in years 13 and 19, indicating periods of
environmental stress, which have impacted the growth or survival rates of certain species,
showing that unforeseen stressors can disrupt even well-managed stands.
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Abstract: Accurate estimation of forest aboveground carbon stock (AGC) is essential for understand-
ing carbon accounting and climate change. In previous studies, the extracted factors, such as spectral
textures, vegetation indices, and textural features, were used to estimate the AGC. However, few
studies examined how different factors affect estimation accuracy in detail. Meanwhile, there are
also many uncertainties in the collection and processing of the field data. To quantify the various
uncertainties in the process of AGC estimation, we used the random forest (RF) to establish estimation
models based on field data and Sentinel-1/2 images in Shangri-La. The models included the band
information model (BIM), the vegetation index model (VIM), the texture information model (TIM),
the Sentinel-2 factor model (S-2M), and the Sentinel-1/2 factor model (S-1/2M). Then, uncertainties
resulting from the plot scale and estimation models were calculated using error equations. Our goal
is to analyze the influence of different factors on AGC estimation and to assess the uncertainty of
plot scale and estimation models quantitatively. The results showed that (1) the uncertainty of the
measurement was 3.02%, while the error of the monocarbon stock model was the main uncertainty at
the plot scale, which was 9.09%; (2) the BIM had the lowest accuracy (R2 = 0.551) and the highest
total uncertainty (22.29%); by gradually introducing different factors in the process of modeling, the
accuracies improved significantly (VIM: R2 = 0.688, TIM: R2 = 0.715, S-2M: R2 = 0.826), and the total
uncertainty decreased to some extent (VIM: 14.12%, TIM: 12.56%, S-2M: 10.79%); (3) the S-1/2M
with the introduction of Sentinel-1 synthetic aperture radar (SAR) data has the highest accuracy
(R2 = 0.872) and the lowest total uncertainty (8.43%). The inaccuracy of spectral features is highest,
followed by vegetation indices, while textural features have the lowest inaccuracy. Uncertainty in
the remote-sensing-based estimation model remains a significant source of uncertainty compared to
the plot scale. Even though the uncertainty at the plot scale is relatively small, this error should not
be ignored. The uncertainty in the estimation process could be further reduced by improving the
precision of the measurement and the fitting of the monocarbon stock estimation model.

Keywords: carbon stock; remote sensing factors; plot scale; SAR data; uncertainty

1. Introduction

Forest ecosystems play a vital role in understanding climate change and maintaining
carbon balance [1–3]. Forest aboveground carbon stock (AGC) is not only an important
index of forest carbon absorption capacity but also a basis for studying forest ecosystem
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structure and function and evaluating forest carbon balance [4,5]. Therefore, accurate esti-
mation of forest AGC is crucial for humans to assess and protect the forest ecosystems [6,7].
However, there are certain uncertainties in estimating AGC at both large and small re-
gions [8]. Ignoring these uncertainties will limit the accurate estimation of forest AGC.
Hence, reducing the uncertainty to improve the accuracy in the estimation process has
become a significant challenge [9].

The methods for estimating AGC mainly contain the traditional plot survey and re-
mote sensing estimation. Although the plot survey can obtain accurate data, it requires a
considerable investment of human and financial resources. Whereas, remote-sensing-based
methods have the characteristics of being fast, low-cost, large-scale, and less destructive.
They had been widely used in the estimation of forest aboveground biomass (AGB) and
AGC [10–12]. Optical remote sensing data have a great advantage in obtaining the struc-
tural parameters of the forest; the rich spectral information have been widely applied
in the study of AGC estimation [13]. However, it is susceptible to the strong influence
of canopy thickness, so it is difficult to obtain the vertical structural parameters of the
forest, and the information it obtains tends to be saturated in areas of high biomass and
carbon stock, which has a disadvantage in estimating high AGB or AGC [14,15]. Many
researchers have found that using only single optical data to estimate forest AGB or AGC
has high uncertainty [16–18]. Synthetic aperture radar (SAR) data have the advantages of
longer electromagnetic wavelength, strong penetration ability, and sensitivity to structural
attributes [19], so it can overcome the shortcomings of optical data and can obtain valuable
information concerning the vertical vegetation canopy. Therefore, combining optical with
SAR data to estimate forest AGB and AGC is considered a feasible method [20–22]. For
instance, Fang et al. [23] combined Sentinel-1 SAR and Sentinel-2 optical data to establish a
multivariate linear regression (MLR) and extreme gradient boosting (XGBoost) model for
predicting forest AGB. Liu et al. [24] combined field plots and Sentinel-1 and Sentinel-2
data to map the forest stand mean height (FSMH) and AGB at a resolution of 10 m in
Yichun, Northeast China. Their results showed that the AGB and AGC models generated
by combining the two types of data are more robust and accurate than models derived
from optical or SAR data. Given the above findings, we combined optical and SAR data to
estimate forest AGC in this study.

Uncertainty is an umbrella term for concepts that include inaccuracy, ambiguity,
and inconsistency [25]. It is very common in the process of carbon stock estimation.
There are three primary sources of uncertainty in the whole process of AGC estimation:
measurement uncertainty, sampling uncertainty, and model uncertainty [26,27]. Shettles
et al. [28] regarded model uncertainty as the main source of error, accounting for about
70% of the total uncertainty. Sources of model uncertainty mainly include the uncertainty
of input variables [29], improperly setting the model function form [30], the residual
variability of the model [31], and the parameter error of the model [32]. Uncertainty in the
input variables mainly refers to the measurement error of variables such as diameter at
breast height (DBH) and tree height (H), which is primarily affected by the measurement
techniques, equipment, and anthropogenic measurement methods [33]. The incorrect
setting of the model form is mainly due to the lack of appropriate test data or modeling
techniques [34]. For the residual uncertainty of the model, the standard deviation of the
residual was used to measure it [35]. However, it can produce different results due to
the differences in the study area and data. Compared to the residual uncertainty of the
model, the uncertainty caused by the parameter error is relatively small and relates to the
number of modeling samples. Current studies focused more on the uncertainty of the
model. For example, Eduarda et al. [36] reduced the uncertainty of the biomass model in
terms of modeling methods. Huang et al. [37] used the error transfer method to measure
the uncertainties of parametric and nonparametric models. Cao et al. [38] combined the
random forest and Monte Carlo simulation (RF-MC) to study the effects of models with
different types of variables on the accuracy of carbon stock estimation.
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In summary, optical and SAR data to measure uncertainties arising from estimation
models have been widely used [39]. However, these studies neglected how different factors
impact the accuracy and uncertainty of the model. Furthermore, few studies have combined
optical and SAR data to quantitatively assess the uncertainties generated by two different
scales of plot and remote sensing model. To address these research issues, the Pinus densata
in Shangri-La was used as the research tree species, and Sentinel-1/2 data and field data
were used to establish different estimation models. Then, error equations were used to
calculate uncertainties of plot scale and remote sensing models. The main objectives of
this study were to (1) investigate the effects of different factors and plot scale on AGC
estimation; (2) analyze the primary source of uncertainty at the plot scale; and (3) explore
the potential of SAR data in reducing uncertainty during the AGC estimation.

2. Materials and Methods

2.1. Study Area

Shangri-La is located in northwestern Yunnan Province in southwest China, with a
total area of 11,613 km2 (Figure 1b). It has a large undulating topography, with an elevation
difference of 4042 m (the lowest elevation is 1503 m) and an average elevation of 3459 m
(Figure 1d). Most rain falls from June to September, mean annual precipitation is 607 mm,
and the average annual evaporation is 1643.6 mm [40]. It has four towns and seven villages
with a high forest cover of 75% and is one of the world’s top ten species gene pools [41]. Its
main vegetation types are cold-temperate coniferous forest and rubber forest. Pinus densata
is one of its dominant tree species (Figure 1c), which covers an area of 1848.18 km2 and
accounts for 16.18% of the area of Shangri-La [42].

Figure 1. (a) Location of Yunnan Province in China; (b) location of Shangri-La in Yunnan Province;
(c) distribution of Pinus densata and field plots; and (d) elevation.

The methods of this paper are divided into three stages (Figure 2). In the first stage,
remote sensing images were processed, and remote sensing features were extracted; the
AGC at each field plot was calculated from the field survey. AGC remote-sensing-based
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estimation models were established in the second stage using the RF method; measurement
uncertainty and uncertainty of the monocarbon stock model at the plot scale were calculated.
In the third stage, we used error equations to calculate the remote-sensing-based estimation
model uncertainty and the total uncertainty at the plot scale. Then, we combined two
uncertainties to obtain the total uncertainty of the AGC estimation.

Figure 2. Overview of the methodological approach.

2.2. Data Acquisition and Processing
2.2.1. Field Survey

A total of 60 plots were surveyed in 2019 and 2021. Twenty plots were surveyed in
December 2019, and the other forty were surveyed in May 2021. Plot sizes of 10 m × 10 m
were considered in this study to ensure correspondence between the field measurement
and pixel size in the imagery [43]. Sample points were randomly distributed in pure
Pinus densata forest areas; each plot was spaced more than 3 km apart. The field survey
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mainly recorded DBH and H of pure stand of Pinus densata with DBH of 5 cm or more.
The binary lumber volume table was used to calculate the capacity of individual trees
in each plot [44]. The AGB of Pinus densata was calculated using the allometric growth
equation [45]:

W = 0.073 × D1.739 × H0.880 (1)

where W is AGB, D is the diameter at breast height, and H is the tree height. Then, the
carbon stock was calculated as:

C = W × fc (2)

where C is the AGC of Pinus densata, and fc is the carbon content coefficient, which is
0.5131 [46,47]. The field survey data are shown in Table 1.

Table 1. Field survey data in Shangri-La.

Variables Max Min Mean SD

Mean DBH (cm) 29.75 8.52 15.33 5.57
Mean H (m) 19.05 4.33 9.90 3.93
AGC (t/ha) 128.34 10.49 51.05 30.54

2.2.2. DEM

The digital elevation model (DEM) used in this study was downloaded from the
official website of the United States Geological Survey (USGS) (https://earthexplorer.
usgs.gov (accessed on 10 July 2023)). It is the Shuttle Radar Topography Mission (SRTM)
Version 3 product, with a resolution of 30 m. We resampled it to 10 m using the nearest
neighbor method.

2.2.3. Remote Sensing Images and Processing

In this study, we selected two scenes of Sentinel-1 Interferometric Wide mode (IW)
Ground Range Detected (GRD) images acquired in November 2021 with a resolution of
10 m (Table 2). Pre-processing operations, such as orbit correction, thermal noise removal,
radiometric calibration, speckle filtering, and terrain correction, were performed in the
SNAP software 10.0 provided by the European Space Agency (ESA) [48]. Owing to the
significant altitude disparities in the study area, we utilized the altitude, slope, and aspect
extracted from DEM to correct the image for alleviating the effect of elevation differences on
the images [49]. Concerning the influence of the wave propagation path on the images, the
alteration in the wave propagation path can be analyzed by extracting terrain information
(altitude, slope, and aspect) from DEM; we then used SARscape software 5.6.2 to correct this
impact through the alteration [50]. Finally, the processed Sentinel-1 images were exported
to ENVI format, and stitching and cropping operations were performed.

Table 2. Collected images of the study area.

Sensor ID
Acquisition

Date
Cloud

Cover/%

Sentinel-1
S1A_IW_GRDH_1SDV_20211104T112504_20211104T112529_040421_04CAB8_ACE9 2021/11/04
S1A_IW_GRDH_1SDV_20211104T112439_20211104T112504_040421_04CAB8_EC62 2021/11/04

Sentinel-2

S2A_MSIL2A_20211108T035951_N0301_R004_T47RNK_20211108T071124 2021/11/08 1.28
S2A_MSIL2A_20211108T035951_N0301_R004_T47RNL_20211108T071124 2021/11/08 0.16
S2A_MSIL2A_20211108T035951_N0301_R004_T47RNM_20211108T071124 2021/11/08 0.06
S2A_MSIL2A_20211108T035951_N0301_R004_T47RPK_20211108T071124 2021/11/08 1.79
S2A_MSIL2A_20211108T035951_N0301_R004_T47RPL_20211108T071124 2021/11/08 0.97
S2A_MSIL2A_20211108T035951_N0301_R004_T47RPM_20211108T071124 2021/11/08 0.29

Sentinel-2 is a multispectral imaging satellite that carries a multispectral imager (MSI)
with 13 spectral bands. The image is unique in that it has three special red-edge bands,
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making it particularly effective in monitoring vegetation information. We selected six scenes
of Sentinel-2 Level-2A (L2A) images in November 2021 (Table 2). It was atmospherically
and orthographically corrected [51]. Then, all 20 m spectral bands were resampled to 10 m
using the nearest neighbor method [52]. Finally, the band synthesis, splicing, and cropping
were completed in the ENVI software 5.6.

2.2.4. Extraction and Selection of Remote Sensing Factors

Remote sensing factors were extracted from the Sentinel-1/2 images after pre-processing
through SNAP, SARscape, and ENVI software. Studies have revealed that backscatter
coefficients and texture features of SAR were crucial for AGB (AGC) estimation [53,54].
Hence, we extracted SAR backscatter coefficients (VV, VH) and SAR texture features from
Sentinel-1 images. Key parameters, such as spectral textures (excluding atmospheric bands
B1, B9, and B10), vegetation indices, and texture features, were extracted from Sentinel-2
images according to the relevant research [55]. The parameters extracted in this study
contained 2 SAR backscatter coefficients, 10 spectral textures, 9 vegetation indices, 16 SAR
texture features, and 152 optical texture features, with a total of 189 factors (Table 3). Then,
we used the SPSS software 26.0 to analyze the correlation of remote sensing factors. Finally,
high correlation factors were used to establish AGC estimation models. These factors
mainly included 3 spectral textures, 4 vegetation indices, 5 optical texture features, and 2
SAR texture features.

Table 3. Variable information obtained from Sentinel-1 and Sentinel-2.

Sensor Variable Type Variable Name Definition

Sentinel-1

Polarization
VV Vertical transmit—vertical channel
VH Vertical transmit—horizontal channel

Textural features

Contrast (CON), Dissimilarity (DIS),
Angular second moment (ASM),
Entropy (ENT), Variance (VAR),

Correlation (COR), Homogeneity
(HOM), Mean (ME)

Grey level co-occurrence matrix

Sentinel-2

Spectral textures B2, B3, B4, B5, B6, B7, B8, B8A,
B11, B12

Blue (490 nm), Green (560 nm), Red (665 nm), Red
Edge1 (705 nm), Red Edge2 (740 nm), Red Edge3

(783 nm), NIR (842 nm), Red Edge4 (865 nm), SWIR1
(1610 nm), SWIR2 (2190 nm)

Vegetation indices

DVI NIR-Red
RVI NIR/Red

NDVI (NIR − Red)/(NIR + Red)
NDI45 (RE1 − Red)/(RE1 + Red)
GNDVI (RE3 − Green)/(RE3 + Green)

SAVI 1.5 × (NIR − Red)/8 × (NIR + Red + 0.5)
EVI 2.5 × ((NIR − Red)/(NIR + 6 × Red − 7.5 × Blue + 1))

S2REP 705 + 35 × [((RE1 + NIR)/2-RE2)/(RE3-RE2)]
MSAVI 2 × NIR + 1 − sqrt[(2 × NIR)2 − 8×(NIR-Red]/2

Textural features Same as Sentinel-1

Note: RE is the red edge; BX is a certain single band of the image.

2.3. Modeling Method

Random forest (RF) [56] is an integrated learning model that is widely used in a
variety of fields, such as classification and nonparametric regression prediction [57]. The
implementation of the RF model in this study is based on the “Random Forest Regressor”
algorithm provided by the “Scikit-learn” package for the Python language. In this study,
different remote-sensing-based estimation models were constructed by the RF. The com-
ponents of each model are BIM: spectral features, VIM: vegetation indices, TIM: optical

117



Forests 2024, 15, 2134

texture features, S-2M: selected optical remote sensing factors, and S-1/2M: SAR texture
features and selected optical factors (Table 4).

Table 4. Factors of different remote-sensing-based estimation models.

Model Remote Sensing Factors

BIM: Band Information Model B2, B3, B5
VIM: Vegetation Index Model DVI, EVI, MSAVI2, S2REP

TIM: Texture Information Model R5B5VAR, R5B6CON, R5B6VAR,
R5B7CON, R5DVICON

S-2M: Sentinel-2 Factor Model B5, S2REP, R5B5VAR, R5B6CON, R5B6VAR,
R5B7CON, R5DVICON

S-1/2M: Sentinel-1/2 Factor Model B5, S2REP, R5B5VAR, R5B6CON, R5B6VAR,
R5B7CON, R5DVICON, R5VVME, R5VHCOR

2.4. Accuracy Evaluation

Seventy percent (42 groups) of the plots were randomly selected for model fitting, and
the remaining thirty percent (18 groups) were used for validation [58]. Cross-validation
was performed during the modeling. The evaluation indices of the estimation model are
the coefficient of determination (R2), root-mean-square error (RMSE), relative root-mean-
square error (rRMSE), and prediction accuracy (P). To ensure that the model results were
as objective as possible, each model was fitted ten times in this study to allow the mean
values of evaluation indicators to be used for comparison [59]. The formulas are as follows:

R2 =
∑n

i=1(ŷi − y)2

∑n
i=1(yi − y)2 (3)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(4)

rRMSE =
RMSE

y
× 100% (5)

P =
1
n

n

∑
i=1

(
1 −
∣∣∣∣yi − ŷi

ŷi

∣∣∣∣
)
× 100% (6)

where yi is the observed value, ŷi is the predicted value, y is the mean of the observed
values, and n represents the plot number.

2.5. The Analysis of Uncertainty at the Plot Scale
2.5.1. Calculation of the Measurement Uncertainty

The observed values of diameter at breast height and tree height were denoted as D
and H, their errors from the normal distribution were denoted as εD, εH , and their standard
deviations of error were σD, σH . The observed carbon stock model is C = f (E, a), E is the
independent variable (DBH, H), and α denotes the parameters of the model. According to
Taylor’s first-order expansion principle, the error of the monocarbon stock model is:

Cbia ≈ f (e)− f (E) ≈ f ′(E)(e − E) (7)

where f ′(E) = ∂ f (E,α)
∂E1

is the partial derivative of the function f (x) concerning the variable
E1. The variance matrix of the prediction error for the model can be expressed as:

σ2
Cbia

≈ G
(

f ′(E)·(e − E)
)2

= f ′(E)Vare−E f ′(E)T (8)
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where Varen−En is the covariance matrix of en − En. If the error between the independent
variables is uncorrelated, there is:

Varn =

⎡
⎢⎢⎢⎣

Var(e1 − E1) 0 . . . 0
0 Var(e2 − E2) . . . 0
...
0

...
. . .

. . .
0

...
Var(en − En)

⎤
⎥⎥⎥⎦ (9)

For the f (E, a), there are two types of models: unary and binary models. In order to
maintain the consistency of the carbon stock model, the form of f (E, a) used in this article
was a binary model ( f (E, a) = aDαHβ × fc), and according to the above equation:

σ2
Cbia

= f ′(E)Var f (E) =
(

∂C
∂D

∂C
∂H

)( σ2
D σDH

σDH σ2
H

)( ∂C
∂D
∂C
∂H

)
(10)

= C2
(

α2 σ2
D

D2 + β2 σ2
H

H2 + 2αβ
σ2

DH
DH

)
(11)

where σ2
D is the variance of error in DBH, σ2

H is the variance of error in H, and σ2
DH is the

covariance of σD and σH . α and β are the parameters of the monocarbon stock model.
The grouping method [34] was used to calculate σ2

D: (1) the mean values of the observed
DBH were ranked in ascending order; (2) the observed DBH were grouped on the basis
of 10 trees by groups; (3) the mean values of DBH in each group as well as the standard
deviations between measurements; (4) the measurement error in DBH was calculated by
fitting a linear model between standard deviations of the measurement error and DBH. The
formulas are as follows:

DI =
1
n∑n

j=1 Dj (12)

Di f D = D1 − D2 (13)

σD =
1
n

√
∑n

j=1

(
Di f D,J − Di f D,j

)2
(14)

where DI is the mean value of DBH in each group, Dj is the mean value of the jth sample
tree in each group, Di f D is the difference between D1 and D2, σD is the standard deviation
of the difference in each group of data, and the square is σ2

D in Equation (11). Di f D,j is the
mean value of Di f D,J in each group. The linear model can be fitted by the relationship
between the DI and the corresponding σD in each group. The expression is given below:

σD = a + bDI (15)

Since tree height can only be measured by the altimeter, the difference between the
measured values and the true values is large in several cases. The average value of multiple
measurements is still far from the true value [60]. Therefore, the absolute error between
the measured value and the true value is used as σH , and the curve is fitted to estimate the
error of the single tree height. The expression is as follows:

σH = aH2 + bH + c (16)

where σH is the error of tree height, H is measured value of tree height, and a, b, c are the
parameters of the model. σ2

DH can be calculated by σD and σH . The σ2
DH can be expressed

by the following equation:

σ2
DH =

∑
(

Di − D
)(

Hi − H
)

N − 1
(17)
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where σ2
DH is the covariance of σD and σH , Di is the ith measured value of DBH, D is

mean value of DBH, Hi is the ith measured value of H, H is mean value of H, and N
is dimensionality.

2.5.2. Calculation of the Monocarbon Stock Model Uncertainty

(1) Residual Uncertainty of the Monocarbon Stock Model

To calculate the residual uncertainty of the monocarbon stock model, we used the
observed data of Pinus densata carbon stock to fit the monocarbon stock model. Then,
the uncertainty caused by residual variation was calculated by the difference between
the predicted and observed values. Let the observed value of carbon stock be C and the
prediction model of carbon stock be C′ = f (E, α̂), the residual ε can be expressed by the
following equation:

ε = f (E, α̂)− C (18)

where ε denotes the difference between the observed and predicted values, α̂ is the predicted
value of the parameter in the carbon stock model, and E is the variable of the model
(DBH, H).

The standard deviation of the residual can be used to measure the uncertainty caused
by the variation of the model residual. It was found that the standard deviation of the
residual was linearly related to the AGC [35]. Therefore, the standard deviation can be
calculated by fitting a linear relationship between the standard deviation and carbon stock.
The equation is as follows:

σε = β f (E, â) (19)

where σε is the standard deviation of residual, and β is the fitting parameter. The six-step
approach [61] was used to calculate the σε. The steps are as follows: (1) Rank the observed
carbon stock values (y) of the plots in ascending order. (2) Calculate the residuals of model
(Cε), which are the difference between the observed and predicted values. (3) Divide the
modeling data into groups of N, with a total of 10 groups; if the last group is less than N,
the remaining data are counted in the previous group. (4) Calculate the mean values of the
predicted carbon stock (ŷ) and the standard deviations of residual (σε) in each group. The
mean value, residual, and standard deviation of the residual were calculated as follows:

ŷ =
1
n

n

∑
j=1

ŷj (20)

Cε = y − ŷ (21)

σε =
1

n − 1

√√√√ n

∑
j=1

(
Cε j − Cε j

)2
(22)

where ŷj denotes the predicted value of carbon stock in the jth plot, Cε j and Cε j denote the
residual and the residual mean value of the jth plot, and n denotes the number of samples.

(5) Fit the predicted mean value ŷ and standard deviation of residual σε, the relation-
ship can be expressed as:

σε = θ
(
ŷ
)

(23)

(6) Substitute the predicted values of carbon stock into the fitted formula. Calculate
the standard deviations of the residual for each plot. Then, divide them by the sum of the
observed carbon stock values to obtain the model residual’s uncertainty.

(2) Parameter Uncertainty of the Monocarbon Stock Model
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The Taylor series first-order expansion was used to measure the uncertainty of model
parameters. The AGC model was first-order-expanded by a Taylor series as follows:

C′ = f (E, â) ≈ f (E, a) +
∂ f (E, α̂)

∂aj

(α̂ − α) (24)

where f (E, α) are the observed values of carbon stock, E are the independent variables,
α̂ is the simulated value of parameter, α denotes the true value of parameter, ∂ f (E,α)

∂αj is

the partial derivative of model parameter αj,
∂ f (E,α)

∂αj (α̂ − α) is the error (σγ) of the model
parameters. σγ can be approximated as:

σ2
γ ≈ Zjkvar(a)ZT

jk (25)

where Zjk denotes the matrix with Z as j × k, ZT
jk is the transpose matrix of Zjk, and var(α)

is the covariance matrix of estimated parameter α in the carbon stock equation.

2.5.3. Uncertainty Synthesis

If the indirectly measured quantity is a function of the individual measurements ob-
tained from the direct measurements. Then, the uncertainty of the indirect measurement can
be expressed as a synthetic uncertainty of the uncertainty of each direct measurement [62].
Therefore, the total error (MZ) can be described as:

MZ =
√

M2
j1
+ M2

j2
+ M2

j3
+ ... + M2

ji
(26)

where MZ denotes the total error, and Mji denotes the error of the ith variable. Based on
this equation, the total uncertainty (σt) was calculated as [35]:

σt =
√

σ2
ε + σ2

γ+σ2
c (27)

where σε denotes the residual uncertainty of the monocarbon stock model, σγ denotes the
uncertainty of model parameters, and σc indicates the measurement uncertainty. The error
transfer from the monocarbon stock model to the plot scale uncertainty (σp) was calculated
as follows:

σp =
√

∑N
i=1 σ2

ti/S (28)

where N is the number of sample wood, σti is the total uncertainty of the monocarbon stock
model for the ith plot wood plant in the plot, and S is the area of the plot.

2.6. Uncertainty Analysis of Remote-Sensing-Based Estimation Models
2.6.1. The Uncertainty of Model Residual

We also used the six-step approach [61] to calculate the residual uncertainty in remote-
sensing-based estimation models; the detailed steps and formulas are shown in the six-step
approach Section 2.5.2, Point 1. Finally, the uncertainty of the remote sensing model (σR)
can be expressed as:

σR = ∑n
i=1 σε′/yt (29)

where ∑n
i=1 σε′ is the sum of the standard deviation of the residuals in all plots, and yt is

the sum of the measured AGC.

2.6.2. Calculation of the Total Uncertainty in Carbon Stock Estimation

The total uncertainty (σ) of the AGC estimation in Pinus densata was calculated
as follows:

σ =
√

σ2
p + σ2

R (30)
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where σp is the uncertainty at the plot scale; and σR is the uncertainty of the remote
sensing model.

3. Results and Analysis

3.1. Comparison of Accuracy for Estimation Models

Figures 3 and 4 show the scatter plots of the prediction accuracy, the distribution of R2,
and the RMSE values for different models. It showed that the BIM has the lowest accuracy
with a R2 of 0.551, RMSE of 23.049 t/ha, and rRMSE of 45.158% (Figure 3a). The prediction
accuracies of the models were all improved after we gradually introduced different remote
sensing factors during the modeling. Since the optical imagery is prone to saturation in
areas with high aboveground biomass (and, therefore, AGC), it is at a disadvantage for
estimating stands with high values. Therefore, after introducing Sentinel-1 SAR data based
on the S-2M, the model has the highest prediction accuracy with R2 of 0.872, RMSE of
10.821 t/ha, and rRMSE of 21.201%. Sentinel-1 SAR data can overcome the shortcomings of
the optical data to a certain extent according to the results, which have an important role in
improving the estimation accuracy [29]. The above results can be more intuitively shown
in Figure 4. R2 of the models gradually increases, and the RMSE gradually decreases with
the introduction of different remote sensing factors; the model with joint Sentinel-1 SAR
and Sentinel-2 optical data has the largest R2 and the smallest RMSE. This provides some
references for improving the accuracy of carbon stock estimation and the rational selection
of variables.

Figure 3. (a) Scatterplot based on the band information for modeling; (b) scatterplot based on
the vegetation index for modeling; (c) scatterplot based on the texture information for modeling;
(d) scatterplot based on the Sentinel-2 factor for modeling; and (e) scatterplot based on the Sentinel-
1/2 factor for modeling.
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Figure 4. (a) The distribution of R2 values for different models and (b) the distribution of RMSE
values for different models.

3.2. Uncertainty at the Plot Scale
3.2.1. The Uncertainty of Measurement

Scatter plots of the measurement error of DBH can be obtained by Equations (12) and (14)
(Figure 5a). It showed that the measurement error of DBH increases with the increase in DBH,
which is basically a linear relationship. The error model of DBH was σD = 0.1913D − 0.4964,
R2 = 0.665. Then, the true values of DBH were substituted into the fitted model to obtain
the error of DBH. For the measurement error of H, we can calculate by fitting a model
through the relationship between the H and the measurement error of H. As shown in
Figure 5b, similar to the measurement error of DBH, the error of H is also positively
correlated with the H. Based on the research finding of previous scholars [60], its error
form can be expressed as σH = 0.0095H2 − 0.075H + 1.3359, R2 = 0.265. After obtaining
the error of H, σ2

DH was calculated according to Equation (17), which is 0.70. Finally, the
measurement uncertainty was calculated by Equation (11). The calculation showed that
for the binary carbon stock model, the uncertainty in carbon stock estimation due to the
measurement error was 3.02%.

Figure 5. (a) Relationship between DBH and standard deviation of measurement error and (b) rela-
tionship between H and measurement error.
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3.2.2. Uncertainty in the Monocarbon Stock Model

(1) Residual Uncertainty

Figure 6a shows the three-dimensional scatter plot of the binary carbon stock model for
Pinus densata; since the model parameters were closely related to the number of modeling
samples, different modeling samples fitted different model parameters [63]. For example,
Zhao [64] established the biomass model based on 31,068 sample trees, and the model
equation was W = 0.052D1.988H0.591. Qin et al. [35] established the biomass model based
on 52 sample trees: the model was W = 0.086D1.979H0.419. However, the model developed
in this paper based on the measured data was C = 0.101D1.859H0.635 × fc, and the R2

of the model was 0.984. According to the relevant study [47], the error margin of the
carbon content factor for Pinus densata was ±1.19%. With the six-step method, we simply
calculated the mean values of the predicted carbon stock and the standard deviations of
the residual in each group, and then, we fitted a linear equation with the mean values as
the independent variable and the standard deviations of the residual as the dependent
variable. Figure 6b shows the scatter plot of the error equation for the monocarbon stock
model [65], from which it can be seen that the standard deviations of residual increased
with the increase in the predicted values of carbon stock. The error equation of the binary
carbon stock model was y = 0.0613x − 0.369 and R2 = 0.944, which has an excellent fitting
effect. The predicted values of carbon stock were then substituted into the error equation to
calculate the total error value. Finally, the residual uncertainty for the model was obtained
by dividing the total error value by the total observed value of carbon stock, giving 5.96%.

Figure 6. (a) Three-dimensional scatterplot of the binary carbon stock model for Pinus densata and
(b) line plot of errors and accuracy for the model.

(2) Parameter Uncertainty

For the parameter uncertainty of the binary carbon stock model, we first processed
the carbon stock model using Taylor’s first-order expansion based on the research methods
of existing scholars [35,37,65]. Then, we need to obtain the variance–covariance matrix of
the model parameters (a = 0.101, b = 1.859, c = 0.635), and the uncertainty of the model
parameters was calculated by bring it into the Equation (25). By calculating, we can
know that the parameters variance–covariance matrix of the binary carbon stock model

is

⎛
⎝ 0.00000075 −0.00003400 0.00009900
−0.00003400 0.01100000 −0.01100000
0.00009900 −0.01100000 0.04100000

⎞
⎠, which substituted into Equation (25) to

conclude that the value of parameter uncertainty is 6.86%. Synthesizing the two uncertain-
ties, the total uncertainty of the binary carbon stock model was 9.09%.
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3.2.3. Total Uncertainty at the Plot Scale

The total uncertainty was 9.58% by synthesizing the measurement uncertainty and
the uncertainty of the monocarbon stock model through the Equation (27). When the
uncertainty of the monocarbon stock model was superimposed on the plot scale, we used
the Equation (28) to calculate the uncertainty of the plot scale, which was 3.71%. Table 5
shows the various sources of uncertainty in carbon stock estimation at the plot scale.

Table 5. Results of each uncertainty source at the plot scale.

Model Form
Measurement

Error/%

Error of Monocarbon Stock Model/%
Total

Uncertainty/%
Plot Scale

Uncertainty/%
Parameter

Error/%
Residual Variation

Error/%
6.86 5.96

C = 0.101D1.859H0.635 × fc 3.02 9.09 9.58 3.71

3.3. The Uncertainty of Remote-Sensing-Based Estimation Models

Figures 7–9 illustrate each model’s error equations, error value of plots, and uncertain-
ties. The uncertainties of BIM, VIM, TIM, S-2M, and S-1/2M are 21.98%, 13.63%, 12.01%,
10.14%, and 7.57% by substituting the average values of carbon stock into error equations
of each model (Figure 9). Through the Figure 7, the width of the confidence ellipse for each
model can reflect the magnitude of the model’s R2 to a certain extent, R2 gradually increases
as the ellipse becomes narrower. To more intuitively reflect the difference between the
predicted values and the measured values for each model, we compared the observed value
and the corresponding predicted value of 60 field plots (Figure 8). BIM, VIM, and TIM
exhibit the phenomenon of the overestimation of low values and the underestimation of
high values, and the maximum absolute errors of three models are 61.14 t/ha, 41.847 t/ha,
and 36.047 t/ha, which suggests that single-factor models have large relatively errors in
estimating AGC. Then, we filtered the three types of remote sensing factors to establish
S-2M. As we can see, the error curve of this model is significantly lower compared to the
previous three models, and its error value is also reduced (Figure 8b), as well as the absolute
value of its maximum error being 28.477 t/ha. This indicates that the joint use of different
types of remote sensing factors is necessary and makes up for the disadvantage of single-
factor modeling, which plays an important role in reducing uncertainty [66]. However,
optical data suffer from light saturation, which impacts the accurate estimation of AGC [67].
Therefore, we added SAR data to S-2M in the following experiments to further explore the
potential of SAR data in reducing uncertainty. The trend of the error curve of the model
after adding SAR data is further slowed down, and its error is also reduced compared to
S-2M (Figure 8b); the maximum absolute value of the error is 19.808 t/ha, and most of the
absolute values of the error are below 10 t/ha, which indicates that the predicted values are
close to the measured values. The comparative analysis of the errors for different models
shows that the single-factor model has the largest error. In order to effectively reduce
errors in the estimation process, it is necessary to combine different factors for estimating
AGC. We also found that SAR data play an important role in reducing errors compared to
optical data.

3.4. Total Uncertainty in Carbon Stock Estimation

The total uncertainty of AGC estimation for Pinus densata is shown in Table 6. After
synthesizing the uncertainties of the plot scale and estimation models by Equation (30), the
total uncertainty of BIM, VIM, TIM, S-2M, and S-1/2M was 22.29%, 14.12%, 12.56%, 10.79%,
and 8.43%. The BIM has the highest uncertainty, while S-1/2M with the introduction of
Sentinel-1 SAR data has the lowest uncertainty compared to the S-2M. Thus, SAR data
have some advantages in reducing the uncertainty of the AGC estimation.
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Figure 7. (a) Error equations for the BIM, VIM, and TIM and (b) error equations for the S-2M and
S-1/2M.

Figure 8. (a) Difference in each field plot for BIM, VIM, and TIM and (b) difference in each field plot
for the S-2M and S-1/2M.

Table 6. Total uncertainty of AGC estimation of Pinus densata based on Sentinel-1/2 data.

Model

Uncertainty at the Plot Scale/%
Uncertainty of Remote

Sensing Estimation Models/%
Total Uncertainty/%

Measurement Error/%
Error of the MonoCarbon

Stock Model/%
3.02 9.09

BIM

3.71

21.98 22.29
VIM 13.63 14.12
TIM 12.01 12.56
S-2M 10.14 10.79

S-1/2M 7.57 8.43

126



Forests 2024, 15, 2134

Figure 9. Uncertainty of different remote-sensing-based models.

4. Discussion

4.1. Analysis of the Uncertainty at the Plot Scale

Although many studies have been conducted on forest carbon stock estimation, there
is still a great deal of uncertainty in the current estimation process. In this study, the uncer-
tainties of measurement and residual variation and parameters error of the monocarbon
stock model were calculated by error equations. The uncertainties in the measurement and
the monocarbon stock model were then combined to obtain the uncertainty of the plot scale.
It was found that the error of the monocarbon stock model is the most significant source
of uncertainty among the uncertainties at the plot scale. Even though the measurement
uncertainty is so small that its contribution to the total uncertainty is practically negligible,
we identified a small systematic effect that should be considered. This error may have a
greater impact if we use different personnel or equipment to collect the field data [68–70].
The error of the monocarbon stock model mainly originated from parameter variation,
and the residual uncertainty was relatively low, which is consistent with the results of
Huang et al. [37]. However, the parameter error of the model was higher than those of
Chen et al. [71] and Wang et al. [65]. The reason is that Chen et al. [71] used 4004 plot trees
for modeling, which is much higher than the number of plot trees in this study. When the
number of plot trees is large enough, the uncertainty due to the model parameters can
converge to zero. Wang et al. [65] used grouping combined with the Monte Carlo method
to measure the errors of unitary and binary biomass models. This method can effectively
reduce the variability of parameter covariance matrices. In this paper, we only calculated
the parameter uncertainty and residual uncertainty of the binary model; the uncertainty of
the unitary carbon stock model needs to be further investigated in the future.

4.2. Influence of Plot Size and Forest Stand Factors on AGC Estimation and Uncertainty

The plot size used in this study is 10 m × 10 m to keep up with the spatial resolu-
tion of remote sensing images. Although several studies have shown that uncertainty
decreases when the plot size increases [72,73], we need to consider the available space and
representative sampling, etc., during the selection of plots. Enough plots were needed to
arrange in the limited space to meet the need of the modeling because of the limitation of
the study area, which can ensure the representativeness and accuracy of the Pinus densata
samples. Even though estimation accuracy and uncertainty can be affected by small-scale
plots, we can effectively improve this condition by increasing the number of plots and
modeling samples [74]. Secondly, representative sampling is one of the important reasons
why we chose small-scale plots. The difference in vegetation density and age structure also
affects the estimation of AGC due to the heterogeneity of the distribution of Pinus densata
in the study area. Therefore, setting more small-scale plots on this basis gives a better
analysis of the factors affecting the accuracy of AGC estimation, thus improving accuracy
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and reducing uncertainty. Canopy density and the average age of the forest stand factors
are also important factors that affect the accuracy and uncertainty of AGC estimation [75].
A previous study has shown that with the gradual increase in stand age, the forest carbon
stock also presents a trend of increase [76]. Still, the growth rate decreases slowly with the
maturity of the forest stand and tends to balance in the later stage of development [77].
Canopy density is also an important factor affecting the change in AGC and can determine
forest structure and vegetation growth to a large extent [78]. An increased canopy opening
increased the potential of height growth, thereby increasing the AGC. Therefore, we should
consider these two factors to analyze their specific effects on the change and uncertainty of
AGC in the subsequent research.

4.3. Uncertainty of Different Remote Sensing Models

In this paper, we established different remote sensing models based on Sentinel-1/2
images. Data saturation in the optical data is a key issue limiting AGC estimation accuracy,
especially in dense forests with high AGB (AGC) [79]. The reason is that optical data
provide only spectral and horizontal spatial characteristics [80], limiting the effectiveness
of spectral reflectance and vegetation indices for estimating high biomass or carbon stock.
This is also confirmed by the high uncertainty of BIM and VIM in this study. To alleviate
the effect of optical data saturation on the uncertainty of carbon stock estimation, we
introduced Sentinel-1 SAR data on the basis of optical data. SAR can better obtain the
vertical structure parameters of forest vegetation because of its strong penetration ability to
the forest canopy and sensitivity to water content [81]. Furthermore, the combination of
optical and SAR data has been proven to reduce the saturation in AGC estimation [21,82].
For example, David et al. [43] combined Sentinel-1 SAR and Sentinel-2 optical data to
estimate dryland AGB, and this combination produced the best fitting effect. In addition,
it was also found that the bands had different influences on the estimation effect, and the
addition of SAR and optical red-edge bands (B5) significantly reduced the saturation effect.
Therefore, we should try different bands and their combinations to explore their potential
in reducing the saturation effects and uncertainty in the following experiments.

4.4. Limitations and Future Research

Firstly, since the study area of this paper covers only one county, and Pinus densata
is a single layer of pure forest [83], this conclusion will be altered if compared to the
different types of forest structure, tree species, etc., in other regions. Consequently, the
applicability of this study’s method in multilayered stands or forests of different ages
with complex structures needs to be further explored. Secondly, the uncertainty in this
paper is only related to the plot scale and remote-sensing-based estimation model. Still,
during the total process of data collection, processing, model building, and carbon stock
estimation, it inevitably generates various sources of error due to the differences in the
measurement, data processing and calculation, model building methods, and methods of
carbon estimation. Therefore, we need to consider the effects of climate, light saturation,
topography, error transmission, and the forest carbon cycle on the estimation of carbon
stock. Finally, allometric growth equation may lead to uncertainty in the estimation of
carbon stock. We attempted to improve the estimation accuracy by using an allometric
growth equation for each tree species in the study area. However, some uncertain factors,
such as tree density, soil texture, and climatic conditions, can affect the growth of H and
DBH, thereby affecting the calculation of carbon stock. In the future, researchers should
consider how precipitation, soil, and climate affect the growth of DBH and H and the
calculation of carbon stock. Taking these factors into account will improve the accuracy
and reduce the uncertainty in the process of carbon stock estimation.

5. Conclusions

In this study, random forest was used to establish different remote-sensing-based
estimation models based on Sentinel-1/2 images and field data. The uncertainties resulted
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from the plot scale, and different estimation models were calculated using error equations.
We then analyzed the impact of uncertainty at different scales on carbon stock estimation.
(1) Different remote sensing factors have certain effects on the carbon stock estimation
and the uncertainty of the model. In particular, the BIM has the lowest accuracy; the
introduction of vegetation and texture factors improves the accuracy of the model, while
S-1/2M combining optical and SAR data has the lowest uncertainty. (2) The error of the
monocarbon stock model is the main uncertainty at the plot scale, which is 9.09%. The
uncertainty at the plot scale is 3.71%, which is lower than the uncertainty of all remote-
sensing-based estimation models. Therefore, the uncertainty of the estimation model is
the primary source of uncertainty in the process of carbon stock estimation compared to
the uncertainty at the plot scale. (3) The R2 of S-1/2M combining optical and SAR data
was improved by 0.046, and the uncertainty was reduced by 2.36% compared to the S-2M.
Adding SAR data to the optical data can effectively reduce the uncertainty in the estimation
process. This study analyses the effect of different factors on AGC estimation and evaluates
the uncertainty of plot scale quantitatively, which provides references for reducing the
uncertainty in the process of carbon stock estimation.
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Abstract: The ecotone zone, located between the Cerrado and Amazon biomes, has been under
intensive anthropogenic pressures due to the expansion of commodity agriculture and extensive
cattle ranching. This has led to habitat loss, reducing biodiversity, depleting biomass, and increasing
CO2 emissions. In this study, we employed an artificial neural network, field data, and remote sensing
techniques to develop a model for estimating biomass in the remaining native vegetation within an
18,864 km2 ecotone region between the Amazon and Cerrado biomes in the state of Mato Grosso,
Brazil. We utilized field data from a plant ecology laboratory and vegetation indices from Sentinel-2
satellite imagery and trained artificial neural networks to estimate aboveground biomass (AGB) in
the study area. The optimal network was chosen based on graphical analysis, mean estimation errors,
and correlation coefficients. We validated our chosen network using both a Student’s t-test and the
aggregated difference. Our results using an artificial neural network, in combination with vegetation
indices such as AFRI (Aerosol Free Vegetation Index), EVI (Enhanced Vegetation Index), and GNDVI
(Green Normalized Difference Vegetation Index), which show an accurate estimation of aboveground
forest biomass (Root Mean Square Error (RMSE) of 15.92%), can bolster efforts to assess biomass
and carbon stocks. Our study results can support the definition of environmental conservation
priorities and help set parameters for payment for ecosystem services in environmentally sensitive
tropical regions.

Keywords: biomass estimation; Amazon/Cerrado ecotone; remote sensing; artificial neural network;
Google Earth Engine

1. Introduction

Brazilian biomes are recognized for their high biodiversity, with over 33,000 plant
species, constituting a staggering 26.5% of all known species on Earth [1]. More specifically,
the Amazonia/Cerrado ecotone is a unique transitional ecoregion covering more than
4000 km across the ecotone between the two greatest biomes of South America [2]. The
region is dominated by a highly seasonal climate and a wide diversity of vegetation
types. These vegetation types range from open savannas, which receive abundant solar
radiation, to dense forest formations with denser canopy and higher air humidity and soil
moisture levels.

Beyond its rich vegetation, this region of high ecological and biological significance
harbors a large array of species. However, this biodiversity faces threats as pastures and
crops expand into this ecotone, leading to massive deforestation [3,4]. The consequence
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is a notable decrease in the native vegetation and biomass stock [5] due to the increasing
deforestation rates in the Amazon and Cerrado biomes [6], a situation often worsened by
forest fires [6,7].

Forest biomass is a critical factor in assessing the carbon sequestration and carbon
balance capabilities of these ecosystems [8,9]. Accurately estimating aboveground biomass
(AGB) is crucial to understanding the carbon cycle and its effects on climate changes and on
terrestrial ecosystems and biodiversity [8–11], especially in tropical regions where reliable
data are lacking [8,9].

Biomass estimation using remote sensing data has been widely applied at global,
regional, and local scales. It has substantially improved in recent years [12], replacing
conventional AGB estimation approaches. It enables temporal analysis of the environment
and land cover [12] and, in the case of land use changes, contributes significantly to
detecting, quantifying, and understanding vegetation behavior over time [13].

Several approaches have been developed and applied to accurately estimate carbon
biomass. The authors of [14] accurately estimated aboveground biomass and stand volume
in Hinton, the USA, by applying a methodological approach based on the relationship of
forest structure attributes acquired in the field and Landsat ETM+ imagery. The authors
of [15] successfully quantified live aboveground forest biomass in the states of Arizona
and Minnesota using Landsat imagery and forest inventory data. The authors of [16]
assessed Landsat 8 imagery to estimate aboveground biomass in the Umgeni catchment,
South Africa. The authors of [17] applied boosted regression tree models, field data, and
Sentinel-2 and Synthetic Aperture Radar (SAR) combined imagery acquired on different
dates and were able to estimate aboveground biomass and forest cover.

Studies carried out by [18] combined vegetation indices retrieved from a Vegetation
Sensor onboard the SPOT-4 satellite and Moderate Resolution Imaging Spectroradiometer
(MODIS) and climate data to estimate primary production in Harvard Forest, Petersham,
MA, the USA. The study by [19] observed a strong positive correlation between vegetation
indices and biomass. Another study by [20] successfully estimated forest aboveground
biomass (AGB) by combining Landsat and MODIS imagery.

New technologies based on machine learning and artificial intelligence have improved
even more modeling approaches to predict biomass worldwide. Empirical modeling using
deep learning algorithms has achieved highly accurate results in estimating AGB based on
field sampling distributions with no assumptions. For example, [21] developed Sentinel-2
imagery and a machine learning model to estimate biomass in northern Anhui, China.
Similarly, ref. [22] applied radar and optical imagery and a deep learning-based approach
to estimate forest biomass in Tibet, China. The authors of Ref. [23] successfully combined an
Artificial Neural Network (ANN) with vegetation indices retrieved from Landsat imagery
to predict aboveground biomass for a study site in the Amazon region. However, they are
more difficult to interpret and require accurate field data as the model input [24].

In this study, we developed and applied a model to estimate aboveground biomass
in an Amazonia/Cerrado transition zone in the state of Mato Grosso, Brazil, using field
data, remote sensing, and Artificial Neural Networks (ANNs). Our goal was to accurately
estimate AGB using medium spatial resolution and freely available remotely sensed data
(Sentinel-2 imagery) with an ANN, a method not previously applied to this large ecotone
region. These study results are significant as they can facilitate further analyses of deforesta-
tion and forest fire impacts in this tropical region, which have profoundly affected forest
structure by reducing tree cover and increasing herbaceous species. These herbaceous
plants are more susceptible to water stress, making the region prone to recurrent and
intense fire events [25].

Our model showed promising results for estimating and monitoring aboveground
biomass and can play a pivotal role in supporting the implementation of payments for
ecosystem services. This represents a technological advance in environmental preservation
and conservation research, particularly in transitional zones that lack information on
biomass stocks. From a critical perspective, conserving biomass in this study area, which is
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near Brazil’s largest indigenous territory (Xingu Indigenous Land), may have significant
and positive impacts on the well-being and sustainable existence of traditional populations
in their territories [26].

2. Materials and Methods

2.1. Regional Setting

Our study area encompassed a total of 18,863.6 Km2 located in the Ecotone region
between the Amazon and Cerrado biomes in Brazil. We selected permanent long-term mea-
surement plots established and monitored by the Plant Ecology Laboratory of Mato Grosso
State University (LABEV-UNEMAT) in the study region (Campus of Nova Xavantina, State
of Mato Grosso, Brazil). The sample plots are in the municipalities of Gaúcha do Norte,
Querência, and Ribeirão Cascalheira, state of Mato Grosso.

Field measurements were conducted in 12 sample plots, each measuring 100 m × 100 m
and subdivided into 60 subplots of 100 m × 20 m (Figure 1). These measurements were
carried out during the dry season (July to October) in 2014, 2018, 2020, and 2021. We
selected this study area due to its environmental sensitivity and socioeconomic character-
istics, as it is situated in the transition zone between the Cerrado and Amazonia biomes.
The area is particularly notable for its proximity to indigenous lands and the significant
deforestation activities reported in recent decades, especially in the region known as the
“Arc of Deforestation” of the Brazilian Amazon [2].

 
Figure 1. The study area is located within the ecotone zone of the Amazonia and Cerrado biomes
in the state of Mato Grosso, Brazil. Field measurements were conducted in 12 sample plots, each
measuring 10,000 m² and subdivided into 60 subplots of 2000 m2 each, in the years 2014, 2018, 2020,
and 2021. The year of sampling is indicated in black above each sample plot in the study area.

The study region features diverse soil types with distinct characteristics. These soils
are characterized by low nutrient availability and elevated levels of aluminum toxicity. In
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the interfluvial areas, medium-textured red-yellow latosols predominate, creating favorable
conditions for forest establishment. Additionally, these latosols feature patches of anthro-
pogenic soils created by ancient indigenous populations, known locally as ‘terra preta de
índio’ or Amazonian Dark Earth (ADE). ADE is rich in pyrogenic carbon, leading to a
higher concentration of organic matter on the surface and increased pH in deeper layers.
In floodplains, clay-textured fluvic neosols are prevalent, containing higher potassium
content but facing phosphorus restriction, poor drainage, and elevated aluminum and iron
levels [7,27].

The permanent plots of this study are predominantly surrounded by Seasonal Forest
(Fse) and Typical Cerrado (Sd), which are characteristic of the Central-West region of
Brazil [28]. According to the Köppen climate classification, the study region is characterized
by an Aw climate type, which is tropical seasonal [29], with two distinct seasons: a dry
season from May to October and a rainy season from November to April [30]. As described
by [7], the region’s topography varies from flat to gently undulating. It includes plateaus
and plains in the central area, mountains to the east, and residual depressions to the
south [31].

2.2. Dendrometric Variables of the Inventory

The inventories were conducted in 2014 (one plot), 2018 (three plots), 2020 (five plots),
and 2021 (three plots) by collaborators from the Forest Ecology Laboratory at the State
University of Mato Grosso. The objective was to monitor vegetation within permanent
plots across different strata, soil types, climatic zones, and regional groups. Sampling
was randomized, with 12 sampling units, each measuring 100 × 100 m. Each unit was
divided into five transects, resulting in a total of 60 subsamples measuring 100 × 20 m
(Figure 1). There was only one sample unit showing different dimensions, covering an
area of 180 × 60 m with transects measuring 36 × 60 m. We adopted the sampling protocol
proposed by [7] to ensure data reliability.

We collected detailed information on species, families, tree diameters, and heights in
each plot. To estimate basic wood density, we used the ForestPlots.net database, which in-
cludes data on over 2000 neotropical species [32,33]. Aboveground biomass was calculated
using Microsoft Excel 2016, incorporating data on diameter at breast height, total height,
and basic wood density. All data were analyzed following RAINFOR guidelines and the
methodologies outlined by these authors.

Complementarily, we conducted a statistical analysis using field-collected data to
examine variations in dendrometric characteristics within our study area. Descriptive table
analysis allowed us to summarize and describe inventory variables, enabling comparisons
with similar areas and contributing to the scientific understanding of this field.

2.3. Forest Biomass

To effectively develop methods for assessing Aboveground Biomass (AGB), it is crucial
to acquire on-site estimates of this biomass, commonly referred to as “in situ” measure-
ments. The in-situ estimates serve as essential data for the calibration and validation
of algorithms designed to calculate biomass. Additionally, field-collected data provide
valuable information to estimate various tree characteristics, including basal area and the
total aboveground and/or belowground biomass. In our analysis, the forest inventory data
were utilized to predict the aboveground biomass within the transitional area using re-
motely sensed data and an artificial neural network. This prediction considers the equation
proposed by [34] for our field samples located within the Amazon biome:

AGB = 0.0673 ×
(

Wd × Ht × DBH2
)̂

0.976 (1)

where:
AGB = Aboveground Biomass (kg);
Wd = Basic wood density for each tree species (g.cm3);
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Ht = Total height (m);
DBH = Tree diameter at 1.3 m from the ground (cm).
In addition, we calculated AGB for our field samples located within the Cerrado

biome using a specific allometric equation developed for the Cerrado environment [35], as
follows:

AGB = 0.4913 + 0.0291 × DGH2 × Ht (2)

where:
AGB = Aboveground Biomass (kg);
DGH = The diameter of trees at their base (ground), specifically for trees with a

diameter equal to or greater than 5 cm;
Ht = tree height.
The biomass was estimated by applying allometric equations and utilizing tree-specific

variables for each subplot within the sample plots. Subsequently, these values were
normalized per unit area to calculate the results in Tons per hectare (ton·ha−1).

2.4. Sentinel-2 Imagery

We utilized images acquired by the MultiSpectral Instrument (MSI) sensor aboard
the Sentinel-2 satellite, which provided spectral information about vegetation. This sensor
captures the red band, crucial for characterizing vegetation due to the presence of chloro-
phyll in plants [36]. The satellite’s spatial resolution varies according to the spectral bands:
10 m for visible and near-infrared bands, 20 m for red edges and other infrared bands, and
60 m for water vapor and cirrus bands. Sentinel-2 features 13 spectral bands ranging from
0.442 μm to 2.202 μm, with a revisit frequency of every five days [37].

In this analysis, we used a total of five Sentinel-2 scenes acquired from 2016 to 2021, all
during August of each year, to minimize seasonal effects on the remotely sensed products.
All scenes, covering the entire study area, were level 1c orthorectified TOA (Top of Atmo-
sphere) reflectance and were acquired in the same year as the forest inventory data for 2018,
2020, and 2021. The only exception was the image acquired in 2016, which was used to
relate to field data collected in 2014 because there were no Sentinel images available for
that year. Subsequently, we retrieved vegetation indices from the Sentinel-2 images using
the Google Earth Engine (GEE) platform. The Sentinel-2 scenes’ IDs and acquisition dates
are listed in Table 1.

Table 1. Sentinel 2A sensor MSI (Multispectral Instrument) scenes acquired through Google Earth
Engine (GEE) and used for retrieving the vegetation indices applied in this analysis.

ID Sentinel-2A, Sensor MSI Data

20160807T135257_T22LBL 7 August 2016
20180802T135108_T22LCL 2 August 2018
20200801T135115_T22LBL 1 August 2020
20200803T134216_T22LCL 3 August 2020
20210813T134211_T22LDL 13 August 2021

2.5. Vegetation Indices

In this analysis, we included various vegetation indices based on different spectral
band combinations to leverage their potential sensitivity in capturing diverse vegetation
characteristics and enhancing the relationship between vegetation indices and forest AGB.
The indices utilized were NDVI (Normalized Difference Vegetation Index), EVI (Enhanced
Vegetation Index), GNDVI (Green Normalized Difference Vegetation Index), AFRI (Aerosol
Free Vegetation Index), MSAVI (Modified Soil-Adjusted Vegetation Index), NDRE (Nor-
malized Difference Red Edge Index), SAVI (Soil-Adjusted Vegetation Index), and MSAVIaf
(Modified Soil-Adjusted Vegetation Index aerosol free), all described as follows.

Normalized Difference Vegetation Index (NDVI)
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The NDVI, developed by [38], is one of the most widely used vegetation indices. It
relies on the relationship between the difference in reflectance in the near-infrared and red
spectral bands and the sum of the reflectance of these two bands. This index enables the
assessment of the photosynthetic activity of vegetation, with values ranging from −1 to 1.
In contrast, water surfaces or clouds typically exhibit values below 0 [39]. Its definition is
as follows:

NDVI =
ρNIR − ρRed
ρNIR + ρRed

(3)

where ρNIR is the reflectance in the near-infrared spectral band and ρRed is the reflectance
in the red spectral band.

Enhanced Vegetation Index (EVI)

The Enhanced Vegetation Index (EVI), developed by [40], aims to minimize atmo-
spheric effects and improve NDVI sensitivity. It is notable for its sensitivity in analyses of
canopy structural variations and densely forested areas [41]. Its definition is as follows:

EVI = G ∗ (ρNIR − ρRed)
ρNIR + (C1 × ρRed)− (C2 × ρBlue) + L

(4)

where ρNIR is the reflectance in the near-infrared spectral band, ρRed is the reflectance in
the red spectral band, ρBlue is the reflectance in the blue spectral band, G is the gain factor
(default value: 2.5), L is the canopy background adjustment factor (default value: 1.0), and
C1 and C2 are coefficients to correct aerosol effects.

Enhanced Vegetation Index 2 (EVI 2)

The Enhanced Vegetation Index 2 (EVI2), developed by [42], aims to achieve results
similar to its original version (EVI) but using only two spectral bands (excluding the blue
band). It proves particularly useful when utilizing high-quality remote sensing data with
minimal atmospheric effects. Its definition is as follows:

EVI2 = G ∗ (ρNIR − ρRed)
ρNIR + 2.4 × ρRed + 1

(5)

where ρNIR is the reflectance in the near-infrared spectral band, ρRed is the reflectance in
the red spectral band and, G is the gain factor (default value: 2.5).

GNDV (Green Normalized Difference Vegetation Index)

The Green Normalized Difference Vegetation Index (GNDVI), a modification of the
NDVI developed by [43], is used to estimate chlorophyll content in vegetation. This makes
it valuable for distinguishing between senescent vegetation and vegetation experienc-
ing various degrees of water stress. GNDVI replaces the red band with the green band
from NDVI, aiming to mitigate vegetation saturation effects in denser conditions [43]. Its
definition is as follows:

GNDVI =
ρNIR − ρGreen
ρNIR + ρGreen

(6)

where ρNIR is the reflectance in the near-infrared spectral band and ρGreen is the re-
flectance in the green spectral band.

AFRI (Aerosol Free Vegetation Index)

The Aerosol Free Vegetation Index (AFRI) was developed by [44] with the aim of
mitigating the effects of aerosols and atmospheric disturbances on vegetation index calcula-
tions. This index has the capability to penetrate the atmosphere more effectively, providing
accurate information about vegetation and other soil characteristics, even under adverse
conditions such as forest fire situations with the presence of smoke [44]. One of the main
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advantages of AFRI is its resilience to smoke interference in data acquisition, distinguishing
it from other conventional indices [44]. Its definition is as follows:

AFRI =
ρNIR − 0.5ρSWIR
ρNIR + 0.5ρSWIR

(7)

where: ρNIR is the reflectance in the near-infrared spectral band and ρSWIR is the re-
flectance in the shortwave infrared 1 band.

SAVI (Soil-Adjusted Vegetation Index)

The Soil-Adjusted Vegetation Index (SAVI) was developed by [45] with the aim of
minimizing soil interference in canopy spectral measurements. This index allows for
calibration so that variations in soil substrate are normalized in vegetation estimates [45].
Its definition is as follows:

SAVI =
ρNIR − ρRed

ρNIR + ρRed + L
× (1 + L) (8)

where ρNIR is the reflectance in the near-infrared spectral band, ρRed is the reflectance in
the red spectral band, and L is the soil adjustment factor (default value = 0.5).

MSAVI (Modified Soil-Adjusted Vegetation Index)

The Modified Soil-Adjusted Vegetation Index (MSAVI), developed by [46], was de-
signed to enhance its original version, SAVI. Both MSAVI and SAVI utilize soil adjustment
factors [46]. MSAVI proves to be a more effective option in terms of time and resources,
particularly in areas where vegetation density is uncertain or varies significantly [46]. Its
definition is as follows:

MSAVI =
NIR − ρRed

NIR + ρRed + L
× (1 + L) (9)

where ρNIR is the reflectance in the near-infrared spectral band, ρRed is the reflectance in
the red spectral band, and L is the soil adjustment calculated using Equation (10):

L = [(ρNIR − ρRed)× s + 1 + ρNIR + ρRed]2 − 8.0 × s × (ρNIR − ρRed) (10)

where s = 1.2 (slope of the soil line calculated from surface reflectance at non-forested areas).

MSAVIaf (Modified Soil-Adjusted Vegetation Index aerosol free

The MSAVIaf was developed by [12] with the aim of reducing atmospheric effects on
vegetation index estimations. It has been demonstrated to be more sensitive to vegetation
variations than the Aerosol Free Vegetation Index under anomalous atmospheric conditions
in the Amazon region [12]. Its definition is as follows:

MSAVIaf =
ρNIR − 0.5ρSWIR

ρNIR + 0.5ρSWIR + L
× (1 + L) (11)

where ρNIR is the reflectance in the near-infrared spectral band, ρSWIR is the reflectance
in the shortwave infrared spectral band (central wavelength: 1.6137 μm), and L is the soil
adjustment factor, calculated as previously presented (Equation (10)).

NDRE (Normalized Difference Red Edge Index)

The Normalized Difference Red Edge Index (NDRE), developed by [47], was designed
to measure plant physiological parameters, particularly those associated with chlorophyll
content, nitrogen concentration, and canopy structure. It can be applied in identifying and
classifying crops and land covers [48]. Its definition is as follows:
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NDRE =
ρNIR − ρRededge
ρNIR + ρRededge

(12)

where ρNIR is the reflectance in the near-infrared spectral band and ρRededge is the
reflectance in the red edge spectral band (central wavelength: 0.704 μm).

2.6. Correlation Analysis

The evaluation of vegetation indices for predicting biomass in our study area was
performed by analyzing the correlation matrix between the nine indices retrieved from
remotely sensed data and the field-measured biomass. To assess the normality of biomass
and vegetation index datasets, we applied the Shapiro–Wilk test.

2.7. Modeling of the Artificial Neural Network (ANN)

In this study, we employed a Multilayer Perceptron (MLP) type of Artificial Neural
Network (ANN), adjusted and trained using Statistica software (STATSOFT), version 12, to
estimate forest biomass using the field-sampling data of LABEV-UNEMAT. The software
utilizes the Intelligent Problem Solver (IPS) tool to optimize the network architecture,
including the number of layers, neurons, and cycles to achieve more efficient results [49].
Training is conducted using the Broyden–Fletcher–Goldfarb–Shanno quasi-Newton algo-
rithm by IPS for neural network processing, which has been shown to be highly capable
of solving optimization and prediction problems, in addition to being the most popular
quasi-Newton method [50–52].

In this analysis, the input layer of the neural network consisted of both categorical
and numerical variables. The categorical variable pertained to the two types of strata in
the study area: Perennial Seasonal Forest and typical Cerrado. The numerical variables
included the vegetation indices NDVI, EVI, EVI2, GNDV, AFRI, MSAVI, NDRE, SAVI, and
MSAVIaf. The hidden layer comprised ‘n’ neurons, while the output layer consisted of a
single neuron responsible for estimating AGB.

To train the Artificial Neural Networks (ANNs), we selected 40 subsamples, represent-
ing 70% of the total 60 field-demarked subsamples during the inventories. The remaining
20 subsamples were used for result validation and testing. Multilayer Perceptron (MLP)
ANNs calculate the weighted arithmetic mean of these inputs [53], and in this case, were
activated by an exponential function. To assess the performance of the models developed
using ANNs, we considered the parameters of the correlation coefficient (R) and root mean
square error (RMSE). These coefficients have been utilized in other research involving
ANNs to predict solar energy using weather data, as demonstrated by [54].

For the validation of the performance of the best ANNs, we conducted statistical
analyses using Student’s t-tests. To determine whether there was AGB underestimation
or overestimation, we calculated the aggregate difference in percentage terms (AD%).
The Aggregate Difference (AD%) corresponds to the difference between the sum of the
observed values and the sum of the estimated values, in percentage, obtained by the
following expression:

AD% =
∑n

i=i yi − ∑n
1=1 ŷi

∑n
i=1 yi

× 100 (13)

where AD% = Aggregate Difference; yi = observed values; ŷi = estimated values; and
n = number of observations.

The statistical analyses were performed using Microsoft Excel software, Microsoft
Office 365, Version 2408.

3. Results

3.1. Vegetation Inventory

The results in Table 2 show significant differences in the assessed variables, high-
lighting substantial variation in dendrometric characteristics between the Cerrado and the
Amazon plots. Notably, trees in forest plots showed an average aboveground biomass
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approximately eight times higher than those in Cerrado plots. This difference can be
attributed to wider trunks (37% larger in the forest compared to Cerrado) and trees that
were approximately three times taller in the forest. Interestingly, the average wood density
was quite similar in both formations (Amazon and Cerrado) within the study area (Table 2).

Table 2. Dendrometric variables calculated from forest inventory for the areas of the Plant Laboratory
(LABEV) Mato Grosso State University (UNEMAT) plots.

Cerrado Plots Forest Plots

Statistics DBH Ht WD AGB Statistics DBH Ht WD AGB

Minimum 10.0 4.0 0.41 14.35 Minimum 10.0 10.0 0.20 66.56
Maximum 39.0 13.0 0.84 23.49 Maximum 93.2 30.0 1.09 331.38
Mean 13.81 6.64 0.66 18.38 Mean 19.12 13.99 0.67 146.86
Variance 15.38 1.65 0.01 10.97 Variance 105.19 17.5 0.019 2572.76
Deviation 3.92 1.28 0.10 3.31 Deviation 10.25 4.18 0.14 50.72
CV (%) 28.4 19.33 15.43 18.02 CV (%) 53.64 29.9 20.4 34.54

Where DBH = diameter at breast height (cm), Ht = total height (m), WD = average wood density (g·cm3),
AGB = aboveground biomass (Ton·ha−1), and CV (%) = Coefficient of Variation (%).

The biomass measurements in the Forest samples showed themselves to be statistically
consistent, showing an average value of 146.84 t·ha−1. When examining a forest fragment
located on the southern edge of the study area, we observed biomass variability ranging
from 155 to 195 t·ha−1.

3.2. Correlation Analysis of Biomass and Vegetation Indices

In this study, we created a mosaic of the Sentinel-2 images acquired in August 2019 to
retrieve the vegetation indices for the study area (Table 3).

Table 3. Average of the independent variables in the study area. AFRI = Aerosol Free Vegetation Index;
EVI = Enhanced Vegetation Index; GNDVI = Green Normalized Difference Index; EVI2 = Enhanced
Vegetation Index–2; MSAVIaf = Modified Soil-Adjusted Vegetation Index aerosol free;
MSAVI = Modified Soil-Adjusted Vegetation Index; NDVI = Normalized Difference Vegetation
Index; NDRE = Normalized Difference Red Edge Index; SAVI = Soil-Adjusted Vegetation Index.

Vegetation Indices Average

AFRI 0.564
EVI 0.571

GNDVI 0.569
EVI2 0.392

MSAVIaf 0.324
MSAVI 0.545
NDRE 0.515
NDVI 0.697
SAVI 0.408

The Shapiro–Wilk test indicated non-normality of the analyzed variables (vegetation
indices and biomass). We then applied the Spearman correlation matrix, recommended
for non-parametric data analysis. The Spearman correlation results indicated positive and
significant correlations (α < 0.05) among aboveground biomass and all vegetation indices,
as well as among the vegetation indices themselves (Table 4).

141



Forests 2024, 15, 1599

Table 4. Spearman’s correlation matrix was used to analyze the relationship between aboveground
biomass and vegetation indices of the study area.

AFRI EVI EVI2 GNDVI MSAVIaf MSAVI NDRE NDVI SAVI Biomass

AFRI 1
EVI 0.887 ** 1
EVI2 0.875 ** 0.963 ** 1
GNDVI 0.897 ** 0.902 ** 0.951 ** 1
MSAVIaf 0.948 ** 0.963 ** 0.969 ** 0.950 ** 1
MSAVI 0.868 ** 0.975 ** 0.933 ** 0.866 ** 0.942 ** 1
NDRE 0.954 ** 0.853 ** 0.882 ** 0.921 ** 0.922 ** 0.825 ** 1
NDVI 0.972 ** 0.909 ** 0.902 ** 0.907 ** 0.943 ** 0.887 ** 0.971 ** 1
SAVI 0.831 ** 0.853 ** 0.889 ** 0.863 ** 0.907 ** 0.850 ** 0.786 ** 0.820 ** 1
Biomass 0.469 * 0.443 * 0.532 ** 0.621 ** 0.555 ** 0.404 * 0.509 ** 0.466 * 0.594 ** 1

** Significant at α < 0.01; * Significant at α < 0.05. Where: AFRI = Aerosol Free Vegetation Index; EVI = Enhanced
Vegetation Index; GNDVI = Green Normalized Difference Index; MSAVIaf = Modified Soil-Adjusted Vegetation
Index aerosol resistant; MSAVI = Modified Soil-Adjusted Vegetation Index; NDVI = Normalized Difference
Vegetation Index; NDRE = Normalized Difference Red Edge Index; SAVI = Soil-Adjusted Vegetation Index.

Based on the results of the correlation matrix, we subsequently proceeded with a
stepwise regression analysis to select our predictive variables (vegetation indices). The
stepwise technique involves adding or removing independent variables from the model
one at a time, based on specific criteria such as the p-value. This procedure is implemented
automatically to identify a subset of variables that are most relevant for predicting the
dependent variable (in this case, aboveground biomass).

In contrast to the correlation matrix results, this complementary stepwise regression
analysis found that the AFRI, EVI, and GNDVI indices (Figure 2) were the most suitable
(highest statistical significance at α < 0.05) vegetation indices to be used as input neu-
rons for the ANN modeling. It is likely that retrieving vegetation indices from different
spectral band combinations (near-infrared, middle infrared, red, and blue bands) greatly
contributed to increasing their sensitivity and capturing aboveground biomass variation in
the study area.

3.3. Biomass Modeling

After training the artificial neural networks (ANNs) with the most suitable indepen-
dent variables (AFRI, EVI, and GNDVI) indicated by the stepwise regression analysis,
we selected the top five performing ANNs based on correlation coefficients (r) exceeding
0.90 and validation errors less than 16%. The selected ANN showed low variation between
training, selection, and evaluation indices, demonstrating stability during the training pro-
cess [55]. An in-depth analysis of fit and accuracy statistics revealed that Neural Network
1 showed the strongest predictive capability for aboveground biomass, as indicated by the
RMSE% values in Table 5.

Additionally, the results provided by Neural Network 1 indicated a satisfactory
distribution of residuals (Figure 3—B1 training, B2 testing, and B3 validation) and ac-
curate, consistent predictions of aboveground biomass (Figure 3—A1 training, A2 test-
ing, and A3 validation) in the study area. The model showed a good fit, which indi-
cates that it minimized the differences between observed and predicted values without
significant bias.
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Figure 2. Vegetation indices ((A) = Green Normalized Vegetation Index—GNDV; (B) = Enhanced
Vegetation Index—EVI; and (C) = Aerosol Free Vegetation Index—AFRI) retrieved from Sentinel-2
imagery acquired in August 2016, 2018, 2020, and 2021 covering the entire study region.
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Table 5. Accuracy statistics of the selected artificial neural networks (ANNs) for prediction of
aboveground biomass for the LABEV-UNEMAT plots located in the Cerrado/Amazon ecotone.

ANN Architecture
Activation Activation

Adjustment Validation Test

Nº of
Cycles RMSE% R RMSE% R RMSE% R

Hidden Output

1 MLP 3-12-1 860 Tang Tang 18.09 0.93 15.76 0.94 15.92 0.94
2 MLP 3-11-1 1630 Logistic Exponential 19.44 0.92 16.09 0.93 16.18 0.93
3 MLP 3-8-1 910 Logistic Identity 19.77 0.92 16.41 0.93 16.92 0.93
4 MLP 3-13-1 950 Tang Exponential 19.53 0.92 16.62 0.93 16.91 0.93
5 MLP 3-11-1 670 Logistic Identity 20.19 0.91 17.91 0.91 17.12 0.91

ANN Predictor
variables

Neurons per layer Adjust

Input Hidden Output TI SI AI Algorithm

1 AFRI, EVI, GNDVI 3 12 1 0.08 0.08 0.09 BFGS
2 AFRI, EVI, GNDVI 3 9 1 0.10 0.11 0.12 BFGS
3 AFRI, EVI, GNDVI 3 5 1 0.10 0.12 0.13 BFGS
4 AFRI, EVI, GNDVI 3 13 1 0.11 0.13 0.10 BFGS
5 AFRI, EVI, GNDVI 3 7 1 0.13 0.15 0.17 BFGS

ANN = artificial neural network; MLP = Multilayer perceptron; RMSE% = Root Mean Square Error Percentage; R
= correlation between observed and estimated values; TI= Training indices (network definition), SI = Selection
Indices of training stop, AI = Assessment Indices (quality assessment of trained network); BFGS = Broyden–
Fletcher–Goldfarb–Shannon.

The accuracy of aboveground biomass estimates is a crucial indicator of the model’s
effectiveness. The architecture of ANN-1 (Figure 4) comprises three layers: the input layer
with three neurons representing predictor variables (EVI, AFRI, and GNDVI), a hidden
layer of 12 neurons for data processing activated using a tangential function, and an output
layer representing the variable of interest (AGB) activated with a logistic function.

3.4. Statistical Analysis

The Student’s t-test is a statistical tool used to determine whether there is a significant
difference between the means of two independent samples. In this test, we formulate a null
hypothesis (H0) asserting that there is no difference between the means of the two samples,
and an alternative hypothesis (H1) suggesting that there is a significant difference between
them. Following the t-test, we compute a p-value. If the p-value falls below the chosen
significance level (typically 0.05), it indicates statistical evidence to reject the null hypothesis
in favor of the alternative hypothesis. In simpler terms, this means there is a significant
difference between the means of the observed values compared to the estimated values.
Conversely, if the p-value exceeds the significance level, there is not enough evidence to
reject the null hypothesis, indicating no statistically significant difference between the
observed mean values and the estimated values.

The p-value is a statistical measure that aids in interpreting the results of a hypothesis
test in statistics. It indicates the probability of obtaining a result as extreme or more
extreme than the one observed, assuming the null hypothesis is true. The null hypothesis
typically states that there is no effect or difference between the compared groups, while
the alternative hypothesis suggests the opposite. In short, the p-value provides a way to
quantify how much the results support or refute the null hypothesis.

In this analysis, the application of the Student’s t-test revealed that the calculated
p-value for the selected neural network was greater than the established significance level
(α = 0.05), specifically p = 0.952. This indicates that there is insufficient statistical evidence to
reject the null hypothesis, which shows no differences between the observed and predicted
values by the neural network for the validation plots.
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Figure 3. Observed and estimated aboveground biomass in the study area ((A1) = Training;
(A2) = Testing; (A3) = Validation) and distribution of residuals ((B1) = Training; (B2) = Testing;
(B3) = Validation) for Artificial Neural Network 1 (ANN-1).
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Figure 4. Architecture of ANN-1 selected for the prediction of aboveground biomass for the
study area.

Additionally, the Aggregate Difference (AD) analysis indicated a slight tendency to
overestimate the values predicted by the neural network, with a deviation of −0.1637%.
Nevertheless, these results align with the accuracy of the information obtained during the
ANN training process, confirming its proficiency in providing precise estimates for Above-
ground Biomass (AGB). Consequently, these findings suggest that the ANN-generated
estimates are both accurate and dependable for predicting AGB in areas of biome transition.

3.5. Analyzing the Spatial Distribution of Biomass

Based on the results obtained from the training of the neural networks, we were able
to extend our estimates of AGB across the entire area covered by native vegetation in this
study region. Consequently, the total biomass of the study area, considering the land use
and land cover of native vegetation, was estimated at 109,118,121 tons. The most common
AGB values in the study area were in the range of 0 to 50 t·ha−1, followed by the range of
100 to 150 t·ha−1 (Figure 5).
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Figure 5. Spatial distribution of forest biomass is estimated for the Amazon–Cerrado ecotone zone.
Darker areas indicate higher aboveground biomass, while lighter areas indicate lower biomass.

4. Discussion

4.1. Forest Biomass and Land Use and Land Cover

The amount of aboveground biomass (AGB) varies significantly within native forest
formations in the study area, predominantly ranging between 100 and 150 t·ha−1, followed
by classes of 0–50 and 50–100 t·ha−1 occupied by savanna and transitional forest formations.
This variation can be attributed to various factors, including climatic, geological, and soil
conditions, as well as distinct previous vegetation disturbances and land use patterns in
the study region [56].

The use of ANNs (Artificial Neural Networks) proved effective in estimating biomass
per unit area while eliminating the basic assumptions of conventional mathematical model-
ing, such as normality and linearity of forest attributes [57]. These attributes often require
various mathematical transformations for traditional modeling, which can result in a loss
of quality and selection of models, leading to biased estimates of the variable of interest.

One hypothesis explaining this relatively low range of total AGB in the study region
is the impact of anthropogenic activities, particularly agriculture, selective logging, fire,
and livestock farming. These disturbances can increase edge effects and forest degradation,
especially when caused by selective logging activities and forest fires [12,58]. Addressing
this requires the definition and implementation of public policies to enforce sustainable
land use management, conservation of natural ecosystems, environmental law enforcement,
climate awareness, and fire prevention measures [59].

The increase in soybean cultivation over the last few decades has had severe impacts
on natural ecosystems and the natural landscape in the study region. These impacts
may directly lead to decreased rainfall, increased land surface temperatures, and soil and
water contamination due to pesticides and chemical fertilizers. Additionally, pastures
cover nearly 16 percent of the study area and can cause significant environmental impacts,
including greenhouse gas emissions and soil and water degradation [60].
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In summary, land use and land cover in the study area comprise a complex landscape
mix of agricultural, livestock, and forestry activities. The potential environmental and social
impacts associated with these activities add complexity to achieving a balance between
economic development and the conservation of natural resources [59,61].

4.2. Selection of Independent Variables (Vegetation Indices)

The AFRI, EVI, and GNDVI indices showed the most significant correlation with
aboveground biomass in our study area. The high observed correlations among vegetation
indices and biomass are likely due to a combination of a broader range of spectral bands
within the electromagnetic spectrum (middle- and near-infrared, red, green, and blue)
required to retrieve these three vegetation indices from Sentinel-2 imagery, compared to
other assessed indices in this analysis. The broader range of spectral bands increases their
sensitivity to capture subtle vegetation variations and changes. Such sensitivity is crucial
when using remotely sensed data, especially in ecotone regions that exhibit high vegetation
variability and complexity.

The significant correlations observed between Green Reflectance (GREEN), as repre-
sented by the GNDVI (Green Normalized Difference Vegetation Index), and biomass in the
study area can be attributed to variations in chlorophyll and anthocyanin content in the
leaves [62]. These factors are closely related to vegetation development and maturity [62].
The Green Vegetation Index (GVI) and the Green Normalized Difference Vegetation Index
(GNDVI), derived from reflectance equations, exhibit stronger correlations with nitrogen
content in forest biomass leaves compared to the Ratio Vegetation Index (RVI) and the
Red Normalized Difference Vegetation Index (RNDVI), indicating a greater sensitivity
to variations in vegetation [63]. The combination of green and infrared bands plays an
important role in aboveground biomass analysis, serving as critical descriptors in this
index and providing dependable and precise information on biomass quantities at specific
locations [64].

The use of the Near-Infrared (NIR) and Shortwave Spectrum (SWIR) bands in calculat-
ing the AFRI index has demonstrated efficiency in monitoring vegetation water content and
dry biomass, particularly in regions with sparse vegetation [65]. Moreover, the AFRI index
showed a stronger correlation with biomass in the study area located within an ecotone
region between forest and savanna.

Commonly used vegetation indices such as NDVI and EVI have been applied world-
wide to assess vegetation health. However, these indices are influenced by various factors,
including terrain topography [66]. Our study showed that the soil adjustment factor
“L” may heavily impact EVI results compared to NDVI, making EVI more sensitive to
topographical conditions. This sensitivity is particularly critical in hilly terrain, where
topographic effects can significantly affect vegetation indices with a simple band-ratio
format, such as NDVI.

The choice of satellites for spectral data collection can influence the accuracy of biomass
estimation. Nevertheless, our analysis found that Sentinel-2 satellite images were suitable
for our study. The authors of [67] reported that the quality of MSI/Sentinel-2 sensor images,
particularly in bands with a 10 m resolution, highlights the utility of this satellite for
vegetation assessment research, especially when compared to aerial sensors with a spatial
resolution of 0.13 m.

4.3. Training the Neural Networks

Our results indicate that the trained Artificial Neural Networks (ANNs) showed a
satisfactory fit and high-accuracy statistics. The correlation coefficient (R) consistently
equaled or exceeded 0.9, and the root mean square estimation (RMSE) errors remained
below 14%. Among the five trained networks, Network 1 outperformed the others with an
R² of 0.94 and an RMSE% of 10.76, making it a promising choice for the intended application.
These findings underscore the feasibility of biomass estimation through remote sensing in
natural forests.
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The use of ANNs is effective in estimating biomass per unit area and does not require
the basic assumptions of conventional mathematical modeling, such as normality and
linearity of forest attributes [68]. These attributes often require various mathematical
transformations for traditional modeling, which can result in lower model quality and
selection capability, leading to biased and less accurate estimates of the variable of interest.

The authors of [68] also yielded positive results in estimating the components of
total biomass, with an R2 of 0.97 and an RMSE% of 25.04. Furthermore, the simulation of
terrain elevation data along ICESat-2 and Landsat satellite profiles demonstrated significant
potential for generating a forest biomass estimation product, achieving an R2 of 0.66 [69].

These results align with the findings of our research, highlighting the robust per-
formance of the models developed for tree biomass estimation. To assess the predictive
capacity of the selected Artificial Neural Network, we examined the relationship between
observed and predicted values. When analyzing the distribution of ANN errors, we ob-
served that most errors fell within the −1.5% to −12% and 0% to 10% ranges. Additionally,
errors exceeding the ±16% threshold were infrequent. Moreover, it was determined that a
training dataset size of approximately 60 subplots or fewer was sufficient to achieve a good
fit with the linear functional model.

5. Conclusions

Our research findings indicate that the combination of various vegetation indices
integrating different spectral bands, such as EVI, AFRI, and GNDVI, with a Multilayer
Perceptron Artificial Neural Network has led to more efficient and precise estimation
of aboveground biomass in our study area. This approach facilitated the generation of
high-resolution biomass distribution maps and provided a cost-effective and time-saving
alternative to traditional forest inventories. Accurate estimates of forest biomass are crucial
for understanding vegetation dynamics and ecological processes, as well as for formulating
effective forest resource management policies. Additionally, our study results are valuable
for forest biomass monitoring, including the assessment of environmental services and the
formulation of conservation strategies for protected areas and indigenous territories. The
advanced knowledge of forest biomass can also support sustainable forest management
practices and enable the prediction of impacts of land use and land cover changes on forest
biomass. Alternative approaches, such as deep learning and machine learning methods,
could prove effective for estimating aboveground biomass in tropical regions and should
be explored in future research endeavors.
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Abstract: Masson pine (Pinus massoniana Lamb.) is a tree species that is widely distributed throughout
southern China and holds significant economic and ecological value. The main objective of our study
was to assess the effects of thinning on aboveground biomass increments and tree diversity in both the
overstory and understory. Additionally, the underlying factors and mechanisms responsible for driv-
ing changes in biomass increment were analyzed. Four different thinning treatments (control, light
thinning, moderate thinning, and heavy thinning) were implemented in 214 plots (~1800 tree ha−1) in
three Masson pine forests in Hunan Province, China. A robustly designed experiment was used with
over six years of repeated measurements. The differences in biomass increment and tree diversity
among the different treatments were compared using repeated measures ANOVAs. The Mantel
test was used to determine environmental metrics correlated with biomass increments across tree
strata. Structural equation modeling was utilized to explore the multivariate relationships among
site environment, tree diversity, and post-treatment biomass increment. The results indicated that
thinning overall increased biomass increment, the Shannon index, and the Gini index, while decreas-
ing the Dominance index over time. Moderate thinning (25%–35% of trees removed) was found to
promote overstory biomass increment to 9.72 Mg·ha−1·a−1 and understory biomass increment to
1.43 Mg·ha−1·a−1 six years post-thinning, which is significantly higher than that of other treatments.
Environmental metrics such as light intensity, soil organic matter, and other soil physiochemical
properties were positively correlated with biomass increments, and their effects on the overstory and
understory differed. Structural equation modeling revealed that thinning treatments, environmental
metrics, tree diversity, and their interactions could be the main drivers for biomass increments across
tree strata. Specifically, thinning treatments, light intensity, and tree size diversity (Gini index) had
significant effects on overstory biomass increment, while understory species richness (Shannon index)
and soil organic matter affected understory biomass increment. In conclusion, moderate thinning
is an effective silvicultural treatment for stimulating biomass increments of both the overstory and
understory in Masson pine forests in southern China if a middle period (e.g., six years) is considered.
Some factors, such as species richness, tree size diversity, and environmental metrics (e.g., light and
soil), are suggested for consideration to improve the efficiency of thinning.

Keywords: thinning; biomass increment; tree strata; environmental metrics; tree diversity; Masson
pine forests

1. Introduction

Masson pine (Pinus massoniana Lamb.) covers a total of 1.13 million hectares in China’s
subtropical zone, and it plays key roles in the development of the ecology and society due
to its wide distribution and ability to grow and regenerate naturally [1,2]. Masson pine can
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form mixed conifer forests with companion species, which contributes to vegetation cover,
soil and water conservation, and carbon balance [3]. Several national policies have been
established to maintain the quality and stability of Masson pine forests [4]. However, most
Masson pine forests at our study sites are middle-aged or nearly mature, and the protection
(banning logging) strategy alone may not be sufficient for sustaining ecological service
functions, biodiversity, and productivity, as well as enhancing resistance to disease and
natural disturbances [5]; in such cases, thinning treatment might be warranted. Thinning is
an important silvicultural activity that was initially used for commercial timber production
but is now increasingly used for sustainable forest management [6]. Thinning improves tree
growth and biomass productivity by regulating the growth space and microsite environ-
ment [7,8]. However, its effects in Masson pine forests are far from conclusive, particularly
concerning thinning intensity, community response, and assessment methods [9].

Thinning intensity is an important factor in determining the effectiveness of thinning
treatment. Some studies have reported that thinning tree cover to approximately 40%–60%
can improve overstory biomass in Masson pine forests and other pine forests [2]. However,
others have suggested that thinning intensities should be within 30%–40%, considering
understory regeneration [10]. If thinning intensity is light, the benefits may be temporary
and primarily affect the overstory rather than the understory. Conversely, excessive thin-
ning can substantially alter environmental conditions, reduce seed sources, and suppress
understory regeneration [11]. In some cases, although moderate thinning is potentially
optimal, the observed effect may be weaker than expected, which can be due to various
factors such as site-specific environmental conditions and follow-up treatments [12,13]. In
light of these findings and the emerging situations regarding the increasing development
potential of Masson pine forests, there is a need for ongoing observations and assessments
of the effectiveness of various thinning intensities [14,15].

Some studies have reported that thinning reduces overstory trees, thus increasing
sunlight availability and providing more water and mineral nutrients for the forest ecosys-
tem [16,17]. These processes can promote the growth of tree height and DBH, alleviate
interspecies competition, and stimulate the biomass increments of both the overstory and
understory [18,19], although on occasions some authors have found that there was no such
response [9,20]. For example, Liu et al. [21] reported that increased sunlight availability
enhances aboveground biomass or productivity for the overstory in pine forests in southern
China while simultaneously increasing underground biomass for the understory. Reports
have indicated that snow disturbances significantly influence tree growth in managed
forests with varying thinning intensities [22]. This influence is primarily reflected across
different forest strata. While the overstory and understory are the most common strata in
Masson pine forests, there is limited research on how their biomass increments relate to
different site-specific environmental metrics.

Furthermore, tree species composition and forest structure are also important for
post-treatment productivity or biomass increment [23,24]. Some studies have suggested
that environmental metrics not only directly affect biomass increment but also indirectly
influence it by shaping the diversity of tree composition and size [25]. This is a complex
process, and we are still unclear about how environmental metrics, tree diversity, and
their interactions affect biomass increment after thinning. The multivariate productivity–
diversity hypothesis [26,27] provides us with insights, as biomass increment is a crucial
component of productivity. This hypothesis has been validated at both the plot and
landscape levels [28,29], but the majority of evidence comes from natural stands [30], with
only a few empirical analyses of managed forests having been conducted to date. Thus, it
is worthwhile to consider the effects of thinning on biomass increment within the context
of this hypothesis when formulating forest management strategies.

Previous studies have utilized meta-analysis methods to assess the impact of thinning
on forest biomass [6,9,16], but their findings varied due to several limitations. First, most
of these meta-analyses have been conducted using data from a single research site, with
little consideration given to situations across multiple sites, limiting their ability to provide
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a comprehensive assessment of the response patterns of post-treatment biomass change.
Second, most studies directly analyze the relationship between site environment and
biomass using sampled data, despite potential issues such as small sample sizes, non-
normal distributions, and autocorrelation. Some studies have shown that utilizing the
Mantel test with similarity matrices could improve the accuracy and interpretability of
correlation analysis, avoiding result biases [28]. Third, most studies have considered the
effects of factors such as thinning intensity, site environment, and species diversity on
post-treatment recovery while ignoring how their interactions affect biomass increment.
A simple emphasis on the effectiveness of a single observed variable may be biased, as it
overlooks the causal relationships among variables, including direct and indirect effects.
This approach fails to comprehensively reveal the underlying mechanisms. Therefore, it is
necessary to conduct further studies on the effects of thinning on biomass increment using
suitable assessment methods.

In this study, we asked the following questions: how does thinning treatment in-
fluence biomass increments of both the overstory and understory over time? What are
the underlying mechanisms of these effects? Our hypotheses are detailed below. (1) The
moderate thinning should have the greatest potential to promote biomass increments and
tree diversity in both the overstory and understory over time. (2) The environmental
metrics such as light availability and soil physiochemical properties would be correlated
with biomass increments, and their effects on the overstory and understory would differ.
(3) Thinning treatments, environmental metrics, tree diversity, and their interactions would
be the main drivers of biomass increments, with the driving mechanisms potentially differ-
ing between the overstory and understory.

2. Materials and Methods

2.1. Site Description

This study utilized three Masson pine sites that were established in Pingjiang, Anhua,
and Huitong in Hunan Province, China (Figure 1; Table 1). These sites experience a humid
subtropical climate with a hot summer, and the average daily temperatures range from
4.2 ◦C in January to 30.5 ◦C in July. The mean annual precipitation is between 1300 and
1800 mm, and 60%–70% of the precipitation falls during the growing season (April to
September). Average daily solar radiation in the growing season is between 14.5 and
16.5 MJ/m2. The soils of the three sites are classified as a mountain yellow-red soil derived
from granite parent material, with an average pH ranging from 4.7 to 5.9. The soil has a
shallow A horizon (approximately 20 cm), but the soil profile extends from 100 cm to more
than 150 cm in depth before reaching fractured granite bedrock.

Figure 1. Locations of the three study sites in Hunan Province, China.
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Table 1. Site description of the three Masson pine forests in Hunan Province, China.

Site Pingjiang Anhua Huitong

Location 28◦25′ N,
113◦10′ E

27◦44′ N,
111◦58′ E

26◦88′ N,
109◦73′ E

Average annual temperature (◦C) 16.8 16.2 17.1
Average annual precipitation (mm) 1450.8 1706.1 1361.2

Average daily solar radiation (MJ/m2) 15.4 16.3 14.8
Soil organic matter content (g·kg−1) 21.61 24.09 23.74

Elevation (m, a.s.l.) 750 600 650
Aspect SW W SW

Stand age 24 22 22
Overstory density (stems ha−1) 1750 1820 1860

Understory density (stems ha−1) 2280 2150 1975

All sites are artificially seeded Masson pine forests on timber-harvesting patches
that were established in the 1990s. The forests were initially planted at a density of
approximately 2300 stems ha−1. Forest tending was conducted first in 2010 to improve the
natural regeneration and growth of the remaining trees. The stand age ranged from 21 to
24 years (middle-aged). P. massoniana dominated the overstory (≥4 m tall and ≥5 cm
diameter at breast height [DBH]) in the stand, and other tree species such as Sassafras
tzumu (Hemsl.) Hemsl. and S. superba (Schima superba Gardn. et Champ.) were identified.
Understory (<4 m tall) tree species mainly comprised Chinese fir (Cunninghamia lanceolata
(Lamb.) Hook), Cinnamomum camphora, Quercus glauca, and Castanopsis sclerophylla. The
overstory density ranged from 1750 to 1860 stems ha−1, while the understory density
ranged from 1975 to 2280 stems ha−1. At the beginning of the experiment (2016), an
initial field survey was conducted in these sites to determine homogeneity in composition,
structure, and physiography.

2.2. Experimental Design

The experiment was conducted in a completely randomized block design with subsam-
pling. Six blocks (replicates) were established adjacent to each other in reasonably uniform
stand conditions in Pingjiang. Four blocks were established in Anhua and Huitong, respec-
tively. Each block was repeatedly subdivided into four rows of rectangular subsampling
units. Each subsampling unit was randomly assigned four treatment plots (20 m × 20 m):
heavy thinning (HT, 35%–45% of the trees by number were removed), moderate thinning
(MT, 25%–35% of the trees by number were removed), light thinning (LT, 10%–25% of the
trees by number were removed), and control (CK). A total of 214 plots were established,
including 93 in Pingjiang, 60 in Anhua, and 61 in Huitong. For instance, the schematic
diagram of the experimental treatments in the Pingjiang field trial is shown in Figure 2.

The selective thinning strategy followed the nature-approximating management guide-
lines in the NFA [31], a national management publication aimed at converting even-aged
pine forests into all-sized stands and enhancing forest vigor and quality. To determine
which trees to cut, we first used Voronoi diagrams to partition the nearest-neighbor region
of individual trees [32]; we then established the spatial relationship among trees within
each plot. Trading off these structure indexes at the stand scale by marking individual
trees with potential cutting requirements was an iterative process [33], in which the upper
and lower limits of the residual basal area (according to the treatment assigned to that
plot) were constraints [34]. In practice, priority for cutting was given to dominant trees
that would be expected to damage their neighbors, suppressed trees with exceptionally
poor form, trees with clumpy distributions, dead trees, or trees with minimal ecological
potential. According to previous studies suggesting that the minimum residual basal
area be approximately 15 to 22 m2 ha−1 for pine forests [35], we determined the residual
basal area for HT (15.17 m2·ha−1), MT (20.48 m2·ha−1), and LT (22.05 m2·ha−1). To reduce
damage to understory individuals, trees were carefully felled using felling machinery so
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that they fell outside of the plots; the portions of the boles inside the perimeter of plots
were removed manually.

20 m 5 m

CK LT HT MT

MT CK LT HT

CK HT MT LT

LT MT HT

MT HT LT CK

LT MT CK HT

CK LT MT HT

HT LT CK MT

HT MT CK LT

CK HT LT MT

LT MT CK HT

MT CK HT LT

HT CK LT MT

CK MT HT LT

LT CK MT HT

MT HT CK LT

CK LT MT

LT CK HT MT

HT LT CK MT

MT CK HT LT

LT HT MT CK

MT LT HT CK

MT CK LT

MT CK LT HT

10 m

Block 1

10 m

Block 2 Block 3

Block 4 Block 5 Block 6

2016 2017 2018 2019 2020 2021 2022

Construction

Operation timeline

Survey Survey Survey Survey

Figure 2. A schematic diagram of the experimental treatments in Pingjiang. The experiment has four
types of treatments as follows: 22 heavy thinning (HT), 24 moderate thinning (MT), 24 light thinning
(LT), and 23 control (CK). Unmarked plots are unsuitable for thinning. The site was established in
October 2016. Subsequent surveys were made in August 2017, July 2018, July 2020, and August 2022.

2.3. Field Investigation

In 214 plots, trees were identified, and the density, diameter at breast height, and basal
area were tallied. A total of 189 sampled trees were allocated as evenly as possible among
diameter classes in the four treatments (HT, MT, LT, and CK). After a sample tree was
felled, diameter at breast height and height were measured, and the stem, branches, and
foliage were collected. Materials were dried at 70 ◦C for at least 72 h or until a constant
dry weight was obtained; they were then added together to obtain the total aboveground
biomass of each tree. Tree metrics were collected one month before and after thinning
(September 2016 and November 2016, respectively) to account for the stand characteristics
of pre- and post-thinning treatments (Table 2). The subsequent surveys were conducted in
August 2017, July 2018, July 2020, and August 2022, corresponding to the years following
the thinning process (years 1, 2, 4, and 6, respectively). F-tests were also used to confirm
the homogeneity of stand characteristics before thinning. We calculated the aboveground
biomass and annual biomass increments using the following method:

OBI = AGBo(T) − AGBo(T−1) (1)

UBI = AGBu(T) − AGBu(T−1) (2)

AGBo = f (dbh, h)× D (3)
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AGBu = f (d, h)× D (4)

where OBI and UBI are the annual biomass increments (Mg·ha−1·a−1) in the overstory and
understory, respectively. T is the current survey year and T − 1 is the previous survey
year. AGBo and AGBu are the tree aboveground biomass in the overstory and understory,
respectively. f is the tree allometric growth model (Table S1) used to calculate individual
tree biomass (kg), dbh is tree diameter at breast height (cm), h is tree height (m), d is ground
diameter (cm), and D is stand density (N·ha−1).

Stand environment metrics were collected in July and August 2022 (post-thinning
year 6). In each plot, the light intensity was measured using black thermopile-based
pyranometers (LP02; Hukseflux, Delft, The Netherlands), and soil moisture was measured
using thermistors (105T; Campbell, Logan, UT, USA). The light intensity was measured at
15 min intervals, and soil moisture was measured every 30 min, with hourly averages
recorded, from 8:00 to 18:00 h under sunny conditions. After removing the upper litter
and organic layer, soil samples (0–20 cm depth) were randomly collected with an auger
at nine points within each plot. Soil samples were then processed through 2 mm mesh
sieves, pooled as mixed samples, and stored in a refrigerator at 4 ◦C for each plot. Soil
pH was determined in a 1:2.5 soil/water suspension. Soil organic matter was determined
using the potassium dichromate volumetric method. Soil total nitrogen (TN) was measured
using the Kjeldahl method, and total phosphorous (TP) and total potassium (TK) were
measured using the nitrification method. Available nitrogen (AN) was extracted from
10 g of fresh soil sample using 50 mL of 2 M KCL solution by shaking at 200 rpm for
1 h; it was then quantified using colorimetric methods. Available phosphorous (AP)
was extracted by 0.5 M NaHCO3 at pH 8.5 (Olsen method) and then was determined by
spectrophotometry. Available potassium (AK) was determined using a flame photometer
(FP6430; Inesa, Shanghai, China). More detailed information on the extraction procedures for
measurements of soil physicochemical characteristics is provided in previous studies [36,37].
According to our field investigation and flora records, tree strata were analyzed in two
height categories: overstory (≥4 m tall and ≥5 cm diameter at breast height [DBH]) and
understory (<4 m). Tree metrics and environmental metrics in both the overstory and
understory were measured six years post-thinning (Table 3).

2.4. Data Analyses
2.4.1. Biomass Increment and Tree Diversity

Replicate (e.g., a thinned plot or reference area within a block) means were consid-
ered random subsamples within each block. Repeated measures ANOVA was used to
test the effects of treatment intensity, survey year, and their interactions on the variables,
including biomass increment, Shannon index, Dominance index, and Gini index across
tree strata. The biomass increments of plots were the absolute difference of replicated
biomass means between the post-thinning initial value and the value in subsequent survey
years (years 1, 2, 4, and 6). Shannon–Wiener’s index (hereafter referred to as the Shannon
index) was used to measure species richness. The Baker–Parker dominance index (hereafter
referred to as the Dominance index) was used to measure the ratio of the basal area of
the most abundant species to the total basal area per hectare [38]. Tree size diversity was
characterized using the Gini index, which was used to estimate the diameter distribution;
it is usually conceptualized as the area between the Lorenz curve and the diagonal line
of absolute equality [39]. These variables were log-transformed to meet requirements for
the normalization of residuals and homogeneity of variances. Post hoc pairwise compar-
isons (Bonferroni-corrected) were made when group differences were detected. Simple
main-effects analysis was used when a significant interaction between thinning intensity
and survey year was detected. p-values < 0.05 were regarded as statistically significant.
Statistical analyses were performed using R version 4.2.0 [40]. The R “nlme” package was
used for ANOVAs, and the “emmeans” package [41] was used for post hoc and simple
main-effects tests.
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Table 3. Biomass, tree metrics of overstory and understory, and environment metrics (means (standard
error [se])) in post-thinning year 6 in Masson pine forests in Hunan, China.

HT MT LT CK

Mean SE Mean SE Mean SE Mean SE

Overstory
Aboveground biomass

(Mg·ha−1) 74.79 1.57 91.18 1.48 93.59 1.51 107.48 1.49

Biomass increased
(Mg·ha−1) 37.1 0.78 47.61 0.77 44.61 0.72 44.02 0.62

Biomass increment
(Mg·ha−1·a−1) 7.79 0.16 9.73 0.16 7.71 0.12 7.32 0.11

Shannon index 0.89 0.02 1.05 0.02 0.82 0.01 0.69 0.01
Dominance index 0.58 0.01 0.51 0.01 0.49 0.01 0.62 0.01
Gini index 0.55 0.01 0.57 0.01 0.43 0.01 0.36 0.01

Understory
Aboveground biomass

(Mg·ha−1) 6.87 0.13 7.31 0.12 5.12 0.09 4.51 0.07

Biomass increased
(Mg·ha−1) 4.21 0.09 4.63 0.07 2.45 0.04 1.85 0.03

Biomass increment
(Mg·ha−1·a−1) 1.22 0.02 1.41 0.02 0.43 0.01 0.32 0.00

Shannon index 1.69 0.03 1.78 0.03 1.51 0.02 0.94 0.01
Dominance index 0.28 0.01 0.21 0.00 0.26 0.00 0.45 0.01
Gini index 0.44 0.01 0.45 0.01 0.43 0.01 0.42 0.01
Environment
Light intensity

(MJ·m−2·d−1) 8.03 0.16 6.45 0.11 4.28 0.06 3.52 0.05

Soil moisture (%) 30.5 0.62 35.43 0.56 35.25 0.57 37.56 0.54
pH 5.03 0.11 5.18 0.09 5.15 0.09 5.06 0.07
Organic matter (g·kg−1) 40.43 0.82 37.83 0.62 28.87 0.47 22.58 0.32
Total N (g·kg−1) 2.32 0.06 2.48 0.03 1.97 0.03 1.57 0.02
Total P (g·kg−1) 0.37 0.01 0.33 0.01 0.36 0.01 0.36 0.01
Total K (g·kg−1) 7.31 0.15 7.01 0.11 9.87 0.15 8.05 0.12
Available N (mg·kg−1) 82.56 1.74 84.77 1.35 71.23 1.16 61.09 0.87
Available P (mg·kg−1) 3.19 0.07 3.24 0.05 3.96 0.07 2.06 0.03
Available K (mg·kg−1) 40.53 0.84 43.42 0.71 41.61 0.68 57.95 0.83

2.4.2. Relationships between Biomass Increment and Environmental Metrics

To assess relationships between post-thinning biomass increment and environmental met-
rics, two dissimilarity matrices (i.e., plot–biomass matrix and plot–environment matrix) were
prepared and examined using Mantel tests [28]. In the plot–biomass matrix, overstory biomass
increment (OBI) and understory biomass increment (UBI) were used as response variables
to construct row vectors for each plot: [OBI1i, OBI2i, OBI4i, OBI6i,UBI1i, UBI2i, UBI4i, UBI6i],
where subscripts 1, 2, 4, and 6 indicate the first, second, fourth, and sixth years after thinning,
and i indicates the ith plot. Similarly, the ten environmental metrics described in Table 3
were used as explanatory variables to form a plot–environment matrix with i rows and 10
columns. All variables were standardized using z-score normalization. The significance of the
normalized Mantel coefficient was calculated using a two-tailed Monte Carlo permutation test
with 10,000 permutations in the R “vegan” package [42]. A significant Mantel test (p < 0.05)
indicates a linear correlation between the biomass dissimilarity matrix and the environment
dissimilarity matrix, suggesting that the differences in the environment may be an important
factor influencing the differences in biomass among different plots. Correlations between
environmental metrics were calculated using Pearson’s correlation coefficients.

2.4.3. Multivariate Statistical Analysis

Structural equation modeling (SEM) [43] was used to estimate the multivariate rela-
tionship in post-thinning forests and reveal the relative contributions of the explanatory
variables to biomass increments across tree strata. The explanatory variables included
thinning treatments, Shannon index, Dominance index, and Gini index for the overstory
and understory, as well as significant environmental variables according to Mantel tests.
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The initial multivariate model was established based on the productivity–diversity hypoth-
esis [25,44]. An SEM path diagram was used to characterize the complex relationships
among various explanatory variables and biomass increment. The path diagram was
iteratively optimized, and pathways were added according to the residual correlations,
or nonsignificant pathways were eliminated unless the pathways were biologically infor-
mative. Model fitting and evaluation were carried out based on the chi-square value (χ2,
p > 0.05), goodness-of-fit index (GFI > 0.9), and root square mean error of approximation
(RMSEA < 0.05) [45]. The maximum likelihood method was used to estimate the coefficients
of each edge in the path graph. The standardized path coefficients of the SEM reflect the
direct, indirect, or total effects of explanatory variables on biomass increment. The SEM
tests were performed in the R “lavaan” package [46].

3. Results

3.1. Effect of Thinning on Tree Biomass and Diversity

Thinning resulted in a lower aboveground biomass (AGB) of the overstory compared
to the control plots (CK), but this difference gradually diminished with years after thinning
(Figure 3a). Conversely, the understory AGB exhibited the opposite trend (Figure 3b). For
example, in year 6, the mean overstory AGB in thinned plots was about 71%–87% of that in
the CK, while the mean understory AGB was approximately 113%–162% higher in the CK.

Furthermore, tree growth changed significantly in biomass increment, Shannon index,
Dominance index, and Gini index over time (Figure 4 and Table 4). The overstory biomass
increment followed a temporal dynamic reflective of regeneration development, with
the maximum mean value occurring in the CK during the early years and in thinned
plots during the later years (Figure 4a and Table 4). For example, the maximum mean
overstory biomass increment was observed in the CK at 7.03 Mg·ha−1·a−1 in year 1,
while it was observed under MT at 9.72 Mg·ha−1·a−1 in year 6. The understory biomass
increment consistently remained higher than those in the CK, with this advantage becoming
increasingly apparent over time (Figure 4b). The Shannon index in the two strata showed
similar biomass increment patterns over time, with thinned plots gradually exceeding the
CK (Figure 4c,d). Furthermore, thinning generally reduces the Dominance index for both
overstory and understory (Figure 4e,f) while also having a positive effect on the Gini index
for the overstory (Figure 4g).

Figure 3. The relative ratios of aboveground biomass for both the (a) overstory and (b) understory
during the post-thinning years compared to the CK (represented by the dashed line).
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Table 4. p-values from full model analysis for biomass increment, Shannon index, Dominance index,
and Gini index by strata class in Masson pine forests in Hunan, China. Significant values (<0.05) are
in bold.

Strata Class Effect
Biomass

Increment
Shannon Dominance Gini

Overstory
Thinning <0.001 <0.001 0.002 <0.001

Year <0.001 <0.001 0.007 0.005
Thinning × Year <0.001 <0.001 <0.001 0.010

Understory
Thinning <0.001 <0.001 <0.001 0.320

Year <0.001 <0.001 <0.001 <0.001
Thinning × Year <0.001 <0.001 0.003 0.275

Because thinning and thinning × survey year were significant in most models of biomass
increments and tree diversity for both the overstory and understory (Table 4), subsequent
models were run by year to isolate the effects of thinning (Table 5). Thinning significantly
increased biomass increments and the Shannon index for overstory and understory classes
in later years (Figure 4 and Table 5). Specially, thinning initially reduced overstory biomass
increment, but in later years, it exceeded that of the CK (p ≤ 0.001 pairwise comparison). Simi-
larly, understory biomass increment averaged 1.21 Mg·ha−1·a−1 in HT and 1.43 Mg·ha−1·a−1

in MT in year 6, both significantly higher than the 0.32 Mg·ha−1·a−1 observed in the CK
(p ≤ 0.001 pairwise comparison). Thinning significantly increased the overstory Shannon in-
dex compared to the CK since year 4 (p ≤ 0.001 pairwise comparison), peaking at a maximum
mean value of 1.05 under MT in year 6, while their indices were similar in earlier years. The
understory Shannon index was significantly different between various thinning treatments
and the CK during post-thinning years (p ≤ 0.001 pairwise comparison).

Thinning reduced the Dominance index for both the overstory and understory over
time. For instance, the overstory Dominance index continued to decrease since the treat-
ment, becoming significantly lower than the CK since year 4 (p ≤ 0.001 pairwise compari-
son), reaching its minimum under LT (0.47) in year 6. Additionally, thinning significantly
increased the Gini index for the overstory, with values notably higher than those of the CK
during the post-thinning years (p ≤ 0.001 pairwise comparison). No significant differences
were observed in the understory Gini index.

Table 5. p-values from thinning intensity submodel analysis and overall means (standard error [se]) for
biomass increment (Mg·ha−1), Shannon index, Dominance index, and Gini index by survey year and
stratum class in Masson pine forests in Hunan, China. Significant values (<0.05) are in bold.

Stratum
Class

Year

Biomass Increment Shannon Dominance Gini

p-Value
Mean
(se)

p-Value
Mean
(se)

p-Value
Mean
(se)

p-Value
Mean
(se)

Overstory

1 0.001
5.46

(0.09) 0.255 0.63
(0.02) 0.424 0.68

(0.02) 0.001
0.52

(0.02)

2 0.001
6.35

(0.13) 0.301 0.69
(0.01) 0.203 0.63

(0.01) 0.001
0.49

(0.01)

4 0.001
7.92

(0.14) 0.011
0.75

(0.02) 0.001
0.57

(0.02) 0.001
0.48

(0.01)

6 0.001
8.09

(0.16) 0.001
0.86

(0.02) 0.001
0.54

(0.02) 0.001
0.46

(0.01)
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Table 5. Cont.

Stratum
Class

Year

Biomass Increment Shannon Dominance Gini

p-Value
Mean
(se)

p-Value
Mean
(se)

p-Value
Mean
(se)

p-Value
Mean
(se)

Understory

1 0.697 0.32
(0.01) 0.001

1.05
(0.02) 0.085 0.46

(0.01) 0.834 0.33
(0.01)

2 0.089 0.43
(0.01) 0.001

1.21
(0.02) 0.001 0.36

(0.01) 0.06 0.35
(0.02)

4 0.001
0.52

(0.01) 0.001
1.36

(0.03) 0.001
0.32

(0.01) 0.068 0.39
(0.01)

6 0.001
0.84

(0.02) 0.001
1.51

(0.03) 0.001
0.29

(0.01) 0.726 0.43
(0.02)

Figure 4. Mean biomass increment (a,b), Shannon index (c,d), Dominance index (e,f), and Gini index
(g,h) during the post-thinning years in the overstory and understory of Masson pine forests in
Hunan, China.
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3.2. Correlation between Environmental Factors and Biomass Increment

We utilized the Mantel test to examine the correlations between distance-adjusted dis-
similarities in biomass increments of both the overstory and understory with environmental
metrics. Results showed that light intensity and soil physiochemical properties played dis-
tinct roles in driving biomass increments in the overstory and understory (Figure 5; Table 6).
Specifically, light intensity (Mantel test; r = 0.502, p < 0.05) and soil organic matter (Mantel
test; r = 0.355, p < 0.05) were positively correlated with overstory biomass increment. Soil
moisture (Mantel test; r = −0.272, p < 0.05) was significantly negatively correlated with over-
story biomass increment, and the correlation between soil moisture and overstory biomass
increment was weaker than that between light intensity and soil organic matter. Soil organic
matter (Mantel test; r = 0.424, p < 0.05), TN (Mantel test; r = 0.346, p < 0.05), and AP (Mantel
test; r = 0.303, p < 0.05) were significantly correlated with understory biomass increment.

Figure 5. Biomass increments of overstory and understory were related to each factor by Mantel
tests. Edge width corresponds to the Mantel’s r statistic for the corresponding correlations, and
edge color denotes the statistical significance based on 10,000 permutations. Pairwise comparisons
of environmental factors are shown, with a color gradient denoting Pearson’s correlation coeffi-
cients. Abbreviations: OBI, overstory biomass increment; UBI, understory biomass increment; LI,
light intensity; SM, soil moisture; pH, soil pH; OM, soil organic matter; TN, total nitrogen; TP,
total phosphorus; TK, total potassium; AN, available nitrogen; AP, available phosphorus; AK,
available potassium.

Table 6. Effects of factors in the Mantel test analysis undertaken on biomass increments in the
overstory and understory of Masson pine forests in Hunan, China. Significant values (p < 0.05) are
in bold.

Factor

Overstory Biomass
Increment (Mg·ha−1·a−1) Factor

Understory Biomass
Increment (Mg·ha−1·a−1)

p-Value r-Value p-Value r-Value

LI 0.001 0.502 LI 0.064 0.232
SM 0.046 −0.272 SM 0.229 −0.146
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Table 6. Cont.

Factor

Overstory Biomass
Increment (Mg·ha−1·a−1) Factor

Understory Biomass
Increment (Mg·ha−1·a−1)

p-Value r-Value p-Value r-Value

pH 0.169 −0.188 pH 0.612 −0.057
OM 0.020 0.355 OM 0.001 0.424
TN 0.072 0.209 TN 0.022 0.346
TP 0.053 0.243 TP 0.101 0.194
TK 0.413 −0.058 TK 0.062 −0.215
AN 0.066 0.211 AN 0.053 0.240
AP 0.153 0.189 AP 0.041 0.303
AK 0.212 −0.166 AK 0.275 −0.138

Furthermore, strong collinearity among environmental factors was observed (Figure 5).
For example, decreases in soil moisture (Pearson’s r = 0.37, p < 0.05) and increases in soil
organic matter (Pearson’s r = 0.73, p < 0.05) were accompanied by increases in light inten-
sity. Soil moisture was negatively associated with AK (Pearson’s r = 0.38, p < 0.05). A sig-
nificant positive association was observed among soil organic matter, N, and P (Pearson’s
r = 0.32–0.54, p < 0.05).

3.3. Multivariate Statistical Analysis

We employed SEM to investigate how thinning treatments, environmental factors, tree di-
versity, and their interactions influence biomass increments in both the overstory and understory.
The results indicated that SEM had a high level of goodness of fit for biomass increments in
both the overstory (GFI = 0.932; RMSEA < 0.001) and understory (GFI = 0.978; RMSEA < 0.001),
indicating a close match between the predicted and observed data. SEM accounted for 48% of
the variation in overstory biomass increment (Figure 6a) and 57% of the variation in understory
biomass increment (Figure 6b). Overall, the thinning treatments play an originative role in
driving biomass increment via altering environmental conditions and tree diversity.

Specially, light intensity, which was directly affected by thinning treatments (standardized
path coefficient, b = 0.32, p < 0.05), had a positive and direct effect on overstory biomass
increment (b = 0.40, p < 0.05) (Figure 6a). Similarly, soil organic matter (b = 0.23, p < 0.05)
and overstory Gini index (b = 0.42, p < 0.05), which were mainly affected by thinning, were
positively correlated with overstory biomass increment. Soil moisture and overstory Shannon
index had biological information for overstory biomass increment. Furthermore, soil organic
matter, TN, and AP were mainly driven by thinning and positively affected (b = 0.22–0.34,
p < 0.05) understory biomass increment (Figure 6b), which was consistent with the results of the
Mantel tests (Table 6). Among tree diversity factors, the understory Shannon index (b = 0.47,
p < 0.05) caused by thinning or environment had the strongest positive effect on understory
biomass increment, followed by understory Dominance index and overstory Shannon index.

Standardized direct, indirect, and total effects (direct plus indirect effect) derived from SEM
indicated that the effects of these factors on biomass increments in the overstory and understory
were diverse (Figure 7); thus, the mechanisms underlying these effects might vary among tree
strata. Thinning treatments (standardized total coefficient = 0.62) and the concomitant increase
in light intensity (standardized total coefficient = 0.49) and overstory Gini (standardized total
coefficient = 0.42) played key roles in shaping overstory biomass increment (Figure 7a). The
tree diversity and environment, especially the understory Shannon and soil organic matter
(standardized total coefficient = 0.47 and 0.35, respectively), induced by thinning were the main
drivers of understory biomass increment (Figure 7b).
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Figure 6. Structural equation model (SEM) showing the relationships among treatment, tree diversity,
environment factors, and biomass increments in both the overstory (a) and understory (b). Red and blue
arrows indicate positive and negative relationships, respectively. Arrow width corresponds to statistical
significance. Numbers near the pathway arrow indicate the standard path coefficients. R2 represents the
proportion of variance explained for every dependent variable. Abbreviations: OBI, overstory biomass
increment; UBI, understory biomass increment; LI, light intensity; SM, soil moisture; OM, soil organic
matter; TN, total nitrogen; AP, available phosphorus.

Figure 7. Standardized direct effect, indirect effect, and total effect (direct plus indirect effect) derived
from SEM fitted to biomass increments in the overstory (a) and understory (b). The absolute of
standardized total effect coefficient greater than 0.3 indicates that this is the key factor affecting
biomass increment. Abbreviations: LI, light intensity; SM, soil moisture; OM, soil organic matter; TN,
total nitrogen; AP, available phosphorus.
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4. Discussion

Developing management approaches that can maintain ecosystem services and func-
tions is crucial in the face of ongoing ecological change. Here, we tested the effect of
thinning on biomass and diversity over six years in Masson pine forests in Hunan, China.
The three sites exhibit similar climates, topographies, and stand conditions to ensure a
stable and reliable thinning effect. In partial agreement with prediction 1, we found that
MT is most effective in stimulating biomass increment and tree diversity, but this is evident
in the later years. Prediction 2 was confirmed, as we found that environmental factors
such as light intensity and soil physiochemical properties were not only correlated with
biomass increments after thinning but also varied across tree strata. Moreover, thinning
treatments, environmental factors, tree diversity, and their interactions had effects on
biomass increments, and the mechanisms underlying these effects differed in the overstory
and understory, which was consistent with prediction 3.

4.1. Effects of Thinning on Biomass of the Overstory and Understory

Thinning treatments can promote the growth and biomass of retained trees, but addi-
tional analysis is needed to understand their impact on the overall AGB of the stand. The
short-term accumulation of retained tree biomass is not enough to make up for the biomass
removed during thinning [16]. For example, in the first year, the post-treatment AGB of
the overstory in the plots was noticeably lower than that of the CK, and the reduction
expanded as the thinning intensity increased (Figure 3a). However, as thinning-induced
biomass increment was released over time, the AGB difference between thinned plots and
CK decreased. Thus, the positive effects of thinning treatments on biomass increment
were evident in later years. In year 6, MT exhibited the highest average overstory biomass
increment at 9.72 Mg·ha−1·a−1, significantly higher than both LT (7.71 Mg·ha−1·a−1) and
HT (7.84 Mg·ha−1·a−1) (Figure 4a). Coupled with its moderate initial retained biomass,
this resulted in the overstory AGB under MT exceeding that of other thinning treatments
and approaching that of CK. Similarly, MT showed the highest average understory biomass
increment at 1.43 Mg·ha−1·a−1 in year 6, followed by HT at 1.21 Mg·ha−1·a−1 and LT at
0.42 Mg·ha−1·a−1 (Figure 4b). The results indicated that while thinning initially reduced
AGB in the overstory, it subsequently enhanced biomass increments in both the overstory
and understory. MT provided the most significant benefits in later years.

In practice, the minimum stand density or residual basal area, which affects the reten-
tion biomass, might require consideration when establishing thinning strategies. Previous
studies of middle-aged Masson pine forests have suggested that stand density should be
maintained between 1000 and 1200 stem ha−1 [47,48]. The density-dependent stand-level
optimization approach proposed by Bettinger, Graetz, and Sessions [34] suggested that the
minimum residual basal area in pine forests should be approximately 16.0–20.5 m2·ha−1.
The range roughly coincides with the density and basal area of MT in the early years after
thinning (Table 2). From this viewpoint, the MT (25%–35% tree removed) we examined
could be considered as the optimal thinning intensity for the management of middle-aged
Masson pine forests.

Our results indicated that overstory biomass increment from thinning treatments
gradually exceeded those of the CK after year 4, suggesting that the benefits of thinning
became apparent in the later years (Figure 4a). The understory biomass increment followed
similar patterns over time (Figure 4b). The growth and regeneration of juvenile trees
also exhibited a time lag effect in response to thinning treatments. Thus, determining the
time scale at which positive responses are achieved may help explain the changes in post-
processing time dynamics [9,34]. Previous studies indicated that an observation period
consistent with the regeneration cycle of a forest should be adopted [23,49]. Ming [35]
indicated that the post-treatment developmental pathway of a subtropical coniferous forest
exhibited a unimodal pattern in which tree growth was most active for six to seven years
and then gradually declined. While our study demonstrated the expected outcomes over

167



Forests 2024, 15, 1080

the 6-year period, extending the observation duration remains a viable strategy for a more
comprehensive analysis of forest recovery following thinning treatments.

4.2. Effects of Thinning on Diversity of the Overstory and Understory

Thinning releases growth space and increases light availability, which stimulates di-
verse responses by trees. Pioneer or shade-intolerant tree species exhibit stronger relative
responses than other species to thinning. Wang and Liu [50] have also shown that over-
story species richness increases less frequently in pine forest after cutting treatments, and
emerging species are mostly saplings with a high demand for light. This also partially
explains why the overstory accounted for the majority of the biomass but was not diverse
in this study. Providing trees with enough space and time to grow, selectively retaining
overstory species during thinning treatments, or planting trees might increase overstory
species diversity [12].

Thinning had a more positive effect on understory species diversity than on over-
story species diversity. Thinning can induce environmental heterogeneity and regulate
understory habitat, facilitating the coexistence of different species. Some light-demanding
species are likely to invade the understory after thinning, especially following MT and
HT; however, such species were infrequently observed or absent in the CK. In addition,
some native species do not require thinning to become established, but thinning often
facilitates their establishment and expansion [11]. As shown in Figure 4d, the maximum
mean Shannon index of the understory was obtained under MT within 6 years. The propor-
tion of broadleaf and shade-tolerant species increases after thinning treatment. Although
individuals of understory species are generally small, the number of species is relatively
high. Furthermore, increases in understory species richness potentially induce the growth
of a suite of mixed species, ranging from tree pests to disturbance-resistant species, and
this can drive shifts to more stable and sustainable forest communities [21,51]. Therefore,
the effective promotion of species coexistence to maintain forest resilience is a crucial
consideration in implementing thinning treatments.

Tree size diversity in the stand was characterized using the Gini index, as has been
conducted in several forest ecosystems [52]. Gini index values of 0, 0.5, and 1 correspond
to even, uniform, and uneven forest structures, respectively [39]. In this study, MT and HT
resulted in overstory Gini index values greater than 0.5; starting from a peaked reverse J,
the success of natural regeneration and ingrowth can be indicated by a decreasing Gini
index [39]. Under LT and the CK, the Gini index was less than 0.5, which indicates that self-
thinning processes are dominant when stand development is determined by competition
for light and space (Figure 4g). Tree size diversity can increase the complexity of stand
structure in both the vertical and horizontal dimensions. Large trees usually occupy the
canopy and are surrounded by smaller trees below, which can form a complementary
growth space. A group of trees of different sizes can intercept rainfall and light according
to their needs, which improves resource utilization and reduces competition among trees.
In addition, large trees may provide shelter and shade for smaller trees [53], promoting
their regeneration and growth. Therefore, tree size diversity should be considered when
selecting MT to regulate the coexistence of trees of different sizes, reduce competition, and
promote stand regeneration [23].

4.3. Correlation between Environmental Factors and Biomass Increments across Tree Strata

In this study, Mantel tests of environmental factors and biomass increment were
conducted to test prediction 2, which proposes that light intensity and soil metrics were
significantly correlated with biomass increments and that their effects on the overstory
and understory differed. The environmental factors significantly correlated with overstory
biomass in Masson pine forests were light intensity, soil organic matter, and soil moisture
(Figure 5; Table 6). In a post-thinning forest, physiological regeneration niches are possessed
by different species to cope with environment conditions. P. massoniana, which is the
dominant overstory species, is the most light-demanding and thermophilic tree species,
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and optimum sites for this species include the upper canopy and canopy openings [21].
Under high light conditions, P. massoniana exhibits high photosynthetic activity and higher
net CO2 assimilation than other species over a growing period, which is consistent with the
results of a previous study [54]. Carbon assimilation and xylem formation directly stimulate
tree growth and regeneration, which promotes stand biomass accumulation. Furthermore,
Huang et al. [55] showed that the duration of xylem formation in Masson pine forests
in subtropical China was several months longer than expected due to photosynthetic
activity, which indicates that the overstory might accumulate more biomass. Although
the photosynthetic rate of trees increases as the amount of incident light increases, some
physiological traits of trees cannot be ignored [56]. For example, under high irradiance and
temperatures, native species in the understory such as Castanopsis sclerophylla may develop
deep root systems to withstand adverse conditions or photoinhibition, and this results
in the accumulation of underground biomass. In subtropical forests, intense irradiance
accompanied by transpiration reduces the water potential of vegetation, leading to serious
restrictions on understory trees. Thus, light has a significant positive effect on biomass
increments of the overstory but not on the understory.

Mantel test results indicate that additional soil moisture over the growing season neg-
atively affects biomass (Table 6). Most precipitation in subtropical China occurs during the
growing season (April to September), which inevitably leads to increases in soil moisture.
Previous studies indicate that the relationship between mean precipitation and biomass pro-
ductivity in most coniferous forests is a nonlinear, concave-down function [57]. Increasing soil
moisture in humid ecosystems may reduce tree biomass by reducing soil oxygen availability
or increasing nutrient leaching. Therefore, Masson pine forests mostly grow well on the
dry, xeric sides of mountains or ridges with high light [21,55]. This result also indicates that
Masson pine forests would benefit from longer dry periods because they might result in better
growth and greater biomass accumulation under continued climate warming.

Soil organic matter was strongly correlated with both overstory and understory
biomass increments (Table 6), which suggests that thinning increased the content of soil
organic matter and supplied more soil nutrients for tree growth [7]. In post-thinning forests,
the main source of soil organic matter is litter, and this mainly stems from the remaining
trees and logging residuals. Thinning enhances the abundance of understory plants (es-
pecially deciduous broadleaf species), which increases the accumulation of litterfall and
enhances N storage [58]. Moreover, thinning increases solar radiation on the forest floor,
soil temperature, and thus the decomposition of organic matter. The decomposition process
is generally mediated by interactions between understory plants and microorganisms,
which stimulate N mineralization and nitrification in forest soil [37]. The thinning-induced
divergence in N demand favors an exploitative tree N-use strategy. For example, under-
story pioneer species had a greater demand for NO3− than for NH4+ [59], which might
promote N cycling and thus the biodiversity and structure of forests. Although the improve-
ments to soil fertility associated with thinning are complex, organic matter and soil total N
responded significantly and positively to understory biomass increments, suggesting that
thinning enhances tree growth and maximizes forest production in warm regions [7].

Thinning also increased soil P availability, and this P was likely derived from organic
matter, especially from logging residuals and roots [60]. As the P demand of understory
plants and the number of remaining trees after thinning increased, the efficiency of P
transformation from the subsoil increased, which enhanced understory biomass. However,
the AP was relatively low (3.96–3.19 mg·kg−1), partly because the soil in southern China
is acidic to strongly acidic, and the concentrations of free Fe3+ and Al3+ are high, which
induces the precipitation of soil P [61]. In addition, thinning reduces forest canopy inter-
ception and increases surface erosion, which may increase soil eluviation and thus reduce
concentrations of soil nutrients. Therefore, N and P should be supplemented to increase
soil fertility during post-thinning years in Masson pine forests in southern China.
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4.4. Relationships of Thinning, Environmental Factors, and Tree Diversity with
Biomass Increments

We used SEM to show that thinning, tree diversity, environmental factors, and their
interactions affected biomass increments (Figure 6), and the mechanisms underlying these
effects differed in the overstory and understory (Figure 7); this was consistent with predic-
tion 3. Thinning treatments, light intensity, and tree size diversity had significant effects
on overstory biomass increment, and species richness and soil organic matter affected
understory biomass.

Light inputs increase with thinning intensity. Liu, et al. [21] suggested that the av-
erage daily light intensity intercepted by the overstory in thinned subtropical forests is
approximately 1.3 to 2.5 times higher than that of the understory. Trees with access to
direct sunlight can generally respond better to thinning. In this study, dominant and
codominant trees, such as P. massoniana and Q. fabri, are highly sensitive to light intensity
and enhance their photosynthetic capacity under improved light environments. Previous
reports indicated that thinning-induced light increase could have significant impacts on
the CO2 assimilation and nitrogen content of light-demanding trees, resulting in greater
overstory biomass accumulation [35,55]. Therefore, the demand for light shapes overstory
growth in a post-thinning Masson pine forest.

Although biomass generally increases exponentially with DBH, with large trees con-
tributing most of the biomass, stands with trees of various sizes might be preferable [23].
Our results suggested that tree size diversity played an important role in driving overstory
biomass increase (Figure 7a). The group selection strategy with thinning regulates the
canopy tree size and stand structure and alleviates competition among neighboring trees,
which may promote tree growth and biomass increments [62,63]. In this study, canopy
trees of various sizes have complementary crown architectures and branch inclinations,
especially under MT and HT, which might form a complex structure that intercepts re-
sources at different points in space or at different times. But within the CK, even-sized trees
invest heavily in height growth and less in branching to avoid shading from neighbors,
thus inhibiting biomass increase. Jucker et al. [64] showed that competition for light and
water was evident in monoculture stands, and mixing species with different sizes increased
the amount of resources received and growth rates. These results suggest that both light
intensity and tree size diversity could play prominent roles in mediating thinning-induced
overstory biomass increase.

SEM showed that the standardized total coefficient of the understory Shannon index
was larger than that of other factors, suggesting that species richness made the greatest
contribution to understory biomass increment (Figure 7b). According to the diversity–
productivity hypothesis, positive interactions among species improve the utilization of
environmental resources when environmental conditions are favorable and different species
are allowed to coexist, and this increases community biomass and productivity [65]. Com-
plementarity and facilitation are the two primary mechanisms leading to productivity
increments [66], and understory biomass gains after thinning exceeded yields in the CK
stand. More diverse communities are more likely to include combinations of species that
integrate resource patches by increasing niche complementarity with functionally dissim-
ilar species [67]. Such facilitation could occur if certain species alter the environment in
such a way that it enhances the fitness of other species. Seed availability is increased when
the number of seed trees of different species in the overstory is higher, and this can enhance
understory species richness [56]. A positive relationship between species richness and
biomass increments for both the overstory and understory has also been observed in other
recent studies [30,68]. Regulating the composition of species is essential for maintaining
high community productivity and biomass. In practice, some native species, such as Q.
fabri and Castanopsis sclerophylla, should be planted in the understory to stabilize understory
tree diversity and improve productivity [35].

Although tree growth and community productivity theoretically increase with in-
creasing soil fertility, the amplification of biomass gains in the understory post-thinning is
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usually pronounced in nutrient-poor soils in tropical and subtropical forests [69,70]. In this
study, thinning increased soil organic matter inputs and soil N and P requirements, which
can improve the fertility of soil and enhance tree growth. Our results suggest that the
understory was affected to a greater degree by improvements in soil conditions compared
with the overstory. When soil conditions are improved, conservative nutrient strategies
might no longer be employed by some understory species, and their growth might be stim-
ulated [36]. Therefore, understory biomass might be mainly driven by biotic interactions
and improvements in soil conditions [37].

5. Conclusions and Management Implications

In conclusion, the findings of our study suggest that (1) moderate thinning (25%–35%
of trees removed) was effective for biomass increment in middle-aged Masson pine forests
in southern China, as well as for increasing tree diversity across tree strata; (2) diverse
environmental factors were found to be correlated with biomass increment, including light
intensity, soil organic matter, and other soil physiochemical properties; and (3) thinning
increment, environmental factors, tree diversity, and their interactions might affect biomass
increments, and the mechanisms underlying their effects might differ in the overstory
and understory.

These results have implications for silvicultural practices when thinning treatments
are used to regulate the regeneration and biomass of Masson pine forests. The excellent
performance of moderate thinning in promoting diversity in the overstory and understory,
as well as biomass increments, indicates that it could be considered the optimum treatment
for maintaining Masson pine forest ecosystem services. Biomass increments are influenced
by more factors than thinning increments alone, including tree diversity, light inputs, and
soil physiochemical properties. Specifically, thinning increment, light intensity, tree size
diversity, and their interactions had significant effects on overstory biomass increment, and
species richness and soil organic matter affected understory biomass. In addition, thinning
treatments should be dynamically programmed at specific intervals to improve light inputs
and soil fertility, as this would enhance tree growth. Given that massive Masson pine forests
have been established during the past decades in China, our findings are of significance for
improving the ecosystem functions in sustainable forest management.
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Abstract: The traditional volume-derived biomass method is limited because it does not fully consider
the carbon sink of young trees, which leads to the underestimation of the carbon sink capacity of a
forest ecosystem. Therefore, there is an urgent need to establish an allometric biomass model of young
trees to provide a quantitative basis for accurately estimating the carbon storage and carbon sink of
young trees. The destructive data that were used in this study included the biomass of the young
trees of the two dominant species (Betula pendula subsp. mandshurica (Regel) Ashburner & McAll
and Populus × tomentosa Carrière) in China, which was composed of the aboveground biomass (Ba),
belowground biomass (Bb), and total biomass (Bt). Univariate and bivariate dimensions were selected
and five candidate biomass models were independently tested. Two additive allometric biomass
model systems of young trees were established using the proportional function control method and
algebraic sum control method, respectively. We found that the logistic function was the most suitable
for explaining the allometric growth relationship between the Ba, Bt, and diameter at breast height
(D) of young trees; the power function was the most suitable for explaining the allometric growth
relationship between the Bb and D of young trees. When compared with the independent fitting
model, the two additive allometric biomass model systems provide additive biomass prediction
which reflects the conditions in reality. The accuracy of the Bt models and Ba models was higher,
while the accuracy of the Bb models was lower. In terms of the two dimensions—univariate and
bivariate, we found that the bivariate additive allometric biomass model system was more accurate.
In the univariate dimension, the proportional function control method was superior to the algebraic
sum control method. In the bivariate dimension, the algebraic sum control method was superior
to the proportional function control method. The additive allometric biomass models provide a
reliable basis for estimating the biomass of young trees and realizing the additivity of the biomass
components, which has broad application prospects, such as the monitoring of carbon stocks and
carbon sink evaluation.

Keywords: young tree; forest carbon sink; allometric growth; additive model

1. Introduction

The assessment of the carbon sink capacity must be based on an accurate biomass,
which is then converted into the carbon content and carbon dioxide equivalent. The
volume-derived biomass method is used for the evaluation of forest carbon sinks and
considers trees with a diameter at breast height >5 cm. However, the volume-derived
biomass method has not been able to assess the carbon sink of young trees, which leads to
the underestimation of the carbon sink capacity of forest ecosystems [1]. The assessment
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of the carbon sink capacity of forest ecosystems has received extensive global attention [2–
4]. To address the limitations of the volume-derived biomass method, it is necessary to
evaluate the carbon sink of young trees.

The lack of allometric biomass models of young trees affects the accuracy of assessing
the available forest biomass, forest fuel load, and carbon sink [5]. Due to the small size of
young trees, not calculating the volume of a few young trees will not have a significant
impact on the estimation of the carbon stock. However, young trees contribute significantly
to the carbon sink because they grow faster than large-diameter trees [6,7]. In addition,
reliable biomass models of young trees are particularly important in fire-prone forest
ecosystems. For example, in the Pinus brutia Ten. forests in Turkey, nearly 15% of the forest
area is dominated by young trees (D ranges from 0.1 to 8) [1].

There are differences in the definition of a young tree in different regions. In Turkey,
trees with a diameter at breast height of <8 cm are considered to be young trees and are
not measured in conventional forest inventory applications such as industrial round-wood
production [1]. In China, trees with a diameter at breast height of <5 cm are considered
to be young trees and are not measured in forest resource inventories [6]. The biomass
estimation of young trees in Turkey mainly targeted the crown biomass component and
was based on a small sample size [8]. Due to the difficulty of obtaining biomass samples,
the development of an allometric biomass model of young trees in China has been limited
to a few studies.

The main methods for estimating the forest biomass include the model and remote
sensing inversion methods. The most reliable way to determine the forest biomass would
be to cut and weigh all the trees in the forest. However, this would be destructive, time-
consuming, costly, and could only be conducted on a small scale [9]. The model method
can be used to estimate the forest biomass non-destructively. It estimates the forest biomass
using readily measurable tree factors [9,10]. In the model method, the biomass can be
estimated either by tree volume and biomass expansion factor or by the allometric biomass
model. Biomass estimation on a large spatial scale can be realized using the remote sensing
inversion method but atmospheric interference can affect the estimation accuracy of satellite
data [11]. Therefore, using allometric biomass models is often the best choice for estimating
the forest biomass if there is information on individual trees.

The allometric relationship of young trees is different from that of old trees [12,13].
Bond-Lamberty et al. (2002) found that when using data samples with a large diameter
at breast height, the allometric biomass models were significantly biased in estimating
the biomass of small-diameter trees [14]. Small-diameter trees play an important role in
estimating forest biomass because they account for a large number of the individual trees
that make up the biomass [12]. Therefore, it is necessary to separately develop an allometric
biomass model of young trees. However, only a few studies have modeled the biomass of
young trees [12,15,16].

The selection of the predictor is particularly important when developing an allometric
biomass model. Many allometric biomass models were established between tree biomass
and easily measured tree variables, such as the diameter at breast height, tree height, crown
width, and wood density [17–19]. For these developed models, the diameter at breast height
is the most commonly used and reliable predictor [20,21]. It has also been suggested that
adding tree height as a predictor to allometric biomass models can significantly improve
model performance [22,23].

Model form selection is an important uncertainty in estimating tree biomass. The
power function is the most commonly used to model allometric biomass [24,25]. The
exponential growth of biomass based on individual size is described in a power function
form [26,27]. However, due to resource competition, the continuous acceleration and infi-
nite growth of individual tree biomass in forest ecosystems is not valid. The logistic model
is a classical method for predicting population size. The logistic model has similar rapid
growth to the power function, which then gradually flattens out and finally approaches
the asymptotic value [28]. The logistic model and power function have the same statistical
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validity, but the logistic model has better ecological significance and can better estimate
shrub biomass [29].

For the modeling of tree biomass, the additivity of the biomass components should be
ensured, that is, the total biomass of the trees should be equal to the sum of the biomass
of each component. The total biomass of the trees is usually divided into different com-
ponents based on their physiological function, such as the trunk, branch, leaf, and root
biomass. When more than two tree components are involved, if the biomass model of
each component is fitted separately, the intrinsic correlation between the tree components
is not considered. In some studies, mathematical models were selected for the different
tree components, parameter fitting was carried out independently, and allometric biomass
models of each component were developed. When these models were used for prediction,
there was a non-additivity problem between the predicted total biomass of the trees and
the predicted biomass of each component [14,30–32].

To solve the additivity problem, different models and estimation methods have been
proposed, such as the generalized moment method (GMM) [33], error-in-variable simulta-
neous equations method (EIV) [34], proportional function control method, and algebraic
sum control method [35,36]. Among these methods, there is no unified conclusion on the
best method. Zheng et al. (2022) showed that the prediction accuracy of the proportional
function control method was higher [37]. Moreover, Xiong et al. (2023) showed that the
GMM method had a better fitting performance [25]. Fu et al. showed that the EIV method
has more advantages and potential [38].

Considering that the growth of young trees is different from that of old trees, it needs
to be confirmed that the conclusions made in previous literature based on the allometric
biomass model are applicable to young trees. In this study, based on the measured de-
structive data of young trees of Betula pendula subsp. mandshurica (Regel) Ashburner &
McAll and Populus × tomentosa Carrière, the additive allometric biomass model system
was established with the diameter at breast height and tree height as the predictors to
ensure the additive relationship between the total biomass, aboveground biomass, and
belowground biomass. We compared two additive methods, namely the proportional
function control method and the algebra sum control method, to determine which method
was better. We hypothesized that (1) the bivariate additive allometric biomass model
system is more accurate; (2) when compared with the power function, the logistic model
can better estimate the allometry of young trees; and (3) among the two additive methods,
the proportional function control method is superior to the algebra sum control method.

2. Materials and Methods

2.1. Study Site and Data
2.1.1. Study Site

Beijing is located at the junction of the Inner Mongolia Plateau and the North China
Plain. The elevation is ≤100 m and the elevation of most areas ranges between 30 and
50 m. The climate is a warm temperate semi-humid continental monsoon climate with four
distinct seasons, a hot and rainy summer and a cold and dry winter. The average annual
temperature is about 11.5 ◦C and the frost-free period is 5 to 6 months annually. The annual
average precipitation is 585 mm, with the summer precipitation accounting for about 74%
of the annual precipitation. According to zonal vegetation types, Beijing belongs to the
warm temperate deciduous broad-leaved forest area [39].

2.1.2. Data Collection

We obtained data during the peak annual biomass accumulation period from Septem-
ber to October 2021. A total of 44 plantation plots of 30 m × 30 m were investigated, and
all the young trees with diameters below 5 cm and heights above 130 cm were measured
(Table S1).

Table 1 shows the descriptive statistics of the data. The data was collected from
167 young trees: 104 Betula pendula subsp. mandshurica (Regel) Ashburner & McAll trees
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and 63 Populus × tomentosa Carrière trees. The factors that were measured for each tree
included the diameter at breast height, tree height, aboveground biomass, belowground
biomass, and total biomass. For each tree, the fresh weight of the trunk, branches, and
leaves were weighed and samples were taken. The sample was dried in the oven at 105 ◦C
to obtain the dry mass. According to the proportion of the fresh mass and dry mass of
the sample, the dry mass of each component was calculated, and then the parts of the
tree were added together to obtain the aboveground biomass. The belowground biomass
was determined using the full excavation method. The whole root system was dug out
manually, the soil on the root was cleared, and then the total fresh weight of the rhizome
(≥5 mm), coarse roots (2–5 mm), and fine roots (<2 mm) were weighed. The sample was
dried in the oven at 105 ◦C to obtain the dry mass. According to the proportion of the fresh
mass and dry mass of the sample, the dry mass of each component was calculated, and
then the parts of the tree were added together to obtain the belowground biomass. The total
biomass of the tree was obtained by adding the aboveground and belowground biomass.

Table 1. Statistics of the tree characteristics (N, D, and H) and biomass components (Ba, Bb,
and Bt) of two tree species (Betula pendula subsp. mandshurica (Regel) Ashburner & McAll and
Populus × tomentosa Carrière).

Tree Species N D (Mean ± S.D.) H (Mean ± S.D.) Ba (Mean ± S.D.) Bb (Mean ± S.D.) Bt (Mean ± S.D.)

Betula pendula subsp.
mandshurica (Regel)
Ashburner & McAll

104 3.0 ± 1.0 4.4 ± 1.4 2.095 ± 1.425 0.631 ± 0.540 2.727 ± 1.778

Populus × tomentosa Carrière 63 3.1 ± 1.0 4.5 ± 1.4 1.650 ± 1.184 0.445 ± 0.389 2.095 ± 1.513

Note: S.D.—Standard deviation, N—number of samples, D—diameter at breast height (cm), H—tree height (m),
Ba—aboveground biomass (kg), Bb—belowground biomass (kg), Bt—total biomass (kg).

2.2. Statistical Analysis
2.2.1. Independent Fitting Model

Many biomass models have been widely used to assess the carbon sink of global forest
ecosystems [29,32,40,41]. In this study, five kinds of biomass models commonly used in the
past were tested. Univariate and bivariate combinations were considered: (1) diameter at
breast height (D); and (2) D and tree height (H). Among them, the three model forms of
logistics function (Model 1), quadratic polynomial function (Model 2), and power function
(Model 3) only include D.

Model 1: B = a0/
(
1 + ea1+a2·D)

Model 2: B = a0 + a1D + a2D2

Model 3: B = a0Da1

Model 4: B = a0Da1 Ha2

Model 5: B = exp
[
a0 + a1 · ln

(
H × D2)]

Model 5: The Akaike information criterion (AIC) statistics were used to assess the
model complexity and its goodness of fit, with preference being given to the model with a
smaller AIC value. Using the AIC minimization criterion, the optimal model form for the
aboveground biomass, belowground biomass, and total biomass in terms of the univariate
and bivariate combinations was selected.

2.2.2. Proportional Function Control Method

The basic principle of the proportional function control method is to directly fit the
total biomass model and then assign the total biomass to the aboveground biomass and the
belowground biomass. The method is specified below.

Steps: based on the optimal model form for the total biomass (Bt) in Section 2.2.1,
Bt = f1(D) and Bt = f2(D, H) were developed to obtain the estimated value of the total
biomass under two dimensions. Then, the scale function under two dimensions was
set to: g1(D) = b1Dc1 and g1(D, H) = d1De1 H f1 . With the estimated total biomass as
the control, the biomasses of the two components were combined into a simultaneous
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equations system, and the parameters of the system were estimated by nonlinear seemingly
unrelated regression. The univariate and bivariate additive allometric biomass model
systems were expressed as follows:

{
Ba =

1
1+g1(D)

× f1(D) + ε1

Bb = g1(D)
1+g1(D)

× f1(D) + ε2

{
Ba =

1
1+g1(D,H)

× f2(D, H) + ε1

Bb = g1(D,H)
1+g1(D,H)

× f2(D, H) + ε2

2.2.3. Algebraic Sum Control Method

The basic principle of the algebraic sum control method is that the aboveground
biomass, belowground biomass, and total biomass are combined into equations, and the to-
tal biomass model is obtained by adding the two-component models. The regression model
of each component contains its own independent variables. The method is specified below.

Steps: based on the optimal model form from Section 2.2.1, the optimal model form of
the aboveground biomass (Ba) in two dimensions was determined as follows: Ba = m1(D)
and Ba = m2(D, H), and the optimal model form of the belowground biomass (Bb) under
the two dimensions was calculated as follows: Bb = n1(D) and Bb = n2(D, H). The
two biomass components and the total biomass were combined into a set of equations,
and the parameters of the equations were estimated by nonlinear seemingly uncorrelated
regression. The univariate and bivariate additive allometric biomass model systems were
expressed as follows: ⎧⎨

⎩
Ba = m1(D) + ε1
Bb = n1(D) + ε2
Bt = m1(D) + n1(D) + ε3⎧⎨

⎩
Ba = m2(D, H) + ε1
Bb = n2(D, H) + ε2
Bt = m2(D, H) + n2(D, H) + ε3

2.2.4. Model Evaluation

The coefficient of determination (R2) represents the ratio of the proportion of the
variance that is explained by the independent variable to the variance of the dependent
variable. When R2 is close to 1, it indicates that the model can explain the change in
the dependent variable well. The root mean square error (RMSE) measures the average
deviation between the observed and predicted values. The smaller the RMSE, the better
the predictive ability of the model. The formulae for the R2 and RMSE are specified below:

RMSE =

√
1
n

n

∑
i=1

(
Mi − M̂i

)2

R2 = 1 − ∑n
i=1 (Mi − M̂i)

2

∑n
i=1 (Mi − M)

2

where, Mi is the measured value (%), M̂i is the predicted value (%), M is the average
measured value (%), and n is the sample number.

Figure 1 shows the data collection and analysis process. All the statistical calculations
were performed using R 4.3.1 [42]. The systemfit package was used to estimate the parame-
ters of the simultaneous equations [43]. The ggplot2 package (version 3.4.4) was used to
display the data [44].
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Figure 1. Flowchart of the data collection and analysis.

3. Results

3.1. Correlation Analysis of Variables

The correlation analysis results are shown in Figure 2. Both D and H were positively
correlated with Ba, Bb, and Bt. The correlation coefficient of Betula pendula subsp. mand-
shurica (Regel) Ashburner & McAll ranged from 0.3 to 0.97. The correlation coefficient of
Populus × tomentosa Carrière ranged from 0.52 to 0.99.

The stacked kernel density of Ba, Bb, and Bt is shown in Figure 3. Skewness is a
measure of the asymmetry degree in data distribution. The skewness of Betula pendula
subsp. mandshurica (Regel) Ashburner & McAll ranged from 0.4973 to 2.0447, and that of
Populus × tomentosa Carrière ranged from 0.7338 to 2.0037. The asymmetry degree of Bb is
higher, and the asymmetry degree of Ba and Bt is lower.
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Figure 2. Correlation heat map of five variables (diameter at breast height [D], tree height [H],
aboveground biomass [Ba], belowground biomass [Bb], and total biomass [Bt]). Blue indicates
positive correlation. Red indicates negative correlation. (a) Betula pendula subsp. mandshurica (Regel)
Ashburner & McAll. (b) Populus × tomentosa Carrière.
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Figure 3. Stacked kernel density plot of three biomass components (aboveground biomass [Ba],
belowground biomass [Bb], and total biomass [Bt]). (a) Betula pendula subsp. mandshurica (Regel)
Ashburner & McAll. (b) Populus × tomentosa Carrière.

3.2. Analysis of the Independent Fitting Model

Based on the AIC minimization principle, the optimal model form was selected from
the five candidate models. In the univariate dimension, the optimal model form for the
aboveground biomass of the two species was Model 1, the optimal model form for the
belowground biomass was Model 3, and the optimal model form for the total biomass was
Model 1 (Figure 4, Table 2). In the bivariate dimension, the optimal model form for the
aboveground biomass, belowground biomass, and total biomass of the two species was
Model 4 (Table 3).
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Figure 4. Comparative analysis of three univariate candidate models (Model 1, Model 2, and Model 3)
with two tree species and three biomass components (aboveground biomass [Ba], belowground
biomass [Bb], and total biomass [Bt]). (a–c) is the result of Betula pendula subsp. mandshurica (Regel)
Ashburner & McAll. (d–f) is the result of Populus × tomentosa Carrière.

Table 2. Parameter estimation (a0, a1, and a2) and Akaike information criterion (AIC) results for
three univariate candidate models (Model 1, Model 2, and Model 3) with two tree species (Betula
pendula subsp. mandshurica (Regel) Ashburner & McAll and Populus × tomentosa Carrière) and three
biomass components (aboveground biomass [Ba], belowground biomass [Bb], and total biomass [Bt]).

Tree Species Component Model a0 a1 a2 AIC

Betula pendula
subsp.

mandshurica
(Regel)

Ashburner &
McAll

Ba (1) 6.0309 4.1417 −1.1056 160.28
Ba (2) 0.0385 −0.034 0.215 166.39
Ba (3) 0.2085 2.0017 NA 164.41
Bb (1) 1.4627 3.5013 −1.0489 123.81
Bb (2) −0.2264 0.2456 0.0122 125.17
Bb (3) 0.107 1.5734 NA 123.23
Bt (1) 7.4355 3.9978 −1.0944 202.02
Bt (2) −0.1882 0.212 0.2272 210.81
Bt (3) 0.3099 1.8962 NA 208.64

Populus ×
tomentosa
Carrière

Ba (1) 16.5001 4.9433 −0.8015 54.30
Ba (2) 1.4302 −1.1264 0.3487 55.26
Ba (3) 0.0877 2.4293 NA 56.36
Bb (1) 4.6766 4.5959 −0.6928 24.74
Bb (2) 0.0914 −0.0682 0.053 24.78
Bb (3) 0.038 2.0698 NA 22.81
Bt (1) 22.3301 4.9061 −0.7718 114.68
Bt (2) 1.5216 −1.1946 0.4017 115.44
Bt (3) 0.124 2.3484 NA 114.84

Note: NA indicates no parameter.
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Table 3. Parameter estimation (a0, a1, and a2) and Akaike information criterion (AIC) results
of two bivariate candidate models (Model 4 and Model 5) with two tree species (Betula pendula
subsp. mandshurica (Regel) Ashburner & McAll and Populus × tomentosa Carrière) and three biomass
components (aboveground biomass [Ba], belowground biomass [Bb], and total biomass [Bt]).

Tree Species Component Model a0 a1 a2 AIC

Betula pendula
subsp.

mandshurica
(Regel) Ashburner

& McAll

Ba (4) 0.2157 2.0291 −0.0442 166.14
Ba (5) −1.6713 0.6432 NA 220.91
Bb (4) 0.1879 2.0841 −0.7946 117.52
Bb (5) −2.299 0.4976 NA 135.52
Bt (4) 0.3538 2.0019 −0.1724 206.67
Bt (5) −1.2791 0.6106 NA 273.25

Populus ×
tomentosa Carrière

Ba (4) 0.0649 2.2219 0.3585 41.19
Ba (5) −2.6711 0.8104 NA 67.90
Bb (4) 0.0268 1.8741 0.3782 22.78
Bb (5) −3.6567 0.7321 NA 22.82
Bt (4) 0.0905 2.1431 0.3649 106.15
Bt (5) −2.3654 0.7943 NA 120.52

Note: NA indicates no parameter.

3.3. Analysis of the Two Additive Allometric Biomass Models

According to the estimation results of the optimal total biomass that was selected in
Tables 2 and 3, the proportional function was set and the equations were combined into
simultaneous equations. The parameter estimation of the proportional function control
method is shown in Table 4. According to the optimal model forms for the aboveground and
belowground biomass that were selected in Tables 2 and 3, the equations were combined
into simultaneous equations. The parameter estimation using the algebraic sum control
methods is shown in Table 5.

Table 4. Parameter results of the total biomass model and proportional function for two tree species
(Betula pendula subsp. mandshurica (Regel) Ashburner & McAll and Populus × tomentosa Carrière)
using the univariate and bivariate proportional function control method.

Species Dimension Model
Total Biomass Proportional Function

a0 a1 a2 b0 b1 b2

Betula pendula subsp. mandshurica
(Regel) Ashburner & McAll

Univariate 1 7.4355 3.9978 −1.0944 0.5107 −0.4223 /
Bivariate 4 0.3538 2.0019 −0.1724 0.9139 −0.0397 −0.6976

Populus × tomentosa Carrière Univariate 1 22.3301 4.9061 −0.7718 0.3929 −0.2906 /
Bivariate 4 0.0905 2.1431 0.3649 0.3879 −0.3167 0.0305

Table 5. Parametric results of the aboveground biomass and belowground biomass model for two
tree species (Betula pendula subsp. mandshurica (Regel) Ashburner & McAll and Populus × tomentosa
Carrière) using the univariate and bivariate algebraic sum control method.

Species Dimension Model
Aboveground Biomass

Model
Belowground Biomass

b0 b1 b2 c0 c1 c2

Betula pendula subsp. mandshurica
(Regel) Ashburner & McAll

Univariate 1 5.9573 4.1662 −1.1197 3 0.1086 1.5628 /
Bivariate 4 0.2153 2.0213 −0.0366 4 0.1867 2.0909 −0.7964

Populus × tomentosa Carrière Univariate 1 12.2232 4.7389 −0.8437 3 0.0374 2.0816 /
Bivariate 4 0.0642 2.2329 0.3555 4 0.0247 1.9306 0.3798

Figure 5 shows the logistic function results in Table 4. Both coefficients of the logistic
function have ecological significance; a0 refers to the equilibrium biomass and −a2 is
the growth rate relative to the equilibrium biomass. A larger −a2 value indicates that
individual trees will rapidly increase in biomass at a younger stage, which is known as the
equilibrium growth rate.
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Figure 5. Visualizations of logistic function in Table 4. (a) Comparative analysis of the equilibrium
biomass of two tree species (Betula pendula subsp. mandshurica (Regel) Ashburner & McAll and Populus
× tomentosa Carrière). (b) Comparative analysis of the equilibrium growth rate of two tree species
(Betula pendula subsp. mandshurica (Regel) Ashburner & McAll and Populus × tomentosa Carrière).

The results showed that the equilibrium biomass of Bt and Ba of Populus × tomentosa
Carrière was higher than that of Betula pendula subsp. mandshurica (Regel) Ashburner &
McAll. The equilibrium growth rate of Bt and Ba of Betula pendula subsp. mandshurica (Regel)
Ashburner & McAll is higher than that of Populus × tomentosa Carrière (Tables 4 and 5).

The parameter estimation processes of the two additive allometric biomass models
were different but the accuracy performance of the models was similar. For the proportional
function control method, the R2 of the total biomass model and aboveground biomass
model was higher (0.861–0.9292) when compared with the R2 of the belowground biomass
model (0.3899–0.5101). For the algebraic sum control methods, the R2 of the total biomass
model and aboveground biomass model was high (0.8604–0.9293), while the R2 of the
belowground biomass model was low (0.3795–0.5100; Table 6).

Table 6. Precision index (R2 and RMSE) results of the proportional function control and algebraic
sum control methods in the univariate and bivariate dimensions with two tree species (Betula pendula
subsp. mandshurica (Regel) Ashburner & McAll and Populus × tomentosa Carrière) and three biomass
components (aboveground biomass [Ba], belowground biomass [Bb], and total biomass [Bt]).

Species Dimension
Additive
Method

Total Biomass
Aboveground

Biomass
Belowground

Biomass

R2 RMSE R2 RMSE R2 RMSE

Betula pendula subsp.
mandshurica (Regel)
Ashburner & McAll

Univariate 1 0.8756 0.6272 0.8683 0.5247 0.3899 0.4257
Univariate 2 0.8749 0.6289 0.8681 0.5252 0.3795 0.4293
Bivariate 1 0.8795 0.6174 0.8748 0.5091 0.4221 0.4164
Bivariate 2 0.8804 0.6150 0.8753 0.5106 0.4239 0.4157

Populus × tomentosa
Carrière

Univariate 1 0.8610 0.5643 0.9128 0.3552 0.4943 0.2809
Univariate 2 0.8604 0.5655 0.9127 0.3584 0.4941 0.281
Bivariate 1 0.8786 0.5273 0.9292 0.3229 0.5101 0.2788
Bivariate 2 0.8786 0.5272 0.9293 0.3227 0.5100 0.2789

Combining the prediction accuracy of the three biomasses, the two dimensions were
compared. The bivariate additive allometric biomass model system was the most accurate
(Table 6). Then, the two additive methods were compared. In the univariate dimension, the
proportional function control method was superior to the algebraic sum control method. In
the bivariate dimension, the algebraic sum control method was superior to the proportional
function control method (Table 6).
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For Betula pendula subsp. mandshurica (Regel) Ashburner & McAll, the model perfor-
mance was optimal when the algebraic sum control methods were used in the bivariate
dimension (total biomass model: R2 = 0.8804, aboveground biomass model: R2 = 0.8753,
belowground biomass model: R2 = 0.4239). For Populus × tomentosa Carrière, the model
performance was optimal when the algebraic sum control methods were used in the bivari-
ate dimension (total biomass model: R2 = 0.8786, aboveground biomass model: R2 = 0.9293,
belowground biomass model: R2 = 0.5100; Figure 6).
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Algebraic sum control method, Univariate

Proportional function control method, Bivariate
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Figure 6. Regression results of the observed values and the predicted values of the proportional
function control and algebraic sum control methods in the univariate and bivariate dimensions with
two tree species and three biomass components (aboveground biomass [Ba], belowground biomass
[Bb], and total biomass [Bt]). (a–c) is the result of Betula pendula subsp. mandshurica (Regel) Ashburner
& McAll. (d–f) is the result of Populus × tomentosa Carrière.

In addition, we conducted validation and found that the two additive allometric
biomass models were additive and met the needs of practical applications, and the inde-
pendent regression models were not additive (Figure 7).
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Figure 7. Additivity verification of the independent fitting model and two additive allometric biomass
models (proportional function control method and algebraic sum control method). (a) Independent
fitting model. (b) Proportional function control method. (c) Algebraic sum control method.

4. Discussion

A robust allometric biomass model should be built from a large number of data sam-
ples. When the sample size of the biomass data is relatively small, the accuracy of the model
may be reduced. Consequently, this study included 167 young trees, which was sufficient
to conduct robust biomass modeling for two tree species. Wang (2006) established indepen-
dent biomass models with only 10 trees per species using biomass data from Pinus koraiensis
and Larix gmelinii [45]. Additionally, Zheng et al. (2022) used the biomass data from 137
young trees on the Qinghai–Tibet Plateau to establish independent biomass models with
the ground diameter instead of the diameter at breast height as a predictor [37]. Wang et al.
used destructive biomass data from 501 trees in three provinces of young trees in north-
east China to establish a biomass model [13]. Furthermore, Dong et al. (2014) established
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an additive allometric biomass model system with sample sizes of 41 Pinus koraiensis
and 122 Larix gmelinii [46]. Then, Cui et al. (2020) harvested 45 Robinia pseudoacacia L. in
the Loess Plateau of Shaanxi Province and established an additive allometric biomass
model system [22]. This study did not collect samples from different ecological regions, so
this is a potential limitation. Therefore, it is suggested that young trees of Betula pendula
subsp. mandshurica (Regel) Ashburner & McAll and Populus × tomentosa Carrière should
be sampled in different ecological zones in the future.

We found that the logistic function was the optimal model form for the aboveground
biomass and total biomass, and the power function was more suitable for fitting the
belowground biomass. Whether the traditional allometric biomass model (that is, the
power function model) can fit all the observed biomass data well has been investigated
by ecologists [24,47,48]. Although the power function has been verified statistically in
previous biomass studies, it has been challenged theoretically [26,29]. Consistent with our
study, Ma et al. (2021) found that the logistic function was superior to the power function
for estimating the allometry relationship of shrub biomass [29]. In addition, Zhou et al.
(2021) proposed the concept of a dynamic allometric scaling relationship between the trunk
biomass and aboveground biomass, which was fitted to an asymptotic allometric model,
and it was verified that it could fit biomass data better than a power function [26].

As hypothesized, we found that the prediction accuracy of the model that included
tree height as a predictor was significantly improved. This is consistent with many other
studies [22,49,50]. In contrast, Zhang et al. (2016) discovered that the addition of tree height
to the biomass model did not improve the model performance as expected, especially
for the branch biomass and leaf biomass [51]. Tree height is often overlooked in forest
models because it is difficult to accurately measure tree height in closed-canopy forests, and
there has been substantial debate on whether to use tree height as a predictor for biomass
models [52]. For young trees, it is easy to measure the tree height. Therefore, in practical
applications, it is more appropriate to use the bivariate additive allometric biomass model
that was developed in this study.

We have verified that the sum of the predicted values of each biomass component
model was different from the predicted values of the total biomass model when using
the independent fitting model. The disadvantage of the independent fitting model is that
additivity is not satisfied. In contrast, the two additive allometric biomass models that
were developed have clear advantages. The models of the total biomass, aboveground
biomass, and belowground biomass were fitted using simultaneous equations to explain
the intrinsic correlation between the biomass components of the same tree. Therefore,
it is crucial to emphasize the benefit of using the additive allometric biomass model in
practical applications.

There are many additive modeling methods. However, we found that the proportional
function control method was superior to the algebraic sum control method in the univari-
ate dimension, and the algebraic sum control method was superior to the proportional
function control method in the bivariate dimension. Many studies have used algebraic
sum and proportional function control methods to construct additive allometric biomass
model systems. For instance, Liu et al. (2023) conducted destructive sampling of trees on
Hainan Island and established an additive allometric biomass model using the algebraic
sum control method, which satisfied the additivity of the aboveground biomass, branch
biomass, and leaf biomass [19]. Furthermore, Wang et al. (2018) established an additive
allometric biomass model based on diameter at breast height and height in a young forest
of Betula pendula subsp. mandshurica (Regel) Ashburner & McAll in northeast China using
the algebraic sum control method [13]. Moreover, Fu et al. (2016) established an additive
allometric biomass model with Pinus massoniana Lamb. in southern China using the al-
gebraic sum control method [38]. Then, Zhang et al. (2016) established one-, two-, and
three-variable additive allometric biomass models for Populus × tomentosa Carrière in the
Jiangsu Province, China using the proportional function control method [51]. Zeng et al.
(2017) realized the additivity between the aboveground biomass and four biomass com-
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ponents, the trunk, bark, branches, and leaves [53]. The proportional function control
method is first fitted to the whole tree biomass, and then the proportional function is used
to allocate the tree biomass to each biomass component. The algebraic sum control method
is used to directly model the biomass component, and then the total biomass is obtained by
adding the biomasses of each component. In the practice of forestry production, the goal is
to obtain the whole tree biomass or the aboveground biomass, so the additive model that is
developed using the proportional function control method is more practical.

Whether the sample data need to be divided into modeling data and testing data is
still a controversial issue. Some studies suggest that the applicability of evaluating the
predictive ability of the model by calculating the evaluation index of the modeling data
must be tested [54]. However, Kozak and Kozak (2003) concluded that grouping samples
for suitability tests would result in the loss of part of the modeling information and would
not provide additional information for model evaluation [55]. To make full use of the
sample information, this study did not distinguish between modeling samples and test
samples, and all the sample data were used to build the biomass models.

5. Conclusions

In this study, two additive allometric biomass model systems of young trees of Betula
pendula subsp. mandshurica (Regel) Ashburner & McAll and Populus × tomentosa Carrière
were established, these provide a theoretical reference and technical support for estimating
the biomass of young trees at a single tree scale. The two yield table is given for the
application of the model (Tables S2 and S3). Our research results will provide a quantitative
basis for the monitoring of carbon stocks and carbon sink evaluation of young trees in
China. We found that the logistic function was more suitable for explaining the allometric
growth relationship between the aboveground biomass, total biomass, and diameter at
breast height of young trees; the power function was more suitable for explaining the
allometric growth relationship between the belowground biomass and diameter at breast
height of young trees. In the actual modeling process, an appropriate model form should
be selected for the different biomass components since the biomass results of independent
fitting models are not additive. The bivariate additive allometric model system has higher
accuracy. Thus, in practical applications, we recommend the bivariate additive allometric
model as the first choice. There was no consensus on which of the two additive methods
was better. In the univariate dimension, the proportional function control method was
superior to the algebraic sum control method. In the bivariate dimension, the algebraic
sum control method was superior to the proportional function control method. In the
actual modeling process, it is necessary to compare the methods and choose the best
additive method.

The biomass of young trees is influenced by a variety of abiotic and biological factors,
including climate, stand structure, and site conditions. Thus, it is suggested that future
studies should consider including these factors as additional predictors. Mixed effect mod-
els have been shown to have advantages in improving the accuracy of model estimation.
Therefore, the biomass prediction could be improved by combining the mixed effect model
with the additive model.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f15060991/s1, Table S1: Location and basic stand factors of
50 plantations plots. Table S2: Yield table of Betula pendula subsp. mandshurica (Regel) Ashburner &
McAll. Table S3: Yield table of Populus × tomentosa Carrière.
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Abstract: Above-ground biomass (AGB) is affected by numerous factors, including topography,
climate, land use, or tree/forest attributes. Investigating the distribution and driving factors of
AGB within the managed forests in Nepal is crucial for developing effective strategies for climate
change mitigation, and sustainable forest management and conservation. A total of 110 field plots
(circular 0.02 ha plots with a 9 m radius), and airborne laser scanning (ALS)-light detection and
ranging (LiDAR) data were collected in 2021. The random forest (RF) model was employed to predict
the AGB at a 30 m × 30 m resolution based on 32 LiDAR metrics derived from ALS returns. The
study assessed the relationships between the AGB distribution and nine independent variables using
statistical techniques like the random forest model and partial dependence plots. Results showed
that the mean value of the estimated AGB was 120 tons/ha, ranging from 0 to 446.42 tons/ha. AGB
showed higher values in the northeast and southeast regions, gradually decreasing towards the
northwest. Land use land cover, mean annual temperature, and mean annual precipitation were
identified as the primary factors influencing the variability in AGB distribution, accounting for 64%
of the variability. Elevation, slope, and distance from rivers were positively correlated with AGB,
while proximity to roads had a negative correlation. The increase in precipitation and temperature
contributed to the initial rise in AGB, but beyond a certain lag, these variables led to a decline in
AGB. This study showed the efficiency of the random forest model and partial dependence plots in
examining the relationship between the AGB and its driving factors within managed forests. The
study highlights the importance of understanding the AGB driving factors and utilizing LiDAR data
for informed decisions regarding the region’s sustainable forest management and climate change
mitigation efforts.

Keywords: LiDAR; forest biomass; pattern; random forest; mean annual temperature; national forest;
carbon; Nepal

1. Introduction

Forests play a crucial role in absorbing atmospheric carbon dioxide, acting as a reser-
voir that helps counterbalance human-caused greenhouse gas emissions to mitigate climate
change impacts [1–3]. Carbon storage in forests represents the largest portion, account-
ing for 82.5% of the total carbon stored in terrestrial vegetation. This significant carbon
reservoir plays a vital role in acting as the primary component of the vegetation carbon
sink [4,5]. Tropical forests store about 55% of the total carbon in forests and contribute to
70% of the global forest carbon sink [3,6]. Deforestation and forest degradation can lead
to carbon emissions entering the atmosphere, affecting global climate and environmental
change [7–10]. Despite the critical role of forests in mitigating climate change through
carbon sequestration, there is a significant challenge in accurately estimating the forest

Forests 2024, 15, 663. https://doi.org/10.3390/f15040663 https://www.mdpi.com/journal/forests192



Forests 2024, 15, 663

biomass and understanding the factors influencing its dynamics. The current concerns
about global change and the functioning of ecosystems require accurate forest biomass
estimates and an examination of its dynamics [11].

In terrestrial forest ecosystems, the above-ground biomass (AGB) of trees serves as
the most crucial and prominent carbon reserve [12,13]. Though field measurements offer
precise data on AGB estimation, the sampling process can be constrained by challenging
terrain or limited resources. In recent years, remote sensing (RS) technology has emerged as
the most preferred method, enabling researchers to obtain a broad-scale, real-time overview
of vegetation conditions. This advancement has provided a valuable tool for studying
and monitoring vegetation on a large scale [14,15]. Integrating remote sensing data with
forest inventory data has evolved into a potent technique for accurately estimating AGB in
forest stands [16,17]. Based on remote sensors’ information and allometric equations, the
predicted AGB has been calibrated and validated with ground truth to develop biomass
estimation models [18]. Remote sensing data, such as light detection and ranging (LiDAR)
data, proves advantageous in assessing forest characteristics like tree height, which directly
correlates with forest biomass [17,19]. Over the past few years, airborne laser scanning
(ALS), alternatively referred to as light detection and ranging (LiDAR), has emerged as
the prevailing technology for acquiring precise topographic information, and it has been
extensively applied in vegetation mapping and forest inventory, respectively [17,20,21].
ALS data captures the horizontal and vertical distribution of the forest canopies and does
not saturate the spectral response of dense canopies, in contrast to multispectral imagery
or aerial photography [22]. This advancement of RS technology, integrated with intensive
site-based inventory methods, has also played a crucial role in monitoring and managing
forests, particularly in initiatives like REDD+ (reducing emissions from deforestation and
forest degradation) [23].

In tropical and subtropical forests, carbon stocks are declining at a rate of 1–2 bil-
lion tons per year [24] and are primarily affected by different drivers, such as the forest
management regime and natural disturbance [25–28], the species composition of forests
and forest type [29], and stand age structure [30,31]. The accumulation of AGB and its
distribution in forested ecosystems are also significantly influenced by climate [32,33], as
well as soil characteristics and topography [34,35]. Climatic data plays a significant role
in understanding how temperature and precipitation influence tree growth [36], resulting
in variation in AGB accumulation [37]. Moreover, the variation in AGB of forest stands is
triggered by changes in land use and land cover because of human-induced activities [38].
Variations in soil properties and nutrient availability to trees also offer valuable insights into
AGB dynamics [39]. AGB of trees is also influenced by variations in water availability, tree
cover [40], and altitude [41–43]. In a broader context, the ALS-generated AGB maps can be
combined with various geospatial data, including climate data, soil attributes, vegetation
types, and land use patterns, to investigate the relationships between these factors and the
AGB distribution. In the present research, we used the random forest (RF) model to analyze
and describe the spatial distribution of AGB in managed forests in Nepal. The RF model
is a machine learning algorithm capable of handling complex datasets and identifying
important predictors of AGB distribution [44].

The forest of Nepal is categorized based on its own protected compasses, “private
forest” and “national forest”, with the latter further classified into five types: government-
managed forest, community forest, leasehold forest, religious forest, and protection forest.
Managed forests, such as community, leasehold, and religious forests, are crucial in pro-
moting sustainable resource utilization and supporting local livelihoods. Protected forests
contribute significantly to biodiversity conservation and are crucial ecological habitats [45].
Nepal covers about 23.39% of its land area as protected areas, aiming to conserve biodiver-
sity and maintain terrestrial carbon stocks. Forests, which cover approximately 45.3% of
Nepal’s total land area [45], serve a significant amount of AGB and store about 1055 million
tons of atmospheric carbon [45]. Nepal has over 22,000 community forest groups (CFs), rep-
resenting 3 million households nationwide. These groups manage over 2.4 million hectares
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of forests, equivalent to about one-third of Nepal’s forest cover (https://mofe.gov.np/,
accessed on 9 September 2022). These forests play a crucial role in sequestering carbon and
mitigating potential greenhouse gas emissions in the region through their biomass.

While ALS has been increasingly used for estimating and mapping AGB in Nepal [46–48]
to support the REDD+ implementation, there is limited information about the spatial
distribution of AGB across different forest types and management regimes. The underlying
factors that influence AGB, particularly in managed forests, are not well understood. LiDAR
technology has the capability to capture detailed vegetation structure and topography at
high resolutions [49] to provide reliable estimates of AGB and forest carbon stock at the
landscape level [50–52]. Combined with ancillary data sources, LiDAR can offer valuable
insights into the spatial variation of AGB estimates and understand the factors that control
it [53]. Therefore, the study aimed to estimate aboveground biomass (AGB) and map its
spatial pattern in the managed forest of Nepal, specifically focusing on the Sagarnath Forest
Development Project. The study also sought to investigate the influence of climatic and
topographic variables on AGB spatial distribution and identify the main driving factors.
The study focuses on the following questions: (1) What are the distribution patterns of
forest AGB within the study area? (2) What are the determinants of forest AGB in the study
area? How do topography, climate, and soil factors influence AGB levels in the forests?
Understanding the determinants of forest AGB in study sites is crucial for improving forest
carbon management practices and accurately estimating carbon storage. By establishing
relationships between AGB and environmental factors, such as topography, climate, and
soil characteristics, the study enhances our understanding of how these factors impact AGB
dynamics in forest ecosystems.

2. Materials and Methods

2.1. Study Area

The study area is situated within the Sagarnath Forest Development Project (SFDP)
in the Central Terai region of Nepal (Figure 1), and it is located between 85◦67′49′′ east
longitude and 26◦99′74′′ north latitude [54]. The government of Nepal manages the SFDP,
established in 1985 on previously owned forest land. It covers a total area of 13,512 ha
across two districts, namely Sarlahi and Mahottarai districts, in the lowland (Terai region) of
Nepal. The total area consists of various land categories, including plantations (11,796 ha),
natural forests (395 ha), protected forests (707 ha), and water bodies (615 ha). A large
amount of Eucalyptus (Eucalyptus camaldulensis) and Teak (Tectona grandis) have been
planted in the project area since its inception. The native forest type is characterized
by mixed hardwood tropical forests, with Sal (Shorea robusta) being the dominant species,
accounting for approximately 90% of the forest composition. The altitude in the Terai region
ranges from 60 to 330 m above mean sea level. The climate in this region is characterized
by hot summers, with temperatures ranging from 35 ◦C to 45 ◦C in April and May, and dry
winters, with temperatures ranging from 10 ◦C to 15 ◦C in January. The region receives
annual precipitation ranging from 1130 mm to 2680 mm [55]. The region consists of a
piedmont plain formed by recent and post-Pleistocene alluvial deposits [45].
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Figure 1. Study area location, and the distribution of the sampling plots.

2.2. Field Measurements and AGB Estimates

Field data were collected from 110 circular inventory plots randomly distributed in
the forest, each covering an area of 0.02 ha with a radius of 9 m. Tree attributes, including
diameter at breast height (DBH), and tree height (H), were measured for every individual
tree in each plot. Tree height was recorded using a Vertex III hypsometer, while diameters
were measured using diameter tapes. The data collection was conducted in January 2021,
and the GPS coordinates of the plot centers were also recorded. Out of the initial sampling
design, 7 plots were excluded because they were located either on roads or inside riverbeds,
and additionally, 13 plots visited in the field had no trees with a diameter of at least 5 cm
for considering measurements. In the remaining sample plots, a total of 1138 trees with a
DBH greater than or equal to 5 cm were measured. The total above-ground tree biomass
(DBH > 5 cm) was obtained by summing up the stem biomass, branch biomass, and foliage
biomass. Stem biomass was estimated by multiplying stem volume with the wood density
of the species. The stem volume is determined using the equation developed by Sharma
and Pukkala [56] for Nepalese tree species, which was used to compute stem volume. The
stem volume equation for calculating the volume of trees is:

ln(v) = a + b × ln(DBH) + c × ln(H) (1)

Here,

“v” is the volume per hectare (m3/ha);
“ln” is the natural logarithm with base 2.71828;
“DBH” is the diameter of trees at breast height (cm);
“H” is the height of trees (m).
Additionally, the coefficients a, b, and c are species-dependent.

The species wood density values for Nepalese tree species were obtained from Jack-
son [57]. Species-specific branch-to-stem biomass and foliage-to-stem biomass ratios were
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utilized to calculate branch and foliage biomasses from stem biomass [56]. Based on the
corresponding plot area, the total AGB for each plot was then scaled to a per hectare
(ton/ha) (Table 1).

Table 1. Summary of plot-level inventory plots.

Attributes Mean ± Standard Deviation Range (Minimum to Maximum)

Density (trees/ha) 462 ± 343 39–2122
DBH (cm) 24 ± 14 6–101
Height (m) 17 ± 7 2–28
Basal area (m2) 12 ± 10 0.2–47
Volume (m3/ha) 108 ± 112 0.6–519
AGB (ton/ha) 131 ± 137 1–640

2.3. LiDAR Data

The ALS LiDAR data were acquired by Geo3dModeling, a local vendor, using a
helicopter in January 2021. The recorded LiDAR data were provided by Nepal Ban Nigam
Limited, a governmental organization in Nepal. The LiDAR provided has a point density
of at least 15 points per square meter. Using the LiDAR package version 4.0.3 in R 4.3.0
software, the LiDAR data were processed [58]. LiDAR data were normalized with a digital
terrain model (DTM) of 1 m2 resolution to remove ground elevation from the height of
returns. Subsequently, the point cloud data were clipped to the size of the field inventory
sampling plots, ensuring that only relevant portions of the LiDAR data were retained for
further analysis. Canopy density, which represents the ratio of vegetation to ground as
observed from above, and canopy height, which measures the vertical distance between the
top of the canopy and the ground, were calculated using the normalized point cloud and
the clipped plots. These canopy height and canopy density metrics, along with the field
inventory data from the plots, were combined for modeling purposes. The LiDAR metrics
were computed at a resolution of 1 m2 and used as the predictor variables [54] (Table 2).

Table 2. Predictor variables extracted from ALS-LiDAR metrics (height, density, and canopy) for
modeling the AGB.

ALS- LiDAR Metrics Predictor Variables Characteristics

Height metrics Percentiles height (zq5 to zq95)

Percentiles of the ALS height distributions, where the
“z” typically stands for height and “q” stands for
quantile or percentile (including 5th, 10th, 15th, 20th,
25th, 30th, 35th, 40th, 45th, 50th, 55th, 60th, 65th, 70th,
75th, 80th, 85th, 90th, 95th) for all points above 2 m

Maximum heights (zmax) Maximum heights above 2 m for all points

Mean heights (zmean) Mean heights above 2 m for all points

Coefficient of variation of height (zcv) Coefficient of variation of heights for all points above
2 m

Standard deviation (zsd) Standard deviation of heights for all points above 2 m

Skewness (zskew) Skewness of heights for all points above 2 m

Kurtosis (zkurt) Kurtosis of the heights for all points above 2 m

Entropy (zentropy) Entropy of the height distribution
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Table 2. Cont.

ALS- LiDAR Metrics Predictor Variables Characteristics

Density metrics pzabove2 Percentages of first returns above 2 m

pzabovezmean Percentage of returns greater than the mean
returns height

zpcum1 Cumulative percentage of first returns in the lower 10%
of maximum elevation

zpcum2 Cumulative percentage of first returns in the lower 20%
of maximum elevation

zpcum3 Cumulative percentage of first returns in the lower 30%
of maximum elevation

Relative shape of the canopy Canopy relief ratio (CRR)
Calculated as (height mean-height min)/(height
max-height min), which represents the relative shape of
the canopy

2.4. Above-Ground Biomass Mapping

Statistical techniques, such as random forest (RF) were used to establish a correlation
between LiDAR point cloud data metrics and the above-ground biomass (AGB). The
LiDAR metrics were considered independent variables, while AGB (ton/ha), which was
determined at the plot level using field data, was the dependent variable.

RF is a powerful non-parametric machine learning algorithm that can be applied for
both regression and classification [59]. The RF regression yields an arbitrary number of
simple trees, which are a subset of independent variables–point cloud-derived metrics
when estimating the dependent variable (AGB). The RF regression models are powerful for
capturing complex, non-linear relationships between predictor variables (such as LiDAR
metrics) and response variables (such as forest AGB). Unlike traditional linear regression
models, the assumption of normality in the data is not necessary for RF regression [44].

We fitted the RF model using the ModelMap package in R [60]. This package utilizes
the RF (random forest) function, a machine learning tool, to accurately capture the intricate
and non-linear connections between LiDAR metrics and the AGB. This approach also
allows for the determination of variable importance. RF utilizes bootstrap aggregation to
create models that exhibit enhanced predictive abilities for estimation [61]. The estimation
of AGB using the RF algorithm was carried out by considering two parameters: Mtry, which
represents the number of predictor variables, and Ntree, which represents the number of
decision trees. The function automatically optimizes Mtry parameter, denoting the number
of randomly chosen variables at each node. For this specific case, the Ntree parameter was
set to 500, indicating the quantity of trees grown in the model. The RF method was applied
to estimate AGB using 32 point-derived metrics extracted from ALS LiDAR.

To assess the accuracy of AGB estimations, we split the inventory plots into two sets:
a training dataset and a validation dataset. The data were randomly split at a ratio of 70:30,
employing the createDataPartion function of the “caret” package [62]. The RF method
was used in the R studio for modeling and accuracy evaluation [63]. The coefficient of
determination (R2), root mean square error (RMSE), and MAE were applied to compare the
performance of the RF algorithm [64,65]. The equation is as follows:

R2 = 1 − ∑
(
Yobs,i − Ŷmod,i

)2

∑
(
Yobs,i − Yobs

)2 (2)

RMSE =

√
1
n∑n

i=1

(
Yobs,i − Ŷmod,i

)2 (3)

MAE =
1
N ∑N

i=1

∣∣Yobs,i − Ŷmod,i
∣∣ (4)
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Here,

R2 denotes the coefficient of determination;
Yobs,i denotes the measured value;
Ŷmod,i denotes the model predicted value;
Yobs denotes the average value;
n denotes the total number of samples;
RMSE denotes the root mean square error;
and MAE denotes the mean absolute error.

The “raster” package [66] in R was used to predict the spatial AGB in the study site.
The “predict ()” function was employed, taking the raster dataset and the final model as
inputs. The resulting AGB raster was utilized for the subsequent analysis process. Spatial
grids of ALS metrics were generated for the study site at a resolution of 30 × 30 m. Using
R 4.3.0 software, an AGB map was created with a spatial resolution of 30 × 30 m, utilizing
LiDAR-derived variables obtained from ALS returns.

2.5. Climatic and Topographic Data

To assess the influence of environmental factors on AGB variability, climatic, topo-
graphic, soil, and land use land cover data were randomly collected for the 600 samples
within the study area. Explanatory variables, including elevation, slope, aspect, land use
land cover, and climate data such as mean annual temperature (MAT), and mean annual
precipitation (MAP), were derived from geospatial datasets. Airborne LiDAR data were
utilized to obtain high-resolution terrain information for the Earth’s surface with a resolu-
tion of 10 m (Table 3). For this process, a digital elevation model (DEM) was developed
to obtain a digital representation of ground surface topography or terrain. Terrain vari-
ables were extracted from LiDAR ground points with a resolution of 10 m, as indicated
in Table 3. The climatic variables, namely MAT (deg C) and MAP (mm) were obtained
for the study sites from the Department of Hydrology and Meteorology (DHM) of Nepal
(https://www.dhm.gov.np/, accessed on 5 September 2023), respectively. We created a
10 m resolution grid of mean annual precipitation (MAP) and mean annual temperature
(MAT) data, monthly rainfall records, and temperature records of 11 ground stations in the
study sites from 1981 to 2019 and interpolated using the ArcGIS 10.1 package. The land
use land cover (LULC) types for the study area, with a resolution of 10 m, were acquired
from ArcGIS online (https://livingatlas.arcgis.com/landcover/, accessed on 5 September,
2023). The soil type was extracted from the ICIMOD (International Centre for Integrated
Mountain Development) in Nepal (https://rds.icimod.org/, accessed on 5 September 2023).
Finally, both the AGB map and the explanatory variables were prepared into a 30 m × 30 m
grid cell.

Table 3. Description of explanatory variables related to environmental factors.

Variable Type Description Spatial Resolution Data Source

Climatic variables Mean annual temperature (deg C) from
1981 to 2021 10 m × 10 m

DHM
(http://www.dhm.gov.np/,
accessed on 5 September 2023)

Mean annual precipitation (mm)
from 1981 to 2021 10 m × 10 m

Topographic and soil variables Elevation (m a.s.l.) based on DEM 10 m × 10 m DEM-LiDAR

Slope (deg) based on DEM 10 m × 10 m DEM-LiDAR

Aspect (deg) based on DEM 10 m × 10 m DEM-LiDAR
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Table 3. Cont.

Variable Type Description Spatial Resolution Data Source

Soil type 10 m × 10 m

ICIMOD (https:
//rds.icimod.org/home/
datadetail?metadataid=1889,
accessed on 5 September 2023)

Road distance 10 m × 10 m

ICIMOD (https:
//rds.icimod.org/home/
datadetail?metadataid=1889,
accessed on 5 September 2023)

River distance 10 m × 10 m

ICIMOD (https:
//rds.icimod.org/home/
datadetail?metadataid=1889,
accessed on 5 September 2023)

Land use land cover Sentinel-2: Land Use/Land Cover 2021 10 m × 10 m

ArcGIS online
(https://livingatlas.arcgis.
com/landcover/, accessed on
5 September 2023)

2.6. Statistical Model and Analysis

We used AGB as the dependent variable, while climatic, topographic, and soil vari-
ables were treated as independent variables for the statistical modeling. We employed the
RF model to examine the relationship between AGB and the explanatory variables. We
employed the random forest model (RF) in the R 4.3.0 software. The RF model, which
utilizes machine learning algorithms based on decision trees, was utilized to assess the
impact of various anthropogenic and environmental factors on AGB variability in man-
aged forests [67]. The RF model is suitable for analyzing large datasets with numerous
variables, accommodating both continuous and categorical variables, and demonstrating
robustness against the multicollinearity problem [18]. We calculated the relative impor-
tance of potential predictor variables on AGB, calculating variable importance values using
the RF algorithm [68,69]. The higher the percentage increase in mean square error (%In-
cMSE) and increase in nodePurity (IncNodePurity), the stronger the importance of these
predictor variables.

In addition, the relative importance of variables was estimated using the mean de-
crease accuracy (MDA) metric used in the RF model. The MDA metric calculates the
change in model accuracy on a test set by randomly shuffling the values of a feature,
where a greater decrease in accuracy indicates a higher feature importance. We used the
generated partial dependence plots to visualize the marginal effects of predictor variables
on the response variable within the model. The partial plot function under the :randomFor-
est” package version 4.7.1.1 in the R 4.3.0 software was used, following the methodology
proposed by [70] Friedman (2001). Partial dependence plots are commonly employed to
examine the linearity, non-linearity, or other intricate relationships between predictors and
response variables [71].

These plots aid our analysis to assess the relationship between individual predictors
and the response variable. To calculate the partial dependence function, we utilized
the “pdp” R package version 0.8.1. The utilization of the partial dependence analysis
results contributes to ascertaining the impact of individual variables on the response, while
excluding the influence of other variables.

3. Results

3.1. Aboveground Biomass—ALS Based Map

Independent variables in the RF model were derived from a total of 32 LiDAR-based
metrics, which included zmax, zmean, zsd, zcv, zskew, zkurt, zentropy, pzabovemean,
pzabove2, zq5, zq10, zq15, zq20, zq25, zq30, zq35, zq40, zq45, zq50, zq55, zq60, zq65, zq70,
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zq75, zq80, zq85, zq90, zq95, zpcum1, zpcum2, zpcum3, and CRR, respectively. The RF
model calculated and plotted the variable importance, showing the top variables for AGB
estimation (Figure 2).

Figure 2. Variable importance ranking for the AGB estimation RF model.

However, among them, height-related metrics such as zmax, zmean, zq75, zq80, zq90,
zq95, and density-based metrics, such as zpcum1, and zpcum2, exhibited relatively higher
values for %IncMSE and IncNodepurity. It was found that zq95 and zmax were the most
influential LiDAR metrics. Based on the training set, the model with the independent
variables zmax, zmean, zq75, zq80, zq90, zq95, zpcum1, and zpcum2 achieved the best
accuracy, with R2 of 0.93, RMSE of 38.45 ton/ha, and MAE of 25.06 ton/ha (Figure 3a).
The model performance of the test data resulted in an accuracy of R2 of 0.85, RMSE of
60.9 ton/ha, and MAE of 39.7 ton/ha (Figure 3b). A visual representation of the relationship
between predicted and observed values using a scatter plot is presented in Figure 3.
This plot provides a visual comparison, allowing us to evaluate the models’ predictive
capabilities for the training set and the test set using a random forest model.

Figure 3. Scatterplot displaying correlation between observed and predicted AGB values for the
training set (a) and the test set (b), using the best selected RF model.
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Figure 4 illustrates the AGB map produced using the random forest model with a
resolution of 30 × 30 m. The predicted AGB values in the study area varied from 0 to
446.42 ton/ha, with a mean value of 120 ton/ha. There is a noticeable variation in the
spatial distribution of AGB within the study area. This distribution exhibited a distinct
pattern, with AGB levels increasing from the east towards the center, and then decreasing
further, highlighting the gradient of AGB levels across the study area (Figure 4). Parts of
the eastern and western regions were characterized as low-value areas, with AGB levels
recorded below 75.20 ton/ha. Parts of the southwestern and southeastern regions exhibited
moderate AGB values, ranging between 75.20 and 211.63 ton/ha. Furthermore, most parts
of the northcentral and northeastern regions displayed the highest AGB values, with values
larger than 211.63 ton/ha. The spatial pattern of AGB within the study area demonstrated
significant heterogeneity, with distinct variations observed across different regions.

(a) 

(b) 

Figure 4. ALS AGB map based on the RF model: (a) Western sector and (b) Eastern sector.
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3.2. Driving Factors of Aboveground Biomass
3.2.1. Variables Used in the RF Model

Figure 5 provides a visual representation of the explanatory variables used in our
analysis. By examining these variables in relation to AGB, we aimed to gain a deeper
understanding of the factors influencing the distribution of biomass in the study area.

Figure 5. Environmental variables map for input determinant variables: (a–i) explanatory variables
at 30 × 30 m resolution: (a) elevation, (b) aspect, (c) slope, (d) road, (e) river, (f) soil type, (g) average
annual precipitation, (h) average annual temperature, and (i) land use land cover.

In this study, the explanatory variables of the study area were in terms of climatic,
topographic, soil, and land use land cover. The variables related to climate were mean
annual precipitation (MAP) and mean annual temperature (MAT). MAP was mainly from
1167 mm to 1334 mm across the study area. MAT was between 24.6 and 24.8 degrees
Celsius for the study area. Topographic variables included elevation, slope, and aspect.
Elevations ranged from 99 m to 214 m. Slope ranging from 0 degrees to 34.2 degrees. Aspect
refers to the direction in which slope faces, categorized into 10 ranges (0 = flat, 2 = north,
3 = northeast, 4 = east, 5 = southeast, 6 = south, 7 = southwest, 8 = west, 9 = northwest,
10 = north), respectively. Soil included soil type 2 (Udorthents, Ustorthents, and Haplaque-
nts) and soil type 4 (Haplaquents, Haplaqepts, and Eutrocrepts). Anthropogenic variables
included road distance and river distance. Road distance ranges from 0 to 3799.7 m. River
distance ranging from 0 to 3079.3 m. LULC included water, trees, grass, crops, shrubs,
built-up area, and bare ground, respectively.

3.2.2. Relative Variables Importance in the RF Model

The selected nine environmental variables for explaining the spatial distribution of
AGB, respectively, showed different relative importance values in the RF model (Figure 6).
Predictor variables included: land use land cover (LULC), average annual precipitation (pre-
cip), average annual temperature (temp), elevation, river, soil, road, aspect, and slope, re-
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spectively (Figure 6). Among the variables, LULC, precipitation, and temperature emerged
as the most influential factors, with relative importance percentages of 26.6%, 19%, and
18%, respectively. Elevation also played a significant role, with a percentage of 17.35%.
Other variables (soil, river, road, slope, aspect) had lower relative importance percentages,
ranging from 0.94% to 10.43%.

Figure 6. Relative importance of variables, percentage, for AGB distribution using the RF model.

3.2.3. Partial Dependence Plots (Response Plots)

The factors used in the RF model contributed differently to the AGB in the study area,
and their partial dependencies reflected their relationship to the AGB.

A single-variable partial dependence plot along with smoothed response curves for
the explanatory variables is shown in Figure 7. The y-axis displays the fitted function for
the response variable (AGB), and the model used is the random forest model. An increase
in the distance to the road from the forests up to 2000 m contributed to the decrease in AGB,
while an increase in AGB was found for longer distances. In contrast, river proximity up
to 2000 m contributed to an increase in AGB, and afterward, it contributed to a decrease
in AGB. An increase in precipitation up to 1250 mm contributed to the higher AGB, and
a higher precipitation amount decreased the AGB. Similarly, an increase in temperature
up to 24.80 degrees Celsius contributed to the increase in AGB, and after that, the variable
decreased AGB. An increase in elevation and slope further increased AGB. The amount of
AGB increased with aspects between 2.5 and 6, and then the amount of AGB stayed stable,
while there was an increase in AGB between aspects 7.5 and 10. Soil type 2 (Udorthents,
Ustorthents, and Haplaquents) contributed more to AGB than soil type 4 (Haplaquents,
Haplaqepts, and Eutrocrepts). Lastly, the comparison of land use land cover types (water,
tree, shrub, grass, crops, built-up area, and bare ground) revealed that trees contributed
more to AGB, and bare ground contributed less to AGB.
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Figure 7. The partial dependence plot of the RF model, for each explanatory variable: (a) AGB
and slope, (b) AGB and aspect, (c) AGB and elevation, (d) AGB and precipitation, (e) AGB and
temperature, (f) AGB and road distance, (g) AGB and river distance, (h) AGB and land use land
cover, and (i) AGB and soil. In (a–g), the black line represents the partial dependence plot based on
the random forest predictions, and the blue line represents the LOESS smoothed line.

4. Discussion

In our study, the random forest (RF) model was used to estimate and understand
the variability and spatial distribution of AGB in the managed forest. Powell et al. [41]
highlighted the RF model’s effectiveness, surpassing the performance of multiple linear
regression. The application of the RF model not only provided estimates for predictor vari-
ables but also allowed for an assessment of their relative importance and the visualization
of non-linear relationships through partial dependence plots (Figure 7). The RF model
is capable of modeling non-linear relationships without requiring explicit assumptions
about the functional form of the relationship and has been widely employed in forest
AGB estimation [18]. The predicted AGB in the study varied from 0 to 446 ton/ha with a
mean of 120 ton/ha, which closely aligned with the mean AGB of the field plots (Figure 4).
However, the average AGB (120 ton/ha) of trees was lower than the AGB (190 ton/ha)
estimated in the forest of the Terai region of Nepal [45]. This difference in estimates could
be because the samples cover the entire Terai region and possibly a more mature forest
with a more diverse species composition compared to our study site. Moreover, this study
explained the spatial distribution of AGB using the AGB map and all the explanatory
variables (Figures 4 and 5). The spatial distribution of AGB values in the study area showed
higher values in the northeast and southwest regions, gradually decreasing towards the
northwest. The study found that the factors influencing the spatial pattern of AGB were
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not uniform throughout the entire study area. The variables such as land use land cover
(LULC), precipitation, temperature, and elevation were identified as having higher relative
importance percentages in explaining AGB patterns. Conversely, variables like slope and
aspect had a lesser influence on AGB variation (Figure 6). The main factors influencing
the variability in AGB distribution were found to be land use land cover, MAP, and MAT,
collectively explaining 64% of the variability in AGB patterns (refer to Figure 6). The vege-
tation density, water availability, and temperature conditions emerge as essential factors
significantly influencing AGB levels across our study area.

Past studies have highlighted the influence of various factors such as topography,
species composition, climate, elevation, and soil fertility on the spatial distribution of above-
ground biomass (AGB) at the regional scale [72–76]. In our study area, while considering
land use land cover, the AGB increased with a higher percentage of land use land cover in
managed forests, especially with trees. The increase in the number of trees is a result of
reforestation efforts, such as planting trees in the harvested area (logging) and sustainable
forest management practices, including selective logging (thinning), proper harvesting
methods, and ensuring natural regeneration. These practices have led to the growth of new
trees and promoted the growth and sustainability of forests, resulting in higher AGB. With
regard to climatic variables, precipitation, and temperature explained non-linear effects on
AGB in the study site, respectively (Figure 7). Bowman et al. [77,78] study in Australian
temperate and subtropical eucalyptus forests found that plants require temperatures that
encourage growth while minimizing transpiration or autotrophic respiration. This indicates
the importance of maintaining optimal temperature conditions for plants to maximize their
growth potential. Lewis et al. [79] found an increase in AGB in African tropical forests
with precipitation during the driest nine months of the year and a decrease during the
wettest three months of the year. Malla et al. [71] reported a positive effect on AGB of the
precipitation of the driest month and the maximum temperature of the warmest month
in the forests throughout Nepal. The positive effect of precipitation during the driest
month suggests that ensuring water availability during periods of rainfall can contribute
to increased growth in the growing season [36], resulting in higher AGB. Similarly, the
positive influence of maximum temperature during the warmest months indicates the
importance of favorable temperature conditions for promoting forest growth and forest
biomass accumulation. The different climatic conditions can affect the dynamics of AGB
throughout the year. Previous studies, together with our results, show that precipitation
and temperature can have both positive and negative effects on the AGB distribution in
forests. However, other factors, such as soil characteristics, nutrient availability, distur-
bance regimes, and species composition, also interact with temperature and precipitation
to influence AGB patterns.

When considering slope, Du et al. [80] indicated that vegetation on higher slopes
tends to experience less human disturbance, allowing these areas to be better preserved,
fostering abundant forest growth, and promoting biomass accumulation. In terms of aspect,
studies conducted by Fan et al. [81,82] have demonstrated that the south-, southwest-,
west-, and northwest-facing slopes are often referred to as sunny slopes. These aspects
receive a greater amount of sunlight, leading to increased rates of photosynthesis and
greater vegetation productivity. As a result, the amount of AGB in these aspects tends
to be higher compared to other aspects. Regarding elevation, higher elevations are often
associated with cooler temperatures and increased moisture availability [42]. These favor-
able conditions create an environment conducive to plant growth and the accumulation of
biomass. Furthermore, elevated regions may exhibit distinct soil characteristics, nutrient
availability, and vegetation compositions, which can contribute to increased AGB levels.

In our study area, the AGB was most abundant at the higher altitudes, particularly in
areas dominated by soil type 2 (comprising Udorthents, Usotorthents, and Haplaquents).
These regions are less conducive to agricultural activities and have limited accessibility via
road networks. Previous studies have also indicated a positive relationship between altitude
and AGB in similar areas [34,83]. Similarly, Nepal et al. [84] reported increasing AGB of
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trees with increasing elevation in the subtropical forest of Nepal. The elevation gradient is
associated with changes in temperature, precipitation, and forest-type succession [85]. The
elevation of our research site, typically ranging from 99 to 214 m above sea level, suggests
that a significant climate change is unlikely to occur. Contrary to the findings of many
studies [86–90] that indicate a decline in AGB with increasing elevation, we observe an
opposing trend. This discrepancy could be attributed to the relatively narrow range of
elevation (99 m to 214 m) encompassing the forested areas within our study site.

Regarding the road feature, the presence of a road has a negative impact on AGB up to
a certain distance, potentially due to factors such as increased human disturbance and land
conversion near roads. However, beyond a specific threshold distance, the negative effects
diminish, or other factors such as reduced human activity or improved environmental
conditions lead to an increase in AGB. The contribution of distance to the nearest road is
consistent with [91], who observed lower AGB in the distance from the forests to the road
up to 2000 m, while higher AGB was found for longer distances. AGB distribution is likely
to be higher in areas with less human disturbance [92,93].

Regarding rivers, the initial increase in AGB with proximity to rivers could be at-
tributed to factors such as increased water availability, moisture gradient, nutrient de-
position, or favorable soil conditions near riverbeds. These factors can promote plant
growth and result in higher AGB. However, beyond the threshold, the decrease in AGB
with increasing river distance suggests that other factors may come into play. These could
include factors such as reduced water availability, increased competition for resources,
or changes in soil properties farther away from the river. These conditions may lead to
decreased vegetation growth and, consequently, lower AGB.

Soil properties play a significant role in influencing the AGB of tropical forests [39,79,94,95].
Various soil properties, such as pH, organic matter, total nitrogen, total phosphorus, and
others, are analyzed to assess their impact. Within our study area, soil type 2 contributed
more to AGB than soil type 4 (consisting of Haplaquents, Haplaqepts, and Eutrocrepts).
The soil type 2 exhibits higher organic matter content, enhanced water-holding capac-
ity, and improved nutrient availability [96], thereby fostering greater plant growth and
biomass accumulation. Moreover, these soil types possess superior drainage and aera-
tion properties, which facilitate root development and nutrient uptake. Conversely, soil
type 4 exhibits lower organic matter content, diminished water retention capacity, and
limited nutrient availability. These characteristics can impede plant growth and biomass
production within these soil types. Our findings regarding the impact of soil on AGB align
with previous studies. However, it is important to note that soil type alone may not be
the sole determinant of AGB. Other factors, such as climate, topography, land use, and
vegetation composition can also interact with soil type to influence AGB patterns. The
complex interplay of these factors should be considered when understanding the dynamics
of AGB in forest ecosystems.

It is crucial to understand the limitations of our study. Firstly, our investigation
exclusively focused on managed forests in the Terai region of Nepal, which may limit
the generalization of the findings to other forest types or areas. Additionally, we solely
examined AGB and did not consider below-ground forest biomass. The study did not
consider the influence of biotic factors such as forest types or stand age, which could also
affect AGB in forests. While our results provide valuable insights, it is crucial to interpret
them within the context of these limitations. Future studies should address these limitations
to obtain a more comprehensive understanding of the subject matter.

5. Conclusions

The study examined the spatial patterns and influencing factors of forest aboveground
biomass (AGB) in a managed forest in the Terai region of Nepal using geospatial and
statistical techniques. The mean forest AGB in the study area was 120 ton/ha, with a
range from 0 to 446 ton/ha in the 30 m resolution. AGB exhibited a higher distribution in
the northeast and southeast regions, gradually decreasing towards the northwest. AGB
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positively correlated with elevation, slope, and distance from rivers, while it negatively
correlated with proximity to roads. The increase in precipitation and temperature con-
tributed to the initial rise in AGB, but beyond a certain lag, these variables led to a decline
in AGB. Land use land cover, precipitation, and temperature predominantly contributed
to the spatial distribution of AGB variation, accounting for 64% of the variability. The
aspect had the least effect on AGB distribution. This study showed the influence of climate,
land cover land use, and topography on the AGB pattern in the forest. With the help of
the ALS-based AGB maps and various explanatory variables, it was possible to better
understand the spatial pattern of AGB and the factors influencing AGB distribution across
the managed forest. The results obtained from our study hold significant importance for
making decisions about managing forests sustainably and mitigating climate change in the
Terai region of Nepal. Understanding the factors that drive AGB variation such as climate,
soil characteristics, species composition, and disturbance regimes, allows us to develop
more accurate AGB, and predictions of forest productivity. The accuracy of the model can
be improved further using larger forest biomass datasets and other explanatory variables.
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Abstract: Understanding the dynamics of tree biomass is a significant factor in forest ecosystems,
and accurate quantitative knowledge of its development provides support for the optimization of
forest management. This work aimed to employ innovative practices in tree biomass modeling,
artificial neural network approaches along with the least-squares regression methodology, in order
to construct reliable and accurate estimation and prediction models that contribute to solving the
emerging problems in the field of sustainable forest management. Based on this aim, different
modeling strategies were developed and explored. The nonlinear seemingly unrelated regression
(NSUR) methodology, the generalized regression (GRNN), the resilient propagation (RPNN) and the
Bayesian regularization (BRNN) artificial neural network algorithms were utilized for the construction
of reliable biomass models to attain the most accurate and reliable tree biomass components and
total tree biomass estimations. The work showed that GRNN models provided a significantly
better performance compared with the other modeling methodologies tested. Considering the non-
parametric nature of the GRNN neural network algorithm, the fact that it was designed for nonlinear
regression-type problems capable of dealing with small datasets, this modeling approach warrants
consideration as an effective alternative to nonlinear regression or to other neural network approaches
to the field of tree biomass modeling.

Keywords: aboveground biomass; modeling strategies; artificial neural network; cedar

1. Introduction

Both the role of forests in the global carbon cycle and the emergence of forest biomass
as a source of energy require accurate and reliable estimates of the amount of carbon and
vegetative mass stored in forest ecosystems. An accurate and reliable estimation of biomass
is essential for sustainable management and contributes to, inter alia, the planning of forest
resources, biomass energy, carbon stock and climate change studies, forest health, forest
productivity and nutrient cycling [1,2].

Nowadays, traditional forest inventory studies mostly focus on determining timber
stocks and its increments with time. However, volume functions and the tree volume
tables used for estimating growth are not useful for biomass estimations. Therefore, it is
necessary to develop statistical functions or specific tables that provide biomass quantities
for the whole tree and tree components. Biomass is defined as the total mass (weight) of a
tree, comprising the foliage, stem, branches, bark, and roots. Biomass is divided into two
parts, aboveground and belowground. Aboveground biomass refers to the whole visible
living mass, including the stem (to the root collar), branches, bark, fruit/seeds, and leaves,
while belowground biomass consists of both the structural and fine root systems. Xiao
et al. [3] reported that the amount of belowground biomass in an old-growth Scots pine
forest is 14% of the aboveground biomass; Czapowskyj et al. [4] stated that 80% of the
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total biomass is retained in the aboveground components and 20% in the belowground
components. Since most of the carbon stored in forest ecosystems is sequestered in the
aboveground vegetative mass, an estimation of the aboveground vegetative mass is much
more important for estimating the amount of carbon stored in forest areas and monitoring
the temporal change than knowing the total biomass present.

Aboveground biomass is generally divided into three main components, stem, bark
and crown (branches and leaves) [5,6]. Estimating the biomass of these components is of
importance both for determining the intra-tree variability of biomass and for the fact that
these components can be utilized for different purposes. Stem biomass is relevant for wood
production planning, crown biomass for fuel content and assessments of the fire spread
rate, and biomass in small branches and foliage for bioenergy production [6]. Previous
reports indicated that the amount of biomass in tree components varies from species to
species and from region to region [7]. He et al. [8] reported that approximately 72% of the
aboveground biomass of a tree is in the stem, while the amounts of biomass in branches,
foliage and fruit are 11%, 13% and 4%, respectively. De-Miguel et al. [9] reported that in
brutian pine stands that are 20, 40 and 60 years old in Syria, 79.8%, 80.5% and 80.6% of the
aboveground biomass was in tree stems, while 20.2%, 19.5% and 19.4% was in the crown,
respectively. These variations between species in the proportions of biomass in different
components indicate that it is necessary to develop species-based component models.

In addition, the amount of biomass of a tree and the distribution of this biomass to tree
components can vary greatly according to numerous factors, such as growing environment
conditions, stand density, soil properties and competition between trees within the stand.
Environmental factors and genetic variability lead to variations in tree stem form, thus
limiting the utilization of biomass equations developed for one region in other areas or
leading to large estimation errors. Therefore, biomass equations should also take into
account regional differences [9].

In recent years, everchanging market conditions and the increasing adoption of
biomass or weight as a measure of forest productivity have required accurate estimates of
total tree and component biomass in Türkiye [10]. However, the current information on tree
biomass estimates is not sufficient for the preparation of management plans for complex
forest ecosystems in Türkiye. In this country, aboveground biomass estimation equations
for the whole tree and its components have been developed for some tree species at the
regional level [10–19]. Except for Özçelik et al. [10] and Güner et al. [19], the estimations
generally utilized linear or nonlinear traditional regression equations with one or more
independent variables. However, when separate biomass equations are developed for all
components of a tree (stem, branches, bark, etc.) with traditional equations, the correlation
between the biomass quantities of different components is not taken into account, and as a
result, the sum of the estimates obtained for the components may be more or less than the
biomass estimate obtained for the whole tree. In recent years, systems of equations such as
seemingly unrelated regression (SUR or NSUR) and the generalized method of moments
(GMM) have gained more popularity for parameter estimation in biomass models in order
to overcome this problem and similar drawbacks and to provide more accurate and reliable
estimates [1,5].

Weiskittel et al. [20] stated that there are limitations in the development of tree biomass
models such as the cost of biomass data collection and the employment of different methods
for this purpose, the lack of data and models for belowground biomass, and the utilization
of simple model forms and explanatory variables. It is necessary, therefore, to develop
new models and methods to increase the accuracy of tree biomass estimates. In this
context, due to their ability to overcome fundamental regression analysis assumptions
(independency, normality etc.), the most widely used modeling methodology, data mining
and artificial intelligence methods, may be beneficial. It is well known that tree biomass
is nonlinear in nature. Traditional regression modeling needs much effort to be spent on
the regression assumptions examination along with the selection of the optimal form of a
function. Previous studies [10,19] have shown that artificial neural networks (ANNs), part
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of the scientific area of machine learning, are worth more exploration since these systems
have shown their potential to overcome the aforementioned difficulties. As powerful non-
parametric machine learning techniques included in the artificial intelligence methods, the
structure of ANNs has been thoroughly described and discussed [21–24]. In forest research,
ANNs have shown the potential to successfully learn from noisy and nonlinear data in data
from nature, such as primary data collected from the field. In order for the efficiency of the
different learning algorithms embedded in ANNs to be assessed, different ANN modeling
approaches are tested by the research forest community. For example, Diamantopoulou [25]
used the cascade correlation algorithm in the feedforward ANNs for an estimation of tree
stem diameters, whereas Özçelik et al. [10] applied the Levenberg–Marquardt algorithm
for tree biomass prediction, and Vieira et al. [26] estimated tree growth and height using
the Levenberg–Marquardt algorithm. Ercanlı [27] used deep learning for modeling the
relationship between tree height and diameter at breast height. The increasing research
interest, raised by the need to construct the most reliable and accurate models of tree and
forest attributes based on innovative and advanced modeling methodologies, is safely
driving the optimal forest management decisions. Testing and evaluating the potential
algorithms which incorporate innovative modeling perspectives, along with modeling
capability, is therefore more than a necessity for the best forestry practices to be applied.

Natural cedar (Cedrus libani A. Rich) forests are extremely valuable for Türkiye, both
ecologically and economically. Due to unplanned production, overgrazing and fires in
Syria and Lebanon, where the species is also naturally distributed, it has almost become
extinct, and the distribution area has become restricted to Türkiye [28]. Therefore, natural
cedar forests are a natural treasure and indispensable to the cultural heritage of Türkiye
and the world. Although natural cedar forests have their most important distribution in the
Mediterranean region, their total distribution area in Türkiye is approximately 465,000 ha
and the yield from these areas is approximately 27.4 million cubic meters per annum. Due
to the valuable and important properties of cedar wood, it is amongst the most important
tree species for the forest products industry in Türkiye. In addition to their economic
value in Türkiye, cedar forests play a key role in major environmental issues such as the
conservation of soil and water resources, mitigating and adapting to the negative impact of
climate change, and protecting biodiversity [29]. As a natural consequence of their wide
distribution in the Mediterranean region, cedar forests can exhibit significant differences in
growth and development characteristics depending on factors such as climate, growing
environment conditions and origin. Therefore, in order to make accurate and reliable
biomass estimates, it is necessary to develop separate biomass estimation models for
different regions where natural cedar forests occur.

In this context, the aim of the work described here was to test the reliability and
accuracy of possible modeling methodologies which incorporate innovative perspectives
in the field of forest tree biomass modeling procedures. For this purpose, an evaluation of
the performances of modern modeling approaches, utilized in recent years by the forest
scientific community for estimates of the aboveground biomass estimation of trees, was
conducted. The nonlinear seemingly unrelated regression modeling method (NSUR), the
generalized regression (GRNN), the resilient propagation (RPNN) and the Bayesian regu-
larization (BRNN) artificial neural network algorithms were utilized to construct reliable
biomass models. These modeling alternatives were applied and evaluated to enhance the
sustainable management of natural cedar stands in the northwestern Mediterranean region
by providing effective tools for the decision-making processes of forest managers.

2. Materials and Methods

2.1. Field and Laboratory Studies

A total of fifty-five sample trees of different diameter and height classes were selected
randomly in natural cedar stands in the Isparta Regional Forest District to represent
different stand structures (Figure 1). The diameter at breast height (D) was measured
and the trees were cut at the stump height (D0.30). The total height (H) and merchantable
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height (the height on the stem at which the diameter drops to 8 cm) of the cut trees
were measured, and the stem heights corresponding to 1/3 and 2/3 of the merchantable
height were also calculated. In order to be utilized in volume predictions for the chosen
trees, in addition to over-bark diameter at breast height (D), over-bark stem diameters
were measured at 2 m intervals starting from a height of 2.30 m to the top of the tree.
Diameter measurements were conducted with digital calipers with an accuracy of 0.1 cm,
and height (length) measurements of the tree sections were made with a tape measure with
an accuracy of 0.01 m. The bark thickness of the sample trees at all stem heights where
diameter measurements were obtained was also measured with a precision of 1 mm. Using
this method, the double bark thickness was calculated. The volume of the sample trees
with and without bark were estimated by summing the tree section volumes obtained via
Smalian’s formula [30], including the top section volume which was calculated as a cone.
The bark volume values of the sample trees were obtained from the difference between the
outside volume and the inside volume.

Figure 1. Location of sample trees in distribution zone of cedar.

The methods proposed by Alemdag [31,32] were utilized to determine the kiln-dried
weights of the stem wood and bark of the sample trees. Dry weights of the branch and
needle samples were obtained using the methods of Porté et al. [33]. In order to estimate
the biomass of stem wood and bark, a total of 4 discs of 5–7 cm thickness were cut at breast
height of each tree (1.30 m), from the 1/3 and 2/3 heights of the merchantable stem section
and from the point at which the stem diameter dropped to 8 cm. In order to determine
branch and needle biomass, branch length was measured, along with the diameter at the
point where the branch joined the stem. All branches were cut and clustered, and the
average branch diameter and the average branch length were calculated for each sample
tree. A branch sample with average values matching this description was obtained. The
needles of each branch sample were extracted. In this way, branch and needle samples
were obtained.

Furthermore, the four discs and the extracted branch, along with the needle sample
from each tree, were returned to the laboratory in polyethylene bags to determine the
kiln-dried weights of the whole tree and the biomass components (stem, bark, branch and
needles). To obtain the kiln-dried weights of the stem wood, the bark was peeled from
the 4 discs taken from each sample tree. The un-barked discs and the bark, branch and
needle samples were dried in a drying oven at 105 ± 3 ◦C for 72 h, and the dry weights
were determined on a precision balance. Full details of the methods for estimating the
kiln-dried stem wood and bark biomass of sample trees are given in Alemdag [31,32] and
Sakıcı et al. [18]. Details for determining the total twig and needle weight were those of
Porté et al. [33].
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The problems of convergence and high multicollinearity in the simultaneous adjust-
ment of biomass components, branches and leaves, were accounted for by combining the
data in a single component named “crown”, which resulted in an increased accuracy of
estimations [5]. This modification corresponded with the three components (stem, bark,
crown) into which aboveground biomass is usually divided [34].

The total aboveground biomass of the sample trees was calculated by summing the
kiln-dried weights obtained for the tree components.

dwtotal = dwstem + dwbark + dwcrown (1)

Descriptive statistics of kiln-dried whole tree and tree components for sample trees
from natural cedar stands are presented in Table 1.

Table 1. Summary statistics of the sample of 55 trees used in estimation of total and separate
components of biomass.

Variables n Min Max Mean Std. Dev.

Diameter at breast height (D, cm) 55 10.00 58.70 30.09 13.72
Total height (H, m) 55 7.88 27.10 17.22 5.01
Dry aboveground biomass (dwtotal, kg) 55 36.32 1750.76 554.00 492.80
Dry stem biomass without bark (dwstem, kg) 55 10.97 966.89 294.79 270.41
Dry crown biomass (dwcrown, kg) 55 10.46 844.91 210.56 199.70
Dry bark biomass (dwbark, kg) 55 2.40 150.50 48.65 38.29

2.2. Method
2.2.1. Seemingly Unrelated Regression Model (SUR)

Wang and Xing [35] stated that a good biomass equation should strike a balance
between accuracy, simplicity and practical feasibility. In the development of tree biomass
equations, only the diameter at breast height (D) or sometimes tree height (H) can be
included as independent variables. In developing biomass models with these independent
variables, the ordinary least-squares method (OLS) is often employed. However, when
the components of trees are measured, such as the stem, branches or bark, and separate
equations are developed for each component, then these models cannot take into account
the inherent correlation between the biomasses of tree components measured on the same
tree, resulting in a violation of the additivity behavior of the models. Therefore, many of the
biomass equations developed provide inaccurate estimates and the principle of additivity
between the results of the tree component equations and the total tree biomass remain
incomplete. Due to the crucial involvement of the estimated tree biomass quantities in
the estimation of the carbon content sequestered by trees, the need for reliable and, at
the same time, accurate biomass modeling systems is of vital importance. As stated by
Parresol [34], the carbon sequestration in each component cannot exceed the amount of
carbon sequestration of the whole tree.

The utilization of biomass equation systems has been proposed to overcome this prob-
lem and to ensure the aggregability of biomass components [5,34]. Different approaches
(SUR, NSUR, GMM) can be employed for estimations of model parameters. Among these
approaches, NSUR has become most popular, because it has a more general and flexible
structure, allows each component model to have its own independent variable and its
own weight function to deal with the problem of different variance in each component,
and allows a total tree biomass model to be obtained with smaller variance [1,36]. In this
work, therefore, the NSUR approach was selected for developing the biomass equation
system, which can estimate simultaneously both the biomass of the whole tree and different
tree components. For this purpose, a total of thirty-three linear and nonlinear models
obtained from different sources were adapted independently for the estimation of the
biomass of different tree components through the ordinary least-squares method (OLS).
The most successful model for each tree component was chosen for further analysis based

216



Forests 2023, 14, 2429

on three different evaluation criteria: the coefficient of determination (R2), the root means
square error (RMSE), and the mean absolute error (MAB) (results not displayed here). Two
important problems encountered in the development of biomass equations were the prob-
lems of heteroscedasticity and multicollinearity. To overcome heteroscedasticity, weighted
regression was employed, with each observation weighted by the inverse of its variance.
The approach proposed by Park [37] was utilized to determine which independent vari-
able is more correlated with the residual values obtained for the components, so that the
appropriate weight function can be determined for each tree component. The weighting
factor for heteroscedasticity 1/(xi)

k was included in the NSUR fit of the SAS/ETS statistical
package. In the final stage, all component equations were solved simultaneously in order
to enable a system of equations to estimate both total tree and component biomass. The
set of equations was fitted simultaneously by NSURs implemented in the PROC MODEL
procedure of SAS/ETS [38].

The presence or absence of multicollinearity is analyzed by the condition number (CN).
According to Belsley [39], a value of CN between 1000–3000 indicates severe multicollinear-
ity, while for a CN value less than 10, the possibility of the existence of multicollinearity can
safely be ignored. A CN value between the above indicates the presence of this problem,
and it needs to be properly handled.

2.2.2. Artificial Neural Network Modeling

Due to their ability to learn and successfully imitate the behavior of real-life systems
such as the attributes of both trees and forests, artificial neural networks are an effective
modeling solution that can produce valuable results. Their capacity to model nonlinear
systems that are affected by many factors can be boosted by the optimal algorithm used for
each case.

Generalized regression neural networks (GRNNs), which are often known as regres-
sion (Bayesian) networks, were first introduced and described by Speckt [40]. This type of
network is a kernel-based approximation, single-layer feedforward neural network, which
is scaled by a smoothing parameter (σ) that controls the network complexity. Gaussian
kernel functions are located at each training case [41]. Due to their ability to successfully
approximate any nonlinear mapping between continuous variables used as input and
output vectors directly from the training data, they have been utilized in different problems.
A detailed description of the algorithm is available in the literature [40,42,43]. Indicatively,
the Bayesian techniques that the GRNN algorithm uses to estimate the expected mean
value (E[y/x]) of the output (y) of an input case (x) lead to the single-bandwidth (smoothing
factor) GRNN fundamental expression:

E[y/x] = ŷ(x) =

(
∑n

i=1 yi·exp

(
−∑k

r=1 (xr − xir)
T ·(xr − xir)

2·σ2

))/(
∑n

i=1 exp

(
−∑k

r=1 (xr − xir)
T ·(xr − xir)

2·σ2

))
(2)

where, ŷ(x) is the estimated output value based on x (vector variable with k number of
elements), n is the number of training patterns, xi is the training sample, yi is the output
of the input sample xi, ∑k

r=1 (xr − xir)
T ·(xr − xir) = d2

i is the square Euclidean distance
between the training sample and the point of prediction, σ is the width of the Gaussian
kernel function (smoothing factor) and superscript (T) indicates the transposed action.

As can be seen (Equation (2)), the accuracy and the generalization ability of the
network training estimation is totally dependent on the smoothing factor (σ); therefore, its
value has to be carefully specified. If the smoothing factor value is too small, then a high
estimation variance would be produced by the system, while if the value selected is too
large, then the system would be led to a high estimate bias. In this work, the optimum value
of the smoothing factor was determined using the exhaustive grid-search methodology [44]
for values included in the range of [0, 10] by 0.001.

The structure of the GRNN consists of four layers, where the information movement
is feedforward, with direction from the first to the fourth layer. The first layer is the input
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layer where the variables are introduced as input information to the system. This layer is
followed by a pattern layer which includes the same number of nodes as the input data
cases. The information of this layer is used for the square Euclidean distance calculation,
and the Gaussian radial kernel function can be calculated for each node. This results in
the information included in the third layer, which is the summation layer with two nodes
which are the values of the nominator and the denominator of the Equation (2). The final
layer is the output layer where the expected mean value (E[y/x]) of the output (y) of an
input case (x) is derived.

Due to its efficiency in overcoming problems of the traditional backpropagation algo-
rithm, which can be slow at converging, require effort at parameter tuning, and get stuck in
local minima, the resilient back-propagation artificial neural network (RPNN) supervised
learning algorithm is considered as a powerful algorithm with desired properties [45–47].
As has been introduced and described by Riedmiller and Braun [45], the innovation of this
algorithm that boosts its learning strength in aiming to overcome local minima is that it
performs a direct adaptation of weight step based on local gradient information. That is, an
individual update value (Δij) is calculated for each weight of the system in order for the
partial derivative of the corresponding weight (wij) to change its sign, meaning that the
updated weight value (wt+1

ij ) of the previous weight value (wt
ij) between the i and j nodes

in two consecutive layers can be achieved as

wt+1
ij = wt

ij + Δwt
ij (3)

where the (Δwt
ij) is calculated following the update rule [45]:

Δ(t)
wij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−Δ(t)
ij ,i f

∂E(t)

∂wij
> 0

+Δ(t)
ij ,i f

∂E(t)

∂wij
< 0

0,else

(4)

where the individual update value for the interaction (t) can be calculated using the
equation [45]

Δ(t)
ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

η+ × Δ(t−1)
ij , i f ∂E(t−1)

∂wij
× ∂E(t)

∂wij
> 0

η− × Δ(t−1)
ij , i f ∂E(t−1)

∂wij
× ∂E(t)

∂wij
< 0

Δ(t−1)
ij , else

(5)

where η is the increasing or decreasing factor of the system with 0 < η− < 1 < η+.
The initial values of η−, η+ following the logical order have been described in previous

research [45,46] and set to 0.5 and 1.2, respectively. According to the choice of the initial
value of Δ0, this was set to its default value equal to 0.07 [48]. Finally, the structure of the
RPNN used consisted of three layers (input–hidden–output).

Bayesian regularization neural networks (BRNNs) have become popular due to their
robustness as compared to the multilayer perceptron back-propagation nets, and they are
able to minimize the need for lengthy cross-validation [49]. In order for the variance of
the network system to be avoided, thus aiming for the best regularization behavior of
the system, Bayesian regularization was embedded, so that the parameters of the loss
function of the net could be optimized. The Bayesian approach, which is reliant on the
probability distribution of the network weights, involves the Bayesian theorem, resulting
to the probability distribution of the network predictions. In the training process, the mean
square network error included the Bayesian regularization term is minimized [50]:

F = b0·EIO(IO|w, net) + b1·Ew(w|net) (6)
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where, b0 and b1 are the system’s hyperparameters, EIO is the mean square of the net-
work error, IO is the input–output pairs of the training data, net is the network specific
architecture that is the trained BRNN, and Ew is the mean sum of the square weights.

Bayesian regularization takes place within the Levenberg–Marquardt algorithm, mean-
ing that the Jacobian matrix that contains the first derivatives of the network errors with
respect to the weights and biases is computed. Finally, the structure of BRNN consisted of
three layers (input–hidden–output).

The structure of the above artificial neural network structures is shown in Figure 2.

   

Figure 2. Artificial neural network modeling structures.

In order for the generalization ability of the neural network models to be achieved,
so as to assess the stability and consistency of these models across different datasets, the
available dataset was randomly divided into fitting data, which constitutes 70% of the total
dataset, and test data, which consists of the remaining 30% data sets. The first dataset was
used for the choice of the “best” model, while the latter was used for the exploration of the
predictive ability of the constructed model. This way, the reliability of the ANN-constructed
model was revealed. Further, the methodology of the k-fold cross validation [51] was used
for the fitting dataset which was further divided into training and validation datasets ten
consecutive times, with k = 10, in order for all the available information of the fitting dataset
to be included in the training process of the models.

The learning of generalized regression neural network (GRNN) modeling, resilient
propagation artificial neural network (RPNN) modeling and Bayesian regularization neural
network (BRNN) modeling were performed using the MATLAB R2022a [48] program-
ming language.

2.2.3. Statistical Evaluation Criteria

The following evaluation criteria were utilized to assess the model performances,
namely, bias (BIAS%); root mean square error (RMSE); coefficient of variation (CV%);
coefficient of determination (R2); the mean absolute bias (MAB); and the second-order
Akaike’s information criterion (AICc) including the correction for small sample sizes [52,53]:

BIAS % = 100 ×
(

∑i=n
i=1 (yi − ŷi)/n

)
y

% (7)

RMSE =

√
∑i=n

i=1 (yi − ŷi)
2

n
(8)

CV% = 100 × RMSE
y

% (9)

R2 = 1 −
[

∑i=n
i=1 (yi − ŷi)

2

∑n
i=1(yi − y)2

]
(10)

MAB =

i=n
∑

i=1
|yi − ŷi|

n
(11)
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AICc = nlog
(
∑i=n

i=1 (yi − ŷi)
2/n
)
+ 2p +

(
2p(p + 1)
n − p − 1

)
(12)

where, yi and ŷi are the observed and predicted values for the ith observation, respectively,
y is the mean of the yi, and n is the number of observations and p is the number of
independent variables plus the intercept used in each model.

3. Results

As a result of the graphical evaluation of the relationships between the dependent
variables (whole tree and tree components biomass) and the independent variables (D and
H) utilized in the study, it was observed that there was a nonlinear relationship between
the variables as expected (Figure 3).

(a) 

(b) 

(c) 

(d) 

Figure 3. Relationship between D and H with (a) bark, (b) stem, (c) crown, and (d) whole tree biomass.

In general, kiln-dried biomass estimates obtained for both the whole tree and its
components displayed higher variation for tree height than for tree diameter (Figure 3). In
terms of tree components, the variation obtained for crown (needle and branch) biomass
was relatively higher than that obtained for stem wood biomass. Due to the variability of
the crown (foliage and branch) structure, the number of branches, and variation in wood
density along with branches, the crown (foliage and branch) biomass variance was greater,
in relative terms, than that obtained in the estimation of wood biomass. Bark biomass
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also demonstrated greater variability, especially in the thicker diameter classes. All wood
components exhibited greater variability with increasing height.

Under the same reasoning, different modeling systems, i.e., the NSUR, GRNN, RPNN
and BRNN modeling approaches, were employed for biomass estimations of the whole tree
and the different tree components, and the relative results are provided below. Separate
models were first developed for each biomass component (stem, crown, and bark) before a
simultaneous solution was implemented utilizing the different modeling approaches to
ensure the aggregability of the biomass for the tree components.

According to the NSUR approach, each biomass component was first weighted con-
sidering the weighting factors adopted when developing the separate models for the
components. The estimated values of the parameters, the weighting factors and the con-
dition numbers obtained from the simultaneous solution of the three sets of biomass
equations are presented in Table 2. When the weight factors for the tree components were
analyzed, the weighting factors for all components were similar and within a relatively
narrow range. As can be seen (Table 2), the constructed models for all tree components were
described by different allometric forms. The parameter estimates for all models forming
the system of equations were significant at the 0.05 level except for one parameter (c0) of
the model developed for bark.

Table 2. Parameter estimates and standard errors in parentheses (SE) for the biomass equations of
each component (crown (dwcrown), stem (dwstem), and bark (dwbark)) and total tree biomass (dwtotal)
obtained from simultaneous NSUR fit.

Model Parameter Estimate (SE) Approx Pr. > |t| Weight Factors

dwcrown = a0 + a1D2 + a2H
a0 41.2232 (7.6996) <0.0001

1/D0.1150a1 0.2378 (0.0069) <0.0001
a2 −5.6033 (0.8017) <0.0001

dwstem = b0Db1 Hb2

b0 0.0322 (0.0069) <0.0001
1/D0.09507b1 1.5266 (0.0469) <0.0001

b2 1.2929 (0.0686) <0.0001

dwbark = c0DHc1
c0 0.0137 (0.0084) 0.1110

1/D0.1038
c1 1.6064 (0.1999) <0.0001

dwtotal =
(

a0 + a1D2 + a2H
)
+(b 0Db1 Hb2

)
+ (c0DHc1 ) CN:160 1/D0.07860

wi : dry weight of components i (kg), ai , bi , and ci : regression parameters for the crown, stem wood, and bark,
respectively, D: diameter at breast height (cm), H: total height (m), and CN: condition number.

ANNs are free from regression-type restrictions and assumptions. For this reason, they
were selected to be tested as possible alternatives. However, there are hyperparameters,
different in each ANN algorithm, that require optimization via tuning in order for accurate
and reliable ANN models to be produced. The number of hidden nodes in the hidden layer
of each model is included in Table 3.

The optimal values of the training elements of the constructed neural network models
were assessed through trial-and-error methodologies, taking into account the estimation
and prediction mean square errors of both the fitting and test datasets. According to
the GRNN-constructed models, the smoothing factor values (σi) were tuned for 4950 fits,
using the exhaustive grid-search methodology. The optimal (σ) values that led to the
best biomass components models were equal to 1.879, 1.359 and 1.000 for the stem, bark
and crown biomass estimations, respectively. The optimal weight values for the RPNN-
constructed models were attained after 303, 83 and 36 epochs for the stem, bark, and
crown biomass estimations, respectively, while the respective epochs for the BRNN models
were 7, 5 and 5 for the stem, bark, and crown biomass estimations. The generalization
ability along with the reliability of each neural network-constructed model was attained
through the test dataset. As can be seen (Table 4), all ANN models produced both reliable
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estimations and predictions for the biomass components, supporting the reliability of the
models. All constructed models showed an ability to generalize prediction errors and
correlation coefficient values for the test datasets more or less similar to those derived from
the model estimations using the fitting dataset (Table 4). Furthermore, according to the
error histograms derived via the three networks for the available dataset, these modeling
approaches can be considered as healthy networks, with symmetric curves with a peak
around zero (Figure 4).

Table 3. Number of nodes in each layer of the “best” artificial neural network estimation models for
each biomass component.

Model Biomass Component

GRNN

dwstem dwbark dwcrown

number of nodes

I P S O I P S O I P S O

* 2 (38) 39 2 1 2 (38) 39 2 1 2 (38) 39 2 1

RPNN

dwstem dwbark dwcrown

number of nodes

I H O I H O I H O

2 4 1 2 3 1 2 8 1

BRNN

dwstem dwbark dwcrown

number of nodes

I H O I H O I H O

2 3 1 2 4 1 2 4 1

I: input layer, P: pattern layer, S: summation layer, O: output layer, H: hidden layer, * variables introduced to the
input layer: 2: D, H with 38 rows (70% of the total dataset).

Table 4. Evaluation criteria for the fitting and the test datasets for the constructed ANN models.

ANN Model Output Dataset CV% Correlation Coefficient, r 45-Degree Line Test Slope

GRNN

dwstem
fitting 8.85 0.9962 45.34

test 10.03 0.9899 43.78

dwbark
fitting 10.84 0.9928 44.91

test 11.15 0.9831 43.99

dwcrown
fitting 10.08 0.9948 45.16

test 11.96 0.9878 43.69

RPNN

dwstem
fitting 10.30 0.9935 44.90

test 15.59 0.9824 44.90

dwbark
fitting 26.18 0.9408 42.33

test 26.38 0.9402 39.61

dwcrown
fitting 31.00 0.9535 42.50

test 31.46 0.9145 40.11

BRNN

dwstem
fitting 11.47 0.9921 44.41

test 15.43 0.9824 44.37

dwbark
fitting 26.15 0.8934 43.41

test 28.46 0.8387 41.21

dwcrown
fitting 28.55 0.9249 44.89

test 34.51 0.8492 41.13
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Figure 4. ANN modeling approaches residual histograms with normal curve for the biomass compo-
nents (a,e,i) for stem, (b,f,j) for bark, (c,g,k) for crown and (d,h,l) for the total tree biomass.

Both the NSUR (Table 2) and the ANN-constructed models (Table 3) were used for
the estimation of the biomass components and the total tree biomass. The criterion values
obtained by all different modeling approaches for the available dataset, for both tree
biomass components and the total biomass, are presented in Table 5. According to the NSUR
approach, the most successful predictions were obtained with the equations developed for
stem and whole tree. RMSE values were 83.77, 43.84, 70.45 and 13.55 kg/tree for the whole
tree, stem, crown, and bark biomass, respectively.

Table 5. Evaluation statistics for all tested modeling approaches for biomass components and for the
total tree biomass (n = 55).

Model Biomass R2 BIAS% RMSE CV% MAB AICc

NSUR

dwcrown

0.8823 2.67 70.45 33.46 45.80 210
GRNN 0.9845 −0.05 25.14 11.94 14.01 161
RPNN 0.8866 3.02 67.73 32.17 40.25 208
BRNN 0.8842 −2.62 68.20 32.39 44.07 208

NSUR

dwstem

0.9751 −2.61 43.84 14.87 28.94 187
GRNN 0.9881 0.35 29.65 10.06 19.74 168
RPNN 0.9842 −0.82 34.09 11.56 24.34 175
BRNN 0.9819 −0.04 36.61 12.42 24.27 178

NSUR

dwbark

0.8793 0.21 13.55 27.86 9.53 131
GRNN 0.9802 −0.26 5.40 11.09 3.79 90
RPNN 0.8877 3.54 13.21 27.14 9.70 129
BRNN 0.8761 0.59 13.49 27.75 9.49 131

NSUR

dwtotal

0.9753 −0.35 83.77 15.12 51.02 194
GRNN 0.9920 0.14 44.07 7.95 28.74 187
RPNN 0.9884 1.02 75.67 13.66 50.87 213
BRNN 0.9883 −0.97 75.32 13.60 50.90 213
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All models included diameter at breast height (D) and tree height (H) as independent
variables. The coefficient of determination values ranged from approximately 0.88 to 0.99
for all models.

The models developed for stem and whole tree were able to explain approximately 97%
to 99%, depending on the modeling approach, of the total variability in the corresponding
biomasses, while the 88% to 98% of the crown and bark biomass variability was reached by
the different modeling approaches (Table 5). Considering the results in Table 5, all neural
network-constructed models outperformed the NSUR-developed models and, at the same
time, the most reliable results among the neural network techniques used were derived
by the GRNN models. Specifically, according to the evaluation criteria used, GRNN-
constructed models gave the most accurate results for all tree biomass components and for
the total tree biomass. The root mean square error values were 2.80, 1.48 and 2.51 times
smaller than the values derived from the NSUR model for the dry crown, stem, and bark
biomass, respectively, meaning that the mean estimation error values were 45.31 kg for
the dry crown biomass, 14.19 kg for the dry stem biomass and 8.15 kg for the dry bark
biomass. These are more accurate than the mean estimation error values derived from the
NSUR model. Finally, according to the total dry tree biomass, the root mean square error
values were 1.900, 1.112 and 1.107 times smaller for the GRNN, RPNN and BRNN models,
respectively, than the corresponding values derived from the NSUR model. In terms of
the performance evaluation of all models for the tree components, the models developed
for the crown biomass produced poorer results for all criteria values as compared to their
performances for stem wood.

The dry crown biomass, with variations that ranged from 11.94% to 33.46%, was found
the most difficult factor to be estimated accurately, followed by the dry bark biomass which
produced variations ranging from 11.09% to 27.86%. A higher accuracy was obtained
for the dry stem biomass, with variation ranging from 10.06% to 14.87% for all modeling
techniques (Figure 5). As noted by Poudel et al. [54], crown biomass can vary greatly
between species and even between members of the same species.

Figure 5. Variations in coefficient of estimation errors (CV%) for all biomass components.
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The coefficient of the variation values obtained for the whole tree dry biomass ranged
from 7.95% for the GRNN model to 15.12% for the NSUR model, and the relative mean
absolute error values ranged from 28.74 to 51.02 kg/tree, respectively.

4. Discussion

Due to the importance of tree biomass for the sustainable management of forests,
much effort has been made in forest science in order to develop accurate and reliable
biomass models [1,2,4,6,19,36,55]. Over the years, many different modeling strategies have
been developed, explored, and proposed in order to achieve the best biomass estimations,
with the most widely spread focus on the least-squares regression approach. Much effort
has been spent on overcoming ground-truth data heteroscedasticity by transformations
and weighted procedures. Finally, the optimal form of the regression model that could
reliably be adapted to the data in hand was one of the main difficulties confronted in the
modeling procedure. Nowadays, novel non-parametric modeling methodologies based
on the principals of artificial intelligence and machine learning are being developed and
explored in order to adopt new, reliable modeling solutions [56].

In this context, the work described in this paper focused on the exploration of modeling
behavior of three different artificial neural algorithms and structures for achieving the
best possible fit, namely the generalized regression, the resilient propagation, and the
Bayesian regularization artificial neural networks. These are different techniques within
the realm of machine learning, each one of them having both advantages and drawbacks.
Specifically, the generalized neural network algorithm [40–43] encompasses traditional
feedforward neural networks and shows flexibility for nonlinear regression-type problems
to be modeled. However, if the algorithm is not properly treated, it may be trapped
into local minima or can be overfitted. The resilient backpropagation algorithm [45–47]
can be considered as a variant of the traditional backpropagation algorithm. It is robust
in the training phase of the network, and its efficiency to overcome problems of the
traditional backpropagation algorithm, such as being slow at converging, taking effort
at parameter tuning, and getting stuck in local minima, is considered significant. Finally,
the Bayesian regression algorithm [49,50] which belongs to a probabilistic framework for
modeling uncertainty, is combined with the principles of Bayesian statistics with neural
networks. Due to its nature, it is able to produce not only a single estimation, but a
probability distribution over prediction. Considering the available information from the
literature [10,19,21–27,40–47,49–51,57], we chose to use these specific approaches because
(a) they have the potential to address the tree biomass estimation problem comprehensively,
from different methodological perspectives, (b) each one of them has shown its potential
to model forest attributes, (c) the number of hyperparameters that must be tuned is low
for each one of them making their application more or less simple, and (d) we felt that the
usage of all three algorithms for modeling the same attribute, which is the tree biomass,
can produce significant results and conclusions regarding which algorithm could most
scientifically serve the problem of estimating standing tree biomass. Finally, a pathway
for their effective application is described as well. For the development of a stable basis
for the evaluation of the tested ANN models, due to its flexibility regarding the biomass
estimation problems, the NSUR approach was also tested.

Among the many available algorithms that can be embedded in neural network
building, the ability of the algorithms generally to cope with regression-type problems
under the constraint of the relatively small dataset available primarily drove our selection.
GRNN modeling was rapid and simple, as it required one main parameter to be tuned, the
smoothing parameter (σ) that determines the influence of the data points on predictions
and the overall complexity of the network. The optimal values selection of the smoothing
parameter, adjusted by a smoothing factor of 0.5, led the constructed GRNN models to
global minima of the kernel functions used so as the generalization ability of the prediction
models for all different biomass cases was obvious (Table 4). As for the resilient propagation-
constructed models, their training was established by selecting the optimum number of
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hidden nodes, while the size of the weight change along with the initial value of Δ0 were
determined initially, and then the algorithm automatically adjusted the Δ0 value for each
weight change. The main advantage of this algorithm is robustness which arises because
the direction of the gradient, rather than the magnitude, is used, with the aim of overcoming
local minima and being resistant to extreme or outlier values. This generalization ability
was found adequate (Table 4), while its performance was the second best when compared
with the other modeling approaches (Table 5 and Figure 3). The Bayesian regularization
modeling technique was found to be rapid and was able to reduce overfitting by introducing
probability distributions to the network weights. The optimal combination of errors and
weights was found by determining the optimal number of hidden nodes following the trial-
and-error procedure and by initially determining the Levenberg–Marquardt adjustment
parameter as 0.005 along with its decreasing and increasing steps to 0.1 and 10, respectively.
Both performance and generalization abilities proved adequate for all different cases of
biomass estimation and prediction (Tables 4 and 5 and Figure 3). The NSUR modeling
approach was used to account for the inherent correlation among biomass components
measured on the same tree and to address the heteroscedasticity problem. NSUR allowed
each component model to have its own independent variable and its own weight function
to deal with the problem of different variances in each component and allowed the total
tree biomass model to be obtained with smaller variance. This process accorded with the
results of previous studies [2,5], that fitting tree and tree component biomass equations by
NSUR results in efficient parameter estimates with low standard errors. The performance
of NSUR to predict the total tree biomass and its components were generally acceptable
and adequate.

Considering the evaluation criteria of the different modeling techniques used for
accurate biomass estimation, all approaches were efficient and able to estimate and predict
tree biomass. Advantages and disadvantages of each modeling methodology can be a
guide in the selection or rejection of each of them when applied to specific problems.
Although nonlinear regression modeling is a well-known and understandable method,
it has serious drawbacks, such as assumptions that should be followed (normality and
homogeneity), the predefinition of the form of the fitting function by the modeler, and
the prerequired good initial values for accurate parameter estimations of the nonlinear
models [10]. In general, the NSUR approach can be used for whole tree biomass and tree
component biomass predictions. As indicated in several publications [1,2], this approach
provided more accurate biomass predictions than the traditional approach of separately
fitting whole tree and its component biomass equations using least-squares regression.
As they are non-parametric processes, the artificial neural network approaches tested do
not rely on assumptions, while the model form does not have to be specified in advance.
However, there are hyperparameters that need to be tuned, while the final/trained model
does not have a conventional form. Therefore, computational skills are required for its use.
The selection of the proper model should be based on the specific problem being solved,
the desired accuracy and the available means.

5. Conclusions

This work examined the adaptation of different modeling approaches to develop a
flexible, simple, and fast system of tree component biomass along with total tree biomass
estimation. For this purpose, NSUR, GRNN, RPNN and BRNN modeling techniques were
applied for the biomass estimation of cedar trees in natural stands. All different modeling
approaches appeared to provide reliable biomass estimations using data from only two
variables that have to be measured in the field, diameter at breast height and total tree
height, meaning that field effort was minimized.

The overall results suggested that the artificial neural network algorithms produced
models with a higher performance when compared with the NSUR relative models.

The generalized regression neural network models outperformed the others, in terms
of all evaluation criteria used, providing more reliable and accurate estimations for all
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different parts of tree biomass. Finally, the high predictive ability of the GRNN models for
the “unseen” data strongly indicates that this modeling approach is one of the most useful
methods for modeling forest biomass and is worthy of consideration as an alternative
approach to tree biomass modeling.
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13. Saraçoğlu, N. Biomass tables of beech (Fagus orientalis Lipsky). Turk. J. Agric. For. 1998, 22, 93–100.
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27. Ercanlı, İ. Innovative deep learning artificial intelligence applications for predicting relationships between individual tree height

and diameter at breast height. For. Ecosyst. 2020, 7, 12. [CrossRef]
28. Boydak, M. Regeneration of Lebanon cedar (Cedrus libani A. Rich.) on karstic lands in Turkey. For. Ecol. Manag. 2003, 178, 231–243.

[CrossRef]
29. Fischer, R.; Lorenz, M.; Kohl, M.; Becher, G.; Granke, O.; Christou, A. The Conditions of Forests in Europe: 2008 Executive Report;

United Nations Economic Commission for Europe, Convention on Long-Range Trans Boundary Air Pollution, International
Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests; ICP Forests: Eberswalde, Germany,
2008; p. 23.

30. Li, R.; Weiskittel, A.R. Comparison of model forms for estimating stem taper and volume in the primary conifer species of the
North American Acadian Region. Ann. For. Sci. 2010, 67, 302. [CrossRef]

31. Alemdag, I. Manual of Data Collection and Processing for the Development of Forest Biomass Relationships; Environment Canada,
Canadian Forestry Service, Petawawa National Forestry Institute: Chalk River, ON, Canada, 1980.

32. Alemdag, I. Aboveground-Mass Equations for Six Hardwood Species from Natural Stands of the Research Forest at Petawawa; Environment
Canada, Canadian Forestry Service, Petawawa National Forestry Institute: Chalk River, ON, Canada, 1981.

33. Porte, A.; Trichet, P.; Bert, D.; Loustau, D. Allometric relationships for branch and tree woody biomass of Maritime pine (Pinus
pinaster Aıt.). For. Ecol. Manag. 2002, 158, 71–83. [CrossRef]

34. Parresol, B.R. Assessing tree and stand biomass: A review with examples and critical comparisons. For. Sci. 1999, 45, 573–593.
35. Wang, L.-H.; Xing, Y.-Q. Remote sensing estimation of natural forest biomass based on an artificial neural network. Ying Yong

Sheng Tai Xue Bao = J. Appl. Ecol. 2008, 19, 261–266.
36. Canga, E.; Diéguez-Aranda, U.; Elias, A.; Cámara, A. Above-ground biomass equations for Pinus radiata D. Don in Asturias. For.

Syst. 2013, 22, 408–415. [CrossRef]
37. Park, R.E. Estimation with heteroscedastic error terms. Econom. (Pre-1986) 1966, 34, 888. [CrossRef]
38. SAS Institute Inc. SAS/SHARE®9.4: User’s Guide, 2nd ed.; SAS Institute Inc.: Cary, NC, USA, 2016.
39. Belsley, D.A. A guide to using the collinearity diagnostics. Comput. Sci. Econ. Manag. 1991, 4, 33–50. [CrossRef]
40. Specht, D.F. A general regression neural network. IEEE Trans. Neural Netw. 1991, 2, 568–576. [CrossRef] [PubMed]
41. Diamantopoulou, M.J. Assessing a reliable modeling approach of features of trees through neural network models for sustainable

forests. Sustain. Comput. Inform. Syst. 2012, 2, 190–197. [CrossRef]
42. Dreyfus, G. Neural Networks: Methodology and Applications; Springer Science & Business Media: Berlin, Germany, 2005.
43. de Bragança Pereira, B.; Rao, C.R.; de Oliveira, F.B. Statistical Learning Using Neural Networks: A Guide for Statisticians and Data

Scientists with Python; CRC Press: Boca Raton, FL, USA, 2020.
44. Belete, D.M.; Huchaiah, M.D. Grid search in hyperparameter optimization of machine learning models for prediction of

HIV/AIDS test results. Int. J. Comput. Appl. 2022, 44, 875–886. [CrossRef]
45. Riedmiller, M.; Braun, H. A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In Proceedings

of the IEEE International Conference on Neural Networks, San Francisco, CA, USA, 28 March–1 April 1993; pp. 586–591.
46. Florescu, C.; Igel, C. Resilient backpropagation (RPROP) for batch-learning in tensorflow. In Proceedings of the 6th International

Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018; pp. 1–5.
47. Karatepe, Y.; Diamantopoulou, M.J.; Özçelik, R.; Sürücü, Z. Total tree height predictions via parametric and artificial neural

network modeling approaches. Iforest-Biogeosci. For. 2022, 15, 95. [CrossRef]
48. Matlab, Version R2022a; The MathWorks Inc.: Natick, MA, USA, 2022.
49. Burden, F.; Winkler, D. Bayesian regularization of neural networks. In Artificial Neural Networks; Methods in Molecular Biology

Book Series; Springer: Berlin/Heidelberg, Germany, 2009; pp. 23–42.
50. Kayri, M. Predictive abilities of Bayesian regularization and Levenberg–Marquardt algorithms in artificial neural networks: A

comparative empirical study on social data. Math. Comput. Appl. 2016, 21, 20. [CrossRef]
51. Olson, D.L.; Delen, D. Advanced Data Mining Techniques; Springer Science & Business Media: Berlin, Germany, 2008.
52. Hurvich, C.M.; Tsai, C.-L. Regression and time series model selection in small samples. Biometrika 1989, 76, 297–307. [CrossRef]
53. Burnham, K.P.; Anderson, D.R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 2004,

33, 261–304. [CrossRef]

228



Forests 2023, 14, 2429

54. Poudel, K.P.; Temesgen, H.; Gray, A.N. Evaluation of sampling strategies to estimate crown biomass. For. Ecosyst. 2015, 2, 1.
[CrossRef]

55. Zhao, Y.; Ma, Y.; Quackenbush, L.J.; Zhen, Z. Estimation of Individual Tree Biomass in Natural Secondary Forests Based on ALS
Data and WorldView-3 Imagery. Remote Sens. 2022, 14, 271. [CrossRef]

56. Özçelik, R.; Diamantopoulou, M.J.; Trincado, G. Evaluation of potential modeling approaches for Scots pine stem diameter
prediction in north-eastern Turkey. Comput. Electron. Agric. 2019, 162, 773–782. [CrossRef]

57. Thanh, T.N.; Tien, T.D.; Shen, H.L. Height-diameter relationship for Pinus koraiensis in Mengjiagang Forest Farm of Northeast
China using nonlinear regressions and artificial neural network models. J. For. Sci. 2019, 65, 134–143.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

229



Article

Thinning Combined with Prescribed Burn Created Spatially
Heterogeneous Overstory Structures in Contemporary Dry
Forests: A Comparison Using LiDAR (2016) and Field
Inventory (1934) Data

Sushil Nepal 1,*, Bianca N. I. Eskelson 1,*, Martin W. Ritchie 2 and Sarah E. Gergel 3

1 Department of Forest Resources Management, The University of British Columbia, 2424 Main Mall,
Vancouver, BC V6T 1Z4, Canada

2 USDA, Forest Service Pacific Southwest Research Station, 3644 Avtech Parkway, Redding, CA 96002, USA;
martin.ritchie@usda.gov

3 Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall,
Vancouver, BC V6T 1Z4, Canada; sarah.gergel@ubc.ca

* Correspondence: snepal1@student.ubc.ca (S.N.); bianca.eskelson@ubc.ca (B.N.I.E.);
Tel.: +1-6048270629 (B.N.I.E.)

Abstract: Restoring current ponderosa pine (Pinus ponderosa Dougl. Ex P. and C. Laws)-dominated
forests (also known as “dry forests”) to spatially resilient stand structures requires an adequate
understanding of the overstory spatial variation of forests least impacted by Euro-American settlers
(also known as “reference conditions”) and how much contemporary forests (2016) deviate from
reference conditions. Because of increased tree density, dry forests are more spatially homogeneous
in contemporary conditions compared to reference conditions, forests minimally impacted by Euro-
American settlers. Little information is available that can be used by managers to accurately depict
the spatial variation of reference conditions and the differences between reference and contemporary
conditions. Especially, forest managers need this information as they are continuously designing
management treatments to promote contemporary dry forest resiliency against fire, disease, and
insects. To fill this knowledge gap, our study utilized field inventory data from reference conditions
(1934) along with light detection and ranging and ground-truthing data from contemporary conditions
(2016) associated with various research units of Blacks Mountain Experimental Forest, California, USA.
Our results showed that in reference conditions, above-ground biomass—a component of overstory
stand structure—was more spatially heterogeneous compared to contemporary forests. Based on
semivariogram analyses, the 1934 conditions exhibited spatial variation at a spatial scale < 50 m
and showed spatial autocorrelation at shorter ranges (150–200 m) compared to those observed in
contemporary conditions (>250 m). In contemporary conditions, prescribed burn with high structural
diversity treatment enhanced spatial heterogeneity as indicated by a greater number of peaks in the
correlograms compared to the low structural diversity treatment. High structural diversity treatment
units exhibited small patches of above-ground biomass at shorter ranges (~120 to 440 m) compared
to the low structural diversity treatment units (~165 to 599 m). Understanding how spatial variation
in contemporary conditions deviates from reference conditions and identifying specific management
treatments that can be used to restore spatial variation observed in reference conditions will help
managers to promote spatial variation in stand structure that has been resilient to wildfire, insects,
and disease.

Keywords: Blacks Mountain Experimental Forest; LiDAR; overstory spatial variation; above-ground
biomass; semivariogram; Moran’s I correlogram
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1. Introduction

Overstory stand structure of ponderosa pine-dominated forests—hereafter “dry
forests” [1]—has undergone substantive changes since the Euro-American settlement of
California, USA. Such changes have included shifts in species composition, an increase in
the density of small trees [2], and a decline in the density of large trees [3–5]. An increase
in densities of small trees and shifts in species composition are attributed to a wide range
of factors, including fire suppression, logging, grazing, and climate change [2,3].

In California, tree-ring reconstructions indicate that spatial variation in the overstory
of dry forests impacted by indigenous land use but prior to harvesting activities following
Euro-American settlement (hereafter termed “reference conditions”) consisted of a mo-
saic of individual trees, tree groups, and gaps at small scales (<0.4 ha or 40–70 m). Such
spatial variation in overstory stand structure resulted in open forests with sparse, large
individuals of fire-resistant species [6,7]. Spatial variations in stand structure are the result
of interactions among prior processes such as fire, regeneration, competition, and mortal-
ity [8,9]. However, spatial variations in stand structure such as tree density, basal-area,
and above-ground biomass (AGB) have substantially changed following Euro-American
settlement [10,11].

Within the dry forests of California, following Euro-American settlement, spatial
variation in overstory stand structure has shifted from fire resilient to fire prone forests
due to increased tree density of shade-tolerant species such as white fir (Abies concolor
(Grod. & Glend)) and incense-cedar (Calocedrus decurrens (Torr.)) [10–12]. Frequent fires with
return intervals of about 25 years are among the most important drivers of spatial variation
in dry forests [13,14]. However, it is unclear how overstory stand structures may have
been altered spatially due to the exceptionally long fire-free period after Euro-American
settlement [3,15]. Therefore, quantitative descriptions of spatial changes in overstory stand
structures are crucial for land managers as they can be used to assess the potential of
wildfire due to increased fuel loads in the forest overstory [16,17].

The spatial variations in overstory stand structure over time have rarely been studied,
which is potentially a result of both a general lack of spatially-explicit data collected prior
to active management [3] and the fact that such data collection is extremely labor intensive
and expensive. Hence, it is practically impossible to obtain census data over large areas [18].
Remote sensing technology, especially light detection and ranging (LiDAR), provides
the capacity to obtain spatially explicit data over large areas in a timely and cost-effective
manner [18]. Although LiDAR data are being extensively used in enhanced forest inventory,
ground data are still required [19]. LiDAR-derived variables such as height metrics can
be utilized with ground-based observations such as basal area (m2/ha), volume (m3/ha),
and AGB (Mg/ha) to predict forest overstory stand structure at different times [20]. Thus,
LiDAR data complement and can be used in conjunction with ground-based inventories to
identify spatial changes in the forest overstory structure [21].

Furthermore, many studies examining the spatial variation of forest structure in
California, USA, have been restricted to particular elevation ranges [2,22], management
units [23,24], certain functional types, and small study areas [3,25,26]. Numerous studies
have provided a general description of dry forests prior to active management following
Euro-American settlement [27,28]. However, a description of the spatial variation of
overstory stand structure over time is generally lacking. Many studies have investigated
spatial variation in tree density and tree size (e.g., [9,29]), and at different scales based
on averages (e.g., [30,31]). However, they have failed to capture the spatial variation of
overstory over a larger landscape utilizing different metrics such as AGB as a measure of
overstory stand structure. AGB is closely related to forest productivity and can be more
accurately predicted and modeled from ground-measured biomass and LiDAR height
metrics compared to trees per hectare or basal area per hectare [20]. Metrics such as trees
per hectare and basal area per hectare are sensitive to the inability of LiDAR to capture
small and understory trees very accurately [31].
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This study was conducted in the dry forests of Blacks Mountain Experimental Forest
(BMEF) in northern California, USA. BMEF remained untouched by selective logging oper-
ations from the late 1800s through 1940s [32], but may have been impacted by indigenous
land use for hunting mule deer [33]. Within BMEF, our study focused on the section defined
as the Blacks Mountain Ecological Research Project (BMERP), initiated in 1991. Within
BMERP, two structural diversity thinning treatments with or without prescribed burn were
implemented [32]. A low structural diversity treatment (LOD) was designed to produce a
single canopy layer by removing dominant and large-sized trees [32]. A high structural
diversity treatment (HID) was designed to leave all the dominant trees, abundant snags,
and multiple canopy and forest openings [32]. To quantify the spatial variation of AGB, we
utilized three types of data collected for the BMERP project area: ground inventory data
from 1934 as reference data, as well as contemporary 2015 LiDAR data, and 2016 ground
verification data. The specific objectives of our study were to:

1. compare the spatial variation of overstory AGB between contemporary forests and
reference conditions using 2015 LiDAR data and 1934 census data;

2. compare the spatial variation of overstory AGB among various structural diversity
treatments in contemporary conditions.

The variogram analyses implemented in this study, provide information on the inher-
ent patch size and spatial heterogeneity for overstory AGB in both contemporary forests
and reference conditions. Understanding the spatial differences in overstory AGB at two
points in time across a landscape has various applications in forest management poli-
cies such as fuel classification, fire spread prediction, and post-disturbance vegetation
changes [34–36]. Such information can improve our understanding of how trees and forests
respond and will continue to respond towards changes in disturbance regimes [37] and
help silviculturists design restoration treatments that move forests towards more resilient
conditions similar to reference conditions.

2. Materials and Methods

2.1. Study Area

The BMEF, managed by the USDA Forest Service Pacific Southwest Research Station,
is located in northeastern California (Figure 1) (40◦40′ N, 10 121◦10′ W), northeast of Lassen
Volcanic National Park. The elevation of BMEF ranges between 1700 and 2100 m [32].
Slopes rarely exceed 30 percent [32]. Aspects are primarily west- and south-facing. At
lower elevations, stands are dominated by ponderosa pine (Pinus ponderosa Dougl. Ex P.
and C. Laws) with occasional occurrence of some Jeffrey pine (Pinus jeffreyi (Grev. And
Balf.) [32]. At higher elevations, white fir (Abies concolor (Gord. And Glend.) Lindl.) and
incense-cedar (Calocedrus decurrens (Torr.) Florin) dominate the stands. Classified as an
interior ponderosa pine forest type [38], the 4358 ha forest has a wide range of stand
conditions as a result of past research and management activities, as well as disturbance
events [39].

For this study, we focused on ten of the twelve research units in the BMERP and
four research natural areas (RNA, Figure 1C). BMERP was initiated as an interdisciplinary
large-scale, long-term ecological research project at BMEF in 1991 [32]. The goals of BMERP
were to: (a) understand the effects of forest structural complexity on the health and vigor of
ponderosa pine ecosystems, (b) quantify the ecosystem’s resilience to natural and human-
caused disturbances, and (c) determine how these ecosystems can be managed for sustained
resource values [32]. The forests in the ten BMERP research units were subjected to two
different types of treatments (Figure 1C, for details about treatments see Appendix A,
Table A1). The first treatment consisted of three stand structures: low structural diversity
(LOD), high structural diversity (HID), and research natural areas (RNAs) (Figure 1C; [32]).
LOD and HID treatments had been randomly assigned to the ten BMERP research units
ranging in size from 77 to 144 ha (Figure 1C). Each research unit was then split in half with
one randomly assigned half receiving prescribed burn treatments (hereafter “burned”),
whereas the other half did not receive the prescribed burn treatment (hereafter “unburned”)
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(Figure 1C). Collectively, the twelve units consisted of a total of twenty-four stands in
our study: four RNAs, ten LOD stands, and ten HID stands (Figure 1C and Table A1).
LOD stands were thinned to a uniformly spaced density of ~40 trees ha−1 retaining a
single canopy layer of intermediate trees with height ranging from 12 to 30 m and a crown
ratio > 50% [32]. In contrast, thinning in HID stands was conducted to retain all canopy
layers that represented an overstory stand structure of a forest with multiple age classes
and varying crown structures [32]. All large old trees were maintained with one smaller
tree retained within the larger tree’s crown circumference [32]. As a part of the prescription,
within the HID units, caches of high-density and small-diameter conifers were left [32,38].

Figure 1. Study area map. Panel (A) represents the United States of America with California being
highlighted in grey. California with its county boundaries is shown in Panel (B). Blacks Mountain
Experimental Forest is represented in Panel (C) with the 1 ha plots used for the 1934 census survey.
Panel (C) also includes the polygons for the Blacks Mountain Ecological Research project (BMERP).
Inside the BMERP polygons, the blue dots represent the permanent grid system within BMEF as
shown in panel (D). The ground-truthing data were collected using a staggered pattern in 2016, as
shown in Panel (D).

233



Forests 2023, 14, 2096

The four RNAs (~40 ha each; Figure 1C) were set aside to serve as unmanaged,
qualitative controls representative of the interior ponderosa pine type [32]. These RNAs
have never received mechanical treatments, but fire exclusion has greatly increased their
understory tree densities [32]. Two of the four RNA stands (RNA-B and RNA-C) received
one application of prescribed burn in the late 1990s [32].

2.2. Data
2.2.1. 1934 Survey Data

During the fall of 1934, BMEF was divided into a total of 4074 rectangular plots of 1
ha (hereafter referred to as “1 ha plots”) in size to conduct a census survey ([40], Figure 1C).
Within each 1 ha plot, all live overstory trees > 8.9 cm (3.5 inches) were tallied by species
group and diameter class [40]. Diameter classes were 5.08 cm (2 inches) wide and labeled
by even inches (i.e., 4, 6, 8, 10, etc.). Tree species were recorded as pine (Jeffrey or ponderosa
pine), white fir, and incense-cedar [40].

2.2.2. 2015 LiDAR Data Acquisition and Processing

An airborne Light Detection and Ranging (LiDAR) dataset was acquired during the
summer of 2015 using a Leica ALS50 PHASE II laser system (near-infrared) discrete return
sensor mounted on a fixed-wing aircraft [41]. The aircraft was flown at an altitude of 900 m
using an opposing-flight line with a side lap of at least 50% [41]. The scanning angle of
the sensor was ±14◦ with an average return of 6.9 points per m2 and a standard deviation
of 5.9 points per m2 (see [41]). LiDAR point cloud was processed and LiDAR metrics
were calculated using the ‘lidR’ package in R ([42], see Appendix B for a full description of
the process).

2.2.3. 2016 Field Data

The ten research units and four RNAs each have a permanent 100 m lattice grid
(Figure 1D; [32]). The grid serves as the center points for most of the plot-level research
conducted in BMEF [32]. In the summer of 2016, at every other grid point in all diagonal
directions (282 m spacing, Figure 1D), 16 m radius plots (804 m2, hereafter referred to as
“circular plots”) were measured within each treatment unit [43]. Standing live and dead
trees ≥ 9 cm diameter at breast height (DBH) were stem mapped from the plot center and
measured for total height and DBH [43]. These ground-truthing data were collected in a
total of 154 circular plots: 65 LOD, 69 HID, and 20 RNA plots (Figure 1C; blue dots).

2.2.4. Overstory Above-Ground Biomass for 1935 and 2016

Using the 1934 survey data, I calculated biomass (Mg) for foliage, branch, and bole of
individual trees > 9 cm DBH using species-dependent equations that were developed locally
at BMEF [44]. Then, the above-ground biomass (AGB, Mg) for each tree was calculated
by summing the individual biomass from foliage, bole, and branch. The height values
used in the equations were estimated from local height–diameter equations developed by
Dolph et al. [45]. For white fir and incense-cedar overstory AGB, we used equations and
parameters suggested by Jenkins et al. [46]. The total plot overstory AGB was calculated
by adding the overstory AGB of each species. We then converted plot AGB to AGB per
hectare (Mg/ha) based on the given plot sizes.

For the 2016 field data, we calculated the AGB for individual trees using the same
species equation parameters that were used for the 1934 biomass calculations. The total
overstory AGB for each circular plot was calculated by taking the sum of the AGB calculated
for individual trees of each species and converted into per ha values.

2.2.5. Biomass Model to Link LiDAR Metrics to 1 ha Plots for 2016

The distribution of the response variable—overstory above-ground biomass (AGB,
Mg/ha)—was skewed to the right with values > 0 (Figure A1). Therefore, we fit generalized
linear mixed effect models (glm) with a ‘gamma’ distribution and a ‘log link’ function to
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ensure that the expected value of AGB is always positive [47]. Modeling was performed
in R using the ‘lme4’ package ([48]; see Appendix C for full details on the model building
process and sumary results).

We divided the study area within BMERP into cells of size 32 × 32 m to match the
resolution of the ground-truthing plots (Figure A4). LiDAR metrics were extracted at
the cell level following the method described in Mauro et al. [43]. There was a total of
12,647 cells. The selected biomass model was then applied to the cells to predict overstory
AGB. To calculate the overstory AGB for 1 ha plots in 2016, first, the predicted values of
overstory AGB at cell level were created as a map (Figure A4). Then, the map was overlaid
with the 1 ha plot map with the BMERP units. The intersect function in ArcMap 10.4.1 was
used to extract the cells that fell within 1 ha plots [49]. If a cell straddled multiple 1 ha plots,
overstory AGB was weighted based on the area of the cell, and area weighted values of
cells that fell within the plots were summed to calculate the overstory AGB (Mg/ha) for
1 ha plots.

2.3. Data Analysis

We computed semivariograms at the scale of each BMERP unit and Moran’s I correlo-
grams as a measure of spatial variation to evaluate our research objectives.

2.3.1. Comparing Semivariogram Components and Moran’s Correlogram between 1934
and 2016

Semivariograms—To meet our first research objective, we used semivariogram models
following the methods of Rossi et al. [50] with the assumption of stationarity, i.e., that the
variance in above-ground biomass (AGB) is the function of separation distance only [51].
The semivariance was calculated for a pair of observations of overstory AGB as a function
of the separation distance (hereafter “lag distance”) between the sampled locations [51].
Using the ‘gstat’ spatial package in R version 4.1.1 [52], semivariogram models were built
for all fourteen units using a 1 ha plot-level overstory AGB for 1934 and 2016. For the
2016 study units, we did not differentiate between the burned and unburned halves; hence,
variograms represent the pooled variogram for each unit. Following the method of Fry and
Stephens [53], we fit three semivariogram models—exponential, Gaussian, and spherical—
for each unit in 1934 and 2016. We also checked the assumption of stationarity in our
exploratory analysis using directional variograms and found that ranges were not different;
hence, semivariance was only distance dependent and not direction dependent [53]. Fur-
thermore, to allow for comparisons at a common scale, all variograms were standardized
by dividing the semivariance by the overall sample variance [50]. For both 1934 and 2016,
the best semivariogram models were selected based on the minimized root mean squared
error (RMSE, [53]). Following the method suggested by Fry and Stephens [53], we used
the selected semivariograms from both points in time and compared the values of range,
nugget, and sill for all fourteen units using dot plots. The range describes the distance up
to which overstory AGB values exhibited spatial autocorrelation and provides information
on the inherent patch size and spatial heterogeneity for overstory AGB [54]. The sill values
were compared to understand whether the amount of spatially dependent variance within a
given range in overstory AGB differed between 1934 and 2016 [53,55]. Nugget values were
compared to understand if there was spatial variation at a scale smaller than 50 m (hereafter
referred as “fine-scale spatial variation”), which was the shortest distance between adjacent
1 ha plots in overstory AGB [55].

Moran’s I correlogram—For a more local measure of spatial autocorrelation, we followed
the method of Jaquette et al. [56] and calculated Moran’s I over the range of 20 lags at an
interval of 50 m between lags, which was the shortest possible distance between 1 ha plot
centers. From our exploratory analysis, we found that Moran’s I could be calculated up to a
distance of 1000 m for all units except RNA-D because the number of observations was <5%
of total observations for the given unit and the spatial variation could not be interpreted
easily with so few observations [57]. RNA-D was an exception and only allowed 800 m
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for the Moran’s I calculations. We also tested if Moran’s I at each lag was significantly
different from 0 (alpha = 0.05) using Monte Carlo simulations with 1000 permutations [56].
Using the results from the 1000th permutation, all directional Moran’s I correlograms were
constructed with lag distance (m) on the x-axis and Moran’s I value on the y-axis [57,58]
for all units. We used the Moran’s I correlograms for 1934 and 2016 to compare spatial
variation in overstory AGB in terms of the differences in:

(a) fine-scale spatial variation—We evaluated whether the magnitude of Moran’s I at the
first lag was significantly different from 0 (p < 0.05) for each unit in both years. A
Moran’s I value at the first lag that is significantly different from 0 indicates a lack of
fine-scale spatial variation within study units, i.e., patches of overstory AGB < 50 m
do not exist [57]. If Moran’s I was not significantly different from 0, patches of
AGB < 50 m exist in the study units.

(b) periodicity in Moran’s I correlogram—Moran’s I values that are significantly different
from 0 at different lag distances result in peaks (positive Moran’s I) and troughs
(negative Moran’s I) at different lag intervals creating a periodic correlogram for
overstory AGB [57,58]. A greater number of peaks and troughs in the correlogram
indicates greater spatial variation, whereas fewer peaks in the correlogram suggest
less spatial variation in AGB [57,58]. We visually compared if the number of peaks
and troughs combined (collectively referred to as “peaks”) in the correlograms for the
units were different between years as an indicator of greater or less spatial variation
in AGB [57,58].

2.3.2. Effect of Management Treatments on Spatial Variation of Above-Ground Biomass in
the Contemporary Forests

To compare the effect of management treatments on spatial variation of overstory
AGB, we used semivariogram models built for each of the burned and unburned halves of
the HID and LOD treatment units (Table A1). A total of 20 semivariograms—10 each for
the burned and unburned halves of HID and LOD treatment units—were selected based on
low RMSE values and used to compare the range, nugget, and sill. We also used Moran’s I
correlogram constructed for both burned and unburned halves of HID and LOD treatment
units to compare the fine-scale spatial variation and periodicity in spatial variation in
overstory AGB as described in Section 2.3.1. From our exploratory analysis, we found that
maximum distance for which we could construct Moran’s I correlograms was 1000 m for
all the burned and unburned halves of the units.

3. Results

3.1. Spatial Variation between 1934 and 2016
3.1.1. Spatial Autocorrelation in Above-Ground Biomass Exhibited at Larger Ranges
in 2016

Within research natural areas (RNAs), Gaussian and spherical models for various
units exhibited low RMSE; thus, they were selected for comparison of spatial variation in
overstory above-ground biomass (AGB) between 1934 and 2016 (Table 1, Figure A5). The
models that did not converge for either year are not presented in the results. Within RNAs,
the values of range did not differ substantially between RNA-A and RAN-B for both years
(Figures 2 and A5). However, within RNA-C and RNA-D, we observed larger ranges of
~400 m and 250 m, respectively, in 2016 compared to 1934 (~243 m for RNA-C and 167 m
for RNA-D, Figures 2 and A5). RNAs exhibited larger nugget values in 1934 compared to
extremely small values in 2016 indicating the presence of fine-scale spatial variation in 1934
compared to 2016 (Figure 3 and Table 1). In 2016, the sill values were generally similar to
those observed in 1934. We only observed higher sill values in RNA-D in 2016 compared to
1934, without much difference in other RNAs (Table 1).
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Figure 2. Range values for above-ground biomass for the selected variogram models between 1934
vs. 2016. The top panel shows the range for research natural areas (RNA), the middle panel shows
the range for the low structural diversity (LOD) units, and the bottom panel shows the range for the
high structural diversity (HID) units in Blacks Mountain Ecological Research Project.

Within units other than RNAs, spherical and Gaussian models exhibited low RMSE
values and were selected (Table 1 and Figure A6). All units except 41 and 44 exhibited short
ranges in 1934 compared to longer ranges in 2016 (Figures 2, A6 and A7). There was a very
small difference in range values between both years in units 41, 43, 44, and 45 (Figure 2).
Nugget values observed in 1934 were larger than those observed in 2016 within 14 units
of the study, which indicated the presence of fine-scale spatial variation (Figure 3). The
amount of spatial autocorrelation indicated by the sill values was greater in 1934 compared
to 2016 in most of the units (Table 1 and Figures A6 and A7).
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Table 1. Summary of the root mean square error (RMSE), and nugget values for the models that
converged. The selected variogram models for each unit are highlighted with bold font.

Units Models RMSE Sill

Research natural areas (RNA) 1934 2016 1934 2016

RNA-A Spherical 0.81 0.85 1.15 1.09
Exponential 0.82 0.84 1.91 1.75
Gaussian 0.74 0.80 1.01 0.99

RNA-B Spherical 0.83 0.96 1.21 1.28
Exponential 0.82 0.95 2.69 3.84
Gaussian 0.79 0.94 1.09 0.99

RNA-C Spherical 0.63 0.80 0.93 1.11
Exponential 0.72 0.82 1.01 1.49

RNA-D Gaussian 0.50 0.65 1.01 1.56

Low structural diversity (LOD)

UNIT-39 Spherical 0.52 0.74 0.99 1.06
Exponential 0.57 0.74 1.94 1.92
Gaussian 0.49 0.70 0.95 0.98

UNIT-40 Spherical 0.76 0.73 1.04 1.11
Exponential 0.75 0.75 1.92 1.94

UNIT-43 Spherical 0.65 0.70 1.03 0.91
Exponential 0.69 0.71 1.16 1.06
Gaussian 0.63 0.67 0.98 0.87

UNIT-44 Spherical 0.30 0.51 1.42 0.96
Exponential 0.31 0.53 2.62 1.47
Gaussian 0.28 0.48 0.80 0.76

UNIT-45 Spherical 0.69 0.80 2.50 1.12
Gaussian 0.64 0.80 1.10 1.27

High structural diversity (HID)

UNIT-38 Spherical 0.48 0.67 0.81 0.95
Exponential 0.52 0.69 0.85 1.07
Gaussian 0.47 0.64 0.79 0.89

UNIT-41 Spherical 0.72 0.71 1.03 0.94
Exponential 0.75 0.71 1.20 1.35

UNIT-42 Spherical 0.63 0.71 0.98 0.95
Exponential 0.86 0.84 1.54 2.52

UNIT-47 Spherical 0.85 0.84 1.14 1.18
Exponential 0.84 0.86 0.92 1.55

UNIT-48 Spherical 0.64 0.75 0.83 1.04
Exponential 0.66 0.75 0.00 0.00

3.1.2. Moran’s I Correlogram Exhibited Differences in Fine-Scale Spatial Variation and
Periodicity between Two Years

Moran’s I correlogram suggested that fine-scale spatial variation was more pronounced
in 1934 conditions compared to 2016, as indicated by the Moran’s I values—not significantly
different from 0—at the first lag in most of the units (Table 2). For example, in 1934, nine
out of fourteen units exhibited a Moran’s I value at the first lag that was not significantly
different from 0, but in 2016, ten out of fourteen units had Moran’s I values at the first lag
that were significantly different from 0 (Table 2). This was in agreement with all the higher
nugget values found in 1934 as compared to low nugget values in 2016 (Figure 3). Thus,
only four out of fourteen units exhibited fine-scale spatial variation in 2016 (Table 2).
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Figure 3. Nugget values for above-ground biomass for the selected variogram models for 1934 and
2016. The top panel shows the nuggets for research natural areas (RNA), the middle panel shows the
nuggets for the low structural diversity (LOD) units, and the bottom panel shows the nuggets for the
high structural diversity (HID) units in Blacks Mountain Ecological Research Project.

In general, periodicity did not vary substantially between 2016 and 1934, as indicated
by similar numbers of peaks between both years (Table 2, Figure A8). However, the
presence of periodicity in the Moran’s I correlograms in both years indicated that overstory
AGB occurred in heterogeneous patches (Figure A8). Exceptions were RNA-A and RNA-C,
where the spatial variation in overstory AGB was more pronounced in 2016, as indicated by
a larger number of peaks in 2016 compared to 1934 (Table 2 and Figure 4). The periodicity
in the correlogram occurred at larger lag intervals (>250 m) for units 39, 43, and 48 in 2016,
which is an indication of the presence of bigger patches of overstory AGB (Figure A8).
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Table 2. Summary of the number of peaks and troughs of the Moran’s I correlograms and p-values
for the Moran’s I at the first lag for research natural areas (RNAs) and other units in 1934 and 2016.

Unit First Lag

1934 2016 1934 2016

# Peaks # Peaks

Research natural area (RNA)

RNA-A 5 3 p = 0.009 * p = 0.009 *
RNA-B 3 3 p = 0.23 ns p = 0.35 ns

RNA-C 3 5 p = 0.13 ns p = 0.06 *
RNA-D 1 3 p = 0.16 ns p = 0.47 ns

Low structural diversity (LOD)

UNIT-39 1 1 p = 0.009 * p = 0.009 *
UNIT-40 2 2 p = 0.06 ns p = 0.02 *
UNIT-43 2 4 p = 0.13 ns p = 0.009 *
UNIT-44 0 2 p = 0.16 ns p = 0.03 *
UNIT-45 1 1 p = 0.009 * p = 0.009 *

High Structural diversity (HID)

UNIT-38 2 2 p = 0.009 * p = 0.009 *
UNIT-41 2 4 p = 0.06 ns p = 0.17 ns

UNIT-42 0 2 p = 0.72 ns p = 0.93 ns

UNIT-47 1 1 p = 0.75 ns p = 0.05 *
UNIT-48 2 2 p = 0.009 * p = 0.009 *

* indicates significant at alpha = 0.05; ns = non-significant; # = number.

3.2. 2016 Spatial Variation in Treatment Units
3.2.1. HID Burned Halves Exhibited Spatial Autocorrelation at Short Ranges

Variogram models with the lowest RMSE for both burned and unburned halves of
HID and LOD treatments were selected for comparing range, nugget, and sill (Table A5).
Irrespective of the burned and unburned halves, all the HID treatment units exhibited
spatial autocorrelation for overstory AGB at shorter ranges (~120 to 440 m) compared to
the LOD treatment units (~165 to 599 m, Figures 5, A9 and A10). All the burned halves
of HID showed larger nugget values compared to unburned halves and most of the LOD
treatments, indicating the presence of fine-scale spatial variation in overstory AGB within
burned halves (Figure 6).
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Figure 4. Moran’s I correlogram for 1934 vs. 2016 within the four research natural areas (RNAs)
in Blacks Mountain Ecological Research Project. RNA-B and RNA-C received prescribed burn
treatments in 1997 and 1998, respectively. Dotted lines represent the lower and upper limit of the
non-significant spatial autocorrelation using 95% confidence envelopes for 1934 (red) and 2016 (blue)
from Monte Carlo simulations [56]. Points connected with solid lines indicate Moran’s I at a given
lag distance (m). Points above the dotted lines in the upper part of the envelope indicate a positive
Moran’s I that is significantly different from 0, whereas points below the dotted lines in the lower
part of the envelope show a negative Moran’s I that is significantly different from 0. Points within the
dotted envelope show Moran’s I values that are not significantly different from 0.
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Figure 5. Differences in range values for above-ground biomass for the selected variogram models
in burned and unburned halves. The top panel shows the range values for low structural diversity
(LOD) units, whereas the bottom panel shows the range values for high structural diversity (HID)
units in the Blacks Mountain Ecological Research Project.

Figure 6. Differences in sill values for above-ground biomass for the selected variogram models in
burned and unburned halves. The top panel shows the sill values for low structural diversity (LOD)
units, whereas the bottom panel shows the sill values for high structural diversity (HID) units in the
Blacks Mountain Ecological Research Project.
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Within LOD treatment units, most of the burned halves exhibited spatial autocorrela-
tion of overstory AGB at a smaller range compared to unburned halves, but the difference
was very small (Figure 5). Exceptions were units 43 and 44, where spatial autocorrelation
in overstory AGB was exhibited at shorter ranges in unburned halves compared to burned
halves (Figure 5). Within HID treatment units, all the unburned halves exhibited spatial
autocorrelation in overstory AGB at larger ranges than the burned halves, except for units
38 and 48, where the differences in range between burned and unburned halves was very
small (Figures 5 and A10). The presence of fine-scale spatial variation in overstory AGB
was indicated by larger nugget values in burned halves compared to unburned halves,
except for units 41 and 42, which exhibited no nuggets (Figure 6).

3.2.2. HID Burned Halves Exhibited Greater Spatial Variation Indicated by Periodicity at
Shorter Lag Distances

Irrespective of treatments, most of the burned and unburned halves exhibited Moran’s
I values at the first lag that were significantly different from 0, which indicated the absence
of spatial variation at distances below 50 m (Table 3, Figure A11). We found a greater
number of peaks that were significantly different from 0 at shorter lag distances within
burned halves of HID treatments than within unburned halves of HID and LOD treatments
(Figure A11). For example, the burned half of unit 38, showed eight peaks at the interval
of 100–150 m lag distances compared to only two peaks in the unburned half of unit 39,
and three peaks in the burned half of unit 39, all of which occurred at larger lag distances
between 300 and 400 m (Table 3, Figure A11A–F).

Table 3. Summary of the number of peaks and troughs of Moran’s I correlogram and p-values for
Moran’s I at first lag for burned and unburned halves of low structural diversity treatment (LOD)
and high structural diversity treatment (HID) units.

Unit First Lag

Burned Unburned Burned Unburned

# Peak # Peaks

Low structural diversity

UNIT-39 3 2 p = 0.009 * p = 0.009 *
UNIT-40 5 4 p = 0.11 ns p = 0.009 *
UNIT-43 5 2 p = 0.009 * p = 0.009 *
UNIT-44 3 2 p = 0.005 * p = 0.009 *
UNIT-45 6 5 p = 0.009 * p = 0.009 *

High structural diversity

UNIT-38 8 3 p = 0.009 * p = 0.002 *
UNIT-41 4 3 p = 0.007 * p = 0.27 ns

UNIT-42 4 4 p = 0.009 * p = 0.009 *
UNIT-47 5 3 p = 0.009 * p = 0.009 *
UNIT-48 5 3 p = 0.009 * p = 0.009 *

* indicates significant at alpha = 0.05; ns = non-significant; # = number.

Correlograms for LOD treatments were more uniform with few significant peaks
(p = 0.0009) of Moran’s I at longer lag distances compared to HID treatments (Figure A11,
LOD vs. HID). However, between burned and unburned halves of LOD treatment units,
we observed a greater number of significant (p = 0.0009) negative and positive Moran’s I
values at short lag distances for the burned halves (Table 3, Figure A11, LOD). In addition,
between unburned halves of HID and LOD, HID unburned halves for units 41, 42, 47, and
48 exhibited a greater number of peaks in Moran’s I values significantly different from 0 at
shorter lag distances (Figure A11). Hence, both HID burned and unburned halves exhibited
more spatial variation in AGB compared to LOD treatments (Figure A11, LOD vs. HID).
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4. Discussion

Results showed that ranges, fine-scale variation, and periodicity in spatial variation
of overstory above-ground biomass (AGB) were different among units in BMEF based on
management and the point in time. Forests of 1934 were heterogeneous without marked
human-induced management. In contrast, by 2016 these forests had been subjected to some
form of thinning, burning, or a combination of both at various points in time [32,59]. Hence,
spatial variation in overstory AGB for 2016 was likely influenced by these treatments. Our
results showed that spatial variation in 2016 was more pronounced in prescribed burns.

4.1. The 1934 Forest Was Spatially Heterogeneous Particularly at Fine Scales

Most forest units had greater spatial variation in overstory AGB biomass in 1934
compared to 2016, as indicated by the short value of ranges (<200 m) from semivariogram,
periodicity of Moran’s I correlogram and Moran’s I value at first lag not significantly
different from 0 in RNAs [57,58]. The spatial variation in overstory AGB in BMEF is
consistent with several other studies describing small and frequent patch size distributions
(ranging from 60 to 150 m) of the overstory in old growth ponderosa pine forests in northern
California [9,60] and Washington [1].

Further, our results identifying fine-scale variation in most of the units were consistent
with other studies, which attributed the presence of fine-scale variation to frequent fire [61]
and fine-scale variation in growing environmental conditions [62]. Exceptions occurred in
units such as RNA-A and units 45 and 48, which lacked fine-scale (<50 m) spatial variation.
The absence of fine-scale spatial variation is likely due to the absence of frequent fire after
around 1880s at BMEF (unpublished data from Carl Skinner). In the absence of frequent
fire, stand density possibly increased due to the infilling of gaps with shade-tolerant species
such as incense-cedar and white fir [9] in units such as RNA-A and units 45 and 48, which
occurred at higher elevations with abundant shade-tolerant species.

4.2. Spatial Autocorrelation at Long Ranges and Less Spatial Varaitons in 2016 except
When Burned

The long ranges (>250 m) of the variograms suggested that overstory AGB in most
units in 2016 consisted of small patch size and spatial variations, possibly due to increases
in tree densities within 1934 forest gaps [3,63]. With the long-term (century-long) absence
of frequent fire, heterogeneity at small scales (<50 m) could have decreased via a loss of
fine-scale patches along with expansion of existing patches into gaps [3]. The loss of fine-
scale patchiness in BMEF was evidenced by the decrease in nugget values and significant
Moran’s I at first lag in 2016 compared to 1934, consistent with [61]. On the other hand,
no difference in periodicity between 1934 and 2016 within prescribed burn RNA units
indicates that at localized scales, prescribed burns likely emulated much of the 1934 spatial
structure by killing trees in patches [64].

4.3. Prescribed Burns Enhanced Spatial Variation in Both LOD and HID Treatments

The high structural diversity (HID) treatment for BMEF was designed to approxi-
mately emulate a heterogeneous overstory stand structure, with numerous small openings
and patches of large old trees [59]. Therefore, our results regarding spatial variation in over-
story AGB—presence of fine-scale spatial variation, periodicity in patchiness at short lags,
and short ranges—for HID treatments suggest that treatments were effective in creating
greater spatial variation of overstory stand structure [58]. Furthermore, when prescribed
burns were coupled with the HID treatment, spatial variation in overstory AGB was fur-
ther enhanced as evidenced by greater periodicity in overstory AGB as compared to the
unburned half of the HID units.

Prescribed burns can be patchy and localized due to a slow rate of spread and thus can
kill small trees in groups and create openings [64,65]. In addition, second-order post-fire
mortality of trees can also remove patches of trees [65,66]. For example, low-severity
prescribed burns can leave fire-injured conifers that are receptive hosts for bark beetles [66].
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The subsequent mortality of weakened trees—especially large old ponderosa pine—due
to beetle attacks can produce openings and gaps within stands [66,67], therefore creating
a heterogeneous overstory similar to our HID burned halves. Our results in HID burned
units are consistent with Dodson and Peterson [68], who found that thinning increased
spatial aggregation of residual trees at fine scales (50–150 m) and that prescribed fire of
different burning intensity further promoted a mosaic of gaps with burned and unburned
trees followed by beetle-related mortality.

The LOD treatment was designed to create open, even-aged stand conditions with
a single-layer canopy consisting of evenly spaced trees [59]. The largest and smallest
trees were removed from these stands for a unimodal diameter distribution only leaving
intermediate-sized trees [32]. Especially within the unburned halves of the treatments,
the long ranges from the semivariograms and the uniform correlograms with few peaks
at greater lag distances suggested that LOD unburned halves consist of a more spatially
homogeneous overstory AGB compared to HID and LOD burned units. Our results
from unburned halves of the LOD units are consistent with [69], who found that after
uniform removal of trees, mixed-conifer stands showed little spatial variation at broad
scales. Similarly little spatial variation in spruce-fir forests was found by Kuehne et al. [70]
when using thinning treatments involving the removal of small and large dominant trees.
Irrespective of both LOD and HID treatments, burned halves consistently showed more
periodicity in overstory AGB, indicating that fire is a key component in enhancing spatial
heterogeneity in overstory AGB.

4.4. Management Implications

Our findings about enhanced spatial variation after post-treatment prescribed burns
are similar to what other studies have reported for dry forests across California (e.g., [7,71]).
Our comparison of spatial variation between reference and contemporary forests provides
a multi-faceted, quantitative approach for evaluating forests over different time periods
with a variety of potential implications. First, the spatial variation of overstory AGB that we
detected in the 1934 reference forests helps portray the types of variation associated with
very few forest management activities (i.e., in the absence of harvest or prescribed burning)
and thus can serve as a useful point of reference for managers. Then, in utilizing the values
of ranges from the semivariograms across time, managers can understand the distance or
scale over which spatial variation in the overstory in contemporary forests have potentially
departed from that of reference conditions. Secondly, it is important to remember that
these reference conditions represent the accumulated overstory stand structures of dry
forests that have been influenced by multiple past disturbances, rather than a condition
at a single point in time. Nonetheless, when examined over time, changes in spatial
heterogeneity can be used to understand and disentangle the fundamental environmental
factors driving forest overstory variation. We were unable to quantify changes in species
composition, because our data from 1934 were not spatially explicit at the individual tree
level. However, in future work the evaluation of species composition changes over time
may reveal different spatial variation than we have detected here in both reference and
contemporary dry forests.

In addition, our comparison of reference and contemporary overstory spatial variation
can help managers to explore the impact of fire exclusion on driving overstory spatial
variation in dry forests [56]. Furthermore, our deeper comparison between reference
conditions and contemporary forests that subsequently received different management
treatments provides information on which treatments are useful in dry conifer forests such
as BMEF for emulating overstory spatial variation in reference conditions. For example,
in managing contemporary forests, treatments similar to HID with prescribed burns that
preserve and/or create patchy spatial variation similar to reference conditions, may be
warranted. Similarly, LOD with prescribed burn may be warranted whenever the goal
of management is to reduce canopy fuel to promote resiliency against fire. In addition,
comparing spatial variation among various management treatments in contemporary
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forests will allow managers to understand the effectiveness of restoration treatments such
as HID with prescribed burns in creating desirable spatial variation for contemporary
dry forests.

5. Conclusions

This study provides a unique opportunity to examine the spatial variation of overstory
stand structure in forest reference conditions using field-collected data as opposed to
using tree size and density variables derived from dendro-chronological reconstructions.
Furthermore, we were able to fill a gap in the literature related to understanding the spatial
variation of overstory above-ground biomass between contemporary and reference forests.

The spatial variation of above-ground biomass in reference conditions described in
this study comes from forests that have minimum human impact following Euro-American
settlement and hence represent a relatively intact dry forest ecosystem. Therefore, knowl-
edge about spatial variation in such intact forests in reference conditions provides insights
into stand development, tree interactions with each other, regeneration, and mortality. Such
information can help guide sustainable forest management in the face of growing natural
environmental disturbances. Our results further indicate that low-severity fire seems to
be key for emulating the mosaic of alternating patches of biomass at regular intervals
throughout these dry forests. Therefore, managers seeking to enhance ecological resilience
are advised to use prescribed burning alone or in combination with treatments that include
some degree of thinning.

Author Contributions: Conceptualization, S.N., B.N.I.E. and M.W.R.; Data curation, S.N. and M.W.R.;
Formal analysis, S.N.; Investigation, S.N., B.N.I.E. and M.W.R.; Methodology, S.N.; Project adminis-
tration, B.N.I.E.; Resources, B.N.I.E. and M.W.R.; Supervision, B.N.I.E.; Visualization, S.N.; Writing—
original draft, S.N.; Writing—review & editing, B.N.I.E., S.E.G. and M.W.R. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the USDA Forest Service, Pacific Southwest Research Station
(grant number: 15-IJ-11272139-016) and UBC four-year fellowship (4YF) program.

Data Availability Statement: The 1934 data have been submitted to U.S. Forest Service Research
Data Archive and will be publicly available there.

Acknowledgments: We thank Lassen National Forest and Pacific Southwest Research Station for
providing the data for this study. Special thanks go to Ethan Hammett and Brian Wing for providing
the LiDAR and GIS data layers and support on any related questions and Carl Skinner for the
unpublished fire data. We would also like to thank Paul Hacker and Francisco Mauro for valuable
insights during LiDAR data processing.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Data Summary

Table A1. Summary of the applied combination of structural diversity treatments and prescribed
burn in various units of BMERP.

Unit Structural Treatments * Treatment Year Prescribed Burn Burn Year # of 1 ha Plots

RNA-A No treatment - Unburned - 55
RNA-B No treatment - Burned 1997 63
RNA-C No treatment - Burned 1997 76
RNA-D No treatment - Unburned - 35
UNIT-39 LOD 1996 Burned 1997 89
UNIT-39 LOD 1996 Unburned - 85
UNIT-40 LOD 1998 Burned 2000 87
UNIT40 LOD 1998 Unburned - 79
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Table A1. Cont.

Unit Structural Treatments * Treatment Year Prescribed Burn Burn Year # of 1 ha Plots

UNIT-43 LOD 1996 Burned 1997 68
UNIT-43 LOD 1996 Unburned - 90
UNIT-44 LOD 1997 Burned 1999 56
UNIT-44 LOD 1997 Unburned - 49
UNIT-45 LOD 1997 Burned 1999 57
UNIT-45 LOD 1997 Unburned - 75
UNIT-38 HID 1996 Burned 1997 87
UNIT-38 HID 1996 Unburned - 93
UNIT-41 HID 1996 Burned 1997 82
UNIT-41 HID 1996 Unburned - 79
UNIT-42 HID 1997 Burned 1999 83
UNIT-42 HID 1997 Unburned - 101
UNIT-47 HID 1997 Burned 1999 59
UNIT-47 HID 1997 Unburned - 48
UNIT-48 HID 1998 Burned 2000 81
UNIT-48 HID 1998 Unburned - 76
Total 1720

* HID: high structural diversity treatment; LOD: low structural diversity treatment; RNA: research natural areas;
# = number.

Figure A1. Histogram for above-ground biomass (Mg/ha) for 2016 ground data. The red and blue
lines indicate the mean and median, respectively.

Appendix B. LiDAR Point Cloud Processing and Model Building Process

The LiDAR point cloud was processed using the ‘lidR’ package in R [42]. We filtered
duplicates for the overlapping region of the point clouds and then classified the ground
returns [42]. All the ground returns were used to obtain a digital terrain model of 1 × 1 m
grid cell size [42]. The point cloud was normalized by subtracting the digital terrain model
from all returns to remove the influence of terrain on above-ground returns [42]. From
the normalized point cloud, we used the area-based approach [42] to calculate the LiDAR
metrics (Table A2)—hereafter referred to as auxiliary variables—using the ‘cloudmetrics’
function related to the 154 circular ground plots. We also extracted average elevation
(Table A2) for each ground plot in 2016 from a digital elevation model at 1 m resolution
provided by the Pacific Southwest Research Station, Redding, USA, using the zonal statistics
function in ArcMap 10.4.4. [72].
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Table A2. LiDAR-derived and topographic auxiliary variables were used for biomass modeling.

Groups LiDAR Variables Description

Group A

zmean Mean elevation for all first returns above 2 m
zq5 Elevation for first return in 5th percentile
zq10 Elevation for first return in 10th percentile
zq15 Elevation for first return in 15th percentile
zq20 Elevation for first return in 20th percentile
zq25 Elevation for first return in 25th percentile

Group B

zq30 Elevation for first return in 30th percentile
zq35 Elevation for first return in 35th percentile
zq40 Elevation for first return in 40th percentile
zq45 Elevation for first return in 45th percentile
zq50 Elevation for first return in 50th percentile

Group C

zq55 Elevation for first return in 55th percentile
zq60 Elevation for first return in 60th percentile
zq65 Elevation for first return in 65th percentile
zq70 Elevation for first return in 70th percentile
zq75 Elevation for first return in 75th percentile

Group D

zq80 Elevation for first return in 80th percentile
zq85 Elevation for first return in 85th percentile
zq90 Elevation for first return in 90th percentile
zq95 Elevation for first return in 95th percentile
pzmean Percentage of first return above mean
Elev (m) Elevation from digital elevation model @1 m
Treatment × prescribed burn

Appendix C. Model Building, Selection Process, and Biomass Prediction Summary

To avoid over fitting of the model and to have about 10–15 observations per auxiliary
variable, we divided the auxiliary variables into four groups (Table A2, [43,73]). Within
each variable group, following the top-down model-building strategy for glm models
described by Zuur et al. [47], the LiDAR-derived variables and the six treatments—three
structural diversity treatments crossed with two prescribed burn treatments—were used
as fixed effects. A random unit effect was also included in the model [43]. The variables
that were not statistically significant (p-value > 0.05) and had a variance inflation factor
(VIF) of 10 or greater were dropped sequentially [47,74]. The variables that were retained
from each auxiliary variable group were combined into a single model and were retained if
they were statistically significant (p < 0.05) and had VIF < 10 [47,74]. Variables that were
not statistically significant during group-wise selection were brought back into the model
to check if the performance of the combined model improved. The model goodness-of-fit
at each model building step was assessed using a graph showing observed vs. predicted
values (Figure A2) and graphs of the residual deviance [47]. We selected the biomass model
with the lowest AIC and lowest residual deviance (Table A3) as our final model. Our final
model consisted of the mean height for all first returns above 2 m (zmean, p = 1.4 × 10−7),
the height for the first return in the 5th percentile (zq5, p = 0.05), crossed treatments as fixed
effects (p = 0.05), and unit level random effects (Table A3).

The range of predicted values of overstory AGB for the cells was within the range
of the observed values for the circular ground plots (Table A4, Figure A3). The mean
and median predicted values were very close to the mean and median observed values
(Table A4, Figure A3). Overstory AGB predicted within the low structural diversity (LOD)
units was low and consistent with observed overstory AGB (Figure A4). Predicted overstory
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AGB in high structural diversity (HID) units and research natural areas (RNAs) was high
compared to LOD but within the range of observed overstory AGB for HID and RNA units
(Figure A4).

Table A3. Summary of the best-selected models from each auxiliary variable group. Highlighted in
bold is the final model selected for above-ground biomass (Mg/ha) prediction.

Variable Group Model AIC Residual Deviance p-Value

Group A
Fixed effects = zmean + zq5 + Treatment × prescribed burn
Random effect = units 1577.9 1557.9

zmean
(p < 0.0001)

zq5
(p = 0.00087)

Group B
Fixed effects = zq50+ Treatment × prescribed burn
Random effect = units 1590.01 1572.0 zq50

(p = 0.00034)

Group C
Fixed effects = zq75+ Treatment × prescribed burn
Random effect = units 1582.9 1564.1 zq75

(p < 0.0001)

Group D
Fixed effects = zq95+ Treatment × prescribed burn
Random effect = units 1581.9 1561.9 zq95

(p < 0.0001)

Final
Fixed effects = zmean + zq5 + Elev Random effects =
Treatments × prescribed fire

15,916.6 1577.6
Zmean (<0.001)

Zq5 (<0.001)
Elev (<0.05)

Figure A2. Observed vs. predicted above-ground biomass (Mg/ha). The models shown above
represent the best model from each of the variable groups along with the final model. The red line is
the best fitted line.
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Table A4. Summary statistics of the observed and predicted overstory above-ground biomass
(Mg/ha) values for circular plots (n = 153) and cells (n = 12,647).

Above-Ground Biomass (Mg/ha) Min Max Mean Median

Observed (Circular plots) 4.33 327.53 101.71 83.48
Predicted
(32 × 32 m cells) 10.33 381.65 101.02 89.03

Figure A3. Predicted above-ground biomass (AGB, Mg/ha). The predictions were made at the cell
level for overstory AGB and compared with the overstory AGB from the circular ground-truthing
plots. The blue and red lines represent the median and mean of overstory AGB, respectively.
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Figure A4. Predicted above-ground biomass (Mg/ha). The predictions were made using the final
model and LiDAR derived metrics in 2016 at 32 m × 32 m pixel level for high structural diversity
treatments (HID), low structural diversity treatments (LOD), and research natural areas (RNA) within
Blacks Mountain Experimental Forest (BMEF).
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Appendix D. Additional Table and Figures for the Results

Table A5. Summary of root mean squared error (RMSE) and values for the spherical, exponential,
and Gaussian models selected for burned and unburned halves of HID and LOD units.

Unit Fire Model RMSE Sill

Low structural Diversity (LOD)

UNIT-39 Burned Gaussian 0.54 0.86
UNIT-39 Unburned Gaussian 0.71 1.04
UNIT-40 Burned Gaussian 0.72 0.93
UNIT-40 Unburned Gaussian 0.73 1.05
UNIT-43 Burned Spherical 0.75 1.03
UNIT-43 Unburned Spherical 0.74 1.00
UNIT-44 Burned Gaussian 0.64 1.15
UNIT-44 Unburned Gaussian 0.49 0.92
UNIT-45 Burned Gaussian 0.58 1.14
UNIT-45 Unburned Gaussian 0.65 1.07

High structural diversity (HID)

UNIT-38 Burned Gaussian 0.65 0.92
UNIT-38 Unburned Gaussian 0.59 0.87
UNIT-41 Burned Spherical 0.74 0.84
UNIT-41 Unburned Spherical 0.76 0.98
UNIT-42 Burned Exponential 0.74 1.13
UNIT-42 Unburned Exponential 0.73 1.32
UNIT-47 Burned Gaussian 0.63 0.90
UNIT-47 Unburned Gaussian 0.68 2.81
UNIT-48 Burned Gaussian 0.70 0.92
UNIT-48 Unburned Gaussian 0.74 0.88

Figure A5. Variogram models for research natural areas (RNA) in 1934 and 2016.
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Figure A6. Variogram models for low structural diversity units (LOD) in 1934 and 2016.
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Figure A7. Variogram models for high structural diversity units (HID) in 1934 and 2016.
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Figure A8. Moran’s I correlogram for 1934 vs. 2016 within different units under study in Blacks
Mountain Experimental Forest. Dotted lines represent the lower and upper limit of the non-significant
spatial autocorrelation using 95% confidence envelopes for 1934 (red) and 2016 (blue) from Monte
Carlo simulations [56]. Points connected with solid lines indicate Moran’s I at a given lag distance
(m). Points above the dotted lines in the upper part of the envelope indicate a positive Moran’s I
that is significantly different from 0, whereas points below the dotted lines in the lower part of the
envelope show a negative Moran’s I that is significantly different from 0. Points within the dotted
envelope show Moran’s I values that are not significantly different from 0.
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Figure A9. Variogram models for burned and unburned halves of low structural diversity units
(LOD) in 2016.

Figure A10. Variogram models for burned and unburned halves of high structural diversity units
(HID) in 2016.
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Figure A11. Moran’s I correlograms for burned and unburned halves within different HID and
LOD units in Blacks Mountain Experimental Forest. Dotted lines represent the lower and upper
limit of the non-significant spatial autocorrelation using 95% confidence envelopes for Burned (red)
and Unburned (blue) from Monte Carlo simulations [56]. Points connected with solid lines indicate
Moran’s I at a given lag distance (m). Points above the dotted lines in the upper part of the envelope
indicate a positive Moran’s I that is significantly different from 0, whereas points below the dotted
lines in the lower part of the envelope show a negative Moran’s I that is significantly different from 0.
Points within the dotted envelope show Moran’s I values that are not significantly different from 0.
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